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Abstract 27 

Threat-related information attracts attention and disrupts on-going behavior, and particularly so for 28 

more anxious individuals. Yet, it is unknown how and to what extent threat-related information leave 29 

lingering influences on behavior, e.g. by impeding on-going learning processes. Here, human male 30 

and female participants (N=47) performed probabilistic reinforcement learning tasks where 31 

irrelevant distracting faces (neutral, happy, or fearful) were presented together with relevant 32 

monetary feedback. Behavioral modeling was combined with fMRI data (N=27) to explore the 33 

neurocomputational bases of learning relevant and irrelevant information. In two separate studies, 34 

individuals with high trait anxiety showed increased avoidance of objects previously paired with the 35 

combination of neutral monetary feedback and fearful faces (but not neutral or happy faces). 36 

Behavioral modeling revealed that high anxiety increased the integration of fearful faces during 37 

feedback learning, and fMRI results (regarded as provisional, due to a relatively small sample size) 38 

further showed that variance in the prediction error signal - uniquely accounted for by fearful faces - 39 

correlated more strongly with activity in the right dorsolateral prefrontal cortex for more anxious 40 

individuals. Behavioral and neuronal dissociations indicated that the threat-related distractors did 41 

not simply disrupt learning processes. By showing that irrelevant threats exert long-lasting influences 42 

on behavior, our results extend previous research that separately showed that anxiety increases 43 

learning from aversive feedbacks and distractibility by threat-related information. Our behavioral 44 

results, combined with the proposed neurocomputational mechanism, may help explain how 45 

increased exposure to irrelevant affective information contributes to the acquisition of maladaptive 46 

behaviors in more anxious individuals. 47 

 48 

 49 
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Significance statement 50 

In modern-day society people are increasingly exposed to various types of irrelevant information, e.g. 51 

intruding social media announcements. Yet, the neurocomputational mechanisms influenced by 52 

irrelevant information during learning, and their interactions with increasingly distracted personality 53 

types, are largely unknown. Using a reinforcement learning task, where relevant feedback is 54 

presented together with irrelevant distractors (emotional faces), we reveal an interaction between 55 

irrelevant threat-related information (fearful faces) and inter-individual anxiety levels. Functional 56 

neuroimaging (fMRI) show provisional evidence for an interaction between anxiety levels and the 57 

coupling between activity in the dorsolateral prefrontal cortex and learning signals specifically 58 

elicited by fearful faces. Our study reveals how irrelevant threat-related information may become 59 

entrenched in the anxious psyche and contribute to long-lasting abnormal behaviors. 60 

 61 

  62 
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Introduction 63 

In modern-day society people are increasingly exposed to emotionally loaded information that is 64 

irrelevant for on-going and prospective behaviors (e.g. via online news and social media). Moreover, 65 

efficient everyday learning requires the ability to ignore peripheral information that is not indicative 66 

of, but presented in the vicinity of, actual performance feedback (e.g. intrusive social media 67 

notifications). The ability to filter out irrelevant information is therefore important for an individual’s 68 

everyday function and well-being, even when not experienced first-hand. For example, media 69 

exposure to disasters and violence relate to negative psychological outcomes (Holman et al., 2014; 70 

Hopwood and Schutte, 2017), and information regarding potential threats, obtained via social 71 

interactions, may induce maladaptive behaviors (Atlas, 2019; Lindstrom et al., 2019). Finally, 72 

distracted learning has detrimental effects on learning performance in general (for a review, see 73 

Schmidt, 2020). Surprisingly, the neurocomputational mechanisms influenced by affective irrelevant 74 

information during learning, and how these interact with personality types that are more easily 75 

distracted by affective information, are largely unknown. 76 

Threat-related distractors attract attention and disrupt on-going behavior, and particularly so for 77 

more anxious individuals (Bishop et al., 2004; Bar-Haim et al., 2007; Cisler and Koster, 2010). While 78 

there are obvious adaptive advantages of being more attuned to potential threats, e.g. increased 79 

survivability (Ohman, 1986; Grillon, 2002; Robinson et al., 2012), such a sensitivity may have 80 

maladaptive properties if subsequent behaviors are guided by irrelevant threat-related information. 81 

More generally, failures to ignore irrelevant aversive feedback information could compromise future 82 

decision by assigning inappropriate aversive properties to stimuli and the actions that elicited them.  83 

Three different behavioral hypotheses were considered. First, the null-hypothesis that affective 84 

distractors has no impact on the learning. Second, affective distractors disrupt the learning, i.e. 85 

learning performance in conditions with affective distractors should be reduced. Finally, affective 86 

distractors are integrated during learning, i.e. learning performance respectively increases and 87 
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decreases when affective distractors are congruent / incongruent with the relevant feedback. 88 

Because anxious individuals are more distracted by threat-related information, we predicted an 89 

interaction between inter-individual anxiety levels and irrelevant threat-related information during 90 

learning. 91 

To explore the neuronal correlates, our a priori analyses focused on the dorsolateral prefrontal 92 

cortex (DLPFC) given that it has been implicated in attentional selection, such that the DLPFC is 93 

engaged when distractors consist of threat-related stimuli, or stimuli to which participants attended 94 

in a previous experimental phase (Fales et al., 2008; Browning et al., 2010). For example, Browning et 95 

al. (2010) first trained participants to attend either neutral or fearful faces, and reported increased 96 

activity in the DLPFC when the attuned stimulus types were subsequently presented as distractors in 97 

a different task. Second, converging evidence suggests that aberrant prediction error encoding in the 98 

right DLPFC is involved in the acquisition of irrelevant associations (Corlett et al., 2007, 2016), with 99 

the prediction error being the mismatch between an experienced and a predicted outcome (Sutton 100 

and Barto, 1998). Accordingly, some studies report that prediction error encoding in the R DLPFC 101 

correlated with an individual’s tendency to learn associations in conditions that normally prevent the 102 

formation of stimulus-outcome associations (Corlett and Fletcher, 2012, 2015). As such, abnormal 103 

updating of stimulus-outcome contingencies in the R DLPFC may cause learning about stimuli and 104 

events that should normally be ignored, eventually leading to the formation of maladaptive beliefs 105 

and behaviors. Following reviewer suggestions, we also performed post-hoc analyses to elucidate 106 

potential roles for the amygdala. This is relevant because the amygdala is activated by emotional 107 

distractors (for a review, see Carretie, 2014a), plays a role in emotional learning (for a review, see 108 

Phelps, 2006), and has been implicated in encoding prediction errors (Averbeck and Costa, 2017; 109 

Aberg et al., 2020b). Additionally, amygdala activation during aversive learning and the presentation 110 

of irrelevant distractors has been correlated with differences in anxiety levels (for reviews, see 111 

Bishop et al., 2004; Lissek et al., 2005; Bishop, 2007; Aupperle and Paulus, 2010; Duval et al., 2015).  112 
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Methods and Materials 114 

Participants 115 

After having provided written consent according to the ethical regulations of the Weizmann Institute 116 

of Science, fifty-one participants joined the experiment (behavioral pilot study/fMRI study: 20/31). 117 

All participants were right-handed, native Hebrew speakers, and without any previous history of 118 

psychiatric or neurological disorders. The study was performed in accordance with the Declaration of 119 

Helsinki.  120 

To ensure sufficient power regarding the behavioral effects in the fMRI study, a power analysis was 121 

conducted using data from the behavioral pilot study. This analysis showed that 16 participants are 122 

required to detect a one-tailed Pearson correlation coefficient of 0.548 (as obtained in the pilot 123 

study) with a power (1-β) of 0.8 and error probability (α) of 0.05. However, because 16 participants 124 

are not sufficient to detect inter-individual differences in fMRI activation, we recruited additional 125 

participants to be more in-line with previous fMRI studies that investigated fMRI activation as a 126 

function of trait anxiety in learning and decision making tasks, e.g. n=31 (Browning et al., 2015b), 127 

n=32 (Bijsterbosch et al., 2015), n=25 (Xu et al., 2013), n=30 (Fung et al., 2019), and n=28 (Aberg et 128 

al., 2022).  129 

Two participants frequently fell asleep in the MRI scanner (as indicated by frequently missed trials 130 

and post-task interviews). One participant did not perform the task satisfactorily (they pressed the 131 

same button in all trials of a block), and one participant displayed excessive movement in all three 132 

blocks of learning (as indicated by translational movements in a direction larger than the relevant 133 

voxel dimension; Wylie et al., 2014). Therefore, data from 27 participants were included in the 134 

subsequent analyses of fMRI data (20 females; average age ± STD: 25.667 ± 4.961), while data from 135 

20 different participants were included in the behavioral pilot study (11 females; average age ± STD: 136 

27.350 ± 4.171). Trait anxiety was estimated using the State-Trait Anxiety Inventory (Spielberger et 137 

al., 1983). 138 
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Experimental design and statistical analyses 139 

Reinforcement learning task with distracting emotional faces 140 

Task description 141 

In each trial, participants were presented with a pair of objects and selected the object believed to 142 

be more likely to provide Correct feedback (Fig. 1A). The best object in each pair provided Correct 143 

feedback with a probability of 0.7 (pilot study) or 0.8 (fMRI study) while the other object provided 144 

Correct feedback with a 0.3 (pilot study) or 0.2 (fMRI study) probability.   145 

A schematic of a trial progression is shown in Fig. 1B. If no response was made within 2.5s after the 146 

presentation of the objects, the letters ‘Too slow’ appeared on the screen and one shekel was 147 

deducted. The jittered durations were drawn from a truncated exponential distribution; Dale, 1999), 148 

with an average duration of 3s and a maximum duration of 10s. To prevent difficulties in identifying 149 

the numerical feedback, the location of the feedback number on the screen was identical to the 150 

location of the preceding fixation cross. 151 

The different feedback types provided in the experiment are shown in Fig. 1C (pilot study) and Fig. 2A 152 

(fMRI study). To test for learning differences between appetitive and aversive conditions the Correct 153 

and Incorrect feedbacks were respectively +1₪ (a gain of one shekel) or 0₪ (no shekel gained) in a 154 

Gain condition, while in a Loss condition the Correct and Incorrect feedbacks were respectively 0₪ 155 

(no shekel lost) or -1₪ (one shekel lost). The accumulated sum of shekels corresponded to a 156 

monetary bonus provided at the end of the experiment. To assess the impact of affective distractors 157 

on associative learning, the numerical feedbacks were superimposed on fearful, neutral, or happy 158 

faces (Fig. 1C; Fig. 2A). In Affirmative pairs, the facial expression was matched with the feedback type 159 

(e.g. a positive face was presented together with Correct feedback), while in Contradictory pairs the 160 

contingencies were reversed (e.g. a positive faces was presented with Incorrect feedback). Please 161 

observe that there were slight differences in the different feedback types presented in the pilot and 162 

in the fMRI study. Specifically, in the fMRI study only emotional faces were presented in the 163 
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Affirmative and Contradictory conditions because we wanted to add a control condition (Neutral 164 

pairs) with only neutral faces to provide a baseline of learning performance without affective 165 

distractors. 166 

Figure 1 around here 167 

The learning task was divided into three separate blocks, each consisting of four (pilot) or six (fMRI 168 

study) different types of pairs: Affirmative Gain, Affirmative Loss, Contradictory Gain, and 169 

Contradictory Loss (as well as Neutral Gain and Neutral Loss for the fMRI study). In total, 12/18 170 

different pairs of objects were used and participants performed 120 trials per block (30 trials per pair 171 

in the pilot, and 20 trials per pair in the fMRI study) for a total of 360 trials. Participants were allowed 172 

a break between each block. Pairs were presented in an interleaved fashion, such that each pair was 173 

presented once before any other pair was repeated. Moreover, the object pairs were randomly 174 

assigned to a condition for each participant, and each object was presented equally many times to 175 

the left and to the right. Finally, no facial identity was repeated until all facial identities has been 176 

presented. For more information regarding the stimuli, see ‘Stimulus selection’ below. 177 

To get familiarized with the task and the different facial identities, all participants performed one 178 

block of the task outside the scanner. Here, two pairs of objects were presented in one Loss and one 179 

Gain pair for a total of 40 trials. These two objects were not used for the main task. Critically, to 180 

ensure that all participants understood the goal of the task, they were explicitly instructed that they 181 

should try to collect as many shekels as possible and that the faces, including their emotional 182 

expression, were irrelevant for performing the task well.  183 

Statistical analyses 184 

Learning performance was defined as the average proportion of selections of the best object in each 185 

pair for trials 16-20 (as well as trials 26-30 for the pilot study). Correlations with trait anxiety were 186 

conducted using Pearson’s correlation coefficient, as well as Spearman’s rank-order correlation. Tests 187 
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were one-tailed when testing directed predictions (i.e. positive or negative correlations), while two-188 

tailed tests were used when no direction was predicted. The Bonferroni-correction for multiple 189 

comparisons were applied where required. 190 

Categorization task 191 

To provide a functional localization of the right dorsolateral prefrontal cortex (DLPFC) and the 192 

amygdala, participants performed a categorization task prior to the learning task. This task was 193 

inspired by a previous task in which participants categorized attended neutral and fearful faces, and 194 

which showed increased DLPFC activation for neutral (vs. fearful) faces for participants that had been 195 

previously been attuned to fearful faces (as compared participants that had been attuned to neutral 196 

faces; see Browning et al. (2010), Figure 4B: Face Attended condition). Furthermore, the amygdala is 197 

robustly engaged by faces, suggesting it should be activated more strongly by faces than by numbers 198 

(Todorov, 2012). We selected a task in which participants attended the faces, rather than presenting 199 

them as distractors, because we wanted to prevent any task-related perceived difficulty to confound 200 

the results. For example, a differential brain activity between distracting fearful and neutral faces 201 

could be wrongly attributed to increased task-difficulty caused by, for example, a disruptive 202 

attentional bias towards fearful faces. Because it is hard to disentangle these processes, we took 203 

advantage of previous reports of differential brain activation when faces were in attentional focus. 204 

Task description 205 

Stimuli were classified as negative, neutral, or positive (Fig. 4A). In each trial, one stimulus was 206 

presented from one of six different stimulus types, which could be either a number (-1, 0, or +1) or 207 

an emotional face (fearful, neutral, or happy). The classification was performed in the absence of 208 

feedback and no specific instructions about the ‘correct’ classification was provided. The six different 209 

stimulus types were presented pseudorandomly interleaved in fifteen blocks of six trials each, where 210 

one stimulus from each category was presented in each block. The emotional and the neutral faces 211 

were exactly those used for the learning task (see ‘Stimulus selection’). A schematic of trial-212 
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progressions are shown in Fig. 4A. The ITI durations were drawn from a truncated exponential 213 

distribution; Dale, 1999), with an average duration of 3s and a maximum duration of 10s. In total, 90 214 

trials were performed (15 trials for each stimulus type). Each facial identity was presented once in 215 

each of the fearful, neutral, and happy categories. Of note, the position of the numbers and the faces 216 

directly overlapped with the positions of the same stimuli used in the learning task.  217 

Data analysis 218 

The R DLPFC was defined by contrasting fearful and neutral faces (Browning et al., 2010), while the 219 

amygdala was defined by contrasting faces and numbers. After defining the ROI on a group-level, the 220 

average activity within the identified R DLPFC and amygdala clusters was correlated with trait anxiety 221 

scores. Because the ROI selections were blind to trait anxiety scores, this procedure conforms to 222 

recommendations on how to correlate fMRI data with inter-individual factors (Vul et al., 2009).  223 

Stimulus selection 224 

Objects  225 

Eighteen different pairs of objects were created from a colored version of the Snoddgrass and 226 

Vanderbilt object data set, and only familiar objects were selected, as determined by a familiarity 227 

rating > 4.0 (Rossion and Pourtois, 2004). All pairs of objects used in the reinforcement learning 228 

experiment are presented in Table 1.  229 

Table 1 around here 230 

Faces  231 

Fearful, neutral, and happy faces from fifteen different identities (7 males and 8 females) were 232 

selected from the Karolinska Directed Emotional Faces (KDEF) data set (Lundquist et al., 1998). To 233 

ensure that the different facial expressions could be easily identified, only facial identities with a high 234 

degree of correspondence between the expressed and the rated emotion were selected. Specifically, 235 

only identities with a correct identification > 85% for all of the three facial expressions (Neutral, 236 
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Fearful, and Happy) were selected (Calvo and Lundqvist, 2008). This resulted in seven male and eight 237 

female identities (AF01, AF02, AF09, AF16, AF19, AF20, AF29, AF31, AM08, AM10, AM11, AM13, 238 

AM17, AM31, AM35). All face stimuli were normalized by rotating and changing the size of each face 239 

in accordance with a template image that ensured that the relative locations of the eyes and the tip 240 

of the nose were aligned across identities and facial expressions. Finally, the faces were cropped 241 

using a rectangular mask which allowed part of the hair to be included in the image. 242 

Behavioral modeling 243 

Q-learning 244 

Following standard reinforcement learning theory, each object i in a pair was assigned an expected 245 

value Qi which represents the expected outcome if that object is selected in a trial. Qi is updated 246 

when object i has been selected and there is a mismatch between the expected outcome (Qi) and 247 

the actual feedback received (ϕ), i.e. the so called prediction error (δ). The update of Qi is regulated 248 

by a learning rate α: 249 𝑄(𝑡 + 1)௜ = 𝑄(𝑡)௜ + 𝛼 ∙ 𝛿(𝑡)௜  

𝛿(𝑡)௜ = 𝜑 − 𝑄(𝑡)௜ 
The probability of selecting object i in a given trial t can be estimated by a soft-max choice probability 250 

function (Sutton and Barto, 1998): 251 𝑝(𝑡)௜ = 𝑒ொ(௧)೔∙ఉ (𝑒ொ(௧)೔∙ఉ + 𝑒ொ(௧)ೕ∙ఉ)⁄   252 

The β parameter estimates the trade-off between exploration and exploration / randomness of 253 

choice.  254 

Modeling the influence of distractor type 255 

To include distractor types in the model, it was presumed that emotional faces alter the subjective 256 

value of the received feedback. For example, happy faces may increase the subjective value of any 257 

feedback type, or fearful faces could specifically reduce the subjective value of neutral feedback, et 258 
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cetera. To test these notions, the subjective value of the feedback term ϕ was fitted separately for 259 

different types of feedback. 260 

In the ’12ϕ’ model, 12 different ϕ’s were fitted: one ϕ for each type of face for +1₪ feedback (3 ϕ’s), 261 

-1₪ feedback (3 ϕ’s), 0₪ feedback in Gain pairs (3 ϕ’s), and 0₪ feedback in Loss pairs (3 ϕ’s). 262 

In the ’9ϕ’ model, 9 ϕ’s were fitted: one ϕ for each type of face for +1₪ feedback (3 ϕ’s), -1₪ 263 

feedback (3 ϕ’s), and for 0₪ feedback across Gain and Loss pairs (3 ϕ’s). 264 

In the ‘6ϕ0’ model, 8 ϕ’s were fitted: one ϕ collapsed across faces for +1₪ feedback (1 ϕ) and -1₪ 265 

feedback (1 ϕ), and one ϕ for each type of face separately for 0₪ feedback in Gain (3 ϕ’s) and Loss 266 

pairs (3 ϕ’s). 267 

In the ‘3ϕ0’ model, 5 ϕ’s were fitted: one ϕ collapsed across faces for +1₪ feedback (1 ϕ) and -1₪ 268 

feedback (1 ϕ), and one ϕ for each type of face for 0₪ collapsed across Gain and Loss pairs (3 ϕ’s). 269 

In the ‘ϕ0FF, ϕ0NH’ model, 4 ϕ’s were fitted: one ϕ collapsed across faces for +1₪ feedback (1 ϕ) and -270 

1₪ feedback (1 ϕ), one ϕFF for fearful faces paired with 0₪ feedback, and one ϕNH for neutral/happy 271 

faces paired with 0₪ feedback. 272 

In the ‘ϕ0FFG, ϕ0FFL, ϕ0NH’ model, 5 ϕ’s were fitted: one ϕ collapsed across faces for +1₪ feedback (1 273 

ϕ) and -1₪ feedback (1 ϕ), one ϕFFG for fearful faces paired with 0₪ feedback in Gain pairs, one ϕFFL 274 

for fearful faces paired with 0₪ feedback in Loss pairs, and one ϕNH for neutral/happy faces paired 275 

with 0₪ feedback. 276 

In the ‘ϕ+1,ϕ-1’ model, 5 ϕ’s were fitted: one ϕ collapsed across faces for 0₪ feedback (1 ϕ), one ϕ 277 

for happy faces paired with +1₪ feedback (1 ϕ), one ϕ for happy faces paired with -1₪ feedback (1 278 

ϕ), one ϕ for fearful/neutral faces paired with +1₪ feedback (1 ϕ), and one ϕ for fearful/neutral 279 

faces paired with -1₪ feedback (1 ϕ). 280 

We also tested another set of models which fit separate subjective values for each numerical 281 

feedback (-1, 0, +1) independent of face type. The impact of irrelevant affect is then added via 282 

constant ‘bias’ terms (ε’s).  283 
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In the ‘3ϕ, 3ε’ model, 3 ϕ’s were fitted: one ϕ for each numerical feedback type (-1, 0, +1; 3 ϕ’s), and 284 

one ε for each emotional face type (fearful, neutral, happy; 3 ε’s). 285 

In the ‘3ϕ, εFF, εNH’ model, 3 ϕ’s were fitted: one ϕ for each numerical feedback type (-1, 0, +1; 3 ϕ’s), 286 

one εFF for fearful faces (1 ε), and one εNH for neutral/happy faces combined (1 ε). 287 

Finally, in the ‘3ϕ, ε0FF, ε0NH’ model, 3 ϕ’s were fitted: one ϕ for each numerical feedback type (-1, 0, 288 

+1; 3 ϕ’s), one ε0FF for fearful faces paired with 0₪ feedback (1 ε), and one ε0NH for neutral/happy 289 

faces combined and paired with 0₪ feedback (1 ε). 290 

Model fitting and model selection procedures 291 

For each model, the free parameters were fitted individually to each participant’s learning behavior 292 

by minimizing the negative log-likelihood estimate: 293 

𝐿𝐿𝐸 =– ln (ෑ 𝑝(𝑡)௜௡
ଵ ) 

Given n trials, 𝑝(𝑡)௜ is the soft-max choice probability of selecting object i in trial t. To avoid local 294 

minima, each fit was repeated 10,000 times with different random starting points for each free 295 

parameter. All model fits were compared by calculating the Bayesian Information Criterion (BIC; 296 

Schwarz, 1978), which penalizes model-fits based on their complexity: 297 

𝐵𝐼𝐶 = 2 ∗ 𝐿𝐿𝐸𝑚 + 𝑘 ∗ ln (𝑛) 

LLEm is the minimal log-likelihood estimate, k is the number of fitted parameters and n is the 298 

total number of trials. The most parsimonious model is the model with the lowest BIC. 299 

To further validate the selection of the most parsimonious model, a protected exceedance 300 

probability for each model being the best model was calculated using a Bayesian model selection 301 

procedure (Rigoux et al., 2014).  302 

Model simulations 303 

Two different model-simulations of behavior were performed to validate the most parsimonious 304 

model.  305 
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First, a model-derived probability for selecting the best object in each trial was calculated using 306 

each participant’s fitted parameters and the history of previous actions and outcomes (Palminteri et 307 

al., 2017). To confirm that these model-simulated behaviors reproduce the observed effects-of-308 

interest, we calculated the same correlations between trait anxiety and learning performance in the 309 

different conditions.  310 

Second, to determine whether specific computational parameters drive the observed effects-of-311 

interest, another set of simulations were performed. These simulations first set all fitted parameters 312 

to their average value across participants. Next, the value of the parameter-of-interest is gradually 313 

changed to see if there are associated changes in the simulated behavioral effect-of-interest. 314 

Performance improvements in all conditions were simulated, and 1000 simulations were conducted 315 

for each data point.  316 

MRI Data 317 

Image Acquisition  318 

MRI images were acquired using a 3T whole body MRI scanner (Prisma, Siemens, Germany) with 319 

a 20-channel head coil. Standard structural images were acquired with a T1 weighted 3D sequence 320 

(MPRAGE, Repetition time (TR)/Inversion delay time (TI)/Echo time (TE)=2300/900/2.32 ms, flip 321 

angle=8 degrees, voxel dimensions=0.9 mm isotropic, 192 slices). Functional images were acquired 322 

with a susceptibility weighted EPI sequence (TR=2000, TE=30 ms, flip angle=75 degrees, voxel 323 

dimensions=3x3x3.5 mm, 32 slices). The phase encoding direction was anterior-posterior, the slice 324 

order was all even (2 to 32) followed by all odd (1 to 31), with a 0% distance factor. No acceleration 325 

technique was applied. The MRI scanner was stopped between each block of the learning task (each 326 

block lasted~15 minutes), while the functional localizer task lasted ~7 minutes. 327 
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Preprocessing 328 

Functional MRI data were preprocessed and then analyzed using the general linear model (GLM) for 329 

event-related designs in SPM12 (Welcome Department of Imaging Neuroscience, London, UK; 330 

http://www.fil.ion.ucl.ac.uk/spm). During preprocessing, all functional volumes were realigned to the 331 

mean image (with auto-masking applied), co-registered to the structural T1 image, corrected for slice 332 

timing, resampled to 2x2x2 mm voxel size (upsampling of the voxel size to these dimensions has 333 

been suggested to increase the sensitivity of fMRI analyses; Hopfinger et al., 2000), normalized to the 334 

MNI EPI-template, and smoothed using a 6 mm FWHM Gaussian kernel. Please observe that the 335 

resampling of voxels is mainly relevant for ROI identification in the functional localizer task.  336 

First-level analyses  337 

General procedure 338 

At the first level, individual event-types, e.g. feedbacks, stimuli, or button presses (depending on 339 

task, see below), were modelled by a standard synthetic hemodynamic response function (HRF). A 340 

24-parameter model was used to regress out head motion effects from the realigned data (i.e. six 341 

head motion parameters, six head motion parameters calculated as the difference between time 342 

points t and t-1, and the twelve corresponding squared items; Friston et al., 1996). Statistical 343 

analyses were performed on a voxel-wise basis across the whole brain. 344 

First-level analysis of the categorization task 345 

An event-related design was created with two different event-types (stimulus onset and 346 

response onset) for each of the six stimulus types (the numbers -1, 0, and +1, and fearful faces, 347 

neutral faces, and happy faces). In total, twelve different event-types were created, together with a 348 

regressor of no interest which included the onset of trials in which no response was made. 349 

Region of interest (ROI)  350 

To test the a priori hypothesis regarding an involvement of the DLPFC in the present study, an 351 

initial R DLPFC mask was created by intersecting the union of Broadmann areas 9 and 46 with the 352 
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middle frontal gyrus in the right hemisphere. The resulting ROI was then dilated by a factor of 1. All 353 

of these steps were performed using the WFU PickAtlas toolbox which also provided pre-defined 354 

ROIs for Broadmann areas 9, 46, and the middle frontal gyrus (Tzourio-Mazoyer et al., 2002; Maldjian 355 

et al., 2003; Maldjian et al., 2004). For the post-hoc analysis regarding amygdala involvement, an 356 

initial amygdala mask was obtained by including all available amygdala sub-regions provided by the 357 

SPM Anatomy toolbox (Eickhoff et al., 2005). 358 

Statistical Analyses  359 

To localize the R DLPFC, we contrasted the BOLD signal evoked by neutral and fearful faces, while the 360 

amygdala was localized by contrasting BOLD signal evoked by faces and numbers. Significant 361 

differential activations within the initial R DLPFC and amygdala masks were tested via t-tests 362 

implemented in SPM using an initial search threshold of p=0.001, and small volume correction (SVC) 363 

using a threshold of p<0.05 Family-Wise Error rate (FWE) to correct for multiple comparisons. For 364 

display purposes and follow-up analyses (e.g. correlation with individual anxiety levels), beta 365 

parameter estimates were extracted and averaged from all voxels within significant clusters of 366 

activation.  367 

First-level analysis of the learning task 368 

An event-related fMRI design was created with three different event-types (stimulus onset, response 369 

onset, and feedback onset) for each of four trial types (Gain Correct feedback, Gain Incorrect 370 

feedback, Loss Correct feedback, and Loss Incorrect feedback). Besides these twelve event-types for 371 

each of three blocks, trials in which no response was made during the picture display were included 372 

as a regressor of no interest. To isolate the contribution of the distractors to the prediction error 373 

signal, the prediction error term for the selected model (δFull) was separated into two parts (see 374 

Wittman et al., 2008; Eldar and Niv, 2015, for similar procedures). In brief, a ‘Basic’ prediction error 375 

term (δBasic) accounted for variance in the prediction error signal when there is no differential 376 

modulation by distractor type, i.e. the values of parameters-of-interest are set to be equal. Next, a 377 

prediction error ‘Boost’ term (δBoost) was created to account for variance above and beyond 378 



 

18 
 

variance the δBasic term; the δBasic term was subtracted from δFull in each trial t, i.e. δBoost(t)= 379 

δFull(t)- δBasic(t). To study the fMRI correlates of the two prediction error types δBasic and δBoost, 380 

their respective values were added as parametric modulators to the feedback onsets. Critically, to 381 

elucidate unique variance explained by δBoost, the values of δBoost was orthogonalized with respect 382 

to the values of δBasic (Mumford et al., 2015).  383 

Regions of interest (ROIs)  384 

The R DLPFC and amygdala ROIs identified in the separate categorization task. 385 

Statistical Analyses  386 

Correlations between prediction errors and BOLD signal in the ROIs was tested using a ROI 387 

approach were the average beta parameter estimates for each type of prediction error (δBasic, δBoost) 388 

were extracted from all voxels within the ROIs. These beta parameters were then entered into two 389 

separate repeated measures ANOVAs (i.e. one for each prediction error type) with factors Gain/Loss 390 

(Gain, Loss pairs) and Feedback (Correct, Incorrect), and Trait anxiety as continuous covariate. 391 

Follow-up analyses were conducted using paired t-tests and Pearson correlations.  392 

Results 393 

Behavior 394 

Behavioral pilot study 395 

An initial pilot study was conducted with twenty participants to explore interactions between 396 

trait anxiety and affective distractors during learning. Learning performance was assessed as the 397 

average proportion of correct choices in trials 16-20 and in trials 26-30. Furthermore, we tested the 398 

relationship between anxiety and learning performance separately in each of the four conditions (i.e. 399 

Affirmative Loss, Affirmative Gain, Contradictory Loss, and Contradictory Gain). The average learning 400 

curve for each condition is shown in Fig. 1D,E. Trait anxiety scores correlated negatively with the 401 

average performance only in the Contradictory Loss condition (trials 16-20: Pearson’s r=-0.548, 402 
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p=0.0125, trials 26-30: Pearson’s r=-0.438, p=0.053, two-tailed tests), but not in any other condition 403 

(all p-values>0.08; see Table 2). To replicate these results, we conducted a follow-up study where 404 

participants also underwent fMRI scanning to provide initial insights into the neurocomputational 405 

correlates of the behavioral effects. 406 

Table 2 around here 407 

fMRI study 408 

The behavioral paradigm of the fMRI study was similar to the one used in the pilot study, with 409 

the main addition of a control condition used to normalize learning performance by subtracting the 410 

learning performance in the absence of affective distractors (i.e. with neutral faces; Fig. 2A). Learning 411 

curves are shown in Fig. 2B, and normalized average learning performances are shown in Fig. 2C-F.  412 

First, we replicated the main result of the pilot study, namely a negative correlation between 413 

trait anxiety and learning performance in the Contradictory (vs. Neutral) Loss condition [Fig. 1F; r=-414 

0.394, p=0.021, one-tailed Pearson correlation]. Because anxiety increases the tendency to display 415 

behavioral switching following aversive feedbacks (Aberg and Paz, 2022), we tested whether anxious 416 

participants displayed a reduced proportion of win-stay decisions for the Correct feedback in the 417 

Contradictory Loss condition (i.e. because the fearful faces were paired with the neutral 0₪ 418 

feedback). As predicted the proportion of win-stay decisions correlated negatively with trait anxiety 419 

in Contradictory (vs. Neutral) Loss pairs [Fig. 2J; r=-0.420, p=0.015, one-tailed Pearson-correlation]. A 420 

similar trend was observed in the Contradictory Loss condition of the pilot study [r=-0.359, p=0.060, 421 

one-tailed Pearson-correlation]. 422 

In contrast to the pilot study, we observed a positive correlation between anxiety and learning 423 

performance in Affirmative (vs. Neutral) Gain pairs [Figure 2C; r=0.640, p=0.001, two-tailed Pearson 424 

correlation, p-value was corrected for three unplanned comparisons]. Notably, in the fMRI study (but 425 

not the pilot study), the neutral 0₪ feedback in Affirmative Gain pairs was presented together with a 426 
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fearful face, therefore providing another opportunity to test whether fearful faces increase the 427 

averseness of the neutral 0₪ feedback. Indeed, trait anxiety correlated positively with the 428 

proportion of lose-shift decisions in Affirmative (vs. Neutral) Gain pairs [r=0.343, p=0.040, one-tailed 429 

Pearson-correlation; Fig. 2G].  430 

Finally, trait anxiety did not correlate significantly with learning performance in the remaining 431 

two conditions [Fig. 2D,E, all uncorrected p-values > 0.05, two-tailed Pearson-correlations; Table 3], 432 

nor with the behavioral switching for neutral 0₪ feedbacks paired with happy faces [Fig. 2H,I; all 433 

uncorrected p-values > 0.05, two-tailed Pearson-correlations; Table 4].  434 

Table 3 around here 435 

Table 4 around here 436 

In summary, the behavioral results from the pilot and the fMRI study suggest that distracting 437 

fearful faces increases the averseness of the neutral 0₪ feedback for more anxious individuals. This 438 

was demonstrated by increased behavioral switching following this feedback combination, both 439 

when it signaled a Correct and when it signaled an Incorrect outcome, which respectively caused 440 

reduced and improved learning performance.  441 

Behavioral modeling 442 

To explain how anxiety interacts with the distractors, several different behavioral models were 443 

designed. To support the aforementioned behavioral result, different subjective feedback values ϕ 444 

were fitted for different feedback combinations (for details about the different models and the 445 

model-fitting procedures, see Methods).  446 

A fixed-effect analysis showed an overall lower BIC for the ‘ϕ0FF, ϕ0NH‘ model (Fig. 3A), indicating 447 

a better fit to behavior on average. Additionally, a random-effects analysis indicated a protected 448 

exceedance probability of 1.0 for the same model (Inset, Fig. 3A), a result which suggests that the 449 
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selected model is the most likely model to generate the observed behavior (Stephan et al., 2009). 450 

Together, these two complementary ways of comparing model indicate the ‘ϕ0FF, ϕ0NH‘ model as 451 

being the most parsimonious model.  452 

The selected ‘ϕ0FF, ϕ0NH‘ model contains six free parameters: one learning rate α, one 453 

randomness of choice/exploration parameter β, and four feedback parameters (ϕ+1, ϕ-1, ϕ0FF, and 454 

ϕ0NH). To clarify, ϕ+1 and ϕ-1 respectively estimate the subjective value of +1₪ and -1₪ feedbacks and 455 

are independent of the distracting faces, while ϕ0FF and ϕ0NH respectively estimates the subjective 456 

value of the neutral 0₪ feedback paired with fearful (ϕ0FF) and neutral/happy (ϕ0NH) faces. Average 457 

fitted model parameters for all models are displayed in Table 5.  458 

Table 5 around here 459 

To validate the model, and to conform to recent recommendations that effects-of-interest need 460 

to be recovered using model-simulated performance data (Palminteri et al., 2017), the performance 461 

of the selected model was simulated using each participant’s fitted model parameters. For 462 

visualization purposes, the fitted learning curves of the selected model are shown in Fig. 3B. More 463 

importantly, the model successfully reproduced the behavioral effects-of-interest (Fig. 3C-F, c.f. Fig. 464 

2C-F). 465 

One possible explanation for the behavioral results is that the interaction between fearful faces 466 

and anxiety reduces the subjective value of the neutral 0₪ feedback. Corroborating this notion, trait 467 

anxiety correlated negatively with the difference in the fitted subjective values of the 0₪ feedback 468 

paired with fearful and neutral/happy faces [ϕ0FF-ϕ0NH, r=-0.467, p=0.007, one-tailed Pearson-469 

correlation; Figure 2G]. These parameters do not correlate significantly with trait anxiety individually 470 

[ϕ0FF: r=-0.242, p=0.223; ϕ0NH: r=0.051, p=0.802, two-tailed Pearson-correlations]. 471 

Additional model simulations were performed to ensure that the impact of the interaction 472 

between distractor type and anxiety on learning can actually be attributed to the differential 473 



 

22 
 

subjective values of ϕ0FF and ϕ0NH. In these simulations, all model parameters are initially set to the 474 

average values of the fitted parameters across participants’ values (i.e. α=0.25, ϕ+1=-0.25, ϕ0FF=0.35, 475 

ϕ0NH=0.35, ϕ+1=0.80, and β=0.15). The values are held constant, except for the values of ϕ0FF and 476 

ϕ0NH, which are gradually decreased and increased, respectively, in order to simulate the modulation 477 

by trait anxiety (Fig. 3G). Simulated performance improvements are calculated for all conditions, and 478 

visualized as a comparison between conditions (see Methods for further details). As would be 479 

expected, decreases in the difference between ϕ0FF and ϕ0NH, improved performance in Affirmative 480 

Gain pairs (relative Contradictory and Neutral Gain pairs; Fig. 2H) while reducing performance in 481 

Contradictory Loss pairs (relative Affirmative and Neutral Loss pairs; Fig. 2I).  482 

Finally, to illustrate the robustness of the main modeling result, we demonstrate that the 483 

negative correlation between trait anxiety and the relative difference between fitted 0₪ feedback 484 

values for fearful (vs. neutral and happy) faces are present across different behavioral models. First, 485 

the ‘ϕ0FFG, ϕ0FFG, ϕ0NH’ model differs from the most parsimonious model by estimating separate ϕ0FF’s 486 

in Gain and Loss pairs (i.e. ϕ0FF was separated into two parameters, ϕ0FFL and ϕ0FFG). Trait anxiety 487 

correlated negatively with the difference between ϕ0FFL and ϕNH [r=-0.426, p=0.013, one-tailed 488 

Pearson correlation; Fig. 3J], and with the difference between ϕ0FFG and ϕNH [r=-0.448, p=0.010, one-489 

tailed Pearson correlation; Fig. 3K], with a positive correlation between ϕ0FFL and ϕ0FFG [r=0.412, 490 

p=0.016, one-tailed Pearson correlation]. Second, the ‘3ϕ0‘ model differs from the most 491 

parsimonious model by separating the ϕ0NH term into two terms, one term corresponding to the 492 

combination of 0₪ feedback paired with neutral faces (ϕ0N) and one term for happy faces (ϕ0H). Trait 493 

anxiety correlated negatively with the difference between ϕ0FF and ϕ0N [r=-0.535, p=0.002, one-tailed 494 

Pearson-correlation; Fig. 3L], as well as for the difference between ϕ0FF and ϕ0H [r=-0.335, p=0.044, 495 

one-tailed Pearson correlation; Fig. 3M], and ϕ0N and ϕ0H were positively correlated [r=0.816, 496 

p<0.001].  497 
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In summary, the selected ‘ϕ0FF, ϕ0NH‘ model provides the most parsimonious fit to behavior and 498 

provides a plausible and robust explanation for how anxiety interacts with threat-related distractors 499 

to modulate learning performance, namely via a reduced subjective value of neutral 0₪ feedbacks.  500 

Functional neuroimaging 501 

A priori, we hypothesized that atypical prediction error encoding in the R DLPFC, caused by the 502 

presence of threat-related distractors, contributes to the learning bias displayed by more anxious 503 

individuals. Based on reviewer suggestions, we also conducted a post-hoc analysis with focus on the 504 

amygdala. To this end, we first used a separate task to functionally define the ROIs to be used when 505 

analyzing the learning task. Notably, by selecting ROIs in a separate task, we avoid issues of double-506 

dipping (Kriegeskorte et al., 2009), and by selecting ROIs based on group-level data, we minimize the 507 

possibility of inflated effect sizes when analyzing inter-individual differences in brain activation (Vul 508 

et al., 2009).  509 

Functional localization of the R DLPFC and the amygdala via the categorization task 510 

In the functional localizer task, participants categorized numbers (-1, 0, +1) and faces (fearful, 511 

neutral, happy) as either negative, neutral, or positive (Fig. 4A). The contrast between neutral and 512 

fearful faces revealed a region within an initial a priori defined R DLPFC mask which responded more 513 

strongly to neutral (versus fearful) faces [peak voxel coordinate: x=46 y=44 z=18, T(25)=5.151, 514 

pFWE,SVC=0.013; one-tailed paired t-test, Fig. 4B,C]. A negative correlation with trait anxiety shows 515 

that the difference in DLPFC BOLD signal between fearful and neutral faces is larger for more anxious 516 

individuals [Fig. 4D; r=-0.514, p=0.006, two-tailed Pearson correlation].  517 

The contrast between faces and numbers revealed bilateral activation within an initial a priori 518 

defined amygdala mask, which responded more strongly to faces (versus numbers) [peak voxel 519 

coordinates: x=-20 y=-6 z=-14, T(25)=6.025, pFWE,SVC=0.001; x=20 y=-4 z=-14, T(25)=6.833, 520 

pFWE,SVC<0.001; one-tailed paired t-tests, Fig. 4E,F]. The collapsed activity within this bilateral ROI 521 

showed no correlation with trait anxiety [Fig. 4G; r=-0.005, p=0.981, two-tailed Pearson correlation]. 522 
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The obtained R DLPFC cluster and the bilateral amygdala cluster are subsequently used as ROIs in the 523 

analyses of prediction error encoding in the learning task. 524 

Neural correlates of prediction errors  525 

To assess the neural correlates of the unique contribution of ϕ0FF (vs. ϕ0NH) to the prediction 526 

error signal, the prediction error term of the full model (δFull) is separated into two terms, δBoost and 527 

δBasic (see Methods). To assess their neuronal correlates, the beta parameter estimates of the δBoost 528 

and the δBasic terms were extracted from all voxels within the functionally defined R DLPFC and 529 

amygdala ROIs. The resulting average beta parameters for each ROI were entered into two separate 530 

repeated measures ANOVAs, one for each prediction error type, with factors Gain/Loss (Gain, Loss) 531 

and Feedback type (Correct, Incorrect), and Trait anxiety as continuous covariate.  532 

R DLPFC activity correlates with the ‘Basic’ prediction error 533 

For the δBasic term, a repeated measures ANOVA showed a significant intercept term [F(1, 534 

25)=18.39, p<0.001, ANOVA], but no significant main effects or interactions [all p-values > 0.16, 535 

ANOVA; Table 6]. To illustrate this effect, the individual beta parameters for the δBasic term collapsed 536 

across the four feedback conditions for the R DLPFC ROI are shown in Fig. 5B. 537 

Table 6 around here 538 

This result shows that BOLD signal in the R DLPFC correlates significantly with the magnitude of 539 

the ‘Basic’ prediction error signal.  540 

R DLPFC activity correlates with the prediction error ‘Boost’ in anxious individuals 541 

For the δBoost term, a repeated measures ANOVA revealed significant interactions between Trait 542 

anxiety x Gain/Loss [F(1, 25)=6.04, p=0.021, ANOVA], and Trait anxiety x Feedback [F(1, 25)=4.68, 543 

p=0.040, ANOVA], but no significant Trait anxiety x Gain/Loss x Feedback interaction [F(1,25)=0.62, 544 

p=0.438, ANOVA]. Individual beta parameters for the δBoost term in the four feedback conditions are 545 

shown in Fig. 5C. Importantly, the two a priori hypotheses were confirmed via a positive correlation 546 
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between trait anxiety and the beta parameters of δBoost in the Gain Incorrect feedback condition 547 

[r=0.468, p=0.007, one-tailed Pearson correlation; Fig. 5D], and a negative correlation in the Loss 548 

Incorrect feedback condition [r=-0.697, p<0.001, one-tailed Pearson correlation; Fig. 5G]. By contrast, 549 

trait anxiety did not correlate with the beta parameters of δBoost in the Gain Correct feedback 550 

condition [r=-0.147, p=0.463, two-tailed Pearson correlation; Fig. 5E] nor in the Loss Incorrect 551 

feedback condition [r=-0.107, p=0.594, two-tailed Pearson correlation; Fig. 5F]. Besides a significant 552 

Gain/Loss x Feedback interaction [F(1, 25)=5.74, p=0.024], no other effects or interactions are 553 

significant (all p-values > 0.24; see Table 7 for a full ANOVA table).  554 

Table 7 around here 555 

In summary, these results confirm that threat-related distractors contribute to altered prediction 556 

error encoding in the R DLPFC for anxious individuals, and specifically so in conditions where anxiety 557 

correlated with learning performance. 558 

Prediction error coding in the Amygdala 559 

As in the previous analysis, the beta parameter estimates corresponding to the two prediction 560 

error terms, δBoost and δBasic, were extracted from all voxels within the amygdala ROI. The resulting 561 

average beta parameters where entered into the same ANOVAs used for the R DLPFC ROI analysis. 562 

Amygdala activity does not correlate with the ‘Basic’ prediction error 563 

For the δBasic term, the repeated measures ANOVA revealed no significant main effects or 564 

interactions [all p-values>0.14, ANOVA; Table 8]. The intercept term, collapsed across conditions and 565 

anxiety levels is shown in Fig. 5I for visualization purposes.  566 

Table 8 around here 567 

Amygdala activity does not correlate with the prediction error ‘Boost’  568 
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For the δBoost term, the repeated measures ANOVA revealed no significant main effects or 569 

interactions [all p-values>.17, ANOVA; Table 9]. For visualization purposes, the beta parameters for 570 

each condition are shown in Fig. 5J, and correlations with trait anxiety are shown in Fig. 5K-N. 571 

Table 9 around here 572 

In summary, no evidence supported a role for the amygdala in prediction error coding. 573 

Whole-brain correlates of the ‘Basic’ prediction error 574 

To validate our model-based fMRI procedure, we tested whether activity in the ventral 575 

tegmental area (VTA), a region well known for its role in encoding different aspects of reward, 576 

including prediction errors (D'Ardenne et al., 2008; Bromberg-Martin et al., 2010; Aberg et al., 2015; 577 

Schultz, 2016; Aberg et al., 2020a), correlated with the δBasic term. This analysis was performed by 578 

averaging the beta parameters related to the δBasic term for all voxels within a recently developed 579 

probabilistic in vivo atlas of the VTA (Fig. 6A; Pauli, Nili, & Tyszka, 2018(Pauli et al., 2018)). Indeed, 580 

the average beta parameters of this VTA ROI was significantly larger than 0.0 [mean (±SEM)=0.068 581 

(±0.021), t(26)=3.291, p=0.001, one-tailed t-test, Fig. 6B]. Next, correlations with the δBasic term were 582 

tested across the whole-brain using a FWE-corrected threshold of 0.05. A full list of regions 583 

correlating with δBasic, surviving a threshold of a FWE-corrected threshold of 0.05, is reported in Table 584 

10. In short, significant activation was observed in a midbrain region close to the previously used VTA 585 

mask (Fig. 6C,D), in the dorsal anterior cingulate cortex (dACC)/dorsomedial prefrontal cortex 586 

(dmPFC; Fig. 6D), in the bilateral striatum (Fig. 6E,F), and in the bilateral anterior insula (Fig 6G,H). 587 

These regions have previously been implicated in the neuronal coding of prediction errors (Garrison 588 

et al., 2013).  589 

Table 10 around here 590 

 591 
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Discussion 595 

An increased sensitivity to threat-related information is advantageous in the context of 596 

immediate and actual threat avoidance (e.g. when hearing a threatening growl in the forest; Ohman, 597 

1986). However, it is maladaptive if neutral/safe cues in the environment acquire aversive 598 

associations based on irrelevant threat-related information, and these associations subsequently 599 

guide behavior.  600 

Here, we report that anxious individuals avoided a neutral stimulus following its pairing with the 601 

feedback combination of relevant 0₪ neutral feedback and irrelevant fearful faces, even though 602 

participants were explicitly instructed that the faces are unrelated to task performance. By showing 603 

that exposure to irrelevant affective information lingers and affect behavior beyond the immediate 604 

situation, our study extends previous research which focused on the immediate impact of affective 605 

distractors, such as alterations in response times, hit rates, or brain activations (e.g. within the same 606 

trial; Bar-Haim et al., 2007).   607 

Importantly, the threat-related distractors did not simply disrupt the learning process, as would 608 

be indicated by an overall reduced learning performance in conditions with the feedback 609 

combination of fearful faces and neutral 0Ⴣ feedback. By contrast, anxious individuals displayed 610 

respectively reduced or improved performance in conditions where this feedback combination 611 

represented the Correct or the Incorrect outcome. In support, behavioral modeling further showed 612 

that high anxiety was associated with a reduced subjective value of the neutral 0Ⴣ feedback when 613 

paired with fearful faces both when it signaled Correct and Incorrect outcomes (as compared to 614 

happy and neutral faces). A third dissociation was observed in the fMRI data, with a stronger / 615 

weaker coupling between the prediction error signal - uniquely accounted for by fearful faces – and R 616 

DLPFC BOLD signal for feedbacks where anxious individuals showed increased / decreased learning 617 

performance. Together, these results indicate that anxiety is associated with an increased integration 618 

of irrelevant threat-related information during feedback processing (and not just disrupted learning 619 
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processes). From an evolutionary perspective, it makes sense that information related to potential 620 

threats are integrated during learning, rather than disrupting it. However, this ability comes at the 621 

cost of increased avoidance of beneficial situations in which a potential treat was occasionally 622 

detected.  623 

It has been suggested that anxiety disorders develop from abnormal learning processes, e.g. 624 

amplified fear learning (Lissek et al., 2005) and over-generalization (i.e. the transfer of aversive 625 

properties from a fear-conditioned neutral stimulus to other perceptually and conceptually similar 626 

neutral stimuli (Lissek et al., 2014). Additionally, trait anxiety (e.g. the general tendency to 627 

experience distress in everyday life situations), may indicate a vulnerability to develop a mental 628 

illness (Chambers et al., 2004; Weger and Sandi, 2018). The identification of abnormal learning 629 

processes in trait anxiety could therefore help understand external factors and internal mechanisms 630 

that contribute to the development of dysfunctional behaviors and mental illness. Based on the 631 

present results, we propose that this includes the maladaptive formation of associations between 632 

neutral stimuli/events and irrelevant threat-related information, as these may result in inappropriate 633 

avoidance behaviors. 634 

Anxious individuals showed increased integration of fearful faces with the neutral 0Ⴣ feedback, but 635 

not with +1Ⴣ and -1Ⴣ feedbacks. One potential explanation for this result could be that anxious 636 

individuals call upon additional, salient sources of information to resolve uncertain feedbacks. To 637 

clarify, in the present study the -1Ⴣ and +1Ⴣ feedbacks always indicated the worst and best possible 638 

outcomes, while the 0Ⴣ feedback signaled either a correct (in Loss conditions) or an incorrect (in 639 

Gain conditions) outcome, causing it to be more uncertain. This interpretation is in-line with findings 640 

that anxiety increases aversion to uncertainty (Hartley and Phelps, 2012; Grupe and Nitschke, 2013), 641 

the motivation to reduce uncertainty (Aberg et al., 2022), and distractibility by threat-related 642 

information (Bar-Haim et al., 2007). Future research may profit from looking at how irrelevant salient 643 

information guides the processing of uncertain feedback in high anxiety. 644 
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The present study used a between-subject design to study the interaction between anxiety and 645 

threat-related distractors during learning. A complementary way to assess behavioral interactions 646 

with anxiety is via alterations of stress and state anxiety, something which could be accomplished by, 647 

for example threat-of-shock manipulations (Schmitz and Grillon, 2012; Robinson et al., 2013). This 648 

approach is beneficial because it could be used to combine a powerful within-subject design (i.e. 649 

conditions with and without stress, or induced anxiety) with a between-subject design (e.g. trait 650 

anxiety measures, or patient versus control groups). This approach may be particularly fruitful to 651 

further research on findings that individuals with anxious predispositions respond differently in 652 

stressful situations (Meijer, 2001; Indovina et al., 2011; Aberg and Paz, 2022). 653 

In accord with previous studies (for a review, see Garrison et al., 2013),  a number of brain 654 

regions in the present study, including the ventral tegmental area, the striatum, anterior cingulate 655 

cortex, anterior insula, and the R DLPFC, encoded a ‘basic’ prediction error signal. However, only the 656 

R DLPFC of anxious individuals correlated with additional variance in the prediction error signal that 657 

was uniquely attributed to the fearful faces. This correlation was positive in conditions where anxiety 658 

improved performance, but negative when anxiety show impaired performance. These results are in 659 

accordance with previous research showing that the strength of neuronal prediction error encoding 660 

correlates with the amount of learning (Schönberg et al., 2007; Aberg et al., 2015, 2016a), and 661 

complement behavioral and physiological reports of links between personality traits and 662 

reinforcement learning biases (Browning et al., 2015b; Aberg et al., 2016b; Aberg et al., 2017). These 663 

results also bridge separate reports of an involvement of the DLPFC in attentional bias to threat 664 

(Bishop, 2009), prediction error encoding (Fletcher et al., 2001; Corlett et al., 2004), and the 665 

acquisition of irrelevant associations via altered prediction error encoding (Corlett and Fletcher, 666 

2012, 2015). Indeed, similar and converging pieces of evidence support a theory in which aberrant 667 

prediction error encoding in the R DLPFC is believed to enable maladaptive learning about stimuli, 668 

events, and outcomes that are not related (Corlett et al., 2007, 2016). The present study adds to this 669 

theory by suggesting that one source of ‘aberrancy’ stems from failures in suppressing attention to 670 
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irrelevant sources of threat-related information, i.e. these stimuli may grab attention and engage 671 

learning processes like any other (relevant) stimulus, and particularly so with high anxiety.  672 

By contrast, we did not observe any involvement of the amygdala in coding prediction errors, nor 673 

any interaction with trait anxiety. Although the amygdala plays a prominent role in fear learning and 674 

anxiety (Phelps, 2006; Duval et al., 2015; Tovote et al., 2015), only scarce evidence report 675 

correlations between amygdala activity and prediction errors (McHugh et al., 2014; Meffert et al., 676 

2015; Aberg et al., 2020b). One possibility is that the amygdala codes for other features related to 677 

learning and the prediction error signal, such as surprise, sometimes defined as the unsigned 678 

prediction error signal (Li et al., 2011; Klavir et al., 2013). Further, although the amygdala is activated 679 

by affective distractors, and particularly so for more anxious individuals (Bishop et al., 2004; Bishop, 680 

2009), it has to our best knowledge not been implicated in the learning of irrelevant information.  681 

Limitations 682 

Anxiety was estimated using the standard Spielberger’s Trait-Anxiety Inventory (Spielberger et 683 

al., 1983), which provides a gradual scale for the normal (sub-clinical) range of anxiety. Using a 684 

continuous scale has the benefit of correlating behavior across a distribution of anxiety scores, rather 685 

than just comparing performance across two somewhat arbitrarily divided populations (patients vs. 686 

controls). Additionally, by studying anxiety within the normal range, we can determine how 687 

maladaptive decisions are mediated by irrelevant distractors even in healthy individuals. Because 688 

such maladaptive decision may have a huge impact on daily-life in all individuals, and definitely on 689 

societies and industry, we actually believe that more studies should use gradual scales over non-690 

clinical populations (Browning et al., 2015a; Fung et al., 2019; Gagne et al., 2020).  That said, 691 

Spielberger’s Trait-Anxiety Inventory has been debated for its lack of convergent and discriminant 692 

validity, suggesting that it estimates ‘negative affectivity’ rather than proneness to anxiety per-se 693 

(Balsamo et al., 2013). Yet, because negative affectivity is closely linked to psychopathology (Kotov et 694 
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al., 2010; Stanton and Watson, 2014), and has been noted as a vulnerability factor for developing 695 

anxiety and depression (Clark et al., 1994), our results still bear significant relevance.  696 

Our main behavioral results were replicated between two separate groups of participants (i.e. 697 

negative correlations between trait anxiety and learning performance in the Contradictory Loss 698 

condition was observed in both the pilot and in the fMRI study), and were replicated within another 699 

condition in the fMRI study (i.e. the feedback combination of fearful faces + neutral 0Ⴣ feedback 700 

increased behavioral switching in both the Contradictory Loss and the Affirmative Gain condition). 701 

Furthermore, these latter results were associated with two dissociations in the fMRI results, namely 702 

opposite correlations with trait anxiety and the coupling between R DLPFC activity and the prediction 703 

error signal associated with fearful faces. Being able to replicate results across- and within groups 704 

speaks in favor of the robustness of our results.  705 

Importantly, we would like to stress that our fMRI findings were obtained with a relatively small 706 

sample size (N=27), and therefore needs to be regarded as provisional. In particular, although many 707 

factors may contribute to the reliability of brain-behavior correlations in fMRI data, including 708 

behavioral task, amount of data per participant, targeted brain regions, and method-of-analysis, 709 

recent efforts suggest “… that with sample sizes in the range of those often used in fMRI studies (i.e., 710 

20–30 participants), one cannot be confident that all of the regions appearing to correlate with 711 

individual differences in behavior are reliable, or that other regions have not been missed 712 

altogether.” (Grady et al., 2021). Future studies should therefore expand on the issue and validate 713 

the robustness of the present fMRI results. 714 

Conclusion 715 

In conclusion, the present study displays a learning bias for individuals with high trait anxiety 716 

caused by an entanglement between threat-related distractors and on-going learning processes. This 717 

bias may be particularly unhealthy in modern society, where exposure to irrelevant threat-related 718 

information is increasingly prevalent via online news reporting and social networking sites. The 719 
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present study describes a new pathway for how threat-related information may become entrenched 720 

in the anxious psyche. 721 

 722 

  723 
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Tables 926 

Table 1. Object pairs used in the reinforcement learning task.  927 

Pair Object descriptions 
Object 

numbers 

1 Pen, Pencil 167, 168
2 Glasses, Book 105, 30 
3 Chair, Table 53, 226 
4 Candle, Light bulb 44, 138
5 Key, Door 128, 76 
6 Tree, Flower 241, 91 
7 Belt, Pants 26, 162 
8 Carrot, Onion 48, 157
9 Apple, Pear 6, 166
10 Cat, Dog 49, 73 
11 Car, Bus 47, 39 
12 Lamp, Light switch 132, 139 
13 Water Glass, Wine glass 104, 258
14 Shoe, Socks 204, 211 
15 Telephone, Television 227, 228 
16 Moon, Sun 146, 222 
17 Pot, Pan 179, 101
18 Fork, Spoon 97, 215 

 928 

Table 2. Correlations between trait anxiety and learning performance in the pilot study. 929 

Condition Trials 16-20 Trials 26-30
r p-value r p-value 

Affirmative Gain  0.241 0.305 0.160 0.501 
Affirmative Loss -0.393 0.086 -0.090 0.705 
Contradictory Gain 0.179 0.451 0.288 0.219 
Contradictory Loss -0.548 0.013 -0.438 0.053 

r: Two-tailed uncorrected Pearson’s correlation coefficient. 930 

Table 3. Correlations between trait anxiety and learning performance in the fMRI study. Data 931 
was normalized based on the Neutral condition. 932 

Condition Trials 16-20 
r p-value

Affirmative Gain  0.640 <0.001
Affirmative Loss 0.049 0.810
Contradictory Gain 0.351 0.073
Contradictory Loss -0.394 0.042

r: Two-tailed uncorrected Pearson’s correlation coefficient.  933 
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 Table 4. Correlations between trait anxiety and the proportion of win-stay / lose-shift responses 934 
following neutral feedback in the fMRI study. Data was normalized based on the Neutral condition. 935 

Condition Win-stay Lose-shift 
r p-value r p-value 

Affirmative Gain  x X 0.343 0.080 
Affirmative Loss x X 0.108 0.591 
Contradictory Gain -0.134 0.505 x X 
Contradictory Loss -0.420 0.029 x x 

 936 
r: Two-tailed uncorrected Pearson’s correlation coefficient. X indicates that no such action was 937 

available for the neutral feedback in this condition. 938 

Table 5. Model fits and parameters. Mean (SEM) 939 

Parameters 

Models 

12ϕ 9ϕ 6ϕ0 3ϕ0 
ϕ0FF, 

ϕ0NH 

ϕ0FFG, 

ϕ0FFL,

ϕ0NH 

ϕ+1H, 

ϕ-1H 
3ϕ, 3ε 

3ϕ, 

εFF, 

εNH 

3ϕ, 

ε0FF, 

ε0NH 

Negative LLE 110.8 
(7.8) 

113.6 
(7.8) 

113.9  
(7.8) 

117.8 
(7.8) 

118.7 
(7.8) 

117.8 
(7.7) 

117.3 
(7.7) 

117.7(
7.8) 

118.5(
7.8) 

118.6 
(7.8) 

BIC 303.9 
(15.6) 

291.9 
(15.6) 

286.8 
(15.5) 

276.9 
(15.5) 

272.8 
(15.6) 

276.8 
(15.5) 

275.9(
15.5) 

282.4 
(15.6) 

278.3 
(15.5) 

278.5 
(15.5) 

α 0.22 
(0.04) 

0.21 
(0.04) 

0.25 
(0.04) 

0.23 
(0.04) 

0.21 
(0.03) 

0.24 
(0.04) 

0.23 
(0.04) 

0.23 
(0.04) 

0.24 
(0.04) 

0.24 
(0.04) 

β 0.07 
(0.01) 

0.07 
(0.02) 

0.10 
(0.02) 

0.13 ( 
0.02) 

0.12 
(0.01) 

0.12 
(0.02) 

0.10 
(0.02) 

0.19 
(0.04) 

0.19 
(0.03) 

0.14 
(0.03) 

ϕ-1   -0.25 
(0.06) 

-0.27 
(0.07) 

-0.23 
(0.06) 

-0.21 
(0.06) 

 -0.77 
(0.05) 

-0.78 
(0.05) 

-0.26 
(0.07) 

ϕ0       0.21 
(0.06) 

0.05 
(0.08) 

0.03 
(0.08) 

0.26 
(0.12) 

ϕ+1   0.70 
(0.06) 

0.81 
(0.06) 

0.87 
(0.04) 

0.76 
(0.07) 

 0.80 
(0.06) 

0.74 
(0.06) 

0.82 
(0.06) 

ϕ0NH     0.37 
(0.06) 

     

ϕ-1FFL 
-0.40 
(0.08) 

-0.23 
(0.07) 

        

ϕ-1NL 
-0.25 
(0.08) 

-0.15 
(0.06) 

        

ϕ-1HL 
-0.26 
(0.08) 

-0.25 
(0.07) 

    -0.25 
(0.08) 

   

ϕ0FFL 
0.15 

(0.03) 
 0.21 

(0.05) 
0.27

(0.07) 
  

ϕ0NL 
0.20 

(0.06) 
 0.26 

(0.06) 
       

ϕ0HL 
0.16 

(0.07) 
 0.22

(0.05) 
  

ϕ+1FFG 0.59 0.50         
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(0.06) (0.06) 

ϕ+1NG 0.69 
(0.06) 

0.59 
(0.07) 

        

ϕ+1HG 0.62 
(0.06) 

0.53 ( 
0.07) 

    0.71 
(0.07) 

   

ϕ0FFG 0.08 
(0.09) 

 0.15 
(0.09) 

  0.14 
(0.12) 

    

ϕ0NG 0.10 
(0.09) 

 0.14
(0.09) 

  

ϕ0HG 0.26 
(0.08) 

 0.30 
(0.09) 

       

ϕ0FF 
 0.09 

(0.05) 
 0.29 

(0.07) 
0.35 

(0.06) 
     

ϕ0N  0.15 
(0.04) 

 0.33 
(0.06) 

 0.29 
(0.06) 

    

ϕ0H  0.14 
(0.05) 

 0.32
(0.07) 

  

ϕ-1FF,NL 
      -0.18 

(0.07) 
   

ϕ+1FF,NL 
   0.59

(0.07) 
  

εFF 
       0.40 

(0.09) 
0.45 

(0.06) 
 

εN    0.48 
(0.08) 

 

εH        0.44 
(0.09) 

  

εNH     0.49 
(0.06) 

ε0FF 
         0.04 

(0.12) 

ε0NH     0.07 
(0.11) 

LLE is the log-likelihood estimate. BIC is the Bayes Information Criterion. α denotes the learning 940 

rate, β determines the trade-off between exploration and exploitation, ϕX is the subjective value for 941 

feedback combination X. For example, ϕ+1 is the subjective value for -1₪ feedback, ϕ+1 is the 942 

subjective value for +1₪ feedback, ϕ0FF is the subjective value for the feedback combining 0₪ and 943 

fearful faces, and ϕ0NH is the subjective value for 0₪ + happy or fearful face. εX is the bias added for 944 

feedback combination X. For example, ε0FF is the bias term for neutral 0₪ feedback presented 945 

together with fearful faces, and εH is the bias term for happy faces.  946 

Table 6. Repeated measures ANOVA. R DLPFC beta parameter estimates for the ‘Basic’ prediction 947 
error term. 948 

Predictor Sum of 
Squares df Mean of 

Squares F p η୮ଶ  
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(Intercept) 3.449 1 3.449 18.393 < 0.001  
TrAnx 0.386 1 0.386 2.056 0.164 0.076 
Error 4.688 25 0.1875    
GaLo 0.0005 1 0.0005 0.001 0.972 <0.0001 
TrAnx x GaLo 0.003 1 0.003 0.008 0.927 0.0003
Error(GaLo) 10.02 25 0.401    
Feedback 0.024 1 0.024 0.185 0.671 0.007 
TrAnx x Feedback 0.227 1 0.227 1.776 0.195 0.066 
Error(Feedback) 3.196 25 0.128  
GaLo x Feedback 0.26061 1 0.261 1.357 0.255 0.051 
TrAnx x GaLo x Feedback 0.001 1 0.001 0.004 0.951 0.0002 
Error(GaLo x Feedback) 4.801 25 0.192    

TrAnx = Continuous covariate Trait anxiety; GaLo = Factor Gain/Loss (Gain or Loss pair); Feedback 949 

= Factor Feedback (Good, Bad). pGG = Greenhouse-Geisser corrected p-value. η୮ଶ  = Partial eta-950 

squared. * p < 0.05.  951 

Table 7. Repeated measures ANOVA. R DLPFC beta parameter estimates for the ‘Boost prediction 952 
error term. 953 

Predictor Sum of 
Squares df Mean of 

Squares F p η୮ଶ  

(Intercept) 0.131 1 0.131 1.389 0.250  
TrAnx 0.055 1 0.055 0.584 0.452 0.023 
Error 2.365 25 0.095    
GaLo 0.009 1 0.009 0.067 0.798 0.003 
TrAnx x GaLo 0.763 1 0.763 6.041 0.021 0.195 
Error(GaLo) 3.158 25 0.126  
Feedback 0.027 1 0.027 0.171 0.683 0.007 
TrAnx x Feedback 0.737 1 0.737 4.676 0.040 0.158 
Error(Feedback) 3.939 25 0.158    
GaLo x Feedback 0.802 1 0.802 5.742 0.024 0.187 
TrAnx x GaLo x Feedback 0.087 1 0.087 0.622 0.438 0.024 
Error(GaLo x Feedback) 3.492 25 0.140    

TrAnx = Continuous covariate Trait anxiety; GaLo = Factor Gain/Loss (Gain or Loss pair); Feedback 954 

= Factor Feedback (Good, Bad). pGG = Greenhouse-Geisser corrected p-value. η୮ଶ  = Partial eta-955 

squared. * p < 0.05.  956 

Table 8. Repeated measures ANOVA. Amygdala beta parameter estimates for the ‘Basic’ 957 
prediction error term. 958 

Predictor Sum of 
Squares df Mean of 

Squares F p η୮ଶ  

(Intercept) 0.16818 1 0.16818 2.3112 0.14099  
TrAnx 0.008879 1 0.008879 0.12202 0.72978 0.004857 
Error 1.8192 25 0.072768  
GaLo 0.05135 1 0.05135 0.73074 0.40076 0.028399 
TrAnx x GaLo 0.001819 1 0.001819 0.025884 0.87348 0.001034 
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Error(GaLo) 1.7568 25 0.070272    
Feedback 0.068436 1 0.068436 1.1218 0.29966 0.042946 
TrAnx x Feedback 0.004216 1 0.004216 0.069115 0.79478 0.002757
Error(Feedback) 1.5251 25 0.061006    
GaLo x Feedback 0.013725 1 0.013725 0.25587 0.61741 0.01013 
TrAnx x GaLo x Feedback 0.007149 1 0.007149 0.13327 0.71814 0.005302 
Error(GaLo x Feedback) 1.3411 25 0.053643  

TrAnx = Continuous covariate Trait anxiety; GaLo = Factor Gain/Loss (Gain or Loss pair); Feedback 959 

= Factor Feedback (Good, Bad). pGG = Greenhouse-Geisser corrected p-value. η୮ଶ  = Partial eta-960 

squared. * p < 0.05.  961 

Table 9. Repeated measures ANOVA. Amygdala beta parameter estimates for the ‘Boost 962 
prediction error term. 963 

Predictor Sum of 
Squares df Mean of 

Squares F p η୮ଶ  

(Intercept) 0.012961 1 0.012961 0.18998 0.66668  
TrAnx 0.11583 1 0.11583 1.6977 0.20446 0.063589 
Error 1.7057 25 0.068226    
GaLo 0.11561 1 0.11561 1.9114 0.17903 0.071026 
TrAnx x GaLo 0.040593 1 0.040593 0.67114 0.4204 0.026144
Error(GaLo) 1.5121 25 0.060483    
Feedback 0.011858 1 0.011858 0.274 0.60527 0.010842 
TrAnx x Feedback 0.026619 1 0.026619 0.6151 0.44024 0.024013 
Error(Feedback) 1.0819 25 0.043276  
GaLo x Feedback 0.044516 1 0.044516 0.54709 0.4664 0.021415 
TrAnx x GaLo x Feedback 0.076804 1 0.076804 0.94392 0.34058 0.036383 
Error(GaLo x Feedback) 2.0342 25 0.081367    

TrAnx = Continuous covariate Trait anxiety; GaLo = Factor Gain/Loss (Gain or Loss pair); Feedback 964 

= Factor Feedback (Good, Bad). pGG = Greenhouse-Geisser corrected p-value. η୮ଶ  = Partial eta-965 

squared. * p < 0.05.  966 

967 
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Table 10. Brain regions showing significantly positive correlations between BOLD signal and the 968 

basic prediction error term. pFWE indicates familywise error rate (FWEr) corrected p-values for peak 969 

voxel activities across the whole-brain. T-statistics were obtained from t-tests. Initial search 970 

threshold: p=0.001, minimum cluster size: 5 voxels. 971 

Brain region Hemisphere MNI peak coordinate T-value PFWE x y z
Thalamus Right 12 -6 12 8.517 <0.001
Superior frontal gyrus Left -6 26 54 8.498 <0.001
Supplemental Motor Area Left -8 20 44 8.325 0.001 
Medial Frontal Gyrus Left -4 28 38 8.282 0.002 
Caudate Right 18 12 12 8.396 0.001
Supplemental Motor Area Left -6 8 62 8.347 0.001
Superior Frontal Gyrus Left -28 56 20 8.343 0.001 
Putamen Left -22 4 8 8.293 0.001 
Caudate Left -18 12 12 6.897 0.034 
Putamen Left -32 -12 -4 8.205 0.002
Putamen Left -26 -10 2 7.283 0.015 
Superior Frontal Gyrus Left -28 56 0 8.093 0.002 
Supramarginal Gyrus Left -54 -46 36 7.899 0.004 
Insula Right 28 20 -10 7.796 0.004
Insula Left -30 26 -4 7.609 0.007 
Insula Left -34 18 -10 7.397 0.011 
Superior Frontal Gyrus Right 22 58 28 7.544 0.008 
Medial Frontal Gyrus Left / Right 0 36 46 7.390 0.011
Supramarginal Gyrus Right 54 -50 38 7.330 0.013 
White Matter Left -12 -8 4 7.252 0.016 
Midbrain Left -8 -24 -16 7.131 0.021 

 972 

 973 

  974 
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Figure legends 975 

Figure 1. A. Principle of the learning task in the pilot study. In each trial, participants select one object in a pair of objects. 976 
The best and worst object in each pair respectively provides correct feedback with a probability of 0.7 and 0.3. Each pair 977 
is presented 30 times, allowing participants to learn which the best object is by trial-and-error. B. Illustration of a trial 978 
progression. C. Schematic of the outcomes provided in each pair type in the pilot study. In total four different pairs types 979 
were presented: Contradictory Loss, Affirmative Loss, Contradictory Gain, and Affirmative Gain. D,E. The average change 980 
in performance across participants for the different pair types in Gain (D) and Loss (E) conditions. A hit is defined as the 981 
selection of the best object in a pair. F-I. Correlations between Trait anxiety and the average learning performance for 982 
trials 16-20 in Affirmative and Contradictory pair types. Trait anxiety correlated significantly with learning performance 983 
in Contradictory Loss pairs only (I). *p<0.05, ns=not significant (p>0.05), r = Pearson’s correlation coefficient, ρ = 984 
Spearman’s rank-order correlation coefficient. 985 

Figure 2. A. Schematic of the outcomes provided in each pair type in the fMRI study. Neutral pairs acted as control 986 
conditions by presenting Neutral faces for both Correct and Incorrect outcomes. In total six different pairs types were 987 
presented: Contradictory Loss, Affirmative Loss, Neutral Loss, Contradictory Gain, Affirmative Gain, and Neutral Gain. B. 988 
The average change in performance across participants for the different pair types in Gain and Loss conditions. A hit is 989 
defined as the selection of the best object in a pair. Learning was statistically assessed via the average performance in 990 
trials 16-20. C-F. Learning in Affirmative and Contradictory pair types relative the Neutral control condition. Trait anxiety 991 
significantly improved/impaired learning in Affirmative Gain pairs (C)/Contradictory Loss pairs (F). G-J. Win-stay and 992 
Lose-shift decisions in Affirmative and Contradictory pair types relative their Neutral counterparts. Trait anxiety 993 
significantly increased behavioral switching in Affirmative Gain pairs (J) and in Contradictory Loss pairs (M). *p<0.05, 994 
***p<0.001, ns=not significant (p>0.05). 995 

Figure 3. A. Difference in Bayesian Information Criterion relative the most parsimonious model (highlighted in red). The 996 
inset shows the protected exceedance probability (XPp) for these models. The most parsimonious model was the most 997 
likely model, as evidenced by an exceedance probability of 1.0. B. The average model-simulated change in performance 998 
for the different conditions in Gain and Loss pairs. C-F. Model-simulated learning in Affirmative and Contradictory pair 999 
types relative their Neutral control conditions. Trait anxiety significantly improved/impaired learning in Affirmative Gain 1000 
pairs (C)/Contradictory Loss pairs (F). G. Trait anxiety correlated negatively with the difference in the model-fitted 1001 
subjective values of the neutral 0₪ outcome paired with fearful faces (ϕ0FF) versus neutral/happy faces (ϕ0NH). H,I. 1002 
Model-simulated performance improvements for gradual changes in the difference between ϕ0FF and ϕ0NH. Smaller 1003 
values of ϕ0FF (vs. ϕ0NH) improves performance in Affirmative Gain pairs (H), but impairs performance in Contradictory 1004 
Loss pairs (I). For illustration purposes, the performance improvements for when ϕ0FF is equal to ϕ0NH is subtracted from 1005 
all data points, the x-axis shows ϕ0NH-ϕ0FF, and the separate lines for Neutral and Contradictory pairs (relative 1006 
Affirmative pairs) in H were merged into one line, and similarly were the lines for Neutral and Affirmative pairs (relative 1007 
Contradictory pairs) in I. J-K. For a model that estimates separate values for the neutral 0₪ outcome paired with fearful 1008 
faces in Gain (ϕ0FFH) and Loss (ϕ0FFL) conditions, trait anxiety correlated negatively with the difference in the fitted 1009 
subjective value between the neutral 0₪feedback paired with fearful faces in both Loss (J) and Gain (K) pairs, as 1010 
compared to neutral/happy faces. L-M. For a model that estimates separate values for the neutral 0₪ outcome paired 1011 
with neutral (ϕ0N) or happy (ϕ0H) faces, trait anxiety correlated negatively with the difference in the fitted subjective 1012 
value between the neutral 0₪feedback paired with fearful faces, as compared to both neutral (L) and happy (M) faces. 1013 
*p<0.05, ** p<0.01, *** p<0.001. 1014 

Figure 4 A. Schematic of the functional localizer task. In each trial a number (-1, 0, +1) or face (Fearful, Neutral, Happy) 1015 
was presented for 2.5s. Participants indicated whether the stimulus was perceived as negative, neutral, or positive. No 1016 
feedback was presented and participants were not given any particular instructions regarding how stimuli should be 1017 
categorized. B. The contrast between Neutral and Fearful faces revealed a region in the a priori R DLPFC mask that was 1018 
significantly more activated by Neutral versus Fearful faces. C. For visualization purposes, the average beta parameter 1019 
estimates for Neutral and Fearful faces were extracted for all voxels within the R DLPFC cluster shown in B. D. Trait 1020 
anxiety correlated negatively with the contrast between Fearful and Neutral faces for the R DLPFC cluster. E. The contrast 1021 
between Faces and Numbers revealed bilateral regions in the a priori amygdala mask that was significantly more 1022 
activated by Faces versus Numbers. F. For visualization purposes, the average beta parameter estimates for Faces and 1023 
Numbers were extracted for all voxels within the bilateral amygdala cluster shown in E. G. Trait anxiety did not correlate 1024 
significantly with the contrast between Faces and Numbers for the amygdala cluster. 1025 

Figure 5. A. The R DLPFC ROI used to analyze prediction error encoding in the learning task. B. The average (solid line) 1026 
and individual (dots) beta parameters for the ‘Basic’ prediction error term, δBasic, averaged across voxels within the R 1027 
DLPFC for the four different feedback types. On average, activity in the R DLPFC ROI correlated significantly with the 1028 
‘Basic’ prediction error term independent of Feedback type and Trait anxiety. C. The average (solid line) and individual 1029 
(dots) beta parameters for the prediction error ‘Boost’ term, δBoost, averaged across voxels within the R DLPFC for the 1030 
four different feedback types. On average, activity in the R DLPFC ROI did not correlate with δBoost across the four 1031 
feedback types, but showed significant interactions with trait anxiety and feedback types (see main text and D-G). D-G. 1032 
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Correlations between trait anxiety and δBoost within the four different feedback types. Trait anxiety correlated positively 1033 
with δBoost for Incorrect feedback in Gain pairs (D) and negatively with δBoost for Correct feedback in Loss pairs (G). The 1034 
different feedbacks presented in each feedback type is shown above the corresponding plot. The fitted subjective values 1035 
for the 0₪ feedbacks differed between fearful and happy/neutral faces. H. The amygdala ROI used to analyze prediction 1036 
error encoding in the learning task. I. The average (solid line) and individual (dots) beta parameters for the ‘Basic’ 1037 
prediction error term, δBasic, averaged across voxels within amygdala for the four different feedback types. On average, 1038 
activity in the amygdala ROI did not correlate with the ‘Basic’ prediction error term nor was there any interaction with 1039 
trait anxiety or feedback types. J. The average (solid line) and individual (dots) beta parameters for the prediction error 1040 
‘Boost’ term, δBoost, averaged across voxels within the amygdala ROI for the four different feedback types. On average, 1041 
activity in the amygdala ROI did not correlate with δBoost nor were there any interactions with trait anxiety or feedback 1042 
types. K-N. For visualization purposes, correlations between trait anxiety and δBoost for the four different feedback types 1043 
are displayed. **p<0.01, ***p<0.001, ns = not significant (p>0.05). 1044 

Figure 6. A. Schematic of the ventral tegmental area (VTA) ROI. B. Average (solid line) and individual (dots) beta 1045 
parameter estimates for the ‘Basic’ prediction error term, δBasic, within the VTA ROI. On average, BOLD signal in the VTA 1046 
ROI correlated significantly with δBasic (p=0.001, one-tailed t-test). C-H. BOLD signal in the Midbrain, Dorsomedial PFC, 1047 
Bilateral Striatum, and Bilateral Anterior Insula correlated significantly with δBasic after applying FWEr correction for the 1048 
whole-brain. For visualization purposes, average (solid line) and individual (dots) beta parameter estimates were 1049 
extracted from the peak voxels within each respective cluster. ** p<0.01. 1050 
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