TY - JOUR
T1 - Systemic antitumor immunity by PD-1/PD-L1 inhibition is potentiated by vascular-targeted photodynamic therapy of primary tumors
AU - O'Shaughnessy, Matthew J.
AU - Murray, Katie S.
AU - La Rosa, Stephen P.
AU - Budhu, Sadna
AU - Merghoub, Taha
AU - Somma, Alexander
AU - Monette, Sebastien
AU - Kim, Kwanghee
AU - Corradi, Renato Beluco
AU - Scherz, Avigdor
AU - Coleman, Jonathan A.
PY - 2018/2
Y1 - 2018/2
N2 - Purpose: PD-1/PD-L1 pathway inhibition is effective against advanced renal cell carcinoma, although results are variable and may depend on host factors, including the tumor microenvironment. Vascular-targeted photodynamic (VTP) therapy with the photosensitizer WST11 induces a defined local immune response, and we sought to determine whether this could potentiate the local and systemic antitumor response to PD-1 pathway inhibition. Experimental Design: Using an orthotopic Renca murine model of renal cell carcinoma that develops lung metastases, we treated primary renal tumors with either VTP alone, PD-1/PD-L1 antagonistic antibodies alone, or a combination of VTP and antibodies and then examined treatment responses, including immune infiltration in primary and metastatic sites. Modulation of PD-L1 expression by VTP in human xenograft tumors was also assessed. Results: Treatment of renal tumors with VTP in combination with systemic PD-1/PD-L1 pathway inhibition, but neither treatment alone, resulted in regression of primary tumors, prevented growth of lung metastases, and prolonged survival in a preclinical mouse model. Analysis of tumor-infiltrating lymphocytes revealed that treatment effect was associated with increased CD8 þ :regulatory T cell (Treg) and CD4 þ FoxP3-:Treg ratios in primary renal tumors and increased T-cell infiltration in sites of lung metastasis. Furthermore, PD-L1 expression is induced following VTP treatment of human renal cell carcinoma xenografts. Conclusions: Our results demonstrate a role for local immune modulation with VTP in combination with PD-1/PD-L1 pathway inhibition for generation of potent local and systemic antitumor responses. This combined modality strategy may be an effective therapy in cancers resistant to PD-1/PD-L1 pathway inhibition alone.
AB - Purpose: PD-1/PD-L1 pathway inhibition is effective against advanced renal cell carcinoma, although results are variable and may depend on host factors, including the tumor microenvironment. Vascular-targeted photodynamic (VTP) therapy with the photosensitizer WST11 induces a defined local immune response, and we sought to determine whether this could potentiate the local and systemic antitumor response to PD-1 pathway inhibition. Experimental Design: Using an orthotopic Renca murine model of renal cell carcinoma that develops lung metastases, we treated primary renal tumors with either VTP alone, PD-1/PD-L1 antagonistic antibodies alone, or a combination of VTP and antibodies and then examined treatment responses, including immune infiltration in primary and metastatic sites. Modulation of PD-L1 expression by VTP in human xenograft tumors was also assessed. Results: Treatment of renal tumors with VTP in combination with systemic PD-1/PD-L1 pathway inhibition, but neither treatment alone, resulted in regression of primary tumors, prevented growth of lung metastases, and prolonged survival in a preclinical mouse model. Analysis of tumor-infiltrating lymphocytes revealed that treatment effect was associated with increased CD8 þ :regulatory T cell (Treg) and CD4 þ FoxP3-:Treg ratios in primary renal tumors and increased T-cell infiltration in sites of lung metastasis. Furthermore, PD-L1 expression is induced following VTP treatment of human renal cell carcinoma xenografts. Conclusions: Our results demonstrate a role for local immune modulation with VTP in combination with PD-1/PD-L1 pathway inhibition for generation of potent local and systemic antitumor responses. This combined modality strategy may be an effective therapy in cancers resistant to PD-1/PD-L1 pathway inhibition alone.
U2 - 10.1158/1078-0432.CCR-17-0186
DO - 10.1158/1078-0432.CCR-17-0186
M3 - Article
C2 - 28954788
AN - SCOPUS:85041456726
SN - 1078-0432
VL - 24
SP - 592
EP - 599
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 3
ER -