Abstract
Background: Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination.Results: Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations.Conclusions: The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.
Original language | English |
---|---|
Article number | 24 |
Journal | BMC Biology |
Volume | 9 |
DOIs | |
Publication status | Published - 21 Apr 2011 |
Funding
EU Network of Excellence 'Epigenome'; Austrian Science Fund [P18986-B-17]; Eurasia Pacific UninetWe thank Luca Comai for wild-type autotetraploid Arabidopsis thaliana, Arabidopsis arenosa and synthetic Arabidopsis suecica, Marie-Theres Hauser for initial help with ploidy analysis, Bonnie Wohlrab and Nicole Lettner for technical assistance and Timothy Skern, Geoffrey Clarke, Steven Le Comber and three anonymous reviewers for valuable comments on the manuscript. This work was supported by grants from the EU Network of Excellence 'Epigenome', the Austrian Science Fund P18986-B-17 (OMS) and the Eurasia Pacific Uninet (WF).
All Science Journal Classification (ASJC) codes
- General Biochemistry,Genetics and Molecular Biology
- Ecology, Evolution, Behavior and Systematics
- Structural Biology
- Physiology
- General Agricultural and Biological Sciences
- Biotechnology
- Plant Science
- Cell Biology
- Developmental Biology