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Abstract
Metabolic diseases are a major public health concern due to their increasing prevalence. Obesity,
Diabetes, the Metabolic Syndrome (MetS) and cardiovascular disease are only part of a larger set
of diseases, whose prevalence is rising worldwide, with large economic costs to health care
systems. Many of these are characterized by a high degree of inter-patient variability, with regard
to symptoms, degree of severity, complications and responsiveness to treatments. Detailed
characterization of the changes in physiological and pathological indicators during the early
stage of disease is critical for timely diagnosis, interventions and in the future - prevention of
deterioration. Recent surges in technological advances, and the growing availability of wearable
and digital devices are now making it feasible to profile individuals in ever increasing depth.
These include profiling multiple healthy aspects, including clinical, molecular and lifestyle
changes. Wearable devices allowing for continuous and longitudinal health monitoring outside
the clinic can be used to monitor health and metabolic status of large-scale cohorts - from healthy
individuals to patients at different stages of disease. Data collected from wearable devices on
such cohorts could be used to deepen our understanding of metabolic diseases, improve their
diagnosis, identify early disease markers and contribute to individualization of treatment and
prevention plans.

Introduction

The wearables revolution
Technological advances in the past decade have introduced improved wearable and digital
devices, with various functionalities and decreasing costs. These allow continuous monitoring of
individuals throughout their daily lives, from self logging of diet and sleep via various lifestyle
apps, to monitoring heart rate using a smartwatch, and blood glucose levels using continuous
glucose monitoring (CGM). With the rising availability, and the expanding adoption of wearable
and digital devices by healthcare systems 1, more data is being collected from these devices -
presenting new opportunities in clinical practice, disease understanding and management, and
early marker identification. Several applications have proven the potential of using wearable and
digital devices in the clinic: detection of falling and seizure onset to allow for fast reaction of
medical teams 2,3; Closed-loop control (CLC) devices were shown to improve management care
in diabetic patients 4,5; and monitoring and detection of atrial fibrillation using
Photoplethysmogram (PPG) measures 6 7,8. The contribution of such devices has also proven
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useful for advancing basic and translational medical research. For example, glycemic profiles of
individuals captured using CGMs were used to identify subtypes of type 2 diabetes 9, which
varied in clinical measures such as HbA1C and insulin-sensitivity, suggesting a difference in
clinical pathophysiology of the subgroups 10.

Wearable and digital devices allow for frequent characterization, independent of clinic
visitations, and the common and widespread use of devices such as smartphones and
smartwatches facilitate data collection of large cohorts of healthy and diseased individuals. Their
mobile nature allows for prolonged measures outside the clinic, and throughout daily life. Data
generated by wearables could be used to map the complex dynamics of metabolic diseases, from
prodromal stages to monitoring progression and treatment. Utilizing data collected both on
healthy individuals, and individuals in varying stages of metabolic diseases development could
further our understanding of the composite relationship between metabolic diseases risk factors
and causes, which could in turn aid in devising prevention and treatment strategies.

The complexity of metabolic diseases
Metabolic diseases, such as diabetes, cardiovascular diseases, hypertension, metabolic syndrome
(MetS), dyslipidemia etc. have become major public health issues worldwide 11. Diabetes has
become the ninth major cause of death worldwide 12. Hyperlipidemia has been firmly established
as a primary risk factor for various cardiovascular diseases 13. With modern lifestyle changes,
affecting dietary habits and promoting sedentarism - MetS prevalence has increased worldwide,
and in the US increased prevalence was observed regardless of age, sex and ethinicity from 2011
to 2016 14.
Metabolic diseases share complex pathophysiology. For instance, despite many known risk
factors for MetS, such as visceral obesity, systemic inflammation and insulin resistance - an
underlying pathophysiological mechanism of the syndrome has yet to be discovered, which
prevented the development of a treatment 15. Previous works have explored the possible
underlying causes of MetS. Insulin resistance, caused mainly by a high-fat, refined-carbohydrate
diet and physical inactivity, was shown to have a critical role in initiating the manifestations of
the MetS 16,17 . Other works focus on the role of the sympathetic nervous system as having a
pivotal role in circulatory and metabolic control 18. These diverse potential mechanisms
emphasize the multifactorial nature of metabolic disorders. Moreover, they stress the need to
deepen the characterization of healthy and diseased individuals, in various aspects including
biological and physical measures along with lifestyle and diet habits, to further our
understanding of metabolic diseases, their causes and development.

Wearables and metabolic diseases
Wearable devices provide unprecedented opportunities for monitoring and managing metabolic
diseases such as diabetes and obesity. These conditions are usually chronic and necessitate
ongoing management, which can be difficult for both patients and healthcare providers. Wearable
devices can help to improve metabolic disease management by continuously monitoring a
patient's health and providing useful insights and feedback. A wearable device, for example,
could be used to track a patient's blood glucose levels or physical activity and provide real-time
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feedback to both the patient and their healthcare provider. This can aid in the early detection of
potential problems or complications, allowing for more effective disease treatment and
management. Furthermore, wearable devices can give patients a sense of empowerment and
control over their health, which is especially important for people who have chronic metabolic
conditions. Overall, wearable devices provide new and exciting opportunities for monitoring and
managing metabolic diseases and can help patients with these conditions improve their health
and well-being.

Sample temporality: comparing single and continuous measures of wearable
devices
Measurements from single time points are informative but are limited in their ability to describe
complex dynamics or infer direction of effects. Since they describe a single point in time, they
are more likely to suffer from measurement bias that could affect clinical decisions and
diagnoses. A recent study showed that resting heart rate from wearables was more consistent
than that measured in the clinic 19. Another work showed that diabetes diagnosis may have
substantial differences when made using a single glucose measure as opposed to taking two
glucose measures separated in time 20. The advantage of continuous measures over single time
points has already been demonstrated in different fields.

Glycemic control, and diabetes diagnoses traditionally rely on the measurement of glycated
hemoglobin (HbA1c), which provides an index of average blood glucose measurement over a
period of three months 21. This measure is relatively easy and inexpensive to obtain, and has been
shown to be associated with all-cause and cardiovascular mortality, as well as with diabetic
complications 22. However, HbA1c only provides an approximate measure for glucose control,
and lacks information on glycemic response variability and hypoglycemic events, which have
been linked to both microvascular and macrovascular complications 21,23. Moreover, HbA1c may
not be accurate in certain circumstances such as hemoglobinopathies 24. CGM provides
continuous measures of the glucose levels in the interstitial fluid, through a tiny electrochemical
sensor electrode inserted under the skin. The continuous measures obtained with CGM present a
tool to overcome the limitations of HbA1c by providing real time information of glucose levels,
rate of change, variability and impending hypo- and hyper- glycemia events 25. Nowadays, the
beneficial impact brought by the integration of a CGM system in diabetes management has been
proven. Use of CGM has been shown to improve HbA1c and reduce hypoglycemia events and
glycemic variability 26.

The electrocardiogram (ECG), is one of the most useful diagnostics tools in emergency
medicine, and specifically in the diagnosis of cardiovascular diseases. ECG is a composite
signal, recording the heart’s electrical activity. ECG measures performed at the clinic are very
short in duration. The transient nature of some cardiovascular events, such as cardiac
arrhythmias, requires longer monitoring periods for diagnosis. For example, current guidelines
for diagnosis of atrial fibrillation (AF) require an ECG recording in the clinic, followed by a
24-hour Holter or even longer (up to 2 weeks) ECG recording 27. However, this might not be
enough, as a recent study suggested that at least 4 days of Holter ECG recordings are required to
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identify more than 90% of AF recurrences 28. This stresses the importance of longer, continuous
measures for correct diagnosis and precise clinical care.
The collection of ECG recordings will increase as biosensor technology advances with the
introduction of wearable ECG devices, which in comparison to ECG patches are much smaller
and can be worn as a watch for a longer period of time. The clinical utility of wearable ECG
devices will probably be determined by the capability to modify, analyze, and introduce these
data in a meaningful way to patients and healthcare providers.

Modes of continuous data measured by wearable and digital devices
Wearable and digital devices allow the collection of information on diverse aspects of health,
lifestyle and body systems. Different modalities collected by wearable and digital devices may
differ in their mode of collection, sampling frequency, accuracy, availability and measure
duration (Table 1).
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Table 1: Data modalities collected by wearable and digital devices reviewed in this perspective

Data source Measured
objective

Mode of collection Sample
frequency/re
solution

Typical
duration

Typical cohort
size

CGM Interstitial
glucose levels

Electrochemical
sensor under the skin

4-10 times
per hour

Days to years Hundreds

Physical activity
trackers

Step
counts/Calories
burnt

Smartphones and
smartwatches

several times
a day-week

Days to years Millions 29

Lifestyle logging Consumed
foods/calories

Smartphone apps several times
a hour-day

Days to years Millions 30

Sleep
monitoring

Saturation,
snoring,
movement,
saturation

Accelerometers,
sound level meter, and
peripheral arterial
tonometry,
  photoplethysmogram

Multiple
times a
second

Several
nights

Hundreds

Cardiovascular
measures

Heart rate, blood
pressure,
electrocardiogram
(ECG), saturation

Smartwatches,
portable ECGs,
Portable blood
pressure monitor,
  photoplethysmogram

Multiple
times a
second

Hours to
days

Millions 31

Glucose monitoring
Insulin resistance is a key aspect in several metabolic disorders. It is the main cause of type-2
diabetes, and is further associated with dyslipidemia, hypertension, hypercoagulability and an
increased risk of cardiovascular disease 32,33. Additionally, it is considered by some as the main
contributor to the initiation of MetS manifestation 16,17. In healthy individuals, insulin secretion
from the pancreas is responsible for maintaining normal blood glucose levels. Insulin resistance
occurs when the sensitivity to insulin mediated glucose disposal is impaired 34. The progression
from a healthy state to insulin-resistance, and diabetes as a result, is a continuous process 33,
which could be managed if treated in early stages. Measuring insulin levels is complex and
requires special laboratory tests, whereas glucose levels are measured by simple blood tests. It is
thus clear that blood glucose levels are a crucial aspect to follow and investigate in metabolic
behavior - both in healthy and diseased individuals. Currently approved continuous glucose
monitors (CGM) use an enzymatic technology which reacts with glucose molecules in the
interstitial fluid generating an electric current, which does not directly measure blood glucose
concentration, but is proportional to it. CGM was first available commercially in the year 2000,
and since then its accuracy has improved immensely while device size, weight and complexity
has decreased 25.
Several studies have utilized CGM data to further stratify or categorize disease states. A recent
study devised a new representation of glucose profiles from CGM, exposing three different
profiles which they termed “glucotypes”, varying in clinical classification and response to
standardized meals 9. Such discoveries imply that existing clinical definitions of disease may

https://sciwheel.com/work/citation?ids=12946297&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12786643&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12946302&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7019849,12827152&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12813254,1445468&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=886084&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12827152&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1231098&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5666568&pre=&suf=&sa=0


conceal within them a number of sub-conditions which differ in pathophysiology - and their
uncovering might contribute to better diagnosis and care.
CGM measures could also be used to investigate and better understand the dynamics of glycemic
response in healthy individuals, and not just in disease states. Other works which employed
CGM measured on healthy individuals to explore the diversity in glycemic responses found high
variability in glycemic response to identical meals 35, and that self-reported hunger could be
predicted from postprandial glucose dips 2–3 h after a meal 36.
While CGM is widely used in patients with type 1 diabetes, it is rarely used in people with type 2
diabetes who are not receiving intensive insulin therapy. It is an option for people with type 2
diabetes who are on multiple daily insulin injections (basal/bolus insulin therapy) and need to
adjust their insulin dose based on glucose levels, especially those who have frequent
hypoglycemia unawareness.
The monitoring of glucose in diabetic patients has been completely altered by the development
of CGM sensors. Globally, there are more people using CGM, and it's expected that trend will
continue as less invasive and more inexpensive sensors become available.
Significant developments are also anticipated in terms of CGM integration with other systems,
including medical devices for diabetes therapy, activity trackers, and other physiological
wearable sensors. Better glucose prediction and automatic insulin modulation algorithms, as well
as a better understanding of the factors that contribute to abnormal glucose events, will be made
possible by the integration of CGM data with data from insulin pumps and other wearable
sensors. Finally, this will enable better customization of diabetes therapy to the patient's lifestyle
and habits.
While CGMs measure glucose quantitatively and can be used to detect hypoglycemia, the
accuracy of most such devices currently on the market or soon to be released is lowest in the
hypoglycemic range. There are currently no widely used products for this purpose on the market.
Long-term implanted sensors that measure glucose using enzymatic, optical, or osmotic
technologies are also being developed. Noninvasive sensors are optical methods in development
that do not involve inserting a needle into the skin or implanting a sensor.

Physical activity trackers
It has long been known that physical activity is a major contributor to health, and that regular
physical activity reduces the risk of cardiovascular and all-cause mortality 37,38. Several trials
have shown that regular physical activity is effective in preventing type-2 diabetes, and
decreasing the likelihood of developing MetS, especially in high-risk groups 39. Many devices
and mobile applications, available in the market today, provide consumers real-time tracking of
their daily activities. Their accuracy in recording physical activity has been shown in several
trials 40,41, confirming their reliability and use for research.
Their importance to health status and outcomes has also been shown. For example, a prospective
cohort study examining more than 2,000 individuals who were followed up for a mean of 10
years found that participants who walked at least 7000 steps per day experienced lower mortality
rates compared with participants who walked less than 7000 steps per day 42.
Almost every smartphone and smartwatch are equipped with varying tracking apps, which
automatically monitor steps, physical activity by GPS and pulse rates - which could be translated
to metabolic rates. All these present researchers with the opportunity to investigate physical
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behavior and habits in larger, more diverse cohorts than ever before. A recent study examined
data activity across more than 100 countries, and revealed varying levels of activity in different
countries 43 with great inequality. This revelation, which can stir medical recommendations for
physical activity based on the population characteristics, as well as affect other aspects such as
urban planning to promote physical activity, was made possible thanks to the growing use of
wearable devices to track physical activity. As the user population of wearable devices expands,
we will be able to uncover more aspects affecting daily physical activity - geographic location,
cultural differences, weather conditions, occupation and other lifestyle habits, enabling more
personalized physical activity recommendations.

Lifestyle logging
Diet and lifestyle habits are crucial factors which directly affect health status and especially
metabolic health. In recent years, various apps have been developed which allow logging of diet,
lifestyle habits, physical activity and sleep duration. Data collected through these apps present a
unique opportunity to investigate the direct effect of diet and lifestyle habits on health, metabolic
dynamics, and the environmental factors which influence these habits, in large cohorts. For
example, a recent study used self-reported diet tracking information of more than a million
participants to show that environmental factors such as income, education and grocery store
access are independently associated with higher consumption of fruit and vegetables and lower
likelihood of obesity 30. Additionally, individuals who used smartphones to self-log diet habits
were found more likely to lose weight 44,45.
Previous studies have shown that diet habits are directly related to the risk of cardiovascular
disease and Mets, and that adaptations to dietary habits could reduce inflammation associated
with MetS, lower the risk of cardiovascular mortality and chronic non-communicable
degenerative diseases (among them MetS) 46–48.
Diet habits could also serve as a possible intervention target to improve individuals’ metabolic
state and overall health. Previous studies have shown that response to meals is highly variable
among individuals 35,49, emphasizing the need for personal dietary interventions. A study
comparing personalized postprandial-targeting (PPT) diet to a general Mediterranean (MED)
showed a significantly greater improvement in clinical targets such as time-in-range (TIR) and
HbA1C levels in the PPT group 50. Diet logging apps could serve as a valuable tool in designing,
monitoring and promoting dietary interventions. They provide a simple means of communication
between health providers or experts to the user, enable continuous monitoring of progress
throughout the intervention and allow the users to stay engaged and aware of their progress.
Several trials have shown the usefulness of diet logging apps in devising dietary interventions: to
promote diet changes in healthy individuals 51, to improve heart disease risk factors through
quality-focused diet logging 52 and to allow the monitoring of dietary advice, such as intermittent
energy intake, in clinical trials among individuals willing to self-monitor their diet habits 53.
A potential limitation when analyzing self-logging data, and specifically diet logging, is
reporting errors and biases 54. It was previously shown that errors in dietary information,
specifically underreport of energy intake and fat intake, can mask the association between
nutrition and disease 55. To address this limitation, methods of validation and calibration need to
be developed and employed when working with self-reported diet information 54,56. New
technological advances could also serve as tools for improving and facilitating lifestyle logging.
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Incorporation of image recognition in smartphones could present an easier approach to log meals
- by simply taking a picture of your meal and uploading it to your automatic-food-recognition
diet logging app. Although such technology will improve our ability to track our lifestyle habits,
it will still require active manual recording and may be inaccurately interpreted. This will require
development efforts to realize, but with the understanding of the crucial role that lifestyle habits,
and specifically diet habits, have on our health - this is an effort worth investing.

Sleep monitoring
The gold standard of sleep monitoring is the laboratory polysomnogram - recording brain waves
by electroencephalography (EEG), eye movement by electrooculography (EOG) and muscle
tension by electromyography (EMG). Combining these records together, the polysomnogram is
able to determine how long an individual had slept, durations of different sleep stages, wake time
and more 57. Yet the polysomnogram can only be used in lab settings, which limits the collection
of sleep data on large populations and in real-world settings. In recent years, with progress in
technology and sensors, many more options are available to monitor sleep outside the lab, using
varying methods from movement based monitors, mobile and wearable devices to environmental
devices which don’t require any direct attachment to the body 58. These will allow researchers to
expand current knowledge of how sleep affects and is affected by health status.
Sleep quality and sleep disturbances such as obstructive sleep apnea, sleep deprivation and shift
work have already been shown to be associated with MetS 59,60. The direction of effect is still
debatable - does MetS exacerbate sleep disorders, or might sleep disorders lead to the
development of insulin resistance and MetS 59. Poor sleep quality and short sleep duration,
assessed by self-administered questionnaires were associated with increased risk of
cardiovascular disease and coronary heart disease events 61. Individuals with sleep-disordered
breathing were also shown to have a higher cardiovascular risk factor 62. As many of these works
were conducted on small cohorts, several of them using polysomnography measured in lab
settings, more work is needed to elucidate the relationship between sleep and metabolic
disorders. This will require the collection of sleep data on large, longitudinal cohorts, preferably
in real-life settings, which might be possible with the advances in technologies allowing the
measure of sleep at-home, and in relatively low costs.
The increased consumer focus on sleep awareness, as well as an increased understanding of the
importance of sleep, will result in the development of many more wearable devices to quantify
the various sleep stages and to assess sleep quality. Based on current trends, these future systems
are likely to be smaller and easier to use for patients.
It is important to note that sleep staging is only a subset of full polysomnography, regardless of
the sensing modality used, and thus any wearable being developed for sleep staging cannot
replace PSG. However, it can be used to triage patients and optimize access to PSG for those
who require it the most. It can also be used for long-term sleep monitoring of patients and other
research subjects.

Cardiovascular related wearables
In cardiology, wearable heart rate monitors have new potential. Patients have had the option to
take their own pulse for a long time, but wearables provide ongoing, passive monitoring, even
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while the user is sleeping. These devices may offer an important chance for better management
for patients with suspected arrhythmias or for heart rate optimization with medications.
AF, a common cardiac arrhythmia, is becoming a considerable health concern, with rising
prevalence estimated to reach 12.1 million diagnosed cases in the U.S. alone in 2030. This rise is
not only affected by the aging population, but could be affected by the rising prevalence of AF
risk factors such as obesity and diabetes 63. Diagnosis of AF requires the visual inspection of the
ECG. Its intermittent nature and the fact that more than one-third of AF episodes are
asymptomatic makes it difficult to diagnose in a single ECG. Studies have shown that longer
periods of monitoring allow for higher detection rates of AF 1. Wearable and digital devices
specifically designed to measure heart rate (HR) and ECG signals could constitute important
tools in detecting arrhythmias, and specifically AF. A recent study demonstrated the ability of
smartwatch measured pulse to detect AF, recruiting more than 400,000 participants, measured
over a median of more than 100 days 64. Though the probability for notification of irregular
rhythm was low, a third of the participants who did receive a notification were confirmed to have
AF in a subsequent ECG.

Photoplethysmography (PPG) is a medical imaging technique that uses light to measure changes
in blood volume in the body. It is commonly used as a non-invasive method for monitoring heart
rate and oxygen levels in the blood 65. PPG is often implemented as a wearable device, such as a
smartwatch or fitness tracker, which can continuously monitor an individual's vital signs. The
device uses a light-sensitive sensor to detect the changes in blood volume, which are then
translated into heart rate and oxygen level readings. PPG is a safe and effective method for
monitoring a person's health and well-being and is increasingly being used in a variety of
medical and fitness applications.

In addition to monitoring heart rate and oxygen levels in the blood, PPG can be used for a variety
of other medical and health-related applications. Some examples of these uses include
monitoring the blood pressure of a patient. PPG can be used to measure changes in blood
volume, which can provide an indication of a person's blood pressure. In addition, PPG can be
used to monitor a person's breathing patterns, which can help identify cases of sleep apnea, a
condition in which a person's breathing is interrupted during sleep. Overall, PPG is a versatile
and useful medical imaging technique that has many applications in the field of healthcare and
medicine 65.

Novel technologies
Standard methods of monitoring body chemistry necessitate invasive blood-based analysis with
large laboratory equipment. Alternative biofluid targets to blood, such as saliva, tears, and sweat,
represent appealing noninvasive biomarker media with the potential for remote health
monitoring outside of controlled laboratory settings. Sweat has a high concentration of
electrolytes, metabolites, hormones, proteins, nucleic acids, micronutrients, and exogenous
agents. Wearable biosensors are garnering substantial interest due to their potential to provide
continuous, real-time physiological information in an array of healthcare-related applications via
dynamic non-invasive measurements of chemical markers in biofluids.
Over the past few decades, the developments have been focused on electrochemical and optical
biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and
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hormones, etc. For example, Sweat lactate is of great interest because of its relationship to blood
glucose levels. Wearable devices are evolving to incorporate multiplexed biosensing,
microfluidic sampling and transport systems, and flexible materials and body attachments for
enhanced wearability and simplicity. This combination of features has made these devices more
practical and user-friendly, although the fragile nature of these biological recognition elements
causes performance decline over time and under different environmental conditions. Biochemical
sensors for detecting metabolites in sweat and other bodily fluids appear to be a promising
avenue, but they are not yet widely used.

Integration of multimodal temporal data - opportunities and challenges
Integration of the different continuous measures described above would serve as a major benefit
in describing complex dynamics of different body systems. Moreover, incorporating continuous
measures along with multi-omics data sets could provide a unique opportunity to identify disease
markers and pathways. This will allow for a broader understanding of the gradual changes on a
phenotypic and genetic level, leading to the development of metabolic diseases. Using the
inherited temporal structure of the data, we might be able to disentangle the cause and effect
relationship between different measures. The voluntary nature convenient way of use of wearable
devices could serve as a benefit in eliminating probable selection bias in research cohorts, and
potentially deploying diagnosis tools in wide populations - for actual clinical use or research
purposes 64. Yet, there are still many challenges to face, the first being the effort and funds
required to collect diverse measures on large, longitudinal cohorts. Furthermore, to fully
investigate the relation between various body systems involved in metabolic health, and their
effect on each other - these diverse measures need to be obtained simultaneously, which poses an
additional challenge. Several efforts have already started gathering diverse types of information
on large, longitudinal cohorts 66–69. These include some of the continuous measures described
above, along with multi-omics data, and with repeated measures over years of follow-up -
allowing for the investigation of directions of effects.
T  here is a need for infrastructure to collect and manage wearable device data. This infrastructure
can take many different forms, depending on the specific needs and goals of the data collection
process. The infrastructure required for collecting and managing wearable device data is a
critical component of any wearable device data collection effort, and must be carefully planned
and implemented in order to ensure that the data is collected and managed effectively.

Once data has been collected, we still face technological challenges when approaching
the integration of different data types and sources. To exploit all data sources in hand, researchers
are required to design analyses and construct models that combine data from different sources,
and often with different temporalities (Figure 1). Some previous studies integrated information
from several wearable devices 70 or various measures from a single device 19, yet these were
performed on small sample size cohorts, and did not contain any single point measures such as
multi-omics data. Scaling such analyses to larger cohorts might require the development of more
complex, and maybe less interpretable models.
Reliability of the data collected using wearable devices might present another challenge. Despite
technological advances and improvements, wearable data might still present inaccuracies and
false information 71, leading to incorrect clinical decisions or research conclusions. This needs to
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be considered when analyzing data originating from wearable devices, possibly by screening
potential errors in reading based on prior knowledge. Moreover, validation is an important step
in the process of collecting and managing wearable device data and is essential for ensuring that
the data is accurate, consistent, and of high quality. There are many ways to validate wearable
device data, and the appropriate method will depend on the specific needs and goals of the
validation process. It is important to carefully plan and implement the validation process to
ensure that the data is accurate and reliable.

Figure 1: Illustration of the integration and analysis of data from multiple sources of
wearable and digital devices, with varying temporalities



Wearable and digital devices, owing to their growing availability and improving capabilities,
present an opportunity to characterize larger populations than ever before, in real life settings.
Until now, most data collected for research purposes originated specifically and carefully from
designed trials mainly focused on diseased individuals believing that the answers to
disease-related questions lies with individuals already displaying the disease. Most diseases, and
especially metabolic disorder ones, develop continuously and slowly, sometimes over decades,
allowing the placement of individuals on a continuous spectrum - from health to disease. Due to
their broad user audience, data collected from wearables does not focus on any specific disease,
and is also collected from large populations of healthy customers, from diverse populations. This
information can provide new insights on the early stages of disease manifestation, the processes
and body systems involved in them and maybe even potential early interventions to prevent
further deterioration. In some modes of wearable data, types of data and collection methods are
not designed to study specific diseases. This holds the potential to uncover new relationships
between these data and various health aspects - leading to new research hypotheses and
directions. As a significant portion of the consumer population are typically healthy individuals,
wearables present a unique opportunity to deeply characterize different body systems, diverse
lifestyle habits, and their interactions, prior to the onset of diseases. The continuous
measurements produced by some wearables creates short term longitudinal data that could
provide information on the early stages of health deterioration. Such data may also contribute to
the development of early interventions that are personally tailored to different individuals.

Nevertheless, their extended use also presents some obstacles. As opposed to carefully
designed cohorts, data might be less reliable, and without any gold-standard of data collection
and organization to compare to - which is crucial for both clinical decision making and research
observations. Designing proper tools to filter, analyze and integrate data from wearable and
digital devices is key, and requires further advances. Moreover, to gain broader insights from
wearables collected data, initiatives to share data sources and make them accessible to more
clinicians and researchers are required. This will not only create larger, more diverse cohorts, but
will also allow multidisciplinary researchers worldwide to work with these data sources,
promoting new directions of research and our understanding of the progression from health to
disease. Initiatives such as the UK biobank 67, the 10K in Israel 66 and All of Us in the US 68 have
already begun such efforts - and more need to follow their footsteps. Furthermore, despite the
vast and diverse information obtained from wearables - unraveling disease mechanisms, potential
biomarkers and potential treatments might require additional information such as multi-omics
data, posing a challenge to collect diverse cohorts on large populations.

Clinicians are already using wearable and digital devices to manage diseases such as
Diabetes. Their mobility allows for continuous patient management, without the need to see the
patient in-clinic, allowing patients to live a less disrupted life. More diseases and conditions,
such as cardiovascular disease or events and sleep disorders, could be better managed and
monitored using wearables. They could further be used by healthy individuals to improve their
health status and lifestyle habits - from logging diet to help in weight loss, to following physical
activity and sleep duration, to help individuals understand how to live their best lives.

With the ever improving technology, wearable and digital devices show continuous
progress - and in the future might become even more accessible and simple to use. With the
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growing availability of smartphones and smart-watches, a day where every individual on earth
will have wearable data collected for them is in sight. Current wearable devices mostly focus on
measuring or characterizing one health aspect or body system, for example, smart-watches
mostly track physical activity and HR and CGMs are used to quantify blood glucose levels. One
might imagine that wearable devices of tomorrow will be able to produce more extensive
information on the measured individual 72: smart-watches could provide a full set of vital signs at
all time, identifying subtle changes in health state, and provide alerts as to the possibility of viral
infections 73, heart attacks and atrial fibrillation 64 or glycemic events; neurological sensors might
be developed, for example by monitoring eye movements (by wearing glasses) 74, which could
inform the user on awakeness levels, or even further - alert on events of stroke, or early
development of neurological conditions such as Parkinson's disease 75; smart sensors will allow
for automatic detection of nutritional intake 76, perhaps by taking pictures of meals by
smartphones, enabling accurate and unbiased diet logging. Going even further - all this might be
available in one simple, non-invasive, mobile device, utilized to promote individual’s health and
our understanding of the development of diseases.
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