TY - JOUR
T1 - IL-16 processing in sentinel node regulatory T cells is a factor in bladder cancer immunity
AU - Krantz, David
AU - Mints, Michael
AU - Winerdal, Malin
AU - Riklund, Katrine
AU - Rutishauser, Dorothea
AU - Zubarev, Roman
AU - Zirakhzadeh, Amir Ali
AU - Alamdari, Farhood
AU - Johansson, Markus
AU - Sherif, Amir
AU - Winqvist, Ola
PY - 2020/12
Y1 - 2020/12
N2 - In the effort of developing new immunotherapies, the sentinel node (SN) has proven a promising source from which to harness an effective antitumour T cell response. However, tumour immune escape, a process in which regulatory T cells (Tregs) play a central role, remains a major limiting factor. Therefore, there is a clear need to increase the knowledge of Treg function and signalling in sentinel nodes. Here, we set out to explore whether the proteome in SN-resident T cells is altered by the tumour and to identify key proteins in SN T cell signalling, focusing on Tregs. Five patients with muscle-invasive urothelial bladder cancer were prospectively included. Mass spectrometry was performed on two patients, with validation and functional studies being performed on three additional patients and four healthy donors. At cystectomy, SN, non-SN lymph nodes and peripheral blood samples were collected from the patients and T cell subsets isolated through flow cytometry before downstream experiments. Proteomic analysis indicated that growth and immune signalling pathways are upregulated in SN-resident Tregs. Furthermore, centrality analysis identified the cytokine IL-16 to be central in the SN-Treg signalling network. We show that tumour-released factors, through activating caspase-3, increase Treg IL-16 processing into bioactive forms, reinforcing Treg suppressive capacity. In conclusion, we provide evidence that Tregs exposed to secreted factors from bladder tumours show increased immune and growth signalling and altered IL-16 processing which translates to enhanced Treg suppressive function, indicating altered IL-16 signalling as a novel tumour immune escape mechanism.
AB - In the effort of developing new immunotherapies, the sentinel node (SN) has proven a promising source from which to harness an effective antitumour T cell response. However, tumour immune escape, a process in which regulatory T cells (Tregs) play a central role, remains a major limiting factor. Therefore, there is a clear need to increase the knowledge of Treg function and signalling in sentinel nodes. Here, we set out to explore whether the proteome in SN-resident T cells is altered by the tumour and to identify key proteins in SN T cell signalling, focusing on Tregs. Five patients with muscle-invasive urothelial bladder cancer were prospectively included. Mass spectrometry was performed on two patients, with validation and functional studies being performed on three additional patients and four healthy donors. At cystectomy, SN, non-SN lymph nodes and peripheral blood samples were collected from the patients and T cell subsets isolated through flow cytometry before downstream experiments. Proteomic analysis indicated that growth and immune signalling pathways are upregulated in SN-resident Tregs. Furthermore, centrality analysis identified the cytokine IL-16 to be central in the SN-Treg signalling network. We show that tumour-released factors, through activating caspase-3, increase Treg IL-16 processing into bioactive forms, reinforcing Treg suppressive capacity. In conclusion, we provide evidence that Tregs exposed to secreted factors from bladder tumours show increased immune and growth signalling and altered IL-16 processing which translates to enhanced Treg suppressive function, indicating altered IL-16 signalling as a novel tumour immune escape mechanism.
UR - http://www.scopus.com/inward/record.url?scp=85089973533&partnerID=8YFLogxK
U2 - 10.1111/sji.12926
DO - 10.1111/sji.12926
M3 - Article
C2 - 32862475
SN - 0300-9475
VL - 92
JO - Scandinavian Journal of Immunology
JF - Scandinavian Journal of Immunology
IS - 6
M1 - e12926
ER -