Phase-Incremented Steady-State Free Precession as an Alternate Route to High-Resolution NMR

Tian He, Yuval Zur*, Elton T. Montrazi, Lucio Frydman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Pulsed Fourier transform nuclear magnetic resonance (FT-NMR) has reigned supreme in high-resolution, high-field spectroscopy─particularly when targeting complex liquid-state samples involving multiple sharp peaks spread over large spectral bandwidths. It is known, however, that if spectral resolution is not a must, the FT-based approach is not necessarily the optimal route for maximizing NMR sensitivity: if T2 ≈ T1, as often found in solutions, Carr’s steady-state free-precession (SSFP) approach can in principle provide a superior signal-to-noise ratio per √(acquisition_time) (SNRt). A rapid train of pulses will then lead to a transverse component that reaches up to 50% of the thermal equilibrium magnetization, provided that pulses are applied at repetition times TR ≪ T2, T1, and that a single suitable offset is involved. It is generally assumed that having to deal with multiple chemical shifts deprives SSFP from its advantages. The present study revisits this assumption by introducing an approach whereby arbitrarily short SSFP-derived free induction decays (FIDs) can deliver high-resolution spectra, without suffering from peak broadenings or phase distortions. To achieve discrimination among nearby frequencies, signals arising from a series of regularly phase-increased excitation pulses are collected. Given SSFP’s amplitude and phase sensitivity to the spins’ offset, this enables the resolution of sites according to their chemical shift position. In addition, the extreme fold-over associated with SSFP acquisitions is dealt with by a customized discrete FT of the interpulse time-domain signal. Solution-state 13C NMR spectra which compare well with FT-NMR data in terms of sensitivity, bandwidth, and resolution can then be obtained.

Original languageEnglish
Pages (from-to)3615-3621
Number of pages7
JournalJournal of the American Chemical Society
Volume146
Issue number6
Early online date31 Jan 2024
DOIs
Publication statusPublished - 14 Feb 2024

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Phase-Incremented Steady-State Free Precession as an Alternate Route to High-Resolution NMR'. Together they form a unique fingerprint.

Cite this