Designed active-site library reveals thousands of functional GFP variants

Jonathan Yaacov Weinstein, Carlos Martí-Gómez, Rosalie Lipsh-Sokolik, Shlomo Yakir Hoch, Demian Liebermann, Reinat Nevo, Haim Weissman, Ekaterina Petrovich-Kopitman, David Margulies, Dmitry Ivankov, David M McCandlish, Sarel J Fleishman

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)
67 Downloads (Pure)

Abstract

Mutations in a protein active site can lead to dramatic and useful changes in protein activity. The active site, however, is sensitive to mutations due to a high density of molecular interactions, substantially reducing the likelihood of obtaining functional multipoint mutants. We introduce an atomistic and machine-learning-based approach, called high-throughput Functional Libraries (htFuncLib), that designs a sequence space in which mutations form low-energy combinations that mitigate the risk of incompatible interactions. We apply htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout, recover >16,000 unique designs encoding as many as eight active-site mutations. Many designs exhibit substantial and useful diversity in functional thermostability (up to 96 °C), fluorescence lifetime, and quantum yield. By eliminating incompatible active-site mutations, htFuncLib generates a large diversity of functional sequences. We envision that htFuncLib will be used in one-shot optimization of activity in enzymes, binders, and other proteins.

Original languageEnglish
Article number2890
Number of pages13
JournalNature Communications
Volume14
DOIs
Publication statusPublished - 20 May 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Designed active-site library reveals thousands of functional GFP variants'. Together they form a unique fingerprint.

Cite this