Equilibrium Fractionation of Oxygen Isotopes in the U3O8–Atmospheric Oxygen System

Maor Assulin*, Ruth Yam, Anna Kossoy, Eyal Elish, Aldo Shemesh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

As a major component in the nuclear fuel cycle, octoxide uranium is subjected to intensive nuclear forensics research. Scientific efforts have been mainly dedicated to determine signatures, allowing for clear and distinct attribution. The oxygen isotopic composition of octoxide uranium, acquired during the fabrication process of the nuclear fuel, might serve as a signature. Hence, understanding the factors governing the final oxygen isotopic composition and the chemical systems in which U3O8 was produced may develop a new fingerprint concerning the history of the material and/or the process to which it was subjected. This research determines the fractionation of oxygen isotopes at different temperatures relevant to the nuclear fuel cycle in the system of U3O8 and atmospheric O2. We avoid the retrograde isotope effect at the cooling stage at the end of the fabrication process of U3O8. The system attains the isotope equilibrium at temperatures higher than 300 °C. The average δ18O values of U3O8 in equilibrium with atmospheric oxygen have been found to span over a wide range, from −9.90‰ at 300 °C up to 18.40‰ at 800 °C. The temperature dependency of the equilibrium fractionation (1000 ln αU3O8‑atm. O2 ) exhibits two distinct regions, around −33‰ between 300 °C and −500 °C and −5‰ between 700 °C and −800 °C. The sharp change coincides with the transition from a pseudo-hexagonal structure to a hexagonal structure. A depletion trend in δ18O is associated with the orthorhombic structure and may result from the uranium mass effect, which might also play a role in the depletion of 5‰ versus atmospheric oxygen at high temperatures.
Original languageEnglish
Pages (from-to)47040-47047
Number of pages8
JournalACS Omega
Volume7
Issue number50
Early online date5 Dec 2022
DOIs
Publication statusPublished - 20 Dec 2022

Funding

We thank I. Brailovsky for her technical assistance in the isotope analysis and Dr. Y. Feldman of the Weizmann Institute for XRD measurements. This work was supported by a grant (ID197-2020) from the PAZY foundation to A.S. (WIS) and E.E. (NRCN).

Fingerprint

Dive into the research topics of 'Equilibrium Fractionation of Oxygen Isotopes in the U3O8–Atmospheric Oxygen System'. Together they form a unique fingerprint.

Cite this