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Natural vision is a dynamic and continuous process. Under natural
conditions, visual object recognition typically involves interactions
between ocular motion and visual contrasts, resulting in dynamic
retinal activations. In order to identify the dynamic variables that
participate in this process and are relevant for image recognition,
we used a set of images that are just above and below the human
recognition threshold and whose recognition typically
requires >2 s of viewing. We recorded eye movements of partic-
ipants while attempting to recognize these images within trials
lasting 3 s. We then assessed the activation dynamics of retinal
ganglion cells resulting from ocular dynamics using a computa-
tional model. We found that while the saccadic rate was similar
between recognized and unrecognized trials, the fixational ocular
speed was significantly larger for unrecognized trials. Interest-
ingly, however, retinal activation was significantly lower during
these unrecognized trials. We used motor and oculo-motor param-
eters of each fixation to train a binary classifier, classifying recog-
nized from unrecognized trials. The only predictive parameter that
reached 80% correct classifications was retinal activation, which
reached the maximum result when trained on the fourth fixation
(on average, ∼2.5 s from trial onset). We thus conclude that the
information that is relevant for visual perception is embedded in
the dynamic interactions between the oculomotor sequence and
the image. Hence, our results suggest that ocular dynamics play an
important role in recognition and that understanding the dynam-
ics of retinal activation is crucial for understanding natural vision.

active vision | eye movements | fixational drift | closed-loop perception |
neural code

TheQ: 6 mechanisms underlying visual acquisition are not yet un-
derstood. In natural conditions, humans perceive the world

around them using continuous eye movements. Yet, the rele-
vance of ocular dynamics to visual perception, and specifically to
object recognition, is not known. One factor that supports ir-
relevance is the success of artificial algorithms for visual recog-
nition that are based on static image snapshots (1–6), therefore
ignoring ocular dynamics while preserving the similarity to other
biological processes (7–13). Yet, importantly, artificial algo-
rithms have been tested so far only on a limited set of perceptual
tasks and suffer from yet unresolved difficulties (e.g., refs. 14 and
15). Given this gap, we have designed experiments to test the
role of ocular dynamics in human visual recognition.
Traditionally, object recognition has been tested in the labo-

ratory using briefly presented, flashed images. With flashed im-
ages, answering the question of whether eye movements are
involved in object recognition, and how, is challenging. In the
current study, we used a set of images whose recognition was
shown to require continuous looking. This set is composed of
MIRC (minimal recognizable configurations) images and sub-
MIRC images (14). A MIRC is defined as an image patch that
can be reliably recognized by human observers and which is
minimal in that further reduction in either size or resolution
makes the patch typically unrecognizable. A subMIRC is thus
defined as an image patch created by a further minimal reduc-
tion in either size or resolution of a MIRC, rendering it typically

unrecognizable (see details and the full set of images in SI Ap-
pendix, Fig. S1). The original MIRC study showed that human
recognition could not be replicated by any visual recognition
algorithm (14). Importantly for the current context, it was shown
that recognizing these partial images takes time, typically over 2 s
(16). This is in contrast to the recognition of full images, which is
accomplished within short presentation times of typically less
than 300 ms (17). In our experiments, we presented relatively
small images (3 × 3 degrees in size), which can be captured al-
most entirely by the foveal region of the retina and whose per-
ception, thus, should not depend on integrating several
foveal foci.
As the eyes are never still, when we continuously look at an

image, the flow of visual information to our brains results from
the interaction of eye movements with the image (18–24). The
kinematics of eye movements have been studied extensively.
Studies show that from the point of view of motion kinematics,
almost every section of ocular trajectory can be classified as a
saccade or a fixational period in which the latter is dominated by
drift motions (13, 18, 25–31). According to this kinematic clas-
sification, fixation on a moving target, such as during smooth
pursuit or optokinetic response, is considered a fixational period.
Saccades and fixations have been suggested to be controlled
differently and to play different roles in visual perception (21–23,
25–29, 32, 33). Yet, both have been implicated as potentially
playing major roles in visual acquisition, which makes them
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candidates for contributing to the process enabling the recogni-
tion of MIRC images.
The relatively long duration of MIRC recognition allows a

prolonged iterative process, possibly combining bottom-up and
top-down components of the visual system (34, 35) as well as
controlling oculo-retinal dynamics (36, 37), that is, the dynamics
that link ocular motion and retinal activations via closed-loop
interactions. Oculo-retinal dynamics is dictated primarily by oc-
ular dynamics, image properties, and retinal filtering. In our
experiments, image properties were given, ocular dynamics was
recorded, and retinal filtering was modeled using commonly
accepted retinal models (38, 39). We tested whether we could
predict recognition and, if possible, recognition timing using the
trial-by-trial modeled retinal output. We found that, indeed,
oculo-retinal dynamics can account for the behavioral charac-
teristics of MIRC recognition.

Results
Relevance of Eye Movements to Recognition. A total of 20 healthy
participants participated in three experimental sessions, 10 trials
in each. Across the sessions, each participant viewed three ver-
sions of each of 10 images: full, MIRC, and subMIRC (see
Methods). In each trial, participants viewed the image version for
3 s and then shifted their gaze to a location indicating whether
they did or did not recognize the object shown in the image.
The full images were recognized at 100% of the trials as

expected (Fig. 1A, black). The recognition rates of MIRCs (80 ±
4%) and subMIRCs (24 ± 4%) seen by participants for the first
time (Fig. 1A, blue and red, respectively) replicated the behav-
ioral results reported previously (14). The MIRC–subMIRC
recognition gap was also evident for the individual images; for
nine out of 10 pairs of image versions, there was a >50% dif-
ference in the recognition rate (SI Appendix, Fig. S2). As may be
expected from the fact that our images were presented in a
relatively small size, we did not find any tendency to gaze at
specific image coordinates and did not find any difference be-
tween the distributions of gaze locations in trials in which the
image was recognized or not (we have created visit-rate heat
maps for all trials of each image and found the 5, 10, and 20%

most-visited regions of interest [ROI Q: 7s]). MIRCs maps did not
have significantly more visited ROIs than subMIRC maps (per-
mutation tests, all ps > 0.05).
To test whether the scanning eye movements are necessary for

the recognition of MIRCs, we ran two pilot sessions, each with
five participants viewing the set of 10 MIRCs. We prevented the
scanning of the images by either stabilizing the image on the
retina (see Methods; five participants) or by instructing partici-
pants to fixate on a fixational cross at the center of the image
(five participants). The recognition rates in these cases dropped
to 30 ± 8% and 32 ± 5%, respectively (Fig. 1A, dark blue). These
results revealed the importance of scanning eye movements for
recognizing MIRCs.
The question we ask here is: Can we find acquisition variables

that correlate with single trial recognition? So far, such variables
could not be found in the images themselves; first, the same
images are sometimes recognized and sometimes not by the
different subjects. Second, no computer-based classifier was
found so far to discriminate between MIRCs and subMIRCs (14,
40). We thus turned to look at the other major components of
the acquisition process—ocular kinematics and retinal activa-
tion. For this aim, we pulled together all trials of partial images,
including both the MIRC and the subMIRC session for each
participant (see Methods), and classified them according to rec-
ognition. Altogether, there were 251 trials in which a partial
image was recognized (“recognized trials”) and 149 trials in
which a partial image was not recognized (“unrecognized trials”;
Fig. 1B).

Ocular Kinematics. To analyze ocular kinematics, each 3-s scan-
ning pattern was divided into saccade and fixation periods (see
Methods). We compared the kinematic behavior measured dur-
ing recognized and unrecognized trials (e.g., Fig. 2 A and B). The
saccadic rate was not significantly different between recognized
and unrecognized trials (P > 0.2, two-tailed Student’s t test,
Fig. 2C). Accordingly, when comparing the mean fixation dura-
tion, no difference was found between the groups (P > 0.2,
Kolmogorov–Smirnov [KS Q: 8] test, Fig. 2D). In contrast, the mean
speed and amplitude of eye movement during fixation were

BA

Fig. 1. Recognition rates. (A) Mean recognition rates for the two pilot sessions and three experimental sessions. In the pilot sessions (dark blue), five par-
ticipants in each session viewed 10 MIRCs, either while the images were stabilized on the retina using real-time gaze following or while fixating on a cross in
the center of the images. In the experimental sessions, subMIRC (red), MIRC (blue), and full image (black) recognition rates were calculated only for the first
time participants viewed each image (whether in its subMIRC or MIRC version), replicating the behavioral results reported in ref. 14 (10 participants × 10 trials
for each of the partial images; all 20 participants × 10 trials for the full images). Error bars represent the SEMs. (B) Total number of recognized and un-
recognized trials, of all trials of partial images (20 participants × 20 trials), divided to those with subMIRCs (red) and MIRCs (blue).
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higher for unrecognized trials (P < 0.05, KS test, Fig. 2 E and F).
This is consistent with other cases in which challenging visual
conditions induce an increase in the fixation drift speed (32). We
have verified, as was done in ref. 32, that the changes we ob-
served in the mean drift speed could not be explained by dif-
ferences in saccadic kinematics. Specifically, no significant
difference was found in saccadic amplitude, saccadic speed,
saccadic peak speed, or saccadic duration between the two sets
of trials. Note, that in order not to lose temporal information,
the ocular speeds were computed here with minimal low-pass

filtering (32) (see Methods). While precluding a direct compar-
ison of absolute speed values with studies that used substantial
low-pass filtering, the minimal filtering used here did not impair
direct comparisons of ocular speed values between different
conditions in the present study (32).

Retinal Activation. Eye movements induce dynamic retinal coding
(23, 38, 39, 41–43). In order to evaluate the difference in visual
acquisition between different trials, we created a dynamical

BA

C D

E F

Fig. 2. Motor parameters. (A) Example of a scanning path of a recognized MIRC of an eagle. Identified saccades (dark blue) and fixation periods (light blue).
(B) Same as A for an unrecognized trial of a different participant viewing the same eagle MIRC. (C) Mean number of saccades per seconds for recognized
(blue) and unrecognized (red) trials, error bars represent the SEs, no significant difference was found (P > 0.05, two-tailed Student’s t test). (D) Mean inter
saccadic interval (i.e., fixation duration) per rank of fixation for recognized (blue) and unrecognized (red) trials. Error bars represent SEs. No significant
difference was found (P > 0.1, KS test). The blue and red horizontal bars above the curves denote the mean ± STD of trial duration in the number of fixations.
(E) Same as D for mean fixation speed (P < 0.05, *KS test). (F) Same as D for mean fixation amplitude (P < 0.05, *KS test).
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model describing the acquisition process. The model assumes
that the output of the retina is determined by the spatiotemporal
interactions between the stationary (for 3 s) image and the
continuous ocular motion (Fig. 3A). We modeled the activations
of retinal ganglion cells (RGCs) using commonly accepted spa-
tiotemporal filters (see Methods and Fig. 3A) and assessed their
informative value. We removed redundant activation patterns
(44) and then used only those modeled RGCs (mRGCs) whose
correlation with the mean mRGC activation was <0.5 (termed
informative mRGC, see Methods and the example in Fig. 3B).

Acquisition Dynamics. Consistent with previous reports (32, 45),
the mean speed of the eye changed during the fixational pause,
starting with relatively high speeds and converging to a lower,
steady-state speed (Fig. 3C). Consistent with the increase in the
mean speed of the eye during fixation in unrecognized trials
(Fig. 2E), the steady-state (“target,” see Methods) speed that the
eye converged to within each pause was higher for unrecognized
trials (for t > 100 ms, P < 0.05, *KS test, Fig. 3C). In contrast,
our retinal model revealed that the mean retinal activation was

higher for recognized trials (P < 0.05, *KS test; Fig. 3D). And
similar to the dynamics of ocular speed, also the within-pause
ongoing activation of the retina converged to more or less steady
target values, with the target value for recognized trials being
larger than that for unrecognized trials (for t > 100 ms, P < 0.05,
*KS test, Fig. 3E). The ongoing retinal activation described in
this paper is the residual activation after subtracting the mean
retinal activation (see Methods). This subtraction results in an
initial dip (Fig. 3E), reflecting the dynamics of the temporal filter
applied (Fig. 3A and Methods).

Acquisition Correlates of Recognition. As shown above, both ocular
speeds and retinal activations exhibited differences in their dy-
namics during recognized and unrecognized trials. To test
whether any of these dynamic variables can predict image rec-
ognition, we trained a binary support vector machine (SVM)
classifier using the different variables and tested it using a
leave-one-out method (see Methods). Training the SVM using
the instantaneous activation of the retina (vectors of the ongoing
activation values sampled at 125 Hz along each fixational pause),

A

B

C D E

Fig. 3. The retinal model and acquisition parameters. (A) A schematic diagram of the retinal model: zoom in to a scanning path of an example trial; the
retinal mosaic following the eye’s trajectory (note the increasing receptive fields sizes when moving away from the center); the temporal filter used for each
cell. For spatial and temporal aspects of the retinal model, seeMethods. (B) Activation dynamics of the modeled cells during a fixational pause in the example
trial. (Upper) A total of 47,994 unique activations (out of ∼160,000; seeMethods). The mean activation is shown in black. (Lower) A total of 2,861 uncorrelated
activations (see Methods). Mean activation, which is now defined as Retinal Activation, is shown in black. (C) The convergence of within-pause instantaneous
fixation speeds, averaged across all fixations (over 100 ms) from recognized (blue) and unrecognized (red) trials (target speeds, t > 100 ms, P < 0.05, *KS test).
(D) MQ: 24 ean retinal activation per rank of fixation pause, averaged across all fixations from recognized (blue) and unrecognized (red) trials (P < 0.05, *KS test).
(E) Same as C for the within-pause instantaneous retinal activation (target activations, t > 100 ms, P < 0.05, KS test).
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resulted in 0.81 ± 0.02% of correctly classified trials (Fig. 4A,
blueish curve). Specifically, this highest percent of correct clas-
sifications was achieved when training the model on the fourth
fixation data (though it was also above chance level for the first,
sixth, and seventh fixations). Similar results were obtained when
using an alternative representation of retinal activation, a rep-
resentation based on the eigenvectors of a functional principal
component analysis [FPCA (46), see Methods]. Classifying these
representations also yielded a fixation-dependent performance,
with the first and fourth fixations yielding the highest success
levels (0.61 ± 0.02 and 0.56 ± 0.01, respectively).
In contrast to the success in classifying retinal activations, the

use of instantaneous speed (vectors of the ongoing ocular speed
values sampled at 125 Hz along each fixational pause) resulted in
a chance-level classification for all fixations (Fig. 4A, red curve).
Similarly, the use of mean speed per fixation or mean activation

per fixation (vectors of the mean values of either activation or
speed per fixation), variables that exhibited significantly different
values between recognized and unrecognized trials (Figs. 2E and
3D), also resulted in a chance-level classification (Fig. 4B).
Hence, the only variable that was predictive of the recognition of
a trial was the modeled retinal activation.
The modeled retinal activation reflected the spatiotemporally

filtered versions of the dynamic interactions between the ocular
motion and the image. As such, it makes use of more informa-
tion than the ocular motion alone. To test whether the modeled
retinal activation allowed better classification merely due to its
larger number of information sources (ocular + image versus
ocular alone), we created artificially mixed activations, which
maintain the number of information sources without the exact
motor–sensory interactions (Fig. 4C). Thus, we computed the
activations that could be generated when taking the ocular

A

B C

D E

Fig. 4. SVM classification. (A) Percent of correct classifications of a binary SVM classifier trained in a leave-one-out method to classify recognized from
unrecognized trials. The SVM was trained on the within-pause instantaneous retinal cell activations (turquoise, Fig. 3E) and on the within-pause instanta-
neous fixation speeds (red, Fig. 3C), each training per rank of fixation. Error bars represent SEs between 10 repetitions of the training (see Methods). (B) The
SVM was trained on the mean per fixation retinal cells activation along the trial (turquoise, Fig. 3D) and on the mean per fixation speeds along the trial (red,
Fig. 2E). Error bars represent SEs between 10 repetitions of the training (seeMethods). (C) Same as A, the SVM was trained on the within-pause instantaneous
retinal cells activations using artificially mixed trials. Mixing movements within trials (green, see Methods), mixing movements and images between the two
classes (purple), and mixing movements and images within the two classes (orange). (D) Same as A, the SVM was trained on different durations of activations
along each trial with 80-ms lags in starting times, ignoring the classification to saccades and fixations (time windows of −200 ms in orange, 400 ms in purple,
800 ms in green). (E) Same as A, the SVM was trained on all retinal cell activations per “frame,” a specific point in time, either the end of fixation (purple), the
beginning of fixation (orange), or an average frame of the entire fixation (green).
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movement from one trial and the image from another and used
them to train the SVM. These shuffled interactions resulted in a
chance-level classification (Fig. 4C, orange, shuffling within the
recognized/unrecognized groups; purple, shuffling between the
groups). We further tested whether the specific dynamics within
a fixation pause is crucial for the classification. To achieve this,
we shuffled the movements within each pause and calculated the
new activations thus created (see Methods and Fig. 4C, green
curve). This shuffling achieved above chance-level classification
(highest for the second fixation, which resulted in 0.57 ± 0.02%
of correctly classified trials), which means that the general oculo-
retinal dynamics within each fixation pause was also slightly
predictive of visual recognition.
We further checked whether we could predict recognition

using the ongoing activations of the retina, ignoring the separa-
tion to fixational pauses. We computed the ongoing activation of
the retina during each full 3-s trial and trained the SVM using
the activations of different time windows along the entire trial,
without preclassifying it to saccades and fixations. The separa-
tion to individual pauses was found important, as this training
also resulted in a chance-level classification for all window sizes
and starting times used (Fig. 4D). Finally, we also controlled for
the possibility that saccade-triggered activations, and not the
ongoing activations generated along the entire fixational pause,
are sufficient for the classification. To test that, we trained the
SVM using the entire retinal activation (400 × 400 “frame”)
generated when landing on a new saccadic target (Fig. 4E, or-
ange) or just before leaving that target (Fig. 4E, purple). We also
checked whether the mean “frame” of a fixational pause can be
used as a predictor (Fig. 4E, green). Similar to all previous
controls, these saccade-based trainings were not successful
(Fig. 4E).

Discussion
In this work, we demonstrate that correlates of visual recognition
can be found in the dynamic sensory activations that result from
ocular motor–sensory interactions. Using MIRC and subMIRC
images (14), which were found to be just above and below human
recognition thresholds, respectively, we showed that recognition
could be accounted for by the dynamics of retina-like activations
resulting from motor–sensory (oculo-retinal) visual interactions.
These interactions were modeled here as the convolution be-
tween eye movements, image contrasts, and retinal spatiotem-
poral filters. This result stands in contrast to the inability of
previous attempts to find such correlates based on image con-
trasts alone (14).
We first replicated, using 20 participants, the recognition rates

reported in the original MIRC study, which used thousands of
subjects (14) (Fig. 1A), demonstrating the robustness of this
threshold phenomena. Then, as we were interested in recogni-
tion correlates, we pulled together all trials and classified them
by their recognition reports (Fig. 1B). Comparing the oculomo-
tor variables revealed that while the saccadic rate (and hence
also the mean durations of fixational pauses, Fig. 2 C and D)
were similar for recognized and unrecognized trials, the mean
ocular speed within the fixational pauses (and thus also the
amplitude of the pause) were lower for recognized trials (Fig. 2 E
and F). Thus, while the task difficulty (47) and the images were
similar, scanning dynamics differed between recognized and
unrecognized trials.
In order to assess the possible effect of these differences in

ocular dynamics on visual processing and visual recognition, we
used a dynamical model for retinal activation (38, 39) that
convolves ocular motion with external images and retinal filter-
ing (Fig. 3A). Our model integrates the moment-to-moment
retinal motion, and not just its statistics (39, 43), as an

informative feature to be used by the visual system. Our results
show that predicting recognition in a trial-by-trial manner was
achievable only using these modeled dynamics of retinal activa-
tions within each fixational pause (Fig. 4A). Neither the images
alone (14) nor the oculomotor variables alone (Fig. 4 B and C)
could predict recognition.
The model we used consisted of identical retinal-like cells,

differing only in their receptive field locations and sizes. This is
of course valid only as a first approximation, as the human retina
is known to possess different kinds of cells (48, 49). Nevertheless,
for the purpose of the current work, which is testing the de-
pendence of visual recognition on motor–sensory dynamics, the
use of a single-cell type proved to be sufficient (39, 50, 51).
Our results suggest that visual perception is based on the

continuous activation of retinal cells during each entire fixational
pause (26, 32, 52–55). Alternatively, visual perception might be
based primarily on snapshots of retinal activations that are in-
duced by each postsaccadic landing (56–59). We thus tested the
possibility that saccade-triggered activations are sufficient for
recognition detection. This alternative failed in predicting visual
recognition in our task (Fig. 4E). Another alternative to the use
of the continuous activation during fixational pauses is that the
visual system only uses the statistics of fixational eye movements
(39). To test this alternative, we tried to predict recognition
based on shuffled data, detaching the specific movements from
the image they were originally scanning; this attempt failed as
well (Fig. 4C).
Thus, at least in our task, only the entire activation patterns

during fixational pauses could account for recognition. The next
question we asked was: Is the separation to individual pauses
crucial? Could the visual system simply process the entire retinal
dynamics along an entire trial continuously, ignoring the sepa-
ration to individual fixational pauses? The answer was
negative—applying our dynamical model continuously through-
out the trials, ignoring the saccades-fixations classification,
resulted in a chance-level classification as well (Fig. 4D). This
finding provides a possible function for the well-known peri-
saccadic suppression phenomenon (60, 61); resetting the activ-
ity in some circuits of the visual system around saccades (62) may
facilitate the processing of oculo-retinal interactions in the new
fixational location. At the system level, this result supports a
functional separation between motor–sensory motor loops con-
trolling saccades and those controlling the ocular drift (33).
Furthermore, since we model here only foveal activations, the
resetting suggestion may not be relevant to circuits processing
peripheral vision, circuits that are capable of fast postsaccadic
reaction (63).
Two aspects of our results call for further theoretical and

empirical explorations. First, while showing that the modeled
dynamics of retinal activations can predict visual recognition
with high accuracy, our data cannot provide insights about the
actual dynamical representations of the images, about the dif-
ferences between recognizable and unrecognizable dynamics, or
about the necessity of a separate reafferent coding channel (50,
51) for image identification. Second, we showed that the rec-
ognition potential was maximized at the fourth fixational pause.
This result is consistent with the indications, in other mammals,
that perceptual convergence takes about four motor–sensory
interaction cycles (64–66) as well as with the typical recognition
time in previous MIRC experiments (16). Yet, the mechanism
underlying such convergence is not yet known. The explorations
of these intriguing aspects require targeted empirical designs.
Importantly, the consistency of our correlation-based and FPCA-
based methods (see Results) together with the independence of
the percent of informative retinal cells on the fixation number
when using our correlation-based method (SI Appendix, Fig. S3)
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suggest that the fluctuations in success level across fixations
along the trial reflect a dynamical, closed-loop process whose
controlled variables (32, 36, 67) include visual information.
Our results were obtained with near-threshold stimuli. Yet,

their conclusions are valid for all forms of natural vision. Spe-
cifically, these results suggest that computational models of pri-
mate vision should take into account, and be tested against,
dynamic retinal outputs—the outputs dictated by the interac-
tions between eye movements and external images. Our own
hypothesis is that visual recognition results from a closed-loop
convergence process (36, 32). The convergence dynamics
exhibited by our data seem to divide to two levels: at a lower-
level, a drift-based process that converges within each individual
fixational pause, and at a higher-level, a saccade-based process
that converges within approximately four saccades. Our results
further suggest that the recognition potential does not increase
monotonically across saccades. Rather, it starts on average with a
positive potential that then decreases to chance level before
reaching its maximum during the fourth fixation. While the
mechanism underlying the nonmonotonous behavior of recog-
nition potential along this process is not yet clear, we suggest that
it is part of a circular process attempting to coordinate neuronal
and ocular processes and speculate that the drop of this potential
after the fourth fixation reflects the loss of such coordination
after the perceptual decision was made.

Methods
Participants. A total of 30 healthy participants with normal vision at the ages
23 to 36 y old (13 males) participated in either a pilot experiment session (five
in each of the two conditions) or in three experimental sessions (10 in each of
the two conditions). All participants were given a full and detailed expla-
nation about the eye tracker device and the behavioral task andwere paid for
their participation (50 Israeli new shekeQ: 9 l, ∼12 US dollars, per hour). Informed
written consents were obtained from all participants in accordance with the
approval of the Institutional Review BQ: 10 oard of the Weizmann Institute of
Science for this project.

Experimental Setup. The experiment took place in a darkened and quiet room
where subjects sat in front of a high-resolution, fast computer screen (VPixx,
1920 × 1080, 120 Hz). The movements of the dominant eye were recorded
using EyeLink II at 250 Hz [which is sufficient for tracking drift eye move-
ments (68)]. Subjects sat 1 m away from the screen and placed their chin on a
chinrest to reduce head movements.

Stimuli Used. Three versions of each image were used: car door, bicycle, eagle,
glasses, eye, fly, horse, airplane, ship, and suit. Each image had a full image
version, aMIRC version (which was found to be recognized inmost trials), and
a subMIRC version (which was found to be recognized in minimum 50% less
trials than its MIRC)Q: 11 . All images were taken from ref. 14. Following this study,
we have also verified that the difference in recognition between the MIRC
versions and the subMIRC versions cannot be explained by simple image
parameters (no significant difference was found between the groups; SI
Appendix, Fig. S4).

Experimental Design. The experiments took place in a darkened and quiet
room where subjects sat in front of a high-resolution, fast computer screen
(VPixx, 1920 × 1080, 120 Hz). In the pilot session, each condition had 10 trials,
showing each of the MIRC versions of the images. In the first condition, the
image was stabilized on the retina using a gaze-contingent display with
which the image was locked to the participant’s gaze [update rate was
100 Hz (26, 32)]. In the second condition, a fixation cross was displayed at the
center of each image, and the participants were instructed to fixate on it
throughout the trial. In each trial, participants clicked to start, fixated on a
fixation cross for 2 s, viewed an image for 3 s, and then chose a “YES/NO”

answer by shifting their gaze on the screen, reporting whether they did or
did not recognize the object in the image. Each experimental condition had
three sessions, 10 trials in each. The two different experimental conditions
differed in the order of the sessions. Condition 1: subMIRCs, MIRCs, full
images. Condition 2: MIRCs, full images, subMIRCs. All images were 3 × 3
visual degrees. In order to validate correct object recognition, each

participant was asked, after the session, to report all objects that he/she
remembers. No participant reported any false object name (we have con-
sidered the following answers as correct ones: bird = eagle, tie = suit).

Eye-Movement Processing. A velocity-based algorithm (modified from ref. 69)
was used for detecting all saccades and fixations. We used the following
threshold parameters for saccade detection: 16 deg/s minimal peak velocity
and 0.3 deg minimal amplitude. Each detected saccade and each fixation
pause were visually examined to verify the quality of saccadic detection.
Fixation periods between saccades were analyzed only if they lasted at least
30 ms. For the analysis of within-pause instantaneous speed, only fixation
periods that lasted at least 100 ms were used. The instantaneous fixation
speed was calculated as the derivative of the raw eye position signal (32) and
smoothed using a moving window of three samples (12 ms). The target
speed for each fixation was defined as the mean of the speed between
100 ms and end of pause.

Retinal Model.We built a model of a 3 × 3 visual degrees retina that consisted
of 400 × 400 cells based on the spatial properties of a typical human retina
(38) and the commonly assumed spatiotemporal filtering properties of fo-
veal neurons (39, 51, 70). For estimating the number of cells, we assumed a
linear increase in the spacing between them, starting from 0.5 arcmin at the
fovea, up to 1.6 arcmin at 4° eccentricity as well as a corresponding linear
increase in receptive field diameters. Thus, for each modeled cell, we de-
fined the size of RF Q: 12in pixels that it is sensitive to, depending on its distance
from the center of the gaze. We then used the following temporal filtering
(39) (Fig. 3A) to calculate each cell activation:

activationi = RFi grayScale value⊗ ( tn

T1n+1*e
− t

T1 − R*
tn

T2n+1*e
− t

T2 ,

with T1 = 5 ms, T2 = 15 ms, n = 3, R = 0.8, and t from −100 ms till the
current time.

The gain of each element is determined by the first term in the right-hand
side of the activation equation. This term (RFi grayScale value) reflects the
mean gray scale value of the pixels contained in the RF. This value is then
being convolved with the time filter (second term in the right-hand side of
the equation, see also Fig. 3A).

Following previous modeling efforts (39, 51), we thus model foveal RGCs
with a significant biphasic temporal filter (70) and without surround com-
ponents (71). This model is a generic one, likely not fully matching specific
individual RGCs while primarily capturing the generic pattern of their tem-
poral dynamics. For each trial, we moved this array of retinal cells across the
presented image according to the ocular trajectory recorded at that trial
(down sampled to 125 Hz). This resulted in activation dynamics for each of
the 400 × 400 cells, composing together a 3 s “movie” describing the
modeled retinal activation during a trial. Unless mentioned otherwise, the
model assumed a reset of retinal activation following each saccade.
Assessment of retinal information. Retinal activations are often highly redun-
dant (44). In order to avoid the overdominance of specific retinal patterns,
we applied the following selection of cells for processing. First, we used only
unique activations (i.e., when exact duplicates of cell activations were found
across the retina, only one of them was used). Second, we used only acti-
vations whose Pearson correlation with the mean retinal activation of all
cells along the trial was <0.5 (choosing 0.5 as a threshold enabled using 5%
of the cells on average; SI Appendix, Fig. S3. Other threshold choices resulted
in a similar distribution of informative cells along the trial (SI Appendix, Fig.
S3). Third, we subtracted the mean activation pattern from each activation
pattern (Fig. 3B). The target activation for each fixation was defined simi-
larly to the target speed as the mean activation of the eye between 100 ms
after pause onset and the end of the pause.
FPCA. Retinal information was also assessed as the first principal component
of an FPCA transformation (46) of all unique retinal activations for each
fixation. Briefly, FPCA projects functional data to an eigenfunction basis that
explains more variation than any other basis expansion. We used the
MATLAB implementation FPCA.m taken from the PACE Q: 13package.

SVM Classification. For classification, we trained and tested a binary SVM
using MATLAB implementations “fitcsvm.m” and “predict.m.” The two
possible classes were “recognized” and “unrecognized,” For each feature
(speed, activations, frames, etc.), we used a leave-two-out method (one out
from each class) and computed the percent of correct classifications. We
used three types of kernels (linear, Fourier, and Gaussian) and present the
results of the most successful one, the linear kernel. As the “recognized”
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class was larger, we ran 10 repetitions of the leave-two-out process, each
time using a different subgroup of the smaller “unrecognized” class. Error
bars in the figure represent the SE between these repetitions. For the
shuffled controls, the same process was done using the artificial activation
created by using movements from one trial with image from another. To
create shuffling within a trial, we computed the derivative of the eye
movement along each pause (i.e., the instantaneous speed). We then shuf-
fled this vector of speeds and computed the activation created by this arti-
ficial movement (which only preserved the statistical properties of the
natural speeds and not those of the natural accelerations or those of the
power spectrum in general). For the saccadic-based control, we trained the
SVM using a full “frame” of activations (400 × 400 cell activations at a
specific time). For the saccadic-based frame at the beginning of a fixation,
we used the activation frame at the second time sample after a saccade. For
the frame at the end of a fixation, we used the activation frame at the one

before last time sample before a saccade. For a mean frame, we calculated
the mean activations of the entire fixation pause.

Data Availability. A Q: 14nonymized MATLAB code data have been deposited in
GitHub (https://github.com/lirongruber/Oculo-retinal-dynamics-can-explain-
the-perception-of-minimal-recognizable-configurations). Q: 15
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