Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and N-Heteroarenes: H2 and N–H Activation by Metal–Ligand Cooperation as Key Steps

Yaoyu Liang, Jie Luo, Yael Diskin-Posner, David Milstein*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Utilization of main-group metals as alternatives to transition metals in homogeneous catalysis has become a hot research area in recent years. However, their application in catalytic hydrogenation is less common due to the difficulty in heterolytic cleavage of the H–H bond. Employing aromatization/de-aromatization metal–ligand cooperation (MLC) highly enhances the H2 activation process, offering an efficient approach for the hydrogenation of unsaturated molecules catalyzed by main-group metals. Herein, we report a series of new magnesium pincer complexes prepared using PNNH-type pincer ligands. The complexes were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 and N–H bonds by MLC employing these pincer complexes was developed. Using the new magnesium complexes, homogeneously catalyzed hydrogenation of aldimines and ketimines was achieved, affording secondary amines in excellent yields. Control experiments and DFT studies reveal that a pathway involving MLC is favorable for the hydrogenation reactions. Moreover, the efficient catalysis was extended to the selective hydrogenation of quinolines and other N-heteroarenes, presenting the first example of hydrogenation of N-heteroarenes homogeneously catalyzed by early main-group metal complexes. This study provides a new strategy for hydrogenation of C═N bonds catalyzed by magnesium compounds and enriches the research of main-group metal catalysis.
Original languageEnglish
Pages (from-to)9164-9175
Number of pages12
JournalJournal of the American Chemical Society
Volume145
Issue number16
DOIs
Publication statusPublished - 26 Apr 2023

Funding

J. L. is thankful to the Feinberg Graduate School of Weizmann Institute of Science for a Senior Postdoctoral Fellowship.

Fingerprint

Dive into the research topics of 'Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and N-Heteroarenes: H2 and N–H Activation by Metal–Ligand Cooperation as Key Steps'. Together they form a unique fingerprint.

Cite this