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Abstract: 

OBJECTIVE. Accurate prediction of blood glucose levels in patients with type 1 diabetes mellitus 

(T1DM) is critical both for their glycemic control and for the development of reliable closed loop 

systems. Here, we evaluated different computational methods for glucose prediction, assessed their 

performance by measures of clinical and numerical accuracy, and developed a novel computational model 

that optimizes these measures.  

 

RESEARCH DESIGN AND METHODS. We utilized real-life retrospective continuous glucose 

monitoring (CGM) data from 141 patients with T1DM, totaling 9,083 CGM connection days (1,592,506 

glucose measurements) and in silico data generated by the UVA/Padova T1DM Simulator.  We compared 

the clinical accuracy, measured by the percentage of time in each of the Clarke Error Grid (CEG) zones, 

of predictions done by autoregressive models, tree- based methods, artificial neural networks, and a novel 

computational model that we devised and optimized for this task.  

 

RESULTS. Our novel model, trained and tested on real-life data, achieved clinical accuracy of 99.3% 

and 95.8% in predicting glucose level 30 minutes and 60 minutes ahead, respectively, and reduced the 

percentage of glucose predictions in zones C, D and E of the CEG by 60.6% and 38.4% in these 

prediction horizons compared to a standard autoregressive model.  The model was superior to all other 

prediction models across all age groups and achieved higher clinical accuracy in subgroups of patients 

with high glucose variability and greater time spent in hypoglycemia. Compared to real-life data, when 

evaluated on in silico data, the model had a higher clinical and numerical accuracy  

 

CONCLUSIONS. A model for predicting glucose levels that optimizes for CEG zones may significantly 

improve clinical accuracy and clinical outcomes of treatment decisions in T1DM patients. Results 

obtained from simulated data may overestimate the performance of models on real-life data.  

 

 

  



INTRODUCTION 

Type 1 Diabetes Mellitus (T1DM) is one of the most common chronic diseases in children and 

adolescents. In the past decade, there is an alarming increase in the incidence of T1DM worldwide, which 

is more prominent in younger children (1,2). Management of T1DM is a challenge for both patients and 
caregivers. Although intensive insulin therapy can prevent microvascular complications and 

cardiovascular morbidity (3), it is associated with higher risk of hypoglycemia, weight gain, and an 

increased burden of self-management (4).  Despite substantial progress in diabetes technologies over the 

past decades , recent studies demonstrate that clinical management of T1DM is still lacking, particularly 
in children and adolescents, with many patients not meeting their glycemic goals (6–8).  

 

The development of continuous glucose monitoring (CGM)  devices, which  measure glucose in the 
interstitial fluid continuously (5) was an important milestone in diabetes monitoring technology and 

enabled the development of new treatment strategies such as closed loop systems, also termed “artificial 

pancreas”(AP) . These systems consist of three components: a CGM, an infusion pump, and a dosing 
algorithm (9). Personalized predictions of blood glucose (BG) levels are an essential part of AP 

technologies, as they are crucial for the dosing algorithms. Prediction of glucose levels is a challenging 

task due to a high intra- and inter-patient variability, and the influence of many factors such as food 

consumption, insulin dosage, physical activity, and emotional status (10). Most of the control algorithms 
for AP systems published to date, including Model Predictive Controllers (MPC) (11), Proportional 

Integral Derivative Controllers (PID) (12) and fuzzy-logic based controllers (13), use naïve, mostly linear, 

predictors of blood glucose levels, and rely mostly on medical logic, rather than on data-driven 
approaches. In addition, many of these computational models were constructed and evaluated using in 

silico data, generated by a T1DM Simulator (14,15), and were not evaluated using real life data.     

 

Motivated by recent developments in the ability of machine learning algorithms to use massive amounts 
of data in different medical prediction tasks, we evaluated the ability of different data-driven 

computational models to accurately predict BG levels using both numerical and clinical performance 

measures. We compared linear models, non-linear tree-based and artificial neural network (ANN) models, 
as such non-linear models have become state of the art models in many fields in Machine 

Learning(16),(17). We further devised a novel ANN model optimized for clinical accuracy aiming at 

improving the clinical outcomes of treatment decisions based on the results of the model (18). 

 

RESEARCH DESIGN AND METHODS 

Data acquisition 

The database used for training and evaluation of the computational models included retrospective CGM 

and insulin pumps data of patients with T1DM who visited the National Center for Childhood Diabetes at 

the Schneider Children's Medical Center of Israel (SCMCI) between December 2015 to December 2018. 

The inclusion criteria were a diagnosis of T1DM and using a CGM and an insulin pump simultaneously. 

Patients with insufficient data and pregnant or lactating women were excluded from the analysis. Table 1 

depicts the clinical characteristics of the 141 patients included in the study. The average of CGM 

connection days was 64.4 ± 46.6 per patient, summing up to a total of 9,083 CGM connection days and an 

overall of 1,592,506 glucose measurements that were included in the analysis.  

The study protocol was approved by SCMCI institutional review board. Informed consent was waived by 

the institutional review board as all identifying details of the patients were removed prior to the 

computational analysis.  
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Data preparation 

As input for the computational models, we used 4 hours of historical CGM data and insulin dosage. Since 

some of the CGM devices report a glucose value every 15 minutes, we used linear interpolation to fill the 
missing BG values. Of note, the output metrics did not include interpolated data. Insulin dosage included 

both the bolus rate (which was considered as 0 if none) and the basal rate from the insulin pump records. 

We did not predict the time-window of one-hour post insulin bolus administration since a bolus is a very 
influential hidden feature that greatly affects our ability to predict correctly. In addition, in order to model 

how much insulin is needed per meal, a future prediction of what is the expected BG level without such a 

bolus is required.  

 

In silico data 

In addition to the real-life data acquired, we also trained and tested the computational models on data 

generated by the distributed version of the UVA/Padova T1DM Simulator, which includes in silico data 
of 30 simulated T1DM patients (10 adults, 10 adolescents, and 10 children) (15) .This simulator was 

accepted in 2008 by the US Food and Drug Administration (FDA) as a substitute for preclinical trials for 

insulin treatments, including closed-loop algorithms for AP systems. Each virtual subject in the simulator 
is represented with subject-specific model parameters.  For each virtual subject we generated 30 days of 

data for training, 7 days for validation and 7 days for testing. For children, 3 meals and 2 snacks were 

included for each day, while for adults, 3 meals and a single snack. Total carbohydrates consumption per 
day were calculated according to Dietary reference intake (DRI) recommendations (19).  The input for the 

models was 4 hours of historical CGM data and insulin dosing, comparable to the real-life data.  

 

Machine Learning Models 
We evaluated the following machine learning models:  

● Auto-Regressive model (AR) (20)  

● Tree ensemble using the Random Forest Regressor (RF) implementation of Scikit-Learn (21)  

● Gradient Boosting Decision Tree using LightGBM (22) 

● Fully connected neural networks using R(23) 

● A novel neural network architecture that we constructed, which we term Gradually connected 

neural network (GCN) 

For each model we tried multiple hyperparameters. All the models were tested using 10-fold cross 

validation. 
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Gradually connected network 

Gradually connected network (GCN) is a novel neural network architecture that we developed, composed 

of Gradually connected layers (GCL) with fully connected layers on top, rather than using only fully 

connected layers as commonly used in Artificial neural networks (Figure 1, Figure S1).  GCL is similar to 

a fully connected layer, but with the number of connections to the output neurons gradually increasing 

with relation to the input order (see ‘Supplementary Material’).  GCN proved to be very useful for 

sequential data like CGM data, since it gives more expressive power to more recent data (e.g., the last 30 

minutes), which are more informative and more relevant for the prediction task. The GCN models we 

used contain 4 GCLs with 1-2 fully connected layers on top, summing up to a total of 4-5 hidden layers.  

 

Models optimization and evaluation 

We optimized and evaluated the performance of the methods using two performance measures: 

Numerical accuracy, measured using the root means square error (RMSE) and Clinical accuracy, 

measured by the percentage of prediction in zones C-E on the Clarke error grid (CEG) (18,24). CEG is a 

method that quantifies clinical accuracy of predicted BG compared to reference BG, by classifying each 

pair of predicted and reference BG into five zones (Figure 1, panel B). Predictions that fall in the diagonal 

of the graph correspond to perfect agreement between the predicted BG and the reference BG, whereas 

points below and above the line indicate overestimation or underestimation of the actual BG values. 

While zones A and B indicate sufficiently accurate or acceptable errors in glucose value, zones C-E 

indicate unacceptable or potentially risky errors that may result in inappropriate treatment and undesired 

hypo- or hyperglycemia. We therefore defined predictions in zones C-E, as “Clinically hazard zones” 

(CHZ). When training a neural network model, the use of different loss functions can greatly affect the 

results of the model. The standard loss functions we used were the mean square error (MSE) and mean 

absolute percentage error (MAPE). In addition, we designed new loss functions with the goal of 

minimizing the number of predictions in the CHZ of the CEG and optimizing our model to gain maximal 

clinical accuracy (defined as predictions in zones A-B). For each prediction, we calculated a standard loss 

(MSE or MAPE) and multiplied it by a weight according to the CEG zone it corresponded to before 

running the optimization algorithm. The weight for each zone was deterministically chosen and we 

examined multiple options of different weights.  

To assess statistical significance, we performed a t-test for comparisons between the models, and 

ANOVA between the performance of the same model on different subgroups.   
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Figure 1: Illustration of a Gradually connected neural network optimized by the clarke error grid analysis, 

taking as input CGM data of one patient from the cohort and predicting his/her future glucose levels.  



(A)  Four hours of historical CGM data and insulin dosage are taken from the patient CGM and insulin 

pump data as input for the model. The dashed line represents a desired glucose range of 70 mg/dl to 180 

mg/dl. (B)  GCN models with 4 GCLs receiving the data as input. The models are optimized using the 

CEG loss function in which a weight is deterministically chosen for each zone. The layer is described as 

the layer name, GCL1-4 and the number of neurons in the layer. 

(C) The output of the models, glucose predictions for 60 minutes prediction horizon, are presented for 

both AR and CGN models.  The red arrow indicates the point of prediction generated by the GCN model 

using the 4 hours historical window presented in panel A as input.  

(D) Predictions generated by AR and CGN models are presented on the Clarke Error Grid. The red arrow 

indicates the point of prediction generated by the GCN model using 4 hours of historical data presented in 

panel A as input.  

AR - Autoregressive model, CEG-Clarke Error Grid, CGM - Continuous glucose monitoring, GCL- 

Gradually connected layer, GCN- Gradually connected neural network.  

------------------------------------------------------------------------------------------------------------------------------  

 

RESULTS: 

Comparing different computational models: 

 

 
*Relative change was calculated by dividing the percentage of prediction in zones C-E on the CEG [C-E 

(%)] of the model, to the percentage of prediction in these zones when using a baseline AR model.  

AR -  Autoregression model, CEG -Clarke Error Grid, FC-  Fully connected neural network model, GCN- 

Gradually connected network, GCN1-3 are ensembles of several GCN models that were trained using 



different zone weights and standard loss function, LightGBM - LightGBM, Gradient Boosting Decision 

Tree, PH - prediction horizon ,  RMSE - Root means square error, RF- Random Forest Regressor 

------------------------------------------------------------------------------------------------------------------------------- 

For each computational method, we trained multiple models using different hyperparameters for both the 

30- and 60-minute prediction horizons (PH), and tested our results using 10-fold cross validation. We 

calculated the RMSE and percentage of time in the CHZ of the CEG for each method and every patient. 

Table 2 presents the mean and standard deviation of each of these measurements using the best model of 

each method. We compared the percentage of glucose predictions in CHZ using each of the models 

compared to the baseline model (expanded results are presented in table S1).  

Of note, tree-based methods, RF model and a Gradient Boosting Decision Tree model had better 

numerical accuracy than AR models. However, both models had lower clinical accuracy than AR, 

motivating us to try additional computational methods that might be better suited for optimization of 

clinical accuracy. 

We next investigated the Fully connected neural network model (FC) with 2 hidden layers and width 50, 

which did not improve the numerical accuracy compared to RF and LightGBM but did improve clinical 

accuracy, leading us to devise the Gradually connected neural network architecture. 

The Gradually connected network models (GCN1-3) are ensembles of several GCN models that were 

trained using different zone weights and standard loss functions. The first model (GCN1) is an ensemble 

of 2 GCN models, both using only MSE as the loss function (all zone weights are 1). This model 

improved the RMSE result significantly compared to FC and achieved the lowest RMSE for 30 minutes 

PH and very similar RMSE result to the LightGBM for the 60 minutes PH. The second model (GCN2) is 

aimed at optimizing both numerical and clinical accuracy, and is an ensemble of 24 models with 6 unique 

zone weights, some of which focus on zones C-E of the CEG while others are more balanced and also 

give a higher weight to zones A-B. This model resulted in an improvement of both clinical and numerical 

accuracy compared to AR. 

The third model (GCN3) is optimized mostly for decreasing the prediction in the CHZ of the CEG, is an 

ensemble of 6 models which had weights for the different zones of the CEG, and uses both MSE and 

MAPE for the standard loss. This model resulted in a relatively large improvement in clinical accuracy 

compared to AR, reducing the average percentage of predictions in zones C-E of the CEG relative to AR 

by 60% for 30 minutes PH and by 38% for 60 minutes PH. Of note, while GCN3 managed to 

significantly increase the clinical accuracy, it had the lowest numerical accuracy compared to all the other 

computational methods in both prediction horizons. 

 

Comparison of our model and the Autoregressive model 

To further investigate the performance of our model, we analysed several performance measures for 60 

minutes glucose PH on different subgroups of patients. These analyses are presented in Figure 2 

(expended results are presented in Table S4 and S5). An overall analysis showed that our model 

decreased the percentage of predictions in CHZ of the CEG significantly (𝑝 < 10
−11

). Examining the 

individual level, the decrease was apparent in the majority of the cohort (123 of 141, 87%; (Fig. 2 A). 

Notably, the percentage of predictions in these zones was not significantly different between different age 

groups (p= 0.45 in GCN3 and p=0.58 for AR model) (Fig. 2 B). 

To examine if our model performs differently on patients with a different degree of glycemic control, we 

used data on HbA1c and created 3 subgroups consisting of patients with good glycemic control,  (defined 

by an HbA1C< 7%), moderate glycemic control (7%<HbA1C<8%) , and poor glycemic control 



(HbA1C> 8%) (25)(Fig. 2 C). The clinical accuracy of our novel model, GCN3, was not affected by 

HbA1C level (p=0.69) , while the clinical accuracy of the AR model significantly decreased for patients 

with lower HbA1C level, reflected by an increase percentage of predictions in the CHZ zones of the CEG 

(p= 0.006) (Fig. 2 C). 

Next, we investigated subgroups of patients with different percentage of time spent in hypoglycemia, 

defined as a glucose level less than 70 mg/dl. We divided our cohort into 3 groups, in which percentage of 

time spent in hypoglycemia is less than 3%, between 3%-7% and above 7%. In both models there was a 
higher average percentage of predictions in the CHZ of the CEG when the percentage of time spent in 

hypoglycemia increased. However, in the high hypoglycemic risk group of patients, our model 

significantly decreased the average percentage of predictions in the CHZ of the CEG compared to the AR 
mode by  66.4% for 30 minutes PH (2.91% using AR vs. 0.98% using  GCN3) and by 46% for 60 

minutes PH (10.95% using AR vs. 5.91% using  GCN3 (𝑝 < 10
−12 for both), thus demonstrating higher 

clinical accuracy for our method in this high risk population. Of note, both models had a small decrease 

(0.7) in the average RMSE in patients that spend a large percentage of time in hypoglycemia (above 7%). 

(Fig. 2 E and Fig. 2 G, Table S4). 
To study the effect of glucose variability on the performance of our model, we calculated the Coefficient 

of variation (CV) (26,27) from the CGM measurements of each patient. This value measures blood 

glucose variability corrected for the mean blood glucose per patient. Next, we divided our cohort into 3 
subgroups according to their CV: below 37%, 37%-45 and above 45%. As expected, the average 

percentage of predictions in the CHZ of the CEG and average RMSE monotonically increased with an 

increase in the CV using both models, reflecting the challenge of BG prediction in patients with high BG 

variability. Of note, even in the group of patients with the highest CV (larger than 45%), our method 
decreased the average percentage of predictions in the CHZ of the CEG by 66.6% for 30 minutes PH 

(2.82% using AR vs. 0.94% using GCN3) and by 40.9% for 60 minutes PH ( 11.63% using AR vs. 6.87% 

using GCN3) (𝑝 < 10−8 for both), reinforcing the significantly better clinical accuracy of our method in 
patients with high blood glucose variability (Fig. 2 D and Fig. 2 F).  
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Figure 2: Analysis of the performances of our model (GCN3) compare to a baseline model (AR) on 

different groups of T1DM patients.  

A - The percentage of predictions in zones C-E of the CEG for every patient in our cohort, the patients are 

sorted by AR C-E (%).  

B-E - The percentage of predictions in zones C-E of the CEG for: B. Patients in different age groups. C- 

Different HbA1c% values. D- Different Coefficient of variation of glucose values. E- Different percent of 

time in the hypoglycemic range (< 70 mg%). 



Significance was calculated using t-test, comparing the two different methods on each subgroup of 

patients. ns= Non significant, p> 0.05, * p<0.05, **p<0.01, ***p<0.001 

F-G - Root means square error for patients with: F- Different Coefficient of variation of glucose values.G- 

Different percent of time in the hypoglycemic range (< 70 mg%). 

AR- Autoregressive model, CV-Coefficient of variation , CEG-Clarke Error Grid, T1DM- Type 1 

diabetes mellitus, RMSE-Root means square error  

---------------------------------------------------------------------------------------------------------------------------- 

Analysis of the models using the Type 1 Diabetes Simulator 

Similar to the analysis done on real-life data, we next trained the computational models for two glucose 

PH, 30 and 60 minutes, using different hyperparameters, on data generated by the UVA/Padova Type 1 

Diabetes Simulator (see ‘Methods’). We tested our results on 7 generated days for each patient and 

calculated the RMSE and percentage of time in the CHZ of the CEG for each method per patient. In order 

to compare the results on simulated data versus real-life data, we trained all the computational models on 

our real-life dataset of 141 T1DM patients, reserving the last 4 days of each patient for testing (see 

‘Supplementary’). 

For both PH, all of the computational models had a much better performance of clinical and numerical 

accuracy,as reflected by both a lower RMSE and percentage of time in CHZ of the CEG when trained and 

tested on the simulated data. For example, when trained and tested on real-life data, the highest 

percentage of prediction in zone A of the CEG for PH 60 was 66.8% on real-life data, and 82.3%, on the 

simulated data (Table S2 and Table S3).  

 

DISCUSSION: 

In this study, we developed a novel computational model using only real-time BG measurements and 

insulin dosage, that significantly improves blood glucose predictions at 30 and 60 minutes ahead 

compared to the commonly used AR model. Our model, optimized for clinical accuracy, 

reduces prediction errors that are considered hazardous and may lead to inappropriate clinical 

decisions. We trained and tested the models using a real-life dataset of 141 heterogeneous T1DM patients 

with over 1,592,506 glucose measurements, making it the largest dataset studied to date for this task.  Our 

model is based on BG measurements and insulin dosage which are available for many T1DM  patients 

and can therefore be easily and efficiently implemented in clinical practice. It can run on devices such as 

smartphones for everyday use, or as a part of a diabetes advisor. Most importantly, our method can be 

implemented in closed loop systems and replace existing glucose prediction algorithms in order to 

maximize clinical accuracy. 

The computational methods that we analyzed included autoregressive models, tree-based methods, and 

ANNs. ANNs have certain properties that are ideal for approximating glucose levels, including an 

unknown non-linear function with multidimensional inputs that varies over time and contains a certain 

amount of noise. In the last decade, several other studies have tried to harness the power of ANNs for 

predicting glucose levels in T1DM subjects (28–32). These studies used relatively small data sets and 

were not optimized for clinical accuracy. In this study, we employed a large data set of T1DM patients 

with variable clinical characteristics, enabling us to construct robust neural networks that generalize well 

to unseen data. Our models optimized for clinical accuracy were superior to the   more conventional 

computational models as reflected by an increase in the percentage of predictions in the CHZ of the CEG.  

Based on our analysis of the clinical and numerical performances of the different computational methods 

(table 2), we concluded that there is no clear trade-off between achieving a higher percentage of 
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predictions in the CHZ of the CEG and maximizing the RMSE, leading us to use an ensemble of methods 

with different optimization for both measures. We therefore created three GCN models, with different 

optimizations for clinical and numerical accuracies. Our GCN3 model optimized for maximal clinical 

accuracy, using the zones of the CEG in the loss function, achieved clinical accuracy of 99.3% and 95.8% 

in predicting glucose level 30 minutes and 60 minutes ahead respectively, and reduced the percentage of 

glucose predictions in the CHZ zones of the CEG by 60.6% and 38.4% in these prediction horizons 

compared to the commonly used AR model. Importantly, the clinical accuracy of our models was 

pronounced in specific clinical settings, in which the current models perform poorly, such as patients at 

high risk for hypoglycemia or those with increased glucose variability.  

   

Our analysis also demonstrated the necessity of using real-life data for the construction and evaluation of 

computational models for glucose prediction. By comparing the performance of our model on real-life 

data to in-silico data, we revealed that achieving high clinical and numerical accuracy is much more 

challenging when real-life data is used. It is plausible that the simulators are limited in their ability to 

capture the complexity of glucose fluctuation in T1DM and that their database does not contain 

unexpected events that typically appear in real-life data. However, as in real life data, our prediction 

model on the in- silico data performed better than all other methods. 

The strengths of our study are our large dataset, which allowed us to use advanced neural networks that 

cannot be constructed using small datasets, the clinical heterogeneity of our cohort, and the use of real-

world data. However, our model has several limitations. It is plausible that incorporation of more clinical 

inputs effecting glucose homeostasis such as meal content and physical activity, would have resulted in 

enhanced predictive abilities. Our model is based on retrospective CGM and insulin pump data. As such, 

we lack information that may add to the accuracy of the model. Using data from CGM devices for 

prediction models is challenging  as they suffer from the existence of a time lag between changes in blood 

glucose and interstitial fluid (33,34). We believe that measuring blood glucose directly, whether invasive 

or not, will improve the prediction of the model.  Finally, our model was validated using 10-fold cross 

validation and was not validated on an additional external database. Further prospective studies are 

needed to evaluate the clinical utility of the model  

In conclusion, we present a novel ANN model for the prediction of glucose levels in T1D patients. Our 

model, optimized for clinical accuracy, was able to predict glucose levels better than the currently used 

algorithms.  Accurate prediction of glucose levels is likely to improve treatment decisions and pave the 

way for improved outcomes in T1DM patients. 
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Supplementary Material 

Gradually Connected layer 
Gradually Connected Layer (GCL) have 2 parameters “output_rows” and “step_size”, for input  

𝑥 ∈ 𝑀𝑟𝑜𝑤𝑠×𝑐𝑜𝑙𝑢𝑚𝑛𝑠  the output will be  y∈ 𝑀
𝑟𝑜𝑤𝑠×

𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒

 where each cell in column 𝑖 of the output is a 

linear combination of the first 𝑖 ⋅ 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 columns of the input. 
In a fully connected layer for input vector 𝑥 = (𝑥0, 𝑥1 … 𝑥𝑛) and output vector 𝑦 = (𝑦0, 𝑦1 … 𝑦𝑚) will 

have weights matrix 𝑊 ∈ 𝑀𝑛×𝑚 where: 𝑦 = 𝑥 ⋅ 𝑊 whereas in a Gradually Connected Layer (GCL) we 

force 𝑊 to be a upper triangular block matrix (Figure S1).  
In practice, we implemented it by flattening the input, so the input is a vector of size (𝑟𝑜𝑤𝑠 × 𝑐𝑜𝑙𝑢𝑚𝑛𝑠), 
and then multiplying it with a weights matrix is a block upper triangular Matrix 

𝑊 ∈ 𝑀
𝑟𝑜𝑤𝑠⋅𝑐𝑜𝑙𝑢𝑚𝑛𝑠×𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑜𝑤𝑠⋅

𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒

 where the height of the blocks is 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑜𝑤𝑠 and the width of 

the blocks is (𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 ⋅ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠), so ∀𝑐 ∈ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠, 𝑊𝑖<𝑐⋅𝑟𝑜𝑤𝑠,𝑗<𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑜𝑤𝑠⋅
𝑐

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒
= 0. 

 
Figure S1: Illustration of a Fully Connected Layer with input and output of size 𝑛 and the weights matrix 

𝑊 ∈ 𝑀𝑛×𝑛 that defines it (left). Illustration of a Gradually Connected Layer with input of size 𝑛 × 1, 

𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑜𝑤𝑠 = 1, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 1 and the upper triangular block weights matrix  𝑊 ∈ 𝑀𝑛×𝑛 that defines 

it (right). 
 

Expanded results   

Table S1 is an extension of table 2, with the addition of the results of the mean absolute percentage error 

(MAPE) and the percentages of the predictions in each of the clarke error grid zones using the different 

computational methods 



 
*Relative change was calculated by dividing the percentage of prediction in zones C-E on the CEG   [C-E 

(%)] of the model, to the percentage of prediction in these zones when using a baseline AR model.  

AR -  Autoregression model, CEG -Clarke Error Grid, FC-  Fully connected neural network model, GCN- 

Gradually connected network, GCN1-3 are ensembles of several GCN models that were trained using 

different zone weights and standard loss function, LightGBM - LightGBM, Gradient Boosting Decision 

Tree, MAPE - mean absolute percentage error, PH - prediction horizon ,  RMSE - Root means square 

error, RF- Random Forest Regressor 

  



Table S2 presents the results on a models trained using all the real- life data of T1DM patients and tested 

on the last 4 days of each patient (that were not included in the training). 

 
*Relative change was calculated by dividing the percentage of prediction in zones C-E on the CEG   [C-E 

(%)] of the model, to the percentage of prediction in these zones when using a baseline AR model.  

AR -  Autoregression model, CEG -Clarke Error Grid, FC-  Fully connected neural network model, GCN- 

Gradually connected network, GCN1-3 are ensembles of several GCN models that were trained using 

different zone weights and standard loss function, LightGBM - LightGBM, Gradient Boosting Decision 

Tree, MAPE - mean absolute percentage error, PH - prediction horizon ,  RMSE - Root means square 

error, RF- Random Forest Regressor 

  



Table S3 presents the results of the computational models on In- silico data generated by the data 

generated by the distributed version of the UVA/Padova Type 1 Diabetes Simulator, For each virtual 

subject we generated 30 days of data for training, 7 days for validation and 7 days for testing (see 

methods). When compared to the results obtained using real-life data (Table S2), these results are much 

better, especially on 60 min PH, both in percentage of glucose prediction in CHZ and in percentage of 

glucose prediction in zone A of the CEG. 

 
*Relative change was calculated by dividing the percentage of prediction in zones C-E on the CEG   [C-E 

(%)] of the model, to the percentage of prediction in these zones when using a baseline AR model.  

AR -  Autoregression model, CEG -Clarke Error Grid, FC-  Fully connected neural network model, GCN- 

Single gradually connected network, optimized using MSE loss, LightGBM - LightGBM, Gradient 

Boosting Decision Tree, MAPE - mean absolute percentage error, PH - prediction horizon ,  RMSE - 

Root means square error, RF- Random Forest Regressor 

 

  



Tables S4 and S5 presents the analysis of the performance of the models on different subgroups of 

patients. Table S4 presents the mean value of each performance measure for each computational model. 

Significance between the performance of the two models on each subgroup was calculated using t-test. 

.

 
Hypoglycemia was defined as glucose level < 70 mg/dl.  

AR -  Autoregression model, CV - Coefficient of variation, CGM -Continuous glucose monitoring,  CEG  

-Clarke Error Grid, GCN3- Gradually connected network 3, PH - prediction horizon ,  RMSE - Root 

means square error, RF- Random Forest Regressor.  

 

Table S5 presents the comparison of mean values of each performance measure of the same 

computational model across different subgroups of patients.  Significance was calculated using ANOVA. 



 
Hypoglycemia was defined as glucose level < 70 mg/dl.  

AR -  Autoregression model, CV - Coefficient of variation, CGM -Continuous glucose monitoring,  CEG  

-Clarke Error Grid, GCN3- Gradually connected network 3, PH - prediction horizon ,  RMSE - Root 

means square error, RF- Random Forest Regressor.  
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