Abstract
Recent findings have suggested the involvement of protein phosphorylation in the regulation of the epithelial Na+ channel (ENaC). This study reports the in vitro phosphorylation of the COOH termini of ENaC subunits expressed as glutathione S-transferase fusion proteins. Channel subunits were specifically phosphorylated by kinase-enriched cytosolic fractions derived from rat colon. The phosphorylation observed was not mediated by the serum- and glucocorticoid-regulated kinase sgk. For the γ-subunit, phosphorylation occurred on a single, well-conserved threonine residue located in the immediate vicinity of the PY motif (T630). The analogous residue on β(S620) was phosphorylated as well. The possible role of γT630 and βS620 in channel function was studied in Xenopus laevis oocytes. Mutating these residues to alanine had no effect on the basal channel-mediated current. They do, however, inhibit the sgk-induced increase in channel activity but only in oocytes that were preincubated in low Na+ and had a high basal Na+ current. Thus mutating γT630 or βS620 may limit the maximal channel activity achieved by a combination of sgk and low Na+.
Original language | English |
---|---|
Pages (from-to) | F1030-F1036 |
Journal | American Journal Of Physiology-Renal Physiology |
Volume | 280 |
Issue number | 6 49-6 |
DOIs | |
Publication status | Published - 2001 |
All Science Journal Classification (ASJC) codes
- Physiology