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Abstract 

OBJECTIVE Previous studies have demonstrated an association between gut microbiota 

composition and Type 1 diabetes (T1D) pathogenesis. However, little is known about the 
composition and function of the gut microbiome in adults with longstanding T1D or its 

association with host glycemic control.  

RESEARCH DESIGN AND METHODS We performed a metagenomic analysis of the gut 
microbiome obtained from fecal samples of 74 adults with T1D, 14.6 ± 9.6 years following 

diagnosis, and compared their microbial composition and function to 296 age-matched healthy 
controls (1:4 ratio). We further analysed the association between microbial taxa and indices of 

glycemic control derived from continuous glucose monitoring measurements and blood tests 

and constructed a prediction model which solely takes microbiome features as input to evaluate 
the discriminative power of microbial composition for distinguishing individuals with T1D 

from controls.  

RESULTS Adults with T1D had a distinct microbial signature that separated them from 

controls when employing prediction algorithms on held-out subjects (auAUC=0.89±0.03). 

Linear discriminant analysis showed several bacterial species with significantly higher scores 
in T1D, including Prevotella copri and Eubacterium siraeum, and species with higher scores 

in controls, including Firmicutes bacterium and Faecalibacterium prausnitzii (p <0.05, FDR 
corrected for all). On the functional level, several metabolic pathways were significantly lower 

in adults with T1D. Several bacterial taxa and metabolic pathways were associated with the 

host’s glycemic control.  

CONCLUSIONS We identified a distinct gut microbial signature in adults with longstanding 

T1D and associations between microbial taxa, metabolic pathways, and glycemic control 
indices. Additional mechanistic studies are needed to identify the role of these bacteria for 

potential therapeutic strategies.  

 

  



 

 

Introduction 

Type 1 diabetes (T1D) is a common chronic disease in children and adolescents. The incidence 
of T1D has been rapidly rising in the past decade, especially in young children (1). While a 

genetic predisposition for T1D exists, this rapid increase in the prevalence of the disease and 

the fact that less than 10% of genetically susceptible individuals will eventually develop T1D 
are suggestive of a large contribution of environmental factors to disease pathogenesis. These 

may include viral infections and nutritional factors (2). Gut microbiota composition has also 
been highlighted as a possible risk factor, with several studies in humans and animal models 

implicating its potential role in disease pathogenesis (3–5). These observations have further led 

to the ‘balanced signal’ hypothesis, stating that microbiome composition may promote or 
inhibit T1D development (6). Several suggested mechanisms for the possible influence of the 

gut microbiome on T1D pathogenesis include immunological deregulation mediated by gut 
dysbiosis, as there is evidence that the microbiome plays an important role in the development 

and maturation of the immune system (7) and gut leakiness, as structural mucosal alterations 

and gut dysfunction was observed in both human and animal studies on T1D (8).  

In recent years, a rapidly growing number of studies have investigated the role of the 

gut microbiome in T1D (9). However, most studies focused on disease pathogenesis while only 
a few studies thus far have investigated the microbiome composition of individuals with a 

longstanding diagnosis, and those were mostly conducted on small cohorts and used a variety 

of computational analysis methods (10,11). In addition, while evidence on the regulating roles 
of the microbiome in normal and impaired glycemic response is accumulating in both animal 

models and humans (12), little is known on the role of the microbiome in glycemic control in 
individuals with longstanding T1D. Here, we analysed microbial composition and function in 

a cohort of individuals with T1D who are at least one year following diagnosis and the 

associations between microbial taxa, functional pathways, and glycemic indices in individuals 

with T1D. 

Research design and methods 

Study design 

We conducted a prospective clinical cohort originally designed in order to study the 

postprandial glycemic responses (PPGRs) of individuals with T1D. Full details on recruitment 
and the study protocols are specified in a companion paper by Shilo et al (13), focused 

exclusively on modeling the PPGR in individuals with T1D. In brief, on the first day of the 
study, participants were invited to a study initiation meeting at the medical center. In this 

meeting, a physician authorized participation and acquired informed consent, anthropometric 

measurements were obtained, and blood tests were drawn and analysed in the hospital’s 
laboratories. Health and lifestyle questionnaires were filled by the participants. Throughout the 

two weeks of study participation, participants used a proprietary smartphone App 
(www.personalnutrition.org), to log, in real-time, food intake, sleep times, physical activity, 

and medication intake with the exception of insulin which was recorded in the CSII devices. 

Participants were asked to follow their normal routine and dietary habits, with the exception of 
seven standardized meals. Participants were asked to provide one microbiome sample collected 

during the two weeks of study participation.  
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Participant Recruitment 

Enrollment and recruitment were conducted in three medical centers in Israel between March 
2017 and April 2019 (Fig. 1). The inclusion criteria for the study included age between 3-70 

years old (13). However, as previous studies demonstrated that the interpersonal variation in 

the composition of the bacterial communities is significantly greater among children (14) and 
as a large variation exists in clinical phenotypes between children and adults (15) , we choose 

to include only adults (18-70 years old) in the analyses presented here. Additional inclusion 
criteria were more than one year following T1D diagnosis, using continuous glucose 

monitoring (CGM) and continuous subcutaneous insulin infusion (CSII) devices 

simultaneously and a capability to work with a mobile phone app on a daily basis for the 
recording of the dietary intake. Exclusion criteria included an active inflammatory or neoplastic 

disease, pregnancy and antibiotic usage 3 months prior to participation in the study. Participants 
who reported a diagnosis of  celiac disease were excluded from all microbiome analyses since 

it was previously shown in several studies that celiac disease is correlated with a change in gut 

microbial composition (16). 
 

Study population 

Overall, 142 individuals with T1D were recruited to the study, and 124 participants provided a 

stool sample. Seven participants reported a diagnosis of celiac disease and were therefore 

excluded from microbiome analyses, resulting in 117 individuals. From them, 74 were older 
than 18 years and were included in the analyses (Fig. 1). The average age was 32.3 ±14.4 years 

(median (IQR) 26 (21-43) years) and average disease duration was 14.6 ± 9.6 years (median 
(IQR) 12 (7.8-18.3) years). Mean HbA1c% level was 7.3±1% (56.3±10.9 mmol/mol) (see 

Table S1 for mean values of all blood test results at study initiation). The mean BMI value was 

25.1 ± 4 (kg/m2). Of the 74 participants, 33 (44.6%) had at least one additional comorbidity. 
The most common comorbidities were hypothyroidism (12 participants, 16.22%) and 

hyperlipidemia (10 participants, 13.51%). Thirty-nine participants (52.7%) consumed 
additional medications apart from insulin during the study. The most common medications 

were Levothyroxine (12 participants, 16.22%), oral contraceptives (8 participants, 10.21%), 

and antilipidemic drugs (8 participants, 10.21%) (see Table S2 for a full list of medical 
conditions and medications consumed by the participants during the study). Cohort 

characteristics are presented in Table 1. Of the 74 individuals, 73 logged meals in real-time 
during the two weeks of study participation (see a companion paper by Shilo et al. (13)). Total 

energy intake was 1,666,610 kcal (22,521±7,951 per person). Average carbohydrate, fat and 

protein consumption were 43±1%, 38±7% and 17±4% from the total energy respectively.  

Cohort matching 

In order to compare between the composition of the microbiome in adults with T1D and healthy 
adults, we used gut metagenomic profiles obtained from Israeli adults (17). Out of 35,304 

Israeli adults who submitted their sample between 13/01/2017 and 01/05/2021, 14,012 were 

excluded due to a different sequencing method, and 13,295 were excluded due to the presence 
of one of the following metabolic, gastrointestinal or systemic diseases: type 2 diabetes, T1D, 

gestational diabetes, pre-diabetes, impaired glucose tolerance or impaired fasting glucose, 
metabolic syndrome, fatty liver disease, morbid obesity, inflammatory bowel disease, Crohn's 

disease, ulcerative colitis, undetermined colitis, pancreatic diseases, celiac disease, irritable 

bowel syndrome, diverticulosis, hepatitis or other liver diseases, cholangitis or other bile-
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related diseases, HIV, autoimmune diseases and cancer. Next, individuals with T1D were 
matched by age to healthy controls in a 1:4 ratio (1 adult with T1D to 4 healthy controls), 

resulting in 296 healthy individuals who were included as controls (Fig. 1, Table 1). 
Comparison between individuals with T1D and healthy controls were done using the Linear 

discriminant analysis (LDA) method (18). FDR corrected p-values were computed following 

the Benjamini Hochberg procedure and were employed at the rate of 0.1.  

Stool sample collection and Genomic DNA Extraction 

Participants entering the study received a verbal explanation from the study coordinators and 
detailed printed instructions for stool collection. Microbiome sampling was done using a swab 

and an OMNIgene-GUT (OMR-200; DNA Genotek) stool collection kit. Each participant was 

requested to collect stool via one swab and one separate OMNIIgene-GUT kit. However, only 
samples collected by OMNIIgene-GUT kits were sequenced and analysed since it has the  

advantage of maintaining DNA integrity in typical ambient temperature fluctuations and since 
samples of the control group were collected only by the OMNIIgene-GUT kits. Collected 

samples were immediately stored in a home freezer (−18°C) and transferred in a provided 

cooler to our facilities where it was stored at −80°C (−20°C for OMNIIgene-GUT kits) until 
DNA extraction. Samples from adults with T1D were sequenced between 04/2019 and 

08/2019, and samples from healthy controls were sequenced between 04/2019 and 05/2021. 
All samples analysed in this study were sequenced using the same sequencing methods 

including sequencing protocols of DNA extraction, library preparation and sequencing 

machine. Control samples demonstrated that performing the process on different days had no 

effect on the results when the sequencing protocols are kept the same. 

Metagenomic DNA was purified using MagAttract PowerSoil DNA extraction kit 
(Qiagen) optimized for the Tecan automated platform. Next-Generation Sequencing (NGS) 

libraries were prepared using Nextera DNA library prep (Illumina) and sequenced on a 

NovaSeq sequencing platform (Illumina). Sequencing was performed with 100bp single end 
reads with a depth of 10 million reads per sample. We filtered metagenomic reads containing 

Illumina adapters, filtered low-quality reads, and trimmed low-quality read edges. We detected 
host DNA by mapping with bowtie 2 (19) to the Human genome with inclusive parameters and 

removed those reads. Bacterial relative abundance (RA) estimation was performed by mapping 

bacterial reads to species-level genome bins (SGB) representative genomes (20). We selected 
all SGB representatives with at least five genomes in a group, and for these representative 

genomes kept unique regions as a reference data set. Mapping was performed using bowtie 2 
(19), and abundance was estimated by calculating the mean coverage of unique genomic 

regions across the 50 percent most densely covered areas as previously described (21). Feature 

names include the lowest taxonomy level identified. In addition, we also estimated the RA of 
bacterial groups, such as Akkermansia, Alistipes, Roseburia, Eubacterium, and 

Faecalibacterium prausnitzii as a summation of the abundances of SGBs belonging to the 

relevant species by NCBI classification. 

Microbial Biodiversity indices and functional analysis 

Microbiome alpha diversity was calculated by Shannon’s diversity index. Richness was 
calculated as a number of species in the sample detected with an abundance of at least 1e-4. 

Comparison between microbial indices and RA of microbial taxa were performed using Mann‐
Whitney U test. HUMAnN2 v2.8.2 (22) was used to integrate taxonomic information with 

functional profiles. 
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Associations with clinical phenotypes 

To analyse the association between clinical and microbial features and measures of glycemic 

control we used several indices. These included fasting glucose, HbA1c level, and lipids 
measured by a blood test at study initiation and indices calculated based on CGM 

measurements during the two weeks of study participation, available for 73 participants. CGM 

derived features included the percentage of the time spent in hypoglycemia and hyperglycemia 
defined as glucose values below 70 mg/dl (3.9 mmol/L) and above 180 mg/dl (10 mmol/L) 

respectively, time in range, defined as time spent in glucose values between 70-180 mg/dl (3.9-
10 mmol/L) (23) and coefficient of variation (CV) as a measure of glucose variability (24). For 

participants who also logged meals throughout the study period (73 individuals), PPGRs were 

calculated (see in a companion paper by Shilo et al. (13) ). Pearson correlations between the 
clinical phenotypes, RA converted to a log space of microbial taxa, and metabolic pathways 

were calculated. 

T1D prediction model based on microbial features 

To evaluate the discriminative power of microbial composition for T1D, we constructed a 

prediction model based on Xgboost (25), which solely takes microbiome features as inputs. 
This model can capture nonlinear interactions between bacteria and was previously shown to 

outperform other methods for the classification of human microbiome data (26). The mean and 
standard deviation of the ROC curve were computed by using the curves that were generated 

in 5-fold cross-validation. In addition, we verified that when randomly swapping the target 

labels, the performances reflected a random prediction, hence an AUC very close to 0.5, as an 
additional control. We analysed feature attributes using SHAP (SHapley Additive exPlanation) 

to explore model interpretability. SHAP values represent the average change in the model’s 

output upon conditioning on a specific feature (27).  

Ethical approval 

The study was approved by Rambam Medical Center Institutional Review Board (IRB); Tel 
Hashomer Hospital IRB, Shamir Medical Center IRB; and Weizmann Institute of Science IRB. 

All participants signed written informed consent forms. All identifying details of the 
participants were removed prior to the computational analysis. Trial was registredted in 

http://clinicaltrials.gov/, NCT: NCT02919839.  

Results 

Correlations between microbial strains, functional pathways, and clinical phenotypes 

We first sought to explore the associations between microbial features, functional pathways, 
and clinical parameters (Fig. 2). Several bacterial taxa were significantly associated with 

glycemic indices including a negative correlation between the relative abundance of 

Prevotellaceae species SGB592 and SGB1340 and HBA1c level (r =-0.35) and a positive 
correlation between Enterobacterales species (SGB2483) and glucose average (r= 0.41) 

(p<0.05, FDR corrected for all). Species from the Clostridiaceae family (SGB1422) were 
positively correlated with time in range (r= 0.38). Several associations between microbial taxa 

and lipids were also observed: Faecalibacterium prausnitzii species (SGB15339) were 

negatively correlated with total cholesterol levels (r=-0.41), and species from the Clostridiales 
order, and Firmicutes class (SGB1421 and 1451) were negatively correlated with triglyceride 

levels (r=-0.4). In addition, several metabolic pathways were significantly associated with 
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glucose average, including pathways relating to aromatic acid biosynthesis (COMPLETE-
ARO-PWY, r=0.42), chorismate biosynthesis from 3-dehydroquinate (PWY-6163, r=0.39), 

and chorismate biosynthesis I (ARO-PWY, r=0.42). In contrast, an inverse correlation was 
observed between pyrimidine nucleobases’ salvage pathway (PWY-7208, r=-0.41, Fig. S1) and 

glucose average (p<0.05, FDR corrected for all). No statistically significant associations were 

found between nutritional parameters and bacterial taxa.  

Microbiome composition in individuals with T1D 

To improve our understanding of the composition of the gut microbiome in T1D, we compared 
individuals with T1D to healthy controls (1:4 matching by age, see Methods). Overall, 74 adults 

with T1D were compared to 296 healthy adults. There were no statistically significant 

differences in sex, weight, or BMI between groups. As expected, healthy adults had 
significantly lower levels of HbA1c (Table 1). Microbial alpha diversity was not significantly 

different between the groups (Fig 3C), aligned with previous studies (11,28) but in contrast 
with others reporting a lower diversity in individuals with T1D (29,30). In addition, species 

richness and the ratio of Firmicutes/Bacteroidetes of taxonomic profiles were not significantly 

different between the groups (Table S3). Linear discriminant analysis showed a total of 17 
bacterial taxa with significantly higher LDA scores in individuals with T1D and 15 bacterial 

taxa with significantly higher LDA scores in healthy adults (Fig. 3A, 3D, Table S4). Bacterial 
species with significantly higher scores in individuals with T1D included Prevotella copri, 

Eubacterium siraeum, and Alistipes inops and several species with a higher score in healthy 

adults, including Firmicutes bacterium, Alistipes putredinis, Faecalibacterium prausnitzii, and 
Ruminococcus gnavus (p <0.05, FDR corrected). Dimensionality reduction techniques, 

including Principal Component Analysis (PCA), in which the principal coordinate combination 
with the greatest contribution rate was PC1 = 7.7 %, PC2 = 4.1 %, and t-distributed Stochastic 

Neighbor Embedding (t-SNE), did not reveal visually distinctive differences between 

individuals with T1D and controls (Fig. S2). On the functional level, when comparing 
metabolic pathways, several metabolic pathways, including L-glutamate and L-glutamine 

biosynthesis, L-ornithine de novo biosynthesis, and superpathway of hexuronide and 

hexuronate degradation, were significantly lower in adults with T1D (p <0.05, FDR corrected). 

Classification of individuals with T1D by microbial features 

We next analysed our ability to distinguish individuals with T1D from controls based solely on 
microbiome features. We constructed a prediction model based solely on microbial features 

and used cross-validation schemes for validation of the model (see Methods). The 
discrimination performance of the model had an area under the receiver operating curve 

(auROC) of 0.89±0.03, permutations p-value<0.001(Fig. 3B). The most impactful microbial 

taxa for the prediction were Prevotella copri, which impacted the model toward the prediction 
of T1D, and Ruminococcus, which impacted the model toward the prediction of a healthy state 

(Fig. S3).  

Discussion 

In this study, we profiled the gut microbiome composition in adults with longstanding T1D and 

identified several associations between bacterial taxa, metabolic pathways and the glycemic 
control of the host. While a growing body of evidence, mainly originating from studies on 

animal models, suggests that gut microbiota has a causal impact on host glycemic control (31) 
that may be mediated by mechanisms such as modulation of incretin secretion, short-chain fatty 
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acid production, metabolism of bile acid, and regulation of adipose tissue (32), data regarding 

the role of the microbiome in the glycemic control of individuals with T1D are still sparse.  

Here, bacterial taxa and metabolic pathways that were significantly associated with 
glycemic indices of the host included Enterobacterales species and pathways relating to 

aromatic acid and chorismate biosynthesis, which were correlated with glucose average, 

Prevotellaceae species that were inversely correlated with HBA1c level. and pyrimidine 
nucleobases’ salvage pathways that were inversely correlated with glucose average (p<0.05, 

FDR corrected for all). Several small-scale studies have previously shown different 
associations, including a study on 12 Chinese subjects with T1D (33) that demonstrated an 

inverse correlation of the abundance of Faecalibacterium and HbA1c levels, a study conducted 

in Brazil that included 20 individuals with T1D and demonstrated a correlation between the 
relative abundances of Bacteroidetes, Lactobacillales, and Bacteroides dorei and HbA1c levels 

(34). Importantly, the correlations observed in this study were not strong, and further studies 
integrating multi-omic data, including metagenomic, metatranscriptomic and metaproteomic, 

along with high-quality clinical and nutritional data, are needed to in order to identify the 

potential role of these bacteria and metabolic pathways and their influence on the host’s 

glycemic control.  

We identified a distinct gut microbial signature in adults with longstanding T1D 
compared to healthy adults. By utilizing an expanded reference set (20) for the first time in 

individuals with T1D, as well as a relatively large control group, we show a total of 17 bacterial 

taxa with significantly higher LDA scores in T1D and 15 bacterial taxa with significantly 
higher LDA scores in controls (Fig. 3). Although dimensionality reduction analyses did not 

reveal visually distinctive differences (Fig. S2) and the diversity and richness were not 
statistically different between groups, we were able to devise a model that accurately 

distinguishes between adults with T1D and healthy controls using only microbiome features 

(auAUC=0.89±0.03,.Fig. 3B). Interestingly, the most impactful microbial taxa for the 
prediction were Prevotella copri, which impacted the model toward the prediction of T1D, and  

Ruminococcus, which impacted the model toward the prediction of a healthy state (Fig. S2), 
aligned with the results of the LDA analysis, showing higher scores for Prevotella copri in T1D 

and Ruminococcus gnavus in healthy adults (Fig. 3).  

Previous studies (9) reported various results regarding the taxonomic composition of 
the gut microbiome in individuals with T1D compared to healthy controls and their 

interpretation is challenging due to a large heterogeneity in both study population and analytic 
approaches. It is also worthy to note that it was also previously shown that gut microbiota in 

type 1 diabetes differs at taxonomic and functional levels not only in comparison with healthy 

subjects but also compared to non-autoimmune diabetes (35). The most common findings in 
individuals with T1D included alterations in the following bacterial species: Bacteroides, 

Streptococcus, Clostridium, Bifidobacterium, Prevotella, Staphylococcus, Blautia, 
Faecalibacterium, Roseburia, and Lactobacillus (36). In the largest human cohort to date, no 

particular taxa was associated with the development of T1D development, but the microbiome 

of control children was found to contain more genes related to fermentation and biosynthesis 
of SCFA compared to children who eventually developed T1D (4). An additional study also 

reported a decrease in SCFA producers in individuals with longstanding T1D. Moreover, it was 
previously shown that feeding non-obese diabetic (NOD) mice with an SCFA-rich (butyrate 

and acetate) diets had substantial effects on their immune system and a protective effect from 
the development of diabetes (37). In this cohort, when comparing metabolic pathways, we 

found several metabolic pathways, including L-glutamate and L-glutamine biosynthesis, L-
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ornithine de novo biosynthesis, and superpathway of hexuronide and hexuronate degradation, 
that were significantly lower in adults with T1D (p <0.05, FDR corrected). To the best of our 

knowledge, these findings were not previously described in individuals with T1D and their role 

should be further explored in future work. 

The strength of our study includes a relatively large sample size compared to previous 

studies, the integration of data on glucose measurements obtained from CGM devices, and the 
expanded reference set we used. The greatest limitation of our study is its observational nature. 

Further studies are needed in order to attribute causality to the gut microbiome alterations we 
describe as currently whether these taxa are a cause or an effect of the disease remains unclear. 

In addition, although the sample size of the cohort is relatively large, it may still be insufficient 

to reach robust associations with clinical phenotyping. Finally, several additional factors may 
influence the composition of the gut microbiome. For example, nutritional habits may differ 

between individuals with T1D compared to healthy individuals. While we did not have detailed 
nutritional data on our control group, macronutrient distribution in the T1D cohort was very 

similar to healthy adults in Israel as measured in a previous study performed by our group (38). 

In this study, healthy individuals logged meals during one week and consumed an average of 
46±8% carbohydrate, 36±7% fat, and 15±3% protein from the total energy, compared to an 

average of 43±1% carbohydrate, 38±7% fat and 17±4% protein consumed by the T1D cohort. 
Moreover, in the group of individuals with T1D, no associations were found between 

nutritional parameters and bacterial taxa. Medication consumption may also influence 

microbial composition and we therefore excluded individuals with antibiotic usage three 
months prior to participation. While other types of medications, such as proton pump inhibitors, 

may also have an effect (39), they were only consumed by a very small percentage of our cohort 
(Table S2). Family kindred may also have a pronounced effect on the structural and functional 

composition of the gut microbiome (40). However, none of the adults with T1D included in 

this study were family members sharing the same household. Microbiome composition is also 
heavily influenced by geographic location (14), and therefore additional studies are needed in 

order to determine if our findings can be generalized to non-Israeli populations.  

In conclusion, our study highlights a distinct gut microbial composition in individuals 

with longstanding T1D compared to healthy individuals.We identified unknown associations 

between microbial taxa, metabolic pathways, and clinical phenotypes and note the importance 
of expanding the gut microbiome reference set, as it allows us to also identify associations with 

unclassified bacterial strains that may play a part in disease pathogenesis. Our findings provide 
a foundation for additional large-scale analyses of the gut microbiome in individuals with T1D 

in order to identify host–microbe interactions and to identify the causal role of these bacterial 

taxa for the development of novel therapeutic strategies in T1D.   
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Tables 

Mean (SD) T1D Adults Healthy Adults p-value 

N 74 296   

Age (years) 32.3 (14.4) 32.8 (13.9) 0.37 

Time from T1D 
diagnosis (years) 14.6 (9.6)     

Sex - Male (%) 28 (37%) 80 (27%) 0.06 

Weight (kg) 71 (12) 72 (15) 0.63 

BMI (kg/m2) 25 (4) 26 (4) 0.38 

HbA1c (%), 

(mmol/mol) 7.3 (1.0), 56.3 (10.9) 

5.1 (0.4), 32.2 

(4.4)  0.005> 

Table 1: Cohort characteristics Comparison between individuals with T1D and healthy 

controls were computed using the Mann‐Whitney U test. 

Figure legends  

Figure 1: Cohort selection. *participants were excluded due to the presence of one of the 

following metabolic, gastrointestinal or systemic diseases: type 2 diabetes, T1D, gestational 

diabetes, pre diabetes, impaired glucose tolerance or impaired fasting glucose, metabolic 

syndrome, fatty liver disease, morbid obesity, inflammatory bowel disease, crohn's disease, 

ulcerative colitis, undetermined colitis, pancreatic diseases, celiac disease, irritable bowel 

syndrome, diverticulosis, hepatitis or other liver disease, cholangitis or other bile-related 

disease, HIV, Autoimmune disease and cancer.. 

Figure 2: Correlations between microbial strains, functional pathways, and clinical 

phenotypes. values of Pearson correlation between phenotypes and bacterial species are 

presented (p<0.05, FDR corrected). Average glucose is calculated from the glucose values 

recorded in continuous glucose monitoring (CGM) devices during the study. CGM % of time 

in good range is defined as the percentage of time spent in glucose values between 70-180 

mg/dl (3.9-10 mmol/L)  

Figure 3: Microbiome composition in adults (A) LDA score (log 10) of microbial features 

that are differential between adults with T1D and healthy controls. Red- higher score in T1D, 

Green- higher score in healthy controls (HC), ranked by the effect size. g-genus, s-strain, f- 



 

family (B) Prediction model for distinguishing individuals with T1D from healthy controls: 

ROC curve of a prediction model based solely on microbiome features is presented (blue) (C) 

Shannon diversity index of individuals with T1D and healthy controls (D) Cladogram showing 

a taxonomic representation of the differences between healthy and individuals with T1D. Red 

-more common in T1D. Green  - more common in healthy controls  


