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Abstract 

During the last few decades we have witnessed an impressive gain in the knowledge 

regarding the basic mechanisms underlying human neuronal migration disorders by the usage 

of mouse models. Nevertheless, despite the remarkable conservation both in the genetic 

encoded information and the developmental processes, there are still numerous important 

differences between human and mouse. This may explain the vast excitement following the 

realization that technological breakthroughs enabled generating tissue-like human-based 

organoids for modeling human neuronal migration diseases. This review will provide a short 

introduction on human and mouse neuronal migration processes, and highlight human brain 

organoid models of neuronal migration diseases.   

 

  



Highlights 

* Cajal-Retzius (CR) cell migration in human and mouse is similar yet different. 

* The expanded outer-subventricular zone is human specific. 

* Cortical organoids for modelling lissencephaly and periventricular brain heterotopia. 

* Fusion organoids derived from patients demonstrated interneuron migration deficits.  

 

  

  



1. Neuronal Migration Processes- Human vs. Rodents 

 Neuronal migration is a remarkable process in which newborn neurons in the 

developing brain move to their final destination. There they will make proper short distance 

and long-distance contacts and will form functional neuronal circuits. The human brain is far 

larger than that of the mouse, way more complex, and develops over a longer time scale. 

Whereas in humans, developmental neuronal migration occurs during months of gestation, 

and continues in the early postnatal period, in rodents this process is completed within days.  

 The first migrating neurons in the human and rodent developing brains are the 

transient Cajal-Retzius (CR) neurons that reside in the superficial layer (layer I) and the 

subplate and are eliminated in postnatal mice by a Bax-dependent apoptosis [1, 2]. In both of 

these locations the CR neurons have been shown to affect the development and proper 

organization of other neurons. These cells are born in the ventral pallium, the septum and the 

cortical hem [3], and adopt wide-spread tangential migratory routes (Figure 1A). CR cells are 

best known for their role in the neocortex where they reside in the marginal zone and secrete 

reelin, that is involved in directing projection neurons during their radial migration [4].  

The identification of lack of Reelin as the naturally occurring reeler mutation encountered a 

well understood excitement in the scientific community [5, 6]. Reeler mice exhibit inverted 

cortical lamination and display staggering gait, poor balance, tremors and ataxia. Reelin 

regulates radial migration by providing both attractive signals to pre-migratory neurons [7] and 

detachment/stop signals at later stages of migration. Reelin function is mediated by the 

downstream signaling following its binding to either of its receptors VLDLR or ApoER2. 

Following ectopic reelin expression, binding to ApoER2 but not to VLDLR will cause 

aggregation, while VLDLR is required for suppressing neuronal invasion to the marginal zone 

[8]. Reelin is also important for human brain development and cortical lamination. Autosomal 

recessive mutations result in lissencephaly with cerebellar hypoplasia [9]. Beyond migration, 



reelin shapes the synaptic architecture as its gradient attracts retinal axons arborization in the 

visual cortex [10]. Reelin continues to be expressed in sub population of GABAergic neurons 

in the adult brain where it appears to play a role in neuronal maturation, synaptic formation 

and plasticity. Indeed, conditional KO of reelin in the postnatal brain, caused hyperexcitability 

of the neocortical network [11]. These functions connect reelin to a much broader spectrum of 

neurological disorders than initially estimated, including not only lissencephaly, hypoplasia  

and epilepsy but also schizophrenia, autism, and neurodegenerative diseases such as 

Alzheimer’s disease [6].  

In the mouse brain (E10.5-12.5), CR cells migrate within the preplate to populate the caudo-

medial, rostro-medial, and lateral cortex [12]. The CR neurons respond to external cues 

controlling their migration. For example, hem-derived CR neurons respond to 

CXCL12/CXCR4 signaling originating from the meninges [13]. Genetic ablation of septum 

Dbx1-derived CR cells affected the migration of CR cells from other origins and this 

perturbation resulted in changes in the early regionalization of the neuroepithelium [12]. 

Recent studies demonstrated that in the mouse brain, a secreted form of the transcription 

factor PAX6 is involved in regulation of CR cells derived from the cortical hem and septum 

in a non-cell autonomous way [14]. The CR neurons that reside in the subplate play an 

important role in establishing the corticothalamic innervations [15]. In humans, the CR 

neurons are more diverse and contain transient and persistent populations [16]. The human-

mouse difference may originate in part from differences in the regulation of expression of 

important transcription factors, such as DBX1 [17]. The expression of Dbx1 in the mouse is 

confined to cortical progenitors in the ventral pallium, however in primates it is maintained in 

neurons. Modifying the expression pattern of Dbx1 in mouse to resemble the primate 

expression resulted in ectopic CR cells and subplate neurons. Similar to the mouse, the first 

human CR neurons appear shortly after the formation of the telencephalic vesicle at Carnegie 



stage (CS) 16 (5 GW) [18]. A human specific organization is observed at CS 17-19, when CR 

cells are born in columns in the neuroepithelium of the anterior cortex and spread into the 

marginal zone. In addition, they are born in the subpallium and the septum (Figure 1A). At 

the onset of gyration, most transient CR neurons die in an activity-dependent programmed 

cell death that is critical for correct wiring of functional cortical circuits and the maintenance 

of proper excitation/inhibition balance [2]. These CR neurons are replaced by the persisting 

ones [16]. A recent study suggests that in humans subplate neurons migrate and differentiate 

into deep layer projection neurons [19]. 

 

 The majority of the neurons in the cerebral cortex are the excitatory or the 

glutaminergic neurons, that are born either within the ventricular zone or in the 

subventricular zone [20-24] (Figure 1B). In the rodent brain, the progenitors of these neurons 

are the apical radial glia (RG) progenitors that proliferate close to the ventricle and are 

integrated into the apical adherens junction belt during cell division, and the basal progenitors 

(BP) that lack the typical polar morphology of the apical progenitors and undergo mitosis in a 

basal position [20]. The BPs pool is composed by intermediate progenitor cells (IPCs) and 

basal radial glial cells (bRG). The later, possess a basal process and are relatively 

nonabundant in the rodent developing cortex [20].  

Initially, there is an accelerated proliferative division of neural stem cells, followed by the 

emergence of RG [24]. Many of these progenitors span the entire cortical wall, while others 

have short processes known as short neural or subapical precursors [23, 25]. The RG 

undergoing symmetric proliferative divisions constantly regenerate the apical endfeet. The 

shift to the neurogenic stage is regulated by signaling pathways that include Notch and ß-

integrin and is accompanied by a decline in the ability to generate the apical prosses and basal 

translocation that promotes the formation of the outer subventricular zone (oSVZ) [26]. The 



RG display typical interkinetic nuclear movements, where the position of the nucleus is 

coupled to the cell cycle, giving the ventricular zone its packed pseudostratified appearance 

[21]. The formation of layers of neurons in the emerging cortex depends on the consecutive 

formation of waves of radially migrating cells in an "inside - out" fashion, the earlier born 

neurons are located in deep layers and the later born neurons are located in more superficial 

layers [27]. This process is conserved in human and mouse (Figure 1B). Newly generated 

neurons display multipolar morphology, and migrate slowly in the subventricular and 

intermediate zone [28]. The transformation of the multipolar cells into bipolar neurons is 

regulated by subplate neurons [29]. The subplate neurons signal to the following waves of 

radially migrating neurons by forming transient glutamatergic synapses. The synaptic 

transmission induces the typical multipolar-to-bipolar morphology, that marks the transition 

from slow multipolar migration to faster pia-oriented RG-guided migration [29]. 

 

The human developing brain is distinguished by a huge expansion of the 

subventricular zone, generating a new region called the oSVZ [20, 22]. In this area, outer 

radial glia (oRG) can be found. The expansion of this area is due to multiple cell divisions of 

these progenitors during which they exhibit mitotic somal translocation, a typical behavior in 

which the cell soma rapidly translocates towards the cortical plate prior to cytokinesis [20, 

22, 24]. It has been suggested that during cortical expansion, the processes of the apical RG 

do not extent to the whole width of the cortex, therefore the migrating neurons possibly 

migrate along non-continuous radial fibers generated from the oRG [22]. The expanded area 

of the oSVZ is considered a new niche of progenitors and is defined by the expression of 

specific extracellular matrix proteins, that dictate the physical properties of the environment 

and can be involved in the formation of folds in the human brain [20, 30]. This proliferative 

niche is also signified by the activity of multiple signaling pathways, YAP-Hippo, Notch, and 



mTOR [22, 24, 31], and is exposed to diffusible signals from the cerebral spinal fluid (CSF) 

[32]. Whereas the Notch pathway is highly expressed in the human ventricular zone and the 

outer subventricular zone, genes regulating the mTOR signaling pathway are enriched 

expression in oRG. The enrichment of the mTOR pathway in the outer radial glia appears to 

be a human-specific feature as it is not observed in developing non-human primate cortex 

[33]. YAP expression and activity are high in ferret and human oRG, but are low in mouse 

basal progenitors [31]. 

Most of the inhibitory or GABAergic neurons are born in the embryonic subpallium, 

the ganglionic eminences, and to reach their final destination in the cerebral cortex they migrate 

in a tangential fashion along several stereotypic routes (Figure 1B) [34]. These interneurons 

are diverse and are usually subdivided to classes based on their morphology and on the 

expression of several calcium binding proteins. There is an interesting coordination between 

birth of the interneurons and the excitatory neurons. In mouse models it has been demonstrated 

that protein deglutamylation controls the pausing of migrating cortical interneurons, and 

interference in this process affects not only the size of the migrating cohort, but also the 

generation of age matched interneurons [35]. In humans, there is an expanded oSVZ also in 

the ganglionic eminences, and in particular the caudal ganglionic eminence is increased in size. 

These features allow for the higher proportion of interneurons that populate the human brains 

[24, 36]. Another human-specific phenomenon is the continuation of an extensive migration of 

interneurons during the early postnatal period, which has not been observed in rodents [37].  

 

2. Recent 3D modeling of human neuronal migration diseases using human brain organoids 

 LIS1 (Lissencephaly 1) has been the first gene to be identified and associated with a 

neuronal migration disorder [38, 39]. Patients with deletions within one allele of the LIS1 

gene will exhibit lissencephaly, a relatively smooth brain accompanied with simplification in 



the layered structure of the cerebral cortex, as well as abnormal positioning of both excitatory 

and inhibitory neurons within the formed layers. Patients with larger genomic deletions 

exhibit a more severe phenotype and are defined as "Miller-Dieker syndrome" (MDS) 

patients [40, 41]. Two studies have used inducted pluripotent stem cells (iPSCs) from MDS 

patients to generate brain organoids [42, 43].  

In the study by Iefremova et al., iPSCs were derived from two patients with hemizygote 

deletions in LIS1 and YWHAE. Rescue lines expressing either LIS1 or YWHAE in the safe 

harbor AAV1 locus that allows stable, long-term transgene expression were used as controls 

[42]. Forebrain organoids from the MDS patients were smaller, showing premature 

differentiation, a reduced acetylated tubulin network, and a premature transition from 

symmetric to asymmetric division of the apical radial glia. The cellular organization was 

partially recovered in the rescue line derived organoids. Interestingly, the authors detected 

changes in N-Cadherin/ß-Catenin signaling, and activation of the pathway in MDS organoids 

partially rescued the phenotype. 

The study by Bershteyn et al. used iPSCs derived from three MDS patients to generate 3D 

cerebral organoids (Figure 2A) [43]. As in the previous study, the MDS organoids were 

smaller and exhibited increased apoptosis. The apical surface of the RG was less organized 

and the angle of live neuronal stem cell divisions was changed, favoring horizontal cleavage 

plains. To further investigate possible migration deficits, the organoids were plated on 

Matrigel, which induced extension of processes out of the organoids, and neurons migrated 

along these processes. Less MDS migrating neurons were noted and their average speed was 

markedly reduced. A complete rescue of the large deletion was obtained by a duplication of 

chromosome 17 and organoids from these rescued cells did not differ from the wild-type 

ones. In addition, the authors placed fluorescently labeled iPSC derived neurons on cortical 

tissue explants, whereas the wildtype neurons reached the pial surface of the explant, only 



10% of the MDS ones accomplished this task, thus demonstrating a cell autonomous 

component of this disease. The mitotic behavior of the MDS oRG translocated to a further 

distance during mitotic somal translocation, but remained in mitosis for longer periods of 

time. This particular behavior was previously noted when primary oRG cells were treated 

with a microtubule-depolymerization agent [44]. 

A study by Karzbrun et al. used LIS1 heterozygous ES cells that were genome edited using 

CRISPR/Cas9 (Figure 2B) [45]. Using a fabricated device that limited the growth of the brain 

organoid in the z-axis they could observe the formation of folds in the neuroepithelium [46]. 

Differential growth may provide a partial explanation for this phenomenon. This 

phenomenon has been observed in mathematical models, computer simulations, and swelling 

gels models [46, 47]. Whereas the LIS1 mutant organoids were similar in size to the wildtype 

ones, they exhibited overall less but larger folds, mimicking the lissencephalic brain. 

Measurements conducted on both embryonic stem cells and neuronal stem cells indicated that 

the LIS1 mutant cells exhibit a reduced elastic modulus that may in part explain the relative 

smooth appearance. RNA-seq experiments indicated that the main gene module that changed 

in the mutant organoids were related to the building blocks of the extracellular matrix and 

remodeling of the extracellular matrix. The unique device together with the addition of 

genetic fluorescent markers for nuclei and the cytoskeleton enabled long-term live imaging. 

The time-lapse images of interkinetic nuclear motility revealed reduced velocity in the apical 

direction in the LIS1 mutant organoids. This observation could be explained by the known 

LIS1 effect on the molecular motor cytoplasmic dynein [38]. In addition, whereas the 

wildtype nuclei were largest and spent most of the time in the periphery of the organoid 

during S-phase, the mutant organoids did not obey this rule.  

 Periventricular Heterotopia (PH) is another brain malformation in which neurons fail 

to migrate and are retained close to their birth location. Klaus et al. studied the effects of 



mutations in the cadherin receptor–ligand pair DCHS1 and FAT4 using either brain organoids 

derived from patients' iPSCs or wild-type and isogenic knockout iPSC lines (Figure 2C) [48]. 

Previous mouse models exhibited overproliferation of progenitors, quite different from the 

patients' phenotype [49]. The germinal zones of FAT4-mutant organoids were poorly 

organized. Neurons were observed within the proliferation zones, their processes were 

affected and displayed a twisted morphology [48]. The mutant organoid displayed neuronal 

nodules mimicking the main PH phenotype. DCHS1-mutant organoids were somewhat better 

organized, but neuronal processes were abnormal. Sc-RNA-seq showed that the DCHS1 and 

FAT4 transcriptomic profiles were similar and differed from the wild type. Mutant 

progenitors have undergone premature differentiation, which also fits with the observed 

phenotype. To specifically examine neuronal migration, organoids were electroporated with 

microRNA targeting either DCHS1 or FAT4 and a week afterwards organoid slices were 

subjected to time-lapse imaging and were analyzed for three parameters: velocity, number of 

resting time points and tortuosity. The derived data was then clustered according to distinct 

cell migration behaviors. Whereas the control neurons exhibited two types of migration 

behaviors and clustered in two groups, the mutant ones exhibited an additional third type of 

migration behavior and a third cluster was formed on top of the two control clusters. This 

finding may assist in explaining how only a fraction of the mutated neurons fail to migrate.  

Sc-RNA-seq revealed that some of the mutated neurons exhibited an altered RNA expression 

profile. More specifically, they upregulated genes such as ROBO3 or CNTN2 that are 

involved in processes like axon guidance, neuronal migration and patterning, and 

downregulated genes that are involved in synapse formation, ion channel, axon guidance and 

cytoskeleton, some of which are associated with epilepsy, another common feature present in 

the patients.  



 Most of the modeling of neuronal migration diseases in brain organoids has been 

largely restricted to the forebrain, thus missing the contribution of the GABAergic inhibitory 

neurons that migrate from the ventral to the dorsal forebrain. To enable the integration of 

GABAergic neurons in forebrain organoids, several groups introduced the concept of "fusion 

organoids", where two organoids or spheroids are initially cultured individually to produce 

either forebrain or ventral brain identity, and then once they are placed together, they fuse to 

form a single organoid. Within this fused organoid, the interneurons migrate tangentially to 

integrate in the forebrain part [50-52]. The migration was dependent on CXCR4 activity [50], 

and these organoids exhibited neuronal activity [51, 52]. The study by Birey et al. [51] used 

this setup to investigate interneuron migration deficits in organoids derived from Timothy 

syndrome patients with mutations in the L-type calcium channel gene CACNA1C (Figure 

2D).  Timothy syndrome is a brain neurodevelopmental disorder associated with autism 

spectrum disorder and epilepsy [53].  The role of L-type calcium channels in interneuron 

migration has been previously demonstrated in the mouse brain [54]. Calcium imaging of 

Timothy syndrome -derived neurons showed increased residual calcium following 

depolarization.  In the fusion organoids, Timothy syndrome interneurons exhibited a less 

efficient migration pattern with increased saltation frequency. Interestingly, the migration 

defect was rescued using therapeutic agents targeted to L-type calcium channels.   

3. Conclusions & Future Prospects 

 The modeling of human neuronal migration diseases in brain organoids is at an early 

stage. It will be interesting to examine additional neuronal migration processes, such as the 

wide-spread migration of CR cells and migration of neurons to the olfactory bulb. With the 

development of organoid models and sophisticated live imaging techniques it is now possible 

to explore these migration events and dissect out the molecular mechanisms underlying this 

process. So far studies enabled tracking of the mitotic behavior of both RG and oRG 



progenitors as well as parameters of interkinetic nuclear motility and somal translocation. In 

addition, the migration of pyramidal neurons as well as interneurons were studied, yet at this 

time at a rudimentary stage. Advances in live-imaging which will enable non-invasive image 

acquisition will benefit this line of studies. Additional integration of activatable live cell 

reporters in the system will enable to follow for example neurons that are born at a specific 

time point, or to enable live monitoring of signaling pathways that participate in neuronal 

migration regulation.  
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Annotated References: 

* Riva, M., et al., Activity-dependent death of transient Cajal-Retzius neurons is required for 
functional cortical wiring. Elife, 2019. 8. 
 
The study focused on the mechanisms involved in the elimination of the three distinct Cajal-
Retzius linages and further studied the consequences of escaping elimination on cortical 
circuitry.  
 
** Fujita, I., et al., Endfoot regeneration restricts radial glial state and prevents translocation 
into the outer subventricular zone in early mammalian brain development. Nat Cell Biol, 
2020. 22(1): p. 26-37. 
 
The study focuses on how the process of the regeneration of the apical end feet of radial glia 
following division is critical in determining the fate of the daughter cells. The ability to 
regenerate the apical end feet diminishes as development persists and coincide with the 
formation of oRGs.  
 
** Ohtaka-Maruyama, C., et al., Synaptic transmission from subplate neurons controls radial 

migration of neocortical neurons. Science, 2018. 360(6386): p. 313-317. 
 
The study found that the initial multipolar-to-bipolar transition occurs following an intimate 
encounter of the migration neurons with the population of preexisting subplate neurons.  
 
* Kostic, M., et al., YAP Activity Is Necessary and Sufficient for Basal Progenitor Abundance 

and Proliferation in the Developing Neocortex. Cell Rep, 2019. 27(4): p. 1103-1118 
e6. 

 
The study suggests that increased YAP activity in the basal progenitors is sufficient to induce 
features that are hallmarks of an expanded neocortex.  
 
 
* Silva, C.G., et al., Cell-Intrinsic Control of Interneuron Migration Drives Cortical 

Morphogenesis. Cell, 2018. 172(5): p. 1063-1078 e19. 
 
The manuscript describes that a post-translational modification of myosin light chain (MLC) 
kinase contributes to regulation of migration of the inhibitory neurons.  
 
 ** Klaus, J., et al., Altered neuronal migratory trajectories in human cerebral organoids 

derived from individuals with neuronal heterotopia. Nat Med, 2019. 25(4): p. 561-
568. 

The manuscript describes the use of  cerebral organoids derived from iPSCs that enabled 
modeling of periventricular heterotopia. They showed defects in neuronal migration and a 
shift in the transcriptome signature of vRG-like cells from patient-derived organoids to an 
oSVZ/iSVZ-like identity. 
 
 
** Karzbrun, E., et al., Human Brain Organoids on a Chip Reveal the Physics of Folding. 

Nat Phys, 2018. 14(5): p. 515-522. 



The study describes a device in which the growth of the organoids is limited in the Z axis, 
this enabled long term imaging and better survival. The organoids grown in this device 
developed folds which could be used a a model for brain folds and was used to model the 
smooth brain, lissencephalic phenotype, observed in patients with mutations in LIS1.  
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Figure 1: Schematic presentation of migratory routes in the developing mouse and human 

brain. (A) In mouse and human fetal brain there are at least three sites of origin of the Cajal 

Retzius (CR) cells;  namely 1) the cortical hem (CH), 2) the septum (SP) and 3) the pallial 

sub pallial boundary (PSB). CR cells derived from all these three regions differ in gene 

expression, morphology and the undertaken migratory route. Despite certain similarities the 

kinetics and timeline of migration differ between human and rodents. (B) Both in human and 

rodent brains new-born neurons exhibit radial migration along the scaffold of RG processes 



and the interneurons display tangential migration from the ganglionic eminences (GE) to the 

cortical plate.  

  



 

Figure 2: Use of organoid models to understand migration defects underlying 

neurodevelopmental disorders. (A) Miller-Dieker syndrome (MDS) patient's iPSC-derived 

organoids are smaller in size compared to control and the organoid derived neurons exhibit 

aberrant migration when placed in Matrigel [42, 43]. (B) The LIS1 mutant organoids 

recapitulate features of lissencephaly where RG progenitors of the mutant organoid display 

defects in interkinetic nuclear movement [45]. (C) In organoid based models of the 

neurodevelopmental disease Periventricular heterotopia, the RG appear dysmorphic and 

various aspects of neuronal migration including velocity, pause time and tortuosity are altered 

[48]. (D) In the patient derived fusion organoids of Timothy syndrome migration defect of 

the interneurons was observed. 

 


