In vitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for in vivo protection against organophosphate intoxications

Yacov Ashani, Haim Leader, Nidhi Aggarwal, Israel Silman, Franz Worek, Joel L. Sussman, Moshe Goldsmith*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Catalytic scavengers of organophosphates (OPs) are considered very promising antidote candidates for preventing the adverse effects of OP intoxication as stand alone treatments. This study aimed at correlating the in-vivo catalytic efficiency ((kcat/KM)[Enzyme] pl), established prior to the OP challenge, with the severity of symptoms and survival rates of intoxicated animals. The major objective was to apply a theoretical approach to estimate a lower limit for (kcat/KM)[Enzyme] pl that will be adequate for establishing the desired kcat/KM value and plasma concentration of efficacious catalytic bioscavengers. Published data sets by our group and others, from in vivo protection experiments executed in the absence of any supportive medicine, were analyzed. The kcat/KM values of eight OP hydrolyzing enzymes and their plasma concentrations in four species exposed to OPs via s. c., i.m. and oral gavage, were analyzed. Our results show that regardless of the OP type and the animal species employed, sign-free animals were observed following bioscavenger treatment provided the theoretically estimated time period required to detoxify 96% of the OP (t96%) in vivo was

Original languageEnglish
Pages (from-to)252-256
Number of pages5
JournalChemico-Biological Interactions
Volume259
DOIs
Publication statusPublished - 25 Nov 2016
Event12th International Meeting on Cholinesterases / 6th International Conference on Paraoxonase - Elche, Spain
Duration: 1 Jan 2015 → …

All Science Journal Classification (ASJC) codes

  • Toxicology

Fingerprint

Dive into the research topics of 'In vitro evaluation of the catalytic activity of paraoxonases and phosphotriesterases predicts the enzyme circulatory levels required for in vivo protection against organophosphate intoxications'. Together they form a unique fingerprint.

Cite this