
 

How Electron Hydrodynamics Can Eliminate the Landauer-
Sharvin Resistance

Document Version:
Publisher's PDF, also known as Version of record

Citation for published version:
Stern, A, Scaffidi, T, Reuven, O, Kumar, C, Birkbeck, J & Ilani, S 2022, 'How Electron Hydrodynamics Can
Eliminate the Landauer-Sharvin Resistance', Physical review letters, vol. 129, no. 15, 157701.
https://doi.org/10.1103/PhysRevLett.129.157701

Total number of authors:
6

Digital Object Identifier (DOI):
10.1103/PhysRevLett.129.157701

Published In:
Physical review letters

General rights
@ 2020 This manuscript version is made available under the above license via The Weizmann Institute of
Science Open Access Collection is retained by the author(s) and / or other copyright owners and it is a condition
of accessing these publications that users recognize and abide by the legal requirements associated with these
rights.

How does open access to this work benefit you?
Let us know @ library@weizmann.ac.il

Take down policy
The Weizmann Institute of Science has made every reasonable effort to ensure that Weizmann Institute of
Science content complies with copyright restrictions. If you believe that the public display of this file breaches
copyright please contact library@weizmann.ac.il providing details, and we will remove access to the work
immediately and investigate your claim.

(article begins on next page)

https://doi.org/10.1103/PhysRevLett.129.157701
https://doi.org/10.1103/PhysRevLett.129.157701


How Electron Hydrodynamics Can Eliminate the Landauer-Sharvin Resistance

Ady Stern,1 Thomas Scaffidi ,2,3 Oren Reuven ,1 Chandan Kumar ,1 John Birkbeck,1 and Shahal Ilani 1

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

3Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada

(Received 7 November 2021; accepted 14 September 2022; published 7 October 2022)

It has long been realized that even a perfectly clean electronic system harbors a Landauer-Sharvin
resistance, inversely proportional to the number of its conduction channels. This resistance is usually
associated with voltage drops on the system’s contacts to an external circuit. Recent theories have shown
that hydrodynamic effects can reduce this resistance, raising the question of the lower bound of resistance
of hydrodynamic electrons. Here, we show that by a proper choice of device geometry, it is possible to
spread the Landauer-Sharvin resistance throughout the bulk of the system, allowing its complete
elimination by electron hydrodynamics. We trace the effect to the dynamics of electrons flowing in
channels that terminate within the sample. For ballistic systems this termination leads to back-reflection of
the electrons and creates resistance. Hydrodynamically, the scattering of these electrons off other electrons
allows them to transfer to transmitted channels and avoid the resistance. Counterintuitively, we find that in
contrast to the ohmic regime, for hydrodynamic electrons the resistance of a device with a given width can
decrease with its length, suggesting that a long enough device may have an arbitrarily small total resistance.

DOI: 10.1103/PhysRevLett.129.157701

Introduction.—The electronic resistivity to the flow of
current is a fundamental quantity in condensed matter
physics. Frequently, its minimization is desired. The
Drude model, dating back to 1900, suggests that the
resistivity originates mostly from momentum loss to impu-
rities. However, it was realized that even in the ballistic limit,
in which impurities and phonons are absent, the interface
between the electronic system and the metallic contacts to
which it is coupled carries another fundamental source of
resistance: the Landauer-Sharvin (LS) resistance [1–4]. This
resistance is inversely proportional to the number of quantum
mechanical channels that are transmitted through the system.
More recently, another regime of transport was discov-

ered, in which electrons behave like a viscous fluid due to
strong momentum-conserving electron-electron scattering
[5–50]. Somewhat counterintuitively, it was shown that the
resistance in this hydrodynamical regime may be lower
than the ballistic one, suggesting the term “superballistic”
[29,30,51–53]. Furthermore, conditions in which field-free
current flow may locally exist were suggested [42].
In this Letter, using a combination of Landauer and

Boltzmann analyses we demonstrate a mechanism by
which electron hydrodynamics can eliminate the LS
resistance, and find the minimal value that this resistance
may attain. Our study is semiclassical and focuses on two
dimensional systems. We describe an electronic system in
terms of its conduction channels, and show that when the
number of channels varies along the direction of the current
flow, the Landauer-Sharvin resistance detaches from the
contacts and spreads over the bulk of the electronic system.

When the length scale of this spreading is larger than the
electron-electron scattering mean free path, lee, the resis-
tance is dramatically suppressed.
Microscopically, this suppression results from the scat-

tering of electrons whose channels are being terminated due
to a narrowing of the system’s cross section or a decrease of
its carrier density. In a ballistic system, these electrons are
reflected back and do not contribute to the current, thereby
generating LS resistance in the sample’s bulk. In contrast,
in the hydrodynamic regime electron-electron scattering
transfers these electrons into transmitted channels, thus
avoiding their reflection and the corresponding resistance.
Equipped with this analysis, we can raise the question of

the minimal resistance of hydrodynamic electrons flowing
through a constriction. In the ballistic case, for a sample
of length L and a minimal cross section 2πrmin, the LS
resistance is given by ðh=2e2kFrminÞ (kF is the Fermi
momentum, and we consider a single spin species). In the
hydrodynamic case, previous works [29,30,42] reported a
reduction of the LS resistance by a factor of lee=rmin due to
electron hydrodynamics. We find a further reduction of the
resistance by an additional factor of rmin=L if the constric-
tion’s width varies over a scale L ≫ rmin. In contrast to the
familiar ohmic regime, in which resistance increases with L,
the resistance in the hydrodynamic regime decreases with L.
This implies that a system with a given rmin and a large
enough L may have an arbitrarily small total resistance.
Wormhole geometry.—In order to study the resistance of

hydrodynamic electrons in a generic expanding geometry
while avoiding boundary effects, we use a “wormhole”

PHYSICAL REVIEW LETTERS 129, 157701 (2022)

0031-9007=22=129(15)=157701(6) 157701-1 © 2022 American Physical Society

https://orcid.org/0000-0002-3143-0797
https://orcid.org/0000-0002-5480-8756
https://orcid.org/0000-0003-3493-2597
https://orcid.org/0000-0001-8589-7723
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.157701&domain=pdf&date_stamp=2022-10-07
https://doi.org/10.1103/PhysRevLett.129.157701
https://doi.org/10.1103/PhysRevLett.129.157701
https://doi.org/10.1103/PhysRevLett.129.157701
https://doi.org/10.1103/PhysRevLett.129.157701


geometry (Fig. 1). This geometry is a two-dimensional
surface of revolution embedded in three dimensions, with
azimuthal symmetry (toward the end of this Letter we
consider also a Corbino disk and a bar with varying
electronic density). In cylindrical coordinates the wormhole
is defined by r ¼ rðzÞ, with its minimum radius, rmin,
occurring at z ¼ 0, and maximum radius, rmax, occurring
at the contacts positioned at z ¼ �L=2. For simplicity
we assume rðzÞ ¼ rð−zÞ. A current I driven through
the wormhole in the z direction leads to a potential
Vðz ¼∓ L=2Þ ¼ �ðV0=2Þ at its contacts. On the manifold,
we define a local Cartesian system of coordinates tangent to
the manifold, in which ŷ is the unit vector in the azimuthal
direction, and x̂ ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r02
p Þðr0; 0; 1Þ is the unit vector

in the direction along the manifold. For brevity, we
set ℏ ¼ e ¼ 1.
Boltzmann description.—Time-independent transport in

a wormhole geometry may be described by a Boltzmann
equation. In the absence of a driving force, the magnitude
of the electron’s momentum is constant, but its direction
varies. Consequently, the equation reads as follows:

cos θ∂zf −
r0

r
sin θ∂θf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
I½f�; ð1Þ

where fðr; pÞ is the deviation of the number of electrons in a
position r with momentum p from its equilibrium value, θ is
the angle of the momentum with respect to the locally
defined x direction, r0 ≡ dr=dz, and I½f� is the scattering
integral, elaborated below. As explained in the Supplemental
Material [54], this equation is derived in two steps. First, we
solve for the trajectories of free particles constrained to the
manifold. Second, we equate the variation of f along these
trajectories with the scattering integral I½f�.
It is common to substitute the ansatz

fðp; rÞ ¼ δ½ϵF − ϵðpÞ�hðp; rÞ ð2Þ

in Eq. (1), and integrate both sides over the magnitude of
the momentum

R ðpdp=4π2Þ, with p ¼ jpj. This integra-
tion fixes jpj ¼ pF such that h becomes a function of r and
θ, which describes the nonequilibrium angular shape of the
Fermi surface. The integration replaces the δ function in
Eq. (2) by a density of states at the Fermi energy and angle
θ, νðEF; θÞ ¼ νF=2π (here, νF is the density of states at
the Fermi energy). The Boltzmann equation becomes an
equation for νFhðθ; rÞ=2π. The azimuthal symmetry
reduces the dependence on r to a dependence on z only.
Landauer description.—In the Landauer picture, the

system is composed of 2jmax þ 1 channels, enumerated
by their angular momentum j ¼ −jmax::0.:jmax, with
jmax ¼ kFrmax. The angular momentum j ¼ pyðzÞrðzÞ,
with py the momentum in the azimuthal direction. Each
channel is characterized by transmission and reflection
probabilities Tj, Rj satisfying Tj þ Rj ¼ 1. We assume
rðzÞ to vary slowly on the scale of the Fermi wavelength,
such that in the absence of interactions, channels with
jjj < kFrmin are fully transmitted, and all other channels are
fully reflected. The reflection takes place at the classical
turning point rðzÞ ¼ jjj=kF. The current flowing through
the wormhole is I ¼ ðkFrmin=πÞV0, leading to a dimen-
sionless LS resistance Rballistic ¼ π=kFrmin.
“Landauerizing” Boltzmann.—We reformulate the

Boltzmann equation to elucidate its relation to the
Landauer picture. To that end, we express the shape of
the Fermi surface in terms of different variables: the
channel angular momentum j, the direction of motion,
right (R) or left (L), and the position, z. Semiclassically, the
angular momentum is a real number, which is quantized to
an integer in Landauer’s quantum mechanical analysis.
Here, we think about it semiclassically.
Two steps are needed to transform the Boltzmann

equation from an equation for hðθ; zÞ to an equation for
the occupation in terms of j, z and direction of motion,
which we denote by hjR;LðzÞ. First, we change the variables
in Eq. (1). Second, the integral

R ðpdp=4π2Þ should
be replaced by an integral over the x component of the
momentum, namely pF

R ðdpx=2πÞ, where the limits are
given by px ¼ 0 and px ¼ �∞ for R and L, respectively.
The δ function in Eq. (2) is then replaced by a density of
states at the Fermi level at a fixed j ¼ pyrðzÞ:

νj ¼ νFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
j

kFrðzÞ
�
2

r ΘðkFrðzÞ − jjjÞ: ð3Þ

This density of states is inversely proportional to the x
component of the velocity, as familiar from Landauer’s
analysis. The details of the transformation are given in the
Appendix, but the outcome is quite expected from the
conservation of angular momentum:

FIG. 1. The wormhole geometry is a two-dimensional azimu-
thally symmetric electronic system embedded in three-dimensional
space, described by the equation r ¼ rðzÞ, where the radius is
maximal (rmax) at the interface to the contacts and minimal (rmin) at
the center. A current I is driven from negative to positive z, and the
potentials at the two contacts are Vð∓ L=2Þ ¼ �ðV0=2Þ.
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�νF∂zh
j
R;LðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
Ĩ½hjR;LðzÞ�; ð4Þ

where the � refers to right and left moving electrons, and
Ĩ is the scattering term expressed as a functional of hjR;LðzÞ,
derived below.
The electronic density ρðzÞ, current density JxðzÞ, and

potential VðzÞ are

ρðzÞ ¼
Z

dp
4π2

fðp; zÞ ¼ 1

2πkFrðzÞ
Z

djνjðzÞ½hjR þ hjL�

JxðzÞ ¼
Z

dp
4π2

px

m
fðp; zÞ ¼ 1

4π2rðzÞ
Z

dj½hjR − hjL�

VðzÞ ¼ ρðzÞ=νF; ð5Þ

where the limits of integration are over all angular momenta
for which νj ≠ 0, i.e., from −jmax to jmax ¼ kFrmax.
Ballistic regime.—In the absence of collisions (Ĩ ¼ 0),

Eq. (4) implies that hjR;L is independent of z and is such that

hjR ¼ hjL at the classical turning point, where j ¼ kFrðzÞ.
The solution states that there is no interchannel scattering
along the wormhole, which is a consequence of angular
momentum conservation. As for intrachannel backscatter-
ing, two situations may exist. Fully transmitted channels
are those with j < kFrmin. For these channels, each of the
two nonequilibrium occupations hjR;LðzÞ is determined by
the contact from which it emanates, and is independent of z.
In contrast, if there is a point z0 for which j ¼ kFrðz0Þ, at
this point the momentum has no x component, hR ¼ hL and
the channel is fully reflected. Then, on one side of z0 where
the channel exists we have hR ¼ hL, with the value being
determined by the contact from which the channel ema-
nates and to which it is back-reflected. Both occupations
vanish at the other side of z0, in which the channel does not
exist. Figures 2(a) and 2(b) present hjR ∓ hjL for a particular
example of a ballistic wormhole, showing the nonequili-
brium channel-dependent contributions to the local poten-
tial and current density.
Each contact feeds into the wormhole all channels below

its potential, �V0=2 for the left and right contacts,
respectively, thus specifying the boundary conditions. By
Landauer’s formula, V0 ¼ πI=kFrmin. With these boundary
conditions, we can solve for hjR;LðzÞ and use the solution to
calculate the potential as a function of z. We find the
potential to be as follows:

VballisticðzÞ ¼ −sgnðzÞV0

π

Z
kFrðzÞ

kFrmin

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kFrðzÞ�2 − j2

p
¼ −sgnðzÞV0

2

�
1 −

2

π
arcsin

rmin

rðzÞ
�
: ð6Þ

Interestingly, although there are no collisions, we see that
there is a potential drop, and thus resistance, in the bulk of

the wormhole. Equation (6) shows that the potential close
to the edges of the wormhole (z ¼ �L=2) is smaller
than that in the contacts by ðV0=πÞ arcsinðrmin=rmaxÞ.
This difference is the LS contact resistance. In the limit
rmax ≫ rmin this contact resistance becomes negligible, and
practically all the LS resistance drops in the bulk. From
Eq. (6) we see that voltage drops in the bulk when the
upper limit of the integral varies with z. Hence, the bulk
LS resistance appears whenever the number of conduction
channels varies in the bulk. As we show below, electron-
electron scattering can dramatically suppress the bulk
potential drop, allowing the system to conduct much better
than the fundamental LS limit.
Electron-electron scattering and the hydrodynamic

regime.—We now turn to consider the effect of momentum
conserving electron-electron interactions on the wormhole
resistance. Within the relaxation time approximation, tak-
ing conservation laws into account [11,55], we have

I½fðp;rÞ�¼−
1

lee

�
f−

δ½ϵF−ϵðpÞ�
νF

�
ρðrÞþ2JxðrÞcosθ

vF

��
:

ð7Þ

The second and third terms on the right-hand side guarantee
charge and momentum conservation, respectively. We
obtain Ĩ½hj� using the same ansatz we used before:

FIG. 2. Nonequilibrium distribution functions hR − hL and
hR þ hL for ballistic (a),(b) and hydrodynamic (c) and (d) cases.
These distribution functions contribute to the current density and
voltage, respectively [see Eq. (5)]. They are plotted for the
wormhole defined in Eq. (11) with a=r0 ¼ 6, as a function of the
spatial coordinate z, and the normalized channel index, j=kFrmin.
In panels (c),(d) lee=r0 ¼ 0.3. Green color corresponds to zero
population, while white reflects states above the Fermi energy.
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Ĩ½hjR;LðzÞ�

¼ −
νj

lee

�
hjR;LðzÞ−

ρðzÞ
νF

∓ 4πJxðzÞ
kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

	
j

kFrðzÞ



2

s �
:

ð8Þ

The νj=lee factor makes the mean free path j-dependent
and shortens it from lee to lee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½j=kFrðzÞ�2

p
. This may

be understood by noting that for j=rðzÞ large, px is small
and a shorter distance is traversed in the z direction between
two scattering events. In particular, the scattering length
vanishes when the channel is about to be terminated,
opening a way for the electrons to avoid backscattering
by being scattered to a transmitted channel. Furthermore,
in contrast to the case of impurity scattering, in which in
Eq. (8) lee is replaced by a momentum-relaxing mean free
path and the third term is absent, here the presence of the
third term allows for a Galilean boost of the Fermi surface
hjR;LðzÞ ¼ �½4πJxðzÞ=kF�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½j=kFrðzÞ�2

p
to be carried

out without developing a resistance.
We find the solution to a leading order in lee (the

calculation is given in the Appendix),

hjR;LðzÞ ¼ � 2I
kFrðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
j

kFrðzÞ
�
2

s

þ 2Ilee sin ξðzÞ
kFr2ðzÞ

�
1 − 2

�
j

kFrðzÞ
�
2
�

−
Z

z

0

Ilee

kFr2ðz0Þ
cos ξðz0Þ dξ

dz0
ðz0Þdz0; ð9Þ

where ξðzÞ is the local angle between z axis and the
manifold, i.e., rðzÞ0 ¼ tan ξðzÞ. This solution is valid in the
bulk, away from the contacts. We comment on the role of
the contacts below, with details in the Appendix.
The first term in Eq. (9) is a rigidly shifted Fermi surface.

It is the solution expected for r0 ¼ 0 far away from the
contacts, after all deformations of the Fermi surface are
suppressed by the scattering term. The second and third
terms are smaller than the first by a factor of lee=rðzÞ, and
originate from the breaking of Galilean invariance. The
second term makes the shifted Fermi surface acquire an
elongated shape, with more electrons in the head-on
direction (small j), and less in the j ≈ kFrðzÞ channels.
The third term is independent of j. It carries an electronic
density, and leads to a potential drop and resistivity. Note
that while the second term exists when sin ξ ≠ 0, the third
term requires ðd sin ξ=dzÞ ≠ 0. Stated differently, in con-
trast to ballistic electrons for which local resistance appears
when the number of conduction channels varies with z, i.e.,
when r0 ≠ 0, for hydrodynamic electrons resistance is
generated only when this function has a nonzero curvature,
r00 ≠ 0.

The potential originating from the third term of Eq. (9)
may be written also as follows:

VhydroðzÞ ¼ I
Z

ξðzÞ

0

lee

4πkFr2ðξÞ
cos ξdξ: ð10Þ

The resistance scale may be estimated from Eq. (10). The
r2 in the denominator suggests that the wormhole resistance
is characterized by a “superballistic” scale [29,30,42,50],
ð2πlee=kFr2minÞ, smaller by 2lee=rmin than the ballistic LS
resistance. However, Eq. (10) opens the way for a much
smaller scale, ðlee=4πkFr2minÞ sin ξ0, where ξ0 is the angle
at which r becomes much larger than rmin. If r grows
slowly, sin ξ0 may be much smaller than 1, with the
resistance becoming much smaller than the superballistic
scale. Consequently, for a fixed rmax ≫ rmin the resistance
generally decreases with increasing L, opposite to the
familiar Ohmic dependence.
To illustrate the two hydrodynamic scales, consider an

example where

rðzÞ ¼ r0 cosh z=a: ð11Þ

In this wormhole, rmin ¼ r0 and rmax ≫ rmin for L ≫ a.
Under the latter condition, the contribution to the resistance
decays fast with jzj ≫ a, and we can take L → ∞. Then,
using Eq. (10),

Rcosh ¼
lee

2πkF

2
64 1

r20 − a2
−
a2arctanh

ffiffiffiffiffiffiffiffiffi
r2
0
−a2

p
r0

r0ðr20 − a2Þ3=2

3
75: ð12Þ

In the limit a → 0 the resistance tends to ðlee=2πkFr20Þ, but
when a ≫ r0 it decreases to become of order ðlee=4kFr0aÞ.
As can be seen in Eq. (10), most of the resistance originates
from the product of the minimum radius rmin and the
change in angle Δξ over which the radius becomes
significantly larger than r0. When a ≫ r0 the change in
angle is Δξ ∼ r0=a and hence the decrease in resistance.
Figures 2(c) and 2(d) show the calculated hL − hR and
hL þ hR for hydrodynamic flow in the wormhole in
Eq. (11). These quantities contribute to the current density
and potential, respectively [Eq. (5)]. Figure 3 shows
potential drop in this wormhole as a function of z, in
the ballistic case and in the hydrodynamic cases for two
values of a=r0. The hydrodynamic suppression of the
resistance with increasing a is evident. Note that when
rðzÞ is constant the resistance in the bulk vanishes, since the
bulk is Galilean invariant. However, the LS voltage drop
occurs then sharply at the contacts, and is not suppressed by
electron-electron scattering. To suppress the resistance by
electron-electron scattering rðzÞ should vary slowly from
rmin to rmax ≫ rmin.
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Our analysis elucidates this suppression of the resis-
tance: a potential drop results from reflection of electrons.
In the ballistic regime the contact sends into the sample
electrons for which j is too large to be transmitted. Those
electrons are reflected, leading to a voltage drop [Eq. (6)].
In contrast, in the hydrodynamic regime electrons of high j
are scattered to channels of smaller j, and largely end up
being transmitted, without generating a potential drop.
Note that our entire analysis assumes lee ≪ a and
lee ≪ r0, in contrast to the sharp constriction case, studied,
e.g., in [29], leading to a rather different evolution of R
with lee.
Equations (10) and (11) show that the bulk resistance of a

Corbino disk vanishes, as a consequence of the lack of
variation of ξ. With the limitation of z to a proper range, and
with the limit a → 0, Eq. (11) may be used to describe a
Corbino disk. The resulting bulk resistance vanishes in that
limit. Indeed, in a Corbino disk the number of channels
grows linearly with the radial coordinate, its second
derivative vanishes, and so does the hydrodynamic resis-
tance. Importantly, this vanishing bulk resistance is in series
with a contact resistance which in this case is π=ð2kFrminÞ,
where rmin is the inner radius of the disk.
The elimination of the LS resistance in a Corbino disk

was experimentally confirmed, as reported in a companion
article [56]. In that article, we generalized the present
calculations to include momentum relaxation due to pho-
non and impurity scattering, and showed that it leads to a
simple additive contribution to the resistance.
Finally, although the wormhole is illuminating theoreti-

cally, it is a rather exotic geometry for real-life transistor
devices. Those typically have a long rectangular bar
geometry, in which the density varies along the x axis
and is maximal near the contacts. In a bar geometry,
previous work (e.g., [27]) has focused on a viscous
contribution arising from the no-slip boundary condition.

Here, we neglect this contribution by assuming specular
boundary scattering, or a wide bar. By carrying out an
analysis similar to that of the wormhole (see the
Supplemental Material [54]**), we find the resistance

Rbar ¼
Z

∞

−∞
dx

ðk0FleeÞ0
2k2Fr

: ð13Þ

Here, we account also for the possibility that lee varies
with the variation of kF. Assuming that the change in kF
is much larger than its minimal value, we can estimate
R ∼ lee=kFra, where a is the scale over which kF and lee
become much larger than their minimal value.
In summary, we showed here that when the LS resistance

of an electronic system is spread into its bulk, rather than
being localized at the interface with the contacts, it may be
significantly reduced by electron-electron scattering, in
principle all the way down to zero.
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