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Abstract 

Enzyme kinetics are fundamental to an understanding of cellular metabolism and for crafting             

synthetic biology applications. For decades, enzyme characterization has been based on ​in vitro             

enzyme assays. However, kinetic parameters are only available for < 10% of reactions, and this               

data scarcity limits the predictive power of metabolic models. Here we review recent studies that               

leverage quantitative proteomics to gain insight into ​in vivo enzyme kinetics. We discuss             

findings on the relationship between ​in vivo and ​in vitro enzyme catalysis and show how               

proteomics can be used to characterize the efficiency of enzyme utilization across conditions.             

Lastly, the efficient use of enzymes is shown to rationalize preference for low energy-yield              

metabolic strategies, such as aerobic fermentation at high growth rate. 

Highlights 

1. Enzyme kinetic data is sparse, limiting the predictive power of metabolic models. 

2. Quantitative proteomics can give insight into ​in vivo​ enzyme kinetics. 

3. In vitro​ ​k​cat​ values and maximal ​in vivo​ catalytic rates generally concur. 

4. Efficient use of enzymes rationalizes usage of low energy-yield metabolic pathways. 

Introduction: kinetic data scarcity limits the scope of metabolic models 

Enzyme kinetics are commonly characterized by the apparent parameters ​k​cat and ​K​M​, i.e., the              

maximal turnover rate of the enzyme and the affinity (Michaelis constant) for reactants. Many              

models of cellular metabolism use ​k​cat and ​K​M as inputs to predict metabolic behaviors ​[1]​.               

However, more than 100 years after the introduction of ​k​cat and ​K​M by Michaelis and Menten in                 

1913 ​[2]​, coverage remains poor. In Figure 1 we show the fraction of measured ​k​cat values out of                  

all known metabolic reactions in ​Escherichia coli, Saccharomyces cerevisiae, Arabidopsis          

thaliana ​and Homo sapiens​. We evaluated coverage on a per-organism basis because some ​k​cat              
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values vary by orders of magnitude between organisms ​[3–5]​. For ​E. coli​, the most extensively               

biochemically characterized organism, ​k​cat values are available for only ​≈9​% of its ​≈2000             

enzyme-reaction pairs. Note that the actual coverage is even lower, if one considers the scarcity               

of information on ​k​cat for the backwards direction in reactions that are physiologically reversible              

(about half of the reactions in ​E. coli​ ​[6]​). For other organisms, the picture is even more grim.  

Measured ​k​cat values span over six orders of magnitude ​[5]​. This combination of wide dynamic               

range and extremely limited coverage highlights a major impediment to our ability to construct              

models and predict metabolic behaviors. For example, the ​≈​130 values reported in ​E. coli ​span               

a range well over a thousand fold with a standard deviation of 1.4 on a log​10 scale. Thus,                  

assignment of ​k​cat values to an unmeasured enzyme in ​E. coli by random sampling from the                

distribution (as is often done ​[7,8]​), is likely to err by more than tenfold on average. This can                  

lead to major prediction errors for example in models of protein burden. Unfortunately, the              

collection of kinetic constants remains painstaking and proceeds slowly. 

As reviewed below, another concern in the current use of kinetic constants is that reported               

values are usually measured in non-physiological conditions​, ​often without endogenous          

effectors present ​[9]​. These ​in vitro measurements lack ​in vivo ​elements that are known to have                

central roles in modulating enzyme kinetics e.g., allosteric regulation and posttranslational           

modifications ​[10,11]​. In this review we focus on recent progress on estimating enzyme kinetic              

parameters from high-throughput ​in vivo​ measurements, thereby alleviating data scarcity.  

 

 

 

 

Figure 1: Measured turnover numbers (​k​cat​) cover only a small fraction of the metabolic reactions in each                 

organism. The fraction of reactions with measured ​k​cat values in ​E. coli​, ​S. cerevisiae (budding yeast), ​A.                 

thaliana (Arabidopsis) and ​H. sapiens (human); measured ​k​cat values taken from ​[5]​. The total numbers of                

currently known reactions are obtained from genome scale metabolic reconstructions and correspond to             

2251 for ​E. coli ​[6]​, 1149 for budding yeast ​[12]​, 1363 for Arabidopsis ​[13] and 3673 for human ​[14]​. Since                    
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k​cat is defined per reaction direction and some reactions are physiologically reversible, the actual              

coverage is even lower.  

The ubiquity of factors not accounted for in traditional ​in vitro​ assays 

Most kinetic measurements in the literature are done ​in vitro​, often in conditions that represent               

the cellular environment poorly ​[15]​. A recent review by van Eunen and Bakker ​[16] discusses               

the differences between ​in vivo and ​in vitro conditions in enzyme assays, and shows that when                

using standardized ​in vivo​-like media, enzyme kinetic values considerably deviate from reported            

in vitro measurements, casting doubt on the physiological relevance of some ​in vitro             

measurements ​[17,18]​. 

Enzyme catalysis inside cells ​is affected by numerous factors. Several studies have quantified             

the reduction in net catalytic rates due to undersaturation of enzymes and backward flux caused               

by thermodynamic constraints ​[19–21]​. Allosteric regulation of enzymes was also shown to have             

an important role in shaping enzyme catalysis ​in vivo ​[10,11,21]​. However, allosteric regulators             

are often excluded from ​in vitro enzyme assays, since many are simply not known or the                

physiologically relevant concentration to use is unclear. Another key feature of enzyme catalysis             

in vivo​, which usually cannot be mimicked in traditional assays, is the presence of covalent               

posttranslational modifications. Such regulatory mechanisms are long known in eukaryotic          

organisms and recent years have shown the ubiquity of covalent posttranslational modifications            

even in microbes ​[22]​. 

Proteomics techniques now offer a unique opportunity to quantify covalent protein modifications            

on a large scale ​[23,24]​. Schmidt ​et al. ​[25] and Licona-Cassani ​et al. ​[26] recently used                

phosphoproteomics ​[27] to show that phosphorylation of central metabolic enzymes is           

widespread across bacterial metabolism. Similar phosphorylation patterns have been observed          

in yeast, where about 20% of central metabolic enzymes were shown to change their degree of                

phosphorylation during growth under different conditions ​[28]​. Methods like limited proteolysis           

coupled to MS and cross-linking MS are currently being used to look at conformational changes               

of enzymes and at assembly of enzymatic complexes ​in vivo ​[29,30]​. As allosteric regulation is               

often manifested by conformational changes of enzymes, these studies will shed light on             

enzyme allostery. For a detailed review on the relation between MS proteomics and structural              

biology see ​[23]​. Given the above, it is natural to ask: are ​in vitro parameters representative of                 

what happens within cells? As we now proceed to describe, an ability to infer enzyme kinetics ​in                 
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vivo with genome-wide coverage was recently demonstrated using metabolic flux predictions           

and mass spectrometry (MS) proteomics. 

Inferring enzyme catalytic rates from fluxomics and proteomics 

Proteomics techniques have revolutionized our ability to measure protein abundances inside           

cells on a genome-wide scale ​[31,32]​. The rate of an enzymatic reaction can be obtained by                

dividing the flux through the enzyme by its abundance (flux per enzyme copy). Today,              
13​C-labeling analysis and constraint based modeling methods offer quantification of metabolic           

fluxes ​[33,34]​. Therefore, in order to calculate the ​in vivo catalytic rate of an enzyme, one could                 

simply divide the flux through the enzyme (from flux analysis) by the abundance of that enzyme                

from quantitative proteomics (Figure 2). A rapidly expanding body of proteomic data currently             

reports on about 60 organisms under various growth conditions ​[35]​. Flux estimates cover a              

large fraction of the metabolic network, at present mostly from constraint based modeling             

methods such as flux balance analysis but also increasingly using ​13​C-labeling analysis ​[36]​.             

Thus, the above approach holds great potential to infer ​in vivo enzymatic rates in many               

organisms.  

Several caveats should be kept in mind when inferring enzymatic rates using omics data. First,               

inside cells, the mapping between fluxes and enzymes is not one-to-one. Some enzymes             

catalyze more than a single reaction and some reactions are catalyzed by more than a single                

enzyme ​[37–39]​. Recent association studies are beginning to shed light on the broad range of               

non-specific enzymatic reactions and promises to further elucidate the mapping between           

enzymes and their associated ​in vivo functionalities ​[40,41]​. Still, as reflected in metabolic scale              

reconstructions ​[42]​, the majority of enzymes are assigned to a single physiologically relevant             

reaction, and high specificity is thought to be crucial for the ordered metabolism of living               

organisms ​[43]​. Second, flux measurements represent the net flux through the reaction (the             

difference between the forward and backward flux), and quantitative proteomics measurements           

represent the total amount of proteins and usually do not distinguish between active and              

inactive enzymes. Thus, by dividing the flux by the enzyme abundance, one does not get the                

actual rate of catalysis but the average net rate of the enzyme in the physiologically operative                

direction. Therefore, these rates are apparent rates of enzymes which are accordingly denoted             

as ​k​app values ​[44]​. Whether and how it is possible to disentangle the kinetic constants ​k​cat and                 

K​M​ from ​k​app​ is discussed below. 
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Figure 2: Using flux analysis and quantitative proteomics to calculate the rate of enzyme catalysis inside                

cells (​k​app​). Traditionally, ​in vitro enzyme assays are used to kinetically characterize enzymes. Such              

assays are labor intensive, involving purification of the enzyme of interest and a screen for favorable                

ambient conditions (pH, temperature, crowding agents, co-factors, etc.). To calculate the ​in vivo catalytic              

rate, denoted as ​k​app​, one can divide the flux carried by the enzyme with the abundance of that enzyme to                    

get flux per enzyme, i.e., the rate of the enzyme. Integration of quantitative proteomics and flux data                 

enables such calculations for many enzymes simultaneously. 

In vivo​ maximal rates recapitulate ​in vitro​ ​k​cat​ measurements 

A recent study introduced a new parameter, ​k​max​
vivo​, which describes the maximum enzymatic             

rate ​in vivo ​[45]​. To approximate ​k​max​
vivo​, the maximum ​k​app ​value across a large set of growth                 

conditions was calculated. Comparison between ​in vivo based ​k​max​
vivo values and ​in vitro ​k​cat              

values showed that ​in vivo and ​in vitro maximal rates generally concur - exhibiting a correlation                

of r​2 = 0.62 in log scale with a root mean square difference of 0.54. The prediction uncertainty is                   

equivalent to about 3-fold compared to the >10-fold standard deviation of the ​k​cat distribution.              

The agreement between ​k​max​
vivo and ​k​cat values highlights two important conclusions: (i) in most              

cases ​in vitro enzyme assays quite accurately reflect the maximal rates of enzyme ​in vivo, and                
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(ii) ​k​max​
vivo values can be used as a method for the collection of maximal enzyme rates, thus                 

providing a high-throughput avenue for ameliorating the acute data scarcity described above.  

It appears that in the era of omics data, an alternative for laborious enzyme assays is to use                  

fluxes and enzyme levels to infer enzymatic rates and to predict metabolic behaviors ​[46]​. This               

approach, described in details in ​[45]​, most probably also reflects a more physiologically             

representative method for extracting rate constants of enzymes than the traditional ​in vitro             

assays. In some cases, such as enzymes with low expression levels, targeted proteomics at low               

throughput might be needed. A standing challenge is estimating ​K​M values ​in vivo​. One possible               

approach would be to plot enzyme rates as a function of metabolite concentrations and infer ​K​M                

values. Yet this will require extra information regarding absolute metabolite concentrations,           

which is another current frontier of technological advancement. Such information will           

complement and expand our ability to accurately predict metabolic behavior within cells. We             

note that for most applications knowing ​k​cat is more crucial than knowing ​K​M values, because               

while the effect on enzyme rate from the saturation term (​[47]​, based on ​K​M and substrate                

concentration) would very rarely give more than a 10-fold effect, the capacity term (​[47]​, based               

on ​k​cat​) often varies by more than 10-fold.  

Defining the capacity utilization of metabolic reactions 

Network-wide coverage of enzyme kinetic parameters can also ​provide lessons regarding the            

catalytic efficiency of cellular metabolism. The kinetic properties of enzymes, together with their             

mass fraction out of the proteome, represent the metabolic capacity of a cell. We can measure                

the catalytic efficiency of metabolism by the “capacity utilization” metric described below, with             

the hope of connecting a number of concepts described in recent years ​[45,48–51]​. 

We start by defining the catalytic capacity of a reaction as ​E · ​k​max​
vivo​, where ​E is the amount of                    

the catalyzing enzyme. The capacity utilization of a reaction is defined as the ratio between the                

actual flux through the reaction, ​v​, and the catalytic capacity (Figure 3A). We note that this                

definition is the inverse of a parameter termed the safety factor ​[52]​, which was previously               

defined as the ratio of the maximal reaction rate (at high substrate concentrations) to the               

reaction rate under actual physiological conditions. If the capacity utilization is zero, the             

associated enzyme is unutilized ​[49] - i.e., the enzyme is expressed but does not carry flux.                

Similarly, if the capacity utilization is 1 (i.e. 100%), the enzyme operates at its maximum rate,                

k​max​
vivo​, and therefore the enzyme is fully utilized (the safety factor is zero).  
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One can also think of this from the perspective of protein cost investment (e.g., see ​[51] and                 

Goel ​et al. ​[50]​). For such cost-associated nomenclature, it is beneficial to define ​E​min as the                

minimal amount of enzyme required to support the observed flux (​v)​. ​E​min is realized when               

enzymes operate at their ​k​max​
vivo and hence the ratio between ​E​min and the actual enzyme               

amount, ​E, equals the capacity utilization (Figure 3A). As reviewed below, the capacity             

utilization can be used to evaluate the extent to which cells exploit their enzymatic capabilities.               

A particular proteome resource allocation strategy can therefore be evaluated by examining the             

capacity utilization of all expressed enzymes. Interestingly, Noor ​et al. ​[51] and Goel ​et al. ​[50]                

raise conflicting observations regarding the tendency of bacterial cells to operate at high             

capacity utilization. We review these issues in the following sections. 

To what extent do cells utilize their catalytic capacity across different conditions? 

The proteome composition changes between conditions. O’Brien ​et al. ​[49] recently           

characterized the capacity utilization in ​E. coli across 16 different conditions, effectively            

harnessing the power of quantitative proteomics in the metabolic context. They compared            

protein levels measured by quantitative proteomics ​[53] to model-based predictions of the            

minimal protein demand for growth, i.e., ​E​min values. To compute ​E​min​, ​O’Brien ​et al. used a                

genome-scale model (ME-model ​[54]​), together with measured growth rates and assigned           

kinetic rates, which were randomly sampled from a global ​k​cat distribution ​[5]​. The authors found               

that in most environments 50% of the proteome was unused, where this value includes the               

mass beyond the minimal requirement in underutilized enzymes as well as the mass invested in               

enzymes not supporting any flux under the given condition. Beyond the overall values reported              

by O’Brien ​et al. ​[49]​, it is of interest to portray the distribution of the capacity utilization of                  

different enzymes in ​E. coli​, as we present in Figure 3B. In order to calculate the capacity                 

utilization, one requires a knowledge of the maximal potential rate. We chose to use ​k​max​
vivo as                

the surrogate for maximal reaction rates ​in vivo (in contrast to using random sampling from the                

highly heterogenous distribution of ​k​cat​). As can be observed in Figure 3B, for batch growth on                

either glucose or galactose, ​≈​30% of the enzymes (by mass rather than by number which we                

find less informative) are apparently idle - exhibiting a capacity utilization value below 10%. We               

note that this is based on flux analysis and some of these enzymes probably have a                

moonlighting activity ​[55]​. For others, it could be that expression of unutilized enzymes is a               

result of cellular objectives other than minimizing enzyme costs, e.g., bet hedging ​[56]​.             

 

https://paperpile.com/c/kv6HJK/c0rZ
https://paperpile.com/c/kv6HJK/JOJgy
https://paperpile.com/c/kv6HJK/c0rZ
https://paperpile.com/c/kv6HJK/JOJgy
https://paperpile.com/c/kv6HJK/XQmDm
https://paperpile.com/c/kv6HJK/XcxAi
https://paperpile.com/c/kv6HJK/GnvCV
https://paperpile.com/c/kv6HJK/neuUm
https://paperpile.com/c/kv6HJK/XQmDm
https://paperpile.com/c/kv6HJK/LKMG
https://paperpile.com/c/kv6HJK/o520s


 

Alternatively, such overexpression could simply be a result of wasteful metabolic regulation ​[49]​.             

Finally, constraints imposed by the metabolic network may not allow all enzymes to operate at               

full capacity at the same time. For example, not all enzymes can be close to saturation                

concurrently ​[57]​. These possibilities raise the question of how much of the observed             

underutilization is a result of each explanation - a question that is addressed for selected               

enzymes in ​[45]​.  

O’Brien ​et al. ​[49] also showed that with the decrease in specific growth rate, the unused                

fraction of the proteome increased. They suggest that the growth rate is explained by the               

capacity utilization of the proteome. To support such a claim, one should be able to predict the                 

fraction of unused proteome without using growth rate as input for calculating the flux values in                

a metabolic model. 
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Figure 3: ​The capacity utilization of enzymes. A) The capacity utilization of a metabolic reaction is                

defined as the ratio between the actual flux supported by the reaction (​v​) and the maximal flux the                  

reaction can potentially carry, given by ​E · ​k​max​
vivo​. This ratio is equal to the ratio between the minimal                   

enzyme requirement needed to support v (​E​min​) and the actual expressed enzyme level (​E​). The above                

equality holds since by definition ​v / ​k​max​
vivo = ​E​min​. B) The distribution of capacity utilization across all                  

enzymes in ​E. coli during exponential growth on glucose (upper panel) and galactose (lower panel) as                

sole carbon sources. For calculating capacity utilization we used flux values from ​[19] and enzyme               
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abundance from ​[53]​. Since flux measurements covered only central metabolic reactions, we used             

parsimonious Flux Balance Analysis (pFBA) ​[58]​ to expand flux estimates to the entire metabolic network. 

Quantitative proteomics rationalizes usage of low yield metabolic strategies 

In order to show the high relevance of metabolism to the resources economy of the cell, we                 

show in Figure 4 the proteome composition of ​E. coli according to functional role across four                

growth conditions. As consistently observed in the figure, about half of the proteome mass is               

composed of enzymes (brown and yellow sectors). Thus, metabolism is a dominant factor when              

cells face the challenge of allocating their protein resources between different cellular functions -              

a challenge which can limit growth capacity, depending on how resources are distributed             

[59–64]​.  

Noor ​et al. ​[51] recently suggested that ​E. coli operates to minimize overexpression of enzymes               

in its central metabolic network, given thermodynamic and kinetic limitations. Another recent            

work by Park ​et al. ​[48] provided evidence that in the glycolytic pathway of ​E. coli (and also in                   

that of budding yeast and humans) most metabolite concentrations exceed the ​K​M values of              

enzymes, hence facilitating efficient enzyme activities. Efficient use of enzymes has also been             

shown to rationalize preference of low energy yield metabolic strategies. Following previous            

suggestions ​[44,54,65]​, Basan ​et al. ​[66] provided quantitative evidence that by performing            

aerobic respiration, ​E. coli was able to balance the proteome demand between energy             

biogenesis and biomass synthesis. The assumption that the proteome cost of energy of             

biogenesis by respiration exceeds that by fermentation was shown to agree with quantitative             

proteomics measurements ​[66]​. A further refinement of the model presented by Basan ​et al.              

showed that molecular crowding constraints were important in explaining the switch from            

oxidative phosphorylation and overflow metabolism ​[67]​. In fact, the presence of alternative            

glycolytic pathways in prokaryotes was also suggested to reflect a tradeoff between ATP yield              

and protein cost. Specifically, the protein cost of the canonical Embden-Meyerhof-Parnas (EMP)            

glycolytic pathway was shown to be higher than that of the Entner-Doudoroff (ED) pathway,              

whose ATP yield is half that of the EMP pathway ​[68]​. 

Conversely, Goel ​et al​. ​[50] recently observed that in ​L. lactis, across a 4-fold growth rates                

range, most glycolytic enzymes of ​L. lactis practically did not change in levels. That is, during                

slow growth there seems to be an excess of glycolytic enzymes which seems inefficient in terms                

of resource allocation. The authors suggest that the apparent lack of regulation on the levels of                
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glycolytic enzymes shows that enzyme levels are not under selection to minimize protein             

expression costs in L. lactis​. It seems that the role of protein costs in shaping flux distribution is                  

highly context dependent, for example changing between batch and chemostat growth or            

between transition states and adapted balanced growth states ​[61]​.  

 

 

Figure 4: Proteomaps is a web-based tool for visualizing proteomics data, which provides a “snapshot” of                

how cells allocate their resources between different conditions ​[69]​. Each polygon represents the mass              

fraction of a single protein and all proteins with similar functions are colored in shades of the same color.                   

Here we visualized the proteome of ​E. coli under four different carbon source conditions: (1) glucose                

limited chemostat and batch growth on (2) galactose, (3) acetate or (4) glucose as sole carbon sources                 

[53]​. The specific growth rate (µ) in each condition is indicated above each map. The fraction allocated to                  

metabolism represents about 50% of the proteome by mass across all conditions (shades of brown and                
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yellow). Labels indicate subsystems of metabolism, such as transport, glycolysis or the TCA cycle.              

Further explanation about proteomaps and how to use a web based tool to generate maps of your own                  

data is available at ​http://www.proteomaps.net/​.  

Conclusion 

MS proteomics increasingly supply a comprehensive picture of enzyme levels and states inside             

cells. As we aimed to highlight in this review, proteomics also provides a powerful tool for                

gaining kinetic parameters of enzymes ​in vivo​. Proteomics-derived ​in vivo maximal rates both             

recapitulate ​in vitro ​k​cat measurements and offer a physiologically relevant approach for the             

collection of enzyme parameters. While further progress should be made to infer in vivo ​K​M               

values, in vivo ​k​max​
vivo values can already be integrated into metabolic models and, given              

proteomics data, serve as upper bounds on reaction rates. This can be useful for synthetic               

biology applications - to predict potential cell growth and biosynthetic products production            

capacity and to improve the predictive power of resource allocation models, for example.             

Furthermore, as recent advances in MS-proteomics are now used to characterize protein            

modifications and structures ​in vivo​, it may soon be possible to relate specific posttranslational              

regulation events to enzyme activities. In conclusion, the omics era promises to finally satisfy              

the long held desire of a more realistic understanding of ​in vivo​ enzyme kinetics. 
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