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Abstract

N6-methyladenosine (m6A) is the most prevalent modification of mRNA in mammals.

To interrogate its functions and dynamics, there is a critical need to quantify m6A at

three levels: site, gene, and sample. Current approaches address these needs in a

limited manner. Here we develop m6A-seq2, relying on multiplexed m6A

immunoprecipitation of barcoded pooled samples. m6A-seq2 allows a major

increase in throughput, while dramatically reducing technical variability, requirements

of input material, cost, and labor. m6A-seq2 is furthermore uniquely capable of

providing sample-level relative quantitations of m6A, serving as an important,

orthogonal alternative to mass spectrometry-based approaches. Finally, we develop

a computational approach for gene-level quantitation of m6A. We demonstrate that

using this metric, roughly 30% of the variability in RNA half-life in mouse embryonic

stem cells can be explained, establishing m6A as a major driver of RNA stability.

m6A-seq2 thus provides an experimental and analytic framework for dissecting

m6A-based regulation at three critical resolutions.



Introduction

The most abundant modification in mammalian mRNA is N6-methyladenosine

(m6A). Initially discovered nearly five decades ago 1,2, research into this modification

was catalyzed with the advent of transcriptome-wide detection methodology, namely

m6A-seq/m6A-meRIP 3,4, relying on immunoprecipitation of m6A-containing RNA

fragments, followed by high-throughput sequencing. m6A has been implicated in

most steps of mRNA fate, and the disruption of the m6A-methylation machinery has

critical manifestations in diverse systems 5–13. Yet, despite intensive research,

important aspects pertaining to m6A regulation and functions remain intensely

debated 14–17, to a large extent due to our limited technical toolkit for interrogating

m6A dynamics and functions at a transcriptome-wide scale. Nearly all genomic

techniques to date have focused on the identification of methylated sites. However,

connecting m6A with functions and phenotypes requires an ability to quantify m6A at

the levels of genes and samples. Specifically, the functional outcomes of m6A (e.g.

impact on mRNA stability, translation or localization) require a metric quantifying

relative abundance of m6A per gene. Conversely, quantitation of the abundance of

m6A across samples is indispensable towards interrogating its regulation, dynamics

and responses to genetic perturbations. These two aspects are currently both

addressed in a very limited manner. For gene-level m6A estimates, most studies,

with a single notable exception 18, have converged on employing a binary metric

(m6A methylated or unmethylated) or the number of m6A sites gene methylation

quantification. This approach has resulted in significant relationships between m6A

and different functional readouts, albeit typically of small effect sizes. It remains

unclear whether these small effect-sizes are due to biological or technical reasons, in

which case an improved metric could reveal stronger associations. In parallel, we

currently lack genomic methodologies for sample m6A estimates, and typically rely

on immunoassays or liquid chromatography followed by mass-spectrometry

(HPLC-MS), which cannot provide information at the site/gene levels and is

susceptible to non-mRNA contaminants (e.g. tRNA, rRNA)19.

Finally, our ability to quantitatively measure m6A also at the site level is limited. The

dynamic range of m6A changes in human samples is likely to be low 20,21. Hence,

identification of changes in m6A level of specific sites between conditions hinges on
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the absence of strong technical sources of noise. The need to immunoprecipitate

each sample separately in m6A-seq leads to considerable levels of technical noise

and batch effect giving rise to erroneous calling of differentially methylated sites. All

the more so when studies are conducted with a low number of replicates22, which is

often the case given expenses and input requirements associated with current

protocols. This underscores the need for an improved methodology, reducing the

extent of technical variability between samples, and facilitating robust experimental

designs.

Here we establish an experimental and analytic framework for dissecting m6A-based

regulations at all three relevant resolutions. Specifically, we develop an experimental

approach, m6A-seq2, allowing to robustly and cost-efficiently interrogate m6A at the

site-, sample- and gene- level resolution. We anticipate that the combined

experimental and analytical framework developed here will be of high utility for

functional and mechanistic interrogation of this widespread modification.

Results

The main principle introduced in m6A-seq2 is that a single m6A-IP is performed on

pooled RNA samples, instead of on a single sample at a time (Fig. 1a, upper part).

This is achieved by ligating barcoded RNA adapters to fragmented RNA originating

from up to 24 distinct samples, subsequent pooling, followed by a single anti-m6A

immunoprecipitation conducted on the pooled samples. These steps are followed by

pooled cDNA generation, ligation of an adapter to the cDNA, library amplification and

sequencing. The assignment of each read to its original sample is achieved on the

basis of the barcode sequence.

This protocol has several advantages over traditional m6A-seq: First, all m6A-IPs

are conducted in a single tube, which could reduce technical variability (Fig. 1a).
Second, given the competition between different samples over a fixed amount of

antibody, this protocol could potentially allow comparing global m6A levels across

different samples. Third, the pooling of n samples together prior to the IP step allows

reducing the amount of starting material by a factor of n, in the case of 24 samples

https://paperpile.com/c/Zn13ce/nFQ6


from ~1.2 µg per sample to ~50 ng. Fourth, this protocol significantly reduces the

costs of library preparation, to roughly 14% of the cost in standard m6A-seq (based
on 24 samples, Table S2). Fifth, this protocol increases the scale at which m6A can

be interrogated by a factor of n, permitting more robust experimental designs (e.g.

more  replicates, controls) (Fig. 1a).

m6A-seq2 reduces technical variability in m6A quantification

To directly assess whether m6A-seq2 reduces technical variability, we isolated RNA

from an Ndt80Δ/Δ yeast strain that is genetically synchronized at meiotic prophase).

Of note, yeast has very low levels of m6A under vegetative growth conditions, but

induces m6A during meiosis, peaking at the prophase stage 27–29. M6A sites under

these conditions have been well characterized and validated using orthogonal

techniques 20,27. We then conducted two sets of experiments: (1) we applied the

standard m6A-seq protocol to 3 technical replicates beginning with 1.2 µg/sample,

and (2) we applied m6A-seq2 to 12 technical replicates of 100 ng/sample.

Despite the order of magnitude difference in RNA starting material, the sequenced

samples show similar complexity (Supplementary Fig. 1a), similar enrichment of

methylated targets (Supplementary Fig. 1b), similar enrichment towards the 3’ end

(Supplementary Fig. 1c), and similar enrichment of the m6A consensus motif in a

de novo peak calling analysis (Supplementary Fig. 1d). We furthermore found that

all barcodes gave rise to more or less similar numbers of reads per library

(Supplementary Fig. 1e) and that the distribution of the 3’-most base in the library

(undergoing the ligation with the adapter) was uniform across all adapters

(Supplementary Fig. 1f), ruling out sequence biases due to ligation of distinct RNA

adapters 30,31.
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Figure 1. m6A-seq2 reduces batch-induced variability between replicates. a) Schematic comparison of m6A-seq

versus m6A-seq2 experimental approach. b) Schematic overview of the m6A quantification approaches on three

resolutions. c) m6A-site score comparison between technical replicates generated via m6A-seq (n=3) or m6A-seq2

(n=12). (Top) Heatmap of score1 for 489 m6A-sites. (Bottom) score2 for 577 m6A-sites passing the coverage

thresholds for high-confidence m6A site estimation (see methods). d) Top: Comparison of the percentage coefficient of

variation (%CV) of score1 (left) and score2 (right) estimates across the triplicates of samples measured via m6A-seq,

and randomly selected triplicates (from the 12 replicates) measured via m6A-seq2. Boxplot: Center is the median,

lower and upper hinges depict the first and third quartile and the whiskers stretch to 1.5 times the inter-quartile range

from the corresponding hinge. Bottom: Histogram of the log2 fold-change of m6A-seq2 to m6A-seq triplicate



coefficient of variation (CV) of the m6A-site score1 & 2. Mean log2 fold-change CV indicated with black dashed line. e)
Principal component analysis of Score1 of 486 m6A - sites

We next quantified m6A intensities across a set of 486 previously detected

high-confidence m6A sites 20,27, using two previously-established metrics 21: (1) an

input-normalized score (‘score 1’), in which the sequence coverage of the IP sample

is normalized by the corresponding value in the input sample, and (2) a

background-normalized score (‘score 2’) in which the coverage at the site in the IP

sample is normalized by median IP coverage levels of the gene (Fig. 1b). For both

sets of quantitations, m6A-seq2 results showed substantially reduced variability (Fig.
1c & 1d), with roughly 50% reduction in the coefficient of variation (CV) (Fig. 1d,
lower panel). This reduced variability is captured also in a principal component

analysis of m6A-site score1 (Fig. 1e) and score2 (Supplementary Fig. 1g). Such

reduced variability should both increase the statistical power to detect truly

differentially modified sites, and reduce the number of sites erroneously detected as

being differentially modified between two conditions. The latter aspect is explored in

a bootstrapping-based scheme, revealing that m6A-seq2 is associated with a

dramatic reduction in erroneously detected differentially modified sites

(Supplementary Fig. 1h). Erroneous calling of differentially modified sites has been

the source of numerous misinterpretations in the field22, and can thus be

considerably mitigated by m6A-seq2.

To further confirm these results in a mammalian transcriptome, we isolated mRNA

from mouse embryonic fibroblasts (mEFs), and split it into 10 aliquots. Five of these

were subjected to traditional m6A-seq, and the others were subjected to m6A-seq2.

We confirmed that also in mammalian contexts, the complexity of the m6A-seq2

libraries was similar compared to those obtained using the traditional m6A-seq

protocol (Supplementary Fig. 2a). m6A-seq2 allowed similar de novo identification

of m6A sequence motifs (Supplementary Fig. 2b). Also metagene profiles showed

a comparable enrichment around the stop codon (Supplementary Fig. 2c).

m6A-seq2 also resulted in a significant reduction of technical variability and therefore

to decreased liability of falsely calling a site as ‘differentially modified’

(Supplementary Fig. 2d-g).

https://paperpile.com/c/Zn13ce/VCxd+9pzu
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m6A-seq2 enables estimation of global m6A levels across samples

The standard m6A-seq protocol is limited in its ability to estimate the m6A level of a

sample. If sample A contains twice the amount of m6A than sample B, the relative

extent to which m6A is enriched in two separate m6A-IPs will not necessarily reflect

this two-fold enrichment. In contrast, in m6A-seq2 samples A and B ‘compete’ over a

fixed amount of antibody, in which case sample A should be immunoprecipitated

twice as efficiently as B. We thus explored whether m6A-seq2 could allow estimating

an ‘m6A index’ of the relative amounts of m6A in each sample. We first explored this

question in the context of yeast meiosis. We applied m6A-seq2 to 12 samples,

comprising 5 time points across meiosis sampled from two biological replicates, in

addition to an Ndt80Δ/Δ positive control sample (PC) and an Ime4Δ/Δ/Ndt80Δ/Δ

negative control (NC) lacking m6A 27,28. Indeed, a crude readout of the number of

reads of the m6A-IP divided by the corresponding number in the input sample,

mirrored the expected accumulation of m6A during meiosis (Fig. 2a). Of note, in a

standard m6A-seq experiment, the raw number of reads is entirely technical and

determined by the user-defined depth of sequencing. In contrast, in m6A-seq2,

samples harboring higher levels of m6A will outcompete samples harboring lower

m6A levels in their ability to bind the anti-m6A antibody, whereas all samples will be

equally represented in the input samples, and hence the ratio is informative. Rather

than quantify raw read-numbers, we next sought to define a more specific ‘m6A

sample index’ (m6A-SI), quantifying the coverage over a predefined set of m6A sites

in the IP sample, divided by the corresponding coverage in the input sample (Fig.
2b). The m6A-SI displayed an increased dynamic range along the meiosis time

course, as well as reduced variability in comparison to the read number fold-change,

and captured the anticipated accumulation of m6A during meiosis. The m6A-SI

strongly correlated with the HPLC-MS-based m6A level (Fig. 2c & 2d).

For analysis at the site level, relatively high sequencing depth is required; However,

the m6A-SI could, in principle, rely on much more shallow sequencing depth, given

that it relies on the aggregation of reads from across hundreds of different sites 33. To

directly explore this, we subsampled sequencing reads from the meiosis time course

at varying depths and assessed the correlation between the subsampled m6A-SIs

per sample and their counterparts based on full coverage. We found that

https://paperpile.com/c/Zn13ce/9pzu+xI6n
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subsampling down to 10% of the original read number didn’t impact the m6A-SI (Fig.
2e). At this depth, there are on average about 132,000 IP and input reads per

sample, dramatically lower than is typically acquired for site-level analysis.

m6A-seq2 thus not only reduces the library preparation cost but also requires an

order of magnitude reduced sequencing depth for sample-level quantifications.

The scale at which m6A-seq2 can be applied also allowed us to perform a genetic

screen in yeast for genes potentially involved in RNA methylation. We selected 16

genes involved in RNA metabolism (Methods & Material Table 2), which we either

fully deleted or inducibly depleted via auxin-inducible degrons. We applied m6A-seq2

to a total of 41 samples, isolated from meiotic prophase, either following induction of

the degron (when applicable) or in the absence of such induction, in 4 batches. We

observed varying levels of methylation (Supplementary Fig. 2a) that correlated

strongly (Spearman ⍴=0.71) with the expression of a ‘meiotic prophase’ signature set

of genes (Fig. 2f), suggesting that the efficiency with which the different strains

progressed throughout meiosis varied considerably between the strains. This strong

correlation suggests that the observed differences in m6A levels primarily reflect

differences in the kinetics and/or efficiency of sporulation between the different

strains which indirectly impact m6A levels. Our ability to observe such a clear

correlation across dozens of samples underscores the scalability of m6A-seq2, the

quality of its output, and its utility for genetic screens.



Figure 2. Development of an m6A sample index. a) Mean ratio of read-numbers (the number of reads in m6A-IP

divided by the corresponding number in input) of a sample (time point in h) from the m6A-seq2 experiment of the

yeast meiosis time course, barplot represents the mean of biological replicates n = 2 b) Scheme of m6A sample



index (m6A-SI) calculation. c) m6A-SI for meiosis time course samples. Biological duplicates for each time point (h)

as well as a positive and negative control. As in a) , barplot represents the mean of biological replicates n = 2 d)
m6A-SI across a meiosis time course plotted against mass-spec derived m6A levels 20. Annotated Pearson’s R

coefficient and p-value and 95 % confidence interval e) Correlation between m6A-SIs using all available reads in

comparison to counterparts estimated on the basis of down-sampling of read-number. The x-axis shows the

average depth per sample. f) m6A-SIs plotted against a gene-expression derived index on the basis of a set of

genes induced at meiosis prophase (see Methods). Annotated Pearson’s R coefficient and p-value and 95 %

confidence interval g) Experimental design of the 24 sample m6A-seq2 mESC experiment. Indicated are the 8

samples with varying amounts (rounded %) of Mettl3 KO (green) and poly-A selected RNA from WT mES cells

(red). These sample dilutions were used for 3 technical replicates each (8 samples times 3 technical replicates) and

applied to m6A-seq2 h) Scatterplot of the m6A-SI of 24 mESC samples and the relative amount of mESC WT

derived RNA compared to Mettl3 KO. Annotated Pearson’s R coefficient and p-value and 95 % confidence interval

i) m6A-SIs in mESCs for WT cells and clones with partial knockouts of METTL3 and WTAP. j) Relative mass-spec

m6A abundances plotted against m6A-SIs for the WT and methylation-writer perturbed mESCs. Annotated

Pearson’s R coefficient and p-value and 95 % confidence interval

To explore the applicability of sample-level quantitation in mammalian contexts, we

generated 8 mixes of mESC WT and METTL3 KO mRNA at ratios spanning the

range from 0% WT (0 m6A) to 100% WT (corresponding to highest levels), with

triplicate measurements obtained for each sample dilution (Fig. 2g). m6A-seq2 was

applied to these 24 samples, and subjected to shallow sequencing. At the peak level,

an analysis of a subset of annotated high-confidence m6A-sites showed that the

peak intensities at these sites were enriched proportionally to the amount of mESC

WT mRNA (Supplementary Fig. 3b-c). At the sample level, we observed an

excellent agreement between the m6A-SI and between the relative ratios at which

the WT and KO samples had been mixed (Fig. 2h). Next, we utilized m6A-seq2, to

validate the elimination of m6A within mESC clones in which we had targeted m6A

writers (Mettl3, Wtap) with a CRISPR approach. From each perturbation we chose

two clones which appeared to lack the targeted exon based on Sanger sequencing.

We conducted m6A-seq2 to all clones and in parallel analyzed the poly(A) mRNA of

all samples with HPLC-MS. Both techniques indicated that none of the samples

showed a full loss of methylation. While the extent of m6A depletion varied from one

clone to another, it was highly correlated based on the two measurements (Pearson
R=0.99, P=0.001, Fig. 2i-j). These data thus support the extension of m6A indexes

to mammalian samples and validate a strong agreement with orthogonal, HPLC-MS

https://paperpile.com/c/Zn13ce/VCxd


derived data, even at a shallow sequencing depth. These data further demonstrate

the difficulties in achieving a full knockout of the methylation machinery components,

consistent with previous attempts that only led to a partial reduction of methylation 12.

Development of an m6A gene index

Estimation of the overall m6A levels per gene is essential for connecting m6A to the

wide range of functional readouts that are acquired at the gene level (e.g. stability,

localization, translation). The conceptual framework introduced by m6A-seq2 of

aggregating reads from across entire samples to estimate sample methylation levels

motivated us to explore whether aggregation of reads from entire genes could

provide a better estimate for gene-level methylation than approaches used to date,

which have relied primarily on counting of peaks within genes 9,17,21,34–38. Accordingly,

we developed an m6A gene index (m6A-GI), defined as the ratio of the number of

reads overlapping a gene in m6A-IP divided by the corresponding value in the input

sample (Fig. 3a).

To calibrate and assess the validity of the m6A-GI, we relied on the functional

propensity of m6A to enhance mRNA turnover. We utilized previously published

measurements of mRNA stability in WT or METTL3 KO mESCs (Material &
Methods Table 1), based on which we calculated for each gene a fold-change (FC)

half-life (WT/KO). Correlation of FC-half-life with the number of m6A sites

recapitulated a low, negative correlation (R=-0.17), thus explaining only ~2.9% of the

FC in half-life between WT and METTL3 KO cells (Fig. 3c). In stark contrast, the

m6A-GI established a dramatically stronger correlation (R=-0.55) (Fig. 3c-d), thus

explaining ~30% of the variability in mRNA stability. Moreover, even when correlating

the m6A-GI directly against mRNA half-life we observed a similar negative

correlation in mESC WT samples (R=-0.54) (Fig. 3e). Critically, the associations of

the m6A-GI with FC-half-life and with half-life are both abolished in METTL3 KO

mESCs (Fig. 3d-e, Supplementary Figure 4a). The m6A-GI thus indicates that

rather than being a minor contributor to stability, m6A in mESCs is a major force

shaping mRNA half life.

https://paperpile.com/c/Zn13ce/2Phu
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To further assess the performance of the m6A-GI, we obtained m6A-LAIC-seq

derived estimates of m6A abundances. m6A-LAIC-seq, which is based on subjecting

samples to an m6A-IP without prior fragmentation of the RNA 18, is the only approach

employed to date to derive gene-level estimates of m6A. We observed a strong

correlation (R=0.84) between LAIC-seq-derived estimates of m6A in H1 hES cells

and the m6A-GI derived from A549 cells m6A-seq data (Fig. 3b-c).

Figure 3. Development of an m6A-gene index. a) Scheme of the m6A-gene index (m6A-GI) b) Scatter plot of the

LAIC-seq based and reported m6A-index of H1 hES cells with the log2 transformed m6A-GI derived from a

published A549 m6A-seq dataset. Pearson’s R and p-Value are annotated21 c) Barplot of Pearson correlation

https://paperpile.com/c/Zn13ce/9Dx4
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coefficients (R) (Y-axis) between tested m6A-indexes based on various transcript regions of A549 m6A-seq dataset

and the LAIC-seq m6A-gene estimates of H1 hES cells (upper panel). Pearson correlation coefficients (R) (Y-axis)

between measured m6A-indexes of various transcript regions based on mESC m6A-seq dataset and

Mettl3-dependent half-life estimates (log2 fold-change WT/ Mettl3 KO half-lives), (lower panel) (Supplementary
Table 3). (1) Calculation of read-number enrichment (IP versus input) in diverse regions within the gene (red) and

The number of annotated high-confidence m6A-sites (Methods Table 1) (blue). d) m6A-GI in WT (top) and Mettl3

KO (bottom) mESC cells plotted against the L2FC of mRNA half-life between WT and Mettl3 KO. e) m6A-GI plotted

against mRNA half-life in WT mESC (top) and KO mESCs (bottom). Spearman R labeled. f) Pairwise Spearman

correlation matrix of m6A-GIs calculated based on different m6A-seq datasets in different cells/tissues

(Supplementary Table 9). g) HPLC-MS abundances of m6A across WT and m6A-writer perturbed mESC clones

plotted against the ‘expression-vs-methylation index’, defined as the Spearman correlation between WT m6A-GI

and normalized expression (TPM) (see methods). Annotated Pearson’s R coefficient and p-value and 95 %

confidence interval h) analysis as in g, conducted on published HPLC-MS determined m6A levels and RNA-Seq of

mESC with perturbations of m6A-’writer’ gene Zc3h13 45

We further explored whether the above-observed correlations with FC-half-life or

LAIC-seq could be increased by summarizing coverage only across different regions

within the gene (5’ UTR, CDS, 3’ UTR, last exon) or by focusing exclusively on

regions displaying enrichment. We found, restricting the index to specific regions led

to poorer correlations with both metrics, with the exception of the 5’ UTR region,

whose elimination resulted in slightly improved correlation with gene stability (Fig.
3c). This is consistent with the notion that the enrichment of this region is not due to

m6A but to m6Am 3,21,39, which is not thought to be associated with transcript

destabilization 40–44.

Finally, we explored the extent to which m6A-GI varies between different cells and

tissue-types. We found that m6A-GIs from widely different tissues (mESCs,

embryonic fibroblasts, embryonic and adult brains, dendritic cells21 correlated

strongly with each other, with a mean pairwise correlation of 0.89 (Fig. 3f). This

suggests that across mouse tissues and cell types, m6A profiles at the gene level

are to a large extent constitutively maintained, consistent with studies conducted at

the m6A site level 21,22,38.
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Inference of m6A sample levels directly from gene expression

The strong contribution of m6A to mRNA stability suggested the possibility of directly

inferring m6A levels from steady-state levels of gene expression. This would be

highly advantageous, given that the latter measurements are publicly available at

large scales. To explore this possibility, we took the RNA-seq based normalized

expression levels of the METTL3/WTAP perturbed mESC clones and computed the

correlation of their steady-state gene expression levels to the m6A-GIs based on a

reference m6A-seq dataset in WT mESCs. As expected, the magnitude of the

negative correlation decreased in the perturbed samples, consistent with a reduced

extent of m6A-dependent mRNA degradation. Importantly, we observed an excellent

agreement between the magnitude of these correlations and the mass-spectrometry

derived estimates of m6A levels in these samples (Fig. 3g). Given the high similarity

in m6A-GIs across different cell types/tissues (Fig. 3f), we found that using m6A-GIs

derived from mouse embryonic fibroblasts, dendritic cells or mouse adult brain tissue

performed well in quantitatively classifying the extent of impairment of the

methylation machinery (Supplementary Figure Fig. 4b). We could further extend

and reproduce these analyses with a previous dataset of measurements in mESCs

in which m6A-writer ZC3H13 was perturbed and rescued (Fig. 3h). These results

demonstrate the potential of inferring methylation levels directly from measurements

of RNA expression. Nonetheless, it should be noted that the absolute magnitude of

this correlation is low (R is within a range of -0.1 to -0.3) which may hence limit the

utility of this approach, in particular within contexts in which m6A levels are

modulated within a narrower range than in the context of the genetic perturbations

conducted here.

Discussion

The development of m6A-seq revolutionized the technical toolkit for interrogating

regions modified by m6A 3,4,46–48. Technical efforts in the field over the years have

primarily concentrated on improving the resolution of m6A detection, either by

introducing a cross-linking step following the IP 49,50 , or using antibody-independent

methodologies 20,23–26 including nanopore-based approaches 51–53. However, none of

these approaches were geared towards the quantification of m6A levels across

genes or across samples, two critical resolutions whose proper quantification may -

https://paperpile.com/c/Zn13ce/hbGn+4bjk+Lfw7+8rMC+Px93
https://paperpile.com/c/Zn13ce/JrBm+7pQP
https://paperpile.com/c/Zn13ce/VCxd+BvQk+Pi9x+gR1Y+tWkB
https://paperpile.com/c/Zn13ce/qNLm+r48n+KmXo


under many settings - be even more important than the identification of modified

sites. Moreover, the vast majority of these methods have not been established to

provide a robust quantitative readout even at the resolution of individual sites/peaks,

and the ones that have (e.g. MAZTER-seq, 20) can only do so for a low fraction of

sites. These limitations have constrained interrogation of m6A dynamics and

functions across biological responses and trajectories 22.

m6A-seq2 combines multiple advantages. At the peak level, it substantially reduces

technical variability. This is critical, given that the inherent variability in m6A-seq has

been pinpointed as one of the key factors giving rise to misinterpretations concerning

the dynamics of this modification and its response to different genetic perturbations
22,54. A related advantage of m6A-seq2 is that it reduces cost, input-material and

labor by a factor proportional to the number of samples, while simultaneously

increasing the scale. This feature is particularly important, given that lack of

replicates (2-3 in the majority of studies) and insufficient statistical power was found

to be among the major determinants giving rise to flawed inference of differential

methylation 22,54.

M6A-seq2 further allows establishing sample-level indexes of m6A levels,

establishing a critical alternative for HPLC-MS based approaches. Such an

orthogonal readout is of critical importance, given that HPLS-MS is subject to both

technical variability and is sensitive to ‘contaminants’ originating from non-poly(A)

fractions, which have limited the ability to robustly detect RNA modifications 19,55,56.

Nonetheless, the m6A-SI has limitations. First, sample-level quantifications are

inherently relative. We anticipate that in the future it may become possible to obtain

absolute quantifications by employing spike-in samples with known m6A

concentrations. Second, an implicit assumption made in the calculation of the

m6A-SI is that differences in methylation between samples are - to a first

approximation - global, impacting all sites to a similar extent. The m6A-SI will be

less sensitive to capturing changes impacting only a fraction of sites. Third, m6A-SI

provides more ‘weight’ to peaks originating in more highly expressed genes, given

that they contribute a greater number of reads. It might be beneficial to utilize

variants of the m6A-SI incorporating a step of normalizing m6A intensities by gene

https://paperpile.com/c/Zn13ce/VCxd
https://paperpile.com/c/Zn13ce/nFQ6
https://paperpile.com/c/Zn13ce/7Hqo+nFQ6
https://paperpile.com/c/Zn13ce/nFQ6+7Hqo
https://paperpile.com/c/Zn13ce/2asj+QFoM+7PRx


expression, for applications requiring capturing changes in m6A levels at only a

subset of lowly-expressed sites.

We further develop a conceptually-similar approach for gene-level quantifications of

m6A. Application of this approach to mESCs explains ~30% of variability in mRNA

stability, a dramatic increase with respect to previously employed peak-counting

approaches, which suggests that m6A is a key determinant of RNA stability in

mESCs. The ability of the m6A-GI to capture m6A levels suggests that mRNA may

be methylated at low levels in a pervasive and diffuse manner, which can be best

captured by aggregating the signal from the m6A-IP along the entire length of the

mRNA transcript. This conclusion draws support from a recent study, which

concluded that the sensitivity of antibody-based approaches is quite limited and that

m6A is likely to be more widespread 20.

Of note, the sequencing coverage required to accurately quantify these three

dimensions differs, with peaks requiring the greatest sequencing depth, followed by

genes, followed by samples.

It is important to note that m6A immunoprecipitations are subject to technical biases

due to antibody promiscuity and sequence-specific enrichment 27, which may impact

m6A quantifications at the site or at the gene level. In the case of comparing the

m6A-GI (or site index) for the same gene (or site) across distinct samples, this effect

should be negligible. Indeed, an examination of the m6A-GI upon mixing WT and

METTL3 KO cells at varying levels, revealed a striking linear increase in m6A-GI as

a function of the contribution of mRNA from the WT cells (Supplementary Fig.
5a-c). Comparison of m6A-GI across different genes is more prone to biases, given

that the antibody may selectively enrich some genes more than others. Indeed, a set

of five synthetic oligonucleotides, which were spiked into distinct samples at varying

stoichiometries, demonstrated a strong correlation between the relative enrichment

levels and the methylation stoichiometry, but demonstrated variability in the absolute

enrichment levels (Supplementary Fig. 5d). Nonetheless, the strong agreement of

the m6A-GI, both with mRNA stability data and calibrated m6A-LAIC-seq

measurements, suggest that the m6A-GI has important advantages in comparison to

previously available approaches.

https://paperpile.com/c/Zn13ce/VCxd
https://paperpile.com/c/Zn13ce/9pzu


Collectively, m6A-seq2 expands the scale and resolutions at which m6A can be

interrogated, while simultaneously decreasing the associated input requirements,

technical variability costs and labor. We anticipate that m6A-seq2 will be widely

adopted to interrogate the distribution, functions, and dynamics of m6A.



Materials & Methods

Table 1

Source

Antibodies

Rabbit anti-m6A antibody Synaptic Systems (Cat#
202003; RRID:
AB_2279214)

Deposited data

m6A-seq: 841-strain, 3 technical replicates GSE ##

m6A-seq2: 841-strain , 12 technical replicates GSE ##

m6A-seq2: Yeast Meiosis time course GSE ##

m6A-seq2: Yeast Genetic perturbation dataset GSE ##

m6A-seq2: mESC m6A-’writer’ perturbation clones GSE ##

m6A-seq2: MEF, 5 technical replicates GSE ##

m6A-seq: MEF, 5 technical replicates GSE ##

m6A-seq2: mESC m6A-’writer’ perturbation clones GSE ##

Published datasets

Actinomycin D mRNA half-life data: mESC WT &
Mettl3 KO

9

m6A-seq data: mESC data WT & Mettl3 KO 20

RNA-seq data: mESC Zc3h13 perturbation 45

m6A-seq data: MEF shGFP, mouse adult brain &
mouse dendritic cells

21

m6A-seq data: A549 shGFP 21

LAIC-seq: H1 ES cell m6A index 18

Experimental Models

S. cerevisiae WT (SAy821) MAT a/α lys2/lys2
ho::LYS2/ho::LYS2

28

https://paperpile.com/c/Zn13ce/y1WB
https://paperpile.com/c/Zn13ce/VCxd
https://paperpile.com/c/Zn13ce/SoIa
https://paperpile.com/c/Zn13ce/AwWa
https://paperpile.com/c/Zn13ce/AwWa
https://paperpile.com/c/Zn13ce/9Dx4
https://paperpile.com/c/Zn13ce/xI6n


S. cerevisiae ndt80Δ/Δ (SAy841) MAT a/α lys2/lys2
ho::LYS2/ho::LYS2 ndt80::LEU2/ndt80::LEU2

28

S. cerevisiae Ime4Δ/Δ (SAy966) MAT a/α lys2/lys2
ho::LYS2/ho::LYS2 ndt80::LEU2/ndt80::LEU2
ime4::HIS3/ime4::HIS3

28

Murine Embryonic Stem Cells (mESCs) WT (male)
57

Murine Embryonic Stem Cells (mESCs) WT (male)
20

Murine Embryonic Fibroblasts (MEFs) WT
58

Software and Algorithms

STAR v2.5.3a 59

RSEM v1.3.3 60

Samtools v1.3.1 61

bedtools v2.26.0 62

preseq v2.0.1 63

HOMER v4.9.1 64

Cutadapt v2.10 65

Reference genomes & gene annotations

sk1 gene annotation table Supplementary Table 4

mm9 gene annotation table Supplementary Table 5

sk1 m6A site annotation annotation Supplementary Table 6

mm9 high-confidence m6A site annotation Supplementary Table 7

hg19 gene annotation table Supplementary Table 9

hg19 high-confidence m6A site annotation Supplementary Table 10

https://paperpile.com/c/Zn13ce/xI6n
https://paperpile.com/c/Zn13ce/xI6n
https://paperpile.com/c/Zn13ce/VkPI
https://paperpile.com/c/Zn13ce/VCxd
https://paperpile.com/c/Zn13ce/tgvG
https://paperpile.com/c/Zn13ce/drqJ
https://paperpile.com/c/Zn13ce/74IE
https://paperpile.com/c/Zn13ce/Q3eC
https://paperpile.com/c/Zn13ce/f6ZJ
https://paperpile.com/c/Zn13ce/mwf3
https://paperpile.com/c/Zn13ce/eodB
https://paperpile.com/c/Zn13ce/0yw9


Yeast meiosis time course

All yeast strains used in this work were derived from the sporulation proficient SK1

strain background. S. cerevisiae cells (WT, PC: Ndt80Δ/Δ, NC: Ndt80Δ/Δ & Ime4Δ/Δ)

were grown in YPD (2% dextrose) at 30C. To induce synchronous meiotic entry, cells

were grown for 24 h in 1% yeast extract, 2% peptone, 4% dextrose at 30C, diluted in

BYTA (1% yeast extract, 2% tryptone, 1% potassium acetate, 50 mM potassium

phthalate) to OD600 = 0.2 and grown for another 16 h at 30C, 200 rpm. Cells were

then washed once with water and re-suspended in SPO (0.3% potassium acetate) at

OD600 = 2.0 and incubated at 30C at 190 rpm. Cells were isolated from SPO at the

indicated times and collected by 2 min centrifugation at 3000 g. Pellets were

snap-frozen and stored at -80 for RNA extraction.

Genetic perturbation yeast-strain construction

Gene deletion strains were generated by a one-step promoter replacement protocol,

and genetic crosses 66. For generating depletion alleles, we used the auxin-induced

degron allele (AID) and a plasmid expressing Oryza sativa osTIR1 ligase from a

CUP1 promoter (pCUP1-TIR1) (gift from Elçin Ünal ) 67. All gene deletions and AID

alleles were crossed into the ndt80-deletion background, which ensures that cells do

not exit meiotic prophase 68.

Table 2. SK1 genetic perturbation candidate genes affiliated role in the regulation of

the yeast transcriptome

Gene Involvement

NDT80 meiosis 68

RPB3 transcription 69

RAT1 transcription, mRNA degradation 70,71

NRD1 transcription, mRNA degradation 72,73

LSM1 transcription, mRNA degradation 74

CAF40 transcription, mRNA decapping 75

NOT5 transcription, mRNA degradation 76

NOT3 transcription, mRNA decapping 77

https://paperpile.com/c/Zn13ce/PZ1N
https://paperpile.com/c/Zn13ce/YyYD
https://paperpile.com/c/Zn13ce/YVzW
https://paperpile.com/c/Zn13ce/YVzW
https://paperpile.com/c/Zn13ce/sm71
https://paperpile.com/c/Zn13ce/QG3g+rV38
https://paperpile.com/c/Zn13ce/gLHx+nRJF
https://paperpile.com/c/Zn13ce/mwI7
https://paperpile.com/c/Zn13ce/2K8g
https://paperpile.com/c/Zn13ce/GCcZ
https://paperpile.com/c/Zn13ce/j2Dx


RRP6 mRNA degradation 78

DCP2 mRNA decapping79

XRN1 mRNA degradation 80

POP2 mRNA degradation 81

PAT1 mRNA degradation 82, mRNA decapping
83

PAN3 polyadenylation 84,85

PHO92 m6A metabolism 86

GIS2 mRNA translation 87

Growth and medium conditions

To induce depletion, AID tagged allele cells expressing pCUP-TIR1 were grown to

BYTA as described above. Four hours after shifting to SPO, 50 µM CuSO4 was

added to induce TIR1 expression from the CUP1 promoter and 500 µM

indole-3-acetic acid (IAA) to induce degradation. Samples were harvested after 2

hours (thus 6 hours in SPO).

Cell line & cell culture

MEFs cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

(Biological industries, 01-052-1A) supplemented with 10% fetal bovine serum (FBS).

Cloning of gRNA for targeting of methylation writers in mESCs

Single guide RNAs were annealed and cloned into a px330 vector according to

Zhang lab standard cloning protocol 88. gRNA pair sequences used to remove exon 4

of Mettl3 or exon 5 of Wtap can be found in  (Supplementary Table 1)

https://paperpile.com/c/Zn13ce/gqCx
https://paperpile.com/c/Zn13ce/QS8n
https://paperpile.com/c/Zn13ce/WBCc
https://paperpile.com/c/Zn13ce/nJOX
https://paperpile.com/c/Zn13ce/w3qj
https://paperpile.com/c/Zn13ce/z0Hk
https://paperpile.com/c/Zn13ce/G0JO+6JUt
https://paperpile.com/c/Zn13ce/oASX
https://paperpile.com/c/Zn13ce/YgnO
https://paperpile.com/c/Zn13ce/yQpe


RNA preparation

Yeast total RNA samples were prepared by MasterPure Yeast RNA extraction kit

(Lucigen, MPY03100). For mESCs cells, total RNA was extracted using Nucleozol

(Macherey-Nagel, 740404.200).

Mouse embryonic stem cells - m6A writer perturbation

Commonly used V6.5 57 mouse embryonic stem cell line was kept in DMEM (Gibco)

supplemented with penicillin-streptomycin, 1 mM L-glutamin, 1% non-essential

amino acids, 20% high-grade fetal bovine serum, beta-mercaptoethanol and 10 µg

recombinant leukemia inhibiting factor (LIF). Cells were kept on tissue culture plates

covered by 0.2% gelatin in co-culture with in-house generated, radiation-inactivated

mouse embryonic fibroblasts (MEF).

CRISPR-Cas9 vector was transfected into the mESCs with TransIT-X2 reagent

(Mirus). Cells were FACS-sorted three days post-transfection, and cells that obtained

both targeting gRNAs were seeded on 0.2% gelatin without MEF in low density.

Single colonies were picked under stereomicroscope a week later. Successful

targeting was confirmed via Sanger sequencing of genomic DNA of selected clones.

HPLC-MS for determination of m6A/A

The analysis was performed following the procedure described 20, with the difference

that, 500 ng of double selected polyA RNA fractions were used for

digestion.m6A-seq2 The proposed protocol builds on the previously reported

protocol 27,89.

Synthesis of in-vitro transcribed RNA

Two synthetic RNA fragments (IS1,IS2,IS3,IS4,IS5, Supplementary Table 1), each

comprising a 102 nt long sequence with a single ACA in the center were in vitro

transcribed from dsDNA templates containing a T7 promoter, either in the presence

of ATP or N6-methyl-ATP, using MaxiScriptT7 kit (Invitrogen, AM1320). Purified

m6A-containing products were serially diluted in non-m6A containing products.

https://paperpile.com/c/Zn13ce/VkPI
https://paperpile.com/c/Zn13ce/VCxd
https://paperpile.com/c/Zn13ce/9pzu+6yAu


m6A-seq2 library preparation

RNA ligation and pooling: Starting material for the m6A-seq2 protocol were 1.2/n

µg per sample (with n samples) of double polyA selected RNA (Dynabeads® mRNA

DIRECT™). RNA fragmentation to ~150 nt fragment size was performed according

to the protocol with the Invitrogen™ RNA Fragmentation Reagents kit (Invitrogen™).

After every step, apart from those in which the sample was eluted in H2O, a cleanup

with Dynabeads® MyOne™ Silane was performed according to the protocol. For the

subsequent DNAse and dephosphorylation treatment, each sample was incubated in

T4 PNK (NEB T4 Polynucleotide Kinase), TURBO™ DNase and FastAP (Thermo

Scientific™ FastAP Thermosensitive Alkaline Phosphatase) for 30 min in 37c in 5x

FNKBuffer (1:1:2 ratio of T4PNK-buffer : FastAP-buffer : H2O). 3’ RNA barcode

adapter ligation was performed with 100 pmol of RNA ILL adapter (Supplementary
Table 1) and 36 U T4 RNA ligase (NEB) for 1.5 h at room temperature (23c) for each

sample. Following the 3’ ligation of barcoded RNA adapters, all samples were pooled

for the multiplexed m6A-Immunoprecipitation (m6A-IP). 10% of the sample-pool was

taken as an Input-RNA sample.

Multiplexed m6A-IP: 25µl of Dynabeads protein G beads (Invitrogen) were washed

twice in 100 µl IPP buffer and for 30 min hybridized with 3.5 µl anti-m6A antibody

(Synaptic Systems). The sample pool, after heat denaturation (2 min 70°C, stored in

ice afterward), was incubated with the anti-m6A AB-Protein G beads at 4°C for 2

hours. The RNA-AB-Protein G beads were then washed twice in 200 μl of IPP buffer,

twice in low-salt IPP buffer (50 mM NaCl, 0.1% NP-40, 10 mM Tris-HCl, pH 7.5), and

twice in high-salt IPP buffer (500 mM NaCl, 0.1% NP-40, 10 mM Tris-HCl, pH 7.5).

RNA was eluted in 30 µl RLT (Qiagen). were washed in 100 μl RLT, resuspended in

30 μl RLT, and added to the eluted RNA. 60 µl of 100% ethanol was added to the

mixture, the mixture attached to the magnet, and the supernatant discarded. After

two washes in 100 μl of 70% ethanol, the RNA was eluted from the beads in 100 μl

of IPP for the second round of the m6A-IP cycle with a final elution from the beads in

13.5 μl H2O for cDNA synthesis with the rTd RT primer (Supplementary Table 1)

and SuperScript™ III Reverse Transcriptase. Alkaline RNA hydrolysis in 1 M NaOH

in 70c for 12 min. Illumina 5’adapter ligation was performed with 50 pmol 5iLL-22

DNA adapter with 45U T4 RNA Ligase 1 for 3 h at room temperature. PCR



enrichment was performed with KAPA HiFi PCR Kit with the universal forward primer

and the reverse primer containing the barcode. Amplified libraries were cleaned with

AMPure XP beads (Agencourt, A63881), quantified using Qubit (Life Technologies)

and the distribution of library size was determined using TapeStation (Agilent

Technologies).

m6A-Seq

For a better comparison of batch-induced variability, the m6A-seq protocol was

performed according to the protocol above, but with 1.2 µg of double poly-A selected

RNA per sample (~1% yield of the total RNA) and without sample-pooling. The steps

prior to pooling were adjusted to the increased amount of input RNA. 250 ul

Dynabeads® (according to the protocol) was used for the poly-A selection.

m6A-seq2 data analysis

Read alignment

Paired-end reads of m6A-seq2 libraries were demultiplexed into individual samples,

using an in-house python script which distributes reads into a sample FASTQ file

according to the barcoded-sequence in Read2 (Pos 4-10). The genomic paired-end

alignment was performed with STAR v.2.5.3a 59 to the SK1 reference genome 27 with

default parameters but limiting the intron length to 500 nt (--alignIntronMax 500’

parameter). Mouse-derived samples were aligned to the mm9 reference genome

with default parameters (‘--alignIntronMax 1000000’ parameter). Unique aligned

reads were extracted for further use. For the technical replicates comparison, one

million paired-end alignments were subsampled for Input and m6A-IP per sample

using Samtools v1.3.1 61. Paired-end alignment mRNA gene coverage (whole insert

coverage) was calculated using the bam2ReadEnds.R script (which calculates

paired-end read coverage for all reads whose alignment patterns are consistent with

the gene annotation, excluding reads from intergenic or intronic regions)20 with a sk1

gene annotation table for yeast, and mm9 gene annotation table for mouse

(Supplementary Table 4 & 5).

https://paperpile.com/c/Zn13ce/drqJ
https://paperpile.com/c/Zn13ce/9pzu
https://paperpile.com/c/Zn13ce/Q3eC
https://github.com/SchwartzLab/mazter_mine/blob/master/bam2ReadEnds.R
https://paperpile.com/c/Zn13ce/VCxd


Merging technical replicates

For the m6A gene- and site quantification in the 24-sample mESC m6A-seq2

experiment, the FASTQ files of the 3 technical replicates for each sample (0%, 14%,

…, 100% mESC WT RNA) were merged (concatenated) to increase the coverage.

m6A site scores

The m6A site coordinates are based on a reference table with a single-nucleotide

resolution of confirmed m6A sites (Supplementary Table 6 & 7). Coverage

comparison was performed in a 51 base window centered around the annotated

m6A-site, defined below.

m6A site score 1

The m6A site score 1 calculation was performed as a ratio of the sum of the m6A-IP

coverage per base in a 51 bp window centered around the annotated m6A-site

divided by the corresponding value in the input sample. To ensure adequate

coverage, we demanded a sum of position coverage > 250 for both Input and

m6A-IP coverage, corresponding to ~5 reads/base on average.

m6A site score 2

The median normalized m6A-site score (adapted from 27) calculation was based on

the enrichment of the sum m6A-IP coverage of 50-nt window centered around the

annotated m6A-site over the median m6A-IP coverage (sum of 10 base window) of

the whole annotated transcript.

m6A sample index - m6A-SI

The m6A-SI for a transcriptome-wide m6A quantification estimate was defined as the

ratio of the sum of coverage (over a set of predefined peaks) in the m6A-IP dataset

divided by the corresponding number in the input dataset. Note that for this score, no

normalization for library size was performed. For the 4 batches of genetic

perturbation in yeast-strains, the scores calculated in a batch were multiplied by a

correction factor, which was the ratio of the sum of m6A-IP reads to the sum of

m6A-Input reads of the whole batch. This was performed to make the scores

comparable between the batches.

https://paperpile.com/c/Zn13ce/9pzu


m6A gene index - m6A-GI

The calculation of the m6A-GI was performed by calculating the ratio in the number

of reads aligned to the entire gene excluding the annotated 5’ UTR in the m6A-IP

sample and normalizing by the corresponding number in the input. The various

region-based m6A indexes were calculated in the same way, with the coordinates

adjusted to the targeted and annotated regions (5’UTR, 3’UTR, CDS, last exon,

gene). For the last exon calculation, single-exon genes were treated as the last

exon. Calculated region-based scores are listed in Supplementary Table 3.

m6A peak detection

De novo m6A-seq peak detection was performed with adaptations according to the

published protocol 21. The peak detection is based on a ‘window-score’ for each

nucleotide position centered in a rolling window of 100 nt. The window-score is the

ratio of the m6A-IP FC mean coverage of the window divided by the median m6A-IP

coverage of the gene, divided in turn by the corresponding number in the input

sample. The thresholds for defining an ‘m6A-peak’ were a window score > 2 and a

median Input coverage of a given gene > 10. Finally, neighboring positions with a

sufficient window-score were merged.

Motif enrichment analysis

For all the defined ‘m6A peaks’ of a sample, de novo motif enrichment and P values

of consensus motifs were generated by HOMER (Material & Methods Table 1) with

a one-sided binomial test.

Metagene analysis

Metagene coverage density was calculated by aggregating the normalized coverage

densities of every detected gene. Specifically, each gene was binned into 100

intervals and the sum of coverage for each of the intervals was normalized by the

https://paperpile.com/c/Zn13ce/AwWa


sum of coverage per gene. Then the coverage density for each interval of all the

genes were aggregated and normalized by the sum of coverage over all intervals.

The metagene motif distribution analysis was performed by using the transcriptomic

coordinate of the closest DRACH motif to the de novo detected m6A peak summit

(max. normalized m6A-IP coverage of the peak region). Further the relative

localization of the motif coordinate in a transcript region (5‘UTR, CDS, 3’UTR) was

calculated. Finally we defined the relative lengths of the three regions by scaling all

genes that contained at least one detected m6A peak and using the mean of all the

relative lengths of the 3 transcript regions.

Yeast Meiosis Signature

The yeast meiosis gene signature was defined as the median scaled expression of

genes, which exhibit an expression profile of specific upregulation during yeast

meiosis time course at T4 (h). Detection of the 67 genes was based on a Pearson R

> 0.5 of expression profiles sampled from a yeast meiosis time course (RSEM

calculated TPM) against a vector with a maximum (1) at T4 position (residual time

point positions had 0)

RNA-seq data analysis

Each dataset was first trimmed with cutadapt (Material & Methods Table 1). The

subsequent genome alignment (sk1 and mm9) and expression estimation (TPM)

was performed using rsem-calculate-expression (rsem/1.3.3, 60).

mRNA half-life estimation

mRNA decay-rate estimation was performed by linear modeling of the log-

transformed normalized expression of the Actinomycin D time course samples

against the respective time points. Decay rates that were positive or ones emerging

from non-significant fits of the linear model (p>0.05) were removed.

https://paperpile.com/c/Zn13ce/74IE


m6A inference from expression levels

To infer the m6A-signature from normalized mRNA expression levels, the

‘expression-vs-methylation index’ was calculated. The ‘expression-vs-methylation

index’ was defined as the Spearman ⍴ calculated between the normalized gene

expression estimates (TPM) of the sample and the m6A-GIs of a reference m6A-seq

experiment. Genes were filtered exhibiting < -0.5 log2 fold-change of Mettl3- (m6A-)

dependent half-life (WT/Mettl3 KO).
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Supplementary Figures



Supplementary Figure 1. m6A-seq2 reduces batch-induced variability while

maintaining m6A-enrichment capacities a) Sequencing complexity metric based on

the ratio of distinct- to total read numbers for 500,000 sampled reads (Methods
Table 1) b) m6A-IP and Input normalized coverage profile of MEI5 for the 12

m6A-seq2 replicates and the 3 m6A-seq replicates c) Metagene coverage densities

of m6A-IP and Input for the 12 m6A-seq2 replicates (red) and 3 m6A-seq replicates

(black). d) Motif analysis showing the most significant HOMER (Material & Methods
Table 1) de novo motif analysis, based on detected peaks (see Methods) of the 12

m6A-seq2 replicates (red) and 3 m6A-seq replicates (black) e) m6A-seq2 number of

reads of the 12 technical replicates. f) Identity of nucleotide of the first position of

read 2 (top), which resembles the 3’ terminus of a sequenced RNA fragment.

Stacked barplot of the mean nucleotide identity of the first 30 positions (bottom). g)
Principal component analysis of m6A-site score 2 of 486 m6A sites. h Cumulative

plot showing the fraction of false-positive detected ‘differential-methylation’ cases

and the effect-size as the absolute fold-change of the mean score1 between the

sampled groups. Conducted in a bootstrapping approach to generate 8

measurements for each m6A site. Random assignment into 2 groups, and used a

combination of a statistical test (t-test) and m6A-site score fold changes.



Supplementary Figure 2. m6A-seq2 reduces batch-induced variability in technical

replicates of mouse embryonic fibroblasts. a) Library complexity metric as the ratio of

distinct- to total read numbers based on one million reads of the m6A-seq2 and

m6A-seq MEF dataset (preseq, see Methods Table 1) b) Motif analysis showing the

most significant HOMER (Material & Methods Table 1) de novo motif analysis,

based on detected peaks (see Methods) of the m6A-seq2 technical replicates (left)

and m6A-seq technical replicates (right). c) Metagene m6A-peak distribution (see
Methods) of the m6A-seq technical replicates (top) and m6A-seq2 replicates



(bottom). d) m6A-site score 1 comparison between technical replicates generated

via m6A-seq or m6A-seq2. score2 for 3416 m6A-sites passing the coverage

thresholds for high-confidence m6A site estimation (see methods). e) Principal

component analysis of m6A-site score 1 of 3416 high-confidence m6A sites. f)
Comparison of the percentage coefficient of variation (%CV) of score1 (left) and

score2 (right) estimates across the technical replicates measured via m6A-seq and

m6A-seq2. Wilcoxon test p value annotated g) Cumulative plot showing the fraction

of false-positive detected ‘differential-methylation’ cases and the effect-size as the

absolute fold-change of the mean score between the sampled groups.



Supplementary Figure 3. m6A-methylome profiling upon genetic perturbations during

yeast meiosis a) m6A-SI based on m6A-Seq2 measurements on individual genetic

perturbations strains with ndt80Δ/Δ background. Barplot for each of the m6A-seq2

batches. In total 3 gene deletion strains (pho92Δ/Δ, not3Δ/Δ, gis2Δ/Δ), 12 genes with an

auxin-inducible degrons (AID), 5 positive controls (only ndt80Δ/Δ, red) and 5 negative

controls (ime4Δ/Δ & ndt80Δ/Δ, blue) (noted in legend) and AID-control (TIR1). U:

untreated samples and T: treatment with CU and IAA (see Methods). b) Raf1 m6A-IP

fragment coverage normalized by sample library size and Raf1 expression level (RPM)

based on the input sample for all 24 samples (% amount of WT mESC RNA per triplicate

is annotated at the right). The Y-axis is fixed to an identical range across all samples. c)



Heatmap of log2 transformed m6A-site score 1 of 5379 annotated high-confidence

m6A-sites (scaled by row) of the samples (merged triplicates).



Supplementary Figure 4. m6A-GI infers with half-life and steady-state expression a)
m6A-GI of the mESC WT cells plotted against mRNA half-life in Mettl3-KO mESC b)
HPLC-MS abundances of m6A across WT and m6A-writer perturbed mESC clones plotted

against the ‘expression-vs-methylation index’, defined as the spearman correlation

between normalized expression (TPM, see Methods) and m6A-GIs calculated based on 3

previously published m6A-seq datasets 21 .

https://paperpile.com/c/Zn13ce/AwWa


Supplementary Figure 5 m6A-gene index correlates with the increase of m6A a)
m6A-gene index (m6A-GI) of 100 % WT sample (merged triplicates) plotted against the

other sample concentrations (merged triplicates) with a linear model fit (blue line). b)
Scatterplot of the slope of the linear modeling fit of all unique combinations of m6A-GIs

derived from different % WT mESC (as in a) ), plotted against the log2 transformed

fold-change (FC) of the corresponding unique combination out of the 7 samples (14 % WT

to 100 % WT). c) Heatmap of the log2 transformed m6A-GIs (scaled by gene) for 6572

genes of the different samples (merged triplicates). d) Scatter plots of the m6A-index of

five distinct in-vitro transcribed spikes (IS1-5, see Supplementary Table 1) with a defined

amount of m6A ranging from 0% m6A (in red) over 7 increasing concentrations to 100%

(in black). Linear-modeling and Pearson’s R determined for all data points with m6A



(black) annotated. Spikes with 0% methylation are plotted in red, and were not taken into

account for the linear model.
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