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Sub-genomic variation in the gut microbiome associates with host metabolic health 1 
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Abstract 27 

Differences in the presence of even a few genes between otherwise identical bacterial strains 28 

may result in critical phenotypic differences, yet exploring variation at this sub-genomic level 29 

across gut microbiomes is challenging, possibly owing to difficulties in correct metagenomic 30 

read assignment. Here, we devised algorithms that improve the assignment accuracy of 31 

metagenomic reads to reference sequences and systematically identify variability in microbial 32 

sub-genomic regions. We find Sub-Genomic Variation (SGV) to be prevalent in the microbiome 33 

across multiple phyla, and that our method produces SGVs that replicate across distinct human 34 

cohorts from different continents. SGVs are associated with bacterial fitness and their member 35 

genes are enriched for CRISPR-associated and antibiotic producing functions and depleted 36 

from housekeeping genes, suggestive of a role in microbial adaptation. We find 124 novel 37 

associations between SGVs and host disease risk factors, of which 40 replicate in an 38 

independent cohort, highlighting the universality of these associations. Finally, by exploring 39 

genes clustered in the same SGV, we uncover several possible mechanistic links between the 40 

microbiome and its host, as in the case of a 31kbp region in Anaerostipes hadrus encoding a 41 

composite inositol catabolism-butyrate biosynthesis pathway, whose presence is associated 42 

with significantly lower host body weight and metabolic disease risk. Overall, our results uncover 43 

a nascent layer of variability in the microbiome that is associated with microbial adaptation and 44 

host health.  45 

 46 

  47 



Introduction 48 

 49 

Genes that are deleted or duplicated within different members of a species (also termed copy 50 

number variation; CNV), are a phenomenon common across all kingdoms1,2. In humans, CNVs 51 

allowed adaptation to starch consumption by an increase in the copy number of the alpha-52 

amylase gene3, and they are also linked to multiple conditions such as autism spectrum 53 

disorders4, psychiatric disorders5, obesity6, and autoimmune disease7,8. In bacteria, even a 54 

small number of genes can underlie phenotypes such as virulence9,10, antibiotic resistance11, 55 

host metabolic disease12 and even host longevity13, making genetic variation highly important to 56 

both the microbe and its host. 57 

 Microbes in the human intestines share copious genetic material14, resulting in a high 58 

prevalence of CNVs across the gut microbiome15. This variability could be critical to human 59 

pathophysiology, as gut microbes were found to be involved in multiple host processes, such as 60 

fiber metabolism16, bile acid metabolism17, vitamin biosynthesis18 and immune conditioning19, 61 

and are associated with multiple host disorders ranging from obesity and diabetes20,21, through 62 

inflammatory bowel diseases22,23, to macular degeneration24 and autism25. The mechanisms 63 

underlying these associations are often unclear and could perhaps be elucidated through the 64 

examination of CNVs.  65 

 The vast majority of microbiome research to date, however, typically studies the 66 

microbiome through the prism of relative abundance of microbial species, with only a small 67 

number of studies focusing on the functional genetic level. Some studies analyzed the genetic 68 

repertoire of the microbiome21 by mapping metagenomic reads to a collection of microbial genes 69 

(e.g. 26,27). While useful, this approach is limited as it usually analyzes microbial genes 70 

separately from the microbes in which they are expressed, overlooking their genomic context 71 

and membership in species-specific microbial pathways. Taxonomy-aware methods such as 72 

FishTaco28 and HUMAnN229, may supply information on microbial membership of genes, but is 73 



limited in resolution with regards to within-species variation. Recently, Greenblum et al.15 have 74 

performed a systematic characterization of intra-species CNVs across the human microbiome. 75 

Both approaches, however, are limited by the scope of the annotation database used (KEGG26 76 

in the latter case15), and in any case do not account for co-variation of genes encoded in the 77 

same genomic region. Such co-variation is important as it encodes information such as operon 78 

membership, gene regulation, proximal RNA interference and susceptibility for horizontal 79 

transfer that are only evident when analyzing genes in their immediate genomic context.  80 

In this study, we focused on sub-genomic regions in the human microbiome that vary 81 

across different hosts. We aimed to detect segments of varying lengths, potentially containing 82 

multiple genes, that are deleted from certain bacteria in some individuals or present in a variable 83 

number of copies in others. We term this phenomenon “sub-genomic variation” to differentiate it 84 

from CNVs at the level of specific genes without genomic context (such as analyzed by 85 

Greenblum et al.15).  86 

One major difficulty in observing genes in their genomic context stems from the 87 

challenge in correctly assigning metagenomic reads that originate from regions that are similar 88 

between different bacteria. As many sequences are homologous between members of the same 89 

taxonomic clade and others are potentially horizontally transferred between clades14, it is often 90 

challenging to discern regions of high copy number within a genome from regions that are 91 

present in multiple members of the metagenome. To overcome these issues, we devised an 92 

Iterative Coverage-based Read Assignment (ICRA) algorithm that resolves ambiguous read 93 

assignments using information on relative abundances of bacterial members of the microbiome, 94 

sequencing-coverage across their genomes, and sequencing and alignment qualities. We show 95 

that our algorithm correctly assigns reads in complex metagenomic settings. 96 

We utilize our improved read assignment to develop a novel algorithm, SGV-Finder, 97 

allowing us to detect 7479 microbial SGVs in 56 species from 7 microbial phyla in 887 human 98 

microbiome samples20,30, demonstrating that SGVs are widely prevalent in the human 99 



microbiome. We show that these SGVs have distinct genetic functions, are associated with 100 

bacterial growth rates, and are stable within the same person even over long periods of time, 101 

altogether implicating SGVs as drivers of adaptation of a microbiome to a specific host 102 

environment. We demonstrate the potential importance of SGVs to the human host by showing 103 

124 cases in which SGVs are significantly associated with multiple disease risk factors. We 104 

replicate our analysis in the Dutch Lifelines DEEP cohort31,32 and show that SGV positions 105 

replicate in 76% of bacteria present in both cohorts, and that 40 associations with risk factors 106 

also replicate, altogether suggesting that some genomic structural variability is shared between 107 

distinct population, while some is population specific. We further demonstrate that examining 108 

gene clusters in variable regions can reveal potential mechanisms of action, as in the case of an 109 

A. hadrus region associated with multiple risk factors and whose genes code for a microbial 110 

pathway which metabolizes sugar-alcohols to butyrate, a short-chain fatty acid (SCFA) 111 

renowned for its advantageous effects on the human host33–35. Overall, we show that SGVs 112 

represent a nascent layer of information in the human microbiome that is likely to be of high 113 

relevance to human health. 114 

 115 

Results 116 

 117 

Accurate metagenomic read assignment using the ICRA algorithm 118 

 119 

To accurately detect SGVs in the microbiome we sought to obtain a correct assignment of 120 

metagenomic reads to their sequence of origin. Attaining such accurate assignment is 121 

challenging due to the large number of genomic sequences that are shared across different 122 

microbiome members. Here, we analyzed data collected on 887 healthy subjects which includes 123 

microbiome profiling alongside detailed blood glucose measurements over the duration of a 124 

week, anthropometric measurements, blood tests, and medical questionnaires20,30 (Methods). In 125 



these 887 samples, over 15% of the metagenomic reads were assigned ambiguously to multiple 126 

references upon mapping to a reference genome database of 3953 bacterial genomes36 (Fig. 127 

S1A, Methods). 128 

 To address this problem, we devised an Iterative Coverage-based Read Assignment 129 

(ICRA) algorithm (Fig. 1A, Methods). In its first step, ICRA uses read assignments and mapping 130 

qualities to calculate the sequencing coverage depth along microbial entities (e.g., bacterial 131 

genomes or genes), and then uses this sequencing coverage to estimate microbial relative 132 

abundances, while demanding sufficient coverage over entities that are to be considered 133 

present in a sample (Methods). In the next step, ICRA reassigns reads using the updated 134 

relative abundances, and repeats the process to convergence. The use of sequencing coverage 135 

makes our method robust to genomic regions with extremely high or low coverage that may 136 

arise from misassemblies, homology to other microbes, or phage activation. Such regions could 137 

otherwise bias the estimated relative abundances, potentially even assigning abundances to 138 

genomic entities that are not present in the sample, but contain a region homologous to other 139 

entities present in reference databases. 140 

 To test the performance of ICRA, we validated the two key components of the algorithm: 141 

its ability to resolve ambiguous read assignments, and the accuracy of the relative abundances 142 

that it assigns to each bacterial species. To this end, we analyzed the assignment of reads from 143 

simulated metagenomes provided by the CAMI challenge dataset along with their correct read 144 

assignments37. The CAMI dataset contains three sets of samples ranging from 30 to 450 145 

genomes that account for varying microbiome complexities. We mapped each of these samples 146 

to a reference of 482 bacteria derived from this dataset and compared the fraction of 147 

metagenomic reads incorrectly or ambiguously assigned to reference genomes between a 148 

baseline setting (uncorrected read assignment; Methods), the output of our algorithm, and two 149 

state-of-the-art tools - Kraken38 and MetaPhyler39. Notably, we found that ICRA outperforms the 150 



alternatives in assigning reads to reference genomes in both the species and sub-species 151 

taxonomic levels in all complexity levels available from CAMI (p<0.01; Fig. 1B, S1B,C) 152 

As relative abundances are utilized by ICRA for the resolution of ambiguous read 153 

assignments, we further validated that ICRA-derived relative abundances are comparable to 154 

those derived from state-of-the-art tools created and optimized for this task. We therefore 155 

compared microbial relative abundances produced by ICRA, to those derived from the popular 156 

tools MetaPhlAn240, which uses marker genes to estimate abundances, and Bracken41, which 157 

performs Bayesian reestimation of abundances derived with Kraken38. To this end, and to best 158 

simulate the genomic phenomena of bacteria growing naturally (rather than sampled in silico), 159 

we obtained seven different bacterial strains, grew them to stationary phase, and extracted and 160 

sequenced DNA from each strain separately (Methods). We then created 100 samples in silico 161 

by randomly mixing reads sequenced from each of the seven strains at different relative 162 

abundances, and applied MetaPhlAn2, Bracken and ICRA to these samples (Methods). We 163 

found that while the Bray-Curtis dissimilarities between the relative abundances estimated by 164 

these tools and the true relative abundances were lowest in Bracken (Fig. 1C, inset), followed 165 

by ICRA and MetaPhlAn2, the abundances estimated by all three tools were comparable and 166 

highly correlated with the true abundances (R2 > 0.93 for each microbe across all samples, 167 

p<10-10; Fig. 1C, S2).   168 

 169 

Sub-genomic variation is highly prevalent in the human microbiome 170 

 171 

We next sought to systematically characterize the landscape of sub-genomic variation across 172 

the healthy human microbiome. To this end, we developed SGV-Finder, which we ran on ICRA-173 

corrected read assignments of 887 metagenomic samples20,30 to a reference database of 3953 174 

representative microbial genomes derived from progenomes36 (Methods). SGV-Finder analyzes 175 

coverage-depth across all microbial genomes in all samples by dividing each genome to 1000 176 



basepair bins and counting the number of reads mapped to each bin. To ensure proper 177 

statistical support for copy number analyses, we discard genomes in samples whose median 178 

bin coverage is lower than 10 reads (corresponding to a genome coverage of 1x, with ten 100bp 179 

reads in each 1kbp bin; Methods), and microbial genomes present in less than 75 subjects. The 180 

coverage depth of each genome in a given sample is then standardized by subtracting the 181 

mean sample coverage and dividing by its standard deviation (Methods).  182 

For detecting SGVs, we further differentiate between two SGV types. Deletion-SGVs are 183 

sub-genomic areas that are deleted in enough subjects yet are present in others, and are 184 

detected by searching for bins that are deleted in 25-75% of samples, with the read coverage 185 

cutoff for deleted bins selected according to the distribution of read coverages (Methods). 186 

Variable-SGVs are sub-genomic areas which have highly variable coverage across samples, 187 

and are detected by fitting a beta-prime distribution on the standardized coverage of all samples 188 

in a single bin, for bins that are not deleted in more than 5% of samples, and selecting bins with 189 

abundance higher than 95% of values in the fitted distribution. In both variable- and deletion- 190 

SGVs, detected bins are subsequently united based on cooccurrence (deletion-SGVs) or 191 

correlation (variable-SGVs) (Methods). An online metagenome explorer for all SGVs and the 192 

genes they encompass is available at http://genie.weizmann.ac.il/SGV/ (Fig. S3). 193 

Overall, we detected 2423 variable-SGVs and 5056 deletion-SGVs in 56 bacteria found 194 

with sufficient coverage in at least 75 out of 887 samples (Fig. 2A). Sub-genomic variability was 195 

detected in all 6 bacterial phyla and one archaeal phylum, with the number of variable or 196 

deletion SGVs ranging from 5 to 241 SGVs per species in average sizes ranging between 1.4 197 

and 18.6 kbp per species. Variable-SGVs make up between 0.3% and 8.4% of the microbial 198 

genome while deletion SGVs exist in 5.0% to 26.9% of the genome (Fig. 2A). This apparent 199 

disparity in size may suggest inherent differences in the formation of the two types of SGVs. Out 200 

of 887 samples, 769 carried deletion- and variable-SGVs for Blautia wexlerae, 727 subjects had 201 

104 deletion-SGVs and 33 variable-SGVs in A. hadrus, and 668 carried deletion- and variable-202 



SGVs for Bacteroides uniformis. Notably, we detected SGVs in all microbial strains that had 203 

sufficient coverage, and in every subject analyzed, demonstrating the ubiquity of such 204 

variations.  205 

  206 

SGV is prevalent across distinct populations and continents 207 

 208 

To test the universality of these regions and reinforce their biological relevance, we applied 209 

ICRA and SGV-Finder independently to 1020 out of 1135 samples from the Dutch Lifelines 210 

DEEP cohort31,32 which had sufficient sequencing depth (Methods). We found that in 47 out of 211 

56 bacteria present in both cohorts, an average of 72.9% of variable-SGVs (0% to 99.1%) and 212 

78.3% of deletion-SGVs (35.3% to 94.5%) overlapped with SGVs found in our cohort (one-sided 213 

hypergeometric p<10-10; Fig. 2B,C). Notably, for 75% of microbes, more than 70% of the regions 214 

were replicated despite the different populations examined with different genetic background, 215 

cultural setting, and dietary preferences (Fig. 2C).  216 

 Some bacteria, such as Ruminococcus bicirculanus, showed very low concordance 217 

between the two cohorts (27% overlap over 10 variable-SGV regions totalling 23kbp; Fig. 2B,C), 218 

suggestive of geographical confinement of the variability, or a strong influence of population-219 

specific environmental factors. Conversely, other bacteria, such as Parabacteroides merdae, 220 

showed high concordance (95% of 46 variable-SGVs totalling 281 kbp; Fig. 2B,C). Given the 221 

different methods, centers, and staff involved in assembling the two cohorts, the replication of 222 

the variable regions suggest that the variability detected here is not artifact but rather a 223 

widespread phenomena in the gut microbiome across distinct geographical regions. 224 

 225 

SGVs are person specific and are shared with habitat 226 

 227 



We next examined the variability of SGVs across people by correlating the abundance of 228 

variable- and deletion-SGVs between different subjects. We found that different individuals 229 

mostly have different SGVs, with a median correlation of 0.02 and 0 for variable- and deletion-230 

SGVs, respectively (Fig. 2D,E). In contrast, SGVs were highly stable within the same individuals 231 

even over time periods exceeding one year, with median within-person correlations of 0.89 and 232 

0.66 for variable- and deletion-SGVs, respectively (Spearman correlation p< 10-20 for both; Fig. 233 

2D,E; Methods).  234 

To estimate the effect of the environment and host genetics on SGVs, we analyzed data 235 

from cohabiting individuals and for pairs of parents-children / siblings who do not live together42 236 

(Methods). We found that cohabiting individuals and parent-children / sibling pairs share both 237 

deletion- and variable-SGVs to a significantly higher degree as compared to two randomly 238 

chosen subjects from our cohort (average Spearman ⍴ of 0.45 and 0.16 for variable- and 239 

deletion-SGVs, respectively; p<10-10 for both; Fig. 2D,E). Interestingly, siblings / parents-240 

children have a significantly less similar SGV profile in their microbiome as compared to 241 

cohabiting subjects (p<0.001 for both variable- and deletion-SGVs, Fig. 2D,E). This result is 242 

conservative, as such similarity in the SGV profiles of genetically-related individuals cannot be 243 

efficiently decoupled from confounders such as traditional food preferences or instances in 244 

which these individuals share meals or experiences that may affect their microbiome as part of 245 

their family get-togethers. These results replicate and strengthen our previous findings42 246 

showing that environment dominate over genetics in determining microbiome composition. 247 

 248 

Microbiome SGVs are potentially involved in microbial adaptation and function 249 

 250 

We sought to systematically characterize the functional landscape of SGV regions by examining 251 

genetic functions that are enriched or depleted from SGVs. We annotated gene function across 252 



variable- and deletion-SGVs, as well as in regions of microbial genomes that were covered 253 

consistently in at least 98% samples that contained the bacteria (hereinafter termed ‘conserved’ 254 

regions; Methods). We then performed enrichment analysis to seek for KEGG modules that 255 

were over- and under-represented in these regions (Methods). Using the KEGG BRITE 256 

hierarchy, we found that modules categorized into ‘housekeeping’ functions such as nucleotide 257 

and amino acid metabolism or carbohydrate and lipid metabolism were significantly depleted 258 

from variable- (p<10-5 for both groups; Fig. 2F; Table S1) and deletion- (p<10-5; Fig. 2G; Table 259 

S1) SGVs and significantly enriched in conserved regions (p<10-5; Fig. 2H; Table S1). 260 

Conversely, modules classified as ABC-2 type- and other transport systems were significantly 261 

enriched in SGVs (p<10-5), possibly driven by the KEGG module pertaining to putative ABC 262 

transporters (p<10-5; Fig. 2F). In addition, SGVs were enriched with the type-IV secretion 263 

system (T4SS) KEGG module (p<10-5; Fig. 2F,G) suggesting that bacterial conjugation 264 

systems, to which the T4SS is related, are strong drivers of variability. These systems were 265 

strongly depleted from conserved regions (p<10-5; Fig. 2H) suggesting that they are much more 266 

prevalent in the accessory genome compared to the core genome, and once more implicating 267 

SGVs as tools of adaptation and speciation. 268 

 SGVs were additionally enriched with genes to which no function was assigned by 269 

KEGG (p<10-5; Fig. 2F,G marked by a red star). To overcome this obstacle, we performed 270 

enrichment analysis on word categories from the Ensembl functional annotation43 of 167,389 271 

genes in the 56 bacteria analyzed (Methods). Bacteriophage- and plasmid-related genes, genes 272 

associated with transposable elements, and genes encoding other horizontal gene transfer 273 

(HGT) mechanisms were strongly enriched in variable- (FDR-corrected q<10-4) and deletion-274 

SGVs (q<10-4) and strongly depleted from conserved regions (q<10-4), suggesting an important 275 

role for these mechanisms in the formation of these regions. Analysis of Pfam44 motifs 276 

pertaining to HGT mechanisms (Methods) corroborated this finding and showed an enrichment 277 

of phage-, prophage-, transposon and conjugated-transposon-related motifs in variable- and 278 



deletion-SGVs and their depletion from conserved regions (q<10-4).  In addition, variable-SGVs 279 

were enriched with antibiotic-producing genes (q<0.005) and deletion-SGVs were enriched with 280 

CRISPR-associated genes (q<0.05) suggesting that these regions function as attainable 281 

microbial tools for interacting with their environment. This analysis also demonstrates how SGV-282 

Finder, which operates directly at the genomic level, can accommodate analyses with multiple 283 

annotation datasets. 284 

To further characterize the potential contribution of SGVs to microbial niche adaptation, 285 

we searched for regions that are associated with fitness of their harboring microbe. As a proxy 286 

for fitness, we calculated bacterial growth rates of 21 bacterial strains with sufficient coverage 287 

and available complete genomes using a method we previously developed that estimates 288 

growth through differences in DNA copy number at the origins and terminus locations created 289 

during DNA replication45. We found 44 highly significant associations (surpassing Bonferroni 290 

correction cutoff of p<3x10-5; Fig. 2I; Table S2) of these growth rates with deletion-SGVs within 291 

the same bacteria (Methods). These significant associations span a total of 8 distinct bacteria, 292 

suggesting that certain SGVs may be important for bacterial adaptation and fitness. 293 

To better probe the mechanisms potentially underlying this adaptation, we systematically 294 

examined the genetic content of the deletion-SGVs that were significantly associated with 295 

growth, and found a similar pattern to that seen when analyzing all SGVs, with a depletion of 296 

housekeeping functions and enrichment for genes involved with CRISPR-, transposon- and 297 

HGT-associated genes (q<0.05; gene categories based analysis; Methods), as well as a 298 

significant enrichment for genes with unknown functions (p<10-5, Fig. S4).  299 

We further examined two such regions, which were significantly positively and negatively 300 

associated (p<10-10 for both) with the growth of the same harboring species (Eubacterium 301 

eligens; Fig. S5A-D). Notably, the SGV whose presence is negatively associated with the 302 

growth dynamics of the microbial host (Fig. S5A,B) contain genes for flagellin, flagellar hook-303 

associated protein and lipopolysaccharide (LPS) choline phosphotransferase among a few 304 



metabolic genes and response regulators (Table S3). Flagellin and the flagellar hook protein 305 

were shown to elicit strong immune responses in mammals46,47, possibly inhibiting bacterial 306 

growth. LPS choline phosphotransferase attaches choline phosphate to the bacterial LPS 307 

molecule, which was shown to increase C-reactive protein-mediated innate immune clearing48, 308 

again suggesting possible inhibition of microbial growth. Thus, increased growth rates in 309 

bacteria missing these subgenomic regions may point to loss-of-function adaptation of these 310 

bacteria to the host gut and its immune system. In contrast, the SGVs whose presence was 311 

positively associated with their microbial host growth dynamics (Fig. S5C,D) contained mostly 312 

hypothetical coding genes, but also a gene for antibiotic transport system ATP-binding protein, 313 

whose presence could have a selective advantage in the human host by conferring resistance 314 

to antibiotics49 (Table S3). These results demonstrate the ability of our methodology to suggest 315 

underlying mechanisms using the genomic context of SGVs. 316 

 Overall, our results show that SGVs associate with common mechanisms of conjugation, 317 

transposition and phage lysogeny, and may thus be powerful tools of niche adaptation. The 318 

acquisition of bulk genetic material not present in a microbial genome, and changes in copy 319 

number of regions that are, may be much stronger drivers of adaptation than rarely occurring 320 

point mutations. Microbial evolution in densely populated ecosystems such as the human 321 

microbiome may thus be driven strongly by SGVs, which allow incorporation of functional 322 

genetic material conferring higher fitness, and affecting both microbes and host. 323 

 324 

Microbiome subgenomic variation is associated with host disease risk factors 325 

 326 

To explore the potential relevance of microbiome SGVs to human health, we used data 327 

collected on 887 subjects which includes microbiome profiling alongside detailed blood glucose 328 

measurements over the duration of a week, anthropometric measurements, blood tests, and 329 

medical questionnaires20,30. We associated the abundance of variable-SGVs and the presence 330 



or absence of deletion-SGVs with multiple metrics of health and metabolic risk factors: mean 331 

arterial blood pressure (MAP); total and HDL cholesterol; waist circumference; body weight; 332 

body mass index (BMI); median glucose levels over the measured week; percent glycated 333 

hemoglobin (HbA1C%); and age. We found 81 (Fig. 3A, S6) and 43 (Fig. 3B) significant 334 

associations at a false discovery rate (FDR)50 of 0.1 for variable- and deletion-SGVs, 335 

respectively, potentially demonstrating the importance of SGVs not only to the microbe, but also 336 

to the host. 337 

 Several of the associations of risk factors and SGVs found in this study are in line with 338 

the associations of the harboring microbe. For example, we found five deletion-SGVs in A. 339 

hadrus to be associated with lower BMI, body weight and waist circumference, and with higher 340 

HDL cholesterol levels (Fig. 3B), and we indeed found this bacteria to be negatively correlated 341 

with body weight (p<10-5), waist circumference (p<10-5), median blood glucose levels (p<10-4) 342 

and BMI (p<0.005) and positively correlated with HDL cholesterol levels (p<10-7). Additionally, 343 

this bacteria was previously shown to increase in abundance following a very low calorie diet51. 344 

Despite being both correlated with similar risk factors, the association of the highlighted SGV 345 

with risk factors allows us to pinpoint specific regions and mechanism that may underlie the 346 

association. 347 

In some cases, we potentially expose novel associations between the microbiome and 348 

disease as some associations between host phenotypes and SGVs do not take the same 349 

direction as the associations of the same phenotypes with the abundances of the harboring 350 

bacteria. For example, three variable-SGVs in Ruminococcus torques were negatively 351 

associated with multiple risk factors for the metabolic syndrome (Fig. 3A) but we found R. 352 

torques abundance to be positively associated with body weight (p<10-3) and BMI (p<0.05), and 353 

it was also positively associated with the metabolic syndrome in a different cohort52. Similarly, 354 

several variable-SGVs in Eubacterium rectale were positively associated with age (Fig. 3A), 355 

while the relative abundances of E. rectale were negatively associated with it (p<10-6). A 2-kbp 356 



deletion-SGV in Faecalibacterium cf. prausnitzii KLE1255 was positively associated with the 357 

weekly median glucose level (Fig. 3B), and even though F. prausnitzii was not significantly 358 

associated with median blood glucose levels in our cohort, two independent studies found it to 359 

be negatively associated with type II diabetes mellitus, a disease for which blood glucose levels 360 

are a major risk factor21,53. These seemingly paradoxical associations between SGVs and 361 

disease-risk factors further suggest that SGVs represent a different layer of information 362 

compared to the taxonomic level, one which may assist in obtaining mechanistic insights into 363 

the etiology of gut microbiota-associated metabolic disease.  364 

 365 

Disease risk-associated SGVs replicate in the Dutch Lifelines DEEP cohort 366 

 367 

To test the replicability of these associations, we ran ICRA on read assignments from the 368 

Lifelines DEEP cohort, and used the corrected assignments to calculate the coverage and 369 

presence/absence of variable- and deletion-SGVs as defined from the 887-person cohort. We 370 

then calculated the association of these regions with similar host disease risk factors measured 371 

in the Lifelines DEEP cohort, and compared those to the associations with metabolic risk factors 372 

found in our cohort (Methods). Notably, despite presumed inter-cohort differences in genetics, 373 

dietary preferences and lifestyles, potentially also leading to differences in the etiology of 374 

metabolic disease between the two cohorts, more than a third (40 out of 117) of the 375 

associations found in our cohort in microbes also present in the Lifelines cohort were replicated, 376 

while only 4 out of the remaining 77 were significantly associated in the opposite direction (Fig. 377 

3A,B; Fig. S6).  378 

 379 

  380 



Disease risk-associated SGVs facilitate an investigation of putative mechanisms 381 

 382 

As in the case of bacterial adaptation, examining the genetic content of SGVs facilitated a 383 

potentially mechanistic view into the observed phenomena, and we therefore next looked into 384 

the functions encoded in disease risk-associated SGVs. While many SGVs harbor genes that 385 

are of unknown function, we did observe several intriguing functions coded in SGVs associated 386 

with disease risk factors. For example, the existence of a 11-kbp deletion-SGV from E. rectale is 387 

associated with higher HbA1C% (p<10-4; total 630 subjects, 377 retaining; Fig. 3C). A close 388 

examination of this region reveals a class 1 CRISPR-Cas system (Fig. 3D). While it is unclear 389 

how a CRISPR system could be directly related to host disease risk factor, we note the 390 

existence of additional three genes of unknown function in this region. Interestingly, subjects 391 

with E. rectale harboring this region had a higher abundance of the microbe (Mann-Whitney U 392 

p<0.02), which we had previously shown to increase in abundance following a diet designed to 393 

induce high postprandial glucose responses20. A 6-kbp variable-SGV from R. torques is 394 

inversely associated with weekly median glucose levels (R=-0.237, p<10-5; Fig. 3E) and features 395 

several genes encoding phage-associated proteins and additional genes of unknown function, 396 

suggesting that this SGV is a prophage, and that it may carry additional functionality (Fig. 3F). 397 

These genes of unknown function are therefore putatively related to host glucose metabolism, 398 

demonstrating the utility of our methods for generating mechanistic hypotheses. 399 

 Other intriguing examples for putative mechanisms include a 4-kb deletion-SGV in A. 400 

hadrus that is significantly associated with lower BMI (median lower by 1.15 kg/m2 in subjects 401 

retaining the region; p<10-4; total n=681, 405 retaining; Fig. S7A) and body weight (median 402 

lower by 3.5 kg; p<10-4). This SGV contains genes coding for the enzymes ADC synthase (EC 403 

2.6.1.85) and 4-amino-4-deoxychorismate lyase (EC 4.1.3.38), both instrumental in folate 404 

biosynthesis in A. hadrus (Fig. S7B, C). An 18-kb deletion-SGV in Roseburia intestinalis that is 405 

significantly associated with total cholesterol (median lower by 12.5mmHg for subjects retaining 406 



the region; p<10-4; n=262, 68 retaining; Fig. S7D) contained multiple beta- and other 407 

glucosidases (Fig. S7E), potentially suggesting microbial adaptation to a fiber-rich host diet. An 408 

8-kb deletion-SGV in Coprococcus comes which is significantly associated with BMI (median 409 

higher by 2.4 kg/m2 for subjects retaining this region; n=450; 292 retaining; p<10-5; Fig. S7F) 410 

and body weight (median higher by 5 kg; p<10-4) contains several ABC transporters with 411 

undetermined substrates of possible future interest (Fig. S7G).  412 

 Notably, all of the above regions of interest were also detected as SGVs in the Lifelines 413 

DEEP cohort (Fig. S8) and replicate the patterns of deletion or variation across the region that 414 

were detected in our cohort.  415 

 416 

Carbohydrate metabolism and SCFA biosynthesis gene clusters encoded in a disease 417 

risk-associated region 418 

 419 

As one particularly intriguing example, a 31-kbp deletion-SGV in A. hadrus was significantly 420 

associated with lower body weight (median 6kg lower for subjects retaining the region; p<10-6; 421 

n=681, 468 retaining; Fig. 4A), waist circumference (median lower by 4 cm; p<10-4; Fig. S9A) 422 

BMI (median lower by 1.17 kg/m2; p<0.001; Fig. S9B), and higher HDL cholesterol (median 423 

higher by 5.7 mg/dL; p<10-4; Fig. S9C), and was well annotated, allowing us to speculate about 424 

its possible role in the microbiome, and demonstrating the potential of SGV-finder detected 425 

regions to expose potential underlying mechanisms. 426 

 This genomic region encodes two full metabolic modules, seven sugar transporters and 427 

two transcriptional regulators, among several unrelated genes (Fig. 4B). Of the two metabolic 428 

modules, one performs inositol catabolism54 metabolizing myo-inositol or D-chiro inositol to (a) 429 

glycerone phosphate, a precursor for glyceraldehyde-3-phosphate, a constituent of the 430 

Embden–Meyerhof–Parnas glycolysis pathway26; and (b) 3-oxopropanoate, a precursor for 431 

acetyl-CoA. The second metabolic module encoded in this SGV metabolizes 3-432 



hydroxybutanoyl-CoA to butyrate, a short-chain fatty acid (SCFA), while oxidizing an electron-433 

transferring flavoprotein encoded in the same SGV. The two pathways are connected through a 434 

series of reactions encoded elsewhere in the A. hadrus genome (Fig. 4C, Table S4). Of the 435 

sugar transporters, one is specific to the sugar alcohol sorbitol and six were not assigned a 436 

specific target.  437 

Combining the information regarding the two metabolic modules and the glucose 438 

transporters in this SGV, we hypothesize that this region is unifunctional, providing the 439 

bacterium with the capability to ferment sugar alcohol such as inositol to SCFAs in an 440 

energetically-favorable procedure. The combined effect of the two metabolic pathways on the 441 

energy metabolism of A. hadrus is positive, earning a net gain of 2 ATP- and 2 NADH-442 

equivalent molecules, where the myo-inositol catabolism module combined with glycolysis and 443 

acetyl-CoA synthesis have a positive energetic effect and the butyrate synthesis module 444 

consumes energy for butyrate production.  445 

This 31-kbp deletion-SGV in A. hadrus was replicated with the Dutch cohort (Fig. S8), 446 

and so were several of its association with host phenotypes: Dutch individuals harboring the 447 

region exhibiting lower BMI (median lower by 0.9kg/m2 for individuals retaining the region; 448 

p<0.005; Fig. S9D), body weight (median lower by 4kg.; n=797, 547 retaining; p<0.01), and 449 

waist-to-hip ratio (median lower by 0.017; p<0.001) potentially pointing to a generalized 450 

mechanistic association between SGV and disease-risk. 451 

 In order to study the metabolic context of this adaptation in a broader ecological context, 452 

we applied mimosa55 to obtain the metabolic potential of the metagenomes of different subjects 453 

and compared the differences between the community metabolic potential (CMP) of compounds 454 

in subjects for whom the SGV is deleted and for subjects in which it is retained. We found that 455 

free (unphosphorylated) sorbose, mannitol, galactitol and sorbitol are decreased in individuals 456 

retaining the region (FDR adjusted two-sided Mann-Whitney U q<10-4, q<0.01, q<0.05 and 457 

q<0.1, respectively; Table S5), whereas sorbose-1-phosphate, mannitol-1-phosphate and 458 



sorbitol-6-phosphate are increased (q<10-4, q<0.01 and q<0.05, respectively; Table S5), 459 

altogether demonstrating an association between adaptation in a specific bacteria to the 460 

metabolic state of the microbiome, in the context of metabolic disease risk. As phosphorylation 461 

is used in the phosphotransferase system to prevent sugar diffusion out of the cell, these 462 

predictions support our observed increase in sugar-alcohol transport. Thus, we hypothesize that 463 

the contribution of this SGV to the overall metabolic function of the microbiome is such that it 464 

increases SCFA production from sugars and consequently exerts beneficial effects on the host.  465 

   466 

Discussion 467 

 468 

In this work we uncover a new facet of host-microbiome interactions in the context of health and 469 

risk of disease. We present ICRA, a metagenomic read assignment algorithm, which we 470 

validate by showing superior read-assignment and comparable bacterial abundance estimation 471 

with respect to state-of-the-art algorithms. We also present SGV-Finder, a genomic coverage-472 

based algorithm for the detection of SGVs across metagenomic samples. Using this algorithm, 473 

we show that SGVs are highly abundant in the human microbiome, and are largely conserved 474 

across cohorts that differ in their genetic, cultural and dietary backgrounds. SGVs are host-475 

specific, conserved in the same individual over time and and are more conserved in cohabiting 476 

vs. genetically-related individuals. We found that SGVs harbor genes of distinct functions, and 477 

are associated with bacterial growth rates, indicating a potential utility in bacterial adaptation. 478 

Finally, we found that SGVs are associated with numerous host disease risk-factors, many of 479 

which replicated across two independent cohorts, and that they facilitate exploration of genes 480 

varying together, exposing a new layer of putative mechanistic information regarding host-481 

microbiome interactions, which we highlight by the discovery of a potentially butyrate-producing 482 

SGV in A. hadrus. 483 



 To our knowledge, ICRA is the first metagenomic read assignment algorithm to 484 

introduce the demand that for a genetic element, whether bacteria, genomic region, or gene, to 485 

be considered present in the sample, its genomic sequence should be sufficiently covered by 486 

metagenomic reads. This precondition increases robustness to shared genomic regions, 487 

assembly errors, and phage activation. We note that a challenging problem which ICRA does 488 

not address is the lack of accurate reference genomes for many of the microbial members of the 489 

gut microbiome. De novo long-read approaches to generate reference genomes from 490 

metagenomes such as Moleculo56 and the 10x platform57 could prove useful in this context. 491 

Combined with ICRA and SGV-Finder these approaches would successfully delineate additional 492 

interpersonal differences in sub-genomic regions of the microbiome.  493 

Using SGV-Finder, we show that SGVs are highly abundant in the human microbiome, 494 

with variable regions present in all 56 microbes from 7 different microbial phyla which had 495 

sufficient coverage, 46 of which replicate to a high degree in an independent cohort. Following a 496 

functional analysis of genes in those regions, we hypothesize that the main forces driving SGVs 497 

are bacteriophage infections and microbial mechanisms of conjugation and transposable 498 

elements, as evident from the high abundance of genes performing such functions in SGV 499 

regions. However, many genes found in SGVs, such as antibiotic biosynthesis genes, can 500 

possibly be characterized as passengers to this process of transposition and may have 501 

important roles in the adaptation of microbes to their ecological niche and in communication with 502 

the host. We show many SGVs are strongly linked to microbial growth, a proxy for fitness, 503 

demonstrating the potential functional importance of SGVs in their harboring microbe.  504 

Our results show that SGVs also associate with host disease risk. We found more than 505 

120 significant associations between SGVs and multiple metrics of metabolic disease, 506 

highlighting their potential relevance to host health. Notably, more than one third of the 507 

associations testable in an independent cohort were replicated, demonstrating the conserved 508 

association of these SGVs to disease risk. Many of these regions demonstrate associations with 509 



host health that are in opposite direction to the associations found between their harboring 510 

microbe and disease risk, indicating that this is a complimentary layer of information to that of 511 

taxonomical abundances.  512 

We have closely examined these regions and the genes that they harbor, and 513 

demonstrated the utility of such examination with several SGVs whose genes were well 514 

annotated, including a 31-kbp SGV that was strongly associated with lower metabolic risk 515 

across multiple biomarkers and which we also found to encode a bacterial pathway pertaining to 516 

the transport and fermentation of sugar alcohols to the short chain fatty acid butyrate. SCFAs, 517 

and specifically butyrate, have been previously shown to nourish host intestinal cells58,59 and 518 

mitigate inflammatory disease60. In mice, SCFAs were shown to improve insulin sensitivity and 519 

increase energy expenditure61, suggesting that the inclusion of this SGV in the bacterial genome 520 

and thereby the potential boosting of SCFA production may be advantageous for both the 521 

bacteria and host metabolism. We hypothesize that by possessing this SGV, bacteria 522 

demonstrate increased symbiosis with the host, as fermenting sugar alcohols to butyrate 523 

benefits the microbe by producing additional energy and benefits the host with the 524 

advantageous effects of intestinal butyrate.  525 

Despite the visible links between this SGV and host metabolism, and between this SGV 526 

and bacterial metabolism, we do not know whether the SGV leads to the observed lean 527 

phenotype or whether the diet, lifestyle and other factors in the host lead to the incorporation or 528 

loss of this SGV. While further research is needed to fully understand the links between host 529 

diet and lifestyle, the microbiome and metabolic disease, this SGV demonstrates the wealth of 530 

mechanistic knowledge obtained through examining genes with variable copy number in their 531 

genomic context and along with neighboring variable genes. This type of analysis, connecting 532 

genomic variation with genetic function, could be instrumental for raising multiple mechanistic 533 

hypotheses about the pathophysiological role of the microbiome. We therefore made our 534 



algorithms available for the scientific community and developed an online metagenomic SGV 535 

explorer that will enable further exploration (all available at http://genie.weizmann.ac.il/SGV/). 536 

The current implementation of both ICRA and SGV-Finder depends on a genomic 537 

reference dataset, which are typically sufficient for human microbiome analyses. Even so, we 538 

note that this is a practical rather than a conceptual approach, as the algorithms are capable of 539 

running on any type of database of genetic elements. Future work could validate and use these 540 

methods following metagenome assembly, ORF prediction and functional prediction stages, 541 

which would allow their application to different host-associated environments and different 542 

realms of microbiology and cellular biology, such as to soil or extreme microbiomes. 543 

Our methodology is highly adaptable to any metagenomic scenario and could be used, 544 

for example, to detect SGVs in the soil microbiome and associate them with the presence of 545 

specific nutrients and metabolites to detect candidate biosynthetic gene clusters. Taken 546 

together, our study exposes a new facet of the microbiome that brings us closer to 547 

mechanistically understanding links between microbe and host.  548 
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Methods 722 

 723 

Reference database preprocessing 724 

We downloaded the EMBL progenomes36 5306 representatives dataset and used dRep62 to 725 

calculate distances between genomes. Next, we applied ward hierarchical clustering with a 726 

Euclidean distance metric to the dRep distance matrix, calculated a dendrogram and retrieved 727 

the cut tree at a height of 0.15 (corresponding to approximately 15% dissimilarity in genome 728 

sequence) resulting in 3953 clusters. As a representative species for each cluster we chose the 729 

genome with the minimal distance to all other genomes in the cluster. In clusters with only two 730 

members, we chose one randomly. Database taxa and assembly accession numbers are listed 731 

in Table S6. 732 

 733 

Metagenomic samples - Israeli cohort 734 

We obtained metagenomic samples from two studies20,30 (accession numbers ENA: 735 

PRJEB11532, ENA: PRJEB17643). In the latter study30, only baseline samples were used 736 

(before the intervention took place). 737 

 738 

Gut microbiome analysis 739 

To prevent bias generated by analyzing single- and paired-end sequenced samples together, 740 

we took the first end of all samples, and trimmed each read to a maximal length of 75bp (100bp 741 

for Lifelines DEEP cohort). We filtered metagenomic reads containing Illumina adapters, filtered 742 

low quality reads and trimmed low quality read edges. We detected host DNA by mapping with 743 

GEM50 to the Human genome with inclusive parameters, and removed those reads. We 744 

randomly subsampled all samples to 10M reads, and removed samples with less than 10M 745 

reads from subsequent analyses.  746 



For MetaPhlAn2 comparisons, we obtained relative abundances (RA) from metagenomic 747 

sequencing via MetaPhlAn240 with default parameters. For Kraken38 comparisons, we built a 748 

custom Kraken database using our preprocessed database and subsequently classified with 749 

default parameters and generated a Kraken report. For Bracken41 abundance estimation, we 750 

generated a Bracken-database file using bracken-build on the above Kraken database with a 751 

kmer length of 31 and read length of 100bp and used it to estimate abundance using the 752 

aforementioned Kraken report. 753 

 754 

ICRA - Iterative Coverage-based Read Assignment algorithm 755 

We devised an iterative read assignment algorithm which uses read assignments and 756 

sequencing qualities to calculate the sequencing coverage depth along genomic elements (i.e., 757 

bacterial genomes or gene sequences) in the microbiome. Sequencing coverage is then used to 758 

both qualitatively assess the presence or absence of each microbe by demanding a minimum 759 

coverage across each genomic element, as well as to quantitatively estimate the relative 760 

abundance of each microbe disregarding outlier genomic positions where extremely high or low 761 

coverage exists. Microbial relative abundances are subsequently used to estimate read 762 

assignments, repeating the process to convergence. 763 

For a more formal description of our algorithm, let 𝑖	 = 	1,2, . . . , 𝑅 be the index of 764 

metagenomic reads in a sample; let 𝑗	 = 	1,2, . . . , 𝐺 be the index of genomic elements in a 765 

database of such elements; and 𝑝(𝑖, 𝑗), 	= 	𝑝(𝑖, 𝑗)1, 𝑝(𝑖, 𝑗)2, … , 𝑝(𝑖, 𝑗).(/,0) be all the possible 766 

alignment positions for read i in genomic element j (N(i,j) is the total number of possible 767 

alignments of i to element j, in most cases only one) such that if metagenomic read i is assigned 768 

to position 𝑝(𝑖, 𝑗),, it spans an alignment from 𝑝(𝑖, 𝑗), to approximately 𝑝(𝑖, 𝑗), 	+	𝜌/, where 𝜌/ is 769 

the length of read i. 770 



Our goal is, therefore to find, for each i, j and k, 𝜆/,0,,, an indicator variable for the origin 771 

of read i: 772 

𝜆/,0,, = 1	𝑖𝑓𝑓	𝑟𝑒𝑎𝑑	𝑖	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑔𝑒𝑛𝑜𝑚𝑖𝑐	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗	𝑖𝑛	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑝(𝑖, 𝑗),	773 
To approximate 𝜆/,0,,, we calculate, for each read the probability 𝛿/,0,, that read i 774 

originated from the genomic element j at position 𝑝(𝑖, 𝑗),, as: 775 

𝛿/,0,, =
𝜋0𝜃0𝑞/,0,,

∑ 𝜋F𝜃F𝑞/,F,GF,G
	776 

Where: 777 

● 𝜋0 = 𝑓({𝛿/,0,,	∀𝑖, 𝑘}) 778 

𝜋0 is the estimated relative abundance of the genomic element j. In the initial iteration of 779 

the algorithm, 𝜋0 is calculated by counting all reads mapped to genomic element j and 780 

then dividing the result by the total number of reads. Reads mapped to multiple genomic 781 

elements are initially distributed according to quality of mapping (see q below). 782 

Function f divides the genomic element j to bins of a size defined by the user (1kbp by 783 

default), calculates bin coverage by summing all 𝛿/,0,,(from previous iteration) in each 784 

genomic bin, and calculates 𝜋0as the median of the n% most closely covered bins in the 785 

genomic element, with n defined by the user. For the default n of 06 , we calculate the 786 

difference between the most covered bin and the least covered bin for every subset 787 

spanning 60% of the bins, find the subset in which the difference is minimal, and take its 788 

median coverage. This median is then multiplied by the number of reads to reach an 789 

estimation of the true number of reads originating from the genomic element j. This 790 

number is then divided by the total number of reads assigned to all genomic elements to 791 

calculate 𝜋0. 𝜋0 is then normalized by the length of the genomic element (or its harboring 792 

microbe), but this could be turned off by the user. 793 

● 𝜃0 = ∑ 𝐼/,0,,/,,  794 

Where 𝐼/,0,, = 1	𝑖𝑓𝑓	𝛿/,0,, > 𝛿/,F,G	∀𝑙,𝑚  795 



i.e., the sum of reads preferentially mapped to this genomic element. This parameter 796 

facilitates faster convergence but results in reduced accuracy, and is suggested for use 797 

in case of very large reference datasets. With default ICRA parameters, it will be set to 1 798 

(and therefore ignored). 799 

● 𝑞/,0,, = ∏ 𝑞𝑢𝑎𝑙(𝑝𝑜𝑠)P(/,0,Q(/,0)RSQTU)(1 − 𝑞𝑢𝑎𝑙(𝑝𝑜𝑠))XYP(/,0,Q(/,0)RSQTU)Z
QTU[\  800 

is the probability of a correct mapping, given the mismatches in the read and the 801 

sequencing qualities. Where qual(pos) is the probability of correct sequencing in position 802 

pos calculated from fastq qualities and 𝜇(𝑖, 𝑗, 𝑝(𝑖, 𝑗), + 𝑝𝑜𝑠) = 1if there is a match 803 

between nucleotide in position pos in read i to the one in position 𝑝(𝑖, 𝑗),+pos in genomic 804 

element j and 0 otherwise. 805 

● The term ∑ 𝜋F𝜃F𝑞/,F,GF,G  is used to normalize 𝛿/,0,,such that the sum of all possible 806 

assignments of read i equals 1, where l and m refer to all possible genomic elements 807 

and positions thereof to which read i is mapped. 808 

If 𝛿/,0,, is lower than a user-set parameter 𝜖, with a default of 10-6, this specific mapping is 809 

removed from subsequent analysis thereby reducing noise typically originating by highly 810 

homologous regions from in subsequent iterations. 811 

 812 

CAMI dataset comparison 813 

We downloaded all 180bp-spaced toy datasets for the 1st CAMI challenge37 from the CAMI 814 

challenge website (https://data.cami-challenge.org/participate). We created a database of all 815 

taxonomic entities in CAMI using NCBI taxon IDs provided for all gold-standard abundances. 816 

We indexed this database using GEM indexer63 and mapped all metagenomic reads to the 817 

indexed database using GEM mapper. In the baseline setting, read assignment was not 818 

corrected using ICRA, and the assignment of reads that were mapped to more than one 819 

genome was a uniform division between these genomes. In the ICRA-corrected setting, read 820 

assignment was given by applying ICRA to GEM mapper output. For MetaPhyler39 read 821 

classification, we created a MetaPhyler classifier based on the same CAMI reference database 822 



using the buildMetaphyler.pl command with a sequence length of 100bp and classified CAMI 823 

reads using the runClassifier.pl command with default parameters. For Kraken38 comparison, 824 

we built a custom Kraken database based on the same CAMI reference database and ran 825 

Kraken as above. The four resulting assignment sets were compared to the gold standard 826 

provided by CAMI to derive correct assignment ratios. 827 

 828 

Bacterial strain culture and sequencing 829 

The following strains were obtained and grown in the following conditions: 830 

Species Strain ID Growth condition – Medium Growth 

condition - 

Temp 

Growth to 

saturation 

Lactobacillus gasseri ATCC 33323 Lactobacillus MRS agar 370C 24 hrs 

Enterococcus faecalis ATCC 29212 ATCC Medium 44 370C overnight 

Streptococcus cristatus ATCC 51100 ATCC Medium 44 370C <24 hrs 

Akkermansia muciniphila ATCC BAA-

835, DSM 

22959 

DSM medium 104 + 0.05% mucin or 

ATCC medium 44  

370C 72 hrs 

Cellulomonas flavigena ATCC 482, 

DSM 20109  

DSM 53 or ATCC Medium: 3 Nutrient 

Agar/Broth 

300C 72 hrs 

Brachybacterium faecium ATCC 

43885, DSM 

4810 

DSM 92 or ATCC Medium: 3 Nutrient 

Agar/Broth 

300C 72 hrs 

Alistipes finegoldii DSM 17242 DSM medium 104 + vitamin solution 

(see medium 131) or 693 

370C > 24 hrs 

 831 



Strains were grown to stationary phase as listed in the table. DNA was extracted using 832 

QIAgen DNAeasy Blood & Tissue kit (Cat# 69504) by the protocol using pretreatment of Gram-833 

positive or Negative bacteria following purification of total DNA from animal tissues. 834 

Following that, 100 ng of DNA was sonicated using Covaris E220X and and Illumina 835 

library was prepared for each strain as previously described64. The seven strains were 836 

sequenced to a minimum depth of 3M reads by a NextSeq® 500 machine with Illumina NS 837 

500/550 High Output V2 75 cycle kit. Data was deposited to ENA, accession ENA: 838 

PRJEB25194. 839 

 840 

SGV detection - preprocessing 841 

We mapped metagenomic reads to the reference database of 3953 representative microbial 842 

genomes detailed above and corrected read assignments using ICRA. All scaffolds from each 843 

microbial genome were concatenated and subsequently divided into 1 kbp bins. For each 844 

genome in each microbial sample, we counted the number of reads mapped to each of the bins. 845 

In the rare case in which ICRA produces a distribution of probabilities of different read 846 

assignment for a specific read rather than a deterministic assignment, we determined the read 847 

count that was added to each bin using the probability of assignment calculated by ICRA. 848 

Microbes with a median coverage smaller than 10 reads per bin were discarded from 849 

subsequent analyses. In addition, we removed microbes in which the median bin coverage 850 

across samples was lower than one read for more than 30% of the bins. 851 

 852 

Detection of deletion SGVs 853 

We examined the coverage in each metagenomic bin across all samples to detect regions that 854 

were deleted from some individuals and retained in others. To this end, for each microbe in 855 

each sample, we calculated a histogram of coverage across all metagenomic bins. We then 856 

searched for a trough, separating bins whose coverage is close to 0 from bins whose coverage 857 



is close to the median across the microbe, which we previously demanded to be greater than 10 858 

reads. The position of the trough separates the two modes of the distribution, between bins 859 

which were deleted (number of reads per bin smaller than the trough position) and retained 860 

(number of bins greater than the trough position). To mark a bin as a potential deletion-SGV, we 861 

demanded that it be deleted in 25-75% of samples. We concatenated adjacent deletion-SGV 862 

bins into stretches based on bin cooccurrence dissimilarity, defined as the proportion of samples 863 

which are in disagreement on the deletion-state of the two bins being compared (wherein one 864 

bin is deleted and one is retained for the same sample) out of all samples that harbor the 865 

microbe. Bins were concatenated to an existing stretch if they had an average cooccurrence 866 

dissimilarity lower than 0.25 with all the bins in the stretch, and that the newly created stretch is 867 

deleted in 25-75% of samples. We then clustered deletion SGV stretches belonging to the same 868 

microbe based on cooccurrence. First, we calculated a cooccurrence dissimilarity matrix for any 869 

two bins within the microbe (calculated as 1 minus the cooccurrence metric defined above). 870 

Next, using this bin-dissimilarity matrix we calculated a region dissimilarity matrix by calculating 871 

the average distance between all bins of one region to all bins of the other region. We next 872 

calculated linkage over the bin-dissimilarity matrix using the ‘average’ method of the 873 

cluster.hierarchy.linkage function in scipy v1.1.0 and divided into clusters with maximal 874 

cooccurrence dissimilarity of 0.25. 875 

 876 

Detection of variable SGVs 877 

For each microbe, we first removed all bins that were deleted in more than 95% of subjects. We 878 

examined the coverage in each remaining metagenomic bin across all samples to detect 879 

regions with variable coverage. To this end, we standardized the coverage across all non-880 

deleted bins of a single microbe in each sample by subtracting the mean coverage and dividing 881 

by the standard deviation. Next, for each bin, we fit a beta-prime distribution over all samples 882 

and marked bins whose value is in the top 5th percentile of the fit distribution as variable SGV. 883 



We concatenated adjacent variable SGVs into stretches if their average correlation (Spearman) 884 

with all bins in the stretch was higher than 0.75 and the resulting stretch was in the top 5th 885 

percentile of the beta-prime fit distribution of the resulting bin size. We then clustered variable 886 

SGV stretches similarly to deletion SGV stretches, with a dissimilarity metric calculated as 1-887 

((⍴(u,v)+1)/2), where ⍴ is the Spearman correlation and u, v are the bin vectors being compared; 888 

and threshold 0.125. This roughly corresponds to an average Spearman correlation threshold of 889 

0.75. 890 

 891 

Detection of conserved regions 892 

For each microbe in each sample, we detected retained / deleted bins as above and defined 893 

conserved regions to be stretches of bins that were deleted in less than 1% of samples. 894 

 895 

Analysis of replication in Dutch Lifelines DEEP cohort 896 

To analyze the overlap between SGVs detected in the Israeli cohort to those detected in the 897 

Lifelines DEEP cohort, we ran ICRA and SGV-Finder independently on 1020 out of 1135 898 

samples from the Lifelines DEEP cohort (EGA: EGAS00001001704) that had more than 10M 899 

reads, and computed the percent of overlap between regions in both cohorts. To analyze 900 

replication of associations between cohorts, we calculated for each SGV region in the Israeli 901 

cohort, its presence / absence (deletion SGV) or abundance (variable SGV) in the Lifelines 902 

DEEP cohort. We then tested the association of these regions with mean arterial pressure, 903 

waist-to-hip ratio (stand in for the Israeli cohort waist circumference), body weight, BMI, fasting 904 

glucose (stand in for the Israeli cohort median glucose), glycated hemoglobin, age, total and 905 

HDL cholesterol measured in the Lifelines DEEP cohort, using a Mann-Whitney U test (deletion 906 

SGVs) or the Spearman correlation (variable SGV). 907 

 908 

 909 



Calculation of SGV conservation in cohabiting and related individuals 910 

We calculated Spearman correlations between the deletion- and variable-SGV vectors of 39 911 

pairs of individuals registered in our cohort as living in the same house. To calculate SGV 912 

retention in first degree relatives, we calculated these correlations in 38 pairs of individuals 913 

whose genomic SNP-based similarity42 was between 40 and 60%. 914 

 915 

Functional enrichment analysis 916 

This analysis was performed similarly yet separately to variable-SGVs, deletion-SGVs, 917 

conserved regions, and regions significantly associated with the PTR of their harboring microbe. 918 

For brevity, we collectively term them “regions”. We examined all gene annotations for all 919 

microbial genomes analyzed using Ensembl functional annotation43 available through 920 

progenomes36, and annotated orphan ORFs by mapping the protein sequence to all KEGG26 921 

protein sequences using DIAMOND65 and selecting the top result with e-value<10-6 and at least 922 

50% identity. We then used KEGG annotations to assign genes to modules, and calculated the 923 

following textual categories by searching the progenomes gene function annotation using the 924 

following regular expressions: 925 

Transposon: transpos\S*|insertion|Tra[A-Z]|Tra[0-9]|IS[0-9]|conjugate transposon 926 

Plasmid: relax\S*|conjug\S*|mob\S*|plasmid|type IV|chromosome partitioning|chromosome segregation 927 

Phage: capsid|phage|tail|head|tape measure|antiterminatio 928 

Other HGT mechanisms: 929 

integrase|excision\S*|exonuclease|recomb|toxin|restrict\S*|resolv\S*|topoisomerase|reverse transcrip 930 

Carbohydrate active: glycosyltransferase|glycoside 931 

hydrolase|xylan|monooxygenase|rhamnos\S*|cellulose|sialidase|\S*ose($|\s|\-932 

)|acetylglucosaminidase|cellobiose|galact\S*|fructose|aldose|starch|mannose|mannan\S*|glucan|lyase|glycosyltransfe933 

rase|glycosidase|pectin|SusD|SusC|fructokinase|galacto\S*|arabino\S* 934 

Antibiotic resistance: azole resistance|antibiotic resistance|TetR|tetracycline resistance|VanZ|betalactam\S*|beta-935 

lactam|antimicrob\S*|lantibio\S* 936 



We searched for genes containing Pfam44 modules with the keywords ‘phage’, ‘prophage’, 937 

‘transposon’, ‘conjugative transposon’ using hmmscan (HMMER v3.166) with cutoff 1e-5. We 938 

next counted, for each KEGG module, KEGG brite functional category, progenomes textual 939 

gene category and Pfam keyword category the number of genes included and excluded in all 940 

regions combined across all microbes. As the location of genes along microbial genomes is not 941 

random p-values were calculated by permutations. In each permutation the sizes of both the 942 

regions and the gaps between them were preserved but their ordering was randomly shuffled, 943 

followed by examinations of genes in these regions and comparison of the number of included 944 

and excluded gene in each KEGG module, brite functional category, etc., to the number found 945 

without randomization. This was performed 1000 times. 946 

 947 

Calculation of microbial growth rates 948 

Microbial growth rates were quantified as peak-to-trough ratio (PTR) using the method and 949 

software provided in ref.45. PTRs were calculated for all the strains that were found to contain at 950 

least one deletion-SGV and that whose reference genome sequence was complete (i.e., not 951 

fragmented to contigs, as required by the PTR method45), skipping the step of selecting a 952 

representative strain per species. Mann-Whitney U-test was ran between PTRs of a bacteria in 953 

samples in which it contained a certain deletion-SGV and PTRs of the same bacteria in samples 954 

in which the same region was deleted, provided that at least 25 samples of each kind were 955 

present. 956 

 957 

SGV explorer 958 

SGV explorer, presented in Figure S3 and accessible through 959 

https://genie.weizmann.ac.il/SGV/, was created using bokeh for Python 960 

(http://bokeh.pydata.org) 961 

 962 



Code availability 963 

ICRA, SGV-Finder, and the SGV Browser are available through github at 964 

https://github.com/segalab/SGVFinder. 965 

 966 

Data availability 967 

The 7 strains samples used in Fig. 1C are available through ENA, accession ENA: PRJEB2519. 968 

The 887 samples are publicly available through ENA, accession numbers ENA: PRJEB11532, 969 

ENA: PRJEB17643.  970 



Figure Legends 971 

 972 

Figure 1. Superior assignment of metagenomic reads using the Iterative Coverage-based 973 

Read-Assignment (ICRA) algorithm. (A) Illustration of our computational pipeline. (B) Bar-974 

plots (bar, mean; whiskers, standard deviation) of the ratio of correct read assignment per 975 

taxonomy level with no assignment correction (blue) or following assignment correction with 976 

ICRA (yellow), Kraken38 (red) or MetaPhyler39 (green). * two-sided Mann-Whitney U p<0.05, 977 

**p<0.01 (C) Dot-plot of the calculated relative abundance of 7 bacterial species in 100 978 

samples, using either ICRA (yellow), MetaPhlAn240 (blue), or Bracken41 (red), as compared to 979 

the true relative abundances. Inset shows a violin plot (white dot, median; black box, IQR) of 980 

Bray-Curtis dissimilarities between the estimates of each method and the true abundances. ** 981 

two-sided Wilcoxon signed-rank p<0.01 **** p<10-4   982 

 983 

Figure 2. Sub-Genomic Variation (SGV) is prevalent in the human microbiome, replicable 984 

across cohorts and associated with specific functions. (A) Heatmap showing the number of 985 

subjects with SGVs (yellow color scale), the number of SGV regions (green color scale), the 986 

mean SGV size (blue color scale) and the fraction of the genome that is variable (red color 987 

scale), for each microbe analyzed, along with their phylogenetic tree. (B-C) Heatmap (B) and 988 

swarm plot (C) showing the genomic length percentage of variable and deletions SGVs 989 

replicated in the Lifelines DEEP cohort for each microbe analyzed. (D-E) Boxplot (box, IQR; 990 

whiskers, 1.5*IQR) of the distribution of the correlations between variable- (D) or deletion-SGV 991 

(E) across different subjects (green), within the same subject (blue), among cohabiting subjects 992 

(yellow) and among pairs of siblings or parents/children (red). **- two-sided Mann Whitney U 993 

p<0.01 ***p<0.001 ****p<10-5. (F-H) Fold change (x-axis) and statistical significance (Methods) 994 

of the enrichment of functional KEGG modules in variable-SGVs (F), deletion-SGVs (G) and 995 

conserved regions (Methods; H). (I) Difference in median value (x-axis) and statistical 996 



significance in a Mann-Whitney U test (y-axis) comparing calculated bacterial growth rates 997 

(PTR45) under deletion versus retention of SGV.  998 

 999 

Figure 3. SGVs are associated with disease risk and these associations replicate across 1000 

cohorts. (A-B) Heatmap of statistically significant correlations (Spearman p<0.001, FDR 1001 

adjusted at 0.1) between disease risk factors and variable-(A) or deletion-SGVs (B). Stars 1002 

singnify associations replicated (yellow), replicated using a different variable (orange) or 1003 

reversed (gray) in the Lifelines DEEP cohort. Striped stars denote associations from the same 1004 

bacteria that were collapsed for display purposes (see Figure S6 for full heatmap). (C) Boxplot 1005 

(Box, IQR; whiskers, IQR*1.5) of glycated hemoglobin (HbA1C%) in individuals harboring an 11-1006 

kbp deletion in the E. rectale genome (blue) and individuals with no deletion (maroon); p - Two-1007 

sided Mann-Whitney U test. (D) (top) Deletion rate across the cohort (y-axis) along a genomic 1008 

region of E. rectale (x-axis). (bottom) gene locations (arrows) colored according to function 1009 

(legend). (E) Scatterplot showing the correlation between the abundance of a 6-kbp variable-1010 

SGV in R. torques and weekly median glucose levels; p - Spearman correlation p-value. (F) 1011 

(top) depiction of standardized variability (y-axis; plotted lines, percentiles 1, 25, 50, 75 and 99) 1012 

along a genomic region of R. torques (x-axis). (bottom) gene locations (arrows) colored 1013 

according to function (legend). 1014 

 1015 

Figure 4. A 31kbp deletion-SGV in Anaerostipes hadrus is associated with reduced 1016 

weight. 1017 

(A) Boxplot (Box, IQR; whiskers, IQR*1.5) of body weight in individuals harboring a 31-kbp 1018 

deletion in the A. hadrus genome (blue) and individuals with no deletion (maroon). p - Two-1019 

sided Mann-Whitney U test. (B) Same as Fig. 3D for this genomic region of A. hadrus. (C) 1020 

Depiction of the metabolic pathways encoded in the region, which turns inositol to the short-1021 



chain fatty acid butyrate. Note correspondence of enzyme commission (EC) numbers with panel 1022 

B.  1023 

 1024 

Figure S1. ICRA reduces ambiguous assignments and noise. (A) Boxplot (Box, IQR; 1025 

whiskers, 10th and 90th percentiles) of ambiguous read assignment ratios of 887 samples20,30 1026 

mapped to a reference database of 3953 representative microbial genomes (Methods) before 1027 

(blue) and after (yellow) ICRA correction. (B,C) Bar-plots (bar, mean; whiskers, standard 1028 

deviation) of the ratio of incorrect read assignment per taxonomy level with no correction (blue) 1029 

or following assignment correction with ICRA (yellow), Kraken (red) or MetaPhyler (green) for 1030 

CAMI medium complexity (B; n=3) and low complexity (C; n=1) datasets. Note that MetaPhyler 1031 

did not provide sub-species level read assignments. 1032 

 1033 

Figure S2. (A-G) Dot-plot of the calculated relative abundance (y-axis) of A. muciniphila (A), A. 1034 

finegoldii (B), B. faecium (C), C. flavigena (D), E. faecalis (E), L. gasseri (F) and S. cristatus (G) 1035 

in 100 samples, using either ICRA (yellow), MetaPhlAn (blue), or Bracken (red), as compared to 1036 

the true relative abundances (x-axis). R2 was calculated using Pearson correlation.  1037 

 1038 

Figure S3. (A-B) Illustration of the online SGV explorer available at 1039 

http://genie.weizmann.ac.il/SGV/, spanning the entire R. torques genome (A) and spanning a 1040 

26-kbp region of the genome (B).  1041 

 1042 

Figure S4. Fold difference (x-axis) and statistical significance (Methods) of the enrichment of 1043 

functional KEGG modules in SGVs present in regions significantly associated with microbial 1044 

growth dynamics. 1045 

 1046 



Figure S5. SGVs are associated with microbial growth rates. (A) Boxplot (Box, IQR; 1047 

whiskers, IQR*1.5) of microbial growth rates calculated using PTR45 in individuals harboring a 7-1048 

segment deletion in the E. eligens genome (blue) and individuals with no deletion (maroon); (B) 1049 

Genomic map of E. eligens with the 7 segments marked in yellow. (C) As in A for a 9-segment 1050 

deletion-SGV in the E. eligens genome; (D) As in B with the 9 segments marked in orange. 1051 

 1052 

Figure S6. Full heatmap of statistically significant correlations (Spearman p<0.001, FDR 1053 

adjusted at 0.1) between disease risk factors and variable-SGVs, depicting associations 1054 

replicated (yellow star), replicated using a different variable (orange star) or reversed (gray star) 1055 

in the Lifelines DEEP cohort.  1056 

 1057 

Figure S7. (A) Boxplot (Box, IQR; whiskers, IQR*1.5) of BMI in individuals harboring a 4-kbp 1058 

deletion in the A. hadrus genome (blue) and individuals with no deletion (maroon). (B) Same as 1059 

Fig. 3D for this 4-kbp genomic region of A. hadrus. (C) Depiction of the genes encoded in the 1060 

region, which encode key enzymes in the folate biosynthesis pathway. Note correspondence of 1061 

enzyme commission (EC) numbers with panel B. (D) Boxplot (Box, IQR; whiskers, IQR*1.5) of 1062 

total cholesterol in individuals harboring an 18-kbp deletion in the R. intestinalis genome (blue) 1063 

and individuals with no deletion (maroon). (E) same as Fig. 3D for a 10-kbp stretch of the 18-1064 

kbp region in R. intestinalis. (F) Boxplot (Box, IQR; whiskers, IQR*1.5) of BMI in individuals 1065 

harboring an 8-kbp deletion in the C. comes genome (blue) and individuals with no deletion 1066 

(maroon). (G) Same as Fig. 3D for this 8-kbp genomic region of C. comes. p - Two-sided Mann-1067 

Whitney U test. 1068 

 1069 

Figure S8. Replication of deletion and variable regions depicted in Fig. 3, 4 and S7 between the 1070 

Israeli (yellow) and Dutch Lifelines DEEP (blue) cohorts. 1071 

 1072 



Figure S9. (A-C) Boxplot (Box, IQR; whiskers, IQR*1.5) of waist circumference (A), BMI (B) and 1073 

HDL cholesterol (C) in individuals of the Israeli cohort harboring the 31-kbp deletion in the A. 1074 

hadrus genome depicted in Fig. 4 (blue) and individuals with no deletion (maroon). (D) Boxplot 1075 

(Box, IQR; whiskers, IQR*1.5) of BMI in individuals of the Dutch Lifelines DEEP cohort 1076 

harboring the same 31-kbp deletion in the A. hadrus genome (blue) and individuals with no 1077 

deletion (maroon). p - Two-sided Mann-Whitney U test. 1078 


