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Atomically precise engineering of spin–orbit
polarons in a kagome magnetic Weyl
semimetal

Hui Chen 1,2,3,7, Yuqing Xing1,2,7, Hengxin Tan 4, Li Huang 1,2, Qi Zheng 1,2,
Zihao Huang1,2, Xianghe Han1,2, Bin Hu 1,2, Yuhan Ye1,2, Yan Li1,2, Yao Xiao1,2,
Hechang Lei 5, Xianggang Qiu1, Enke Liu 1, Haitao Yang 1,2,3,
Ziqiang Wang 6, Binghai Yan 4 & Hong-Jun Gao 1,2,3

Atomically precise defect engineering is essential tomanipulate the properties
of emerging topological quantum materials for practical quantum applica-
tions. However, this remains challenging due to the obstacles inmodifying the
typically complex crystal lattice with atomic precision. Here, we report the
atomically precise engineering of the vacancy-localized spin–orbit polarons in
a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling
microscope. We achieve the step-by-step repair of the selected vacancies,
leading to the formation of artificial sulfur vacancies with elaborate geometry.
We find that that the bound states localized around these vacancies undergo a
symmetry dependent energy shift towards Fermi level with increasing vacancy
size. As the vacancy size increases, the localized magnetic moments of
spin–orbit polarons become tunable and eventually become itinerantly
negative due to spin–orbit coupling in the kagome flat band. These findings
provide a platform for engineering atomic quantum states in topological
quantum materials at the atomic scale.

Creation andmanipulation of many–body quantum states are crucial
for developing advanced technologies in quantum computation,
communications, security, and sensing1–4. Individual atomic-scale
defects in a solid material provides one of the ideal candidates for
generating localized quantum states due to the introduction of
symmetry breaking, degeneracy lifting and scattering sources in the
vicinity of the defects5–11. The atomically precise engineering of
bound states has been realized in the vacancies of a few material
platforms such as insulating film12–14, diamond15, graphene16, h–BN17

and two–dimensional transition-metal dichalcogenides18, which is
appealing for practical quantum applications. However, so far, the
engineering of defect bound states is limited to a few material

platforms due to the challenges in modifying the atomic defects of
complex lattice.

Topological quantum materials have recently attracted con-
siderable attention due to their fascinating symmetry-protected
band structures and cooperative effects involving the interplay of
multiple degrees of freedom (charge, spin, orbital, lattice)19,20.
The interactions of multiple degrees of freedom in quantum
materials are dynamically intertwined with each other, which
results in exotic quantum states21,22. In recent years, the
transition-metal kagome lattice materials which host Dirac points
and nearly flat bands that naturally promote topological and
correlation effects23,24 are discovered, providing exciting
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opportunities for exploring frustrated, correlated, and topologi-
cal quantum states of matter25–33. Remarkably, quantum states
including the magnetic polarons have been discovered in mag-
netic transition-metal kagome shandites, which provides a pro-
mising way to engineer bound states for dilute magnetic
topological materials and kagome–lattice–based devices34,35. On
the other hand, the difficulty of reliability of engineering defects
leaves it largely unexplored.

Herein, we report the atomically precise engineering
of spin–orbit polarons (SOPs) localized at the S vacancies in a
magnetic Weyl semimetal Co3Sn2S2 by using low-temperature
scanning tunneling microscopy (STM). The vacancies with

well–organized geometry are precisely constructed though tip-
assisted repairing method (Fig. 1a). Spin–polarized STM and
magnetic field dependent measurements demonstrate the SOP
nature of the bound states localized at the S vacancy. When the
size increases, the bound states shift towards to the Fermi energy.
In addition, the energy shift of bound states depends on
the vacancy shape, which agree with the theoretical model
based on the hoping between adjacent vacancies. Interestingly,
as vacancy size increases, the magnetic states extend from
localized magnetic moment to the negative magnetic
moments resulting from spin–orbit coupling in the kagome
flat band.
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Fig. 1 | Atomically precise engineering of vacancies at S–terminated surface of
Co3Sn2S2. a Schematics of tip-assisted atomically precise vacancy engineering at a S
surface over the kagome layer, showing that the vacancies with various shapes are
transformed into the ones with well-organized geometries. b,c STM images
showing the topography before (b) and after (c) vacancy repairing, demonstrating
the filling of S atom. The red arrow indicates the position of tip pulse for the
vacancy repair. d Schematic showing the filling of S atom from bottom S layer.
e, f STM images showing the topography before (e) and after (f) vacancy creation,
demonstrating the removal of S atom at surface. The black cross indicates the

positionof tip pulse for the vacancy creation.g Schematic showing the removal of S
atom from top S layer to fill the vacancy at the bottom S layer. h Series of STM
images showing that a long vacancy chain is gradually shortened by the vacancy
repairing method. i Series of STM images showing that a cross-shaped vacancy
consistingof four S absences leads to the formationof a triangular vacancy. The red
arrows in (b), (h) and (i)mark the position of tip pulse during the vacancy repairing
process. The black cross in (e) denotes the position of tip pulse during the vacancy
creation process. STM scanning parameters for (b, c), (e, f) and (h, i): Sample bias
Vs = −400mV; Current setpoint It = 500pA.
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Results
Atomically precise construction of sulfur vacancies
The crystal structure of Co3Sn3S2 consist of the rhombohedral lattice
where the kagomeCo3Sn layer are sandwiched between two triangular
S layers,which are further encapsulated by two separated triangular Sn
layers32. Cleavage in vacuum typically results in Sn and S terminated
surfaces with kagome Co3Sn surfaces rarely obtained29.

We start with the S terminated surface, which has been identified
by STM and atomic force microscopy (AFM) in previous works29,35,36.
The vacancies, which appear as hole-like features in STM images, are
randomly distributed at S–terminated surface. The absence of single
atom is further confirmed by the non-contact AFM (Supplementary
Fig. 1). The vacancies consist of single vacancies and vacancy aggre-
gates with various shapes (Supplementary Fig. 2).

We then achieve the atomically precise repairing of S vacancy
throughapplyingavoltagepulsefromanSTMtip.Figure1b,cdepict the
experimental demonstration of repairing a single S vacancy. Briefly, to
repair a single S vacancy, we position the STM tip close to the vacancy
center (redarrowinFig. 1b), followedbyapplyingatippulsewithasmall
voltage (position is marked by the red arrow in Fig. 1b, approximately
rangesfrom0.5 Vto1.0 V,independentofthepulsepolarity).Itisevident
thatthesingleSvacancyisfilledwithanadditionalSatom(highlightedby
thebluehexagon inFig. 1c).ThefillingofSatomisalsoconfirmedby the
non-contact AFM (Supplementary Fig. 3).

Prior to the vacancy repair, the dI/dV spectrum obtained at a
single vacancy exhibit a series of approximately equal-spaced spectral
peaks, emerging just above the valence band inside the region of
suppressed density of states. These peaks arise from a spin–orbit
polaron localized around the single vacancy35. However, after applying
the tip pulse, the dI/dV spectrum obtained at the same position exhi-
bits features identical to those of vacancy-free region near Fermi level,
providing additional evidence that the S single vacancy is repaired by
the tip pulse (Supplementary Fig. 4).

The origin of additional S atom to fill the single vacancy is illu-
strated in Fig. 1d. There are no topographic changes between the
relatively large scale STM images before and after the tip pulse except
for the vacancy repair (Supplementary Fig. 4). In addition, thediffusion
energy for themigrating S atoms onto the S surface or STM tip is large
due to the strong bonding between the surface S atoms and the
underlying Co3Sn layer. The manipulation is achieved by using a clean
tip which is immediately transferred into the STM chamber once
calibrated at Au surfaces. Therefore, it suggests that the filling S atom
originates from the underlying layers rather than the surface or STM
tip. Considering that the crystal structure of Co3Sn2S2 is composed of
stacked…–Sn–[S–(Co3–Sn)–S]–…layers, we define that top S layer of
the sandwich structure corresponding to the as-cleavedS surface is the
Sup layer (brown triangle in Fig. 1d) while the underlying S layer of
sandwich structure is Sdown layer (light brown triangle in Fig. 1d).
Excited by the tip pulse, one S atom in the Sdown layer transfers to the
vacancy site of the Sup layer, resulting in the vacancy repair at S surface.
In addition, the calculations indicate that the energy barrier for the S
atom transfer from Sdown layer to Sup layer is approximately 0.73 eV.
The relatively low energy barrier means that it is possible to overcome
it with a small voltage pulse applied at sufficiently small tip-sample
distance (Supplementary Fig. 5).

There are twomain features for the manipulation. (i) The vacancy
repair at S surface is reversible (Fig. 1e, f, g). By putting the tip uponone
of the upper S atoms (marked by the black cross in Fig. 1e) and
applying a voltage pulse, we have achieved the vacancy creation at S
surface (Fig. 1f). The success rate for the vacancy creation (about 5%) is
much lower than repair (about 30%) in experiments. The lower success
rate of vacancy creation further supports the proposed manipulation
mechanism because the vacancy creation at top surface relies heavily
on the existenceof S vacancy around the creation position at the lower
layer which is difficult to be identified by STM. (ii) Pulling up S atoms

from inner layer will create vacancies inside the crystal. These vacan-
cies do not make observable contribution to the density of states at
top surface states near Fermi level. The dI/dV spectra between
artificially-created and naturally-formed vacancies with the same
shape on the top S layer show similar lineshapes near Fermi level
(Supplementary Fig. 6).

The capabilities in controlled repairing of specific single vacancies
provides a pathway for the controlled formation of vacancy in atomic
precision. Motivated by this, we apply a step-by-step manipulation
method to transform naturally-formed vacancy aggregates into artifi-
cial vacancy with well-defined shapes and sizes. For instance, we can
manipulate the length of a one-dimensional vacancy chain by gradually
filling S atoms into specific sites (Fig. 1h). Similarly, filling one S atomat
a specific site of a cross-shaped vacancy consisting leads to the for-
mation of a triangular vacancy (Fig. 1i). In more complex case, we are
able to create quasi-regularly-shaped vacancy such as quasi-triangular
and quasi-hexagonal vacancy by filling specific sites of vacancy
aggregates with irregular polygon shapes (Supplementary Fig. 7).

Coupling of bound states with controlled spacing of two
neighboring S vacancies
The atomically precise construction of well-defined vacancy immedi-
atelyprovidesanexcellentopportunitytosystematically investigatethe
evolutionof the bound stateswith the vacancy size.Wefirstly study the
simplest case of two spatially-separated single S vacancies with
decreasingspacing(Fig.2aandSupplementaryFig.8).ThedI/dVspectra
obtainedaroundonesinglevacancyshowthataseriesofapproximately
equal-spaced spectral peaks at −322, −300, and −283mV gradually
become suppressed as another vacancy approaches closer. Upon the
formation of dimer vacancy, the series of bound states vanishes and a
new series of sharp peaks at −292, −277, −265 and −254mV
appear (Fig. 2b).

To further study the evolution of density of states, we simulta-
neously collect the dI/dVmaps at the energy corresponding to bound
states (Fig. 2a). Prior to themerging of two vacancies, the bound states
in each vacancy exhibit localized flower-petal shaped patterns with
three-fold rotation symmetry. Aftermerging, the spatial distribution of
the new four distinguishable dI/dV peaks show two-fold rotation-
symmetry patterns, with the shared S atoms connecting two single
vacancies exhibiting the highest density of states (Fig. 2a and Supple-
mentary Fig. 9). The peak located at−254mV (Supplementary Fig. 9) is
the sharpest and the most localized one, which is referred to the pri-
mary bound state.

The bound states of single vacancy have been demonstrated to
emergent from the SOP35, where vacancy-potential localized spin
from the Co d electrons and diamagnetic orbital current are trapped
by the lattice distortion around the vacancies. Therefore, it is nat-
ural to investigate the bound states around the dimer vacancy.
Thus, we further study the magnetic properties of the bound states
around dimer vacancy through spin–polarized STM (details see
Method). The dI/dV spectra using a magnetic Ni tip demonstrate
that both the primary bound states localized at single vacancy and
dimer vacancy are magnetic with a spin-down majority (Fig. 2c). In
addition, by applying a magnetic field perpendicular to the surface
(Bz) and a non-magnetic STM tip, we observe anomalous Zeeman
effect that primary bound states shift linearly toward the higher
energy side independent of the field direction (Fig. 2d). We also
study the lattice distortion around the S vacancies by applying a
geometric phase analysis method37,38 based on the Lawler–Fujita
drift–correction algorithm39 (Fig. 2e). The antisymmetric strainmap
U(r) and symmetric strain map S(r) show that the strain is mainly
localized around the S vacancies, demonstrating the local atomic
relaxations around vacancies. According to above evidences, we
conclude that the bound states around dimer vacancy are origi-
nated from SOP as well35.
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Size and shape dependent vacancy bound states
Inspired by the exotic bound states around dimer vacancy, we further
study the evolution of the bound states with the length of vacancy
chain. We construct a series of linear vacancy chain with atomic length
N using tip–assisted manipulation (Fig. 3a) and collect the dI/dV
spectraon the vacancies (N = 1, 2, 3…) respectively. All linear vacancies
exhibit series of several peaks with equally spacing energy that emer-
gent from the bound states. To facilitate comparison, we defined the
sharpest one of the peaks with highest energy position to be the pri-
mary bound states of each vacancy (P(N)). We find that the P(N) shift to
the Fermi energy with increasing N, and eventually reaches a critical
energy position at about -240meV atN > 4, as highlighted by the black
arrows (Fig. 3b and Supplementary Fig. 10).

In addition to the single-chain vacancy, the tunability of thebound
states extends to the vacancies with more elaborate shapes, including
double column vacancy chains (Fig. 3c), equilateral triangle (Fig. 3e
and Supplementary Fig. 11) and equilateral-hexagon vacancies
(Fig. 3g). All vacancies exhibit series of several peaks with equally
spacing energy and the sharpest peak with highest energy position is
similarly assigned as the primary bound states P(N). As summarized in
Fig. 3i, the evolution of P(N) for each symmetric shape follows an
exponential function, with all P(N) shifting exponentially towards a
critical energy value near the Fermi level as the size increases. The
critical energy level of P(N) depends on the vacancy shape (highlighted

by different color in Fig. 3), with higher symmetry shapes possessing
higher critical energy levels (Fig. 3i). For instance, the critical energy of
P(N) of single chain vacancies is about −240meV while one of the
hexagonal vacancies is almost at Fermi levels.

The geometry dependent bound states suggest the strong
couplings between adjacent single vacancies. Furthermore, the
spatial distributions of the bound states across the single chain
vacancies (Supplementary Fig. 12) exhibit quasi one-dimensional
band behaviors40–42, indicating the existences of vacancy–vacancy
couplings. The dI/dV maps at large-size triangular vacancy show
quantum confinement effect, featuring a quantum antidot (Sup-
plementary Fig. 13). To gain insight into the shape dependent
energy shift behaviors of P(N), we develop a simple model (see
method in Supplementary Information and Supplementary
Fig. 14) to simulate the bound states around vacancies. We
simulate vacancies with a simple tight-binding model with a
nearest neighbor hopping t by considering the hybridization
between vacancies (Fig. 3j). We construct four types of vacancy
patterns with different number of S vacancies, which consist of
single chain, double column chain, triangle and hexagon. In each
vacancy configuration, the highest energy level is extracted as the
vacancy state. We find that the vacancy state undergoes a similar
exponential shift towards higher energy (Fig. 3k), which is con-
sistent with experimental observations in Fig. 3i.
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vacancies gradually merge into a dimer vacancy (Vs = −400mV, It = 500pA,
Vmod =0.2mV). bThe dI/dV spectra obtained at a single vacancy of (a), showing the
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dashed lines mark the energy position of bound states. The spatial positions for
collecting dI/dV spectra are marked by the black circles at each STM topographic
image. c Spin–polarized dI/dV spectra in the vicinity of single vacancy and dimer
vacancy, showing a spin-down majority for both vacancies (Vs = −350mV,
It = 500pA). Inset: schematics showing the magnetization of tip and the vacancy

bound state. We define the spin direction as “up” and “down” with respect to
cleaved S surfaces. d The dI/dV spectra of the bound states in a magnetic field
perpendicular to the sample surface from −8T to 8 T, showing a linear shift toward
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to 1 nm.
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The size dependent magnetic moment of vacancies
To gain deep understanding of nature of localized states at vacancies,
we further study the shape dependentmagneticmoment of the bound
states.We focus on themagneticmoment of triangular vacancy due to
their high yields and relatively–large lattice distortions (Supplemen-
tary Fig. 15). The bound states of triangular vacancy present the
anomalous Zeeman effect with external magnetic field (Fig. 4a, b).
Fitting the energy position (details see Supplementary Fig. 16) as a
function of the magnetic field, we obtained the effective magnetic
moment value |µ(N)|. For example, |µ(N = 3)| = 0.09meV/T= 1.55 µB
(Fig. 4a) and |µ(N = 10)| = 0.17meV/T = 2.93 µB (Fig. 4b). These results
indicate that the magnetic moment of bound states localized at
vacancy is directly related to the vacancy size.

The Co3Sn terrace, confined by the step edges of adjacent S ter-
races (Fig. 4c), is considered as a naturally occurring vacancy with an
enormous size (N =∞). The spatially-averaged dI/dV spectrum
obtained at the Co3Sn terrace shows sharp peaks in the vicinity of

Fermi level,which is consistentwith previous STM results on theCo3Sn
surface29,36. The magnetic field dependent dI/dV curves (Fig. 4d) show
similar anomalous Zeeman effect with an effective magnetic moment
of µ(N =∞ ) = −0.19meV/T = −3.28 µB (the negative value is aiming to
highlight the moment is negative in anomalous Zeeman effect and
differentiate it from the positive moment in Zeeman effect). The
negative orbital magnetic moment results from the spin–orbit cou-
pling in the kagomeflatband considering the non-trivial Berryphaseof
the flat band43. Evolution of the magnetic moment with the atomic
number of vacancies shows that the magnetic moments extend from
localizedmagneticmoment around vacancies to the flat band negative
magnetism from Co3Sn kagome layer (Fig. 4e).

Discussion
The atomically precise engineering of sulfur vacancies is not limited
to ferromagnetic Co3Sn2S2 but can extend to other Co3Sn2S2 derived
kagome metals. We have also achieved the controlled vacancy repair
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Fig. 3 | Size and shape dependence of vacancy bound states. a–h STM images
and the dI/dV spectra for linear vacancy chains (a, b), double column vacancy
chains (c,d), triangular vacancies (e, f) and hexagonal vacancies (g,h), respectively.
The peaks with highest energy position assigned as primary bound state for each
vacancy are highlighted by the arrows in (b), (d), (f) and (h), respectively.
i Evolution of primary bound states with vacancy size for different vacancy shapes,
showing an exponential energy shift depending on the shape symmetry.
j Schematic illustration of hybridization between vacancy bound states. Single
vacancy creates bound states inside the gap-like density of states at S surface. The

hybridization of the additional vacancy induces a newbound state at higher energy.
k Calculated evolution of the bound state with the atomic numbers based on a
tight-bindingmodelwith a nearest neighborhopping t, showing similar energy shift
with experiments in (i). The ε is calculated energy levels of bound states based on
the simple model. It indicates quantum confinement of the vacancy bound states.
STM parameters for (a–h): Vs = −400mV, It = 500pA, Vmod = 0.2mV. The error bars
in (i) from multiple measurements on the same-geometry vacancies are smaller
than 3meV. The scale bars for (a, c, e, g) correspond to 1 nm.
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and creation at the S surface of nonmagnetic Ni3In2S2 (Supplementary
Fig. 17). In addition, the vacancy repair at S surface, in another way, is
the creation of S adatoms at exposed Co3Sn surfaces inside the large-
sized vacancy. Through manipulation technique, the artificial S
adatom-based nanostructures with elaborate geometry inside
large–sized S vacancy have been constructed (Supplementary Fig. 18).

The atomically precise manipulation of atomic vacancies opens a
platform for artificial sulfur vacancywith custom-designed geometries
and their couplingwithphysical parameters suchasmagneticmoment,
orbital and charges in Co3Sn2S2 and derivatives. In addition, the con-
trolled integration of individual vacancies into extended, scalable
atomic circuits with custom-designed shape and size, which may be
promising for practical applications such as atomic memory13 and
quantumqubit44.Throughpreciseengineeringofvacancies,theartificial
vacancy latticecanbeachieved,which is essential for realizingdesigner
quantummaterials with tailoredproperties14. The couplings among the

vacancies inCo3Sn2S2could improvetheunderstandingofpolaron–like
boundstatesincoupledquantumsystems42,toexploreartificialcoupled
quantum systems with great control. The intriguing evolution of the
magnetic moment with increasing vacancy size poses a challenge for
theoretical frameworks supporting quantitative model calculations to
understandmany-body spin–orbit impurities34,35 andnegativeflat band
magnetism43 in kagomemagnet.

Methods
Single crystal growth of Co3Sn2S2
The single crystals of Co3Sn2S2 were grown by fluxmethod with Sn/Pb
mixed flux. The starting materials of Co (99.95% Alfa), Sn (99.999%
Alfa), S (99.999% Alfa) and Pb (99.999% Alfa) arewere mixed in molar
ratio of Co : S : Sn : Pb = 12 : 8 : 35 : 45. Themixture was placed in Al2O3

crucible sealed in a quartz tube. The quartz tube was slowly heated to
673 K over 6 h and kept over 6 h to avoid the heavy loss of sulfur. The
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c STM image (top) and corresponding line profile (bottom), showing a narrow
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state near Fermi level. e Evolutionof themagneticmomentwith the atomicnumber
of vacancies, showing that the magnetic moments extend from localizedmagnetic
moment around vacancies (spin–orbit polarons, SOPs) to flat band negative mag-
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meters: (a): Vs = −250mV, It = 500 pA; (b) Vs = −50mV, It = 500pA; (d) Vs = 20mV,
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quartz tube was further heated to 1323 K over 6 h and kept for 6 h.
Then themelt was cooled down slowly to 973 Kover 70 h. At 973 K, the
flux was removed by rapid decanting and subsequent spinning in a
centrifuge. The hexagonal-plate single crystals with diameters of
2 ~ 5mm are obtained. The composition and phase structure of the
crystals were checked by energy-dispersive x-ray spectroscopy and
x-ray diffraction, respectively.

Scanning tunneling microscopy/spectroscopy
The samples used in the experiments were cleaved in situ at 6 K and
immediately transferred to anSTMhead. Experimentswereperformed
in an ultrahigh vacuum (1 × 10–10 mbar) ultra-low temperature STM
system (40mK) equipped with 9-2-2 T magnetic field. All the scanning
parameter (setpoint voltage and current) of the STM topographic
images are listed in the captions of thefigures. Unless otherwise noted,
the differential conductance (dI/dV) spectra were acquired by a stan-
dard lock-in amplifier at a modulation frequency of 973.1Hz. Non-
magnetic tungsten tip was fabricated via electrochemical etching and
calibrated on a clean Au(111) surface prepared by repeated cycles of
sputtering with argon ions and annealing at 500 °C.

Vacancy manipulation
Through hundreds times attempts at surfaces of 3 Co3Sn2S2 samples,
the success rate of the S vacancy repair and creation in experiments is
about 30% and 5%, respectively. The success rate depends on many
conditions such as the pulse position, the pulse voltage and the
sharpness of tip. The sharpness of tip is interpreted by the spatial
resolution of STM topography. Normally, we get a higher success rate
when putting on the sharper tip exactly on the center of vacancy and
applying the same tip pulse voltage.

Spin–polarized scanning tunneling microscopy/spectroscopy
Ferromagnetic Ni tip was applied in the spin–polarized STM measure-
ment.TheNitipwasfabricatedviaelectrochemicaletchingofNiwireina
constant-current mode. To calibrate the spin-polarization of Ni tip, the
as-preparedNitiphasbeenappliedtoresolvemagnetic-statedependent
contrastofCo islandsgrownonaCu(111) surface in spin–polarizedSTM
experiments45. The two oppositely magnetized tips are achieved by
applying a small magnetic field Bz = 0.2 T which is smaller than the
coercivityofbulk sample (0.5 T, SupplementaryFig. 19) tosolelyflip the
magnetization of tip but keep themagnetization of sample unchanged.

Q-Plus nc-AFM measurements
Non-contact AFM measurements were performed on a combined nc-
AFM/STM system (Createc) at 4.7 K with a base pressure lower than
2 × 10–10 mbar. All measurements were performed using a commercial
qPlus tuning fork sensor in the frequencymodulationmodewith a Pt/Ir
tip at 4.5 K. The resonance frequency of the AFM tuning fork is
27.9 kHz, and the stiffness is approximately 1800 N/m.

Model Hamiltonian
DFTcalculations indicatethevacancy-vacancyformsvacancystatesand
contribute the peak DOS observed in experiment. Therefore, we simu-
lated vacancies with a simple tight-bindingmodel with a nearest neigh-
bor hopping t. We constructed four vacancy patterns (linear, bi-linear,
triangular, andhexagonal)withdifferentnumberofSvacancies. Ineach
vacancy configuration, the highest energy level is extracted as the
vacancy state.

First-principles calculations
The Nudged Elastic Band (NEB) calculations for the surfaces are
simulatedwith a slabmodel of 4×4 in-plane supercell and four kagome
layers along the out-of-plane direction. The vacuum level is about 14 Å.
TheNEBcalculationswereperformedwithinDensity Functional theory
as implemented in VASP46,47. The generalized gradient approximation

parametrized by Perdew-Burke-Ernzerhof48 is used to mimic the
exchange-correlation interaction between electrons. A kinetic energy
cutoff of 268 eV is used for the plane wave basis set. Single Gamma
point is employed to sample the Brillouin zone. In the NEB structural
relaxation, the force and total energy thresholds are about 10–4 eV and
0.01 eV/Å, respectively. The spring constant of 5 eV/Å2 between
neighboring images is used.

Data availability
All data that support the findings of this study are present in the paper
and the Supplementary Information. Further information can be
acquired from the corresponding authors upon request.
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