Abstract
Pancreatic islet β cells are organized in rosette-like structures around blood vessels and exhibit an artery-to-vein orientation, but they do not display the typical epithelial polarity. It is unclear whether these cells present a functional asymmetry related to their spatial organization. Here, we identify murine β cell edges, the sites at which adjacent cell faces meet at a sharp angle, as surface microdomains of cell-cell adhesion and signaling. The edges are marked by enrichment of F-actin and E-cadherin and are aligned between neighboring cells. The edge organization is E-cadherin contact dependent and correlates with insulin secretion capacity. Edges display elevated levels of glucose transporters and SNAP25 and extend numerous F-actin-rich filopodia. A similar β cell edge organization was observed in human islets. When stimulated, β cell edges exhibit high calcium levels. In view of the functional importance of intra-islet communication, the spatial architecture of their edges may prove fundamental for coordinating physiological insulin secretion.
Original language | English |
---|---|
Pages (from-to) | 317-325 |
Number of pages | 9 |
Journal | Cell Reports |
Volume | 10 |
Issue number | 3 |
DOIs | |
Publication status | Published - 20 Jan 2015 |
All Science Journal Classification (ASJC) codes
- General Biochemistry,Genetics and Molecular Biology