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The fractional quantum Hall states have long been predicted to be a testing ground of 

fractional (anyonic) exchange statistics. These topological states harbor quasiparticles with 

fractional charges of both abelian and non-abelian characters. The quasiparticles' charge is 

commonly determined by shot noise measurements (1, 2), and states’ statistics can be 

revealed by appropriately interfering the quasiparticles. While the multipath Fabry-Perot 

electronic interferometer (FPI) is easier to fabricate, it is often plagued by Coulomb 

interactions (3), its area breathes with the magnetic field (4), and its bulk’s charges tend to 

fluctuate (5). Recent FPI experiments employing adequate screening allowed an observation 

of Aharonov-Bohm (AB) interference at bulk filling =1/3 (6). In the current work, we chose 

to employ an interaction-free, two-path, Mach-Zehnder interferometer (MZI), tuned to bulk 

filling =2/5. Interfering the outer =1/3 mode (with the inner =1/15 mode screening out the 

bulk), we observed a ‘dressed AB’ periodicity, with a combined ‘bare AB’ flux periodicity of 

three flux-quanta (3𝝓𝟎) and the ‘braiding phase’ 2/3. This unique interference resulted 

with an AB periodicity of a single flux-quantum. Moreover, the visibility of the interference, 

𝒗𝐞/𝟑, deviated markedly from that of the electronic one 𝒗𝐞 
  , agreeing with the theoretically 

expected visibility, 𝒗𝐞/𝟑~𝒗𝐞 
  𝟑.  With the two non-equivalent drains of the MZI, the fractional 

visibility peaked away from the ubiquitous transmission-half of the MZI. We provide simple 

theoretical arguments that support our results. The MZI proves to be a powerful tool that 

can be used to probe further the statistics of more complex anyonic quasiparticles. 
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Quantum Hall states were the earliest protagonists of topological phases of matter. While the bulk 

is insulating, the current is carried by chiral edge modes with a universal edge conductance of 

e2/h, where e is the electron charge, h the Planck's constant, and  the filling factor (integer or 

fraction) (7-9). In the fractional quantum Hall effect (FQHE), the excitations are quasiparticles 

(QPs) that carry fractional charges (10-13). The QPs are neither bosons nor fermions; they are 

classified as anyons (14, 15). Upon exchanging two identical anyons, the phase of their joint 

wavefunction changes by a fraction of π, whereas it is π (2π) for fermions (bosons) (16-18). 

The straightforward method to study the anyonic statistics of the QPs is to interfere the edge modes 

around localized QPs, thus performing a braiding operation. The two well-studied interferometers 

are the electronic Fabry-Perot Interferometer (FPI) (3, 4, 6, 10, 19-24) and the electronic Mach-

Zehnder Interferometer (MZI) (25-31). While the bare FPI (a large version of a ‘quantum dot’) 

possesses finite charging energy (for the addition of QPs) (4, 32, 33), which tends to affect the 

interference, sufficient screening already enabled observation of fractional Aharonov-Bohm (AB) 

interference (6). On the contrary, the MZI is free of charging effects since one of its (grounded) 

drains is located in its interior, thus adding or removing particles at will. Yet, thus far, AB 

interference was observed only in the integer QHE regime (25-27, 34). The apparent lack of 

anyonic interference was attributed to the relatively larger interferometer size, the poor quality of 

interior (small) drain contact, and the presence of non-topological neutral mode (35-41). 

Here, we describe the first observation of high visibility interference of the outer =1/3 edge mode 

in bulk filling factor =2/5, employing an optimized MZI. As we detail below, the MZI is unique 

because the observed AB interference is naturally ‘dressed’ by an additional anyonic braiding. 

Below, we describe the interferometer structure, the experimental results, and the theoretical 

analysis. 

The Mach-Zehnder interferometer was formed by two closely placed quantum point contacts 

(QPCs), acting as ‘beam splitters’ and two ohmic drains: D2 - a small, grounded, set on the inner 

periphery of the MZI; and D1 - set downstream from the MZI (see Figs. 1a & 1b). The incoming 

charged edge mode splits in QPC1 into two trajectories that rejoin in QPC2, enclosing a magnetic 

flux. Note that there is a  phase difference between the reflection and transmission amplitudes in 

each QPC. With each QPC’s transmission (reflection) amplitude ti (ri), the two transmission 
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probabilities of the MZI in the integer regime are, 𝑇D1 = |𝑡1𝑡2 + 𝑟1𝑟2𝑒𝑖2𝜋𝜙/𝜙0|2 = |𝑡1𝑡2|2 +

|𝑟1𝑟2|2 + 2|𝑡1𝑡2𝑟1𝑟2|𝑐𝑜𝑠(2𝜋𝜙/𝜙
0
) , and 𝑇D2 = |𝑡1𝑟2 + 𝑟1𝑡2𝑒𝑖2𝜋𝜙/𝜙0|2 =  |𝑡1𝑟2|2 + |𝑟1𝑡2|2 −

2|𝑡1𝑡2𝑟1𝑟2|𝑐𝑜𝑠(2𝜋𝜙/𝜙
0
), where 𝜙/𝜙0 is the number of flux-quanta threading the effective 

interferometer area (the area enclosed by the two trajectories), and 𝑇D1 + 𝑇D2 = 1. A ‘modulation 

gate’ (MG) tunes the threaded flux via changing the enclosed area. The electrons’ visibility is 𝑣𝑒 =

 
𝑇max−𝑇min

𝑇max+𝑇min
, where 𝑇max (𝑇min) is the maximum (minimum) transmission at each drain. 

We studied two different-size MZIs. One with an ‘effective areas’ ~ 3.67μm2 and a larger one with 

an area ~13.5μm2 (Fig. 1a), and single path lengths ~1.9µm and ~5.1µm,  respectively. The 

interferometers were fabricated in a high mobility two-dimensional electron gas embedded in a 

GaAs/AlGaAs heterostructure (grown by MBE in our center). We tested two different MBE 

growths: electron densities (0.92, 1.22)×1011cm-2, and 4.2K dark-mobility (4.1, 3.6)×106cm2/V-s, 

respectively. Ohmic contacts and gates were formed standardly (see Supp. Sec. SM1), and 

measurements were conducted at electrons’ base temperature 10–15mK. The conductance and shot 

noise were measured at ~900kHz, with an appropriate bandwidth in both cases. A homemade 

amplifier, cooled to 1.5K, cascaded by a room temperature amplifier, provided a total gain of 

~5000. The measurement results are summarized in the Table below. 

We started with the smaller MZI tuned to bulk filling factor, =3 and =2. The interference pajama 

plot (conductance in VMG–B plane) of the outer edge mode in =2 is shown in Fig. 2a. The plot is 

characteristic of constant-area AB interference. The B-dependence flux periodicity is the flux-

quantum, 𝜙0=h/e  - as expected (Figs. 2a & 2b and Table; see also Supp. Sec. SM2 & Fig. SM2). 

In both =3 & =2, the most inner edge modes were dephased. The general behavior of the large 

MZI was similar to that of the smaller one; only, with visibility reduced (see Table and Supp. Sec. 

SM8). 

Charging negatively the modulation gate (MG) depletes charge from the edge, Δ𝑞 = 𝐶Δ𝑉𝑀𝐺 =

𝑛𝑒𝑒Δ𝐴, and consequently reduces the AB phase, Δ𝜃 = 2𝜋
𝐵 Δ𝐴 

𝜙0
. A constant gate capacitance C in 

all filling factors leads to fluxes ratio, 
Δ𝜙2

Δ𝜙1
=

𝐵2Δ𝑉MG2

𝐵1Δ𝑉MG1
 (see Supp. Sec. SM3). The expelled charges 
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per interference period are q(=2)=2e and q(=3)=3e; corresponding to the removal of a single 

flux quantum per period (see Table). 

The highest visibility, measured at TMZI-D1≤0.5 (distinguishing from the maximum interference 

amplitude found at TMZI-D1=0.5), was ~91%. With increasing the magnetic field, the visibility 

gradually diminished, ultimately disappearing at =1 (Supp. Sec. SM4). Such dependence was 

attributed to the emergence of non-topological neutral modes, resulting from spontaneous edge-

reconstruction (35, 36). 

Moving to the fractional regime, we studied the interference of the outer edge mode in bulk filling 

ν=2/5. The state supports two downstream edge modes: an inner mode with conductance e2/15h 

and an outer mode with conductance e2/3h. (see Supp. Sec. SM5 and Fig. SM4). The two QPCs 

were tuned to weakly partition the 1/3 mode and fully backscatter the 1/15 mode. The partitioned 

1/3 mode carried shot noise. We measured Fano factor =1/3, corresponding to partitioned 

quasiparticles charge e/3 (Fig. 3a and Supp. Sec. SM6). 

device size 

2D density 
𝝂 

B 

(Tesla) 

ΔB 

(Gauss) 

𝚫𝝓 

(𝝓𝟎) 

ΔVMG 

(mV) 

Δ|q| 

(e) 

𝚫𝝓𝟐

𝚫𝝓𝟏
=

𝑩𝟐𝚫𝑽𝐌𝐆𝟐

𝑩𝟏𝚫𝑽𝐌𝐆𝟏

 
visibility 

(%) 

 

3.67µm2  

high density 

 

2 2.5 10.8 1 22.2 2 1 90.7 

3 1.675 10.96 1.01 32.9 2.96 1.01 62.4 

2/5 12.65 10.59 0.98 4.2 0.38 1.04 22.0 

 

13.5µm2 

low density 

2 1.85 3.02 1 9.8 2 1 67.6 

3 1.245 3.02 1.0 14.7 3.0 0.99 13.9 

2/5 9.05 2.91 0.96 1.8 0.37 1.10 8.3 

Table: Details of the interference at the integer and fractional QHE regimes. The normalization is with 

respect to the interference of the outer edge in =2 with electron interference periodicity of 𝜙0. 
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Counter to simplistic expectations, the observed periodicity of the B-dependence flux was of one 

flux-quantum (Fig. 2c and Table). The VMG periodicity corresponded to a depleted charge q0.4e 

per period; corresponding to the removal of a single flux-quantum (Table and Supp. Sec. SM3). 

Similar data were obtained with the larger MZI (see Table and Supp. Sec. SM8). The 1/3 

interference diminished exponentially with increasing temperature, with a characteristic 

temperature of ~23mK (Figs. 3b & 3c). Comparing the visibilities in the two MZIs, we estimate a 

dephasing length of 10.5µm for electrons and 3.3µm for e/3 QPs. 

The present data of interfering e/3 quasiparticles (confirming the theory (21, 42)) proves that the 

‘anyonic MZI’ behaves dramatically differently from the ‘anyonic FPI’. In the FPI: the B-

dependence flux periodicity is 3𝜙0, whereas the VMG repels q=e per-period; corresponding to 

three e/3 depleted from the interfering Landau level (LL) (6). In the MZI: the B-dependence flux 

periodicity is 𝜙0, whereas VMG repels q=ve per-period; corresponding to a single e/3 depleted 

from the interfering LL. 

The observed flux periodicity of (an integer like) 𝜙0 in the ‘anyonic MZI’ manifests the ‘dressed 

AB’ interference, which combines a ‘bare AB’ interference with an anyonic braiding. It will 

become more evident as we explore the visibility with the average transmission of the MZI. For 

electrons, say in the downstream drain D1, 𝑇MZI−D1 =< 𝑇D1 >=  |𝑡1𝑡2|2 + |𝑟1𝑟2|2, and the 

visibility, 𝑣e =
2𝜂|𝑡1𝑡2𝑟1𝑟2|

𝑇MZI−D1
, with 𝜂 a dephasing factor. The visibility of the electrons increases 

smoothly from zero at unity transmission to a maximum at transmission half, namely, 

𝑇MZI−D1=𝑇MZI−D2 =0.5. Below this transmission, it remains constant (Fig. 4f). However, in the 

fractional regime, the observed visibility at D1 (𝑣e/3) changes sharply with the MZI’s average 

transmission, and it peaks at 𝑇MZI−D1>0.5 (𝑇MZI−D2<0.5), with the two drains affecting markedly 

differently the AB interference (Fig. 4g). Before presenting the corresponding data in more detail, 

we provide a somewhat pictorial picture of the interfering e/3 QPs (30, 31, 43-45). 

The ‘picture’ is based on the notion that the inner drain can absorb only electrons. When the AB 

phase directs a QP to the inner drain (D2), the QP charge is screened by holes in the drain; however, 

its attached flux remains uncompensated (occupying an ‘area’ of a flux quantum). For each of the 

next two quasiparticles, a braiding phase of 
2𝜋

3
  is added to the ‘bare AB’ anyonic phase. Hence, 
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the evolving ‘dressed AB’ phase is  2𝜋 (
𝜙

3𝜙0
 +

𝑁−1

3
 ), with Nth interfering QPs entering the MZI 

and n=(N-1) fluxes are stuck at the inner drain. The N=4 QP will be equivalent to the N=1 QP, as 

the phase will return to its initial value modulo 3. After three consecutive QPs accumulate at the 

drain, they leave to the ground as an electron. This mechanism has an extraordinary consequence 

on the visibility and periodicity of the interference pattern, as we describe now (more details in 

Supp. Sec. SM7). 

The ‘time’ required for the (n+1)th quasiparticle to arrive at D2 is 𝑡𝑛 = 1/𝑝𝑛, where pn is its 

probability of arriving at D2. This probability is:  𝑝𝑛 = 𝑝̅(1 + 𝑣e 𝑐𝑜𝑠 2𝜋(
𝜙

3𝜙0
+

𝑛

3
)), with 𝑝̅ the 

flux-independent probability determined by ti’s of the QPCs (30), 

𝑇𝐷2 ≡ 3 [∑
1

𝑝𝑛

2
𝑛=0 ]

−1

= 3𝑝̅ ∑ [
1

1+𝑣e 𝑐𝑜𝑠(
2𝜋𝜙

3𝜙0
 +

2𝜋𝑛

3
)
]

−1

 2
𝑛=0 = 𝑇I

4−3𝑣e
2

4 −𝑣e
2 [1 +  

𝑣e
3

4 −3𝑣𝑒
2 𝑐𝑜𝑠 (

2𝜋𝜙

𝜙0
)] ,  (1)  

where 𝑇I =  |𝑡1𝑟2|2 + |𝑟1𝑡2|2
. With current conservation, the transmission to D1,  

 𝑇𝐷1 = (1 − 𝑇I
4−3𝑣e

2

4 −𝑣e
2 ) − 𝑇I

𝑣e
3

4 − 𝑣e
2 𝑐𝑜 𝑠 (

2𝜋𝜙

𝜙0
) .    (2) 

A few essential features of the anyonic interference are apparent: 1. The flux periodicity is 𝜙0, 

being consistent with Byers–Yang theorem (46); 2. The two drains are not equivalent since the 

interfering quasiparticle encircles only D2; 3. The oscillation amplitude is substantially lower than 

in the integer regime; 4. The visibility at D1, 𝑣e/3 = 𝑇I𝑣e
3/[(4 −  𝑣e

2) − 𝑇I(4 − 3𝑣e
2)], reaches a 

maximum value at average TMZI-D1>0.5; hence, not the same as in D2, where TMZI-D2<0.5. These 

values depend on 𝑣e. 

For example, for 𝑣e = 1, the calculated fractional visibility, 𝑣e/3, has a maximum at TMZI-D1=0.83 

and TMZI-D2=0.17. Though the oscillation amplitude in both drains is the same, the visibility 

(accordingly to its definition) is: 𝑣e/3~20% at D1 and 𝑣e/3=100% at D2 (Fig. 4g). Moreover, with 

decreasing 𝑣e, the disparity between D1 and D2 becomes less evident. Calculated illustrative 

examples of the interference patterns in both drains are shown in Fig. 4a. 

We turn our attention to the experimentally observed visibility profiles in the small MZI. The 

interference pattern of the outer edge mode at filling ν=2 is plotted in Fig. 4b. As many 

combinations of the two individual transmissions |ti|
2’s of the two QPCs lead to the same average 
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transmission of the MZI, we plot the visibility for many of these combinations (Fig. 4d). With a 

dephasing factor 𝜂 = 0.91 in ν=2, the calculated visibility plotted in Fig. 4f agrees in its general 

behavior with the measured one. The ponts following each line are for single |t1|
2, while |t2|

2 is 

varied from 0 to 1. This way for different |t1|
2, configurations spanning all possiblities are studied. 

The AB interference of the larger MZI, having 𝜂 = 0.67, is plotted in Supp Fig. SM6. 

The interference pattern of the outer 1/3 mode in ν=2/5 is plotted in Fig. 4c, with the visibility, 

𝑣e/3, plotted for many |ti|
2’s as a function of TMZI-D1 in Fig. 4e. The visibility peaks sharply with a 

maximum value 𝑣e/3~22% at 𝑇MZI−D1~0.6, decreasing rapidly on either side of the peak. Using 

Eq. 2 and η = 0.91, the calculated visibility follows the same behavior as the measured one (Fig. 

4g). However, noteworthy the discrepancy between theory and experiment, where the theoretical 

visibility peaks at 𝑇MZI−D1~0.76 at 𝑣e/3~15.6%, suggesting that other factors must be included in 

the analysis. The larger MZI behaved similarly, with peak visibility, 𝑣e/3 ~8.3% at 𝑇MZI−D1~0.54. 

See more details in the Table (see Supp. Sec. SM8). 

Employing an electronic two-path Mach-Zehnder interferometer (MZI) in the fractional filling 

=2/5, with the outer edge mode =1/3 interfering, we demonstrated its sensitivity to braided 

quasiparticles tied to an additional accumulated Aharonov-Bohm phase. The observed ‘dressed 

Aharonov-Bohm’ interference of e/3 quasiparticles exhibited a markedly different fingerprint than 

the ubiquitous interference of electrons. With partitioned charges e/3, the two drains (inner and 

outer) were highly non-equivalent, thus leading to an uncharacteristic evolution of the interference 

visibility. Most importantly, the periodicity with magnetic field conspired to be a single flux-

quantum; however, with area tuning (via a modulation-gate), each period corresponded to 

evacuation of a single e/3 change (one flux quanta) from interfering edge mode. This first step in 

studying an abelian anyonic interference in a two-path Mach-Zehnder interferometer, opens the 

field for more challenging interference experiments with more exotic (i.e., non-abelian) quantum 

Hall states. 
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Fig. 1: Device structure and conductance quantization. (a) SEM image of the small MZI with ‘two-path’ 

area ~3.67μm2. Air bridges (green) short the split-gate of the QPCs. Air bridge (yellow) connects drain D2 to 

ground. The modulation gate repels charge and thus changes the threaded flux in the MZI. (b) Optical image 

of the full device structure. The MZI shown in (a) is located in the small box in the center. We measured the 

transmission of MZI at drain D1. (c) Two-probe Hall resistance as a function of the magnetic field. Distinct 

quantization of quantum Hall plateaus are observed. 
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Fig. 2: Integer and fractional Aharonov-Bohm (AB) interference patterns. (a) & (c) ‘Pajama plots’ – 

Transmission of the interfering outer edge modes in the VMG-B plane. (a) Interference of the outer edge mode 

in bulk filling =2 (B=2.5T). (c) Interference of the outer edge mode =1/3 in bulk filling =2/5 (B=12.65T). 

The equiphase lines are typical of AB interference. In both states, the field periodicity is of a single flux 

quantum. (b) & (d) 2D Fourier transforms of the ‘pajama plots’ showing a single peak, excluding Coulomb 

effects. The two periodicities in VMG, 22.2mV in =2 and 4.2mV in =2/5, are proportional to 1/B. 
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Fig. 3: Charge determination via shot noise measurements and temperature-dependent visibility: (a) 

Non-linear differential transmission of the partitioned 1/3 outer edge mode by a QPC (at bulk filling =2/5), 

where tQPC~0.82. (b) Current dependent spectral density of the shot noise (red discrete data points). The fit 

(blue line) agrees with charge e*~0.31e at electron temperature ~12mK. (c) Temperature dependence of the 

B-dependent interfering traces of the 1/3 mode. (d) An exponential fit of the temperature-dependent 

interfering oscillations leads to a characteristic temperature of ~23mK. 
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Fig. 4: Visibility in the integer and fractional regimes. (a) Calculated anyonic interference patterns in the two 

drains, D1 and D2 (Eqs. (1) & (2)). Solid orange and blue lines represent the maximum interference amplitude 

(at |ti|
2=0.5), which is expected at D1 and at D2 for the case of an ideal visibility in the integer regime, is 𝑣𝑒 = 1. 

Though the oscillation amplitudes at D1 and D2 (but out of phase) are same, the average transmissions are very 

different (TMZI-D1~5×TMZI-D2, two solid black lines). This forces the visibility at D1 (20%, TMZI ~0.83) to be ~5 

times smaller than at D2 (100%, TMZI ~0.17). The visibility of the interfering 1/3 outer mode drops off rapidly 

with diminishing integer visibility, 𝑣𝑒. An example is shown by the dotted oscillations (in purple and cyan) for 

𝑣𝑒 = 0.5. (b) Traces of measured interference oscillation of the interfering outer ν=1 mode at bulk filling =2 

(B=2.5T). (c) A similar plot of the measured interfering outer =1/3 mode at bulk filling =2/5 (B=12.65T). (d & 

e) The measured visibilities in the integer and fractional regimes as a function the average transmission TMZI-D1, 

respectively. Each dot represents a different transmission combination, (|t1|
2, |t2|

2), of the two QPCs. In the 

fractional regime, the QPCs’ individual transmissions were kept relatively high around the peak value of the 

visibility to assure a Fano factor=1/3 at each QPC. (f & g) Calculated visibility at D1 for integer and fractional 

regimes, respectively. The points in a line shape are for single |t1|
2, while |t2|

2 is varied from 0 to 1 in steps. 

Different lines are corresponding to multiple values of |t1|
2, covering both QPCs limits. Note that each point has 

appeared twice for a (|t1|
2, |t2|

2) and in reverse. The striking difference between these two visibilities emanates 

from the different braiding phases of the electrons and the fractional charges (see also details section SM 7). The 

measured 𝑣e dependence with TMZI-D1 is in accordance with η=0.91 (d & f). Considering same η, 𝑣e/3 profile with 

TMZI-D1 matches fairly well,  though there is a slight disagreement in details of peak 𝑣e/3. We find the peak 𝑣e/3 

(~22%) at TMZI-D1 ~0.6, where as the expected peak is at 0.76 with 𝑣e/3 = 15.6%. 
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Supplementary Material 

Anyonic interference and braiding phase in a Mach-Zehnder Interferometer 

 

SM1: Fabrication details: The Hall bars were patterned by wet etching of the GaAs/AlGaAs 

heterostructure. The 2DEG depth below the surface was 103nm, spacer layer (separation between 

donors and 2DEG) was 70nm and the quantum well width was 30nm. Ohmic contacts were made 

by alloying the following sequence of evaporation (from GaAs surface and up): 

Ni(5nm)/Au(220nm)/Ge(110nm)/Ni(83nm)/Au(20nm). The gates used to pattern the MZI were 

obtained by evaporating Pd-Au(10nm)/Au(10nm) in ultra-high vacuum. During the gate 

evaporation the sample is kept at liquid N2 temperature. In the last step air bridges were made by 

evaporating Ti(25nm)/Au(480nm) to connect the inner drain, D2 and the gates forming the QPCs. 

SEM image of the device with interfering edges are shown in Fig. SM1. We bias cooled the gates 

with +0.5V. 

 

SM2: Interference at ν=3: The measured interference of the outer edge mode at bulk filling ν=3. 

The observed interference pattern in B-VMG (Pajama) plane is plotted in Figs. SM2 (a) & (b) for 

small and large MZI, respectively. The flux periodicity is ~𝜙0 as detailed in the Table (main text). 

 

SM3: Modulation gate dependence: The purpose of tuning the modulation gate is to change the 

area enclosed by the interferometer and hence the enclosed flux. The charge expelled by biasing 

the modulation gate, 

Δ𝑞 = 𝐶Δ𝑉MG = 𝑛𝑒𝑒Δ𝐴  , 

where ΔA is the change in enclosed in MZI area, and ne the electrons density. Change in the area 

ΔA leads to change in the AB phase of interference, 

Δ𝜃 = 2𝜋
𝑒∗

𝑒

𝐵.Δ𝐴

𝜙0
  . 

Over a full period of interference the phase change is 2π, hence combining this two equations, 
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𝑒∗

𝑒
=

1

𝐵. Δ𝑉MG

𝜙0𝑛e𝑒

𝐶
  . 

While we compare interference of two bulk filling factors with interfering charge 𝑒1
∗ and 𝑒2

∗ and 

modulation gate periodicity Δ𝑉MG1 and Δ𝑉MG2, respectively at magnetic field B1 and B2, which 

changes the flux by Δ𝜙1 and Δ𝜙2 the relation obtains, 

Δ𝜙2

Δ𝜙1
=

𝑒1
∗

𝑒2
∗ =

𝐵2Δ𝑉MG2

𝐵1Δ𝑉MG1
   . 

This relation holds with assumption that the capacitance between modulation gate and edge 

channel remain constant with B. 

 

SM4: Interference as we approach ν=1: Even though high visibility interference is observed at 

outer modes, we are unable to observe interference at innermost modes. We also do not observe 

interference at ν=1, where the interfering mode faces the bulk. Increasing field from ν=4/3 state 

(B=3.675T) towards ν=1 (B=5.0T), the visibility diminishes from ~17% to zero. Fig. SM3 shows 

characteristic interference traces with B, while moving from ν=4/3 state to ν=1 state (intermediate 

point B=4.3T). This phenomenon was observed before and assumed to be a result of the emerging 

neutral modes due to edge reconstruction (1, 2). 

 

SM5: Edge modes at ν=2/5: The 2/5 FQHE state supports two edge modes with conductance 

e2/15h of the inner mode and e2/3h of the outer mode. These two modes can be identified in the 

QPC response. This is shown in Fig. SM4. 

 

SM6: Noise measurement at ν=2/5: Shot noise in a single QPC was measured to obtain the 

quasiparticle charge. The spectral density of shot noise is, 𝑆𝐼 = 2𝐹𝑒𝐼𝑑𝑐𝑡QPC(1 −

𝑡QPC)[coth (
𝐹𝑒𝑉

2𝑘𝐵𝑇
) −

2𝑘𝐵𝑇

𝐹𝑒𝑉
], where F is Fano factor (in most cases is the quasiparticle charge, tQPC 

is the transmission of the QPC, and Idc is the impinging DC current) (3-7). The charge was 0.31e 

in the partitioned 1/3 mode. Partitioning the inner 1/15 edge led to the shot noise plotted in Fig. 

SM5 (red dots) lower panel, while the non-linear transmission dependence on the bias is plotted 
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in upper panel. The blue solid line is the fit to the measured noise. The extracted partitioning charge 

is 0.22e at electron temperature ~12mK. We did not find excess noise on the QPC-plateau of 1/3 

in 2/5 state at base temperature, which shows an absence of neutral mode (8). This is consistent 

with the significant visibility in interference. 

 

SM7: Theoretical understanding of fractional interference in MZI: We outline in some detail 

the model used for quasiparticles (QPs) charge e/m. The assumption in the model is that e/m 

quasiparticles can only get absorbed in drain after bunching to an electron (9, 10). The first (m-1) 

QP will be stuck before mth QP arrives. This has a significant effect in fractional interference of 

MZI. Presence of any QP at the D2 drain (inside the MZI), changes the probability for the next 

QP’s acquired phase. The interfering QP encircles D2 and the QP stuck at D2 gives rise to an extra 

exchange phase on top of the bare AB phase. This process compels the transmission of individual 

QP in MZI to be a correlated phenomenon (modulo m). Measured interference of QP in MZI is 

hence an averaged probability of m correlated QP transmission compared to individual 

independent electron transmission (IQH).  

The probability of an 1/m QP to reach D2 can generally be written as 𝑝̅ (1 + 𝑣e. 𝑐𝑜𝑠 (
2𝜋𝜙

𝑚𝜙0
+

2𝜋

𝑚
. 𝑛)), where 𝑝̅  is average probability and n = 0, 1,…,(m-1). For electron, m=1 (n = 0), it obtains 

the discussed probability or transmission of MZI. In case of 1/3 QP (m=3), the same probability is 

𝑝𝑛 = 𝑝̅ (1 + 𝑣e. 𝑐𝑜𝑠 (
2𝜋𝜙

3𝜙0
+

2𝜋

3
. 𝑛)) for (n+1)th QP to reach D2, where n= 0, 1, 2. The 

2𝜋

3
𝑛  factor 

is because while 𝑛 number of QP are stuck at inner drain and the next interfering QP encircles the 

𝑛 QP at D2 (exchange phase). This contributes to a 
2𝜋

3
. 𝑛 phase shift in probability of next QP to 

reach D2. The time requires to arrive (n+1)th QP to reach D2 is 𝑡𝑛 = 1/𝑝𝑛. In this process when 

there are 3 QP arrives at D2, it gets absorbed in drain restoring the MZI to initial condition. Here 

𝑝𝑛 is not the transmission we can measure at D2 because the drain can only absorb once 3 of these 

1/3 QPs accumulates and become an electron(9-12). 

The measured transmission at D2 would be the harmonic average of this single 1/m QP 

probabilities,  
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𝑇𝐷2 ≡ 𝑚.  [ ∑ 1/𝑝𝑛

𝑚−1

𝑛=0

]−1 

= 𝑚[ ∑
1

𝑝̅ (1 + 𝑣e. 𝑐𝑜𝑠(𝑎𝑛))

𝑚−1

𝑛=0

]−1 

where 𝑎𝑛 =  
2𝜋𝜙

𝑚𝜙0
+

2𝜋𝑛

𝑚
 

= 𝑚[ ∑
1

𝑝̅ (1 + 𝑣e. 𝑐𝑜𝑠(𝑎𝑛))

𝑚−1

𝑛=0

.
𝑀 + cos (𝑚. 𝑎𝑛)

𝑀 + cos (𝑚. 𝑎𝑛)
]−1 

The polynomial of the form 𝑀 + cos(𝑚. 𝑎𝑛), can be simplified to 𝑀 + cos (
2𝜋𝜙

𝜙0
). The polynomial 

is chosen such a way that it exactly cancels with(1 + 𝑣. 𝑐𝑜𝑠(𝑎𝑛)). 

= 𝑚[ ∑
1

𝑝̅ (𝑀 + cos (
2𝜋𝜙
𝜙0

))

𝑚−1

𝑛=0

.
𝑀 + cos (𝑚. 𝑎𝑛)

(1 + 𝑣e. 𝑐𝑜𝑠(𝑎𝑛))
]−1 

= 𝑚[
1

𝑝0(𝑀 + cos (
2𝜋𝜙
𝜙0

))
∑

∑ 𝐴𝑠 cos𝑠 𝑎𝑛
𝑚
𝑠=0

(1 + 𝑣e. 𝑐𝑜𝑠(𝑎𝑛))

𝑚−1

𝑛=0

]−1 

= 𝑚[
1

𝑝̅ (𝑀 + cos (
2𝜋𝜙
𝜙0

))
∑

∑ 𝐵𝑡 cos𝑡(𝑎𝑛). (1 + 𝑣. cos(𝑎𝑛))𝑚−1
𝑡=0

(1 + 𝑣e. 𝑐𝑜𝑠(𝑎𝑛))

𝑚−1

𝑛=0

]−1 

= 𝑚[
1

𝑝̅ (𝑀 + cos (
2𝜋𝜙
𝜙0

))
∑ ∑ 𝐵𝑡 cos𝑡 𝑎𝑛

𝑚−1

𝑡=0

𝑚−1

𝑛=0

]−1 

= 𝑚[
1

𝑝̅ (𝑀 + cos (
2𝜋𝜙
𝜙0

))
∑ ∑ 𝐶𝑢 𝑐𝑜𝑠(𝑢. 𝑎𝑛)

𝑚−1

𝑛=0

𝑚−1

𝑢=0

]−1 

 

Using the relation of summing nth roots of unity to zero, only n=0 contributes. 

𝑇𝐷2 =
𝑝̅ 

𝐶0
(𝑀 + cos (

2𝜋𝜙

𝜙0
)) 
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In case of 1/3 QP, m=3. Then the polynomial 𝑀 + cos (
2𝜋𝜙

𝜙0
) takes the form for 𝑀 =  

4−3𝑣e
2

𝑣e
3  which 

obtains 𝐶0 =  
4−𝑣e

2

𝑣e
3  . Putting these values, 

𝑇𝐷2 = (|𝑡1𝑟2|2 + |𝑟1𝑡2|2)
4 − 3𝑣e

2

4 − 𝑣e
2

[1 +  
𝑣e

3

4 − 3𝑣e
2

𝑐𝑜𝑠 (
2𝜋𝜙

𝜙0
)] 

 

SM8: Fractional interference for the larger MZI (area ~13.5µm2). Interference in this MZI in 

the integer regime shows a visibility 𝑣e~67% at ν=2 outer edge. The interference is plotted in Fig. 

SM6. Likewise, interference at outer 1/3 edge mode with the bulk filling ν=2/5 plotted in Fig. 

SM7. The maximum visibility (𝑣e/3 ) was ~8.3%. The variation of visibility in case of fractional 

interference with average transmission of MZI (TMZI) is plotted in Fig. SM7. As shown in section 

SM8, the peak visibility appears at TMZI=0.54. 
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Fig. SM1: Device Image. SEM image of the small MZI with ‘two-path’ area ~3.67μm2. The paths of the 

two edge modes in ν=2 (similarly in ν=2/5) are drawn, with the inner mode is fully reflected by the two 

QPCs and outer mode interferes (shown by dotted red lines). Full lines, blue (cold) and red (hot), are 

unpartitioned modes. 
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Fig. SM2: Interference at outer edge of ν=3: (a) & (b) ‘Pajama plot’ (VMG – B 2D plane) shows 

interference outer edge of ν=3 for small and large MZI. Right panel shows the 2D- Fourier transform 

of the interference, showing one peak corresponding to the periodicity of 2-path interference. The flux 

periodicity corresponds to one flux quanta. 
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Fig. SM3: Interference close to ν=1: Traces of interference as we change the flux enclosed by 

changing B. (a) shows measured interference at ν=4/3 (B=3.675T) outer edge (ν=1) with visibility 

~17%. As we increase B, at B=4.3T visibility degrades and eventually goes to zero at ν=1. In the entire 

plateau of ν=1, from B=4.8T to 5.3T, we did not find interference. 
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Fig. SM4: QPC response of ν=2/5: QPC transmission of 2/5 edge mode as a function of QPC gate 

voltage (VQPC). The (2/5)e2/h full transmission (t=1) followed by (1/3)e2/h intermediate plateau while 

the inner (1/15) e2/h channel is fully reflected (t=0.83) as we pinch the QPC. 

1/15 

1/3 
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Fig. SM5: Shot-noise measurement at 1/15 edge channel: Measured non-linear bias dependence (red 

plot, upper panel) and shot noise data (red dots, lower panel) while partitioning inner 1/15 mode. The 

weak back scattering in QPC was set ~4%. The blue solid line is the fit to the noise data which obtains 

fano-factor to be ~0.22 and temperature ~12mK. 

e*/e= 0. 22 

T ~ 12mK 
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Fig. SM6: Interference in large MZI: (a) 2D plot of interference of large (13.5µm2) MZI as a function 

of modulation gate and magnetic field at bulk filling ν=2 while interfering outer edge. Right panel 

shows Fourier transformation of interference measured showing one peak in periodicity. The AB type 

interference showed same periodicity (ΔB = 3.2 Gauss) in integer states obtaining flux periodicity of 

𝜙0. (b) Line trace of interference oscillation of outer edge at ν=2 with 67% visibility as the magnetic 

field is tuned. 
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Fig. SM7: Interference in large MZI: (a) 2D plot of transmission of MZI as a function of modulation 

gate and magnetic field at bulk filling ν=2/5 while interfering outer 1/3 edge. Fourier transformation 

of interference measured showing one peak in periodicity, shown in right. The AB type interference 

showed same periodicity (ΔB = 2.9 Gauss) as in integer states obtaining flux periodicity of 𝜙0. (b) 

Trace of interference oscillation measured for interfering 1/3 edge with B. 
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Fig. SM8: Visibility profile with TMZI for larger MZI: Measured visibility at D1 in fractional 

interference of 1/3 edge at bulk filling of ν=2/5. Similar to what we expect, we observe a peak like 

behavior in visibility with average transmission, TMZI. The peak visibility, (𝑣𝑒/3 ), is ~8.3% at TMZI 

~0.54. The lower visibility than the smaller MZI and the peak closer to TMZI ~0.5 agrees with our 

interpretation of fractional interference in MZI. 
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