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Highlights 

 Incorporating Post-Translational Modifications (PTMs) into the immunopeptidomic 

search space enriches peptide identification 

 PTM-driven analysis reveals thousands of modified   

 Peptide modifications define new MHC binding motifs 

 Unique modified immunopeptidome signatures may be defined across multiple cancer 

types 

  

Summary 

Antigen processing and presentation are critical for modulating tumor-host interactions. While 

post-translational modifications (PTMs) can alter the binding and recognition of antigens, their 

identification remains challenging. Here we uncover the role PTMs may play in antigen 

presentation and recognition in human cancers by profiling 29 different PTM combinations in 

immunopeptidomics data from multiple clinical samples and cell lines. We established and 

validated an antigen discovery pipeline and showed that newly identified modified antigens from 

a murine cancer model are cancer-specific. Systematic analysis of PTMs across multiple cohorts 

defined new haplotype preferences and binding motifs in association with specific PTM types. By 

expanding the antigenic landscape with modifications, we uncover disease-specific targets, 

including thousands of novel cancer-specific antigens and reveal insight into PTM-driven 

antigenicity. Collectively, our findings highlight an immunomodulatory role for modified peptides 

presented on HLA I, which may have broad implications for T-cell mediated therapies in cancer 

and beyond. 
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Introduction  

Targeting tumor antigens that are bound to Major Histocompatibility Complex (MHC) molecules 

holds great promise for T cell therapies and immunotherapies. Peptides derived from foreign 

pathogens and self-proteins, which have undergone disease-related changes, such as 

mutations1–5, may elicit an immune response. Similarly, post-translational modifications (PTMs) 

such as phosphorylation, citrullination, or glycosylation6–12 may also occur on presented antigens, 

and have  been reported to modulate antigen presentation and recognition13. For example, such 

changes in the antigenic landscape were reported in clinical phospho-proteomic analysis of breast 

and lung cancer, uncovering differential activation of cellular pathways14,15. However, with more 

than 200 different types of PTMs, and the technical difficulties in detecting them, whether and to 

what extent such PTM-driven alterations expand our landscape of antigenic targets in cancer, 

remained under-explored.  

Current approaches for neoantigen discovery rely mostly on genomic or transcriptomic data16, 
combined with computational prediction tools for Human Leukocyte Antigen Class I (HLA I) 
binding17–21. Such approaches are geared towards identifying neo-antigens generated by 
mutations or non-canonical amino acid sequences. Since they are focused on the pre-
translational level, they lack information on the state of modification of the peptides. Another 
approach relies on the identification of HLA I-bound peptides by immunoprecipitation of the MHC/ 
HLA-peptide complex from the surface of cells and eluting the bound peptides prior to mass 
spectrometry (MS)-based analysis (i.e. immunopeptidomics). MS analysis and the identification 
of peptides is done by comparison of the peptides detected by the instrument to a reference 
dataset containing all the possible theoretical peptides across the proteome. Thus, to detect PTMs 
on such peptide, requires the relevant reference sequence that contains the same mass shift 
imparted by the modification. As each additional modification increases the number of theoretical 
peptide possibilities in the search space exponentially, the search time becomes a limiting factor. 
Many approaches to cope with the exponential growth of the search space when searching for 
PTMs have recently been implemented (open search22, denovo23), in various mass spectrometry 
analysis tools (MetaMorpheus24, PEAKS PTM) 23–26 . To date, however, the vast majority of PTMs, 
and combinations thereof, have not been examined in the immunopeptidome. 

To address these challenges and examine the potential landscape of modified peptides that are 

bound to HLA I in a systematic and unbiased manner, we developed a PROtein Modification 

Integrated Search Engine (PROMISE). Our computational pipeline allows for combinatorial 

detection of multiple PTMs without prior biochemical enrichment. To test PROMISE we analyzed 

the modified immunopeptidome landscape in a murine model of cancer. We could confirm our 

predictions by peptide spectra validation followed by peptide binding assay and killing assays 

towards cancer-associated modified peptides. By examining data generated from 210 samples, 

including patient-derived tumor samples and cancer cell lines, we found thousands of novel 

modified HLA I-bound peptides which generated cancer -specific signatures. Notably, some of 

these modified peptides reside within known cancer-associated antigens or cancer driver genes, 

offering a novel class of antigens which may be further examined in the context of immunotherapy.  

By systematically analyzing the locations of PTMs on MHC-eluted peptides we uncovered PTM-

driven motifs across many haplotypes, in many cases altering the anchoring positions or the 

middle region of the peptide, which is associated with T cell recognition region. We further 

confirmed these observations by using structural 3D modeling. Finally, by extending our analysis 

to a breast cancer cohort from the Clinical Proteomic Tumor Analysis Consortium (CPTAC14) 

database, we revealed cancer- and site-specific modifications. Such sites were identical to the 

ones we found in modified antigens, bringing insight into metabolic changes and the altered 

modification landscape induced by the cancerous state. Collectively, our systematic identification 
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of modified peptides and their impact on HLA I binding and recognition should broaden our 

understanding of the effects PTMs may have on defining tumor-host interactions.  

 

 

Results  

Establishment of the Protein Modification Integrated Search Engine (PROMISE) 

The assignment of peptides that were detected by the MS instrument to their cognate amino acid 

sequence is based on the reference proteome that is provided to the analysis software. As such, 

peptides that are eluted from HLA I may only be identified if they match a specific ‘theoretical’ 

peptide in a defined search space (i.e. reference proteome). Peptides that are detected by the 

MS but cannot be matched or assigned to any sequence are considered as the ‘dark matter of 

the proteome’ 27. The dark matter of the proteome may include all sequences that deviate from 

the encoded amino acid sequence of proteins, such as mutations, non-canonical translation 

products, fusion proteins, spliced peptides or PTMs 28–32. For the latter, identifying modified 

peptides that may be presented on HLA I, in a systematic manner, remains a challenge due to 

the huge search space of endogenous peptides with the numerous possibilities of protein 

modifications. In recent years, several approaches were implemented to cope with this challenge 

(MetaMorpheus24, PEAKS PTM), offering state-of-the-art solutions to peptide assignment. Here, 

we developed PROMISE (PROtein Modification Integrated Search Engine) which relies on the 

ultrafast MSFragger33 software for comparison between the theoretical peptides and the peptide 

captured in the instrument (see supplementary pipeline documentation for details). PROMISE 

simultaneously searches HLA immunopeptidomics data against multiple modification types that 

are not identified by standard analysis (Figure 1A). Modifications identified by PROMISE can 

indicate either PTMs that represent the altered protein state in the cell or modifications that may 

have been introduced during sample processing (e.g. carbamidomethylation 34 and 

deamidation35,36). Nevertheless, incorporation of diverse types of modifications to the search 

space allows us to choose the best match for the detected peptides and assign peptides that 

would otherwise not be identified. Only peptides that match better to a theoretical peptide with a 

modification than all other possible matches to the encoded amino acid sequences in the 

proteome (see materials and methods), are defined as modified peptides by PROMISE. To 

identify a broad range of PTMs, we defined 29 modification combinations of 12 modification types 

(36 mass shifts; Supplementary data 1) on 16 different amino acids and protein termini (termed 

hereafter ‘multi-modification search’). These include modifications such as methylation, 

acetylation, phosphorylation, citrullination, ubiquitination, sumoylation, oxidation, deamidation, 

cysteinylation and carbamidomethylation.   
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Figure 1. Computational pipeline for global search of PTMs on HLA I-bound peptides 
enriches identifications. (A) Protein Modification Integrated Search Engine (PROMISE) allows for 

the systematic detection of modifications on HLA I-bound peptides (B) Pie chart of modified peptides 
identified in the standard and multi-modification search performed on multiple immunopeptidomics 
datasets. Out of 32,798 modified peptides identified in the analysis, 37.29% were unique to PROMISE. 
(red). (C + D) The amino acid composition of peptides identified was compared for the standard and 
PROMISE search (C) or the unmodified and modified subsets of peptides in the PROMISE search (D). 
Circle size and color indicate the log2 transformed ratio of amino acid abundance between the two 
subsets. (E)  Peptides identified in PROMISE are binned by number of modification. (F) When viewed by 
modification site, 19,630 positions were uniquely identified by PROMISE in the immunopeptidomics 
datasets analyzed. These sites are then presented in a pie chart divided by modification type, and amino 
acid modified. (G) Peptide length distribution (density as a percentage of total peptides) per modification 
type.  
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Global search of PTMs on Human sample of HLA I-bound peptides enriches identifications 

We next sought to utilize PROMISE to identify putative modified antigens in the context of human 

cancers. To that end, we ran multi-modification search to analyze previously published high-

resolution HLA I immunopeptidomics data (PRIDE identifications: PXD0048947, PXD00039437, 

PXD00693938 , PXD00379039 , PXD00973840 ) of patient tumors tissues (n = 35) or healthy 

adjacent tissue (n = 5), cancer cell lines (n = 13), and  TILs (n = 2). To identify peptides for which 

the modified state was a better match to the spectrum, we compared our results to the original 

search criteria, which in most of our datasets included methionine oxidation and protein N-

terminus acetylation (termed hereafter ‘standard search’). In both cases, we used a subgroup 

FDR at 5% by splitting spectra into three different groups based on modification state (see 

methods), ensuring we are not increasing identifications merely by altering the false positive rate. 

The multi-modification search identified 32,798 modified peptides (Supplementary data 2). In 

total, 12,228 of the modified peptides identified were unique to the multi-modification search, 

thereby enriching the pool of immunopeptides identified (Figure 1B). While the amino acid 

composition of the immunopeptidome was similar between the standard search and PROMISE, 

we saw an enrichment in amino acids that can carry modifications when comparing the modified 

and unmodified peptide subsets (Figure 1C,D). For example, as previously described41, cysteines 

are consistently under-represented in immunopeptidomics analyses, yet constitute 2% of the 

modified immunopeptidome (Figure 1D). As expected, most of the modified peptides carried only 

one modification (Figure 1E). In total, we identified 19,630 modification sites (from 12,228 

peptides) that were unique to PROMISE, 88% of which contain modification types that are not 

included in a standard search (Figure 1F). We next analyzed the length distribution per 

modification type and observed that acetylation, citrullination, dimethylation, sumoylation, and 

ubiquitylation are longer on average than the unmodified subset (Figure 1G).  

An unbiased search of 29 modifications highlights PTM-driven preferences 

Given our global view of post-translationally modified peptides, we wished to explore if a given 

PTM has the tendency to be in certain positions within the peptide. To capture the motifs of the 

full modified peptide repertoire, we used a global FDR correction (Supplementary data 3). A broad 

view across different types of modifications reveals that some modifications have a distinct site 

preference (Figure 2A). For example, as previously shown6,7, serine phosphorylation 

predominantly falls in the 4th position of the peptide while methylation is distributed evenly across 

the peptide (Figure 2A, light green). Further, we found that oxidation and cysteinylation are 

enriched at the end of the peptide (towards the c-terminus), and carbamidomethyl is enriched in 

the third position, while cysteinylation is under-represented at the second position.  

Next, we explored whether the distribution of these PTMs is distinct from the underlying 

distributions of the amino acid residues that they modify.  In addition, we also examined an 

unbiased and broader background distribution by collectively defining all of the reported epitopes 

in the IEDB42 database. As expected, when examining a modification which is widely generated 

by sample processing/handling, like methionine oxidation, the correlation between the oxidized 

methionine position distribution and the un-modified methionine distribution is very high (Pearson 

0.96, p value = 1.05e-6) (Figure 2B). This suggests that the modification occurred randomly 

across the peptide during sample preparation (F-test; p value = 0.3543). As this was not the case 

for all the PTMs, we ordered all of the PTMs we detected based on the correlation of their 

distribution to the background (Figure 2C). This metric highlights PTM- motifs which may alter the 

HLA binding preference or TCR recognition. Peptide binding to HLA I molecules depends on the 

biochemical properties of both the peptide and HLA I structure. The most critical residues for HLA 
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I binding are the ones that fit into the anchor pockets in the HLA I groove, typically the second 

and carboxy-terminal positions43. By contrast, T-Cell receptors recognition motif is determined by 

the HLA I-peptide complex and therefore most strongly influenced by the residues in position 3 to 

7 of the HLA I-bound peptide44,45. In the presented matrix for example, known motifs, such as the 

tendency of serine phosphorylation modification at position 46,7, were also emphasized as low 

correlation in this analysis (Pearson 0.41, p value =   0.21) as there was a strong deviation 

between the phosphorylation and underlying serine distributions (Figure 2D; F-test; p value < 

2.2e-16). This was identified despite any experimental or computational enrichments for specific 

modifications, as we used a broad search that was not modification-specific. Beyond confirming 

known motifs, we also identified novel ones. For example, lysine residues are generally 

underrepresented in the HLA I binding pocket at the second position of the peptide. However, 

modified lysine residue distributions (e.g. acetylated and methylated lysine) do not produce the 

same pattern (Figure 2E). This suggests that unmodified lysine residues in the anchoring position 

are unfavorable for HLA I binding and that the modified state of a lysine residue may be preferred.  

In contrast, modified arginine such as di/methylated arginine and citrullination are over-

represented in positions 3 to 7, and therefore may impact the T-cell receptor recognition44 (Figure 

2F), as was previously shown for other modifications types. Interestingly, while cysteine 

modifications on peptides in MS analyses are considered to be introduced by sample processing, 

in our analysis of the HLA I landscape they have a distinct distribution motif where cysteine 

carbamidomethyl is enriched in positions 3-4 and cysteinylation is enriched in positions 7-8 

(Figure 2C).  

The deamidation of asparagine residues occurs naturally at glycosylated sites on proteins36 and 

these sites have a strong consensus sequence motif of asn-x-ser/thr. Peptides with N-

deamidation and the glycosylation motif, suggesting they are biological in origin, show a distinct 

tendency to be located on the 3rd and 4rd position of the peptides (Figure 2G; F-test; p value < 

2.2e-16).   
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Figure 2. PTM-driven binding preference highlighted through unbiased search of 29 

modifications 

(A) All the peptides with modifications identified in the reanalysis of the  Bassani et al37  dataset by PROMISE (n 

= 12,268 peptides) are sorted by the modification type and position in the peptide. Each line represents a distinct 

peptide in grey with the modification site(s) colored. (B) Correlation between oxidized methionine position 

distribution and the un-modified methionine distribution is very high (Pearson 0.96, p value 1.05e-6), and as 

expected from a technical artifact the distributions are not significantly different (F-test; p value = 0.3543). (C) 

Modification distributions are sorted by the correlation between the modified amino acid and the un-modified 

background. A low correlation means the PTM distribution is distinct from the unmodified background, suggesting 

a PTM-driven motif. (D-F) We compared the modified amino acid position distribution (“Modified”, red) to the 

distribution of the unmodified amino acid that carries this modification in the analyzed datasets (“background”, 

grey) or identified in the IEDB 42 database (“IEDB”, blue). Major differences between those distributions suggest  
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HLA I binding properties are altered by the modification state of the presented peptide  

The biochemical binding properties of specific HLA haplotypes are the strongest determinants of 

peptide motifs. To examine whether the PTM-driven motifs we have detected is associated with 

specific haplotypes, we re-analyzed mono-allelic HLA immunopeptidomics data from Abelin et 

al18 (MassIVE: MSV000080527). We conducted the same multi-modification search as described 

above (Supplementary data 1) on the spectra obtained in this study. Indeed, we could identify 

unique motifs that were haplotype-dependent, using the unmodified amino acid distribution as a 

background. To focus on the most prominent features, we defined a ‘site score’ such that 

enrichment in the anchor positions will result in a positive score while enrichment in the middle of 

the peptide will result in a negative score. In case the PTM is present in many positions in the 

peptide, the score will be close to zero and we cannot classify the tendency of the modification to 

be in a specific area. We then clustered the biological PTMs and haplotypes contained in the 

dataset by their site score (Figure 3A). This analysis revealed that the same PTM might affect 

peptide-MHC-TCR interactions differently for different haplotypes. Intriguingly, among the specific 

HLA haplotypes that we analyzed, we found several HLA associations with human diseases. For 

example, HLA A*0301 was linked to increased risk for multiple sclerosis 46 and HLA B*5101 was 

linked to Behçet's disease47. Our analysis identified both haplotypes to be highly enriched with 

PTMs in the region that is predicted to affect TCR recognition.   HLA-A0201 was previously 

reported to  show a protective effect in EBV-related Hodgkin lymphoma patients48 and in our 

analysis was enriched with modifications on the anchoring position of the peptide. While it remains 

to be examined whether certain PTMs play a role in disease-associated manifestations, it has 

been reported that low HLA binding of disease-associated epitopes can be increased by PTMs49.  

PTM enrichment in the middle of the peptide, potentially affecting TCR recognition, could be 

observed with methylated arginine on haplotype B5401 (Figure 3B) or ubiquitin tail on lysine on 

haplotype A0301 (Figure 3C). PTM enrichment in an anchor position were classified into three 

groups:  The first group is comprised of chemical mimics, where the modified amino acid is 

biochemically similar to a different amino acid that was known to be part of the motif.  For example, 

we identified an enrichment of deamidated asparagine in position 3 of the haplotype A0101 motif. 

Deamidated asparagine is chemically similar to aspartic acid which appears in the A0101 binding 

motif at position 3 (Figure 3D). As we could not find an unmodified peptide carrying asparagine 

bound to this haplotype, this result suggests that the modification occurred on the peptide before 

being bound to the HLA, possibly due to the removal of a glycosylation50,  and the modified 

asparagine enables the binding of the peptide to the HLA. Enrichment of deamidated asparagine 

and glutamine at HLA haplotype A6802, B4402, and B4403 (Supplementary data 4) are additional 

examples of chemical mimics.  The second group contains PTMs that cause binding interference. 

This group is defined by PTMs that sterically hinder the interaction of the peptide with the MHC 

haplotype, creating an unfavorable binder. For example, acetylated lysine is under-represented 

  that the modified amino acid has position preferences not solely determined by the properties of the 

unmodified amino acid. Below each histogram, the fold change between the modified AA and unmodified 

AA distribution is presented as a heatmap bar (red indicates overrepresentation of the modified AA relative 

to the unmodified distribution). (D) Distribution of serine shows the phosphorylated form falls predominantly 

falls in the 4th position and significantly different from the unmodified serine distribution (F-test; p value < 

2.2e-16). (E) Lysine residues are underrepresented at the second position of the peptide, however the 

distribution of the dimethylated form is enriched at the second position compared to the background (F-test; 

p value < 2.2e-16).  (F) Methylated arginine is enriched in positions 3 to 7 compared to background arginine 

(F-test; p value < 2.2e-16). (G) Deamidated asparagine with a glycosylation motif is enriched in position 3 

and 4 compared to background asparagine (F-test; p value < 2.2e-16).  
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in the C-terminus of haplotype A0301 (Figure 3E) compared to the unmodified background. 

Importantly, we found this observation to hold true for all of the modified lysines detected in this 

haplotype, suggesting that the modification of the carboxy-termini could be an immune evasion 

mechanism. Other examples for binding interference are methylated glutamic acid at anchor 

position 2 of haplotype B4402/3, and dimethylated arginine at the C-terminus position of haplotype 

A3101 (Supplementary data 4). The third group is novel motifs where the modified amino acid 

creates a favorable binder peptide that is different from the known unmodified motif. It was shown 

that phosphoserine can replace glutamic acid at anchor position 2 of haplotype B40029. In our 

dataset, we detect methylated glutamine at the peptide C-terminus in haplotype B5401 (Figure 

3F) and oxidized proline was observed at the anchor position two of haplotype A0201 (Figure 

3G). The latter observation is common to the whole haplotype superfamily A02 (Supplementary 

data 4).  

Next, we evaluated the possibility of a novel PTM binding motif using structural modeling. To that 

end, we chose two representative modified epitopes identified as binders of haplotype A0201 and 

one representative epitope identified as a binder to haplotype B5401. All of them are shared 

across cancer cell lines and patient's tumor samples. We used Rosetta FlexPepDock51 to model 

the structure of the interactions of these novels MHC-binding PTM motifs, 

K(ac)P(ox)SLEQSPAVL, KP(ox)LKVIFV and MPTLPPYQ(me). For each such motif, we modeled 

both the modified and unmodified peptides and compared their calculated binding energies and 

structures (“Reweighted score”). In all cases, the interactions between the MHC and the modified 

peptide interactions were predicted to be considerably stronger, suggesting the complex is more 

stable than the non-modified counterpart (Figure 3H, I, Supp. Fig 1) in agreement with the 

predictions from PROMISE immunopeptidomics analysis. In the case of peptide 

K(ac)P(ox)SLEQSPAVL binding to HLA-A*0201, our model suggests that the hydroxyl group of 

peptide P(ox)-2 forms a stabilizing hydrogen bond with receptor E-87 (Figure 3H). Overall, our 

models recapitulate an interaction similar to a solved structure of HLA-A2 in which T-2 forms 

hydrogen bonds with receptor K-90 and E-87 (1TVB52). As for K(ac)-1, in some of our models it 

interacts with the aliphatic part of receptor K-90, while in others it further stabilizes the peptide. In 

the case of peptide MPTLPPYQ(me) binding to HLA-5401, Q-8 is positioned in the highly 

hydrophobic pocket that binds the canonical aliphatic c-terminal peptide position. Methylation 

allows the otherwise polar (negative) side chain of glutamine to approach (“fill”) the pocket and 

thereby stabilize the complex (Figure 3I). Together our findings show that modified peptides are 

distinct from their coded counterparts in haplotype preference, binding motifs and structural 

interactions. We therefore wished to examine whether PTMs may also alter antigen reactivity.   



-10- 
 

 

 

 

Figure 3. PTM-driven HLA motifs 
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Modified peptides identified by PROMISE are specific to cancer and can elicit CD8 T cell 

reactivity  

To test whether PROMISE-identified peptides may be antigenic, we performed 

immunopeptidomics on MC38 murine colon cancer cells, aiming to uncover tumor-associated 

modified peptides which elicit T cell reactivity (Figure 4A). PROMISE multi-modification search 

analysis revealed 2,803 peptides, 36% of them with at least one PTM (Figure 4B). To determine 

which of the modified peptides are unique to the MC38 cancer cell line and are not detected in 

healthy tissue, we utilized PROMISE to analyze immunopeptidomics data of healthy mouse 

tissues from Schuster, H. et al53, using the  multi-modification search (Figure 4C). We chose 20 

modified peptides that did not appear in healthy tissues and were not reported in IEDB 

(Supplementary data 5). We then proceeded to synthesize and validate these peptides. All the 

synthesized peptides were confirmed to match the original identification through manual 

annotation and scoring of spectrum similarity (Figure 4D, Supp. Fig 2).  These included peptides 

with N-terminal acetylation, citrullination, dimethylation, methylation, phosphorylation and 

SUMOylation remnants (GGT) (Figure 4D). Next, to validate the ability of putative peptides with 

modification to serve as bona-fide antigens and bind MHCI,  we selected five modified peptides, 

which originated from genes annotated by the human protein atlas54 as prognostic markers for 

different cancer types. We utilized the TAP (transporter associated with antigen processing) 

deficient RMA/S cell line55 incubated with the modified peptides and their unmodified counterparts 

at different concentrations (Figure. 4E, Supp. Fig. 3). Three out of the five displayed a strong 

binding preference in physiological relevant concentrations, similar to the influenza A peptide 

control (ASNENMETM), a known MHC Db binder.  Peptide FYH(me)PGVNGPPL from Ppp1r10 

scaffold protein and peptide SSVENIQR(me)V from gene Jup show similar binding profiles in both 

(A) A recognition area score was calculated (see methods) to determine the tendency of a given 

modification to be located in the MHC anchor position (purple) or center of the peptide (green) for a 

given HLA haplotype. (B-C) The histogram then represents the modified amino acid frequency in each 

position (red) compared to the unmodified amino acid background (grey).  C-terminus and C-1 are 

presented at position 8 and 9 (see methods). (B) Methylated arginine in haplotype B5401 is enriched in 

position 4-6. (C) Ubiquitin tail on lysine is enriched in position 3 of haplotype A0301. (D-G) Motif of the 

reported unmodified epitopes in the IEDB database for the indicated haplotype (top). The canonical 

modified motif was then compared to the amino acid motif for a given modification (middle). The 

histogram then represents the modified amino acid frequency in each position (red) compared to the 

unmodified amino acid background (grey).  C-terminus and C-1 are presented at position 8 and 9 (see 

methods).(D) Chemical mimics motif: Aspartic   acid is favored in the A0101 binding motif at position 3. 

(E) Binding interference: acetylated lysine is under-represented in the C-terminus of haplotype A0301. 

(F, G) novel motif: methylated glutamine at the peptide C-terminus in haplotype B5401 and oxidized 

proline at the anchor position 2 of haplotype A0201 creates favorable binder peptides. (H + I) Rosetta 

FlexPepDock structural models of the interactions between the modified peptide (yellow sticks) 

including the modified amino acid (green)and the MHC molecule (grey surface \ cartoon). The effect of 

the modified amino acid is shown in detail in the zoom-in picture. FlexPepDock reweighted score was 

calculated for the interaction between the MHC and modified or unmodified peptide. More negative 

score indicates a more stable interaction. (H) Interaction between K(ac)P(ox)SLEQSPAVL and 

haplotype HLA-A0201,hydrogen bonds introduced by the modification shown as dashed green lines. 

Other hydrogen bonds between peptide and receptor are shown in yellow dashed lines. (I) Interaction 

between MPTLPPYQ(me) and haplotype HLA-B5401: The glutamine methyl group is shown as green 

sphere, MHC interacting residues shown as gray spheres. The modified peptide shows significant lower 

predicted affinity (measured as FlexPepDock reweighted score). 
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the modified and unmodified forms. Peptide FSGVSTKS(p)PI showed higher binding than the 

unmodified form. 

To test the in vivo reactivity against the top three binders, we performed bone marrow derived 

dendritic cell (BMDCs)-mediated immunization, followed by in vivo killing assay, adapted from 
56,57 with the following alterations: we used splenocytes loaded with either the modified peptide 

(labeled with a high concentration of cell tracker dye), unmodified peptide (labeled with low 

concentration) or unloaded splenocytes (labeled with a medium concentration) and injected them 

in 1:1:1 ratio into immunized mice. After 18 hours, specific killing was measured (Supp. Fig. 4A). 

One of the modified peptides, SSVENIQR(me)V, induced 10% specific killing (Figure 4F), 

suggesting that this peptide can elicit peptide-specific cytotoxicity in vivo. By contrast, the 

percentage of specific killing did not significantly differ between the splenocytes loaded with 

unmodified peptides and the unloaded splenocytes control, indicating that the modification itself 

impacted the response.  
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Figure 4. Modifications on MC38 associated peptides modulate MHC binding and alter 

CD8 T cell activation and killing 

(A) Peptide selection overview:  20 putative peptides that were identified in the MC38 cancer line and 

not in the healthy mouse tissues, using PROMISE,  were selected for spectral validation by synthetic 

peptides. Five were then screened for MHC binding of which three strong binders were tested for T cell 

reactivity. The pie charts borders and size show the types of modifications and the number of peptides 

which were tested. (B) PROMISE analysis of MC38 immunopeptidome identified 2,803 peptides. (C) 

Modified peptides from PROMISE multi-modification search analysis of 19 different tissues from healthy 

mice  (Schuster, H. et al dataset) as well as MC38 cancer cell line (total number of peptides = 8,547) 

are presented by their MS intensity (color code in red) in the relevant column specifying the tissue of 

origin in which they were identified.  Tissues are clustered by similarity revealing shared modified 

peptides between MC38 and healthy tissue (dark gray panel on the left) and unique peptides to MC38 

(yellow on the left panel; dashed square). 
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The modified HLA I landscape uncovers hundreds of tumor-associated modified antigens 

Given the growing interest in identifying antigenic targets for immunotherapy, we examined 

whether we identified modified peptides originating from cancer-associated or testis antigens. We 

identified 98 peptides that originated from a protein annotated as a testis antigen (CT Antigens 

Database58, Figure 5A - left). For these, we examined their mRNA expression in TCGA data of 

the matching cancer types (Supp. Fig 5A) and found a subset to be overexpressed in the tumor 

tissue when compared to the adjacent controls (Supp. Fig 5B).  We also identified 300 peptides 

that are highly shared between patients and across cancer cohorts (Figure 5A, right). Many of 

these proteins are also annotated as oncogenes, cancer drivers, or tumor suppressors59, 

highlighting the importance of studying the state of these proteins in tumor immunogenicity. None 

of these cancer-associated target peptides would have been identified without including PTMs in 

the protein search space.   

 

(D) Examples of modified peptides identified in the datasets, each peptide was synthesized (Peptide 
2.0 Inc) and its spectrum was captured using mass spectrometry. A similarity score was calculated 
between the synthesized spectrum (red) and the original spectrum in the dataset (blue). (E) The MFI of 
Db stained RMA/S cells incubated with the indicated peptide at the concentrations listed on the X-axis 
(n=3, error bars indicate SD of MFI). (F) In vivo Killing. Splenocytes from CD45.1 mice were pulsed with 
either modified or unmodified peptides, or unpulsed as control, and differentially labeled by specific 
dyes. Labeled splenocytes were injected in 1:1:1 ratios of modified peptide pulsed: unmodified peptide 
pulsed: unpulsed into mice that had been immunized prior to tumor injection with modified peptides. 18 
hours later, the differentially labeled CD45.1 splenocytes were harvested and counted. The killing 
percentage of splenocytes that were peptide-pulsed is calculated relative to the killing of unpulsed 
splenocytes (n = 3 mice).   Negative values reflect less killing than unpulsed control, and killing by 
splenocytes pulsed with unmodified peptides did not differ significantly from killing of unpulsed cells (p 
values from one sample student’s t test, mu = 0).  
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To focus on the modified peptides we identified with PROMISE associated with a specific 

haplotype I, we filtered for modified peptides that were identified in immunopeptidomics from a 

HLA-A0201 cell line and that were not identified in IEDB in their unmodified form (Figure 5B).  We 

then examined whether the difference in the detection of the modified peptides and their 

unmodified counterparts was due to their relative ability to bind HLA-A0201. Using structural 

modeling, we were able to show that the methylation on the lysine in position 6 of TLIESKLPV is 

located between 3 other positively charged residues (H-98, R121, and H-138; Figure 5C). 

Methylation of K-6 removes its positive charge and thereby alleviates electrostatic repulsion. In 

addition, the methyl group is nicely packed into the hydrophobic MHC groove. This then causes 

a more stable peptide-MHC interaction as reflected in a lower reweighted score. To assess the 

role of peptide modification in altering MHC binding we synthesized 6 peptides and examined 

binding using a binding assay (ProImmune, see methods). Of the peptides synthesized, 4 

modified peptides were confirmed as HLA I binders (Figure 5D).  

 

Figure 5. Tumor-associated antigens and cancer-specific classes of PTMs 

 (A-B) Each list of antigens is sorted by the modification of the peptide. For each peptide we mark the 

cancer annotation (driver, oncogene, tumor suppressor) as documented in CancerMine 59 if the peptide 

was reported in IEDB  42 in its unmodified state, and if it is a cancer-testis antigens. For a cohort of 

patient samples (orange) the color indicates the percentage of the patients the peptide was identified 

in. For cancer cell lines (blue) the color indicates that the peptide was detected. (A) Modified cancer-

testis antigens list (n= 98, left) and a list of shared antigens (n=300, right) identified through the modified 

state.(B) A list of HLA-A0201 bound modified peptides that were not reported in the IEDB database. 

(C) Rosetta FlexPepDock structural model of the interactions between TLIESK(me)LPV (yellow sticks) 

and the HLA-A0201 molecule (grey surface / cartoon). The methylated lysine (green) is packed against 

hydrophobic residues of the MHC molecule (gray spheres). The modification created a more stable 

interaction with the MHC molecule. (D) Six modified peptides from the list in B’ were tested for binding 

affinity through ProImmune in vitro binding assay. 

 



-16- 
 

Cancer-induced alterations in metabolic and PTM states are presented in the antigenic 

landscape 

To determine whether these signatures are also specific to the cancer state in clinical settings, 

we analyzed immunopeptidomics data from a cohort of Triple-Negative Breast Cancer (TNBC) 

and adjacent tissue 40. Within this cohort, we found 2,771 modified peptides. We assessed 

whether there are classes of PTMs that are more frequent in the immunopeptidome of the tumor 

samples versus their adjacent controls. We found several modifications that were significantly 

reduced in frequency in the tumor immunopeptidome, including carbamidomethyl and 

citrullination (Figure 6A). Further, we found that cysteinylated peptides are significantly increased 

in the tumor immunopeptidome. The tumor and adjacent tissues were processed and analyzed 

together and therefore are not expected to have differential effects in modifications that were 

generating merely by the processing procedures. As such, the results likely signify changes in 

modifications elicited by the biological system. These changes may reflect alterations in metabolic 

pathways or peptide processing.  For example, it is known that TNBC is addicted to cysteine60,61, 

potentially explaining the increase in cysteinylated immunopeptides. 

Although the frequency of the phosphorylation did not exhibit any significant differences between 

the tumor tissue and the adjacent controls, we found 27 phosphorylated peptides, which only 

appeared in the tumor tissue and not in the adjacent control. We hypothesized that these tumor-

specific phosphopeptides might originate from proteins that are phosphorylated more in breast 

tumor tissue. To examine this, we compared the immunopeptidomics to clinical 

phosphoproteomics data. Surprisingly, we could find that from the sites identified both in the 

immunopeptidomics and phosphoproteomics 42% were phosphorylated in both (Figure 6B). This 

is despite the fact that, on average, when comparing between different samples in the 

phosphoproteomics there is only a 37% overlap in phosphosites (Figure 6B). Furthermore, of the 

phosphosites identified in both cohorts, all were increased in the tumor compared to adjacent 

tissue, both on the phosphoprotein and HLA I-bound peptide levels (Figure 6B). This suggests 

that tumor-induced alterations of modifications on cellular proteins can propagate to changes in 

the presented landscape.  
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Figure 6. Modified HLA-bound peptides create cancer-specific signatures  

(A) The percent of immunopeptides identified with each of the indicated modifications was 

calculated for a cohort of triple-negative breast cancer tumors and adjacent tissue (Ternette, N. et 

al40). The modifications are sorted from the most enriched in the tumor tissue at the left to the most 

enriched in adjacent tissue at the right. A students T-test was used to determine significance of the 

observed change in percentage:  Cysteine cysteinylation is significantly enriched in the tumor (***p 

= 0.00045) while histidine oxidation (*p = 0.044), arginine citrullination (*p = 0.013), lysine 

ubiquitination (**p = 0.0031) and cysteine carbamidomethylation (**p = 0.0078) are significantly 

enriched in the normal tissue. (B) The percentage of overlapping sites between a randomly chosen 

subset of the cohort (30 peptides from 6 samples) and the remaining samples is shown. This was 

repeated 10,000 times to generate the intra-replicate distribution (light green; the mean is depicted 

as a dark green dashed line). The overlap for the identified phosphosites in the immunopeptidomics 

data and the CPTAC data is shown as a black line (top left). The abundance in the CPTAC cohort 

for the 5 overlapping phosphosites are shown in the tumor and adjacent tissue samples (wilcox p 

values for tumor vs. adjacent abundance is indicated in the figures). 
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Discussion 

By developing PROMISE, we systematically analyzed the PTM landscape in the 

immunopeptidome and identified thousands of modified peptides across different cancers. 

Although numerous studies have examined HLA I presentation of modified peptides in the context 

of tumor antigenicity and autoimmune disease6–10,62, such analysis relied on experimental 

enrichment of the modification of interest. The capability to search large number of PTMs allowed 

us to identify types of modifications that were not examined before in the context of antigen 

presentation. For example, recent studies have suggested that the proximal ubiquitin may 

undergo proteasome degradation with its substrate63,64. Indeed, we could detect some remnants 

of ubiquitin-like modifications in our analyses. However, while we were able to validate their 

spectra, indicating that these are true identificationsthey were not found to be strong binders to 

MHC and it is not yet clear that they are loaded and presented on MHC I.  

Modified-peptide analysis, coupled with structural modeling and binding assays, strongly 

suggests that modifications may generate novel HLA I binding motifs that could not be identified 

merely by the amino acid sequence. For example, cysteine is under-represented in HLA I ligand 

datasets41 hampering accurate binding predictions of cysteine-containing peptides65. However, 

by including several cysteine modification types in our search space, we could identify presented 

peptides containing cysteine with distinct motifs. Another example is the under-representation of 

unmodified lysine residues in the 2nd position anchoring site in the reported epitopes in the IEDB 

compared to the presence of modified lysine at this position. Notably, some of the peptides that 

we have identified do not match the consensus binding motif (8-11 mers). This may be driven by 

the PTM or reflect previous observations that have described longer peptide binding66–72. As 

binding motifs are the dominant selection criteria for antigen prediction algorithms65,73, PTM-driven 

motifs should prove invaluable to the next generation of binding prediction software62. It will be 

intriguing to examine PROMISE in the context of additional modifications. This type of analysis 

may also be extended to include mutations and the MHCII repertoire and non-canonical peptides 

such as ones generated by splicing, fusions or from non-coding regions 28–32.  

Beyond expanding the HLA landscape, modified peptides may also signal changes in metabolic 

and signaling states of the cells under physiological or pathological circumstances. Notably, by 

comparing cancerous tissues and adjacent controls in TNBC, we found changes in the frequency 

of different modification types in the imunopeptidome.  Further, we could confirm that 40% of the 

phosphorylation sites identified on HLA I-bound peptides also exhibited increased abundance in 

phosphoproteomics of breast cancer (CPTAC data). We note that the detection of the peptide 

may be due to both higher abundance of the protein or increased phosphorylation. Nevertheless, 

these results suggest that intracellular changes in the phospho-state of proteins, prior to 

degradation, may be kept and loaded onto HLA for presentation to create unique HLA signatures 

in breast tumors (Figure 6C). Although beyond the scope of this study, it also raises the intriguing 

possibility that drug-induced alterations in the activation of specific pathways may, in turn, alter 

 (C) Typically, antigenic peptides are classified by their genetic origin, including mutations, cancer-germline 

genes expressed outside of their biological context, oncogenic virus genes, genes with highly tissue 

specific expression patterns, or overexpression of genes with low endogenous expression (left block). In 

all these cases, PTMs can increase both the identification and therapeutic potential of these antigenic 

peptides. Likewise, PTMs can themselves be a source of antigenicity when pathways are activated in a 

disease-specific manner (right block) creating a PTM-driven antigenic epitope.  

------------------------------------------------------------------------------------------------- --------------------------------------  
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the HLA repertoire. In the future, this feature may be utilized to direct immune responses against 

specific antigenic peptides in combination with targeted therapies 1–4.   

Previous studies6–12,74,75 together with our analyses, highlight the potential of modified antigens to 

play an immunomodulatory role in tumor-host interactions and may drive either immune 

suppression or immune evasion. While this class of modified antigens may offer novel therapeutic 

opportunities, there are important questions that remain to be addressed before these may be 

utilized for cancer therapy. For example, the tissue specificity of a potential immunogenic 

modification, the heterogeneity and stability of an altered modification state will need to be 

examined in the context of T cell recognition. Nevertheless, our analyses identified hundreds of 

modified testis antigens and tumor- associated peptides, which may serve as a new source of 

modified neoantigens in the context of immunotherapy. Coupled with patient-specific 

modifications, which occur sporadically and can be targeted for individualized therapy, we foresee 

that a broad range of potentially therapeutic antigens may be detected when analyzing peptide 

modification states. Beyond cancer, our approach may be utilized to expand our understanding 

of the PTM-driven HLA repertoire across different human pathologies, ranging from infectious 

diseases to autoimmunity and neurodegeneration.  
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Material and Methods  

PROMISE 

Current proteomics software focuses on data from samples where an exogenous enzyme, like 

trypsin, was used to digest the proteins into peptides. This reduces the potential search space to 

only peptides with either lysine (K) or arginine (R) terminal residues. By contrast, HLA class I 

peptides are cleaved by the proteasome and a number of endopeptidases, generating peptides 

that are between 8 and 15 amino acid residues and may have  any terminal residue. 

Computationally, this means that the search space for endogenously-cleaved peptides with 

modifications must contain every potential protein fragment with multiple potential mass shifts, 

leading to an exponential growth of the search space and making the duration of the search  

challenging76. PROMISE (PROtein Modification Integrated Search Engine) optimizes search 

efficiency with two stages: a) matching phase and b) prioritizing phase (supplementary pipeline 

documentation). The matching phase reduces the algorithm running time, utilizing the ultrafast 

MSFragger33 software and parallel computing on a CPU cluster. The prioritizing phase includes 

several computational steps to distinguish between true and false hits, validate PTM 

identifications and site position and rank predictions by their biological relevance and antigenic 

potential. To evaluate pipeline performance, we used the full human proteome from UniProtKB 

as reference data and searched for endogenous proteasome-cleaved peptides77 (length between 

6 and 40 amino acids) with 5 variable modifications, creating a search space of ~31 billion 

potential peptides. To assess the reproducibility of the identified peptides by the distributed 

version and the standalone MSFragger we compared the spectral assignments from identical sets 

of data and found that 99.2% were identical.  We then compared the identifications in PROMISE 

to those with the original search criteria (standard search: only n-acetylation and methionine 

oxidation included). In cases where the peptide to spectrum matches (PSMs) conflicted between 

the two searches (1.22% of PSMs),PROMISE prioritizes the highest scoring match. Although the 

scoring  alone is not a guarantee of a true assignment, it does suggest that the inclusion of a 

modification in the predicted peptide better described the spectrum. 

For the paper analysis we used a subgroup FDR whereby we split the identifications into three 

groups: unmodified, standard search modification types (n-acetylation and methionine oxidation) 

and the other modification types. For the MC38 immunopeptidomics where the cohort was too 

small to successfully execute subgroup FDR (Figure 4)  and where additional enrichment analysis 

where being performed (Figures 2, 3 and 6A) we used a global FDR. In both cases, the cutoff 

was set to 5%. In cases where subgroup FDR was used across multiple cohorts, we included any 

peptide that passed the subgroup FDR in at least one cohort. Detailed software architecture and 

performance can be found in the supplementary pipeline documentation.  

Modification Annotation and Classification 

In order to assess the effects of modifications in a holistic manner, we considered both 

modifications that may arise during sample processing or handling and ones that reflect an altered 

cellular state (“biological”). This was done using the UNIMOD classification system (unimod.org).  

We explicitly note that the nature of the modification is not sufficient to determine whether the 

modified form was generated due to biological regulation or whether the peptide is presented on 

its modified form. As peptides may exist in the cell in either their modified or unmodified form, we 

chose for validation only peptides that were significantly different between the cancerous and 

control conditions. When a peptide contains multiple modification types, we defined a leading 

modification, prioritizing ‘biological’ modifications over some that may be considered as technical 

(based on the unimod classification).  



-21- 
 

Search mass boundary effect correction 

The search space in the analysis is bounded by a 15 amino acid peptide length. This can result 

in incorrect assignments when a contaminant with a mass higher than 15 AA is assigned to a 15-

mer peptide with a high mass shift modification. As we search for PTMs with large mass shifts 

(e.g. ubiquitin tail with 4 amino acid GGRL - 383.228103 Da), this can lead to mis-assigned 

spectra. Because the longer peptide is not part of our search space we cannot rule out that a 

better match exists or that there is a higher scoring match above 15 AA.  Therefore, to avoid a 

bias we filter out potential mis-assignments by limiting the total peptide mass to the average mass 

of 15 amino acid peptide plus 100 Da when comparing peptide lengths (Figure 1G). 

HLA I motif 

HLA I motif presentation was designed to capture both the main anchor position 2 and C-terminus 

and the TCR recognition area (position 3-7). The presented motif was created by collecting all the 

epitopes reported for the specific HLA haplotype from the IEDB42 database. Epitopes with length 

less than 8 amino acids were discarded. To correct for discrepancies in length, the motif was 

constructed from positions 1 to 7 starting from the N terminus followed by the C terminus and its 

preceding position. For 9 mer epitopes, the motif is taken from all 9 positions, for 8-mer epitopes 

the 7th position is duplicated and presented as both positions 7 and 8/C-1. For epitopes longer 

than 9 residues, the motif skips positions 8 till C-terminus -1. Motif logos were plotted using 

Seq2Logo 2.078 with default parameters. The comparable motif was created using Two-Sample-

Logo79 

Site score 

The score was designed to determine if a PTM tends to fall within the peptide anchor positions or 

the center positions (3-7) of the peptide. By summing up the differences between the distribution 

values of modified amino acids vs the background in the anchor positions (2, C-terminus) and 

subtracting the sum of distribution differences in the center positions (3-7). An enrichment in the 

anchor positions will result in a high positive score while enrichment in the center of the peptide 

will result in a negative score. In case both the center and anchor positions are enriched or under-

represented, the score will be close to zero and we cannot classify the modification tendency to 

be in a specific area. 

TCGA, CPTAC Phoshoproteomics, and Immunopeptidomics Analysis 

The cancer genome atlas (TCGA) data was mined using the xenaPython package in Python 3.6. 

The results shown in this analysis are in whole or part based upon data generated by the TCGA 

Research Network:  http://cancergenome.nih.gov/. Colon Adenocarcinoma (COAD), Breast 

Cancer (BRCA) Skin Cutaneous Melanoma (SKCM), and Glioblastoma (GBM) cohorts data were 

used.   Data used in this publication were generated by the Clinical Proteomic Tumor Analysis 

Consortium (NCI/NIH). The CPTAC Breast Cancer phosphoproteomics data 14 was compared to 

the Triple-Negative Breast Cancer immunopeptidomics data 40. The CPTAC intra-replicate site 

overlap was calculated from the tumor samples in the cohort by randomly drawing 30 

phosphosites from 6 samples in the same TMT experiment and comparing the identification to 

the remaining TMT experiments. This was done 10,000 times and is presented in Figure 6B. The 

overlap between the CPTAC phosphoproteomics and immunopeptidomics was defined as the 

number of phosphosites identified in both CPTAC and immunopeptidomics data (n = 5) out of the 

sites which were covered by peptides in both datasets (n = 12). The remaining 18 sites only had 

http://cancergenome.nih.gov/
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peptides covering them in the immunopeptidomics data and therefore could not be evaluated in 

the tryptic CPTAC cohort.  

Modeling the peptide-receptor complex 

General modeling scheme –The FlexPepBind scheme used here80,81 allows the structure-based 

evaluation of the relative binding affinities of different peptides for a given receptor, using a solved 

structure of a representative peptide-protein interaction as a template. Structures of peptide-MHC 

complexes were generated by “threading” candidate peptide sequences onto this template, 

followed by refinement using Rosetta FlexPepDock51. The top-scoring models were selected to 

discriminate stronger from weaker binders and inspected for the structural details of an 

interaction. 

- Selection of templates for modeling 

For each of the MHC alleles (receptors) and peptides, we evaluated different available PDB 

structures to serve as templates for the modeling of the structure and relative binding affinities of 

different peptides. Screening for relevant PDB templates was guided by 3 main requirements: (1) 

matching MHC allele, (2) matching peptide length, and (3) similarity of peptide anchor residues. 

Specifically, for peptide K(ac)P(ox)SLEQSPAVL bound to HLA-A02 (Figure 3H) we used PDB id 

5D9S82 (HLA-A02 bound to FVLELEPEWTV); for peptide KP(ox)LKVIFV bound to HLA-A02 

(Supp. Fig 1), we used the peptide backbone from PDB id 4F7T83 (HLA-A24 bound to 

RYGFVANF) and the same MHC receptor structure (from PDB id 5D9S);  for peptide 

MPTLPPYQ(me) bound to HLA-B54 (Figure 3I), we used PDB id 3BWA84 (HLA-B35 bound to 

FPTKDVAL). Residues that differ between the MHC alleles were “mutated” using the fix backbone 

protocol (Rosetta fix_bb; [8]); for peptide TLIESK(me)LPV bound to HLA-A02 (Figure 5C), we 

used PDB id 3MRK (HLA-A02 bound to PLFQVPEPV). 

 

- Modeling peptide onto MHC receptor using the selected template 

Using the Rosetta fixbb protocol for fixed backbone design85, we modeled the desired peptide 

sequence onto the template peptide, while keeping the side chains of the receptor fixed. We then 

used Rosetta FlexPepDock refinement in full-atom mode to optimize the structure of the complex 

with the threaded target peptide (all peptide atoms, as well as the receptor interface sidechains, 

were allowed to move). For each sequence, we generated 200 models. These were scored, and 

the 5 top-models were selected to represent the MHC-peptide interaction of interest. Comparison 

of the top scoring models of the modified peptides and corresponding non-modified peptides 

allowed inspection of the atomic details of their differential binding. 

- Scoring function 

The standard Rosetta score function86,87 was used, and models were assessed according to their 

FlexPepDock reweighted score (sum of Total score, Interface score and Peptide score; where 

Total score is the overall Rosetta energy score for the complex, Interface score is the energy of 

pair-wise interactions across the peptide-protein interface and Peptide score is the sum of the 

Rosetta energy function over the peptide residues). This score was shown to discriminate well 

near-native structures in previous FlexPepDock modeling studies88. 
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ProImmune binding assay 

ProImmune (https://www.proimmune.com) Module 2 REVEAL Binding Assay measures the yield 

of correctly conformed MHC-peptide complexes following incubation of the recombinant MHC 

allele with and the peptide of interest, using a conformation-dependent antibody in an 

immunoassay. Each peptide is given a score relative to the positive control peptide, which is a 

known T cell epitope. 

Reagents  

A complete list of reagents, antibodies & Chemicals can be found in supplementary data 6. 

Purification and analysis of the MHC peptides from MC38 cells  

MC38 cells were kindly provided by Ayelet Erez (Weizmann Institute). H2-Kb and H2-Db -bound 

peptides were isolated from three independent preparations of MC-38 cell line, each containing 

5e8 cells, as in (Milner et al. 2013). Briefly, cells were lysed with lysis buffer comprised of PBS 

supplemented with 0.25% sodium deoxycholate, 0.2 mM iodoacetamide, 1 mM EDTA, 1:200 

protease inhibitors cocktail (Sigma, St. Louis, MO), 1 mM PMSF, and 1% octyl-β-D-

glucopyranoside. The lysate was then shaken on a shaking table gently for one hour at 4°C, 

cleared by centrifugation at 4°C and 47,580g, for 60 min (Sorval RC 6+ centrifuge, Thermo Fisher 

Scientific). After centrifugation, the supernatant was passed through a column containing the Y3 

antibody (anti-H2-Kb) or 28-14-8 antibody (anti-H2-Db) covalently bound to protein G Sepharose 

resin with dimethylpimelimidate. Next, the columns were preconditioned with two column volumes 

of 0.1 N acetic acid, and next with two column volumes of 20 mM Tris/HCl, pH 8.0. After passing 

the cleared cell extracts, the columns were washed with five column volumes of 400 mM NaCl 

and 20 mM Tris-HCl pH 8, followed by another wash with 20 mM Tris-HCl, pH 8. The MHC-bound 

peptides were eluted with 1% trifluoroacetic acid, desalted, concentrated and separated from the 

MHC molecules by reversed-phase fractionation using disposable Micro-Tip Columns C-18 

(Harvard Apparatus, Holliston, MA). The peptides were eluted with 30% acetonitrile in 0.1% TFA, 

dried by vacuum centrifugation, and dissolved in 0.1% TFA for analysis by capillary 

chromatography combined with tandem mass spectrometry (LC-MS/MS). Samples were resolved 

by capillary chromatography using an UltiMate 3000 RSLC coupled by electrospray, to a Q-

Exactive-Plus mass spectrometer (Thermo Fisher Scientific). Elution of the peptides was 

performed with a linear two-hour, 5-28% acetonitrile gradient in 0.1% formic acid, at a flow rate of 

0.15 μl/min. The 10 most intense ions in each full-MS spectrum, with single to triple-charged 

states, were selected for fragmentation by higher energy collision dissociation (HCD), at a relative 

collision energy of 25. Ion times were set to 100 msec. automatic gain control (AGC) target was 

set to 3*106 for the full MS, and to 1*105 for ms2. The intensity threshold was set at 1*104. 

MS Spectra validation and visualization 

Modified peptides were synthesized through Peptide 2.0 company in purification level above 95%, 

then synthesized peptides were analyzed in mass spectrometry using target search mode. For 

asparagine deamidation we synthesized the modification as aspartic acid. The spectrum 

comparison visualization and a similarity score between the original spectrum and the synthesized 

spectrum are created by R package OrgMassSpecR. Thermo Xcalibur Qual Browser was used 

to manually annotate spectra. Spectra visualization is created using PDV 1.5.4 software89 

including a,y,b ions and all potential losses. 
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In vivo peptide specific killing assays 

Animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) 

of the Weizmann Institute of Science. 

- BMDC generation and immunization 

Bone marrow derived dendritic cells were generated according to a protocol published by Lutz et 

al.57. In brief, tibia and femur of donor mice were isolated, and the bone marrow flushed out into 

PBS using a syringe. Clusters were dispersed by pipetting, and cells were washed in PBS and 

seeded in 10 mL RPMI, 10% FCS (heat inactivated), with 1 mM sodium pyruvate, 2 mM glutamine, 

1x non-essential amino acids, 50 uM beta-mercaptoethanol, and 200U/mL GM-CSF (Peprotech) 

onto bacteriological petri dishes (day 0). At day 3, 10 mL fresh medium was added. On day 6, 10 

mL of the medium was removed, floating cells collected by centrifugation (200xg, room temp, 10 

minutes), resuspended in 10 mL and added back to the plates with fresh GM-CSF. On day 8, 

loosely attached and floating cells were collected and reseeded at 15x106 cells per tissue culture 

plate with 100 U/mL GM-CSF. Cells were matured by addition of LPS (LPS, 1 ug/mL) on day 9 

and harvested by day 10. Successful differentiation was confirmed by staining cultures with 

CD11c, MHC II, CD80 and CD86. 

Floating cells were collected, washed in PBS and resuspended in OptiMEM (Gibco) to 5x106 

cells/mL. Peptides were added at 50ug/mL, and the cells incubated at 37C while gently shaking 

for 3 hours for loading. DCs were washed, resuspended and 1x106 cells were injected to female 

C57BL/6JOlaHsd mice i.p. in 200 uL PBS. Immunizations were repeated weekly for a total of 3 

times.  

- In vivo peptide-specific killing assay 

Target cell preparation: Single cells suspensions from naïve CD45.1 spleens were pooled and 

pulsed with 50 ug/mL peptides (unmodified, modified, or left unpulsed) for 3 hours at 37oC while 

shaking. Cells were washed twice and each experimental group (ummodified, modified, unpulsed) 

were differentially stained for 5 minutes with CFSE (Biolegend) at high (5 uM), low (0.05 uM) and 

medium (0.5 uM) concentrations according to the manufacturer’s protocol. 

Staining reactions were quenched with PBS/FCS 7.5%, washed twice and counted. Cells in each 

dye group (high, medium, low) were mixed at 1:1:1 ratios for a mix of differentially labeled 

unmodified-pulsed, modified-pulsed, or unpulsed splenocytes), and 20x6 cells per mouse were 

injected i.v. in 200ul PBS. One naïve mouse was injected with the same peptide loaded 

splenocytes as controls. Additionally, SIINFEKL immunized controls were injected with a 1:1:1 

mix of target cells either unloaded, or loaded with SIINFEKL, or Influenza A NP (366-374). 

After 18 hours, the spleens were harvested, and processed for single cell suspensions and 

stained with CD45.1 APC (Biolegend) after incubation with an Fc blocking antibody (Biolegend). 

Finally, cells were washed, resuspended in flow cytometry buffer and acquired on an Attune NxT 

flow cytometer. Data analysis was done with Flowjo. 

Cells were gated for CD45.1 positive cells, singles cells and CD45.1+/CFSE+ (see gating strategy 

Supp. Fig 4A). Target populations were gated on histograms to determine their percentages. In 

vivo killing was calculated according to 56,57. 

 

(1 − [(
% 𝑜𝑓 𝑝𝑒𝑝𝑡𝑖𝑑𝑒 𝑙𝑜𝑎𝑑𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑖𝑚𝑚𝑢𝑛𝑖𝑧𝑒𝑑 𝑚𝑖𝑐𝑒

% 𝑜𝑓 𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑖𝑚𝑚𝑢𝑛𝑖𝑧𝑒𝑑 𝑚𝑖𝑐𝑒
) / (

% 𝑜𝑓 𝑝𝑒𝑝𝑡𝑖𝑑𝑒 𝑙𝑜𝑎𝑑𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑛𝑎𝑖𝑣𝑒 𝑚𝑜𝑢𝑠𝑒 

% 𝑜𝑓 𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑛𝑎𝑖𝑣𝑒 𝑚𝑜𝑢𝑠𝑒
)])  × 100   
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MSFragger search parameters 

Search params were set to default for close search with the following changes: Precursor true 

tolerance was set to 10 ppm; fragment mass tolerance was set to 20 ppm. Search enzyme was 

set to nonspecific enzyme with cleavage after ARNDCQEGHILKMFPSTWYV. Peptide lengths 

were set between 8 and 15. Num enzyme termini = 0, clip nTerm M = 1, allow multiple variable 

mods on residue = 0, max variable mods per mod = 3, max variable mods combinations = 65000. 

Bioinformatics and data analysis 

Statistical analyses were performed in Prism 8 software (GraphPad, San Diego, CA, USA) and R 

v 3.6.1. heatmap was drawn with pheatmap 1.0.12 and ComplexHeatmap 2.2.0 R package with 

Euclidean distances for clustering where relevant. Flow cytometry data were analyzed with 

FlowJo V10 from Becton, Dickinson, and Company. Experimental schematics were generated 

using BioRender.  

Data and code availability  

MC38 immunopeptidomics data was deposit in PRIDE archive with ID PXD017448 and standard 

MaxQuant90 analysis results. All the code used is available from the corresponding author upon 

reasonable request.  
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