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Abstract: We construct an infinite family of bounded-degree bipartite unique neighbour expander
graphs with arbitrarily unbalanced sides. Although weaker than the lossless expanders constructed
by Capalbo et al., our construction is simpler and may be closer to being implementable in practice,
due to the smaller constants. We construct these graphs by composing bipartite Ramanujan graphs
with a fixed-size gadget in a way that generalises the construction of unique neighbour expanders
by Alon and Capalbo. For the analysis of our construction, we prove a strong upper bound on
average degrees in small induced subgraphs of bipartite Ramanujan graphs. Our bound generalises
Kahale’s average degree bound to bipartite Ramanujan graphs, and may be of independent interest.
Surprisingly, our bound strongly relies on the exact Ramanujan-ness of the graph and is not known
to hold for nearly-Ramanujan graphs.

Keywords: expander graphs; pseudorandomness; unique-neighbor expansion

1. Introduction

An infinite family Gn = (Ln ⊔ Rn, En) of (c, d)-biregular graphs with |Ln|+ |Rn| → ∞
is called a unique neighbour expander family if there exists δ > 0 such that, for every n and
every set of left-side vertices S ⊆ Ln of size |S| ≤ δ|Ln|, there exists a unique neighbour of
S in Gn, namely, a vertex in Rn that is connected to exactly one vertex in S. We only require
that sets of left vertices have unique neighbours, and, arbitrarily, small right-side sets may
have no unique neighbour.

Alon and Capalbo [1] constructed several explicit families of unique neighbour ex-
panders, via an elegant composition of a Ramanujan graph and a gadget. They constructed
three families of general (non-bipartite) graphs in which all small sets have unique neigh-
bours, and one family of slightly unbalanced bipartite graphs, where small sets on the left
have unique neighbours on the right. In their construction, the left side is 22/21 times
bigger than the right side. The more imbalanced the graph, the harder it is for small left-
hand side sets to expand into the right-hand side. Capalbo et al. [2] constructed arbitrarily
unbalanced bipartite graphs that are lossless expanders, a notion strictly stronger than
unique neighbour expansion. Their construction is based on a sequence of somewhat
involved composition steps using randomness conductors.

Our main theorem is an efficient construction of an infinite family of bipartite unique
neighbour expanders for any constant imbalance α, and any sufficiently large left-regularity
degrees of a specific form.

Theorem 1. There is a function q̂ : N× R → N such that, for every integer c0 > 5 and real
number α > 1, if q > q̂(c0, α) is a prime power and αc0(q + 1) is an integer, then there is an
infinite family of (c0(q + 1), αc0(q + 1))-biregular unique neighbour expanders. The family is
constructible in polynomial time in the size of the graph.

The theorem is proven in Section 6.2, and provides a way to compute q̂(c0, α). Here
are some computed values of q̂(c0, α) for several values of c0, α:
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c0 α q̂(c0, α)

10 2 18907
35 2 1492
100 100 136051
100 1.01 1135

It should be noted that q̂(co, α) increases with α, reflecting the fact that construc-
tions with larger α (namely, more imbalanced sides) are harder to come by, and require
larger degrees.

One of the prominent uses of bipartite expanders in general and bipartite unique
neighbour expanders in particular, and the motivation for this work, is the construction
of error-correcting codes. The work of Sipser and Spielman [3] constructs a linear error-
correcting code from a bipartite unique neighbour expander, simply by looking at the
adjacency matrix of the graph as a parity check matrix for the code. It is immediately
obvious that the parameter δ from the unique neighbour property is a lower bound on the
distance of the code.

Recently, there has also been a line of work constructing quantum LDPC codes from
expanders, and a construction using lossless expansion (a strengthening of unique neigh-
bour expansion) was introduced in [4]. Following our work, several new works [5–8] were
published, which give either similar constructions or even the stronger notion of lossless
expansion (thereby simplifying and reproducing the results of [2]). All of these results
(including ours) only discuss the expansion of subsets of L (and not of R) and, therefore,
fall short from being used in the qLDPC construction of [4].

The construction uses an infinite family of bipartite Ramanujan graphs, namely graphs
whose nontrivial spectrum is contained in the spectrum of the (c, d)-biregular tree (see
Section 3 for details). We constructed the unique neighbour expander family by taking
a family of bipartite Ramanujan graphs and combining them with a fixed-size graph (a
“gadget”), with a good unique neighbour property (small sets have unique neighbours),
whose existence is shown via the probabilistic method (Lemma 6). The combination is
done as follows. We first place a copy of the gadget for every right-side vertex of the
Ramanujan graph. The vertex is replaced by the right side of the gadget, and its neighbours
are identified with the left side of the gadget. The gadget is used to route the neighbours of
each left-side vertex in the Ramanujan graph to its neighbours in the product graph.

The expansion in the product graph comes from the unique neighbour expansion of the
gadget, together with low-degree vertices in induced subgraphs of the Ramanujan graph.
The latter is guaranteed to exist thanks to the following (new) bound on the average degree
of induced subgraphs of bipartite Ramanujan graphs, which may be of independent interest.

Theorem 2. Let G = (L ⊔ R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0. Then,
there exists δ > 0, which depends only on ε, c, d, such that, for every S ⊂ L of size |S| ≤ δ|L|, the
set N(S) ⊆ R of the neighbours of S satisfies

c|S|
|N(S)| ≤ 1 + (1 + ε)

√
d − 1
c − 1

.

The theorem shows that every small set on the left side admits neighbours on the
right side, with very few neighbours in the induced subgraph. The proof involves the
recursive analysis of non-backtracking paths. Interestingly, the recursion has a nice solution
only when the graph is Ramanujan. It is unclear whether this method can be extended to
“nearly-Ramanujan” graphs.

We used the theorem in the following way. Given a small enough subset of left-side
vertices, the theorem guarantees that it has an “almost” unique neighbour, in the sense
that its degree in the induced subgraph is low (namely, it is connected to few vertices in
our subset). That implies, via our construction, a small subset of vertices in a copy of the



Entropy 2024, 26, 348 3 of 21

gadget; the latter has a unique neighbour in the gadget, which gives (through Lemma 7) a
unique neighbour in our product graph.

Even though Ramanujan graphs are the best spectral expanders one can hope for, an
efficient construction of Ramanujan graphs (be them bipartite or not) does not immediately
imply that we can construct unique neighbour expanders. In the d-regular case, Kahale
shows [9] (Thm 5.2) that there are nearly-Ramanujan graphs with an expansion of d/2 at
most, which is not enough for unique neighbour expansion. In fact, recently, Kamber and
Kaufman [10] proved that some Ramanujan graphs strongly fail to have unique neighbour
expansion, by giving explicit constructions of arbitrarily small sets that do not admit a
unique neighbour.

As mentioned previously, the graph product we defined requires a fixed-size gadget,
whose proof of existence is not constructive. In principle, such a gadget could be found by
an exhaustive search, since we are working in a constant-sized search space. The gadget’s
size in our construction is at least cubic in q, so an exhaustive search is impractical, even for
small values of q. Unfortunately, we know of no efficient construction methods for a gadget
with the required parameters, and were unable to find a single working example of such a
gadget. Thus, currently, our construction does not give any concrete new error-correcting
codes, but rather only a scheme for the construction of such codes. It is possible that
the graph sampling method presented in [11] can be used to construct fixed-size gadgets
more efficiently.

The rest of this work is organised as follows. In Section 2, we survey some of the
uses of unique neighbour expanders, and mention known constructions of such graphs.
Section 3 provides basic definitions and results. Our main technical tool, which asserts the
low induced degree in bipartite Ramanujan graphs, is stated and proven in Section 4. We
prove the existence of a fixed-size gadget with good unique neighbour expansion properties
in Section 5. In Section 6, we define the way we use the Ramanujan graphs and the gadget
to construct bipartite unique neighbour expanders, and by that, prove Theorem 1.

2. Related Work

As mentioned earlier, unique neighbour expanders are motivated by the construction
of error-correcting codes. In a seminal paper [3], Sipser and Spielman showed two construc-
tions of expander codes. The first construction was obtained by simply using the adjacency
matrix of a unique neighbour expander as a parity check matrix. The second was a Tanner
code that is based on two components: a spectral expander graph and a constant-sized
code C0.

Our construction imitates the ideas underlying the second construction. We took a
spectral (Ramanujan) expander and combined it with a small gadget graph in a way that
resembles a constant-sized code C0. Essentially, we put the local code as a gadget under
the hood of our new expander construction.

If one plugs in our expander graphs into the first construction of codes from [3], these
codes can be viewed as expander codes from the second construction, if we re-interpret
the gadget as an inner code. The new point of view allows us to rely on slightly weaker
features of the code, replacing odd neighbour expansion with unique neighbour expansion.

We give full details of this graph product in Section 6.1.
Unique neighbour expansion is also important for error-correcting codes with ad-

ditional features. In [12,13], it is shown that codes constructed from unique neighbour
expanders are weakly smooth and can be used to construct robustly testable codes. This
property, in turn, is important for the composition of locally testable codes, and, more
recently, for quantum LDPC codes (see [14,15]). As mentioned earlier, in the work of Hsieh
and Lin [4], lossless expanders (which are a strengthening of unique neighbour expanders)
are used to construct quantum LDPC codes with good rate and distance.

The uses of unique neighbour expanders are not limited to error-correcting codes:
for example, such graphs may be used in the context of non-blocking networks, where
it is required to connect several input–output terminals via paths in a non-intersecting
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fashion. Arora et al. [16] used graphs with expansion beyond the d/2 barrier to establish
the existence of unique neighbours in the graph, which are useful in finding input–output
paths in the online settings. Roughly speaking, when routing a set of input–output pairs,
the algorithm can use all unique neighbours freely since they are guaranteed not to interfere
with any other paths. Pippenger [17] used explicit constructions of spectral expanders in
order to solve a similar problem, in the case where the route planning is computed locally.
There, the spectral expansion of a graph was proven to imply a combinatorial expansion,
in a similar way to our Theorem 2.

Another use for unique neighbour expanders is for load-balancing problems, such
as the token distribution problem described in [18], and the similar pebble distribution
problem, briefly discussed in [1]. In the latter, pebbles are placed arbitrarily on vertices of a
graph, and need to be distributed via the edges of the graph, such that no vertex has more
than one pebble. Given that the total number of pebbles is small and that the graph has
the unique neighbour property, we have an efficient parallel algorithm for redistributing
the pebbles.

Alon and Capalbo [1] constructed several families of unique neighbour expanders;
one of them is a family of bipartite graphs whose left side is 22/21 times bigger than the
right side. Similar to the construction presented in this work, each graph in the constructed
family is a combination of a Ramanujan graph and a fixed graph. These graphs are not
(bi)regular, but their degrees are bounded by a constant. Becker [19] used a different family
of 8-regular Ramanujan graphs in order to construct a family of (non-bipartite) unique
neighbour expanders, with the additional property that each graph in the family is a
Cayley graph.

A slightly different approach to constructing bipartite graphs uses randomness con-
ductors. At a high level, our construction is not much different, since it also uses a large
spectral expander combined with a constant-sized gadget. However, conceptually, the
difference is that the gadgets required in [2] are more involved. Randomness conductors are
functions that receive a bitstring with some entropy (according to some measure of entropy)
and a uniformly random bitstring, and output a bitstring with certain guarantees on its
entropy. Some conductors can be constructed explicitly via a spectral method, and Capalbo
et al. [2] combined them in a zig-zag-like fashion in order to construct an infinite family of
bipartite lossless expanders, namely bipartite graphs with fixed left-regularity c, where small
enough sets contained in the left side have at least c(1 − ε) neighbours on the right side.
These graphs are trivially unique neighbour expanders, since a simple counting argument
shows that if a set expands by a factor of more than c/2, then it has unique neighbours.

3. Preliminaries
3.1. Expander Graphs

In this work, we deal with undirected graphs that may contain multiple edges between
two vertices, but do not contain self-loops. For a graph G and a subset of its vertices S, we
denote by NG(S) the neighbourhood of S, namely, all vertices adjacent to some vertex in S.
When the graph in the discussion is obvious, we may omit it and write N(S). We say that v
is a unique neighbour of S if there is a unique u ∈ S that is adjacent to v.

Let (Gn) be a series of graphs with the number of vertices growing to infinity. There
are several well-studied notions of expansion in graph families; we note some of them
as follows:

1. Vertex expansion. (Gn) is a (δ, α)-vertex expander if, for every n and any subset S ⊆ VGn ,
if |S| ≤ δ|VGN |, we have that |NGN (S)| ≥ α|S|.

2. Edge expansion. (Gn) is a (δ, α)-edge expander if, for every n and any subset S ⊆ VGn ,
if |S| ≤ δ|VGN |, we have that an α-fraction, at least, of the edges with one endpoint in
S have their other endpoint outside of S.

3. Spectral expansion. We assume that (Gn) are all d-regular, and let An be the adjacency
operator associated with Gn, so An is indexed by vertices of Gn and (An)uv counts
how many edges there are between u and v in Gn. Let λ1 ≥ . . . ≥ λVn be its spectrum.
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It can be seen that λ1 = d. Then, (Gn) is a λ-spectral expander if for all n and i ̸= 1
we have |λi| ≤ λ.

4. Unique neighbour expansion. (Gn) is a δ-unique neighbour expander if, for every n, any
subset S ⊆ VGn , of size δ|VGN | at most, has a unique neighbour.

These definitions apply to bipartite graphs Gn = (Ln ⊔ Rn, En) as well, with the
exception that we usually consider sets contained in the left side only, and require that
Ln/Rn is a constant, normally greater than 1. In this case, we note that edge expansion is
meaningless (since all edges leaving the left side enter the right side), and, if a bipartite
graph is (c, d)-biregular, namely, if all left-side vertices have degree c and all right-side
vertices have degree d, then the largest eigenvalue of the associated adjacency operator
is
√

cd.
It can be seen that for d-regular graphs, the best spectral expansion we can hope for is

α = 2
√

d − 1. These graphs are known as Ramanujan graphs.

3.2. Bipartite Ramanujan Graphs

Ramanujan graphs have the best spectral gap [20], and their nontrivial eigenvalues are
contained in the spectrum of the infinite d-regular tree Td. Similarly, in the bipartite case,
biregular Ramanujan graphs are defined via their relation to the infinite biregular trees: the
infinite (c, d)-biregular tree Tc,d, for d > c, has the spectrum

λ ∈ spec(Tc,d) ⇔ |λ| ∈ {0} ∪
[√

d − 1 −
√

c − 1,
√

d − 1 +
√

c − 1
]

(see, e.g., [21,22].) We therefore say that a finite (c, d)-biregular graph is bipartite Ramanujan
if its nontrivial eigenvalues lie in this set. That means that every eigenvalue λ of a bipartite
Ramanujan graph belongs to one of the following classes:

1. Trivial: λ = ±
√

cd, with eigenvectors fixed on either sides, or λ = 0;
2. λ ∈ [

√
d − 1 −

√
c − 1,

√
d − 1 +

√
c − 1] are the nontrivial positive eigenvalues;

3. λ ∈ [−
√

c − 1 −
√

d − 1,
√

c − 1 −
√

d − 1] are the nontrivial negative eigenvalues. It
should be noted that, since the graph is bipartite, λ is an eigenvalue if and only if −λ
is an eigenvalue.

By an extension of the Alon–Boppana bound, given in [23], this is the best spectral gap
we can hope for, at least as far as upper bounds for |λ| are concerned. We note that, unlike
the d-regular case, we require a lower bound to |λ| too, which is essential for our proof.

While there is a vast literature on the construction of d-regular Ramanujan graphs
(most prominently [24,25]), less is known about bipartite Ramanujan graphs. In 2014,
Marcus et al. [26] proved the existence of biregular graphs with one-sided spectral gaps
that resemble the Ramanujan bounds; these graphs satisfy the one-sided inequality only,
namely |λ| ≤

√
d − 1 +

√
c − 1 for every nontrivial eigenvalue λ. Gribinski et al. [27]

showed a polynomial-time construction of such graphs, for every degree (d, kd) for any
integers d, k. These graphs are not sufficient for our analysis, since we make explicit use of
the lower bound |λ| ≥

√
d − 1 −

√
c − 1 too.

In 2021, Brito et al. [28] proved that a random biregular graph is nearly Ramanujan
with high probability. Interestingly, and unlike other works in this field, our proof strongly
relies on the graph to be exactly Ramanujan, so we could not use those constructions either.

We used an explicit construction of bipartite Ramanujan graphs (with both bounds on
nontrivial eigenvalues) given by Ballantine et al.:

Theorem 3 ([29]). For every prime power q, there exists an explicit construction of a (q+ 1, q3 + 1)-
biregular Ramanujan graph.
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4. Vertex Expansion in Biregular Ramanujan Graphs

Our main technical tool is the following theorem showing that bipartite Ramanujan
graphs exhibit excellent left-to-right expansion. As we will see shortly, this is an improve-
ment of the expander mixing lemma. We restate the theorem for convenience.

Theorem 4. Let G = (L ⊔ R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0. Then,
there exists δ > 0, which depends only on ε, c, d, such that, for every S ⊂ L of size |S| ≤ δ|L|, the
set N(S) ⊆ R of the neighbours of S satisfies

c|S|
|N(S)| ≤ 1 + (1 + ε)

√
d − 1
c − 1

.

We note that the quantity on the left-hand side of the inequality can be interpreted
as follows. Let us observe the bipartite graph induced by taking the vertices S on the
left and N(S) on the right. Since every left vertex has c outgoing edges, the total number
of edges in the induced subgraph is c|S|. This means that the expression on the left-
hand side of the inequality is exactly the average degree of the right side of the induced
subgraph.Interestingly, the bound in this theorem is strictly stronger than what we would
obtain from just applying the expander mixing lemma, which amounts to

c|S|
|N(S)| ≤ (1 + ε) ·

(
1 +

d − 1
c − 1

+ 2

√
d − 1
c − 1

)
.

See Claim 1 for details. The fact that we improve upon the expander mixing lemma is
perhaps not surprising, since our analysis is based on enumerating non-backtracking paths,
and not just on the magnitude of the second-largest eigenvalue. We also use lower bounds
on the magnitude of all nontrivial eigenvalues, whereas the expander mixing lemma uses
just upper bounds.

4.1. Comparison to Known Bounds

As noted above, Theorem 2 is an improvement of the bound that the expander mixing
lemma gives in similar settings. For reference, we state and prove the expander mixing
lemma for bipartite Ramanujan graphs. We recall that if G is a (c, d)-biregular Ramanujan
graph, then its nontrivial eigenvalues λ satisfy

√
d − 1 −

√
c − 1 ≤ |λ| ≤

√
d − 1 +

√
c − 1.

The expander mixing lemma only uses the upper bound.

Claim 1 (Expander Mixing Lemma for Bipartite Ramanujan Graphs). Let G = (L ⊔ R, E) be
a (c, d)-biregular Ramanujan graph, and let ε > 0. Then, there exists δ > 0 such that, for every
S ⊆ L of size |S| ≤ δ|L|, the neighbourhood of S satisfies

c|S|
|N(S)| ≤ (1 + ε)

(
1 +

d − 1
c − 1

+ 2
√

d − 1√
c − 1

)
.

Proof. The expander mixing lemma for biregular graphs says that, for every S ⊆ L, T ⊆ R,
we have ∣∣∣∣ |e(S, T)|

|E| − |S|
|L| ·

|T|
|R|

∣∣∣∣ ≤ λ√
cd

√
|S|
|L| ·

|T|
|R|

where λ is the second-largest eigenvalue of the adjacency operator associated with G, as
defined in item 3 of Section 3.1. So, the largest eigenvalue is

√
cd (we look at the spectrun

of a matrix indexed by vertices of G, where Guv = 1 if and only if u, v are neighbours in G.
We obtain the largest eigenvalue

√
cd with an eigenvector that is

√
c on the left side of G,

and
√

d on the right side of G.).
Picking T = N(S) means all edges coming out from S are in the cut, namely, |e(S, T)| =

c|S|. Plugging that in gives
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∣∣∣∣ c|S|c|L| −
|S|
|L| ·

|N(S)|
|R|

∣∣∣∣ ≤ λ√
cd

√
|S|
|L| ·

|N(S)|
|R| .

Multiplying both sides by |L|
|S| gives∣∣∣∣1 − |N(S)|

|R|

∣∣∣∣ ≤ λ√
cd

√
|S|
|L| ·

|N(S)|
|R| · |L||S| =

λ√
cd

√
|N(S)|
|R| · |L||S| =

λ√
cd

√
|N(S)|
|S| ·

√
d
c
=

λ

c

√
|N(S)|
|S| (1)

where we also used the fact that |E| = c|L| = d|R|.
Let us assume that |S| = α|L|. Then, we can upper bound |N(S)| by

|N(S)| ≤ c|S| = αc|L| = αd|R|

and so, we have

1 − |N(S)|
|R| ≥ 1 − dα|R|

|R| = 1 − dα.

We square (1) and plug in the last inequality to obtain

(1 − dα)2 ≤ λ2

c
· |N(S)|

c|S| .

We recall that G is bipartite Ramanujan, so |λ| ≤
√

d − 1+
√

c − 1. We use that and rearrange
as follows:

c|S|
|N(S)| ≤

λ2

c
(1 − dα)−2

≤ d − 1 + c − 1 + 2
√

d − 1
√

c − 1
c

(1 − dα)−2

≤ d − 1 + c − 1 + 2
√

d − 1
√

c − 1
c − 1

(1 − dα)−2

=

(
1 +

d − 1
c − 1

+ 2
√

d − 1√
c − 1

)
(1 − dα)−2.

The claim is proven by noting that there is some δ > 0, such that (1 − dα)−2 ≤ 1 + ε
for every α < δ, namely, whenever |S| ≤ δ|L|.

Kahale proved ([9], Thm 4.2) that in d-regular Ramanujan graphs (not necessarily bipar-
tite), small induced subgraphs have an average degree of (1+ ε)(1+

√
d − 1) at most. Inter-

estingly, this result can be deduced almost immediately from Theorem 2. This is due to the
following lemma, proven in Appendix A, which asserts that the edge–vertex incidence graph
(see [3]) of a d-regular Ramanujan graph is a (2, d)-biregular Ramanujan graph:

Lemma 1. Let G be a d-regular Ramanujan graph, and G′ its edge–vertex incidence graph. Then,
G′ is a (2, d)-biregular Ramanujan graph.

We state and prove Kahale’s bound, but we did not use it in our construction.

Corollary 1. Let G = (VG, EG) be a d-regular Ramanujan graph, and let ε > 0. Then, there exists
δ > 0, such that, for every induced subgraph S = (VS, ES) with δ|VG| vertices at most, the average
degree of S is, at most,

dS :=
2|ES|
|VS|

≤ 1 + (1 + ε)
√

d − 1.
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Proof. Let G = (VG, EG) be a d-regular Ramanujan graph and ε > 0. We define
G′ = (LG′ ⊔ RG′ , EG′) as the edge–vertex incidence graph, namely, LG′ = EG, RG′ = VG,
and, for every edge e = {u, v} in G, we have the two edges {e, u} and {e, v} in G′. Since
the degree of every vertex in G is d, and, since every edge has two endpoints, we have that
G′ is a (2, d)-biregular graph. Lemma 1 asserts that G′ is Ramanujan in the bipartite sense.
By Theorem 2, there exists δ > 0 such that, if T ⊆ LG′ is of size δ|LG′ | at most, then

2|T|
|NG′(T)| ≤ 1 + (1 + ε)

√
d − 1.

A subgraph S = (VS, ES) of G satisfies that ES is a subset of left-side vertices in G′,
VS is a subset of right-side vertices in G′, and VS = NG′(ES) (because if an edge is in
the subgraph, then both of its endpoints are in the subgraph, and we assume that the
subgraph does not contain an isolated vertex). Therefore, if ES is sufficiently small, namely,
if |ES| ≤ δ|LG′ | = δ|EG|, then, by Theorem 2, the average degree of NG′(ES) = VS is
bounded by 1 + (1 + ε)

√
d − 1.

We add that if we wish to find a bound for the number of vertices, we note that
|ES| ≤ d

2 |VS|. So, every induced subgraph with no more than 2
d δ|EG| = δ|VG| vertices will

satisfy the required average degree bound.

4.2. Proof of Theorem 2

Theorem 2 is proven by enumerating non-backtracking paths. A non-backtracking
path of length ℓ is a sequence of edges ((s(ei), t(ei)))

ℓ
i=1, such that, for every i, t(ei) = s(ei+1)

and s(ei) ̸= t(ei+1).
For a bipartite graph G and a subset S of left-side vertices, we define Mℓ(S) to be the

number of all non-backtracking paths whose left-side vertices are all in S, and Mℓ(S, G)
to be the number of non-backtracking paths whose first and last left-side vertices are in
S. Clearly, Mℓ(S) ≤ Mℓ(S, G), as paths of the latter type may leave S ⊔ N(S) (before
re-entering S at the last step). We use a lower bound on Mℓ(S) due to [30]:

Lemma 2. For every undirected bipartite graph G = (LG ⊔ RG, EG) and integer ℓ, it holds that

Mℓ(LG) ≥ |EG|
(√

(d̄L − 1)(d̄R − 1)
)ℓ−1

where d̄L, d̄R are the average degrees of the left and right sides of G, respectively.

We state and prove an upper bound on Mℓ(S, G):

Lemma 3. Let G be a (c, d)-biregular Ramanujan graph with n vertices on the left side, and S a
subset of the left side. Then, for every integer ℓ

M2ℓ(S, G) ≤ |S|
(
(2 +

√
d − 1)ℓ+ 2

)
(c − 1)ℓ/2(d − 1)ℓ/2

provided that S is small enough:

|S|(c − 1)ℓ/2(d − 1)ℓ/2 ≤ n. (2)

Before proving the upper bound, we will show how these bounds can be combined to
obtain Theorem 2.

Proof of Theorem 2. Let ℓ be an integer to be determined later and S ⊆ L a sufficiently
small subset (where sufficiently small means (2)). We denote by N(S) ⊆ R the neighbours
of S. The subgraph induced on S ∪ N(S) has c|S| edges, with all left degrees c and average
right degree d̄R = c|S|

|N(S)| .
Chaining the inequalities in Lemmas 2 and 3, we have
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c|S|
(
(c − 1)(d̄R − 1)

) 2ℓ−1
2 ≤ M2ℓ(S) ≤ M2ℓ(S, VG) ≤ |S| ·

(
(2 +

√
d − 1)ℓ+ 2

)
· (c − 1)ℓ/2(d − 1)ℓ/2.

Simplifying, we obtain

c(c − 1)ℓ−
1
2 (d̄R − 1)ℓ−

1
2 ≤

(
(2 +

√
d − 1)ℓ+ 2

)
· (c − 1)ℓ/2 · (d − 1)ℓ/2

(d̄R − 1)ℓ−
1
2 ≤

(
(2 +

√
d − 1)ℓ+ 2

)√
c − 1

c

(√
d − 1
c − 1

)ℓ

d̄R − 1 ≤


(
(2 +

√
d − 1)ℓ+ 2

)√
c − 1

√
d̄ − 1

c︸ ︷︷ ︸
⋆


1/ℓ

·
√

d − 1
c − 1

Since d̄ ≤ d, we have that ⋆ = O(ℓ), so ⋆1/ℓ = 1+ o(1); hence, for a fixed ε > 0, there
exists a constant ℓ (that depends only on ε, c, d), such that ⋆1/ℓ ≤ 1 + ε; this ℓ determines,
via inequality (2), a fixed δ, such that, whenever |S| ≤ δn, we have

d̄R ≤ 1 + (1 + ε)

√
d − 1
c − 1

.

We proceed to prove Lemma 3.
For a bipartite graph G = (LG ⊔ RG, EG) and an integer ℓ, we define ALL

ℓ , ALR
ℓ , ARL

ℓ ,
and ARR

ℓ as operators corresponding to non-backtracking paths of length ℓ, that is, ALL
ℓ is

an LG × LG matrix whose u, v entry, when u, vs. ∈ LG are left-side vertices, is the number of
non-backtracking paths of length ℓ from u to v. The other three operators are defined similarly.

Let M be the operator corresponding to a single step from the right side G to the left
side of G, namely, M has |RG| rows and |LG| columns, with Muv counting the number of
edges between u ∈ RG and v ∈ LG in G. Then, the following recursive formulae hold for
every integer ℓ > 1:

M⊤ALL
ℓ = ARL

ℓ+1 + (d − 1)ARL
ℓ−1

M⊤ALR
ℓ = ARR

ℓ+1 + (d − 1)ARR
ℓ−1

MARL
ℓ = ALL

ℓ+1 + (c − 1)ALL
ℓ−1

MARR
ℓ = ALR

ℓ+1 + (c − 1)ALR
ℓ−1

The first formula is explained as follows. Every non-backtracking path from R to L
of length ℓ+ 1 is composed of a non-backtracking path from L to L of length ℓ plus an
extra step (that is the M⊤ALL

ℓ factor.) The opposite is true, except for paths counted in
M⊤ALL

ℓ that do backtrack, namely those made of a non-backtracking path of length ℓ− 1,
and walking back and forth along the same edge. There are d − 1 ways to choose that edge
(since it cannot be the one that was last in the path of length ℓ− 1, otherwise, it would not
be counted in M⊤ALL

ℓ ), so we need to subtract (d − 1)ARL
ℓ−1. The rest of the equations are

explained in an analogue way.
Due to symmetry, we have

(ALL
ℓ )⊤ = ALL

ℓ , (ARR
ℓ )⊤ = ARR

ℓ , (ALR
ℓ )⊤ = ARL

ℓ

Furthermore, since the graph is bipartite we have

ALR
2ℓ = 0 , ARL

2ℓ = 0

ALL
2ℓ+1 = 0 , ARR

2ℓ+1 = 0
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for every integer ℓ. These equations yield a recursive formula for ALL
ℓ , with the following

initial conditions:

ALL
2 = MM⊤ − cI

ALL
4 = MM⊤ALL

2 − (c − 1 + d − 1)ALL
2 − c(d − 1)I

MM⊤ALL
ℓ = ALL

ℓ+2 + ((c − 1) + (d − 1))ALL
ℓ + (c − 1)(d − 1)ALL

ℓ−2 , ∀ℓ ≥ 4

(3)

The following lemma, proven in Appendix A, suggests a way to find a non-recursive
formula for ALL

2ℓ , given such linear recursive relations with fixed coefficients.

Lemma 4. Let (xn) be a series defined via a second-order linear recurrence with fixed coefficients
A, B ∈ C:

xn = Axn−1 + Bxn−2

We assume λ1 ̸= λ2 are (real or complex) roots of the characteristic
polynomial λ2 − Aλ − B. Then, there are α, β ∈ C, which depend on the initial conditions
x0, x1, such that

xn = αλn
1 + βλn

2

for every n ≥ 0.
If the characteristic polynomial has a single root λ of multiplicity 2, then there are α, β ∈ C,

such that
xn = αλn + βnλn

for every n ≥ 0.

We use the lemma to bound the eigenvalues of ALL
2ℓ given bounds on the spectrum of

the biregular graph.

Lemma 5. Let G be a (c, d)-biregular graph. Then, there is a sequence of polynomials with integer
coefficients (pℓ(x)) such that, for every eigenvalue v of G with eigenvalue λ, pℓ(λ2) is an eigenvalue
of ALL

2ℓ , and, moreover, for every λ ∈ R, if

|λ| ∈ {0} ∪ [
√

d − 1 −
√

c − 1,
√

d − 1 +
√

c − 1] (4)

then
|pℓ(λ2)| ≤ (2 +

√
d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2. (5)

Proof. The recursive formulae proven above (3) suggest that there is a series of polynomials
pn(x) with integer coefficients such that ALL

2n = pn(MM⊤). It should be noted that the
graph’s adjacency matrix is

AG =

[
0 M

M⊤ 0

]
Furthermore, if (λ, v) is an eigenpair of G, then (λ2, v) is an eigenpair of

A2
G =

[
MM⊤ 0

0 M⊤M

]
.

This shows that pℓ(λ2) is an eigenvalue of ALL
2ℓ whenever λ is an eigenvalue of G. The

converse is also true.
The formulae (3) can be transformed so as to convey that pn(x) satisfies the following

equations:

p1(x) = x − c , p2(x) = x2 + (2 − 2c − d)x + c(c − 1)

xpn(x) = pn+1(x) + (c − 1 + d − 1)pn(x) + (c − 1)(d − 1)pn−1(x)
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for all n > 1. Setting n = 1 gives an equation involving p0(x), p1(x), and p2(x). We can
solve this equation for p0(x) and obtain a simpler description of the initial conditions:

p0(x) =
c

c − 1
, p1(x) = x − c (6)

xpn(x) = pn+1(x) + (c − 1 + d − 1)pn(x) + (c − 1)(d − 1)pn−1(x) (7)

for all n > 0.
We fix some t that satisfies (4), namely,

|t| ∈ {0} ∪ [
√

d − 1 −
√

c − 1,
√

d − 1 +
√

c − 1].

We first deal with the case where |t| ∈ (
√

d − 1 −
√

c − 1,
√

d − 1 +
√

c − 1), and, later, we
will consider the edge cases where t is one of the endpoints of the segment or 0. Let us write
x = t2. We have that, for this fixed x, the series (pn(x))n satisfies a second-order linear
recurrence with fixed coefficients. Using Lemma 4, we conclude that there are functions
α(x), λ1(x), β(x), and λ2(x) that depend only on x, c, and d, such that

pn(x) = α(x)(λ1(x))n + β(x)(λ2(x))n (8)

for every n.
In order to find λ1, λ2, we solve for λ the characteristic polynomial, namely, the

following quadratic equation derived from (7):

xλ = λ2 + (c − 1 + d − 1)λ + (c − 1)(d − 1)

to obtain

λ1,2(x) =
x − (c − 1)− (d − 1)±

√
∆(x)

2
where

∆(x) = x2 − 2x((c − 1) + (d − 1)) + (c − d)2. (9)

Using the initial values for p0(x), p1(x) from (6), and plugging back into (8), we obtain
the equations

c
c − 1

= α(x)(λ1(x))0 + β(x)(λ2(x))0 = α(x) + β(x)

x − c = α(x)(λ1(x))1 + β(x)(λ2(x))1 = α(x)λ1(x) + β(x)λ2(x)

whose solution is

α(x) =
(c − 1)x − (c − 1)2 − (c − 1) + (c − 1)(d − 1) + (c − 1)

√
∆(x)− x + d − 1 +

√
∆(x)

2(c − 1)
√

∆(x)

β(x) =
c

c − 1
− α(x).

We check when ∆(x) = 0 by solving (9) for x:

x1,2 =
2((c − 1) + (d − 1))±

√
4(c − 1 + d − 1)2 − 4(c − d)2

2

= (c − 1 + d − 1)±
√
(c + d)2 − 4(c + d) + 4 − (c − d)2

= (c − 1 + d − 1)±
√

c2 + 2cd + d2 − 4c − 4d + 4 − c2 + 2cd − d2

= (c − 1 + d − 1)±
√

4cd − 4c − 4d + 4

= (c − 1 + d − 1)± 2
√

c − 1
√

d − 1

= (
√

d − 1 ±
√

c − 1)2
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We see that ∆(x) is quadratic in x and has roots at (
√

d − 1 ±
√

c − 1)2. This gives a
nice factorization of ∆(x):

∆(x) = x2 − 2x((c − 1) + (d − 1)) + (c − d)2

=

(
x −

(√
d − 1 +

√
c − 1

)2
)(

x −
(√

d − 1 −
√

c − 1
)2
)

We recall that, for the x we fixed, we have
√

x = t ∈ (
√

d − 1 −
√

c − 1,
√

d − 1 +√
c − 1), so the first term in the product is negative and the second term is positive, so

∆ < 0, and λ1,2 are complex numbers (conjugate to one another), with magnitude

|λ1,2|2 =
(x − (c − 1)− (d − 1))2 − ∆(x)

4

=
x2 − 2x((c − 1) + (d − 1)) + (c − 1 + d − 1)2 − (x2 − 2x((c − 1) + (d − 1)) + (c − d)2)

4

=
(c + d − 2)2 − (c − d)2

4
= (c − 1)(d − 1)

(10)

A very similar calculation shows that α, β are conjugates with magnitude

|α|2 = |β|2 =
x(x − cd)

∆(x) · (c − 1)

This finishes the proof for all such xs:

|pℓ(x)| = |α(x)λℓ
1 + β(x)λℓ

2| ≤ |α(x)λℓ
1|+ |β(x)λℓ

2|
= |α(x)||λ1|ℓ + |β(x)||λ2|ℓ

= 2

√
x(x − cd)

∆(x) · (c − 1)
(c − 1)ℓ/2(d − 1)ℓ/2

We keep in mind that x is fixed, so the expression is smaller than (2 +
√

d − 1) · ℓ
· (c − 1)ℓ/2(d − 1)ℓ/2 for large enough ℓ.

We are left with the cases x = t2 for t = 0,
√

d − 1 ±
√

c − 1:

1. t = 0. We use the same methods and find that the characteristic polynomial is

λ2 + (c − 1 + d − 1)λ + (c − 1)(d − 1)

whose roots are
λ1 = −(c − 1) , λ2 = −(d − 1).

Using the initial conditions (p0(0) = c/(c − 1) and p1(0) = −c), we obtain

α(0) =
c

c − 1
, β(0) = 0

and, using the fact that c < d, we obtain

|pℓ(0)| = |α(0)λℓ
1 + β(0)λℓ

2|

=
c

c − 1
(c − 1)ℓ

< 2l(c − 1)ℓ/2(c − 1)ℓ/2

< 2l(c − 1)ℓ/2(d − 1)ℓ/2.



Entropy 2024, 26, 348 13 of 21

2. t =
√

d − 1 +
√

c − 1. Then, x = t2 = (
√

d − 1 +
√

c − 1)2 = d − 1 + c − 1 +

2
√

d − 1
√

c − 1, and the characteristic polynomial has a single root of multiplicity 2,
namely,

λ =
x − (c − 1)− (d − 1)

2
=

√
d − 1

√
c − 1.

The solution, therefore, takes the form

pn(x) = (α(x) + nβ(x))(c − 1)n/2(d − 1)n/2.

Using the initial values, we obtain

α(x) =
c

c − 1
, β(x) =

x − c√
d − 1

√
c − 1

− c
c − 1

= 2 +
d − 2√

d − 1
√

c − 1
− c

c − 1
.

1 < c
c−1 ≤ 2 so β(x) ≤

√
d − 1 + 1, and, in total, we obtain

|pℓ(x)| = |α(x) + ℓβ(x)|(c − 1)ℓ/2(d − 1)ℓ/2

≤
(∣∣∣∣1ℓ · c

c − 1

∣∣∣∣+ |β(x)|
)
ℓ(c − 1)ℓ/2(d − 1)ℓ/2

≤
(

2 +
√

d − 1
)
ℓ(c − 1)ℓ/2(d − 1)ℓ/2

for sufficiently large ℓ.
3. t =

√
d − 1 −

√
c − 1. We obtain x = t2 = d − 1 + c − 1 − 2

√
d − 1

√
c − 1, and the

rest follows the same calculations as in the previous case.

Bounds on the spectrum of ALL
2ℓ give bounds on the number of non-backtracking paths

completely contained in a small set, hence, give Lemma 3.

Proof of Lemma 3. We recall that M2ℓ(S, G) counts the number of non-backtracking paths
of length 2ℓ that start and end in S, so, by the definition of the ALL

n operator, we have
M2ℓ(S, G) = ⟨ALL

2ℓ 1S,1S⟩.
We note that ALL

2ℓ 1L = c(c − 1)ℓ−1(d − 1)ℓ1L, because every non-backtracking path
starting at a given vertex is made by picking the first left-to-right edge (we have c such
edges to pick from), and then alternating between picking any of the d or c edges adjacent
to the current vertex, except for the edge we picked to get to it.

We write 1S = |S|
n 1L + r, with r ⊥ 1L, and ∥r∥2

2 ≤ ∥1S∥2
2 = |S|. Since the graph is

Ramanujan, the nontrivial eigenvalues in its spectral decomposition have their absolute
value in the set {0}∪ [

√
d − 1−

√
c − 1,

√
d − 1+

√
c − 1]. We only care about the nontrivial

eigenvalues because r ⊥ 1L; hence, in the writing of r in the orthogonal basis made
of eigenvectors, only eigenvectors with nontrivial eigenvalues appear. We decompose
r = ∑ αivi, and, using the notation in Lemma 5, we obtain

ALL
2ℓ r = ALL

2ℓ ∑
i

αivi = ∑
i

αi ALL
2ℓ vi = ∑

i
pℓ(λ2

i )αivi,

and, with the result of that lemma, we have

⟨ALL
2ℓ r, r⟩ = ∑

i
pℓ(λ2

i )α
2
i ≤ (2 +

√
d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2 · ∥r∥2

2.

We combine everything to obtain

M2ℓ(S, G) = ⟨ALL
2ℓ 1S,1S⟩ =

〈
ALL

2ℓ

(
|S|
n
1L + r

)
,
|S|
n
1L + r

〉
=

|S|2
n2 ⟨ALL

2ℓ 1L,1L⟩+ ⟨ALL
2ℓ r, r⟩
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=
|S|2
n2 · c(c − 1)ℓ−1(d − 1)ℓ⟨1L,1L⟩+ ⟨ALL

2ℓ r, r⟩

≤ |S|2
n

c(c − 1)ℓ−1(d − 1)ℓ + (2 +
√

d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2∥r∥2
2

≤ |S|
(
|S| · c · (c − 1)ℓ/2(d − 1)ℓ/2

n(c − 1)
+ (2 +

√
d − 1)ℓ

)
(c − 1)ℓ/2(d − 1)ℓ/2

≤ |S|
(

c
c − 1

+ (2 +
√

d − 1)ℓ
)
(c − 1)ℓ/2(d − 1)ℓ/2

≤ |S|
(
(2 +

√
d − 1)ℓ+ 2

)
(c − 1)ℓ/2(d − 1)ℓ/2

5. Random Gadget

In this section, we prove the existence of bipartite graphs, such that every small set of
left-side vertices has a unique neighbour on the right side. We drew a random biregular
graph from a similar distribution as in [31], and used techniques similar to [32] (Thm 4.4).

Lemma 6. For every integer L, R, c, and d with Lc = Rd, L > R, c > 3, if k is an integer that
satisfies the inequality

k
c−3

2 ≤ 1
2Le

·
(

R
3ec

) c−1
2

then there is a (c, d)-biregular graph with sides [L] and [R], such that every set of left vertices of
size k at most has a unique neighbour.

We drew a random (c, d)-biregular graph in the following way: we fixed L vertices
on the left side and R vertices on the right side (cL = dR), wrote c copies of each left-side
vertex and d copies of each right-side vertex, and connected them via a uniformly random
matching. That is, we picked a uniformly random permutation π : L × [c] → R × [d], and,
for every u ∈ L, vs. ∈ R, i ∈ [c], j ∈ [d], if π(u, i) = (v, j), then added (u, v) as an edge. It
should be noted that we allowed multiple edges between two vertices (if there were several
i, j satisfying π(u, i) = (v, j)).

Let G be a random bipartite graph with L vertices on the left side and R vertices on
the right side drawn from said distribution. Let A be a subset of left vertices of size k. We
note that, if A expands by at least (c + 1)/2, then, by a simple counting argument, A has a
unique neighbour. It is therefore sufficient to find the probability that A expands by at least
(c + 1)/2.

Let us fix an arbitrary ordering of the ck edges leaving A, and denote it e1, . . . , eck. We
say that ei is a repeat if it touches a previously covered vertex, that is, if its right endpoint
is contained in the set of right endpoints of the set e1, . . . , ei−1. We note that if A does not
expand by at least (c + 1)/2, then, again, by a simple counting argument, there are at least
(c − 1)k/2 repeats. This is because the number of repeats and the size of the set of the
neighbours of A add up to the number of edges leaving A, namely ck.

We note that for every i, ei is a repeat if it touches one of i − 1 or less previously
covered vertices. This means that Pr[ei is a repeat] ≤ i−1

R < ck
R . Moreover, if we condition

on the event that some of the first i − 1 edges are also repeats, then the probability that ei is
a repeat may only decrease, since it means that there are less “forbidden” endpoints. We
conclude that, for every set of l edges,

Pr[ei1 , . . . , eil are repeats] =
l

∏
j=1

Pr[eij is a repeat | ei1 , . . . eij−1 are repeats] <
(

ck
R

)l
.

If A expands too little, then there are many repeats. We can use it to bound the
probability that A has no unqiue neighbour:
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Pr[A has no unique neighbour] ≤ Pr[A expands by < (c + 1)/2]

≤ Pr[there are at least (c − 1)k/2 repeats]

≤ ∑
i1,...,i(c−1)k/2∈(

ck
(c−1)k/2)

Pr[{ei1 , . . . , ei(c−1)k/2
} are repeats]

<

(
ck

c−1
2 k

)
·
(

ck
R

) c−1
2 k

Furthermore, by a union bound over the possible choices of A,

Pr[∃ “bad” A of size k] ≤
(

L
k

)
· Pr[A expands by < (c + 1)/2]

≤
(

L
k

)
·
(

ck
c−1

2 k

)
·
(

ck
R

) c−1
2 k

≤
(

Le
k

)k
·
(

cke
c−1

2 k

) c−1
2 k

·
(

ck
R

) c−1
2 k

=

(
Le
k

·
(

2ce
c − 1

· ck
R

) c−1
2
)k

≤
(

Le
k

·
(

3eck
R

) c−1
2
)k

(11)

where the last inequality follows from assuming that c ≥ 3, so 2c
c−1 ≤ 3.

We are now ready to prove Lemma 6.

Proof of Lemma 6. Let us draw a (c, d)-biregular graph G = ([L] ⊔ [R], E) from the distri-
bution described above. Let k be an integer satsifying (6). Using a union bound and the
inequality in (11), we have (where probability is taken over the choice of G)

Pr[∃ “bad” A ⊆ [L] of size ≤ k] =
k

∑
a=1

Pr[∃ “bad” A ⊆ [L] of size a]

≤
k

∑
a=1

(
Le
a

·
(

3eca
R

) c−1
2
)a

<
∞

∑
a=1

(
Le
k

·
(

3eck
R

) c−1
2
)a

=
∞

∑
a=1

(
k

c−1
3 · Le ·

(
3ec
R

) c−1
2
)a

≤
∞

∑
a=1

(
1
2

)a
< 1.

We see that with strictly positive probability, a random graph has no “bad” subsets of
size ≤ k; hence, there exists a graph with the desired unique neighbour property.

6. Construction
6.1. Routed Product Definition

Let us begin with a brief coding theory motivation. An error-correcting code is often
given via an m × n parity check matrix H, so that C = Ker H ⊆ {0, 1}n. The matrix H
can be visualised as a bipartite graph, called the parity check graph, with n left and m right
vertices, and an edge i ∼ j whenever H(j, i) ̸= 0. A Tanner code is defined given a bipartite
graph B and a base code C0 = Ker H0 [33]. One way to view the routed product is through
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the point of view of codes. We consider the parity check graph B0 of H0 and define the
routed product of B and B0 to be simply the parity check graph of the Tanner code C(B, C0).

Here is a more detailed and combinatorial definition of the routed product without
mention of codes: let G = (L ⊔ R, E) be a (c, d)-biregular graph and G0 = (L0 ⊔ R0, E0) a
(c0, d0)-biregular graph.

We think of G as a big graph (in practice, an infinite family of Ramanujan graphs), and
G0 as a fixed-size graph (gadget). We assume that |L0| = d, and think of the edges of G
as a function E : R × [d] → L which maps a right-side vertex v and an index i to the ith
neighbour of v in G.

We can define the routed product graph G′ = G ◦ G0 as the bipartite graph whose left
side is L, right side is the Cartesian product R × R0, and the set of edges is

E′ = {(E(v, i), (v, j)) : vs. ∈ R, i ∈ [d], j ∈ [R0], (i, j) ∈ E0}.

That is, we write R0 copies of each vertex in R, and every right-side vertex v in the big
graph G and an edge (i, j) in the small gadget G0 gives an edge between the ith neighbour
of v in G, and the jth vertex of the copy of G0 assigned to v in G′. Otherwise put, we use G0
to route every edge of the big graph G to c0 edges in the product graph G′.

More precisely, for every v ∈ R, the bipartite subgraph of G′, whose left side is NG(v)
and right side is (v, ·), is isomorphic to G0. This means that, roughly speaking, unique
neighbours are inherited from the small graph to the product graph:

Lemma 7. Let S ⊆ L, v ∈ NG(S). We define S′ = {i : E(v, i) ∈ S} ⊆ [d] as the indexed
neighbours of v in S. If S′, as a set of vertices in the gadget G0, has a unique neighbour j ∈ R0 in
G0, then (v, j) is a unique neighbour of S in the product graph G′.

The proof is immediate while observing Figure 1, but, for the sake of completion, it is
given in Appendix A.

6.2. Proof of Theorem 1

Let q be a prime power, c0 an integer, and α > 1. We assume that αc0(q + 1) is an
integer. We construct an infinite family of (c0(q + 1), αc0(q + 1))-biregular graphs with the
unique neighbour property under some assumptions specified below.

We denote c = q + 1 and d = q3 + 1. By Theorem 3, there is an efficient construction of
an infinite family of (c, d)-biregular Ramanujan graphs (Gn). Let G0 = (L0 ⊔ R0, E0) be a
gadget: a c0-left-regular bipartite graph with |L0| = d = q3 + 1 vertices on the left side and
R0 vertices on the right side, such that every left-side set of sufficiently small size admits a
unique neighbour on the right side, where “sufficiently small” means the bound given in
Lemma 6. For the constructed graph to have the left side α times bigger than the right side,

we set R0 = d
αc = q3+1

α(q+1) .
We define G′

n = Gn ◦ G0 as the routed product of Gn and G0. For the rest of this (short)
proof, let us suppress n from the notation, for convenience.

Let ε < 1
q . By Theorem 2, there exists δ > 0, such that, for every S ⊆ L of size δ|L| at

most, the “average right degree” d̄S, namely, the average of the degrees of vertices in NG(S)
in the induced subgraph S ⊔ NG(S), is bounded:

d̄S :=
c|S|

|NG(S)|
≤ 1 + (1 + ε)

√
d − 1
c − 1

.

We show that such S has a unique neighbour in G′.
We note that d−1

c−1 = q2, so, since ε < 1
q , we have a vertex v ∈ R of “degree” q + 1 at

most in G, that is, the set S′ ⊆ [d] of v’s neighbours in S is of size q + 1 at most. By Lemma 7,
if S′, as a set of left-side vertices in G0, has a unique neighbour j in G0, then our original set
S has a unique neighbour (v, j) in G.
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The parameters now need to be chosen in a way that all left-side sets of size q + 1 at
most have a unique neighbour in G0. By Lemma 6, we need to have

(q + 1)
c0−3

2 ≤ 1
2(q3 + 1)e

·

 q3+1
α(q+1)

3ec0


c0−1

2

. (12)

The LHS is O(q
c0−3

2 ) and RHS is Θ(qc0−4), so, if c0 > 5, then, for sufficiently large q, the
construction gives a unique neighbour expander. That is, there exists some q̂(c0, α), such
that, if q > q̂, then (12) holds; hence, we constructed a bipartite unique neighbour expander,
as promised in Theorem 1.

Figure 1. An example of a bipartite graph G (dashed, red), a small gadget G0 (dotted, green), and the
routed product G′ = G ◦ G0 (solid, blue). The set S ⊆ L has a neighbour v ∈ R, and so S is associated
with a set S′ of left-side vertices of the copy of G0 associated with v. Since (i′, j) is the only edge
connecting j to S′ in G0, we have that (v, j) is a unique neighbour of S in G′.
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7. Future Work

The main pitfall of our approach is the non-constructive nature of the gadget. Theoret-
ically, since the gadget has a constant size, this is no issue. However, exhaustive search is
impractical, even for small values of q. This is because the gadget’s size is cubic in q, so the
search space is of exponential size in q3. A natural question would be whether it is possible
to construct such a gadget in an efficient way, since that would lead to the whole unique
neighbour expander family to be constructible in practice. For the bipartite Ramanujan
family chosen in our work (the one by Ballantine et al. [29]), we ask the following:

Question 1. For which prime power q and real number α ≥ 1 can one efficiently construct a

biregular graph with left side q3 + 1 and right side q3+1
α(q+1) , such that every left-side set of size q + 1

at most has a unique neighbour?

We note that the fixed-size graph given in [1] (Lemma 4.3) is a good gadget (for
α = 22/21 and the edge–vertex incidence graphs of a 44-regular Ramanujan graph family),
and, indeed these graphs can be used to construct bipartite unique neighbour expanders.

Since we proved that a random gadget is, with non-negligble probability, good for our
construction, it may be interesting to construct such a gadget by simply drawing random
gadgets and testing whether they are good. Since drawing is simple, we are left with the
task of testing. We therefore ask

Question 2. Given a bipartite graph, can one efficiently find the smallest nonempty set of left-side
vertices that has no unique neighbours?

We currently know of no better way than just enumerating all left-side sets, which is
exponential in the size of the graph, hence impractical. We refer to [11] for an interesting
approach to testing the expansion of random graphs.

The methods presented in this work are not limited to the (q + 1, q3 + 1)-biregular
Ramanujan family. We can therefore ask the question the other way around—find a gadget
(by sampling or any other way)—and see whether we can efficiently construct a bipartite
Ramanujan family that will make it work, i.e., that would allow us to rewrite the proof of
Theorem 1. This emphasises the well-known natural question of constructing Ramanujan
graphs with arbitrary degrees, specifically in the bipartite and biregular setting,

Question 3. For which integers c < d can one efficiently construct an infinite family of
(c, d)-biregular Ramanujan graphs?

We note that our construction is far from “right-side unique neighbour expansion,” as
the complete right side of a single gadget is a constant-sized set with no unique neighbours
on the left. We wonder whether it is possible to construct a bipartite graph where all small
size sets (be they contained in either side, or both) have unique neighbours.
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Appendix A

We prove the lemmas we used throughout the work.

Proof of Lemma 1. Let G = (V, E) be a d-regular Ramanujan graph. The adjacency ma-

trix of G′ is A =

[
0 M

M⊤ 0

]
, where M has |E| rows, each containing two 1s, and |V|

columns, each containing d 1s. Let v be an eigenvector of A with eigenvalue λ; then, v is an
eigenvector of A2 with eigenvalue λ2. We note that

A2 =

[
MM⊤ 0

0 M⊤M

]
so it suffices to consider the spectrum of M⊤M, which is essentially the operator corre-
sponding to a walk from a vertex of G to an edge that touches it and back to one of its
endpoints (possibly the same vertex we started at).

For every v ∈ V, there are d ways to walk from it to an edge and then back to v; all other
legal paths correspond to picking an edge touching v. We conclude that M⊤M = dI + A,
so every eigenvalue λ of G′ satisfies λ2 = d + σ, where σ is an eigenvalue of G.

The lemma is proven by noting that |σ| ≤ 2
√

d − 1 (since G is Ramanujan), so

d − 2
√

d − 1 ≤ λ2 ≤ d + 2
√

d − 1

The terms on the extreme sides of the inequality can be verified to be (
√

d − 1 ± 1)2, so
we obtain |λ| ∈ [

√
d − 1 − 1,

√
d − 1 + 1], as needed (recall that in G′ the left-regularity is

c = 2 so
√

c − 1 = 1).

Proof of Lemma 4. We note that, for every n ≥ 2, we have[
xn

xn−1

]
=

[
Axn−1 + Bxn−2

xn−1

]
=

[
A B
1 0

][
xn−1
xn−2

]
We denote the 2 × 2 matrix by D, so, by induction,[

xn
xn−1

]
= Dn

[
x1
x0

]
Let us diagonalise D. The characteristic polynomial is

pD(λ) = det(λI − D) =

∣∣∣∣λ − A −B
−1 λ

∣∣∣∣ = λ(λ − A)− B = λ2 − Aλ − B

If pD(λ) has two distinct roots λ1, λ2, then, the matrix is diagonalisable; that means that
there exists a 2 × 2 matrix M, such that D = M · diag{λ1, λ2} · M−1. We obtain[

xn
xn−1

]
= M

[
λ1 0
0 λ2

]n

M−1
[

x1
x0

]
= M

[
λn

1 0
0 λn

2

]
M−1

[
x1
x0

]
We can compute M, M−1 explicitly, multiply the matrices, and obtain α, β ∈ C, such that
xn = αλn

1 + βλn
2 as required.

Otherwise, if pD(λ) has a single root λ of multiplicity 2, then we can find its Jordan
form, i.e., find M such that

D = M
[

λ 1
0 λ

]
M−1

Dn = M
[

λ 1
0 λ

]n

M−1 = M
[

λn nλn−1

0 λn

]
M−1

where the last equality follows from a simple induction.
Similarly, we obtain
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[
xn

xn−1

]
= M

[
λ 1
0 λ

]n

M−1
[

x1
x0

]
= M

[
λn nλn−1

0 λn

]
M−1

[
x1
x0

]
Furthermore, again, we can find α, β ∈ C as required.

For the following lemma we remind that G = (L ⊔ R, E) is a (c, d)-biregular graph,
G0 = (L0 ⊔ R0, E0) is a (c0, d0)-biregular graph, and G′ = G ◦ G0 is the routed product of G
and G0. We recall that the edges of G′ are (E(v, i), (v, j)) when v ∈ R is a right-side vertex
of G, i ∈ [d], E(v, i) is the ith neighbour of v according to G, and (i, j) ∈ E0.

Proof of Lemma 7. We assume that i′ ∈ S′ is the unique neighbour of j in G0. By the
definition of the routed product, we have that (E(v, i′), (v, j)) is an edge in G. Since i′ ∈ S′,
we have that E(v, i′) ∈ S, so, indeed (v, j) is a neighbour of S in G′. What is, therefore,
remaining is to show that it is unique, i.e., that E(v, i′) is the only neighbour of (v, j) in S.

The neighbours of (v, j) in G are E(v, i) for every i, such that (i, j) ∈ E0. If E(v, i) ∈ S,
then, by the definition of S′, we have that i ∈ S′, so i is a neighbour of j in E0. However,
we know that j is a unique neighbour of S′ in E0, so we must have that i = i′, and, indeed,
(v, j) is a unique neighbour of S in G′.
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