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ABSTRACT16

Calcium imaging has been widely adopted for its ability to record from large neuronal populations. To summarize

the time course of neural activity, dimensionality reduction methods, which have been applied extensively to

population spiking activity, may be particularly useful. However, it is unclear if the dimensionality reduction methods

applied to spiking activity are appropriate for calcium imaging. We thus carried out a systematic study of design

choices based on standard dimensionality reduction methods. We also developed a novel method to perform

deconvolution and dimensionality reduction simultaneously (termed CILDS). CILDS most accurately recovered

the single-trial, low-dimensional time courses from calcium imaging that would have been recovered from spiking

activity. CILDS also outperformed the other methods on calcium imaging recordings from larval zebrafish and mice.

More broadly, this study represents a foundation for summarizing calcium imaging recordings of large neuronal

populations using dimensionality reduction in diverse experimental settings.

17

Introduction18

Computations in the brain occur through the coordinated, time-varying activity of populations of neurons. Dimen-19

sionality reduction is a class of statistical methods commonly used for summarizing neural population activity1–3.20

It transforms high-dimensional neural recordings, such as spiking activity from a population of recorded neurons,21
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Figure 1. Dimensionality reduction of neuronal population activity based on electrophysiological

recordings versus calcium imaging can yield different low-dimensional representations. Left, spike trains

(grey) and fluorescence traces (maroon) recorded from the same hypothetical population of neurons. Right, different

latent trajectories resulting from dimensionality reduction applied to spike trains (grey) versus fluorescence traces

(maroon).

into compact low-dimensional representations termed latent variables. These low-dimensional representations22

facilitate the investigation of how neural population activity varies over time, across experimental conditions,23

and across repeated experimental trials of the same condition. In particular, dimensionality reduction has been24

used to uncover neural mechanisms underlying decision making4, motor control5, learning6, working memory7,25

sensorimotor timing8, attention9, olfaction10, speech11, and more.26

Dimensionality reduction has typically been applied to electrophysiological recordings. In the last decade,27

optical imaging has been widely adopted to record from large populations of neurons given its ability to sample28

neurons densely within the field of view, track neurons over long periods of time, and label neurons by cell type or29

projection, among other advantages12. A leading type of optical imaging is calcium imaging, which uses calcium30

indicators to track the transient increase in intracellular calcium levels that accompanies electrical spiking activity13.31

These changes in calcium levels are then optically recorded via changes in fluorescence. Calcium imaging has the32

capability of imaging even the whole brain of some small animals (e.g., larval zebrafish) at single neuron resolution14,33

albeit at a lower temporal resolution than electrical recordings.34

With the increasing use of calcium imaging, many studies are now beginning to apply dimensionality reduction to35
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calcium imaging recordings15–26. A critical question is whether the same dimensionality reduction methods applied36

to study spiking activity are also appropriate for calcium imaging recordings27. Here, we focus on single-trial time37

courses of latent variables, termed neural trajectories. This enables the study of how trial-to-trial differences in the38

time course of neural activity relate to trial-to-trial differences in perception, decision making, and behavior8, 16, 28–31.39

We seek to understand if the neural trajectories extracted from calcium imaging recordings match the neural40

trajectories that would have been extracted from the spiking activity underlying these recordings. A key reason why41

the neural trajectories would be different is the slow, indicator-dependent decay of measured calcium levels after each42

spiking event13. This decay introduces temporal correlations in the calcium imaging recordings that would not be43

present with spiking activity alone. Deconvolution is a technique that aims to recover spiking activity from calcium44

imaging recordings32. However, deconvolution techniques do not, as yet, recover the underlying spikes exactly33.45

Thus, the neural trajectories that are extracted from calcium imaged activity may be quite different from the neural46

trajectories extracted from spiking activity (Fig. 1), which may limit the use of calcium imaging for studying47

population activity time courses. In this work, our central goals are to i) systematically study the appropriateness of48

dimensionality reduction methods for summarizing the time course of calcium imaging recordings, and ii) propose49

a new dimensionality reduction method that is tailored for extracting neural trajectories from calcium imaging50

recordings.51

We sought to address three questions. First, we asked if deconvolution should be used with dimensionality52

reduction when extracting neural trajectories, and if so, how it should be applied. Second, we asked how different53

experimental variables (e.g., the decay constant of the calcium indicator, the timescale of the latent time courses, and54

the number of imaged neurons) impact the ability to recover neural trajectories from calcium imaging recordings.55

Third, we asked if it is necessary for the dimensionality reduction method to employ a dynamics model for the latent56

variables, as such a model might enable the time course of the neural trajectory to be more cleanly separated from57

the time course of calcium decay.58

We addressed these questions by comparing several approaches, including i) standard dimensionality reduction59

applied directly to the recorded fluorescence; ii) a two stage-method in which deconvolution is applied separately60

to each neuron’s fluorescence trace to estimate spiking activity, then standard dimensionality reduction is applied61

to the estimated spiking activity; and iii) a novel unified method that we propose here (Calcium Imaging Linear62

Dynamical System, CILDS), which performs deconvolution and dimensionality reduction jointly. We first applied63

these methods to simulated fluorescence traces, in which we systematically varied several experimental variables64

over a wide range. We then applied these methods to calcium imaging recordings from the dorsal raphe nucleus of65

larval zebrafish and the primary visual cortex of mice. Across these settings, we found that CILDS outperformed the66

other methods. This was especially true when the neural activity fluctuated more quickly over time (timescale of tens67

to hundreds of milliseconds). We also found that, to accurately peer through the calcium decay to obtain accurate68
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neural trajectories, it is necessary to include a latent dynamical model, as in CILDS. Overall, our work provides a69

foundation for using dimensionality reduction to summarize the time course of calcium imaging recordings.70

Results71

Dimensionality reduction is typically applied to spike trains recorded from a population of neurons, yielding a72

low-dimensional representation of that activity. Calcium imaging provides a transformed view of those spike trains.73

Our central goal is to develop dimensionality reduction methods appropriate for calcium imaging recordings to74

recover the same low-dimensional representation as that obtained from spike trains. To do so, we systematically75

compare three approaches.76

For the first approach, we applied a standard dimensionality reduction method directly to the recorded fluores-77

cence traces from calcium imaging (Fig. 2a, top). Here we chose to use a latent Linear Dynamical System (LDS),78

which is among the most basic methods for extracting neural trajectories. Conceptually, an LDS seeks to explain the79

temporal structure in the data using latent variables that vary smoothly over time. We will examine the necessity of80

using a latent dynamical model, like LDS, in a later section.81

Each time a neuron spikes, intracellular free calcium increases, then decays slowly over time. The calcium82

indicator kinetics influence the measured decay time, resulting in fluorescence traces whose intensity decays over83

hundreds of milliseconds to seconds, depending on the particular calcium indicator used13. This decay transient84

induces temporal correlations in the fluorescence measurements which are input to the LDS, which might attempt85

to capture these correlations in its latent variable estimates. This motivates our second approach, which first86

deconvolves each fluorescence trace separately, and then applies a LDS to the resulting estimated spiking activity.87

The deconvolution serves to remove a substantial portion of the calcium decay transient, producing activity traces88

similar to spike trains (or time varying firing rates). We term this two-stage method deconv-LDS (Fig. 2a, middle).89

Here we deconvolved the fluorescence traces with OASIS32, 34, a deconvolution method that has been widely used in90

calcium imaging studies20, 23, 24, 35.91

In deconv-LDS, each neuron is deconvolved independently, and the stages of deconvolution and dimensionality92

reduction are performed sequentially. We asked if performing these stages jointly would lead to more accurate93

recovery of the latent variables (Fig. 2a, bottom). More specifically, we hypothesized that a sequential method94

(e.g., deconv-LDS) may inadvertently discard some of the shared activity amongst neurons due to the independent95

deconvolution of each neuron (Fig. 2b, left). Since the latent variables are intended to capture the shared spiking96

activity among neurons (and not the calcium decay, which is independent across neurons), it might be possible to97

better separate the calcium decay from the latent dynamics by considering all the neurons together, and performing98

the two stages of deconvolution and dimensionality reduction jointly. This allows the dimensionality reduction99

component to influence the deconvolution estimates, and vice versa (Fig. 2b, right). Thus, for our third method we100
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Figure 2. Comparison of three classes of dimensionality reduction methods. (a) Each of the three classes of

methods was applied to the simultaneously-recorded fluorescence of a population of neurons (y1,y2, . . . ,yq) to

extract latent variables. Top, Approach 1: a standard dimensionality reduction method (e.g., LDS) applied directly

to calcium imaging recordings, extracting corresponding low-dimensional latent variables at each time point

(illustrated here with two dimensions, z1 and z2). Middle, Approach 2: deconvolution is applied separately to each

neuron’s fluorescence trace to estimate its underlying spiking activity (s1,s2, . . . ,sq). A standard dimensionality

reduction method (e.g., LDS) is then applied to the estimated spiking activity to extract latent variables (z1 and z2).

Bottom, Approach 3: A unified method (e.g., CILDS) that takes calcium imaging recordings as input and performs

deconvolution and dimensionality reduction simultaneously to extract the latent variables (z1 and z2). (b) Cartoon

depicting the intuition behind the difference between Approaches 2 and 3. Center column: a latent variable z

(representing, for example, common input) is used to generate spike trains which, in turn, are used to generate

fluorescence traces. Left column: if deconvolution is performed neuron by neuron (Approach 2, deconv-LDS), it is

unable to leverage the shared activity fluctuations among neurons to dissociate the calcium transients from the

underlying shared spiking activity (i.e., the estimated latent variable). Right column: A unified method (Approach 3,

CILDS) is applied to all neurons together and is therefore better able to dissociate the calcium transients from the

underlying shared spiking activity among neurons (i.e., the estimated latent variable). As a result, CILDS more

accurately estimates the ground truth latent variable than deconv-LDS. Note that the estimated spiking activity is

depicted here as spike trains for visual clarity, even though they are in fact continuous-valued time courses.

developed a unified approach, CILDS, in which dimensionality reduction and deconvolution are performed jointly101

(Fig. 2a, bottom).102

Should deconvolution be used with dimensionality reduction, and if so, how?103

One might postulate that first deconvolving fluorescence to estimate spiking activity would be beneficial for104

recovering the same underlying latent variables that one would have recovered from the spikes themselves27.105

Indeed, multiple studies have applied dimensionality reduction to deconvolved spiking estimates19–24, 35. However,106

deconvolution is subject to particular statistical modeling assumptions (as is any statistical method) and usually does107

not recover the underlying spikes exactly. Therefore it is unclear how, or even if, deconvolution should be used with108

dimensionality reduction. We addressed this question by comparing the three approaches described above (Fig. 2a).109

With calcium imaging recordings, we typically do not have simultaneous electrophysiological recordings from110

the same neurons, and thus the "ground truth" latent variables are unknown. To directly compare each method’s111

ability to extract latent variables, we designed a simulation framework in which we created known ground truth112

latent variables with smoothly-varying time courses. These latent variables were used to generate spike trains which,113
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in turn, were used to generate fluorescence traces (see Methods and Supplementary Fig. 1). We then applied each of114

the three approaches to these simulated fluorescence traces to assess how accurately they recovered the ground truth115

latent variables. Examples of two combinations of experimental variables are illustrated in Fig. 3a.116

We found that in both settings, CILDS outperformed the other two methods, returning more accurate estimates117

of the ground truth latent variables (Fig. 3b-c, points above the diagonal). By operating on the entire population of118

neurons together, CILDS was better able to separate the calcium transients from the shared activity among neurons119

(i.e., the latent variables) compared to deconv-LDS, which deconvolves the activity of each neuron individually, and120

LDS, which makes no attempt at this separation. Taken together, when extracting single-trial neural trajectories, one121

should use deconvolution (Fig. 3b) jointly with dimensionality reduction, as in CILDS (Fig. 3c).122

How do different experimental variables impact the ability to recover latent activity?123

We next asked how different experimental variables affect the accuracy of the recovered latent variables. We designed124

the simulation framework to enable us to systematically vary experimentally relevant variables. These variables125

comprise four axes along which we can explore different combinations of values that might mimic a particular126

experimental paradigm. We varied the timescale of the latent time courses from 50ms to 5000ms, the number of127

neurons from 20 to around 100, the calcium decay timescales to match GCaMP6f, GCaMP6m, and GCaMP6s (fast,128

medium, slow)13, and the variance of the added imaging noise that was independent of the calcium and spiking129

activity (Supplementary Table 1). We then assessed how the accuracy of the dimensionality reduction methods130

changed as we systematically changed these variables.131

As we increased the timescale of the latent variables, all dimensionality reduction methods improved their132

accuracy in estimating the ground truth latent variables (Fig. 3d). This occurs because with slower latent fluctuations,133

the latent variables become less independent across time. As a result, all methods can leverage future and past time134

points to better estimate the latent variables at the current time point. When the latent timescale is slow (order of135

seconds), the calcium indicator decay is shorter relative to the latent timescale, and influences the neural activity136

less. Therefore a method that is not able to disambiguate between the time course of the latent variables and the137

calcium decay (e.g., LDS) can still accurately recover the latent variables (see latent timescale of 5000 ms in Fig.138

3d). However, at faster latent timescales (tens to hundreds of milliseconds) which reflect the timescales of many139

sensory, cognitive, and motor functions35, 36, it is critical to use a method that accounts for the calcium decay, as140

both CILDS and deconv-LDS do (see latent timescale of 50 ms in Fig. 3d).141

Next, when we increased the number of "recorded" neurons, all three methods improved in their ability to142

reconstruct the ground truth latent variables (Fig. 3e). This makes sense because each neuron provides a different,143

noisy view of the underlying latent variables. With more neurons, all methods are better able to "triangulate" the144

values of the latent variables. Across the entire range of neurons tested, CILDS outperformed deconv-LDS, which145
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Figure 3. CILDS more accurately recovers the ground truth latent variables than the other two approaches

in simulation. (a) Example simulated fluorescence traces (left panels) and estimated latent variables (right panels)

for two combinations of experimental variables. Setting 1 corresponds to a latent timescale of 200ms, 94 neurons,

calcium decay corresponding to GCaMP6f, and medium fluorescence noise (see Methods). Setting 2 is the same as

Setting 1, but with high fluorescence noise. Each of the three dimensionality reduction approaches introduced in Fig.

2 (LDS, cyan; deconv-LDS, purple; CILDS, orange) is applied to the simulated fluorescence traces. The latent

variables extracted by each method can then be compared to the ground truth latent variables (black). (b-c) Accuracy

of latent variables estimated by CILDS versus that of (b) LDS and (c) deconv-LDS. Accuracy is measured by the R2

between the estimated and ground truth latent variables. Each point represents one latent variable on one trial. (d-g)

Accuracy of latent variable recovery, as the (d) latent timescale, (e) number of neurons, (f) GCaMP6 indicator decay

time constant, and (g) fluorescence noise level was varied. In each panel (d-g), one of the experimental variables

was varied, while the other three variables were held constant at the Setting 1 values. The common point across the

four panels is Setting 1 (shaded gray). Setting 2 (shaded purple) only appears in panel (g) because panels (d)-(f)

correspond to medium rather than high fluorescence noise. The R2 for other combinations of experimental variables

are shown in Supplemental Fig. 2. Colored error bars indicate standard deviation, and black error bars indicate

standard error across n=2000 latent variables (see Methods). The points are horizontally offset for visual clarity.

outperformed LDS (Fig. 3e).146

We also varied the time constant of the GCaMP calcium indicator decay to match GCaMP6f, 6m, and 6s (from147

fast to slow) (Fig. 3f). All methods performed worse as the decay time constant increased. This occurred because148

the slower the calcium indicator is, the less the resulting fluorescence signal resembles the original spike train, which149

increases the difficulty in disambiguating between the latent time course and the calcium decay (Fig. 3f).150

Finally, we varied the amount of noise added to the fluorescence, which reflects imaging noise independent of151

calcium and spiking activity (Fig. 3g). As the variance of the noise increased, all three methods performed worse as152

expected, although the extent of the performance degradation differed across methods. As the fluorescence noise153

variance increased, CILDS continued to outperform the other two methods (Fig. 3g). This indicates that leveraging154

the population of neurons for simultaneous deconvolution and dimensionality reduction, as done by CILDS, provides155

statistical power to mitigate a loss in accuracy due to increased fluorescence noise (Fig. 2b).156

Overall, CILDS performed as well or better than the other two methods in every simulated setting we tested (Fig.157

3d-g, orange higher than purple and cyan, also see Supplementary Fig. 2 for additional combinations of simulation158

parameter settings). We additionally found that deconv-LDS usually outperformed LDS in accuracy of recovered159

latent variables, consistent with Wei et al., which applied PCA to trial-averaged activity27 (Fig. 3d-g, purple higher160
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Figure 4. A latent dynamical model is necessary for accurately recovering neural trajectories. Comparison

of a method that has no latent dynamics (Calcium Imaging Factor Analysis, CIFA) to CILDS using simulated

fluorescence traces. The simulation parameters are GCaMP6f with 94 neurons and medium noise, as in Fig. 3d. (a)

As the latent timescale increases, the ability of CILDS (orange) to accurately recover the neural trajectories

increases, whereas that for CIFA (brown) decreases. Note that the R2 can be < 0 because these results are

cross-validated. The CILDS curve shown here is the same as in Fig. 3d. (b) Calcium decay time constant estimated

using CIFA (brown) and CILDS (orange) for different simulated latent timescales. Dashed black line indicates

ground truth decay time constant. CILDS accurately estimates the decay time constant across all latent timescales

tested, whereas CIFA overestimates the decay time constant as the latent timescale increases. Coloured error bars

indicate standard deviation, and black error bars indicate standard error across n = 2000 latent variables (see

Methods).

than cyan). Using deconvolution is particularly important in regimes where the time scales of neural activity (i.e.,161

the latent timescales) are faster than that of the calcium decay, which is the case for many commonly-studied brain162

functions.163

Is it necessary to include a latent dynamical model in the dimensionality reduction method?164

All three dimensionality reduction methods considered so far explicitly attempt to extract latent variables that165

evolve smoothly over time via a latent dynamical model. We asked if the latent dynamical model was necessary for166

separating the calcium decay from the neural trajectories. To address this, we developed a method called Calcium167

Imaging Factor Analysis (CIFA, see Methods). CIFA is identical to CILDS, except that CIFA’s latent variables are168

independent across time (i.e., there is no dynamical model) by analogy to conventional factor analysis.169

We then compared the performance of CIFA to CILDS. We found that CILDS, which uses a latent dynamical170

model, recovered the latent variables more accurately than CIFA, which does not use a latent dynamical model (Fig.171
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4a; additional cases are shown in Supplementary Fig. 3). As the latent timescale increased, CILDS more accurately172

recovered the latent variables (Fig. 4a, also shown in Fig. 3d). Correspondingly, CILDS correctly ascertained that173

the increased smoothness in the fluorescence was due to a longer latent timescale and not a longer calcium decay174

time constant (Fig. 4b, Supplementary Fig. 3). In contrast, as the latent timescale increased, CIFA recovered the175

latent variables less accurately (Fig. 4a). This occurs because CIFA erroneously attributed the increased smoothness176

in the fluorescence to a slower calcium decay (Fig. 4b, Supplementary Fig. 3), rather than a longer latent timescale.177

Unlike CILDS which can attribute temporal smoothness in the fluorescence to two possible sources (latent variables178

that evolve smoothly over time and calcium decay), CIFA can attribute temporal smoothness to only one possible179

source (calcium decay). This indicates that using a latent dynamical model is necessary for peering through the180

calcium decay transients to accurately recover the neural trajectories.181

CILDS outperforms other methods on calcium imaging recordings182

To assess whether the advantages of CILDS also hold in real data, we applied each of the dimensionality reduction183

methods described above (CILDS, deconv-LDS, LDS, and CIFA) to calcium imaging recordings in two experimental184

contexts: larval zebrafish and mice. To emphasize the generality of our findings, these two experimental settings185

involve not only different animal species, but also different brain areas, behavioral tasks, and properties of the186

recorded fluorescence (see below). In these experiments, the spiking activity of the neurons was not recorded,187

and thus the ground truth latent variables are unknown. To quantify the accuracy of each method, we adopted a188

leave-neuron-out procedure used in previous studies37, 38, where we estimate the latent variables using all-but-one189

neuron, and then assess how well these latent variables predict the recorded fluorescence of the held-out neuron (see190

Methods). A more accurate prediction of the fluorescence of the held-out neuron indicates that the latent variables191

are a better summary of the population activity.192

The first experimental context involves larval zebrafish engaged in a "fictive swimming" motosensory gain193

adaptation task (Fig. 5a)39. Calcium imaging was performed on neurons expressing GCaMP6f in dorsal raphe194

nucleus (DRN) using light-sheet microscopy in three fish (19 to 22 neurons; mean: 20) (Fig. 5a). We applied each195

dimensionality reduction method to these recordings and assessed their performance using the leave-neuron-out196

prediction procedure (Fig. 5b). We found that CILDS more accurately predicted the fluorescence of the held-out197

neurons than the other methods, as quantified by the correlation between the predicted and recorded fluorescence.198

CILDS outperformed LDS (Fig. 5c; 63% of neurons above the diagonal), deconv-LDS (Fig. 5d; 85% of neurons199

above the diagonal), and CIFA (Fig. 5e; 73% points above the diagonal). These results were also true for each fish200

individually (Supplementary Fig. 5).201

The second experimental context involves awake, head-fixed mice passively viewing static visual gratings202

(Fig. 6a)40. Two-photon calcium imaging was performed on neurons expressing GCaMP6f in the primary visual203
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Figure 5. In larval zebrafish DRN recordings, CILDS captures the latent time courses better than the

other three methods. (a) Two-photon calcium imaging using GCaMP6f at 30Hz was performed on three larval

zebrafish in a virtual reality environment. Shown are representative fluorescence traces from seven of the imaged

neurons. (b) Example recorded fluorescence traces (black) and leave-neuron-out predicted fluorescence using

CILDS (orange), deconv-LDS (purple), LDS (cyan), and CIFA (brown). (c-e) Correlation between the recorded

fluorescence and the leave-neuron-out predicted fluorescence for CILDS versus each of the other methods. The

correlation is higher for CILDS than (c) LDS (p < 1×10−7, n =60 neurons, paired two-tailed t-test), (d)

deconv-LDS (p < 1×10−4, n =60 neurons), and (e) CIFA (p < 0.05, n =60 neurons). Each point represents one

neuron, where the correlation is computed for each trial (27 seconds long) then averaged across all 15 trials. The

numbered points (black circles) correspond to the examples shown in panel (b). Diagonal histogram shows the

paired difference in correlation between CILDS and one of the other methods, as indicated. A paired two-tailed

t-test is applied to assess statistical significance, with statistical significance indicated by an asterisk. Note that the

histogram is zoomed-in for visual clarity, and therefore the ends of the histograms are not shown.

cortex (V1) of three mice (133 to 319 neurons; mean: 234.7). Comparing the raw recorded fluorescence of the two204

experimental contexts (Fig. 5a versus Fig. 6a), the neurons in the DRN of the larval zebrafish tend to exhibit slower205

fluctuations in fluorescence that are correlated across neurons (Fig. 5a). In contrast, the neurons in mouse V1 exhibit206
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faster changes in fluorescence, which appear less correlated across neurons (Fig. 6a). We applied the same analyses207

in Fig. 5 to these mouse recordings (Fig. 6b). Despite the stark differences between the fish DRN and mouse V1208

fluorescence traces, we again found that CILDS more accurately predicted the fluorescence of held-out neurons than209

LDS (Fig. 6c; 63% of neurons above the diagonal), deconv-LDS (Fig. 6d; 68% of neurons above the diagonal),210

and CIFA (Fig. 6e; 82% of neurons above the diagonal). These results were also true for each mouse individually211

(Supplementary Fig. 6).212

Thus far, we have shown that CILDS extracts latent variables that more accurately predict the fluorescence of213

held-out neurons than the other methods. The leave-neuron-out evaluation assesses each method’s ability to capture214
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Figure 6. In mice V1 recordings, CILDS captures the latent time courses better than the other three

methods. (a) Two-photon calcium imaging performed on awake mice viewing static gratings with different spatial

frequencies and orientations (180 total stimuli) using GCaMP6f at 15.5Hz. Shown are representative fluorescence

traces from seven of the imaged neurons. (b) Example segment of recorded fluorescence traces (black) and

leave-neuron-out predicted fluorescence traces using CILDS (orange), deconv-LDS (purple), LDS (cyan), and CIFA

(brown). (c-e) Correlation between recorded fluorescence and leave-neuron-out predicted fluorescence for CILDS

versus each of the other methods. The correlation is higher for CILDS than (c) LDS (p < 1×10−16, n =704

neurons, paired two-tailed t-test), (d) deconv-LDS (p < 1×10−26, n =704 neurons), and (e) CIFA (p < 1×10−80,

n =704 neurons). Each point represents one neuron, where the correlation is computed for each trial (196.7 seconds

long) then averaged across all 15 trials. The numbered points (black circles) correspond to the examples shown in

panel (b). Diagonal histogram shows the paired difference in correlation between CILDS and one of the other

methods, as indicated. Asterisk denotes p < 0.05 for the paired two-tailed t-test above. Note that the histogram is

zoomed-in for visual clarity, and therefore the ends of the histograms are not shown. (f) Flow diagram depicting

decoding of visual stimuli using low-dimensional latent variables, which are obtained by applying a dimensionality

reduction method to the recorded fluorescence traces. (g) Classification accuracy of the visual stimulus based on

latent variables extracted using CILDS (orange), deconv-LDS (purple), and LDS (cyan). Classification was

performed using a Gaussian Naive Bayes decoder, where the number of latent variables extracted by each

dimensionality reduction method was systematically varied (horizontal axis). There were 180 total gratings (with

different orientations and spatial frequencies) shown during the experiment, so the chance classification accuracy is

1/180 (gray dashed). The decoding window was 250 ms, which is the duration of stimulus presentation. Black error

bars indicate indicate 95% confidence intervals (Bernoulli process).

the shared activity changes among neurons. Another way to assess how meaningful the latent variables extracted215

by each method are is to measure how strongly they reflect external variables, such as the sensory stimulus41. We216

thus performed a decoding analysis, whereby we classified the orientation and spatial frequency of the presented217

grating using the latent variables extracted by each of three methods (Fig. 6f). The stimuli could be more accurately218

decoded from the latent variables extracted by CILDS than from the latent variables extracted by either deconv-LDS219

or LDS (Fig. 6g). At the highest decoding accuracy of each method, CILDS outperformed deconv-LDS by 1.16220

times and LDS by 1.43 times. This demonstrates that CILDS is better at capturing the shared activity changes221

among neurons that are relevant to the visual stimulus than the other two methods. Furthermore, the latent variables222

extracted by deconv-LDS provided more accurate decoding of the stimuli than the latent variables extracted by LDS,223

which indicates that accounting for the calcium transients is important when the variable of interest (here, the visual224
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stimulus, which changes every 250 ms) changes on the timescale of tens to hundreds of milliseconds.225

Taken together, the results based on calcium imaging recordings from two different recording regimes are226

consistent with what we identified in simulation. Namely, deconvolution should be used jointly with a dimensionality227

reduction method that incorporates a latent dynamical model (as in CILDS), particularly if the neural process of228

interest changes on a timescale of tens to hundreds of milliseconds.229

Discussion230

In this work, we investigated the use of dimensionality reduction to summarize the time course of calcium imaging231

recordings. We considered dimensionality reduction approaches with and without deconvolution, and developed a232

novel method (CILDS) which jointly performs deconvolution and dimensionality reduction. We compared these233

methods using simulated fluorescence time courses, where we systematically varied experimental variables, as well234

as using calcium imaging recordings from larval zebrafish and mice. We found that: 1) CILDS, which leverages235

the population of neurons to jointly perform deconvolution and dimensionality reduction, outperformed the other236

methods, 2) using deconvolution was increasingly important with faster latent timescales, and 3) the use of a latent237

dynamical model, as in CILDS, was important for peering through the calcium decay transients to accurately238

recover the neural trajectories. Overall, this work provides a foundation for using dimensionality reduction to extract239

single-trial neural trajectories from calcium imaging recordings.240

This work focused on the question of which dimensionality reduction method is most appropriate for extracting241

single-trial neural trajectories from calcium imaging recordings. There are two other settings in which dimensionality242

reduction is commonly used. First, dimensionality reduction can be applied to analyze how trial-averaged activity243

differs across experimental conditions (e.g., ref.4, 5, 7, 17). In a recent study, Wei et al., applied principal components244

analysis (PCA) to trial-averaged electrophysiological recordings and calcium imaging with GCaMP6s27. They found245

important differences in the low-dimensional PCA trajectories obtained from electrophysiological recordings versus246

calcium imaging. This difference was mitigated by first deconvolving the calcium imaging recordings before applying247

dimensionality reduction, consistent with our findings. It may be possible to further improve the correspondence248

by applying CILDS to single-trial fluorescence recordings, then averaging the extracted low-dimensional neural249

trajectories across trials.250

Second, dimensionality reduction is often used to analyze the trial-to-trial variability of neural population activity251

without time courses, i.e., using one time point or time window per trial (e.g., ref.9, 42–45). In this case, there would be252

no information about how the calcium decays and so one would not be able to make use of a method that incorporates253

deconvolution. One might consider using CIFA, by analogy to the use of factor analysis to study the trial-to-trial254

variability of spike counts without time courses. However, it is important to note that, like CILDS, CIFA also255

requires multiple time points to be able to deconvolve, even though the latent variables in CIFA are independent256
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from one time point to the next. If the original time series of calcium imaging is available, one can apply CILDS to257

the time series first, then average across the time points of the extracted latent variables. If the original time series of258

calcium imaging is not available, then a standard dimensionality reduction method such as factor analysis might be259

more suitable.260

Previous studies have proposed methods for analyzing calcium imaging recordings that include latent variables261

and deconvolution in the same statistical model. Triplett et al.46 developed a method to study the interaction between262

evoked and spontaneous activity using calcium imaging recordings in sensory systems. In their model, the latent263

variables represent activity fluctuations shared amongst neurons that are not explained by the sensory stimulus,264

where these activity fluctuations are defined to be spontaneous activity. Aitchison et al.47 developed a method to infer265

spiking activity and neural connectivity from calcium imaging experiments that involve optogenetic stimulation. In266

their model, the latent variables represent shared activity amongst neurons that are not explained by the optogenetic267

stimulation or the activity of other neurons recorded simultaneously, and are intended to represent input from other268

brain areas. We developed CILDS for extracting latent variable time courses to summarize the population activity269

on individual experimental trials. In contrast to the two methods above which have more specific analysis goals270

(to separate evoked from spontaneous activity in the case of Triplett et al., or to infer spiking activity and neural271

connectivity in the case of Aitchison et al.), CILDS is general-purpose and well-suited for exploratory data analysis.272

This is akin to the use of methods such as LDS48, GPFA37, TCA49, LFADS41, and dPCA50 for exploratory analysis273

of population spiking activity to extract latent variable time courses, whose results can then lead to the use of274

population analysis methods with more specific goals (see ref.51–53 for examples).275

CILDS can be extended in the following ways. First, the order of the autoregressive process for the calcium276

dynamics determines how quickly the calcium concentration (and consequently the fluorescence) rises after each277

spiking event34. Here, we used an autoregressive order of one, which corresponds to an instantaneous rise in calcium278

after each spiking event, as was done in previous work32, 34, 54. Although this is a reasonable first approximation,279

when imaging rates are fast or the calcium indicator is slow, it may be desirable to use an autoregressive order greater280

than one to better capture the non-instantaneous rise in calcium13. Second, different latent time series models can be281

used in the place of the linear dynamical system to achieve different analysis goals. For example, if one seeks only282

temporal smoothing in the latent variables without explicit dynamics, one can replace the linear dynamical system283

with Gaussian processes37.284

Dimensionality reduction on population spiking activity has led to many insights about brain function. With285

the development of dimensionality methods that are tailored for calcium imaging, such as CILDS, we can leverage286

the advantages of calcium imaging such as being able to obtain information about neuron type or knowledge about287

which neurons project to other brain areas. For example, one could use dimensionality reduction to understand288

how populations of different neuron types interact55, or one could utilize information about where neurons project,289
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coupled with dimensionality reduction, to understand how the projections contribute to the coordination of activity290

between brain areas56, 57. This can enable novel insights about neural population activity recorded using calcium291

imaging that go beyond what is currently possible with electrophysiology.292
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Methods293

Dimensionality reduction methods294

Here we describe mathematically the dimensionality reduction methods used in this work: LDS, deconv-LDS,295

CILDS, and CIFA. For the purposes of this work, we assume that the spatial footprint of each neuron has already296

been identified from the raw calcium imaging data (a procedure known as image segmentation54, 58), resulting in a297

fluorescence time course for each neuron. The dimensionality reduction methods presented here are applied to these298

fluorescence time courses.299

Linear Dynamical System (LDS)300

We first considered a standard dimensionality reduction method for summarizing the time course of spiking activity,301

a latent Linear Dynamical System (LDS), here applied to calcium imaging recordings. Let yyyt ∈ Rq×1 be a high-302

dimensional vector of fluorescence values recorded at time point t, where q is the number of neurons imaged303

simultaneously. The goal is to extract a corresponding low-dimensional latent variable zzzt ∈ Rp×1 at each time point,304

where p is the number of latent dimensions (p < q). The observation model is305

yyyt = Azzzt +bbb+ εεε t , wwwt ∼N (000,R) (1)

where A ∈ Rq×p is the loading matrix that specifies how each neuron’s activity is related to the latent variables,306

bbb ∈ Rq×1 is an offset vector that accounts for constant background fluorescence, R ∈ Rq×q is the observation noise307

covariance, and t = 1, . . . ,T . We constrained R to be diagonal, thereby capturing activity variability and imaging308

noise independent to each neuron. The time-evolution of the latent variables is described as a linear dynamical309

system310

zzzt = Dzzzt−1 + vvvt , vvvt ∼N (000,P) (2)

zzz1 ∼N (hhh1,G1) (3)

where D ∈ Rp×p is the dynamics matrix that determines the timescale of the latent variables, P ∈ Rp×p is the311

dynamics noise covariance, hhh1 ∈ Rp×1 and G1 ∈ Rp×p describe the mean and covariance of the latent variable at312

the first time point, and t = 2, . . . ,T . We constrained D, P, and G1 here to be diagonal as a form of regularization,313

although a general LDS with these parameters unconstrained could also be used.314

Equations (1), (2), and (3) together define the latent LDS59. We fit the model parameters (A,bbb,R,D,P,hhh1,G1)315

using the expectation-maximization (EM) algorithm60. To initialize the model parameters, we first performed factor316

analysis (FA) on yyyt to obtain A, bbb, and R. We initialized D to be 0.999I (a stable system), which we found to work317
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well in practice in the simulations. We ran the EM algorithm until convergence (defined as a log data likelihood318

increase of < 10−6 or 1500 iterations, whichever came first). This maximum number of iterations was chosen319

heuristically, by noting empirically that the latent variables do not change significantly beyond this point.320

Deconvolution - Linear Dynamical System (deconv-LDS)321

Since fluorescence traces are an indirect measure of spiking activity, we also considered a two-stage approach,322

whereby we first deconvolve the fluorescence traces one neuron at a time to estimate the underlying spiking activity.323

Then we applied a standard dimensionality reduction method, in this case LDS, to those deconvolved estimates. We324

refer to this two-stage method as deconv-LDS.325

For the deconvolution stage of deconv-LDS, we used the Online Active Set method to Infer Spikes (OASIS),326

developed by Friedrich et al.34, using their L1 regularization. We also tested their L0 regularization and found the L1327

regularization to work better for our datasets. As per Friedrich et al., this first order autoregressive model for OASIS328

is described for each neuron as329

yt = act +b+ εt , εt ∼N (0,σ2) (4)

ct = γct−1 + st (5)

where yt is the recorded fluorescence at at time t, ct represents the calcium concentration at time t, εt captures330

imaging noise independent of the calcium and spiking activity, and st is the spiking activity. The parameter a relates331

the calcium concentration to fluorescence, b accounts for the baseline fluorescence, σ2 captures the variance of332

the imaging noise, and γ specifies how quickly the calcium trace decays, which depends on the calcium indicator.333

Additionally, there is a hyperparameter in the OASIS model, minimum spike size, that sets the minimum value334

of st that would be identified. In this model, all variables are scalars and a is constrained to be non-negative. We335

initialized OASIS with γ values that are typical for the calcium indicators used13 (see Supplementary Table 1), and336

allowed OASIS to optimize a, b, γ , σ2 and the minimum spike size.337

Applying deconvolution to the recorded fluorescence traces returned estimates of the time course of spiking338

activity for each neuron, st . We then used the estimated spiking activity of all the neurons as the observations339

yyyt ∈ Rq×1 for time points t = 1, . . . ,T in the LDS model defined in equations (1)-(3).340

Calcium Imaging Linear Dynamical System (CILDS)341

CILDS unifies the approaches described above by allowing estimates of shared activity among neurons (i.e., the342

latent variables) to influence the estimates of deconvolved spiking activity, and vice versa. In other words CILDS343

performs deconvolution for all neurons and dimensionality reduction jointly, in a unified framework. This is in344

contrast to deconv-LDS, which deconvolves the activity of each neuron independently. With low-dimensional latent345
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variables that are jointly estimated with the model of calcium decay, CILDS is better able to peer through the calcium346

decay to more clearly identify the shared activity among neurons, as compared to deconv-LDS and LDS applied347

directly on fluorescence.348

Let yyyt ∈ Rq×1 be the high-dimensional vector of fluorescence traces recorded at each time point t, where q is the349

number of neurons imaged simultaneously. The goal is to extract a corresponding low-dimensional latent variable350

zzzt ∈ Rp×1 at each time point, where p is the number of latent dimensions (p < q). The observation model follows351

the multivariate form of equation (4) which was used for deconvolution352

yyyt = Bccct + εεε t , vvvt ∼N (000,R) (6)

where B ∈ Rq×q maps the calcium concentration to the recorded fluorescence, R ∈ Rq×q is the fluorescence noise353

covariance, and t = 1, . . . ,T . We constrained B and R to be diagonal to allow each dimension of ccct to represent the354

calcium concentration of one neuron. B accounts for all experimental variables influencing the scale of the signal355

from each neuron, such as the amplification of the imaging system32, and R accounts for fluorescence fluctuations356

independent of calcium concentration. Here we omit the additive offset found in equation (4) without loss of357

generality due to the offset included in equation (7).358

Similar to equation (5), the calcium decay for each neuron is described using a first order autoregressive model359

ccct = Γccct−1 +Azzzt +bbb+wwwt , wwwt ∼N (000,Q) (7)

ccc1 ∼N (µµµ1,V1) (8)

where Γ ∈ Rq×q captures the calcium decay, A ∈ Rq×p is the loading matrix that describes how latent variable maps360

to calcium concentrations, bbb ∈ Rq×1 is a constant vector, Q ∈ Rq×q captures the spiking variability independent to361

each neuron, µµµ1 ∈ Rq×1 and V1 ∈ Rq×q describe the mean and variance of the calcium concentration at the first time362

point, respectively, and t = 2, . . . ,T . Our key innovation is to replace the spiking activity st from equation (5) with363

Azzzt +bbb+wwwt . By analogy to factor analysis, Azzzt describes the shared activity among neurons, and wwwt describes the364

activity independent to each neuron. We constrain Γ, Q, and V1 to be diagonal to prevent intermixing among neurons365

outside of the loading matrix. The form of Γ allows each neuron to have a different calcium decay as determined by366

the fitting procedure (see below), which can depend on the extent of calcium buffering within a cell and the calcium367

indicator used13, 32, 34.368

Similar to LDS, the low-dimensional latent variables zzzt evolve over time according to a linear dynamical system369
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zzzt = Dzzzt−1 + vvvt , vvvt ∼N (000,P) (9)

zzz2 ∼N (hhh2,G2) (10)

where D ∈ Rp×p is the dynamics matrix, P ∈ Rp×p is the dynamics noise covariance, hhh2 ∈ Rp×1 and G2 ∈ Rp×p are370

the mean and covariance of the latent variable at the first time point respectively, and t = 3, . . . ,T . We constrained D,371

P, and G2 here to be diagonal as a form of regularization, although a model with these parameters unconstrained372

could also be used. Note that according to equation (7), zzz2 is the first latent variable in the time series (i.e., there is373

no zzz1).374

Equations (6) - (10) define CILDS. The joint estimation of the parameters B,R,Γ,A,bbb,Q,µµµ1,V1,D,P,hhh2, and375

G2 allows CILDS to leverage the entire recorded neural population to perform deconvolution and estimate latent376

variables in a unified fashion. CILDS can be viewed as a special case of the standard LDS, where the parameters are377

constrained in a specific way. We fit CILDS using the EM algorithm, initialized using deconv-LDS run for 100 EM378

iterations. The EM algorithm was run until convergence, defined as a log data likelihood increase of < 10−6 or 1500379

iterations, whichever came first. The maximum number of iterations was chosen by noting empirically that the latent380

variables do not change substantially beyond this point. The EM equations for CILDS are provided in Supplemental381

Information.382

Calcium Imaging Factor Analysis (CIFA)383

To evaluate the importance of incorporating a latent dynamical system in dimensionality reduction methods for384

calcium imaging, we developed a method (CIFA) identical to CILDS, with the only difference being that CIFA does385

not enforce latent dynamics. Like CILDS, CIFA also uses equations (6), (7), and (8). The only difference between386

CIFA and CILDS is that we replaced the latent dynamical system equations (9) and (10) with387

zzzt ∼N (000, I) (11)

for t = 2, . . . ,T . In other words, CIFA defines latent variables that are independent across time, whereas CILDS388

defines latent variables that evolve smoothly over time. Like CILDS, we fit CIFA using the EM algorithm, initialized389

using parameters from deconv-FA run for 100 EM iterations. The EM algorithm was run until convergence, defined390

as a log data likelihood increase of < 10−6 or 1500 iterations, whichever came first. The EM equations for CIFA391

are the same as for CILDS (see Supplemental Information), without the equations estimating D,P,hhh2,G2. Note392

that there is no loss of generality by setting the prior distribution of zzzt to N (000, I), compared to a general Gaussian393

distribution. Additionally, although CIFA has FA in its name, there is one key difference from FA. Whereas FA can394

be fit on data with no concept of time, CIFA requires a time series for deconvolution (equations (7) and (8)).395
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Simulation framework396

We created a framework to simulate fluorescence recordings from calcium imaging for two reasons. First, in calcium397

imaging recordings, the ground truth latent variables are unknown. A simulation of fluorescence traces from known398

latent variables allows us to directly evaluate our dimensionality reduction methods by comparing the estimated399

latent variables with the ground truth latent variables. Second, we wanted a simulation framework in which we could400

systematically vary various experimentally relevant parameters to see their effects on the estimated latent variables.401

Specifically, we evaluated our ability to recover the ground truth latent variables as a function of the timescale of402

the latent variables, the number of neurons, the calcium decay rate, and the size of the fluorescence noise. The403

simulation procedure consists of first generating fluorescence traces from known latent variables while varying the404

experimentally relevant parameters listed above. Then, we applied each dimensionality reduction method to estimate405

latent variables from the simulated fluorescence traces. The estimated latent variables were then compared to the406

ground truth latent variables. The steps of this procedure are detailed below.407

Generating fluorescence traces408

To simulate fluorescence traces, we first drew p Gaussian processes (GP)61, where each GP has T time points at 1 ms409

time resolution. We denote the ith GP as zzzi,: ∈ R1×T , where i = 1, . . . , p. The GP allows us to specify the covariance410

Ki ∈ RT×T for the ith GP across the T time points as411

zzzi,: ∼N (0,Ki), where the (t1, t2) element of Ki is (12)

Ki(t1, t2) = σ
2
f ,i exp(−(t1− t2)2

2τ2
i

)+σ
2
n,i.δt1,t2 (13)

and t1, t2 = 1, . . . ,T . Here we chose the commonly used squared exponential covariance function. The squared412

exponential covariance is defined by its signal variance σ2
f ,i ∈ R+, characteristic timescale τi ∈ R+, and noise413

variance σ2
n,i ∈ R+. The Kroneker delta δt1,t2 equals 1 if t1 = t2 and 0 otherwise. We set σ2

f ,i = 1−σ2
n,i so that the414

latent variable zzzt ∈ Rp×1at every time point has mean 000 and a variance I. The vector zzzt comprises the tth time point415

from each of the p Gaussian processes. The noise variance σ2
n,i must be nonzero to ensure that Ki is invertible, hence416

for practical purposes we set σ2
n,i = 10−9. We note that an LDS can also be used to introduce latent dynamics, but417

we chose to use a GP due to the ease by which we can generate stationary time series with specified time scales.418

Furthermore, using a GP introduced model mismatch for all of the dimensionality reduction methods, which enables419

a more meaningful comparison across methods.420

Next, we projected the low-dimensional latent variables zzzt into the high-dimensional neural space to obtain421

neural firing rates for each of q neurons at each time point t = 1, . . . ,T . We then imposed a rectifying nonlinearity422

applied element-by-element using log(111+exp(Wzzzt +µµµ)), where W ∈Rq×p is the loading matrix and µµµ ∈Rq×1 is a423
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constant offset, to ensure that firing rates are non-negative. We generated binary spikes ssst ∈ Rq×1 at each time point424

using an inhomogeneous Poisson process with time-varying rates defined by the output of this rectifying nonlinearity.425

Finally, we obtained the calcium concentration ccct ∈ Rq×1 using a first order autoregressive model and fluorescence426

yyyt ∈ Rq×1, as in Friedrich et al. 201734
427

ccct = Γccct−1 + ssst (14)

yyyt = Bccct +bbb+ εεε t ,εεε t ∼N (000,R) (15)

where Γ ∈ Rq×q determines how quickly the calcium decays, B ∈ Rq×q relates the calcium concentration to the428

fluorescence, bbb ∈ Rq×1 is the baseline fluorescence, R ∈ Rq×q is the imaging noise covariance, and t = 1, . . . ,T , at429

the same (1ms) resolution as the GP. We set Γ, B, and R to be diagonal. We specified Γ such that the decay constants430

approximately matched the decay constants of GCaMP6f, GCaMP6m, and GCaMP6s, found in Chen et al.13 (See431

Supplementary Table 1). B represents experimental variables influencing the scale of the calcium signal of each432

neuron, such as the amplification of the imaging system. B is set as the identity matrix and bbb is set to be 000 in our433

simulations. We varied the signal-to-noise ratio by varying R to simulate low, medium, and high noise regimes434

(Supplementary Table 1).435

For each simulation run, we simulated p = 10 latent variables, where each latent dimension had the same latent436

timescale for ease of interpretation. Across different settings of experimentally relevant parameters, we explored a437

range of timescales τ ∈ {50,100,200,1000,2000,5000} ms. To define loading matrices W that were realistic for438

spiking activity, we used electrophysiological recordings with 94 neurons6. Across runs, we tested q ∈ {20,50,94}439

neurons. For the q = 20 and q = 50 cases, we randomly subsampled the electrophysiological recordings. To avoid440

a start-up transient at the start of every trial from the calcium model, we generated two long fluorescence traces441

for each neuron, each 6,000,000 time points long (1 ms resolution). One fluorescence trace was used for training,442

and the other for testing. We divided each trace into 100 trials. Each trial was 60 s long, comprising 60,000 time443

points. Finally, having generated these fluorescence traces at 1 kHz, we down-sampled the fluorescence rate to a444

more typical imaging rate of 40 Hz (2,400 time points per trial). The simulation parameters are summarized in445

Supplementary Table 1. See Practical Considerations below for how we generated GPs with 6,000,000 time points446

within the computer’s memory constraints.447

Evaluation of dimensionality reduction methods448

We applied the four dimensionality reduction methods to the simulated fluorescence traces to evaluate how accurately449

each method reconstructed the ground truth latent variables. We used two-fold cross validation in these estimates,450

so that the model parameters were fit using half of the data (100 training trials, each with 2,400 time points) and451

those parameters were then used to estimate the latent variables in the other half of the data (100 held-out trials).452
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For all methods, the latent variables are only unique up to an arbitrary linear transformation. In order to compare453

the estimated and ground truth latent variables, we aligned them using the following procedure. First we split the454

estimated latent variables for each test fold into two further inner halves. We concatenated the trials over time, such455

that the estimated latent variables are defined as Z̃ ∈ Rp×T̃ , and the ground truth latent variables are defined as456

Z ∈ Rp×T̃ , where p = 10 is the dimensionality of the latent variables and T̃ = 120,000 for one inner half. Then we457

applied linear regression to relate Z̃ and the Z corresponding to that inner half. This yielded a transformation matrix458

W , where W = (ZZ̃′)(Z̃Z̃′)−1. Finally we used W to align the Z̃ corresponding to the other inner half to obtain the459

transformed estimated latent variables Ẑ =WZ̃, where Ẑ ∈ Rp×T̃ . We performed the same procedure to align each460

inner half of each cross-validation fold.461

We computed the accuracy of the ith transformed estimated latent variables462

R2 = 1− ∑
T̃
t=1(z

(i)
t − ẑ(i)t )2

∑
T̃
t=1(z

(i)
t − z̄(i))2

(16)

where z(i)t ∈ R is the (i, t) entry of Z, and ẑ(i)t ∈ R is the (i, t) entry of Ẑ. The mean of the ith ground truth latent463

variable across time is defined as z̄(i) ∈R, where i = 1, . . . , p. A larger R2 means a better match between the estimated464

latent variables and the ground truth latent variables, based on the proportion of total variance (of the ground truth465

latent variables) explained. R2 has an upper limit of 1, and any value below 0 indicates that the estimate is poorer466

than the using the ground truth mean. We repeated this process for each cross-validation fold and averaged the467

results across all p latent dimensions and folds. It is important to note that since the results are cross-validated,468

a dimensionality reduction method with more parameters will not necessarily outperform a method with fewer469

parameters.470

Experimental data471

Larval Zebrafish472

Neurons were imaged from the dorsal raphe nucleus (DRN) of larval zebrafish while they engaged in a "fictive473

swimming" motosensory gain adaptation task39. Calcium imaging was performed using light-sheet microscopy474

at 30 Hz on a single plane of narrow area around the DRN. This was performed with Tg(elavl3:GCaMP6f)jf1 fish475

expressing GCaMP6f in the cytosol62. We analyzed recordings from three fish. In the task, the fish underwent an476

initialization period of 20 seconds to increase locomotor drive, a training period in which the fish attenuated their477

locomotor drive, and a delay period of 10 seconds which stopped the fish from swimming. Finally, there was a test478

period of 5 seconds to probe the extent to which the attenuated locomotor drive persisted throughout the delay period.479

There were three different training period lengths of 7, 15, or 30 seconds. Here we combined the data from the480

different training periods. We included only the 20-second initialization period and the first 7 seconds of the training481
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period of each trial. Thus, the analyzed portion of each trial is nominally identical. For each fish, this yielded 15482

trials, each 27 seconds long. We analysed 22, 19, and 19 neurons imaged from the DRN of each fish, respectively.483

Mouse484

Two-photon calcium imaging was performed in the binocular zone of V1 in awake head-fixed mice resting atop a485

floating spherical treadmill40. GCaMP6f was expressed in excitatory neurons and imaged at 15.5 Hz. We analyzed486

recordings from three mice. Mice were positioned to passively view static sinusoidal gratings, without reward. There487

were 180 gratings presented, comprising 12 different orientations equally spaced with range {0− 165}° and 15488

different spatial frequencies equally spaced with range {0.02−0.30} cycles/°. Each "trial" was a 196.7 seconds489

long recording (3049 time points), comprising 4 presentations of each of the 180 possible gratings in random order.490

Each presentation lasted 250 ms without an intervening grey screen. The onset time of the first stimulus relative to491

the beginning of the recording was varied. This means that there is a short period of time recorded before the first492

stimulus is shown, and a short period of time recorded after the last stimulus is shown. The experiment comprised 15493

trials for each mouse. We analysed 133, 252, and 319 neurons from V1 of mouse (labeled mouse 1-3, respectively).494

These mice correspond to mouse2317, mouse2320, and mouse2209 in the experiments.495

Data analysis496

Leave-neuron-out fluorescence prediction497

We sought to compare the four dimensionality reduction methods using experimental data. In experimental data,498

ground truth latent variables are unknown, and so we could not use the same evaluation procedure of comparing499

estimated and ground truth latent variables as in the simulations. Furthermore, the cross-validated data likelihoods500

are not comparable across all methods. Hence to compare the four methods, we performed a leave-neuron-out501

fluorescence prediction test to determine which method best summarizes the neuronal activity with low-dimensional502

latent variables37, 38. The intuition is that a method that provides a better summary of the population activity using503

the latent variables would be better able to predict the activity of held-out neuronal fluorescence traces.504

For the leave-neuron-out fluorescence prediction, we performed 5-fold cross-validation. We first split the trials505

into five equal-sized folds. For a given dimensionality reduction method, we fit the model parameters using four506

of the folds. With the remaining validation fold, we estimated the latent variables using all but one neuron, and507

then predicted the activity of that held-out neuron using those estimated latent variables. We did this for every508

neuron in the validation fold. In the same manner, we performed leave-neuron-out fluorescence predictions for the509

remaining folds and thus obtained predictions of the fluorescence activity for all the neurons at all time points. We510

then computed the Pearson’s correlation coefficient between the predicted and recorded fluorescence traces.511

Performing the leave-neuron-out prediction procedure requires selecting the latent dimensionality p for each512

method. For the larval zebrafish DRN recordings, we used nested cross-validation to select the optimal dimensionality513
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for each method. The leave-neuron-out prediction then used this optimal latent dimensionality, which can be different514

for each method. Nested cross-validation uses the 5-fold cross-validation described earlier as the outer folds. Within515

each outer fold, the training portions are then used to perform an inner 4-fold cross-validation where we determined516

the optimal latent dimensionality using cross-validated data likelihood. We used this optimal latent dimensionality517

to estimate the model parameters using the same four training folds. These model parameters were then used for the518

leave-neuron-out prediction procedure of the remaining (validation) outer fold. Note that although the cross-validated519

data likelihood is not comparable across methods, it is comparable across different latent dimensionalities for the520

same method.521

For the mouse V1 recordings, we found that the performance of all dimensionality reduction methods increased522

as latent dimensionality increased within the range of dimensionalities tested (5-50). Thus we used a latent523

dimensionality of 50 for all methods in our 5-fold cross validation procedure for leave-neuron-out prediction.524

Decoding analysis525

Another way to assess how meaningful the extracted latent variables are is by decoding external variables from the526

latent variables41. For the larval zebrafish recordings, there is no moment by moment behavior that can be decoded527

from the neural activity. In the mouse recordings, we can decode the orientation and spatial frequency of the grating528

stimuli. To begin, we applied the dimensionality reduction methods to the mouse recordings. We then applied a529

linear Gaussian Naïve Bayes classifier63 to the extracted latent variables530

P(zzz|Ck) =
1

(2π)p/2|Σ|1/2 exp[−(zzz−µµµk)
′
Σ
−1(zzz−µµµk)] (17)

where zzz ∈ Rp×1 is the latent variable averaged across the time points in a 250 ms window corresponding to a given531

stimulus Ck, k = 1, . . . ,180. The parameters of the classifier are µµµk, the mean of the latent variables corresponding532

to class k, and Σ, the covariance of the latent variables across trials. We constrain Σ to be diagonal and the same533

across all classes. The parameters µµµk and Σ are fit by maximizing the likelihood of the training data using 5-fold534

cross-validation.535

We then used the parameters found from the training data to classify the held-out data according to536

ŷ = argmax
y

P(Ck = y|zzz) (18)

where ŷ is the predicted class label (1,...,180). We then computed the accuracy of the predicted class labels537

against the true class labels (chance level is 1
180 ). A higher accuracy indicates that the latent variables are better at538

capturing the shared modulations among neurons that are relevant to the visual stimulus. For latent dimensionalities539
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{5,10,20,30,40,50}, we fit each dimensionality reduction method using all data. Then, we performed 5-fold540

cross-validation in the decoding stage.541

To decode visual stimuli, there are two considerations. First, visual information takes time to arrive in the visual542

cortex, hence there is a need to shift the window of neural activity relative to the stimulus presentation. Second,543

there is an additional time delay introduced by the calcium indicators. Unlike deconv-LDS and CILDS, LDS does544

not attempt to remove the calcium decay. Hence, we expected a longer latency for LDS than for deconv-LDS and545

CILDS. To determine the appropriate window, we considered a range of time lags and evaluated their cross-validated546

classification accuracy. We found that the best cross-validated accuracy was obtained for a 4 time point (260 ms)547

shift for LDS, and a 3 time point (190 ms) shift for deconv-LDS and CILDS. Thus we used these time lags to report548

the classification accuracy of our decoding analysis (Fig. 6g).549

Practical considerations550

Approximating a long Gaussian process551

To carry out computations using a GP, one would need to represent a covariance matrix of size T ×T in memory,552

where T =6,000,000 in our simulations. For such values of T , the memory requirement can exceed the memory553

capacity of the computer. To overcome this, we employed two strategies in tandem. First, we generated the GPs one554

segment at a time, rather than all T time points at once. For example, to generate a GP with 6,000,000 time points,555

we can first generate a GP with 5,000 time points according to equations (12) and (13). Then, we can generate a GP556

for the next 5,000 time points conditioned on the first 5,000 time points using Gaussian conditioning61
557

xxx

yyy

∼N

000

000

 ,
 A C

CT B

 (19)

xxx|yyy∼N (CB−1yyy,A−CB−1CT ) (20)

where A ∈ R5000×5000 and B ∈ R5000×5000 are the covariances of the second and first half of the GP, respectively.558

C ∈ R5000×5000 is the covariance between the first and second half of the GP. We can continue this procedure, where559

for each new segment we condition on all of the segments that have been generated thus far. Statistically this560

procedure is equivalent to if we had generated the entire GP time series at once.561

As we continue this procedure, the number of time points being conditioned on will grow and the matrices562

B and C in equations (19) and (20) can exceed the memory capacity of the computer. We thus employ a second563

strategy that leverages the fact that, according to the squared exponential covariance (13), two time points covary564

highly when they are close in time and almost independent when they are far apart in time. Thus, we make the565

approximation that in equations (19) and (20), we condition only on the most recent 5,000 time points.566
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Computational running time567

The following are representative running times to fit the different dimensionality reduction models. These running568

times are based on single threads run on Matlab (2019a) using Intel(R) Xeon(R) CPU processors (Gold 6230, 2.1569

GHz) with 250 GB of RAM. First, consider one cross-validation fold of the zebrafish recordings with 4 trials,570

22 neurons, 10 latent variables, and 1950 time points per trial. For each EM iteration, CILDS takes on average571

approximately 0.9 s, LDS (as well as the second-stage of deconv-LDS) takes 0.4 s. Second, consider one cross-572

validation fold of the mouse recordings with 12 trials, 319 neurons, 30 latent variables, and 3049 time points per573

trial. For each EM iteration, CILDS takes on average approximately 110 s, and LDS (as well as the second-stage574

of deconv-LDS) takes 10 s. For all methods, the most expensive computations are the matrix inversions in the575

expectation step of the EM algorithm. There is a p× p matrix inversion at each time point for LDS (and deconv-LDS),576

and a (p+q)× (p+q) matrix inversion at each time point for CILDS, where p is the latent dimensionality and q is577

the number of neurons.578

Data Availability579

The data that support the findings of this study are available from the authors upon reasonable request.580

Code Availability581

Matlab code for the simulations and dimensionality reduction methods in this work will be made publicly available582

upon publication.583
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Supplementary Figure 1. Simulation framework and range of parameters. Detailed simulation framework

depicting the generation of fluorescence traces from latent variables. The sliders show the range of parameters

explored, and the open circles represent one example of a set parameter values. The middle column shows example

signals generated at each stage. Gaussian process latent variables zzz ∈ Rp×T (sampled at 1000 Hz time resolution)

are projected to form firing rates xxx ∈ Rq×T , where p is the number of latent variables, q is the number of neurons,

and T is the number of time points in each trace. The upper right panel shows an example of the latent space (zzz)

placed within a higher-dimensional neural space (xxx). Firing rates are used to generate spike trains, sss ∈ Rq×T ,

according to an inhomogeneous Poisson process. Calcium traces, ccc ∈ Rq×T , are generated from spike trains using a

1st order autoregressive process32, with the center right panel showing a close-up of the spike-to-calcium

transformation. White noise is added to calcium traces to form fluorescence traces yyy ∈ Rq×T . These traces are

down-sampled to 40Hz, forming ỹyy ∈ Rq×(T/25), to more closely match typical sampling rates in calcium imaging

recordings. The lower right panel shows a zoomed in view of this process.
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Supplementary Figure 2. CILDS continues to outperform other methods under different settings of the

experimental variables. Same conventions as Fig. 3d-g. These experimental variables are different from Fig. 3 in

the following ways: (a) a calcium decay constant matching the calcium indicator GCaMP6s instead of GCaMP6f

and (b) a smaller number of neurons (20 instead of 94). Overall CILDS extracts latent variables that more closely

match the ground truth simulated latent variables than the other two methods, consistent with Fig. 3. Black circles

represent the parameter settings that are fixed across all panels in each row. Comparing to Fig. 3, there are two

notable features. First, when the calcium indicator decay is slow, it becomes even more important to deconvolve.

Recall that CILDS and deconv-LDS both include deconvolution, whereas LDS does not. CILDS performs similarly

whether the calcium indicator is fast (Fig. 3d) or slow (here in panel a). The same is true for deconv-LDS. By

contrast, LDS performs worse for slow compared to fast calcium indicator decay because it does not include

deconvolution. Second with fewer neurons, the performance of all methods goes down. And as a result, there is a

smaller difference in performance between methods (here in panel b). With less statistical power to leverage for

separating calcium decay and latent timescale, the three methods show less distinction in performance.
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Supplementary Figure 3. CILDS continues to outperform CIFA using different calcium indicators. Same

conventions as Fig. 4. Here we compare between CILDS and CIFA for (a) GCaMP6m and (b) GCaMP6s, instead of

GCaMP6f (Fig. 4). Consistent with Fig. 4, the overestimation of the calcium indicator decay time constant for CIFA

increases as the latent timescales increase. The overestimation also increases when progressing from GCaMP6f (Fig.

4, note different vertical scale) to GCaMP6m (panel a) to GCaMP6s (panel b).
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Supplementary Figure 4. Examples of OASIS deconvolution, the first stage of deconv-LDS. (a) OASIS34

applied to recorded fluorescence traces (blue) to estimate the calcium time course (red) and spiking activity (black)

for larval zebrafish. Each row shows 25 seconds of a different example neuron and trial from the same fish. (b) Same

conventions as (a), but for recordings in mice. Note that no dimensionality reduction has been applied at this stage.
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Supplementary Figure 5. CILDS outperforms the other methods for individual larval zebrafish. Same

conventions as Fig. 5c-e. (a) From left to right, correlations between recorded fluorescence and leave-neuron-out

predicted fluorescence, comparing CILDS to LDS, CILDS to deconv-LDS, and CILDS to CIFA for Fish 1. (b)

Same as (a), but for Fish 2. (c) Same as (a), but for Fish 3. These results are consistent with Fig. 5c-e, even at the

level of individual fish. With an average of 20 points (i.e., neurons) per scatter plot, statistical significance is not

attained in several plots, but in each case CILDS has a higher mean correlation than the other methods.
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Supplementary Figure 6. CILDS outperforms the other methods for individual mice. Same conventions as

Fig. 6c-e. (a) From left to right, correlations between recorded fluorescence and leave-neuron-out predicted

fluorescence, comparing CILDS to LDS, CILDS to deconv-LDS, and CILDS to CIFA for Mouse 1. (b) Same as (a),

but for Mouse 2. (c) Same as (a), but for Mouse 3. These results are consistent with Fig. 6c-e, for each mouse

individually.
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Parameters Variables

q: No. of neurons 20, 50, 94

p: No. of latent variables 10

N: No. of trials 200

T : Length of trial 60 seconds

W : Loading matrix Estimated from electrophysiological recordings using FA6

µ: Mean firing rate Estimated from electrophysiological recordings data using FA6

B: Non-negative diagonal matrix I

bbb: Baseline fluorescence 000

τ: Latent timescale 50, 100, 200, 1000, 5000 ms

Γ: GCaMP6 decay f: (0.9985)I, m: (0.9993)I, s: (0.9996)I

R: Fluorescence noise low:(0.15)I, medium: (1.5)I, high: (15)I

Supplementary Table 1. Parameter values used for simulations. Parameters within the simulation framework

that were varied, and the range of parameter values tested. We chose parameter values to mimic those in real data.
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Supplemental Information742

EM algorithm for CILDS743

The CILDS model is defined by equations (6) - (10). Only the fluorescence values yyyt are observed, whereas the744

calcium concentrations ccct and latent variables zzzt are not observed.745

The goal of the EM algorithm is to maximise the probability of the observed fluorescence traces P({yyy}) with746

respect to the model parameters θ := {D,P,hhh2,G2,Γ,A,bbb,Q,B,R,µµµ111,V1}, where {yyy} is shorthand for yyy1, ...,yyyT . To747

perform this maximization, we iteratively perform an expectation step (E-step), then a maximization step (M-step),748

as detailed below.749

1 Expectation Step750

The goal of the E-step is to compute the posterior distribution s := P({ccc},{zzz}|{yyy}). Using this posterior distribution,751

we can compute the following expectations752

Es

[
ccc(i)t−1

]
,Es

[
ccc(i)t

]
,Es

[
ccc(i)t ccc(i)

′

t

]
,Es

[
ccc(i)t ccc(i)

′

t−1

]
,Es

[
ccc(i)t zzz(i)

′

t

]
Es

[
ccc(i)t−1zzz(i)

′

t

]
,Es

[
zzz(i)t zzz(i)

′

t

]
,Es

[
zzz(i)t zzz(i)

′

t−1

]
,Es

[
zzz(i)t

]
,Es

[
zzz(i)t−1

]
which are needed in the M-step. We start by rewriting equations (7) and (9) in block matrix notation753

 ccct

zzzt+1

=

Γ A

0 D

ccct−1

zzzt

+
bbb

000

+
 wwwt

vvvt+1

 .
The observation model (6) can be written as754

yyyt = Φ

 ccct

zzzt+1

+ εεε t , where Φ :=
[
B 0

]
.

We define lllt :=

 ccct

zzzt+1

, Λ :=

Γ A

0 D

, mmm :=

bbb

000

, nnnt :=

 wwwt

vvvt+1

, S :=

Q 0

0 P

, ηηη1 :=

µµµ1

hhh2

, Σ1 :=

V1 0

0 G2

.755

756

The CILDS model can thus be written in block matrix notation as757

yyyt = Φlllt + εεε t (21)

lllt = Λlllt−1 +mmm+nnnt (22)
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where lll1 ∼ N(ηηη1,Σ1), nnnt ∼ N(000,S), and t = 1, . . . ,T . In other words, CILDS can be written as an LDS whose758

parameters are constrained in a specific way. We seek to compute P(lllt , lllt−1|{yyy}T
1 ) for t = 2, . . . ,T . This distribution759

is Gaussian, and thus it is sufficient to find its mean and covariance. We denote E
[
lllt |{yyy}τ

1
]

by lllτ

t and Var
[
lllt |{yyy}τ

1
]

760

by V τ
t , as in ref.59. To obtain the forward and backward recursion equations, we followed the steps outlined in ref.64.761

For brevity, we only show the results of the derivations below.762

1.1 Forward Recursions763

To obtain lllt
t and V t

t , we recursively compute the following equations from t = 1 to t = T764

lllt−1
t = Λlllt−1

t−1 +mmm

V t−1
t = ΛV t−1

t−1 Λ
′
+S

Kt =V t−1
t Φ

′
(

R+ΦV t−1
t Φ

′
)−1

lllt
t = lllt−1

t +Kt

(
yyyt −Φlllt−1

t

)
V t

t =V t−1
t −KtΦV t−1

t .

The recursions are initialized with lll0
1 = η1, V 0

1 = Σ1.765

1.2 Backward Recursions766

To obtain lllT
t and V T

t , we recursively compute the following equations from t = T to t = 2. We also compute the767

covariance of the joint posterior distribution P(lllt , lllt−1|{yyy}T
1 ), denoted as V T

t,t−1768

Jt−1 =V t−1
t−1 Λ

′ (
V t−1

t
)−1

lllT
t−1 = lllt−1

t−1 + Jt−1

(
lllT
t −Λlllt−1

t−1−mmm
)

V T
t−1 =V t−1

t−1 + Jt−1
(
V T

t −V t−1
t
)

J
′
t−1

V T
t,t−1 =V T

t J
′
t−1.

2 Maximization Step769

In the M-step, we seek to maximize the expected log joint distribution770

Q := Es

[
logP

(
{yyy}N ,{ccc}N ,{zzz}N

)]
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with respect to the model parameters, where s := P({ccc}N ,{zzz}N |{yyy}N ;θ) and {}N represents all T time points771

across all N trials. The joint distribution for one trial can be factorized as772

P({yyy} ,{ccc} ,{zzz}) = P({yyy}|{ccc} ,{zzz})P({ccc} ,{zzz})

= P({yyy}|{ccc})P({ccc}|{zzz})P({zzz})

=
T

∏
t=1

P(yyyt |ccct)
T

∏
t=2

P(ccct |ccct−1,zzzt)
T

∏
t=3

P(zzzt |zzzt−1)P(ccc1)P(zzz2)

(23)

where these distributions are defined in equations (6) - (10).773

Q = Es

[
log

N

∏
i=1

P
(
{yyy}(i) ,{ccc}(i) ,{zzz}(i)

)]

= Es

[
N

∑
i=1

(
−1

2

T

∑
t=1

[
yyy(i)t −Bccc(i)t

]′
R−1

[
yyy(i)t −Bccc(i)t

]
− T

2
log |R|

−1
2

T

∑
t=2

[
ccc(i)t −Γccc(i)t−1−Azzz(i)t −bbb

]′
Q−1

[
ccc(i)t −Γccc(i)t−1−Azzz(i)t −bbb

]
− T −1

2
log |Q|

−1
2

T

∑
t=3

[
zzz(i)t −Dzzz(i)t−1

]′
P−1

[
zzz(i)t −Dzzz(i)t−1

]
− T −2

2
log |P|

−1
2

[
(zzz(i)2 −hhh2)

′G−1(zzz(i)2 −hhh2)
]
− 1

2
log |G|− 1

2

[
ccc(i)1 −µµµ1

]′
V−1

1

[
ccc(i)1 −µµµ1

]
− 1

2
log |V1|−

T (2q+ p)
2

log2π

)]
.

To maximize Q with respect to the model parameters θ , we compute the following partial derivatives774

∂Q

∂B
,

∂Q

∂R−1 ,
∂Q

∂Γ
,
∂Q

∂A
,
∂Q

∂bbb
,

∂Q

∂Q−1 ,
∂Q

∂D
,

∂Q

∂P−1 ,
∂Q

∂ µµµ1
,

∂Q

∂V−1
1

,
∂Q

∂hhh2
,

∂Q

∂G−1
2

and set them to zero to solve for the parameters. Doing so results in the following M-step parameter updates, all of775

which can be expressed in closed form.776

Bnew =

(
N

∑
i=1

T

∑
t=1

diag{yyy(i)t Es

[
ccc(i)

′

t

]
}

)(
N

∑
i=1

T

∑
t=1

diag{Es

[
ccc(i)t ccc(i)

′

t

]
}

)−1

Rnew =
1

NT

N

∑
i=1

T

∑
t=1

(
diag{yyy(i)t yyy(i)

′

t }−2diag{BEs

[
ccc(i)t

]
yyy(i)

′

t }+diag{BEs

[
ccc(i)t ccc(i)

′

t

]
B
′}
)

Γ
new =

(
N

∑
i=1

T

∑
t=2

diag{
(

Es

[
ccc(i)t ccc(i)

′

t−1

]
}−diag{AEs

[
zzz(i)t ccc(i)

′

t−1

]
}−diag{bbbEs

[
ccc(i)

′

t−1

]
}
))( N

∑
i=1

T

∑
t=2

diag{(Es

[
ccc(i)t−1ccc(i)

′

t−1

]
}

)−1
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Anew =

(
N

∑
i=1

T

∑
t=2

(
Es

[
ccc(i)t zzz(i)

′

t

]
−ΓEs

[
ccc(i)t−1zzz(i)

′

t

]
−bbbEs

[
zzz(i)

′

t

]))( N

∑
i=1

T

∑
t=2

Es

[
zzz(i)t zzz(i)

′

t

])−1

bbbnew =
1

N(T −1)

N

∑
i=1

T

∑
t=2

(
Es

[
ccc(i)t

]
−ΓEs

[
ccc(i)t−1

]
−AEs

[
zzz(i)t

])

Qnew =
1

N(T −1)

N

∑
i=1

T

∑
t=2

(
diag{Es

[
ccc(i)t ccc(i)

′

t

]
}−2diag{ΓEs

[
ccc(i)t−1ccc(i)

′

t

]
}−2diag{AEs

[
zzz(i)t ccc(i)

′

t

]
}

−2diag{bbbEs

[
ccc(i)

′

t

]
}+2diag{AEs

[
zzz(i)t ccc(i)

′

t−1

]
Γ
′}+diag{ΓEs

[
ccc(i)t−1ccc(i)

′

t−1

]
Γ
′}+2diag{bbbEs

[
ccc(i)

′

t−1

]
Γ
′}

+diag{AEs

[
zzz(i)t zzz(i)

′

t

]
A
′}+2diag{bbbEs

[
zzz(i)

′

t

]
A
′}+diag{bbbbbb

′
}
)

Dnew =

(
N

∑
i=1

T

∑
t=3

(
diag{Es

[
zzz(i)t zzz(i)

′

t−1

]
}
))( N

∑
i=1

T

∑
t=3

diag{Es

[
zzz(i)t−1zzz(i)

′

t−1

]
}

)−1

Pnew =
1

N(T −2)

N

∑
i=1

T

∑
t=3

(
diag{Es

[
zzz(i)t zzz(i)

′

t

]
}−2diag{DEs

[
zzz(i)t−1zzz(i)

′

t

]
}+diag{DEs

[
zzz(i)t−1zzz(i)

′

t−1

]
D
′}
)

µµµ
new
1 =

1
N

N

∑
i=1

Es

[
ccc(i)1

]

V new
1 =

1
N

N

∑
i=1

Var
[
ccc(i)1

]
+

1
N

N

∑
i=1

(
Es

[
ccc(i)1

]
−µµµ1

)(
Es

[
ccc(i)1

]
−µµµ1

)′

hhhnew
2 =

1
N

N

∑
i=1

Es

[
zzz(i)2

]

Gnew
2 =

1
N

N

∑
i=1

Var
[
zzz(i)2

]
+

1
N

N

∑
i=1

(
Es

[
zzz(i)2

]
−hhh2

)(
Es

[
zzz(i)2

]
−hhh2

)′
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