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In the 1950's, Pomeranchuk1 predicted that, counterintuitively, liquid 3He may 

solidify upon heating, due to a high excess spin entropy in the solid phase. Here, using 

both local and global electronic entropy and compressibility measurements, we show 

that an analogous effect occurs in magic angle twisted bilayer graphene. Near a filling 

of one electron per moiré unit cell, we observe a dramatic increase in the electronic 

entropy to about 𝟏𝒌𝑩 per unit cell. This large excess entropy is quenched by an in-plane 

magnetic field, pointing to its magnetic origin. A sharp drop in the compressibility as a 

function of the electron density, associated with a reset of the Fermi level back to the 

vicinity of the Dirac point, marks a clear boundary between two phases. We map this 

jump as a function of electron density, temperature, and magnetic field. This reveals a 

phase diagram that is consistent with a Pomeranchuk-like temperature- and field-

driven transition from a low-entropy electronic liquid to a high-entropy correlated state 

with nearly-free magnetic moments. The correlated state features an unusual 

combination of seemingly contradictory properties, some associated with itinerant 

electrons, such as the absence of a thermodynamic gap, metallicity, and a Dirac-like 

compressibility, and others associated with localized moments, such as a large entropy 

and its disappearance with magnetic field. Moreover, the energy scales characterizing 

these two sets of properties are very different: whereas the compressibility jump onsets 

at 𝑻 ∼ 𝟑𝟎𝐊, the bandwidth of magnetic excitations is ∼ 𝟑𝐊 or smaller. The hybrid 

nature of the new correlated state and the large separation of energy scales have key 

implications for the physics of correlated states in twisted bilayer graphene. 
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Systems of strongly interacting fermions exhibit a competition between localization, 

minimizing the potential energy, and itineracy, minimizing the kinetic energy. The advent 

of two-dimensional moiré systems, such as magic angle twisted bilayer graphene2–6 

(MATBG), allows studying this physics by controlling the ratio between the electronic 

interactions and bandwidth in a highly tunable artificial lattice. In systems where this ratio 

is large, such as transition metal dichalcogenides hetero-bilayers, electrons tend to 

localize to the lattice sites, forming Mott insulators7,8. In the other extreme, where the 

electronic bandwidth is large, as in bilayer graphene with a large twist angle, a Fermi liquid 

state is formed in which electrons are itinerant. MATBG provides a fascinating example 

of a system at the boundary between these two extremes. This system shows a host of 

electronic phases, including correlated insulators3,9,10, Chern insulators11–13, 

superconductors4,9,10, and ferromagnets14,15. Scanning tunneling spectroscopy16–19 and 

electronic compressibility measurements20,21 indicate that in this system the strengths of 

the Coulomb interaction and the kinetic energy are indeed comparable. In this regime, 

there is an inherent tension between localized and itinerant descriptions of the physics. 

Moreover, the growing understanding that the nearly-flat bands in MATBG have a 

topological character22–24 implies that a simple “atomic” description, in which electrons 

are localized to individual moiré lattice sites, may not be appropriate. Instead, a picture 

analogous to that of quantum Hall ferromagnetism has been proposed25–27. 

Understanding this interplay between itineracy and localization, and the new physics that 

emerges from it, remains a major challenge. 

In this work we find that, surprisingly, the correlated state in MATBG above a filling 

of one electron per moiré site has a hybrid nature, with some of its properties resembling 

those of an itinerant system, and others which are usually associated with localized 

electrons. Measurements of the electronic entropy at temperatures of a few Kelvin reveal 

unusually large excess entropy, which is rapidly suppressed by a moderate in-plane 

magnetic field. This suggests that even at such low temperatures, there are strongly 

fluctuating magnetic moments in the system, a behavior typically associated with local 
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moments. On the other hand, our measurements find that this state is metallic without a 

thermodynamic gap nearby, which is naturally understood within an itinerant picture.  

The presence of fluctuating moments at temperatures much below the electronic 

bandwidth indicates the existence of a new, anomalously small energy scale associated 

with the bandwidth of magnetic excitations, which is an order of magnitude smaller than 

the energy scale where a jump appears in the compressibility21,28. This jump marks the 

boundary between the new state at filling factor 𝜈 > +1 and the state at lower densities. 

By tracking the dependence of this boundary on temperature and magnetic field, we find 

that it exhibits an electronic analogue29–32 of the famous Pomeranchuk effect1 in 3He. In 

that system, a transition from a Fermi liquid to a solid occurs upon increasing 

temperature, driven by the high nuclear spin entropy of the localized atoms in the solid. 

Similarly, we find that the new state above 𝜈 = +1 is favored relative to the metallic state 

at 𝜈 < +1 upon raising the temperature, due the former’s high magnetic entropy. The 

transition near 𝜈 = +1	can also be driven by an in-plane magnetic field, due to the energy 

gain associated with polarizing the free moments. (A related effect near 𝜈 = −1 was 

proposed very recently, on the basis of transport measurements33.) The hybrid state 

observed here, with itinerant electrons coexisting with strongly fluctuating magnetic 

moments, calls for a new understanding of electron correlations in MATBG. 

The data reported here is measured using two independent techniques on two 

conceptually different devices. The bulk of the results are obtained from local 

measurements of the electronic entropy34,35 and compressibility using a scanning 

nanotube single-electron transistor (SET) on hBN-encapsulated twisted bilayer device 

(Device 1, Fig. 1a). We focus on a spatial region whose twist angle is close to the 

theoretical magic angle, and is extremely homogenous over a large area (5µm × 4µm), 

𝜃 = 1.130 ± 0.005. Similar results are obtained from global entropy measurements 

using a monolayer graphene sensor (Device 2, Fig. 3a). Both methods have been described 

elsewhere21,36. 
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The inverse compressibility, 𝑑𝜇/𝑑𝑛, measured in Device 1 at 𝑇 = 15K as a function 

of the filling factor, 𝜈 = 𝑛/(𝑛"/4)  (where ns corresponds to four electrons per moiré unit 

cell), is shown in Fig. 1b. As reported previously21, sharp jumps in 𝑑𝜇/𝑑𝑛 are observed 

close to integer 𝜈’s, reflecting an abrupt reconstruction of the Fermi surface. These were 

termed Dirac revivals since they were interpreted as resets of partially filled energy bands 

back to near charge neutrality, leading to the decreased compressibility. The cascade of 

revivals is already very prominent at this relatively high temperature. Measurements of 

𝜌## vs. 𝜈 at various temperatures (Fig. 1c) show insulating behavior at 𝜈 = 2,3 and semi-

metallic behavior at 𝜈 = 0. As previously noted37, 𝜌## shows a step-like increase across 

𝜈 ≈ 1, which gradually disappears decreasing temperature, markedly different than the 

behavior at other integer 𝜈′𝑠. 

The unusual physics near 𝜈 = 1 is revealed from the dependence of 𝑑𝜇/𝑑𝑛 on 

temperature, 𝑇, and parallel magnetic field, 𝐵∥. At low temperature and 𝐵∥ = 0T (Fig. 2a), 

the jump in 𝑑𝜇/𝑑𝑛 occurs at 𝜈 slightly larger than 1. Increasing the temperature moves 

the jump towards a lower 𝜈, and surprisingly, increases the magnitude of the jump rather 

than smearing it. Similar measurement with 𝐵∥ = 12T at low 𝑇 (Fig. 2b) exhibits a much 

larger jump, which is also closer to 𝜈 = 1. With increasing the temperature, the jump 

remains close to 𝜈 = 1, but oppositely to the 𝐵∥ = 0T case, reduces its amplitude and 

increases its width. 

The chemical potential, 𝜇(𝜈, 𝑇) (measured relative to that at charge neutrality), can 

be obtained by integrating 𝑑𝜇/𝑑𝑛 over density (Fig. 2c,d). Visibly, 𝜇 shows a strong 

temperature dependence for a range of 𝜈′s. This is clearly seen when we plot 𝜇 vs. 𝑇 at 

two representative 𝜈′s (Fig. 2c, inset). At 𝜈 = 0.2, 𝜇 is practically independent of 𝑇 (blue). 

In contrast, at 𝜈 = 0.9 (red) 𝜇 is nearly constant until 𝑇 ∼ 4K, and then decreases 

approximately linearly with 𝑇. At 𝜈 > 1.15, 𝜇 is again nearly temperature independent. 

Comparing 𝜇 at 𝐵∥ = 0T (Fig. 2c) and 𝐵∥ = 12T (Fig. 2d) reveals a clear contrast: whereas 

for 𝐵∥ = 0T, 𝜇 is a decreasing function of temperature for 0.4 < 𝜈 < 1.15, for 𝐵∥ = 12T, 

𝜇 decreases with 𝑇 for 𝜈 < 0.9 and increases for 𝜈 > 0.9.  
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 Measurements of the temperature dependence of 𝜇 allow us to directly determine 

the entropy of the system, by integrating Maxwell’s relation: L%"
%&
M
'
= −L%(

%'
M
&

, to obtain 

𝑠(𝜈, 𝑇) (where 𝑠 is the entropy per moiré unit cell). For more details on the procedure of 

extracting the entropy see Supplementary Information section SI1. Fig. 2e shows 𝑠(𝜈) at 

𝑇 ≈ 10K (obtained from the slope of 𝜇 vs. 𝑇 in the range 𝑇 = 4.5K − 15K), for 𝐵∥ 	= 0T, 

4T,	 8T, and 12T. At 𝐵∥ = 0T the entropy is small at low 𝜈′s, climbs close to 𝜈 = 1, 

remains roughly constant between 𝜈 = 1 and 2 at 𝑠 ≈ 1.2𝑘), drops rapidly near 𝜈 = 2, 

and decreases towards zero after 𝜈 = 3. Clearly, the 𝜈  dependence of the entropy is 

qualitatively different from that of the compressibility: whereas the latter drops sharply 

near 𝜈 = 1 (Fig. 2a), the former remains at a high value.  

An important insight into the origin of this large entropy can be gained by examining 

its magnetic field dependence. As seen in Fig. 2e, the entropy above 𝜈 = 1 depends 

strongly on 𝐵∥. In particular, at 𝐵∥ = 12T, most of the entropy between 𝜈 = 1 and 2 is 

quenched. The inset shows 𝑠(𝐵∥ = 0T) − 𝑠(𝐵∥ = 12T) vs. 𝜈 (the purple shading indicates 

errorbars; see Supplementary Information SI1). The entropy difference increases sharply 

near 𝜈 = 1, reaching a maximum of 0.85 ± 0.1𝑘) between 𝜈 = 1 and 2. To appreciate 

the significance of this value, recall that an entropy of 𝑘)ln(2) ≈ 0.7𝑘) corresponds to 

two degenerate states on each moiré unit cell. Moreover, in a Fermi liquid, we would 

expect a much weaker change of the entropy with 𝐵∥ (Supplementary Information SI4), 

of the order of 𝑘) times the ratio of the Zeeman energy (about 1meV at 𝐵∥ = 12T) to the 

bandwidth, estimated to be 𝑊 ∼ 30meV (see below). Finally, we observe that at 𝐵∥ =

12T the entropy shows a cascade of drops following each integer 𝜈, similar to the revival 

drops observed in the compressibility (Supplementary Info. SI5), reproduced by the 

mean-field calculation (Supplementary Info. SI3). The dramatic quenching of entropy by 

a moderate in-plane magnetic field is strongly suggestive of its magnetic origin.  

To test the robustness of our results, we measured the entropy in a completely 

different setup, in which a sheet of monolayer graphene senses the chemical potential of 

MATBG, averaged over the entire device36 (Fig. 3a). Fig. 3b shows the entropy extracted 
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in three different temperature ranges. In particular, we see (inset) that the globally 

measured entropy for 𝑇 = 4K − 16K is in good agreement with the locally measured one 

over a similar range of temperatures. The agreement is both in the overall shape and 

magnitude of 𝑠(𝜈), and in detailed features. The global experiment setup further extends 

the measurements to higher temperatures. As seen in Fig. 3b, upon raising the 

temperature, the minimum in the entropy at 𝜈 = 0 gradually fills in, evolving from a 

double-dome structure at low 𝑇 (corresponding to the valence and conduction flat bands) 

to a single dome at high 𝑇. This dependence is qualitatively reproduced by a naïve 

calculation for a system of non-interacting electrons, whose density of states rises linearly 

from the charge neutrality point until the band edges (Fig. 3c). The merging of the domes 

in 𝑠(𝜈) occurs when the temperature exceeds a fraction of the bandwidth. Calibrating the 

bandwidth using the measured entropy at 𝑇 ≈ 55K gives 𝑊 ≈ 30meV (where 𝑊 is the 

full bandwidth – from valence band bottom to conduction band top, and not only the 

conduction bandwidth as in ref 21), in rough agreement with the values deduced from 

STM16–19 and compressibility36 experiments. Of course, we do not expect the free-

electron picture to apply at low temperatures, where interactions change the physics 

dramatically. The measured 𝑠(𝜈) in the valence band is approximately a mirror image of 

𝑠(𝜈) in the conduction band (Fig. 3b), although it is smaller and with less pronounced 

features. This is consistent with the weaker  𝑑𝜇/𝑑𝑛 revivals observed in the valence band 

relative to the conduction band21,36 (see Supplementary Info. SI9 for comparison of the 

temperature dependence of 𝑑𝜇/𝑑𝑛). 

So far, we have shown that a dramatic change occurs in the entropy and 

compressibility near 𝜈 = 1. The compressibility drops rapidly at the revival transition (Fig. 

2a,b), and at approximately the same filling, the magnetic-field-dependent part of the 

entropy sharply rises (Fig. 2e, inset). This rapid change may be due to a continuous buildup 

of electronic correlations.  Alternatively, it can be interpreted as an underlying first-order 

phase transition between two distinct phases. Naively, one would then expect a 

discontinuous jump in thermodynamic properties and hysteretic behavior across the 
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transition, which are not observed. However, we note that a true first-order phase 

transition is forbidden in two dimensions in the presence of disorder or long-range 

Coulomb interactions38, as these will always broaden the transition into a mesoscale 

coexistence region (see Supplementary Info. S10). Experimentally, although the revival 

transition is very sharp and may be consistent with Coulomb- and/or disorder- smeared 

1st order transition, we cannot rule out that it is a sharp crossover or a higher order phase 

transition. Nevertheless, this sharp feature can be tracked precisely to map a phase 

diagram as the function of temperature and magnetic field. Below, we show that 

interpreting this revival feature as a proxy for a first-order transition naturally explains 

much of the underlying physics.  

We define the filling factor 𝜈*  of the revival feature as the midpoint of the sharp rise 

in 𝑑𝜇/𝑑𝑛 (tracking the beginning or the end of the rise leads to similar conclusions, see 

Supplementary Info. SI5). As we have seen in Fig. 2a, raising the temperature leads to an 

observable change in 𝜈*. A similar measurement of 𝑑𝜇/𝑑𝑛 vs. ν at different magnetic 

fields (Fig. 4a) shows that 𝜈*  also shifts with 𝐵∥. The measured locations of the revival 

feature as a function of 𝐵∥ and 𝑇 form a surface in the (𝜈, 𝐵∥, 𝑇) space, shown in Fig. 4b. 

Projections of this surface onto the (ν, 𝐵∥) and (ν, 𝑇) planes are presented in Figs. 4c,d. 

Examining the magnetic field dependence of 𝜈*  (Fig. 4c), we see that at 𝑇 = 2.8K, 𝜈*  is 

weakly dependent on 𝐵∥ at low fields, but starts to decrease linearly with field above 𝐵∥ ≈

4T. A similar crossover is observed at higher temperatures, with a crossover 𝐵∥ that 

increases with temperature. 

The temperature dependence of 𝜈*  at different magnetic fields (Fig. 4d) highlights 

another interesting aspect. At 𝐵∥ = 0T (blue) 𝜈*  is linear in 𝑇 at low temperatures, and 

curves up at higher temperatures. As 𝐵∥ increases, the entire curve shifts towards smaller 

𝜈’s, and simultaneously its slope at low temperatures changes sign. At the highest field, 

𝐵∥ = 12T, 𝜈*  first increases with temperature, reaches a maximum at 𝑇 ≈ 9K, and then 

decreases at a higher 𝑇. 
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The phenomenology seen in Figs. 4b-d can be understood in terms of a first-order 

phase transition at 𝜈 = 𝜈*  between two phases: a Fermi liquid phase below 𝜈*, and a 

‘free moment’ phase above it. The latter phase has a high concentration of free moments 

(about one per moiré site), coexisting with a low density of itinerant electrons. Within this 

framework, the shift of 𝜈*  as a function of 𝐵∥ and 𝑇 reflects the magnetization and 

entropy differences between the two neighboring phases.  

At 𝐵∥ = 0T, the free moment phase has a higher entropy than the Fermi liquid, due 

to thermal fluctuations of the moments. Hence, the former phase becomes entropically-

favorable at high temperatures. This explains the observed decrease of 𝜈*  with increasing 

𝑇 at low fields (Fig. 4d). Raising the temperature at a fixed 𝜈 may therefore drive a 

transition from the Fermi liquid to the free moments phase, an electronic analogue of the 

Pomeranchuk effect. As 𝐵∥ increases and the Zeeman energy exceeds the temperature, 

the moments become nearly fully polarized and their entropy is quenched (as is observed 

directly in Fig. 2e). Consequently, at low temperatures and sufficiently high fields, the 

Fermi liquid phase is favored by raising the temperature. The trend reverses once the 

temperature exceeds the Zeeman energy. This explains the non-monotonic behavior of 

𝜈*  as a function of 𝑇, seen at 𝐵∥ = 12T in Fig. 4d. The main features of the phase 

boundary are qualitatively reproduced in an explicit thermodynamic model of the two 

phases (Supplementary Info. SI7 and insets of Figs. 4b,c,d). While this simple model 

explains much of the phenomenology, a complete understanding requires a more 

detailed description of the 𝜈 < 𝜈*  state (e.g. to account for negative compressibility, 

revival strength, etc.)21,36. Note that the experiment probes moments that couple to in-

plane field. This includes Zeeman-coupled spins and may also include the valleys if their 

in-plane orbital moment is non-zero. 

The observation of free magnetic moments at surprisingly low temperatures has 

profound implications for the physics of MATBG. Low energy magnetic fluctuations are 

destructive for superconductivity, and their presence may be the limiting factor for the 

superconducting 𝑇+. Moreover, increased scattering from fluctuating moments can 
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account for the “strange metal” behavior reported over a broad range of 

temperatures39,40.  

An important question raised by our observations regards the origin of the free 

moments. Soft collective modes have been predicted in insulting states of MATBG25–27, 

but our experiments show metallic behavior near 𝜈 = 1. Moreover, the energy scale 

associated with the appearance of free moments is strikingly low (3K	or	less), much 

below the microscopic energy scales in the system. Understanding the state near 𝜈 = 1, 

that combines behaviors associated with electron localization and itineracy, and its 

surprisingly low onset temperature, poses a key challenge for the theory of MATBG.  
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Figure 1: Experimental setup and device characterization. a. A nanotube-based single electron transistor 
(SET) is used to measure the local electronic compressibility and entropy of magic angle twisted bilayer 
graphene (MATBG). The MATBG is encapsulated between top and bottom h-BN layers (not shown) and has 
a metallic back-gate. By monitoring the current through the SET, we track changes in the MATBG chemical 
potential, 𝑑𝜇, in response to a density modulation, 𝑑𝑛, produced by an a.c. voltage on the back-gate21, 
𝛿𝑉!". A d.c. back-gate voltage, 𝑉!", sets the overall carrier density in the MATBG, n. Some of the 
measurements are performed in a parallel magnetic field, 𝐵∥ (indicated). b. Inverse compressibility, 𝑑𝜇/𝑑𝑛, 
measured as a function of the moiré lattice filling factor, 𝜈 = 𝑛/(𝑛$/4), at 𝑇 = 15𝐾 (𝑛$ is the density that 
correspond to 4 electrons per moiré site). Measurements are done on a large spatial domain 
(~5𝜇𝑚 × 4𝜇𝑚) throughout which the twist angle is extremely homogenous, 𝜃 = 1.130∘ ± 0.005 
(measured by spatial mapping of the 𝑉!"  that corresponds to 𝑛$, as in Refs. 21,41). As seen previously21, a 
jump of 𝑑𝜇/𝑑𝑛 appears near all integer filling factors. This jump corresponds to a Fermi surface 
reconstruction, in which some combination of the spin/valley flavors filling is reset back to near the charge 
neutrality point, and correspondingly 𝑑𝜇/𝑑𝑛 shows a cascade of sawtooth features as a function of density. 
The trace is measured at 𝑇 = 15K, showing that even at this high temperature this sawtooth cascade is 
well developed c. Two-probe resistance, 𝑅, measured as a function of 𝜈  and temperature. Notice that 
unlike the inverse compressibility, which measures a local quantity, the resistance gives an averaged result 
over domains with different twist angle. Therefore, the resistance maxima are slightly shifted from the usual 
integer 𝜈 values, probably because another domain with a small difference in twist angle dominates the 
transport characteristics globally. 
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Figure 2: Measurement of large magnetic entropy above	𝝂 = 𝟏. a. Inverse compressibility,	𝑑𝜇/𝑑𝑛, as a 
function of 𝜈, near	𝜈 = 1, measured at zero parallel magnetic field,	𝐵∥ = 0𝑇, and at several temperatures. 
With increasing	𝑇, the jump in 𝑑𝜇/𝑑𝑛 moves toward lower 𝜈 and becomes stronger. b. Same measurement 
done at	𝐵∥ ≈ 12𝑇. Here, opposite to the zero-field case, increasing 𝑇 reduces the magnitude of the 𝑑𝜇/𝑑𝑛 
jump, as expected from thermal smearing. c. The chemical potential	𝜇(𝜈) (relative to that of the charge 
neutrality point) at	𝐵∥ = 0𝑇, obtained by integrating the 𝑑𝜇/𝑑𝑛 signal in panel a with respect to	𝑛. Inset: 
𝜇(𝑇, 𝜈) − 𝜇(𝑇 = 2.8𝐾, 𝜈) for 𝜈 = 0.2 (blue) and 𝜈 = 0.9 (red). At 𝜈 = 0.2 the chemical potential is nearly 
temperature independent, whereas at 𝜈 = 0.9 it is roughly constant until 𝑇 ∼ 4K and then start decreasing 
approximately linearly with 𝑇. d. Similar to c, but at	𝐵∥ = 12𝑇. In contrast to the zero-field case, here, below 
𝜈 ≈ 0.9	, 𝜇 decreases with 𝑇 while above 𝜈 ≈ 0.9 𝜇 increases with 𝑇. e. The electronic entropy in units of 
𝑘! per moiré unit cell, as a function of 𝜈 at 𝑇 ≈ 10K and at various parallel magnetic fields, 𝐵∥ = 0,4,8,12T. 
To obtain the entropy we determine the partial derivative (𝜕𝜇/𝜕𝑇)&,!∥  from a linear fit to the measured 𝜇 
vs. 𝑇 in the range	𝑇 = 4.5K − 15K. The entropy per moiré cell is then obtained by integrating  Maxwell’s 
relation: (𝜕𝑠/𝜕𝜈)(,!∥ = −(𝜕𝜇/𝜕𝑇)&,!∥  , over 𝜈 (see Supp Info. for details) . At 𝐵∥ = 0 the entropy climbs 
rapidly near 𝜈 = 1 to a value of 1.2𝑘! per moiré cell. Inset: the difference between the entropies at low 
and high fields, 𝑠(𝐵∥ = 0T) − 𝑠(𝐵∥ = 12T). The purple shading shows the estimated error bar.  
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Figure 3: Temperature dependence of the Entropy. a. Experimental setup for measuring the global 
entropy, averaged over the entire device36. The device consists of MATBG and a monolayer graphene (MLG) 
sensor layer, separated by an ultrathin (1	𝑛𝑚) layer of h-BN (not shown), as well as top and bottom metallic 
gates.  By balancing the electrochemical potential of the adjacent layers in the device, we can obtain the 
relationship between the density and chemical potential of MATBG and MLG and the gate voltages applied 
to the system. In the special case where the density of MLG is zero, i.e. at its charge neutrality point, the 
chemical potential of MATBG is directly proportional to the voltage applied to the top gate. This technique 
allows us to reliably extract the chemical potential and entropy of MATBG at temperatures up to 70 K.  b. 
The measured entropy, in units of 𝑘! per moiré unit cell, as a function of 𝜈 at three different temperature 
ranges (top legend). The entropy derivative, 𝑑𝑠/𝑑𝜈, is obtained from a linear fit to 𝜇 vs. 𝑇 in the 
corresponding temperature range, and is then integrated over 𝜈 to yield the entropy per moiré unit cell 
(similar to Fig. 2e). Inset: comparison between the 𝜈 dependences of the entropies, measured at the low 
temperature range, obtained from local and global measurements. c. The entropy as a function of 𝜈 and 𝑇 
calculated for a system of four degenerate non-interacting Dirac bands (whose density of states climbs 
linearly with energy from the Dirac point to the end of the conduction or the valence band). The color-
coded lines show the curves whose temperatures correspond to the mean of the temperature ranges of 
the experimental curves. The gray lines represent the entire evolution from zero temperature to high 
temperature, where the entropy saturates on a value of 8𝑙𝑛(2) ≈ 5.5, where the factor 8 reflects the total 
number of energy bands. A bandwidth of 𝑊 = 30𝑚𝑒𝑉is chosen such that the calculated value of the 
entropy at the highest temperature roughly matches the one obtained from the measured curve at the 
same temperature.  

 
  



 

 

18 
 
 

 
 

 
 
Figure 4: Experimental phase diagram. a. The inverse compressibility, 𝑑𝜇/𝑑𝑛, measured as a function of 
𝜈	near 𝜈 = 1, at several values of parallel magnetic field, 𝐵∥. We track the filling factor that corresponds to 
the center the jump in 𝑑𝜇/𝑑𝑛 (labeled 𝜈)	). Visibly, the application of 𝐵∥ pushes 𝜈)	 to lower values. b. 
Measured 𝜈)	as a function of 𝐵∥ and 𝑇, plotted as dots in the (𝜈, 𝐵∥, 𝑇) space (the dots are colored by their 
temperature). The dashed lines are polynomial fits to the dots at constant 𝐵∥ or constant 𝑇. Inset: the same 
surface calculated from a simple model that assumes a transition between a low 𝑇 Fermi liquid and a high 
𝑇 metallic phase that contains one free moments per moiré site (see text). c. Projection of the data in panel 
b onto the (𝜈, 𝐵∥) plane, showing the dependence of 𝜈)	on 𝐵∥ for various temperatures. At low fields, 𝜈)	is 
independent of field but it becomes linear in 𝐵∥ at high fields, a behavior expected from the field 
polarization of free moments (see text). Inset: curves calculated from the model. d. Projection onto the 
(ν, 𝑇) plane, showing the dependence of 𝜈)	 on 𝑇 for various magnetic fields. At 𝐵∥ = 0𝑇, 𝜈)	is linear in 𝑇 
at small 𝑇 ‘s and then curves up at higher 𝑇’s. At high magnetic field, the dependence of 𝜈) on 𝑇 becomes 
non-monotonic. Inset: curves calculated from the model.  


