TY - JOUR
T1 - Photovoltaic fields largely outperform afforestation efficiency in global climate change mitigation strategies
AU - Stern, Rafael
AU - Muller, Jonathan D.
AU - Rotenberg, Eyal
AU - Amer, Madi
AU - Segev, Lior
AU - Yakir, Dan
PY - 2023/11/1
Y1 - 2023/11/1
N2 - Suppression of carbon emissions through photovoltaic (PV) energy and carbon sequestration through afforestation provides complementary climate change mitigation (CCM) strategies. However, a quantification of the "break-even time"(BET) required to offset the warming impacts of the reduced surface reflectivity of incoming solar radiation (albedo effect) is needed, though seldom accounted for in CCM strategies. Here, we quantify the CCM potential of PV fields and afforestation, considering atmospheric carbon reductions, solar panel life cycle analysis (LCA), surface energy balance, and land area required across different climatic zones, with a focus on drylands, which offer the main remaining land area reserves for forestation aiming climate change mitigation (Rohatyn S, Yakir D, Rotenberg E, Carmel Y. Limited climate change mitigation potential through forestation of the vast dryland regions. 2022. Science 377:1436-1439). Results indicate a BET of PV fields of -2.5 years but >50× longer for dryland afforestation, even though the latter is more efficient at surface heat dissipation and local surface cooling. Furthermore, PV is -100× more efficient in atmospheric carbon mitigation. While the relative efficiency of afforestation compared with PV fields significantly increases in more mesic climates, PV field BET is still -20× faster than in afforestation, and land area required greatly exceeds availability for tree planting in a sufficient scale. Although this analysis focusing purely on the climatic radiative forcing perspective quantified an unambiguous advantage for the PV strategy over afforestation, both approaches must be combined and complementary, depending on climate zone, since forests provide crucial ecosystem, climate regulation, and even social services.
AB - Suppression of carbon emissions through photovoltaic (PV) energy and carbon sequestration through afforestation provides complementary climate change mitigation (CCM) strategies. However, a quantification of the "break-even time"(BET) required to offset the warming impacts of the reduced surface reflectivity of incoming solar radiation (albedo effect) is needed, though seldom accounted for in CCM strategies. Here, we quantify the CCM potential of PV fields and afforestation, considering atmospheric carbon reductions, solar panel life cycle analysis (LCA), surface energy balance, and land area required across different climatic zones, with a focus on drylands, which offer the main remaining land area reserves for forestation aiming climate change mitigation (Rohatyn S, Yakir D, Rotenberg E, Carmel Y. Limited climate change mitigation potential through forestation of the vast dryland regions. 2022. Science 377:1436-1439). Results indicate a BET of PV fields of -2.5 years but >50× longer for dryland afforestation, even though the latter is more efficient at surface heat dissipation and local surface cooling. Furthermore, PV is -100× more efficient in atmospheric carbon mitigation. While the relative efficiency of afforestation compared with PV fields significantly increases in more mesic climates, PV field BET is still -20× faster than in afforestation, and land area required greatly exceeds availability for tree planting in a sufficient scale. Although this analysis focusing purely on the climatic radiative forcing perspective quantified an unambiguous advantage for the PV strategy over afforestation, both approaches must be combined and complementary, depending on climate zone, since forests provide crucial ecosystem, climate regulation, and even social services.
UR - http://www.scopus.com/inward/record.url?scp=85178643464&partnerID=8YFLogxK
U2 - 10.1093/pnasnexus/pgad352
DO - 10.1093/pnasnexus/pgad352
M3 - Article
AN - SCOPUS:85178643464
SN - 2752-6542
VL - 2
JO - PNAS Nexus
JF - PNAS Nexus
IS - 11
M1 - pgad352
ER -