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Abstract

We initiate the study of Boolean function analysis on high-dimensional expanders. We
give a random-walk based definition of high-dimensional expansion, which coincides
with the earlier definition in terms of two-sided link expanders. Using this definition,
we describe an analog of the Fourier expansion and the Fourier levels of the Boolean
hypercube for simplicial complexes. Our analog is a decomposition into approximate
eigenspaces of random walks associated with the simplicial complexes. Our random-
walk definition and the decomposition have the additional advantage that they extend
to the more general setting of posets, encompassing both high-dimensional expanders
and the Grassmann poset, which appears in recent work on the unique games con-
jecture. We then use this decomposition to extend the Friedgut—Kalai-Naor theorem
to high-dimensional expanders. Our results demonstrate that a constant-degree high-
dimensional expander can sometimes serve as a sparse model for the Boolean slice
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or hypercube, and quite possibly additional results from Boolean function analysis
can be carried over to this sparse model. Therefore, this model can be viewed as a
derandomization of the Boolean slice, containing only | X (k — 1)| = O(n) points in
contrast to (Z) points in the (k)-slice (which consists of all n-bit strings with exactly
k ones).

1 Introduction

Boolean function analysis is an essential tool in theory of computation. Traditionally,
it studies functions on the Boolean cube {—1, 1}"*. Recently, the scope of Boolean
function analysis has been extended further, encompassing groups [22-24, 52], asso-
ciation schemes [16, 28-31, 42, 49], error-correcting codes [6], and quantum Boolean
functions [47]. Boolean function analysis on extended domains has led to progress in
learning theory [49] and on the unique games conjecture [7, 16, 17, 41, 42].

High-dimensional expanders emerged in recent years as a new area of study, of
interest to several different communities. Just as expander graphs are sparse models
of the complete graph, so are high-dimensional expanders sparse models of a higher-
dimensional object, namely the complete hypergraph. Expander graphs are central
objects, appearing in a diverse list of areas. High-dimensional expanders are much
newer objects which have already found connections to topological overlapping theory
[25, 32], to analysis of Markov chains [3], and to coding theory [19] and property
testing [37]. (Note that while expander graphs are explicit derandomizations of random
graphs, the mere existence of high-dimensional expanders is surprising since there is
no sparse random model for generating these objects.).

The goal of this work is to connect these two threads of research, by introducing
Boolean function analysis on high-dimensional expanders.

We study Boolean functions on simplicial complexes. A pure d-dimensional sim-
plicial complex X is a set system consisting of an arbitrary collection of sets of size
d + 1 together with all their subsets. The sets in a simplicial complex are called faces,
and it is standard to denote by X (i) the faces of X whose cardinality is i 4+ 1. Our
simplicial complexes are weighted by a probability distribution IT; on the top-level
faces, which induces probability distributions IT; on X (i) in a natural way for all i:
we choose s ~ Iy, and then choose an i-face t C s uniformly at random. Our main
object of study is the space of functions f: X(d) — R, and in particular, Boolean
functions f: X(d) — {0, 1}.

1.1 Many Different Definitions of High-Dimensional Expansion

Although graph expansion has many definitions, all of which are equivalent, they
each generalize to higher dimensions differently, leading to a diverse landscape of
definitions.

The first definition studied by Linial and Meshulam [43] and by Gromov [35] was
topological, focusing on generalizations of edge expansion through coboundary maps
in higher dimensions. It was later discovered that certain bounded-degree simplicial
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complexes constructed by Lubotzky, Samuels and Vishne [45, 46] satisfy this definition
(more accurately, a variant of it called cosystolic expansion), leading to the first known
family of bounded-degree complexes that satisfy Gromov’s so-called “topological
overlap property” [20, 26, 40]. The LSV construction comes from arithmetic quotients
of Bruhat-Tits buildings, and are high-dimensional generalizations of the celebrated
Lubotzky-Philips—Sarnak construction of Ramanujan expander graphs [44].

Subsequent works were interested in additional properties exhibited by the LSV
complexes (and others, see [12]) that aren’t necessarily captured by the topological
definitions mentioned above. For example, Dinur and Kaufman [15] proved that the
LSV complexes support so-called agreement tests that are studied in the context of
probabilistically checkable proofs, and were previously known for only dense families
of subsets such as the complete complex. The relevant definition for that work is
spectral link-expansion, which we now describe.

Let X be a d-dimensional simplicial complex, and let s € X be any face of dimen-
sion < d — 1. The graph of the link s is the graph whose vertex set consists of
all elements v ¢ s such that {v} Us € X. The edges are all pairs {v, u} such that
{v,u} Us € X. A simplicial complex X is a two-sided (or one-sided) link-expander
with spectral radius y if for every link, the non-trivial normalized eigenvalues are
upper-bounded by y in the one-sided case, or sandwiched between —y and y in the
two-sided case.

Garland [34] had studied this type of spectral expansion in links, and used it to show
the vanishing of the real cohomology of Bruhat-Tits buildings. Similar techniques
were further explored in the work of Oppenheim [50]. The notion of one-sided spectral
expansion also appeared in earlier works of Kaufman, Kazhdan and Lubotzky [40],
where it was applied towards proving topological expansion.

A third definition, through random walks on the i-faces, was studied initially by
Kaufman and Mass [38], where the authors defined a combinatorial “random-walk”
type of expansion, and showed that this type of expansion was implied by expansion
of the links. This notion is concerned with the convergence speed of high-dimensional
random walks to the stationary distribution. This was refined by Dinur and Kaufman
[15], who showed that two-sided link-expansion implies that all random walks on
a high-dimensional expander converge at approximately the same speed as on the
complete complex, with an error term dominated by y.

In this paper we continue to study this two-sided definition, and show that it is
in fact equivalent to a new random-walk definition which we suggest. We find the
new random-walk definition appealing because it is very natural to state, and at the
same time equivalent to the powerful two-sided link-expansion definition. Moreover,
the random walk definition generalizes naturally beyond simplicial complexes also to
ranked posets (partially ordered sets). Finally, the random walk point of view allows
for doing an analog of Fourier analysis, as we discuss below.

Concurrently and independently of this work, Kaufman and Oppenheim [39] stud-
ied the connection between one-sided link-expansion and convergence of the relevant
random walks. They showed that one-sided link-expansion (which is weaker than its
two-sided variant) is already enough for getting the same conclusions about the speed
of convergence of random walks as was shown for the two-sided case. This was picked
up in an exciting work by Anari, Liu, Oveis Gharan and Vinzant [3], who relied on this
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connection to solve a longstanding open question in the area of Markov chain sam-
pling. They showed that a certain well-studied Markov chain on bases of matroids can
be viewed as a random walk on the faces of a certain one-sided link expander, thereby
using the work of Kaufman and Oppenheim [39] to prove convergence of this random
walk. These techniques were further developed in subsequent works that analyzed
other Markov chains using their underlying high dimensional expanding structure [1,
4,9-11, 27].

Two independent works by [5] and [36] used alternative decompositions of func-
tions on high dimensional expanders to show hypercontractive properties of random
walks in high dimensional expanders.

1.2 Random-Walk Based Definition of High-Dimensional Expanders

Denote the real-valued functjon space on X@)by C ’ ={f: 'X (i) — R}. There are
two natural operators U; : C' — C'*!and D;y1: C'*! — C’, which are defined by
averaging:

1
Uif(s):= E [f@)lr Cs] <=l.+—22f(t)>,

tcs

Dip1f@®):= E [f(s)ls Dt].
s~Ii41

The compositions D; 1 U; and U; _1 D; are Markov operators of two natural random
walks on X (i), the upper random walk and the lower random walk.

The first walk we consider is the upper random walk D;1U;. Given a face t; €
X (i), we choose its neighbor 7, as follows: we pick a random s ~ IT;4| conditioned
on s D t1 and then choose uniformly at random > C s. Note that there is a probability
of ﬁ that 1 = . We define the non-lazy upper random walk by choosing t» C s
conditioned on #; # . We denote the Markov operator of the non-lazy upper walk
by M i+. This operator satisfies the following equality (which can be used to define it)

D; U»—i Mt + ! I
l+]l_l.+2l‘ l.—{—2.

A similar (but notidentical) random walk on X (i) is the lower random walk U; _ D; .
Here, given a face t; € X (i), we choose a neighbor #, as follows: we first choose a
r e X(@i—1),r €t uniformly at random and then choose a 7, ~ I1; conditioned on
fhDOr.

For instance, if X is a graph (a 1-dimensional simplicial complex), then the non-
lazy upper random walk is the usual adjacency walk we define on a weighted graph
(i.e. traversing from vertex to vertex by an edge). The (lazy) upper random walk has
probability % of staying in place, and probability % of going to different adjacent
vertex. The lower random walk on V = X (0) doesn’t depend on the current vertex: it
simply chooses a vertex at random according to the distribution [Ty on X (0).
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The Up and Down operators resemble operators in several similar situations. One
immediate example is the boundary and coboundary operators with real coefficients.
These differ from the operators described above as they include signs according to
orientation of the faces, whereas our operators ignore signs. Stanley studied Up and
Down operators in numerous combinatorial situations and the most relevant to this
work is his definition of sequentially differential posets, which we discuss in Sect. 1.4.

The Up and Down operators also make an appearance in the Kruskal-Katona theo-
rem. O’Donnell and Wimmer [49] related the non-lazy upper and lower random walks
(the two random walks are identical in their setting) to the Kruskal-Katona theorem,
and used this connection to construct an optimal net for monotone Boolean functions.

We are now ready to give our definition of a high-dimensional expander in terms
of these walks.

Definition 1.1 (High-Dimensional Expander) Let y < 1, and let X be a d-
dimensional simplicial complex. We say X is a y-high-dimensional expander (or
y-HDX) if for all 0 <i < d — 1, the non-lazy upper random walk is y-similar to the
lower random walk in operator norm in the following sense:

¥~ vy < .

In the graph case, this coincides with the definition of a y-two-sided spectral
expander: recall that the lower walk on X (0) is by choosing two vertices vi, v € X (0)
independently. Thus H M;r — Ui_1D; ] is the second eigenvalue of the adjacency ran-
dom walk in absolute value. Fori > 1, we cannot expect the upper random walk to be
similar to choosing two independent faces in X (i), since the faces always share a com-
mon intersection of i elements. Instead, our definition asserts that traversing through
a common (i 4+ 1)-face is similar to traversing through a common (i — 1)-face.

We show that this new definition is equivalent to the aforementioned definition of
two-sided link expanders for constant dimension d, thus giving these high-dimensional
expanders a new characterization.

Theorem 1.2 (Equivalence between high-dimensional expander definitions) Let X be
a d-dimensional simplicial complex.

1. If X is a y-two-sided link expander then X is a y-HDX according to the definition
we give.
2. If X isa y-HDX then X is a 3(d + 1)y -two-sided link expander.

Through this characterization of high-dimensional expansion, we decompose real-
valued functions f: X (i) — R in an approximately orthogonal decomposition that
respects the upper and lower random walk operators. We also give an example that
the O(d) factor in the second item of the equivalence is tight in Sect.5.1. We stress
that the second direction of this equivalence is non-trivial only in the regime where
y < m (so when the dimension grows our definition becomes weaker).
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1.3 Decomposition of Functions on X(i)

We begin by recalling the classical decomposition of functions over the Boolean
hypercube. Every function on the Boolean cube {0, 1}"* has a unique representation
as a multilinear polynomial. In the case of the Boolean hypercube, it is convenient to
view the domain as {1, —1}", in which case the above representation gives the Fourier
expansion of the function. The multilinear monomials can be partitioned into “levels”

according to their degree, and this corresponds to an orthogonal decomposition of

L . d —i .
a function into a sum of its homogeneous parts, f = Ziigof f=", a decomposition

which is a basic concept in Boolean function analysis.

These concepts have known counterparts for the complete complex, which consists
of all subsets of [1] of size at most d+ 1, where d+1 < n/2. The facets (top-level faces)
of this complex comprise the slice (as it is known to computer scientists) or the Johnson
scheme (as it is known to coding theorists), whose spectral theory has been elucidated
by Dunkl [21]. For |¢t| <d + 1, let y,(s) = 1 if t C s and y;(s) = O otherwise (these
are the analogs of monomials). Every function on the complete complex has a unique
representation as a linear combination of monomials ), f (t)y; (of various degrees)
where the coefficients f(¢) satisfy the following harmonicity conditionautoedited,:!
foralli <dandallt € X(i),

Y. fautap=o.

ac[n]\t

(If we identify y, with the product [[;, x; of “variables” x;, then harmonicity of a
multilinear polynomial P translates to the condition  ;_, g—; = 0.) As in the case of
the Boolean cube, this unique representation allows us to orthogonally decompose a
function into its homogeneous parts (corresponding to the contribution of monomials
y; with fixed |¢|), which plays the same essential part in the complete complex as its
counterpart does in the Boolean cube. Moreover, this unique representation allows
extending a function from the “slice” to the Boolean cube (which can be viewed as a
superset of the “slice”), thus implying further results such as an invariance principle
[30, 31].

We generalize these concepts for complexes satisfying a technical condition we call
properness, which is satisfied when the Markov operators of the upper random walks
DU have full rank, or equivalently that KerU; = {0} for all i). This holds for both
the complete complex and high-dimensional expanders. We show that the results on
unique decomposition for the complete complex hold for arbitrary proper complexes
(Theorem 3.2) with a generalized definition of harmonicity which incorporates the
distributions IT;. In contrast to the case of the complete complex (and the Boolean
cube), in the case of high-dimensional expanders the homogeneous parts are only
approximately orthogonal.

The homogeneous components in our decomposition are “approximate eigen-
functions” of the Markov operators defined above, and this allows us to derive an

1 Ryan O’Donnell has suggested the name zero-flux since harmonicity usually refers to vanishing of the
Laplacian.
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approximate identity relating the total influence (defined through the random walks)
to the norms of the components in our decomposition, in complete analogy to the
same identity in the Boolean cube (expressing the total influence in terms of the
Fourier expansion).

Theorem 1.3 (Decomposition theorem for functions on HDX) Let X be a proper
d-dimensional simplicial complex. Every function f: X(£) — R, for £ < d, can be
written uniquely as f = f_1 + --- 4+ f¢ such that:

e fi is a linear combination of the functions ys(t) = 1o for s € X(i), ie.
vs(t) = 1 whent 2O s.

e [Interpreted as a function on X (i), f; lies in the kernel of the Markov operator of
the lower random walk U;_1 D;.

If X is furthermore a y -high-dimensional expander, then the above decomposition is
an almost orthogonal decomposition in the following sense:

e Fori # j, [(fi, fj)| = 0.
o IfIF~Nfall®>+---+ I fell™
o [fl < kthen Dy 1Uy fi = (1—%)]”,-,andinparticular(DUf, )= Zf:q(l_
EL £
(For an exact statement in terms of the dependence of error on y and d, see Theo-
rem4.6).

Instead of requiring f; to lie in the kernel of the walk U D, they take f; to be
in the projection of the orthogonal complement of Span {f_q, ..., fi—1}. As a con-
sequence, their decomposition is perfectly orthogonal and not just approximately
orthogonal. On the flip side, the components f; live in slightly less-nicely-defined
spaces. A similar decomposition theorem was, concurrently and independently,
proved by Kaufman and Oppenheim [39, Theorem 1.3], for one-sided spectral high-
dimensional expanders. Our near-orthogonal decomposition holds only for two-sided
high-dimensional expanders, while they prove an interesting norm-decomposition
instead of an orthogonal decomposition, writing the norm of f as the approximate
sum of norms of projections of f to the spaces of functions on X (j). This is interesting
especially in light of the fact that one-sided expanders aren’t necessarily proper (for
example, the complete (d + 1)-partite simplicial complex is not proper). In particu-
lar, there is no known way to write f itself as a sum of components in analogy to
Theorem 1.3.

Subsequent to the earlier version of our result [13], Kaufman and Oppenheim [39,
Theorem 1.5] extended their decomposition theorem to two-sided high-dimensional
expanders. This decomposition is similar to ours but not identical. Similar to our near-
orthogonal decomposition, they give adecomposition of f into orthogonal components
related to the spaces of functions on X (i), and satisfying a similar “nearly eigenvector”
equality for the upper walk operator. Instead of requiring f; to lie in the kernel of
the walk U D, they take f; to be in the projection of the orthogonal complement of
Span{f_1,..., fi—1}. As a consequence, their decomposition is perfectly orthogonal
and not just approximately orthogonal. On the flip side, the components f; live in
slightly less-nicely-defined spaces.
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Subsequent to our work, Alev, Jeronimo and Tulsiani [2] used our techniques to
analyze more general random walks, which they call swap walks. The same walks
were analyzed independetly by different techniques in the work of Dikstein and Dinur
[14] under the name complement walks.

1.4 Decomposition of Functions on Posets

The decomposition we suggest in this paper holds for the more general setting of
graded partially ordered sets (posets): A finite graded poset (X, <, p) isaposet (X, <)
equipped with a rank function p: X — {—1} UN that respects the order, i.e. if x <y
then p(x) < p(y). Additionally, if y is minimal with respect to elements that are
greater than x (i.e. y covers x), then p(y) = p(x) + 1. Denoting X (i) = p7 1), we
can partition the poset as follows:

X =X(—D)UX@O)U---UX(@).

We consider graded posets with a unique minimum element ¥ € X (—1).

Every simplicial complex is a graded poset. Another notable example is the Grass-
mann poset Gry(n, d) which consists of all subspaces of Fq” of dimension at most
d + 1. The order is the containment relation, and the rank is the dimension minus
one, p(W) = dim(W) — 1. The Grassmann poset was recently studied in the context
of proving the 2-to-1 games conjecture [16, 17, 41, 42], where a decomposition of
functions of the Grassmann poset was useful. Such a decomposition is a special case
of the general decomposition theorem in this paper.

Towards our goal of decomposing functions on graded posets, we generalize the
notion of random walks on X (i) as follows: A measured poset is a graded poset with
a sequence of measures = (I_y, ..., I1y) on the different levels X (i), that allow
us to define operators U;, D; 1 similar to the simplicial complex case (for a formal
definition see Sect. 6). The upper random walk defined by the composition D; 1 U; is
the walk where we choose two consecutive 1, f; € X (i) by choosing s € X(i + 1)
and then 71, f, < s independently. The lower random walk U;_1 D; is the walk where
we choose two consecutive #1, f; € X (i) by choosingr € X(i — 1) and thent;, 1, > r
independently.

Stanley studied a special case of a measured poset that is called a sequentially
differential poset [53]. This is a poset where

Di Ui —ril —68;Ui_1D; =0, (D

forall 0 <i < d and some constants r;, §; € R. There are many interesting examples

of sequentially differential posets, such as the Grassmann poset and the complete

complex. Definition 1.1 of a high-dimensional expander resembles an approximate

version of thlis equation: in a simplicial complex, one may check that the non-lazy
i+

ion i i _p. I
version is mM+ = Dj+1U; l.+21. Thus

M~ viany] <y
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is equivalent to

1 i1
- D

i+1
— <
i+2 i+2

Ti+2

H D;U; — Vs

which suggests a relaxation of (1) to an expanding poset (eposet).

Definition 1.4 (Expanding Poset (eposet)) Let F, se RI;O, andlety < 1. Wesay X
is an (7, g y)-expanding poset (or (7, S y)-eposet) if forall0 <i <k — 1:
I Div1U;i —ril = 8;Ui—1 Djll < y. 2
As we can see, y-HDX is also an (7, S, y)-eposet, for r; = i%’ 8 = ijt—é In
Lemma 6.29 we prove that the converse is also true: every simplicial complex that
is an (7, 8, y)-eposet is an O(y)-HDX, under the assumption that the probability
Prs, ~v;_;p;[t1 = t2] is small.
It turns out that eposets are the correct setup to generalize our decomposition for

functions on simplicial complexes: in all eposets we can uniquely decompose functions
f:X(@{)— Rto

f=> r7,

j=—1

where the functions f=/ are “approximate eigenvectors” of D;1U;. Furthermore,
this decomposition is “approximately orthogonal”. Fixing i, the error in both approx-
imations is O (y).

1.5 An FKN Theorem

Returning to simplicial complexes, as a demonstration of the power of this setup,
we generalize the fundamental result of Friedgut, Kalai, and Naor [33] on Boolean
functions almost of degree 1. We view this as a first step toward developing a full-
fledged theory of Boolean functions on high-dimensional expanders.

An easy exercise shows that a Boolean degree 1 function on the Boolean cube is
a dictator, that is, depends on at most one coordinate; we call this the degree one
theorem (the easy case of the FKN Theorem with zero-error). The FKN theorem,
which is the robust version of this degree one theorem, states that a Boolean function
on the Boolean cube which is close to a degree 1 function is in fact close to a dictator,
where closeness is measured in L.

The degree one theorem holds for the complete complex as well. The third author
[29] has extended the FKN theorem to the complete complex. Surprisingly, the class
of approximating functions has to be extended beyond just dictators.

We prove a degree one theorem for arbitrary proper complexes, and an FKN theorem
for high-dimensional expanders. In contrast to the complete complex, Boolean degree 1
functions on arbitrary complexes correspond to independent sets rather than just single
points, and this makes the proof of the degree one theorem non-trivial.

@ Springer



Combinatorica

Definition 1.5 (/-Skeleton) The 1-skeleton of a simplicial complex X is the graph
whose vertices are X (0), the O-faces of the complex, and whose edges are X (1), the
1-faces of the complex.

Claim 1.6 (Degree one theorem on simplicial complexes) Suppose that X is a proper
d-dimensional simplicial complex, for d > 2, whose 1-skeleton is connected. A func-
tion f € C% is a Boolean degree 1 function if and only if there exists an independent
set I (in the 1-skeleton of X ) such that f is the indicator of intersecting I or of not
intersecting 1.

Our proof of the FKN theorem for high-dimensional expanders is very different
from existing proofs. It follows the same general plan as recent work on the biased
Kindler—Safra theorem [18]. The idea is to view a high-dimensional expander as
a convex combination of small sub-complexes, each of which is isomorphic to the
complete k-dimensional complex on O (k) vertices. We can then apply the known FKN
theorem separately on each of these, and deduce that our function is approximately
well-structured on each sub-complex. Finally, we apply the agreement theorem of
Dinur and Kaufman [15] to show that the same holds on a global level.

Theorem 1.7 (FKN theorem on HDX (informal)) Let X be a d-dimensional y-HDX.
If F: X(d) — {0, 1} is e-close (in L%) to a degree 1 function then there exists a
degree 1 function g on X (d) such that Pr[F # g] = O, 4(¢).

Paper Organization

We describe our general setup in Sect.2. We describe the property of properness and
its implications—a unique representation theorem and decomposition of functions
into homogeneous parts—in Sect. 3. We introduce our definition of high-dimensional
expanders in Sect.4. In Sect.5 we show equivalence between our definition and the
earlier one of two-sided link expanders.

In Sect. 6 we define expanding posets, and describe our decomposition of functions
on posets. We prove almost orthogonality of the decomposition (Theorem 3.2) in this
more general setting. The full decomposition theorem for the (interesting) special case
of simplicial complexes is explicitly stated in Theorem 4.6.

We prove our degree one theorem in Sect. 7, and our FKN theorem in Sect. 8.

Theorem 1.3 is a combination of Theorem 3.2 (first two items) and Theorem 4.6
(other three items). Theorem 1.2 is a restatement of Theorem 5.5. Theorem 1.6 is a
restatement of Theorem 7.2. Theorem 1.7 is a restatement of Theorem 8.3.

2 Basic Setup

A d-dimensional simplicial complex X is a non-empty collection of sets of size at
most d + 1 which is closed under taking subsets. We call a set of size i 4+ 1 an i-
dimensional face (or i-face for short), and denote the collection of all i-faces by X (i).
A d-dimensional simplicial complex X is pure if every i-face is a subset of some
d-face. We will only be interested in pure simplicial complexes.
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Let X be a pure d-dimensional simplicial complex. Given a probability distribution
IT; on its top-dimensional faces X (d), we define a distribution IT = (I1y4, ..., [1_1)
over sequences Sg 2 Sg—1 2 ... 2 s—1 = ¥ where s; € X (i) as follows. We sample
sq¢ = {vo, v1, ..., v4} € X(d) according to I1y, and order its vertices uniformly at
random (vg, vy, ..., vg). Then we set s; = {vg, vy, ..., v;}. The distribution IT; (s;) is
the probability of sampling s;.

Let C' := {f: X(i) — R} be the space of functions on X (i). It is convenient to
define X (—1) := {f}, and we also let C~! := R. We turn C’ to an inner product space
by defining (f, g) := En;[ fg] and the associated norm I£1? = En, [f?].

For —1 < i < d, we define the Up operator U; : Ci — Ci*! a5 follows?

1
Uig(s) i= == D8\ 1x) = E 2]

xes

where 7 is obtained from s by removing a random element. Note that if s ~ I1; | then
t ~ II;.

Similarly, we define the Down operator D; 1: C'*! — Ci for -1 < i < d as
follows:

1
Dinif 0= o T > w%wl) MU x) - feUh = ELfG)],

where s is obtained from 7 by conditioning the vector MonTIl; =1 and taking the
(i + 1)th component. _ _

The operators U;, D;1 are adjoint to each other. Indeed, if f € C'*! and g € C?
then

(8. Diy1f) = E [ f®)] = (Uig. f)-

t,5)~(I1;,T41)

When the domain is understood, we will use U, D instead of U;, D;+1. This will be
especially useful when considering powers of U, D. For example, if f: X(i{) - R
then

U'f=U—1...Uin Ui f.

Given a face s € X, the function y; is the indicator function of containing s. Our
definition of the Up operator guarantees the correctness of the following lemma.

Lemma2.1 Lets € X(i). We can think of ys as a function in C/ forall j > i. Using
this convention, U;y; = (1 — ;JrT]Z)ys.

2 The Up and Down operators differ from the boundary and coboundary operators of algebraic topology,
which operate on linear combinations of oriented: faces.
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Proof Direct calculation shows that

lt] — |s|

Ujy)@) = ! Z (t\{x}) = ()

i Vs == s Xy) = —; s\l),

s Jj+2 xet ' Jj+2 g

and so Ujys = (1 — —j.ilz)ys. ]

For 0 <i < k, the space of harmonic functions on X (i) is defined as
H' :=kerD; ={f € C': D;f =0}.

We also define H~! := C~! = R. We are interested in decomposing C¥, so let us
define foreach —1 <i <k,

vi=U""H ={U""f: feH.
We can describe V¢, a sub-class of functions of C¥, in more concrete terms.

Lemma 2.2 Every function h € V' has a representation of the form

h= )" hs)ys,

seX(i)

where the coefficients h(s) satisfy the following harmonicity condition: for all t €
X@i@-—1),

Z I1; (s)h(s) = 0.

§Dt

Furthermore, if U~ is injective on C' then the representation is unique.
Proof Suppose that & € V. Then h = U*~" f for some f € H', which by definition
of H' and the Down operator is equivalent to the condition

Y i) f(s) =0

st

for all t € X(i — 1). In other words, the f(s)’s satisfy the harmonicity condition.
It is easy to check that f = Zsex(i) f(s)ys, and so Lemma 2.1 shows that h =

ZseX(i) h(s)ys, where

- i+1 i+1

Thus, h(s)isa scaling of f(s) by a non-zero constant, it follows that the coefficients
h(s) also satisfy the harmonicity condition.
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Now suppose that U*~ is injective on C?, which implies that dim H! = dim V?.
The foregoing shows that the dimension of the space of coefficients A(s) satisfying
the harmonicity conditions is dim H'. Since dim H! = dim V', this shows that the
representation is unique. O

3 Decomposition of the Space CX and a Convenient Basis

Our decomposition theorem relies on a crucial property of simplicial complexes,
properness.

Definition 3.1 A k-dimensional simplicial complex is proper if D;y1U; > 0 (i.e.
D;+1U; is positive definite) for all i < k — 1. Equivalently, if it is proper and ker U;
is trivial for —1 <i <k — 1.

We remark that since DU is PSD, ker U = 0 is equivalent to DU > 0. This is
because for any x € ker DU, we would have 0 = (x, DUx) = |Ux 12, implying that
x=0.

The complete k-dimensional complex on n points is proper iff k + 1 < % A
pure one-dimensional simplicial complex (i.e., a graph) is proper iff it is not bipartite.
Unfortunately, we are not aware of a similar characterization for higher dimensions.
However, in Sect. 5 we show that high-dimensional expanders are proper.

We can now state our decomposition theorem.

Theorem 3.2 If X is a proper k-dimensional simplicial complex then we have the
following decomposition of C*:

In other words, for every function f € C K there is a unique choice of h; € H' such
that the functions f; = U h; satisfy f = f-1 + fo+ -+ fi.

Proof We first prove by induction on £ that every function f € C* has a representation
f =YY, U""h;, whereh; € H'.This trivially holds when £ = —1. Suppose now
that the claim holds for some ¢ < k, and let f € C‘*!. Since D! ct*! — C*
is a linear operator, we can decompose C‘*! to ker Dyy1 @ (ker Dyyq)*. It is well
known that (ker Dy4 ()" = im Dy, | so we have C**! = ker Dyy1 @ im Dy, =
ker D41 @ im Uy, and therefore we can write f = hyy1 + Ug, where hyy; € HF!
and ¢ € C. Applying induction, we get that g = i_ | U''h;, where h; € H'.
Substituting this in f = hyy1 + Ug completes the proof.

It remains to show that the representation is unique. Since ker U;; = ker D} is

trivial, dim H' = dim C? — dim C*~! for i > 0. This shows that Y"__| dim H' =

dim C*. Therefore the operator : H~'x---x H* — C* givenby p(h_1, ..., hi) =
Zf:_l U*~h; is not only surjective but also injective. In other words, the represen-
tation of f is unique. O
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Corollary 3.3 If X is a proper k-dimensional simplicial complex then every function
f € C¥ has a unique representation of the form

EDINIONS

seX

where the coefficients f(s) satisfy the following harmonicity conditions: for all 0 <
i <kandallt € X(i — 1):

Y i) f(s) =0.
seX (i)
sDOt

Proof Follows directly from Lemma 2.2. O

We can now define the degree of a function.

Definition 3.4 The degree of a function f is the maximal cardinality of a face s such
that f(s) # 0 in the unique decomposition given by Corollary 3.3.

Thus a function has degree d if its decomposition only involves faces whose
dimension is less than d. The following lemma shows that the functions y;, for all
(d — 1)-dimensional faces s, form a basis for the space of all functions of degree at
most d.

Lemma 3.5 If X is a proper k-dimensional simplicial complex then the space of func-
tions on X (k) of degree at most d + 1 has the functions {ys : s € X(d)} as a basis.

Proof The space of functions on X (k) of degree at most d + 1 is spanned, by definition,
by the functions y; for r € X(—1) U X(0) U --- U X(d). This space has dimension
Zf=71 dim H'. Since X is proper, dim H! = dim C' — dim C'~! for i > 0, and so
>4 dim H' = dim ¢4 = |X(d)|.

Given the above, in order to complete the proof, it suffices to show that for every
i <dandt e X(i), the function y, can be written as a linear combination of y, for
s € X(d). This shows that {ys : s € X(d)} spans the space of functions of degree at
most d + 1. Since this set contains | X (d)| functions, it forms a basis.

Recall that y;(r) = 1,5, where r € X (k). If r contains ¢ then it contains exactly

k+1—]t] ..
(d+1—|t\) many d-faces containing r, and so

1
Y = m Z Vs-
d+1—|t| st
seX(d)

This completes the proof. O

We call f; the “level i” part of f, and denote the weight of f above level i by

wtei (f) =Y I £5ll3.

j>i
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We also define f<; = f_1+ -+ fiand fo; = f — f<i.

4 How to Define High-Dimensional Expansion?

In this section we define a class of simplicial complexes which we call y-high-
dimensional expanders (or y-HDXs). We later show that these simplicial complexes
coincide with the high-dimensional expanders defined by Dinur and Kaufman [15]
via spectral expansion of the links. In addition, we show the decomposition in Sect. 3
is almost orthogonal for y -HDXs. We define y-HDXs through relations between ran-
dom walks in different dimensions. It is easy to already state the definition using the
U, D operators: a k-dimensional simplicial complex is said to be a y-HDX if for all
levels0 < j <k-—1,

2 1
|75 (v - 731) 00
j+1 j+2

We turn to explain the meaning of (3) being small by discussing these random walks.’

The operators U and D induce random walks on the jthlevel X (j) of the simplicial
complex. Recall that our simplicial complexes come with distributions IT; on the j-
faces.

=v. 3

Definition 4.1 (The upper random walk DU ) Given t € X (j), we choose the next set
t" € X(j) as follows:

e Choose s ~ IT ;11 conditioned on ¢ C s.
e Choose uniformly at random 7 € X (j) such that 7’ C s.

Definition 4.2 (The lower random walk U D) Given t € X (j), we choose the next set
t" € X(j) as follows:

e Choose uniformly at random r € X (j — 1) such that r C ¢.
e Choose t' ~ I1; conditioned on r C 1’

Itis easy to see that the stationary distribution for both these processes is I ;. However,
these random walks are not necessarily the same. For example, if j = 0, we consider
the graph (X (0), X(1)). The upper walk is the —-lazy version of the usual adjacency
random walk in a graph. The lower random walk is simply choosing two vertices
independently, according the distribution ITy. In both walks, the first step and the third
step are independent given the second step. In fact, we can view the upper walk (resp.
lower walk) as choosing asets € X(j + 1) (resp. r € X(j — 1)), and then choosing
independently two sets 7, ¢’ € X (j) given that they are contained in s (resp. given that
they contain r).
One property of a random walk is its laziness:

3 UD and DU are called high-dimensional Laplacians in some other works [39].
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Definition 4.3 (Laziness and non-lazy component) Let M be a random walk. The
laziness of M is

tz(M) = Pr[x=y]
@.y)~M

We say that an operator is non-lazy if £z(M) = 0.
The non-lazy component M of a walk M is given by

M(x.y) -
22— if X,

Mt (x,y) = | 2y M) Y7 .

0 if y =0.

It is easy to see that both walks have some laziness. In the upper walk, the laziness
is Jﬁ We can decompose DU as

1 j+1
DU= —]+*—MT, 4
ir2 Tt @

where M f is the non-lazy version of DU, i.e. the operator representing the walk when
conditioning on ¢' # ¢. The laziness of the lower version depends on the simplicial

complex itself, thus it doesn’t admit a simple decomposition in the general case.
(4) can be written as

) 1
M*:L(DU—,—I).
I j+2

A y-HDX is a simplicial complex in which the non-lazy upper walk is similar to
the lower walk. Thus an equivalent way to state (3) is as follows.

Definition 4.4 (High-dimensional expander) Let X be a simplicial complex, and let
y < 1. Wesay that X isa y-HDX ifforall0 < j <k — 1,

IMf —UD| <. ®)

This definition nicely generalizes spectral expansion in graphs, since if X is a graph,
||M;' — U D] is the second largest eigenvalue (in absolute value) of the normalized
adjacency random walk. In Sect.5 we show that this definition is equivalent to the
definition of high-dimensional two-sided local spectral expanders that was extensively
studied [15, 50].

Ify < ﬁ then any y-HDX is proper, as shown by the following lemma.

Lemma4.5 Let X be a k-dimensional y-HDX, for y < kl? Then X is proper.
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Proof To prove this, we directly calculate (U; f, U; f) and show that it is positive
when f # 0:

WF.Uf) = (DUS. f) = —5{f f) + ” LMt fL

= SN+ <(M+ UD+UD)f, f). (6)

From Cauchy-Schwarz,

(f —upyr. p| < |ar —upyg| i,

and since X is a y-HDX,

[ef —upys| < viri.
Plugging this in (6), we get

1 41
<ff7+———«M+ UD+IUHﬁf)2<f———Li—V)UZﬁ

]+2 Jj+2 j+2

+UDf, f).

The last part of the sum is non-negative: (UDf, f) = (Df, Df) > 0. Therefore, if

1
7/<m_j+2then

Hence (U; f,U; f) > 0. O

4.1 Almost Orthogonality of the Decomposition in HDXs

In Sect. 6 we prove that the decomposition in Theorem 3.2 is “almost orthogonal”. We
summarize our results below:

Theorem 4.6 Let X be a k-dimensional y-HDX, where y < m For every function

f on C* for € < k, the decomposition f = f_i + --- + fo of Theorem 3.2 satisfies
the following properties:

o Fori# j, |(fi, fi)l = OWILANIfl

o IfIIF = A+ 0NUf1I* + - + I fell®), and for all i, || fII* = (1 &
O Ul f<il* + 1L f~i I

e f; are approximate eigenvectors with eigenvalues ); = 1 — 2112 in the sense that
IDUfi — (1 = Z5) fil = 0) Il fil.

o Ift <kthen (DU, f) = (1 0() X i__ Mill fill%
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The hidden constants in the O notations depend on k but not on the size of X.

This result is analogous to a similar result [39, Theorem 5.2] due to Kaufman and
Oppenheim, in which a similar decomposition is obtained. However, whereas our
decomposition is to functions f_1, ..., f¢ in C¢, the decomposition of Kaufman and
Oppenheim [39] is to functions &_1, . .., hy, which live in different spaces. We further
expand on the matter in Sect.6.5.

The exact constants in the O notation of Theorem 4.6 were not calculated precisely,
but the proof in Sect. 6 gives constants exponential in k. It is not clear whether this is
tight.

5 High-Dimensional Expanders are Two-Sided Link Expanders

In Sect.4 we defined y-HDXs, see Definition 4.4. Earlier works, [15, 26, 39] for
example, gave a different definition of high-dimensional expanders—two-sided link
expanders—based on the local link structure. We recall this other definition and prove
that the two are equivalent.

Definition 5.1 (Link) Let X be a d-dimensional complex with an associated probability
distribution I1; on X (d), which induces probability distributionson X (—1), ..., X(d—
1). For every i-dimensional face s € X (i) fori < d — 1, the link of s, denoted Xj, is
the simplicial complex:

Xs={r\s:reX,r Ds}.
We associate X; with the weights TT* such that

@) := Pr [r—sUtIrDs]—M
IANES C ) ()

Is|

Definition 5.2 (Underlying graph) Leti < d — 1. Given s € X(i), the underlying
graph Gy is the weighted graph consisting of the first two levels of the link of s. In
other words, G; = (V, E), where

e V=X0)={x¢s:sU{x} e Xi+ 1}
o E=X;(1)={{x,y}:sU{x,y} e X{@+2)}.

The weights on the edges are given by

(s Ui{x, y)

ws(fx,yh = Pr [r=sU{x,y}r Ds]= —
i (5)( Is| )

We can also consider directed edges, by choosing a random orientation:

1
ws(x, )’) = Ews({x’ y})
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We define the weight of a vertex x to

w0 =0 = Pr [r=sU )l o 5] = o2
s = 1l - r~Il;1 r= = o) (s| + 1).

We define an inner product for functions on vertices along the lines of Sect. 2:
(f.8):= E [f(x)gx)].
X~Wy

We denote by A, the adjacency operator of the non-lazy upper-walk on X;(0),
given by

Agf(x) = yle‘[f(y)l{x, v} € E]
The corresponding quadratic form is

(f,Asg) = " ‘}l)aw [f(x)eg].

By definition, A fixes constant functions, and is a Markov operator. It is self-adjoint
with respect to the inner product above. Thus A has eigenvalues Ay = 1 > Ay >

. > Am, Where m is the number of vertices. We define A(Ag) = max(|A2], [An]).
Orthogonality of eigenspaces guarantees that

[(f, Asg) — ELFTE[g]l = A(ADI fIllIgIl- (N

Definition 5.3 (Tivo-sided link expander) Let X be a simplicial complex, and let
y < 1 be some constant. We say that X is a y-two-sided link expander (called y-HD
expander in some works [15]) if every link X of X satisfies A(A;) < y.

Dinur and Kaufman [15] proved that such expanders do exist, based on a result of
Lubotzky, Samuels and Vishne [45].

Theorem 5.4 [15, Lemma 1.5] For every & > 0 and every d € N there exists an
explicit infinite family of bounded degree d-dimensional complexes which are h-two-
sided link expanders.

We now prove that two-sided link expanders per Definition 5.3 and high-
dimensional expanders per Definition 4.4 are equivalent.

Theorem 5.5 (Equivalence theorem) Let X be a d-dimensional simplicial complex.

1. If X is a y-two-sided link expander, then X is a y-HDX.
2. If X is a y-HDX then X is a 3dy -two-sided link expander.

Proof Item 1. Assume that X is a y-two-sided link expander. We need to show that
|m" —UD| <.
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for all i < d, where Ml.+ is the non-lazy upper walk. Let f be a function on X (i),
where i < d. We have

(M"f. f)= E E_LFONEDFEN N

1~Tlip g x#y
Let s = r\{x, y}. Since t ~ II;;+; and x # y € t are chosen at random, we have

s ~ IT;_1. Given such an s, the probability to get specific (¢, x, y) is exactly w,(x, y)
(the factor 1/2 accounts for the relative order of x, y), and so

M'f, fy= E I)Ew[f(sU{fo(su{y})]. ®)

s~Tli—g (x,y)~

In other words, we have shown that

B [(Asfs, f5)], ©))

s~

(M f, f)
where f;: X;(0) — R is defined by

Js(x) = f(s Uix}).

We now note that
E [f(s UlxD] = (D).
Therefore we have, by (7), that

(MEf. fy—(UDf, )| =] E E [f(sU{xDf(sU{yN]— (Df)(s)?|

s~ (x,y)~wy
< E [xMAy E [fsU{xD2].
S’Vn,'_] X~Wg
If X is a y-two-sided link expander then A(Ag) < y for all s, and so
(M;"—UD)F, )] < vIfI%

Item 2. Assume now that X is a y-HDX. Our goal is to show that foralli < d — 1
and r € X(i),

AA) 3G +2)y.

Using the convention that X (—1) consists of the empty set, for i = —1 we have
Ay = Mg' ,and so U_1 Dy is zero on the space perpendicular to the constant function.
Thus

|~ UD] = A,
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and from our assumption A(Ay) < y.

Now assume 1 <i <d — 1, and fix somer € X(i — 1). Let f: X,(0) - R be
some eigenfunction of A,, which is perpendicular to the constant function. In order
to prove the theorem, we must show that

’(Arf»f>

3+ 1)y.
) ‘5 G+ y

Define a function f e C' by

f(s): {f(s\r) ifr Cs,

0 otherwise.

Without loss of generality, we may assume that || f || =

In order to obtain a bound on A(A,), we bound ( f, f + f, f),and (UDf, f)
in terms of f and A,. y
Observe that the norms of f and f are proportional:
(f, ) 1
(f. fr= . = . : (10)

i@+ 1D i ()GE+ 1)

Furthermore, from what we showed in (9) we obtain that

(M f, fy= Ay s Fi)]

r eX(z 1)

where f/(x) = f(r' U {x}).

Fix some r’ # r. If fo(x) ;é 0 then f(r' U {x}) # 0. In particular, this means that
r C r" U {x}. Since both r, r’ are contained in ' U {x}, this means that r \ r’ = {x}.
Thus there is at most one vertex x € X, (0) such that f, (x) # 0. Since A, is a
non-lazy operator, this implies that (A, f,, f,') = 0. We remain with

MY F, )y = Lo ()AL, ). (11)

In other words, the upper non-lazy random walk is proportional to the local adjacency
operator.

We prove the following claim, which shows that the lower walk scales f by a factor

of at most "H y:

Claim 5.6 If f : X,(0) — Risperpendicularto constant functions then |(U;_1 D; f, f)|
< iy,
- L
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Assuming the above:

Af, . . i
‘M‘ =G+ DI (A f, )l = G+ DM F, ]

(f, f)

<+ DM =U_D)f, F)l + G + DU Di f, £

. i+1 )
<@{@+1 l—I—T y <30+ Dy,

where the equalities in the first line use (10) and (11), and the inequalities in the

second line use Claim 5.6, our assumption that || Ml.‘Ir —U;_1D;| < y,and the triangle

inequality. O
We complete the proof of Theorem 5.5 by proving Claim 5.6:

Proof of Claim 5.6 Since U;_1D; is PSD, we have (U; _1 D; f, f) > 0, and so we may
remove the absolute value and prove

s it
(Uis1Dif, f) < — v

Consider the inner product (D; f, D; f)—this is the expectation upon choosing
r’ ~ TI;_1, and then choosing two i-faces 51, so € X (i) containing it independently.
Hence we decompose to the cases where r' = r and r’ # r:

(Dif, Dif) = o B 60 f(2)]

»S1s

=M;—1(r) E [f(sl)f(S2)|r/ =r]
(r',s1,52)

+ A=) Esz)[ﬂsl)f(sz)v’ #rl. (12)

ST,

The first term is 0, since from independence of sy, s7:

E )[f(sof(sznr’ =r1=Elf(s)lr C 511> =0,

(r',s1,52

since by assumption f is perpendicular to constant functions.

We saw above that for any r’ # r, there is at most one i-face containing ' (which
iss = r Ur’) such that f(s) # 0. For any r’ # r, the value f(s1) f(s2) is non-zero
only when s; = sp = r U r’. For every s1 € X (i), we define the event Ej, to hold
when s, = s1. Namely, the event Ej, is the event where we choose an edge in the
lower walk that is a triple (s1, 7/, s1) where s; € X(i),r € X(i —1),r' C s1. (12) is
equal to

(12) =1 - Hi—l(”))]]?[]gz(ﬂ) Pr [Ej, Ir' #r1].
s r,sn

Note thatif s; doesn’t contain r then f 2(s1) = 0, hence we continue taking expectation
over all s; € X (i), even though some of them are unnecessary terms.
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If we prove that for every s € X (i) we have Pr, ., [Ey, |[r' # r] < #y then

~ i+ 1 = i+ 1 - - i+ 1
(1= MG B 60 PrIE I < ——y BP0l = S (. ) = .

i i

Thus we are left with proving the following statement: for all 51 € X (i),
i+ 1
PriE, I #rl< "y,
r’,sn 1

We first bound the unconditioned probability Pr[Ey | = Pry g, exy[s2 = 51 lr’ C
s1, s2]. Fix some s1 € X (i), and let 1, : X(i) — R be its indicator. Notice that
Ui—1Dj1 (s1) = Prpv 5, [s2 = s1], and so

(Ui—1Di1y, 1)) = T;(s)U; 1 Di 1y, (s1) = I1; (sy) Pr[Eg ].

We again use the non-laziness property of MZ.Jr to assert that (Ml.+ 1s,, Ls,) = 0. Since
X isa y-HDX,

(Uis1Di1y,, 1yy) = ((Uim1 Dy — M) 1y, 1)) < |Uis1 Dy — M| 1125, 17 = ¥ T (s).

Hence Pr[Es ] < y.

Consider now any s; € X (i) containing r, ‘and let ¥’ be a random (i — 1)-face
contained in s;. The probability that 7" # r is =, and so
i+1 i+1

— Pr[Egl< ——y.

l r',so 1

Pr[Eg|r' #7r] <
r s

5.1 Tightness of Theorem 5.5

In the remainder of the section we give two counterexamples that show that the depen-
dence of Theorem 5.5 on A and d is tight up to constants.

To show the tightness of the first item in the theorem, namely, that there are sim-
plicial complexes where HM;r -U D|| ~ y, it is enough to consider the complete
d-dimensional simplicial complex on n vertices. On the one hand, the local links of
the complete complex are complete graphs on n — d 4 1 vertices (or more), thus it is

a nl 2-two sided link expander. By direct calculation,

M+—UD—%
d T d+Dn—d-1

1
T W+ Vn—d—Dn—-d

J(n,d—!—l)—( ! 1

1
— I+ (d+1)(n_d)l(n,d+l)>

1
Jn,d+1)— ——1I,
(n,d +1) n—d
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where J(n, d + 1) is the adjacency matrix of the Johnson graph. The eigenvalues of
Jn,d+1are(d+1—j)n—d—1—j)—jforj=0,...,d+ 1 (see[8]), and
so the eigenvalues of Md+ —UD are

d+l1-jp—-—d-1-j—j 1 jin+1-7)

d+1DHmn—-d—-1)n—-4d) n—d__(d—l-l)(n—d—l)(n—d)'

The spectral norm of M‘}" — UD is attained at j = d + 1, at which point it equals

d+1Dn—-d . 1
d+1)(n—d—-1)(n—d) Tn—d-1

As for the second item, we show a sequence of complexes X,, with a disconnected
link (i.e. they are not A-two sided link expanders for any A < 1), where

1
|M; —UD| < < Fou(D).

The complex X, is obtained by removing a few faces from the d-dimensional
complete complex, so that there is a cut in a single link. More formally, we define

Xn(()) = {15 27 st 7n}
and

[n]

)\{{1,2,...,d—1}U{x,y}|d§x<y§n,x+yzl (mod 2)},

where Iy is uniform.

One can observe that the link of ro = {1,2,...,d — 1} contains two connected
components—the even vertices and the odd vertices.

We comment that instead of removing the set of faces we can reduce their weight
significantly so that the link of ¢ will remain connected but not an expander. We next
claim that the upper and lower walks are spectrally similar.

Claim5.7 Let d > 1, and let X, be the sequence of simplicial complexes defined
above. Then

1
|M; —UD| < < Fon(D).

Proof We fix n and denote X = X,,, and for simplicity of computation we assume
n — d is odd. We need to show that for any f: X(d — 1) — R of norm 1,

1
(M -UD)f, f)] < < +on().
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We decompose the inner product to local inner products on the link, as in (9):

+_ _ _ 2 2
(M7 —UDYf, )] = rexl(%_l)[(Arfr»fr) Df ()| = reXI(Ed_l)[?\(Xr)llfrll I
(13)

where f,: X,(0) — Ris defined by f.(x) = f(r U {x}). For every r # ryp we have
the following claim:

Claim5.8 Letr € X(d —2), r # ro, then L(X,) = 0,(1).

Substituting this in (13) and using E,ex@—1) | fr1? = [ fII*> = 1 and A(X,,) < 1
gives

(M —UD)S, )] < on() + TG0 fro 1.

The last term equals

o)l froll* = TI(ro) Y wyy(x) £ (ro U {x})?
x€Xy, (0)
=y D b <

X€Xry (0)
We prove Claim 5.8 below. O

Proof of Claim 5.8 Denote m = n — d + 1, and without loss of generality, assume m
is even.

Let r # ro. If |r\rg| > 3, then X, is the complete graph on m vertices and is a
mlil -two-sided spectral expander.

If |[r\ro| = 2 then X, is one of the following:

1. The complete graph—when x, y € r\rp have the same parity.
2. A complete graph with only one edge missing—when x, y € r\rg have different
parity.

In both cases these are O (%) spectral expanders (skipping a short calculation in the
second case).

If |[r\ro| = 1 then the graph X, is obtained by taking the complete graph, and
removing 7 of the edges that are adjacent to the vertex vo € ro\r. We claim that this
graph is still a 0, (1)-spectral expander.

The first vertex vg is connected to % vertices, thus there are % —1 vertices which are
connected to all vertices besides themselves and v, and % vertices that are connected
to all vertices besides themselves.
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The adjacency operator for this graph is a block matrix, formed by partitioning the

rows and the columns into three parts, of sizes 1, % -1, %, respectively:

2
Oix1 0121 w1
1 1
A=10g-vx1 |maKg-vx@-1|maE-vx% |
1 1 1
g x| mergxg-n | mmrKgxy

where K is the adjacency matrix of a complete graph, and J is the all-1 matrix.
The non-constant eigenvectors of ﬁK (Z—1)x (2 —1) (middle block) lift to an

5 —2)-dimensional eigenspace of — ﬁ Similarly, the non-constant eigenvectors of

K mym (bottom-left block) lift to an (% — 1)-dimensional eigenspace of —ﬁ.
The remaining three eigenvalues correspond to eigenvectors which are constant on
blocks. A straightforward calculation shows that these eigenvalues are roots of the

cubic polynomial
(@m?* — 12m + 8)A> — @m? — 18m + 16)A> — (8m — 16)A + 2m — 8) = 0.

The trivial eigenvalue A = 1 corresponds to the constant eigenvector. The other two
are roots of the quadratic

(4m> — 12m 4 8)A% + (6m — 8)A — (2m — 8) = 0.

The roots of this quadratic are

A

_ —Om+ 84323 —188m> +352m —192 | (1
B 8m? — 24m + 16 B '

6 Expanding Posets (Eposets)

In this section, we describe a setting generalizing simplicial complexes, namely mea-
sured posets. These are partially ordered sets (a set X with a partial order < on
it) whose elements are partitioned into levels X (j), and that have some additional
properties stated below. As in simplicial complexes, we can define C/ as the space
of real-valued functions on X(j), and averaging operators U, : C/ — CJ/*! and
Djyi: CITl — /.

We generalize the notion of a y-HDX to a y -expanding poset (eposet)—a measured
poset with operators D, U; such that

|Dj1Uj =rjl =8;U0;-1D;| = v,
for y < 1, all non-extreme levels j of the poset, and some constants r;, §;.
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We begin the section by discussing the formal notion of an eposet. We then gener-
alize Theorem 4.6 to all eposets, and prove it in the general setting. Finally, we show
that if our measured poset is a simplicial complex, then r; ~ jﬁ, i~ 1~ jlﬁ,
under the assumption that the laziness of the lower walk is small.

6.1 Measured Posets

A graded (or ranked) poset is a partially ordered set (poset) (X, <) equipped with a
rank function p: X — N U {0, —1} such that:

1. Forallx,y € X,if x < ythen p(x) < p(y).
2. For every x, y € X, if y is minimal with respect to elements greater than x (i.e.
x < y), then p(y) = p(x) + 1.
We denote the set of elements of rank j by X (j). We assume that there is a unique
element of minimal rank which we denote by ¢, and so X (—1) = {#}.

We say that a graded poset is d-dimensional if the maximal rank of any element in
X is d. We say that a d-dimensional graded poset is pure if all maximal elements are
of rank d, that is, for every ¢ € X there exists s € X(d) such that t < s.

For example, any simplicial complex is a graded poset, if we take < to be the
containment relation and p to be the cardinality of a face, minus one. Another useful
example to keep in mind is the Grassmann poset Gry(n, d), whose elements are
subspaces of dimension at most d + 1 of Iy, and the order is by containment. The
rank function for the Grassmann poset is p(U) = dim(U) — 1, and so X(j) = {U C
IE‘;’ :dim(U) = j + 1}.

Definition 6.1 (Measured poset) Let X be a finite graded pure d-dimensional poset,

with a unique minimum element J of rank —1. We say that X is measured by a (joint)

distribution IT = (g, My—y, ..., I_y) if it satisfies the following properties4:

1. TI; € X(i) forall i.

2. I,y cII; foralli > —1.

3. The sequence Iy, ..., IT_; has the Markov property: IT;_; depends only on IT;
foralli > —1.

We denote the real-valued function spaces on X (j) by C 7. We denote the averaging
operators of the steps in the Markov process by U;: C/ — citl, Dji1: citl —
C/.

The operators U; and D; are adjoint with respect to the inner product given by
(f.8)=_E fx)gx)
x~I1 j

and thus both U; D41 and D U; are positive semi-definite since, for example, for

all f

({UjDj1f. f) = (Djs1f. Dj1f) = 0.

4 Asis common, we abuse notation IT; to refer to both the distribution as well as the random variable
sampled according to the distribution.
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The process we defined for the distribution Mina simplicial complex is an example of
a measured poset. For the Grassmann poset mentioned above, we also have a similar
probabilistic experiment:

1. Choose a subspace of dimension d + 1, s € X(d), uniformly at random.
2. Given a subspace s; of dimension i + 1, choose s;—1 € X (i — 1) to be a uniformly
random codimension 1 subspace of s;.

An analog for Theorem 3.2 holds for any measured poset. We say that a k-
dimensional measured poset X is proper if for all j < k — 1, ker U; = {0}. Also, as
before we denote

H'=c™', H =kerD;, Vi =U"H'

Theorem 6.2 [f X is a proper k-dimensional measured poset then we have the follow-
ing decomposition of C*:

ck=vkepvklg...eovl

In other words, for every function f € C k there is a unique choice of h; € H' such
that the functions f; = U*'h; satisfy f = f-1 + fo+ ...+ fi.

Proof We first prove by induction on £ that every function f € C* has a representation
f=Y"t | U'ih;, whereh; € H'. This trivially holds when £ = —1. Suppose now
that the claim holds for some ¢ < k, and let f € C‘*!. Since D*!: ct*! — C*
is a linear operator, we can decompose C‘*! to ker Dyy1 @ (ker Dyyq)*. It is well
known that (ker Dyy ()" = im DZ‘H so we have C*! = ker Dyy @ im Dz‘+1 =
ker D¢+1 @ im Uy, and therefore we can write f = hy41 + Ug, where hyy | € H!
and g € C*. Applying induction, we get that g = Zf:-] U h;, where h; € H'.
Substituting this in f = hyy1 + Ug completes the proof.

It remains to show that the representation is unique. Since ker U; 1 = ker D] is
trivial, dim H' = dim C! — dim C*~! for i > 0. This shows that Y"5_ | dim H' =
dim C*. Therefore the operator ¢ : H™ ! x---x H* — C¥ givenby p(h_1, ..., h) =
Z]-‘ U k=i h; is not only surjective but also injective. In other words, the represen-

1=—

tation of f is unique. O

6.2 Sequentially Differential Posets

Sequentially differential posets were first defined and studied (in a slightly different
form) by Stanley [51, 53].

Definition 6.3 (Sequentially differential posets) Sequentially differential posets are
measured posets whose averaging operators U, D satisfy an equation

Dj+1Uj—8jUj_]Dj—}”jI=0, (14)
forsomer;,8; € Rypandall0 < j <k — 1.
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For example, the complete complex satisfies this definition with parameters

1 1 \!
51': 1—_ 1-— - andri=1—8,~.
i+2 n—i

In other words,

o= (1-5t) (55) oo (- () (-5) e

The Grassmann poset Gr, (1, d) is also a sequentially differential poset with

—1 —1\!
5,-:1—(1—ql.q+2—_1)(1—qf_i—_1) andr; = 1—6;. (15)

The above following from the claim below, that the reader can verify by direct
calculation:

Claim 6.4 Let X be a measured poset, and suppose we can decompose:

Di1Ui =a; 1 + (1 —a;)M;,
Ui—1D; = il + (1 — B)M;,

where 0 < «;, Bi < | are constants and M; is some operator. Then
Di1Ui —ril —6;Ui1D; =0,
where
Si=(—a)(—p) " andr; =1-3;.
In both the complete complex and the Grassmann poset Gry (1, d), the non-lazy
upper walk and the non-lazy lower walk are the same—given t; € X (i), our choice
for t, € X (i) is a set (or subspace in the Grassmann case) that shares an intersection

of size (resp. dimension) i with #; (with uniform probability). The only difference
between DU and U D is the probability to stay in place. Thus we can decompose:

Di1Ui =a; 1 + (1 —a;)M;,
Ui—1D; = il + (1 — Bi)M;,

where M; is the non-lazy upper (or lower) random walk. In the simplicial complex
case
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and in the Grassmann case

qg—1 qg—1
o :—qi+2_1’ ,Bi = —qnfi_ 1

We relax Definition 6.3 to an almost sequentially differential poset—a measured
poset that approximately satisfies such an identity:

Definition 6.5 (Expanding Poset) Let 7, § e R>0, and let y < 1. We say that X is an
(7, 5, y)-expanding poset (or (7, 5, y)-eposet) if forall j <k — 1:

|Dj1Uj —rjl —8;U; 1Dj| <. (16)

A sequentially differential poset is an eposet with y = 0 As we saw in (3), a y-HDX

is an (7, 8 v)-eposet, where r; = +2 and6; =1 — J+2

We can use (15) to assert that Gr,, (n, d) is an (7, 8, y)-eposet for r; = ql” T 8 =
1 —r;,and y = O(1/¢"%). While this only shows that the Gr,(n, d) is an eposet
(even though it is truly sequentially differential), the parameters are much simpler, thus

calculations regarding the random walks are easier (see for instance the calculations
in Sect.6.6).

6.3 Almost Orthogonality of Decomposition

In this section we show that in an eposet, the spaces V; are almost orthogonal to one
another. Moreover, we show that these spaces are “almost eigenspaces” of the operator
DU.

Theorem 6.6 Let X be a k-dimensional (7, g, ¥)-eposet. For every function f on C*
fort <k, the decomposition f = f_1+---+ f¢ of Theorem 6.2 satisfies the following
properties, when y is small enough (as a function of k and the eposet parameters):

o Fori# j, |(fi, i)l = OWIfillllf;ll.
o IFI7 = (£ 0WNUSAIP + -+ + I fell®), and for all i, | fI> = (1 £

0N U f=il® + 11 f=i11%).
o If L < k, the f; (fori > 0) are approximate eigenvectors of DU: ||DU f; —

re_im fill = Ol fill, where

14

-1
riz =ry+ Z 1_[ 8 | rj (17)
j=t—i \1=j+1
(Note DUf_1 = rf+2f_1, where rf+2 =1)
o Ift <kthen (DUS, f) =Y i yri_ Il £ OIS

The hidden constant in the O notations depends only on k and the eposet parameters
(7,8, y) and not on the the eposet size | X |. In particular, the last item implies that if
¥ > 0 then for a small enough y, the poset is proper.

@ Springer



Combinatorica

In a measured poset, the decomposition of Theorem 6.2 is not necessarily orthog-
onal. However, this theorem shows that for an eposet, the decomposition is almost
orthogonal.

Remark 6.7 In the special case of a sequentially differential poset, i.e. y = 0, we do
get that the decomposition in Theorem 6.2 is orthogonal, and that the decomposition
C'=V_1®---@® V,is adecomposition to eigenspaces of DU: for all f; € V;,

DUf; =1 fi,
for the rf given in (17).
Recall our convention that for f € C*~/,
Ulf=Upi-UpjUe, f € C.

We first show how the third item in Theorem 6.6 implies the rest. The follow-
ing proposition says that the decomposition in Theorem 6.2 is a decomposition
of “approximate eigenspaces" of UD. We postpone its proof to the end of this
section, and use it first to obtain the full statement of Theorem 6.2. Recall that
H T = ker Dy_; C ct.

Proposition 6.8 Let X be an (7, g, y)-eposet, and let h € H /. Then U/'h € vt—J

. . . . . ¢ .
is an approximate eigenvector of Dyy1U, with eigenvalue r faRE

IDUW ) = rf  (U/R)] = Oy) IRl

We proceed by showing that these approximate eigenspaces V/ are approximately
orthogonal.

Lemma 6.9 Suppose that X is a k-dimensional (r 5, y)-eposet, let L < k, leti # J,
and let f; = U'~ ’h,,f] =U'"Jh; jforhi € H',hj € H/, as in Theorem 3.2. Then

(fis i) = O il |y |

where the hidden constant depends on k, 5 , 7 only.

Proof Assume without loss of generality that i > j. To prove the statement we use
Proposition 6.8 and induction on m = £ — i. The base case where m = ¢ —i = 0 (or
£ = i) follows from the fact that l’l( is orthogonal to f¢—;, for any j > I since it is in
H' = ker Dy. Indeed, (f¢, fo—;) = (he, Ulhe—j) = (D hg, he—j) = 0.

Assuming the statement holds for m, we show it for m + 1. Let f;, f; be as above
(where £ —i = m + 1). Then

(fio i) = WU hi, U Thy) = (DU hi, U070,
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As | DU hj —r{_, ;U D7 h;|| = O(y) |lhi|| then by Cauchy-Schwarz this
upper bounded by

O®y) hill H U(Z—l)—jhj H + r&_l)_i<U(€—1)—ihi, U(Z_l)_jhj).
By the induction hypothesis on m = £ — 1 —i > 0 this less or equal to
00 Ihill [U DTk | + 1y 00 il |15

The Up operator is an averaging operator so || ut=b-ip j H < Hh j H and the lemma
follows. =

The preceding lemma gives an error estimate in terms of the norms | 4;||. The
following lemma enables us to express the error in terms of the norms || f;||.

Lemma 6.10 For any k-dimensional (7, 5, y)-eposet, let £ < k and let f; = U*"'h;
for h; € H', as in Theorem 3.2. Then

Ifill = (A= 0o kil
where pf = {:O rf:i, and the hidden constant depends only on k, ¥, 5.

Proof By direct calculation with Proposition 6.8 we obtain that for any & € ker D:

j
DIUTh=riDIT'UIT h 4Ty = = plh+ )T,
t=1

where T; is the remainder, and ||T';|| = O(y) ||k|| for all ¢. Thus
|D7UTh = pth| = 00 Inl.
Hence using Cauchy—Schwarz,
1fill? = U hi, U i) = (DU his hi) = pi_illhill> £ 0 i)

]

Combining Lemmas 6.9 and 6.10, we obtain the following corollary, which proves
the first item of Theorem 6.6.

Corollary 6.11 Suppose that X be a k-dimensional (7, 5, y)-eposet, let £ < k, and let
f € Ct have the decomposition f = f_1 + --- + fo, as in Theorem 3.2. Then for
i # j and small enough y,

(fir [i) = OWILNFI

where the hidden constant depends only on k, 7, 5

@ Springer



Combinatorica

As a consequence, we obtain an approximate Ly mass formula, constituting the
second item of Theorem 6.6:

Corollary 6.12 Under the conditions of Corollary 6.11, for every i < j we have
Ifi -+ [P = A OGDALI + -+ 1LF1P),

where the hidden constant depends only on k, 7, 5
In particular,

I£17 =1 £ 0 (wi<i(f) + wt=i () = (L £ 0Nl f<ill* + Il f~:11%).

Proof Expanding || f; + --- + f; 2, we obtain

A

Wfid o I =N = =GP <2 ) 1S o)

i<a<b<j

=0() Y Ifalllfel

i<a<b<j
<o) (Ifill + -+ 1£1)
OWNUIFl*+ -+ 1IF17),

A

IA

swallowing a factor of j — i + 1 in the last inequality. O
The fourth item of Theorem 6.6 follows from the preceding ones:

Corollary 6.13 Under the conditions of Corollary 6.11,

4
(DUF, f)=0+00)) Y ri i lfil*

i=—1

Proof Let DUf; = rf_ini + gi, where ||gi|l = O()| fill according to the third
item. Then

14 4
(DUF, )=y ri (s /)4 D (gis ) (18)

i=—1 i=—1

We can bound the magnitude of the second term using Cauchy—Schwarz:

¢ ¢ 14
D e O Y il fll= 0 Y NAIFI = 0WIfIP,
i=—1 i=—1 i=1

using the second item.
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For every i, we can bound (f;, f) by

oo 1) = A1+ Y £5) = 1HIP £ O AN,
J#

using the first two items.
Substituting both bounds in (18) and using the second item again, we get

14

(DUF, fY =Y rilfilP £ 0ONIfIP.

i=—1
i

We turn to proving Proposition 6.8. It follows directly from a technical claim that
generalizes the approximate relation between D and U, namely

|IDU —rl —38UD| = O(y),
to an approximate relation between D and U/:
IDUY — rU/~ —8UD| = O(y),

for appropriate constants r, § € R.

Claim 6.14 Let X be a k-dimensional (7, S y)-eposet, 1 < j < L+ 1 <k, and
DU’: Xt — (j — 1)) = X(£). There exist constants rf, (Sf (as given below) such
that

HDUj —rtyi-! —5§UJ'DH — 0(y), (19)

where the hidden constant in the O (-) notation depends only on k, 5 7
The constants 8§ and rf are given by the following formulas: 88 = 1 and

¢ j—1

l_ t_ 12

sc= [ o re="re s
t=t—(j—1) =0

Regarding the constants r, §, notice the following:
1. rf =rgand 8t = 5.
2. Ifforall0 < j < €,rj+8; = 1,thenforall0 < j < €,rf+5% = 1.In this case,
we have a better formula for rf.:
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j

0 ¢ _ A
3. Inay-HDX, we getr; = ﬁande =1-¢5

Proof of Proposition 6.8 By Claim 6.14

[(ovi — rui =t — 507 Dyn| = 0 1l

Dh = 0 so the right-hand side is H (DUJ — rf. Ui=YHh H and the proposition follows.
Finally, we prove Claim 6.14. While the statement of this claim seems technical,

its proof consists of simply inductively substituting DU with rI 4+ U D in the terms,
until the formula is obtained.

Proof of Claim 6.14 We prove the claim by induction on j. The base case j = 1 follows
by the definition of an eposet: (Sf = &y, rf =ry, and

|pu —ri1-stup| <y.
For the induction step on j + 1, note that DU/*! = DU/U. We add and subtract:
DU/U = [DUjU —(rUT'U + 5§UJ‘DU)] + (U7 + 85U DUY. (20)

The term inside the square brackets has spectral norm at most O (y)||U]| due to the
induction hypothesis. Since || U] < 1,

IDU/U — (U~ U + 85U DU | = O ().
We consider next the term (Sf U/ DU, and substitute the DU in it with
(re—j1 +68;UD)+T,
where I' = DU — (r¢— ;1 + 8¢ jU D) has norm at most y (recall that the assumption

that the poset is an (7, 5, y)-eposet explicitly bounds the operator norm of I by y).
We get that

6507 DU = 8507 (o1 + 80U D) | = 0.
We rearrange the left-hand side of the equation to get
86U/ DU = 85U (re—j1 + 8, jUD) = 85U/ DU — ry_;85U7 — 5%, , U/ D.
Plugging this term back in (20), we get
DU — i U7 =85, U7 DI = O(y).
o
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6.4 Equivalence Between Link Expansion and Random-Walk Expansion for
Decomposable Posets

In this subsection we extend the equivalence theorem of Sect. 5 to a class of y-eposets
that share some key properties with simplicial complexes. We call these posets decom-
posable posets.

We begin with the definition of a link in a general measured poset.

Definition 6.15 Let X be a d-dimensional measured poset. Let s € X (). The link X
isa (d —i — 1)-graded poset consisting of all # € X such that¢ > s, with rank function

ps(y) = p(y) — p(x) — 1. -
The induced (joint) distribution on the link Ty, = (Ilx, ¢—i—1, ..., x, —1) is
defined as follows:

Pr[Ilx, = (tg—i, ta—i—1, ..., t1,t0)] = Pr[Ilg = tq—;, [g—1
=tg—i-1,...,Hipo =1, Il
=19 | I1; = s].

Namely, the probability of sampling ¢ in X is the probability of sampling it given that
s was sampled from the i-th level in X.

We denote by U j , Dj. the upper and lower walks on X starting from X (j). We
further denote by M;.”S the non-lazy upper walk on X starting from X;(j). When
s = @, that is, Xy = X, we simply write M;.r.

We define a two-sided link expander poset analogously to the definition for simpli-
cial complexes:

Definition 6.16 Let X be a measured poset. We say that X is a y-two-sided-link
expander if for every i < d — 2 and every s € X (i), it holds that

MMy <y,

where )»(M(;Ir " is the second largest eigenvalue of M(T ** in absolute value, which is
also equal to ”MSF“Y - U*,D}

Our main theorem is that for a special class of measurable posets called decom-
posable posets, the above definition is an equivalent characterization of an eposet.
To that end, we first show that Definition 6.5 has an alternate characterization (see
Definition 6.19) if the laziness is small.

6.4.1 Laziness and an Alternate Characterization of Eposets
In this section, we show that if the laziness of upper and lower walks of the eposet is

small, then there is an alternate more convenient characterization of eposets in terms
of |Ui—1D; — M;"|. First for some definitions.
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Definition 6.17 (Laziness of eposet) Let M be a random walk on the set V. We say
that M is «-lazy for some o € (0, 1) if for every + € V we have M(¢,1) < «. If
furthermore, the operator M can be decomposed as

M=ol +(1—a)M™T,

then we say that M is a-uniformly lazy. In other words, the walk M is an (o, | — @)
convex combination of the lazy component I and non-lazy component M.

Let X be a measured eposet. We say that the upper walk DU is a-uniformly lazy
for some vector @ = (g, o1, ..., aq—1) if each of the upper walks D;U; are «;-
uniformly lazy.

If o; < «foralli > 0 for some @ € (0, 1), we then say that the upper walk of X
is a-uniformly lazy.

For example, that a d-dimensional simplicial complex is @-uniformly lazy where

> 11 1

o = (j, 3> m)

Lemma6.18 Let y € (0,1/2). Let X be a d-dimensional U D is y-lazy and whose

upper walk is 1/2-uniformly lazy. Then

1. If H Ui_1D; — Ml+ “ <y then X is an (F, 5, y)-eposet for some F, 5.

2. If X is an (7, g, y)-eposet for some ¥, 8, then || Ui-1D; — Mi+ || = O(y) for all
i>0.

Proof Since the upper walk of X is 1/2-uniformly lazy, there exists & = (ag, a1, .. .,

og—1) such that foralli € {—1,0,...,d — 1}, we have

Di\Ui = ol + (1 —ap)M;.

(Proof of Part 1) Suppose |U;j—1D; — M;"| < y. Substituting into the above one
gets

y ==y = |d—a)M" — (1 —a)Ui_1 Dj
=|Dip1U; —a;I — (1 —ap)U;—1 D;]|,

so X isa y-eposetforr; = o;j and §; = 1 — ;.

(Proof of Part 2) Suppose that | D;1U; — ril — 8;U;_1 D;|| < y forsomer;, §; > 0.
We apply D;+1U; — i1 — 6;U;_1 D; to the constant vector 1, which is fixed by all

of D;+1U;, I, U;_1 D; because they are averaging operators. This gives

DU, —ril —6;U;_1Dj)1, 1
|1_Vi_6i|=‘<( i+1Yi ri iUi—1D;) )‘Sy

(1, 1)

Next, we fix an arbitrary element s € X (i) and let f = 1 be the function that equals
1 on s and 0 elsewhere. Observe that (Ml.+f, f)=0s0(Di1U;i f, ) = ai(f, f).
We apply D;1U; — ril — 8;U;_1 D; on the function f = 1,

a,-—r,-—cS,-

(Ui—1Di f, f) ’ _ ’((Di+1Ui —ril =68;Ui_1D))f, f)’ <y

(f: 1) (f: 1)
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Now, using the y-laziness of the lower walks to bound (U;_1D; f, f) < y{f. f),
we get |o; — ri| < y (1 4 §;). Combining this with |§; +r; — 1| < y, we obtain that
[6;i — (1 — ;)] < y(2 4 ;). We can now lower- and upper-bound §; as follows. We
have 7/8-6; < (1 —y)8; <1 —a; +2y < 1+ 1/4. Hence, §; < 10/7 < 2. On the other
hand, 9/8-8; > (1 + )8 > 1—a; —2y > 1/2 —1/a = 1/4. Hence, §; > 2/9.

Let us denote A &~ B to mean |A — B|| < O(y). We have seen that §; +r; ~ 1
and that o; & r; (since §; < 2), so

Mt —8;Ui_ 1D ~ (1 —aj)M;" — 8;Ui_ D;
=Din Ui —oil — ;Ui D;
~ Diy1Ui —ril = 8;Ui—1 D,

and we conclude that ”Ml.‘Ir —U;_1D; ” = 0(y/éi) = O(y) (since §; > 2/9). O

Many posets satisfy the mild requirements of Lemma 6.18. For example, in the
(d + 1)-dimensional complete complex, the lower walk is 1/(n — d + 1)-lazy, and the
upper walk is (1, 1/2, ..., 1/d)-uniformly lazy, and so 1/2-uniformly lazy. Similarly,
in the (d + 1)-dimensional Grassmann complex, the lower walk is q,,:{,%}_l-lazy, and

the upper walk is (1, qqz;_ll, ey qqd;_ll)-uniformly lazy, and so 1/(g + 1)-uniformly
lazy. -
In Definition 6.5, we defined an (F,8,y)

-eposet to be a poset where | DU —rl — §UD|| < y. The above lemma states that
this is equivalent to || Ui_1D; — Ml.+ || = O(y) provided the lower walk UD is y-
lazy and the upper walk is 1/2-uniformly lazy. This justifies the following equivalent
definition of a y-eposet.

Definition 6.19 A d-dimensional poset X is a y-eposet if | Uj—1 D; — M;"|| < y for
all0 <i <d.

6.4.2 Decomposable Posets

The measured posets we consider in this section have a lattice-like property which we
call decomposability.

To define decomposabile posets, we first need the notion of a modular lattice. Given
a poset X and elements s1, 5o € X, the join s1 V 52 of 51, 52 is an element ¢ such that
s1,82 <t,andt <r whenever s1, so < r. If the join exists then it is unique. The meet
s1 A 52 is defined analogously, with < replaced by >. In a simplicial complex, join
corresponds to union, and meet to intersection. A graded lattice is said to be modular
ifp(x)+p(y)=pxVvy +pxAy) foralx,yeX.

Definition 6.20 (Decomposable measured posets) Let X be a measured poset. We say
that X is decomposable if the following conditions hold:

1. X is a modular lattice. In particular, s1, s € X (i) have a join in X (i 4 1) iff they
have ameetin X(i — 1).
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2. For any s1, sp € X(i) with meetr € X(i — 1), it holds that

Prsy ~s1] =Pr[Il;_;y =7r] Pr [s2 ~ s1].
M+ +.r

i MO

As an example, the Grassmann poset is decomposable. Indeed, it is well-known
to be modular, since dim(sy) + dim(sy) = dim(s; + s2) + dim(s; N s7). As for the
second condition, it automatically holds whenever the non-lazy upper and lower walks
coincide on all links, which is the case for the Grassmann poset. This is because the
second condition is easily seen to hold if we replace the non-lazy upper walks with
non-lazy down walks. It would be interesting to find other decomposable posets. One
possible source, suggested by an anonymous referee, is the poset of flats of certain
matroids. We leave this as a direction for future study.

Another way to obtain a decomposable measured poset is to start with one and
introduce weights on the top level. This is a generalization of the special case of
simplicial complexes, in which we consider an arbitrary distribution on the top facets.
We describe this construction in detail in Sect. 6.4.3.

We are now ready to state and prove the main theorem of this section,

Theorem 6.21 (Equivalence of link-expansion and random-walk expansion) Let X
be a d-dimensional measured poset which is decomposable, the lower walk UD is
y-lazy and the upper walk is 1/2-uniformly lazy.

1. If X is a y-two-sided link expander, then X is a y -eposet.
2. If X is a y-eposet then X is a n~ ' (1 + B~ 1)y -two-sided link expander, where

n = min min Pr(ll; =r | 1,41 = 5]
0<i<d—-2reX(i),seX(i+1),r<s

and

p=1-— max Pr[Il; =7 | T4 = s]

max a
0<i<d—-2reX(i),seX(i+1),r<s

Before proving the theorem, let us calculate the values of 1 and § for simplicial
complexes and for the Grassmann poset Gr, (n, d).

For simplicial complexes, given that we chose s ~ IT; 1, the probability of choosing
re X(@),r Csis l_+2 Thus n = l._+2, B = ii—; Plugging this in Theorem 6.21
recovers Theorem 5.5.

We continue with X = Gry(n, d). For any r € X(i) and s € X(i + 1) such that
r < s we have

1 1
PrIl; =r | I1j41 =s] = = —.
[ 1 | i+1 ] [l+2] l+q++ql+1
l+1q
Thisimpliesthatn:Wand,B:1—@:117.
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Proof Item 1. Assume that X is a y-two-sided link expander. We show that
AR 7
foralli < d. Let f be a function on X (i), where i < d. By decomposability,

E My f, ). 1)

r~Ti

(M f, f)
We now note that for every r € X(i — 1),
E )] = (D).

Therefore we have that

(M f = UDf. fl=| E  E [fs0)f62]— (DN

r~Ili S1,80~M,"
< E [wMMP") E 1.
rem}[( 0" E 1]

If X is a y-two-sided link expander then A(Mg’r) < y for all r, and so

+ 21 2
(M —UD)f, f)] < )/rel]%ilseg(o)[f(s) I=vIfi.

Item 2. Assume now that X is a y-HDX. Our goal is to show that foralli < d — 1
and r € X(i),

AMSY <7t a+ BNy

Using the convention that X(—1) consists of a single item ¢, for i = —1 we
have M(T - M&“ , and so U_1 Dy is zero on the space perpendicular to the constant
function. Thus

|Mg —UD] =g,

and from our assumption )\(MO+ ’ﬂ) <y.

Now assume 1 < i < d — 1, and fix some r € X(i — 1). Let f: X,(0) - R
be some eigenfunction of Mgr ", which is perpendicular to the constant functions. In
order to prove the theorem, we must show that

(M £, f)
(f. f)

‘ <n'a+BHy.
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Define a function f € C? by

sy — {f(s) ifr <s,

0 otherwise.

Without loss of generality, we may assume that H f H =1

Inorderto obtainaboundon)»(MJ’r),Webound f. N (M;rf, f),and(UDF, f)
in terms of f and My "
We note that by Bayes’ theorem,

_ Pr[s] Pr[r | s] - n

Pris | r] = Pl Z P Pr[s].
As f(s) = 0 whenever r £ s,
_ 2 n 2 M =z =
(f. fH= Es[f(s) 1> P seI)E(:(i)[f(S) 1= Pl f. . (22)

Furthermore, from what we shown in (21) we obtain that

MAF Y= B uMETF L

r'eX(i—1)

Fix some r’ # r.If f # 0 on the link of 7’ then some s € X (i) satisifies both r < s
and r’ < s; this s must be the join of r and r/, and so it is unique. Since M(;” is a

non-lazy operator, this implies that (MJ v £, f) = 0. We remain with

(M f, f) = T (r )My £, f). (23)

In other words, the upper non-lazy random walk is proportional to the local adjacency
operator.

We now prove the following claim, which shows that the lower walk scales f by a
factor of at most n~'y:

Claim6.22 If f: X,(0) — R is perpendicular to constant functions then
(Ui-1Di f, )l < B~y

Assuming the above:

MSTf, i
'M < I T MG L )L =07 UM

(fs )

<n "M = U D) F, A+ 07U Di f, £
<n'a+phHy,

@ Springer



Combinatorica

where the first line uses (22) and (23), and the second line uses Claim 6.22, our
assumption that ||Ml.+ — Ui—1D;|| < y, and the triangle inequality. O
We complete the proof of Theorem 6.21 by proving Claim 6.22:

Proof of Claim 6.22 Since U D is PSD, we have (U;_;D; f, f) > 0, and so we may
remove the absolute value and prove

(UimiDif, f) < 71y

Consider the inner product (D; f, D; f)—this is the expectation upon choosing
r’ ~ TI;_1, and then choosing two i-faces sy, so € X (i) containing it independently.
Hence we decompose to the cases where r' = r and r’ # r:

(Dif, Dif) = o B0 f(2)]
r,s1,82
=) B [fs)fs2) |7 =r]
(r',s1,52)
+(1 =Mt () [ E )[f(sof(sznr’;ér]. (24)

r,s1,82

The first term is O, since from independence of s, s7:

E )[f(sl)ﬂsz) |7 =r1=Elf(1) |7 C 51 =0,

(r',51,82

since by assumption f is perpendicular to constant functions.

We saw above that for any r’ # r, there is at most one i-face s’ > r’ such that
f(s) # 0. For any r’ # r, the value f(s1) f(s») is non-zero only when s; = s, = s'.
For every s € X(i), we define the event Ej, to hold when s, = s1. Then

Q4) = (1 =T, (M) E[f(s1)” Pr[Ey, |/ #r]].
S r',sy

Note that if s; doesn’t contain r then £ (s1)? = 0, hence we continue taking expectation
over all s1 € X (i), even though some of them are unnecessary terms.

If we prove that for every s € X (i) so that r < s we have Pr, ,[E, | ' # 1] <
B!y, then

(1= iy () ELfs0)? PriEyI < By BIf0*1 =B~y (f, /) ="'
582
Thus we are left with proving the following statement: for all 51 € X (i),

PrE, | ¥ #r]1<p7'y.
r',so

We first bound the unconditioned probability Pr[Ey, | = Pr,s g,exi)ls2 = s1 | ' C
s1, s2]. Fix some s; € X (i), and let 1, : X(i) — R be its indicator. Notice that
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Ui—1D;i1; (s1) = Prpv s, [s2 = s1], and so
(Ui—1 D1, 1) = ;(s1)U;—1 D; 15, (s1) = I1; (s1) Pr[Eg, ].

We again use the non-laziness property of Ml.+ to assert that (Ml.+ 1s,, Ls,) = 0. Since
X is a y-eposet,

(Ui—1 D1y, 1y,) = ((Ui—1 Di — M) 1y, 1y,) < |Uim1 D — M| 1L, I = y T (51).

Hence Pr[E; ] < y.

Consider now any s; € X(i) containing r and some r’ # r. The probability of
sampling r’ # r given that we sample an element < s is at least 8 (by definition of
which is the probability of not sampling the element with largest probability), and so

PrlEy |r'#r1< g™ PrEy]1< By
r s re,s

6.4.3 Constructing Decomposable Posets

Let X be a measured poset given by the distribution = Iy, s IT_1). Given a
distribution D on X (d), we can construct a different distribution W by first sampling
x ~ D, and then sampling IT conditioned on I1; = x.

Lemma 6.23 If X is decomposable with respect to T, then it is decomposable with
respect to V.

Proof Only the second condition depends on the measure. Let us spell it out in the
case of the original distribution .

We are given s1, 52 € X(i) withmeet r € X(i — 1) and join r € X (i + 1) (which
is the only way for the upper walk to get from s; to s;), and know that the following
two expressions are equal:

PrIl; = 53 [ ITj41 = 1]
Pr(IT; # s1 | Higq =11

Pr[sy ~ s1] = Pr[I1; = s, ;41 = 1]
Mt

Pr[Il;,_; =] Pr+[52 ~ s1] = Pr[I1;_; = r]Pr[I];
My

=s, g1 =t |11 =7]
Pr[Il; = s | 1j41 =, 1,1 =7]
Pr[Il; # s |y =¢,1;_ =7r]
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Let us write these two expressions slightly differently:

55[52 ~ s1] = Pr[Ilj41 = ¢]Pr[I1; = s | [T = 1]
Pr[Il; =52 | i1 =t]
Pr(IT; # s1 | Mg =11
Pr[Il;—y = r] Pr+[S2 ~ s1] = Pr[Il; 41 = ¢t]Pr[Il; = 51, [T,
My

Prll; = s [ [Tj41 =1, I1;_1 =7]
Pr[Il; #s1 | Hip1 =¢, Mimy = 7]

=r | =1]

In order for X to be decomposable with respect to U, we need these two expressions
to coincide when replacing IT with W throughout. Yet due to the definition of W,
this only replaces the Pr[I1;;; = ¢] factors with Pr[W;; = ] factors. Hence X is
decomposable with respect to U as well. O

6.5 Comparison to the Kaufman-Oppenheim Decomposition

Kaufman and Oppenheim [39] proposed a decomposition of C¥ to orthogonal spaces
in the case of high-dimensional expanders. Their definition extends to the general
eposet setting:

B =U*C'n (ea,-<iBf')L = ukicin (U"—“’—Ucf—‘)L.

(When i = —1, the definition is simply B~! = U*+1Cc—1)
As U = D*, we have an equivalent definition of these spaces by harmonic condi-
tions similar to ours:

B! = U*IC! Nker DFIT1,

By construction, these spaces are orthogonal, and it is easy to see that indeed
their direct sum is C¥. Kaufman and Oppenheim [39, Theorem 1.5] showed that the
subspaces B' are approximate eigenspaces of M.

The following proposition shows that these two spaces are close.

Proposition 6.24 If f € V' has unit norm then there exists g € B' so that | f — g| =
o). | |
Similarly, ifg € B* has unitnormthenthere exists f € V' sothat|| f — gl = O(y).
The O notation may depend on k, r, § only.

Proof We start with the first statement. Let [ € Vi have norm 1. We decompose f as
f= le‘-:_l gj» where g; € B/, and take g = g;. Then

If—gl>=(f—g f—8 =(ff—2g),
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since g is perpendicularto f — g. As f — g = Zﬁ:q,#i gj, it is enough to show
that (f, gj) = O(y) forall j #1.

If j > i then by the definition of B/ and the fact that f € U*~IC’, (f, g;) = 0.
Ifj<itheng; e U/C/ =V~ & @ V/. By Corollary 6.11 and Corollary 6.12,
(f.8)) = 0N+ 0N IfI|g] = O, since [[g;] < lf1I=1.

The proof of the second statement is similar. Let g € B’ have norm 1. We decompose
gasg = ZI;=71 fj, where fj € V/, and take f = f;. Then

lg—fIP=(g—f.g—f)=(g.8— )+ {f.g— f)

Since g — f = Zk 1,j#i Jj» Corollary 6.11 and Corollary 6.12 show that
(f.e—f) = 0(7/)(1 + 0()/)) IflIllg — fII = O(y). Thus we need to show
that (g, g — f) = O(y), and for this it is enough to show that for every j # i,

(8. fj) = O(y). . ,

If j < ithen (g, fj) = 0 by the definition of B’ and the fact that f; = Uk=in
for some 1 € C/. Otherwise j > i, in which case we again use Corollary 6.11 and
Corollary 6.12 to get the required bound. O

Remark 6.25 Let ¢ € B', and let f € C' be a close vector promised in Proposi-
tion 6.24. Applying Theorem 6.6, we get that

|pug —rks| < 1DUG = P+ | DUF =k f | + 1k 1Ig - 11l = 0.
In other words, B is an approximate eigenspace of DU ..

6.6 Decomposition in the Grassmann Poset

Applying Theorem 6.2, we obtain the following properties on the decomposition of
Gr, (n, d). These properties are well-known in the literature, but we rederive them to
show the versatility of Theorem 6.6:

Claim 6.26 Fix somed,n € N, let X = Gry(n,d), and let £ < d. Let f: X(£) — R
be an arbitrary function. Then we can decompose f = f_1+---+ fo, where f; € V*:

. Fori # j, (fi, fj) =0.
2 0F12 = fall? + -+ D fell™

3. The f;’s are eigenvectors of DU. The eigenvalues are
[ _a-1 n—t
rf=1 I (1 qj+2_1>+®(l/q ).
j=t—i+1

4. In particular, DU has a constant spectral gap, that is, all its eigenvalues are
bounded by a constant strictly smaller than 1 when n is large enough compared

to l:
[ q 1
ri < q2—1 +0<q"_2> < 1.
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Proof The first two items are by invoking Theorem 6.6 and using (15), which shows
the Grassmann poset is a sequentially differential poset.

The third item is by invoking Theorem 6.6, and using the fact that Gr, (n, £) is also
q,ﬂ -, 8 =1—ri,andy = O(1/¢"~"). The fourth
item is by direct calculation: one may show using induction that the approximate
formula for rf is

an expanding poset, with r; =

)2 12
qg—1
1_1_[<1 qj+2_1><2qj+2_1

j=i

By taking ¢ to infinity and rearranging, we obtain

¢ ; i1 S
q 1 1 z+ 1
—_<q—1>2—_(q—> —.
Jj+2 J(al l+2 Jj
j=i 4 1 Jj= l+2 (q 1) 1 j= i+2q
The infinite sum converges to m, and so
qi+2 x 1 qi+2 1 q
(g )q,+2 —1 j;z g (g )q,+2 1 q’“(q -1 qz+2 1
Hence rf < q;ll +0 (q%z) O

Remark 6.27 The actual values for rf can also be calculated by the formula devised in
Theorem 6.6. The calculations are omitted, as they don’t add any additional insight.

Remark 6.28 This result is also analogous to the decomposition of the complete com-
plex, say the one obtained by Filmus and Mossel [30].

6.7 Is There a Bounded Degree Grassmann Poset?

A high-dimensional expander, as constructed by Lubotzky, Samuels and Vishne [45],
is a simplicial complex that is an eposet and a bounded-degree sub-complex of the
complete complex. Is there an analogous construction of an eposet that is a bounded-
degree subcomplex of the Grassmann poset? We conjecture the existence of such
posets:

Conjecture 1 or any prime power ¢, d € N,and any 0 < y < 1, there exists an infinite
sequence of natural numbers ny < ny < n3 < ... such for all n = n; there exists a
d-dimensional measured poset X with the following properties:

1. X is sparse, thatis [X(0)| = n and X (d) = O (n) (the O-notation hides a constant
that may depend on ¢, d, but not on n).

2. X may be embedded (as a poset) into Gr, (1, d). In addition, for alli < d, I1; is
obtained by the same probabilistic experiment described for the Grassmann poset:
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(a) Choose a subspace of dimensiond + 1, s4 € X(d).
(b) Given a space s; of dimension i 4+ 1, choose s;_1 to be a uniformly random
codimension 1 subspace of s;.

In particular, X is downward closed, that is, if s € X then every subspace s’ C s
also belongs to X.
3. Xisan (¥, 48, y)-eposet for r; = qi++—1 and §; = 1 —r;.

This existence of sub-posets as above is the vector-space analog of the existence of y -
HDX simplicial complexes. Moreover, it would be interesting to construct such a poset
such that Iy, IT; are uniform. Note however that even in the known constructions for
y-HDX simplicial complexes, I1,; is not uniform (but [Ty is uniform).

Moshkovitz and Raz [48] gave a construction that can be viewed as an interesting
step in this direction. They constructed, towards a derandomized low degree test, a

small set of planes by choosing only planes spanned by directions coming from a
smaller field H C F,.

6.8 Eposet Parameters in a Simplicial Complex

Although the definition of (approximately) sequentially differential poset allows a
range of parameters 7 and 8, these parameters turn out to be determined by the lazi-
ness of the upper walks, assuming that the lower walks are sufficiently non-lazy. The
lemma below shows that any family of simplicial complexes which are eposets, have
parameters 7, § approaching r; = ﬁ andd; =1— /lﬁ as y goes to zero.

Lemma 6.29 Ler X" be a sequence on k-dimensional (7(”’), (_3'(’"), y(’"))-eposets,
where lim,,— oo y ™ = 0. Then forall j < k — 1:

lim r§m’ T 55”” = 1. (25)

m—0o0
Furthermore, suppose that the following two conditions hold:

l. Forall j <k — 1, the laziness of U;—1Dj, goes to O as m goes to infinity:

lim Pr [/ =8r]=0.
m—>oQ (t1,6)~UD

2. There exists & such that forall j <k — 1, Dj11Uj = oj1 + (1 —aj)M™, where
M is a non-lazy averaging operator.

Then
: (m) _ . (m) _ ¢ _
mh_r)noorj =«aj and mh—I>no<>8j =1-aj,
In particular, if X are k-dimensional simplicial complexes, then or; = /lﬁ and
we get '
1 1
lim "™ = —  and lim 6™ =1—- ——,
m—oo J +2 m—oo J Jj+2
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under the mild assumption that the laziness probability of U D goes to zero. In other
words, the interesting eposets are y-HDXs.

Proof To prove both assertions, we use the definition of an eposet to get the following
inequality:
(m) (m)
DU —r;"1—-6""UD)f,
(( j i Vo f) <y, 26)
(fs f)

for any function f € C*. We use this inequality on specific functions f we choose:
the constant function, and indicator functions.
To show that

lim % + 3;”‘) =1,

m—oo J

we apply DU — rj(.m)l - 8;m)U D to the constant vector 1, which is fixed by all of
DU,I1,UD:

(DU — r](.’")l - 8;’”)UD)]1, 1)
(L, 1)

<y™ == =5 <y,

thus lim, - oo r](.m) + 8;’") =1.

To show that lim,,_, oo rj(.””

such that probability of laziness given that 1; = o™ goes to zero:

= o, we fix j and take a sequence of o™ e X(j)
lim Pr [h=0"™| =0"]=0.
m—>o0 (ty,tp)~UD

Denote by 1, the indicator of o™ Then

UD1 m, 1 m
( om:Lom) o [t = 0™ = o™,
(Lyom s Lyom) (t1,1)~UD

Moreover,

((DU — r](.m)l)lla(m), Tymm)
(Lgom, Lgom)

Plugging f = 1,0 into (26), we get

|aj _pm _sm o pp [r =™y = a<m)]| <y,

J /7 (t1.)~UD
Since the 8;'") are bounded, this shows that lim,;,_ oo r](.m) = «;. The analogous state-
ment for Sﬁ.m) follows from (25). O
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7 Boolean Degree 1 Functions

In this section we characterize all Boolean degree 1 functions in nice complexes.

Definition 7.1 Let X be a simplicial complex. The 1-skeleton of X is the graph whose
vertices are the O-faces of X and whose edges are the 1-faces of X.

Theorem 7.2 Suppose that X is a proper k-dimensional simplicial complex, fork > 2,
whose 1-skeleton is connected. A function f € C* is a Boolean degree 1 function if
and only if there exists an independent set I in the one skeleton of X such that f is
the indicator of intersecting 1 or of not intersecting I.

Proof If f is the indicator of intersecting an independent set / then f = Y _; vy,
and so deg f < 1.If f is the indicator of not intersecting an independent set / then

f= ZUGX(O) yo/(k+1) = >, c; Yu, and so again deg f < 1.
Suppose now that f is a Boolean degree 1 function. If | X (0)| < 2 then the theorem

clearly holds, so assume that |X(0)] > 2. Lemma 3.5 shows that f has a unique
representation of the form

f= Z CoYv-

veX(0)

Since f is Boolean, it satisfies f> = f. Note that

f2 = Z 2Cucv)’{u,v} + Z C%yv-

{u,vieX (1) veX(0)

Moreover, since every input x to f which contains v contains exactly k other points
(elements of X (0)), and since X (1) contains all pairs of points from x, we have

u: {u,v}eX (1)

This shows that

1
0= f2 - f= Z 2Cucvy{u,v} + % Z (C,% —Cy) Z Y{u,v}

{u,v}eX (1) veX(0) u: {u,v}eX(1)
1 2 2
= - Z (2keycy + ¢; — ¢y + ¢y — Cv) Yiu,v)-
{u,v}eX (1)

Lemma 3.5 shows that the coefficients of all yy, ,j must vanish, that is, for all {u, v} €
X (1) we have

2kcycy = ¢y (1 —¢y) + (1 — cyp).
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Consider now a triple of points u, v, w such that {u, v, w} € X(2), and the corre-
sponding system of equations:

2kcycy = cy(1 —cy) + (1 — cy),
2keycy = cy(1 —cy) +cp(1 —cy),
2kcycy = cy(1 — cp) + e (1 — cy).

Subtracting the second equation from the first, we obtain

2key(cy — ) = cp(l — ) — el —cy) = (cy — cp) — (2 — %)

= (cy — cw)(l — ¢y — cy).

This shows that either ¢, = ¢, or 2kc, =1 — ¢, — Cy.

If ¢y, # ¢y, cy then 2kcy, + ¢ + ¢y = 2kcy + ¢y + ¢ = 1, which implies that
cy = ¢y. Thus ¢y, ¢y, ¢y can consist of at most two values. If ¢ := ¢, = ¢, = ¢y, then
2ke? =2c(1—c),and so ¢ € {0, 7). If ¢ := ¢y = ¢y # ¢y then 2kc? = 2¢(1 —¢),
and so ¢ € {0, klﬁ} as before. We also have 2kc,c = c,(1 —c¢,) +c(1 —c¢). Ifc =0
then this shows that ¢, (1 —c¢,) = 0,andsoc, = 1.Ifc = ﬁ then one can similarly

check that ¢, = ﬁ — 1.
Summarizing, one of the following two cases must happen:

1. Two of ¢y, ¢y, ¢y are equal to 0, and the remaining one is either O or 1.
1 .. L. 1 1
2. Twoof ¢y, ¢y, ¢y are equal to o1 and the remaining one is either T T 1.

Let us say that a vertex v € X(0) is of type A if ¢, € {0, 1}, and of type B if
cy € {kl?, klﬁ — 1}. Since the complex is pure and at least two-dimensional, every
vertex must participate in a triangle (two-dimensional face), and so every vertex is
of one of the types. In fact, all vertices must be of the same type. Otherwise, there
would be a vertex v of type A incident to a vertex w of type B (since the link of ¥ is
connected). However, since the complex is pure, {v, w} must participate in a triangle,
contradicting the classification above.

Suppose first that all vertices are type A, and let I = {v : ¢, = 1}. Note that
f indicates that the input face intersects /. Clearly / must be an independent set,
since otherwise f would not be Boolean. When all vertices are type B, the function
I—f=> X(O)(klﬁ — cy)yy is of type A, and so f must indicate not intersecting
an independent set. O

If Xisay-HDX for 0 < y < 1/(k 4+ 1) then the link of @ has positive spectral
gap, and in particular it is connected. Thus Theorem 7.2 applies to high-dimensional
expanders.

When the 1-skeleton of X contains r connected components Cy, ..., C,, the same
argument shows that the Boolean degree 1 functions on X are of the form f =
f1 + -+ fr, where each f; is the indicator of intersecting or not intersecting an
independent set of C;.
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8 FKN Theorem on High-Dimensional Expanders

In this section, we prove an analog of the classical result of Friedgut, Kalai and
Naor [33] for high-dimensional expanders. The FKN theorem states that any Boolean
function F' on the hypercube that is close to a degree 1 function f (not necessarily
Boolean) in the L%-sense must agree with some Boolean degree 1 function (which
must be a dictator) on most points. This result for the Boolean hypercube can be easily
extended to functions on k-slices of the hypercube, provided k = ®(n).

Theorem 8.1 (FKN theorem on the slice [29]) Let n, k € Z=¢ and ¢ € (0, 1) such

that n/4 < k+1 < n/2. Let F: () — {0, 1} be a Boolean function such that

E[(F — f)?] < & for some degree 1 function f (k[i]l) — {0, 1}. Then there exists a

degree 1 function g: (k[jlr]l) — R such that
Pr[F # g] = O(¢).

Furthermore, g € {0, 1, y;, 1 — y;}, that is, g is a Boolean dictator (1-junta).

Remark 8.2 1. The function g promised by the theorem satisfies E[(g — F)?]
Pr[g # F] = O(¢) and hence, by the L%-triangleinequality wehave E[(f—g)?] <
2E[(f — F)?14+2E[(g — F)*] = O(e). This is the way that the FKN theorem is
traditionally stated, but we prefer the above formulation as this is the one we are
able to generalize to the high-dimensional expander setting.

2. The function 1 can also be written as klﬁ Zj v;. The function 1 — y; can also be
written as =7 > ¥j + (e — D

3. The result of Filmus [29] is quite a bit stronger: for every k < n/2, it promises
the existence of a function g: (k[i]l) — R, not necessarily Boolean, such that

Al

E[(f — g)?] = O(e). Moreover, either g or 1 — g is of the form Y ies yi for
|S| < max(1, 4/¢ - n/k). The bound on the size of S ensures that Pr[g € {0, 1}] =
1 — O(e).

Our main theorem is an extension of the above theorem to k-faces of a two-sided
link expander.

Theorem 8.3 (FKN theorem for two-sided link expanders) Let X be a d-dimensional
A-two-sided link expander, where . < 1/d, and let 4k? < d. Let F: X(k) — {0, 1}
be a function such that E[(F — f)?] < ¢ for some degree 1 function f: X (k) — R.
Then there exists a degree 1 function g: X (k) — R such that

Pr[F # g] = O.(¢).

Furthermore, the degree 1 function g can be written as g(y) = Y_; d;y;, where d; €

1 1
{0, 1, p e 1}.

The high-dimensional analog of the FKN theorem is obtained from the FKN theo-
rem for the slice using the agreement theorem of Dinur and Kaufman [15].

Using Theorem 5.5, we formulate the FKN theorem in terms of high-dimensional
expanders:
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Corollary 8.4 (FKN theorem for HDX) Let X be a d-dimensional y -high-dimensional
expander, where y < 1/3d?, and let 4k* < d. Let F: X (k) — {0, 1} be a function
such that E[(F — f)z] < ¢ for some degree 1 function f: X (k) — R. Then there
exists a degree 1 function g: X (k) — R such that

Pr[F # gl = Oy (e).

Furthermore, the degree 1 function g can be written as g(y) = Y, d;iyi, where d; €

1 1
{Os 19 k+1° k+1 1}‘

8.1 Agreement Theorem for High-Dimensional Expanders

Dinur and Kaufman [15] prove an agreement theorem for high-dimensional expanders.
The setup is as follows. For each k-face s we are given a local function f;: s — X that
assigns values from an alphabet X to each point in s. Two local functions fs, fy are
said to agree if fi(v) = fy(v) forall v € s Ns’. Let Dy ok be the distribution on pairs
(s1, s2) obtained by choosing a random ¢ ~ Ily; and then independently choosing
two k-faces s1, sp C 7. The theorem says that if a random pair of faces (s, s”) ~ Dy 2k
satisfies with high probability that f; agrees with fr on the intersection of their
domains, then there must be a global function g: X(0) — X such that almost always
gls = fs. Formally:

Theorem 8.5 [Agreement theorem for high-dimensional expanders [15]] Let X be a
d-dimensional A-two-sided high-dimensional expander, where . < 1/d, let kK? < d,
and let ¥ be some fixed finite alphabet. Let {fs: s — X}sexk) be an ensemble of
local functions on X (k), i.e. fs € X° foreach s € X(k). If

Pr [f:ﬁl |S1ﬂ52 = fS2|S|ﬁS2] >1—¢
(51,52)~Dk 2k

then there is a g: X(0) — X such that
Pr [fs =gls1=1— Ox(e).
s~T1g

While Dinur and Kaufman state the theorem for a binary alphabet, the general
version follows in a black box fashion by applying the theorem for binary alphabets
[log, |X|] many times.

8.2 Proof of Theorem 8.3

Let f,FeC k , where F is a Boolean function and f is a degree 1 function, as in the
hypothesis of Theorem 8.3. Since f is a degree 1 function, Lemma 3.5 guarantees that
there exist ¢; € R such that f(y) =) ;. x(0) @i yi- Note that here we view the inputs
of f as |X(0)|-bit strings with exactly k + 1 ones, the rest being zero.

We begin by defining two ensembles of pairs of local functions {( f|;, Fl)}rex k),
{(flus Flu)}uex k), which are the restrictions of (f, F) to the 2k-face ¢ and 4k-face
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u. Formally, for any r € X (2k) and u € X (4k), consider the restriction of f to ¢ and
u defined as follows:

fle, Fle: (;) - R, f|t()7)=f()7)=zaiyi’ Fl:(y) = F(y),
iet
Flus Flu: (Z) >R, L) =fO) =) ayi. Fl.)=FQ).

icu

Observe that the f|;’s are degree 1 functions, while the F|;’s are Boolean functions
(similarly for f|,’s and F|,’s).
Now, define the following quantities:

= B I(fL) = FL@’lL  8ui=_E [(flus) = Flu)’]:

Clearly, E;[e:], E,[64] = O (¢).
Let o = klﬁ Applying Theorem 8.1 (along with Remark 8.2) to the functions
(fls, F1;) foreach t € X(2k), we have the following claim:

Claim 8.6 Foreveryt € X(2k), there exists a Boolean dictator g; (,’() — {0, 1} such
that

X:I‘[::Ct[(fb — )%= 0(e).

Furthermore, there exists a function d;: t — {0, 1, ag, o — 1} such that g;(y) =

Ziet dt(l)yl
A similar claim holds for each u € X (4k):

Claim 8.7 Foreveryu € X (4k), there exists a Boolean dictator h, : (Z) — {0, 1} such
that

N

:IsECu[(f|” o h”)z] = 0 ().

Furthermore, there exists a function e, : u — {0, 1, ag, ox — 1} such that h,(y) =

Zieu ey (i)yi.

We now prove that functions in the collection of local functions {d,}; typically
agree with each other. This lets us use the agreement theorem, Theorem 8.5, to
sew these different local functions together, yielding a single function d: X(0) —
{0, 1, g, o — 1}. This d determines a global degree 1 function g defined as follows:

8 = Yiex d@)yi-

Claim 8.8 There exists a function d: X(0) — {0, 1, o, ax — 1} such that Pr;[d;, =
d|] =1— 0;(s).
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Proof To sew the various d; together via the agreement theorem, we would like to first
bound the probability

Pr [dt1|llﬂtz ?_édt2|tlﬂt2]~

(t1,22)~Dag 4k

Recall the definition of the distribution Dy 4x: we first pick a set u € X (4k) according
to T4y and then two 2k-faces 71, , of u uniformly and independently. Consider the
three functions d;,, d;, and e,. Clearly, if dy, |;,nr, # di, 11,0, then one of e, |;, # dy,
or e,l;, # di, must hold. Thus,

Pr - ldylun, #dplnon] =2 Prley # di]. 27)

(t1,22)~Day 4k

Thus, it suffices to bound the probability Pr; ,[e,|; # d;], where u ~ Il4; and ¢ is a
random 2k-face of u.
For any fixed t C u, the L% triangle inequality shows that

El(hul; — g% < 2E[(huli — f1)2] + 2E[(fl; — 821 = 2E[(huls — f1)%] + O(er).

Taking expectation over ¢ € X (2k) conditioned on t C u, we see that

E El[(hul: — 8)%1 < 2E[(hy — f1.)*1+ O < E 8t> =0+ 0 ( E 8:) .
1Cu 1 tCu t:iCu

Taking expectation over u ~ Ilax, we now have
E E E[(hl — 8)*1= O(e).
utCu

For any fixed ¢ C u, both h,|; and g, are Boolean dictators. Hence either they agree,
or E[(hy,|; — g,)2] = Q(1). This shows that h,|; disagrees with g; with probability
O(e), and so

Prley, #di] = O(e).
We now return to (27), concluding that

[dtl |t1ﬂt2 % dtz't]ﬁtz)] = 0(8)

(t1,22)~Dag 4k

We have thus satisfied the hypothesis of the agreement theorem (Theorem 8.5).
Invoking the agreement theorem, we deduce that Pr;~m,, [d; = d|;] =1 — O, (e). O

The d’s guaranteed by Lemma 8.8 naturally correspond to a degree 1 function
g: X (k) — R as follows:

g = Y d()y.

ieX(0)
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We now show that this g is mostly Boolean.
Claim 8.9 Prs[g(s) € {0, 1}] =1 — O,(e).

Proof Since g, is Boolean-valued,

Sflrh[g(S) € {0, }] = Prigl: = g1 = Prld|; = d;] = 1 — Os.(e).

We now show that g in fact agrees pointwise with F most of the time.
Claim 8.10 Prg[g # F] = O;.(¢).

Proof Fix any t € X (2k). We compute Pr. s:[F|; # g:] as follows

Pr[Fls £ gl = |Flr — g,Hz[ Since F|; and g; are both Boolean ]

<2-IFl = fl® +2- 11— gl
O(er) + O(er) = O(er).

We can now compute Prg[F # g] as follows:

Pr{F # gl = EPr[F|; # gli] < EPr[Fl, # g1+ Prlgls # g]
= 0(e) + Prld|; # di] = 0,().

This completes the proof of Theorem 8.3.
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