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HIGHLIGHTS (max 85 characters) 20 

 Gut microbial composition with higher baseline diversity is more stable over time 21 

 Gut microbial genetic makeup is more personal specific than composition 22 

 Individual-specific and temporally stable microbial profiles fingerprint the host 23 

 Plasma metabolites can mediate microbial impact on host health  24 

SUMMARY (max 150) 25 

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 26 

metabolites in 338 individuals after four years, we characterize the microbial stability  27 

and variation in relation to host’s physiology. We made use of individual-specific and 28 

temporally stable microbial profiles, including bacterial SNPs and structural variations, 29 

to built a microbial fingerprinting model, which shows 82% accuracy in classifying 30 

metagenomic samples four year apart. Application of our model in independent cohort 31 

(HMP) provide 95% accuracy for classification of samples one year apart. 32 

Simultaneously, we observed temporal changes in the abundance of multiple bacterial 33 

species, metabolic pathways and structural variation, as well as strain replacement. We 34 

report 258 longitudial microbial associations with the host’s phenotype and 519 35 

associations with plasma metabolites. The association was enriched for cardiometabolic 36 

traits, vitamin B and uremic toxins. Mediation analysis pintpoints many metabolites 37 

that mediate the microbial impact on the host, providing evidence as therapeutic targets. 38 

Keywords: gut microbiome, stability, taxonomy, pathway, SNP, copy number variation, 39 

genomic deleation, metabolites, strain replacement, fingerprint 40 
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INTRODUCTION 41 

Human guts harbor a diverse community of microbes that exhibit large between-42 

individual variations (Falony et al., 2016; Lloyd-Price et al., 2017; Rothschild et al., 43 

2018; Zhernakova et al., 2016), and cross-sectional analyses have now linked these 44 

variations to human health and disease phenotypes (Chen et al., 2020a; Falony et al., 45 

2016; Rothschild et al., 2018; Vieira-Silva et al., 2020; Zhernakova et al., 2016). The 46 

gut microbiota also undergoes compositional changes over the course of an individual’s 47 

life, either as the cause or consequence of changes in host health and disease status 48 

(Chen et al., 2018; Vatanen et al., 2018; Zhou et al., 2019). Several studies have 49 

assessed temporal changes in microbial taxonomical composition (Faith et al., 2013; 50 

Mehta et al., 2018) and laid the foundation for targeted mechanistic investigations of 51 

the consequences of host–microbiome crosstalk for health and disease, including 52 

studies in early childhood (Stewart et al., 2018), early-onset type 1 and type 2 diabetes 53 

(Vatanen et al., 2018; Zhou et al., 2019) and inflammatory bowel disease (Lloyd-Price 54 

et al., 2019).  55 

Nevertheless, several important questions about the temporal variability of the gut 56 

microbiome remain unexplored. Firstly, beyond gut microbial composition, the genetic 57 

makeup of microbial genomes can also undergo dynamic changes over time. Microbial 58 

genomic changes due to evolution and strain replacement, such as single nucleotide 59 

mutations and gain or loss of genomic regions (structural variation), implicate putative 60 

mechanism for the development of human disease (Greenblum et al., 2015; Schloissnig 61 

et al., 2013; Zeevi et al., 2019). Yet investigations of temporal changes in microbial 62 

genetic makeup are still missing. Secondly, while cross-sectional association analyses 63 

have reported numerous associations with host health and disease (Falony et al., 2016; 64 

Lloyd-Price et al., 2017; Rothschild et al., 2018; Zhernakova et al., 2016), these 65 

associations lack longitudinal confirmation that would allow us to assess whether 66 

alterations of the gut microbiome are related to changes in host health status. Thirdly, 67 

other microbial components such as antibiotic resistance and virulence factors have 68 
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become a major concern given the wide-scale use of antibiotics in the last decades. The 69 

risk of transfer of resistance and virulence genes between microorganisms has been 70 

extensively investigated due to its relevance to human health (Ochman et al., 2000). 71 

However, information on the spread of antibiotic resistance and virulence genes among 72 

human gut commensal microorganisms over time has not yet been reported, which 73 

impedes the effective prevention and treatment of bacterial infections. 74 

In this study, we present a long-term follow-up analysis of the gut microbiome in 338 75 

participants of the population-based Lifelines-DEEP cohort (Tigchelaar et al., 2015), in 76 

which we compared samples taken four years apart. We characterized long-term 77 

temporal stability in the gut microbial composition and genetic makeup and aimed to 78 

answer two types of questions: 1) Which bacterial features not only show individual 79 

specificity but also temporal stable? Can we use such features as the fingerprint to 80 

distinguish samples from the same individual. 2) Which bacterial features show large 81 

temporal variation? Can their temporal variation be linked to the changes of host’s 82 

clinical phenotypes and lifestyles. To further gain biological insights, we profiled 83 

plasma levels of 1183 metabolites at both time points and aimed to construct in-silico 84 

causal inference of microbial impact on host’s health through metabolites using 85 

mediation analysis. Finally, we assessed the increase of antibiotic resistance and 86 

virulence factors in the human gut microbiome, which may indicate the urgency of 87 

fighting infectious disease. 88 
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RESULTS 89 

The LifeLines-DEEP follow-up cohort 90 

To investigate the long-term variability of the human gut microbiome, we collected 91 

fecal samples from 338 individuals from the prospective, population-based Lifelines-92 

DEEP cohort taken four years apart (Tigchelaar et al., 2015) and processed these 93 

samples using the same lab protocols and bioinformatic pipelines. 51 phenotypic factors 94 

were assessed at both time points, including intrinsic factors (e.g. age, sex and body 95 

mass index), blood cell counts, plasma metabolites (e.g. glucose, HbA1c and blood 96 

lipid profile), diseases and medication usage (Table S1). We observe significant 97 

temporal changes for 19 phenotypic factors four years apart at FDR<0.05 (Figure S1, 98 

Table S1). For instance, significant increases were observed for plasma levels of 99 

creatinine (PPaired Wilcoxon=2.5x10-50), systolic blood pressure (PPaired Wilcoxon=3.6x10-26), 100 

and blood basophil granulocytes cell counts (PPaired Wilcoxon=8.2x10-39) (Figure S1, 101 

Table S1). We also observed changes in lifestyle, diseases and medication usage (Table 102 

S1). For example, compared to the baseline, the number of smokers was reduced by 103 

4.5%, and 17 participants started using proton pump inhibitors (PPI), while 6 stopped.  104 

Temporal changes in the gut microbial diversity and compostion 105 

To characterize the stability of the gut microbiome over time, we first investigated 106 

microbial composition and diversity. Compared to baseline, we observed a significant 107 

increase in the alpha-diversity (Shannon index based on species, PPaired Wilcoxon=2.4x10-108 

7, Figure 1A), as well as a moderate variation in microbial taxonomical and functional 109 

composition (PPCo1 Paired Wilcoxon>0.082 and PPCo2 Paired Wilcoxon<1.6x10-5 for both species 110 

and pathway, Figure S2). The differences in overall microbial taxonomical and 111 

functional composition were larger between individuals than within-individuals (P 112 

Wilcoxon<1x10-4, Figure 1B&C), indicating that even after four years an individual’s gut 113 

microbial composition is more similar to itself than to those of other people. 114 

Interestingly, within-individual differences in gut microbial composition were smaller 115 

in participants with a higher alpha-diversity at baseline (rSpearman=-0.21, P=1.5x10-4, 116 
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Figure 1D), supporting the hypothesis that a diverse microbial communities tend to be 117 

more stable (Coyte et al., 2015).  118 

When comparing individual microbial species and pathways, the relative abundance of 119 

59.9% species (94 out of 157) and 44.3% pathways (152 out of 343) showed significant 120 

changes at FDR<0.05 (paired Wilcoxon test, Table S2a&b). Species belonging to the 121 

same genera often showed consistent changes in direction, e.g. the relative abundance 122 

of seven Bifidobacterium species all decreased significantly, while the abundances of 123 

the majority of Alistipes species (7 out of 8) increased (Table S2a). These changes may 124 

partially be due to the age effect. For instance, several Bifidobacterium species 125 

including B. adolescentis, B. bifidum and B. longum have been observed to be 126 

negatively associated with age (Zhernakova et al., 2016). 127 

Microbial genetic stability differs substantially across species 128 

Microbial genetic makeup may also change over time, e.g. due to mutagenesis and 129 

strain replacement as a consequence of selective pressure. Characterization of the stable 130 

and changeable genetic components of the gut microbiome over a long time-course is 131 

important for further understanding the importance of microbial strains alterations with 132 

respect to host phenotypic changes. Here, we characterized within-individual temporal 133 

microbial genetic changes by comparing both single nucleotide polymorphism (SNP) 134 

haplotypes (Truong et al., 2017) and genomic structural variants (SVs) (Zeevi et al., 135 

2019). SNP haplotype differences were characterized for 37 species that were present 136 

in at least 5 paired samples from both time points (Figure 2A, Table S2c). We also 137 

identified 6,130 SVs, including 4,333 deletion SVs (absence of genomic regions) and 138 

1,797 variable SVs (genomic regions with variable copy numbers) from 41 microbial 139 

species in at least 5 paired samples (Figure 2B, Table S2d). For 23 species, both strain 140 

SNP haplotype and SV information were available (Figure 2A&B). 141 

We observed that within-individual genetic changes in terms of both SNP haplotypes 142 

and SVs were significantly smaller than the differences observed between different 143 
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individuals (Figure 2A&B, Table S2c&d). The species that showed large temporal 144 

changes in their SNP haplotypes include Ruminococcus torques, Streptococcus 145 

parasanguinis and Faecalibacterium prausnitzii, while Bifidobacterium angulatum, 146 

Methanobrevibacter smithii and Alistipes putredinis showed relatively low genetic 147 

variability (PWilcoxon<0.05, Figure 2A). A consistent trend in genetic stabilities in terms 148 

of SNP profile was observed in 43 healthy participants with fecal microbiome data 149 

abailable one year apart from the Human Microbiome Project (HMP) (Figure 2C) 150 

(Schloissnig et al., 2013). Compared to the HMP cohort, the genetic difference of 151 

unstable species were larger in the LLD cohort potentially due to a longer time duration 152 

(Figure 2D-F). This observation further supports the genetic instability of these species 153 

over time. 154 

Temporal variability in SNP haplotypes and SVs also showed consistency (Figure S3), 155 

suggesting that the microbial genetic stability of some species can be seen at different 156 

genetic variation levels. For example, several species with highly variable SNP 157 

haplotypes over time, such as R. torques and F. prausnitzii, also showed a high degree 158 

of changes in their SVs, while some species, such as M. smithii, showed high stability 159 

of both SNP haplotypes and within-individual SVs variability (Figure 2A&B).  160 

Interestingly, these genetic unstable species have often been reported to be related to 161 

human health and disease. For instance, previous studies have shown a higher 162 

abundance of R. torques in patients with Crohn's disease (Joossens et al., 2011), a higher 163 

level of S. parasanguinis in patients with intestinal infection (Vacca, 2017), and a lower 164 

level of F. prausnitzii in paitents with inflammatory bowel disease (Munukka et al., 165 

2017; Vich Vila et al., 2018). Notably, within-individual changes in microbial genetic 166 

makeup did not correlate with changes in abundance (Figure S4), suggesting that 167 

microbial genetic variability provides a new layer of information that is independent of 168 

microbial abundance. Furthermore, the observed temporal changes in genetic make-up 169 

can be also due to strain replacement. For instance, we could detect distinct strains 170 

based on SNP profiles in R. torques, F. prausnitzii, S. parasanguinis, Ruminococcus 171 
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obeum and Eubacterium rectale (Figure S5). For instance, we observed two distinct 172 

strain clusters in F. prausnitzii (Figure 3A, Figure S5) and found that strain 173 

replacement happened in 37 participants (Figure 3B). 174 

Taken together, these results illustrate that within-individual variations in both 175 

microbial composition and genomes can be seen four years apart, but within-individual 176 

similarity of microbiome compositional and genetic profiles is greater than between-177 

individual similarity. The observed stable and variable microbial compositional and 178 

genetic components can have different implications: the individually stable microbial 179 

components might be used to identify their host, while the variable microbial 180 

components might reveal their clinical relevance in relation to phenotypic changes. 181 

Microbial genetic makeups show individuality that serve as host fingerprint 182 

We observed that some species, such as M. smithii, showed large between-individual 183 

variability but small within-individual variability in their genetic makeup (Figure 2A). 184 

Per 100 base pairs (bp) of the species-specific regions, M. smithii had an on average 185 

0.11 bp difference between two samples from the same individual but an average 2.78 186 

bp difference between different individuals (PWilcoxon test=3.6x10-64, Figure 2A, Table 187 

S2c). This led us to evaluate the possibility of using microbial genetic and 188 

compositional profiles to identify samples from the same individuals. We could 189 

generate the SNP haplotype profiles of M. smithii for 100 paired samples. Based on the 190 

distance of the M. smithii SNP profiles, we could correctly link 94 paired individuals, 191 

resulting in an accuracy of 94% (Figure S6A). Another example was the SNP profile 192 

of Phascolarctobacterium succinatutens that can classify 41 paired samples with 88% 193 

of accuracy (Figure S6B). Notably, sample classification based on microbial 194 

composition and pathway profile could only result in 12% and 5% accuracy, 195 

respectively (Table S3). Our data prove that microbial genetic profiles can be applied 196 

as an individual fingerprint and that genetic profiles of the gut microbiome greatly 197 

outperform species and pathway abundance profiles in individual identification. 198 
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Due to low abundance and insufficient read coverage in some samples, SNP haplotype 199 

profiles like M. smithii could only be generated for 100 out of 338 paired samples, 200 

which prohibits the use of the genetic profile of one single species as a host fingerprint. 201 

This limitation inspired us to combine multiple microbial genetic and composition 202 

(both species and pathway abundances) distance matrices for a broader application. We 203 

applied stepwise forward selection to optimize the combination of different numbers of 204 

distance matrices in 60% of randomly selected individuals and validated the individual 205 

recognition abilities in the remaining 40% of individuals. The resampling and feature 206 

selection were repeated 10 times (Figure S7). The combination of all 71 distance 207 

matrices (Table S3) resulted in up to 85% classification accuracy (Figure 4A), and an 208 

optimal model combining the top 30 distance matrices yielded 82% classification 209 

accuracy (Figure 4B). This optimal model includes SNP profiles of 13 species, deletion 210 

SV profiles of 11 species, variable SV profiles of 5 species and the Bray-Curtis 211 

dissimilarity of species abundance (Figure S8). We also conducted the specificity and 212 

sensitivity analyses in sample classification. The total area under curve (AUC) was 95% 213 

(Figure 3C) and we reached the optimal 99% of specificity and 88% of sensitivity at 214 

the distance cutoff 0.46 (Figure 3D). At this cutoff, we obstained 298 paired samples 215 

with 93% of accurancy. 216 

We further applied our microbial fingerpint model in the longitudial sample collection 217 

of 43 individuals in the HMP cohort. Our model resulted in 100% of accuracy for 41 218 

out of 43 paired samples at the distance cutoff 0.46 (Figure 3B) and 95% of accuracy 219 

in the total set of 43 pairs. The accuracy is much higher than the previously reported 220 

30% accuracy based on microbial abundance only (Franzosa et al., 2015). This result 221 

has confirmed the robustness of our microbial fingerprint method, suggesting its broad 222 

application in longitudinal microbiome studies. 223 

Microbial abundance and genomic changes associated with host phenotypes 224 

To examine the role of the gut microbiota in host health, we explored the associations 225 
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between microbial compositional and genomic changes and host phenotypic changes. 226 

We performed two-step analyses to reveal microbial associations to host phenotypes 227 

using longitudinal data. First, we performed joint association analyses between 228 

microbial features and 27 host phenotypic factors that were highly prevalent between 229 

the two time points (Table S1) by using mixed models and including age, sex and 230 

sampling time as covariates. Next, for associations identified at FDR<0.05, we 231 

conducted regression analysis on temporal differences, i.e. associations between 232 

microbial changes and host phenotypic changes over time (delta association). The 233 

identified 258 associations (involving 225 microbial features and 39 phenotypes) that 234 

were significant at FDR<0.05 in the joint association analysis and also significant at 235 

P<0.05 for the delta association analysis with a consistent direction of effect. These 236 

included 113 associations with species and pathway abundances and 145 associations 237 

with microbial SVs (Figure 5A, Table S4a). 238 

In line with the significant changes in blood pressure and other cardiometabolic 239 

phenotypes four years apart, we detected multiple associations to the temporal changes 240 

of the gut microbiome (Table S4a). The top associations included a positive association 241 

between systolic blood pressure and the abundance Lachnospiraceae bacterium 242 

(betadelta= 0.24, Pdelta= 1.1x10-5, Figure 5B) and a negative association between 243 

glycated hemoglobin (HbA1c) and flavin biosynthesis pathway (betadelta= -0.22, Pdelta= 244 

4.9x10-5, Figure 5C). We also observed that the prevence of heart rhythm problems 245 

associated with the absence of a genomic region (927-928kb) in Collinsella sp that 246 

encodes the branched-chain amino acids transport system (PFisher exact test= 5.0x10-4, 247 

Figure 5E). Besides, we observed association of temporal changes in microbial SVs 248 

with host immune phenotypes. For instance, a variable SV (3019-3020kb) in Blautia 249 

obeum that contains virulence protein E and chloramphenicol resistance genes 250 

negatively associated with the change of blood lymphocyte cell counts (betadelta= -0.29, 251 

Pdelta= 6.5x10-4, Figure 5D).  252 

Microbial abundance and genomic changes associated with plasma metabolites 253 
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To further understand the potential mechanisms by which the gut microbiota could 254 

drive host pathophysiology, we hypothesized that metabolites are an important class of 255 

molecultes that is involved in host-microbe interaction. By profiling plasma levels of 256 

1,183 metabolites in both timepoints with untargeted LC-MS, we observed that 27% of 257 

metabolites showed significant difference between two timepoints at FDR<0.05 (Paired 258 

Wilcoxon, Table S2e).  259 

We first checked whether plasma metabolites showed difference in participants with 260 

distnict microbial strains of five genetical unstable species (Figure S5), and if so, 261 

whether strain replacements of these species were related to changes in plasma 262 

metabolites. In total, 64 associations were observed between 63 metabolites and strain 263 

clusters of five species (Table S4b). For example, we identified two distinct strain 264 

clusters of F. prausnitzii in 292 paired samples (Figure 3A), which associated with 15 265 

metabolites. The top associations were observed for licorisoflavan A, pyrrole and p-266 

cresol sulfate, which abundances were significantly lower in the individuals with F. 267 

prausnitzii strain cluster2. Consistenly, we observed that the abundance of these 268 

metabolites decreased in 24 individuals where F. prausnitzii swifted from strain cluster1 269 

to cluster2, while their metabolite levels increased in 13 inviduals where F. prausnitzii 270 

swifted from strain cluster2 to cluster1(Figure 3C-E). This result implicates that 271 

different microbial strains may have different functions that influence host metabolism. 272 

Apart from it, temporal changes in microbial abundance and SVs may also relevant for 273 

host metabolic changes. In total, 455 significant associations were detected between 274 

122 microbial features (species and pathway abundances, dSVs and vSVs) and 81 275 

metabolites (FDRjoint<0.05 and Pdelta<0.05, Figure 6A, Table S4c), including 273 276 

associations with microbial abundance and 182 associations with microbial SVs. 277 

Interestingly, various metabolites that associated with microbiome are known to be 278 

related to the gut microbiome. For instance, we detected 38 microbial associations to 279 

plasma thiamine levels, a vitamin (B1) produced by gut microbes and its deficiency 280 

affecting the cardiovascular system and inducing a fast heart rate (DiNicolantonio et al., 281 



 12 

2013). The top microbial associations to thiamine include species Alistipes senegalensis 282 

(betadelta= 0.20, Pdelta= 4.1x10-4, Figure 6B), Bacteroidales bacterium (betadelta= 0.23, 283 

Pdelta= 5.2x10-5), and TCA cycle pathway (betadelta= 0.23, Pdelta= 7.2x10-5) (Table S4c). 284 

Notably, genome of Alistipes senegalensis contains genes responsible for thiamine 285 

biosynthesis (Mishra et al., 2012).  286 

Another interesting category of metabolites are protein-bound uremic toxins, which are 287 

related to microbial metabolism of amino acids and have been associated with various 288 

chronic diseases (Wang and Zhao, 2018). We have characterized plasma levels of 58 289 

uremic toxins from metabolite categories of indoxyl sulfate, p-cresyl sulfate, phenyl 290 

sulfate, phenylacetic acid and hippuric acid (Wang and Zhao, 2018), and observed a 291 

significant enrichment for microbial associations, i.e., a total of 97 associations for 16 292 

uremic toxins (Fisher’s exact test P=1.7x10-21) (Figure 6A, Table S4c). The most 293 

associated uremic toxins included p-cresol (24 associations), p-cresol sulfate (20 294 

associaitons) and hippuric acid (16 associations) (Table S4c). p-cresol sulfate is a 295 

microbiota-drived metabolite that contributes to many biological and biochmemical 296 

effects, such as albuminuria in diabetic kidney disease (Kikuchi et al., 2019). The top 297 

association to p-cresol sulfate was Bacteroidales bacterium ph8 (betadelta= 0.21, Pdelta= 298 

1.9x10-4, Figure 6C), a gut microbial species with limited information available yet. 299 

Notably, 22.6% of (103 out of 455) microbial asosciations with metabolites were related 300 

to vSVs of Blautia wexlerae (Figure 6A). Among them, 27 associations were related 301 

to different uremic toxins, particularly to hippuric acid (Figure 6D), an acyl glycine 302 

formed from the conjugation of benzoic acid with glycine and associated with 303 

phenylketonuria, propionic acidemia and tyrosinemia (Duranton et al., 2012). 304 

Intriguingly, these vSV regions that encode various membranes transporters, amino 305 

acid kinases, urease accessory protein and protein bingding genes (Table S5). 306 

Microbiome contributed to host phenotypic changes through its metabolites 307 

For 225 microbial features associated with clinical phenotypes and 122 associations to 308 

metabolites, 29 microbial features were associated with both clinical phenotypes and 309 
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metabolites (Figure 7A). We explored whether these metabolites can mediate the 310 

microbial impact on host’s phenotypes. By using bi-directional mediation analysis, 21 311 

mediation relationships were established (FDRmediation<0.05 and Pinverse mediation>0.05, 312 

Figure 7B, Table S4d). The identified mediation effects were mostly related to 313 

microbial impact on blood pressure via thiamine and acetyl-N-formyl-5-314 

methoxykynurenamine (AFMK). The impact of thiamine on cardiometabolic health has 315 

been well documented and a randomized controlled trial has showed that thiamine can 316 

reduce diastolic blood pressure (Alaei-Shahmiri et al., 2015). AFMK is the degradation 317 

metabolite of melatonin, which contributes to blood pressure reduction by inhibiting 318 

the synthesis of prostaglandin (Mayo et al., 2005; Rezzani et al., 2010). Our mediation 319 

analysis suggested that various bacterial pathways may contribute to these effects. For 320 

instance, microbial sulfate reduction pathway can lower diastolic blood pressure 321 

through increasing the plasma level of thiamine levels (21%, Pmediation= 6.0x10-3, Figure 322 

7C) and bacterial lipopolysaccharides biosynthesis may lead to a decrease of systolic 323 

blood pressure through affecting plasma level of AFMK (16%, Pmediation= 6.0x10-3, 324 

Figure 7D). Metabolic products like cysteine from bacterial sulfate reduction pathway 325 

is essential for bacterial thiamine (vitamin B1) biosynthesis (Begley, 1996), and 326 

lipopolysaccharides can activate melatonin oxidized into AFMK (Silva et al., 2004). 327 

We also identified several mediation effects of metabolites on microbial impact on  328 

plasma lipids and glucose levels (Figure 7B). An interesting one is tyrosol 4-sulfate, an 329 

uremtic toxin that mediates the effect of a vSV in Ruminococcus sp (300 to 305 kb) on 330 

plasma levels of LDL (17%, Pmediation= 0.017, Figure 7E). This vSV contains an ATPase 331 

that responsible for metabolites transmembrane transport (Aguilar-Barajas et al., 2011).  332 

Significant increase of microbial antibiotic resistance 333 

The increase of antibiotic resistance can pose a great burden in fighting infectious 334 

diseases, while the virulence factors are essential for the commensal microbiota to 335 

maintain colonization niche and evade the host’s immune response. We further 336 

systematically characterized and compared the abundances of 29 antibiotic resistance 337 
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genes and 59 virulence genes over time. We observed a significant increase in the total 338 

antibiotic resistance gene load (P=1.1x10-9) and a decrease in the total number of 339 

virulence genes (P=5.1x10-4) (Figure 8A&B). At the individual gene level, 55.17% (16 340 

out of 29) of antibiotic resistance genes and 18.64% (11 out of 59) of virulence genes 341 

showed a significant difference (FDR<0.05) between time points (Table S2f&g). 342 

Specifically, 15 out of 16 antibiotic resistance genes showed an increase in their 343 

abundance, with the highest change observed for tetracycline resistance genes (Figure 344 

S9), such as tetracycline resistance protein Q (TetQ) that is widely distributed in 345 

Bacteroides species (Veloo et al., 2019). In line with this, the increase of tetracycline 346 

resistance gene abundance was associated with the increased abundance of multiple 347 

Bacteroides species (e.g. B. vulgatus, B. uniformis and B. ovatus, Figure 8C, Table 348 

S4e) whose abundance also increased in the follow-up (Table S2a).  349 

Through antibiotic prescription in the Netherlands remains the lowest in the Europe, 350 

tetracycline, aminoglycoside and lincosamide are among the top broad spectrum 351 

veterinary antibiotics (Havelaar et al., 2017), which may contribute to the increased 352 

microbial antibiotic resistance in humans (Aslam et al., 2018). We thus examined the 353 

correlation of baseline meat intake with the abundance changes of microbial antibiotic 354 

resistance genes and found positive associations with aminoglycoside (rSpearman= 0.18, 355 

P= 9.2x10-4) and lincosamide resistance (rSpearman= 0.15, P= 5.5x10-3) (Figure 8D&E, 356 

Table S4f). These observations raise concerns about antibiotic usage in farming, which 357 

may contribute to the spread of microbial antibiotic resistance in the human gut 358 

ecosystem. 359 

DISCUSSION 360 

Over the past years, numerous associations between a disrupted microbiota and diseases, 361 

for example gastrointestinal and cardiometabolic diseases, have been observed in large 362 

cross-sectional studies (Chen et al., 2020a; Chen et al., 2020b; Falony et al., 2016; 363 

Rothschild et al., 2018; Vieira-Silva et al., 2020; Zhernakova et al., 2016). However, 364 

the key to understanding the role of a disrupted microbiota in human diseases is to 365 
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answer how stable the microbiota is and whether within-individual microbial changes 366 

can be linked to changes in host health status. We therefore systematically characterized 367 

the microbial changes at both compositional and genomic level at two time points four 368 

years apart in 338 individuals from the Lifelines-DEEP cohort. We observed that the 369 

gut microbiome to some extent showed long-term within-individual stability in both 370 

microbial abundance and microbial genome. Particularly, we found that the genetic 371 

makeup of microbes shows individuality that can be used as a fingerprint to distinguish 372 

metagenomic samples belonging to the same individual. In addition, the longtitudial 373 

association analysis between the changes of gut microbiome, host phenotypic, as well 374 

as human plasma metabolites have provided in-sillico causal relationships and putative 375 

mechanistic insights regarding the importance of the gut microbiome on human health. 376 

Finally, we observed that increased microbial antibiotic resistance in the human gut 377 

microbiome was associated with meat consumption. 378 

Previous investigations on short-term (within one year) temporal stability of microbial 379 

composition and genetic makeup in adults revealed that metagenomic samples obtained 380 

from the same individual are more similar to one another than to those from different 381 

individuals (Garud et al., 2019; Mehta et al., 2018). Large-scale characterization of the 382 

long-term (four years apart) stability of the gut microbiome in a present study extended 383 

this observation. In addition, we found that within-individual differences in gut 384 

microbial composition were smaller in participants who had a higher alpha-diversity at 385 

baseline, supporting the hypothesis that the microbial communities with higher 386 

diversity tend to be more stable over time (Coyte et al., 2015). 387 

We also observed that genetic stability of gut microbes vary substantially across 388 

differenct species, and a set of species from, but not limited to genus Bacteroides, 389 

Bifidobacterium, Methanobrevibacter and Phascolarctobacterium showed relatively 390 

high within-individual stability over a long period of time. Notably, previous study 391 

showed that some of these species, such as Bacteroides and Bifidobacterium species 392 

are colonized at early life (Yassour et al., 2018) and showed high genetic stability in 393 
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childhood (Vatanen et al., 2019). These data suggests that each person is likely to have 394 

individual-specific microbial genetic components that are distinct from those of others, 395 

and may span from childhoold to adulthood. The gut microbial genetic profile can 396 

therefore serve as a host fingerprint to uniquely distinguish stool samples that belong 397 

to the same host. In this study, we constructued a novel microbial finger printing model 398 

that combines 30 microbial features, including microbial composition, SNP profiles of 399 

13 species and structural variation of 16 species. Our model has the accuracy of sample 400 

identification to 82% in the Lifelines-DEEP samples that were taken four years apart. 401 

By applying our model to the HMP samples up to one year apart, our model resulted in 402 

95% of accurarcy, significantly outperforming the previous method based on microbial 403 

composition only, which resulted in only 30% accuracy (Franzosa et al., 2015). These 404 

results demonstrate the potential application of our method in distinguishing sample 405 

mix up, but also raise potential privacy concerns for subjects enrolled in human 406 

microbiome research projects. 407 

Characterization of the long-term changes of the gut microbiome is crucial for 408 

understanding the role of the gut microbiome in chronic disease, the diseases being of 409 

long duration and generally slow progression. Differential microbial abundances have 410 

been characterized for around half of microbial species and pathways, and within-411 

individual changes in microbial genetic makeup have also been observed. Interestingly, 412 

the bacterial SNP haplotype and SV changes did not associate with abundance changes, 413 

which reveals a potential new layer of information about the microbiome’s contribution 414 

to host health that is independent of abundance alterations. Our study reported a total 415 

of 258 associations between microbial changes with phenotypic changes over time. 416 

Moreover, by assessing the plasma level of 1,183 metabolites at both time points, we 417 

reported 519 associations between microbial changes with metabolic changes, 418 

including 273 associations with abundance of species and metabolic pathways, 64 419 

associations with strain replacement, and 182 associations with alternation in structural 420 

variation. In contrast to previous studies that only focused on microbial abundance 421 
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associations to host phenotypes (Lloyd-Price et al., 2019; Vatanen et al., 2018; Zhou et 422 

al., 2019), the microbial genetic associations that connect genomic variation with 423 

genetically encoded function to phenotypic changes can provide putative mechanistic 424 

information. We noticed that genetically unstable species (e.g. R. torques, S. 425 

parasanguinis and F. prausnitzii) have been associated with various human diseases 426 

(Joossens et al., 2011; Ray et al., 2014; Vacca, 2017; Zhernakova et al., 2016). F. 427 

prausnitizii can support mucasal immune homeostatsis (Hornef and Pabst, 2016), 428 

which has been mostly linked to its capacity of butyrate production (Miquel et al., 2013). 429 

However, our data shows that the higher increase in a variable SV of F. prausnitzii was 430 

associated with the lower increase in the number of lymphocytes cells. This SV region 431 

encodes multiple toxin degradation genes. Interestingly, we also observed F. 432 

prausnitizii strain replacement in 37 individuals and established many associations with 433 

plasma metabolites, including Licorisolfavan A and p-cresal sulfate from the class of 434 

isofavonoids and uremic toxins that affect host’s immunity. Thereby our data together 435 

suggests novel mechansims underlying the role of F. prausnitzii in host’s immunity.  436 

Notably, metabolite associations to the gut microbiome were significantly enriched for 437 

uremic toxins and thiamine (vitamin B1). Uremic toxins are derived by gut microbiota 438 

from dietary protein and the accumulation of uremic toxins can induce chronic sterile 439 

inflammation, which in turn increases the risk of kidney and cardiometabolic diseases 440 

(Solomon et al., 2010). We characterized 58 protein-binding uremic toxins and detected 441 

97 associations for 16 uremic toxins. One of the mostly associated uremic toxins 442 

is hippuric acid, a cardiometabolic risk related metabolite that can significantly 443 

contribute to the prediction of weight gaining (Yu et al., 2018; Zhao et al., 2016). We 444 

observed several novel microbial associations with hippuric acid, such as the 445 

associations between B. wexlerae SVs and hippuric acid. These B. wexlerae SVs were 446 

also associated with BMI, implicating B. wexlerae may contribute to metabolic disorder 447 

potentially through hippuric acid metabolism.  448 

Vitamin B1 production is dependent on the gut microbiome, and the deficiency can 449 
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infulence the cardiovascular system (DiNicolantonio et al., 2013). Among microbial 450 

associations to vitamin B1, the top association was related to Akkermansia muciniphila 451 

abundance, a well-known benefical microbe that controls gut barrier function and 452 

homeostatic functions (Everard et al., 2013). Our mediation analysis identified 21 453 

relationships that the metabolites can mediate the microbial impact on host phenotype, 454 

particularly for cardiometabolic traits. With this analysis, we further revealed that A. 455 

muciniphila may infulance blood pressure through vitamin B1 production, a rationale 456 

for the development of a treatment that uses this human mucus colonizer for the 457 

prevention of hypertension. All together, our longitudinal microbial association and 458 

mediation analyses on host phenotypes and plasma metabolites provided novel 459 

functional insights and putative causality regarding the role of the gut microbiome in 460 

human health and disease. 461 

Furthermore, our study provide evidence that antibiotics used in animal husbandry can 462 

result in the increase of the antibiotic resistance genes in the human gut microbome. 463 

Regulating and promoting the appropriate use of veterinary antibiotics should be 464 

considered by public health policy makers. 465 

Limitations of Study 466 

We acknowledge several limitations in our study. Our study sampled fecal samples four 467 

year apart in 338 samples. To date, it is the longtidual microbiome study with the 468 

longest duration and largest sample size. We systematically investigated the 469 

compositional and genetic variation over time and link the microbial changes to 470 

phenotypic changes. However, our sample size was still limited. Many of our findings 471 

need further replication in independent cohorts with longer duration and larger sample 472 

size. For example, we observed that gut microbial composition with higher baseline 473 

diversity is more stable over time. The observed effect was modest and needs to be 474 

further validated. Moreover, the Lifelines-DEEP cohort is comprised of participants 475 

from northern area of the Netherlands and with only Dutch ethnicity. It is possible that 476 

the reported results are biased towards a region-specific microbial background due to 477 
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host’s genetics and local environmental exposures. Despite the possible bias, the 478 

performance of our novel microbial finger printing model has been successfully 479 

validated in the HMP cohort. Furthermore, the reported longitudinal association are not 480 

a proof of causation even though we applied casual mediation analysis to refer in-sillico 481 

causality. We primarily focused on biologically plausible mechanisms by intergrating 482 

longitudinal metabolism dataset and provides mechanistic hypotheses that pinpoint to 483 

specific microbial genetics and function but also demonstrate which metabolites are 484 

likely to mediate the impact of the gut microbiome on the host’s phenotype. 485 

Experimental validation is warranted.  486 
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FIGURE LEGENDS 514 

Figure 1. Long-term stability of the gut microbiome composition. A. The gut 515 

microbial alpha diversity (Shannon index) increased after four years. B & C. Within-516 

individual changes in microbial species and pathway composition were lower than 517 

between-individual differences. D. Temporal changes in microbial composition 518 

(species-level Bray-Curtis dissimilarity) were negatively associated with baseline alpha 519 

diversity. 520 

 521 

Figure 2. Long-term stability of microbial species SNP haplotypes and structural 522 

variants. A. Within- and between-individual differences in the single nucleotide 523 

polymorphism (SNP) haplotypes of dominant strains of microbial species. Numbers 524 

follow species names incidate the number of paired samples for which SNP haplotype 525 

profiles are available four years apart. B. Within- and between-individual difference in 526 

the deletion and variable structural variants (SVs) of microbial strains. Numbers follow 527 

species names incidate the number of paired samples for which SVs profiles are 528 

available four years apart. C. Comparison of within-individual microbial species SNP 529 

haplotype difference between the LLD (four years apart) and the HMP (one year apart). 530 

Each dot represents one species. Dots marked in orange represent SNP haplotype 531 

differences show difference between the LLD and the HMP at FDR< 0.05 (Wilcoxon 532 

test). D, E & F. Within-individual SNP haplotype differences in genetical unstable 533 

Ruminococcus torques, Faecalibacterium prausnitzii and Eubacterium rectale show 534 

difference between the LLD and the HMP. 535 
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 536 

Figure 3. Faecalibacterium prausnitzii strain replacement associated with plasma 537 

metabolite changes. A. Two disnict F. prausnitzii strain clusters based on its SNP 538 

haplotype profile. B. Within-individual F. prausnitzii strain switches four years apart. 539 

C, D & E. Plasma levels of licorisoflavan A, 1,2,5-Trimethyl-1H-pyrrole and p-cresol 540 

sulfate showed difference between disnict F. prausnitzii strains, and F. prausnitzii strain 541 

switches associated with changes of these metabolites. 542 
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 543 

Figure 4. Performance of the gut microbiome in fingerprinting its human host. A. 544 

The combination of all microbial genetic and compositional profiles resulted in up to 545 

85% accuracy in distinguishing 676 metagenomic samples from 338 individuals four 546 

years apart. A combination of 30 microbial genetic and compositional profiles resulted 547 

in an accuracy of 82% in the LLD. B. The combination of 30 microbial genetic and 548 

compositional profiles resulted in an accuracy of 95% in the HMP cohort that involved 549 

43 participants with metagenomics abailable one year apart. C. A combination of 30 550 

microbial genetic and compositional profiles resulted in 95% and 99% AUCs for the 551 

LLD and the HMP individual classification in ROC analysis, respectively. D. The 552 

distribution of within- and between-individual distances in the combined distance 553 

matrices. At a cutoff of 0.46, the classification performance in terms of both specificity 554 

and sensitivity reached optimally. 555 
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 556 

Figure 5. Association of microbial temporal changes with host phenotypic changes. 557 

A. Summary of microbial associations to phenotypes. A total of 258 associations were 558 

not only significant at FDR<0.05 for the joint association analysis, but also significant 559 

at P<0.05 for the association analysis of temporal changes, with the same effect 560 

direction of both analyses. These include 113 associations to species and pathway 561 

abundances and 145 associations to microbial SVs. B. Positive association between 562 

systolic blood pressure and Lachnospiraceae bacterium abundance changes. C. 563 

Negative association between plasma HbA1c and fungi flavin biosynthesis pathway 564 

abundance changes. D. Increased Blautia obeum vSV (3019-3020 kb) variabilities 565 

associated with the decreased blood lymphocyte counts. E. Presence rate of Collinsella 566 

sp 4_8_47FAA dSV (927-928 kb) showed difference between the presence and absence 567 

of heart rhythm problems. 568 

 569 
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Figure 6. Association of microbial temporal changes with plasma metabolite 570 

changes. A. Summary of microbial associations to plasma metabolites. A total of 455 571 

associations were not only significant at FDR<0.05 for the joint association analysis, 572 

but also significant at P<0.05 for the association analysis of temporal changes, with the 573 

same effect direction of both analyses. These include 273 associations to species and 574 

pathway abundances and 182 associations to microbial SVs. B. A positive association 575 

between thiamine and Alistipes senegalensis abundance changes. C. The positive 576 

association between microbial-derived uremic toxin p-cresol sulfate and Bacteroidales 577 

bacterium abundance changes. D. Variability changes in multiple vSVs of Blautia 578 

wexlerae associated with microbial drived uremic toxins. 579 

 580 

Figure 7. Casual mediation linkages among the gut microbiome, metabolites and 581 

phenotypes. A. 29 micorbial features associated with not only human phenotypes but 582 

also plasma metabolites. B. 21 significant mediation linkages. C. Microbial sulfate 583 

reduction pathway casually contributed to diastolic blood pressure through thiamine. D. 584 

Microbial lipopolysaccharides pathway casually contributed to systolic blood pressure 585 
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through AFMK. E. Ruminococcus sp vSV (300-305 kb) casually contributed to plasma 586 

LDL through tyrosol 4-sulfate. 587 

 588 

Figure 8. Long-term changes in antibiotic resistance genes and virulence factors. 589 

A. The total load of microbial antibiotic resistance genes increased between the two 590 

time points four years apart. B. The number of microbial virulence genes decreased 591 

over this time period. C. Positive associations between microbial species abundance 592 

changes and antibiotic resistance gene abundance changes. Red dots represent 593 

antibiotic resistance categories while blue dots indicate microbial species. D. Meat 594 

frequency positively associated with microbial aminoglycoside resistance gene 595 

abundance changes. E. Meat intake positively associated with microbial lincosamide 596 

resistance gene abundance changes. 597 
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STAR  METHODS 599 

KEY RESOURCES TABLE 600 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological Samples     

Fecal samples This study  

Blood samples This study  

Critical Commercial Assays   

AllPrep DNA/RNA Mini Kit QIAGEN 80204 

Quant-iT PicoGreen dsDNA 

Assay 
Life Technologies P7589 

Blood Assays Lifelines Biobank https://www.lifelines.nl 

Software and Algorithms   

R (version 3.6.0) R Foundation http://www.r-project.org/ 

Python (version 2.7.11) Python https://www.python.org 

KneadData (version 0.4.6.1) 
The Huttenhower 

Lab 

https://huttenhower.sph.harvard.edu

/kneaddata 

Bowtie2 (version 2.1.0) 
(Langmead et al., 

2019) 

http://bowtie-

bio.sourceforge.net/bowtie2 

MetaPhlan2 (version 2.7.2) (Truong et al., 2015) 
https://huttenhower.sph.harvard.edu

/metaphlan 

HUMAnN2 (version 0.10.0) 
(Franzosa et al., 

2018) 

https://huttenhower.sph.harvard.edu

/humann 

ShortBRED (version 0.9.5) 
(Kaminski et al., 

2015) 

https://huttenhower.sph.harvard.edu

/shortbred 

StrainPhlAn (version 1.2.0) (Truong et al., 2017) 
http://segatalab.cibio.unitn.it/tools/s

trainphlan 

ICRA (Zeevi et al., 2019) 
https://github.com/segalab/SGVFin

der 

SGVFinder (Zeevi et al., 2019) 
https://github.com/segalab/SGVFin

der 

Deposited Data   

LLD raw metagenomics EGA https://www.ebi.ac.uk 

HMP raw metagenomics HMP https://www.hmpdacc.org 

CONTACT FOR REAGENT AND RESOURCE SHARING  601 

Further information and requests for resources and reagents should be directed to the 602 

Lead Contact, Jingyuan Fu (j.fu@umcg.nl). 603 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 604 

https://www.hmpdacc.org/
mailto:j.fu@umcg.nl)
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Study cohort 605 

The LifeLines-DEEP cohort is a sub-cohort of the LifeLines biobank (167,729 606 

participants) (Scholtens et al., 2015) that involved 1,539 participants and is being used 607 

to assess the biomedical, socio-demographic, behavioral, physical, and psychological 608 

factors that contribute to health and disease from the north of the Netherlands 609 

(Tigchelaar et al., 2015; Wijmenga and Zhernakova, 2018). The study has been 610 

approved by Institutional ethics review board (IRB) of University Medical Center 611 

Groningen (ref. M12.113965). This cohort has now been followed-up, and detailed 612 

phenotypic data was collected at two time points around four years apart. Of the 1,135 613 

individuals for whom we generated metagenomics sequencing data in 2013 614 

(Zhernakova et al., 2016), follow-up stool samples were collected for 338 individuals 615 

(55.6% female and 44.4% male) at the second time point. The duration between two 616 

time points ranged from 3.33 to 3.92 years (mean=3.53, sd=0.12). At baseline, the mean 617 

age of participants was 48.2 years (18-80, sd=11.7) and their mean BMI was 25.4 (17.6-618 

43.3, sd=4.08). For the follow-up, the mean age was 51.7 years (22-84, sd=11.7) and 619 

the mean BMI was 25.6 (16.1-37.6, sd=4.0). Phenotypic data assessed in the present 620 

study included 10 intrinsic factors (e.g. age, gender, BMI, height, smoking), 9 blood 621 

cell counts, 7 plasma metabolites (e.g. glucose, cholesterol, triglycerides) and 39 622 

medications (e.g. PPI, oral contraceptives, beta blockers, statins). 623 

METHOD DETAILS 624 

Metagenomic data generation and preprocessing 625 

Stool sample collection and processing at both time points followed the same protocol. 626 

All participants were asked to collect fecal samples at home and place them in their 627 

home freezer (-20°C) within 15 minutes after production. Subsequently, a nurse visited 628 

the participant to pick up the fecal samples on dry ice and transfer them to the laboratory. 629 

Aliquots were then made and stored at -80°C until further processing. The same 630 

protocol for fecal DNA isolation and metagenomics sequencing was used at both time 631 

points. Fecal DNA isolation was performed using the AllPrep DNA/RNA Mini Kit 632 
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(Qiagen; cat. 80204). After DNA extraction, fecal DNA was sent to the Broad Institute 633 

of Harvard and MIT in Cambridge, Massachusetts, USA, where library preparation and 634 

whole genome shotgun sequencing were performed on the Illumina HiSeq platform. 635 

From the raw metagenomic sequencing data, low-quality reads were discarded by the 636 

sequencing facility and reads belonging to the human genome were removed by 637 

mapping the data to the human reference genome (version NCBI37) with KneadData 638 

(version 0.4.6.1) Bowtie2 (version 2.1.0) (Langmead et al., 2019). The read depths of 639 

all samples at both time points were very comparable (paired Wilcoxon test P=0.89). 640 

Taxonomic profiles 641 

Microbial taxonomic profiles were generated using MetaPhlAn2 (version 2.7.2) 642 

(Truong et al., 2015). MetaPhlAn2 relies on nearly 1 million unique clade-specific 643 

marker genes identified from around 17,000 reference genomes (13,500 bacterial and 644 

archaeal, 3,500 viral and 110 eukaryotic), allowing unambiguous taxonomic 645 

assignments, accurate estimation of organismal relative abundance and species-level 646 

resolution for bacteria, archaea, eukaryotes and viruses. Microbial species present in 647 

more than 10% of the samples were included for further analyses. This yielded a list of 648 

157 species that account for 97.81% of taxonomic composition. 649 

Functional profiles 650 

Microbial functional profiles were determined using HUMAnN2 (version 0.10.0) 651 

(Franzosa et al., 2018), which maps DNA/RNA reads to a customized database of 652 

functionally annotated pan-genomes. HUMAnN2 reported the abundances of gene 653 

families from the UniProt Reference Clusters (Bateman et al., 2015) (UniRef90), which 654 

were further mapped to microbial pathways from the MetaCyc metabolic pathway 655 

database (Caspi et al., 2016; Caspi et al., 2018). Based on MetaPhlAn2, HUMAnN2 656 

can further characterize community functional profiles stratified by known (species-657 

level) and unclassified organisms. In total, 343 microbial pathways present in more than 658 

10% of the samples were kept for subsequent analysis, accounting for 99.98% of 659 
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microbial functional composition. 660 

Antibiotic resistance genes 661 

Quantification of antibiotic resistance genes in metagenomics was performed using 662 

shortBRED (version 0.9.5) (Kaminski et al., 2015) with markers generated from the 663 

ResFinder database, which reports more than 1,800 different antimicrobial resistance 664 

genes (November 2018 version) (Zankari et al., 2012). In brief, ShortBRED is a 665 

pipeline to take a set of protein sequences from a target database (i.e. ResFinder), cluster 666 

them into families, build consensus sequences to represent the families, and then reduce 667 

these consensus sequences to a set of unique identifying strings (markers). The pipeline 668 

then searches for these markers in metagenomic data and determines the presence and 669 

abundance of the protein families of interest. We classified the abundance of 29 670 

antibiotic resistance genes that were present in at least 10% of the samples. 671 

Virulence genes 672 

We also searched the metagenomic data for bacterial virulence genes using shortBRED 673 

(version 0.9.5) (Kaminski et al., 2015) and markers generated from virulence factors of 674 

pathogenic bacteria database (VFDB, core dataset of DNA sequences, version: 675 

November, 2018) (Liu et al., 2019). Here we classified the abundance of 59 virulence 676 

genes that are present in at least 10% of the samples. 677 

Strain level SNP haplotypes 678 

Strain SNP haplotypes were generated using StrainPhlAn1 (version 1.2.0) (Truong et 679 

al., 2017). This method is based on reconstructing consensus sequence variants within 680 

species-specific marker genes and using them to estimate strain-level phylogenies. 681 

Reconstructed markers with a percentage of ambiguous bases >20% are discarded. 682 

Consensus sequences are then trimmed by removing the first and last 50 bases because 683 

the terminal positions have lower coverages due to the limitations in mapping reads 684 

against truncated sequences (Truong et al., 2017). Next, clades with a percentage of 685 

markers <50% are removed, and if the percentage of samples in which a marker is 686 
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present is <50%, that marker is also removed. Samples with full sequences 687 

concatenated from all markers and a percentage of gaps >50% are removed from the 688 

alignment. Finally, we used the multiple sequence alignment file to generate a 689 

phylogenetic distance matrix that contains the pairwise nucleotide substitution rate 690 

between strains by applying the Kimura 2-parameter method from the EMBOSS 691 

package (Rice et al., 2000). Using this method, we classified the within-individual SNP 692 

haplotype difference of the dominant strain in 37 species that present in at least 5 sample 693 

pairs, and 18 of these were obtained in at least 10% of sample pairs. 694 

Structural variants in microbial genome 695 

We applied SGV-Finder pipeline (Zeevi et al., 2019) to classify SVs that are either 696 

completely absent in microbial genome of some samples (deletion SVs, dSVs) or those 697 

whose coverage is highly variable across samples (variable SVs, vSVs). Prior to SV 698 

classification, an ‘iterative coverage-based read assignment’ algorithm was applied that 699 

resolves ambiguous read assignments to regions that are similar between different 700 

bacteria, using information on bacterial relative abundances in the microbiome, their 701 

genomic sequencing coverage and sequencing and alignment qualities (Zeevi et al., 702 

2019). In total, we classified 6,130 SVs, including 4,333 dSVs and 1,797 vSVs from 703 

41 microbial species that present in at least 5 sample pairs. The SVs of 26 species can 704 

be obtained in at least 10% of sample pairs. We further calculated Canberra distance 705 

between individuals based on dSVs and vSVs of each microbial species, respectively. 706 

Plasma untargeted metabolomics 707 

Plasma samples of study participants were collected and frozen at -80°C with EDTA. 708 

During extraction, plasma samples were thawed on ice, vortexed, and spun down. 20µL 709 

of plasma was combined with 180µL of 80% methanol and vortexed for 15 seconds. 710 

The samples were incubated at 4°C for one hour to precipitate proteins, and then spun 711 

for 30 minutes at 3,200 RCF. 100µL of supernatant was removed and used for Flow-712 

Injection Time-of-Flight Mass Spectrometry (FIA-TOF) analysis in General 713 
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Metabolics, Inc., Boston, USA, by using protocols described previously (Fuhrer et al., 714 

2011). In total, 1183 metabolites with annotations were involved in the analysis. The 715 

annotated metabolites cover 18 chemical categories based on Human Metabolome 716 

Database (HMDB) (Table S2a) (Wishart et al., 2018). The charactization of plasma 717 

protein-bound uremic toxins, including indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, 718 

phenylacetic acid and hippuric acid was based on (Wang and Zhao, 2018).  719 

QUANTIFICATION AND STATISTICAL ANALYSIS 720 

Principal coordinates analysis (PCoA) 721 

The relative abundances of all microbial species and pathways were included in PCoA. 722 

We applied the vegdist() function from the vegan (version 2.5.5) R package to calculate 723 

the Bray-Curtis dissimilarity matrix. Subsequently, classical metric multidimensional 724 

scaling was carried out based on the Bray-Curtis distance matrix to obtain different 725 

principal coordinates. 726 

Comparison of microbial composition dissimilarity 727 

To compare the differences in overall microbial species and pathway compositions 728 

between- and within-individuals, we applied a Wilcoxon test on Bray-Curtis 729 

dissimilarity. Since the number of dissimilarities between- and within-individuals was 730 

unbalanced, we calculated an empiric P-value by permuting samples of microbial 731 

species and pathway relative abundance tables for 10,000 times. 732 

Differential microbiome feature abundance 733 

We applied different transformation/normalization methods for the different microbial 734 

abundance datasets, i.e. centered log-ratio transformation for relative abundances (sum 735 

up to 1) of microbial species and functional pathways and log transformation (with 736 

pseudo count of 1 for zero values) for microbial antibiotic resistance and virulence gene 737 

abundance. Within-individual differences in microbial abundance were then assessed 738 

by using paired Wilcoxon tests. The false discovery rate (FDR) was calculated with 739 

1,000 times permutation. 740 



 34 

Distance matrix-based individual classification 741 

We evaluated if microbial abundance and genome information can be used for 742 

individual classification (i.e. to identify if two samples belong to the same individual). 743 

To do so, we generated Bray-Curtis distances based on microbial species and pathway 744 

relative abundance, Kimura distance based on SNP haplotype profile and Canberra 745 

distance based on SV profiles. The samples were clustered using single-linkage 746 

clustering, also known as nearest neighbor clustering. If two samples, and only those 747 

two samples, from the same individual were clustered together as the closest neighbor, 748 

we considered that they were classified correctly. We then defined the accuracy by 749 

calculating the proportion of the total number of correctly classified pairs. Finally, by 750 

establishing a specific cutoff, we could determine whether a pair of samples come from 751 

the same individual by their dissimilarity, and the cutoff affects the performance of 752 

classifier. A receiver operating characteristic curve (ROC) was drawn based on 753 

dissimilarity to reflect the specificity and sensitivity of classification using roc() 754 

function from pROC (version 1.16.1) (Robin et al., 2011).  755 

Stepwise distance matrices combination 756 

A total of 71 distance matrices were present in more than 10% of sample pairs, 757 

including 69 genetic distance matrices (SNP haplotype distance matrices for 18 species, 758 

dSV and vSV distance matrices for 26 species) and 2 compositional distance matrices 759 

generated by microbial species and pathways abundance. We aimed to see whether we 760 

can utilize these genetic and microbial distance matrices to classify different samples 761 

from the same individuals. Each of these distance matrices was considered as one 762 

classifier. We carried out a stepwise forward selection approach to combine multiple 763 

microbial genetic and compositional distance matrices. The cohort was randomly 764 

divided into a discovery set with 60% of sample pairs and a validation set with 40% of 765 

pairs. In order to combine multiple distance matrices, we first standardized and scaled 766 

all distance matrices between 0 and 1 by dividing each matrix by its largest value. In 767 

the discovery set, we assessed the accuracy of each distance matrix in classifying 768 
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samples as described above. We started with the distance matrix that had the highest 769 

accuracy, i.e. the 1st classifier. We then moved on to the model with two distance 770 

matrices by adding another distance matrix and taking the mean value of two matrices. 771 

We tested all possible combinations and chose the combination with the highest 772 

accuracy. The classifier included at the second step was considered as the 2nd classifier. 773 

This step was repeated to include the 3rd classifier, and this process continued until all 774 

the distance matrices were included. In this way, we generated a series of models that 775 

included different number of distance matrices and tested their performance in the 776 

validation set. The whole procedure of dataset splitting and feature combination was 777 

repeated 10 times, and we determined the optimal feature number N at which the 778 

performance did not improve anymore when more matrices were added. The distance-779 

based features were prioritized by their median ranks across 10-times feature selections, 780 

then top-N distance matrices were selected as the optimum combination for the final 781 

classifier. 782 

Microbial associations to host phenotypes and metabolites 783 

We first established microbial associations to host phenotypes and metabolites (Table 784 

S1) using linear and logistic mixed-effects model (joint associations): dependent 785 

variable ~ (intercept) + independent variable + age + sex + (1| time point) + (1| subject), 786 

for continuous and binary microbial traits, respectively. We further validated these joint 787 

associations by linking microbial changes to host phenotypic and metabolic changes 788 

with a regression model (delta associations): dependent variable changes ~ (intercept) 789 

+ independent variable changes + age + sex, for continuous and binary microbial traits 790 

(dSVs), respectively. The Benjamini-Hochberg procedure was applied to control FDR 791 

(Benjamini et al., 2001). 792 

Casual mediation linkage inference  793 

For phenotypic and metabolic associations to the same microbial fearure, we first 794 

checked whether human the phenotype associated with the metabolite by using both 795 
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joint and delat association models as described above. Next, bi-directional medication 796 

analysis was carried out by using mediate function from mediation (version 4.5.0) R 797 

package to inference casual role of microbiome in contributing to human phenotype 798 

through metabolite. The Benjamini-Hochberg procedure was applied to control FDR. 799 

DATA AND SOFTWARE AVAILABILITY 800 

The raw metagenomic sequencing data of the Lifelines-DEEP and replication cohorts 801 

are available from the European Genome-Phenome Archive (EGA, 802 

https://www.ebi.ac.uk/ega/home) via accession number EGAS00001001704, and 803 

Human Microbiome Project website  (https://www.hmpdacc.org), respectively. 804 

Analysis codes are available via: https://github.com/GRONINGEN-MICROBIOME-805 

CENTRE/Groningen-806 

Microbiome/tree/master/Projects/LLDeep_microbiome_5year_follow-up 807 

https://www.hmpdacc.org/
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