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Abstract 18 

Weight loss reduces the risk of type 2 diabetes mellitus (T2D) in overweight and obese individuals. 19 

Although the physiological response to food varies among individuals, standard dietary 20 

interventions use a "one-size-fits-all" approach.  The Personal Diet Study, currently underway, aims 21 

to evaluate two dietary interventions targeting weight loss in people with prediabetes and T2D: (1) a 22 

low-fat diet, and (2) a personalized diet using a machine-learning algorithm that predicts glycemic 23 

response to meals. Changes in body weight, body composition, and resting energy expenditure will 24 

be compared over a 6-month intervention period and a subsequent 6-month observation period 25 

intended to assess maintenance effects. The behavioral intervention is delivered via mobile health 26 

technology using the Social Cognitive Theory. Here, we describe the design, interventions, and 27 

methods used. 28 
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 Introduction and Background 33 

The cause of obesity is under considerable debate.1,2 The conventional theory suggests obesity 34 

is the result of energy imbalance where energy intake exceeds energy expenditure. In contrast, the 35 

Carbohydrate-Insulin Model of obesity proposes diets with high postprandial glycemic responses 36 

(PPGR) promote weight gain, stimulating hyperinsulinemia, suppressing fat mobilization (trapping 37 

fat) and resulting in delayed hypoglycemia.3 This cascade of events leads to subsequent stimulating 38 

of hunger, overconsumption of calorie-dense foods and a reduction in energy expenditure.4  39 

Proponents of this model assert that a diet designed to minimize PPGR is a valuable adjuvant to 40 

weight loss interventions.1 41 

Carbohydrates primarily drive PPGR, but it also varies considerably with the type of 42 

carbohydrate consumed.  Glycemic Index (GI) and, glycemic load (GL), are often used to help 43 

describe PPGR in response to specific foods. Several reports suggest that a reduction in the 44 

consumption of high-GI and high-GL foods enhances weight loss due to the reduction in PPGR and 45 

insulin secretion.5–8  Furthermore, minimizing PPGR may attenuate the decline in resting energy 46 

expenditure (REE) observed with weight loss.9 47 

The results of human intervention studies manipulating carbohydrates, GI, and/or GL for weight 48 

loss are often no more efficacious than other diets.10–12 Indeed, recent obesity management 49 

guidelines developed by the American Heart Association and American College of Cardiologists, 50 

and affirmed by the Academy of Nutrition and Dietetics concluded that, in comparison to higher 51 

carbohydrate/lower protein or lower fat diets, carbohydrate-restricted diets do not result in greater 52 

weight losses.13 Furthermore, there was insufficient evidence to comment on weight loss 53 

interventions involving complex versus simple carbohydrates, GL dietary approaches, or other 54 

dietary pattern approaches.13 55 

Standard dietary interventions based on GI/GL may fail to consistently produce weight loss 56 

because individuals vary in their glycemic response to the same foods.14  Consequently, patients 57 

may experience postprandial hyperglycemia despite consuming low-GI/GL meals.  The 58 

disconnection between lifestyle efforts (e.g., following a low-GI/GL diet) and outcome (e.g., weight 59 

loss or blood glucose control), may be a disincentive for self-management efforts.  Moreover, 60 

dietary interventions may fail to produce weight loss because they do not consider dietary habits 61 

and preference, or barriers to dietary choice.15–20  62 

A potential factor that may explain the between-subject variability to diets differing in GI/GL is 63 

the gut microbiota.  Animal studies demonstrate that obese microbiome has an increased capacity 64 

to harvest energy from the diet.21,22 There is a strong association between the gut microbiota and 65 

glucose intolerance, insulin resistance, and T2D.23–26  In humans, the transfer of intestinal 66 



microbiota from lean humans to those with metabolic syndrome increased insulin sensitivity.27 In 67 

2015, Segal et al. demonstrated that subjects have a high between-subject variability PPGR to the 68 

same foods. Using this data, they developed the Personalized Nutrition Project (PNP), a novel 69 

machine-learning algorithm that predicts individuals’ PPGR to pre-consumed or unseen meals.28 In 70 

a subsequent validation study, Segal et al demonstrated that a personally tailored intervention 71 

based on the predicted response significantly improved PPGR to meals28. Until now, no study has 72 

attempted to apply personalized nutrition in the context of a behavioral weight loss intervention in 73 

pre-diabetics and T2D. 74 

A potential mediator of weight loss and weight regain may stem from production of advanced 75 

glycation end products (AGEs), as they accumulate at an accelerated rate in the presence of 76 

hyperglycemia, including acute glycemic variability (GV).29 AGEs appear to be partly mediated 77 

through their binding to the receptor for advanced glycation end products (RAGE), which generates 78 

oxidative stress and inflammation.30,31  The AGE-RAGE axis is associated with diabetes and 79 

obesity, and RAGE may serve as a “brake” to weight loss and predispose participants to weight 80 

regain via metabolic adaptation.32  The presence of hyperglycemia also triggers neutrophil and 81 

monocyte release of a protein complex, S100A8/A9, a ligand of RAGE.33 Furthermore, soluble 82 

RAGEs (sRAGE) serve as endogenous RAGE ligand-sequestering molecules, interfering with the 83 

ability of the RAGE ligands to activate the cell surface receptor – blocking the ability of RAGE to 84 

brake energy expenditure, thereby facilitating weight loss. Little is known regarding the relationship 85 

between GV and AGEs, sRAGE, RAGE activation (i.e., increased levels of proinflammatory RAGE 86 

ligands), and circulating mediators of inflammation as they relate to weight loss. 87 

 88 

 Objectives 89 

The purpose of the Personal Diet Study is to compare two weight loss interventions: (1) a low-90 

fat diet (LFD) versus (2) a diet that is personalized (PD) using the PNP algorithm to predict PPGR.  91 

Interventions will be compared regarding their effects on body weight, body composition, and 92 

energy expenditure (e.g., metabolic adaptation).  In addition, we will examine the mediating effects 93 

of self-efficacy, glycemic variability and the AGE/RAGE/S100A8/A9 pathway on these outcomes.   94 

2.1.1 Design 95 

The study is a two-arm, parallel-group, randomized clinical trial in overweight and obese adults 96 

with pre-diabetes and early-stage T2D.  The trial involves two 6-month phases: an active 97 

intervention phase (phase 1) followed by a maintenance/observation phase (phase 2) (Figure 1).  98 



Participants are randomized with equal allocation to either LFD or PD.  Measurements occur at 99 

baseline and at 3, 6, and 12 months. All measurement visits and data are collected at NYU 100 

Langone Health (NYULH) in New York City. Microbiome analysis and data processing for the 101 

purpose of the PNP prediction algorithm are completed at the Weizmann Institute of Science in 102 

Rehovot, Israel. 103 

2.1.2 Eligibility and sample requirements 104 

To be eligible for this study, patients must be between 18 and 80 years of age, have a body 105 

mass index (BMI) between 27 and 50 kg/m2, and have a hemoglobin A1c (HbA1c) between 6.5 and 106 

8.0% (Table 1).  Patients treated with medications other than metformin or who have evidence of 107 

kidney disease, assessed with estimated glomerular filtration rate (<60 mL/min/1.73m2) using the 108 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, are excluded to avoid 109 

recruiting patients with advanced T2D.34 Furthermore, patients with conditions or treatments that 110 

affect glycemia (e.g., corticosteroids), or impact weight loss efforts are excluded.  Because the PNP 111 

application is currently only available in English and Hebrew, non-English literate participants are 112 

also be excluded.  Eligible participants with the recent use of antibiotics or antifungal medications 113 

are postponed 3 months prior to randomization because of the impact on the gut microbiota .  114 

Those who fail to log an average of 2 meals per day during the run-in period are excluded (see 115 

section 3.3). 116 

2.1.3 Recruitment, screening, and enrollment procedures 117 

The first study cohort was recruited in January 2018 and recruitment is expected to conclude in 118 

December 2019.  The primary recruitment method involves an electronic medical record (EMR) 119 

system to identify potentially eligible patients who receive care at NYULH-affiliated practices. 120 

Patients meeting the search criteria are sent a message describing the study in their patient portal, 121 

or via email.  Patients self-refer by clicking on a link that notifies study staff of their interest in 122 

participating. Secondary recruitment includes self-referrals from ClinicalTrials.gov and 123 

CenterWatch.com. 124 

Screening for eligibility is completed by telephone. Individuals who meet screening criteria are 125 

scheduled for an in-person screening visit at the Clinical Research Center of NYULH’s Clinical and 126 

Translational Science Institute (CRC-CTSI). At this visit, signed informed consent is obtained, 127 

height and weight are measured (see section 2.4.1). A non-fasting plasma and serum blood sample 128 

is collected by a certified phlebotomist to assess HbA1c and serum creatinine (i.e., eGFR).  In 129 

addition, participants are provided with a self-administered questionnaire to complete and bring to 130 



their baseline visit.  Participants without their own smartphones are provided loaner phones and no-131 

cost service plans to use for the duration of the study.  Each participant is provided the PNP 132 

smartphone app to use to self-monitor their diet, physical activity, and body weight. This app is 133 

integrated with the USDA Food Composition Database (Release 28.1), allowing participants to 134 

select from thousands of food and beverage items.  Participants are trained on how to enter meals, 135 

snacks, and physical activity, and on how to search for foods and beverages, enter serving sizes, 136 

create a “favorite” food-item, and create a “saved meal” into the PNP app.  Participants with a BMI 137 

under 27 or greater than 50 kg/m2, HbA1c ≥8.0%, or an estimated glomerular filtration rate based 138 

on serum creatinine (<60 mL/min/1.73m2) are excused from further participation.  Table 2 provides 139 

a timeline of measurement visits. 140 

  Measurements 141 

Study visits are conducted at the CRC-CTSI at baseline and at 3, 6, and 12 months.  Table 3 142 

outlines the study variables obtained at each assessment time point and are described in more 143 

detail below. 144 

 145 

3.1.1 Primary and Secondary Outcomes 146 

Anthropometrics. BMI is calculated from height and weight.  Height is measured to the nearest 147 

1 cm using a portable stadiometer (SECA 213, Seca GmBH & Co. KG, Hamburg, Germany), and 148 

body weight is measured in light clothing without shoes to the nearest 0.1 kg using a Stow-A-Weigh 149 

scale (Scale-Tronix, Welch Allyn, Skaneateles, NY, USA).  Waist, hip, and neck circumferences are 150 

measured in duplicate using a Gulick tape (McKesson Medical-Surgical, Fairfield, NJ, USA) to the 151 

nearest 1 cm using techniques detailed elsewhere.35  Body fat percentage and fat-free mass (FFM, 152 

in kg) are measured using bioelectrical impedance analysis (BIA; InBody 270, InBody, Inc. Cerritos, 153 

CA, USA). 154 

Resting Energy Expenditure (REE).  REE is assessed via open-circuit indirect calorimetry 155 

(Quark RMR, COSMED USA Inc., Chicago, IL, USA) using a ventilated hood system after a 12-156 

hour overnight fast. Participants are directed to lay supine for 10-minutes during which the 157 

metabolic cart is calibrated per the manufacturer’s instructions. Oxygen and carbon dioxide 158 

production are measured for 20-25 minutes following a 5-minute run-in period, with participants in a 159 

relaxed, awake state. Room temperature and humidity are maintained at a constant level, and 160 

ambient noise and lighting are minimized as best as possible. REE is calculated from the Weir 161 

equation.36 162 



Blood samples, resting heart rate and blood pressure.  Resting heart rate (RHR) and systolic 163 

and diastolic blood pressure (BP) are measured following a 5-minute, seated resting period using 164 

an automated blood pressure machine (Welch Allyn PROPAQcs, Welch Allyn, Inc., Skaneateles 165 

Falls, NY, USA). In both the PD and LFD groups, fasting plasma and serum(BOTH plasma and 166 

serum?-usually plasma) samples are collected by a certified phlebotomist to measure glucose and 167 

insulin at baseline, 3 and 6 months. A complete blood count (CBC) is collected at baseline only in 168 

the PD group for the purposes of the predictive algorithm.  169 

3.1.2 Mediators 170 

Self-efficacy.  Self-efficacy for weight loss is assessed using the validated, 20-item Weight 171 

Efficacy Lifestyle Questionnaire.37 Participants are asked to rate their self-efficacy for each item on 172 

a 10-point Visual Numeric Scale ranging from 0 (not confident) to 9 (very confident). Items assess 173 

self-efficacy for resisting eating under various circumstances such as negative emotions, 174 

availability, social pressure, physical discomfort, and positive activities.37  An overall score and 175 

subscale scores will be computed by summing relevant questionnaire items. These scores will be 176 

used to evaluate the mediating effect of self-efficacy on the relationship between weight loss and 177 

randomization group. 178 

Glycemic Variability.  HbA1c is obtained using high-pressure liquid chromatography (HPLC; 179 

Variant II) Turbo analyzer, Bio-Rad Laboratories, Inc., Hercules, CA, USA). In addition, GV is 180 

examined for up to 7 days with a continuous glucose monitor (CGM; Abbott Freestyle Libre Pro, 181 

Abbott Park, IL, USA), which measures interstitial glucose concentrations every 15 minutes.  The 182 

skin surface is prepared with Skin Tac (TORBOT Group, Inc., Cranston, RI, USA) to help prevent 183 

detachment of the CGM devices and, once inserted, covered with a Simpatch adhesive patch.  184 

Participants are blinded to glucose tracings.38  CGM data will be used to calculate, standard 185 

measures of GV, including mean amplitude of glycemic excursion (MAGE), which is a value of 186 

variation about the mean by summing the absolute rises or falls of glucose levels encountered daily, 187 

ignoring excursions of less than 1 standard deviation (SD).39  CGM data will be used to generate 188 

other indices of GV including (1) SD, (2) continuous overall net glycemic action, (3) mean 189 

postprandial area under the curve, (4) incidence and time spent outside the normal glycemic range 190 

(<70 and >180mg/dl), and extremely out of range (<50 and >300mg/dl).40  All GV indices will be 191 

calculated using EasyGV 8.6 software.41 Fasting serum insulin and plasma (again, serum or 192 

plasma?) glucose concentrations are measured and used to calculate insulin resistance (HOMA-IR) 193 

and β-cell function (HOMA-β). The HOMA2 model will be used for this purpose. 42 194 



Advanced Glycation End products (AGEs) and inflammation. The first 36 participants 195 

randomized to the study (18 in each group) having BMI ≥35 kg/m2 are assessed for the 196 

RAGE/AGE/S100A8/A9 pathway with additional serum and plasma measurements. AGEs are 197 

detected using Fluorescence Microplate reader (BioTek Synergy HI microplate reader). RAGE, 198 

sRAGE and S100A8/A9 are determined using enzyme-linked immunosorbent assay (ELISA) kits 199 

(R&D Systems Quantikine Immunoassay, Minneapolis, MN, USA).  In addition, inflammatory 200 

markers (e.g., TNF-alpha, IL1-beta, IL4, IL10, and IL-17) are also assessed. 201 

3.1.3 Covariates 202 

Sociodemographic and clinical variables.  At baseline, the following sociodemographic  203 

variables are collected using self-administered questionnaires: age, race, gender, living arrangement, 204 

education, employment status, income, family countries of origin, comorbidities, weight history, 205 

hunger, sleep quality, smoking status, bowel habits and function, antibiotic use, birth and 206 

breastfeeding history, and menstrual cycle (females only). At each assessment time point, we will 207 

inquire about new health events and changes in medications and treatments during the prior interval. 208 

Physical activity. Physical activity is measured using the Fitbit Alta HR (Fitbit, Inc., San 209 

Francisco, CA, USA). Participants are instructed to wear the device for up to 7 days. Participants in 210 

the LFD and PD group wear the device at baseline, 3 and 6 months. The screen on the device 211 

provides the participant with daily feedback on heart rate, caloric expenditure and steps per day, but 212 

weekly accumulated data is not shared with the participate. Those in the PD group wear the device 213 

again during the profiling week. Participants in the PD group are instructed to carry out their 214 

habitual exercise routine during the profiling, and are not provided with any additional feedback 215 

regarding physical activity levels. 216 

 Pre-intervention 217 

4.1.1 Pre-intervention training (both groups) 218 

Participants in both the LFD and PD group attend a pre-intervention training visit one to two 219 

weeks before the start of the intervention. Here the WebEx application is downloaded on their 220 

phones or the study loaner phones, and participants are trained in its use and how to join 221 

intervention meetings.  WebEx is a communications application on the NYULH Cisco Server, which 222 

is a HIPAA-compliant conferencing program.  WebEx allows users to sign-in securely and join 223 

meetings from mobile devices. During this time, the interventionist provides further training on the 224 



PNP app, which includes troubleshooting and PNP app clarification. Participants randomized to PD 225 

undergo additional procedures described below. 226 

4.1.2 Pre-intervention glycemic profiling (PD group only). 227 

Participants in the PD group undergo 1 week of glycemic profiling immediately after the pre-228 

intervention visit to generate personalized feedback regarding the predicted PPGR for the PNP 229 

algorithm.  At the baseline visit, participants are provided with an Omnigene stool collection kit (DNA 230 

Genotek, Inc., Ottawa, ON, Canada) used for microbiota profiling. Stool samples are collected during 231 

the pre-intervention visit and shipped to the Weizmann Institute for microbiome analysis.  A new CGM 232 

is then inserted and worn for 7 days.  Participants are instructed to follow their normal daily routine 233 

and dietary habits, except for the first meal of every day (hereafter “test meal”) and to refrain from 234 

eating for 2 hours after the test meal is consumed.  Six test meals are provided to the participants, 235 

including two of each of the following: (1) 110 g white bread, (2) 110 g white bread and 30 g of butter, 236 

and (3) 50 g glucose.  Test meals are labeled with the day that they are to be consumed. Participants 237 

enter meals (test and other meals) and snacks, the timing of meals and snacks, physical activity, 238 

sleep, and hunger over the next 7 days into the PNP app.  Participants are instructed to consume 239 

food with a minimum of 2 hours in-between meals and snacks in order to link meals and snacks to 240 

glycemic tracings. During the profiling week, study staff monitor participants’ PNP dashboards daily, 241 

and contact participants as necessary to ensure that meals are logged and reported as accurately as 242 

possible.  At the conclusion of the profiling week, participants remove the CGM sensor, place it into 243 

a sharps-proof container, and return it to the investigators by mail. Time-stamped CGM and PNP data 244 

are uploaded to a HIPPA-compliant NYULH server, with baseline laboratory and physical assessment 245 

data. 246 

4.1.3 Development of PNP algorithms 247 

Data collected during the screening and baseline visits are shared, using the NYULH server, with 248 

the Weizmann Institute where data processing occurs. Anthropometrics, a blood chemistry panel, 249 

microbiota profiling (metagenome sequencing), up to one full week of interstitial glucose 250 

measurements using a CGM, and a one-week log of date- and time-stamped meals and snacks from 251 

participants are integrated with the PNP database at the Weizmann Institute using gradient boosting 252 

regression to develop personalized PNP algorithms for predicting PPGR. 253 

A meal database was created consisting of Western-style meals (n= 135) and snacks (n=68) 254 

varying in GL to generate feedback on the PPGR to pre-consumed meals. Using the participants' 255 

PNP algorithm, personalized PPGRs are calculated for every meal and snack in the database based 256 



on their nutrient composition, and calorie-adjusted quintile cutoffs of PPGR are used to create meal 257 

ratings of “excellent,” “good,” “medium,” “bad,” and “very bad.” 258 

 Interventions 259 

5.1.1  Phase 1 - Both groups 260 

The 6-month active intervention phase targets a weight loss of 7% through caloric restriction in 261 

both groups. Participants are also instructed to participate in 150 min/wk of moderate-to-vigorous 262 

physical activity (MVPA) and engage in resistance training 2-3 times per week.43 Participants in 263 

both arms attend group behavioral counseling sessions that are guided by study dietitian.   Group 264 

sessions (n=14) are limited to 10 participants, and are held weekly during the first month, and then 265 

every other week in months 2–6.  266 

Behavioral counseling is based on the SCT44,45. Group sessions are conducted via WebEx 267 

(Cisco Systems Inc., San Jose, CA, USA) using a smartphone to minimize participant burden of 268 

attending face-to-face group sessions. The duration of each group session is approximately one 269 

hour.  Each session is anchored by two brief videos (~5-7 minutes each) to enhance intervention 270 

fidelity; one that provides educational content, and one focuses on behavior change.  The 271 

behavioral component is identical between the LFD and PD groups. The only between-group 272 

differences for the educational content occurs at sessions 5 and 14. The content for all other 273 

educational sessions is identical between groups.  The content of these sessions is outlined in 274 

Table 4. Periodically, the interventionist pauses the videos and introduces scripted open-ended 275 

questions designed to elicit discussion.  At the conclusion of the session, the videos are posted on 276 

the study website for participants to review as desired, and all participants are e-mailed a link to the 277 

videos presented.  All videos posted on the study website are integrated into BrainShark 278 

(Brainshark Inc., Waltham, MA, USA), a software program that allows the investigators to document 279 

exposure to content independent of intervention sessions. The full sessions, including participant 280 

discussions, are recorded, retained, and 20% are reviewed by a trained rater to assess fidelity of 281 

the interventionist to the behavioral counseling techniques used in the session (i.e., motivational 282 

interviewing). The rater provides feedback to the interventionist to ensure consistent counseling 283 

delivery based on the proposed behavioral theories supporting the intervention. These recorded 284 

sessions are not posted or shared with participants. 285 

For the duration of the intervention, participants are directed to self-report into the PNP app 286 

everything that they eat or drink, their physical activity, and their body weight (weekly).  The PNP 287 

app is pre-programmed with a: (1) weight loss target (-7% body weight); (2) hypocaloric energy 288 

target (-500 kcal/day, based on REE measurements from indirect calorimetry and a physical activity 289 



factor of 1.4 (lightly active); and (3) physical activity target of 30-minutes per day. Participants are 290 

counseled to use the PNP app to monitor, in real-time, their behaviors concerning the study targets. 291 

Example screenshots of nutritional details, meal totals, and physical activities are shown in Figures 292 

2 and 3. 293 

5.1.2 Phase 1 - Low-fat diet arm only 294 

The LFD arm is counseled to follow a low-fat (<25% dietary fat) diet containing <7% energy 295 

intake from saturated fat. They are instructed to review the PNP meal entries, in real time, to ensure 296 

they keep their daily intake below the 25% total fat and 7% saturated fat targets.   297 

5.1.3 Phase 1 - Personal diet arm only 298 

The PD arm is instructed to review their PNP meal entries daily in the smartphone app 299 

concerning targets for total calories.  PD participants receive personalized feedback regarding the 300 

nature of their personalized predicted PPGR for foods entered into the PNP app prior to 301 

consumption (See Figure 2).  The feedback is color-coded in green (foods with a "good” or 302 

“excellent” PPGR), yellow (“medium” PPGR), and red (a “bad” or “very bad” PPGR).  Participants 303 

are advised to maintain PPGR in the “good” or “excellent” range and, when they receive yellow or 304 

red scores, to make different choices/food substitutions. Initial guidance is provided regarding low- 305 

and high-GL foods, as well as the addition of healthy fats to the meal.  However, participants are 306 

informed that because their glycemic response is specific to them, experimentation will be required 307 

to determine which meals and snacks are most suitable for them. 308 

5.1.4 Phase 2  309 

Phase 2 is a 6-month observation period. During this time, participants are encouraged to 310 

continue monitoring diet, physical activity, and body weight, and enter the data into the PNP app, 311 

however, no further contact is made by the interventionist or study dietitian. Three newsletters are 312 

mailed to all study participants discussing topics outlined during the active phase of the intervention 313 

to maintain communication and engagement. 314 

 General Approach 315 

A descriptive analysis of all data collected will be performed using appropriate graphical and 316 

numerical exploratory data techniques. The information obtained from this preliminary investigation 317 

of the data will be used to: (1) assess data quality and completeness; (2) describe univariate and 318 

bivariate distributions at baseline and at, 3, 6 and 12 months; and (3) identify univariate 319 



associations between variables. We will identify features of the data that may necessitate special 320 

methods (e.g., excess zeros, missing data, and departures from distributional assumptions). During 321 

preliminary analysis, we will examine: (1) comparability of treatment arms at baseline (based on 322 

Chi-squared statistics or t-tests, as appropriate), (2) relationships between the response variables 323 

and potential covariates, and (3) predictors of missing data/drop-out. 324 

A linear mixed model will be used to model the baseline, 3, 6 and 12 months outcome variables.  325 

In the model, presence/absence of T2D, time, and intervention will be included as fixed effects, and 326 

the participant will be the random effect. The intervention effect of interest is the treatment*time 327 

interaction in this model.  Identified predictors of missing data will be included as covariates in this 328 

random effect framework, to provide unbiased estimates of the intervention effect under an 329 

assumption of missing at random (i.e., missingness depends on observed covariates but not on 330 

unobserved covariates). Other demographic and clinical covariates will be included as necessary in 331 

adjusted analyses. Model assessment will be conducted using appropriate regression diagnostics. 332 

The primary and secondary analyses will be done using SAS (SAS 9.4, Cary, NC, USA). 333 

6.1.1 Sample Size 334 

The required sample of 164 (82 per group) is based on the assumption that a clinically significant 335 

minimum of 5% weight loss will achieved by the LFD group, which is consistent with a pilot study 336 

(5.94%; SDweight loss =4.54%) to the Healthy Hearts and Kidneys study46 (unpublished data) sentence 337 

needs clarification. The goal for both groups is 7% weight loss at 6 months, similar to the Diabetes 338 

Prevention Program and Look AHEAD trials.47,48 We can detect a difference between weight loss of 339 

the LFD and the PD as small as 2% with a type I error α=0.05 and a power of 80%. To account for 340 

an expected loss of about 20% of participants to drop-out, we will recruit 200 participants. 341 

6.1.2 Analysis of Primary Outcomes 342 

For hypotheses pertaining to weight loss, the primary outcome of interest is the percent of 343 

baseline body weight lost at 6 months and whether or not these losses will be sustained at 12 344 

months.  A random effects linear regression model will be used to test time-specific differences 345 

attributable to the intervention. We also will use the “lincom” command to estimate differences in 346 

time-specific changes from baseline.  In additional analyses, we will adjust for other covariates 347 

(e.g., insulin secretion, insulin sensitivity, glycemic control, habits and history that could influence 348 

weight loss, and sociodemographic, and medication regimen) unbalanced between the treatment 349 

arms at baseline at p=0.10. A splined linear mixed model with repeated measures will be used to 350 



compare changing trends in different periods: early intervention (0-3 months) and late intervention 351 

(3-6 months).  In this analysis, adjustments will be made for the covariates noted above. 352 

6.1.3 Analysis of Secondary Outcomes 353 

For hypotheses related to body fat distribution and metabolic adaptation at 6 and 12 months, and 354 

weight regain at 12 months, the random effects linear regression model will be used to test time-355 

specific differences attributable to the intervention using a similar approach to that of analyses for 356 

the primary aim of weight loss. Mediation analysis will be performed to assess whether, and by how 357 

much, self-efficacy mediates and the intervention effect on weight loss. Covariates (such as age, 358 

gender, race, and baseline T2D status) will be included in the model and explore the possibility of 359 

multiple mediators. 360 

Similar mediation analyses including self-efficacy and glycemic exposure will be performed to 361 

examine the underlying biologic mechanisms that influence weight loss/regain metabolic adaptation 362 

and fat distribution at 6 and 12 months. 363 

6.1.4 Adherence 364 

Adherence to the study intervention will be assessed based on attendance to measurement 365 

visits and WebEx intervention meetings and on viewing of the Brainshark videos. In addition, 366 

adherence to self-monitoring will be evaluated based on the frequency of using the PNP app to 367 

record diet, physical activity, and body weight, and the proportion of days meeting >50% of calorie 368 

target. Adherence to the dietary interventions will be analyzed based on the proportion of meals and 369 

days in which dietary fat is <25% calories (LFD arm), and the proportion of meals logged as “good” 370 

or “excellent” (PD arm). Adherence to physical activity recommendations will be examined using the 371 

proportion of weeks in which participants record >150 min/wk of MVPA. 372 

6.1.5 Safety 373 

During the study, participants’ weights and HbA1c are monitored.. Each participant’s percent 374 

weight change is assessed at each measurement visit. Participants are counseled by study 375 

dietitians to slow their rate of weight loss if their percent weight change is severe defined as >7.5% 376 

in 3 months, >10% in 6 months, and >20% in one year.  Participants are reminded to continue to 377 

see their primary care physician and that study procedures are not provided in lieu of standard 378 

medical care.  Participants are instructed to focus on a slow progressive increase in physical activity 379 

until reaching a goal of 150 min/wk. These guidelines are in line with the 2008 American College of 380 

Sports Medicine recommendations for sedentary individuals. 381 



6.1.6 Limitations 382 

Although this study will provide valuable data on personalized nutrition, and the Carbohydrate-383 

Insulin Model of obesity, there are several limitations to consider. Due to the nature of the PD 384 

intervention, the participants and dietitians providing counseling are unblinded to the treatment 385 

allocation. In addition, the PD arm undergoes additional metabolic profiling at baseline required for 386 

the PNP algorithm. However, given the intensity of the behavioral interventions, it is unlikely 387 

that metabolic profiling alone would cause added weight loss. We will examine differences in 388 

participant adherence to self-monitoring, attendance at counseling sessions, and drop out rates, as 389 

potential behavioral determinants of intervention efficacy.  390 

The PNP application also has inherent limitations. The application is currently available in 391 

English and Hebrew, which restricted our target population. Importantly, English is common among 392 

people from diverse racial/ethnic backgrounds in New York City, and if efficacious, the PD 393 

intervention can be adapted, and tested in non-English speaking individuals. In addition, as in many 394 

food diary applications, PNP was developed using the USDA Nutrient Database for Standard 395 

Reference (Rel 28.1). While this ensures that the nutrient composition data is of high quality, many 396 

foods, in particular processed foods, are not included in the database. As a result, certain 397 

participants may have difficulty finding foods, or appropriate substitutions, which could impact 398 

adherence to self-monitoring.  399 

 Discussion 400 

Body weight differences in response to weight-loss diets are substantial.49 Standard dietary 401 

interventions targeting weight loss follow a "one-size-fits-all" approach in which uniform dietary 402 

recommendations are provided. However, evidence regarding the efficacy of these interventions for 403 

long-term weight loss is mixed. This paper describes the rationale for and methods being used in 404 

our study, currently underway, comparing a personalized diet to standard LFD recommendations in 405 

a novel technology-supported behavioral intervention that utilizes real-time feedback from a 406 

machine-learning algorithm targeting PPGR to meals in order to facilitate weight loss attempts. The 407 

interventions are implemented using mobile health technologies that permit remote delivery of 408 

counseling and self-monitoring in a manner that is convenient for patients and has great potential 409 

for dissemination. Arming participants with food-specific recommendations tailored to their unique 410 

physiological response to meals may increase their adherence to lifestyle changes and enhance 411 

their weight loss success.   412 
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