
 

The interaction of CD4 + helper T cells with dendritic cells
shapes the tumor microenvironment and immune checkpoint
blockade response

Document Version:
Accepted author manuscript (peer-reviewed)

Citation for published version:
Cohen, M, Giladi, A, Barboy, O, Hamon, P, Li, B, Zada, M, Gurevich-Shapiro, A, Beccaria, CG, David, E,
Maier, BB, Buckup, M, Kamer, I, Deczkowska, A, Le Berichel, J, Bar, J, Iannacone, M, Tanay, A, Merad, M
& Amit, I 2022, 'The interaction of CD4 + helper T cells with dendritic cells shapes the tumor
microenvironment and immune checkpoint blockade response', Nature Cancer, vol. 3, pp. 303-317.
https://doi.org/10.1038/s43018-022-00338-5

Total number of authors:
19

Digital Object Identifier (DOI):
10.1038/s43018-022-00338-5

Published In:
Nature Cancer

License:
Other
General rights
@ 2020 This manuscript version is made available under the above license via The Weizmann Institute of
Science Open Access Collection is retained by the author(s) and / or other copyright owners and it is a condition
of accessing these publications that users recognize and abide by the legal requirements associated with these
rights.

How does open access to this work benefit you?
Let us know @ library@weizmann.ac.il

Take down policy
The Weizmann Institute of Science has made every reasonable effort to ensure that Weizmann Institute of
Science content complies with copyright restrictions. If you believe that the public display of this file breaches
copyright please contact library@weizmann.ac.il providing details, and we will remove access to the work
immediately and investigate your claim.

(article begins on next page)

https://doi.org/10.1038/s43018-022-00338-5
https://doi.org/10.1038/s43018-022-00338-5


A B

DispatchDate:  04.02.2022  · ProofNo: 338, p.1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Articles
https://doi.org/10.1038/s43018-022-00338-5

1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. 2Department of Clinical Microbiology and Immunology, Sackler School 
of Medicine, Tel Aviv University, Tel-Aviv, Israel. 3Department of Oncological Sciences, The Precision Immunology Institute, Icahn School of Medicine 
at Mount Sinai, New York, NY, USA. 4The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 5Hubrecht Institute, 
Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands. 6Sackler School of Medicine, Tel 
Aviv University, Tel-Aviv, Israel. 7Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 8Division of Immunology, Transplantation 
and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy. 
9Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel. 10Brain-Immune Communication Laboratory, Department of Immunology and 
Neuroscience, Institute Pasteur, Paris, France. 11Department of Computer Science and Applied Mathematics, Department of Biological Regulation, 
Weizmann Institute of Science, Rehovot, Israel. 12Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 13These 
authors contributed equally: Merav Cohen, Amir Giladi, Oren Barboy, Amos Tanay, Miriam Merad, Ido Amit ✉e-mail: meravcohen@tauex.tau.ac.il; amos.
tanay@weizmann.ac.il; miriam.merad@mssm.edu; ido.amit@weizmann.ac.il

The tumor microenvironment (TME) is a complex ecosystem, 
where cancer, immune and stromal cellular interactions influ-
ence tumor immunity and tumor growth1. Understanding 

cellular communications within the TME can be harnessed to 
enhance antitumor immune responses, as shown by the clinical suc-
cess of immune checkpoint blockade (ICB) therapies that inhibit 
negative T-cell signals induced by cancer and antigen-presenting 
cells (APCs)2–5. However, the mechanisms of action of ICB thera-
pies, and the factors contributing to their success in generating 
significant effector T-cell immunity are only partly understood. 
Better understanding of cellular communications within the TME 
is therefore essential for enhancing existing therapies and develop-
ing more-potent targeting schemes for immunotherapy.































T-cell–myeloid cell interactions determine the balance between 
inflammatory and tolerogenic immune function by providing 
instructive signals, including antigen presentation, cytokine produc-
tion and co-stimulation, which shape T-cell response to threats2,6,7. 
Accordingly, physical interactions between different subsets of 
T cells and myeloid cells have been shown to control antitumor 
immunity2,8,9. For instance, while PD-1-expressing T cells can be 

Q1 Q2

Q3 Q4

Q5 Q6

Q7 Q8

engaged by multiple cell types expressing PD-L1, such as dendritic 
cells (DCs), macrophages and cancer cells, it is the PD-1–PD-L1 
axis provided in the context of T-cell–DC interactions that most 
significantly defines T-cell function in the TME6. These processes 
underline the need to unravel the cellular identities and molecular 
programs involved in physical interactions that control antitumor 
T-cell effector function at the tumor site6,10.

Single-cell RNA-sequencing (scRNA-seq) technologies have led 
to better understanding of the heterogeneity of immune cell states 
within the TME11–15. Recent scRNA-seq studies across many cancer 
types, gave rise to a detailed atlas of recurrent CD8+ and CD4+ T-cell 
states in tumors, as well as to maps of tumor-associated macrophages 
(TAMs) and DCs8,9,16–18. Integration of T-cell receptor sequencing 
(TCR-seq) within such atlases suggested that some of the T-cell 
states, most notably the CD8+ dysfunctional/exhausted T cells, are 
clonally expanded in response to tumor neoantigens11,19–21, but oth-
ers may be bystander T cells. To further put these atlases in con-
text, direct and unbiased quantification of the interaction between 
APCs and T cells within the TME is urgently needed. Currently, 
single-cell maps, even when combined with TCR-seq, can only  
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provide hypotheses as to which potential interactions in the TME 
are driving the dynamics of effector or exhausted T cells, which are 
the prominent targets of recent successful immunotherapies. Here, 
we define a detailed cell–cell interaction network between T-cell 
and myeloid cell populations in the TME and healthy tissues. These 
data may serve as an important anchor to generate the next genera-
tion of T-cell/DC-based therapies.

results
Characterization of myeloid and T-cell compartments in NSCLC. 
To characterize and molecularly dissect physical interactions between 
myeloid cells and T cells in the TME, we applied PIC-seq technol-
ogy22 on clinical samples of early human non-small cell lung carci-
noma (NSCLC) lesions. We profiled treatment-naive early NSCLC 
lesions that were surgically resected from ten patients and compared 
tumor-involved to adjacent tumor-free tissues (Supplementary 
Table 1). We optimized lung tissue digestion to preserve physiologi-
cal cell conjugates and sorted single CD64+CD11c+ myeloid cells 
and TCRβ+ T cells, as well as CD64+CD11c+TCRβ+ conjugates of 
physically interacting cells (PICs; Fig. 1a,b and Methods). Overall, 
we sequenced 5,136 quality control (QC)-positive single TCRβ+ 
T cells and 5,626 QC-positive single CD11c+CD64+ myeloid cells 
collected from tumor and adjacent healthy tissues (Supplementary 
Table 2 and Extended Data Fig. 1a–d) and used the MetaCell pack-
age23 to create a background model of single-cell states in the TME 
and healthy tissues (Fig.  1c–e). We controlled for cross-patient 
batch effects by confirming that each metacell includes cells from 
multiple patients (Extended Data Fig. 1e). We grouped T metacells, 
according to hallmark gene expression (Fig. 1c,d), into migratory 
T (TCF7, CCR7 and SELL), naive T (TCF7 and IL7R), proliferat-
ing T (TOP2A, MKI67 and STMN1), CD4+ activated T (CXCR4 
and CD69), CD4+ memory T (GZMB and CXCR4), CD4+ regula-
tory T (Treg; FOXP3 and IL2RA), CD4+PD-1+CXCL13+ T (CD4, 
CXCL13, PDCD1 and IL21), CD8+ T (CD8A and CD8B), CD8+ 
cytotoxic T (CTLs; GNLY, GZMB and PRF1) and CD8+ dysfunc-
tional (exhausted) T cells (DysCD8; GZMK, LAG3 and HAVCR2) 
(Fig. 1c,d and Extended Data Fig. 1f).

We similarly grouped myeloid cells into two subsets of mono-
cytes, based on the high expression levels of the VCAN and CD31 
(PECAM1) genes (Fig. 1e), two ‘MonMac’ subsets (based on their 
high expression of CCR2 or CXCL10 and shared expression of 
monocyte and macrophage genes) and into two macrophage sub-
sets: TAM subsets Mreg-Mac16 (TREM2, GPNMB and APOE) and 
MMP9+ TAMs. Additional myeloid subsets included four groups 
of DCs: DC-expressing monocyte genes (MoDCs; expressing both 
monocytes (VCAN) and DCs (CD1C) genes), classical DC type I 
(cDC1; XCR1 and CLEC9A), classical DC type II (cDC2; CLEC10A, 
CD1C and BHLHE40) and mature DCs enriched in immunoregula-
tory molecules (mregDCs; FSCN1, CCL22 and CCL19)8 (Fig. 1c,e). 
We found that the CD11c+CD64+ populations in some of the 
patients were enriched in natural killer (NK) cells (low in TRBC2 
and CD8A, high in TRDC and KLRC1), which we grouped into 
two subsets of NCAM1+ NK and CX3CR1+ NK cells (Fig. 1e). For 
both the T-cell and myeloid cell compartments, we identified con-
sistent differences in cell composition between tumor and adjacent 
tumor-free tissues (Fig. 1f). To support further such differences and 
to consolidate a common signature of the TME cellular composi-
tion, we computed TME versus healthy cell state ratios per-specimen 
and quantified correlations between subset abundances (Fig. 1g,h). 
Specifically, Mreg-Mac, TAMs, CXCL10+ MonMac, MoDCs, mreg-
DCs and cDC2, together with Treg, CD4+PD-1+CXCL13+ T and 
DysCD8 T cells were enriched in the TME, whereas the monocyte 
subsets and naive, proliferating and migratory T cells were under-
represented (Fig. 1h). CD4+ memory and activated T-cell states, as 
well as CTLs were equally distributed across tumor and adjacent 
tissues. Notably, these results are in line with previous single-cell 

analysis of NSCLC lesions24–26 and therefore can serve as a baseline 
to investigate the molecular programs defining cellular interactions 
in the TME.

CD4+PD-1+CXCL13+ T cells are enriched in TME interactions. 
We analyzed conjugates of CD64+CD11c+TCRβ+ PICs with het-
erotypic gene expression and removed putative T/NK cell PICs due 
to low specificity of their PIC-seq deconvolution (Extended Data 
Fig. 2a–d and Methods). Using an antibody-switching experiment 
we have previously applied22, we quantified the frequency of real ver-
sus spurious doublets formed after human tumor and healthy lung 
tissue dissociation. For each tumor and healthy tissue, we digested 
two parallel tissue sections, staining the split samples for TCRβ 
and CD11c, each with a different combination of fluorophores 
(TCRβ–FITC/CD11C–PE and TCRβ–PE-Cy7/CD11c–APC-Cy7). 
We then pooled the two tumor and healthy samples together and 
analyzed them by FACS. We note that spurious doublets formed 
after dissociation, which combine fluorophores from parallel mixes, 
are rare, estimated at 2.5% and 4.4% of the CD64+CD11c+TCRβ+ 
PIC population in the TME and adjacent noninvolved tissue, 
respectively (Extended Data Fig.  2e). We overall modeled 839 
QC-positive PICs by inference of their T-cell and myeloid cell iden-
tities as described (Extended Data Fig.  2f–j and Methods). The 
PIC-seq pipeline utilizes a detailed background model of the sin-
glet populations contributing to the PIC conjugates to facilitate the 
estimation of interaction preferences and assign for each PIC the 
most probable pair of contributing singlet identities22 (Fig.  2 and 
Methods). PICs isolated from tumor, but not healthy, lung tissue 
showed pronounced over-representation of CD4+PD-1+CXCL13+ 
T cells (P = 1.03 × 10−7) and depletion of CD8+ dysfunctional T cells 
(P = 0.0067) (Fig.  2a). The identification of interactive CD4+PD-
1+CXCL13+ T cells within PICs was based on subset-specific genes, 
including CXCL13, MAF, ZBED2, PRDM1, SNX9, SIRPG and IL21 
(Fig. 2b). Of note, CD4+PD-1+CXCL13+ T cells were significantly 
over-represented in PICs when stratified across profiled patients 
(paired Mann–Whitney U-test; P = 0.037; Fig. 2c).

Myeloid cell contribution to T-cell/myeloid PICs was character-
ized by a reduction in the CD31+ monocyte subset and enrichment 
of the Mreg-Mac16 subset in both healthy (P = 0.0047 and 0.002, 
respectively) and tumor tissues (P = 0.0087, 1.9 × 10−5, respectively; 
Fig. 2d). Of note, we found significant enrichment in mregDC fre-
quency (P = 0.043), alongside a depletion in cDC1 (P = 0.0079) in 
T-cell/myeloid PICs in tumor tissues compared to adjacent tissues 
(Fig. 2d). The mregDC annotation in PICs was based on expression 
of unique gene transcripts identified in singlets (such as LAMP3, 
CCL22, CCL19, BIRC3, FSCN1 and CCR7; Fig. 2e), as we recently 
described8. The mregDC over-representation in PICs was observed 
also when stratified across patients (paired Mann–Whitney U-test; 
P = 0.039; Fig. 2f). Taken together, by investigating the cellular inter-
action repertoire within PICs, we identified CD4+PD-1+CXCL13+ 
T cells and mregDCs, two states that are enriched in the TME com-
pared to healthy controls and engage specifically in T-cell–myeloid 
interactions in the TME, suggesting their potential TME interactive 
capacity and function.

Defining the Tht niche across tumor types. Given their enrich-
ment in tumor PICs in NSCLC, we next asked whether the 
CXCL13+PD-1+ CD4+ T-cell program was also present in other 
tumor types, using scRNA-seq datasets obtained from 25 patients 
with melanoma27 and 42 patients with breast cancer28. We annotated 
the T-cell states across tumor types and identified similar subsets to 
those we identified in NSCLC (Extended Data Fig. 3a and Methods). 
We subsequently derived a pan-tumor signature consisting of gene 
transcripts differentially expressed by CD4+PD-1+CXCL13+ cells 
compared to all other CD3+ T-cell populations across the different 
tumor types. We found that CD4+PD-1+CXCL13+ cells expressed 
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Fig. 1 | PIC-seq application on tumor and adjacent healthy tissues derived from stage-I biopsies of patients with NSCLC. a, Schematics of the 
experimental scheme using PIC-seq to characterize interactions between myeloid and T cells in human clinical specimens. b, Representative FACS plots 
of CD64+CD11c+ myeloid (purple) and TCRβ+ T cell (blue) singlets and CD64+CD11c+TCRβ+ PICs (orange) purified from healthy lung and TME of patients 
with NSCLC (n  =  10 patients); population frequencies represent mean ± s.e.m. c, A two-dimensional (2D) representation of a MetaCell model of 5,136 
TCRβ+ T cells and 5,626 CD11c+CD64+ myeloid cells from n = 10 patients with NSCLC, grouped into 22 T-cell and myeloid cell subsets. Dots represent 
single cells and dot colors are related to annotation of T-cell and myeloid cell subsets. d,e, Gene expression profiles of T cell (d) and myeloid (e) metacells. 
Values indicate enrichment (log2 fold change) of a gene in a metacell over its median value across metacells. MetaCell annotation to 10 T-cell and 12 
myeloid cell subtypes (bottom). f, Projection of TCRβ+ T or CD64+CD11c+ myeloid-sorted cells derived from healthy lung tissue or TME onto the 2D map 
shown in c. g, A pairwise gene Spearman correlation analysis of the representation of T-cell and myeloid cell subsets across samples derived from TME 
and adjacent healthy tissues of patients with NSCLC. h, Log2 fold change between TME and healthy lung tissue percentage of each T-cell and myeloid cell 
subset across the profiled patients. Each circle represents one patient; n = 10 patients with NSCLC (Supplementary Table 1).
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chemokines and cytokines (CXCL13, IL21, IFNG and CCL3), hall-
mark immune checkpoints (BTLA, PDCD1, TIGIT and CTLA4) 
and transcription factor genes (MAF, HIF1A and ZBED2) (Fig. 3a, 
Extended Data Fig.  3b,c, Supplementary Table  3 and Methods). 
This transcriptional program was specific to this subset and to 
PICs assigned to CD4+PD-1+CXCL13+ T cells in the NSCLC TME 
(Fig.  3b). We subsequently annotated this program as helper Tht 
cells.

To gain deeper insights into the molecular signature of Tht cells 
within PICs, we performed differential gene expression analysis 
between their observed and expected expression derived from the 
PIC-seq null model (Fig. 3c and Methods). We found major cyto-
kines and chemokines (CXCL13, CCL4 and CCL5), immune check-
point genes (CTLA4 and PDCD1) and transcription factors (MAF) 
to be specifically upregulated in interacting Tht cells compared to 
singlet Tht cells (Fig. 3c,d), implicating that physically interacting 
myeloid cells are imprinting the unique Tht-cell signature.

In addition to our pan-cancer analysis revealing a conserved 
Tht-cell program across several human tumors, we also identified 
two Tht-cell states (Tht-I and Tht-II), evident in all analyzed cancer 
types (NSCLC, melanoma and breast cancers). Both groups have 
high expression of CD4 and CXCL13, whereas Tht-I cells exhibited 
higher expression of genes associated with cytotoxic activity and 
exhaustion (such as GZMB, IFNG, LAG3 and CXCR6) and Tht-II 
cells expressed high levels of IGFL2, CPM and TCF7, suggesting a 
more naive state of Tht cell development (Extended Data Fig. 3d). 
Notably, in our NSCLC TME PIC data, Tht-I cells are signifi-
cantly more interactive with myeloid cells compared to Tht-II cells 
(P = 0.014 and 0.55, respectively; two-tailed Mann–Whitney U-test; 
Extended Data Fig. 3e).

Tht cells define spatial niches in NSCLC tumors. We next 
explored the spatial distribution of Tht cells in lung sections of 
patients with NSCLC, including their relative proximity to myeloid 
cells. Chronic exposure to tumor antigens has been shown to lead 
to formation of tertiary lymphoid structures (TLSs) in tumor 
lesions29,30. As mregDCs are enriched in tumor-derived PICs, we 
investigated whether they are in physical proximity to Tht cells in 
tissue sections, by imaging the mregDC protein marker, DC-LAMP 
(Fig.  3e and LAMP3 in Fig.  2e). Notably, TLSs in early-stage 
NSCLC are composed of clusters of DC-LAMP+ mature DC and 
T cells, within T-cell areas adjacent to B-cell follicles30. Imaging of 
NSCLC tumor tissues identified CD4+ T cells expressing the Tht 
cell hallmark proteins CXCL13, PD-1, PRDM1 and BTLA (CD272; 
Extended Data Fig. 4a). These Tht cells were found to be located in 
close proximity to DC-LAMP+ DCs in NSCLC tumor tissues, sug-
gesting that they form direct physical interactions. Specifically, in 
four of our profiled patients, we observed CD4+PD-1+ T cells and 
DC-LAMP+ DC interactions within CD4+ T-cell aggregates, raising 
the possibility that Tht cells might be involved in TLS response in 
the TME (Extended Data Fig. 4b). To study Tht cell spatial associa-

tion to other myeloid and lymphoid cell subsets in the TLS niche 
of the TME, we performed multiplexed immunohistochemical 
consecutive staining on a single slide (MICSSS) of formalin-fixed 
paraffin-embedded (FFPE) sections from patients with NSCLC 
(Methods). We first defined TLSs histologically, based on their high 
nuclear (4,6-diamidino-2-phenylindole (DAPI+)) density charac-
teristic (Fig. 3e). While CD68+ macrophages and CD8+ T cells were 
enriched in non-TLS regions of the TME, CD3+CD8−PD-1+ (Tht) 
and CD3+CD8+PD-1+ (DysCD8) T cells, as well as CD20+ B cells 
and DC-LAMP+ DCs were spatially restricted to the TLS niche 
(Fig. 3e,f, Extended Data Fig. 4c and Methods). Of note, short-range 
community analysis confirmed compartmentalization within the 
TLS, with DC-LAMP+ DCs frequently observed in close proximity 
to Tht cells and DysCD8+ T cells, whereas CD20+ B cells formed 
segregated communities within the TLS (Extended Data Fig. 4d), 
suggesting that Tht cells and DCs interact in the TLS niche.

In agreement with our hypothesis that Tht cells are reactive to 
tumor-specific antigens, we found that these cells exhibited a high 
degree of clonality in breast and melanoma data, comparable to 
the tumor antigen-specific CD8 subset, dysfunctional (exhausted) 
CD8+ T cells (Fig. 3g and Extended Data Fig. 4e). Notably, Tht cell 
clones tended to be exclusive, exhibiting shared clonality between 
Tht-I and Tht-II, but with little contribution from other T-cell sub-
sets, including CD8+ T cells or CD4+ Treg cells (Fig. 3h and Extended 
Data Fig. 4f). Together, our results, demonstrating the enrichment 
of clonally expanded CD4+PD-1+CXCL13+ Tht cells in physical 
interactions with mregDCs within the TLSs of tumor lesions, sug-
gest that Tht cells are educated against tumor antigens.

Antigen specificity promotes a unique CD4+ T-cell state. To 
explore the mechanisms that induce tumor-specific CD4+ T-cell 
response to tumor antigen presentation, we made use of a model 
consisting of murine ovalbumin (OVA)-specific αβ TCR CD4+ 
T cells (OT-II) that recognize the OVA peptide. We isolated splenic 
CD11c+ DCs from C57BL/6 wild-type (WT) mice and cultured 
them for 2 h with mCherry-B16 melanoma cells expressing the OVA 
peptide (B16-OVA), before co-culturing them with splenic OT-II 
CD4+ T cells for 20 h. Partial co-cultures containing B16-OVA with 
splenic OT-II CD4+ T cells and monocultures of splenic OT-II 
CD4+ T cells served as controls. We performed MARS-seq on 1,860 
QC-positive, single TCRβ+ T cells sorted from the cultures (Fig. 4a). 
Pairwise gene correlation analysis revealed two highly correlated 
gene modules enriched for genes related to immune activation and 
co-stimulation, reminiscent of the human Tht cell program (such as 
Pdcd1, Tigit, Btla, Bhlhe40, Tnfrsf4, Cd82, Gng4, Tpi1 and Pkm) or 
for genes associated with a T-cell-naive state (such as Sell, Ccr7 and 
Tcf7) (Fig. 4b). Expression of the activation signature was restricted 
to a small set of tumor-activated T cells, whereas the majority 
of the T cells were in the naive state (Fig.  4c). The frequency of 
tumor-activated T cells was highest in TCRβ+ T cells isolated from 
the cultures containing B16-OVA cancer cells, DCs and OT-II CD4+ 

Fig. 2 | Interaction preferences of T-cell and myeloid cell subsets revealed by PIC-seq. a, Distribution of T-cell subsets in TCRβ+ singlet T cells and 
CD64+CD11c+TCRβ+ PICs in healthy lung tissue and the TME of patients with NSCLC. Colors are related to annotation of T-cell subsets. Cells are 
downsampled so that T-cell and PIC numbers are equal per patient and then pooled from all profiled patients. False discovery rate (FDR)-adjusted 
two-tailed Fisher’s exact test. b, Gene expression profiles of singlet T cells (left) and PICs (right) grouped by their MetaCell and PIC-seq assignment to 
T-cell subsets. Shown are genes supporting assignment of singlets and PICs to the CD4+PD-1+CXCL13+ T-cell subset. MetaCell and PIC-seq assignment 
of T-cell identities (bottom). c, Comparison of DysCD8+ and CD4+PD-1+CXCL13+ T-cell subset frequencies in singlets and PICs derived from healthy 
tissue and TME across all profiled patients. Two-tailed paired Mann–Whitney U-test; n = 10 patients with NSCLC. d, Distribution of myeloid subsets in 
CD64+CD11c+ singlet myeloid and CD64+CD11c+TCRβ+ PICs in healthy tissue and TME. Colors are related to annotation of myeloid cell subsets. Cells are 
downsampled so that T-cell and PIC numbers are equal per patient and then pooled from all profiled patients. FDR-adjusted two-tailed Fisher’s exact test. 
e, Gene expression profiles of singlet myeloid cells (left) and PICs (right) grouped into their MetaCell and PIC-seq assignment to myeloid subsets. Shown 
are genes supporting assignment of singlets and PICs to the mregDC subset. MetaCell and PIC-seq assignment of myeloid identities (bottom).  
f, Comparison of different myeloid subset frequencies in singlets and PICs derived from healthy and tumor tissues across all profiled patients. Two-tailed 
paired Mann–Whitney U-test; n = 10 patients with NSCLC; *P < 0.05, **P < 0.001, ***P < 10−5.
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T cells and enriched in CD4+ T cells expressing high levels of PD-1 
and CXCR5 cell-surface proteins, specifically derived from these 
triple cultures (Fig. 4d,e).

To examine whether this activated T-cell gene signature is 
restricted to the microenvironmental settings of tumor antigen 
specificity or is general to immune conditions ensuing antigen pre-

sentation, we analyzed transcriptional states of OT-II T cells iso-
lated from the B16-OVA + DC cultures compared to co-cultures 
with OVA-presenting DCs that were pre-exposed to lipopolysac-
charide (LPS) (Fig. 4f)22. We found that antigen presentation by the 
LPS-activated OT-II T cells induced general immune activation genes 
(such as Mif, Il2ra, Srm, Irf4 and Il2). However, only tumor-specific 
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Fig. 3 | CD4+PD-1+CXCL13+ T cells present unique gene expression and interactive profile in TME. a, Mean normalized expression of CD4+PD-1+CXCL13+ 
T-cell genes across ten NSCLC T-cell subsets. Error bars indicate binomial 95% confidence intervals. n = 3,371 TME T cells over ten patients with NSCLC. 
b, Distribution of the pooled expression of the Tht (CD4+PD-1+CXCL13+) signature genes across all ten NSCLC T-cell populations in singlet (empty boxes) 
and PIC (full) states. The central mark in box plot is median, with 5th and 95th percentiles at the whiskers, 25th and 75th percentiles at the box and 
minima and maxima marked by dots; n = 2,247 T cells and 839 PICs over ten patients with NSCLC. c, Observed gene expression levels in PICs assigned 
to the CD4+PD-1+CXCL13+ identity, plotted against their expected levels. Highlighted genes are colored by their expected specificity to the T-cell (green) 
or myeloid (red) compartments (log2 fold change). d, Mean observed (gray, left) and expected (colored, right) gene expression levels in PICs grouped 
according to their T-cell identities in healthy and tumor tissues. Each connected pair of dots signifies a patient. Dot colors relate to their expected 
specificity in the T-cell (green) or myeloid cell (red) compartments as in c; cells from non-Tht or Treg cell subsets are pooled together. Median value is 
marked with a blue line. e, MICSSS staining depicting a TLS inside a tumor section. White dashed lines indicate TLS boundaries. Scale bars, 100 μm 
(left), 20 μm (right). Image is representative of five TLSs from the same patient. f, Quantification of cell-type enrichment (log2 fold change) within the 
TLS compared to the TME. Cell types are determined by staining colocalization. n = 5 TLSs from the same patient; error bars represent 95% confidence 
intervals. g, Fraction of cells related to T-cell clones across different T-cell subsets (Extended Data Fig. 3a). FDR-adjusted two-tailed unpaired Mann–
Whitney U-test. n = 25 breast cancer patients for whom TCR-seq data was available. h, The propensity of two cells from two breast cancer T-cell subsets 
to belong to the same clone. Data were calculated by sampling 10,000 pairs of cells and comparing clonal sharing characteristics to 10,000 pairs of cells 
sampled after shuffling clone identities. *P < 0.05,**P < 0.001,***P < 10−5.
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OT-II T cells expressed the co-stimulation and activation gene mod-
ule (such as Tpi1, Pkm, Bhlhe40, Btla, Ctla4, Tigit, Cd82, Gng4, Pdcd1, 
Tiam1 and Maf), which we call a mouse Tht-cell (mTht) signature 
(Fig. 4f and Supplementary Table 4). Notably, while the human and 
mouse Tht-cell programs are mainly conserved, Cxcl13, a hallmark 
gene in human Tht cells, was absent from the mTht cell signature. 
Taken together, our in vitro data demonstrate that the tumor-specific 
CD4+ T-cell gene module is driven in an antigen-specific manner 
upon interactions with tumor antigen-primed DCs.

mTht cells are restricted to tumor-draining lymph nodes and 
TME. To better understand the temporal and spatial differentiation 

dynamics of the mTht cells in vivo, we utilized a mouse model in 
which we adoptively transferred splenic CD45.1+CD4+ OT-II T cells 
6 d following subcutaneous injection of B16-OVA cells into WT 
C57/6J recipients (Fig.  5a).


 MARS-seq was performed on 12,154 

QC-positive single TCRβ+ T cells isolated from tumor-draining 
lymph nodes (tdLNs) and peripheral cervical lymph nodes (cLNs), 
10 and 17 d following tumor injection (Fig. 5a and Extended Data 
Fig.  5a). Ten days after tumor injection, CD45.1+TCRβ+ OT-II 
T cells were more frequent in the tdLNs than in the cLNs (P = 0.0078; 
two-tailed paired Mann–Whitney U-test; Extended Data Fig. 5b). 
We found that antigen-specific CD45.1+TCRβ+ OT-II T cells, but 
not polyclonal TCRβ+ T cells, upregulated the mTht cell signature 
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Fig. 4 | Differentiation to murine Tht cell state requires tumor antigen presentation by DCs. a, Schematics of the in vitro co-culture experiment. Splenic 
OT-II CD4+CD45.1+ T cells were sorted 20 h following culturing in three different conditions: (1) with B16-OVA and DCs, (2) with B16-OVA and (3) in 
a monoculture of OT-II CD4+CD45.1+ T cells. b, Pairwise gene Pearson correlations across T cells from all experimental conditions. c, Gene expression 
profiles of 1,860 single T cells collected from the three conditions, grouped into metacells. MetaCell annotation to three stages of T-cell differentiation 
(bottom). d,e, Frequency of the tumor-activated T-cell subset in the TCRβ+ (d) or TCRβ+CXCR5+PD-1+ (e) populations across experimental conditions. 
Each circle represents a biological replicate. f, Differential expression between tumor-activated OT-II T cells from c and OT-II T cells co-cultured with 
OVA-loaded DCs exposed to LPSs (log2 fold change, x axis). Gene expression of each activated subset (tumor or LPSs) was compared to naive T cells 
from the same experiment and the pairwise maximum log2 fold change, indicating upregulation in at least one condition, was calculated (y axis). Data 
summarize two independent experiments; n = 4 B16 cells + T cells + DCs; 4 B16 cells + T cells and 5 T-cell-alone independent cultures.
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derived from the in vitro study (Fig. 5b and Supplementary Table 4; 
P (cLN) = 0.029 and P (dLN) = 0.00029; two-tailed Mann–Whitney 
U-test). This effect was observed in the tdLNs as early as day 10 after 
tumor injection. We found significant upregulation of the mTht cell 
program in CD45.1+TCRβ+ T cells from the tdLNs compared to the 
peripheral cLNs (tdLN versus cLN, P = 0.015). At a later time point, 
17 d after injection, expression of the mTht cell program was dimin-
ished in the tdLNs (P = 0.023; Fig. 5b).

We found that tdLN CD45.1+TCRβ+ OT-II T cells, but not 
their cLN counterparts, upregulated a T-cell activation signature 
reminiscent of the mTht cell program that we observed in vitro, 
including Tigit, Maf, Il21, Tiam1, Pkm and Tnfrsf4 (Fig.  5c and 
Supplementary Table  4). The in vivo mTht cell signature was 
associated with diminished expression of naive T-cell genes and 
correlated with expression of cell-cycle genes (Extended Data 
Fig.  5c–e). As Tht cells uniquely express genes considered as fol-
licular helper T cell (TFH) markers (such as CXCL13 and CXCR5), 
we further compared the mTht cell signature to classical murine 
TFH cells. We applied an established mouse model of recombinant 
vesicular stomatitis virus (rVSV) infection (Methods), based on 
a previous study showing that CD4+ T cells differentiated mostly 
to TFH cells upon infection with VSV31. We adoptively transferred 
naive SMARTA CD4+CD45.1+ T cells into C57BL/6 WT mice 24 h 
before subcutaneous intra-footpad infection with rVSV. On day 5 
after infection, we isolated CD4+CD45.1+ polyclonal T cells and 
viral-specific CD4+CD45.1+ICOS+PD-1+CXCR5+ TFH cells from 
footpad-draining popliteal lymph nodes and performed MARS-seq 
on 1,293 QC-positive single T cells. While we found high corre-
lation between the mTht cell and rVSV-induced mouse TFH cell 
transcriptional programs, we also observed substantial differences 
related to mTht cell elevated expression of Tnfrsf4, Il21, Eomes and 
Tiam1, compared to both mouse TFH cells and in vitro LPS stimu-
lated CD4+ T cells (Fig. 5c–e). Notably, we could not detect Cxcl13 
expression in either cell type. We further verified that mTht and 
human Tht cells were homologous, in particular when compared 
to CD4+ Treg cells and naive T cells (Fig. 5f). Compared to Treg cells, 
both human and mouse Tht cells lack expression of Foxp3 and Il2ra 
and upregulate Bhlhe40, Cd200, Hif1a, Tigit, Pdcd1, Tnfsf8, Il21 and 
Nfatc1 (ref. 32) (Fig.  5f). Notably, human Tht cells, but not mTht 
cells, also upregulated molecules related to T-cell cytotoxicity (such 
as GZMB, CCL5 and HOPX; Fig. 5f). Taken together, our results 
reveal the unique molecular signature of human and mouse Tht 
cells compared to other known CD4+ T subsets, including, classical 
murine TFH and Treg cells.

We next explored the cell dynamics of mTht cells and their 
possible migration from tdLNs to the TME. For this purpose, we 
collected and profiled endogenous TCRβ+ T cells and adoptively 
transferred OT-II CD45.1+TCRβ+ T cells from the TME on days 
10 and 17, in addition to cells from the tdLNs and cLNs on day 10 

following tumor injection. We used K-means clustering to identify 
13 gene expression patterns that are either uniquely expressed or 
shared between the different conditions (cell types, tissues and time 
points; Fig. 5g). We found that tdLN-derived OT-II cells at day 10 
maintained a naive state compared to tumor-infiltrating T cells 
(Tcf7, Lef1, Sell and Ccr7; clusters I and III; Fig.  5g), while also 
upregulating an mTht-related activation program (Cd200, Btla and 
Nfatc1; cluster II, Tiam1, Hif1a and Il21; cluster IV, Maf, Batf and 
cluster XII). Notably, the mTht cell gene signature first appeared in 
TME-derived OT-II infiltrating T cells only on day 17 (cluster IV 
and XII), with the upregulation of additional mTht-related genes 
(Pkm, Mif and Tigit; cluster XIII). Antigen-specific OT-II T cells 
from the TME were significantly different from their polyclonal, 
mostly CD8+ T cell, counterparts (Fig. 5g).

Confocal imaging confirmed the presence of CD45.1+PD-1+ 
mTht cells in the tdLNs (Fig. 5h) and in the TME (Fig. 5i). Lower 
numbers of CD45.1+ OT-II cells in cLNs compared to tdLNs, 
observed by FACS quantification and confocal imaging, further 
corroborated their accumulation specifically in the tumor niche 
(Extended Data Fig. 5b,f). Notably, mTht cells within the tdLN were 
localized in proximity and with physical contact to CD11c+ myeloid 
cells (Fig. 5h).

We next investigated whether the mTht cell state was primed 
upon physical interactions and antigen presentation by myeloid 
cells in the tdLNs. Focusing on day 10 after injection when 
mTht cells accumulate in the tdLNs, we isolated and performed 
MARS-seq on 3,406 QC-positive CD11c+ myeloid cells from the 
tdLNs and cLNs and analyzed them using the MetaCell package 
(Extended Data Fig.  6a). We additionally analyzed single TCRβ+ 
and CD45.1+TCRβ+ T cells from the cLNs and tdLNs, grouping the 
metacells into naive T, proliferating T, bystander CD8+ T, cytotoxic 
CD8+ T, OT-II mTht− and OT-II mTht+ cell subsets (according to 
whether they express high or low levels of the mTht cell gene signa-
ture; Supplementary Table 4 and Extended Data Fig. 6b). PIC-seq 
analysis of 1,939 TCRβ+CD11c+ PICs facilitated comparative com-
position and transcriptional analysis of myeloid and T cells interac-
tion in tdLNs and cLNs (Extended Data Fig. 6c,d).

We observed significant depletion of naive and CD8+ T cells 
in tdLN PICs (P = 0.012 and 0.0039, respectively, false discovery 
rate (FDR)-adjusted two-tailed Mann–Whitney U-test), alongside 
enrichment of OT-II mTht+ (P = 0.0039) and cytotoxic CD8+ T cells 
(P = 0.0039) in tdLN PICs (Extended Data Fig.  6e,f). Comparing 
gene expression observed in PICs relative to values expected by the 
singlet model in OT-II mTht+ and OT-II mTht− (Extended Data 
Fig.  6g), revealed that OT-II mTht+ PICs exclusively upregulated 
general T-cell activation genes in response to antigen stimulation 
(Npm1, Mif and Tpi1)33,34. Moreover, the OT-II mTht+ PIC-specific 
gene signature was characterized by a pronounced induction of 
Tigit, Eomes and Xcl1 (Extended Data Fig. 6g). These results suggest 

Fig. 5 | Differentiation to mTht cell state is restricted to tdLNs and tumor site. a, Schematics of the experimental design. b, Distribution of the mTht 
cell signature in 11,292 total T (TCRβ+) and OT-II T (CD45.1+TCRβ+) single cells collected from the cLNs and tdLNs, at days 10 and 17 following tumor 
cell injection. The central mark in the box plot is the median, with 5th and 95th percentiles at the whiskers, 25th and 75th percentiles at the box and 
minima and maxima marked by dots. Circles indicate median signature in biological replicates. Data summarize two independent experiments; n = 6 
day 9 tdLNs; 7 day 17 tdLNs; 8 day 10 cLNs and 3 day 17 cLNs. c–e, Differential gene expression (log2 fold change) between CD45.1+TCRβ+ OT-II T cells 
from tdLNs and cLNs (c), LN-derived CD4+CD45.1+ICOS+PD-1+CXCR5+ TFH cells after rVSV infection and CD45.1+ T cells from non-infected mice (d) and 
between tumor-activated T cells and LPS-activated T cells from in vitro experiments (Fig. 4c) (e). f, Comparing human and mouse Tht cells. Differential 
gene expression (log2 fold change) between the top 100 cells featuring highest tumor-activation signature in the tdLN and LN-derived Treg cells (left) or 
polyclonal tdLN TCRβ+ cells (right; red), compared to human Tht cells versus Treg cells (left) or human Tht cells versus naive cells (right) from human 
breast TME (cyan, Extended Data Fig. 3a). g, K-means clustering of pooled tumor-activated OT-II T cells from day 10 tdLNs, day 10 TME and day 17 TME, 
as well as polyclonal T cells from day 10 and 17 TME. Values represent log2 enrichment over the row mean; n = 4 day 10 TME; n = 2 day 17 TME.  
h, Representative confocal microscopy images of tdLNs (left) and tumor (right) sections extracted 10 and 17 d following tumor cell injection, stained for 
CD45.1+ (OT-II) T cells, PD-1 and CD11c proteins. Scale bar, 30 μm; arrows indicate conjugates; asterisks indicate OT-II mThts. mCherry+ B16-OVA tumor 
cells and PE-conjugated CD11c+ DCs were identified by exclusive morphological properties. Inset highlights conjugates of mTht cells with CD11c+ DCs. 
Images are representative of two independent experiments *P < 0.05, **P < 0.001, ***P < 10−5.
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a possible differentiation and activation trajectory into a mature 
mTht cell state, which is shown here to be dependent on the physi-
cal stimulation by antigen-presenting DCs.

Tht cells facilitate ICB antitumor response. PD-1-elevated expres-
sion in Tht cells (Fig. 3a), as well as Tht cell high affinity to tumor 
antigens, prompted us to investigate whether Tht cells play a promi-

nent role in effective anti-PD-1 therapy. Analysis of human breast 
cancer lesions before and 9 d after anti-PD-1 blockade28 (Fig.  3) 
revealed a significant increase in both Tht-I and Tht-II numbers 
upon treatment across patients (P = 0.019 and 0.0078, respectively; 
two-tailed paired Mann–Whitney U-test; Fig. 6a). This result impli-
cates an immediate and potentially direct response of both Tht-cell 
subsets to anti-PD-1 ICB. To directly test the function of mTht cells 
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in tumor response in the context of anti-PD-1 treatment, C57/6J 
WT mice were adoptively transferred with splenic CD45.1+CD4+ 
OT-II T cells 10 d following subcutaneous injection of B16-OVA 

and then treated with anti-PD-1 at days 11, 14 and 17 following 
tumor injection (Fig.  6b).
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Fig. 6 | mTht cell role in response to anti-PD-1 immunotherapy. a, Changes in Tht-I and Tht-II numbers in breast cancer TME following anti-PD-1 
treatment. Values represent log2 fold change between post- and pre-treatment biopsies. Each dot represents one patient. Two-tailed paired Mann–
Whitney U-test; n = 36 patients with breast cancer. b, Experimental design. Mice were injected subcutaneously with B16 melanoma cells presenting 
OVA. Adoptive transfer of OT-II CD4+CD45.1+T cells was performed 10 d after tumor cell injection and followed by three anti-PD-1 injections on days 11, 
14 and 17. c, Tumor growth measurements of OT-II-transferred mice treated with anti-PD-1 (OT-II + anti-PD-1), compared to only anti-PD-1 treated mice 
(control + anti-PD-1), only OT-II-transferred mice (OT-II) and control WT mice (control); n = 13 OT-II + anti-PD-1; 13 OT-II; 15 control + anti-PD-1; and 
15 control WT mice. d, Tumor growth measurements of OT-II- or OT-I-transferred B16-OVA tumor-bearing mice, treated with anti-PD-1. FDR-adjusted 
pairwise two-tailed Mann–Whitney U-test; n = 13 OT-II + anti-PD-1; and 15 OT-I + anti-PD-1 mice. The central mark in box plots is the median, with 5th 
and 95th percentiles at the whiskers, 25th and 75th percentiles at the box and minima and maxima marked by dots. FDR-adjusted pairwise two-tailed 
Mann–Whitney U-test. Data are representative of two independent experiments with similar results. e, K-means analysis of TCRβ+ and CD45.1+TCRβ+ 
OT-II cells derived from tdLNs of mice treated with anti-PD-1 or control 17 d after tumor injection. Day 10 tdLN and cLN T cells from Fig. 5b were included 
for comparison. Shown are genes from cluster 11 (Extended Data Fig. 7b). Values represent log2 fold change over the median.
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reduction, starting from day 17 following tumor injection (Fig. 6c). 
Notably, tumor response required the combined effect of mTht cells 
and anti-PD-1 treatment, as tumors in mice that received only OT-II 
or only PD-1 blockade grew similarly to control mice (Fig. 6c). Of 
note, in this specific model, the effect of anti-PD-1 efficacy was sig-
nificantly greater when combined with CD4+ OT-II compared to 
CD8+ OT-I T cells (Fig. 6d).

To better define the molecular reprograming of mTht cells upon 
anti-PD-1 treatment, we performed MARS-seq on 2,867 polyclonal 
TCRβ+ and OT-II CD45.1+TCRβ+ T cells from tdLNs of adoptively 
transferred mice 17 d following tumor injection, with and without 
administration of anti-PD-1. We used K-means clustering to iden-
tify coordinated transcriptional changes compared to day 10 cLN 
and tdLN polyclonal and OT-II T cells (Extended Data Fig.  7a). 
Anti-PD-1 treatment induced a strong type I interferon (IFN) gene 
expression in both polyclonal and OT-II T cells (cluster 4; Extended 
Data Fig. 7b). Of note, we observed that only OT-II T cells, in mice 
treated with anti-PD-1, induced a gene expression program (such as 
Maf, Hif1a, Btla, Tnfsf4 and Nfatc1) reminiscent of day 10 mTht cells 
from tdLNs (cluster 11; Fig. 6e and Extended Data Fig. 7c), suggest-
ing that anti-PD-1 blockade causes tumor-specific T cells to retain 
their mTht cell signature for a longer duration in tdLNs. Together, 
these results point to a direct involvement of Tht cells in the anti-
tumor efficacy of anti-PD-1 treatment and highlight the molecular 
reprograming of mTht cells upon anti-PD-1 treatment.

Discussion
We reported the common physical interaction between CD4+PD-
1+CXCL13+ T cells, which we named Tht cells, and DC-LAMP+ 
mregDCs in human NSCLC lesions. We show that Tht cells pref-
erentially interact with DCs than effector CD8+ T cells within 
TME. We further show, using an experimental mouse model, that 
Tht cell differentiation, expansion and maintenance are correlated 
with tumor antigen presentation in tdLNs and within the TME. The 
unbiased nature of PIC-seq for unraveling cell–cell physical inter-
actions provides unexpected insights into the complex interaction 
dynamics driving tumor immunity. Our data suggest the presence 
of at least two distinct T-cell populations, CD8+ effector/dysfunc-
tional and Tht cells, which respond specifically to tumor antigen 
presentation by clonal expansion that reshapes the TME. However, 
we still cannot describe how such interactions are combined with 
additional active niches in the TME, such as Treg, effector T, myeloid 
and NK cells, to promote or repress tumor killing, in particular in 
response to therapy.

Tht cells were previously classified as putative TFH cells or 
exhausted CD4+ T cells in melanoma, colorectal and breast tum
ors11,19,35,36, but their antigen specificity, molecular characterization, 
function and specificity in the TME is poorly understood. Here we 
showed that mouse Tht cells are characterized by a gene expression 
signature shared by the classical mouse TFH cells induced by rVSV 
infection, with a few important distinctions. The Tht cells express a 
unique gene signature consisting of B cells and DC-attraction and 
activation cytokines (CXCL13, IL21 and XCL1) and immune check-
points, including high levels of PD-1, CTLA4 and TIGIT. The prev-
alence of the Tht cell signature in different human cancer types was 
shown to correlate with better survival37 or response to ICB ther-
apy25 in colorectal cancer and with enhanced antitumor immunity 
in breast cancer lesions35,36. The data we present here highlight Tht 
cells as a potential hub of interaction with APCs in the TME and a 
direct target of anti-PD-1 ICB, suggesting that the role of these cells 
in promoting successful immunotherapy is likely to be involved 
with their interactive capacity. Whether immunotherapy triggers 
the depletion of the Tht cell niche and subsequent effector func-
tion de-repression or induction of de novo Tht cell differentiation 
that promotes the helper activity and release of immunomodulating 
cytokines in the TME, is still unclear. Some of these behaviors may 

be linked to data from recent studies that unraveled the key contri-
butions of tissue-resident memory T cells to microbial and tumor 
immunity38,39, or to recent reports on induction of antigen-specific 
CD4+ T cells following neoantigen vaccination in glioblastoma40.

Our data also unravel the centrality of mregDCs in TME orga-
nization. Two studies have showed that response to PD-1 blockade 
requires CD28 engagement on T cells41,42. As CD28 is engaged by 
B7, expressed mainly by APCs, these studies emphasize the need for 
APCs for maximal response to PD-1 blockade. In the context of our 
results, these findings may suggest that APCs may actively engage 
or re-engage Tht cells upon PD-1 blockade, leading to their differ-
entiation or expansion rather than simply perturbing their static 
functions in the TME. More in-depth T cell–DC interaction map-
ping using PIC-seq, as we introduce here, combined with the rap-
idly expanding set of tumor single-cell atlases and spatial single-cell 
tumor maps43–45 have the potential to transform our understanding 
of the mechanisms that control durable response to immunotherapy 
and guide the development of therapeutic strategies to harness this 
knowledge.

Methods
The research complies with all relevant ethical regulations. The human NSCLC 
specimen protocol was approved by the Institutional Review Board (IRB) at 
the Icahn School of Medicine at Mount Sinai (IRB Human Subjects Electronic 
Research Applications 10-00472 and 10-00135). The mouse experimental protocol 
was approved by the Weizmann Institutional Animal Care and Use Committee 
(03150320-1 and 00580121-2) and by the Institutional Animal Committee of the 
San Raffaele Scientific Institute (670). Further information on the research design 
is available in the Nature Research Reporting Summary linked to this article.

Human samples. Tumor and adjacent healthy lung tissues were obtained from 
surgical specimens of NSCLC (Supplementary Table 1) patients undergoing 
resection at the Mount Sinai Medical Center after obtaining informed consent 
in accordance with a protocol reviewed and approved by the IRB at the Icahn 
School of Medicine at Mount Sinai and in collaboration with the Biorepository and 
Department of Pathology and the Weizmann Institute of Science.

Mice. C57BL/6 WT female mice were obtained from Harlan. TCR-transgenic 
OT-II male mice (harboring OVA-specific CD4+ T cells) were a kind donation 
from the laboratory of N. Friedman of the Weizmann Institute of Science. Mice 
were housed under specific-pathogen-free conditions at the Animal Breeding 
Center of the Weizmann Institute of Science and were used at age 8–10 weeks. 
SMARTA46 donor mice were obtained through the Swiss Immunological Mouse 
Repository (SwImMR). All animals were handled according to the regulations 
formulated by the Institutional Animal Care and Use Committee. Mice were 
housed in conditions of 12/12 h dark/light cycle, 22 ± 1 °C ambient temperature 
and 50 ± 10% humidity.

Cell lines. B16 melanoma cells (H2b), stably expressing chicken ovalbumin 
(B16-OVA) and mCherry fluorescent labeling, were kindly provided by L. 
Eisenbach’s laboratory and maintained in DMEM (Invitrogen) supplemented 
with 10% FCS, 1 mM l-glutamine, 100 U ml−1 of penicillin and 100 mg ml−1 of 
streptomycin in a humidified 5% CO2 atmosphere at 37 °C.

In vitro cultures. Cells were isolated from the spleens of 8-week-old C57BL/6 
female mice. Splenocytes were washed and suspended in red blood lysis buffer 
(Sigma-Aldrich) and DNase I (0.33 U ml−1, Sigma-Aldrich), incubated for 5 min 
at room temperature, washed twice with cold PBS, filtered through a 70-μm cell 
strainer, centrifuged at 400g for 5 min at 4 °C and then resuspended in ice-cold 
sorting buffer (PBS supplemented with 0.2 mM ethylenediaminetetraacetic acid, 
pH 8, and 0.5% BSA). DCs derived from spleen tissues were enriched from the 
single-cell suspension first by negative magnetic selection for CD19 and second 
by positive magnetic selection for CD11c. Briefly, cells were incubated with CD19 
MicroBeads (Miltenyi Biotech) for 15 min at 4 °C, washed and run through a 
MACS column (Miltenyi Biotech). A negative fraction of cells was collected for 
further incubation with CD11c MicroBeads Ultrapure (Miltenyi Biotech) for 
10 min at 4 °C and a positive fraction of CD11c+ cells was collected. After cell 
counting 1 × 106 DCs were co-cultured with 1 × 106 B16-OVA cells in 96-well 
U-bottomed tissue culture plates in 200 μl of standard medium RPMI-1640 
supplemented with 10% fetal calf serum (FCS), 1 mM l-glutamine, 100 U ml−1 
penicillin and 100 mg ml−1 streptomycin (Biological Industries) for 2 h at 37 °C. In 
parallel, we isolated CD4+ T cells from spleens of CD45.1 OT-II male mice. Again, 
cells were washed and suspended in red blood lysis buffer (Sigma-Aldrich) and 
DNase I (0.33 U ml−1, Sigma-Adrich), incubated for 5 min at room temperature, 
washed twice with cold PBS, filtered through a 70-μm cell strainer and centrifuged 
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at 400g for 5 min at 4 °C. CD4+ T cells were enriched by the CD4+ T-cell Isolation 
kit, according to the manufacturer’s instructions (Miltenyi Biotech). Briefly, 
splenocytes were incubated with biotin antibody cocktail for 5 min and afterward 
anti-biotin microbeads were added for an additional 10 min incubation. We 
collected the CD4+ T cells, which were the unlabeled fraction. For culture 
experiments, we performed triple culture of CD4+ T, DCs and B16-OVA cells, 
co-cultures of CD4+ T and B16-OVA cells and monocultures of CD4+ T cells. 
Triple-, co-cultured and monocultured cells were seeded at a concentration of 
1 × 106 cells ml−1 (1:1 ratio in co-cultures) and following 20 h. All cultures were 
carried out in the standard medium RPMI-1640 supplemented with 10% FCS, 
1 mM l-glutamine, 100 U ml−1 penicillin and 100 mg ml−1 streptomycin.

Mouse tumor model. For investigation of physical interactions in TME, tdLNs 
and cLNs, 2 × 106 B16-OVA tumor cells were suspended in 100 μl PBS and injected 
subcutaneously (s.c.) into 8-week-old female mice. CD4+ T cells were isolated 
from splenocytes of OT-II male mice. Briefly, splenocytes were washed and 
suspended in red blood lysis buffer (Sigma-Aldrich) and DNase I (0.33 U ml−1, 
Sigma-Aldrich), incubated for 5 min at room temperature, washed twice with cold 
PBS, filtered through a 70-μm cell strainer and centrifuged at 400g for 5 min at 
4 °C. CD4+ T cells were enriched by the CD4+ T-cell Isolation kit, according to the 
manufacturer’s instructions (Miltenyi Biotech). CD4+ T cells were collected and 
intravenously injected (2 × 106 CD4+ cells per mouse) 6 d following B16-OVA cell 
injection. Mice were then injected intraperitoneally (i.p.) with OVA 323-339 (10 μg 
per mouse; InvivoGen) diluted in PBS containing 30% alum adjuvant (Imject 
Alum adjuvant; Thermo Fisher Scientific), at days 7 and 8 following B16-OVA cell 
injection. Solid tumors, tdLNs and cLNs were collected 10 and 17 days following 
B16-OVA cell injection (Fig. 5a).

For in vivo functional experiments, 8–10-week-old female mice were injected 
s.c. with 2 × 106 B16-OVA tumor cells suspended in 100 μl PBS on their right 
flank. CD4+ T cells were isolated from spleens of OT-II male mice and 3 × 106 
cells were i.v. injected to mice 10 d following tumor cells injection. To examine 
the efficacy of PD-1 blockade in relation to OT-II T-cell function, mice were i.p. 
injected with 250 μg of anti-PD-1 (clone RMP1-14, BioXcell) or isotype control 
(rat IgG2a, BioXcell) on days 11, 14 and 17 following tumor cell injection. Tumor 
size was measured blindly to the conditions of the experiments by a caliper every 
2 d and tumor volume was calculated by measuring two diameters and using the 
formula: X2 × Y × 0.52 (X, smaller diameter; Y, larger diameter). Solid tumors, 
tdLNs and cLNs were also collected 17 d following tumor cell injection for 
scRNA-seq experiments (Fig. 6b). Mice were monitored so that the maximal tumor 
size of 1.5 cm in diameter was not exceeded. No statistical methods were used to 
predetermine sample sizes; our distribution of tumor sample sizes was similar to 
those reported in a previous publication16.

Tissue dissociation. To derive a single-cell suspension in human NSCLC 
specimens, 0.1–0.4 g of tumor and adjacent healthy tissues were cut into small 
pieces and then mechanically dissociated by pipetting. Tissues were suspended 
with CO2 Independent Medium (Thermo Fisher Scientific) supplemented with 
DNase (100 μg ml−1, Sigma-Aldrich) and collagenase IV (0.5 mg ml−1, Worthington) 
and incubated at 37 °C for 20 min, with frequent agitation.

To achieve single-cell suspensions in the murine model, tumors were cut 
into small pieces and suspended with RPMI-1640 supplemented with DNase 
(28 μg ml−1, Sigma-Aldrich) and collagenase IV (1 mg ml−1, Worthington). Tissues 
were homogenized by GentleMacs tissue homogenizer (Miltenyi Biotec) and 
incubated at 37 °C for 10 min, with frequent agitation. This tissue dissociation 
procedure was performed twice for each tumor.

To achieve single-cell suspensions from tdLNs and cLNs, tissues were digested 
in Iscove’s modified Dulbecco’s medium (Sigma-Aldrich). For mild dissociation, 
tissues were supplemented with Liberase-TL (100 μg ml−1, Roche) and DNase I 
(100 μg ml−1, Roche) and incubated with frequent agitation at 37 °C for 20 min.

After all dissociation procedures, cells were washed with cold PBS, filtered 
through a 70-μm/100-μm cell strainer and centrifuged at 380g for 5 min at 4 °C.

Flow cytometry and sorting. Cells were suspended in ice-cold sorting buffer (PBS 
supplemented with 0.2 mM ethylenediaminetetraacetic acid, pH 8, and 0.5% BSA) 
supplemented with anti-mouse CD16/32 (BD Bioscience) or anti-human TruStain 
FcX (BioLegend) to block Fc receptors before labeling with fluorescent antibodies 
against cell-surface epitopes. Murine samples were stained using the following 
anti-mouse antibodies: eFluor450-conjugated TER-119, eFluor450-conjugated 
NK1.1, PerCP Cy5.5-conjugated streptavidin and Pacific blue-conjugated CD19 
(eBioscience); and PerCP Cy5.5-conjugated TCRβ, FITC-conjugated TCRβ, 
APC-Cy7-conjugated CD11c, APC-conjugated CD45.2, PE-Cy7-conjugated 
CD45.1, APC-conjugated CD279 (PD-1) and biotin-conjugated CXCR5 
(BioLegend). Human samples were stained using the following anti-human 
antibodies: Pacific blue-conjugated CD235a, FITC-conjugated TCRβ, 
PE-conjugated CD11c and PE-conjugated CD64 (BioLegend); APC-conjugated 
CD45 (eBioscience) and Pacific blue-conjugated CD19 and PE-Cy7-conjugated 
CD56 (BD Biosciences). Before sorting, cells were stained with DAPI for 
evaluation of live/dead cells. Cell populations were sorted using either SORP-aria 
(BD Biosciences) or ARIA-III instrument (BD Biosciences) and analyzed using BD 

FACSDIVA software (BD Biosciences) and FlowJo software. Isolated live cells were 
single-cell sorted into 384-well cell-capture plates containing 2 μl lysis solution 
and barcoded poly(T) reverse-transcription primers for single-cell RNA-seq27,47. 
Four empty wells were kept in each 384-well plate as a no-cell control during 
data analysis. Immediately after sorting, each plate was spun down to ensure cell 
immersion into the lysis solution and stored at −80 °C until processing.

rVSV infection model. Female mice at 8–10 weeks old were infected intra-footpad 
with 1 × 105 plaque-forming units (p.f.u.) of rVSV (a recombinant VSV expressing 
an LCMV glycoprotein recognized by SMARTA TCR-transgenic cells)31. Naive 
CD4+ T cells from spleens of SMARTA female CD45.1 mice were negatively 
selected by magnetic isolation (Miltenyi Biotec), with purity >98%. SMARTA 
CD45.1+ T cells (1 × 106) were injected i.v. into C57BL/6 CD45.2 recipients 1 d 
before intra-footpad rVSV infection.

Single-cell suspensions of footpad dLNs 5 d after infection were generated as 
described31,48. Single-cell populations from rVSV-infected mice (CD4+CD45.1+ 
or CD4+CD45.1+PD-1+ICOS+ cells) were sorted using the following flow 
cytometry antibodies: APC-CXCR5 (2G8; BD Biosciences), APC-Cy7-CD45.1 
(A20; BioLegend), eFluor450-CD4 (RM4-5; eBioscience), BV605-ICOS 
(C398.4A; BioLegend), PE-PD-1 (J43; eBioscience), AxFl488-B220 (RA3-6B2; 
BioLegend), AxFl488-NK1.1 (PK136; BioLegend) and PE-Cy7-CD8a (53-6.7; 
BioLegend). Live/Dead Fixable Aqua Dead Cell Stain (Thermo Fisher Scientific) 
was used to exclude dead cells. Sorting was performed following exclusion of 
doublets, dead cells and B220+ B cells, NK1.1+ NK cells, CD8a+ T cells and 
Ter119+ erythrocytes.

Immunohistochemistry. For spatial examination in human specimens, FFPE 
sections were baked at 37 °C overnight, de-paraffinized in xylene and rehydrated 
in decreasing concentrations of ethanol. Tissue sections were incubated in citrate 
buffer (pH 6) for antigen retrieval at 95 °C for 30 min. After three PBS washes, we 
added blocking buffer (5% donkey serum in PBST and 0.1% Triton X-100) for 
1 h at room temperature. After blocking, all primary antibodies were incubated 
at 4 °C overnight: rat DC-LAMP (1:200 dilution, Novusbio), goat CXCL13 (1:50 
dilution, R&D Systems), rabbit CD4 (1:100 dilution, Novusbio), mouse CD272 
(BTLA, 1:100 dilution, Abcam), rabbit PD-1 (1:100 dilution, Abcam) and rabbit 
PRDM1/Blimp1 (1:100 dilution, Abcam). After three PBST washes (0.01% 
Tween-20; Sigma-Aldrich) corresponding secondary antibodies were used 
simultaneously for 1 h at room temperature. After three PBST washes (0.01% 
Tween-20; Sigma-Aldrich), a TrueVIEW auto-fluorescence quenching kit (SP-
8400) was applied before nuclei staining with DAPI for 6 min and coverslips were 
then mounted on slides with anti-fade mounting medium in the auto-fluorescence 
quenching kit. Mounted slides were kept in the dark before image acquisition.

For spatial examination in mouse model, frozen sections of tdLNs, cLNs 
and tumors were taken 10 and 17 d after B16-OVA cell injection. Lymph nodes 
and tumors were fixed in 4% PFA solution for 4 h and then transferred to 30% 
sucrose solution for 2 d. Tissues were embedded in Optimal Cutting Temperature 
compound (Sigma-Aldrich) and 10-μm sections were taken using a LEICA 
CM1950 machine. For visualization of T cells and DCs, following washes, the 
sections were first blocked with a blocking buffer solution (5% FBS, 1% BSA and 
0.2% Triton) for 2 h at room temperature. Sections were incubated with primary 
antibodies overnight at 4 °C. The antibodies used were APC-conjugated CD279 
(PD-1) (1:100 dilution; BioLegend), Alexa Fluor 488-conjugated CD45.1 (1:100 
dilution; BioLegend) and PE-conjugated CD11c (1:100 dilution; BioLegend). 
Sections were washed three times with PBST (0.01% Tween-20; Sigma-Aldrich) 
and DAPI was added for 10 min to detect cell nuclei and before washing with 
PBST (0.01% Tween-20; Sigma-Aldrich). Sections were mounted with SlowFade 
(Invitrogen) and sealed with coverslips. Microscopic analysis was performed using 
a laser-scanning confocal microscope (Zeiss, LSM880). Images were acquired and 
processed using Imaris software (Bitplane).

Multiplex imaging analysis of human tissue sections. FFPE tissue sections 
(4 µm) were stained using the MICSSS protocol as previously described49. Briefly, 
slides were baked at 50 °C overnight, de-paraffinized in xylene and rehydrated in 
decreasing concentration of ethanol (100%, 90%, 70%, 50% and dH2O). Sample 
slides were incubated in pH 6 or pH 9 of Target Retrieval Solution (Dako) at 95 °C 
for 30 min, then in 3% hydrogen peroxide for 15 min and in serum-free protein 
block solution (Dako) for 30 min. Primary antibody staining was performed 
using the optimized dilution during 1 h at room temperature or at 4 °C overnight, 
followed by signal amplification, using associated secondary antibody conjugated 
to horseradish peroxidase (HRP) during 30 min. Chromogenic revelation was 
performed using AEC (Vector). Tissue sections were counter-stained with 
hematoxylin, mounted with a glycerol-based mounting medium and finally 
scanned to obtain digital images (Aperio AT2, Leica). Then, the same slides were 
bleached and stained again, including specific blocking for previous similar species 
antibody staining (monovalent Fab fragment). Primary antibodies were used in 
the following order: anti-human PD-1 (polyclonal, Sigma-Aldrich), anti-human 
CD8 (clone C8/144B, Dako), anti-human CD3 (clone 2GV6, Ventana), anti-human 
CD68 (clone KP1, Dako), anti-human DC-LAMP (clone 1010E1.01, Novus 
Biologicals) and anti-human CD20 (clone L26, Dako).
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MARS-seq library preparation. Single-cell libraries were prepared as previously 
described27,47. In brief, messenger RNA from cells sorted into cell-capture plates 
was barcoded and converted into complementary DNA and pooled using an 
automated pipeline. The pooled sample was then linearly amplified by T7 in vitro 
transcription and the resulting RNA fragmented and converted into a sequencing 
ready library by tagging the samples with pool barcodes and Illumina sequences 
during ligation, reverse transcription and PCR. Each pool of cells was tested for 
library quality and concentration assessed as described earlier. Primer barcodes 
and genes, for library preparations and for qPCR validations, were used according 
to the MARS-seq 2.0 protocol27.

MARS-seq low level data processing. scRNA-seq libraries (pooled at equimolar 
concentration) were sequenced on an Illumina NextSeq 500 or NOVA-seq, at a 
median sequencing depth of 15,054 reads per cell. Sequences were mapped to the 
mouse genome (mm10) or human genome (hg38), demultiplexed and filtered 
as previously described45,46 with the following adaptations. Mapping of reads was 
performed using HISAT (v.0.1.6); reads with multiple mapping positions were 
excluded. Reads were associated with genes if they were mapped to an exon, 
using the UCSC Genome Browser for reference. We estimated a median of 2% 
spurious unique molecular identifiers (UMIs) in the data using statistics on empty 
MARS-seq wells. Cells with <500 UMIs, >500,000 UMIs or >40% mitochondrial 
genes were excluded from analysis. We used the MetaCell package23 to analyze all 
scRNA-seq data collected in this study and to derive background metacell covers 
of the single-cell populations for PIC-seq analysis, as described below. Default 
parameters were used unless otherwise stated.

PIC-seq summary. Assignment of PICs to their T-cell and myeloid cell identities 
was performed as previously described with necessary adjustments22. In short, PICs 
are modeled as a linear mixture of pairs of contributing cells. Each contributing 
cell (T cell or myeloid) belongs to a metacell from the respective T-cell or myeloid 
background models calculated over the singlet populations and its gene expression 
is sampled from the multinomial probability distribution of that metacell. The 
mixing factor, α, assigned for each PIC, denotes the fraction of UMIs contributed 
by the contributing T cell to that PIC.

The PIC-seq algorithm operates in two steps. First, it applies a linear regression 
model trained on synthetic PICs to infer α for each PIC. Second, it constructs 
all possible combinations of metacells from populations A and B mixed by α 
and calculates the expected gene expression distributions of these mixtures. A 
maximum likelihood estimator is applied on each PIC, to derive two metacells 
whose mixture is most likely to give rise to the PIC.

MetaCell model of human lymphocytes from NSCLC TME. We derived a 
MetaCell cover of TCRβ+ T and CD64+CD11c+ myeloid cells from ten matched 
biopsies of NSCLC tumors and adjacent healthy tissue. Mitochondrial genes and 
the highly variable immunoglobulin genes (IGH, IGK and IGL prefixes) were 
removed from the UMI tables. Gene features for MetaCell covers were selected 
using the parameter Tvm = 0.2, total UMI > 20 and more than three UMIs in at 
least three cells. We filtered the list of gene features used for MetaCell analysis 
from genes associated with cell cycle, immediate stress response and gene modules 
inducing strong patient-specific biases. To this end we first identified all genes with 
a correlation coefficient of at least 0.1 for one of the anchor genes TOP2A, MKI67, 
PCNA, MCM4, UBE2C (cell cycle), HSPA1B, HSPA1A, HSP90AA1, DNAJB1, 
FOS, EGR1, IER3, FOSB (stress response), MTRNR2L8, RPS3AP5, MTRNR2L12, 
AC005912.1, RPS24P8, RPL10P9, MTCO2P12, MTND2P28, BIRC3, SYNE2, XIST, 
Y_RNA, SYNE1, FTH1, FTH1P8, RPS2P7 and RPS27AP16 (patient specific). We 
then hierarchically clustered the correlation matrix between these genes (filtering 
genes with low coverage and computing correlation using a downsampled UMI 
matrix) and selected the gene clusters that contained the above anchor genes. We 
thus retained 373 genes as features. We used MetaCell to build a k-NN graph, 
perform boot-strapped co-clustering (500 iterations; resampling 70% of the cells in 
each iteration) and derive a cover of the co-clustering k-NN graph (K = 50). Outlier 
cells featuring gene expression higher than fourfold than the geometric mean in the 
metacells in at least one gene were discarded.

Detailed annotation of the different T and myeloid subsets was performed 
using hierarchical clustering of the MetaCell confusion matrix (Extended 
Data Fig. 1f) and supervised analysis of enriched genes according to literature 
(Fig. 1d,e). Two metacells, annotated as mast cells (by high expression of CPA3 and 
GATA2) and B cells (expressing CD79B) were removed from further analysis.

PIC-seq analysis of human lymphocytes. To derive genes that would serve as 
features for the linear regression, We selected the top 100 genes most correlated 
with total UMI count genes in the T cell and myeloid cell populations, as well the 
features in the MetaCell cover, retaining 498 features (Supplementary Table 5). 
Both synthetic and real PIC matrices were downsampled to 800 UMIs per cell 
(numis = 800). The R2 value for estimating the mixing coefficient over the synthetic 
PIC was 65.8% (Extended Data Fig. 2a).

To derive genes for computing the maximum likelihood estimation (MLE) 
assignment, we chose the top 20 differential genes in each T cell (or myeloid 
cell)-associated metacell.




 We combined this set of genes with the genes used as Q11

features in the metacell cover, but discarded genes that are highly differential 
both in the T cell and DC MetaCell models, as well as ribosomal and poorly 
annotated genes, retaining 337 genes (Supplementary Table 5). To validate the 
MLE assignment, we computed the error in assignments over 5,000 synthetic PIC 
(Extended Data Fig. 2b).

We further filtered putative PICs suspected as singlets as follows: We computed 
for each PIC its likelihood when modeled as a singlet originating from its assigned 
T (if α ≥ 0.5) or myeloid (if α < 0.5) metacell. Putative PICs whose likelihoods 
when modeled as doublets were not greater than when modeled as singlets 
(lldoublet − llsinglet ≤ 0) were determined as singlets and discarded from downstream 
analysis (Extended Data Fig. 2c). In addition, we noticed that PICs of TCRβ+ 
T cells and CD11c+CD64+ NK cells were poorly modeled by PIC-seq due to their 
high transcriptional resemblance (R2 = 40% for α estimation; Extended Data 
Fig. 2a). Therefore, PICs assigned by PIC-seq to NK metacells were subsequently 
discarded from downstream analysis (Extended Data Fig. 2b).

Reanalysis of T cells from human melanoma and breast cancer. MetaCell 
analysis of 39,445 T cells from human melanoma and 67,538 was performed 
similarly to NSCLC. We found the same T-cell subsets in both cancer types, in 
addition to a subset featuring high expression of type I IFN response genes (STAT1 
and IFIT1; Extended Data Fig. 3a).

To derive a CD4+PD-1+CXCL13+ signature shared between NSCLC, breast 
cancer and melanoma, we pooled T cells from each tumor type by their T-cell 
subset annotation and extracted all genes differentially expressed between 
CD4+PD-1+CXCL13+ and any other T-cell subsets in any of the tumor types (fold 
change >2.8 or <−2.8, total of 763 genes; Supplementary Table 3). We then applied 
joint K-means clustering (K = 38) over normalized pooled gene expression profiles 
in both datasets (Extended Data Fig. 3b). Genes whose expression within Tht cells 
were twofold or higher than the pooled expression of all other T cells in all cancer 
types were used to define the human CD4+PD-1+CXCL13+ signature, resulting in a 
Tht cell signature of 32 genes (Fig. 3b and Supplementary Table 3).

To explore the clonal relationships of breast cancer (and melanoma) T cells, we 
used published clonal data based on TCR sequencing of 53,044 (5,596) T cells from 
41 (21) patients11. We analyzed 25 (10) patient samples that contained TCR-seq 
data for at least seven annotated T-cell subsets and considered a cell to belong to 
a clone if it shared a TCR sequence with at least one other T cell from the same 
patient. To calculate clone sharing between T-cell subsets, we calculated the joint 
T-cell subset assignments of 10,000 sampled pairs of cells that share clonal data. 
We compared the results (log2 fold change) to the joint T-cell subset assignments 
of 10,000 sampled pairs of cells that originate from the same patient but not 
necessarily from the same clone (Fig. 3h).

To explore Tht-I and Tht-II involvement in PICs, we extracted NSCLC PICs 
assigned to Tht cells and re-ran PIC-seq on a hybrid single-cell reference model, 
where the myeloid cells are derived from the NSCLC TME and the T cells are 
composed of breast Tht-I and Tht-II only.

MetaCell analysis of mouse scRNA-seq data. Two mouse scRNA-seq datasets 
were analyzed separately: (1) in vitro co-culture data and (2) an in vivo adoptive 
transfer experiment. For each dataset, we derived a MetaCell cover of all sequenced 
single cells. Mitochondrial genes and ERCC spike-ins were removed from the 
UMI tables. Gene features for MetaCell covers were selected using the parameter 
Tvm = 0.1, total UMI > 20 and more than three UMIs in at least three cells. We 
filtered the list of gene features used for MetaCell analysis from genes associated 
with cell cycle, tumor cells and erythrocytes and gene modules inducing strong 
batch-effect biases. To this end we first identified all genes with a correlation 
coefficient of at least 0.1 for one of the anchor genes: Top2a, Mki67, Pcna, Mcm4, 
Ube2c, Hist1h1b (cell cycle), Gm10800, Gm10801, Gm22213, Gm22710, Trim30b, 
Trim30c, Gm10059, Tpt1-ps3, Gm7079, Ablim1, Mpp1, Gm24270, Gm10800, 
Gm23388, Bpifa2, Smr3a (batch specific), Mlana, Met (tumor cells), Hbb-a1 and 
Hba-a2 (erythrocytes). We then hierarchically clustered the correlation matrix 
between these genes (filtering genes with low coverage and computing correlation 
using a downsampled UMI matrix) and selected gene clusters that contained 
the above anchor genes. We thus retained 287 (dataset I) and 460 (dataset II) 
as features (Supplementary Table 5). We used MetaCell to build a k-NN graph, 
perform boot-strapped co-clustering (500 iterations; resampling 70% of the cells 
in each iteration) and derived a cover of the co-clustering k-NN graph (K = 30 in 
dataset I and K = 50 in dataset II). Outlier cells featuring gene expression higher 
than fourfold than the geometric mean in the metacells in at least one gene were 
discarded. Metacells featuring high levels of Cd79b (B cells), Mzb1 (plasma cells) or 
Malat1 were annotated as outliers and removed from subsequent analysis.

To compare the tumor-activation gene signature to general T-cell activation, 
we used our previously published data of 1,531 single TCRβ+ T cells isolated 
from co-cultures of OT-II CD4+ T and DCs exposed to LPS and OVA peptide22. 
A total of 688 monocultured T cells from the same experiment were used as 
controls to derived the LPS-activation gene signature (Fig. 4f). To compare the 
tumor-activated T cells from the cLNs and dLNs to LN Treg cells, we used our 
previously published data on T cells from lymph nodes22, including specific 
enrichment of Treg cells by sorting for ICOS+TCRβ+ and TIGIT+TCRβ+  
T cells (Fig. 5e).
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PIC-seq analysis of mouse model. To choose gene features for estimating the 
mixing factor, we first removed those with a strong cell-cycle signature and 
computed correlation with cell size as described above, retaining 464 genes 
(Supplementary Table 5). R2 value was 61% (Extended Data Fig. 6c). Feature 
selection for the MLE assignment was performed similar to PIC-seq of human 
tumors, resulting in 337 genes used as features. To validate the MLE assignment, 
we computed the error in assignments over 5,000 synthetic PICs (Extended Data 
Fig. 6d).

Comparing observed and expected expression. In both human and mouse tumor 
models, we reconstructed the expected levels of a gene in each PIC as previously 
described22. In short, the expected expression of each gene in a certain PIC 
equals the α-weighted sum of the contribution from the T-cell part (which can be 
estimated from the characteristic multinomial distribution of the contributing T 
metacell) and the contribution from the myeloid cell part.

We used an FDR-adjusted chi-squared test to systematically scan for genes 
whose observed values diverge from expected in specific groups of PIC (q < 10−5 in 
human PICs; Fig. 3c and q < 10−4 in mouse PICs; Extended Data Fig. 6g).

Image analysis and quantification. Analysis of MICSSS images was performed 
with CellProfiler50 and magick R package. MICSSS slides were scanned manually 
for areas containing TLSs, resulting in five different regions of interest from 
patient 5. For each region of interest, nuclei segmentation was performed on 
the DAPI channel with CellProfiler using the IdentifyPrimaryObjects method 
(typical diameter 10–30 pixels; 50-pixel window adaptive minimum cross-entropy 
thresholding method; 0.5 threshold-smoothing scale; distinguish clumped 
objects by intensity and draw boundaries by the propagate method) and the 
IdentifySecondaryObjects method with default parameters.

Multichannel images were loaded to R with the magick package, cropped 
and cleaned for background noise by manually picking ten unstained nuclei, 
subtracting the 99% quantile from the background distribution and rescaling. 
Cellular boundaries were determined by calculating the Voronoi diagram based 
on nuclei center with the deldir R package (Extended Data Fig. 4c). For each 
cell, channel intensity distribution was calculated, after subtracting the median 
values across channels. A cell was determined positive for a certain channel if 
its 20th highest pixel intensity was higher than 20. For cells positive for more 
than one channel, a cell was determined to express the channel with the highest 
total intensity, as well as coexpress any other channel displaying a >0.3 Pearson 
correlation to the leading channel (to exclude signals emanating from neighboring 
cells; Extended Data Fig. 4c).

Two cells were determined as neighbors if they shared a vertex in the nuclei 
Voronoi diagram. For the community analysis, all cells within a two-cell radius 
were considered a community.

Statistics. All experiments were performed in multiple distinct replicates 
(co-cultures or mice), as indicated in the text and figure legends. Detailed 
information about technical and biological replicates can be found in Extended 
Data Fig. 1 and Supplementary Table 2. All statistical tests were two-tailed. 
Statistical significance was computed in two principal ways: over pooled single-cell 
abundances (Fig. 2a,d and Extended Data Fig. 6e) using an FDR-adjusted Fisher’s 
exact test. Cell subsets showing over-representation in PICs were further tested 
for reproducibility across patients or biological replicates using a Mann–Whitney 
U-test (Fig. 2b,e and Extended Data Fig. 6f). For tumor growth measurements, 
tumor size measurements were log-transformed and outliers were identified 
via the identify_outliers method of the rstatix package and removed. No other 
assumptions on data distribution were applied and all statistical tests were 
nonparametric. No statistical methods were used to predetermine sample sizes 
but our sample sizes are similar to those reported in previous publications8,51. All 
animal experiments were randomized before any experimental intervention.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
scRNA-seq data that support the findings of this study (including MARS-seq and 
PIC-seq of human NSCLC biopsies and mouse experiments), are deposited in the 
Gene Expression Omnibus under accession code GSE160903. Previously published 
scRNA-seq data and TCR-sequencing data that were reanalyzed here are available 
under accession codes GSE123139 (ref. 11) and EGAD00001006608 (ref. 28).





Source data for all figures have been provided as Source Data files. All other materials 
and data supporting the findings of this study are available from the corresponding 
author on reasonable request. Source data are provided with this paper.

Code availability
The PIC-seq algorithm is available in the GitHub repository: https://github.com/
aygoldberg/PIC-seq. All algorithms and auxiliary scripts used to analyze data and 
generate scripts are provided as supplementary software and will be deposited in 
the GitHub repository https://github.com/aygoldberg/NSCLS-PIC.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Summary of samples and rNA-sequencing data. (a-d) Summary of all experimental samples, plates and cells, processed by 
MARS-seq and PIC-seq. “nrep” indicates number of biological replicates (patients, co-cultures or mice), “nbatches” indicates number of technical 
replicates, “ncells” indicates number of analyzed cells (Supplementary Table 2). Shown are (b) total number of Illumina reads, (c) total number of Unique 
Molecular Identifiers (UMIs) per cell, and (d) fraction of QC-positive cells retained for further analysis per technical replicate. (e) Patient contribution to 
each of the 112 metacells derived from TCRβ+ T cells and CD11c+CD64+ myeloid cells. Patients are ordered from top (brown) to least (white) contribution 
per metacell. (f) The confusion matrix of the MetaCell model shown in Fig. 1c. Entries denote for each pair of metacells the propensity of cells from both 
metacells to be clustered together in a bootstrap analysis. Bottom and left panels indicate metacell annotation to 22 T and myeloid subtypes.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | NSCLC PIC-seq quality controls. (a) Performance of the linear regression model estimating the mixing factor (α) of synthetic 
T-myeloid (left) and T-NK (right) PICs. (b) Performance of the T (left) and myeloid (right) metacell assignments of PIC-seq over 5,000 synthetic PICs. 
Each row summarizes all synthetic PICs originating from one metacell and their assignments to all metacells (columns). Data is row-normalized. (c) The 
cumulative distribution of the lldoublets-llsinglets score, for PICs (orange) and for the T (green) and myeloid (red) singlet populations. The score indicates the 
gain in likelihood when each PIC is modeled as a doublet compared to its most likely singlet assignment (Methods). PICs whose scores were not positive 
were suspected as singlets and discarded from further analysis. (d) Fraction of retained PICs for each profiled patient (Supplementary Table 1). Numbers 
on top indicate absolute number of retained PICs per patient. (e) Flow cytometry dot−plots analysis (top) and quantification (bottom) of in situ and in vitro 
PICs formed before or after tissue dissociation. Values in brackets indicate the estimated spurious PIC frequency out of the PIC population, defined as 
PICs combining fluorophores from parallel samples. (f) Gene expression profiles of 10,762 single cells grouped into 22 transcriptional subsets. Top panel 
indicates whether a cell is derived from healthy tissue or TME. (g) Myeloid and T-cell subset identities of single cells in (f) (Fig. 1c). (h) Gene expression 
profiles of 839 QC-positive PICs, grouped by their contributing T-cell and myeloid identities, as determined by PIC-seq algorithm. Top panel as in (f).  
(i) Myeloid and T cell subset identity of PIC contributing cells in (g), as determined by PIC-seq algorithm. (j) Estimation of the relative UMI count from  
T cells (green), and myeloid (red) contributing to each PIC in (h), as inferred by PIC-seq algorithm (mixing factor, α).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Characterization of singlet and PIC-derived CD4+PD-1+CXCL13+ T cells in human TME. (a) Gene expression profiles of T cells 
from melanoma (left) and breast cancer (right). 36,341 cells from 21 melanoma patients grouped into 245 metacells, and 62,909 cells from 42 breast 
cancer patients grouped into 243 metacells are shown. Values indicate enrichment (log2 fold change) of a gene in a metacell over its median value across 
metacells. Annotation to T subsets is indicated below. (b) Joint K-mean clustering (K = 38) of 763 genes differentially expressed in CD4+PD-1+CXCL13+ 
cells across different T subsets derived from NSCLC, melanoma and breast tumors (Supplementary Table 3). (c) Mean normalized expression of genes 
upregulated by CD4+PD-1+CXCL13+ T derived from NSCLC TME across all T cell states. Error bars indicate binomial 95% confidence intervals of the 
estimated mean. n = 3371 TME T cells. (d) Gene expression profiles of single Tht cells divided into the Tht-I and Tht-II subsets. Shown are Tht cells from 
melanoma, breast cancer, NSCLC and NSCLC PICs assigned to the Tht identity. Tht PICs were further dissected to Tht-I and Tht-II using breast cancer Tht 
metacells as the T cell reference model (Methods). (e) Enrichment of Tht-I and Tht-II in the NSCLC PIC population compared to their frequency in the 
single cell TCRβ+ population. Two-tailed paired Mann–Whitney test; n = 10 NSCLC patients.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Spatial and clonal properties of Tht cells. (a) Representative confocal microscopy images of tumor sections derived from one 
NSCLC patient stained for CD4, DC-LAMP and CD272 (BTLA) or PRDM1 proteins. (b) Representative confocal microscopy images of tumor sections 
derived from four additional NSCLC patients stained for CD4, DC-LAMP and PD-1 proteins. (a-b) Scale bar=30μm, and 15 μm in (a) top left panel; arrows 
indicate T-DC conjugates; images are representative of seven scanned patients. (c) Left – nuclear segmentation of the image depicted in Fig. 3e. Yellow 
markings outline the Voronoi diagram, enclosing all pixels sharing a nearest nucleus. Right – Cell type annotation of each segmented nuclei by expression 
and co-expression of marker intensity in the area of each nucleus’ Voronoi structure (Methods). (d) Colocalization analysis. For each pair of cell types, 
we counted the number of occurrences the two cell types co-exist in a 2-cell radius community. Colors indicate log2 enrichment over the expected values. 
n = 5 TLS from the same patient. (e) Fraction of cells related to T cell clones across different melanoma T cell subsets (Extended Data Fig. 3a) in melanoma 
patients for whom sufficient TCR-seq data was available. A cell is considered part of a clone if it shares a TCR sequence with at least one other T cell from 
the same patient. FDR-adjusted two-tailed unpaired Mann–Whitney test comparing Tht-I and II to other T subsets. n = 10 melanoma patients. (f) A heat 
map depicting the propensity of two cells from two melanoma T subsets to belong to the same clone (clone sharing). Data was calculated by sampling 
10,000 pairs of cells, and comparing clonal sharing characteristics to 10,000 pairs of cells sampled after shuffling clone identities, while preserving the 
number of clones and clone sizes per patient (Methods). *P < 0.05, **P < 0.001, ***P < 10−5.

NATurE CANCEr | www.nature.com/natcancer

http://www.nature.com/natcancer


A B

DispatchDate:  04.02.2022  · ProofNo: 338, p.24

1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468

Articles Nature CaNCerArticles Nature CaNCer

Extended Data Fig. 5 | Dynamic and spatial characterization of OT-II CD45.1+ T cells in murine TME niche and cLN. (a) Representative FACS plot 
showing gating strategy for isolation of adoptively transferred CD45.1+ OT-II cells and bystander polyclonal TCRβ+ T cells from tdLN. (b) Quantification of 
the percentage of CD45.1+ OT-II T cell out of the entire TCRβ+ population in matched cLN and tdLN tissues. Two-tailed paired Mann–Whitney test; n = 8 
mice from two independent experiments (c) Gene module analysis. Shown are seven correlated gene modules derived from CD45.1+TCRβ+ OT-II T cells 
isolated from cLN, dLN and TME, 10- and 17 days post tumor cell injection. Left – pairwise Pearson correlation. Right – normalized pooled expression 
across different conditions. (d) Pooled expression of the seven gene modules from (c) across OT-II T cells derived from all conditions. Dots represent 
single cells and dot colors indicate time points. Representative genes from each module are depicted. (e) Fraction of proliferating cells in each quartile 
of the mTht activation signature as in Fig. 5b in dLN OT-II T cells. A cell was determined proliferating if it exhibited above-threshold expression of the 
cell-cycle module in (d). (f) Representative confocal microscopy images of cLN sections extracted 10- and 17 days following tumor cell injection, stained 
for CD45.1+ (OT-II) T cells, PD-1 and CD11c proteins. Scale bar=30μm; asterisks indicate OT-II mTht; images are representative of two independent 
experiments.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | PIC-seq in mouse model of tumor antigen specificity. (a) A representative FACS plot of CD11c+ myeloid (purple), TCRβ+ T (blue) 
singlets, and CD11c+TCRβ+ PICs (orange) purified from the tdLN (n  =  6 independent experiments); Population frequencies represent mean ± s.e.m.  
(b) Gene expression of 7541 tdLN- and cLN-derived TCRβ+ and CD45.1+TCRβ+ T cells isolated 10 days following tumor injection, grouped into 86 
metacells. Bottom panel indicates cell annotations. (c) Performance of the linear regression model used to estimate the mixing factor (α) of synthetic 
T-myeloid PICs. (d) Performance of the T metacell assignments of PIC-seq over 5,000 synthetic PIC. Each row summarizes all synthetic PICs originating 
from one metacell and their assignments to metacells by the PIC-seq algorithm (columns). Data is row-normalized. (e) Distribution of T subsets in TCRβ+ 
singlet T and CD11c+TCRβ+ PICs in cLN and tdLN 10 days following tumor cells injection. Cells are downsampled so that T and PIC numbers are equal per 
replicate and then pooled from all profiled patients. FDR-adjusted Two-tailed Fisher’s exact test. (f) Comparison of different T subset frequencies in TCRβ+ 
singlets and PICs isolated from cLN and tdLN 10 days following tumor cells injection, across all biological replicates. Two-tailed paired Mann–Whitney test. 
(g) Mean observed (gray) and expected (colored) gene expression levels in PICs of OT-II mTht− and mTht+ subsets. Each connected pair of dots signifies 
a biological replicate; Dot colors relate to their specificity in the T (green) or myeloid (red) cell expected contributions. Groups with less than 10 cells 
were discarded. Median value is marked for each category. Data summarizes two independent experiments; (e-g) n = 4 day 10 cLN and 9 day 10 tdLN. 
*P < 0.05, **P < 0.001, ***P < 10−5.
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Extended Data Fig. 7 | Tht cells are involved in the anti-tumor effect of aPD-1 treatment. (a-b) K-means analysis of TCRβ+ and CD45.1+ TCRβ+ OT-II 
cells derived from tdLN of mice with/without αPD-1 treatment, at day 17 following tumor injection. Day 10 tdLN and cLN T cells from Fig. 5b were included 
for comparison. Shown are cluster centers (a) and all genes from cluster 4 (enriched for type I Interferon response genes; (b)). Values represent log2 fold 
change over the median. (c) Mean normalized expression of key mTht-related genes from cluster 11 across the different samples. *P < 0.05, **P < 0.001, 
***P < 10−5.
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