Enhancing uterine receptivity for embryo implantation through controlled collagenase intervention

Eldar Zehorai, Tamar Gross Lev, Elee Shimshoni, Ron Hadas, Idan Adir, Ofra Golani, Guillaume Molodij, Ram Eitan, Karl E. Kadler, Orit Kollet, Michal Neeman, Nava Dekel, Inna Solomonov*, Irit Sagi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Ineffective endometrial matrix remodeling, a key factor in infertility, impedes embryo implantation in the uterine wall. Our study reveals the cellular and molecular impact of human collagenase-1 administration in mouse uteri, demonstrating enhanced embryo implantation rates. Collagenase-1 promotes remodeling of the endometrial ECM, degrading collagen fibers and proteoglycans. This process releases matrix-bound bioactive factors (e.g., VEGF, decorin), facilitating vascular permeability and angiogenesis. Collagenase-1 elevates embryo implantation regulators, including NK cell infiltration and the key cytokine LIF. Remarkably, uterine tissue maintains structural integrity despite reduced endometrial collagen fiber tension. In-utero collagenase-1 application rescues implantation in heat stress and embryo transfer models, known for low implantation rates. Importantly, ex vivo exposure of human uterine tissue to collagenase-1 induces collagen de-tensioning and VEGF release, mirroring remodeling observed in mice. Our research highlights the potential of collagenases to induce and orchestrate cellular and molecular processes enhancing uterine receptivity for effective embryo implantation. This innovative approach underscores ECM remodeling mechanisms critical for embryo implantation.

Original languageEnglish
JournalLife Science Alliance
Volume7
Issue number10
Early online date16 Aug 2024
DOIs
Publication statusPublished - 1 Oct 2024

All Science Journal Classification (ASJC) codes

  • Ecology
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Plant Science
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Enhancing uterine receptivity for embryo implantation through controlled collagenase intervention'. Together they form a unique fingerprint.

Cite this