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Abstract 44 

Consumption of over-the-counter probiotics has been globalized in recent years. Emerging 45 

health trends, extensive commercial endorsement, and conflicting clinical results have led to a 46 

highly polarized state, in which, on the one hand, probiotics use has been greatly popularized by 47 

the general public, but on the other hand many proposed probiotics health indications remain 48 

non-sufficiently substantiated, and are accompanied by a highly debated medical literature. 49 

Emerging insights from the microbiome field now enable a re-assessment of probiotics gut 50 

colonization, strain-level activity, interactions with the indigenous microbiome, safety and 51 

impacts on the eukaryotic host, in reaching more comprehensive conclusions on physiological 52 

effects and potentially useful medical indications. In this perspective, we will highlight key 53 

advances, challenges, and limitations in striving towards an unbiased interpretation of the large, 54 

but often debatable data regarding over-the-counter probiotics, and propose avenues to 55 

improve the quality of evidence, transparency, public awareness, and regulation of their use.  56 

 57 
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Introduction  81 

The concept of oral consumption of microorganisms as means of inducing health benefits has 82 

intrigued humans for centuries. The term ‘probiotics’ first appeared in this context in 1974 and 83 

conceptually evolved to the current common definition suggested by the FAO/WHO in 2002: 84 

“live microorganisms, which, when administered in adequate amounts, confer a health benefit 85 

on the host”1. Nowadays, over-the-counter microbial therapy constitutes a constantly growing 86 

multi-billion-dollar industry2 and is one of the most commonly consumed forms of food 87 

supplements worldwide3. Probiotics are supplemented to foods such as yogurt, cheese, ice 88 

cream, snacks and nutritional bars, breakfast cereals, and infant formulas, as well as cosmetic 89 

products, and are also commercialized in the form of lyophilized pills4. Probiotics consumption 90 

is widely supported by physicians5, and specifically gastroenterologists6. This popularity 91 

notwithstanding, data from decades of research on the efficacy of probiotics in treating or 92 

preventing disease often points towards opposing conclusions, and remains conflicting, debated 93 

and confusing in many cases. Moreover, the major medical regulatory authorities, such as the 94 

European Food Safety Authority7 or the US Food and Drug Administration8, have yet to approve 95 

any probiotic formulation as a medical intervention modality. As a result, probiotics marketing 96 

as dietary supplements is often driven by properties such as safety, viability in the GI tract and 97 

lack of impact on food taste, rather than by unequivocal health-promoting effects9. This 98 

confusing state merits seeking better evidence-based proofs of probiotics impacts on humans 99 

and their adverse effects10. In this perspective, we will highlight and discuss some of the major 100 

prospects and limitations of the current approach to probiotics, present challenges in 101 

interpretation of available data, and suggest possible strategies to clarify these issues and 102 

transform probiotics into a more reproducible and universally accepted measurement-based 103 

approach.  104 

In providing this critical perspective, we would like to emphasize that the reviewed over-the-105 

counter microbial interventions will be termed ‘probiotics’ regardless of their benefit, efficacy 106 

or lack thereof. Importantly, while aiming to offer a critical overview of the state of probiotics, 107 

we do not wish to ‘throw the baby out with the bathwater’. The uncertainty created by some of 108 

the opposing evidence with regards to probiotics notwithstanding, we conceptually believe that 109 

rigorous research and regulation has a promising potential of materializing into an effective 110 

medical intervention in selected indications, some of which are exemplified below. Of note, this 111 

perspective is not aimed at reviewing investigational, non-commercially available “next 112 

generation” microbial therapy approaches that are being proposed as interventions in various 113 

medical indications. These are discussed elsewhere11,12.  114 

It is unrealistic to include all probiotics studies and their suggested indications in one 115 

perspective. Therefore, we will highlight notable examples to discuss A. The ‘knowns’ and 116 

challenges with respect to strength of evidence and clinical interpretation of studies assessing 117 
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health benefits of probiotics. B. Suggested mechanisms of probiotics, touching upon the gut 118 

colonization debate C. Interactions of probiotic strains with the gut microbiome. D. Safety, and 119 

E. Future directions. 120 

  121 

Clinical efficacy 122 

The effects of probiotics on humans have been extensively studied both by scientists and the 123 

food and drug industry for decades, leading to multiple suggested prophylactic and therapeutic 124 

health indications and claims, including prevention or treatment of acute, antibiotic-associated, 125 

and Clostridium difficile-associated diarrhea, amelioration of inflammatory bowel disease and 126 

irritable bowel syndrome and risk reduction for neonatal late-onset sepsis and necrotizing 127 

enterocolitis. Other claims include, among many others, eradication of Helicobacter pylori, 128 

reduction in incidence and severity of respiratory infections, alleviation of depression, 129 

prevention or treatment of atopic dermatitis and reduction of cardiovascular risk factors 130 

associated with cardiometabolic syndrome13. Regretfully, despite the fact that some clinical 131 

trials related to the above health claims are of high methodological quality and validity14-18, 132 

careful examination of the large body of evidence reveals that, for most of the above indications, 133 

there are also studies of similarly high methodological quality featuring negative or opposing 134 

results, collectively leading to conflicting, ambiguous and debatable overall conclusions.  135 

This confusing situation may stem from a number of reasons, including the fact that many of the 136 

probiotics trial readouts are based on empiric clinical data that varies in its collection 137 

methodology, clinical end-points, and analytical rigor. Many reports use of qualitative, self-138 

reported parameters of “well-being”19,20, others provide quantification of markers that do not 139 

necessarily have clinical significance, for example reduction of C-reactive protein (CRP) in 140 

healthy individuals21, or elevation of glucose-stimulated glucagon-like peptide 1 (GLP-1) in 141 

glucose-tolerant individuals22. Likewise, a great variability exists as to the systems analyzed, 142 

ranging from cell cultures, in vitro studies, animal models and human studies spanning 143 

observational or randomized, placebo-controlled trials. At times, even within high quality 144 

placebo-controlled studies, probiotics putative benefits are conflicting between trials23,24. 145 

Another contributor to the variability between probiotics studies is the profusion of studied 146 

microorganisms. With observations made over a century ago25,26, the dominant microorganisms 147 

used in the probiotics industry even nowadays belong to two genera: Lactobacillus and 148 

Bifidobacterium. Each of these genera includes multiple species, subspecies and strains that 149 

feature with both class effects and, in some cases, distinct strain-specific traits. Additional 150 

common microorganisms used in the probiotics industry include Lactococcus spp., Streptococcus 151 

thermophilus, E. coli Nissle 1917, and the yeast Saccharomyces boulardii27. Importantly, some 152 

health benefits may require interaction between different strains, contrasting with the current 153 

approach of considering probiotics as a homogenous therapeutic entity.  154 
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To counteract the above methodological and analytical limitations and to overcome 155 

underpowered findings researchers and clinicians frequently integrate results from multiple 156 

studies in the form of systematic reviews and meta-analyses. The use of such tools may be 157 

highly useful in revealing general trends, however it may also be susceptible to biases that can 158 

be introduced in each analytical step28, such as obscuring actual effects or their lack thereof by 159 

outlier studies that dominate the collective results and artificially resolving contradictory 160 

trends. In particular, meta-analyses concerning probiotics tend, at times, to group studies 161 

testing various unrelated supplemented bacteria under the same umbrella, thereby risking 162 

over- or misinterpretation of results29,30.  Consequently, even meta-analyses addressing similar 163 

topics may conflict each other31,32. Thus, in our view, meta-analyses can complement, but not 164 

replace high-quality, large-scale, multi-center, randomized controlled clinical trials.  165 

Moreover, unlike animal models, humans are highly heterogeneous in terms of diet, age range, 166 

genetic background and their gut microbiome configuration, and may therefore respond 167 

differently to the same intervention (Fig. 1). Nevertheless, these readily measurable 168 

personalization issues have not been sufficiently addressed in the probiotics literature. As 169 

described in the ‘Gut colonization’ section below, humans feature a differential and highly 170 

personalized gut colonization capacity for probiotics, which may drive differential probiotics 171 

effects on the host and/or on its indigenous gut microbiome. 172 

Finally, many of the probiotics studies are linked, funded, initiated and endorsed by commercial 173 

entities of the probiotic industry or by professional lobby groups heavily associated and funded 174 

by the same industry33. While this reality by itself does not necessarily compromise the validity 175 

of such studies, there is a need and interest in independent corroboration of efficacy claims to 176 

be reproduced through non-affiliated research by scientific and medical entities. Examples of 177 

some of the most notable suggested probiotics indications include: 178 

 179 

Acute gastroenteritis. Probiotics have been suggested to be effective as preventive or 180 

therapeutic means in various pediatric and adult etiologies manifesting as acute diarrhea.  181 

Several meta-analyses and systematic reviews indicate that some preparations34, especially 182 

those containing S. boulardii35, Lactobacillus rhamnosus GG (LGG)36 and other strains within the 183 

Lactobacillus genus37 may ameliorate acute diarrhea in children and shorten its duration by 184 

approximately one day. Likewise, probiotics have been shown effective in the prevention and 185 

treatment of acute diarrhea in adults, and various preparations, in particular S. boulardii and L. 186 

rhamnosus, have been suggested to improve antibiotic-associated diarrhea both in healthy 187 

children38,39, adults40,41, and in hospitalized patients42. In contrast, other studies and meta-188 

analyses have shown contradictory results as for diarrhea prevention in children43, adults23, and 189 

in the elderly41,44. Notably, the results of two recent high-quality, large-scale, multi-center, 190 

randomized placebo-controlled trials assessing treatment with L. rhamnosus (LGG or R0011) 191 
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with or without L. helveticus R0052 in over 1800 children presenting to the emergency 192 

department with acute gastroenteritis demonstrated no clinical benefits45,46. One meta-analysis 193 

in children has noted that the quality of evidence with regard to this indication was low to very 194 

low47, leading to the omission of probiotics from one clinical management guidelines48, whereas 195 

another still advocates the use of LGG and S. boulardii while stating that the evidence upon 196 

which these recommendations are based is of low quality49. Notwithstanding the dispute, many 197 

parents “self-treat” their children, when contracted with gastroenteritis, with “functional foods” 198 

containing probiotics50.  199 

 200 

Clostridium difficile-associated diarrhea (CDAD). Clostridium difficile thrives in the gut when 201 

microbiome-conferred colonization resistance is compromised, such as upon antibiotics 202 

treatment in hospitalized patients, thereby causing a disease that can range in severity from 203 

mild diarrhea to a life-threatening condition termed pseudo-membranous colitis. Several meta-204 

analyses have shown a cumulative beneficial outcome for probiotics in preventing C. difficile 205 

infection or its associated morbidity51, especially when administered close to antibiotics 206 

exposure52,. A follow up 2017 meta-analysis further supported moderate beneficial evidence, 207 

but indicated a considerable heterogeneity between trials, and utilized a post-hoc analysis that 208 

suggested no significant effect to probiotics on CDAD in trials featuring low and moderate 209 

baseline CDAD risk53. Another meta-analysis concluded that of the various probiotic strains, 210 

only S. boulardii was effective against C. difficile54, though a different meta-analysis relating 211 

specifically to S. boulardii found that it reduced CDAD risk in children, but not in adults55, with 212 

low quality of evidence noted56.  213 

In taking a closer look on the individual studies forming the basis of these meta-analyses, C. 214 

difficile incidence was non-existent (8 trials, Table 1) or low in the majority of the trials 215 

regardless of treatment group, while the vast majority of trials included in meta-analyses (34 216 

trials, Table 1) did not demonstrate a significant effect for probiotics of different strains on 217 

CDAD or C. difficile infection. While this may be related to insufficient power of these studies to 218 

demonstrate an effect in the context of low incidence of C. difficile, two RCTs featuring 219 

populations with a high incidence of C. difficile, including the largest trial of probiotics for this 220 

indication to date, did not find a difference between the treatment and placebo groups44,57. Thus, 221 

the effects observed in meta-analyses are mostly contributed by a minority of works 222 

demonstrating a significant effect18,42,58-61, of which two are non-peer-reviewed conference 223 

abstracts62,63. While C. difficile incidence in the placebo group was very high18,42,62 in most works 224 

showing a beneficial effect18,42,58,59,61, other works, in which CDAD was uncommon pointed 225 

towards a lower level of evidence with respect to probiotics efficacy in preventing CDAD33,64.  226 

Together, variable baseline risk of CDAD among cohorts may potentially explain the differences 227 
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in outcomes between studies, as well as the fact that the majority of meta-analyses aggregated 228 

studies testing a variety of probiotic strains, both fungal and bacterial65.  229 

 230 

Irritable Bowel Syndrome (IBS) and digestive complains. IBS is a common and clinically 231 

variable disorder of unclear etiology. Trials assessing interventions to alleviate IBS are often 232 

limited by the fact that this condition is defined by subjective criteria. As such, it is of paramount 233 

importance to ensure that symptoms alleviation by probiotics is not equal or inferior to that of a 234 

placebo effect66. One recent meta-analysis has suggested that probiotics may be efficacious in 235 

treating symptoms of IBS67, although it should be noted that none of the single strain 236 

preparations was proven effective for abdominal pain alleviation or for treatment of bloating, 237 

flatulence and urgency. Even within probiotic combinations some were found effective in 238 

reducing symptom persistence and abdominal pain scores, while others were not, emphasizing 239 

the importance of informed strain selection on disease outcome. Correspondingly, a systematic 240 

review of 9 systematic reviews and 35 RCTs did not find evidence for various probiotic strains 241 

efficacy in IBS68. 242 

 243 

Neonatal sepsis. A promising indication for the efficacy of probiotics is the prevention of 244 

neonatal late-onset sepsis and/or necrotizing enterocolitis (NEC), a gastrointestinal disease 245 

typically affecting premature newborns69,70. The protective mechanism against NEC may involve 246 

anti-pathogen mucosal protection, coupled with induction of maturation of innate immunity and 247 

intestinal epithelial cells by some probiotic strains (such as LGG), which prompt an attenuated 248 

inflammatory response71,72. Furthermore, a recent large-scale RCT strengthened these findings 249 

by showing that rural Indian infants who received a combination of oral preparation of L. 250 

plantarum PP 11-217 and fructooligosaccharide were protected from neonatal sepsis and 251 

death14. It still remains debated whether probiotics reduces the risk for late-onset sepsis in 252 

extremely low birth weight neonates73-75, and whether milk-fed preterm infants feature a better 253 

response to this intervention as compared to formula-fed or infants kept on mixed feeding76. 254 

Importantly, the long-term consequences of probiotics on the development of the indigenous 255 

gut microbiome and their effect on gut immune, metabolic, and anatomical development77 256 

warrants further studies.   257 

 258 

Acute respiratory infection. Some systematic reviews and meta-analyses of studies empirically 259 

testing probiotic strains, suggest that they may be effective in reducing the severity, duration or 260 

incidence of common cold, respiratory infections and influenza-like symptoms in children, 261 

adults, the elderly, and even in athletes78,79, however quality of evidence was stated as low to 262 

very-low and heterogeneity between studies was deemed significant. A meta-analysis 263 

encompassing both children and adult studies proposed that probiotics might reduce the 264 
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severity and duration of respiratory tract infections, but not their incidence80. These 265 

discrepancies may stem, at times, from reliance on subjective or indirect measures to assess 266 

infection, such as self-reporting81-84, or antibiotic treatment and days of absence from 267 

work/daycare78,85. Discrepancies may also result from unadjusted results when treatment 268 

groups were different at baseline85, subsampling with no clear clinical or biological 269 

justification86,87, unexplained exclusion of trials from meta-analyses78, and attributing an effect 270 

to treatment despite a counter-intuitive dose-response relationship87. On a causal level, there is 271 

a great need of a data-driven explanation of mechanisms by which gastrointestinal-localized 272 

probiotics would impact a disease involving a remote organ. 273 

 274 

Gut colonization 275 

An unresolved issue associated with probiotics mechanisms of action relates to the 276 

administered microorganisms capacity to stably or even transiently colonize the host 277 

gastrointestinal mucosal surface, and whether their colonization is necessary to exert beneficial 278 

impacts on the host. The proximity of probiotic strains to the host lining epithelial layer may be 279 

mechanistically crucial, as mucosal adhesion or even presence at low titers, may provide the 280 

micrometer distance of probiotics strains to the host gastrointestinal epithelium, which is a 281 

prerequisite for many activities including contact-dependent immune modulation88,89, 282 

metabolite secretion in effective concentrations90, and mucus layer modification91. This 283 

decades-long debate is comprised of two inherently distinct colonization-related questions, 284 

which have often been confusingly intermingled with each other, in the absence of concrete 285 

experimental data:  286 

Question 1: Do probiotics colonize the gut mucosa during consumption? Surprisingly, this 287 

critically important topic has not been directly explored in a comprehensive manner in humans 288 

until recently. Most probiotics colonization claims have been extrapolated from assessment of 289 

their abundance in stool, without directly examining whether this actually reflects their 290 

colonization capacity, or merely a passage of non-engaging microbes across the GI tract and 291 

their excretion into stool92. Like stool assessment, probiotics adherence to human 292 

gastrointestinal cells in vitro93,94 may be a poor indicator of in vivo colonization due to a myriad 293 

of host and microbiome factors that are absent in the in vitro setting. 294 

Direct quantification of mucosal probiotics colonization was determined by endoscopies in a 295 

handful of trials, with some studies in humans95-98 and pigs99,100 suggesting that probiotic 296 

bacteria could be universally isolated from various gastrointestinal organs during or even after 297 

supplementation, while others showing a highly limited and variable colonization patterns, 298 

observed in only a minority of tested individuals101-104. Noteworthy, the universal utilization of 299 

culturing or 16S rDNA techniques in these studies considerably limits the ability to distinguish 300 

between the administered probiotic strain and endogenous closely related commensals of the 301 
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same species/genus (see Box 1). A species- and strain-sensitive metagenomic assessment of 302 

human participants evaluated by colonoscopy and gastroscopy before and after consumption of 303 

11 probiotic strains belonging to the four most widely used probiotic genera (or placebo)92 304 

featured a significant expansion of the mucosa-associated probiotics in 60% of the 305 

supplemented individuals, and a near-total colonization resistance in the other 40%, even when 306 

measured by ultra-sensitive quantitative PCR. The degree of mucosal association was unrelated 307 

to the bloom of probiotic strains in stool, and could be predicted by a combination of baseline 308 

host and microbiome factors, highlighting a potential future prospect of probiotics tailoring to 309 

the individual. Interestingly, transplantation of fecal microbiome from ‘resistant’ or ‘permissive’ 310 

individuals into germ-free (GF) mice recapitulated the donor susceptibility to probiotics 311 

colonization, indicating a dominant microbiome-mediated colonization resistance mechanism92.  312 

Other postulated non-colonization-dependent probiotics effects on the host, such as impacts on 313 

food digestion merit evidence-based experimental proof. With this respect, in the above study92 314 

probiotic strains in ‘resistant’ individuals were not detected even in the gut lumen during active 315 

consumption (Gut Microbes, in press), suggesting that temporarily/persistently colonizing 316 

mucosa-associated probiotics may serve as an important reservoir for luminal bacteria. 317 

 318 

Question 2: Do probiotics persistently colonize the gut mucosa, even after cessation of 319 

consumption? Even in ‘permissive’ individuals, it remains unclear whether probiotic 320 

colonization is maintained after supplementation ceases. In rats fed a fermented milk product 321 

(FMP) containing 5 probiotic strains, all strains were shed during feeding, but only a subset of 322 

rats continued to shed one of the five probiotics strains (L. lactis CNCM I-1631) two days 323 

following supplementation. Transferring the distinct microbiomes of ‘permissive’ or ‘resistant’ 324 

rats to GF rats replicated colonization permissiveness of the donors105. In humans, detectable 325 

shedding of probiotics in stool samples during supplementation that diminishes following 326 

cessation has been described for Bifidobacterium strains infantis 35624106, animalis sbsp. lactis 327 

Bb-12107, Lactobacillus strains acidophilus R52108, casei DN-114 001109, johnsonii La1104,110, 328 

plantarum 299v111, reuteri DSM17938112,113, rhamnosus (LGG, R11, 19070-2)103,108,113, and 329 

salivarius CECT5713114 among others115. However, follow-up periods were limited to 1-2 weeks 330 

after cessation of consumption in most studies. Patterns emerging from longer follow-ups 331 

suggest both strain- and person-specific persistence variability. Two months following 332 

supplementation cessation, L. rhamnosus was detected only in 1/10 individuals116, whereas one-333 

third of B. longum AH1206 consumers continued to shed the probiotic species in stool up to 6 334 

months after discontinuation117. Subject- and strain-specific post-cessation shedding were also 335 

noted in humans supplemented with the aforementioned 5-strains mix FMP, in which only L. 336 

lactis CNCM I-1631 was shed in stool samples five weeks following cessation, and only by a 337 

subset of individuals characterized by a distinct microbiome composition105. 338 
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  339 

Mechanism of activity 340 

Beneficial effects of probiotics have been postulated to occur through diverse mechanisms, 341 

including induction of immunomodulation, protection against physiological stress, suppression 342 

of pathogens, microbiome modulation and improvement of gut epithelium barrier function (Fig. 343 

2). These mechanistic probiotics studies often suffer from several major limitations, including 344 

heavy reliance on utilization of cell culture systems that do not account for the myriad of crucial 345 

physiological cues that dictate microbe-microbe and microbe-host interactions within the 346 

complex GI mucosa microenvironment, and are thus often not replicated in in vivo trials. Other 347 

limitations stem from the poor colonization capacity of exogenous ‘human compatible’ 348 

probiotics in the murine GI mucosa, compared to that noted in humans92,118. Host discordance 349 

may be functionally significant, as administration of human commensals to mice can result in a 350 

markedly distinct effect on the immune system119,120 or host metabolome121 compared to mice 351 

harboring a murine microbiome. Importantly, some probiotic traits may represent class effects 352 

and be uniformly present between different members of the species or even the genus, for 353 

example both Bifidobacterium spp. and Lactobacillus spp. produce the enzyme beta-354 

galactosidase, which may compensate in lactase insufficiency122,123, while other traits may be 355 

species-124 or even strain-specific125, or require interaction between probiotic strains126, as 356 

further discussed. Several major mechanisms have been suggested to be involved in probiotics 357 

effector functions: 358 

 359 

Immunomodulation. Many probiotics studies suggested in vitro effects on expression of 360 

immune-related genes, inflammatory pathways activity and immune marker levels, including 361 

modulation of intestinal epithelial cell (IEC) NFκB, mitogen-activated protein kinase (MAPK), 362 

Akt / phosphoinositide 3-kinase (PI3K), peroxisome proliferator-activated receptor γ activity, 363 

CRP, IL-6, IL-8, tumor necrosis factor (TNF)-α, IL-1β, and interferon γ, through multiple, mostly 364 

contact-dependent mechanisms (reviewed in127). Interestingly in some studies, live and dead 365 

bacteria featured a differential effect on gene expression, suggesting that both cell surface and 366 

actively secreted molecules may affect intestinal transcriptome128. Additional examples of 367 

suggested immune impacts include Lactobacillus-mediated TLR2-dependent stimulation of TNF-368 

α secretion through lipoteichoic acid (LTA)129, B. longum-mediated contact-dependent IL-10 369 

secretion130, sortase-dependent pili in Bifidobacterium evoking a TNF-α response93, cell surface 370 

exopolysaccharide (sEPS) in B. longum 36524 modulating proinflammatory cytokines and Th17 371 

responses in the gut and the lung131, and immuno-stimulatory cell surface appendages termed 372 

SpaCBA in LGG, mediating (in vitro) both binding to human intestinal mucus and TLR2-373 

dependant modulation of TNF-α, IL-6, IL-10, and IL-12132.  374 
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Additional examples of suggested in vivo mechanisms include LGG inducing the generation of 375 

reactive oxygen species and consequently inhibiting TNF-α-induced intestinal NFκB activation 376 

through SpaC-mediated adhesion to intestinal epithelium133; Peptidoglycan from L. salivarius 377 

Ls33, but not L. acidophilus NCFM, protecting mice from chemically induced colitis in a 378 

nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-IL-10-dependent 379 

manner124; L. acidophilus L-92 binding to microfold (‘M’) cells mediated immune modulation by 380 

its surface layer protein A (SlpA)134; B. infantis 35624 inducing TLR2-depended T regulatory 381 

cells in humans135; and B. animalis sbsp. lactis Bb-12 inducing IgA secretion136,137. Collectively, 382 

most of the above examples point to a requirement of physical contact or proximity between 383 

host cells and probiotics to potentially induce both pro- and anti-inflammatory responses, 384 

highlighting the importance of the context in which they are administrated. The clinical outcome 385 

of such changes observed in colonized individuals, whether beneficial or not, merits further 386 

human studies. 387 

  388 

Protection against pathogens. Probiotics have been suggested to inhibit pathogen colonization 389 

by attaching to epithelial cells and physically blocking the pathogen ability to adhere. This has 390 

been shown in culture138 and indirectly in mice for Salmonella and L. acidophilus LAP5 or L. 391 

fermentum LF33139. L. acidophilus A4 can also antagonize adhesion of E. coli O157:H7 to IEC 392 

through up-regulation of MUC2, IL-8, IL-1β, and TNF-α140. Several Bifidobacterium spp. have 393 

been shown to produce acetate in vivo, consequently inhibiting Shiga toxin-producing E. coli 394 

(STEC) O157:H7 through acidity-related mechanisms141,142. Several lactic acid bacteria can 395 

produce bacteriocins, compounds that demonstrate antimicrobial activity143. For example, 396 

production of Abp118 bacteriocin by L. salivarius UCC118 protects mice from infection with L. 397 

monocytogenes144. Other mechanisms may involve the disruption of quorum sensing (QS), for 398 

instance L. acidophilus La-5 inhibited autoinducer-2 (AI-2) and reduced the expression of some 399 

virulence factors of E. coli O157:H7 in vitro145; L. acidophilus GP1B inhibited AI-2 activity for C. 400 

difficile in vitro and its administration to mice with C. difficile infection improved their 401 

survival146; and L. reuteri RC-14 produced mediators to interfere with S. aureus QS and thus 402 

repressed its virulence, including the expression of toxic shock syndrome toxin-1147. 403 

Importantly, production and response to QS signals is a trait shared between pathogens and 404 

commensals148, thus the complexity of QS signals and abundance of responders in vivo may 405 

differ from that of in vitro experiments149, and QS manipulation in vivo can even result in 406 

inhibition of commensal bacteria150.  407 

 408 

Improved barrier function. Several underlying mechanisms have been suggested for probiotics 409 

stabilization of gut barrier function, and are reviewed elsewhere151, including up-regulation of 410 

tight-junction (TJ) proteins (Claudin-1, Occludin, and ZO-1) and improved transepithelial 411 
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resistance, promotion of mucus secretion (by up-regulating MUC2, MUC3 and MUC1), elevation 412 

of butyrate levels, as well as microbiome modulation. These effects may be mediated by locally 413 

secreted metabolites, for example L. plantarum produces hydroxy-cis-12-octadecenoic acid 414 

(HYA), which has been demonstrated to suppress TJ permeability and the down-regulation of 415 

occludin, ZO-1, and claudin-1 induced by IFN-γ and TNF-α in culture, by regulating TNFR2 416 

expression via the G protein-coupled receptor (GPR) 40/mitogen-activated protein kinase 417 

(MEK)/extracellular-signal-regulated kinase (ERK) pathway152. In mice, HYA decreased skin 418 

TNF-α and increased claudin-1 in a model of atopic dermatitis153, and ameliorated pathogen-419 

induced gingival epithelial barrier disruption in a GPR40-dependent manner154. Two secreted 420 

proteins purified from LGG (termed p40 and p75) have been suggested to promote intestinal 421 

epithelial homeostasis by inhibiting cytokine-induced epithelial cell apoptosis155. Other effects 422 

may require direct mucosal adherence, as demonstrated for MUC3 mucin expression induced by 423 

Lactobacillus strains in HT29 cells156, as well as MUC2 and L. casei GG in Caco-2 cells91. The 424 

requirement for adhesion may explain why VSL#3 supplementation in vivo results in conflicting 425 

findings regarding the ability to increase mucin secretion157,158. Importantly, when attempting to 426 

validate these findings in clinical trials the results were inconclusive, with probiotics-associated 427 

improvement observed in some trials159-161, but not in others162-165, across multiple underlying 428 

conditions. Whether these discrepancies represent the result of variable probiotics colonization 429 

not appreciated by early studies remains to be established. 430 

 431 

Additional suggested mechanisms. Resistance to bile inhibition is one of the prerequisites for 432 

commercial probiotics. For example, Lactobacillus and Bifidobacterium spp. feature bile 433 

resistance by the production of bile salt hydrolases (BSH), which deconjugate glycine or taurine 434 

from the steroid core166. BSH activity has been associated with systemic beneficial metabolic 435 

effects, including reduction in mouse weight gain, plasma cholesterol, and liver triglycerides167, 436 

as well as cholesterol lowering in humans168. Nonetheless, deconjugation of bile acids may lead 437 

to impaired digestion of dietary lipids and the formation of gallstones166, as well as impaired 438 

glucose tolerance169. 439 

Probiotics were also suggested to affect signaling to the enteric and central nervous systems, 440 

and conduce anxiolytic, antidepressant, and ant nociceptive effects on the host170. Mice fed with 441 

L. rhamnosus JB-1 experience specific regional changes in mRNA for γ-aminobutyric acid 442 

(GABA)-A and -B receptor in the brain, associated with attenuation of the corticosterone 443 

response to stress and an anxiolytic phenotype, which was not observed in vagotomized 444 

animals171. Nonetheless, the same strain failed to modulate stress or cognitive performance in 445 

humans172. In mice, maternal high-fat diet results in dysbiosis of both the dam and the offspring, 446 

which has a causal role (as demonstrated by transplantations to GF mice) in impairing social 447 

behavior in the offspring. Treatment with L. reuteri ATCC PTA 6475, but not L. johnsonii ATCC 448 
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33200, restored oxytocin levels in the paraventricular nuclei that were reduced by maternal 449 

HFD, and improved social behavior173. L. reuteri DSM 17938 may also present an ant nociceptive 450 

effect in rats in a transient receptor potential vanilloid 1 (TRPV1)-dependent manner174. L. 451 

acidophilus NCFM induced expression of μ-opioid and cannabinoid receptors in intestinal 452 

epithelial cells, and had an analgesic effect in rats175. With the potential of beneficially 453 

influencing the gut-brain axis by probiotics notwithstanding, key molecular players are still 454 

unknown and will be critical for proper translation of findings in animal models to human-455 

relevant therapies.  456 

 457 

Interactions with the indigenous microbiome 458 

While probiotics impact on the host may not necessarily relate to their interactions with the 459 

indigenous microbiome, their use is often associated with claims related to ‘beneficial 460 

modulation of the microbiota’ and ‘normalization of perturbed microbiota’, either as favorable 461 

outcomes on their own or as a mechanism by which probiotics protect the host against disease1. 462 

Nonetheless, the extent, if any, by which probiotics modulate the intestinal microbiota in 463 

healthy individuals remains highly debated, as highlighted by a 2015 systematic review that 464 

reported lack of evidence for probiotics effect on the microbiota in 6/7 analyzed studies176, as 465 

well as an earlier systematic review analyzing different trials, of which only 21% resulted in 466 

microbiome alterations177. Presumable effects on the microbiome may stem from analytical 467 

biases (Box 1). In all, the majority of studies on probiotics in healthy adults, children, and 468 

elderly individuals reported no effect of probiotics on the fecal microbiota composition, 469 

regardless of the supplemented strains, dose, duration or microbiome analysis method (Table 470 

2). Importantly, there is a paucity of trials characterizing the effect of probiotics on the 471 

gastrointestinal microbiome in situ (Box 2). 472 

One important determinant that may affect the ability of probiotics to modulate the microbiome 473 

is the pre-exposure assembly, which may differ between individuals. Antibiotics significantly 474 

perturb the microbiome178, thus relieving colonization resistance to probiotics118, but also to 475 

pathogens179. In this context, probiotics are postulated to serve as placeholders in the cleared 476 

niche, preventing pathogen colonization and antibiotic-associated diarrhea38, or as means of 477 

correcting antibiotic-associated dysbiosis1, but evidence to support an ability of probiotics to 478 

facilitate reconstitution of the gut microbiome following antibiotics perturbation is often based 479 

on bacterial cultures or specific FISH or qPCR probes, which represent only a minimal fraction 480 

of the perturbed microbiome, and even using this methodology, the restoration reported may be 481 

partial180,181 or minimal182 and is highly debated177. Overall, the majority of studies do not 482 

support a role for probiotics in compositional or functional microbiome modulation, other than 483 

transient presence of the probiotic strains themselves during the consumption period (Table 484 

2)176,177. Among the studies that report probiotics-associated microbiome alterations, it is 485 
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difficult to point towards commonly altered microbial patterns of change (Box 1). While some 486 

works reported microbiome alterations to co-occur with health promoting effects, none 487 

demonstrated causality, and it is thus far impossible to a priori claim that such microbiome 488 

alterations are beneficial. 489 

 490 

Safety 491 

While the efficacy of probiotics in treating or preventing disease constitutes a decades-long 492 

ongoing debate, human supplementation with probiotic microorganisms is generally considered 493 

safe, and is recognized as such for most probiotic strains by regulatory authorities183. This safety 494 

profile is mainly based on history of safe use in foods, and on observations noted in clinical 495 

trials assessing probiotics efficacy, rather than safety as the major readout4. While probiotics 496 

may be safe in healthy adults, their use has been associated with higher risk for infections 497 

and/or morbidity in young infants184 and very low birth weight neonates185, critically ill adult 498 

and infant patients in intensive care units, and postoperative, hospitalized or immuno-499 

compromised patients, in part due to bacteremia and fungemia38,186-188. Of note, two large-scale 500 

systematic reviews of hundreds of probiotics trials concluded that adverse events and safety 501 

issues are poorly reported189,190, calling for the performance of non-industry sponsored 502 

independent, high quality, multi-centered controlled trials assessing both efficacy and adverse 503 

effects in the above at-risk populations, preferentially coupled with regulatory body 504 

assessment191. 505 

Interestingly, following antibiotics treatment, enhanced probiotics colonic colonization was 506 

associated with a persistent long-term probiotics-induced dysbiosis118, which significantly 507 

delayed the reconstitution of both the fecal and the GI mucosal microbiome compared to no 508 

post-antibiotics intervention. Soluble factors secreted from the administered Lactobacillus 509 

species were suggested (at least ex-vivo) to directly inhibit human microbiome growth118. In 510 

agreement, two additional trials demonstrated post-antibiotics probiotics administration to be 511 

associated with a lower number of observed species compared to no probiotic treatment192,193. 512 

Importantly, inhibiting reconstitution of the microbiome quantity and diversity towards its pre-513 

antibiotic configuration may result in significant long-term health effects. Such persistent 514 

dysbiosis hampers the colonization resistance to pathogens conferred by the microbiome, 515 

which may potentially explain several associations made between probiotics use after 516 

antibiotics and increased risk of communicable38,185,187,194,195,196, and non-communicable disease 517 

such as type 1 and type 2 diabetes, obesity, idiopathic arthritis, asthma and allergies, and IBD179. 518 

Given these observations, it is crucial, in our view, to better assess probiotics long-term safety in 519 

this context in future clinical trials, and in particular in children, immunosuppressed 520 

individuals, and the critically ill.  521 

 522 
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Future directions 523 

The probiotics field is one of the most opinionated and polarized disciplines in biomedical 524 

sciences. Data, personal beliefs, solid proof, intuition and commercial interests, coupled with 525 

lack of medical regulation, are often intermingled in ways making objective interpretation close 526 

to impossible. With this unfortunate situation notwithstanding, we envision that recent 527 

discoveries in the microbiome field and the introduction of novel high-throughput sequencing 528 

and experimental techniques may allow to revisit some elementary notions about probiotics 529 

and focus on biologically relevant questions to facilitate the transition from empirical into 530 

target-, disease- and patient-oriented therapeutics (Fig. 3). Instead of a ‘black-box’ modus 531 

operandi, that is, haphazardly administering one member or more of a limited array of bacteria 532 

with the intent to elicit health-promoting effects, a mechanism-oriented approach should be 533 

adopted, in which probiotic preparations are devised ad hoc, following a set of meticulously 534 

established criteria. These may include careful consideration of the population to be treated and 535 

the medical indication to be targeted. The aim of microbial therapy should be similarly carefully 536 

determined: is the effect on the host mediated remotely or indirectly through secretion of 537 

molecules by allochthonous bacteria, by modulation of the indigenous microbiome, or by other 538 

putative contact-dependent mechanisms inter-linking these bacteria to the intestinal 539 

epithelium? Are the intended probiotic effects strain-specific or represent a class effect? Could a 540 

nonfood-grade strain be suited to address a particular medical indication? For example, A. 541 

muciniphila supplementation in mice prevents diet-induced metabolic syndrome and protects 542 

against chemically induced colitis11. Faecalibaterium prausnitzii is inversely correlated with 543 

Crohn’s disease activity, IBS, and colorectal cancer, and suggested to protect mice from 544 

chemically-induced colitis11. As with currently available commercial probiotics, it would be 545 

important to deepen our understanding of the interactions between these novel potential 546 

microorganisms, the host and its resident microbiome, when administered exogenously.  547 

Development of means of tackling colonization resistance may be necessary in many instances, 548 

and should require careful patient-subset selection197, development of predictive algorithms 549 

assessing colonization potential based on baseline host and microbiome features92,105,117,118, 550 

rational co-administration of “prebiotics”14, colonization modifying agents198, or those tailored 551 

to support an administered strain199, generation of defined consortia fitting individualized 552 

patterns, and counteracting commensal-generated inhibitory mechanisms. The adverse effects 553 

of probiotics on post-antibiotic host and indigenous microbiome reconstitution need to be 554 

comprehensively assessed with more antibiotic regimens, probiotic strain combinations, and 555 

modeled using human microbiome transfers into GF mice, allowing for the assessment of the 556 

potential long-term clinical consequences of probiotics-induced dysbiosis. However, the very 557 

same potentially negative impact of probiotics-associated dysbiosis noted in the post-antibiotic 558 

setting, may be harnessed as positive therapeutic means in other clinical contexts. As such, the 559 
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apparent improved colonization of probiotics following ‘niche freeing’ induced by antibiotics 560 

may be utilized as means of potentiating probiotics function, by allowing their colonization in a 561 

variety of microbiome-associated multi-factorial disorders. Such shift from the empiric “one-562 

size-fits-all” scheme into a person- and condition-tailored approach would inherently 563 

necessitate a better understanding of the forces shaping exogenous bacterial colonization and 564 

resistance to colonization along the human gut interface. However, it may hold promise in 565 

generating more robust and reproducible results in relation to specific strains utilization, in 566 

specific human subpopulations, in specific clinical contexts, while accounting for consumer 567 

safety. 568 

Finally, diligently planned large-scale randomized and blinded clinical trials, preferentially 569 

devoid of commercial interests, should be the mainstay of evidence-based policy formulation. 570 

Endpoints should be objectively assessed and stratified to account for inter-individual 571 

differences that might mask effect sizes or confound desirable or undesirable outcome. Adverse 572 

reactions should be better studied, reported, and published. Unbiased risk and benefit 573 

assessment by treating physicians and consumers alike should be encouraged, in improving 574 

accurate data-driven decision-making at various clinical settings. Data should be made readily 575 

accessible and shared to allow for a global collaborative effort to reproduce positive results 576 

before guidelines are drafted or modified. In contrast to the unfortunate historical lack of 577 

sufficient medical regulation for currently available probiotics, one cannot underscore the 578 

critical importance of a formal regulatory approval process to be utilized with ‘next generation’ 579 

probiotics, similarly to any other human medical intervention. 580 

 581 

Figure legends 582 

Figure 1. Precision aspects of probiotics. Distinct initial host and microbiome conditions and 583 

environmental exposures can result in different outcomes when supplemented with the same 584 

probiotic preparation. Probiotic bacteria isolated from distinct host populations may present 585 

with differential properties, such as adhesion, hydrophobicity and autoaggregation197,200. 586 

Underlying medical conditions, such as atopic dermatitis201 or milk hypersensitivity202, modified 587 

the effects probiotics exerted on host immune cells. Features of the indigenous microbiome can 588 

also account for different impacts of probiotics on the host, as microbiomes that allow 589 

colonization were associated with ameliorated clinical responses in women with IBS203 and 590 

murine models of colitis204 and depression205. These ‘permissive’ microbiomes were also more 591 

prone to compositional and functional alterations in response to probiotics, and their hosts’ gut 592 

epithelium exhibited enrichment in distinct pathways compared to ‘resistant’ microbiomes92. 593 

Pre-supplementation butyrate levels were associated with a differential effect of probiotics on 594 

the microbiome and butyrate206. Diet may also affect properties of probiotics, as dietary 595 

polyunsaturated fatty acids (PUFA) modulated probiotics adhesion in vitro. Similarly, it may 596 
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affect clinical outcome, as preterm infants fed with human milk showed a reduced risk of late-597 

onset sepsis and a shorter time to achieve full enteral feeding, while formula-fed infants did 598 

not76. 599 

 600 

Figure 2. Mechanistic interactions of probiotics with the host and its microbiome. 601 

Probiotic may have several effects on the host, including metabolism of nutrients to improve 602 

digestion (lactose) or produce systemic effects (bile salts), direct and indirect pathogen 603 

antagonism (but potentially also promoting virulence), improved barrier function, altering the 604 

microbiome, affecting signaling to the nervous system, and immunomodulation. These may be 605 

contact-dependent and/or mediated by surface molecules (such as LTA, sEPS, SpaCBA, and 606 

sortase-dependent pili), or by secreted molecules (such as SCFA, bacteriocins, p40 and p75). 607 

Dashed lines represent putative mechanisms. BSH, bile salt hydrolase; B-gal, beta-galactosidase; 608 

QS, quorum sensing; SlpA, S-layer protein A; sIgA, secreted immunoglobulin A; M-Cell, microfold 609 

cell; DC, dendritic cell; MOR, mu-opioid receptor; GABA, Gamma-Aminobutyric Acid; PVN, 610 

paraventricular nucleus of the hypothalamus; TGF-b, Transforming growth factor beta; LTA, 611 

lipoteichoic acid; TLR, toll-like receptor; IFNg, interferon gamma; TNFa, tumor necrosis factor 612 

alpha; HYA, 10-Hydroxy-cis-12-octadecenoic acid; GPR40, G-protein-coupled receptor 40; Akt, 613 

Protein kinase B; LPS, lipopolysaccharide; ROS, reactive oxygen species. 614 

 615 

Figure 3. Common limitations of the current approach to probiotic research and 616 

proposed strategies to overcome them. Translating the large body of probiotic research into 617 

clinical guidelines can sometimes be challenging due to inconclusive or conflicting evidence 618 

deriving from suboptimal study conduct and data analysis methodology. A novel perspective to 619 

probiotics may include expanding the variety of administered strains and examining them 620 

separately per-strain and per-individual according to personalized considerations, such as 621 

baseline host and microbiome parameters, the medical condition to treat and the specific aim of 622 

treatment. This will require a mechanism-based approach, implemented through meticulously 623 

planned high-quality studies in humans, preferably regulated by health authorities, which 624 

directly assess the organ of interest and do not overlook long-term safety. 625 

 626 

Table 1. Individual trials included in meta-analyses addressing a role for probiotics in C. 627 

difficile diarrhea, infection or recurrence. Trials with more than one intervention arm appear 628 

as separate rows with the difference indicated in the “probiotics intervention” column. Eight 629 

trials had a significant effect, and 34 trials did not. P-values and confidence intervals (CI) are 630 

taken from the published works, NA indicates that these values were not calculated as part of 631 

the work. CDAD, Clostridium difficile-associated diarrhea.  632 

 633 
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Table 2. Probiotics supplementation effect on fecal microbiome composition of healthy 634 

individuals. *, Significant taxonomic differences relative to the control group / baseline, 635 

excluding the administered strains; N.D., not determined / no data; MZ, monozygotic; CFU, 636 

colony forming units. S, Streptococcus; L, Lactobacillus; B, Bifidobacterium. 637 

 638 

Box 1: microbiome analysis strategies in probiotics research 639 

Advances in the field of microbiome research now offer implementing a finer resolution when 640 

studying the interaction between probiotics and the resident microbial community, while 641 

addressing previous methodological limitations and biases to potentially resolve contrasting 642 

reports. A major contributor to this confusion is the lenient definition of “microbiome 643 

alterations”. The majority of reports assessing probiotics-induced microbiota modulation utilize 644 

16S rDNA relative abundances (RA) in stool samples. As supplemented probiotic bacteria are 645 

excreted in stool, increase in their RA concomitantly leads to a spurious reduction in RA of other 646 

community members, sometimes misleadingly interpreted as microbiota modification207. Thus, 647 

an increase in the RA of the administered probiotic strain should not be interpreted as a bone-648 

fide effect on the microbiome208. Interestingly, even introduction of heat-killed bacteria was 649 

suggested to result in supposed microbiome alterations209. Utilization of culture-based methods 650 

or species-specific probes can overcome this caveat by describing probiotics-associated changes 651 

in their absolute abundances210, while accounting for viability211, but cannot describe global 652 

shifts in microbiome configuration compared to pre-supplementation or placebo (beta 653 

diversity) or alterations in species richness (alpha diversity). While shotgun metagenomic 654 

sequencing may also result in conflicting reports212,213, it offers the advantage of strain-level 655 

resolution and characterizing potential probiotics effect on microbiome function. Interestingly, 656 

several studies have reported probiotics-related effects on microbiota-encoded function or its 657 

associated metabolites, despite no apparent effect on global composition, although these 658 

functional microbiome alterations may represent genes contributed by the supplemented 659 

probiotic strain, rather than global modulation117,214,215. An additional limitation concerns the 660 

definition of the sought “healthy microbiome” that probiotics presumably contribute to. Even 661 

when assessing the studies that do suggest probiotics-associated microbiome modulation, no 662 

consensus signature of such impacts can be reached (Table 2), and reports of microbiome 663 

changes induced by probiotics are in many times conflicting, for example in the case of 664 

Clostridium perfringens209,210,216 or Escherichia211,216,217, and in various clinical contexts177. For 665 

example, a probiotics-associated fecal bloom of butyrate-producing bacteria (belonging mainly 666 

to Clostridiales), and a reduction in Bilophila wadsworthia and Parabacteroides distasonis, was 667 

noted in individuals with IBS (n=28)212, and mirrored (for B. wadsworthia) in a separate cohort 668 

of individuals (n=107) in a subset of “responders”, which experienced alleviation of symptoms 669 

following the intervention203 but was not reproduced by a third RCT (n=55)218. Importantly, 670 
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even in cases in which probiotics administration was associated with microbiome changes, 671 

these changes could be stemming from disease modulation rather than directly from exposure 672 

to probiotics. To the best of our knowledge, no study to date has demonstrated a direct causal 673 

role for probiotics-related microbiome modulations in improving a disease phenotype. 674 

 675 

Box 2: quantifying probiotics effect on the gastrointestinal microbiome in situ. 676 

While stool samples may not accurately represent the GI mucosa-adherent microbiome219, only 677 

a handful of studies have characterized the effect of probiotics on the intestinal microbiome in 678 

situ. A culture-based study of L. plantarum 299v-supplemented individuals (n=29) 679 

demonstrated an enrichment of Clostridia in fecal samples, but not in the rectal or ascending 680 

colon mucosa102. Likewise, no significant alterations at the lower GI luminal or mucosal 681 

microbiome was noted in probiotics-supplemented humans, compared either to their own 682 

baseline or to placebo-administered individuals92. In rats, VSL#3 exacerbated the reduction in 683 

luminal species diversity associated with the induction of chemically-induced colitis, but had no 684 

effect on the mucosa-associated microbiome220. In contrast, in a mouse model of colitis-685 

associated colorectal cancer (azoxymethane-treated Il10-/- mice), VSL#3 supplementation 686 

resulted in mucosal expansion of Proteobacteria, and reduction in Verrucomicrobiaceae, 687 

Porphyromondaceae, and Clostridium, changes that were associated with enhanced 688 

tumorigenesis221. Conflicting results regarding probiotics-related microbiome modulation were 689 

also observed in patients with pouchitis159,222, although the reported alterations may be merely 690 

stemming from the introduction of the VSL#3 bacteria into the niche222. 691 

 692 
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