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Summary

Many evolutionary years separate humans and macaques, and whereas the amygdala and 

cingulate-cortex evolved to enable emotion and cognition in both, an evident functional gap exists. 

Although it was traditionally attributed to differential neuroanatomy, functional differences might 

also arise from coding mechanisms. Here, we find that human neurons better utilize information 

capacity (efficient coding) than macaque neurons, in both regions; and that cingulate neurons are 

more efficient than amygdala neurons, in both species. In contrast, we find more overlap in the 

neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions, 

and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and 

efficiency across species and regions. We suggest that this tradeoff can contribute to differential 

cognitive functions between species, and underlie the complementary roles of the amygdala and 

the cingulate-cortex. In turn, it can contribute to fragility underlying human psychopathologies.

Introduction

The primate brain enables complex cognitive and emotional processes, yet is vulnerable to 

psychopathologies such as anxiety and mood-disorders that are tightly related to the balance 

between the amygdala and the cingulate-cortex (Averbeck and Chafee, 2016; Etkin et al., 

2016; Herry and Johansen, 2014; Likhtik and Paz, 2015; Quirk and Beer, 2006; Salzman and 

Fusi, 2010). The amygdala underlies survival skills and their modern-day analogues – 

emotions, emotional learning, and social-behaviors (Adolphs, 2010; Duvarci and Pare, 2014; 
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Murray, 2007; Phelps and LeDoux, 2005), and the cingulate-cortex is involved in cognitive 

processes as motivation, decision making, error monitoring, and flexible adaptive learning 

(Heilbronner and Hayden, 2016; Kolling et al., 2016; Shenhav et al., 2016). Both regions 

evolved extensively in primates and form a dense reciprocal synaptic network (Barton and 

Aggleton, 2000; Ghashghaei et al., 2007).

Most approaches to the evolutionary differences emerging across species and brain regions 

highlight neuroanatomical differences such as the large size of the human brain relative to 

the body (MacLeod et al., 2003), and specifically the size of the neocortex across 

mammalian species (Barrickman et al., 2008; Byrne and Corp, 2004; MacLean et al., 2014). 

Recently, it has been shown that the number of neurons can vary greatly across brains of 

nearly the same size (Herculano-Houzel, 2016), suggesting that the number of neurons is a 

major factor (Gabi et al., 2016). Together, it was proposed that the large number of neurons 

in an increased number of cortical areas enable high cognitive capabilities (Kaas and 

Herculano-Houzel, 2017). Differential neuroanatomy was recognized in David Marr’s 

classical terminology as one level of an information processing device - the hardware 

implementation (Marr, 1982), yet functional differences might arise from the 

representational and computational levels as well (Chater et al., 2006; Marr, 1982). Despite 

this, these levels are rarely compared directly across species.

Here we hypothesized that there could be differences in basic features of the neural code 

across species and brain regions, and moreover, that differences between the amygdala and 

the cingulate cortex would parallel evolutionary-driven differences between nonhuman 

primates and humans. Specifically, we looked for differences in efficiency and in robustness, 

as both can result from evolutionary pressure to develop cognition on one hand but preserve 

reliable responses to threats on the other. We used a unique opportunity to obtain single-unit 

recordings over long time scales (2 hours) from both structures in humans and macaques.

Previous studies have described important differences in the [ir]regularity of spike-trains, 

mainly in response to well-defined stimulus or action (Churchland et al., 2010; Maimon and 

Assad, 2009; Softky and Koch, 1993). We chose to extend on these approaches by using 

entropy-measures (Borst and Theunissen, 1999; Cover, 1991; Rieke et al., 1999). Entropy-

rates enable a natural extension to networks of several neurons and provide a measure for the 

information capacity in a channel – a neuron. The long recording times allowed appropriate 

sampling (Treves and Panzeri, 1995) and accurate estimation (Strong, 1998). Moreover, 

because overall firing rates vary across regions, species and behaviors, and impact 

information-capacity (Rieke et al., 1999; Strong, 1998), we derived a novel measure by 

normalizing to the theoretical limit (Shannon, 1997), enabling direct comparable 

quantification independent of firing rate and instantaneous behavior. This approach has a 

natural interpretation as efficiency: in a given set of constraints due to local or global limits 

on activity(Baddeley et al., 1997; Niven and Laughlin, 2008), how efficient is the observed 

spike train compared to the maximal information-capacity.

We used several approaches to estimate robustness. We quantified the strength of all 

pairwise correlations and their lag as a measure for synchrony, as pairwise correlations 

reasonably describe local networks (Ohiorhenuan et al., 2010; Schneidman et al., 2006). 

Pryluk et al. Page 2

Cell. Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further, we estimated the overlap in neural words, namely, how similar is the vocabulary in a 

pair of neurons. To do so we compared distributions of ‘uttered’ neural words by Jensen-

Shannon-Divergence (JSD) (Lin, 2006), and further normalized it to the expected theoretical 

maximum (similarly to efficiency) to allow direct comparison. Overall, we compare 

efficiency to robustness in model-neurons and in the recorded populations and describe their 

tradeoff along regions and species.

Results

We analyzed single-units recorded from the amygdala and the cingulate-cortex in five 

Macaca fascicularis (Livneh and Paz, 2012a, b; Resnik and Paz, 2015; Taub et al., 2018a; 

Taub et al., 2018b) and seven human patients with pharmacologically intractable epilepsy 

(Gelbard-Sagiv et al., 2008; Paz et al., 2010). The dataset consisted of 747 single-neurons, 

1502 pairs and 2617 triplets of simultaneously recorded neurons from the basolateral-

complex (BLA) of the amygdala and Broadman areas 24,32 of the prefrontal-cortex in both 

species (Experimental Model and Subject Details Section). For a detailed discussion on the 

validity of the results in epilepsy patients see STAR Methods.

Whereas all comparisons between regions within a species were done on neurons that were 

simultaneously recorded in each individual, comparisons between species require careful 

considerations such as properties of neural activity in patients and multiple behavioral 

paradigms. We addressed these using several controls described below (see STAR Methods), 

but mainly by developing approaches that measure efficiency and robustness in a stimulus-

independent manner over long-time scales, hence allowing the estimation of spike-train 

properties in each neuron individually independent of the context it was recorded in.

Lower efficiency in the amygdala and in non-humans

Whereas abrupt change in firing-rates is highly appropriate to estimate stimulus/task related 

coding and used in most neuroscience studies, we aimed to quantify and compare basic 

features of the information channels i.e. the neurons’ spike-train, while controlling 

(normalizing) for firing rates and aiming to find differences that are orthogonal to it. To 

measure the overall capacity to transmit information in each neuron we used the entropy-rate 

of the complete recorded spike train. The entropy-rate increases and is bounded by the 

firing-rate (Fig.1A), yet firing-rate (FR) does not fully account for it (Fig.1A insets), and the 

firing pattern, i.e. spike times, determine the actual information capacity (Rieke et al., 1999). 

Therefore, to evaluate how much a neuron actually exploits its potential, we devised the 

contrast-entropy - defined as the proportion between the entropy-rate of the neuron and the 

maximum entropy of an analytic neuron with the same firing-rate (methods, eq’ 1–3). 

Because firing-rate is limited in real neurons (Barlow, 2001; Niven and Laughlin, 2008), a 

high contrast-entropy measures how much the neuron is efficient.

We discretize spike trains into letters (Δ τ)ms) and define a word (W) by the number of 

letters it contains. For generality, we explore different combinations of letters 

(Δ τ)=1,2,4,8,16ms) and words (W=4,8,16 letters) and use each combination in all 

comparisons and analyses described hereafter. These 15 letter-word combinations span a 

wide range of words with different lengths, from 4 to 256ms, allowing us to examine the 
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consistency of the findings. Neurons with high contrast-entropy have word distributions that 

are more similar to the analytical maxima (Fig.1B top row), and those with low contrast-

entropy have a substantially different distribution (Fig.1B bottom row). Due to the 

normalization to FR, Contrast-entropy is indeed independent of it (Fig. 1C,D, Supp.Table.1), 

hence allowing comparison between neurons recorded in different regions and species. 

Notice that as expected due to sampling data-size, as well as due to correlations between 

successive words (Rieke et al., 1999; Treves and Panzeri, 1995), the contrast-entropy 

decreases with coarser discretization (i.e. longer letters and words), and this was similar 

across regions and species (Supp.Fig.1).

Using the contrast-entropy to compare neurons recorded from the same region in humans 

and monkeys, and neurons recorded in the amygdala and the cingulate-cortex of the same 

species, we find that in both species cingulate neurons exhibit more efficiency than 

amygdala neurons (Fig.2A), and in addition, human neurons exhibit more efficiency than 

monkey neurons, and this was the case for both regions (Fig.2A, Wilcoxon signed-rank tests, 

p<0.01 for all, corrected for multiple comparisons). Convincingly, this was the case for the 

overwhelming majority of word combinations (Fig.2B; Supp.Table.1).

To establish this finding and validate it is not due to differences in firing-rates, we first 

notice that the order of contrast-entropy is different than the order of FR distributions across 

regions/species (Supp.Fig.2A,B). Further, we sampled two distributions of real neurons: in 

the first case, we match neurons of monkey amygdala with neurons of human amygdala with 

the same FR, and similarly for monkey and human cortex (Fig.3A bottom-left); and in the 

second, we match neurons of human amygdala with human cortex and monkey amygdala 

with monkey cortex (Fig.3A bottom-right). In both, the findings remain the same (Fig.3A 

top row, Supp.Fig.2C,D, Supp.Table.2). Finally, we adopted a ‘spike-dropping procedure’ 

(Fujisawa et al., 2008), and randomly removed spikes to equalize means of firing-rate 

distributions across regions and species (see methods), achieving similar results (Supp.Fig.

2E,F,G,H).

Although we used long periods of data (up to 2 hours) that allow reliable estimation, we 

validated that our findings are not affected by sampling bias (Treves and Panzeri, 1995) by 

further estimating the contrast-entropy for an ‘infinite word length’ (Strong, 1998) 

(Supp.Fig.3). The results validated again the difference between humans and monkeys for 

both regions, and between cingulate-cortex and amygdala in both species (Fig.3C). This was 

again consistent for the overwhelming majority of letter-word combinations (Fig.3C; 

Supp.Table.2). Finally, we made sure the results are not dependent on different recording 

lengths and different times during the recording, by random resampling of segments (Fig.

3D, Supp.Table.2).

We conclude that neurons have higher contrast-entropy (i.e. their spikes are more efficiently 

distributed) in humans compared to monkeys and in the cortex of both species compared to 

the amygdala.
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The contribution of putative excitatory-inhibitory neurons and spike-train irregularities

A putative origin to the differences can be differential sampling and/or differential density of 

excitatory vs. inhibitory cell types. Although it is harder to obtain absolute cell-type 

identification in extracellular recordings in primates, spike waveforms can provide a 

reasonable proxy. The time from through to peak defined as the width of the action-potential 

waveforms was shown to cluster into two categories: narrow and broad, and these groups 

largely correspond to inhibitory interneurons and excitatory pyramidal cells, respectively 

(Bartho et al., 2004; Mitchell et al., 2007). We repeated this analysis for all human and 

monkey waveforms (all neurons that participated in this study were included), and found 

that in all four regions-species there are similar proportions (12–17%) of ‘narrow’ neurons 

(identified by a ‘bend’ algorithm applied to the cumulative-distribution-function). There was 

no significant difference in proportion across the four regions (χ2, p>0.6, Supp.Fig.5B,C). 

Importantly, there was no correlation between the width of a neuron and its contrast-entropy, 

in both species (R~=0, P>0.6, Supp.Fig.5D,E). This suggests that the efficiency is not 

directly affected by differences in excitatory/inhibitory populations (yet it does not preclude 

the contribution of differential E/I balance).

Additionally, the irregularity of spike trains, traditionally measured by the coefficient of 

variation (CV), was shown to vary across brain regions (Maimon and Assad, 2009; Softky 

and Koch, 1993). Because irregularity directly contributes to the entropy-rate, we tested the 

contribution of the CV to our results. As expected, there is strong inverse correlation 

between the CV and the contrast-entropy, and as a result, we indeed find higher CV in 

monkeys that likely contribute to the lower contrast-entropy. However, we also observed that 

CV alone does not fully capture the differences we found across species and regions 

(Supp.Fig.6).

A tradeoff in single-neurons between efficiency and robustness

More spikes in a given time window, in a neural word in our case, increase detection of an 

event or stimulus and allows higher speed of response and increased reliability for a 

downstream region and eventually for the organism (Barlow, 2001). Therefore, increasing 

overall average firing rates enable both higher information transmission (Fig.1A) and at the 

same time higher speed and reliability of response (Fig.4). However, such increase is limited 

by energy consumption and bounded in neurons, a major confound for real networks 

(Barlow, 2001; Niven and Laughlin, 2008).

To elucidate the contribution of spike patterns, we employed model neurons generated by a 

two-state Markov process (Amigo et al., 2004). This model allows us to specify an entropy-

rate for any particular FR by modulating only one free parameter (β) that determines the 

transition probability from spike to no-spike (STAR Methods). For a specific FR, a neuron 

can reach maximum entropy-rate when β=1, and lower values impose a reduction in the 

efficiency (lower entropy), but at the same time also generate more words with high spike 

density (this is because the maximal entropy is achieved when words with high spike density 

are less common, see for example Fig.1B). For each neuron in our database, we fit a β value 

according to its empirical FR and entropy-rate. We find higher β distribution in humans and 

in the cortex compared to the amygdala, in both species (Fig.4 top-right, p<0.01, 
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Kolmogorov-Smirnov tests). This is in agreement with the model predictions and the 

tradeoff hypothesis across regions and species.

In this approach, an increase in potential information comes at the expense of the speed/

reliability of response, and vice versa (Fig.4). In other words, a neuron that ‘wants’ to 

maintain an overall average FR, can ‘choose’ to be more efficient, or instead to have higher 

speed/reliability of response. Indeed, when we select neurons with higher probability for 

words with more than one spike, we find more such neurons in the amygdala and in 

monkeys (Fig.4 upper-left), and when we select neurons with higher probability for words 

with only one spike or less, we find more such neurons in the cortex and in humans (Fig.4 

lower-right).Therefore, the observed contrast-entropy reflects a tradeoff between efficiency - 

higher in the cortex and in humans, and robustness - higher speed/reliability of response – 

higher in monkeys and in the amygdala.

Higher pairwise correlations and code overlap in monkeys and in the amygdala

To test if the tradeoff between efficiency and robustness occurs also beyond single-neurons, 

we measured pairwise correlations. We find that neurons in the monkey and in the amygdala 

exhibit higher correlations compared to human and cortex, respectively (Fig.5A,B), and a 

higher proportion of pairs exhibited significant correlations (Supp.Table.3). To control for 

time-specific or task-specific contributions, we repeated the analyses with resampling 

segments from the recordings (Fig.5C). We further selected distributions of pairs with 

similar FR-differences as well as total-FR (Cohen and Kohn, 2011) and validated that the 

observed differences in correlations are indeed a global phenomenon (Supp.Fig.7.B,C) 

(Okun et al., 2015; Runyan et al., 2017).

We then quantified the lag of the cross-correlations as a measure of synchrony(Runyan et al., 

2017), and find that neurons in monkeys and in the amygdala exhibit significantly shorter 

lags compared to humans and cortex respectively (Fig.5D,E). Such synchrony enables better 

downstream summation and hence a reliable population response, as well as enhanced 

speed-of-response. This is further in line with the hypothesis of more robust and fast/reliable 

response in monkeys and in the amygdala.

An additional way to measure overlaps in the code is to compare the distributions of words 

between pairs of neurons based on the Jensen-Shannon-Divergence (JSD) (Lin, 2006). Here 

as well, we find more overlaps in monkeys and in the amygdala in both species (Fig.5F, 

Supp.Table.4). Namely, pairs of neurons tend to use the same words more often and hence 

have a shared vocabulary.

A tradeoff between efficiency and robustness in non-human pairs only

The previous section described higher correlations and overlaps in pairs of neurons, 

interpreted as robustness of the population. In the sections before that, we characterized 

efficiency in single-neurons. In order to compare directly robustness with efficiency, the next 

step is to quantify it in pairs of neurons. To do so, we compared as before the actual entropy 

with the entropy of analytic pairs that have the same firing-rates. To calculate the entropy we 

define words and letters as before, but this time words are composed from the letters of the 

two neurons jointly (methods and Supp.Fig.4). Here again, the contrast-entropy of pairs was 
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found to be lower in monkeys than in humans, for both the amygdala and the cingulate-

cortex, as well as lower in the amygdala than in the cortex of both species (Fig.6A). The 

same difference was revealed also when calculated for triplets of neurons recorded 

simultaneously (see methods and Fig.6A insets). The fact that similar findings were obtained 

for single neurons, pairs and triplets, strongly suggests that it is a network characteristic.

It seems reasonable to assume that in pairs, just like described for single-neurons in a 

previous section (Fig.4), there would be an inherent tradeoff between the contrast-entropy 

and the pairwise-correlations. But is such tradeoff a necessary relationship? To demonstrate 

that this is not the case, we shuffled neurons from different days, maintaining the contrast 

entropy but destroying correlations (Fig.6B right-most inset in gray). To further demonstrate 

this, we modeled pairs of neurons and show that we can choose β values, i.e. fixing the FR 

and the contrast-entropies, yet without any relationship to the cross-correlations between the 

surrogate neurons (Supp.Fig.7.A).

Empirically and interestingly, we find that in monkeys only there is a relationship between 

the contrast-entropies of pairs and their cross-correlations (Fig.6B, Pearson’s correlation, 

p<0.01 for both amygdala and cortex). The difference in slopes between species was 

significant for both regions (Fig. 6B; p<0.05, Fisher Z-test). Therefore, the tradeoff between 

efficiency and robustness in pairs of neurons within a region is a finding unique to monkeys; 

or alternatively, the lack of tradeoff is unique to humans, suggesting that the local network in 

humans can maintain independency.

A tradeoff across species and regions

If we combine the results from the previous sections across regions and species, we observed 

higher efficiency in the cingulate-cortex than in the amygdala, for both primate species; and 

higher efficiency in humans than in non-human-primates, for both amygdala and cingulate-

cortex; when efficiency is defined as efficient use of information-capacity over long spike-

trains. On the other hand, we find more robustness in non-human-primates than in humans, 

for both regions; and in the amygdala than the cortex, in both species; when robustness is 

defined as the overlap in words and higher and more synchronized correlations. This is 

summarized in a scheme (Fig.7A).

As demonstrated in the previous section, a tradeoff between efficiency and robustness is an 

empirical finding and not a necessary relationship when considering pairs of neurons. To 

quantify if this tradeoff indeed exists across regions and species, we further plot the mean of 

the efficiency versus ‘1-robustness’ for each region and species, revealing a linear 

relationship (Fig.7B, p<0.01, linear regression, error-ellipses derived from the normalized 

covariance matrix). The results were further validated for isolated single-units from different 

electrodes (Supp.Fig.7D) as well as for putative multi-unit (MUA, collapsing units across 

electrodes, Supp.Fig.7E), and were not a result of distance between electrodes (Supp.Fig.

7F,G,H). Finally, the tradeoff was similar when dividing recording times into neural activity 

surrounding presentation of external stimuli and recording times during periods without an 

external stimulus being presented (Fig.7C).
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Discussion

We analyzed on-going neural activity from the amygdala and the cingulate-cortex of 

behaving humans and monkeys. We find a more efficient code (exploitation of information-

capacity) in the cortex compared to the amygdala and in humans compared to monkeys. In 

contrast, we find that the neural code is more robust in the amygdala compared to cortex and 

in monkeys compared to humans. Together, it suggests an efficiency-robustness tradeoff in 

the neural code, and we indeed find a linear relationship between the two properties across 

the four examined regions. The higher efficiency in the prefrontal-cortex and in humans can 

potentially contribute to the higher cognitive abilities, and to the best of our knowledge, this 

is the first demonstration for a putative human advantage from the point of view of the 

neural code, in addition to the well-established neuroanatomical difference (Kaas and 

Herculano-Houzel, 2017). The lower robustness can also be an advantage because it allows 

flexibility and adaptation to changing environments, however it also comes with a cost of 

less reliability. Across regions, the tradeoff parallels their functional roles: the amygdala’s 

robustness can maintain more stable emotional knowledge, namely memories that are less 

prone to changes or forgetting. The robustness can also contribute to faster and more reliable 

production of behavioral responses that are necessary for survival threats. Below we discuss 

the results in more detail.

We used a novel approach of the contrast-entropy as a measure. Whereas irregularities in 

spike-trains were compared before and were mainly used to compare stimulus-evoked 

responses (Churchland et al., 2010; Maimon and Assad, 2009), the contrast-entropy allowed 

us to characterize channels of information (neural spike trains) over long time scales, to 

capture higher-moments beyond the use of coefficient of variation or fano-factor, and 

importantly provided a direct comparable and interpretable quantity of efficiency. 

Interestingly, we found that efficiency is high overall, hovering around 90–98% in all 

recorded neurons in both regions and both species. These high values might point to some 

optimization process that already occurred along development. The consistency within a 

region and a species, and along the evolutionary hypothesis: from amygdala to cortex and 

from non-humans to humans, indicates that this might be the case. This narrow range of 

efficiency is directly related to the fact that most neurons use only a small range (few dozens 

of spikes/sec) of the theoretically possible firing rates (hundreds of spikes/sec), and together 

support the concept of minimizing energy consumption while gaining maximum efficiency 

(Baddeley et al., 1997).

On the other side of efficiency, the effect of pairwise correlations on the information in 

larger networks was discussed mainly in the context of stimulus-driven responses. 

Correlations can have a detrimental information-limiting effect (Averbeck et al., 2006), 

mainly due to differential-correlations (Moreno-Bote et al., 2014). Here, we aimed to 

capture the capacity of the neural code in on-going activity, and in this case, both efficiency 

of neurons and pairwise correlations constrain the effective-dimensionality (the ‘intrinsic 

manifold’) of a network (Sadtler et al., 2014) (Supp. Fig. 7I). Combining this with our 

findings of higher efficiency and reduced robustness, the network in humans and in the 

cortex potentially enables more cognitive abilities as well as flexible learning of new tasks 

(Golub et al., 2018). Although we show that the tradeoff between efficiency and robustness 
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was linear and necessary in model single-neurons (that maintain average firing-rate over 

long time-scales), we further show that this tradeoff is not necessary in pairs of neurons. 

Despite this, the empirical findings show that the tradeoff is largely linear in the recorded 

populations. Using pairs is a reasonable approach as pairwise correlations describe well the 

interactions in small networks (Ohiorhenuan et al., 2010; Schneidman et al., 2006), but 

likely less so in large networks with higher-order correlations (Ganmor et al., 2011; Macke 

et al., 2009). Therefore, we do not know how the tradeoff between efficiency and robustness 

behaves (analytically and empirically) for large networks. We hypothesize that at some point 

the tradeoff becomes necessary, unlike in pairs. Finally, we found a within-region tradeoff in 

monkey but not in human pairs. Although preliminary, if true, it points to another human 

advantage of maintaining independency of efficiency and robustness in small local networks. 

Obviously, increasing both efficiency and robustness is a desired feature, and even if it is 

limited by network size as hypothesized, the higher the independence, the better.

However, the same aforementioned considerations for improved learning in humans also 

suggest that ‘undesired’ learning could occur more easily (Supp. Fig. 7I). When such 

‘undesired’ learning is encoded via amygdala networks due to emotional context, the higher 

robustness, the shared vocabulary and less efficiency can explain why such memories are 

less detailed (Adolphs et al., 2005), over-generalized (Dunsmoor and Paz, 2015), and harder 

to extinguish (Milad and Quirk, 2012). All of these cognitive characteristics can contribute 

to anxiety and trauma-disorders (Averbeck and Chafee, 2016; Likhtik and Paz, 2015).

In addition to the established neuroanatomical cross-species differences (Kaas and 

Herculano-Houzel, 2017), recent studies have shown that human neurons might have 

specific properties such as lower membrane capacitance (Eyal et al., 2016), enhanced 

dendritic compartmentalization (Beaulieu-Laroche et al., 2018) and even identified novel 

groups of human GABAergic interneurons (Boldog et al., 2018). Although an appealing 

option, we could not find any differences in the proportions of putative excitatory / 

inhibitory neurons between regions or species, and there was no relationship between the 

classification and contrast-entropy. However, this does not preclude the option that 

differential synaptic excitatory - inhibitory (E-I) balance contribute to the efficiency/

robustness changes. The exact contribution of input-output / dendritic-axonal organization to 

entropy is not well understood, and differences between primates are also unknown at this 

stage. Similarly, between regions, the BLA complex is a cortical-like structure cell-type 

wise(Carlsen and Heimer, 1988; Swanson and Petrovich, 1998), and indeed we found 

similar proportions of putative pyramidal-cells and interneurons. Yet one major architectural 

difference exists: whereas the cortex is obviously a layered structure, the BLA is likely a 

homogenous ‘ball’ with no clear organization (Pare and Smith, 1993; Pare et al., 1995). 

These structural differences most likely contribute to local correlations, shared vocabulary, 

and efficiency, yet how exactly they contribute and in what direction will require further 

modeling and in-vivo studies.

Hence, it remains unclear what is the interaction between the known neuroanatomy and the 

representational differences as we describe here, and whether they are dependent (Marr, 

1982). From an architectural point of view, it makes sense that neurons that already sacrifice 

efficiency for robustness, would also cooperate among themselves to create faster and more 
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vigorous response in a downstream network, one that is also more resistant to noise 

fluctuations and hence more reliable. Indeed, cells with strong connections are those with 

the more correlated stimulus-related responses (Cossell et al., 2015). Robustness was also 

measured as overlap in neural words, i.e. the tendency of a pair of neurons to use the same 

short spike-patterns. The fact that there was overall less overlap in humans and cortex, is 

indicative and can contribute to sparse codes (Foldiak and M.P., 1998; Quiroga et al., 2005). 

This is further supported by the fact that it was not dependent on the distance between 

electrodes (unlike entropy and correlations) and the intriguing finding that there is no 

tradeoff in human regions only, allowing robustness to vary as required. Altogether, it 

suggests a more global phenomenon of using similar vocabulary to transfer information 

across larger modular networks.

One should carefully consider some technical aspects when interpreting the comparison 

between species, mainly the data from epileptic patients, different recording techniques, and 

different behavioral paradigms. These concerns are addressed in detail and with several 

controls (STAR Methods), and we provide here only the main arguments. The human data 

comes from epileptic patients, yet: first, only a minority (<6%) of the recordings were 

obtained within the epileptogenic seizure foci and ignoring these units yield the same 

results; second, epileptic activity is characterized by highly correlated activity in large 

groups of neighboring neurons, exactly the opposite of what we find in humans compared to 

monkeys; third, firing rates during our recording times were in the normal range, and even 

slightly lower in humans than in monkeys, opposite to an epilepsy concern; fourth, the 

patients behave normally and perform a variety of behavioral tasks during the recordings, 

strongly suggesting that neural coding is natural (the basic assumption behind all 

electrophysiological studies during behavior).

Although both human and monkey tasks required them to be attentively engaged with active 

responses, it might still seem difficult to interpret differences based on different behaviors 

across species. To address this we validated that the results hold also when repeating the 

analyses on randomized time periods, and separating spike-trains to periods with 

presentation of external stimuli from periods with no external stimulus. The validity of the 

results is also consistent with the finding that stimulus-induced effects are similar across 

regions and species, even when using different stimuli and behavioral tasks (Churchland et 

al., 2010). The combined datasets from several behavioral paradigms, and the novel 

approach we developed here designed to quantify basic properties of spike-trains over long 

time scales, both contribute to the argument that we unveiled task-independent general 

properties of the four networks. Finally, the results across amygdala vs. cingulate-cortex are 

a direct comparison because both were recorded simultaneously in each species in several 

tasks. The fact that the findings occurred independently in both species matching our 

original hypothesis and interpretation, provides strong support to the across species 

comparison.

Nevertheless, it remains as a future challenge to examine if and how the differences we 

describe affect instantaneous stimulus-evoked representations (Treves et al., 1999). Here, we 

did not aim to compare information about a specific stimulus, and it is not clear how exactly 

this can be done across species at all, because internal representation and behaviors (e.g. 
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emotional responses, associations, memories, thoughts-contexts, use of motor actuators) are 

much harder to control across species. Instead, we asked what general features of the neural 

code differentiate neural information channels in different regions and species, and focused 

on two complementary characteristics.

We suggest that the tradeoff we identified here across regions and species is due to 

evolutionary pressure that shifts the neural code from robustness, namely speed and vigor of 

response, both necessary for reliable execution of basic survival responses; into efficiency, 

enabling better exploitation of information capacity and complex use of the neural 

vocabulary to adapt and learn new environments. This is in line with the evolutionary 

transition across species, and also with the known roles of the cingulate-cortex on one hand 

and the amygdala on the other. We conclude that cross-species investigations are crucial for 

understanding basic features of the neural code, and for translational psychiatry that relies 

on understanding maladaptive learning and memory in neural networks.

STAR Methods

CONTACR FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rony Paz (rony.paz@weizmann.ac.il)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Non-human-primate recordings—We used data from 3 Macaca fascicularis (Livneh 

and Paz, 2012a, b; Resnik and Paz, 2015; Taub et al., 2018a; Taub et al., 2018b) and 2 more 

Macaca fascicularis Monkeys (4–7 kg) were implanted with a recording chamber (27 × 27 

mm) above the amygdala under deep anesthesia and aseptic conditions. All surgical and 

experimental procedures were approved and conducted in accordance with the regulations of 

the Weizmann Institute Animal Care and Use Committee (IACUC), following NIH 

regulations and with AAALAC accreditation. Food, water, and enrichments (e.g., fruits and 

play instruments) were available ad libitum during the whole period, except before medical 

procedures that require deep anesthesia. Anatomical MRI scans were acquired before, 

during, and after the recording period. Anatomical images were acquired on a 3-tesla MRI 

scanner: (MAGNETOM Trio, Siemens) with a CP knee coil (Siemens). T1 weighted and 3D 

gradient-echo (MPRAGE) pulse sequence was acquired with TR of 2500 ms, TI of 1100 ms, 

TE of 3.36 ms, 8° flip angle, and 2 averages. Images were acquired in the sagittal plane, 192 

× 192 matrix and 0.83 mm or 0.63 mm resolution. A first scan was performed before surgery 

and used to align and refine anatomical maps for each individual animal (relative location of 

the amygdala and anatomical markers such as the interaural line and the anterior 

commissure). We used this scan to guide the positioning of the chamber on the skull at the 

surgery. After surgery we performed another scan with two electrodes directed toward the 

amygdala, and 2–3 observers separately inspected the images and calculated the amygdala 

anterior–posterior and lateral-medial borders relative to each of the electrode penetrations. 

The depth of the amygdala was calculated from the dura surface based on the MRI at all 

penetration points. We used clear anatomical markers and visual similarity to identify the 

amygdala based on MRI images from primate atlas.
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The monkeys were seated in a dark room and each day, 3–4 microelectrodes (0.6–1.2 MΩ 
glass/narylene-coated tungsten, Alpha Omega or We-sense) were lowered inside a metal 

guide (Gauge 25xxtw, OD:0.51 mm, ID:0.41 mm, Cadence) into the brain using a head-

tower and electrode-positioning-system (Alpha Omega). The guide was lowered to penetrate 

and cross the dura and stopped ∼0.5–1 cm in the cortex. The electrodes were then moved 

independently further into the amygdala or the cingulate-cortex (we performed 4–7 mapping 

sessions in each animal by moving slowly and identifying electro-physiological markers of 

firing properties tracking the known anatomical pathway into the amygdala). Electrode 

signals were preamplified, 0.3 Hz-6 KHz bandpass filtered and sampled at 25Khz; and on-

line spike sorting was performed using a template-based algorithm (Alpha Lab Pro, Alpha 

Omega). We allowed 30 min for the tissue and signal to stabilize before starting acquisition 

and behavioral protocol. At the end of the recording period, off-line spike sorting was 

further performed for all sessions to improve unit isolation (offline sorter, Plexon Inc).

Human recordings—We used data from 7 patients with pharmacologically intractable 

epilepsy that have well isolated neurons from the amygdala or the anterior cingulate cortex 

(Gelbard-Sagiv et al., 2008; Paz et al., 2010). Extensive noninvasive monitoring did not 

yield concordant data corresponding to a single respectable epileptogenic focus. Therefore, 

they were implanted with chronic depth electrodes for 7–10 days to determine the seizure 

focus for possible surgical resection. All studies conformed to the guidelines of the Medical 

Institutional Review Board at University of California at Los Angeles. The electrode 

locations were based exclusively on clinical criteria and were verified by MRI or by 

computer tomography coregistered to preoperative MRI. Each electrode consisted of a 

flexible polyurethane probe containing nine 40-μm platinum–iridium microwires protruding 

~4 mm into the tissue beyond the tip of the probe. Eight microwires were active recording 

channels and referenced to the ninth, lower impedance, microwire. The differential signal 

from the microwires was amplified by using a 64-channel Neuralynx™ system, filtered 

between 1 and 9,000 Hz and sampled at 28 kHz. All sessions were conducted at the patients’ 

quiet bed-side using a standard laptop screen and speakers. Spike detection and sorting was 

applied to the continuous recordings by using a well-established clustering algorithm 

(Quiroga et al., 2004). After sorting, the clusters were classified into single units or multi 

units based on: (i) the spike shape and its variance; (ii) the ratio between the spike peak 

value and the noise level; (iii) the ISI distribution of each cluster; and (iv) the presence of a 

refractory period for the single units. Only well isolated neurons were considered to the 

further of the analysis

Sample size - numbers of single-units, pairs and triplets of neurons.

Human
Amygdala

Human
Cortex

Monkey
Amygdala

Monkey
Cortex

Total

Single 80 42 260 365 747

Pairs 313 152 369 668 1502

Triplets 898 378 479 862 2617
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Demographic information – age and sex of all patients and monkeys

Identifier Age Sex Species

P384 25 F Human

P385 21 F Human

P386 18 F Human

P394 30 M Human

P395 44 M Human

P399 N/A F Human

P400 46 M Human

‘L’ 5 M Monkey

‘B’ 6 M Monkey

‘Z’ 6 M Monkey

‘D’ 5 M Monkey

‘G’ 6 M Monkey

We were not able to compare our measures separately between human males and females 

due to marginal statistical power.

METHOD DETAILS

Behavioral paradigms—Three of the five monkeys underwent discriminatory classical 

conditioning, reversal, and extinction, using different neutral tones or pictures every day that 

acquired value through conditioning with either appetitive or aversive odors(Livneh and Paz, 

2012a, b; Taub et al., 2018a; Taub et al., 2018b). The monkeys were seated in a chair with a 

custom-made nasal mask attached to their nose. The mask was attached to two pressure 

sensors with different sensitivity range that enable real-time detection of breath onset. 

Experimental sessions initiated by a habituation session of ten presentations of the CS. The 

acquisition session that followed included 30 trials of CS paired with an aversive odor. 

Propionic acid stimulates olfactory and trigeminal receptors at the nose and is highly 

aversive to humans and monkeys. CS was triggered by breath onsets, and odor (US) was 

released at the following breath onset (but not before 1 s elapsed). Twenty unpaired CSs 

were presented to the monkey in order to extinguish the acquired association between the CS 

and the US.

Two of the monkeys underwent a perceptual 2-alternative-forced-choice task, where visual 

stimulus was presented for either 30, 60, 130, 230 or 330 ms in different trials to vary 

difficulty. Sets of stimuli changed on a daily basis to induce daily learning. Responses were 

delivered by pressing left/right buttons, and correct responses entailed liquid reward. The 

monkeys were seated in a chair in front of a monitor with a three-buttons panel located 

below it. Each trial was initiated by the monkey holding the middle button, followed by a 

delayed quick presentation of a visual stimulus that indicated the response they should 

perform to receive a rewarding water drop, pressing either left or right button.

The seven humans engaged in two alternating tasks, one included viewing several short 

clips, and the other involved free recall of the viewed content (without external stimulus) 
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(Gelbard-Sagiv et al., 2008; Paz et al., 2010). Each recording session was composed of 1–3 

(average 1.6) iterations of two parts: In the viewing session, subjects were presented with a 

series of between 10 to 16 different audiovisual movie-clips lasting 5 to 10 seconds each. 

Each clip depicted an “episode” featuring famous people or characters engaged in activity, 

landmarks photographed from various views, animals in motion, or objects depicted in a 

dynamic context. Each clip was presented 5–10 times and order of presentation was 

pseudorandomized: each cycle contained all different clips, but order of clips was 

randomized within the cycle; same clip was never presented twice consecutively; all clips 

within a single session were of same length; in some of the experiments interleaving blank 

periods (“blanks”) of 5 s were used occasionally within a group of successive clips, and in 

other experiments interleaving blanks of 2–3 s were used before each clip. Patients were 

asked to freely watch the clips. In the free recall session that followed, patients were asked 

to freely recall the clips they had just seen and verbally report immediately when a clip 

“comes to mind”. This session was not limited in time and was stopped only when the 

patient recalled correctly all the clips or when the patient could not remember any more 

clips.

All tasks kept the participants (monkeys and humans) highly engaged, and involved external 

stimuli as well as required active voluntary responses. Please see text and methods for the 

rationale to use a diverse set of behaviors to increase robustness and validity of findings.

Contrast-entropy—The total entropy of the spike train, which quantifies the variations 

across time and sets the capacity of the spike train to carry information, was estimated in the 

following way (Strong, 1998),(Rieke et al., 1999) : the neural spike train is discretized into 

bins of size Δ τ ms, and we refer to those bins as binary letters. A letter is equal to one if 

during the period of Δ τ at least one spike occurred, or zero otherwise. We define a word (W) 

in the neural code by the number of letters that it contains. Therefore, the length of the word 

is: T = W Δ τ. The number of each word occurrences is then normalized by the total number 

of words, to get its occurrence probability pi. The entropy rate of a neuron is calculated by:

EntropyD =
−∑

i
pilog2pi

T (1)

In equation (1), we divided the total entropy by T in order to get the entropy rate. In order to 

compare neurons across regions and species, and due to the high-dependence on firing rate 

(See text and Fig.1), we normalized each entropy-rate to the maximum entropy that can be 

obtained from of a spike train with the same firing rate. Maximum entropy is obtained when 

we consider every spike as a random event. Therefore, the probability of a spike was 

calculated according to the mean firing rate of the neuron (r), pS = r Δ τ. Then, the analytic 

entropy rate equals to:
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EntropyA =
−∑

i = 0

W

Ci
W pS

i 1 − pS
W − ilog2 pS

i 1 − pS
W − i

T (2)

Where Ci
W = W !

W − i !i! .. This analytic expression yields the same result as in (Rieke et al., 

1999).

To get an estimation of the entropy rate that is independent on the firing rate, and measures 

how much a neuron exploits its potential to transfer information, we define the contrast-

entropy as follows:

ContrastEntropy =
EntropyD
EntropyA

(3)

Information measures, and entropy-rate included, are prone to bias due to limited data 

sampling (Treves and Panzeri, 1995). To correct for this, we further estimated the contrast-

entropy based on the approach of (Strong, 1998). To do so, the naïve entropy is plotted for 

different Words, while Δ τ is held constant. Extrapolation for infinite word length is achieved 

when the regression line fitted to all words intercepts the y-axis (Supp.Fig.3). The estimated 

entropy rate for each neuron was then used (instead of the naïve entropy rate as in eq’ 3) to 

calculate the estimated contrast-entropy for the different letter lengths.

Two-state Markov process neurons—To better understand how neurons distribute 

their spikes to achieve a specific entropy rate, yet under physiological constraints of overall 

average firing rates, we modelled and simulated neurons that can have a specific firing rate 

and specific entropy rate. To do so, we used a two-state Markov process, where two 

transition probabilities are defined (Amigo et al., 2004; Cover and Thomas, 2006).

P10 – the probability to shift from no-spike to spike; and P01 – the probability to shift from 

spike to no-spike. The probabilities P11, P00  are derived, by definition, by summing the 

complementary probabilities to one.

Therefore, the stationary solution is:

P0 =
P01

P01 + P10
; P1 =

P10
P01 + P10

(4)

For a specific firing rate (FR), the proportion of the probabilities of the stationary solution 

should be constant and equal to:
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FR
1000 =

P1
P0 + P1

=
P10

P01 + P10
(5)

This leaves one degree of freedom that we could use to get the required entropy rate of the 

neuron. The maximum entropy is achieved when P01 = 1 −
FR

1000  (see proof in this methods 

under “Maximum entropy of two-state Markov process – Proof”). The entropy rate of such a 

process generating an infinite long binary sequence is given by (Cover and Thomas, 2006), 

(Amigo et al., 2004):

Hm = P0 −P10log2 P10 − 1 − P10 log2 1 − P10
+ P1 −P01log2 P01 − 1 − P01 log2 1 − P01

(6)

Therefore, we choose P01 = 1 −
FR

1000 β, where (a coefficient range between 0 to 1) allows to 

change and choose the entropy rate of the neuron, while maintaining the firing rate constant.

Then, for each real neuron, we fit the β that minimizes the difference between the entropy 

rate of the neuron and the surrogate neuron Hm with the same firing rate.

Overlaps in words by Jensen-Shannon Divergence (JSD)

The Jensen–Shannon divergence quantifies the dissimilarity of the 
distributions p and q:

JSD = 1
2DKL p, p + q

2 + 1
2DKL q, p + q

2 (7)

Where DKL is the Kullback-Leibler divergence defined as DKL p, q = ∑
x

p x log2
p x
q x

Calculation of JSD from the data is done by estimating the probability distribution of words 

for each neuron in a simultaneously recorded pair of neurons (as done for the entropy).

Using the probability of spike of the first neuron ps (based on its FR), the probability of 

spike of the second neuron qs and the word’s length W, we can derive the analytic JSD:

JSDA = ∑i = 0
W [

Ci
W

2 (pS
i 1 − pS

W − ilog2
2pS

i 1 − pS
W − i

pS
i 1 − pS

W − i + qS
i 1 − qS

W − i

+ qS
i 1 − qS

W − ilog2
2qS

i 1 − qS
W − i

pS
i 1 − pS

W − i + qS
i 1 − qS

W − i )]

(8)
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And the Contrast JSD (in analogy to contrast-entropy), is therefore:

ContrastJSD =
JSDD
JSDA

(9)

The contrast JSD is highly dependent on the difference between the firing rates of the cells. 

In order to compare contrast JSD, we choose pairs of neurons with similar difference in 

firing rate (separately for each region, Supp.Fig.7B,C). The contrastJSD is 1 if the JSD of 

the data is exactly like the analytical JSD, and for presentation purposes (in Fig.5F only), we 

normalize and define contrastJSD = Abs(contrastJSD-1).

Pairwise correlations—Pairwise correlations were calculated in the traditional way by 

using Pearson correlations for the discretized pairs of neurons, for every word and letter 

combination.

The time-lag of maximal correlation is calculated by time shifting one neuron in respect to 

the first neuron, and finding the optimal lag for each pair. This is equivalent to identifying 

the peak location in a classical cross-correlation (see Fig.5)

Entropy for pairs of neurons—The entropy of pairs of neurons is calculated by 

discretizing each spike train into bins of size Δ τ, and taking word W from each neuron to 

create a joint word in the length 2 * W (see Supp.Fig.4) The analytic probability of a word 

with i spikes from the first neuron, and j spikes from the second is:

Ppair i, j = pS1
i 1 − pS1

W − ipS2
j 1 − pS2

W − j (10)

Therefore, the analytic entropy of pairs equals to:

ENT pair = − ∑i ∑ j Ci
WC j

WPpair i, j log2Ppair i, j (11)

The entropy rate of pairs from the data is calculated by estimating the words’ distribution in 

the same way it was done for single neurons, but by combining the ith word of the first 

neuron to the jth word of the second neuron.

The naïve contrast-entropy in pairs is therefore:

ContrastEntropy2 =
EntropyDpair

ENT pair
(12)

As for single-neurons, we further validated the estimated contrast-entropy2 for pairs by 

using the method of (Strong, 1998).
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Entropy for triplets of neurons—The entropy of triplets of neurons is calculated by 

discretizing each spike train into bins of size Δ τ, taking word W from each neuron to create 

a joint word in a length of 3 * W .

The analytic probability of a word with i spikes from the first neuron, j spikes from the 

second and k spikes from the third neuron:

Ptriplets i, j, k = pS1
i 1 − pS1

W − ipS2
j 1 − pS2

W − jpS3
k 1 − pS3

W − k (13)

Therefore, the entropy of triplets equals to:

ENT triplets = − ∑i ∑ j ∑k Ci
WC j

WCk
WPtriplets i, j, k log2Ptriplets i, j, k (14)

And similar to singles and pairs, the contrast entropy of triplets is:

ContrastEntropy3 =
EntropyDtriplets

ENT triplets
(15)

Choosing neurons and pairs with similar firing rate—To further control and 

compare across species and regions independent of their firing rate, we created samples of 

neurons with similar properties. If we have two groups of neurons, the first one contains N1 

neurons, and the second contains N2 neurons, we examine which group is smaller:

Ns = N1 i f N1 ≤ N2 or Ns = N2 i f N1 > N2

We rank Ns neurons in the largest group according to the smallest difference from the 

closest neuron in the smallest group (FR-wise). If the difference is larger than 0.1Hz, the 

neurons are ignored in both groups. The result is two groups with the same number of 

neurons and with differences in firing rate smaller than 0.1Hz.

This process was done across regions (human amygdala with monkey amygdala and human 

cortex with monkey cortex) and across species (human amygdala with human cortex and 

monkey amygdala with monkey cortex).

We apply the same method to compare differences between pairs of neurons in each group 

(across species and across regions) to create distributions of pairs with smallest differences 

in firing rates and in the sums of firing rates (Supp.Fig.7B,C).

Correlation between contrast entropy of single neuron and pairwise 
correlations—Every simultaneously recorded pair of neurons was used. For every neuron 

we calculate the contrast-entropy as in eq’ 3 and the sum of contrast-entropies:
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SumContrast = ContrastEntropy 1 + ContrastEntropy 2 =
EntropyD1
EntropyA1

+
EntropyD2
EntropyA2

(16)

The relationship between the SumContrast and the cross-correlation was estimated by 

Pearson-coefficient.

Fisher r-z transformation was used to test for significant differences across regions and 

species:

T1 =
log

1 + R1
1 − R1
2 , T2 =

log
1 + R2
1 − R2
2 (17)

z =
T1 − T2
1

N1 − 3 + 1
N2 − 3

(18)

Where N1 and N2 are the number of pairs that were used in each species and region, 

followed by a z-test for significance.

Shuffling pairs—To test if the relationship between the sum of contrast entropies and the 

cross-correlation is a necessary one (i.e. pairs with low sum of contrast-entropy are expected 

to have high cross-correlations), we shuffled neurons to use pairs recorded in different days.

External stimuli vs. no-stimuli recording periods—We divided the data into two 

separate parts of each paradigm to represent two different states in each species: presentation 

of external stimuli and no-stimulus being presented. For humans, the two states are 

(Gelbard-Sagiv et al., 2008; Paz et al., 2010): 1. During clip viewing; and 2. During free 

recall without any external stimulus. In monkeys, the two states are(Livneh and Paz, 2012a): 

1. During the CS-US presentation of a trace-conditioning task (CS is a tone and US is an 

aversive odor or liquid reward); 2. During long inter-trial-interval periods without external 

stimulus. Although it Is admittedly hard to know what internal process is ongoing in each 

species in each phase, the high similarity of the results across states and independency of the 

main finding (tradeoff between robustness and efficiency) from the task/state, strongly 

suggest that the results are general and do not depend on differences in behavioral paradigms 

or internal states (see bellow).

Ellipses and Intrinsic manifold—In order to estimate the overall differences between 

the tradeoffs across species and regions, we calculated the mean and the error ellipse for 
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each region. The lengths of the ellipse axes are the square root of the eigenvalues of the 

normalized covariance matrix. The center of the ellipses is the mean of the X (efficiency) 

and Y (1-robustness) values.

The projection of each mean (as a vector from the origin to the center of each ellipse) onto 

the identity line is proportional to the dimension of the ‘intrinsic manifold’. This is ofcourse 

constrained by our ability to measure only 2nd-order correlations in the current data.

Coefficient of Variation (CV)—Coefficient of variation (CV) usually provide a 

parameter-free method to describe the inter spike interval (ISI) distribution. CV, a measure 

of the irregularity of the spike train, is defined as the standard deviation of the ISI divided by 

its mean. We first calculated the CV of all the spike train, but because we had long recording 

times and the firing rate of cells can vary over time, the ISI histogram can resemble the sum 

of more basic distributions. To address this, we adopted a method for plotting six ISI 

histograms per neuron in which each histogram consists of intervals associated with a 

similar mean firing rate(Maimon and Assad, 2009; Softky and Koch, 1993). We divided 

each spike train into certain time windows, and calculated the local firing rate in each 

window.

Ts - the time length of the spike train; Wi – is the window, therefore there are N =
Ts
Wi

windows in the spike train. We divided those N windows into 6 groups by their local firing 

rates, such that first group had N
6  windows with the lowest firing rates, and so on. We plotted 

the ISI distribution for each group and calculated its CV. The CV of the spike train is 

therefore the mean CV of those 6 groups. See Supp.Fig.6.

Random spike-dropping-procedure—Inspired by the “thinning” procedure in 

(Fujisawa et al., 2008), we randomly removed spikes from the spike trains in order to 

compare the mean of the firing rate distributions across regions (Amygdala to CC in both 

species) and across species (Humans to monkeys in both regions). The percentage of spikes 

that were removed defined by the differences in the mean of the firing rate distributions 

across the groups (see Supp.Fig.2; Spikes were mostly removed from monkey amygdala 

neurons when compared with human amygdala or monkey CC and from human CC when 

compared to human amygdala). The percentage of spikes removed was equal for all neurons. 

Altogether it allowed us to create groups with equal mean firing rate while maintaining the 

distribution of spikes as similar to the origin as possible.

Considerations regarding the comparison across species

A. The neurological pathology of the patients.: Several important considerations that 

convince us it does not affect the main results:

• Only a minority of the recordings (less than 6% of the units) were obtained from 

within the epileptogenic seizure foci. Moreover, when we repeated the analyses 

ignoring these units, the conclusions did not change.
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• Epileptic activity is characterized by highly correlated activity in large groups of 

neighboring neurons. This is exactly the opposite of what we find (higher 

correlations in monkeys than in humans).

• Firing rates during our recording times were in the normal range (Supp.Fig.2). 

They were even slightly lower in humans than in monkeys, opposite to an 

epilepsy concern (which exhibit in high rates), and it is also opposite to our main 

findings (higher entropy in humans).

• Previous studies have demonstrated high correlation between single unit activity 

in epileptic patients and fMRI BOLD signal in normal subjects (Mukamel et al., 

2005), suggesting that the neuronal activity of epileptic patients - in the absence 

of seizures - is not fundamentally different from normal.

• The patients are completely drug free during the week or two of the recordings 

(for clinical reasons, to enable observation of natural neural activity).

• The neuroscience community widely accepted many findings and knowledge 

about coding in the human brain based on recordings in such patients, published 

extensively in high-profile journals (e.g. Quiroga et al. Nature 2005; Gelbard-

Sagiv et al. Science 2008; Paz et al, PNAS 2010; Tang et al. Neuron 2014; 

Kaminsi et al. Nature neuroscience 2017; and many more).

• The patients behave normally and perform a variety of normal behavioral tasks 

during the recordings, strongly suggesting that neural coding during recordings is 

natural (notice this is the basic assumption behind all neuroscience studies in any 

animal, without it no interpretation can be made on electrophysiological studies).

• Finally, the main finding was found across regions in both species separately, 

matching our hypothesis and final interpretation. Of course, recordings were 

simultaneous and with identical techniques within a species, and all procedures 

performed by the same person within a species (i.e. for both regions). Although 

this is not a complete proof for the cross-species finding, the fact that it was 

found twice in an independent manner, provides additional support in our view to 

the cross-species finding as well.

B. Different recording systems across species:  Units in humans were recorded using 

macro-electrode that contain nine 40-μm platinum–iridium micro-wires protruding ~4 mm 

into the tissue beyond the tip of the probe. In monkeys, units were recorded using single 

micro-electrodes of glass/narylene-coated tungsten.

We performed several analyses to show it is highly unlikely to account for the main findings. 

We first refer to the correlations which are most relevant for this concern in our view:

• First, we validated in our data that correlations indeed decrease with distance 

between electrodes, as expected from classical findings (Supp. Fig. 7).

• However, the distance between electrodes in monkeys is actually larger than in 

humans, due to the average distance between contacts on the depth electrode 

used in humans vs. the average distance between electrodes inserted at different 
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locations in the grid we use (above the skull) in monkeys. So in fact, this should 

work ‘against’ us. Despite this, correlations are higher in monkeys (the main 

finding of robustness).

• To further validate this is the case, we re-performed the analyses taking only one 

neuron per-electrode in monkeys and in humans, which enforces a larger distance 

on all pairs of simultaneously recorded neurons in monkeys. We found that the 

correlations remain higher than in humans (Supp.Fig.7)

• Similarly, we find that the contrast-entropy (for pairs) increases with distance 

between neurons, and this is again opposite to our main finding that it is lower in 

monkeys (as aforementioned, distance between electrodes is larger in monkeys).

• The JSD show no relationship to distance between electrodes (Supp.Fig.7), 

suggesting the main finding does not stem from this factor.

We show full distributions of firing rates for all four regions (Supp.Fig.2). They were all 

within a reasonable range, and differences within species (across regions) were very similar 

to differences across species. Moreover, the differences in FR across regions and species do 

not show the same trend shown by our main results (for contrast-entropy, robustness, and 

tradeoff). Finally, our analyses were designed specifically to account for the FR and this is 

supplemented by several other methods which validate our findings. To conclude, firing-

rates cannot account for our findings.

The last concern is that of unit-isolation. We provide arguments why it is highly unlikely it 

accounts for the findings:

• First and importantly, changes in unit-isolation (mainly due to recording 

techniques but that also affect spike-sorting) mainly affect spiking 

characteristics. These influence mainly the FR, and hence are not an issue here 

(as described in the previous paragraph). Given that the FR is not a concern here, 

below we describe further controls for potential differential unit-isolation:

• We repeated the analyses but this time taking only one unit per electrode, hence 

making sure there are no overlaps (this is especially important for the 

correlations, as mentioned above, but also for the other analyses. Supp.Fig.7).

• The complement is the case where unit-isolation is less precise in one place vs. 

another, and hence more single-units are actually MUA. This is a bigger concern 

in the human data than in the monkey data, and we therefore combine/collapse 

single-units across electrodes in monkey data (to create on purpose MUA), and 

re-analyze. We find similar results (Supp.Fig.7).

• The distributions of spike waveforms (when considering the main criteria for 

excitatory-inhibitory separation) yield similar results across regions and species, 

both in shape of the distributions (CDF) and in the cutoff for E/I. This strongly 

suggests against a large bias in unit-isolation due to waveforms (Supp.Fig.5).

• We emphasize that the tradeoff was found across regions in both species 

separately, matching our hypothesis and final interpretation. Of course, 
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recordings were simultaneous and with identical techniques within a species, and 

all procedures performed by the same person within a species (i.e. for both 

regions). Although this is not a complete proof for the cross-species finding, the 

fact that it was found twice in an independent manner, provides additional 

support in our view to the cross-species finding as well.

C. Different behavioral paradigms across species:  We actually think it can be one of 

the strengths of our study, because the analyses were performed on a variety of tasks in both 

species and with methods designed precisely to address the generality of the efficiency/

robustness measures. In addition, we took several approaches to validate that the different 

behavioral paradigms are not the source of the differences:

• The results remain valid when we use resampling for time segments that are 

randomly selected from the recording periods (Supp.Table.2 and main Fig.3D 

and Fig5.C).

• The tradeoff was similar when dividing recording times into neural activity 

surrounding presentation of external stimuli and recording times during periods 

without an external stimulus being presented (Fig.7C). The findings (tradeoff) 

remain similar, and changes due to the stimulus are far smaller than changes 

across species and across regions.

• Let us assume that we would do an experiment with similar behavior across 

humans and monkeys, can we assume that humans have exactly the same internal 

responses (context-based, cognitive-based, memory-based) following a stimulus 

as monkeys exposed to the same stimulus? In other words, this concern is 

inevitable when comparing different species, and the only way to address it is to 

plan the analyses properly to unveil differences that cannot be explained by it i.e. 

that are independent of the specific task. This is exactly what we did here, and 

this is why we developed new measures that do not rely on stimulus-evoked 

responses but measure efficiency and robustness over long time-scales.

• We emphasize again that the tradeoff was found across regions in both species 

separately, matching our hypothesis and final interpretation. The fact that it was 

found twice in an independent manner, and according to our hypothesis and 

interpretation, provides additional support in our view to the cross-species 

finding as well.

• In a study that compared stimulus vs. no-stimulus (Churchland et al., 2010), they 

observed similar properties across region/species. We show here that the 

efficiency-robustness tradeoff across species/regions - is similar for stimulus and 

non-stimulus. They also used different stimuli across species (and even regions) 

to show similar effects.

We cannot, in the current case, and did not aim to, compute how much information a neuron 

holds per stimulus. This can be an interesting question in itself to compare across species, 

yet if the finding was stimulus-specific, it would have been a different question altogether 

(as it could be a result of many factors: context, memory, strategy and so forth). Overall, we 
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see our approach as a necessary complementary one (in addition to the traditional ‘stimulus 

driven’). The main finding is about the tradeoff between efficiency and robustness in long 

spike-trains. We looked for basic properties that are different across species and regions in a 

general manner.

Maximum entropy of two-state Markov process - Proof—The entropy to maximize 

is:

Hm = P0 −P10log2 P10 − 1 − P10 log2 1 − P10 + P1 −P01log2 P01 − 1 − P01 log2 1 − P01

Express all the variables as function of FR and P01:

P10 =
P01FR

1000 − FR

P0 =
P01

P01 + P10
=

P01

P01 +
P01FR

1000 − FR

=
1000 − FR

1000

P1 =
P10

P01 + P10
=

P01FR
1000 − FR

P01 +
P01FR

1000 − FR

=
FR

1000

Hm =
1000 − FR

1000 −
P01FR

1000 − FR
log2

P01FR
1000 − FR

− 1 −
P01FR

1000 − FR
log2 1 −

P01FR
1000 − FR

+
FR

1000 −P01log2 P01 − 1 − P01 log2 1 − P01

For finding the value, let us find when the derivative equal to zero:

∂Hm
∂P01

=
FR

1000 −log2 P01 + log2 1 − P01 − log2
P01FR

1000 − FR
+ log2 1 −

P01FR
1000 − FR

= 0

And the last equation is correct when:

P01 = 1 −
P01FR

1000 − FR

Therefore, the entropy is maximized for:
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P01 = 1 −
FR
1000

QUANTIFICATION AND STATISTICAL ANALYSIS—The number of neurons (n) that 

were used in this study across regions and species is described in Experimental model and 

subject details section.

Several custom-written MATLAB codes were used:

Contrast-entropy calculations of single neurons were based on equations (1)–(3) in the 

methods. Two-state-Markov neurons were simulated based on equations (4)–(6) in the 

methods. Contrast JSD was calculated based on equations (7)–(9). Contrast-entropy of pairs 

and triplets were calculated based on equations (10)–(15). A code for choosing neurons with 

similar FR was written as described in methods. A code for drawing the ellipses and intrinsic 

manifolds was written as described in the methods. CV calculations are based on the 

derivations in (Maimon and Assad, 2009), and described also in the methods. Random 

spike-dropping procedure is based on (Fujisawa et al., 2008) and described in the methods.

All statistical tests were conducted in Matlab. The statistical tests are described in the main 

text, methods and relevant figure legend, specifically:

The correlation coefficient and P-values in Fig.1D are calculated based on Pearson 

correlation coefficient, and differences between entropy-rate and contrast entropy in Fig.1E 

are tested with Fisher z-test. Differences across regions and species (Fig.2, Fig.3., Fig.6 and 

their Supp. corresponds) were tested using Wilcoxon signed-tank test. Differences in 

cumulative-density-functions (CDFs) across species and regions (Fig.4, Fig.5) are tested 

using Kolmogorov-Smirnov test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Contrast-entropy: efficient use of information-capacity in spike trains
A. Actual recorded neurons (blue asterisks) compared to the maximal entropy-rate for the 

same firing-rate (i.e. of an analytic neuron with the same FR, black triangles). Although the 

entropy-rate increases with firing rate (FR), the FR does not fully account for the entropy 

(see insets). The proportion of the entropy-rate from the analytical maximum (eq’ 2) is 

defined as the contrast-entropy (eq’ 3). Shown are two options of letter and word 
combinations (upper panel words of eight 8ms letters; lower panel words of 16 4ms letters).
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B. Four examples of the difference between entropy-rate of neurons and the optimal word 

distribution. Shown is the probability of each word (a word of four 1ms letters in these 

examples), in a recorded neuron (blue asterisks) and for the analytic-optimal neuron (black 

triangles). Two examples of low contrast-entropy are shown (bottom row) and two of high 

contrast-entropy (top row), for low (left column) and high (right column) firing rates.

C. Contrast-entropy (eq’ 3) measures how much neurons exploit their potential for entropy-

rate given their overall FR, shown for words of eight 8ms letters (left) and words of 16 4ms 

letters (right).

D. Correlation between FR and contrast-entropy is significantly lower than the correlation 

between FR and entropy rate in all 15 letter-word combinations (p<0.001 for all, Fisher z-

test), and all correlations between FR and contrast-entropy are close to zero (Supp.Table.1).

E. Cumulative density function (CDF) of the firing rates for both regions and species.
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Figure 2. Differential Contrast-entropy across regions and species
A. Higher contrast-entropy is measured in humans compared to monkeys (left column), for 

both amygdala and cingulate-cortex (CC); and higher contrast entropy is measured in the CC 

compared to the amygdala (right), in both species. Shown for words of eight 8ms letters 

(p<0.01 for all, Wilcoxon signed-rank test, corrected for multiple comparisons. * p<0.05; ** 

p<0.01; *** p<e-3; and so forth).

B. Consistency of finding across almost all 15 word-letter combinations. Lower contrast-

entropy in monkey amygdala compared to human amygdala (upper-left); Lower contrast-

entropy in human amygdala compared to human CC (upper-right); Lower contrast entropy 

in monkey CC compared to human CC (lower-left); Lower contrast entropy in monkey 

amygdala compared to monkey CC (lower-right). Each panel shows all 15 letter-word 

combinations (significant difference in solid lines, p<0.05 Wilcoxon signed-rank test).
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Figure 3. Differential Contrast-entropy (efficiency) is independent of firing rates
A. Matching firing-rates (see B) validates results: Lower contrast-entropy in monkey 

amygdala compared to human amygdala (left-most); Lower contrast-entropy in monkey 

cingulate-cortex (CC) compared to human CC (middle-left); Lower contrast entropy in 

human amygdala compared to human CC (middle-right); Lower contrast entropy in monkey 

amygdala compared to monkey CC (right-most). * p<0.05 and *** p<0.001 Wilcoxon 

signed-rank test.

B. Matching neurons with the same FR in monkey amygdala and human amygdala (left-

most), and similarly for monkey and human CC (middle-left); and matching neurons with 

the same FR in human amygdala and human CC (middle-right), and similarly for human 

amygdala and CC (right-most). See methods for selection process. Shown are the cumulative 

distributions of FR (lines are deliberately slightly shifted for presentation only). We re-

performed the analyses after equating FRs for further validation of the results from Fig.1.

C. Estimated contrast-entropy per neuron at infinite-word-length (methods). Shown is the 

mean +/− S.E.M (shaded) for all letter options. Upper-left: monkey amygdala is lower than 

human amygdala; Lower-left: monkey CC is lower than human CC; Upper-right: human 

amygdala is lower than human CC; Lower-right: monkey amygdala is lower than monkey 

CC (^ p<0.05, Wilcoxon signed-rank test).

D. Contrast-entropy for resampling by randomly choosing segments of 20 consecutive 

minutes. Shown is the mean overlaid with the individual neurons (Supp.Table.2). The order 

of contrast-entropy across the four paired comparisons (species and regions) is maintained.
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Figure 4. A tradeoff between efficiency and speed-of-response (robustness) in single-neurons.
Modelling real neurons by a two-state Markov process (methods) allows control of spike 

distribution for a given FR, and hence their efficiency (entropy-exploitation, β ranges from 0 

to 1, minimal to maximal entropy-rate). The model was fitted for all neurons and the 

cumulative-density-function (CDF, upper-right) is presented as a function of β per region 

and species. This revealed again the order from monkey amygdala to human CC (P<0.001 

for all, Kolmogorov-Smirnov test).

Importantly, the model unveils the tradeoff between efficiency and speed/vigor of response 

(robustness), where speed/vigor of response is defined as higher spike density (i.e. higher 

probability for words with more spikes). For a given FR, a neuron can exploit the 

distribution of spikes to achieve more or less entropy but at the cost of reducing robustness 

(lower-left, solid lines). Such tradeoff is orthogonal to increase in FR (dashed lines), which 

is physiologically limited.

This tradeoff is validated by the data across regions and species: the probability of words 

with one spike only (e.g. ‘1000’, ‘0100’) reveals the order across regions and species as seen 

previously for the general case when measuring contrast-entropy (lower-right, shown for all 

words with 4 letters). In contrast, the probability for words with more than one spike (e.g. 

‘1010’, ‘1001’), unveils a reverse order (upper-left): there are more such words in the 

amygdala and in monkeys, indicating higher robustness. See text and methods for full 
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details. Shown is the mean +/− S.E.M of the proportion between the number of data neurons 

and analytical neurons with the same word distribution.
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Figure 5. Robustness in pairs of neurons is higher in the amygdala and monkeys.
A. Cumulative density function of correlation coefficients in pairs of simultaneously 

recorded neurons. Higher values are obtained in the amygdala of both species and in 

monkeys (p<0.05 for all, Kolmogorov-Smirnov test)

B. The correlation coefficient at 0.8 of the CDF (as in A) for all 15 letter-word 

combinations, compared for all pairs of regions and species (Blue indicates p<0.05, 

Kolmogorov-Smirnov test). For most cases, amygdala is higher than CC in both species, and 

monkey is higher than human in both regions.

C. More significant pairwise correlations in the amygdala and in monkeys, for the 5 letter 

lengths (4 words). Shown is the percentage of significant correlations, mean+/−SEM (based 

on random segments of 20 min)

D. CDF of the time lag at the maximum correlation, obtained from standard pairwise cross-

correlations (see E). Numbers indicate the lag at CDF=0.5. Smaller lags indicate more 

synchrony, leading to better downstream summation, and hence suggest robustness. There is 

more synchrony in monkeys and in the amygdala.

E. Four example of cross-correlations, one from each region and species. The dashed line 

marks the time of the maximum correlation (for each species shown is one example with a 

lag near zero and one further away). Gray lines represent baseline obtained from 50 circular 

shuffles.

F. To compare overlap in words (shared vocabulary) as another measure of robustness, we 

calculated the contrast-JSD (Jensen-Shannon-divergence, methods). Pairs of neurons in 

humans and in the CC have a JSD that is closer to the analytical JSD (for a pair with similar 

Pryluk et al. Page 36

Cell. Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



firing-rates), and hence there is more overlap in the words used by pairs of neurons in 

monkeys and in the amygdala.
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Figure 6. Efficiency vs. robustness in pairs of neurons within regions
A. Combined Contrast-entropy in pairs of simultaneously recorded neurons show, from top 

to bottom and right to left: higher efficiency in the human amygdala compared to monkey 

amygdala; higher efficiency in human CC compared to monkey CC; higher efficiency in 

human CC compared to human amygdala; and higher efficiency in monkey CC compared to 

monkey amygdala. Shown for all letter options. Inset shows the same finding for triplets of 

neurons that were recorded simultaneously.
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B. The pairs contrast-entropy plotted against the correlation-coefficient between the same 

two neurons, for all four regions. No relationship was found in humans, and in contrast, an 

inverse significant relationship (tradeoff) was found only in monkeys (p<0.01, Pearson 

correlation). The bottom-right inset shows lack of relationship after taking pairs that were 

recorded in different days (p>0.1), demonstrating that the tradeoff is not necessary and an 

empirical result in monkeys.
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Figure 7. An efficiency-robustness tradeoff across regions and species.
A. A scheme of the differences we find between efficiency and robustness. Single units and 

pairs in humans and the cortex have higher entropy and more rich vocabulary (right). In 

contrast, neurons in monkeys and in the amygdala of both species exhibit less efficiency 

(left), yet exhibit higher correlations, synchrony, and overlap in words (marked in black).

B. For each region, shown is the (1-robustness) plotted against the efficiency. Both are 

presented as percentage of the maximum (pairs-contrast-entropy for the x-axis, and 1-

correlation-coefficient for the y-axis). Plotted is the mean for each region and the error-

ellipse over all neurons from this region. There is a linear relationship from monkey 

amygdala to human CC (dashed line, p<0.01). Black arrow indicates when both efficiency 

and inverse robustness increase at a similar rate.

C. Different behavioral paradigms produce similar tradeoff. Similar presentation as in B, but 

when separated into two states: neural activity taken from the period surrounding 

presentation of external stimuli and from the period without an external stimulus.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Propionic acid Sigma-Aldrich, Israel Cat# P1386; CAS ID: 79–09-4

Mineral oil Sigma-Aldrich, Israel Cat# M5904–500ML; CAS ID: 8042–47-5

Experimental Models: Organisms/Strains

Adult male Macaca fascicularis B.F.C. Monkey Breeding Farm, Israel N/A

Humans Patients with pharmacologically intractable
Epilepsy, UCLA hospital

N/A

Software and Algorithms

MATLAB (v.R2016b) MathWorks https://ch.mathworks.com/products/
new_products/release2016b.html

Offline Sorter (v.3) Plexon https://plexon.com/products/offline-sorter/

Other

Glass/Narylene-coated tungsten 
microelectrodes

Alpha Omega; We-Sense N/A

Polyurethane probe containing platinum–
iridium microwires

Costum-made, UCLA N/A

AlphaLab SnR, Neural recording system Alpha Omega, Israel N/A

64-channel Neuralynx™ system Neuralynx™ N/A
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