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Abstract

The eye-gaze of othersis a prominent social cuein primates and crucial for communication*°. Although
gaze can signal threat and elicit anxiety® "2, it remains unclear if it shares neural circuitry with stimulus-
value. Importantly, gaze not only has valence, but can also serve as predictor for the outcome of a social
encounter: negative or positive” ™ *2, Here we show that neural codes overlap for gaze and valence
through two different mechanisms: one for the outcome, and another for its expectation. Monkeys
participated in the human-intruder-test' *3 that included direct and averted gaze, interleaved with blocks
of aversive and appetitive conditioning™. We find that single-neurons in the amygdala encode gaze™,
whereas neurons in the anterior-cingul ate-cortex(ACC) encode social context'®, but not gaze. We identify
a shared amygdala population where neural responses to direct and averted gaze parallel the responses to
aversive and appetitive stimulus, correspondingly. Further, we distinguish between two mechanisms. an
overall-activity scheme that is used for gaze and the unconditioned-stimulus(US), and a correl ated-
selectivity scheme that is used for gaze and the conditioned-stimulus(CS). The findings suggest new
insights on the origins of the neural mechanisms underlying social and valence computations, and might
shed light on social-anxiety and the comorbidity between anxiety and impaired social interactions.
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Main text

Recognizing and learning about potentially harmful or beneficial stimuli iscrucial for survival of all
organisms. In humans and primates in general, facial expressions, and in particular the eye-gaze of others,
isaprominent and highly instructive signal #* ", Specifically, averted or direct gaze isa social signal
that can indicate submissive vs. aggressive interactions, correspondingly. In agreement with this, gaze
was shown to elicit anxiety in primates ® ***?, and evokes responsesin the amygdala™ **?° —abrain
region that serves as a hub for emotional responses in general and threat and anxiety in particular °.
Moreover, gaze processing is disrupted in several neurodevelopmental and socia-disorders > "8 where
abnormal activity of the amygdalais linked to gaze avoidance * °. Importantly, gaze is not only a
valence-signal by itself, but can also serve as a predictor for future outcomes: aversiveif an intruder
maintains direct eye-contact (stare), or potentially rewarding if the other avoids eye-contact. Thisisin
line with the amygdala playing arole not only in signaling outcome-valence (appetitive-aversive), but
aso in learning via conditioning **?" % and signaling expectation for the outcome, namely exhibit
responses to a conditioned-stimulus (CS) ** %. However, it remains unknown whether similar
mechanisms are used for coding of valence and eye-gaze; and moreover, whether there exists a shared
coding for eye-gaze and outcome-expectation. Toward this end, we adapted the human intruder test (HIT)
1213 HIT iswidely used for assessing anxiety and defensive behaviors in non-human-primates, similar to
the ‘stranger test’ in human infants . We recorded the activity of single neurons in the Amygdala and the
ACC during live interactions in amodified HIT paradigm that includes averted vs. direct gaze of the
intruder and combined with an affective conditioning paradigm. We first validated previous results and
show that here as well, both the ACC and the amygdala code for valence®, but only the amygdala codes
for gaze®™. In line with our hypothesis, we demonstrate that in amygdala networks, valence of both
outcome and its expectation are coded in the same population that also codes for the gaze of others, but
viatwo different population codes.

Two monkeys participated in amodified version of the human intruder test (HIT) (Fig. 1a). Each HIT
block consisted of 18 interactions with a human intruder that is seated behind an LCD shutter (<1ms RT),
and when the shutter opens gazes directly at the monkey’ s eyes (eye-contact, EC), or away from the
monkey (averted-gaze / no-eye-contact, NEC). These HIT blocks were interleaved with conditioning
blocks of either appetitive or aversive trials (>=8 trialsin a block, Fig.1b,c), where the shutter opening
serves as the conditioned-stimulus(CS) and is followed after one second delay by the
outcome/unconditioned-stimulus(US), liquid-reward or airpuff in appetitive/aversive blocks
correspondingly. We tracked the eye-position of the monkeys and extracted four regions of interest (ROI,
Fig.1d): 1. the eye-region of the intruder; 2. the face-region of the intruder; 3. the whole shutter region;
and 4. outside the shutter region. Oculomotor behavior revealed distinct patterns (Fig.1d-g;
Extended.Fig.1): shutter opening in the HIT blocks induced more interest in the eyes ROl compared to the
conditioning blocks (Fig.1d, Kolmogorov-smirnov, p<le-8, n-trials= 3108/2090 in HIT/conditioning
trias; 49 sessions, 24/25 per monkey). After exploring the eye of the human intruder, the monkeys
continues to look more to the eyes/face ROI in blocks of direct-gaze (Fig.1g, EC vs. NEC, 2 , p<le-3).
We further aligned each trial separately according to the first time the monkey gazed at the intruder eyes
(Interquartile range: 180-700ms) and found similar results (Extended.Fig.1, x2, p<le-6).

We quantified elicited facial expressions and find that monkeys produced more facial expressions when
the intruders made eye-contact (Fig.1h,i, y2, p<le-2; Extended.Fig.2), in agreement with the stressful,
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threatening, and defensive responses that are traditionally induced by direct-gaze of a human intruder *2.
Heart-rate and heart-rate-variability (HRV) further suggest anxiety-related responses (Fig.1j,k, t-test,
p<0.05). In the conditioning blocks, the monkeys quickly learned to distinguish and anticipate the
different outcomes (appetitive/aversive) after shutter opening in each specific block (Fig.1l, x2, p<le-3).
In aversive-airpuff blocks, they closed the eyes after shutter opening both in preparation for the airpuff as
well asimmediately after its delivery (Fig.1l, 2 ,p<le-3). In addition, they withheld inhale before the
expected airpuff, but not before reward (Fig.1m, t-test, p<le-3). The HR and HRV in conditioning blocks
were different between airpuff and reward (Fig.1j K, t-test, p<le-3) and showing the same direction of
modulation as in the human intruder (airpuff /EC is higher than reward /NEC, correspondingly).
Therefore, there was a clear differential behavioral response in HIT sessions between eye-contact of the
intruder and no-eye-contact, and there was a clear differential response between appetitive and aversive
blocks, for both the US/outcome, and the CS/expectation.

To examine and compare neural responses, we recorded single-units from the basol ateral-complex of the
amygdala (BLA) and the anterior-cingul ate-cortex (ACC) (Fig.2a, n=24/25 sessions per monkey, n=
356/203 neurons in the ACC/Amygdala, 224/103 and 132/100 per monkey). We define two epochsin the
conditioning blocks: a preparatory/expectation epoch (CS-related, after the shutter opening but before US
delivery), and an outcome epoch (US-related, following delivery of airpuff/reward) (Fig.2b). Confirming
previous studies, we find that neurons in the amygdala and the ACC respond to the appetitive CS (Amy:
35/203, ACC: 43/356, y2 ,p<le-3for both), respond to the aversive CS (Amy: 36/203, ACC: 57/356, y2
,p<le-3for both), and also discriminate between valence (Amy: 37/203, ACC: 71/356, y2 ,p<le-3for
both). Moreover, similar proportions of cells were responsive in the two regions (Fig.2c, 2 , p>0.09 for
al). Similarly, neurons in the ACC and in the amygdala responded to the appetitive US (Amy: 25/203,
ACC: 49/356, p<le-2 for both), and aversive US (Amy: 73/203, ACC: 106/356, p<le-3 for both) again
with similar proportions in both regions (y2 , p>0.1). However, more amygdala neurons discriminated
valence between appetitive and aversive outcome (Fig.2d, Amy: 90/203, ACC:114/356, y2 , p<le-2).

Inthe HIT blocks (Fig.2e), neural responses were computed from the time when the monkey first looks at
the eyes-ROI, as thisisthe first time that the monkey can differentiate between EC and NEC
(Interquartile range: 180-700ms, Fig.1d). There were more responsive neurons in the amygdalathan in
the ACC during HIT blocks (Fig.2f, Amy: 58/203, ACC: 50/356, 2 , p<le-3), and more amygdaa
neurons discriminate between EC and NEC of the intruder (Fig.2f, Amy: 21/203, ACC: 17/356, x2 ,
p<0.05). The number of ACC neurons that coded for the intruder gaze was not different than chance
(Binomial test, p>0.1). We tested for overlap in responses and found that the proportion of neurons that
responded to both gaze and valence was not different than chance, both in the amygdala and in the ACC
(Fig.2g Binomial test, p>0.1).

We noticed that the proportion of amygdala neurons that code for gaze is low compared to the proportion
of neurons that code for valence, both for CS-related responses and for US-related responses (Fig.2c,d,f,
x2 , CS: p<0.05, US: p<ile-3), in line with previous studies in both monkeys and humans ™ %,
Nevertheless, because a neuron can contribute at the population level even if it does not exhibit a
significant response by itself, we further tested whether the combined ensemble of recorded neurons holds
information about the eye-gaze of others by training a linear decoder on population vectors. In accordance
with the single-cell analyses, population activity in the amygdala and the ACC could discriminate
between appetitive and aversive trias, both using CS-related and using US-related activity (Fig.2h,
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bootstrap analysis, Cl 95%). However, only the amygdala population could discriminate between EC and
NEC trias, whereas the ACC population did not exceed chance-level (Fig.2h, bootstrap analysis, Cl
95%).

We conclude that in the current paradigm, similar to previous findings, the amygdala and the ACC code
for valence®, but only the amygdala codes for the eye-gaze of the intruder™. It is true both at the single-
cell and at the population level.

The finding that the amygdala holds information about valence as well as eye-gaze of others within the
same circuitry suggests that there might be a shared population code in the neural ensembles. In order to
test this hypothesis of shared coding for valence and gaze, we used the decoder approach again, but this
time we trained on one type of trials and tested on another. If discrimination accuracy is above chance-
level, this would mean that the population uses similar mechanisms to hold information for one situation -
appetitive vs. aversive, asfor the other - EC vs. NEC. We therefore trained a linear decoder to distinguish
between trials of EC and NEC and tested it on distinguishing between trials of aversive and appetitive.
Importantly, this was done separately for the CS-related and the US-related responses.

In agreement with the af orementioned finding that the ACC does not hold information about eye-gaze, the
decoding performance in the ACC was not different than chance in both CS and US related activity
(Fig.3a,b top insets, bootstrap analysis, Cl 95%). In contrast, decoding performance was significantly
above chance level when using amygdala population, and moreover, it was the case when using either
CS-related activity or US-related activity (Fig.3a,b, Extended.Fig.3, bootstrap analysis, Cl 95%).
Performance was approximately linear in the number of neurons, starting from chance-level and rising to
more than 80% accuracy when using all available amygdala neurons (CS: 82.5%, US: 80%, n=203,
p<0.001 for both; Fig.3a,b bottom insets). This suggests that the shared coding of valence and eye-gazeis
not due to the few neurons that had significant responses to both contexts (Fig.2g), a notion that was
further supported by the finding that accuracy remained similar when dropping these few neurons (CS:
81%, n=201; US: 79%, n=198). These findings demonstrate that a shared population code is used by
amygdala neurons, because the decoder was trained only on gaze discrimination, yet successfully tested
on valence discrimination.

In general, there could be two shared activity schemes that would alow training on one context and
decoding of the other. In the first, termed here correlated-sel ectivity, neurons respond similarly to gaze
and valence (Fig.3c). This means that the neurons respond in the same direction and with similar
proportion (decrease/increase firing rates proportionally) for NEC vs. EC as for appetitive vs. aversive.
Namely, a neuron’s response is correlated along eye-gaze and valence. Alternatively, in the second option
termed overall-activity, a population of neurons respond only in the same direction, high or low overall
average firing-rate, to gaze and valence, yet individual neurons are not correlated across the contexts
(Fig.3d). We therefore tested which scheme applies for the amygdala population, and is it different
between CS-related responses and US-related activity. To do so, we applied several approaches.

We first examined the activity at the single cell level. Each neuron was assigned a selectivity index for
gaze (SIG, -1to 1, NEC to EC) and a selectivity index for valence (SIV, from -1 to 1, appetitive to
aversive). The joint distribution of indices with the same direction of modulation was high in CS period
(Fig.3ef; p<le-3 y2 compared to chance-level; US: p>0.1), in opposite to the joint distribution with only
positive modulation which was high in the US period (Fig.3e,f; p<le-3 y2 ; CS: p>0.1). Moreover, the
two indices were correlated across the whole population only during CS activity (r=0.26, p<0.01 taking
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only neurons with SI>1/3; r=0.2, p<0.01 and for the whole population; US: p>0.4; t-tests), and even when
taking positive indices only, demonstrating that the correlation is beyond sign (Fig.3g-right, r=0.3,p<0.02;
US: p>0.4).

Next, we used linear-regression on the individual responses for gaze, comparing EC to NEC, and
separately on the responses for valence, comparing aversive to appetitive. We obtained and compared two
separate coefficients: Byqience that represents the difference in firing rate between airpuff and reward, and
Bgaze that represents the difference in firing rate between EC and NEC. If the two coefficients are similar
for individual neurons, it means that neurons code valence and eye-gaze not only along the same
direction, but also with similar modulation. We found that the two coefficients were positively correlated
in amygdala neurons, but only when using CS-related activity and not when using US-related activity
(Fig.4a-c, Pearson correlation, amygdala: CS: r=0.4, p<le-8, US:. r=0.03 ,p>0.5; ACC: CS: r=-0.1, p<le-
2, US: r=0.03 ,p>0.5). This observation supports a correlated-sel ectivity scheme between valence and
gaze for the CS epoch, yet an overall-activity for the US epoch. The overall-activity scheme for the USis
further supported by direct examination of overall increases/decreases in firing-rates for direct gaze and
US vaence (Extended.Fig.4, Z-test p<le-3).

This finding was further validated by examining the scalar product between the two coefficients ( ﬁgaze

and ﬁva,ence). If more neurons respond in similar proportion (correlated-selectivity), then the scalar-
product would be positive; otherwise, the scalar product will be close to zero if neurons respond in
random order (or negativeif in opposite directions). In the amygdala, using CS-related activity
outperforms a shuffling test (Fig.4d, bootstrap), yet using US-related activity does not (Fig.4e, bootstrap).
Inthe ACC, neurons were similar or lower than the shuffled test (Fig.4f, bootstrap). In addition, the mean
value for the US-related shuffled activity is higher than for the CS-related shuffled activity (Fig.4d.,e,
CS=0.1, US=1.8, bootstrap, p<0.05). Thisis because more neurons both in gaze and in US-valence
increase their firing rate, resulting in a higher positive scalar product for shuffled neurons, further
supporting the overall-activity scheme. In contrast, for the CS the similarity in the response increases the
scalar product in the real neurons but not in the shuffled population.

To test the two schemes at the population level, we computed the angles between the decision boundaries
of two linear decoders: one boundary that separates EC from NEC and one that separates aversive from
appetitive. When computed over the US epoch, or using ACC population, the decision boundaries of
valence and gaze are closer to being perpendicular to one another (dot-product not significantly different
from zero), whereas only using CS activity from the amygdala popul ation shows a significant difference
from perpendicular decision boundaries (Fig.4g, bootstrap, Cl 95%).

Finally, we trained the decoder on gaze and tested on valence while shuffling the order of neurons. This
approach is used to test if it is the specific ensemble of neurons that matters, or just an overall increasein
firing rate. In line with the previous results, performance using amygdala activity from the CS epoch was
decreased dramatically from actual to shuffled neurons (Fig.4h, Extended.Fig.5 bootstrap analysis with Cl
95%), whereas using US activity it even dlightly increased (Fig.4h,i,j, Extended.Fig.5 bootstrap analysis
with Cl 95%), further supporting the two different shared coding schemes: correlated-sel ectivity between
gaze and CS-valence, and overall-activity between gaze and US-valence.

The eyes of others became a prominent signal along evolution due to anatomical changesin facial
morphology that forced a shift in salience from the shape of the face to the eyes >. The importance of the
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amygdalain the processing of eye-gaze was shown in humans and in macaques * *> *8, Here, we recorded
neural activity in the amygdala and the ACC during live interactions in a modified version of the human
intruder test (HIT)™ that included also a conditioning paradigm. Whereas both regions differentiated
between valence in their CS-related and US-related responses , only the amygdala differentiated
between averted vs. direct gaze of an intruder. Thisfinding isin-line with multidimensional selectivity
found in amygdala neurons®™ 2 and increased robustness compared to the ACC?. Importantly, we find
that in the amygdala, both CS-related and US-rel ated responses are shared with the eye-gaze of the
intruder and in a valence-specific manner, namely aversive (airpuff) to appetitive (reward) parallel direct
to averted eye-gaze. Our results, obtained in live-interactions, comparing aversive-to-appetitive with
natural eye-gaze, suggest that social value evolved from, or in parallel to, primary-reinforcer value.
Together with recent findings®, the results further support the theory that processing of social stimuli and
specifically eye-gaze does not occur in separate dedicated neural circuits > % %,

The naturalistic paradigm we employed enables live socia interactions and therefore important for the
interpretation of natural behaviors, yet it also imposes some constraints on the possible contributors. To
address this, we validated that our findings cannot be explained by differences that accompany direct vs.
averted eye-gaze, such as vocalizations (of any type, Extended.Fig.6a), self-motor activity
(Extended.Fig.6b), facial expressions (Extended.Fig.6¢-€), saccades (Extended.Fig.1b), and stimulus
saliency (Extended.Figs.7,8,9,10). The fact that we identified two different coding schemes argues against
the possibility that the shared code reflects a genera saliency and/or category code (Extended.Figs.7,8).
Thiswas further supported by control experiments showing that amygdala neurons code for species-
differences™, but this code was not shared with the outcome expectation (Extended.Fig.9); and additional
experiments demonstrating that direct and averted gaze have different value compared to neutral trials
(Extended.Fig.10).

We identified two different coding schemes that allow decoding of value based on responses to eye-gaze.
The overall-activity scheme that is shared across gaze and outcome (US) occurs by an overall increasein
firing rate, and suggests a simpler mechanism that points to origins within the same circuitry, where an
aversive outcome is similar in value to a predator gaze'™ or to athreat by a peer. It isaso in line with the
findings of the human-intruder-test where gaze elicits anxiety® ' *. The coding of expectation, namely
the learned CS, was also shared with eye-gaze responses; but it was shared via a correlated-sel ectivity
scheme that requires the responses to be correlated at a single-neuron level (rather than only on average
over the population). Because correlated-sel ectivity might require more specific wiring design, and
because the amygdala has evolved in parallel to the development of social interactions *" %, we suggest
that correlated-selectivity could have facilitated the later evolution of other complex social processes such
as learning by observation ® * and social-based decision-making in extended circuits ** *’. Specifically, it
can be used by the animal to anticipate social outcomes based on context - a direct prolonged gaze likely
callsfor achallenge and predicts a confrontation that entails dangerous outcome; whereas an averted gaze
usually predicts a submissive and permissive encounter and potentially rewarding (mating, food
sharing/offering). There are very few contexts in which a prolonged gaze is positive (e.g. mother-baby
interactions), and it would be interesting to test if amygdala ensembles reverse coding direction, or rather
contribute to integration of cues in down-stream circuits. Overall, our findings suggest new insights into
coding schemes in the primate amygdala that underlie social-interactions, valence, and outcome-
expectancy, and provide a new framework to understand social-anxiety and the comorbidity of anxiety,
depression, and impaired social interactions™.
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Figurelegends:

Figure 1. Paradigm and behavior during the Human-Intruder-Test (HIT) and affective
conditioning blocks.

a.

Human-Intruder-Test: The shutter opens and closes 18 times, and the human intruder
pseudorandomly alters between direct-gaze (eye-contact, EC) and averted eye-gaze (no-eye-
contact, NEC).

Classical conditioning blocks of either appetitive (reward) and aversive (airpuff) stimulus. In
these blocks, the shutter-open serves as a predictor (conditioned-stimulus, CS) to the
appetitive/aversive outcome (unconditioned-stimulus, US).

An example of the pseudorandom order of blocksin one recording session, with at least 120
seconds between blocks.

Regions of interest (ROI) for the eye-tracking of the observer monkey (left): Only to the eyes of
the human intruder (green); Only to the face of the intruder (pink); The whole shutter (white);
The whole possible space (gray). Notice we report the same regions even when there is no
intruder (the regions are similar across intruders because the faces are accurately aligned by
positioning). Cumulative density function (right) of the first time after shutter opening that the
monkeys look into the eyes ROI, separately for HIT and for conditioning blocks.

*** represents a significant difference (Kolmogorov-smirnov, p<le-8, n-trials= 3108/2090 in
HIT/conditioning trials; 49 sessions, 24/25 per monkey).

Example of one shutter opening in an HIT block. Filled-circles (red) mark the location of the
monkey’ s gaze overlaid on an intruder real-position (schematic). Shown are three consecutive
time windows (one before shutter opening and two after).

Density function of al eyelocationsin the HIT blocks in the same three consecutive time
windows asin (E). Immediately after shutter opening and for few hundreds of milliseconds, the
monkey looks mainly at the eyes of the human intruder.

L eft: Proportion of looking to the eyes-ROI in EC and NEC trials (Mean +/- SEM). The monkey
first looks to the eyes region of the intruder, and then immediately breaks fixation in NEC trials
significantly more than in EC trials.

Right: The difference in proportion of the monkey’slook towards the eye and to the face ROI
between EC and NEC trials. Both are significantly positive indicating that in EC trials the
monkey maintains fixation to the face/eyes of the intruder.

Upper black line represents a significant difference (p<0.05, x2, n-trial=1480/1628 in NEC/EC).
Shown are schemes of typical facial expressions made by the monkeysin EC trials (middle,
“aggressive’), in NEC trials (right,” interest”), compared to a neutral expression (left).

The overall changein the facial expression in EC and NEC (Mean +/- SEM). Shown is the Root-
Mean-Square (RMS) of change in the image over the whole face (left) and only for the lower half
of the face (right), compared to the neutral expression. Upper black line represents a significant
difference (p<0.05, two-sided t-test, n-trial=1480/1628 in NEC/EC). See methods and
Extended.Fig.2.

Differencesin heart-rate (Mean +/- SEM) between EC and NEC trials and between reward and
airpuff trials. * and *** represent a significant difference (t-test, two-sided, p<0.05, n-trials
1703/1765 in NEC/EC and p<e-3, n-trials 1352/712 in Reward/Airpuff).
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k. Differencesin heart-rate-variability (HRV, Mean +/- SEM) between EC and NEC trials and

between reward and airpuff trials. * and *** represent a significant difference (t-test, two-sided,
p<0.05, n-trials 1703/1765 in NEC/EC and p<e-3, n-trials 1352/712 in Reward/Airpuff).
Response (Mean +/- SEM) to aversive (airpuff) vs. appetitive (reward) in the oculomotor
behavior. *** represent a significant difference (y2 ,p<le-3, n-trial=1375/715 in Reward/Airpuff)
Differencesin respiratory-rate (Mean +/- SEM) after shutter-opens between EC and NEC trials
and between reward and airpuff trials. n.s and *** represent a non-significant/significant
difference (t-test, two-sided, p=0.82, n-trials 1703/1765 in NEC/EC and p<e-3, n-trials 1352/712
in Reward/Airpuff).

Figure 2. The amygdala codes for gaze and valence, and the ACC mainly codes valence

a

Recording locations: MRI with electrode directed into the BLA (AC=-3); Recording locations
overlaid on a primate brain map (AC=0) and on an MRI scan (AC=0).

PSTHs and raster plots of two representative neuronsin the ACC and two in the amygdala during
conditioning block.

Proportion of neurons (Mean +/- SEM) in the ACC and the amygdala (n-neurons=356/203
respectively) that respond to the CS (shutter-open) in aversive trials (left), appetitive trials
(middle), and discriminate between the two (right).

Proportion of neurons (Mean +/- SEM) in the ACC and in the amygdala (n-neurons=356/203
respectively) that respond after the US (outcome) to the airpuff (left), reward (middle), and
discriminate between the two (right). ** represents a significant y2, p<e-2.

PSTH and raster plot of two representative neurons in the amygdala during the human-intruder
block (HIT).

The proportion of neurons (Mean +/- SEM) in the ACC and the amygdala (n-neurons=356/203
respectively) that respond significantly in the HIT blocks, and that discriminate between EC and
NEC (gaze neurons). * and *** represent asignificant y2, p<0.05 and p<e-3 respectively.
Overlaps in the number of neurons that respond across the different tasks. The size of each areais
proportional to the percentage of neurons. The numbers inside the VVenn diagram represents the
total number of each group (Gaze neurons, CS valence and US valence) whereas the numbers
outside represent overlaps.

Population decoding accuracy for HIT vs. conditioning blocks. Discriminating appetitive from
aversive with amygdala and ACC neurons is significant using both the CS and the US responses,
whereas only the Amygdala can decode gaze i.e. eye-contact from no-eye-contact. Significant
above chance was tested in bootstrap analysis (n_rep=1000, n_ACC=356, n_AMY =203) with CI
95%. In the violin diagram, red represents median and black the mean.
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Figure 3. Shared coding for valence and gaze in amygdala neurons

a.

Population decoding accuracy (Mean +/- STD, bootstrap Cl=95%, n_rep=1000, n_AMY =203) when
training on eye-gaze (EC vs. NEC) and testing on vaence (aversive vs. appetitive), using CS-related
activity.

Right-top inset: Similar format using ACC population (n_ACC=356).

Right-bottom inset: Peak decoding accuracy using increasing numbers of neurons.

Same as (A) but using US-related activity.

The correlated-selectivity scheme. Here, neurons respond similarly to gaze and valence, meaning
their response is correlated across NEC-to-EC and Appetitive-to-Aversive. Shownis

the optimal linear separator for the neural population (demonstrated here for three neurons) during the
HIT trials (EC trialsin circles, NEC in triangles). A similar presentation is shown for the
Conditioning (airpuff trialsin circles, reward in triangles), overlaid with the separating surface from
the HIT. The similar surfaces allow correct decoding.

Same as (c) for the overall-activity scheme. Here, different neuronsin the population respond with
similar changes in firing rate to gaze and valence, but individual neurons are not correlated.

Although the separating surfaces are different, neurons provide enough spikes overall to allow correct
decoding.

Distribution of Selectivity-index for Gaze (SIG, blue), overlaid with neurons that have the same
direction of modulation for SIG and SIV (red), for CS activity (left), and US activity (right).

Left: proportion of neurons (mean and SEM) with same direction of modulation is higher than chance
in CSonly (p<le-3 y2, n_AMY=203,n_ACC=356), but not in US (shown isaso ACC for
comparison, dashed-line is chance level).

Right: proportion of neurons (mean and SEM) with positive indicesis higher than chancein US only
(p<le-3 y2,n_AMY=203,n_ACC=356), but not in CS (shown isaso ACC for comparison, dashed-
lineis chance level).

Selectivity-index for gaze (SIG) is correlated with the Selectivity-index for valence (SIV) across the
whole population during CS activity only (r=0.26, p<0.01 taking only classically selective neurons
with SI>1/3; r=0.2, p<0.01 for the whole population; US: p>0.4; t-tests).

Right: Considering only positive indices (r=0.3, p<0.02, Pearson; US: p>0.4; t-tests two sided,
n=203), demonstrating that the correlation is beyond sign only.
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Figure 4. An overall-activity coding for eye-gaze and US-valence and a correlated-selectivity coding
for eye-gaze and CS-valence

a

o

—h

Correlation (Pearson’s, n_ AMY =203 and n_ACC=356) between the linear-regression coefficients of
gaze (eye-contact vs. no-eye-contact, x-axis) and of valence (aversive vs. appetitive, y-axis) using
CS-related activity. All amygdala neurons are shown. The beta values are from the time epochs of the
maximal decoding from Fig.3.

Same as (A) using US-related activity.

Same as (A) and (B) for ACC activity, CS-related (top) and US-related (bottom).

Neurons respond in the same direction for eye-gaze and valence using CS-related activity, as evident
by the scalar-product between the coefficients of gaze and of valence for each neuron. Black asterisks
represent data from real neurons and shaded-magenta is 95% confidence interval based on bootstrap
shuffle.

Same as (D) using US-related activity.

Same as (C) and (D) for ACC activity, CS-related (top) and US-related (bottom).

The angle between the decision boundaries derived from the popul ation-vector of gaze and valence
separately (shown isthe scalar product between the two vectors). In the Violin diagram red represents
the median and black the mean. n. AMY =203 and n_ ACC=356

Population decoding accuracy for real and shuffled neurons using CS-related activity.

Same as (H) for ACC activity.

Cumulative-distribution of the difference in decoding accuracy between real and shuffled neurons of
the amygdala. *** represents a significant difference (Two-sample Kolmogorov-Smirnov, p<e-3,
n_AMY=203).
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Online Methods
Animals and surgical procedures

Two male macaca fascicularis (4-8 kg) were implanted with around recording chamber above the
amygdala and ACC covering both regions in both hemispheres. All procedures were approved and
conducted in accordance with the regulations of the Weizmann Institute Animal Care and Use Committee
(IACUC), following NIH regulations and with AAALAC accreditation.

MRI based electrode positioning scans were acquired twice, on a 3-Tesla MRI scanner (MAGNETOM
Trio, Siemens) with a CP knee cail (Siemens) and using 0.53mm resolution. A first scan before surgery
was used to align and refine anatomical maps for individual animals (relative location of the amygdala,
ACC and anatomical markers such as the interaural line and the anterior commissure), and to guide the
positioning of the chamber on the skull. After surgery, we performed scans with deep electrodes directed
toward the amygdala and the ACC (see for example Fig.2a), and cal cul ate the anatomical anterior—
posterior and lateral-medial borders relative to the penetrations. The depth of the amygdalais calculated
from the dura surface.

Electrophysiology recordings

Each day, 1-3 multichannel (16 contacts each) microel ectrodes vector arrays (NeuroNexus) were lowered
into the brain using an electrode-positioning-system (NAN, Isragl). Vectors were moved independently
into the amygdala and ACC while identifying el ectro-physiological markers tracking the known
anatomical pathway. We allowed 30 min for the tissue and signal to stabilize before starting acquisition
and behavioral protocol. Datais pre-amplified and stored at 22Khz for later processing. In real-time a
0.3Hz-6KHz band-pass filter and on-line spike sorting was performed using a template-based a gorithm
(AlphaLab Pro, Alpha Omega). Off-line spike sorting was performed on the raw data for al sessionsto
improve unit isolation (offline sorter, Plexon Inc).

Behavioral Paradigms

Fast LCD shutter (307 x 407 mm) is placed between the monkey and the intruder (FOS-307 x 406-PSCT-
LV; Liquid Crystal Technologies) to block visual site. Direct current (48v) through the LCD shutter turns
it clear/transparent with an onset/offset rise time of <1ms. To enhance precision for neural activity we
placed a photodiode (BPX65 Silicon PIN Photodiode) that can be detected with onset/offset of <le-4ms.
There are three types of blocks in each daily session: Human intruder; Airpuffs; Liquid rewards. The
blocks are randomized along a session, with more than 120 seconds separating blocks (Fig.1).

Human Intruder: Each block includes 6* 3 shutter openings, in which the human intruder alters between
Eye-Contact (EC) and No-Eye-contact (NEC) in a pseudorandom order. In both EC and NEC the human
maintains gaze direction for 6-9 secs independently of the monkeys' behavior. We generated a per-day
pre-defined sequence of EC and NEC with 3 options of sequences that alter across sessions: segl
(BlockA: EC,NEC,EC,NEC,EC,NEC; BlockB: EC,EC,NEC,NEC,EC,EC; BlockC:
NEC,NEC,EC,EC,NEC,EC); seq2 (BlockB, BlockC, BlockA) and seg3 (BlockC, BlockA, BlockB). This
was aimed to randomize and prevent learning of EC/NEC order, but also to provide across-days statistics
for neural recordings. The human intruder face was filmed and all the trials were monitored to validate
that the intruders indeed maintained constant gaze and followed the daily sequence.
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Reward: Each block contains 10 trials with an inter-trial-interval of a pseudorandom 20-40 secs. In each
trial the shutter opening serves as the conditioned-stimulus (CS) and was followed after 1sec delay by few
drops of juice delivered to the monkey’ s mouth.

Airpuff - Each block contains 8 trials with an inter-trial-interval of a pseudorandom 20-40 secs. In each
trial the shutter opening serves as the conditioned-stimulus (CS) and was followed after 1sec delay by air
puff (5-15 Psi; located 5 cm from the face).

The monkeys had information about which block is about to start as the human intruder paradigm starts
with 5 secs of pure sinus wave (300Hz) followed by the human intruder entering the room and sitting in
front of the monkey, with closed shutter. The monkey could not see any part of the human unless the
shutter is open.

Behavioral analysis
Eye tracking

A stationary monocular eye tracker was installed for the purpose of eye tracking and gaze estimation. The
system included two cameras (Ximea. MQO13RG) — one for eye capturing of the monkey and one for
intruders’ monitoring and an infrared LED light bar (MetaBright Exolight |SO-14-1RN-24) for face
illumination and corneal reflection (CR) production. The eye-recording camera efficiently captured the
CR duetoitsnear IR (infra-red) property.

Software implementation was based on the open source project ‘ OpenEyes *, which allows the
estimation of subject’s point of gaze (POG) on the field of view (FOV) projection. In our case, the FOV
scene images were extracted from the video stream of the intruder monitoring camera. The ‘ OpenEyes
framework makes use of the Starburst algorithm *® for finding the pupil contour, and assesses the POG by
the means of pupil center and CR method . The conditions of our experimental setup (brightly lighted
room, large CR of near-rectangular shape and brown sclera of the subject ) required a slight modification
of the original algorithm for pupil and CR detection. In our variation of the software, the shot noise
reduction was skipped, and the CR wasn’t removed from the image after its detection, dueto itslarge
size. To find the pupil center, we extended the Starburst algorithm. After finding the features candidates
for pupil contour, instead of fitting ellipse using RANSAC (random sample consensus) paradigm, we
used the “imfindcircles” Matlab function, which searches for circle-candidates applying Hough transform
based algorithm. To generate the input for the function, edges image was produced by gradient magnitude
calculation followed by binarization. This procedure resulted in a black image with white edges, and was
passed to “imfindcircles’ with object polarity parameter set to “dark” (specifying that the object — the
pupil - is darker than its background). The function returns alist of candidate circles, ordered by circle
strengths. Starting from the circle with the biggest strength, the list is searched for the first circle
containing a predefined number of minimum feature points that were extracted by the Srtarburst
algorithm. Finally, the pupil center is estimated by the center of the found circle. A standard calibration
procedure was performed, whereby the monkeys sequentially fixated on 3X3 known grid pointsin the
scene image (according to the original openEyesimplementation). To cause the subject’ s fixation, the
screen with the shutter closed, was consecutively illuminated by alaser pointer in the 9 locations. The
exact frames of subject’ s fixation were detected and coordinated with the illumination timings (each time
the laser is activated, it records the exact time in the system). The human intruders were filmed
throughout all the interactions with the monkeys, and their faces and eyes were marked both
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automatically and manually for validation. The 9 (3X3) fixation points were filmed by the same camera,
alowing the projections of the fixation points and the intruders on the same plane. Each frame from the
eyes of the monkeys therefore result in apoint (x and y position) on this plane, alowing to calculate the
gaze of the monkey in one of the four ROI’s— eyes of the intruders, face of the intruders, shutter region
and all therest.

Facial expression

One Ximea_MQO013RG camera filmed the face region of the recoded monkey in 34Hz. For every
recording session, the mean image during the ‘alone’ period was calculated (i.e. when the monkey was
alone in the room with closed shutter). This mean image (See Extended.Fig.2) was subtracted from every
frame taken during the Human Intruder interactions. Root Mean Square (RMS) of al the pixelsin this
subtracted frame is then cal culated and the mean and SEM are presented for EC and NEC trials (Fig.1i ).
Additionally, each day we manually define 3 ROI’s— upper face, lower face and ears (See
Extended.Fig.2). The same analysisis repeated separately to each ROI and differences between EC and
NEC were validated across both for upper and lower face (Fig.1i and Extended.Fig.2)

Heart Rate and Respiratory rate measures

Piezoel ectric pulse transducer: The cardiac and respiratory traces (for measure of Heart-rate, Heart-rate-
variability and Respiratory-rate) *” were recorded using a piezoel ectric pulse transducer (UFI, model
1010) in 2790Hz. We use an elastic belt about 23cm (9 inches) long and fasten extender belt to one end of
transducer package using VELCRO™ closures al wrapped around the monkey’ s chest. We use a
piezoelectric pulse transducer (UFI, model 1010) glued around the center allowing direct sensing the
heart pulse.

For validation, the respiratory trace is recorded also using solid-state transducer which measures changes
in chest or abdominal circumference due to respiration (UFI, model 1132) at 2790Hz. The signal from the
piezo sensor also provides respiratory rate parameters, allowing two independent measures for
comparison and calibration of parameters.

The piezo-electric signal was processed using a custom made Matlab software. A respiratory trace was
extracted using afirst order Butterworth filter, and smoothed with running windows. Respiratory peaks
were then extracted using ‘findpeaks' function. A cardiac trace was extracted by subtracting the filtered
respiratory signal from the raw piezo-electric signal. The resulting signal was then processed for each day
separately, using filtering and findpeaks parameters. The parameters of the day-specific processing were
derived by comparing different sets of parametersto manually tagged cardiac peaks from each day. The
resulting day-tailored processed signal was validated using manual inspection of al trials. In addition, the
guality of each trial was manually rated, and noisy signal epochs were marked to validate that the result is
not due to trials of insufficient quality.

Respiratory rate and heart rate measurements were calculated for each trial using a sliding window of 1
second and heart rate variability (HRV) using running window of 5 seconds, yielding a continuous signal
for further analysis. The HRV measure is the standard deviation of normal-normal beat interval (SDNN),
awell-established and frequently used measure *®. Finally, we normalized the changes in each measure by
subtracting the mean value from the closed shutter epoch before each trial, to obtain evoked responses.

Vocalizations

545
546
547
548
549

550

551
552
553
554
555
556
557
558

559

560
561
562
563
564
565

566
567
568
569

570
571
572
573
574
575
576
577
578

579
580
581
582
583

584



V ocalizations were recorded using a microphone (PGA81, Cardioid Condenser Instrument Microphone),
situated in close proximity to the monkey. The signal was processed using custom made Matlab software
implementing afirst order Butterworth filter and smoothed with running a window. Threshold detection
was implemented after subtracting the background noise. Several thresholds were tested (1 STD, 2STD,
3STD, 4STD) and the conclusions remain similar.

Movement detection

Two accelerometers were used in the experiment (EVAL-ADXL335Z, Analog Devices), one was
attached to the monkeys' chair and one to the setup itself. This allowed to differentiate acceleration
caused by self-motor movements from other environmental noise. Movements were recorded in 2790Hz
and processed using a custom made Matlab software implementing afirst order Butterworth filter and
smoothed with a running window. Peaks were then extracted using ‘findpeaks' function.

Comparing conditions

We implemented a control based on the ‘thinning method’, traditionally used to compare distributions
from different sources. Here, we compared the distribution of facial expressions or eye-gazein EC vs.
NEC trials. We created similar distributions of facial expressions (eye-movements) for EC and NEC
trials, and repeated the main analysis.

Neural activity analysis
Sngle neuron analysis

The analysis of the neural data focused on three time epochs. In the human intruder blocks, we focused on
400-700ms after shutter opening. This time was chosen because of the oculomotor behavior of the
monkeys (Fig.1) showing that the first time they can identify whether thisisan EC or an NEC trial has an
interguartile range of 180-700ms (see Fig.1d for the full CDF). All analyses were repeated (see
Extended.Fig.1, Extended.Fig.5) also when aligning each trial according to the actual time in that trial that
the EC/NEC information is available (first gaze to eyes ROI). Such an alignment was done in order to
focus on the differences between EC and NEC of the intruder and because fixation shapes neural activity
3 In the affective (reward/aversive) conditioning blocks, the neural data was taken from 0-300ms after
the conditioned-stimulus, termed CS-related activity; and from 0-300ms after reward/airpuff delivery
(outcome), termed US-related activity.

Neural activity is normalized according to the baseline activity before the relevant block, using the same
window length (300ms) to calculate the mean and standard deviation of the firing rate.
Therefore, the normalized (z-scored) firing rateis:

FR — mean(baseline)
std(baseline)

FRyormatizea =

These z-scores were used to quantify the percentage of responsive neurons to the different stimuli. T-tests
are used to compare valence (airpuff to reward) or gaze (EC to NEC), and chi-square or binomial tests are
used to compare proportions of neurons.

Population decoding
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Pseudo-simultaneous population response vector is used for the decoding analysis. The same procedure as
reported in details el sewhere * is used. The population vector contains spike counts of each neuron in a
specific time bin. Each brain area has its own vectors, and the number of vectorsis defined by the number
of availableftrials:

PV (t) =< Neuron, Neurons, ..., Neuron§ >

PV (t) isthe response vector of a specific trial in condition C, in time bin (t), in abrain region that has N
neurons. We use the same number of neurons in the amygdala and ACC, therefore we randomly discarded
excess neuronsin the ACC, resulting in 203 neurons in both.

There are four conditions, airpuff and reward that belong to the valence class and EC and NEC that
belong to the gaze class. In the analysis that was conducted in Fig.2 we trained and tested within the same
class, whereasin al other analyses we trained on one class and tested on the other class. If we change the
order in the training, such that training for NEC yield airpuff and training for EC yield reward, the
decoding accuracy is exactly (100-CorectDecoding, see Extended.Fig.3). For both the training and testing
we used linear classifier based on maximization procedure of the SYM agorithm (fitSVM Matlab
function). Each training set yields a boundary line (set of weights for every neuron) and athreshold that
separates the two conditions under consideration. The same output from the training was then used to
assess the accuracy in the test set.

For a given neuron and a given condition we used 80% of the trials for training and 20% for testing when
done within the same class. When we trained on one class and tested on the other, we used all the
availabletrials for training and testing. The accuracy of every decoder was estimated by pseudorandom
resampling from the available trials 1,000 times.

In the analysis of Fig.4 we shuffled the neurons such that the index of each neuron in PVis randomly
assigned. Therefore, the spike count of every neuron remains, but its position in the vector changes.

Decision boundary analysis

In order to estimate if the mechanism that allows decoding of one class based on the other is due to
correlated-selectivity or overall-activity, we estimate the angle between the boundary lines. Every training
sample yields a vector of weights:

Boundaryciass =< Wi, Ws, ..., Wy >

Boundaryg4ss iSthe decision boundary of one training sample in abrain region with N neurons. Every
brain region has two boundaries, one for gaze and one for valence.

Boundaryyience - Boundarygaze

cosa =

| BoundaryValencel * | Boundarygaze|

Each of the boundariesis sampled 1,000 times to obtain a distribution of angles. The results are presented
as cos(a) and not «, so zero (0) values represent perpendicular boundaries.

Linear regression analysis
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We estimated the tuning of the neurons to valence and gaze by linear regression analysis. The firing rate,
FR, of every neuron isfitted during every time bin with one of the following equations:

FRygience = BY + By - Valence

FRGaze = ﬁg + B¢ - Gaze

Valence is1for airpuff trialsand -1 for reward trials, whereas Gaze is 1 for EC and -1 for NEC. The
regression analysisyield for every neuron two coefficients, 8, and S;.

Scalar product of linear regression coefficients

We calculated the scalar product between ﬁgaze and Evalence where the vector sign indicatesthat it isa

vector of al neuronsin acertain brain region ﬁgaze =< Bs,,Bc,» - Pgy > and ﬁualence =<
Bv,, Bv,, -, By, >. Theintuition behind this scalar product is that if more neurons response in asimilar
direction, then the scalar product is expected to be positive and vice versa.

N
Egaze 'B)valence = z(ﬁGi'BVi)
i=1

We also calculated a shuffled version where arandom index is used, and hence the multiplication of the
coefficients is done across two different neurons. The shuffled scalar product is repeated 1,000 times.

Sdlectivity-Index

We calculated a selectivity index for each neuron in the amygdala and ACC for gaze (SIG) and for
valence (SIV) in the following way:

SIG FRNormalizedEC - FRNormalizedNEC

B |FRNormalizedFREC| + IFRNormalizedFRNEcl

S|V = FRNormalizedeFF - FRNormalizedREWARD

|FRNormalizedFRPUFF| + |FRNormalizedFRREWARD|

We tested both the values of SIV and SIG separately, as well as the overlap between the two, and whether
the selectivity isin the same direction (SIG * SIV > 0).

651
652

653

654
655

656

657

658
659
660

661
662

663

664

665
666

667
668

669



Extended Figureslegends

Extended.Fig.1. Differential behavioral responseto EC and NEC

a

Same format as Fig.1f but for all shutter ROI (and not just face ROI). As can be seen, the monkeys
look at the face and eyes ROl mainly in the human intruder interactions. Left —the gaze density
during all the sessions.

Same format as Fig.1g, but aligned to the first time the monkeys looked to the intruder’ s eyes ROl in
each trial separately.

Same format as Fig.1g-right, separately for each monkey

Extended.Fig.2. Extracting differencesin facial expression

Examples of three original frames with different expressions, corresponding to the scheme in Fig.1h.
For every recording session, we averaged over all frames from the baseline period resulting in the
mean image (baseline was taken over the period before any trial when the monkey was alone in the
room with a closed shutter).

An example of aframe during EC (eye contact) interaction.

The mean frame (b) is subtracted from the frame in (C) during the interaction, to obtain a‘ diff’/delta
image. Three ROIs are defined manually for every day — Upper, Ears and Lower.

Root Mean Square of every ROI is calculated (Mean +/- SEM). Shown are differences between EC
and NEC in the Upper part (see main Fig.1 for other parts/ROI’s). Upper black line represents a
significant difference (p<0.05, t-test two-sided, n-trial=1480/1628 in NEC/EC).

Extended.Fig.3. Reversing valence directionality (NEC-EC to aver sive-appetitive)

a

b.

Same format as in main Fig.3a,b. Population decoding accuracy (Mean +/- STD, bootstrap CI=95%,
n_rep=1000, n_AMY=203) but when training on eye-gaze (NEC vs. EC) and testing on valence
(aversive vs. appetitive), using CS-related activity.

Same as (a) but using US-related activity.

Extended.Fig.4. Single-neur ons activity across conditions.

a. If overall-activity drives the successful decoding in the US epoch, we expect to find an overall
change in thefiring rate (increase or decrease) for gaze and for US valence. Indeed, we find that
there are more valence positive neurons (increased firing rate to airpuff) in the amygdalain the
US epoch, and that there are more gaze positive neurons (increased firing rate to EC) in the
amygdala. Inset represent the mean and SEM, *** represent a significant differencesin Z-test,
p<e-3, n_AMY=203 and n_ACC=356).

b. Decoding accuracy with and without neurons that code for gaze (n_AMY =203 and n_Rep=1000).

Black and red lines represents the mean and median respectively.
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Extended.Fig.5. Decoding with trial-based alignment to shutter opening.

a

Same format asin Fig.4h,i,j. Population decoding accuracy for real and shuffled amygdala
neurons (n_AMY =203). Black and red lines represents the mean and median respectively.
Same as (a) for ACC activity (n_ACC=356).

Cumulative-distribution of the difference in decoding accuracy between real and shuffled
neurons. *** represents a significant difference (Two-sample Kolmogorov-Smirnov, p<e-3,
n_AMY=203).

Extended.Fig.6. Behavioral differences between EC and NEC do not underlie neural findings

a.

An example of vocalizations during onetrial of human intruder, measured using a microphone
placed in close proximity to the monkey (see methods). Inset — the proportion of trialsin which
vocalizations occur. Notice thereisavery small proportion of trialsin which vocalization occur,
and it was similar across EC and NEC trials (y2, p=0.88, n=1738/1807 in NEC/EC). Due to the
low number of vocalizations, we were not able to characterize different types of vocalizations. In
addition, we repeated analyses after removing trials during which vocalizations occur, and the
main results were unchanged.

An example of movement in onetria in response to the human intruder, measured using an
accelerometer attached to the chair of the monkey (see methods). Here aswell thereisavery
small proportion of trials, and it was similar across EC and NEC trials. In addition, we repeated
analyses after removing these trial's, and the main results were unchanged.

The overall changein facial expressions (Mean +/- SEM) between EC and NEC (asin Fig.1i).
Shown is the Root-Mean-Square (RMS) of the change between the image over the whole face
(main) and only for the lower half of the face (inset), compared to the neutral expression obtained
from averaging over baseline period when the monkey was alone (see methods). Thereisa
significant difference (t-test, two-sided, p<0.05, n-trials 1703/1765 in NEC/EC).

Same asin (c) but after applying the ‘thinning method’ (iteratively selecting trialsto obtain a
similar distribution of behavior across EC and NEC; see methods). We applied the same also for
eye-movements.

Decoding accuracy using only trials with similar behavior across EC and NEC, taken after the
‘thinning’ as shown in (d). Results remain the same (compare to Fig.4h). Violin —red for median
and black for mean (n_AMY =203,n_REP=1000).
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Extended.Fig.7. Consistency acr oss stimulus saliency (no within-day adaptation)

Decoding accuracy divided into first and second half of trials; Similar results are obtained.

The presentation is a merged format of Fig.4h and Fig.4i.

Using CS-related activity (a,b) or US-related activity (c,d) in the first-half of trials (a,c) and second-half
(b,d). In the violin diagrams red represents the nedian and black the mean. n AMY =203, n_ACC=356
and n_Rep=1000.

Extended.Fig.8. Neuronal modulation.

a.  Wedivided the amygdala neurons into three groups: the first contains neurons that increase their

b.

firing rate (FR) to gaze and valence (61/203, positive betas in Fig.4a); the second group decrease
FR to both gaze and valence (65/203, negative betas in Fig.4a); and the third group increase FR to
one condition and decrease to the other (77/203).

For the first two groups, the decoding accuracy of valence based on gaze (similar analysisasin
Fig.4h for CS-related activity) was significantly higher than chance, indicating that the overall
result reported in the main text is based on both increases and decreasesin FR.

Right: same but for ACC neurons.

In the violin diagrams red represents the median and black the mean.

Amygdala neurons were sorted according to degree of modulation (magnitude of

beta gaze*beta valence; red line), decoding accuracy (mean) and its variance for increasing
group size (namely, 10 with highest modulation, 20 ..., and so forth) wasre-calculated . Thisis
compared to randomly choosing groups of similar size (green inset, notice the linear increase).
The decoding accuracy increases until reaching a group size of 120-130 neurons (see dashed
line), namely the number of neurons that contain the first two groups from (a) - only increasing or
only decreasing FR (but not mixed).

The bottom part shows the proportion of neurons from the two groups. It can be seen that both
groups contribute to the increased accuracy.

These results further support the conclusion that the shared neural mechanisms are not due only
to increased firing rate, as an indication of saliency or alertness.

n_AMY=203.
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Extended.Fig.9. Neurons code for species, but it isnot shared with valence of CS

a

We introduced monkey-intruder blocks (top) in asimilar way to the human-intruder trials
(bottom). The same neurons reported in the main analysis were recorded during the monkey-
monkey interaction as well. Each recording session, on average two (out of 6) monkeys served as
intruders. All the monkeys lived together for several years.

Neurons in the amygdala (n=203), as well asin the ACC (n=356), code for species, namely
differentiate human- from monkey-intruder (mean and SEM). Moreover, neurons differentiate
between NEC-human and monkey-intruder.

In contrast to the findings in Fig.4a, thereis no significant correlation (Pearson’s correlation,
r=0.05,p=0.45, n=203) between beta_species and beta CS valence, strongly arguing against a
correlated-sel ectivity mechanism between species and CS.

Decoding accuracy of CS-valence (n_AMY =203 and n_REP=1000) after training the decoder to
differentiate species, is not different than chance-level and significantly smaller than the decoding
accuracy of CS-valence based on gaze. In the violin red/black represents the median/mean.
Differencesin Heart Rate Variability (HRV) between monkey and NEC trials (as between EC
and NEC trials, asaso shown in Fig.1k). * represents asignificant t-test two-sided, p<0.05, n-
trial=1703/1765/1620 in NEC/EC/Monkey

Despite differencesin HRV (€), the findingsin (d) remain similar when using either only EC or
only NEC trias of the human intruder (n_AMY =203). In the violin red/black represents the
median/mean.

Extended.Fig.10. NEC trials are different than neutral trials

a

b.

We introduced Neutral trials, where a shutter open (CS) is followed by nothing.

The Heart Rate is significantly lower in neutral trials compared to all others types, and
specifically lower than NEC trials.

Insets, Left: deltaHR, same asin Figl,j. ; Right: delta HR in the control days that included
neutral trials, showing the same trend for all types, and no modulation for neutral trials.

Together, this argues that the NEC trials are not salience-free, but rather highly salient in a different
manner than the EC.

n-trial=1703/1765/1620/1352/712 in NEC/EC/M onkey/Reward/Airpuff respectively. *** represents a
significant t-test two-sided, p<e-3. Bar plots represents mean and SEM.
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