Abstract
The first asymmetric meiotic cell divisions in mouse oocytes are driven by formin 2 (FMN2)-nucleated actin polymerization around the spindle. In this study, we investigated how FMN2 is recruited to the spindle peripheral ER and how its activity is regulated in mouse meiosis I (MI) oocytes. We show that this process is regulated by the Ran GTPase, a conserved mediator of chromatin signal, and the ER-associated protein VAPA. FMN2 contains a nuclear localization sequence (NLS) within a domain (SLD) previously shown to be required for FMN2 localization to the spindle periphery. FMN2 NLS is bound to the importin α1/β complex, and the disruption of this interaction by RanGTP is required for FMN2 accumulation in the area proximal to the chromatin and the MI spindle. The importin-free FMN2 is then recruited to the surface of ER around the spindle through the binding of the SLD with the ER-membrane protein VAPA. We further show that FMN2 is autoinhibited through an intramolecular interaction between the SLD with the C-terminal formin homology 2 (FH2) domain that nucleates actin filaments. VAPA binding to SLD relieves the autoinhibition of FMN2, leading to localized actin polymerization. This dual control of formin-mediated actin assembly allows actin polymerization to initiate the movement of the meiotic spindle toward the cortex, an essential step in the maturation of the mammalian female gamete.
Original language | English |
---|---|
Pages (from-to) | 4013-4024.e6 |
Journal | Current Biology |
Volume | 32 |
Issue number | 18 |
DOIs | |
Publication status | Published - 26 Sept 2022 |
All Science Journal Classification (ASJC) codes
- General Neuroscience
- General Biochemistry,Genetics and Molecular Biology
- General Agricultural and Biological Sciences