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Two main populations of monocytes have been


 described in 

most mammalian species1. Mouse Ly6C− monocytes (or 
CD14loCD16hi monocytes in humans) patrol blood vessels  

and orchestrate the removal of damaged endothelial cells2. Mouse 
Ly6C+ monocytes (or human CD14hiCD16lo monocytes) are 
equipped with chemokine receptors that allow their egression from 
the circulation into various tissues, where they can give rise to a 
large variety of monocyte-derived cells with distinct functions3. The 
idea that circulating Ly6C+ monocytes can differentiate into various 
cell subsets was challenged by single-cell analysis, which pointed 
out the cellular heterogeneity of Ly6C+ monocytes4 and the exis-
tence of different Ly6C+ monocyte subsets with potentially distinct, 
predetermined functions5. Specifically, Ly6C+ monocytes preferen-
tially differentiated into iNOS-producing monocyte-derived cells 
during Listeria infection, while 


Ly6C+MHCII+Cd209a+ mono-

cytes acquired a dendritic cell (DC)-like phenotype after colony 
stimulating factor 2 (CSF2) or lipopolysaccharide (LPS) exposure5. 
Emergency generation of distinct monocyte subsets might depend 
on the inflammatory stimulus. Thus, it was proposed that LPS  
promotes the development of monocytes from granulocyte-mono-
cyte progenitors (GMPs), while CpG DNA triggers monopoiesis 
from monocyte-dendritic cell progenitors (MDPs)6. These data, 
in conjunction with a recent report that shows that monocytes 
develop from GMPs rather than from MDPs under physiologi-
cal conditions7, indicate that our 


understanding of monopoiesis 


is 

incomplete.















MS and its model in mice, experimental autoimmune ence
phalomyelitis (EAE), are autoimmune disorders in which auto
reactive T  cells recognize myelin peptides and infiltrate the  

Q1

Q2

Q3 Q4 Q5

Q6 Q7 Q8

central nervous system (CNS). Monocytes expressing the chemo-
kine receptor CCR2 were identified as main drivers of EAE patho-
genesis. Genetic depletion of CCR2+ monocytes leads to resistance 
to EAE, while the antibody-mediated depletion of monocytes 
reduces clinical symptoms in mice8–10. CSF2 also critically contrib-
utes to the development of pathological myeloid cells11,12. Ly6C+ 
monocyte-derived cells gain expression of CD11c (encoded by 
Itgax) and MHCII-related genes in the inflamed CNS. This has been 
interpreted as a sequential differentiation program9 but, alterna-
tively, different monocyte subsets could give rise to distinct progeny 
on infiltration.

Here, we have characterized the cellular composition of mono-
nuclear phagocytes infiltrating the inflamed spinal cord in mice 
with EAE by massively parallel single-cell RNA-seq (MARS-
seq)13. We analyzed the acute and chronic stages of the disease and  
identified several molecularly distinct myeloid cell subsets. Some  
of these subsets were restricted to either the acute or chronic 
phase, supporting the idea that monocyte subsets can differentiate  
locally from one subset to the other as suggested previously14,15. 
By taking advantage of a peripheral monocyte depletion strategy8,  
we identified two transcriptionally related monocyte subsets, 
namely Cxcl10+ and Saa3+ cells, with pathogenic potential in  
the spinal cord. Depletion of these cells correlated with reduced 
clinical symptoms. These subsets were mainly derived from mono-
cytic precursor cells, and were independent of classical Ly6C+ 
monocytes. These results define a molecular road map of myeloid 
subset differentiation in MS pathogenesis, and may help unveil  
precise molecular avenues to modulate myeloid pathogenesis in  
the CNS.

Cxcl10+ monocytes define a pathogenic subset in 
the central nervous system during autoimmune 
neuroinflammation
Amir Giladi   1,6, Lisa Katharina Wagner2,6, Hanjie Li1, Dorothea Dörr2, Chiara Medaglia1, 
Franziska Paul1, Anat Shemer1, Steffen Jung   1, Simon Yona3, Matthias Mack4, Achim Leutz   2,5, 
Ido Amit   1,6 ✉ and Alexander Mildner   2,6 ✉

Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and 
myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various 
cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting 
to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experi-
mentally induced autoimmune encephalitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at 
acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte 
specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with 
different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ 
monocytes, but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, 
including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.
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Results
Mononuclear phagocyte diversity in the inflamed CNS. To inves-
tigate the mononuclear phagocyte diversity in MS, we immunized 
wild-type C57Bl/6 mice with myelin oligodendrocyte glycoprotein 
peptide (MOG35-55) to induce EAE. Animals were analyzed during 
the acute phase (day 16 postimmunization (PI); mean EAE score 
2.9) and the chronic phase (day 30 PI; mean EAE score 2.2) of the 
disease (Fig.  1a). To specifically profile negative hematopoietic 
stem-cell-derived mononuclear phagocytes, we sorted CD11b+ cells, 
and excluded Ly6G+ cells (neutrophils) and CX3CR1hiCD44lo cells 
(microglia16) (Fig. 1b). We combined MARS-seq13 with single-cell 
index sorting of Ly6C and MHCII to simultaneously measure the 
transcriptional and protein expression of individual cells. Analysis 
of 2,925 cells that passed the quality control (Extended Data Fig. 1) 
divided the data into 55 groups of cells (metacell)17,18. A direct com-
parison of the metacell results with other algorithms such as Seurat19 
indicated a high concordance between the clusters (Extended Data 
Fig.  2a). To assign metacells to distinct cell types or activation 
states, we performed correlation analysis and identified ten broad 
transcriptional states, some of which were transcriptionally related 
(Fig. 1c,d and Extended Data Fig. 2b). Each of these ten transcrip-
tionally distinct myeloid subsets showed a distinct gene expression 
program (Fig. 1e), as well as differences in the expression of Ly6C 
and MHCII surface proteins (Fig. 1f). Ly6c2+Sell+Ccr2+ cells were 
identified as the Ly6C+ monocyte subset, while Nr4a1+Pparg+ cells, 
detected at a much lower frequency, were identified as Ly6C− mono-
cytes (Fig. 1e and Extended Data Fig. 2c). Proliferation-associated 
genes such as Mki67, Ccna2 and Ccnb2 were specifically expressed 
in a fraction of Ly6C+ monocytes. We also identified a cluster of 
microglial cells that expressed Fcrls, Sall1 and Tmem119, and a 
small cluster of classical DC (cDC) defined by expression of Flt3, 
Xcr1 and Zbtb46 (Fig. 1d,e). High expression of genes that belong 
to type I interferon (IFN) pathway such as Ifit1, Ifit2, Ifit3, Usp18 
and Irf7 were evident in Ifit2+ monocytes (Fig. 1d,e). Most of the 
remaining cells (1,810 cells, 62%) exhibited expression patterns dis-
tinct from that of steady-state myeloid cells and did not conform to 
known monocyte or macrophage populations (Fig. 1d,e), suggest-
ing the existence of alternative activation or differentiation states in 
the infiltrating mononuclear phagocytes. Two macrophage subsets 
expressed Arg1, Apoc2 and C1qb and were designated as Arg1+ mac-
rophages I and II. Another macrophage cluster was characterized 
by expression of Nos2, Gpnmb, Arg1 and Fabp5 and was defined as 
Nos2+ macrophages, while two populations that expressed inflam-
matory genes such as Saa3, Plac8 and Gbp2, or Cxcl9, Cxcl10 and 
Il1b were designated as Saa3+ and Cxcl10+ monocytes, respectively 
(Fig. 1e and Extended Data Fig. 2b). All monocyte or macrophage 
subsets equally expressed Ccr2 and Ly6c2, while expression of Cd74 
transcripts was restricted to the Arg1+ and Nos2+ subsets (Fig. 1g). In 
contrast, Csf2rb (encoding the common signaling β chain of CSF2 
receptor) was highly expressed in Cxcl10+ monocytes compared to 
the remaining cells (Fig. 1g). The complete list of gene expression 
for each metacell cluster can be found in Supplementary Table 1.

To gain more information on the functions of these subsets, 
we performed gene-ontology enrichment analysis on the 60 most 
differential expressed genes from each group (Extended Data 
Fig. 2d,e and Supplementary Table 2). We identified a strong pro-
inflammatory and pathogenic signature, defined as ‘positive regu-
lation of cytokine production and response to IFN-γ and LPS’ in 
the Saa3+ and Cxcl10+ monocyte clusters (Extended Data Fig. 2e). 
Type I IFN responses were specific to the Ifit2+ monocyte cluster, 
while Ly6C+ monocytes were enriched for nuclear division path-
ways (Extended Data Fig. 2e), in accordance with their expression 
of cell cycle genes. The remaining macrophage clusters, comprising 
Arg1+ and Nos2+ macrophages, as well as microglia, were enriched 
for receptor-mediated endocytosis, regulation of vasculature devel-
opment, wound healing and tissue remodeling processes (Extended 
Data Fig. 2e). Our data indicate that at least ten molecularly distinct 
myeloid populations are present in the CNS of mice with EAE.

CNS-infiltrating monocytes do not express Zbtb46 during EAE. 
At steady-state, Zbtb46 is exclusively expressed in cDC20,21, while 
monocyte-derived cells can induce expression of Zbtb46 in  vitro 
when cultured with CSF2 and interleukin 4 (IL-4)22. To test whether 
monocyte-derived cells acquired expression of Zbtb46 during EAE, 
we immunized Zbtb46-GFP mice, which carry a green fluorescent 
protein (GFP) reporter under the control of the Zbtb46 gene20,21, 
with MOG35-55 and analyzed mice at the peak of disease (day 15 PI, 
mean EAE score 2.7) and during the chronic phase (day 30 PI, mean 
EAE score 2.2; Extended Data Fig. 3a). We sorted at these two time 
points spinal cord-infiltrated CD11b+ cells, excluding Ly6G+ neutro-
phils and CX3CR1hiCD44lo microglia, that express GFP (Extended 
Data Fig. 3b). Most Zbtb46-GFP+ cells (1,056 cells, 82%) could be 
assigned to the DC cluster (Extended Data Fig.  3c–e), indicating 
that expression of Zbtb46 was largely restricted to the cDC lineage 
in vivo. These data suggested that the composition of cDCs, based 
on the transcriptome, was more uniform than that of macrophages 
and monocytes and most of the monocyte-derived cells such as 
Arg1+ and Nos2+ macrophages, Saa3+, Cxcl10+ and Ifit2+ monocytes 
do not induce expression of Zbtb46 after tissue infiltration in EAE.

Acute and chronic EAE stages show distinct infiltration patterns. 
The composition of myeloid cells in the CNS during the course of 
EAE pathogenesis varies14,15. To examine whether all ten myeloid 
cell clusters that we identified (Fig. 1d) emerged during the acute or 
chronic stages of disease, we examined the kinetics of each identi-
fied metacell cluster during these EAE stages (data for Zbtb46-GFP+ 
cell composition during acute and chronic stages can be found in the 
Extended Data Fig. 4). We detected a significant 


increase of Cxcl10+ 

monocytes during disease progression, from 8.8% in the acute phase 
to 21.2% in the chronic stage (Fig. 2b). We also found that the Arg1+ 
macrophage I subsets diminished during the course of disease, from 
28.9% in the acute phase to 5.4% in the chronic phase, while Nos2+ 
macrophages increased during chronic disease stages (from 16.5% 
in acute to 27.8% in chronic stage, Fig. 2a,b). Correlation analysis 

Q9

Fig. 1 | An atlas of mononuclear phagocytes in the inflamed CNS. a, Time-course of experimentally induced EAE in C57BL/6 mice after immunization with 
the MOG35-55 peptide. Shown is the mean clinical score ± s.e.m. n = 5 mice for acute and n = 6 for the chronic phase. b, Mean fluorescence intensity of Ly6C 
and MHCII on CD45+CD11b+Ly6G+CD44hi cells. Red squares indicate sorted cells. c, Correlation analysis of the expression profiles of 2,925 infiltrated 
myeloid cells clustered into 55 distinct metacells according to their transcriptomic similarities. The size of the clusters in the correlation analysis is 
normalized and does not reflect the actual number of cells present in each cluster. Quality controls are shown in Extended Data Fig. 1 and pairwise analysis 
in Extended Data Fig. 2b. The color bar below indicates the ten main myeloid subsets based on correlation analysis. d, Two-dimensional projection of the 
metacell model of 2,925 isolated cells17,41. Gray dots indicate additional Zbtb46+ cells introduced in Extended Data Fig. 3. e, Heatmap of the main signature 
genes per cluster in d. Full list of gene expression is presented in Supplementary Table 1. f, Index sorting tracks of recorded mean fluorescence intensity of 
Ly6C and MHCII protein expression of the cells in e. Red dots indicate cells isolated during the acute phase, while blue dots indicate cells from the chronic 
phase. g, Expression of genes in the cells in e. Cells are colored by their subset identity, as in d. Shown are UMIs per cell. For the experiments in a–g, we 
pooled n = 5 animals for acute and n = 6 for the chronic phase. The experiment was repeated twice with similar results.
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already indicated that Nos2+ and the Arg1+ subsets were transcrip-
tionally related (Fig. 1c and Extended Data Fig. 2b). We performed a 
differential gene expression analysis between Nos2+ and Arg1+ mac-

rophages accordingly, which indicated that genes such as Clec7a, 
Lgals3, Cxcl9 and Cxcl16 were significantly upregulated in Nos2+ 
cells compared to Arg1+ macrophages (Fig. 2c). Arg1 itself is highly 
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expressed in both subsets and was not significant differentially 
expressed between Nos2+ and Arg1+ macrophages and therefore is 
not a specific marker for Arg1+ macrophages.

Collectively, the close transcriptional relationship between Arg1+ 
and Nos2+ macrophages suggested that these subsets are interrelated 
and that Nos2+ macrophages differentiate from Arg1+ cells.

Cxcl10+ and Saa3+ monocytes are specifically depleted in the 
inflamed CNS after anti-CCR2 treatment. We next investigated 
whether the mononuclear phagocyte populations characterized  
by high expression of Ccr2 (Fig. 1f) contributed to tissue damage 
during EAE pathogenesis. Antibody-mediated depletion of circu-
lating CCR2+ immune cells by CCR2 antibody (MC21) injection 
reduces clinical symptoms in mice with EAE8,23. To evaluate MC21 
injection efficiency, we treated mice with EAE from day 16 PI with 
daily injections of 50 μg MC21 or rat IgG2b antibodies for 6 con-
secutive days. When analyzed at day 21 PI, MC21-injected mice 
showed significant


 clinical improvement, evident by lower EAE 

scores, compared to mice treated with isotype antibodies (Extended 
Data Fig. 5a), indicating the efficiency of treatment with CCR2 anti-
body. However, to identify which CCR2+ monocyte subset carried 
potential pathogenic activity, we used a short-term treatment with 
MC21 to prevent additional, bystander effects potentially induced 
by long-term monocytes depletion. Therefore, we injected mice at 
the peak of disease (day 16 PI, mean EAE score, 3) with 50 μg of 
MC21 (ref. 24) or rat IgG2b antibodies once a day for 2 consecutive 
days. Flow cytometry analysis indicated the complete depletion of 
circulating Ly6C+ monocytes (Fig.  3a) and Ly6C+MHCII+ mono-
cytes (Extended Data Fig. 5b) in the blood of MC21-treated, but not 
IgG2b-treated mice at day 18 PI, while Ly6C- monocytes or other 
cells, such as splenic CD11chighMHCII+ cDC1 or cDC2 subsets and 
FoxP3+ regulatory T cells (Treg cells) were not affected (Fig. 3a and 
Extended Data Fig. 5c,d). We observed clinical improvements after 
the two MC21 injections compared to IgG2b-treated mice (Fig. 3b 
and Extended Data Fig. 5e). However, flow cytometry analysis using 
Ly6C and MHCII as surface markers, did not identify any changes in 
the frequency of Ly6C+MHCII−, Ly6C+MHCII+ and Ly6C−MHCII+ 
myeloid cell subsets (Fig. 3c). As such, we used 


scRNA-seq to profile 

specific myeloid subsets in the CNS of MC21- and IgG2b-treated 
mice at day 18 PI. Comparison of the most differentially expressed 

Q10

Q11

genes in these two conditions indicated that inflammatory genes 
such as Il1b, Cxcl10, Ifi47 and Irf1 were strongly under-represented 
in the MC21-treated group (Fig.  3d), which could reflect their 
slightly improved health condition. To identify the origin of this 
pro-inflammatory signature, we isolated CD11b+Ly6G−CD44high 
myeloid infiltrates from MC21- (433 cells) and isotype-treated (442 
cells) mice and projected the single-cell transcriptomes onto our ref-
erence dataset (Fig. 1d and see Methods). We detected all myeloid 
subsets in isotype-treated mice including Ly6C+ and Ly6C− mono-
cytes, Arg1+ and Nos2+ macrophages, cDCs, microglia-like cells and 
Saa3+ and Cxcl10+ monocytes. When we compared the infiltra-
tion pattern of isotype-treated mice with MC21-treated mice, we 
observed that the Saa3+ and Cxcl10+ clusters were almost absent in 
the spinal cords of the MC21-treated mice (Fig. 3e,f). Similar results 
were obtained in an independent MC21-depletion experiment fol-
lowed by scRNA-seq analysis, which was performed in a different 
mouse facility (Extended Data Fig. 5e–g). In summary, CCR2 anti-
body-mediated cell depletion achieves long-term alleviation of EAE 
symptoms, and is characterized by short-term specific depletion of 
Saa3+ and Cxcl10+ monocyte subsets in two independent experi-
ments. These results highlight Cxcl10+ cells as a unique cell popula-
tion involved in pathological processes in the CNS of EAE mice.

Cxcl10+ monocytes are involved in CNS tissue damage. To test 
whether the loss of Cxcl10+ and Saa3+ monocytes caused the attenu-
ation of clinical symptoms in the MC21-treated mice either through 
the induction of transcriptomic changes in other immune cells or, 
alternatively, by affecting the cellular composition of the cells infil-
trating the CNS, we performed MARS-seq on 2039 CD45+Ly6G− 
nonneutrophilic leukocytes infiltrating the CNS in MC21- and 
IgG2b-treated mice. Metacell analysis followed by annotation 
according to marker gene expression identified naïve CD4+ T cells 
(characterized by the expression of Thy1 and Cd4, but absence of 
S100a4), activated CD4+ T  cells (Cd4, Thy1 and S100a4 expres-
sion), CD8+ T  cells (Cd8a and Nkg7 expression), Treg cells (Folr4 
and Tnfrsf4 expression), natural killer (NK) cells (Il2rb and Gzma 
expression), a minor fraction of B lymphocytes (Cd74 and Cd79b 
expression), cDC (Id2 and Cd74 expression), monocytic cells (Lyz2 
and Ccr2 expression) and microglia (Hexb and Apoe expression; 
Fig. 4a). We then compared the abundance of each annotated cell 
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type in MC21- and isotype-treated mice. We detected the absence 
of a monocyte cluster in mice that received two injections of  
MC21 antibody, while CD4+, CD8+, B and NK lymphocytes were 
equally present in MC21- and isotype-treated mice (Fig. 4b). Next, 
we performed differential gene expression analysis, comparing gene 
expression in different immune populations (naïve and activated 
CD4+ cells, CD8+ lymphocytes, microglia, cDC and monocytes) 
between MC21- and isotype-treated mice, to identify molecular 
changes that may arise from monocyte depletion. We were not able 

to detect any gene changes in naïve and activated CD4+ cells, CD8+ 
lymphocytes, microglia and cDC irrespective of the presence or 
absence of Saa3+ and Cxcl10+ monocytes within the CNS (Fig. 4c). 
These data suggested the absence of Saa3+ and Cxcl10+ monocytes 
in the spinal cord, facilitated by CCR2 antibody-mediate cell deple-
tion, did not lead to major gene changes in other immune cells, such 
as lymphocytes or microglia.

Next, we developed a flow cytometry-based approach to identify 
the Cxcl10+ and Arg1+ monocyte subsets ex vivo. Because CXCL10 
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antibodies suitable for flow cytometry are not commercially avail-
able and because Cxcl10+ monocytes coexpressed Cxcl9 (Fig.  1g 
and Extended Data Fig. 2d), we tested whether antibodies against 
CXCL9 could be used alternatively to identify the Cxcl10+ mono-
cyte subset. Based on the expression of Cxcl9 and Arg1 (and its pro-
tein product Arginase), we investigated whether staining for CXCL9 
and Arginase would discriminate Cxcl10+ monocytes from Nos2+ 
macrophages (Extended Data Fig. 6). In the CNS of EAE mice at the 
peak of disease (day 17 PI), we detected CD45hiLin−CD11b+Ly6C+ 

cells that expressed either CXCL9 or Arginase (Fig.  5a). CXCL9+ 
cells had higher expression of Ly6C compared to Arginase+ cells 
(Fig. 5b). The specificity of the staining was confirmed by isotype 
control staining (Fig. 5c). Next, we isolated the CNS cell infiltrates of 
mice that were injected with MC21 or isotype antibody around peak 
of EAE (day 15 PI) for 2 d. CXCL9+Ly6C+ monocytes were virtu-
ally absent in MC21-treated mice compared to isotype-treated mice, 
while Arginase+ cells showed only a reduction tendency in MC21-
treated mice compared to controls (Fig. 5e). To investigate whether 
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the absence of CXCL9+Ly6C+ monocytes had an effect on the cel-
lular composition in the CNS, we quantified the frequencies of lym-
phocytes and neutrophils in MC21- and isotype-treated mice. We 
detected a slight increase of CNS-infiltrated CD4+FoxP3+ Treg cells 
from about 1.9% in IgG2b to 3.5% in MC21-treated mice, accompa-
nied by a mild reduction of CD4+ T cells from about 27% in isotype-
treated mice to 19.8% in MC21-treated mice (Fig. 5f). We did not 
observe significant 


changes to neutrophil levels between MC21- and 

isotype-treated mice. Together, these results showed that the deple-
tion of Cxcl10+Ly6C+ monocytes did not induce a change in the 
gene expression of the immune cells in the CNS, and only slightly 
affected their composition, suggesting the Cxcl10+Ly6C+ monocytes 
might be directly involved in tissue damage.

Peripheral monocytes give rise to distinct myeloid subsets in the 
inflamed CNS. Emerging evidence suggests that the Ly6C+ mono-
cyte compartment could be heterogeneous4,5. To investigate the cel-
lular origin of the different myeloid cells in the inflamed CNS, we 
injected 2 × 104 MDPs isolated from the bone marrow of CD45.1 
wild-type mice into MOG-immunized CD45.2 wild-type mice 
shortly before the peak of disease (day 13 PI). Then, 48 h later, recip-
ient mice received a second graft of 2 × 106 GFP+Ly6C+ monocytes 
isolated from the bone marrow of CD45.2 Ubc-GFP mice, which 
express GFP in all hematopoietic cells (Fig. 6a). Two days after the 
second injection, transferred CD45.2+GFP+ and CD45.1+ cells that 
also showed surface marker expression of Ly6C and MHCII, could 
be detected in the CNS of recipient mice (Fig. 6b). The transferred 
CD45.2+GFP+ and CD45.1+ cells were isolated from CNS at this 

Q12

time point and analyzed by MARS-seq (Extended Data Fig. 7a–c). 
Consistent with MDPs being monocytes and cDC precursors25, 
CD45.1+ MDP-derived cells included all myeloid lineages, includ-
ing Arg1+ and Nos2+ macrophages, Saa3+ and Cxcl10+ monocytes 
and cDC (Fig.  6c). On the other hand, transferred GFP+Ly6C+ 
monocytes mainly gave rise to Arg1+ and Nos2+ cells, but not cDC 
or Cxcl10+ cells (Fig.  6c). Even when we analyzed recipient mice 
4 d after the transfer of bone marrow Ly6C+ monocytes, we could 
not detect Saa3+ and Cxcl10+ cells derived from Ly6C+ monocytes 
(Extended Data Fig. 7d–f), suggesting that GFP+Ly6C+ monocytes 
lacked potential to differentiate into Cxcl10+ monocytes. CD45.2+ 
MDPs, as well as the GFP+Ly6C+ monocytes, also differentiated  
into cells with an activated microglia-like phenotype (Fig.  6c), as 
indicated by the high expression Hexb, Sparc, C1qa, Cx3cr1 and 
Apoe, but lacking the expression of core microglia genes such as 
P2ry12 and the transcription factor Sall1 (ref. 26), in line with a 
recent report27.

To test whether monocytes needed peripheral education to develop 
into Cxcl10+ monocytes, we isolated splenic Ly6C+ monocytes from 
Ubc-GFP mice 6 d after MOG immunization and transferred 1 × 106 
splenic GFP+Ly6C+ monocytes in mice with EAE at the peak of 
disease (day 14 PI) (Fig. 6d). Engrafted spleen-derived GFP+Ly6C+ 
cells could be detected in the CNS 2 d after transfer, but expressed 
less surface Ly6C than engrafted bone marrow-derived GFP+Ly6C+ 
monocytes (Fig. 6b,e). MARS-seq of the transferred spleen-derived 
GFP+Ly6C+ monocytes revealed that these cells efficiently differenti-
ated into Arg1+, Nos2+ and microglia-like cells, but they did not give 
rise to Saa3+ or Cxcl10+ subsets 2 d after transfer (Fig. 6f).
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Fig. 6 | MDPs are the main precursors of CNS pathogenic monocytes. a, Scheme of the isolation of bone marrow-derived MDPs from CD45.1/1 mice, and 
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CD45.2/2 mice. Arrows indicate transfer of MDPs, transfer of bone-marrow (BM) monocytes, and time of analysis (right). Mean clinical score ± s.e.m. 
is shown. b, Flow cytometry analysis of donor cells derived from CNS of MOG-immunized CD45.2/2 mice as in a. GFP and CD45.2 levels were used to 
separate MDP and bone-marrow-monocyte grafts. c, Myeloid subset distribution of 319 donor single cells profiled by MARS-seq and projected onto the 
metacell model from Fig. 1 based on their gene expression profiles. Index sorting measurements of CD45.2 and GFP were used to assign cells to either 
MDP or bone-marrow-monocyte graft origin (Extended Data Fig. 7a,b). Experiments shown in a–c were performed with n = 10 EAE recipients. d, Scheme  
of the isolation of splenic Ly6C+ monocytes from MOG-immunized UBC-GFP CD45.2/2 mice (day 6 PI, n = 6 mice) for transfer experiment (left).  
Time-course of EAE scores in MOG-immunized CD45.2/2 mice. Arrows indicate transfer of splenic monocytes, and time of analysis (right). Mean clinical 
score ± s.e.m. is shown. e, Flow cytometry analysis of donor cells derived from CNS of CD45.2/2 mice as in d. f, Myeloid subset distribution of donor 
single cells profiled by MARS-seq and projected onto the metacell model from Fig. 1 based on their gene expression profiles. d–f, Six EAE recipients  
were used. g, Scheme of the isolation of bone marrow-derived GMPs from UBC-GFP CD45.2/2 for transfer experiment (left). Time-course of EAE  
scores in MOG-immunized CD45.2/2 mice (right). Arrows indicate transfer of GMPs, and time of analysis. Mean clinical score ± s.e.m. is shown.  
h, Flow cytometry analysis of donor cells derived from CNS of CD45.2/2 mice as in g. i, Myeloid subset distribution of 105 Cx3CR1+ donor GMP-derived 
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in MOG-immunized CD45.2/2 mice (right). Arrows indicate transfer of cMoPs, and time of analysis. Mean clinical score ± s.e.m. is shown. k, Flow 
cytometry analysis of donor cells derived from CNS of CD45.2/2 mice as in j. l, Myeloid subset distribution of donor cMoP-derived single cells profiled  
by MARS-seq and projected onto the metacell model from Fig. 1 based on their gene expression profiles. j–l, Eight EAE recipients were used. Data in  
a–l are representative of one experiment.
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Because GMPs were reported to give rise to monocytes in vivo7, 
we further tested the capacity of GMPs to differentiate into mono-
cyte subsets under inflammatory conditions. We transferred 2 × 104 
Ubc-GFP+ GMPs in mice with EAE shortly before disease peak 
(day 14 PI) and analyzed the transferred cells in the CNS 4 d later 
(Fig. 6g). GFP+ GMPs gave rise to Ly6G+ neutrophils as expected7, 
but also Ly6C+CX3CR1+ cells could be found in the CNS (Fig. 6h). 
MARS-seq of the latter established that monocytic GMP descen-
dants can develop into all subsets identified in the CNS, including 
Ly6C+ monocytes, microglia-like cells, Arg1+ and Nos2+ macro-
phages, Cxcl10+ and Saa3+ and, albeit with a lower frequency than 
MDPs, into DCs (Fig.  6i). A similar differentiation potential was 
observed when 1 × 105 GFP+ cMoP were transferred into EAE mice 
at day 11 PI, 3 d before the peak of disease (Fig. 6j–l). Transferred 
GFP+ cMoP were able to give rise to microglia-like cells, Arg1+, 
Nos2+ and Cxcl10+ subsets. These data indicated that Cxcl10+ mono-
cytes were derived from MDP, GMP and partially cMoP myeloid 
progenitors, while Ly6C+ monocytes developed less efficiently into 
the Saa3+ and Cxcl10+ monocytes.

Discussion
Here, we used MARS-seq in combination with index sorting to 
characterize the mononuclear phagocytes that infiltrated the spinal 
cord during acute and chronic stages of EAE pathogenesis. We iden-
tified a total of eight monocyte subsets or activation stages and three 
defined DC clusters, of which a subset of Cxcl10+ monocytes were 
characterized by a pathogenic signature.

EAE is a T cell-initiated, monocyte-driven murine autoimmune 
disease11,28. Initial histological attempts to investigate the myeloid 
cells in the demyelinating lesions in the CNS of MS patients has sug-
gested the heterogeneity of monocytes and macrophages or microg-
lia, which was affected by the localization within the lesion and by 
the disease stage29,30. Histology studies in iNos-tdTomato/Arg1-YFP 
or LysM-eGFP/CD11c-eYFP reporter mice provided important 
insight into the spatial and temporal composition of macrophages 
in EAE14,15. In the iNos-tdTomato /Arg1-YFP reporter mice, iNos-
tdTomato+ Arg1-YFP− cells sequentially developed into iNos-tdTo-
mato− Arg1-YFP+ cells, which was interpreted as a conversion of 
pro-inflammatory iNos+ cells into anti-inflammatory Arg1+ cells 
during EAE progression14. However, the data presented here sug-
gest a more complex mononuclear phagocyte composition in the 
CNS, with more than one linear developmental potential from a 
pro-inflammatory to anti-inflammatory phenotype. We observed 
two related myeloid subsets characterized by expression of Nos2 and 
Arg1, a hallmark of myeloid-derived suppressor cells31, and these 
two subsets seemed to undergo a transcriptomical switch during the 
course of disease. Notably, Nos2+ cells also expressed high amounts 
of Arg1, and the two populations were comparable at the transcrip-
tional level, suggesting that these cells are related and develop into 
each other, corroborating the earlier report14.

However, even if the Arg1+ and Nos2+ macrophages were read-
ily detectable during EAE progression and accounted for a large  
proportion of the myeloid cell infiltrate, they lacked a pro-inflam-
matory signature. Instead, we identified the Cxcl10+ and Saa3+ 
monocyte subsets as the main myeloid subsets with a pathogenic 
profile in the inflamed CNS. These cells were characterized by  
high expression of surface Ly6C, were depleted by an CCR2 anti-
body and expressed Csf2rb and Il1b. The expression of CSF2 is a 
prerequisite for EAE development, because Csf2−/− mice show a 
complete resistance toward EAE development32. It is known that 
CSF2 exerts its function by targeting CCR2+ cells11. Of note, mono-
cytes with genetically impaired signaling through the CSF2 are still 
able to infiltrate the spinal cord during EAE, but lack pathogenic 
activity33. Collectively, these data demonstrate that CSF2 is not 
merely a survival factor, but rather plays a role in the functional 
education of monocytes.

Of note, peripheral Cxcl10+ cells were identified in the lymph nodes  
of mice infected intradermally with different pathogens, includ-
ing the nematode Nippostrongylus brasiliensis, the fungi Candida 
albicans and Mycobacterium smegmatis34, and possibly in malaria35. 
These results may indicate that Cxcl10+ monocytes are an  
emergency population that differentiates during various inflamma
tory conditions. It is important to know where these cells originate  
from. Two distinct CCR2-dependent Ly6C+ monocyte subsets, 
with distinct fates during inflammatory conditions, have been 
described: classical Ly6C+MHCII−CD209a− monocytes and 
Ly6C+MHCII+Cd209a+ cells5. When mice were infected with 
Listeria monocytogenes, Ly6C+MHCII−Cd209a− monocytes differ-
entiated into iNos+ cells, which were previously named TipDCs36. 
Our data support this observation, because Ly6C+ monocytes 
gave rise preferentially to Nos2+ and Arg1+ cells in mice with EAE 
after transfer. Ly6C+MHCII+Cd209a+ cells on the other hand were 
dependent on CSF2 and CCR2 and had a DC phenotype during 
Listeria infection5, but their exact function during pathogenesis 
remains unclear. However, further sensitive and specific fate map-
ping systems are needed to clarify the origin and fate of pathogenic 
monocyte subsets in the future.

Another question arising from our study is. how do pathogenic 
monocytes contribute to tissue damage and disease progression? 
Cxcl10+ cells had high expression of Il1b. IL-1β secretion by CCR2+ 
monocytes was shown to be important for their transmigration 
across the blood–brain barrier and the proper activation of autore-
active CD4+ T cells37,38. CXCL10 itself is also involved in the recruit-
ment of activated CD4+ T cells via CXCR3, and neutralization of 
CXCL10 by antibody treatment leads to decreased clinical symp-
toms in mice with EAE39. Taken together, our analysis revealed the 
presence of a previously unknown monocyte subset with a unique 
phenotype in the spinal cord of mice with EAE. It seems that these 
cells exhibit direct pathogenic function with minimal influences on 
other immune cells. Because Cxcl10+ monocytes were also reported 
in other inflammatory conditions34,35 and probably also in cancer40, 
specific targeting of these cells might represent a promising strategy 
for therapeutic intervention in MS and other pathologies.
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Methods
Mice. Mice were maintained in a special pathogen-free, temperature-controlled 
(22 ± 1 °C) mouse facility on a reverse 12-h light, 12-h dark cycle at the Max-
Delbrück Center, Berlin, Germany, or the Weizmann Institute of Science, Rehovot, 
Israel. Food and water were given ad libitum. Mice were fed a usual chow diet.

The 8–12-week-old female C57BL/6 mice and Zbtb46Gfp/+ mice (B6.129S6(C)-
Zbtb46tm1.1Kmm/J) were immunized subcutaneously with 200 μg of MOG35-55 peptide 
emulsified in complete Freund’s adjuvant containing 1 mg of Mycobacterium 
tuberculosis (H37RA, Difco Laboratories) as described previously8. Mice received 
intraperitonal injections of 250 ng pertussis toxin (Sigma-Aldrich) at the time of 
immunization and 48 h later. Mice were scored daily as follows: 0, no detectable 
signs of EAE; 0.5, distal limp tail; 1.0, complete limp tail; 1.5, limp tail and hind 
limb weakness; 2, unilateral partial hind limb paralysis; 2.5, bilateral partial hind 
limb paralysis; 3, complete bilateral hind limb paralysis and 3.5, complete hind 
limb paralysis and unilateral forelimb paralysis.

For adoptive transfer experiments, EAE-diseased mice received an intravenous 
injection of 2 × 104 MDPs (Linneg (TCRγδ, NK1.1, TCRβ, B220), CD135+, CD115+, 
CD117+, CD11b−) from female CD45.1/1 mice (B6.SJL-PtprcaPep3b/BoyJ) shortly 
before the peak of disease. Then, 48 h later, the same mice received an injection of 
2 × 106 Ly6C+ GFP+ bone marrow monocytes (Linneg, CD135−, CD117−, MHCII−, 
CD11b+, CD115+, Ly6C+ from female Ubiquitin-GFP mice; C57BL/6-Tg(UBC-
GFP)30Scha/J) and CNS cells were isolated 48 h after the last injection. GMPs 
(Linneg, CD135−, CD117+, CD34+, CD16/32+, CD11b−, CD115−, Ly6C−) were 
identified according to ref. 7, and 2 × 104 GMP were transferred 4 d before the peak 
of disease. Then 1 × 105 cMoPs (Linneg, CD135−, CD117+, CD11b−, CD115+, Ly6C+) 
were isolated as reported in ref. 42. For cell depletion experiments, 50 μg of purified 
antibodies (or 100 μl MC21 hybridoma as indicated) were injected at the peak of 
disease for 2 consecutive days. Mice were analyzed 1 d after the last injection. Rat 
IgG2b served as control antibody in all experiments. All animal experiments have 
been approved by the LAGeSo in Berlin or by the Weizmann Institute Animal Care 
Committee in accordance with international guidelines.

Flow cytometry. For peripheral blood analysis, blood was collected and 
mononuclear cells were enriched by Ficoll density gradient centrifugation 
(2,200 r.p.m., 15 min at 20 °C with low acceleration and no brake). For CNS analysis 
mice were perfused with 5 ml PBS via the left ventricle and spinal cord samples 
were harvested from individual mice. CNS tissues were cut into small pieces 
and homogenized through a 100-μm mesh filter without tissue digestion. After 
washing, the cell pellet was resuspended in 40% Percoll and the myelin fraction was 
separated from mononuclear cells by density centrifugation (2,200 r.p.m., 20 min 
at 14 °C with low acceleration and no brake). MDPs from the bone marrow were 
MACS




 pre-enriched by antiCD135 biotin antibody followed by antibiotin microbeads 

(Miltenyi). GMPs were pre-enriched with antiCD117 microbeads (Miltenyi). Bone 
marrow and splenic Ly6C+ monocytes and cMoPs were pre-enriched by antiCD115 
biotin antibody followed by antibiotin microbeads (Miltenyi). All cells, except for 
GMP isolation, were blocked before staining with antiCD16/32 (93) and antibodies 
against B220 (RA3-6B2), CD11b (M1/70), CD11c (N418), CD115 (AFS98), CD117 
(2B8), Ly6C (HK1.4), CD135 (A2F10), Ly6G (1A8), CD19 (6D5), CD3e (145-
2c11), CD4 (GK1.5), CD45 (30-F11), CD45.1 (A20), CD45.2 (1D4), CD8a (53-6.7), 
NK1.1 (PK136), I-Ab (MHCII; AF6-120.1), CX3CR1 (SA011F11), CD16/32 (93), 
CD34 (SA376A4), FoxP3 (FJK-16s), CXCL9 (MIG−2F5.5), Arginase (A1exF5) and 
CD44 (IM7) from Biolegend or eBioscience were used. For CXCL9 and Arginase 
stainings, Percoll-isolated mononuclear infiltrates were incubated in full RPMI 
media supplemented with 1× Brefeldin A at 37 °C for 3 h. Intracellular stainings 
were performed with the Biolegend FoxP3 fix/perm kit. Samples were flow sorted 
using AriaII, AriaIII or Aria-Fusion (BD Biosciences, BD Diva Software) cell sorter. 
Antalysis was performed on Fortessa or LSRII (BD Biosciences, BD Diva Software) 
and analyzed with FlowJo software v.10.5.3 (Treestar).

scRNA-sequencing. Single-cell libraries were prepared with MARS-seq method13. 
In brief, messenger RNA from single cells sorted into cell capture plates was 
barcoded and converted into complementary DNA and pooled using an automated 
pipeline. Subsequently, the pooled sample was linearly amplified by T7 in vitro 
transcription, and resulting RNA was fragmented and converted into a sequencing-
ready library by tagging the samples with pool barcodes and Illumina sequences 
during ligation, reverse transcription and PCR. Each pool of cells was tested for 
library quality and library concentration was assessed. scRNA-seq libraries (pooled 
at equimolar concentration) were sequenced on an Illumina NextSeq 500 at a 
median sequencing depth of 52,030 reads per cell.

Single-cell analysis. For low-level processing and filtering, sequences were mapped 
to mouse genome (mm9), demultiplexed and filtered as previously described13, 
extracting a set of unique molecular identifiers (UMIs) that define distinct 
transcripts in single cells for further processing. Mapping of reads was done using 
HISAT (v.0.1.6)43; reads with multiple mapping positions were excluded. Reads 
were associated with genes if they were mapped to an exon, using the UCSC 
genome browser for reference. Cells with fewer than 500 UMIs were discarded 
from the analysis. After filtering, cells contained a median of 2,269 unique 
molecules per cell. All downstream analysis was performed in R.

Q13

The metacell pipeline18 was used to derive informative genes and compute cell-
to-cell similarity, to compute K-nn graph covers and derive distribution of RNA 
in cohesive groups of cells (or metacells), and to derive strongly separated clusters 
using bootstrap analysis and computation of graph covers on resampled data. 
Default parameters were used unless otherwise stated. For Figs. 1 and 2, a metacell 
cover was produced on a combined dataset of myeloid and Zbtb46-GFP+ cells from 
acute and chronic stages of the disease.

Two-dimensional visualization of the metacell structure was performed as 
previously described17,18. In short, a symmetric graph is constructed over all 
metacells, by thresholding over the coclustering statistics (indicating how cells 
from two distinct metacells are likely to be clustered together). This results in 
a graph with maximum degree, D, and any number of connected components. 
MetaCell computes coordinates for each metacell by applying a standard force-
directed layout algorithm to the graph. It then positions cells by averaging the 
metacell coordinates of their neighbor cells in the K-nn graph, but filter neighbors 
that define a metacell pair that is not connected in the graph.

MetaCell approximates the gene expression intensity within each metacell 
by a regularized geometric mean. It then quantifies relative expression as the 
log-fold enrichment over the median metacell value (lfp, a complete list of lfp 
gene expression is shown in Supplementary Table 1). To annotate metacells and 
assign them into monocyte and macrophage states, we implemented a supervised 
approach, where metacells are assigned (or colored) into functional groups by 
expression of a curated list of marker genes. Each marker is assigned a threshold 
value, and all metacells whose lfp value for that marker are above the threshold are 
colored for that marker. In case of a conflict, a priority parameter can help decide 
which marker trumps assignment by other markers.

To project a new set of single-cell profiles on the existing reference metacell 
model from Fig. 1 (Figs. 3 and 6 and Extented Data Fig. 5), we extract for each new 
cell the ten reference cells with top Pearson correlation over the normalized gene 
features defined for the reference model. The distribution of cluster memberships 
over these K-neighbors is used to associate the new cell with a reference metacell 
(by majority voting) and to project the cell in two dimensions by weighted average 
of the linked reference clusters’ mapped x and y coordinates.

Pathway enrichment analysis was performed with clusterProfiler v.3.8.1 (ref. 44),  
using a Benjamini–Hochberg-adjusted P ≤0.05 as the significance threshold. 
REVIGO was used to refine enriched groups and remove redundant terms45.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Data generated during this study have been deposited in 




Gene Expression Omnibus 

with the accession code GSE144317.

Code availability
Scripts and auxiliary data needed to reconstruct analysis files will be made available 
by request.
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Extended Data Fig. 1 | Quality control of the scRNA-seq data. a, List of experiment and cell numbers used in this study. The number of cells represented 
here are numbers before exclusion of contaminating lymphocytes or neutrophils. b, Number of Illumina reads and c, total UMI per single cell. d, Fraction of 
analyzed cells after filtering. Cells are grouped and colored by experimental procedure.
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Extended Data Fig. 2 | Identification of mononuclear phagocyte subsets in the inflamed CNS. a, Comparing Seurat and MetaCell clustering results. 
Rows represent the 55 identified metacells, grouped by their cell identity, and columns represent Seurat clusters. Color intensity in each entry depicts the 
number of cells assigned to a specific combination of MetaCells and Seurat clusters. b, Pairwise correlation analysis of the 10 distinct cell populations. 
Shown here are the numbers of differential expressed genes. c, Expression quantiles of key cell-type-specific marker genes on top of the 2D projection 
map. n = 2925 single cells were analyzed. d, Top 10 differentially expressed genes in each cluster (log2 fold change). e, n = 2925 single cells were classified 
into the 10 indicated metacell subsets (color bar) and the top 60 differential expressed genes were used for GO-enrichment of each cluster (these genes 
can be found in Supplementary Table 2). Circle color indicates p-value and size indicates number of genes. P-values indicate Benjamini Hochberg adjusted 
GSEA permutation tests.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Characterization of dendritic cells in the inflamed CNS. a, EAE was induced in Zbtb46-GFP mice and cells were isolated from the 
inflamed spinal cord at the acute (day 15 p.i.; mean score: 2,7 ± 0,4 SEM; n = 6) and the chronic phase (day 30 p.i.; mean score 2,2 ± 0,4 SEM; n = 7). b, 
FACS analysis of LinnegLy6G−CD44highCX3CR1low-to-intCD11b+ cellular infiltrates into the spinal cord of acute (pool of n = 6 mice) and chronic diseased EAE 
Zbtb46Gfp/+ mice (pool of n = 7 mice). Shown is the gating for sorting GFP+ cells as indicated by the red square. c, Projection of 1282 Zbtb46-GFP+ cells on 
the 2D projection as shown in Fig. 1. d, Upper panel: Expression profiles of 1056 infiltrated Zbtb46-GFP+ cells that clustered into 15 DC metacells according 
to their transcriptomic similarities. Colorbar represent grouping of cells into three major cDC clusters. Dark violet correspond to cDC1 subset. Lower panel: 
MFI of Zbtb46-GFP expression in the sorted cells is shown on the bottom of the heatmap. Red dots indicate cells isolated during the acute phase, while 
blue dots indicate cells from the chronic phase. e, Expression quantiles of key cell-type-specific marker genes on top of the projection map. Single cell data 
represented in a-e are representative of one experiment.
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Extended Data Fig. 4 | Temporal resolution of cDC infiltrates in the acute and chronic stages of EAE. a, Projection of Zbtb46-GFP+ cells from Extended 
Data Fig. 3 separated according to the acute (left; pool of n = 6 mice) and chronic (right; pool of n = 7 mice) stage of EAE. n = 702 cells from acute and 580 
from chronic disease stages were analyzed. b, Cell distribution of Zbtb46-GFP+ cells from both stages of disease. c, Differential gene expression between 
acute and chronic cDC. Values represent log-transformed normalized expression. Single cell data represented in a-c are representative of one experiment.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Effects of MC21 depletion. a, Mice were immunized with MOG35-55 and animals received at the peak of disease six injections of 
either 50 μg of isotype control antibody (rat IgG2b) or 50 μg purified anti-CCR2 (MC21). Shown is the mean clinical course ±SEM. N = 6-7 mice per group 
and asterisk indicates statistical significance with * p < 0,05 and ** p < 0,005; unpaired two-tailed T-test. Data are representative of one experiment with 
six mice. b, FACS analysis (left) and quantification (right; mean ± SD) of Ly6C+ MHCII+ (IAb) monocytes in the blood of isotype or MC21 treated mice. 
N = 3 mice per group, asterisk indicates statistical significance with p < 0,05; unpaired two-tailed T-test. The experiment was repeated three times with 
similar results. c, Analysis and quantification of splenic immune cells in EAE mice that received two injections of 50 μg isotype control antibody or 50 μg 
purified anti-CCR2. Shown are % of the respective cell populations out of CD45+ cells (n = 4 animals per group; experiment was performed twice with 
similar results; mean ± SD; asterisk indicates statistical significance with p < 0,01; unpaired two-tailed T-test). Tregs were identified as CD4+FoxP3+. d, 
Analysis and quantification of blood immune cells in EAE mice that received two injections of 50μg isotype control antibody or 50μg purified anti-CCR2 
(MC21). Shown are % of the respective cell populations out of CD45+ cells (n = 4 animals per group; experiment was performed twice with similar results; 
mean ± SD; asterisk indicates statistical significance with p < 0,05; unpaired two-tailed T-test). e, Repetition of Fig. 3 in an independent mouse facility 
and with purified MC21 antibody. Wt animals received either of 50μg isotype control antibody or 50μg purified anti-CCR2 at the peak of disease for two 
consecutive days. Shown are the EAE courses during the experiment (day 16 p.i., mean score in each group: isotype: 2.7 ± 0.3 SEM; MC21 3.0 ± 0.3 SEM; 
asterisk indicates statistical significance with p < 0,01; unpaired two-tailed T-test;). f, Projection of CD44+Ly6G−CD11b+ non-neutrophilic, non-microglial 
cells from isotype- (left) and MC21-treated (right) animals on the metacell model from Fig. 1. g, Bar plots showing enrichment (log2 fold change) of 
myeloid groups in MC21-treated mice compared to isotype controls. Error bars represent 95% confidence intervals. 3 mice were pooled for MARS-seq 
analysis depicted in f,g and n = 232 cells from isotype- and 147 cells from MC21-treated mice were analyzed in f, g.
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Extended Data Fig. 6 | Expression of Cxcl9 and Cxcl10 in comparison to Arg1. Shown is the log2 enrichment over median of Cxcl9 and Cxcl10 against Arg1 
in the main 6 monocytic clusters.
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Extended Data Fig. 7 | Identification of MDP and Ly6C+ derived cells in the CNS after sequential transfer. a, MDP were isolated from CD45.1/1 mice 
and BM Ly6C+ monocytes were extracted from Ubc-GFP mice as shown in Fig. 6a. b, Heatmap depicting gene expression across the transferred cells. c, 
Each cell was assigned to its GFP and Ly6C expression according to the indexed FACS measurement. Shown is the mean fluorescence intensity of each 
marker. d, 2×106 Ly6C+ monocytes were isolated from CD45.1/1 mice and transferred at the peak of disease into eight CD45.2/2 recipient mice (day 13 
p.i.; mean clinical score ± SEM are shown). e, 4 days after transfer, only 40 transferred cells could be re-isolated from the pooled spinal cord of recipients 
that showed no Ly6C and no MHCII expression. f, scRNA-seq identified that the majority of grafted cells show a Ly6C− monocyte signature, while the 
remaining cells correspond to microglia-like cells and to Arg1+ subsets. Single cell data represented in d-f are representative of one experiment.
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