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Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the 

Calvin-Benson-Bassham cycle  

 

Abstract  

Carbon fixation is the gateway of inorganic carbon into biosphere. Our ability to engineer carbon fixation                

pathways is expected to play a crucial role in the quest towards agricultural and energetic sustainability.                

Recent successes to introduce non-native carbon fixation pathways into non-photosynthetic hosts offer            

novel platforms for manipulating these pathways in genetically malleable organisms. Here, we focus on              

past efforts and future directions for engineering the quantitatively most significant carbon fixation             

pathway in the biosphere, the Calvin-Benson cycle, into the well-known model organism Escherichia             

coli. We describe how central carbon metabolism of this heterotrophic bacterium can be manipulated to               

allow directed evolution of carbon fixation enzymes and highlight future directions towards synthetic             

autotrophy. 

Introduction 

Carbon dioxide (CO2) fixation is the most central biological process connecting the inanimate and living               

world. Out of the six known carbon fixation pathways found in nature [1–3], the Calvin-Benson-Bassham               

(CBB) cycle (Figure 1a) is the primary carbon assimilation pathway of the biosphere [4], and due to its                  

pivotal role in agricultural productivity, considered the most economically-relevant. Photoautotrophs,          

such as plants, algae and cyanobacteria fix about 300 gigatons of CO2 from the atmosphere annually, an                 

amount which exceeds the amount emitted annually by the activities of the global human population by                

about tenfold [5]. In agriculture, where water and nutrients are abundant, the enzymatic rate of carbon                

fixation can limit the growth rate of plants, and hence agricultural productivity [6]. For example, various                

plants have shown a significant increase in growth rate when exposed to an elevated atmospheric CO2                

concentration due to increased carbon fixation rate [7].  

An extensive literature covers the biotechnological efforts to improve carbon fixation rate of the CBB               

cycle [6,8–12]. These attempts mainly focused on the apparent shortcomings of the CO2-fixing enzyme in               

the cycle, Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO): a slow catalytic turnover rate           

and relatively low specificity towards CO2 that results in an undesired oxygenation side-reaction.             
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However, despite intensive research and biotechnological efforts, achieving a superior enzyme that could             

improve photosynthesis in plants is still a standing challenge.  

In the last decade, efforts to manipulate carbon fixation have been extended beyond the scope of                

photosynthetic autotrophs by attempts to genetically engineer model heterotrophs, such as Escherichia            

coli and Saccharomyces cerevisiae, to recombinantly express carbon fixation pathways [13–16]. The use             

of engineered heterotrophs, which do not natively utilize CO2 as a carbon source, complements the               

research conducted in autotrophs and offers an extended experimental toolbox to tackle biotechnological             

challenges towards enhancing CO2 fixation rates. In this review, we focus on the applications of E. coli as                  

a platform to study and manipulate carbon fixation pathways, and specifically the CBB cycle.  

 

Figure 1: The Calvin–Benson–Bassham (CBB) cycle - the most quantitatively significant pathway for CO2 fixation. (a) Metabolic diagram                   
depicting the enzymes and intermediates in the CBB pathway. (b) Phylogenetic tree of selected RuBiSCO large subunit sequences. Different                   
RuBiSCO classes are colored: Form I (black), Form II (blue), and the archeal Form III (red). Panel (a) adapted from Berg, J. M., Tymoczko, J. L.                          
& Stryer, L. Biochemistry. (W. H. Freeman, 2007). 

 

Heterologous expression of RuBisCO in E. coli  

E. coli has long been a preferred host for the manipulation and production of recombinant proteins, and as                  

such, a natural choice for early attempts, during the 1980s, to recombinantly express RuBisCO-encoding              

genes [17–19]. These pioneering efforts not only demonstrated the ability to manipulate RuBiSCO             

outside the context of an autotrophic host, but also revealed a surprising interaction between RuBisCO               

and E. coli’s native proteins. Unexpectedly, the bacterial “heat-shock” complex (now known as groEL)              
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was essential for the formation of active RuBisCO [20]. This finding, together with other studies that                

identified in the chloroplast a ‘RuBisCO binding protein’ as a homolog of bacterial groEL, led to the                 

understanding that auxiliary proteins play a vital role in the biogenesis of RuBisCO (for an excellent                

recent review see [21]), and contributed to the establishment of the “molecular chaperones” concept              

[22,23]. 

While the catalytic mechanism and the structure of the active site of RuBisCO are highly conserved,                

several structural variants are found across the tree of life [24,25]. The most abundant variant, known as                 

Form I, is a hexadecameric complex found in higher plants, eukaryotic algae, cyanobacteria and              

proteobacteria. The From I holoenzyme is composed of eight large subunits and eight small subunits.               

Form II RuBisco is found in different types of proteobacteria and in one group of eukaryotes, the                 

dinoflagellates. It is composed only from large subunits and the holoenzyme is assembled from one or                

more dimeric pairs. More recently a third RuBisCO clade (Form III) was identified in archaea, in which                 

dimers of the large subunit, as well as higher order assembly (for example, a pentagonal ring of five                  

dimers), were observed. Phylogenetic map from selected sequences of all three forms is shown in Figure                

1b.  

Generally, the native chaperone network of E. coli is sufficient for attaining high yield of active Form II                  

enzymes upon recombinant expression. In contrast, expression of the structurally more complex Form I              

often fails to produce a catalytically active complex and results in the accumulation of insoluble               

aggregates. Exceptions to this observation are some prokaryotic Form I RuBisCOs that can be              

functionally expressed in E. coli, but with a relatively low fraction of properly assembled complex [18].                

Crucially, Form I RuBisCO of eukaryotic organisms, and most notably of crop plants, fail to assemble                

catalytically active holoenzyme, indicating that additional factors beyond E. coli native chaperones are             

essential to complete the multi-step biogenesis of the enzyme in this host [19,26,27]. Indeed, it was found                 

that recombinant co-expression of auxiliary proteins from autotrophic organisms, such as RbcX or Raf1,              

can significantly enhance the properly assembled fraction of some of the Form I RuBisCOs [28,29], yet                

the functional expression of a plant or algal RuBisCO in a heterotrophic host remains a major challenge                 

for the community.  

The ability to express RuBiscO in a genetically malleable organism enabled the construction of synthetic               

designs using E. coli as a host. Examples include fusion peptides, in which the large and small subunits of                   

cyanobacterial RuBisCO were fused using a linker peptide [30]. Another approach aimed to assemble              

hybrid holoenzymes by co-expressing a cyanobacterial large subunit with a small subunit derived from              

two eukaryotic marine organisms, Cylindrotheca sp. N1 and Olisthodiscus luteus [31]. While some of the               
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designs demonstrated mildly improved specificity for CO2 in vitro, no improved properties of a synthetic               

RuBisCO have yet been demonstrated in vivo. 

Directed evolution of RuBisCO activity in an E. coli host  

The richness of genetic tools and the high transformation efficiency of E. coli motivated its utilization as a                  

platform for the directed evolution of RuBisCO towards improved kinetic properties [32]. In a typical               

directed evolution experiment, a library is constructed by introducing mutations into a known protein              

sequence, either by design or by random mutagenesis. The library is then transformed into a host that                 

enables to screen the properties of the different variants and the isolation of those with desired properties                 

[33]. While autotrophic organisms offer a direct approach to screen for RuBiSCO activity based on its                

essentiality for autotrophic growth [34–38], the transformation efficiency and the available genetic tools             

for these organisms are still severely limited in comparison to those of model heterotrophs such as E. coli.                  

However, as heterotrophic organisms are unable to grow solely on CO2, the development of an               

appropriate screen was a conceptual and technical challenge.  

In photosynthetic organisms, the designated kinase phosphoribulokinase (prk) mediates the          

phosphorylation of ribulose-5-phosphate to yield ribulose-1,5-bisphosphate (RuBP), the substrate of          

RuBisCO (Figure 1a). However, E. coli lacks prk as RuBP is not a native intermediate in its metabolic                  

network and recombinant co-expression of this enzyme is therefore required [39]. Upon the expression of               

prk, ribulose-5-phosphate, a central intermediate in the pentose-phosphate pathway of E. coli, is readily              

phosphorylated to yield RuBP in vivo. Notably, no native enzyme in E. coli consumes RuBP. Therefore, if                 

prk is expressed in the absence of a functional RuBisCO, RuBP rapidly accumulates and induces toxic                

effects that hamper the viability of the host [39].  

Parikh et al. took advantage of RuBP-toxicity to implement a synthetic screening system for RuBisCO in                

E. coli , as depicted in Figure 2a. The screen is based on the ability of RuBisCO to metabolize RuBP and                     

prevent the deleterious effect of its accumulation [13]. By controlling prk expression using an arabinose               

inducible promoter (PBAD), the kinase expression can be tuned to saturate the metabolic capacity of               

RuBisCO and induce toxic RuBP accumulation. Library variants with fitness gain, arising ideally from              

mutations that improve the kinetics of RuBisCO and enable rapid detoxification, can then be identified               

and analysed.  

While this platform was successfully used to screen a library of cyanobacterial Form I RuBiSCO mutants                

(S. elongatus PCC6301), follow up biochemical characterization of clones showing fitness gain indicated             

that most of the apparent improvement arose from mutations that promote proper folding and assembly of                
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RuBisCO, rather than superior kinetic properties [40]. Following studies attempted to minimize the             

selection towards undesired expression-improved mutants by co-expressing RuBisCO (S. elongatus          

PCC7002) with assembly factors such as rbcX, achieving a ≈5 fold increase in the solubility of the                 

wild-type enzyme in the E. coli host [41]. Only after the functional expression of RuBisCO reached a                 

“saturated” level, in which individual point mutations could hardly improve its expression level further,              

RuBP-toxicity based screen was applied and activity-improved mutants could potentially emerge. Using            

this activity-directed modified system, a library of randomly mutagenized large and small subunits was              

screened, and a variant containing two point mutations in the small subunit was found to exhibit improved                 

RuBisCO activity. In vitro measurements of the mutated enzyme claimed an 85% improvement in the               

carboxylation rate with only modest decrease in the affinity towards CO2 [41]. While the preliminary step                

of expression optimization was beneficial to reduce the emergence of undesired expression-improved            

mutants, the selection platform was still susceptible to a high rate of false positives which limited its                 

applicability. Loss-of-function mutations in prk eliminate the toxic effect of RuBP and allow false              

positive colonies to emerge and potentially take over the population.  

To overcome these limitations of RuBP-toxicity based screening, an alternative selection platform,            

achieved through a clever metabolic rewiring was implemented by Mueller-Cajar et al. [14,42]. The              

RuBisCO-dependent E. coli (RDE) selection system, depicted in Figure 2b, is based on a              

glyceraldehyde-3-phosphate dehydrogenase (gapA) knockout strain. As gapA is essential for glycolysis,           

this mutant is unable to utilize glucose as a carbon source. Heterologous expression of prk and RuBisCO                 

introduces a two step metabolic shunt that bypasses the glycolytic cutoff and rescue growth by enabling                

carbon flow towards the TCA cycle for energy and biomass production (Figure 2b). As both RuBisCO                

and prk essential for growth in the gapA mutant, this design is significantly more robust to false positives                  

in comparison to RuBP-toxicity based selection.  
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Figure 2: Engineering E. coli for carbon fixation. A schematic representation of four metabolic strategies which couple cellular growth to                    
RuBisCO activity is presented. (a) In the absence of RuBisCO, recombinant expression of prk diverts carbon flux from the pentose phosphate                     
shunt into a metabolic dead-end, as no native enzyme in E. coli consumes RuBP. The accumulation of RuBP is toxic and inhibits growth.                       
Alleviation of RuBP-toxicity is dependent on the activity of RuBisCO which consumed RuBP towards the production of 3PG. (b) Glyceraldehyde                    
3-phosphate dehydrogenase (gapA) knockout strain is unable to grow on glucose as a sole carbon source. Growth rescue is dependent on the                      
functional expression of prk and RuBisCO that introduces a two step metabolic shunt that bypasses the glycolytic cutoff and rescue growth by                      
enabling carbon flow towards the TCA cycle for energy and biomass production. (c) Deletion of the phosphoglycerate mutase genes (gpmA and                     
gpmM) disrupts carbon flow in the glycolytic/gluconeogenic pathway and disconnects the central carbon metabolism into two modules. When                  
pyruvate is supplied, ATP and NADH are produced by the energy module, composed of the reactions of lower glycolysis and the TCA cycle.                       
However, due to the metabolic cutoff, gluconeogenic sugar synthesis can not take occur. The carbon fixation module, composed from the                    
reactions of upper glycolysis, the non-oxidative pentose phosphate pathway, and recombinant prk and RuBisCO, can utilize the energy for the                    



synthesis of all phospho-sugars and sugar derived biomass components, composing about 30% of the biomass, from CO2. (d) To achieve full                     
autotrophic growth in E. coli the production of reducing equivalents and ATP from an inorganic source is required. Hydrogen oxidation or the                      
direct electron uptake from an electrode are two potential alternatives for energy harvesting that can be engineered in E. coli. In all panels,                       
co-factors such as NADH and ATP are presented only for reactions which consume energy in the CBB cycle. 

The RuBisCO-dependent E. coli ∆gapA strain was used to evolve a cyanobacterial Form I RuBisCO (S.                

elongatus PCC6301) by screening ≈105 randomly generated mutants [42]. Several beneficial point            

mutations were identified, some of which improved the fraction of properly assembled and active              

RuBiSCO by ≈10 fold, as summarized in [32]. The kinetic properties of the mutated RuBisCOs varied                

with noticeable reductions in carboxylation rates and ≈30% stronger affinity (KM) for RuBP [42]. In a                

different study utilizing this RuBisCO-dependent E. coli platform, two rounds of directed evolution led to               

the identification of a novel point mutation, localized at the interface between the N- and C-terminal                

domains of the large subunit [43]. This mutation resulted in ≈3 fold increase in the carboxylation rate of                  

RuBisCO, as demonstrated using in vitro assays. Moreover, when the evolved RuBisCO sequence was              

introduced into an autotrophic host (S. elongatus PCC6308), a ≈55% improvement in photosynthesis rate              

was observed, supporting an equivalent wild-type growth rate but with lower investment in RuBisCO              

protein. More recently, the system was used to evolve an archaeal Form III RuBisCO from M. burtonii                 

[44]. Following directed evolution in E. coli, evolved archeal RuBisCOs were introduced into N. tabacum               

to measure their effect in a plant model system. While the mutations identified in the the E. coli based                   

screen indeed enhanced the performance of the evolved archeal RuBisCOs in comparison to non-evolved              

sequence, the transgenic plant did not exhibit robust growth: it required elevated levels of CO2 and                

accumulated biomass slower than the wild-type plant. Nonetheless, this is a promising indication that              

variants identified through directed evolution in E. coli are relevant for the performances of RuBisCO in                

plants.  

Potential constraints on the directed evolution of RuBisCO 

As first hypothesized by Tcherkez et. al. [45,46], the kinetic shortcoming of RuBisCO may stem from                

difficulty in binding the featureless CO2 molecule, resulting in a mechanistic tradeoff between CO2/O2              

specificity and maximum catalytic rate. More recent surveys [47] showed a spread in these kinetic               

parameters that did not give a tight correlation between specificity and rate, however the dynamic range in                 

those studies was limited and the values are still within the natural variation observed within the tradeoff                 

(or below, but not above, the tradeoff line). Moreover, while directed evolution efforts of RuBisCO gave                

tantalizing indications of possible improvements, these (for example a 50% improvement in kcat reported              

by [43]) are still within the spread observed in the experimental trade-off and call for more thorough                 
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analysis of the results. Further research is therefore required to determine whether a trade off that serves                 

as a glass ceiling on kinetic parameters indeed exists.  

The small fraction of the natural diversity tested so far shows there is much hidden potential still                 

unexplored. Recent efforts are tapping into previously unaccessible RuBisCO sequences, for example            

through functional metagenomic from uncultured organisms [37], to further study the kinetics of             

RuBisCO across the tree of life. One should also note that natural selection might be limited in how far in                    

sequence space it can explore solutions, if RuBisCO is in a local maximum. Rational protein engineering                

and lab evolution that go beyond random mutagenesis can potentially allow a larger exploration space by                

several concurrent mutations that will go beyond any “valley of death” for single step protein evolution.                

Yet such efforts will require potent tools selecting for RuBisCO activity in vivo. 

The chances of achieving superior RuBisCO variants in a directed evolution setup are dependent on the                

properties of the screening platform, and especially on the feasible library size and the sensitivity of                

detection of the desired trait. Despite the significant resilience to false positives in comparison to               

RuBP-toxicity based system, the RuBisCO-dependent E. coli ΔgapA strain still suffers from low selection              

fidelity. Due to the reduced viability of the strain, selection can only be conducted on solid agar plates and                   

colonies require several days to become observable. More powerful screening platforms with increased             

selection fidelity could potentially drive forward the evolution of RuBisCO towards improved carbon             

fixation properties. We review such a potent system in the following section. 

Engineering a fully functional CBB cycle in E. coli 

The success in manipulating the metabolic network of E. coli to enable the directed evolution of RuBisCO                 

motivated further attempts to introduce a fully functional carbon fixation pathway into this host.              

Interestingly, out of the dozen reactions utilized in the CBB cycle, RuBisCO and prk are the only two                  

enzymes that must be recombinantly introduced to equip the cell with all the enzymatic machinery               

required for carbon fixation. While the E. coli genome does not contain a designated              

sedoheptulose-bisphosphate phosphatase (in contrast to most photosynthetic organisms utilizing the CBB           

cycle), RuBP regeneration can be accomplished either by using the native enzymes of the pentose               

phosphate pathway, in a sedoheptulose-bisphosphate independent manner ,or through promiscuous          

activity of other phosphatases. However, even if all of the enzymatic machinery required for carbon               

fixation is expressed, how are reducing power and energy going to be supplied in order to drive the cycle?                   

While autotrophs are able to harvest the required energy from inorganic sources, for example through the                

https://paperpile.com/c/l9B8aS/Od8O


light-capturing photosynthetic machinery, the absence of such energy-harvesting systems is a general            

challenge for the introduction of complete CO2 fixation pathways into obligate heterotrophic organisms. 

In a recent study, an E. coli strain capable of synthesizing all sugar derived biomass components from                 

CO2 using a non-native CBB cycle was constructed [48]. The design relied on a simple solution to                 

energize the CBB cycle by utilizing the native pathway for energy harvesting in heterotrophs, namely the                

oxidation of organic carbon in the tricarboxylic acid (TCA) cycle (Figure 2c). To maintain the selection                

for CO2 fixation while organic carbon (e.g., pyruvate) is supplied as an energy source, the dissection of                 

the metabolic network into two distinct modules is required. By severing glycolysis through a              

phosphoglycerate mutase (gpmA/gpmM) knockout and the recombinant expression of RuBisCO (R.           

rubrum) and prk (S. elongatus PCC6301),central carbon metabolism was divided into two metabolic             

modules: (i) the CO2 fixation module, composed from the upper glycolysis pathway, the non-oxidative              

pentose phosphate pathway, RuBisCO and prk, (ii) an energy-supplying module, consisting of lower             

glycolysis and TCA reactions (Figure 3c). As the metabolic cutoff prevents carbon exchange between the               

two modules, this design reproduces the defining function of the CBB cycle: autocatalytic sugar synthesis               

from CO2 with no organic inputs replenishing the cycle intermediates. However, even when ample energy               

is produced through the TCA (for example, when pyruvate is supplied to the media, Figure 3c),                

successful integration of the CBB cycle is not naturally occuring due to the complex interplay and                

interference with existing biosynthetic and energy metabolism. Initially, the re-wired metabolism failed to             

sustain sugar production from CO2 and growth was only possible when an external sugar (e.g., xylose)                

was added to the media [48].  

As rational design approaches are often limited in the ability to pinpoint the causes preventing successful                

integration of a synthetic pathway, adaptive evolution offers an effective alternative to achieve the              

required fine-tuning. Indeed, a few weeks of laboratory evolution under intense selection in a              

xylose-limited chemostat were required for the emergence of adapted mutants, in which sugar synthesis              

from CO2 was observed. Whole genome sequencing of the evolved strain uncovered that fine-tuning of               

metabolic enzymes beyond the CBB cycle is essential to enable robust activity of the cycle. Specifically,                

most of the newly acquired mutations affected enzymes in flux branch points that divert intermediates of                

the CBB cycle towards biosynthetic routes. Further theoretical analysis [49] suggested that in contrast to               

linear metabolic pathways, in the case of autocatalytic cycles (such as the CBB cycle) fine-tuning of the                 

kinetic properties of enzymes at branch points is required to sustain a stable metabolic steady-state.               

Imbalanced kinetics, for example if the affinity of an enzyme at a branch point is excessively strong, can                  

lead to over-draining of intermediates and a metabolic shutdown of the cycle [49]. 
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The CBB cycle-dependent strain offers a novel platform to investigate the biochemistry and metabolic              

control of carbon fixation, and can be used as a potentially powerful selection system for the directed                 

evolution of RuBisCO in E. coli. While the described hemiautotrophic growth is at best neutral in terms                 

of carbon balance, as organic carbon is respired to supply energy and electrons for CO2 reduction, the                 

modularity of this design suggests a direct path to replace the TCA based energy module with molecular                 

machinery capable of harvesting energy from inorganic sources as we continue to discuss (Figure 1d).               

The next step to engineer the genetically malleable E. coli towards full autotrophy therefore calls for                

energy supply decoupled from organic carbon oxidation. The ability to radically transform the trophic              

mode of this model-organism offers an exciting synthetic platform. Synthetic autotrophy in E. coli can go                

beyond what is currently explored in naturally occurring photo- and chemolithoautotrophs, in order to              

study the constraints and design principles of metabolism, with future potential to serve as a workhorse in                 

carbon fixation applications.We briefly review a few such directions in the following section.  

Towards full synthetic autotrophy in E. coli 

Due to the genetic and structural complexity of the light harvesting machinery, heterologous expression of               

fully functional photosystem in E. coli is still an extreme challenge [50,51]. While recent efforts to                

construct artificial versions of light harvesting machinery show promising results [52], an alternative             

solution for energy provision can be obtained from the enzymatic oxidation of  reduced chemicals.  

Chemolithoautotrophs and methylotrophs employ a wide array of enzymes capable of harvesting reducing             

power and generating ATP from inorganic sources or reduced one carbon compounds. Such enzymes are               

significantly simpler and involve fewer components than the multi-gene and structurally complex            

biological photosynthetic machinery and therefore more suitable to be used as heterologous energy             

modules. Enzymes capable of oxidizing one carbon compounds such as formate or methanol have been               

successfully expressed in E. coli and can potentially supply the NADH and ATP requirements to drive                

CO2 fixation [53,54]. As these compounds are readily obtained from natural gas, or using high efficiency                

electrocatalysis, they offer relatively cheap, and if produced from electricity derived from a renewable              

source also potentially sustainable, substrates for the production of sugars and other useful organic              

molecules from CO2 [55–57].  

In recent years, innovative technologies have enabled highly efficient electrosynthesis of hydrogen by             

combining photovoltaic solar panels and efficient water-splitting catalysis. Industrially relevant          

organisms, either natural or synthetic, that could utilize H2 as an electron source to drive CO2 fixation                 

offer a promising platform for the renewable production of chemicals [58,59]. Expression of an oxygen               
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tolerant hydrogenase, capable of oxidizing H2 while transferring the electrons to the NADH pool, is an                

attractive option of implementing H2-based energy module to drive CO2 fixation in E. coli. An additional                

intriguing alternative which does not rely on soluble electron donors is the direct electron transfer from an                 

electrode [60]. Evidence for direct electron uptake has been demonstrated in microbes, and while the               

efforts to fully elucidate the molecular details are ongoing, heterologous expression of an electron transfer               

pathway that enables direct electron transfer in E. coli has already been reported [61].  

Future prospects 

Efforts to introduce non-native one carbon assimilation pathways into heterotrophic hosts span beyond the              

well-known CBB cycle. Pathways such as the the 3-hydroxypropionate bicycle and the ribulose             

monophosphate pathway were expressed to various levels of functionality in E. coli and their metabolic               

activities have been demonstrated, though not yet at a level capable of supporting growth in the absence                 

of an organic carbon source [15,54,62]. In addition to natural pathways, heterotrophic model organisms              

are an attractive platform for testing and constructing synthetic pathways. Several such designs were              

proposed for achieving synthetic CO2 fixation as well as in the context of other one carbon molecules                 

such as formate [57,63,64]. Recently, in vitro activity was demonstrated for a 17-reaction synthetic CO2               

fixation cycle, composed of enzymes from nine different organisms [65]. Well-studied model organisms             

such as E. coli, for which the metabolic and genetic networks have been extensively studied, are the most                  

amenable platforms for future efforts to assemble such novel CO2 fixations cycles within the context of a                 

pre-existing metabolic network.  

In conclusion, carbon fixation cycles are the metabolic highways that enable the production of organic               

matter from inorganic carbon building blocks. Our ability to manipulate and improve carbon fixation              

pathways, and specifically the CBB cycle, has been rapidly moving forward in recent years. Further               

efforts can help realize their potentially crucial role in facing sustainability challenges like the production               

of food, biofuels and commodity chemicals in the years to come.  
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