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SUMMARY 1 

Hippocampal place cells selectively fire when an animal traverses a particular 2 

location, and are considered a neural substrate of spatial memory. Place cells were 3 

shown to change their activity patterns (remap) across different spatial contexts, 4 

but to maintain their spatial tuning in a fixed familiar context. Here, we show that 5 

mouse hippocampal neurons can globally remap, forming multiple distinct 6 

representations (maps) of the same familiar environment, without any apparent 7 

changes in sensory input or behavior. Alternations between maps occurred only 8 

across separate visits to the environment, implying switching between distinct 9 

stable attractors in the hippocampal network. Importantly, the different maps were 10 

spatially informative and persistent over weeks, demonstrating they can be reliably 11 

stored and retrieved from long-term memory. Taken together, our results suggest 12 

that a memory of a given spatial context could be associated with multiple distinct 13 

neuronal representations, rather than just one. 14 

 15 

INTRODUCTION 16 

A prevailing notion in memory research is that a given memory is supported by a single 17 

neuronal representation. In the hippocampus, such a representation, often considered 18 

the neuronal basis for a ‘cognitive map’, emerges from the activity of a population of 19 

neurons (‘place cells’) that selectively fire when an individual traverses a particular 20 

location within the environment [1,2]. One of the prominent properties of place cells is 21 

their tendency to ‘remap’ [3], i.e., form different representations for different 22 

environments by significantly changing their firing patterns. Remapping can be induced 23 

by changes in sensory input [3–8], motivational state [9–11], prior experience [12–14], 24 

or spatial trajectories [15–17].  25 

 26 

While such alterations can induce remapping, it is well accepted that when an animal 27 

revisits an environment under the same experimental conditions the same spatial code 28 

is reused [18]. However, several studies have found instances in which place fields 29 

completely rearranged when the animal returned to the same environment after a short 30 

delay [19–23]. These observations raise the possibility that in certain cases either the 31 



 3 

hippocampal spatial code is unstable or the stored memory is inaccessible, requiring the 1 

emergence of a new spatial representation [24]. An alternative hypothesis, however, is 2 

that multiple intact spatial representations of the same context can stably coexist in the 3 

hippocampus and be reliably retrieved from long-term memory. Differentiating between 4 

these alternative hypotheses requires comparing spatial representations across many 5 

consecutive visits to the same environment, and tracking such hippocampal 6 

representations over time-scales relevant for long-term memory.  7 

 8 

Taking advantage of recent advancements in optical imaging [25] that enable tracking 9 

large populations of the same neurons over long time periods [26], we monitored 10 

hippocampal place cells of mice as they explored the same environment over many 11 

repeated visits, both within the same session, and across multiple sessions spanning 12 

weeks. Our results indicate that multiple representations of the same spatial context can 13 

coexist in the hippocampus and be stably retrieved over long time periods.   14 

 15 

RESULTS 16 

We performed large-scale Ca2+ imaging of pyramidal neurons in hippocampal area CA1 17 

of freely behaving mice (n=27) during repeated explorations of the same familiar linear 18 

tracks (Figure 1A and B; see STAR methods) on 5-8 imaging sessions spanning 9-29 19 

days (269-665 cells per session). Each imaging session consisted of five separate 20 

three-minute visits (trials) in the same environment, during which mice ran back and 21 

forth to collect water rewards at both ends of the track, with a three-minute inter-trial 22 

interval in which the mice were placed in an opaque bucket near the track (Figure 1C). 23 

Overall, for each mouse, we collected data from 25-40 trials within the same 24 

environment. 25 

 26 

Distinct maps of the same familiar environment can coexist in hippocampal CA1 27 

While in some mice place-cell specificity was maintained across all trials within a given 28 

session (Figure 1D left), most mice (19/27) exhibited a repertoire of distinct spatial 29 

representations (maps) across trials (Figure 1D right; compare trials 1, 2, and 4 with 30 

trials 3 and 5). The occurrence of multiple maps of the same environment was observed 31 



 4 

in mice spanning different ages and genetic backgrounds (see STAR methods). 1 

Alternations between maps occurred coherently for the recorded population of place 2 

cells (Figure 1E and F, and Figure S1A). The overlap in the population of active cells 3 

across trials with different maps was lower than the overlap across trials with the same 4 

map (29.5±8.3% versus 49.3±7.5%, respectively), but higher than chance (Figure S1B 5 

and C). These results indicate that partially overlapping populations of neurons are 6 

active across different maps, consistent with previous studies that found shared 7 

ensemble activity patterns even across different spatial contexts [28,29,32]. Multiple 8 

maps for the same environment were observed using different cell-detection algorithms 9 

(Figure S1D-F), and were not explained by changes in the focal plane across trials 10 

(Figure S1G and H). The distribution of population vector (PV) correlations between 11 

trials was bimodal (Figure 1G), separating between pairs of trials with the same map 12 

and pairs with different maps. This bimodality was also observed at the level of specific 13 

spatial locations (Figure 1H) and individual cells (Figure 1I). We never found switching 14 

between maps within trials (0/874 three-minute trials), while across trials it occurred 15 

frequently (164/699 pairs of consecutive trials; Figure S2 and STAR methods), 16 

indicating that disconnection from the environment is required for the alternation to 17 

occur. Thus, the hippocampus can exhibit completely distinct spatial representations 18 

across separate visits to the same environment within a given imaging session. 19 

 20 

Distinct maps are spatially informative and stable over weeks 21 

Next, we used a probabilistic method for cell registration across sessions [26] to reliably 22 

track the same neurons over weeks (601-1,114 cells per mouse, estimated false-23 

positive registration errors =5.6±2.8%, false-negative registration errors =4.1±1.8%; 24 

Figure S3). Similar to our observations within a given session, while some animals 25 

exhibited the same map across all trials from all days (Figure 2A left), the majority of 26 

mice (19/27) displayed multiple maps for the same environment, which recurred over 27 

weeks (Figure 2A right). We found no differences in cell registration accuracy between 28 

mice with one map and mice with multiple maps (Figure S3F). A pairwise similarity 29 

analysis across all trials from all sessions revealed a clear separation between the 30 

distinct maps (Figure 2B and C). We found no significant difference in mouse behavior 31 



 5 

(fraction of stationary periods, number of track traversals, and running speed) between 1 

trials with different maps (Figure S4A-C), or between mice with one map and mice with 2 

multiple maps (Figure S5E-G). Thus, it does not seem that specific maps are used 3 

when mice are more motivated to run for reward, while others are used when mice are 4 

less motivated. There was also no difference in the effective number of maps for a given 5 

environment between mice that explored one environment and mice that explored two 6 

different environments (Figure S4D). Importantly, in all cases of multiple maps for the 7 

same environment, we found substantially high fractions of significantly tuned place 8 

cells and high levels of spatial information (Figure 2D-F), which were similar to those of 9 

mice that exhibited one map (Figure 2G and Figure S5A-D). Moreover, non-place cells 10 

displayed multiple activity patterns for the same environment, and switched between 11 

them in coherence with place cells (Figure 3), further reflecting the collective behavior of 12 

hippocampal neurons [27]. Taken together, these results indicate that multiple spatially 13 

informative representations of the same environment recur over long time periods. 14 

 15 

We then studied the long-term stability of each map and its likelihood to be retrieved 16 

across days. First, we calculated the PV correlations between maps in different trials as 17 

a function of the elapsed time between them, and found that each map gradually 18 

changed over days (Figure 4A), consistent with previous studies [25,28]. Note, however,  19 

that even for elapsed times of two weeks, the PV correlations between trials in the same 20 

map (blue curve in Figure 4A) were still much higher than the PV correlations between 21 

trials in different maps, which consistently exhibited near-zero correlations (red curve in 22 

Figure 4A). By calculating the positional shifts across sessions, we found that even after 23 

≥10 days, the majority of place cells that were active in a given map maintained their 24 

place fields when the same map recurred (Figure 4B; 60±7% versus 14±3% of cells 25 

exhibit ≤6 cm shift for the same map and across maps, respectively). While the effective 26 

number of maps did not change over the course of the experiment (Figure 4C, inset), 27 

the probability that the same map will recur gradually decreased as a function of the 28 

elapsed time (Figure 4C), indicating a drift in the prevalence of different maps over 29 

days. Importantly, the extent of the long-term changes in a given map was similar 30 

between mice with multiple maps and mice with one map (Figure 4D). These results 31 



 6 

expand upon previous studies describing long-term changes in hippocampal ensemble 1 

activity [25,28,30,31], showing the contribution of two separate components to the 2 

observed dynamics: all-or-none switching between distinct maps with a gradually 3 

changing probability for a given map to recur, and gradual changes in the map itself. 4 

 5 

Multiple maps are not mere rotations of the same spatial representation 6 

We next sought to study in detail the relationships between the different maps of the 7 

same environment. To this end, we averaged the neuronal activity over all trials in each 8 

distinct map and calculated the PV correlations between all combinations of spatial 9 

locations, running directions, and maps (Figure 5A and B). While in some cases (15/40 10 

map-pairs; see STAR methods) the maps were orthogonal (Figure 5A), in others they 11 

were not (Figure 5B). Specifically, in 24 out of 40 map-pairs, we found map segments 12 

that were similar under a flipped orientation of the environment (inverted order of the 13 

spatial locations and running directions in one of the maps; Figure 5B and C and Figure 14 

S6). For such flipped map-pairs, cells that encoded similar locations in one map tended 15 

to encode similar locations in the other map (Figure S6K), consistent with previous 16 

observations across different contexts [32]. While some mice exhibited higher PV 17 

correlations across different maps under a flipped orientation of the track (average PV 18 

correlation =0.07±0.11) compared to the same orientation (PV correlation =-0.01±0.06), 19 

these correlation values were still much lower than those observed across trials with the 20 

same map (PV correlation =0.58±0.14; Figure 5D).  21 

 22 

Nonetheless, these analyses raise the possibility that in some of the mice the 23 

emergence of multiple maps for the same environment could be linked, at least partially, 24 

to 180-degree rotations in the representation of the linear track. Therefore, we tested 25 

whether multiple maps also occur in a setting that minimizes the possibility for 26 

disorientation between the two running directions. To this end, we made two 27 

modifications to our experimental setup (Figure 5E; see STAR methods): (1) During the 28 

inter-trial interval, we placed the mice in a transparent bucket instead of an opaque 29 

bucket, making the environment visible to the mouse throughout the session; (2) we 30 

used a set of proximal and distal visual cues designed to increase the polarization of the 31 
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environment (polarizing-cues experiment) instead of multiple cues scattered along the 1 

track and the surrounding enclosure (scattered-cues experiment shown in Figures 1-4 2 

and Figure 5A-D). We imaged hippocampal activity of 10 additional mice that repeatedly 3 

explored the modified environments (8 sessions, 5 trials per session), and found that 4 

within a given session the same map occurred across all trials (Figure 5F and G). 5 

Specifically, the distribution of PV correlations across trials within the same session was 6 

unimodal (Figure 5G), unlike in the scattered-cues experiment (Figure 1G). These 7 

results further demonstrate that a spatial representation is persistent as long as the 8 

animal is not completely disconnected from the environment. However, comparing the 9 

maps across different sessions revealed that switching between maps still occurred in 10 

the majority of mice (6/10; Figure 5H and I). Importantly, unlike in the scattered-cues 11 

experiment, in the polarizing-cues experiment the maps were always orthogonal, not 12 

showing similarity under a flipped orientation of the track (Figure 5J and K). Overall, we 13 

found that multiple maps of the same environment can stably coexist even without signs 14 

of disorientation.  15 

 16 

DISCUSSION 17 

Here, we found that the population of hippocampal neurons can globally remap (i.e., 18 

change their firing rates and firing locations in an unstructured manner) within the same 19 

familiar environment without any apparent changes in sensory input or behavior. The 20 

fact that alternations between multiple representations of the same environment have 21 

been scarcely reported in the literature, but amply observed in this study, can be 22 

attributed to several differences between our experiments and previous studies. For 23 

example, while many studies in rodents used a single prominent visual orientation cue 24 

[3,4,6,7,33–35], we used multiple proximal and distal visual cues scattered along the 25 

track and the surrounding enclosure. The multiple cues may enable mice to utilize 26 

different cues as reference frames on different trials, leading to the formation of multiple 27 

maps. This interpretation is in line with the finding that hippocampal place cells can 28 

remap between different representations within the same environment when rodents 29 

rely on competing spatial reference frames [36–40]. Additionally, switching between 30 

maps required complete disconnection from the environment, and the probability of 31 
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using different maps increased with elapsed time between sessions. Thus, recording 1 

numerous separate visits to the same environment, combined with tracking the same 2 

neurons over weeks [25,26], increased the chances of observing multiple maps for the 3 

same environment, and allowed demonstrating their stable coexistence over long 4 

periods. Furthermore, avoiding pooling data from different trials enabled us to 5 

distinguish between cases in which place cells remap and cases wherein they maintain 6 

their place fields, attaining a more accurate description of place field stability and 7 

network dynamics (e.g., blue versus green curves in Figure 4A and B and Figure S1A-8 

C). Overall, these results emphasize the importance of large-scale recordings and 9 

longitudinal analyses for interpreting neuronal activity. 10 

 11 

What mechanism could support the coexistence of multiple maps for the same 12 

environment? The finding that remapping between representations is coherent across 13 

the recorded population (Figure 1E-I), involving both place and non-place cells (Figure 14 

3), points to a network-level mechanism. Additionally, once a given map was retrieved, 15 

it persisted throughout the trial until the mouse was disconnected from the environment 16 

(Figure S2), allowing the network to reset and switch spatial representations between 17 

visits. This implies that the initial state of the network when entering the environment 18 

determines the retrieved map in a given visit. Finally, the convergence of the network to 19 

any map from a repertoire of spatial representations under the same experimental 20 

conditions is a hallmark of a non-linear dynamical system. Together, these results 21 

suggest the coexistence of different continuous attractors residing within the 22 

hippocampal network, consistent with the auto-associative properties attributed to the 23 

hippocampus [27,41–46]. 24 

 25 

In the framework of attractor neural networks, the structure of synaptic connectivity in 26 

the hippocampus defines an energy landscape [44,47], which determines the attractor 27 

states the network may converge to when encountering a novel environment (see 28 

illustration in Figure 6A and B). Low variability in the network’s initial conditions or inputs 29 

between visits during familiarization could result in convergence to the same attractor 30 

on different instances, which might lead to the stabilization of a single attractor state, 31 
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corresponding to a single map (Figure 6A). Higher variability in initial conditions or 1 

inputs could result in convergence to different attractors on different visits, which may 2 

lead to the stabilization of separate attractor states, corresponding to multiple stable 3 

maps of the same spatial context (Figure 6B). Accordingly, manipulating the initial 4 

conditions of the network at the moment the mouse enters the environment may allow 5 

controlling the number or identity of the retrieved maps. Long-term changes in neuronal 6 

excitability or in synaptic connectivity [28,29,48] may alter the energy landscape of the 7 

network (Figure 6C). In line with our results, such changes should influence both the 8 

minimum points (the attractor states) and the separatrices (borders between basins of 9 

attraction) within the energy landscape, leading to gradual changes in the spatial 10 

representations (Figure 4A) [25,28] and in the probability of a given representation to 11 

recur (Figure 4C), respectively.  12 

 13 

An example of initial conditions or inputs that could differ across separate encounters of 14 

an environment and influence its spatial representation is the orientation signal 15 

conveyed to the hippocampus through the encoding of head direction [49]. Indeed, we 16 

found evidence of a 180-degree rotation in the spatial representation of segments of the 17 

linear track in 60% of the map-pairs (Figure 5C), reflecting the two different possibilities 18 

for map realignment according to the geometry of the environment [50–54]. However, 19 

while in previous studies of map realignment, the majority of cells rotated coherently 20 

[50,52,54], in our experiment a relatively small portion of cells rotated across maps 21 

(14%; Figure S6L), with the rest exhibiting seemingly unstructured changes in their 22 

place fields. The hippocampal integration of a rotated head-direction signal with 23 

conflicting visual cues and other sensory inputs may have led to the remapping we 24 

observed. Consistently, inducing a mismatch between different hippocampal inputs can 25 

trigger global changes in hippocampal firing fields [20,35–37,55,56]. While realignment 26 

may explain the existence of two rotated maps for the same linear track, we often 27 

observed orthogonal maps (Figure 5A and C, Figure 5J and K, and Figure S6D-F) or 28 

more than two maps of the same linear track (Figure 2A right, Figure 2B and C top, 29 

Figure 2G, and Figure 5J). Furthermore, in the polarizing-cues experiment, mice had 30 

multiple maps for the same environment, but without any signs of 180-degree rotations 31 
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(Figure 5J and K). While we cannot rule out the possibility of other types of rotations, 1 

this is unlikely since for any coherent rotation, the activity would have been somewhat 2 

correlated between certain spatial locations across pairs of maps [54], and we did not 3 

find such correlations in our data. Thus, the initial state of the hippocampus or its inputs 4 

from other brain circuits, such as the entorhinal cortex [57,58], may have changed 5 

across trials, leading to the observed remapping.  6 

 7 

While we have found multiple maps for the same environment in 60-70% of the mice, in 8 

the others, only one map was observed. One possibility is that there is a categorical 9 

difference between mice with one map and mice with multiple maps, which may reflect 10 

different strategies the mice employ to perform the task. However, we did not find 11 

differences in behavior between mice with one map and mice with multiple maps to 12 

support this notion. Alternatively, different mice may represent samples from a 13 

continuous distribution of remapping probability, with one-map mice at the lower end of 14 

the distribution. If spatial representations become more stable with familiarization, it 15 

could be that for mice with an initially low remapping probability, only one attractor is 16 

stabilized in the first few visits to the environment, further decreasing the probability of 17 

observing a different map to the point it is practically zero. Thus, a continuous 18 

distribution of remapping probability in a novel environment could be transformed into a 19 

categorical difference in a familiar environment. 20 

 21 

Previous work has demonstrated that in rats with age-related memory impairment 22 

[22,23], blocked NMDA receptors [59], or blocked protein synthesis [60], place fields 23 

could be rearranged when the animals returned to the same environment after a short 24 

delay. These observations were attributed to cases where memory is impaired and the 25 

contextual information is inaccessible. We have found, however, that distinct maps 26 

stably recur over multiple weeks and are spatially informative, demonstrating that they 27 

are accessible and can be reliably stored and retrieved from long-term memory. Since 28 

redundancy may increase the robustness of memory retrieval [63], storing multiple 29 

representations of the same environment may even confer a functional advantage. 30 

Furthermore, recent work in artificial intelligence showed that storing multiple maps of 31 



 11 

the same place helps flexible navigation in a non-stationary environment [64,65]. 1 

Considered alongside our results, these findings suggest that having multiple maps of 2 

the same environment could be advantageous under certain real-life situations, such as 3 

navigating in a dynamic environment. 4 

 5 

A related open question is whether distinct maps of the same environment are 6 

cognitively interlinked or, alternatively, represent separate perceptions or memory 7 

traces. Previous studies have shown that performance in a hippocampal-dependent 8 

task can be preserved despite global remapping [61,62]. Consistently, we did not find 9 

behavioral differences across trials in different maps (Figure S4A-C), or between mice 10 

with one map and mice with multiple maps for the same environment (Figure S5E-G). A 11 

possible explanation for this result is the existence of a “universal map”, linking between 12 

different representations, outside the hippocampus [5,20]. Contrary to this view, 13 

silencing place cells that are active in a familiar environment can immediately trigger the 14 

emergence of an alternative spatial representation and abolishment of the behavior 15 

previously associated with that environment [24]. Finding multiple maps for the same 16 

environment while animals perform a hippocampal-dependent memory task could help 17 

determine whether the same environment can be perceived as multiple unrelated 18 

contexts, or whether the memory associated with a given environment can be supported 19 

by multiple neuronal representations.  20 

 21 

 22 

  23 
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  Figure 1. Distinct spatial representations (maps) of the same familiar environment can 1 

coexist in hippocampal CA1 2 

(A-C) Experimental setup. (A) Ca2+ imaging using a miniaturized head-mounted microscope in 3 
hippocampal CA1 of freely behaving mice. (B) Mice repeatedly explored familiar environments 4 
to collect water rewards at the two ends of a linear track. (C) Experiment timeline: mice explored 5 
the same environments in 5-8 imaging sessions spanning weeks, each comprising five three-6 
minute trials. During the three-minute inter-trial interval (ITI), mice were placed in an opaque 7 
bucket near the track. (D) Five example place cells in a mouse with one map (left) and a mouse 8 
that switches between different maps across trials (right; compare trials 1, 2, and 4 with trials 3 9 
and 5). Top: Mouse position during neuronal activity events (red and green dots for rightward 10 
and leftward running directions, respectively) overlaid on the mouse trajectory (blue curve). 11 
Black horizontal lines show separation between trials. Bottom: Corresponding spatial activity 12 
shown separately for each map (blue and magenta dashed curves) and combined (solid black 13 
curve). (E) Rate maps for all significant spatially modulated cells for the same trials shown in D. 14 
Note that the population of place cells coherently switches between distinct maps across five 15 
consecutive trials (right). The cells are sorted according to their preferred position along the 16 
track in the trial marked by a green frame, i.e., the first and fifth trials in the top and bottom rows, 17 
respectively. (F) PV correlations between the representations of different spatial locations 18 
across trials reveal two distinct maps. In E and F, data were pooled from both running 19 
directions. (G) The distribution of average PV correlations across trials (gray bars) is bimodal, 20 
unlike the shuffled data (black curve). (H and I) Remapping is coherent across all positions and 21 
cells. Distribution of PV correlations between the neuronal representation of the same locations 22 
(H), and rate map correlations between the same cells (I) across trials are higher for the same 23 
map (blue) compared to different maps (red) or shuffled data (black). Shuffled data was 24 
obtained by shuffling the identity of the cells (G and H) or spatial locations (I) across trials. See 25 
STAR methods for the procedure used for the identification of the different maps. Data in G-I 26 
was pooled from 19 mice with multiple maps for the same environment. For mice that explored 27 
two environments (7/19), data from each environment was analyzed separately. See also 28 
Figures S1 and S2.   29 
  30 
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Figure 2. Distinct maps of the same environment are informative about space  1 
(A) PV correlations between the representations of different locations (pooled from both running 2 
directions) across trials from three consecutive imaging sessions for a mouse with one map 3 
(left) and a mouse with multiple maps (right). (B-D) One example mouse exhibiting three maps 4 
(top) and another mouse exhibiting two maps (bottom) for the same environment . (B) Average 5 
PV correlations between all trials from all sessions in a given mouse show that different maps 6 
recur over weeks. (C) Projection of the correlation matrix in B on its two leading eigenvectors 7 
reveals separate clusters, each corresponding to a distinct map. This clustering was used to 8 
define the different maps and identify the trials in which each of them was used. Inset: 9 
correlation matrix in B, ordered according to the maps’ clustering. (D) Average spatial 10 
information per neuron and percentage of place cells in each trial are similar across distinct 11 
maps (colored dots), and are significantly higher than chance (black dots). (E, F) Similar 12 
percentage of place cells (E) and average spatial information (F) are observed across the 13 
different maps (blue) in 25/26 and 24/26 cases, respectively (p>0.05, one-way two-sided 14 
ANOVA). For mice that explored two environments (9/27), each environment was analyzed 15 
separately. Each data point is a comparison between all the trials from two distinct maps of the 16 
same environment in the same mouse (mean±SD). For mice with more than 2 maps, all map-17 
pairs are shown. The percentage of place cells and average spatial information were higher 18 
than chance (black) for all maps. Data in E and F was pooled from 19 mice with multiple maps 19 
for the same environment. (G) The distribution of the effective number of maps for one-map 20 
(cyan) and multiple-map mice (magenta). The effective number of maps is calculated based on 21 
the occurrence probability of the different maps (see STAR methods). For mice that explored 22 
two environments, the effective number of maps was averaged across environments. See also 23 
Figures S3-S5.  24 
 25 
  26 



 15 

Figure 3. Place and non-place cells coherently switch between multiple representations 1 
of the same environment 2 
(A and B) The average rate correlations between all trials from seven recording sessions for 3 
place cells (A) and non-place cells (B) show coherent alternations between distinct 4 
representations over multiple days. The average rate is based on the overall activity of each cell 5 
in a given trial, irrespective of mouse position. Place cells are cells that were significantly tuned 6 
to position in at least one of the two trials for which the rate correlation was computed. (C) Rate 7 
correlations for non-place cells across pairs of trials within the same session increase with the 8 
rate correlations for place cells across the same pairs of trials. Inset: same analysis for pairs of 9 
trials across different sessions. Data in C was pooled from 19 mice with multiple maps for the 10 
same environment. 11 
  12 
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Figure 4. Distinct maps of the same environment are stable over weeks 1 
(A) Average PV correlation between trials as a function of elapsed time between them 2 
(mean±SD) are higher for the same map (blue) than across different maps (red; two-sample 3 
one-sided t-test, p<0.005 for all elapsed times). Average across all trials is shown in green. For 4 
mice that explored two environments, the PV correlation was averaged across environments. 5 
(B) Distribution (mean±SEM) of place-field positional shifts for pairs of trials ≥10 days apart in 6 
the same map (blue), different maps (red), and overall (green), showing place-field stability over 7 
long time periods within the same map. Inset: cell fractions with ≤6 cm positional shifts across 8 
trials ≥10 days apart. (C) The probability of the same map to occur on two given trials as a 9 
function of elapsed time between them (mean±SEM) shows a gradual change in the recurrence 10 
of maps over days. Inset: effective number of maps does not differ between the first and second 11 
half of the experiment (1.69±0.72 versus 1.84±0.71, mean±SD for sessions 1-4 and sessions 5-12 
8, respectively; matched-pairs two-sided t-test(18), t=-1.43, p=0.17). Data in A-C was pooled from 13 
19 mice with multiple maps for the same environment. (D) Similar PV correlations (mean±SD) 14 
between trials within the same map are observed for one-map (cyan) and multiple-map 15 
(magenta; two-sided t-test, p>0.05 for all elapsed times) mice. For mice that explored two 16 
environments, the PV correlation was averaged across environments. Data pooled from 19 mice 17 
with multiple maps and 8 mice with one map for the same environment. 18 
 19 
      20 
  21 
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Figure 5. The occurrence of multiple maps for the same environment is not explained by 1 
mere rotations of the spatial representation 2 
(A and B) PV correlations between all combinations of spatial locations, running directions, and 3 
maps reveal in some cases a similarity across representations of different locations in the 4 
environment. PVs were obtained by averaging over all trials in a given map. (A) Example with 5 
no relationship observed between the different maps of the same track. (B) Example of a similar 6 
representation in one segment of the environment under a flipped track orientation, i.e., the 7 
representation of the beginning of rightward running in Map 1 resembles that of the beginning of 8 
leftward running in Map 2. The only case in which we found a coherent rotation of the entire 9 
representation across two maps is shown in Figure S6C. (C) Average PV correlation between 10 
map pairs of the same environment under a flipped track orientation versus same orientation. 11 
The examples shown in A and B (mice 6 and 2) are indicated by colored markers. For mice with 12 
more than two maps, all map-pairs are shown. (D) Higher PV correlations are observed across 13 
trials from different maps under a flipped environment orientation (middle) than under the same 14 
orientation (top), but are far lower than those observed across trials with the same map 15 
(bottom). Only trial-pairs from the same day are presented. Data in C and D were pooled from 16 
19 mice with multiple maps for the same environment. (E-K) Polarizing-cues experiment. (E) 17 
Mice repeatedly explored modified linear environments with polarizing distal and proximal visual 18 
cues. A transparent bucket was used for the ITI. (F) PV correlations between the 19 
representations of different locations (pooled from both running directions) across trials from 20 
three consecutive imaging sessions for a mouse that explored the modified environment. (G) 21 
Distribution of average PV correlations across trial pairs within the same session (gray bars) is 22 
unimodal and markedly higher than shuffled data (black curve; obtained by shuffling the identity 23 
of the cells across trials). Data was pooled from 10 mice, each exploring two environments on 24 
eight imaging sessions. (H) The distribution of average PV correlations across session pairs 25 
(gray bars) is bimodal, unlike that of shuffled data (black curve; obtained by shuffling the identity 26 
of the cells across sessions). For each session, the PVs were averaged across all five trials. 27 
Data was pooled from six mice that had multiple maps for the same environment. (I) Distribution 28 
of the effective number of maps, averaged across environments, for one-map (cyan) and 29 
multiple-map (magenta) mice. (J) PV correlations between all combinations of spatial locations, 30 
running directions, and maps show no relations across the different representations of the 31 
environment. (K) Average PV correlation between map pairs of the same environment under a 32 
flipped track orientation versus same orientation shows no relations across maps. For mice with 33 
more than two maps, all map pairs are shown. See also Figure S6.  34 
 35 
  36 
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 Figure 6. The auto-associative properties of the hippocampus provide a possible 1 
mechanism for the formation and evolution of multiple maps for the same environment 2 
(A and B) Illustration of the formation of either one (A) or two (B) stable attractors in the energy 3 
landscape, corresponding to one or two stable maps of the same environment. While under low 4 
variability in initial conditions or inputs (dense arrows), the network might always converge to 5 
the same attractor (black asterisk), hence stabilizing only one map (A), under higher variability 6 
in initial conditions or inputs (sparse arrows), it can converge to either of two different attractors 7 
(two black asterisks), thus stabilizing two maps (B). (C) Illustration of the energy landscape 8 
supporting two stable maps of the same familiar environment as it gradually changes over long 9 
time scales (blue and red curves show the energy landscape of the same network on different 10 
days). The drift in the attractors and separatrix leads to changes in the maps and the tendency 11 
to converge to each map, respectively. Hence, small changes in the energy landscape can 12 
cause the network to converge to different attractors (blue and red asterisks) under the same 13 
initial conditions or inputs. 14 
  15 
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STAR * METHODS 1 

LEAD CONTACT AND MATERIALS AVAILABILITY  2 

This study did not generate new unique reagents. Further information and requests for 3 

resources and reagents should be directed to the Lead Contact, Yaniv Ziv 4 

(yaniv.ziv@weizmann.ac.il). 5 

 6 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 7 

Animals 8 

All procedures were approved by the Weizmann Institute IACUC. A total of 37 male mice, 9 

aged 3-10 months at the start of imaging, were used in this study, out of which, data from 10 

5 mice was taken from a previous publication [28]. Out of these 37 mice, 27 performed 11 

the scattered-cues experiment (Figures 1-4 and Figure 5A-D), and 10 performed the 12 

polarizing-cues experiment (Figure 5E-K). Twenty six mice were virus injected C57BL/6 13 

(3 injected with AAV2/5-CaMKIIa-GCaMP6s and 23 injected with AAV2/5-CaMKIIa-14 

GCaMP6f), and 11 were Thy1-GCaMP6f transgenic mice (Jackson stock number 15 

025393; 6 with a C57BL/6 background and 5 with an ICR(CD-1) background) [66] (see 16 

table below). Mice were housed with 1-4 cage-mates in cages with running wheels in a 17 

12:12 hour reverse light cycle (lights off 10am-10pm).  18 

 AAV2/5-CaMKIIa-GCaMP6f AAV2/5-CaMKIIa-GCaMP6s Thy1-GCaMP6f 

Scattered cues 10/13 3/3 6/11 

Polarizing cues 6/10 - - 

Number of mice with multiple maps for the same environment out of the total 19 
number of mice across the different genetic backgrounds and experiments  20 
 21 

METHOD DETAILS 22 

Surgical procedures 23 

For the virus-injected C57BL/6 mice, we first injected into the CA1, under isoflurane 24 

anesthesia (1.5-2% volume), 450 nL of viral vector AAV2/5-CaMKIIa-GCaMP6s or 25 

AAV2/5-CaMKIIa-GCaMP6f (~2X1013 particles per ml, packed by University of North 26 

Carolina Vector Core)[67] at stereotatic coordinates: -1.9 mm anterio-posterior, -1.4 mm 27 

mediolateral, -1.6 mm dorsoventral from Bregma. Mice were then allowed to recover for 28 

at least two weeks. We then implanted all mice with a glass guide tube directly above the 29 



 20 

CA1. We used a trephine drill to remove a circular part of the skull centered posteriolateral 1 

to the viral injection site. We removed the dura and cortex above the CA1 by suction with 2 

a 29 gauge blunt needle while constantly washing the exposed tissue with sterile PBS. 3 

We then implanted an optical guide tube with its window just dorsal to, but not within, area 4 

CA1 and sealed the space between the skull and the guide tube using 1.5% agarose in 5 

PBS. The exposed skull areas were then sealed with Metabond (Parkell, Edgewood, NY) 6 

and dental acrylic.  7 

 8 

Ca2+ imaging and behavioral setup 9 

To perform time-lapse imaging in freely behaving mice using an integrated miniature 10 

fluorescence microscope (nVistaHD, Inscopix), we followed a previously established 11 

protocol [25]. Mice were water-restricted and maintained above 80% of their initial weight. 12 

We habituated the mice to human handling by allowing them to walk on the 13 

experimenters’ hands. At least three weeks after guide-tube implantation, mice were 14 

imaged under isoflurane anesthesia using a two-photon microscope (Ultima IV, Bruker, 15 

Germany). We inserted a microendoscope consisting of a single gradient refractive index 16 

lens (1 mm diameter, Inscopix) into the guide tube and examined Ca2+ indicator 17 

expression and tissue health. We selected for further imaging only those mice that 18 

exhibited homogenous GCaMP6 expression and appeared to have healthy tissue. For 19 

the selected mice, we then affixed the microendoscope within the guide tube using an 20 

ultraviolet-curing adhesive (Norland, NOA81, Edmund Optics, Barrington, NJ). Next, we 21 

attached the microscope’s base plate to the dental acrylic cap using a light-cured 22 

adhesive (Flow-It ALC, Pentron, Orange, CA). To record mouse behavior, we used an 23 

overhead camera (DFK 33G445, The Imaging Source, Germany), which we synchronized 24 

with the integrated microscope. Ca2+ imaging was performed at 20 Hz. 25 

 26 

Scattered-cues experiment  27 

The data set from this experiment is presented in Figures 1-4 and Figure 5A-D. Before 28 

starting the experiment, we pre-trained the mice to run back and forth to collect water 29 

rewards on one or two linear tracks (Environments A and B). In each environment, we 30 

placed the track in a square enclosure within the recording room. The environments 31 
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differed in their geometry and had distinct sets of visual and tactile cues, overhead lights, 1 

flavored liquid rewards, and odor cues. Environment A was a straight 96-cm-long track, 2 

while Environment B was an L-shaped track consisting of two 48-cm-long arms. Each 3 

environment had a separate set of curtains with different colors and patterns, which made 4 

up the walls of the recording enclosure (distal cues), and also had distinct visual cues 5 

scattered along the walls of each track (proximal cues). Before the beginning of each 6 

session, we wiped the tracks with differently scented paper towels (0.5% acetic acid for 7 

environment A and 10% ethanol for environment B). The water reward was dispensed at 8 

both ends of the tracks using a custom-made computer-controlled device. Mice were pre-9 

trained over 6–11 days while carrying the head-mounted microscope, until they ran at 10 

least 60 times the entire length of each track in two consecutive days. Pre-training and 11 

imaging sessions consisted of five 3-minute-long trials, with an inter-trial interval (ITI) of 12 

3 minutes, during which the mice were put in an opaque circular plastic bucket, which 13 

was placed at a specific fixed position on top of the track. When necessary, the bucket 14 

was rotated during the ITI to untangle the coiling of the microscope data wire. Special 15 

care was taken to ensure each mouse was placed on the track in the same way across 16 

all trials. We imaged the mice every 2 or 4 days for a total of 5-8 recording days. Nine 17 

mice explored both environments on each day in two sessions that were separated by 4–18 

5 hours, and 18 mice explored only environment A. On each recording day, we imaged 19 

1-7 mice. 20 

 21 

Polarizing-cues experiment  22 

The data set from this experiment is presented in Figure 5E-K. We designed this 23 

experiment to test whether multiple maps also occur in a setting that minimizes the 24 

possibility for disorientation between the two running directions of the linear tracks. To 25 

this end, we created environments with highly polarizing orientation cues. In polarized 26 

environment A (straight track), three of the enclosure’s walls were black and one white. 27 

In polarized environment B (L-shaped track), two of the enclosure’s outer walls were 28 

black, one was white, and one featured vertical black and white stripes. In both 29 

environments, the proximal visual cues covered only half the length of the track (using a 30 

unique cue-set for each environment). In polarized environment A, we created grooves 31 
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in the track’s floor (tactile cues) that were parallel to the running direction of the mice on 1 

one side of the track length and perpendicular to the running direction on the other side. 2 

Before beginning Ca2+ imaging, we pre-trained the mice for four days in a 56-cm-long 3 

linear track with a different set of visual and olfactory cues. Imaging sessions had the 4 

same structure as described above for the scatted cues experiment. During the 3-5 

minute ITI, the mice were placed in a transparent circular plastic bucket instead of an 6 

opaque one, so that the environment remained visible throughout the ITI. In this 7 

experiment, the bucket was never rotated during the ITI, to further avoid disorienting the 8 

mice. We imaged the mice every three days for a total of eight recording days. All 10 9 

mice explored both environments in each day of the experiment in two sessions that 10 

were separated by 4–5 hours. On each recording day, we imaged 5 mice. 11 

 12 

Mouse position tracking 13 

We analyzed mouse behavior videos using a custom MATLAB (Mathworks) routine that 14 

detects the mouse’s center of mass in each frame. We then used the estimated position 15 

to calculate its velocity, and applied a smoothing filter (rectangular window of 250 msec) 16 

to the calculated velocity.  17 

 18 

Processing Ca2+ imaging data 19 

We processed the Ca2+ imaging data using commercial software (Mosaic, version 1.1.1b, 20 

Inscopix) and custom MATLAB routines as previously described [25,28]. To increase the 21 

computation speed, we spatially down-sampled the data by a factor of four in each 22 

dimension (final pixel size of 2.3 X 2.3 μm). To correct for non-uniform illumination, both 23 

in space and in time, we normalized the images by dividing each pixel by the 24 

corresponding value from a smoothed image. The smoothed image was obtained by 25 

applying a Gaussian filter with a radius of 100 μm to the movies. Normalization also 26 

enhanced the appearance of the blood vessels, which were later used as stationary 27 

fiducial markers for image registration. We used a rigid-body registration to correct for 28 

lateral displacements of the brain. This procedure was performed on a high-contrast sub-29 

region of the normalized movies in which the blood vessels were most prominent. The 30 

movies were transformed into relative fluorescence changes, ∆"($)
"&

= (F(t) − F+)/F+, 31 
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where F0 is the value for each pixel averaged over the entire recording duration. For cell 1 

detection, the movies were down-sampled in time by a factor of five. We detected spatial 2 

footprints corresponding to individual cells using an established cell-detection algorithm 3 

that applies principal and independent component analyses (PCA and ICA) [68]. For each 4 

spatial footprint, we used a threshold of 50% of the footprint’s maximum intensity, and 5 

each pixel that did not cross this threshold was set to zero. After the cells were detected, 6 

further cell sorting was performed to identify the spatial footprints that follow a typical 7 

cellular structure. This was done by measuring the footprint area and circularity, 8 

discarding those whose radius was smaller than 5 μm or larger than 15 μm or which had 9 

a circularity smaller than 0.8. In some cases, the output of the PCA/ICA algorithm included 10 

more than one component that corresponded to a single cell. To eliminate such 11 

occurrences, we examined all pairs of cells with centroid distances <18 μm; whenever 12 

their traces had a correlation >0.9, the cell with the lower average event peak amplitude 13 

was discarded. We detected 269-665 per imaging session. 14 

 15 

In the analysis presented in Figure S1D-F, calcium dynamics were also extracted using 16 

CNMF-e [69], an extension of the constrained non-negative matrix factorization method 17 

[70], for one-photon microendoscopic data.  18 

 19 

Detection of Ca2+ events 20 

Ca2+ activity was extracted by applying the thresholded spatial footprints to the CA2+ 21 

movies at full temporal resolution (20 Hz) ∆F(t)/F+. Baseline fluctuations were removed 22 

by subtracting the median trace (20 sec sliding window). The Ca2+ traces were smoothed 23 

with a low-pass filter with a cutoff frequency of 2 Hz. Ca2+ candidate events were detected 24 

whenever the amplitude crossed a threshold of 4 or 5 median absolute deviations (MAD) 25 

for GCaMP6s or GCaMP6f, respectively. We considered for further analysis only 26 

candidate Ca2+ events with an indicator decay time for GCaMP6s or GCaMP6f equal to 27 

or longer than 600 msec or 200 msec, respectively. In order to avoid the detection of 28 

several peaks corresponding to a single Ca2+ event, only peaks 4 or 5 MAD higher than 29 

the previous peak (within the same candidate event) and 2 or 2.5 MAD higher than the 30 

next peak for GCaMP6s or GCaMP6f, respectively, were regarded as true events. We 31 
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set the Ca2+ event occurrence to the time of the peak fluorescence. To mitigate the effects 1 

of crosstalk (i.e., spillover of Ca2+ fluorescence from neighboring cells), we adopted a 2 

conservative approach, allowing only one cell from a group of neighbors (pairs of cells 3 

with centroid distances <18 μm) to register a Ca2+ event in any 200 msec time window. If 4 

multiple Ca2+ events occurred within ~200 msec in neighboring cells, we retained only the 5 

event with the highest peak ∆F(t)/F+ value. If two neighboring cells had a correlation >0.9 6 

in their events, the cell with the lower average peak amplitude was discarded. After the 7 

events were identified, further event sorting was performed to find the cells with sufficient 8 

signal-to-noise ratios. This was done by measuring the event rate and the average event 9 

peak amplitude for each cell and discarding those whose event rate was smaller than 10 

0.01 Hz or which had an average event amplitude smaller than 1% (∆F(t)/F+).  11 

 12 

Registration of cells across sessions 13 

To identify the same neurons across multiple imaging sessions, we used a probabilistic 14 

method for cell registration [26]. This method models the distribution of spatial correlations 15 

and centroid distances for neighboring cells from different recording sessions (candidates 16 

for being the same cell) as a weighted sum of the distributions of two subpopulations: 17 

same cells and different cells (Figure S3D). Then, based on the model that best fits the 18 

data, the method estimates the probability of each candidate in the data set to be the 19 

same cell (Psame). This allows estimating the overall rates of false-positive errors (different 20 

cells falsely registered as the same cell) and false-negative errors (the same cell falsely 21 

registered as different cells), providing a Psame registration threshold that is optimized to 22 

the data set of each mouse. The threshold used for registration controls the tradeoff 23 

between false-positive and false-negative errors. Therefore, we chose a registration 24 

threshold of Psame=0.5, which constitutes an appropriate balance between false-positive 25 

and false-negative registration errors [26]. Note that while some of the same-cell 26 

candidates had intermediate spatial correlation values, the vast majority of such cell pairs 27 

exhibited either very high spatial correlations (suggesting they are the same cell) or very 28 

low spatial correlations (suggesting they are different cells; Figure S3D). Overall, we could 29 

track the same neurons across multiple imaging days with estimated false-positive 30 

registration errors =5.6±2.8% and false-negative registration errors =4.1±1.8% (Figure 31 
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S3E). Furthermore, in cases with multiple candidates that cross the registration threshold, 1 

only the pair with the highest Psame was registered as the same cell, thus avoiding some 2 

of the false positive errors, the result of which was lower percentages of false-positive 3 

errors than those estimated by the probabilistic model. Importantly, since the microscope 4 

remained head-mounted throughout each session (i.e., maintaining exactly the same 5 

focal plane and field of view), the processing of the data and the detection of cells was 6 

done together for all trials within each session. Therefore, no cell registration was required 7 

across trials from the same session.  8 

 9 

Rate maps 10 

For place field analysis, we considered periods wherein the mouse ran >1 cm/sec. We 11 

divided each track into 24 bins and computed the time spent in each bin and the number 12 

of Ca2+ events per bin. We smoothed these two maps (‘occupancy’ and ‘Ca2+ event 13 

number’) using a truncated Gaussian kernel (σ=1.5 bins, size=5 bins) [25,28]. We then 14 

computed the activity map (event rate per bin, excluding the last 2 bins at each end of the 15 

tracks) for each neuron by dividing the smoothed map of Ca2+ event numbers by the 16 

smoothed map of occupancy. We separately considered place fields for the two running 17 

directions on the linear track. For each running direction, we defined the preferred position 18 

to be the position with a peak value within the activity map. 19 

 20 

Place tuning analysis 21 

For this analysis, we focused only on active cells (≥3 detected events in a given trial). We 22 

computed the spatial information (in bits per event) of these cells using the unsmoothed-23 

event-rate map of each cell, as previously described [71]: 24 

, 25 

where pi is the probability of the mouse to be in the ith bin (time spent in ith bin/total running 26 

time); ri is the Ca2+ event rate in the ith bin; and r ̄is the overall mean Ca2+ event rate. We 27 

then performed 1,000 distinct shuffles of animal locations during Ca2+ events, accounting 28 

for the spatial coverage statistics for the relevant trial and running direction, and 29 

calculated the spatial information for each shuffle. This yielded the p-value of the 30 

( ) ( )i i 2 i
i

Spatial information = p r / r log r / r∑
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calculated spatial information relative to the shuffles. Cells with spatial information higher 1 

than that of 95% of their shuffles were considered significant place cells. The fraction of 2 

place cells in each trial was defined as the number of significant cells out of the number 3 

of active cells in that trial. 4 

 5 

Population vector correlation 6 

To determine the level of similarity between representations of the environment on 7 

different trials, we calculated the mean population vector correlation between them [7]. 8 

For each spatial bin (excluding the last 2 bins at each end of the tracks, and separating 9 

between right and left running directions), we defined the population vector as the mean 10 

event rate for each place cell (cells that were significantly spatially tuned in at least one 11 

of the two trails) given that bin’s occupancy. We computed the correlation between the 12 

population vector (PV correlation) in one trial with that of the matching location in another 13 

trial, and averaged the correlations over all positions. In addition, to study the 14 

relationships between representations, we averaged the rate maps over all trials in a 15 

given map. We then calculated the PV correlations between all the combinations of spatial 16 

locations, running directions, and distinct maps. To measure the similarity between pairs 17 

of maps under a flipped orientation of the environment, we inverted in one of the maps 18 

the order of the spatial bins and switched between left and right running directions. To 19 

determine whether distinct maps of the same environment are orthogonal or show a 20 

relationship, we calculated the distribution of PV correlations for all spatial locations using 21 

a shuffled version of the data. We then counted for each pair of maps of the same 22 

environment the fraction of spatial locations that were significantly correlated (higher than 23 

95% of all shuffles). Finally, we asked whether the number of spatial locations that were 24 

significantly correlated across maps have <0.05 probability to be obtained by chance. In 25 

practice, 6 correlated spatial locations out of a total of 40 spatial locations (across the two 26 

running directions) were enough for a pair of maps to be considered not orthogonal (using 27 

Bonferroni correction for the two possible orientations of the track). For a pair of maps to 28 

be considered related specifically under a flipped orientation of the track, 5 correlated 29 

spatial locations out of a total of 40 spatial locations were enough (no need in this case 30 

for the Bonferroni correction for the two possible orientations). 31 
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 1 

Rate map correlation 2 

For each place cell, we determined the level of similarity between the representations of 3 

the environment on different trials by calculating the rate map correlation (Pearson 4 

correlation) between the rate maps in two trials (done for each running direction 5 

separately). To measure the similarity between spatial tuning under a flipped orientation 6 

of the environment, we inverted in one of the maps the order of the spatial bins and 7 

switched between left and right running directions. Cells that were significantly spatially 8 

tuned in at least one of the two trails were considered to be place cells. 9 

 10 

Distinction between different spatial representations (maps) 11 

To distinguish between the different maps, we calculated the PV correlations across all 12 

trials recorded from the same mouse. To cluster the trials into the different maps, we 13 

computed the eigenvectors of the PV correlation matrix. Then, we projected the columns 14 

of the PV correlation matrix (each corresponding to a different trial) onto its two leading 15 

eigenvectors and clustered the trials in the dimensionality reduced PV correlations space. 16 

Since there were rarely cases of ambiguity in the clustering of different trials, determining 17 

the number of clusters and the assignment of each trial to a specific cluster was performed 18 

manually. We validated the manual assignment by applying two different unsupervised 19 

methods to the leading five dimensions of the reduced PV correlations space: K-means 20 

and topological clustering [72]. These validations yielded 96.2% and 98.5% agreement 21 

with the manual assignment for K-means and topological clustering, respectively. Only 22 

maps that occurred more than once were considered as one of the alternative 23 

representations of a given environment, and those that occurred only once were 24 

discarded from the analysis.  25 

 26 

Effective number of maps 27 

To quantify the tendency of a mouse to represent a given environment with multiple maps, 28 

we measured the number of trials in which each map occurred. We then calculated the 29 

effective number of maps based on the maps’ entropy (Hmaps), accounting for the 30 

probability of each map to occur in any given trial:  31 
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where Pi is the fraction of trials in which the ith map occurred. This definition aligns with 2 

the naïve definition of the number of maps in the case of a uniform distribution (e.g., for 3 

50% of the trials in each of two maps, Neffective=2; for 33% of the trials in each of three 4 

maps, Neffective=3), and may result in a non-integer in the case of a non-uniform distribution 5 

(e.g., for 25% of the trials in map 1 and 75% in map 2, Neffective=1.48). 6 

 7 

Map stability and recurrence probability 8 

To quantify the long-term dynamics of a given map, we calculated the average PV 9 

correlation between pairs of trials as a function of the elapsed time between them. 10 

To quantify the long-term dynamics of map recurrence probability, we calculated the 11 

probability that the same map recur on two different trials as a function of elapsed time.  12 

 13 

Average rate correlation  14 

To quantify the similarities in activity patterns between trials, without accounting for place 15 

tuning, we measured the overall event rate for each neuron in each trial (irrespective of 16 

mouse position). We then calculated the rate correlation as the Pearson correlation 17 

between the vectors (for all neurons) of event rates. This calculation was also performed 18 

separately for place and non-place cells. Cells that were significantly spatially tuned in at 19 

least one of the two trails were considered to be place cells. 20 

 21 

Overlap 22 

To quantify the overlap between two trials, we counted the number of cells with ≥5 events 23 

in both trials and then divided the resultant figure by the total number of cells with ≥5 24 

events in at least one of the trials.  25 

 26 

Within-trial stability 27 

To quantify the within-trial stability of a given map, we measured map similarity at a 28 

higher temporal resolution than the full trial length. First, we calculated the average PV 29 

correlations between two contiguous (non-overlapping) running windows of 60 sec 30 

within each imaging session (consisting of five trials). Both time windows were shifted 31 
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together throughout the entire session. Time points for which the PV correlation 1 

significantly decreased indicated a map switch (Figure S2A). We also calculated the 2 

average correlations between the PVs of a 60-second running window and a stationary 3 

reference window representing the average PVs from all trials in a given map, and 4 

repeated this calculation for all distinct maps. This analysis showed that at time points 5 

for which the PV correlations with one map significantly decreased, the PV correlations 6 

with another map increased (Figure S2B). Based on this analysis, we devised a map 7 

switch detector. Whenever there was a switch in the identity of the reference map with 8 

which the running window had the highest PV correlation (provided that the PV 9 

correlation was >0.2), a map switch was assigned to that time point. Then, we counted 10 

the number of map switches that occurred across trials (during the 30 seconds after the 11 

beginning or before the end of a trial), and the number of switches that occurred within a 12 

trial (during the middle two minutes of a trial). Although the defined within-trial time 13 

interval was two times larger than the across-trials time interval, we never detected 14 

switching between maps within trials (0 out of a total 874 three-minute trials), while 15 

across trials it was detected frequently (164 out of a total of 699 pairs of consecutive 16 

trials; Figure S2). Additionally, we calculated the average PV correlations between the 17 

first half and the second half of the same trials. To measure within-trial stability at an 18 

even finer temporal resolution, we also calculated the correlations between the PV of a 19 

single frame (time bin of 50 msec) and a stationary reference window representing the 20 

average PVs from all trials in the same map or in another map. We then compared 21 

between the distributions of single frame correlations to the same map reference and to 22 

other maps references.    23 

 24 

Behavioral analysis   25 

To compare mice behavior across the different maps, we measured the percentage of 26 

stationary periods, track traversal, and the average speed of the mouse. The percentage 27 

of stationary periods was defined as the amount of time the mice ran at <1 cm/sec out of 28 

the total time of each trial. The number of track traversals was measured based on the 29 

number of times the mouse reached either of the two track ends. The average speed was 30 

computed based on the periods for which the mouse was not stationary (≥1cm/sec). We 31 



 30 

then divided the trials according to the different maps used in each trial and compared 1 

between the maps. We also compared the behavior between mice with one map and 2 

mice with multiple maps for the same environment. 3 

 4 

QUANTIFICATION AND STATISTICAL ANALYSIS 5 

We analyzed unrelated samples by way of a two-sided t-test or one-way two-sided 6 

analysis of variance (ANOVA). Bonferroni correction was performed when conducting 7 

multiple comparisons. For mice that explored two different environments (9/27 in the 8 

scattered-cues experiment and 10/10 in the polarizing-cues experiment), we averaged 9 

the data for each mouse over the two environments. Wilcoxon signed-rank test was used 10 

for comparing the effective number of maps between mice that explored one environment 11 

and mice that explored two environments. All statistical details, including the specific 12 

statistical tests, the values of n, and what it represents are specified in the corresponding 13 

figure legends. All statistical analyses were conducted using MATLAB (Mathworks). 14 

 15 

DATA AND CODE AVAILIABILITY 16 

The data set and code supporting the current study have not been deposited in a public 17 

repository because it is analyzed for an additional work that is still in progress, but are 18 

available from the corresponding author upon reasonable request.  19 

20 
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