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Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM 
is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute 
to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate 
into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal 
functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current 
knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by 
matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans 
in brain ECM, which are essential for several vital functions, are emphasized in detail.
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Extracellular matrix

The extracellular matrix (ECM) encompasses all the 
secreted insoluble components that form a three-dimen-
sional structure that scaffolds the cells [1, 2]. The ECM 
plays a vital role in maintaining the structural integrity 
of tissues and in transducing cellular communication by 
mediating signaling pathways. Several cell surface recep-
tors, including integrins, cadherins, selectins, syndecans, 
and others are known to interact with the ECM molecules, 
thereby regulating vital processes such as migration, pro-
liferation, and differentiation [3–7]. The ECM is primarily 
constructed of structural proteins, proteoglycans, glyco-
proteins, and matricellular proteins [2, 5]. The composi-
tion and characteristics of the ECM are constantly being 
modified during normal development and aging, and 
under pathological conditions, such as cancer [8–11]. 
The composition and modifications of the ECM dictate 
its mechanical properties; consequently, these properties 
largely control the biophysical, biochemical, and topo-
logical properties of different tissues [12–14]. The ECM 
components are regulated both at the transcriptional and 
translational levels. However, the most widely studied reg-
ulation is executed extracellularly, by different classes of 
proteolytic enzymes and their inhibitors, which maintain 
the homeostasis of the ECM deposition and degradation 
[2, 15]. In the current review, we discuss the composition, 
modifications, and structures of the ECM in the central 
nervous system (CNS). We focus on specialized ECM 
structures in the brain as well as proteolytic enzymes, 
such as matrix metalloproteinases (MMPs) that regulate 
the turnover, function, and architecture of the ECM.

Brain extracellular matrix

The ECM was initially referred to as a “ground sub-
stance” and was thought to be absent in the CNS [16, 17]. 
However, consistent efforts of cell and matrix biologists 
revealed not only the presence of ECM, but also its key 
role in the development and function of the brain. The 
total extracellular space, which is filled with intersti-
tial fluid and matrix, is estimated to occupy 20% of the 
brain’s volume [18–20]. The adult brain has a unique ECM 
composition with almost negligible presence of collagen 
and other fibrillar ECM proteins, with the exception of 
the basement membrane and meningeal layers [19]. The 
ECM of the brain is enriched with non-fibrillar compo-
nents such as proteoglycans, glycoproteins, small linker 
proteins, matricellular proteins, and importantly, enzymes 
that regulate the ECM deposition and degradation. The 

ECM in the brain can be broadly classified into interstitial 
ECM and specialized structures around neurons [18–21]. 
In this review, we discuss the structure and functions of 
perineuronal nets (PNNs), and the ECM around the nodes 
of Ranvier and synapses.

Chondroitin sulfate proteoglycans

A large portion of the ECM in the CNS consists of proteo-
glycans [22]. Proteoglycans are molecules with sugar moie-
ties termed glycosaminoglycans (GAGs), which are cova-
lently attached to core proteins [23, 24]. The most important 
proteoglycans found in the CNS are chondroitin sulfate 
proteoglycans (CSPGs), which are mostly secreted, and 
membrane-bound heparin sulfate proteoglycans (HSPGs) 
[25, 26]. Owing to their abundance, diversity, and key role 
in the assembly of special ECM structures in the brain, in 
this review we focus mainly on CSPGs. Several studies have 
shown that CSPGs play a crucial role in the development and 
normal maintenance of the CNS, and regarding abnormali-
ties in their expression, leading to a variety of pathologies 
[25, 27–31]. Almost all cell types in the developing CNS 
secrete CSPGs and provide critical cues for neural pattern-
ing [32–34]. In the mature brain, CSPGs are the conspicu-
ous components of a specialized structure termed perineu-
ronal nets (PNNs) [19, 35]. CSPGs are composed of a core 
protein, which is attached to a long linear polysaccharide 
termed chondroitin sulfate GAG, through three sequential 
sugars [36]. The polymerization of GAGs to the growing 
chain is catalyzed by the enzyme chondroitin synthase in 
the Golgi apparatus; it can result in very large proteoglycans 
with over 100 repeating GAGs [37]. Chondroitin sulfotrans-
ferase enzymes add negatively charged sulfate groups to the 
sugar molecules at multiple sites, thus affecting the inter-
action of GAG chains with the positively charged amino 
acids in the core protein. These post-translational modifica-
tions change the interaction dynamics of the proteoglycans 
with other molecules [38, 39]. The position of the sulfation 
determines the five different types of CSPGs: CS-A (C4 of 
GalNAc), CS-C (C6 of GalNAc), CS-D (C6 of GalNAc and 
C2 of GlcUA), CS-E (C4 and C6 of GalNAc), and CS-B 
[39]. CS-B, also known as dermatan sulfate proteoglycan 
(DSPG), results from epimerization of GlcUA to iduronic 
acid (IdoA) and is classified as a separate molecule [37]. 
The most common CSPGs in the adult mouse brain are 
CS-A, CS-C, CS-D, and CS-E. These proteoglycans are 
distributed non-uniformly within the CNS and their func-
tions vary widely, based on the core protein, its glycation, 
and the sulfation of the GAGs [40–42]. Specifically, CS-E 
is abundantly expressed in the cerebral cortex, whereas the 
cerebellum is enriched with CS-D and a few CS-E subunits 
[43] (Fig. 1).

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152



    
    

 R
EVISED PROOF

Journal : Large 18 Article No : 3182 Pages : 20 MS Code : 3182 Dispatch : 12-6-2019

Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural…

1 3

Lecticans: special CSPGs of the central nervous 
system

The most important and widely expressed CSPGs in the 
CNS are aggrecan, versican, neurocan and brevican, col-
lectively termed lecticans [44]. They are also known as 
hyalectans for their ability to bind to hyaluronic acid (HA; 
hyaluronan) [45]. Structurally, lecticans can be divided 
into three segments: a core protein and two globular 
domains at the N- and C- terminals. The core protein links 
the N- and C-terminals and has structurally diverse fea-
tures that serve as anchors for GAG chains to bind. The 
C-terminal (G3 domain) contains EGF and complement 
regulatory protein (CRP)-like domains, which flank the 
c-type lectin domain. On the other side, the N-terminal 
globular (G1) domain binds to HA and is homologous 

to other HA-binding proteins like CD44. The N termi-
nal globular domain (G1 domain) consists of two distinct 
structures, an IgG-like loop, which is less conserved (40% 
identity) across the lectican family, and a link protein-
like tandem repeat (60% identity), also referred to as a 
proteoglycan tandem repeat (PTR), which has structural 
similarities to hyaluronan and proteoglycan link proteins 
(HAPLNs) [46, 47]. Both the IgG-like loop and the PTR 
domains consist of conserved cysteine amino acids, which 
are important for the disulfide bonds that bridge the two 
domains of the N-terminal. Aggrecan, an exception of the 
lectican members, contains an additional domain in the 
N-terminal, termed the G2 domain. This domain contains 
only the PTR structure and is connected to the G1 domain 
with an interglobular domain of approximately 130 amino 
acids.

a b c

Fig. 1   Diagrammatic sketch of the special ECM structures around the 
neurons. a The perineuronal net (PNN), which enwraps the soma and 
dendrites, is primarily made up of lecticans (aggrecan, versican, neu-
rocan and brevican) that are bound to the hyaluronic acid (HA) back-
bone synthesized by the membrane bound enzyme hyaluronic acid 
synthetase (HAS). Lecticans are connected to HA with link proteins, 
which are crucial for the structure. Other molecules such as tenascin-
R (TNR), which interact with PNN molecules, also play an impor-
tant role in stabilizing the structure. b The gaps between the myelin 

sheaths, namely, the nods of Ranvier, are exposed to a myriad of 
ECM molecules through which it can interact with the adjacent astro-
cytes. These ECM molecules not only stabilize the nodes but also act 
as a regulator of neuron-glia communication. c Different ECM mol-
ecules present at pre-synaptic boutons and post-synaptic clefts inter-
act dynamically. These molecular interactions regulate vital processes 
like synaptogenesis, neuronal migration and cell–cell communica-
tions
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The core protein in lecticans varies in length and is the 
preferred site of glycosylation [44, 47]. The number of GAG 
attachment sites differs between the lecticans, with aggre-
can having the most and brevican the least number of sites. 
Human aggrecan, in contrast to its rat and mouse counter-
parts, contains an additional subdomain downstream of the 
G2 domain, which acts as a binding region for keratan sul-
fate chains. The three subdomains in the G3 domain (EGF, 
CRP, and c-type lectin) exhibit a structural resemblance to 
the domain of the cell adhesion molecule, selectin. However, 
the molecular arrangements between lecticans and selectins 
differ; therefore, their interactions with other molecules vary 
[25, 26, 48].

Molecular interactions of CSPGs

The G1 domain in the N-terminal of aggrecan was shown to 
interact with HA and cartilage link protein 1 (also known as 
HAPLN1). The link protein is a 50 kDa glycoprotein crucial 
for stabilizing the structure between aggrecan and HA [49]. 
Other lectican molecules such as verscian and neurocan were 
also shown to bind HA [48]. Initially, studies on the C-termi-
nal of lecticans showed that lecticans bind to sugar moieties 
and GAGs without understanding much about their physi-
ological significance. However, later studies have shown that 
they can bind to more prominent and crucial molecules such 
as tenascin-R (TNR), which is a glycoprotein predominantly 
present in the CNS [50]. Versican was the first lectican found 
to bind to TNR [51]. Although most carbohydrate–protein-
mediated interactions are calcium dependent, deglycosyla-
tion studies revealed that the fibronectin type III domains 
3–5 of TNR are involved in protein–protein interactions [52]. 
Inspite the common notion that all lecticans bind to TNR, 
their molecular ultra-structural interactions are not fully 
understood, with the exception of brevican. Surface plas-
mon resonance studies showed that brevican has a tenfold 
stronger affinity than the other three lecticans [52]. Indeed 
brevican is found in the brain and interacts with TNR, as 
indicated by coimmunoprecipitation and immunohistologi-
cal studies [52, 53]. Notably, brevican and TNR co-localize 
around the cell bodies and the proximal dendrites of large 
neurons. The interaction between brevican and TNR is inter-
esting because of their presence in PNN (refer to the section 
“Perineuronal Nets” for a detailed description of the PNN 
structure and interactions of its components).

Much effort has been invested in identifying the carbo-
hydrate ligands of the lectin domain of lecticans. In vitro, 
versican was shown to bind to heparin and heparin sulfate 
through its lectin domains, suggesting that HSPGs can be 
vital physiological partners of versican and other lecticans 
[54]. However, more studies are required to better compre-
hend these interactions. Additionally, it has been recently 
shown that C-type lectin domains of all four lecticans bind 

to sulfatides and HNK-1-reactive sulfoglucuronyl glycolipids 
(SGGLs) [55, 56]. Both of these cell surface glycolipids are 
abundant in the nervous system. Sulfatides are produced by 
the axon ensheathing oligodendrocytes, whereas SGGLs are 
enriched in both the embryonic cerebral cortex and the adult 
cerebellum [56, 57].

Neurocan and its interaction with other ECM mol-
ecules are one of the most extensively studied aspects of 
brain ECM. It has been shown to interact with tenascin-C 
(TNC), N-CAM, Ng-CAM/L1, Nr-CAM, contactin, TNR, 
TAG-1/axonin, heparin-binding growth-associated mol-
ecule (HBGAM), and amphoterin [58–61]. Rauch and his 
colleagues showed that all three domains of the neurocan 
C-terminal, including the EGF repeat, the C-type lectin 
domain, and the CRP-like domain, bind to the fibronectin 
domain of TNC [60]. Concurrently, fibrinogen-like domains 
in TNC interact with the core protein of neurocan [62].

Other CSPGs

RPTP‑β and phosphacan

Receptor-type protein-tyrosine phosphatase (RPTP) is a 
class of enzymes with at least eight sub-families [63, 64]. 
RPTP-β, also known as RPTP-ζ, is a variant expressed solely 
in the nervous system [65, 66]. It is involved in oligoden-
drite survival, recapitulation during demyelinating diseases, 
and in hippocampal memory formation. It is a membrane 
glycoprotein with two extracellular domains (ECDs) and 
two intracellular phosphate domains. The ECDs, a car-
bonic anhydrase-like domain and a fibronectin-type III-like 
domain, are highly variant in their sequences, with some 
of them sharing homology with cell adhesion molecules 
(CAMs) [63, 67, 68]. In fact, the sub-families are classi-
fied based on the sequence features of the ECDs. Digestion 
studies on RPTP-β with chondroitinase ABC, an enzyme 
that digests CSPGs, indicate that the core protein is heavily 
glycosylated [65]. Phosphacan, one of the products of the 
alternative splicing of RPTP-β, lacks cytoplasmic domains 
[69]. In 2003, Garwood et al. found a truncated form of 
phosphacan that they named phosphacan short isoform 
(PSI) [70]. PSI is a post-translationally modified protein 
corresponding to the N-terminal carbonic anhydrase-like 
and fibronectin type III-like domains and half of the spacer 
region. Although PSI follows the expression pattern of full-
length phosphacan, it is not a proteoglycan [70]. Phospha-
can can bind reversibly with a very high affinity to many 
CAMs (e.g., Ng-CAM/L1, NCAM, and TAG-1/axonin-1) 
and to TSC [71]. Both RPTP-β and phosphacan play impor-
tant roles during embryonic development. Studies on mouse 
embryos revealed that RPTP-β proteins are expressed on the 
tangentially aligned neurons in the neocortex, cerebellum, 
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and hippocampus. It was also suggested that the expression 
of RPTP-β proteins by neurons and PSI might modulate 
neurite outgrowth and synaptogenesis [72–74]. A detailed 
understanding of these functions in learning and memory 
consolidation is largely lacking. Additionally, considering 
their interactions with MMP-9 [75], investigating the role 
of RPTP-β in remodeling the PNN structures might reveal 
new functions for these proteins.

Neuroglycan C

Neuroglycan C (NGC), also known as CSPG5, is a trans-
membrane proteoglycan expressed only in the CNS [76–78]. 
It has four splice variants: NGC-I to IV with a core protein, 
the N-terminal domain decorated with chondroitin sulfate 
(CS) chains, an acidic domain, an EGF domain, a transmem-
brane segment, and a cytoplasmic domain responsible for 
the variants [78–81]. NGCs are developmentally regulated 
and are involved in synaptogenesis and neurite growth [82]. 
NGCs are present mostly in the cerebellum and retina as a 
proteoglycan but also in other regions as a protein without 
the CS chains [79].

Other prominent ECM molecules

Tenascins

The tenascin family in vertebrates comprises five members, 
which are characterized by typical motifs such as fibronec-
tin type three (FNIII) domains, a cysteine-rich amino acid 
terminal, followed by EGF repeats, and finally a fibrinogen 
β-like carboxy terminus [83–85]. Among them, TNC and 
TNR are very relevant to the CNS [33, 83]. TNC proteins 
are found in developing mouse and chicken, and were ini-
tially termed J1-glycoproteins and contactins, respectively 
[86–88]. Both neurons and glia cells produce TNC, and it 
plays a key role in their interactions [89]. TNC domains are 
known for exhibiting both adhesive and anti-adhesive prop-
erties on neurons and other cell types [89]. The fibronectin 
domain is primarily involved in cell binding and neuronal 
migration, whereas the EGF repeats are attributed to its 
repulsive function [87, 89]. TNC forms a hexamer, which 
can be visualized through rotary shadowing electron micros-
copy. This highly symmetrical structure, termed hexabran-
chion, is composed of a central core from which six thin 
and rigid proximal arms emanate. The eight FNIII domains 
of TNC contain several alternate splice sites, which allow 
them to produce different isoforms with subtle structural and 
functional differences [90, 91]. The main binding partners 
of TNC are the G3 lectin domain of CSPGs, to which it 
binds through its fibronectin type III repeats 3–5 [90–92]. 
Importantly, studies with TNR knock-out (KO) mice proved 

this association to be essential for proper PNN assembly 
[93] (more detailed aspects of tenascins with respect to their 
functions are described in the PNN “functional attributes” 
section).

Hyaluronan and proteoglycan link proteins

Hyaluronan and proteoglycan link proteins (HAPLNs) are 
stabilizing proteins that non-covalently link the HA and 
G1 domains of lectins linking the structures that keep the 
PNN intact [94, 95]. Out of the four family members, three 
are found in the CNS: HAPLN1 (Crtl1), HAPLN2 (brain-
specific hyaluronan-binding protein 1; Bral1), and HAPLN4 
(Bral2) [96]. HAPLN1 and HAPLN4 are specifically pre-
sent on neurons that bear PNN [97, 98]. They interact with 
CSPGs and HA in a tripartite complex, forming an exoskel-
eton framework in the PNN [99]. The PNN assembly around 
dendrites is strongly attenuated in mice lacking HAPLN1, as 
observed with wisteria floribunda agglutinin (WFA) staining 
[100]. Similarly, HAPLN4 reduction in the brain stem and 
cerebellum impairs PNN formation, along with downregu-
lation of brevican and other PNN components [101–103]. 
HAPLN2, on the other hand, is produced by oligodendro-
cytes and is found around the nodes of Ranvier interacting 
with verscian V2 [104].

Hyaluronic acid

Hyaluronan, or hyaluronic acid (HA), is a GAG produced 
mostly in neurons by the enzyme hyaluronan synthases 
(HAS). Because HAS is a membrane-bound enzyme, it 
makes HA directly in the extracellular space by a process 
called extrusion [105]. Hitherto, three different isoforms of 
HAS have been identified, HAS1-3, each producing different 
lengths of HA at varying rates [106]. Transfection of HEK 
cells with HAS3 and HAPLN1 indicated that HAS3 alone 
is enough for synthesis of HA, whereas HAPLN1 is impor-
tant for condensing the matrix to form a PNN-like structure 
(discussed in detail in the PNN section) [107]. Owing to 
the large size of the HA polymer, it can potentially bind to 
several proteins. In addition, HA can modulate the viscos-
ity of the local ECM by adsorbing more water molecules 
[94, 108]. However, these important properties of HA and 
its role in maintaining the PNN morphology have not been 
investigated.

Perineuronal nets

Perineuronal nets (PNNs) are specialized ECM structures 
intimately enwrapping the cell body, soma, and dendrites 
of some neurons [35]. These honeycomb-like structures 
were first described in 1893 by Camillo Golgi in a nerve 
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cell of the anterior horn of the cat spinal cord, and since then 
they have been identified in many animal species, includ-
ing humans [35, 94, 109, 110]. The initial methods used 
to stain PNNs, such as methylene-blue staining, followed 
by ammonium molybdate fixation, were unreliable [109, 
110]. Later, to stain PNNs, researchers started using lec-
tins, which strongly bind to N-acetylglucosamine (a GAG), 
a prominent component in PNN [35, 111]. Initial theories 
suggested that PNNs consist of only a coagulation of soluble 
substances in pericellular space [35]. However, subsequent 
studies found PNNs to be much more complex structures 
intricately woven, not just by the neurons alone, but also 
by other cells such as microglia, astrocytes, and oligoden-
drocytes [112–115]. They are speculated to be involved in 
vital functions such as learning and memory by altering the 
neuronal connections [42, 94, 113, 116]. The chief com-
ponents of PNN are hyaluronic acid, GAGs, lecticans, and 
link proteins, which connect them. The nets are established 
around the end of critical periods [42, 117], mainly in the 
cortex, hippocampus, thalamus, brainstem, and the spinal 
cord, at varying concentrations, and around different cell 
types [35, 94, 108]. The microenvironment of the PNN is 
crucial for its function and is very dynamic, since several 
ECM modulating enzymes are constantly secreted by the 
surrounding cells [94, 118, 119]. A great deal of structural 
diversity is exhibited in the PNN of different brain regions. 
In one study, Giamanco and his teammates performed a his-
tological analysis on aggrecan KO mice and showed that 
there is a significant degree of molecular heterogeneity in 
these PNN molecules due to diversity in the glycosylation 
of aggrecan [120, 121].

Structural features: HLT model and further 
developments

In 1996, Ruoslahti proposed a concept in which the PNN is 
visualized as a supramolecular organization [122]. It was 
later designated as the “HLT (hyaluronan, lecticans, and 
TNR)” model by Yamaguchi [48]. This model is based on 
extensive studies on the recombinant G1 and G3 domains 
of the lecticans. The results indicated that the G1 domain 
of lecticans in the N-terminal is important for binding to 
HA, which in turn, binds to HAPLN, forming a tripartite 
complex [52, 90, 123]. Interestingly, the G1 domains of lec-
ticans and HAPLN exhibit a high structural homology and 
share common binding properties, leading to a considerable 
degree of complexity in forming diverse quaternary struc-
tures [123–125]. Crystal structure analysis revealed that the 
C-type lectin domain of lectican and TNR forms a complex 
(the binding properties are discussed in the CSPG section) 
[52, 92]. Further electron microscopy studies on the TNR-
aggrecan complex confirmed that the characteristic trimeric 
structure formed by TNR involves its N-terminal domain 

[92]. Although these observations are valid and highly use-
ful, it is now apparent that the HLT model is incomplete 
and has been updated by numerous follow-up studies that 
unraveled the source, structure, and molecular interactions 
of the PNN components.

Some of the aforementioned ECM components are an 
integral part of PNN and are cardinal for its functions. Albeit 
its structure is not completely understood, the consensus is 
that lecticans interact with one another and bind to the hya-
luronic acid backbone and other PNN molecules with link 
proteins bridging them. The most impressive aspect of the 
whole structure is that it can form “holes” in the network, 
providing a point of contact to the surrounding cells. In other 
words, PNNs can regulate the accessibility of cells by acting 
as a physical barrier, thereby controlling the cellular activ-
ity. Aggrecan is one of the most important CSPGs in PNN. 
Immunodetection experiments with WFA on mice lacking 
aggrecan showed a diminished reactivity to WFA. However, 
other PNN components are unaffected, indicating that this 
proteoglycan is necessary for maintaining PNN’s overall 
structural assembly [120].

Another important and the most studied molecule in PNN 
is HA. This GAG is synthesized by HAS on the membrane 
and forms the backbone of the whole network, interacting 
with multiple proteins and proteoglycans [42, 98, 126]. In 
contrast to most other PNN components, HA and aggre-
can secretion are not dependent on glial cells. In fact, PNNs 
can still form in cultures in the absence of glial cells or 
glia-derived components, emphasizing the key role of the 
neuronal-secreted aggrecan and HA as basic units of PNN 
[112]. The link proteins, especially HAPLN1 and HAPLN4, 
connect the HA polymer with lecticans. Binding of tensacins 
to the C-terminal domains of lecticans completes the lattice 
structure of the PNN.

Functional attributes

Numerous studies have aspired to reveal the roles of PNNs. 
Most concluded that PNNs are important for the stabiliza-
tion of synapses [115, 127–129] and have been proposed 
as the key elements underlying long-term memory consol-
idation [113]. In line with this notion, a reduction in the 
distribution of PNNs or individual PNN components was 
observed in many psychiatric diseases related to mitigated 
learning, memory, and information processing, including 
schizophrenia, autism spectrum disorders, Fragile-X syn-
drome, mood disorders, Alzheimer’s, and epilepsy (for a 
comprehensive review, see [129]). Intriguingly, contrary to 
these neuropathologies, subjects with Rett syndrome exhibit 
increased PNN labeling in the motor cortex [130]. A number 
of findings support the notion that PNNs play a key role in 
learning, memory, and information processing in health as 
well as disease.
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First and foremost, PNNs are established towards the end 
of the critical period, primarily around parvalbumin (PV) 
interneurons, which are implicated as important mediators 
of the critical period [131]. In fact, because of their stabiliz-
ing effect, PNNs are thought to have a plasticity-impeding 
function [118, 131–133]. They act as a barrier, blocking 
the formation of new synapses [134]; as an obstacle, limit-
ing receptor mobility [135]; and as a scaffold, interacting 
with molecules that can inhibit synaptic formation [136]. 
Indeed, removal of these structures with chondroitinase 
ABC restores a critical-period-like phenotype of the neu-
ronal system, allowing remodeling and the formation of new 
synapses [133]. Thus, the synapse stabilizing role of PNNs 
seems to have a dual complementary function: preserving 
the existing synapses while restricting changes. Reduced 
plasticity is typically regarded as a disadvantageous feature, 
since it is important for learning [137]. However, the stabil-
ity of cortical circuits is probably also valuable in main-
taining the “erudite” neuronal connection [131]. In general, 
studies showing that removal of PNNs improves plasticity 
have focused on the immediate effect during the proximal 
period, but failed to examine the long-term and wide-range 
effects. Do individuals with Alzheimer’s or autism, and who 
have a decreased PNN distribution, possess improved learn-
ing abilities? Perhaps the extent and chronicity of reduced 
PNNs and sequential neuronal stability are detrimental.

The stabilizing effect of PNNs led Roger Tsien to argue 
that they are the best candidates responsible for holding 
long-term memories [138]. He based his hypothesis on the 
fact that ECM molecules in the PNN structure may have an 
exceptionally long protein turnover, as opposed to intrasyn-
aptic proteins, which have a short turnover time (2–5 days) 
[139]. Importantly, although the turnover may be negligi-
ble, it does not indicate that PNNs cannot be rescued when 
degraded or absent. In fact, 9 days following the injection 
of the ECM-degrading enzyme hyaluronidase into one of 
the brain hemispheres of gerbils, PNNs reconstituted in the 
region, and by day 13, their numbers were comparable to 
that of the control hemisphere [140]. Furthermore, when 
embryonic PV neurons were transplanted into the visual 
cortex of adult mice, PNNs were deposited around them 
by day 21 following transplantation [141]. These findings 
imply that PNNs can be restored; hence, they might serve 
as a therapeutic target under pathological conditions. How-
ever, experiments directly linking PNN reconstitution to 
improved outcome should be conducted. In addition, the 
mechanism by which PNNs mediate plasticity needs to be 
better characterized.

In the cortex and hippocampus, two of the most relevant 
regions when considering learning, memory, and informa-
tion processing, the majority of PNNs enwrap fast spiking 
parvalbumin(PV)-expressing interneurons [141–144]. The 
presence of PNN around PV interneurons was linked to 

lower excitability and to higher discharge frequency [145]. 
These “GABAergic” inhibitory neurons regulate the syn-
chronous oscillatory output of pyramidal neuron assemblies 
[146]. Importantly, these gamma frequency band (30–80 Hz) 
oscillations were linked to various cognitive processes [146]. 
It is assumed that this gamma-band synchrony between neu-
rons in higher and lower cortical areas is required for object 
representation, response selection, attention, and sensorimo-
tor integration [147], as well as for memory [148]. PV cells 
are also essential for “ripple” oscillations (140–180 Hz) in 
the hippocampus, which occur during rest following learn-
ing phases and are thus associated with memory consolida-
tion. Removal of the hyaluronic backbone of PNNs with 
hyaluronidase or CSPGs with chondroitinase ABC results 
in an increase in the frequency of these sharp wave ripples 
[149], emphasizing the potential role of PNNs in memory 
and learning. Unfortunately, it is not clear how the PNNs 
actually affect the activity of each neuron in the context 
of the neuronal system. To study this, one would have to 
record in vivo electrophysiological signals or image calcium 
influxes using Ca2+ indicators and differentiate between the 
cells enwrapped by PNNs and those that are not. However, 
currently no tools are available for in vivo staining of PNNs.

In addition to their role in modulating synapse formation 
and stability, PNNs may have an indirect effect on neuronal 
activity and cognitive function. These dense ECM structures 
have been shown to protect neurons from oxidative stress 
[143] and from attacks by activated microglia [150], mini-
mizing the adverse neurological outcome of pathological 
conditions.

ECM at the synapse

Thrombospondins (TSPs) are a family of five extracellular 
calcium-binding glycoproteins (TSP1-5) that interact with 
the neuronal receptors α2δ-1 (Cacna2d1) and neuroligin 1 
(NL1) and bind different components of the ECM [151]. 
These astrocyte-secreted factors are expressed mainly dur-
ing the early postnatal period, when synapses between den-
drites and axons form [152]. Importantly, they were shown 
to induce synapse formation both in vitro and in vivo [153]. 
Removal of TSPs from cultures [153], or knocking down 
endogenous NL1 [154], inhibited TSP1-induced synap-
togenesis, whereas the addition of TSP1 and TSP2 to cul-
tured neurons resulted in an increase in the number of syn-
apses [153]. In accordance, TSP1/2 double KO mice have 
fewer synapses [153]. In line with their proposed role in 
synaptogenesis, TSPs are upregulated following spinal cord 
injury [155] and stroke [156, 157], and their inhibition hin-
ders structural plasticity following injury in the cortex [158]. 
In particular, TSPs induce the formation of ultrastructur-
ally normal synapses, but for activation of the excitatory 
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postsynaptic sites, insertion of AMPA receptors (AMPARs) 
is required [153]. Interestingly, it was recently shown that 
brevican, a PNN-related protein, which is also secreted by 
astrocytes, controls interneuron plasticity by regulating the 
localization of potassium channels and AMPARs [159]. 
Indeed, brevican-deficient animals display impaired long-
term potentiation (LTP) in the hippocampal CA1 region 
[160]. In another study, neuronal activity-regulated pentraxin 
(Narp or NP2) was also shown to recruit AMPARs to PV 
interneurons at excitatory synapses, consequently regulating 
the excitation/inhibition of homeostasis [161]. Knockout of 
Narp or its receptor resulted in enhanced epileptic activ-
ity and impaired hippocampal-dependent working memory 
[162]. Notably, Narp accumulation around PV interneurons 
is significantly enhanced by the existence of PNNs, point-
ing to an important indirect role of PNNs in maintaining the 
homeostasis of neuronal activity. In line with this finding, 
the expression of Narp is reduced in Alzheimer’s disease and 
is correlated with cognitive performance [163].

Bridging the gap between the presynaptic and postsyn-
aptic neurons (i.e., the synaptic cleft) is also important for 
synaptogenesis and maturation of synapses, and it relies on 
ECM molecules. For example, hevin (or SC1), an astrocyte-
secreted protein, bonds presynaptic neurexins and postsyn-
aptic neuroligins [164]. SPARC, a homolog of hevin, plays 
a contradictory role, hampering the activity of hevin and 
synaptogenesis [165]. Cerebellins (Cbln1–4) are another 
family of trans-synaptic linkers, bridging between neu-
rexins (Cbln1-4) [166] or “deleted in colorectal cancer” 
(DCC; Cbln4) [167] and the postsynaptic delta-type glu-
tamate (GluD1 and GluD2) receptors. For example, Cbln1 
is secreted from presynaptic terminals in granular cells and 
is essential for stabilizing Purkinje cell synapses in the cer-
ebellum, and loss of Cbln1 results in ataxia and diminished 
motor learning [168, 169]. In contrast with the cerebellum, 
the thalamic axons of Cbln1-null mice exhibited an increase 
in synaptic spine density instead of synapse loss [170]. 
Mutations in cerebellins or their neurexin receptors have 
been associated with neurodevelopmental disorders such as 
ASDs, Tourette, and schizophrenia (reviewed in [171]).

Reelin is a key regulator of neuronal layering and 
migration in the cortex, hippocampus, and cerebellum 
during development (reviewed in [172]). Reelin is also 
secreted by GABAergic interneurons and it surrounds 
dendritic spines of pyramidal neurons, thereby modulat-
ing synaptic signaling pathways and regulating synaptic 
plasticity and axonal and dendritic outgrowth [172–174]. 
In accordance, reelin-deficient mice exhibited reduced 
dendritic branching and lower spine density in vitro and 
in vivo [175]. Furthermore, factors downstream of reelin 
[176, 177] and reelin’s ApoER2 receptor [178] were shown 
to regulate spinogenesis and spine morphology. Addition-
ally, reelin also increases LTP [178, 179] by enhancing 

N-methyl-D-aspartate receptor (NMDAR)-mediated Ca2+ 
conductance and phosphorylation of cAMP-response 
element-binding protein (CREB) [180], and by control-
ling the maturation of NMDARs [181] and the insertion 
of AMPARs into synaptic membranes [182]. Importantly, 
a deficiency involving reelin’s receptors results in dimin-
ished hippocampus-dependent contextual fear memory 
[179]. Accordingly, reduced reelin expression has been 
associated with neurological disorders, including ASD, 
schizophrenia, Alzheimer’s, and with mood disorders such 
as depression and bipolar disorder (reviewed in [178, 183, 
184]).

Tenascins, another important family of ECM molecules, 
are linked to synaptic plasticity, specifically TNR and 
TNC, which are predominantly expressed in the CNS [185, 
186]. TNR, a major component of the PNN, is necessary 
for synaptic transmission and plasticity, and consequently 
for behavior. TNR deficiency in mice did not affect long-
term depression (LTD) in the hippocampal CA1 area, but 
led to impaired LTP and increased basal synaptic transmis-
sion at this location, accompanied by anxiety and motor 
impairments [187–190]. TNR deficiency also resulted in 
a reduced number of active zones in perisomatic inhibi-
tory synapses in the CA1 pyramidal cell layer, suggest-
ing that TNR may play a crucial role in regulating the 
architecture of perisomatic inhibitory synapses [191]. In 
contrast to TNR, TNC is predominantly expressed during 
development [192]. However, although its levels are sig-
nificantly decreased thereafter, LTP induces transient TNC 
expression in the adult brain, suggesting that it plays a role 
in synaptic plasticity [193]. Indeed, a deficiency in TNC 
leads to a reduction in L-type voltage-dependent Ca2+ 
channel (L-VDCC)-dependent LTP and abolished LTD in 
the CA1 region of the hippocampus. Moreover, gamma 
oscillations increased in TNC-deficient mice in the cortex 
and in CA1 (but not in other hippocampal regions). These 
animals also exhibited an impaired extinction of condi-
tioned fear responses, with normal learning and memory 
in the contextual fear paradigm [194].

While the paramount role of hyaluronic acid as the back-
bone of PNN is well acknowledged, it was also shown to 
play a role in synapse maturation and LTP. Synapse stabi-
lization (and reduced plasticity) is partially due to a shift 
in the NMDARs’ (a subtype of the ionotropic glutamate 
receptors’) composition, switching the subunit GluN2B to 
GluN2A. This shift seems to be mediated by hyaluronic acid, 
since its removal with hyaluronidase induces an increase in 
the surface expression of GluN2B in neuronal cultures and 
acute hippocampal slices [195]. A similar treatment of hip-
pocampal slices also suppressed postsynaptic L-type volt-
age-dependent calcium channel (L-VDCC)-mediated signals 
and subsequent LTP, and in vivo removal of HA resulted in 
impaired contextual fear conditioning [196].
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ECM around the nodes of Ranvier

The nodes of Ranvier are gaps between myelin sheaths 
enwrapping axons. These gaps are rich in voltage-gated 
sodium (i.e., Nav) channels, allowing propagation of 
action potentials. Notably, in these gaps the axons are 
exposed to the ECM, which plays an important role in 
the stability of the nodes and, hence their efficacy [197]. 
The ECM around the nodes of Ranvier is rich in brevi-
can, versican, phosphacan, and TNR [198–200]. Interest-
ingly, in wild-type animals, TNR and phosphacan seem 
to appear only in large-diameter axons, whereas in brev-
ican-deficient animals they are found in nodes of both 
small- and large-diameter axons [102]. The specialized 
ECM complex around the node binds to the cell adhe-
sion molecules neurofascin-186 (NF-186), neuron–glia-
related CAM (NrCAM), and contactin-1, which interact 
with the neuronal cytoskeletal proteins ankyrin G and 
βIV spectrin at the node, bridging between the node and 
the perinodal astrocyte processes [200]. In addition, the 
hyaluronan-binding, brain-specific link protein Bral1 also 
co-localizes with brevican and versican in the nodal ECM 
[201], and in a subset of CNS nodes Bral1 localization 
depends on them [198], whereas in others it seems to be 
independent of brevican. Mice lacking paranodal junctions 
and versican, brevican, or Bral1 have fewer NaV channel 
clusters. Furthermore, animals deficient in paranodal junc-
tions and either versican or brevican have profound motor 
dysfunction compared to animals lacking only paranodal 
junctions [198].

The immediate roles of ECM around the nodes of Ran-
vier regarding plasticity and learning have not been clearly 
characterized. However, they are important for the propa-
gation of action potentials, resulting in activity, which is 
key for instigating new synapses and their maintenance, 
and for controlling their strength [197]. Moreover, recent 
evidence points to activity-dependent myelination as a 
central mechanism for plasticity [202]. Hence, the effi-
ciency of the nodes, which is partially dependent on the 
proximal ECM assembly, is arguably key for learning and 
memory [202].

Extracellular matrix remodeling enzymes 
in the brain

Matrix metalloproteinase‑9

Matrix metalloproteinases (MMPs) are a large family of 
zinc-containing endopeptidases with pivotal functions in 
ECM remodeling. There are at least 25 different MMPs 

identified so far and they can be subdivided into multi-
ple groups based on their structure and function [203]. 
MMP-9 belongs to the gelatinase family and is implicated 
in numerous physiological and pathological processes 
[204]. It has been shown that MMP-9 protein levels and 
its proteolytic activity were rapidly increased by stimuli 
that induce long-lasting LTP [205]. A deficiency in MMP-
9, or its pharmacological blockage with broad-spectrum 
MMP inhibitors, antisense oligonucleotides, or neutraliz-
ing antibodies results in altered LTP in the hippocampus 
(summarized in [206]). Furthermore, multiple studies have 
shown that the same LTP-inducing stimuli also evoke local 
MMP-9 release, resulting in dendritic spine enlargement 
[207–210], whereas specific blocking of MMP-9 in slices 
prevented late LTP [211]. Similarly, LTP elicited in hip-
pocampal cultures has also been demonstrated to depend 
on MMP activity and to involve enhanced MMP-9 lev-
els [212–214]. Interestingly, LTP-evoking stimuli in the 
prefrontal cortex of rats resulted in overexpression of the 
endogenous tissue inhibitor of MMPs (TIMP)-1, an intrin-
sic inhibitor of several MMPs, including MMP-9; perhaps 
acting as a homeostatic modulator [211, 215].

Upregulation of MMP-9 expression in the hippocampus 
was also found following exposure to the enriched environ-
ment paradigm [216]. This paradigm, in which animals are 
housed in cages with excessive sensory and motor stimuli, 
is known to increase synaptic plasticity [217]. Induced sei-
zures, however, cause upregulation of TIMP-1 [215, 218, 
219] and hippocampal spine loss that is blocked in MMP-
9-deficient mice. In line with its role in mediating hippocam-
pal LTP, MMP-9 deficiency was associated with poor mem-
ory in contextual fear conditioning and appetitive learning 
[205, 220–222]. In a different study, spatial learning was 
found to elevate MMP-3 and MMP-9 levels. Importantly, 
spatial learning was also found to depend on these MMPs, 
evidently through their ability to activate NMDA receptors 
[223].

As in the hippocampus, MMP-9 deficiency also reduced 
experience-dependent plasticity in the barrel cortex [224]. In 
contrast, in the visual cortex, non-specific MMP inhibition 
did not affect homeostatic plasticity; however, it did prevent 
an increase in dendritic spine density evident one week fol-
lowing monocular deprivation [225]. Emphasizing the loca-
tion-dependent role of MMP-9 in plasticity, disruption of 
MMP-9 activity abolished late-phase LTP in the basolateral 
and central nucleus of the amygdala, but did not affect LTP 
in the cortical pathway leading to the lateral amygdala [226]. 
Furthermore, MMP-9 deficiency did not affect amygdala-
related tasks, such as discrete cue conditioning or aversive 
learning [205, 220].

There are also a few indirect indications that MMP-9 
mediates plasticity. For example, activator protein 1 (AP-
1), a transcription factor associated with plasticity, learning, 
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and memory, regulates MMP-9 and TIMP-1 [219, 220, 227, 
228]. Interestingly, local dendritic translation of MMP-9 
mRNA was found to be controlled by the fragile X men-
tal retardation protein, FMRP, which is silenced in subjects 
with Fragile-X syndrome (FXS) [229, 230]. Indeed, animals 
with FXS have increased MMP-9 expression, coinciding 
with longer and thinner spines and abnormal spine turno-
ver, which are normalized by treatment with various MMP-9 
inhibitors [207, 231, 232].

Although the molecular chain of events is still vague, a 
number of mediators downstream of MMP-9 activity have 
been suggested, including β-dystroglycan, ICAM-5, neuroli-
gin-1, and integrins, especially β1 integrins [205, 233–236]. 
Another hypothesis regarding how MMP-9 contributes to 
enhanced plasticity concerns its ability to cleave pro-BDNF 
to BDNF, a key regulator of synaptic structure and func-
tion [237]. Notably, MMP-9 mRNA, protein, and enzymatic 
activity are present at the dendritic spines of excitatory syn-
apses, whereas they are absent in inhibitory synapses [222, 
238–240]. Although MMP-9 has been the main focus of 
brain metalloproteinase research, MMP-3 is emerging as a 
key player, since it may act upstream and activate MMP-9 
[241]. Unravelling the substrates of MMP-9 in the brain is 
also important in the context of PNN integrity. For instance, 
Fmr-1 KO mice exhibit elevated MMP-9 levels in the brain, 
and a genetic reduction of MMP-9 expression promotes the 
formation of PNNs [142]. This finding is intriguing, since it 
remains unclear how MMP-9 affects PNN formation or deg-
radation, given that none of the PNN elements was shown to 
be a substrate of MMP-9 [242–244].

A disintegrin and metalloproteinase 
with thrombospondin motifs

A disintegrin and metalloproteinase with thrombospondin 
motifs (ADAMTS) are another family of extracellular matrix 
remodeling enzymes with multiple domains. ADAMTS-1 
and ADAMTS-4, which belong to a subgroup called aggre-
canases or proteoglycanases, were found to be upregulated 
following induced seizures in rats. Their expression leads to 
proteolysis of brevican, which is associated with a reduction 
in synaptic density in the dentate gyrus of the hippocam-
pus [245]. Following spinal cord injury, local ADAMTS-4 
administration resulted in enhanced axonal regeneration/
sprouting, significantly promoting motor function recov-
ery [246]. In vitro, ADAMTS-4 was also found to induce 
neurite elongation, which can explain the increase in syn-
aptic density [247]. Similarly, the expression of synaptic 
markers, such as synaptosomal nerve-associated protein 25 
(SNAP-25) and post-synaptic density (PSD) -95, was lower 
in ADAMTS-1 null female mice. Interestingly, this was not 
the case in male animals, suggesting a sexual dimorphism of 
ADAMTS-1 involvement in synaptic density. Nonetheless, 

these alterations in the expression of synaptic proteins were 
not found to cause deficits in learning and memory; there-
fore, their significance is unclear [248].

Recently, it was reported that cortical fast-spiking PV 
interneurons enwrapped in PNN express the metallopepti-
dases ADAMTS8, ADAMTS15, and Neprilysin [145]. 
Notably, aggrecan and versican, CSPGs of the PNN, are 
substrates of ADAMTS-8 and ADAMTS-15. Thus, the 
expression of these proteases in PNN-enwrapped cells might 
reflect their involvement in the local regulation of its struc-
ture and function [145].

The tissue plasminogen activator

Traditionally referred to as a dissolver of clots, tissue plas-
minogen activator (tPA), a member of the serine proteinase 
family, has drawn attention as a possible mediator of neu-
ronal plasticity. It was found to be an important protease 
associated with various aspects of neuronal plasticity, learn-
ing, memory, and emotion [249–251]. In fact, its expression 
is induced in the hippocampus following various modes of 
neuronal activation such as seizures, kindling, or LTP [252]. 
tPA-deficient mice exhibit an impairment in spatial naviga-
tion tasks, cerebellar motor learning, fear conditioning, and 
passive avoidance [250, 253–255]. tPA deficiency concur-
rently results in reduced LTP [250, 256], and overexpression 
of tPA, results in elevated LTP [257]. Zhuo et al. [258] found 
that the lipoprotein receptor-related protein (LRP), a recep-
tor of tPA, is abundantly expressed in hippocampal neurons 
and is essential for the effects of tPA on hippocampal LTP. 
Proteolytic mechanisms that mediate plasticity have also 
been described, such as conversion of pro-BDNF to BDNF 
by tPA [259], or activation of plasmin, which can cleave 
ECM components such as fibronectin or laminin [206]. The 
activity of tPA is spatially and temporally controlled by ser-
ine protease inhibitors (i.e., serpins), such as plasminogen 
activator inhibitor-1 or neuroserpin [206]. Interestingly, 
transgenic expression of urokinase plasminogen activator 
in the brain increased the longevity and reduced body weight 
in mice [260, 261]. However, they performed poorly in the 
cortex and limbic system-associated learnings [262]. More 
studies are required to completely delineate this enzyme’s 
potential in not only memory and learning but also in other 
diseases and afflictions like cancer and obesity.

MMP inhibitors in brain disorders

Multiple studies have corroborated the important and diverse 
functions of MMPs in the health and pathology of CNS, 
including in development, vascular integrity and function, 
neuronal activity, and cancer progression, pointing to MMP 
inhibitors as a potential “game-changer” in the treatment 
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modalities [263–265]. Indeed, such inhibitors are studied 
rigorously in various pathologies, with some promising 
results. For example, Ro31-9730 and minocycline, non-
specific MMP inhibitors, have been shown to neutralize 
the unwarranted MMP activity and improved outcomes 
in experimental autoimmune encephalomyelitis (EAE), a 
model of multiple sclerosis [266, 267]. In rodent models 
of stroke, the broad specific inhibitors GM6001 and BB-94 
showed encouraging results when given immediately fol-
lowing stroke induction [268, 269]. However, in a differ-
ent study, prolonged treatment for a week with the MMP 
inhibitors FN-439 or BB-94 hindered recovery from stroke 
[270], implying that MMP inhibition can have a contradic-
tory impact on stroke outcome. Hence, a delicate balance 
between MMP activity and their inhibition must be main-
tained. Remarkably, the field has revived interest in blocking 
MMP-9 and MMP-2 in stroke owing to the design of SB-
3CT, a thiirane-based gelatinase inhibitor, by Shahriar et al. 
[271, 272]. Administration of SB-3CT in a mouse model of 
stroke resulted in protection from brain damage, compared 
with mice that did not receive the treatment. Inhibition of 
gelatinases by SB-3CT was also shown to protect neuro-
vasculature from embolic focal cerebral ischemia [273]. 
Importantly, it was argued that selective MMP inhibitors 
will benefit only during the acute phase of the injury, sug-
gesting that the timing of the use of the MMP inhibitors in 
stroke is critical [274].

The use of protease inhibitors, specifically MMP inhibi-
tors, has also been tested in human clinical trials for other 
pathological conditions. In a study on 60 patients with acute 
ischemic stroke, a combined treatment of tPA and minocy-
cline was more effective compared with tPA alone [275]. In 
another study on a small cohort of multiple sclerosis patients 
(n = 16), doxycycline was given together with interferon-
β-1a for 4 months, resulting in a better score in the expanded 
disability status scale (EDSS), with negligible toxicity [276]. 
However, the study concluded that in spite of the safe and 
effective therapeutic potential of these molecules, a larger 
study should be performed. A combinatorial treatment of 
glioma and recurrent glioblastoma patients with marimas-
tat and temozolomide increased their progression-free sur-
vival (PFS) [277, 278]. However, other studies had only 
discouraging outcomes [279, 280]. Vandenbrouke and Lib-
ert summarized several reasons for the failure of the tri-
als. This includes metabolically unstable molecules, poor 
oral bioavailability, and lack of a complete understanding 
of MMPs [281]. 

One of the recent developments in treatments based 
on MMP inhibitors lies in the field of fragile X syndrome 
(FXS). FXS has been shown to have elevated serum MMP-9 
levels in both humans and mouse models. Numerous studies 
have shown compelling results supporting the involvement 
of MMP-9 in this neurodevelopmental disorder. Follow-up 

studies on MMP-9 inhibition and genetic KO in rodents indi-
cated that they rescued the characteristic phenotypes in the 
neurons and that the rodents displayed enhanced learning 
in behavioral tasks. The broad specific antibiotic, minocy-
cline, with its already proven abilities to inhibit MMPs, was 
tested extensively in mouse models and later in a human 
clinical study, and showed marked improvements. The study 
concluded that further long-term studies are required. Very 
recently, other molecules such as metformin [282], lovasta-
tin, along with minocycline are being clinically investigated 
on human subjects [283]. Although studies like this are 
important and encouraging for finding a drug for FXS, the 
lessons that can be learned from the MMP inhibition-based 
trials should be prioritized and implemented. MMP biology 
is highly enigmatic; thus, a higher degree of comprehension 
is required. More importantly, novel approaches such as use 
of a highly specific antibody or protein-based inhibitors is 
essential for producing tangible MMP inhibitors for treating 
brain disorders [284].

Summary and future perspectives

The field of ECM biology has taken an unprecedented jour-
ney from mere speculation of its presence to its undeniably 
vital role in several brain functions including learning and 
memory. The ECM in the brain forms unique structures, 
which perform a plethora of cellular functions. A special 
class of CSPGs, termed lecticans, dominates both the inter-
stitial ECM and special structures like PNN. Although the 
composition of PNNs and the importance of each consti-
tutive element to the development of the nets have been 
characterized in numerous studies [128, 132, 285–287], a 
number of questions remain open regarding the significance 
of the structure of the net. How does the density of the net 
affect its function? Is it important how large the holes of the 
net are, or the extent to which the net enwraps the dendrites? 
In addition, it has been shown that differences exist in the 
molecular composition of the nets between different loca-
tions in the CNS [288, 289]. However, the variance within 
each population is not clear, and the impact of such differ-
ences. Although attempts to rescue phenotypes in behavioral 
disorders like FXS by modulating ECM-regulating proteases 
are actively being pursued, a complete understanding of the 
role of ECM in attaining tangible targets for treatment is 
still a distant goal. Additionally, lack of specific inhibitors 
to suppress the unwanted protease activity impedes progress 
in comprehending the disease phenotype, at least in condi-
tions like FXS. A new class of novel inhibitors and specific 
antibodies for inhibiting MMPs are being developed, and 
this might pave the way for treating diseases like FXS where 
the protease levels and activity are unwarranted (Reviewed 
in [284, 290]). In Toto, the full potential of the brain ECM 
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in several physiological and pathological processes remains 
to be deciphered completely.
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