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EXEMPLIFYING DEFINITION: ON THE FIELD-RELATED 
CHARACTER OF TEACHERS' CONTENT KNOWLEDGE  

Roza Leikin          Rina Zazkis 
University of Haifa      Simon Fraser University 

Israel                             Canada 
In this study we investigated whether teachers' content knowledge related to defining 
mathematical concepts is field-dependent. Our previous studies demonstrated that 
generating examples of definitions is an effective research tool for the investigation 
of teachers' knowledge. Hence, we examined teacher-generated examples of concept 
definitions in different areas of mathematics. We analysed individual and collective 
example spaces focusing on the correctness and richness of examples provided by the 
teachers. We demonstrated differences in teachers' knowledge associated with 
defining mathematical concepts in Geometry, Algebra and Calculus. 

BACKGROUND
Research focused on proofs and proving reveals differences between learning and 
teaching mathematical proofs in geometry and other areas of mathematics, while 
proving tasks in school are usually associated with geometry (e.g., Harel & Sowder, 
1998). We wonder whether such a difference exists in defining mathematical 
concepts. As a research tool in this study we use example generation.   
Example generation as a research tool 
This study stems from the position that teachers' ability to exemplify and define 
mathematical concepts is a fundamental component of their content knowledge. 
Watson and Mason (2005) discussed example-generation as an effective pedagogical 
tool. In our prior research (Zazkis & Leikin, 2007, 2008) we suggested that example 
generation is also an effective research tool that allows exploring both teachers' 
subject matter and pedagogical content knowledge. In Zazkis & Leikin (2007) we 
designed a framework for the analysis of teacher-generated examples of 
mathematical concept while in Zazkis & Leikin (2008) we applied this framework 
analysing teachers' examples for the definition of a square. We addressed teachers' 
ability to distinguish between necessary and sufficient conditions, their ability to 
apply appropriate mathematical terminology and, most importantly, their ideas about 
what a definition is. We argued that simply asking "what is a mathematical 
definition" could not have generated such an abundant source of data, whereas 
exemplifying definitions revealed one’s ‘answer in action’ and illuminated 
deficiencies in this answer. 
On definitions in teaching and learning mathematics
There is an agreement among mathematics educators on the importance of 
mathematical definitions in teaching and learning mathematics. A definition of a 
concept influences the teaching approach, the learning sequence, and the sets of 
2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. �-�. Thessaloniki, Greece: PME.
 4 - �

 Volume 04 COMPLETE 290509.indb   1 6/4/09   2:19:08 PM



Leikin, Zazkis 

1- 2 PME 33 - 2009 

theorems and proofs. The ways in which definitions are presented to students, shape 
the relationship between a concept image and a concept definition (Tall & Vinner, 
1981). Moreover, teachers’ knowledge of mathematical definitions affects their 
didactical decisions (De Villiers, 1998; Tall & Vinner, 1981; Zaslavsky & Shir, 2005, 
Zazkis & Leikin, 2008).
Based on the works of well-known mathematicians (e.g., Poincare (1909/1952); 
Solow, 1984; Vinner, 1991) Leikin and Winicki-Landman (2000) distinguished 
between mathematical and didactical characteristics of mathematical definitions. The 
mathematical fact that a definition establishes necessary and sufficient conditions for 
the concept is especially important for our study. While any definition introduces the 
name for a group of mathematical objects with common properties, conditions 
included in the definition determine the common set of properties of these objects. 
When asking participants to provide examples of definitions we trace their 
understanding of the concepts they define and their understanding of the logical 
structure of definitions.
The Framework 
Following Watson and Mason (2005, p.76) we distinguish between different kinds of 
example spaces: Personal (individual) example spaces which are triggered by a task, 
cues and environment, conventional example space which are generally understood 
by mathematicians and as displayed in textbooks, and collective example spaces,
local to a particular group at a particular time. Acknowledging these distinctions we 
developed a framework that serves as a tool for analysing teachers’ personal and 
collective example spaces based on (a) accessibility and correctness, (b) richness, and 
(c) generality (Zazkis & Leikin, 2007; 2008), and in such allows for making 
inferences about their knowledge.  In Zazkis & Leikin (2008) we demonstrated that 
'correctness' and 'richness' of definitions are categories that provide a clear 
organizational lens, whereas 'accessibility' cannot be assessed within a written 
questionnaire. We also showed that generality is a less informative category when 
applied to written questionnaires. Thus, in this study we analyse correctness and 
richness of teacher-generated examples of definitions.  
In our analysis of correctness we examine whether a provided definition includes a 
set of conditions for the concept that are necessary and sufficient. Incorrect examples, 
which are lacking either necessary or sufficient conditions, may relate to the lack of 
understanding of the specific concept and its critical features or lack of understanding 
of the concept of definition itself. In contrast, some examples may include 
unnecessary conditions and present specific cases only. Inability to distinguish 
between critical and non-critical features of the concept demonstrates the lack of 
understanding of the general notion of a definition.
In our analysis of richness of teachers' example spaces we consider diversity of 
concepts and topics within collective and individual example spaces, and whether the 
examples are situated in a particular context or are drawn from a variety of contexts. 
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Individual examples spaces also are examined with respect to conventionality and the 
presence of equivalent definitions of particular mathematical concepts.

THE STUDY 
In order to explore field-related nature of teachers’ knowledge associated with 
defining concepts we analysed differences between correctness and richness of 
example spaces generated by prospective mathematics teachers (PMTs) in Geometry, 
Algebra and Calculus. To this end, we posed the following research questions: How 
do examples generated by participants reveal their understanding of the mathematical 
concepts and the meta-mathematical concept of a definition? What differences can be 
found between the examples of definition in different fields? 
The following tasks were presented to a group of 11 PMTs holding a BA in 
Mathematics during one of their final courses towards teaching certification:  
Give as many examples as possible to mathematical definitions (1): in the field of 
Geometry, (2) in the field of Algebra, and (3) in the field of Calculus.
Participants were invited to respond in writing with no time constraints for 
completing the tasks. Whole group discussion followed the written component.

FINDINGS 
Overall 136 examples of definitions were provided by the PMTs to the 3 tasks. Of the 
136 examples, 66 were provided for Geometry concepts, 43 for Algebra concepts, 
and 27 for Calculus concepts. This is in spite of the fact that Algebra and Calculus 
represent more than 70% of the school mathematics and the participants’ exposure to 
Geometry in their BA program was rather limited. PMTs felt that providing examples 
of definitions in Algebra or Calculus was a challenging task, as exemplified in the 
following claims:  

T1:     You define and prove in geometry and you learn these things there but in 
algebra you solve and not prove… It is very difficult to find a definition… 
The problem is that … I could not tell what the difference between 
definition and theorem is. Axiom is also a definition or not?

T2:  What is a definition? I think it has some properties of a figure. What are 
the properties in algebra? For example function as a mapping does not 
seem like a property.

Correctness
When examining correctness of the examples provided by the PMTs we 
distinguished between appropriate and inappropriate statements. As shown in Figure 
1, among appropriate statements we identified (a) rigorous examples of definitions, 
and (b) appropriate but not rigorous examples of definitions. Inappropriate examples 
usually lacked necessary or sufficient conditions, and mostly represented specific 
instances of the concepts. Some of the inappropriate examples included listing 
concepts instead of defining them. 
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(1) Appropriate rigorous examples of an definition 
G1.1 Sphere is a set of points with the constant distance from the 

given point in the space 
T6Geometry

G1.2 Isosceles triangle is a triangle with two equal sides T1
Algebra A1.1 The circle is all the points (x, y) in a coordinate plain that fulfil 

the formula   (x-a)²+(y-b)²=R². (a, b) is the center of the circle 
and R is the radius 

T5

 A1.2 Complex number is a number of the form a+ib when a and b are  
real and  i= -1 and it's a number composed of an imaginary part 
and a  real part 

T3

Calculus C1.1 Inflection point of a function is a point at which convex function 
become concave (or vice versa). 

T6

 C1.2 Interval of increase of a function is the range at which as the x 
values become bigger, so is the values of f(x) (become bigger) 

T3

 C1.3 Circle:    c= {x×y/ (x-a)²+(y-b)²=R²} in R2 T1
(2) Appropriate but not rigorous examples of definitions

Geometry G2.1 Circle is a set of points with the constant distance from the given 
point. 

T2

Algebra A2.1 am= a×a×a×…..a (m times) T3
 A2.2 Quadratic equation is a second degree equation formed of  

ax²+bx+c=0
T2

Calculus C2.1 Slope is the change in y unit as we increase the x by unit T6
(3) Inappropriate examples of definitions

Geometry G3.1 The straight line is  points crowded side by side, it has no 
beginning and no end. 

T5

Algebra A3.1 Function- there are many definitions such as f(x)=y=ax+b which 
is: x- independent variable, y- dependent variable. 

T10

 A3.2 In an arithmetic sequence the difference between every two 
consistent numbers is equal. Each number is bigger then the 
number before it 

T8

C3.1 Integral is an area T2
C3.2 sin  and cos are trigonometric functions T8

Calculus

C3.3 Derivative of a function is its slope T6
Figure 1: Examples of definitions 

Appropriate rigorous examples of definitions include necessary and sufficient 
conditions of the defined concept as well as accurate mathematical terminology and 
symbols and usually are minimal. Examples of this type are illustrated in Figure 1(1).
Appropriate but not rigorous examples of definitions usually omit some constraint 
or use imprecise terminology. This may be due to the lack of PMTs attentiveness or 
due to the lack of rigor in mathematical language in a usual mathematics classroom. 
Figure 1(2) illustrates examples of this type. 

Leikin, Zazkis 

PME 33 - 2009 1- 5 

Example G2.1 was provided by 6 PMTs.  None of the 6 PMTs – including T6 who 
defined a sphere as a set of points in 3D space – mentioned that a circle is a locus in a 
plane. Additional not rigorous examples are illustrated by definitions A2.1 which 
lacks the restriction that 'm is a natural number', and definition A2.2, where the 
missing restriction is 'a differs from zero'. In example C2.1, T6 did not mention that 
this is a definition of a slope of a linear function. 
Inappropriate examples: Contrary to the appropriate examples of definitions or non-
rigorous examples that we consider as appropriate, inappropriate examples of 
definitions are not only lacking a particular constraint, but some of the conditions 
included in these definitions are neither necessary, nor sufficient. Figure 1(3)
illustrates examples of definitions of this kind.
Some of the inappropriate examples of definitions demonstrate PMTs' 
misunderstanding of the mathematical concepts (e.g., G3.1, A3.2, C3.1, C3.3) these 
definitions include ill-defined conditions like: "no beginning no end", for a straight 
line; or unnecessary restrictions, such as "each number is bigger than the number 
before it", for an arithmetic sequence. Other inappropriate examples of definitions 
demonstrate that PMTs do not understand what a definition entails (e.g., A3.1, C3.2): 
instead of defining a concept they provided specific instances of the concepts.

Table 1:  Appropriateness of the examples of definitions generated by PMTs  

Participants

Examples of 
definitions

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

To
ta

l n
o.

 o
f 

l
Pe

rc
en

t 
w

ith
in

  t
he

 
fi e

ld

Appropriate 9 5 8 3 5 4 1 3 3 3 7 51 77% 
Inappropriate 0 1 0 0 1 2 5 1 2 3 0 15 23% Geometric  
Total 9 6 8 3 6 6 6 4 5 6 7 66  
Appropriate 0 3 3 0 3 1 0 1 0 2 2 15 35% 
Inappropriate 0 3 1 0 3 5 2 5 1 8 0 28 65% Algebraic
Total 0 6 4 0 6 6 2 6 1 10 2 43  
Appropriate 6 2 5 0 0 1 0 0 0 0 2 16 59% 
Inappropriate 0 2 0 0 2 2 0 2 1 2 0 11 41% 

From 
Calculus

Total 6 4 5 0 2 3 0 2 1 2 2 27  
 Appropriate 15 10 16 3 8 6 1 4 3 5 11 82 60% 
Total Inappropriate 0 6 1 0 6 9 7 8 4 13 0 54 40% 
 Total 15 16 17 3 14 15 8 12 7 18 11 136  

Furthermore, among inappropriate examples in Algebra and Calculus PMTs provided 
names of concepts instead of defining them (e.g., "length", "unknown", "an equation 
of first degree", "minimal and maximal point"). We argue that naming was not due to 
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(1) Appropriate rigorous examples of an definition 
G1.1 Sphere is a set of points with the constant distance from the 

given point in the space 
T6Geometry

G1.2 Isosceles triangle is a triangle with two equal sides T1
Algebra A1.1 The circle is all the points (x, y) in a coordinate plain that fulfil 

the formula   (x-a)²+(y-b)²=R². (a, b) is the center of the circle 
and R is the radius 

T5

 A1.2 Complex number is a number of the form a+ib when a and b are  
real and  i= -1 and it's a number composed of an imaginary part 
and a  real part 

T3

Calculus C1.1 Inflection point of a function is a point at which convex function 
become concave (or vice versa). 

T6

 C1.2 Interval of increase of a function is the range at which as the x 
values become bigger, so is the values of f(x) (become bigger) 

T3

 C1.3 Circle:    c= {x×y/ (x-a)²+(y-b)²=R²} in R2 T1
(2) Appropriate but not rigorous examples of definitions

Geometry G2.1 Circle is a set of points with the constant distance from the given 
point. 

T2

Algebra A2.1 am= a×a×a×…..a (m times) T3
 A2.2 Quadratic equation is a second degree equation formed of  

ax²+bx+c=0
T2

Calculus C2.1 Slope is the change in y unit as we increase the x by unit T6
(3) Inappropriate examples of definitions

Geometry G3.1 The straight line is  points crowded side by side, it has no 
beginning and no end. 

T5

Algebra A3.1 Function- there are many definitions such as f(x)=y=ax+b which 
is: x- independent variable, y- dependent variable. 

T10

 A3.2 In an arithmetic sequence the difference between every two 
consistent numbers is equal. Each number is bigger then the 
number before it 

T8

C3.1 Integral is an area T2
C3.2 sin  and cos are trigonometric functions T8

Calculus

C3.3 Derivative of a function is its slope T6
Figure 1: Examples of definitions 

Appropriate rigorous examples of definitions include necessary and sufficient 
conditions of the defined concept as well as accurate mathematical terminology and 
symbols and usually are minimal. Examples of this type are illustrated in Figure 1(1).
Appropriate but not rigorous examples of definitions usually omit some constraint 
or use imprecise terminology. This may be due to the lack of PMTs attentiveness or 
due to the lack of rigor in mathematical language in a usual mathematics classroom. 
Figure 1(2) illustrates examples of this type. 
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Example G2.1 was provided by 6 PMTs.  None of the 6 PMTs – including T6 who 
defined a sphere as a set of points in 3D space – mentioned that a circle is a locus in a 
plane. Additional not rigorous examples are illustrated by definitions A2.1 which 
lacks the restriction that 'm is a natural number', and definition A2.2, where the 
missing restriction is 'a differs from zero'. In example C2.1, T6 did not mention that 
this is a definition of a slope of a linear function. 
Inappropriate examples: Contrary to the appropriate examples of definitions or non-
rigorous examples that we consider as appropriate, inappropriate examples of 
definitions are not only lacking a particular constraint, but some of the conditions 
included in these definitions are neither necessary, nor sufficient. Figure 1(3)
illustrates examples of definitions of this kind.
Some of the inappropriate examples of definitions demonstrate PMTs' 
misunderstanding of the mathematical concepts (e.g., G3.1, A3.2, C3.1, C3.3) these 
definitions include ill-defined conditions like: "no beginning no end", for a straight 
line; or unnecessary restrictions, such as "each number is bigger than the number 
before it", for an arithmetic sequence. Other inappropriate examples of definitions 
demonstrate that PMTs do not understand what a definition entails (e.g., A3.1, C3.2): 
instead of defining a concept they provided specific instances of the concepts.

Table 1:  Appropriateness of the examples of definitions generated by PMTs  

Participants

Examples of 
definitions

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

To
ta

l n
o.

 o
f 

l
Pe

rc
en

t 
w

ith
in

  t
he

 
fi e

ld

Appropriate 9 5 8 3 5 4 1 3 3 3 7 51 77% 
Inappropriate 0 1 0 0 1 2 5 1 2 3 0 15 23% Geometric  
Total 9 6 8 3 6 6 6 4 5 6 7 66  
Appropriate 0 3 3 0 3 1 0 1 0 2 2 15 35% 
Inappropriate 0 3 1 0 3 5 2 5 1 8 0 28 65% Algebraic
Total 0 6 4 0 6 6 2 6 1 10 2 43  
Appropriate 6 2 5 0 0 1 0 0 0 0 2 16 59% 
Inappropriate 0 2 0 0 2 2 0 2 1 2 0 11 41% 

From 
Calculus

Total 6 4 5 0 2 3 0 2 1 2 2 27  
 Appropriate 15 10 16 3 8 6 1 4 3 5 11 82 60% 
Total Inappropriate 0 6 1 0 6 9 7 8 4 13 0 54 40% 
 Total 15 16 17 3 14 15 8 12 7 18 11 136  

Furthermore, among inappropriate examples in Algebra and Calculus PMTs provided 
names of concepts instead of defining them (e.g., "length", "unknown", "an equation 
of first degree", "minimal and maximal point"). We argue that naming was not due to 
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the misunderstanding of the tasks, since each one of the PMTs provided several 
examples of definitions that were appropriate. 

Table 1 depicts numbers of examples generated by each PMT to each task. It also 
demonstrates appropriateness of the examples and summarises distribution of the 
examples among the three fields. From Table 1 we learn about the differences 
between appropriate and inappropriate examples of definitions in collective example 
spaces generated for each field. In Geometry 51 of 66 (77%) examples are classified 
as appropriate, whereas in Algebra only 15 of 43 (35%) examples are found as 
appropriate. The number of examples in the field of Calculus is relatively small 
(overall 27 examples), of which the number of appropriate examples is almost the 
same as in Algebra: 16 examples (59%) were appropriate. PMTs who provided most 
of the examples in Calculus borrowed them from university courses, whereas Algebra 
examples were from school mathematics. Thirteen of these examples are generated 
by PMTs all of whose examples are appropriate.

From Table 1 we also note that (almost) all the examples in the individual example 
spaces of  T1, T3, T4, and T11 are appropriate, whereas individual examples spaces 
of T6, T8 and  T10 include more inappropriate examples than appropriate ones.  T7 
generated only 1 (of 8) appropriate example. We consider these differences among 
individual example spaces as indicators of individual differences within the PMTs’ 
content knowledge.
Richness
We found that the numbers of topics to which appropriate examples of definitions 
belong are similar for Geometry, Algebra and Calculus (see Table 2). However 
geometric examples spaces appear to be richer: First, the total number of concepts in 
collective and individual example spaces was larger in Geometry. Second, only in 
Geometry PMTs provided examples of equivalent definition for the geometric 
concepts (identified (×n)) in the table.
Analysis of the individual example spaces demonstrates that T1, T3 and T11 had the 
richest individual example spaces which provided the main contribution to the 
richness of the collective example space. The numbers of concepts addressed by 
these 3 PMTs were similar (15, 17, and 11 respectively - see Table 1), while the 
bigger number of examples of definitions given by T1 and T3 was due to equivalence 
of some definitions in their example spaces. Interestingly, T1 did not provide any 
examples for definitions in Algebra and all her examples in Calculus were from 
Analytic Geometry using symbolic representation of concepts (see C1.3 in Figure 1). 
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Table 2:   Richness of the appropriate examples of definitions generated by PMTs 

 Topics Concepts PMTs No. of 
examples

Special
quadrilaterals

Parallelogram(×4) 
Rhombus(×4) 
Rectangle(×2) 
Trapezoid 

TT1(×3),3(×2),4,8,11 
TT1(×3),2,3,4,5 
T2, T4, T11  
T11

18

Triangles Triangle(×2) 
Isosceles, equilateral, right tr. 
Height in a triangle 
Midline, Vertex 

T10(×2) 
T1(3)
T2, T11 
T3(1), T9(2) 

11

Circle/sphere Circle
Tangent line to a circle 

TT2,3,5,6,8,10 
T1, T6 9

Distance Between a point and a line (×3) 
Between two points 
Height 

T5(×3), T8 
T3, T7 
T2

7

Straight
lines/angles

Parallel lines (×2) 
Intersecting lines 
Perpendicular lines 

T3(×2) 
T11
T9

5

Geometry

Sphere Sphere T6 

50

Functions Linear function 
Quadratic function 

T2 , T10 
T2, T8 4

Equations Quadratic equation  
True set 

T2
T8 3

Analytic 
geometry 

Straight line  
circle, canonic circle 

T5, T6 
T5(2) 4Algebra

Other
algebraic
definitions

Opposite numbers, Complex number 
Power
Matrix 

T3(2)
T3, T11 
T11

5

15

Function Function, Image 
Inflection point 
Extreme point, Interval of increase, 
Polynomial of the second degree 

T3(1), T11(2)  
T6
T3(3) 7

Derivative Slope, Asymptote T2 2
Integral A primitive function T3 1

Calculus

Analytical 
geometry 

Circle, Ellipse, Hyperbola, Straight line, 
Plane, Angle between vectors T1(6) 6

16

CONCLUSION
In accord with previous studies (Zazkis & Leikin, 2007, 2008; Leikin & Levav-
Waynberg, 2007), we demonstrated that exemplification is a powerful research tool 
for the exploring teachers' mathematical and meta-mathematical knowledge. This 
study revealed that PMTs’ knowledge of definitions differs for different fields of 
mathematics. This finding reflects the nature of school mathematics textbooks and 
school curriculum.   
The study also demonstrates the gap between mathematics learned at the university 
courses and school mathematics. T9 illustrates this argument: 

T9:  What does it mean definition in calculus. You have derivative and integral 
but we did not learn those definitions in school. Those are definitions 
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the misunderstanding of the tasks, since each one of the PMTs provided several 
examples of definitions that were appropriate. 

Table 1 depicts numbers of examples generated by each PMT to each task. It also 
demonstrates appropriateness of the examples and summarises distribution of the 
examples among the three fields. From Table 1 we learn about the differences 
between appropriate and inappropriate examples of definitions in collective example 
spaces generated for each field. In Geometry 51 of 66 (77%) examples are classified 
as appropriate, whereas in Algebra only 15 of 43 (35%) examples are found as 
appropriate. The number of examples in the field of Calculus is relatively small 
(overall 27 examples), of which the number of appropriate examples is almost the 
same as in Algebra: 16 examples (59%) were appropriate. PMTs who provided most 
of the examples in Calculus borrowed them from university courses, whereas Algebra 
examples were from school mathematics. Thirteen of these examples are generated 
by PMTs all of whose examples are appropriate.

From Table 1 we also note that (almost) all the examples in the individual example 
spaces of  T1, T3, T4, and T11 are appropriate, whereas individual examples spaces 
of T6, T8 and  T10 include more inappropriate examples than appropriate ones.  T7 
generated only 1 (of 8) appropriate example. We consider these differences among 
individual example spaces as indicators of individual differences within the PMTs’ 
content knowledge.
Richness
We found that the numbers of topics to which appropriate examples of definitions 
belong are similar for Geometry, Algebra and Calculus (see Table 2). However 
geometric examples spaces appear to be richer: First, the total number of concepts in 
collective and individual example spaces was larger in Geometry. Second, only in 
Geometry PMTs provided examples of equivalent definition for the geometric 
concepts (identified (×n)) in the table.
Analysis of the individual example spaces demonstrates that T1, T3 and T11 had the 
richest individual example spaces which provided the main contribution to the 
richness of the collective example space. The numbers of concepts addressed by 
these 3 PMTs were similar (15, 17, and 11 respectively - see Table 1), while the 
bigger number of examples of definitions given by T1 and T3 was due to equivalence 
of some definitions in their example spaces. Interestingly, T1 did not provide any 
examples for definitions in Algebra and all her examples in Calculus were from 
Analytic Geometry using symbolic representation of concepts (see C1.3 in Figure 1). 
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Table 2:   Richness of the appropriate examples of definitions generated by PMTs 

 Topics Concepts PMTs No. of 
examples

Special
quadrilaterals

Parallelogram(×4) 
Rhombus(×4) 
Rectangle(×2) 
Trapezoid 

TT1(×3),3(×2),4,8,11 
TT1(×3),2,3,4,5 
T2, T4, T11  
T11

18

Triangles Triangle(×2) 
Isosceles, equilateral, right tr. 
Height in a triangle 
Midline, Vertex 

T10(×2) 
T1(3)
T2, T11 
T3(1), T9(2) 

11

Circle/sphere Circle
Tangent line to a circle 

TT2,3,5,6,8,10 
T1, T6 9

Distance Between a point and a line (×3) 
Between two points 
Height 

T5(×3), T8 
T3, T7 
T2

7

Straight
lines/angles

Parallel lines (×2) 
Intersecting lines 
Perpendicular lines 

T3(×2) 
T11
T9

5

Geometry

Sphere Sphere T6 

50

Functions Linear function 
Quadratic function 

T2 , T10 
T2, T8 4

Equations Quadratic equation  
True set 

T2
T8 3

Analytic 
geometry 

Straight line  
circle, canonic circle 

T5, T6 
T5(2) 4Algebra

Other
algebraic
definitions

Opposite numbers, Complex number 
Power
Matrix 

T3(2)
T3, T11 
T11

5

15

Function Function, Image 
Inflection point 
Extreme point, Interval of increase, 
Polynomial of the second degree 

T3(1), T11(2)  
T6
T3(3) 7

Derivative Slope, Asymptote T2 2
Integral A primitive function T3 1

Calculus

Analytical 
geometry 

Circle, Ellipse, Hyperbola, Straight line, 
Plane, Angle between vectors T1(6) 6

16

CONCLUSION
In accord with previous studies (Zazkis & Leikin, 2007, 2008; Leikin & Levav-
Waynberg, 2007), we demonstrated that exemplification is a powerful research tool 
for the exploring teachers' mathematical and meta-mathematical knowledge. This 
study revealed that PMTs’ knowledge of definitions differs for different fields of 
mathematics. This finding reflects the nature of school mathematics textbooks and 
school curriculum.   
The study also demonstrates the gap between mathematics learned at the university 
courses and school mathematics. T9 illustrates this argument: 

T9:  What does it mean definition in calculus. You have derivative and integral 
but we did not learn those definitions in school. Those are definitions 
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from the university and I do not remember them. Since I passed the exam 
I do not remember the definitions. 

We argue that defining activities in school should be incorporated in Algebra and 
Calculus. Reinforcing the findings of Zazkis & Leikin (2009) and Moreira & David  
(2008), we suggest that explicit connections between university mathematics and the 
school mathematics should be drawn in teacher education. 
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MALAYSIAN EXPERIENCES OF TEACHING MATHEMATICS IN 
ENGLISH: POLITICAL DILEMMA VERSUS REALITY 

Chap Sam LIM Nerida Ellerton 
Universiti Sains Malaysia Illinois State University 

In 2003, Malaysia launched a controversial policy – known as PPSMI – of teaching 
mathematics and science in English in all schools beginning with Grade 1, Grade 9 
and Grade 11. It is now six years after implementation, and a decision must be made 
about whether the policy should continue or whether the nation should revert to 
teaching in Malay language. This paper explores the complex relationship between 
the implementation of the PPSMI and the real situation of mathematics teaching in 
Malaysian classrooms. A brief description of the Malaysian school system and the 
historical development of the language policy in teaching mathematics are given. 
INTRODUCTION
The Malaysian school system is made up of four levels: Primary (Grades 1 through 
6), Lower Secondary (Grade 7 through 9), Upper Secondary (Grade 10 and 11) and 
Matriculation (Grades 12 and 13). At primary level, due to the multi-ethnic 
characteristics of Malaysia’s people, three choices of primary schools are available 
depending upon the medium of instruction. These are (a) Malay-medium national 
schools; (b) Chinese-medium national-type schools; and (c) Tamil-medium national-
type schools. At the secondary levels, all schools are conducted with a common 
medium of instruction –Malay language– the national language of Malaysia.
Mathematics is a compulsory subject in the Malaysian school curriculum, but in 
Grade 12 it becomes an elective. Prior to 1981, mathematics was taught in English up 
to Grade 11. In Malaysia between 1981 and 2003, the national language (Malay) was 
the medium of instruction in most mathematics classes from Grade 1 through Grade 
11. However, in January 2003, the Malaysian government made a bold decision to 
change the medium of instruction for mathematics and science to English. This new 
policy was implemented in progressive phases, beginning with Grade 1, Grade 7 and 
Grade 11 in 2003, with the entire changeover complete for all levels in 2008. 
The Rationale behind PPSMI
According to Rusnani (2003), the initial rationale that prompted the switch in the 
medium of instruction for mathematics teaching in Malaysia was an overall decline in 
students’ English language proficiency. In view of the significant role played by the 
English language in meeting the challenges of globalization and the information 
explosion, the Ministry of Education wanted to improve students’ command of 
English both at school and tertiary levels. To upgrade the students’ English language 
proficiency, five possible strategies were proposed. These were to (a) revert to 
English-medium schools; (b) use the English language as a tool for learning; (c) 
2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 9-��. Thessaloniki, Greece: PME.
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enhance the teaching of the English language; (d) increase the time available in 
schools for teaching English; and (e) provide environments that support pupils’ 
learning of English. After much debate, the second strategy was chosen.
Why then were mathematics and science chosen as the subjects for change? Rusnani 
(2003) and Choong (2004) argued that mathematics and science are the most 
dynamic and fastest changing fields of knowledge, both contributing significantly to 
national development. Most advances in mathematics and science are presented in 
reports written in English. Choong (2004) claimed that “teaching the subjects in the 
science disciplines in English would expedite acquisition of scientific knowledge in 
order to develop a scientifically literate nation by the year 2020” (p. 2). She further 
claimed that “projecting manpower needs in terms of qualifications and skills, the 
Cabinet made a decision to teach science and mathematics in English” (p. 2). Further, 
it had become far too challenging to translate the fast-growing literature on science 
and technological developments into the Malay language (Choong, 2004). 
The rationale for PPSMI included the following four statements of need: 

to improve pupils’ competence in using the English language, since it is the 
international language for knowledge acquisition and communication;  
to arrest the decline of English language proficiency levels among Malaysian 
students, both at school and at tertiary levels; 
to equip future generations with a language that would give them access to new 
developments and advances in science and technology in order to meet the 
challenges of globalization; and 
to overcome the increasingly challenging task of translating the latest 
technological developments into the Malay language. 

THE DEBATE 
Six years after its implementation, PPSMI remains controversial and is strenuously 
debated among educators, nationalists and politicians. There remain two strands of 
thought: (a) the teaching of mathematics and science in English does not and will not 
help to rescue the deteriorating standard of English; and (b) making English a tool of 
learning is the most effective way of ensuring that students are proficient in English 
as well as upgrading students’ achievement in mathematics and science.
From the beginning, the policy was opposed by influential Chinese groups, including 
the United Chinese School Committees’ Association (Dong Zhong) and the United 
Chinese Teachers’ Association of Malaysia (Jiao Zhong). These groups gave several 
reasons for the opposition, including the fear of increasing the burden on pupils and 
changing the distinctive character of Chinese schools. They argued that mathematics 
is best taught in pupils’ mother-tongue. In addition, they have been proud that 
research studies have shown that pupils in Chinese schools have consistently 
achieved better than their counterparts in Malay and Tamil schools. After much 
negotiation and mediation by the Chinese political parties, Chinese schools were 
allowed to teach mathematics and science bilingually following a formula of 4-2-2 
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for the upper primary and 2-4-3 for the lower primary pupils. The 4-2-2 formula 
refers to four periods of English language, two periods of mathematics in English and 
two periods of science in English while 2-4-3 refers to two periods of English 
language, four periods of mathematics in English and three periods of science in 
English. Hence, upper primary pupils in Chinese schools now have eight periods of 
mathematics per week – six in Chinese and two in English while the lower primary 
pupils have ten periods of mathematics per week – six in Chinese and four in English. 
Table 1 shows, in fact, that Chinese school pupils ended up with fewer periods in 
English, when compared with their Malay and Tamil counterparts. 
Table 1: 
Number of Periods/week in English/Mandarin for Primary Schools in Malaysia 

Subject Chinese Schools Nat./Tamil Schools
Medium of instruction  English Mandarin      English 

Mathematics  4 6 7 
Science 3 3 3 

Level I
(Grades 1-3) 

English 2 - 8 
Mathematics  2 6 7 
Science 2 3 5 

Level II 
(Grades 4-6) 

English 4 - 7 

Other opposition came from those who were concerned that the standard of national 
language might deteriorate as a result of over-emphasis of English language. During 
2008, the debate intensified, and even some ruling party politicians called for schools 
to revert to teaching science and mathematics in Malay.  
Latest Developments Concerning Policy Implementation 
According to a report in the press (The Star On-line, December 16, 2008), four 
roundtables were organized in July 2008 by the Education Ministry to gather 
feedback on the issue from a spectrum of stakeholders (politicians, academicians and 
representatives of non-governmental organisations and parent-teacher associations) 
The following seven proposals emerged from these roundtables:

1. Retain English as the medium of instruction for Mathematics and Science; 
2. Revert to teaching in Malay language;
3. Let primary schools teach in the mother tongue but use English in secondary;
4. Allow each type of primary school to decide on its language of instruction; 
5. Allow Mathematics and Science to be taught in Malay language and mother 

tongue for Grade 1 to 3, and in English from Grade 4 onwards; 
6. Use a combination of mother tongue in the first three years, and a choice of the 

mother tongue or English after that; 
7. Do not teach mathematics or science in Grades 1 through 3, but instead 

integrating them with other subjects. 
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enhance the teaching of the English language; (d) increase the time available in 
schools for teaching English; and (e) provide environments that support pupils’ 
learning of English. After much debate, the second strategy was chosen.
Why then were mathematics and science chosen as the subjects for change? Rusnani 
(2003) and Choong (2004) argued that mathematics and science are the most 
dynamic and fastest changing fields of knowledge, both contributing significantly to 
national development. Most advances in mathematics and science are presented in 
reports written in English. Choong (2004) claimed that “teaching the subjects in the 
science disciplines in English would expedite acquisition of scientific knowledge in 
order to develop a scientifically literate nation by the year 2020” (p. 2). She further 
claimed that “projecting manpower needs in terms of qualifications and skills, the 
Cabinet made a decision to teach science and mathematics in English” (p. 2). Further, 
it had become far too challenging to translate the fast-growing literature on science 
and technological developments into the Malay language (Choong, 2004). 
The rationale for PPSMI included the following four statements of need: 

to improve pupils’ competence in using the English language, since it is the 
international language for knowledge acquisition and communication;  
to arrest the decline of English language proficiency levels among Malaysian 
students, both at school and at tertiary levels; 
to equip future generations with a language that would give them access to new 
developments and advances in science and technology in order to meet the 
challenges of globalization; and 
to overcome the increasingly challenging task of translating the latest 
technological developments into the Malay language. 

THE DEBATE 
Six years after its implementation, PPSMI remains controversial and is strenuously 
debated among educators, nationalists and politicians. There remain two strands of 
thought: (a) the teaching of mathematics and science in English does not and will not 
help to rescue the deteriorating standard of English; and (b) making English a tool of 
learning is the most effective way of ensuring that students are proficient in English 
as well as upgrading students’ achievement in mathematics and science.
From the beginning, the policy was opposed by influential Chinese groups, including 
the United Chinese School Committees’ Association (Dong Zhong) and the United 
Chinese Teachers’ Association of Malaysia (Jiao Zhong). These groups gave several 
reasons for the opposition, including the fear of increasing the burden on pupils and 
changing the distinctive character of Chinese schools. They argued that mathematics 
is best taught in pupils’ mother-tongue. In addition, they have been proud that 
research studies have shown that pupils in Chinese schools have consistently 
achieved better than their counterparts in Malay and Tamil schools. After much 
negotiation and mediation by the Chinese political parties, Chinese schools were 
allowed to teach mathematics and science bilingually following a formula of 4-2-2 
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for the upper primary and 2-4-3 for the lower primary pupils. The 4-2-2 formula 
refers to four periods of English language, two periods of mathematics in English and 
two periods of science in English while 2-4-3 refers to two periods of English 
language, four periods of mathematics in English and three periods of science in 
English. Hence, upper primary pupils in Chinese schools now have eight periods of 
mathematics per week – six in Chinese and two in English while the lower primary 
pupils have ten periods of mathematics per week – six in Chinese and four in English. 
Table 1 shows, in fact, that Chinese school pupils ended up with fewer periods in 
English, when compared with their Malay and Tamil counterparts. 
Table 1: 
Number of Periods/week in English/Mandarin for Primary Schools in Malaysia 

Subject Chinese Schools Nat./Tamil Schools
Medium of instruction  English Mandarin      English 

Mathematics  4 6 7 
Science 3 3 3 

Level I
(Grades 1-3) 

English 2 - 8 
Mathematics  2 6 7 
Science 2 3 5 

Level II 
(Grades 4-6) 

English 4 - 7 

Other opposition came from those who were concerned that the standard of national 
language might deteriorate as a result of over-emphasis of English language. During 
2008, the debate intensified, and even some ruling party politicians called for schools 
to revert to teaching science and mathematics in Malay.  
Latest Developments Concerning Policy Implementation 
According to a report in the press (The Star On-line, December 16, 2008), four 
roundtables were organized in July 2008 by the Education Ministry to gather 
feedback on the issue from a spectrum of stakeholders (politicians, academicians and 
representatives of non-governmental organisations and parent-teacher associations) 
The following seven proposals emerged from these roundtables:

1. Retain English as the medium of instruction for Mathematics and Science; 
2. Revert to teaching in Malay language;
3. Let primary schools teach in the mother tongue but use English in secondary;
4. Allow each type of primary school to decide on its language of instruction; 
5. Allow Mathematics and Science to be taught in Malay language and mother 

tongue for Grade 1 to 3, and in English from Grade 4 onwards; 
6. Use a combination of mother tongue in the first three years, and a choice of the 

mother tongue or English after that; 
7. Do not teach mathematics or science in Grades 1 through 3, but instead 

integrating them with other subjects. 
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On December 24, 2008, The Star On-line reported that Cabinet was unlikely to make 
any decision on the matter before January 5. According to The Star On-line, “Science 
and mathematics will continue to be taught in English in the new school term if there 
is no decision on the controversial policy before then.” At the time of writing this 
paper, the controversy remained unresolved. 
THE CLASSROOM REALITY 
To provide a glimpse of the real situation in schools, we examine the findings from 
two recent related studies. In the first study, Lim, Fatimah and Tang (2007) surveyed 
the views of school administrators, mathematics teachers and pupils on the 
implementation of the policy, while in the second study, Lim, Tan, Chew and Kor 
(2009) explored (through video-taped observations) the language used in the 
mathematics classrooms of three primary schools.  
Conceptual Framework for the Studies 
The word “language” can refer to “any system of formalized symbols, signs, sounds, 
gestures, or the like used or conceived as a means of communicating thought, 
emotion” (Random House, 2006). In this paper, language refers to oral and written 
language used by both teachers and pupils to communicate in mathematics classes.  
Teaching and learning are social activities that involve teachers and pupils. In the 
process of teaching and learning, it is crucial that language is used effectively and 
efficiently. Language is not only a tool of communication but also a tool for 
reflection and thinking (Vygotsky, 1978). Part of learning mathematics involves 
learning words and terminology that are related to mathematics, and learning to 
communicate mathematically (Setati, 2005). Mathematical concepts are learned 
through communication and interaction between teachers and pupils. Encouraging 
children to talk about ideas helps them to discover gaps, inconsistencies, or lack of 
clarity in their thinking (Baroody, 1993). This implies the importance of ensuring that 
pupils are proficient in a language so that they are able to communicate clearly and 
confidently using that language. Moreover, there should be coherence between the 
language used by mathematics teachers and that used by their pupils. 
Cummins (1981) postulated that there exists a minimal level of linguistic 
competence, a threshold that a pupil must attain to perform cognitively demanding 
academic tasks in mathematics and science effectively. Cummins acknowledged that 
the learning of pupils who speak more than one language, could be affected by the 
interplay between the different language codes. Thus “bilingual students who are not 
really fluent in either of the two languages that they use tend to experience difficulty 
in mathematics” (Ellerton & Clarkson, 1996, p. 1020). A similar argument can be 
applied to bilingual teachers who lack fluency in either language. Teaching 
mathematics in pupils’ second language poses various challenges both to teachers 
and pupils. Most studies (see e.g., Adler, 2001; Setati, 2005) on mathematics in 
bilingual or multilingual classrooms have argued that pupils can learn better when 
they are taught in their mother tongue. However, in countries such as South Africa 
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and The Philippines, where school mathematics is taught in pupils’ second language, 
code-switching by teachers is commonly used.
We shall now report data from two studies on the extent to which some Malaysian 
primary schools have adopted the policy of teaching mathematics in English after 5 
or 6 years of implementation. The first author was the project leader of both studies. 
Study 1: Perspectives of Primary School Administrators, Teachers and Pupils
The first study (Lim, Fatimah & Tang, 2007), conducted five years after the 
implementation of PPSMI, surveyed the opinions of a total of 443 primary 
mathematics and science teachers and 787 primary Grade 5 pupils as well as 20 
primary school administrators. The sample of 20 schools was stratified by state 
(Penang, Kedah and Perak) and location (urban and rural). For each location, one 
Malay school and one Chinese school were chosen so that pupils were drawn from 
similar socioeconomic areas. Grade 5 pupils were targeted as they were in Grade 1 in 
2003 when the PPSMI programme began. Two survey questionnaires were used: one 
for mathematics teachers and one for pupils. Teacher questionnaires had four sections 
– the background of respondents, teachers’ self-assessed report of their language 
proficiency, issues faced, and teachers’ perceptions towards the teaching of 
mathematics and science in English. Teachers’ perceptions were measured on a five-
point Likert scale, ranging from “strongly disagree” to “strongly agree.”
Pupil questionnaires also contained four sections. The first asked for pupils’ 
background information including self-rating of their English proficiency. The 
second concerned the extent of English language usage in the teaching of 
mathematics and science classes as well as issues faced in studying mathematics and 
science in English. The third section assessed pupil’s feelings when learning 
mathematics and science, and the last section evaluated their views towards teaching 
and learning of mathematics and science in English. Since pupils from Chinese 
schools also learn mathematics and science in Mandarin, the questionnaires for these 
pupils included two additional questions which asked for their feelings towards 
learning mathematics and science in Mandarin. To minimize language barriers, pupils 
at Malay schools were given questionnaires in Malay, and pupils at Chinese schools 
were given questionnaires in Mandarin. All teachers’ questionnaires were in English. 
Analyses revealed that only 11.5% of the mathematics teachers in the study explained 
mathematical concepts entirely in English (Table 2). Thus almost 90% of teachers did 
not teach mathematics fully in English but resorted to using the pupils’ mother 
tongue (either Malay or Mandarin) in their teaching. English was used exclusively in 
teaching more often in Malay schools than in Chinese schools, and more often in 
urban schools than rural schools (Table 2).
About 18% of the teachers rated themselves as “poor” in spoken and written English 
(Table 3). Most of the teachers were much more proficient in Mandarin or Malay 
language than in speaking and writing English. It is hardly surprising, then, that only 
a few teachers taught mathematics and science entirely in English.
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On December 24, 2008, The Star On-line reported that Cabinet was unlikely to make 
any decision on the matter before January 5. According to The Star On-line, “Science 
and mathematics will continue to be taught in English in the new school term if there 
is no decision on the controversial policy before then.” At the time of writing this 
paper, the controversy remained unresolved. 
THE CLASSROOM REALITY 
To provide a glimpse of the real situation in schools, we examine the findings from 
two recent related studies. In the first study, Lim, Fatimah and Tang (2007) surveyed 
the views of school administrators, mathematics teachers and pupils on the 
implementation of the policy, while in the second study, Lim, Tan, Chew and Kor 
(2009) explored (through video-taped observations) the language used in the 
mathematics classrooms of three primary schools.  
Conceptual Framework for the Studies 
The word “language” can refer to “any system of formalized symbols, signs, sounds, 
gestures, or the like used or conceived as a means of communicating thought, 
emotion” (Random House, 2006). In this paper, language refers to oral and written 
language used by both teachers and pupils to communicate in mathematics classes.  
Teaching and learning are social activities that involve teachers and pupils. In the 
process of teaching and learning, it is crucial that language is used effectively and 
efficiently. Language is not only a tool of communication but also a tool for 
reflection and thinking (Vygotsky, 1978). Part of learning mathematics involves 
learning words and terminology that are related to mathematics, and learning to 
communicate mathematically (Setati, 2005). Mathematical concepts are learned 
through communication and interaction between teachers and pupils. Encouraging 
children to talk about ideas helps them to discover gaps, inconsistencies, or lack of 
clarity in their thinking (Baroody, 1993). This implies the importance of ensuring that 
pupils are proficient in a language so that they are able to communicate clearly and 
confidently using that language. Moreover, there should be coherence between the 
language used by mathematics teachers and that used by their pupils. 
Cummins (1981) postulated that there exists a minimal level of linguistic 
competence, a threshold that a pupil must attain to perform cognitively demanding 
academic tasks in mathematics and science effectively. Cummins acknowledged that 
the learning of pupils who speak more than one language, could be affected by the 
interplay between the different language codes. Thus “bilingual students who are not 
really fluent in either of the two languages that they use tend to experience difficulty 
in mathematics” (Ellerton & Clarkson, 1996, p. 1020). A similar argument can be 
applied to bilingual teachers who lack fluency in either language. Teaching 
mathematics in pupils’ second language poses various challenges both to teachers 
and pupils. Most studies (see e.g., Adler, 2001; Setati, 2005) on mathematics in 
bilingual or multilingual classrooms have argued that pupils can learn better when 
they are taught in their mother tongue. However, in countries such as South Africa 
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and The Philippines, where school mathematics is taught in pupils’ second language, 
code-switching by teachers is commonly used.
We shall now report data from two studies on the extent to which some Malaysian 
primary schools have adopted the policy of teaching mathematics in English after 5 
or 6 years of implementation. The first author was the project leader of both studies. 
Study 1: Perspectives of Primary School Administrators, Teachers and Pupils
The first study (Lim, Fatimah & Tang, 2007), conducted five years after the 
implementation of PPSMI, surveyed the opinions of a total of 443 primary 
mathematics and science teachers and 787 primary Grade 5 pupils as well as 20 
primary school administrators. The sample of 20 schools was stratified by state 
(Penang, Kedah and Perak) and location (urban and rural). For each location, one 
Malay school and one Chinese school were chosen so that pupils were drawn from 
similar socioeconomic areas. Grade 5 pupils were targeted as they were in Grade 1 in 
2003 when the PPSMI programme began. Two survey questionnaires were used: one 
for mathematics teachers and one for pupils. Teacher questionnaires had four sections 
– the background of respondents, teachers’ self-assessed report of their language 
proficiency, issues faced, and teachers’ perceptions towards the teaching of 
mathematics and science in English. Teachers’ perceptions were measured on a five-
point Likert scale, ranging from “strongly disagree” to “strongly agree.”
Pupil questionnaires also contained four sections. The first asked for pupils’ 
background information including self-rating of their English proficiency. The 
second concerned the extent of English language usage in the teaching of 
mathematics and science classes as well as issues faced in studying mathematics and 
science in English. The third section assessed pupil’s feelings when learning 
mathematics and science, and the last section evaluated their views towards teaching 
and learning of mathematics and science in English. Since pupils from Chinese 
schools also learn mathematics and science in Mandarin, the questionnaires for these 
pupils included two additional questions which asked for their feelings towards 
learning mathematics and science in Mandarin. To minimize language barriers, pupils 
at Malay schools were given questionnaires in Malay, and pupils at Chinese schools 
were given questionnaires in Mandarin. All teachers’ questionnaires were in English. 
Analyses revealed that only 11.5% of the mathematics teachers in the study explained 
mathematical concepts entirely in English (Table 2). Thus almost 90% of teachers did 
not teach mathematics fully in English but resorted to using the pupils’ mother 
tongue (either Malay or Mandarin) in their teaching. English was used exclusively in 
teaching more often in Malay schools than in Chinese schools, and more often in 
urban schools than rural schools (Table 2).
About 18% of the teachers rated themselves as “poor” in spoken and written English 
(Table 3). Most of the teachers were much more proficient in Mandarin or Malay 
language than in speaking and writing English. It is hardly surprising, then, that only 
a few teachers taught mathematics and science entirely in English.
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Table 2:
Teaching of Mathematics Entirely in English in Malay and Chinese Schools (%)
 % 
 Total Sample 11.5  
Type of School Malay Schools 17.6 
 Chinese Schools   7.8 
Location Urban 14.4 
 Rural   6.3 

Table 3:
Teachers’ Self-rated Proficiency in Malay, Mandarin and English (%)

                 Oral Written Language
(N=443) Fluent Average Poor Good Average Poor 
Malay (443) 58.5 41.5 0 48.0 51.6 0.5 
English (443) 12.5 69.4 18.1 11.4 68.4 20.2 

*Mandarin (308) 90.0 10.0 0.0 75.6 23.7 0.6 
*Although the sample included the same number of Malay schools and Chinese schools, Chinese 
schools generally have a larger pupil and teacher population.  

A much higher percentage of Chinese pupils (95-97%) than Malay pupils (75-82%) 
reported that their teachers did not use English entirely to teach mathematics and 
science. Could this be related to another finding that a slightly lower percentage of 
Malay pupils (41%) than Chinese pupils (45.5%) reported that they had problems 
learning mathematics and science in English? When pupils were asked to indicate 
their feelings towards learning mathematics and science in English, Malay pupils 
noted more positive feelings than Chinese pupils. Chinese pupils felt more confident 
and positive toward learning mathematics and science in Mandarin. In addition, 
proportionally 30 per cent more Malay pupils supported the policy than their Chinese 
counterparts. This could be explained by the findings that 40 per cent more Malay 
pupils found it easier to learn mathematics in English. Also, fewer Chinese pupils 
than Malay pupils had access to reference books in English (44% Chinese versus 
80% Malay), and fewer Chinese pupils reported having family support (37% Chinese 
versus 75% Malay) when learning mathematics and science in English. 
Because Chinese pupils lacked proficiency in English, their teachers felt that they 
themselves had to use Mandarin more often than English. Because of the reduced use 
of English by their mathematics and science teachers, the Chinese pupils became less 
confident and faced greater problems in learning these subjects in English.
Administrators’ perspectives were solicited through in-depth interviews with 13 
principals and seven senior assistants who had experience with the implementation of 
the PPSMI policy. The majority of the administrators interviewed agreed with the 
rationale behind the policy, and felt that it was necessary to prepare the future 
generation to be proficient in English and competent in mathematics and science. 

Lim, Ellerton 

PME 33 - 2009 1- 7 

However, full support for the policy was more forthcoming from Malay 
administrators than from their Chinese counterparts. Chinese administrators 
recognized four major concerns in their schools, reporting (i) too much content to be 
covered in too little time; (ii) a lack of home support in English; (iii) pupils not fluent 
in English, and (iv) teachers not confident in English. To resolve these problems, 
some suggestions made by the administrators were, (i) begin the policy at secondary 
school, (ii) increase the number of English periods to at least eight per week, (iii) 
allocate two periods per week for teaching science and mathematics terminology in 
English, and (iv) teachers should be encouraged to upgrade their language 
proficiency by attending specific English language courses. 
Study 2: Language Used In Bilingual Primary Mathematics Classrooms  
The second study (Lim, Tan, Chew & Kor, 2009) examined the language used and its 
role in teaching mathematics to primary classes of bilingual pupils. Data from video-
taped lessons and interviews with teachers were collected. Three primary schools – a 
Malay-medium national schools; a Chinese-medium national-type schools; and a 
Tamil-medium national-type schools in Penang state participated. For each school, 
two mathematics teachers – an “expert” with more than 10 years’ teaching 
experience, and a “novice” with less than 5 years’ experience – were selected. Two 
mathematics lessons taught by each teacher were video-taped.
Verbal communication in mathematics classrooms usually involves: (a) questioning 
(b) explaining (c) representing (d) discussing and (e) conjecturing. Each video-taped 
mathematics lesson was analyzed quantitatively in terms of the kind of discourse and 
time taken for each kind of discourse, and the kind of language used for each kind of 
discourse. The video-taped lessons and interview transcripts were also analyzed to: 
(a) identify the roles and purposes of language used for each kind of discourse; (b) 
identify when and why there was a switch of language used (code-switching) for each 
kind of discourse. Finally, a cross-case analysis was carried out to compare the 
differences in language used between expert and novice mathematics teachers as well 
as between different types of schools. Analysis of video transcripts showed that the 
type of language used was influenced by class ability and teachers’ confidences in 
his/her own English language and that of their pupils. In higher-ability mathematics 
classes, more than 98% of discourse was conducted in English for the three types of 
schools. However, for lower-ability classes, the percentage varied between 46% and 
98%. This trend was found regardless of whether the class was taught by an expert or 
by a novice teacher. For weak mathematics classes in Chinese schools, mathematics 
was taught bilingually, in English and Mandarin. Both teachers and pupils often used 
code switching and translated during classroom discourse. In one Malay school, one 
mathematics teacher seemed to code-switch in his mother tongue more often than his 
pupils. In a similar way, in one Tamil school, one of the teachers for a weak class 
seemed to code-switch and translated terminology into Tamil more often than her 
pupils. Interestingly, this result is consistent with the findings of the first study where 

4 - �4 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   14 6/4/09   2:19:13 PM



Lim, Ellerton 

1- 6 PME 33 - 2009 

Table 2:
Teaching of Mathematics Entirely in English in Malay and Chinese Schools (%)
 % 
 Total Sample 11.5  
Type of School Malay Schools 17.6 
 Chinese Schools   7.8 
Location Urban 14.4 
 Rural   6.3 

Table 3:
Teachers’ Self-rated Proficiency in Malay, Mandarin and English (%)

                 Oral Written Language
(N=443) Fluent Average Poor Good Average Poor 
Malay (443) 58.5 41.5 0 48.0 51.6 0.5 
English (443) 12.5 69.4 18.1 11.4 68.4 20.2 

*Mandarin (308) 90.0 10.0 0.0 75.6 23.7 0.6 
*Although the sample included the same number of Malay schools and Chinese schools, Chinese 
schools generally have a larger pupil and teacher population.  

A much higher percentage of Chinese pupils (95-97%) than Malay pupils (75-82%) 
reported that their teachers did not use English entirely to teach mathematics and 
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counterparts. This could be explained by the findings that 40 per cent more Malay 
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than Malay pupils had access to reference books in English (44% Chinese versus 
80% Malay), and fewer Chinese pupils reported having family support (37% Chinese 
versus 75% Malay) when learning mathematics and science in English. 
Because Chinese pupils lacked proficiency in English, their teachers felt that they 
themselves had to use Mandarin more often than English. Because of the reduced use 
of English by their mathematics and science teachers, the Chinese pupils became less 
confident and faced greater problems in learning these subjects in English.
Administrators’ perspectives were solicited through in-depth interviews with 13 
principals and seven senior assistants who had experience with the implementation of 
the PPSMI policy. The majority of the administrators interviewed agreed with the 
rationale behind the policy, and felt that it was necessary to prepare the future 
generation to be proficient in English and competent in mathematics and science. 
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However, full support for the policy was more forthcoming from Malay 
administrators than from their Chinese counterparts. Chinese administrators 
recognized four major concerns in their schools, reporting (i) too much content to be 
covered in too little time; (ii) a lack of home support in English; (iii) pupils not fluent 
in English, and (iv) teachers not confident in English. To resolve these problems, 
some suggestions made by the administrators were, (i) begin the policy at secondary 
school, (ii) increase the number of English periods to at least eight per week, (iii) 
allocate two periods per week for teaching science and mathematics terminology in 
English, and (iv) teachers should be encouraged to upgrade their language 
proficiency by attending specific English language courses. 
Study 2: Language Used In Bilingual Primary Mathematics Classrooms  
The second study (Lim, Tan, Chew & Kor, 2009) examined the language used and its 
role in teaching mathematics to primary classes of bilingual pupils. Data from video-
taped lessons and interviews with teachers were collected. Three primary schools – a 
Malay-medium national schools; a Chinese-medium national-type schools; and a 
Tamil-medium national-type schools in Penang state participated. For each school, 
two mathematics teachers – an “expert” with more than 10 years’ teaching 
experience, and a “novice” with less than 5 years’ experience – were selected. Two 
mathematics lessons taught by each teacher were video-taped.
Verbal communication in mathematics classrooms usually involves: (a) questioning 
(b) explaining (c) representing (d) discussing and (e) conjecturing. Each video-taped 
mathematics lesson was analyzed quantitatively in terms of the kind of discourse and 
time taken for each kind of discourse, and the kind of language used for each kind of 
discourse. The video-taped lessons and interview transcripts were also analyzed to: 
(a) identify the roles and purposes of language used for each kind of discourse; (b) 
identify when and why there was a switch of language used (code-switching) for each 
kind of discourse. Finally, a cross-case analysis was carried out to compare the 
differences in language used between expert and novice mathematics teachers as well 
as between different types of schools. Analysis of video transcripts showed that the 
type of language used was influenced by class ability and teachers’ confidences in 
his/her own English language and that of their pupils. In higher-ability mathematics 
classes, more than 98% of discourse was conducted in English for the three types of 
schools. However, for lower-ability classes, the percentage varied between 46% and 
98%. This trend was found regardless of whether the class was taught by an expert or 
by a novice teacher. For weak mathematics classes in Chinese schools, mathematics 
was taught bilingually, in English and Mandarin. Both teachers and pupils often used 
code switching and translated during classroom discourse. In one Malay school, one 
mathematics teacher seemed to code-switch in his mother tongue more often than his 
pupils. In a similar way, in one Tamil school, one of the teachers for a weak class 
seemed to code-switch and translated terminology into Tamil more often than her 
pupils. Interestingly, this result is consistent with the findings of the first study where 
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both teachers and pupils in Chinese schools admitted no more than 50% of their 
mathematics lessons were taught using English. 
CONCLUSIONS AND IMPLICATIONS 
On the surface, it may appear that the implementation of PPSMI has been successful. 
However, the studies reported here indicate that there have been difficulties at the 
school level. In particular, given the finding that almost 90% of the 443 teachers in 
the study did not teach mathematics fully in English, greater attention needs to be 
given to developing teachers’ confidence and fluency in using the English language. 
If the policy of teaching mathematics in English is to continue, and if it is to have the 
intended benefits, mathematics teachers urgently need support to enable them to 
enhance their English language proficiency, so that they can use English as the 
medium of instruction, with confidence, for a greater proportion of class time.  
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FOSTERING FACILITATORS’ LEARNING THROUGH CASE DISCUSSION  
Pi-Jen Lin 

National Hsinchu University of Education, Taiwan 

The study examined the effect of case discussion on facilitators’ knowledge of 
teaching and skills in leading discussions. Three facilitators participated four 
workshops and structured case discussion in schools. Transcriptions of case 
discussions, classroom observations, interviews, and reflective notes were the main 
data. The data were analyzed according to a coding schema emerged from data. 
Sources, contexts, materials, and motivating anticipated solutions related to the 
presentation of problems were reported here. Excepting concerning of learner’s prior 
knowledge and instructional objectives, the facilitators motivated students’ multiple 
methods and eliciting a specific anticipated solution in reconstrucing or revising a 
problem. Four issues of leading case discussions for facilitators were addressed. 

INTRODUCTION
There has been increasing interest in developing and using cases for teacher education 
(Levin, 1999; Lin, 2002; 2005; Merseth, 1996; Stein et al., 2000), since the use of cases 
is useful for promoting critical reflection and for producing teacher to be a reflective 
practitioner. Studies conducted with experienced teachers suggest that case discussion 
can foster teachers’ pedagogy and content knowledge (Barnett, 1998; Lin, 2002). 
Cases discussions also appear to have the potential to pre-service and beginning 
teachers to experience situations embedded in cases (Lin, 2005). Although a cohort of 
researchers is interested in the effects of cases on preserves and in-service teachers, 
there has been little empirical work to date on the impact of the facilitators on the case 
discussion (Levin, 1999). 
The power of cases rests in not only the content of case but also case discussion. It 
means that what is discussed is as important as how it is discussed. Cases are 
contextualized narrative accounts of teaching and learning, including the problems, 
dilemmas, and complexity of teaching in some contexts. Cases are characterized as real, 
research-based, and potential to initiate critical discussion by users (Merseth, 1996). 
Case discussion is the key to decide whether the case contributes to users’ critical 
thinking. A facilitator as a leader of case discussion can lead to clearer and elaborated 
understanding about the issues in a case. This indicates that the case discussion leader 
is important to what teachers learn from cases. 
The roles of a facilitator include: selecting cases, convening the discussion, influencing 
how the learning communities develops, and influencing the discussion through 
questions asked and comments make, as well as how the discussion is structured 
(Levin, 1999). For these reasons it is important to provide a new experience and 
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support for facilitators in leading a case discussion. Thus, the effect of case discussion 
on facilitators’ pedagogical content knowledge and the difficulties the facilitators 
encountered in leading a case discussion become the purpose of the study.   

THEORETICAL PERSPECTIVES 

The theoretical perspectives of this study are based on the constructive perspectives as 
Piaget (1932) and Vygotsky (1978). These perspectives provide the rationale for why 
the case discussion is a crucial factor to consider in studying how facilitators’ 
knowledge is constructed individually and socially. Piaget (1932) asserts that group 
interaction acts like a trigger for change in cognition because such interaction leads to 
learners to reflect individually on conflicting ideas that arise in social interaction. This 
assertion suggests that case discussion is potential to develop users’ learning and 
development. The social interaction during case discussion has the potential for 
providing cognitive conflict, hence to trigger users’ cognitive change. 
Vygotsky (1978) claims that group interaction not only initiates change but also shapes 
the nature of the change. He states that what is learned in social interaction of the group 
is prerequisite to cognitive development. From this perspective, the social interaction 
and the quality of group discussion are essential to what learned from cases. In addition, 
according to Vygotsky’s Zone of Proximal Development, experenced facilitators 
influence the thinking of others with less experience in the case discussion. Thus, 
studying the nature of the influences among the facilitators in case discussions was of 
interest in the study. The cases referred to in the study are characterized as: 
research-based, real, initiating critical discussion by users, and helping users to 
recognize salient aspects launched from a set of questions (Lin, 2006).

METHOD
Participants
Three primary teachers (F1~F3) participated in a teacher professional program that is 
designed to train teachers to be facilitators in case discussion. The teachers interested 
in mathematics instruction were recruited from those who were elected or assigned by 
schools as the leader of mathematical learning community in school. F1, F2, F3 had 12, 
8, and 6 years of teaching experience respectively. The participants played two roles: a 
fifth-grade teacher and a facilitator of case discussion when cases were implemented 
into school.

Case Materials 
The casebook consisting of eight cases o fraction teaching from grade 3 to 6 constituted 
the materials for this study (Lin, 2006). Each case was constructured by the researcher 
colloborating with case-teachers developed in previous studies. These cases focus on 
the issues including a mismatch between instuctional objectives and activities, students’ 
various solutions of a given problem, discourse of the case-teacher and students, and 
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inappropriate tasks. For instance, students’ multiple solutions embedded in several 
cases is intended to improve the users’ knoweldge about anticipating students’ potential 
solutions and misconceptions, recognizing the meaning of a specific solution, ordering 
the solutions from the easiest to the most difficut, and sorting them into different 
categories.    
A set of “Discussion Questions” is the most crucial content in each case, because it is 
incorporated into the reflections of case-teachers and others who involved in 
constructing the cases. The questions in the cases are to stimulate users’ rethinking 
about mathematical teaching and reflect to their practices. Through the cases, users 
were expected to deepen their understanding, expand their views of students’ ways of 
thinking, and master the skill of building mathematical discourse. Besides, the skills of 
questioning, listening, and response were expected to develop for a facilitator. 

Case Discussion Workshops 
Four workshops were designed to increase participants’ pedagogical knowledge and 
skills in facilitating case discussion, serving as a window into teachers’ thinking. 
Besides, the workshops afforded the participants with new experience and supports 
while they carried out the case discussion in schools. Each of the four cases selected 
from the casebook was discussed in each workshop lasting for three hours. To structure 
the case discussion, the researcher, as the leader of case discussion in the workshops, 
played various roles in order to guide, probe, listen, and give feedback. Participants 
read cases at home and took notes on the cases in advance. Disagreement was 
encouraged in the case discussion.
Several questions with distinct purposes were asked in the case discussion. For 
instance, the researcher started case discussion with the questions: What does the case 
say about? What is the major goal of the case to help you to learn? To help the 
participants to understand the importance of the activities fit into instructional 
objectives, the questions were asked such as Does each activity achieved by the 
case-teacher into instructional objective? To increase the participants’ pedagogical 
knowledge of fraction, they were asked to answer the questions: How would you 
respond to each question in the “Discussion Questions”? To help the participants to 
reflect on the role of facilitator, they were asked at the very beginning of the workshop: 
How would you like to start if you are the leader of the case discussion? At the very end 
of the discussion, the participants were asked to answer the questions: What did you 
learn from the leader in the case discussion? What are the most salient issues in the 
case that you would bring back to share with your colleagues?

Data Collection and Analysis 
To understand what and how the participants put their understanding gained from 
workshops into classroom practices, they were observed three lessons before, during, 
and after the workshops. Lesson 2 was observed between the 2nd and the 3rd workshop. 
Individual participant was interviewed after and before the workshops. These 
interviews and lessons were audio-taped and video-taped.
To examine the effect of the workshops on skills in leading case discussions, each 
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support for facilitators in leading a case discussion. Thus, the effect of case discussion 
on facilitators’ pedagogical content knowledge and the difficulties the facilitators 
encountered in leading a case discussion become the purpose of the study.   

THEORETICAL PERSPECTIVES 

The theoretical perspectives of this study are based on the constructive perspectives as 
Piaget (1932) and Vygotsky (1978). These perspectives provide the rationale for why 
the case discussion is a crucial factor to consider in studying how facilitators’ 
knowledge is constructed individually and socially. Piaget (1932) asserts that group 
interaction acts like a trigger for change in cognition because such interaction leads to 
learners to reflect individually on conflicting ideas that arise in social interaction. This 
assertion suggests that case discussion is potential to develop users’ learning and 
development. The social interaction during case discussion has the potential for 
providing cognitive conflict, hence to trigger users’ cognitive change. 
Vygotsky (1978) claims that group interaction not only initiates change but also shapes 
the nature of the change. He states that what is learned in social interaction of the group 
is prerequisite to cognitive development. From this perspective, the social interaction 
and the quality of group discussion are essential to what learned from cases. In addition, 
according to Vygotsky’s Zone of Proximal Development, experenced facilitators 
influence the thinking of others with less experience in the case discussion. Thus, 
studying the nature of the influences among the facilitators in case discussions was of 
interest in the study. The cases referred to in the study are characterized as: 
research-based, real, initiating critical discussion by users, and helping users to 
recognize salient aspects launched from a set of questions (Lin, 2006).

METHOD
Participants
Three primary teachers (F1~F3) participated in a teacher professional program that is 
designed to train teachers to be facilitators in case discussion. The teachers interested 
in mathematics instruction were recruited from those who were elected or assigned by 
schools as the leader of mathematical learning community in school. F1, F2, F3 had 12, 
8, and 6 years of teaching experience respectively. The participants played two roles: a 
fifth-grade teacher and a facilitator of case discussion when cases were implemented 
into school.

Case Materials 
The casebook consisting of eight cases o fraction teaching from grade 3 to 6 constituted 
the materials for this study (Lin, 2006). Each case was constructured by the researcher 
colloborating with case-teachers developed in previous studies. These cases focus on 
the issues including a mismatch between instuctional objectives and activities, students’ 
various solutions of a given problem, discourse of the case-teacher and students, and 
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inappropriate tasks. For instance, students’ multiple solutions embedded in several 
cases is intended to improve the users’ knoweldge about anticipating students’ potential 
solutions and misconceptions, recognizing the meaning of a specific solution, ordering 
the solutions from the easiest to the most difficut, and sorting them into different 
categories.    
A set of “Discussion Questions” is the most crucial content in each case, because it is 
incorporated into the reflections of case-teachers and others who involved in 
constructing the cases. The questions in the cases are to stimulate users’ rethinking 
about mathematical teaching and reflect to their practices. Through the cases, users 
were expected to deepen their understanding, expand their views of students’ ways of 
thinking, and master the skill of building mathematical discourse. Besides, the skills of 
questioning, listening, and response were expected to develop for a facilitator. 

Case Discussion Workshops 
Four workshops were designed to increase participants’ pedagogical knowledge and 
skills in facilitating case discussion, serving as a window into teachers’ thinking. 
Besides, the workshops afforded the participants with new experience and supports 
while they carried out the case discussion in schools. Each of the four cases selected 
from the casebook was discussed in each workshop lasting for three hours. To structure 
the case discussion, the researcher, as the leader of case discussion in the workshops, 
played various roles in order to guide, probe, listen, and give feedback. Participants 
read cases at home and took notes on the cases in advance. Disagreement was 
encouraged in the case discussion.
Several questions with distinct purposes were asked in the case discussion. For 
instance, the researcher started case discussion with the questions: What does the case 
say about? What is the major goal of the case to help you to learn? To help the 
participants to understand the importance of the activities fit into instructional 
objectives, the questions were asked such as Does each activity achieved by the 
case-teacher into instructional objective? To increase the participants’ pedagogical 
knowledge of fraction, they were asked to answer the questions: How would you 
respond to each question in the “Discussion Questions”? To help the participants to 
reflect on the role of facilitator, they were asked at the very beginning of the workshop: 
How would you like to start if you are the leader of the case discussion? At the very end 
of the discussion, the participants were asked to answer the questions: What did you 
learn from the leader in the case discussion? What are the most salient issues in the 
case that you would bring back to share with your colleagues?

Data Collection and Analysis 
To understand what and how the participants put their understanding gained from 
workshops into classroom practices, they were observed three lessons before, during, 
and after the workshops. Lesson 2 was observed between the 2nd and the 3rd workshop. 
Individual participant was interviewed after and before the workshops. These 
interviews and lessons were audio-taped and video-taped.
To examine the effect of the workshops on skills in leading case discussions, each 
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participant was encouraged to set up a case discussion group in school for carrying out 
the cases. The size of the discussion groups with 3 or 4 teachers was varied with the 
culture of each school. Each facilitator was free to structure the case discussion such as 
the selection and the number of cases. They were required to take notes on the work of 
leading case discussions. The discussions of each case in each school were audio taped. 
The transcriptions of case discussions gathered both from workshops and from case 
discussion group in each school and reflective notes were also the primary data 
collected for the study.  
Analysis began by coding the facilitators’ lessons associated with their responses to the 
questions and an inductive search for patterns. After reading and rereading the 
responses several times, a coding schema emerged from the data consisted of 3 themes 
with 36 categories was formed. Three themes were the ways of presenting the 
problems to be solved (16 categories), ordering students’ solutions for discussion (10 
categories), and interactions with students (16 categories). For instance, 16 categories 
in the theme of the ways of presenting the problems were: sources (5), contexts (3), 
materials (4), and motivating anticipated solutions (4). Each code was counted and 
frequencies were recorded. The data was coded by the researcher and four teachers 
who have master degree in mathematics education. We resolved any discrepancies 
through discussions.     
RESULT 
To help you understand coherently about the effect of the case discussions, the 
qualitative data presented here is merely related to ways of presenting the problems, 
even though ordering students’ solutions for discussion and interactions with students 
were the focuses of the result. More results on ordering students’ solutions and 
interacting with students are reported in longer paper. 
Table 1 displays the frequencies accounting for each facilitator’s presentation on the 
problems before, during, and after workshops. The number of problems given to 
students to solve in F1’s, F2’s, and F3’s three lessons were 5, 3, 3; 6, 4, 3; and 5, 4, 3.

Aware of the Need of Reconstructing the Sequence of Activities  
Regarding the source of problems, the data of Table 1 shows that the number of given 
problems in a lesson was reduced into 3 (after workshops) from 5 or 6 (before the 
workshops). Before the workshops, all teachers highly relied on the textbook. They 
moved toward revising the problems given in textbook during the workshops and 
reconstructing the problems after the workshops. F1 stated in interview that
“After reading teacher’s guide, I don’t think I have to revise or re-design the problems or 
activities in the lesson for students, since the activities in the textbook that is designed by 
authorities are perfect enough” (F1, Interview).

Through the case discussion, the participants recognized the importance of activities 
based on students’ prior experience or knowledge on motivating students various 
solutions. For instance, Case 1 related to comparing two unlike fractions, the 
case-teacher reconstructed the sequence of the activities. To expect students coming up 
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various strategies, she restructured the sequence of activities in the textbook. She 
claimed that the least common divisor is not allowed to be learned until ordering two 
unlike fractions has been learned. 
Table 1: Frequencies of Each Participant’s Performing on Problems Presented to Students 

F1 F2 F3
Lesson Lesson Lesson

1 2 3 1 2 3 1 2 3
Textbook 5 1 0 6 1 0 5 0 0
Revising from textbook 0 1 0 0 3 1 0 4 3
Instructor 0 0 2 0 0 2 0 0 0
Students 0 0 1 0 0 0 0 0 0So

ur
ce

Instructor and students 0 1 0 0 0 0 0 0 0
Bared 2 2 0 2 2 0 2 2 0
Telegram  3 3 0 4 4 0 2 2 0

C
on

te
xt

Real-world  0 0 3 0 0 3 1 1 3
Verbal only 4 4 0 6 6 0 4 4 0
Transparency or PPT 0 0 0 0 0 0 0 0 0
Black- or white-board only 1 1 0 0 0 0 1 1 0

M
at

er
ia

l

Verbal+ Blackboard 0 0 3 6 0 3 0 0 3
Based on prior knowledge 4 3 3 6 4 3 4 3 3
Meet to instructional objectives 4 3 3 5 4 3 4 3 3
Elicit specific anticipated solution  0 1 3 0 0 3 0 0 3

M
ot

iv
at

e
an

tic
ip

at
ed

so
lu

tio
ns

Motivate various solutions 0 1 3 2 2 3 0 1 3
Through reading and discussing the case, F1 was reflected her past teaching on which 
the case-teacher’s students comparing two unlike fractions with seven strategies. The 
seven strategies were: (1) using reference point 1/2; (2) compensate strategy by 
reference point 1 (3) finding a common denominator with reducing the numerals, (4) 
finding a common denominator with expanding the numerals, (5) finding a same 
numerator with reducing the numerals, (6) finding a same numerator with expanding 
the numerals, (7) finding the least common divisor.  

Aware of the Roles of Problems Playing in Motivating Students’ Multiple 
Strategies and a Specific Anticipated Solution 
As shown in Table 1, four aspects were considered when the participants proposed the 
problems for motivating students’ anticipated solutions. The data indicates that the 
teachers were used to taking students’ prior knowledge and instructional objectives 
into account. However, motivating various solutions and eliciting a specific anticipated 
solution had never been concerned in their teaching.
They were often frustrated with motivating students’ multiple methods to a given 
problem. For instance, the objective of “finding equivalent fraction by reducing 
numerals” can be easily achieved for most teachers by introducing the algorithm in the 
problem as “A strip of paper has 8 meters long, what fractions are 4/8 of f the strip 
reduced into?”. The case-teacher claimed that the problem was inappropriate since 
students had not learned the term “reduced fraction” yet. Therefore, she revised it into 
“A strip of paper has 8 meters long, what proportions of the strip have the same length 
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participant was encouraged to set up a case discussion group in school for carrying out 
the cases. The size of the discussion groups with 3 or 4 teachers was varied with the 
culture of each school. Each facilitator was free to structure the case discussion such as 
the selection and the number of cases. They were required to take notes on the work of 
leading case discussions. The discussions of each case in each school were audio taped. 
The transcriptions of case discussions gathered both from workshops and from case 
discussion group in each school and reflective notes were also the primary data 
collected for the study.  
Analysis began by coding the facilitators’ lessons associated with their responses to the 
questions and an inductive search for patterns. After reading and rereading the 
responses several times, a coding schema emerged from the data consisted of 3 themes 
with 36 categories was formed. Three themes were the ways of presenting the 
problems to be solved (16 categories), ordering students’ solutions for discussion (10 
categories), and interactions with students (16 categories). For instance, 16 categories 
in the theme of the ways of presenting the problems were: sources (5), contexts (3), 
materials (4), and motivating anticipated solutions (4). Each code was counted and 
frequencies were recorded. The data was coded by the researcher and four teachers 
who have master degree in mathematics education. We resolved any discrepancies 
through discussions.     
RESULT 
To help you understand coherently about the effect of the case discussions, the 
qualitative data presented here is merely related to ways of presenting the problems, 
even though ordering students’ solutions for discussion and interactions with students 
were the focuses of the result. More results on ordering students’ solutions and 
interacting with students are reported in longer paper. 
Table 1 displays the frequencies accounting for each facilitator’s presentation on the 
problems before, during, and after workshops. The number of problems given to 
students to solve in F1’s, F2’s, and F3’s three lessons were 5, 3, 3; 6, 4, 3; and 5, 4, 3.

Aware of the Need of Reconstructing the Sequence of Activities  
Regarding the source of problems, the data of Table 1 shows that the number of given 
problems in a lesson was reduced into 3 (after workshops) from 5 or 6 (before the 
workshops). Before the workshops, all teachers highly relied on the textbook. They 
moved toward revising the problems given in textbook during the workshops and 
reconstructing the problems after the workshops. F1 stated in interview that
“After reading teacher’s guide, I don’t think I have to revise or re-design the problems or 
activities in the lesson for students, since the activities in the textbook that is designed by 
authorities are perfect enough” (F1, Interview).

Through the case discussion, the participants recognized the importance of activities 
based on students’ prior experience or knowledge on motivating students various 
solutions. For instance, Case 1 related to comparing two unlike fractions, the 
case-teacher reconstructed the sequence of the activities. To expect students coming up 

Lin

PME 33 - 2009 1- 5 

various strategies, she restructured the sequence of activities in the textbook. She 
claimed that the least common divisor is not allowed to be learned until ordering two 
unlike fractions has been learned. 
Table 1: Frequencies of Each Participant’s Performing on Problems Presented to Students 

F1 F2 F3
Lesson Lesson Lesson

1 2 3 1 2 3 1 2 3
Textbook 5 1 0 6 1 0 5 0 0
Revising from textbook 0 1 0 0 3 1 0 4 3
Instructor 0 0 2 0 0 2 0 0 0
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Through reading and discussing the case, F1 was reflected her past teaching on which 
the case-teacher’s students comparing two unlike fractions with seven strategies. The 
seven strategies were: (1) using reference point 1/2; (2) compensate strategy by 
reference point 1 (3) finding a common denominator with reducing the numerals, (4) 
finding a common denominator with expanding the numerals, (5) finding a same 
numerator with reducing the numerals, (6) finding a same numerator with expanding 
the numerals, (7) finding the least common divisor.  

Aware of the Roles of Problems Playing in Motivating Students’ Multiple 
Strategies and a Specific Anticipated Solution 
As shown in Table 1, four aspects were considered when the participants proposed the 
problems for motivating students’ anticipated solutions. The data indicates that the 
teachers were used to taking students’ prior knowledge and instructional objectives 
into account. However, motivating various solutions and eliciting a specific anticipated 
solution had never been concerned in their teaching.
They were often frustrated with motivating students’ multiple methods to a given 
problem. For instance, the objective of “finding equivalent fraction by reducing 
numerals” can be easily achieved for most teachers by introducing the algorithm in the 
problem as “A strip of paper has 8 meters long, what fractions are 4/8 of f the strip 
reduced into?”. The case-teacher claimed that the problem was inappropriate since 
students had not learned the term “reduced fraction” yet. Therefore, she revised it into 
“A strip of paper has 8 meters long, what proportions of the strip have the same length 
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with the 4/8 of the strip of paper?”. Students at this stage would learn better a fraction 
equivalent to another by comparing same quantity between them.
Through the use of cases, the participants were gradually efficiently proposing new 
problems for eliciting students’ various solutions and a specific anticipated solution 
(3/3 for F1, F2, & F3). However, without enough participation, giving a problem for 
eliciting a specific anticipated solution was more challenged (1/3 for F1, 0 for F2 & F3)
than for motivating various solutions (1/3 for F1, 2/4 for F2, 1/4 for F3). For instance, F2
learned the importance of the problems playing in motivating students’ multiple 
methods and eliciting a specific anticipated solution in the discussion. F2 described in 
her reflective notes as follows. 
“I have never noticed that the problems play such important role in encouraging students’ 
multiple solutions. That could be the main reason why my students always gave me one 
solution only.……To elicit a solution produced by using reduced numerals strategy, the 
problem should be proposed as “A strip of paper has 8 meters long, what proportions of the 
strip are same as the length of 1/2of the strip?” To motivate multiple solutions by using both 
expanded and reduced numerals strategies, the problem can be proposed as “A strip of paper 
has 8 meters long, what proportions of the strip have the same length with 2/4 of the strip?”
(F2, Reflective notes).

F2 learned that the size of denominators and 8 meters in the problems have to be 
connected for motivating anticipated students’ solutions. Following the case discussion, 
as we observed, F2 confidently revised the problem from the textbook “A box has 12 
oranges. What fraction of 6 oranges is in the box?” into “A box has 12 oranges. What 
fractions of the oranges have the same amounts of 4 oranges in the box?” The revision 
elicited students’ multiple solutions, such as 4/12, 1/3, and 2/6. 

Aware of the Importance of Complete Messages of Given Problem by Written 
associated with Verbal Presentation  
To save teaching time, although the problems were connected to real world in textbook, 
they were presented in either bared (e.g. 4/8=( )/2 ) or like a telegram for simplifying a 
message, (e.g. “4/8box of the oranges = ( )/2 box of the oranges”). The evidence is 
depicted in Table 1. The frequencies of the problems presented with bared or telegram 
before and after workshops by F1, F2, and F3 are (5/5 vs. 0/3; 6/6 vs. 0/3; 4/5 vs. 0/3, 
respectively). The participants did not realize the presentations as an essential factor 
influencing students’ understanding the meaning of the given problems until we 
discussed the Case 3. The case-teacher in Case 3 expressed the problems like a 
telegram message. The participants argued that the problem was not presented clearly. 
The over simplified messages were too brief to memorize it. As a result, students were 
frustrated with comprehension of the problem. After the discussion of the Case 3, as 
shown in Table 1, all problems posed by F1, F2, and F3 were presented with verbal 
associated with blackboard. 

The Difficulties and Issues of Structuring Case Discussions in Schools
Each facilitator was free to structure the case discussion in schools with two purposes. 
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One was to examine how well the facilitators put their knowledge and skills they 
learned in case discussion into schools. The other was to disseminate the cases into 
schools to see what difficulties they encountered. The difficulties and issues of leading 
case discussions were summarized as follows.  
The recruitment for facilitators convening discussion in school was much harder than 
that of the researcher. With lack of confidence and experience, they were merely able to 
invite beginning teachers or teaching experience with no more than 5 years to 
participate in case discussion group in schools. F3 stated that the teachers who have 
willingness and good relationship with her were recruited easily and successfully. The 
number of teachers involving in F1, F2, and F3 were 4, 3, and 3 respectively. The 
participants in F1’s, F2’s schools were fifth-grade teachers, while the teachers in F3’s 
case discussion group taught at the fourth and fifth grade.
Each facilitator was frustrated with the time of discussion altogether. They complained 
that they were compulsory to involve in the workshops held by schools, even though 
they have already scheduled for the case discussions in advance. Accordingly, the 
facilitators only survived by using several times with half an hour for each. Each case 
was forced to be cut into several pieces and was discussed several times. This led to 
weaken the effect of the case discussion.    
Four cases selected same as in researcher’s case discussion group were used in each 
school. Two cases were new for F3 but closely related to the lessons to be taught for 
fourth-graders. F3 stated her needed supports from the researcher in the interview 
during discussing the two cases. 
“To help my colleagues in improving their teaching through case discussion, I selected two 
cases related to fourth-grade lessons to discuss with them right before they teach the two 
lessons. I was uncomfortable with the discussions of these two cases, because I did not know 
how to ask key questions and follow-up questions for eliciting the teachers’ deep 
understanding and thinking.” (F3, Interview).

DISCUSSION 
The case discussion created the opportunity of teachers’ more concerns about the given 
problems for improving students’ learning. Through the case discussions, the teachers 
realized that they need to scrutinize and criticize them whether the given problems in 
textbook are based on students’ prior knowledge and are potential to achieve into 
instructional objectives. They moved toward motivating students’ multiple solutions 
methods and eliciting a specific anticipated solution while revising or reconstructing 
the problems. From then on, to help students catch up the meaning of the problems, 
they gave up the bared or like a telegram problems. Instead, the problems were 
presented with complete messages by using blackboard with verbal expression. 
Motivating students’ multiple solutions and eliciting a specific anticipated solution 
were more challenged than other aspects.
The teachers as facililators were supplied with new experience and needed support of 
case dicussion from the life participation of case discussion. They learned the roles of 
a facilitator in leading case discussions in which the manner is similar to that of the 
case discussion in schools. The set of discussion questions integrated with 
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with the 4/8 of the strip of paper?”. Students at this stage would learn better a fraction 
equivalent to another by comparing same quantity between them.
Through the use of cases, the participants were gradually efficiently proposing new 
problems for eliciting students’ various solutions and a specific anticipated solution 
(3/3 for F1, F2, & F3). However, without enough participation, giving a problem for 
eliciting a specific anticipated solution was more challenged (1/3 for F1, 0 for F2 & F3)
than for motivating various solutions (1/3 for F1, 2/4 for F2, 1/4 for F3). For instance, F2
learned the importance of the problems playing in motivating students’ multiple 
methods and eliciting a specific anticipated solution in the discussion. F2 described in 
her reflective notes as follows. 
“I have never noticed that the problems play such important role in encouraging students’ 
multiple solutions. That could be the main reason why my students always gave me one 
solution only.……To elicit a solution produced by using reduced numerals strategy, the 
problem should be proposed as “A strip of paper has 8 meters long, what proportions of the 
strip are same as the length of 1/2of the strip?” To motivate multiple solutions by using both 
expanded and reduced numerals strategies, the problem can be proposed as “A strip of paper 
has 8 meters long, what proportions of the strip have the same length with 2/4 of the strip?”
(F2, Reflective notes).

F2 learned that the size of denominators and 8 meters in the problems have to be 
connected for motivating anticipated students’ solutions. Following the case discussion, 
as we observed, F2 confidently revised the problem from the textbook “A box has 12 
oranges. What fraction of 6 oranges is in the box?” into “A box has 12 oranges. What 
fractions of the oranges have the same amounts of 4 oranges in the box?” The revision 
elicited students’ multiple solutions, such as 4/12, 1/3, and 2/6. 

Aware of the Importance of Complete Messages of Given Problem by Written 
associated with Verbal Presentation  
To save teaching time, although the problems were connected to real world in textbook, 
they were presented in either bared (e.g. 4/8=( )/2 ) or like a telegram for simplifying a 
message, (e.g. “4/8box of the oranges = ( )/2 box of the oranges”). The evidence is 
depicted in Table 1. The frequencies of the problems presented with bared or telegram 
before and after workshops by F1, F2, and F3 are (5/5 vs. 0/3; 6/6 vs. 0/3; 4/5 vs. 0/3, 
respectively). The participants did not realize the presentations as an essential factor 
influencing students’ understanding the meaning of the given problems until we 
discussed the Case 3. The case-teacher in Case 3 expressed the problems like a 
telegram message. The participants argued that the problem was not presented clearly. 
The over simplified messages were too brief to memorize it. As a result, students were 
frustrated with comprehension of the problem. After the discussion of the Case 3, as 
shown in Table 1, all problems posed by F1, F2, and F3 were presented with verbal 
associated with blackboard. 

The Difficulties and Issues of Structuring Case Discussions in Schools
Each facilitator was free to structure the case discussion in schools with two purposes. 
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One was to examine how well the facilitators put their knowledge and skills they 
learned in case discussion into schools. The other was to disseminate the cases into 
schools to see what difficulties they encountered. The difficulties and issues of leading 
case discussions were summarized as follows.  
The recruitment for facilitators convening discussion in school was much harder than 
that of the researcher. With lack of confidence and experience, they were merely able to 
invite beginning teachers or teaching experience with no more than 5 years to 
participate in case discussion group in schools. F3 stated that the teachers who have 
willingness and good relationship with her were recruited easily and successfully. The 
number of teachers involving in F1, F2, and F3 were 4, 3, and 3 respectively. The 
participants in F1’s, F2’s schools were fifth-grade teachers, while the teachers in F3’s 
case discussion group taught at the fourth and fifth grade.
Each facilitator was frustrated with the time of discussion altogether. They complained 
that they were compulsory to involve in the workshops held by schools, even though 
they have already scheduled for the case discussions in advance. Accordingly, the 
facilitators only survived by using several times with half an hour for each. Each case 
was forced to be cut into several pieces and was discussed several times. This led to 
weaken the effect of the case discussion.    
Four cases selected same as in researcher’s case discussion group were used in each 
school. Two cases were new for F3 but closely related to the lessons to be taught for 
fourth-graders. F3 stated her needed supports from the researcher in the interview 
during discussing the two cases. 
“To help my colleagues in improving their teaching through case discussion, I selected two 
cases related to fourth-grade lessons to discuss with them right before they teach the two 
lessons. I was uncomfortable with the discussions of these two cases, because I did not know 
how to ask key questions and follow-up questions for eliciting the teachers’ deep 
understanding and thinking.” (F3, Interview).

DISCUSSION 
The case discussion created the opportunity of teachers’ more concerns about the given 
problems for improving students’ learning. Through the case discussions, the teachers 
realized that they need to scrutinize and criticize them whether the given problems in 
textbook are based on students’ prior knowledge and are potential to achieve into 
instructional objectives. They moved toward motivating students’ multiple solutions 
methods and eliciting a specific anticipated solution while revising or reconstructing 
the problems. From then on, to help students catch up the meaning of the problems, 
they gave up the bared or like a telegram problems. Instead, the problems were 
presented with complete messages by using blackboard with verbal expression. 
Motivating students’ multiple solutions and eliciting a specific anticipated solution 
were more challenged than other aspects.
The teachers as facililators were supplied with new experience and needed support of 
case dicussion from the life participation of case discussion. They learned the roles of 
a facilitator in leading case discussions in which the manner is similar to that of the 
case discussion in schools. The set of discussion questions integrated with 
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case-teachers’ various perspectives are readily to initiate the teachers’ reflection on 
practices and cause their cognitive conflicts of mathematical teaching, hence to trigger 
change. The case-teachers embedded in the cases play the significant role of more 
capable peers. Thus, the disscusstion initiated from the set of discussion questions 
seemed to be a catalyst for the teachers learnign to teach.  
This study provided us insight about how the ways facilitators’ structured case 
discussions affected potential outcomes. The case discussion to be succeeded should be 
considered four issues: 1) Participants’ willingness, previous experiences, pedagogical 
content knowledge, and knowledge about case discussion were the essential factors 
influencing the quality of the discussion. 2) It is better for same grade teachers 
involving in case discussion, since same mathematical contents lent itself readily as a 
focal point, leading to in-depth discussions. 3) The better selection of the cases from a 
casebook is closely related to the lessons ready to be taught, since the content of the 
cases readily drew their attentions. 4) Facilitators need to be supported continually 
from experienced facilitators during the case discussion.  
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HOW DOES THE TRANSFER OF LEARNING MATHEMATICS 
OCCUR?: AN ALTERNATIVE ACCOUNT OF TRANSFER 

PROCESSES INFORMED BY AN EMPIRICAL STUDY  
Joanne Lobato

San Diego State University  

From the perspective of mainstream cognitive science, transfer occurs if the 
symbolic representations that people construct of initial learning and transfer 
situations overlap or if a mapping can be constructed that relates features of the 
two representations. We offer an alternative account of transfer processes via the 
focusing interactions framework, which we use to explain how social 
environments afford and constrain the generalization of learning. This research 
demonstrates that the ways in which students transfer their learning experiences 
depend upon students noticing particular mathematical features when multiple 
sources of information compete for their attention, which in turn depends jointly 
on  students’ and teachers’ participation in classroom discursive practices.

INTRODUCTION
Transfer is a controversial construct, which faces a number of challenges 
regarding its conceptualization and the character of its underlying mechanisms. 
Numerous critiques of transfer (summarized in Beach, 1999) have contributed to a 
growing acknowledgment that "there is little agreement in the scholarly 
community about the nature of transfer, the extent to which it occurs, and the 
nature of its underlying mechanisms" (Barnett & Ceci, 2002, p. 612). Lobato 
(2006) argues that a major challenge facing the alternative perspectives of transfer 
which have emerged over the past decade, is that of articulating alternative transfer 
mechanisms. She posits a possible barrier to progress by noting that the construct 
of “mechanism” has been associated with a particular view of knowledge and 
causation which may no longer make sense within an alternative interpretative 
framework, especially one grounded in a situative or socio-cultural perspective.  
One alternative transfer “mechanism” that has been offered in recent research is 
that of social framing (Engle, 2006). Framing involves bringing to bear a structure 
of expectations about a situation regarding the sense of “what is going on” in the 
situation and what are appropriate actions. Engle demonstrates two kinds of 
framing that are productive for transfer: a) when a classroom teacher frames 
learning activities as being temporally connected with other settings in which the 
students could use what they are learning, and b) when a teacher frames the 
students as contributing members of a larger community of people interested in 
what they were learning about. Like Engle, we offer an account of transfer 
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processes, which pays attention to the classroom interactions that develop around 
the transfer of learning. We extend her work by additionally relating transfer to 
what learners “notice” mathematically in classrooms. Our goal is to offer an 
alternative account of transfer processes via what we call the focusing interactions 
framework. This framework is used to demonstrate that the differential ways in 
which students transfer their learning experiences are related to differences in what 
students noticing mathematically in the classroom. Furthermore, what students 
notice is socially organized and dependent upon classroom discursive practices.  

THEORETICAL FRAMEWORK 
The father of the traditional transfer approach, Thorndike (1906), situated transfer 
mechanisms in the environment. He asserted that transfer occurred to the extent to 
which situations share “identical elements” (typically conceived of as shared 
features of physical environments). With the “cognitive revolution,” the notion of 
identical elements was reformulated as mental symbolic representations. That is, 
transfer occurs to the extent to which an individual’s symbolic representations of 
initial learning situations and transfer situations are identical, overlap, or are 
related (Anderson, Corbett, Koedinger, & Pelletier, 1995). From these traditional 
perspectives, transfer mechanisms are factors that can be controlled in order to 
produce transfer (De Corte, 1999). van Oers (2004) criticized the traditional 
approaches for focusing exclusively on the conditions for transfer and defining 
transfer on the basis of result qualities. On the other hand, once the conceptual 
roots of transfer are questioned, the notion of a transfer mechanism doesn’t make 
sense in the same deterministic way. We need a notion of mechanism that refers to 
an explanation of how social environments afford and constrain the generalization 
of learning; thus shifting the focus from external factors that can be controlled to 
conceiving of transfer as a constrained socially situated phenomenon. The 
focusing interactions framework offers one such approach.  
Our work is grounded in an alternative perspective on transfer called the “actor-
oriented transfer” (AOT) approach (Lobato, 2006, 2008). From this perspective, 
transfer is defined as the generalization of learning or more broadly as the 
influence of prior experiences on learners’ activity in novel situations. The AOT
perspective responds to the critique that traditional transfer experiments privilege 
the perspective of the observer and thus can become what Lave (1988) calls an 
"unnatural, laboratory game in which the task becomes to get the subject to match 
the experimenter's expectations," rather than an investigation of the "processes 
employed as people naturally bring their knowledge to bear on novel problems" 
(p. 20). Instead of predetermining what counts as transfer under models of expert 
performance, the AOT perspective seeks to understand the processes by which 
people generalize their learning experiences, regardless of whether or not these 
generalizations situations lead to correct or normative performance. Taking an 
actor-oriented approach to transfer often reveals idiosyncratic ways in which 
individual learners create relations of similarity (Lobato 2008). At first these 
idiosyncratic forms of transfer may seem random. However, our work on focusing 
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interactions is demonstrating a basis by which the nature of individuals' 
generalizations (actor-oriented transfer) is constrained by socio-cultural practices.

METHODS
We created four after-school classes of 8-9 seventh graders per class and selected 
four teachers (one per class) using a screening interview so as to maximize the 
chances that different aspects of the same mathematical content would be 
emphasized in each class. During semi-structured interviews, conducted at the 
conclusion of each instructional session, students were asked to reason with 
several transfer tasks. The tasks were set in contexts that had not been addressed in 
any of the classrooms but covered common mathematical content. Because we 
wanted to be able to attribute differences in the ways students reasoned during the 
interviews to differences in the mathematical foci that emerged in class, the 
research design controlled for other potential explanatory sources, such as time-
on-task, student ability, and mathematical content. To control for time-on-task, 
each class met for the same amount of time – 10 hours. To control for student 
ability level, students were assigned to classes using a blocked random assignment 
based on results from a screening test. To control for content, the teachers were 
provided with the same set of overarching content goals for a unit on slope and 
linear functions but were given freedom in terms of how to achieve those goals.  
In the interest of space, we will present findings from the first two classes (referred 
to as Classes 1 and 2), even though we collected data in four classes. Both teachers 
used reform oriented curricular materials and a single context – speed in Class 1 
and growing visual patterns in Class 2. Additionally, both instructional sessions 
moved from explorations of contextual problems at the beginning of the unit to 
conventional representations of linear functions such as tables, equations, and 
graphs. Analysis of the interview and classroom data followed the interpretive 
techniques of grounded theory in which the categories of meaning were induced 
from the data (Strauss & Corbin, 1990).  

RESULTS
Interview Results: Transfer Differences  
Qualitative analysis of the interview data indicated distinct differences in what 
students from Class 1 versus Class 2 noticed about tables and graphs of linear 
functions. One major difference arose when students were shown a graphical 
display of data involving the amount of water that had been pumped into a pool 
over time (see Figure 1) and were asked to find the slope of the line. The majority 
of students from Class 1 attended to the gallons and minutes amounts represented 
by the coordinate pairs. In contrast, nearly 90% of the Class 2 students appeared to 
see the graphs as constituting “boxes,” ignored the quantities, and consequently 
were unable to correctly identify and interpret the slope.
For example, Chanise demonstrates a typical response from Class 2. She initially 
talked about stairs, wrote “rise/run” on her paper, and then created a “stair step” 
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processes, which pays attention to the classroom interactions that develop around 
the transfer of learning. We extend her work by additionally relating transfer to 
what learners “notice” mathematically in classrooms. Our goal is to offer an 
alternative account of transfer processes via what we call the focusing interactions 
framework. This framework is used to demonstrate that the differential ways in 
which students transfer their learning experiences are related to differences in what 
students noticing mathematically in the classroom. Furthermore, what students 
notice is socially organized and dependent upon classroom discursive practices.  

THEORETICAL FRAMEWORK 
The father of the traditional transfer approach, Thorndike (1906), situated transfer 
mechanisms in the environment. He asserted that transfer occurred to the extent to 
which situations share “identical elements” (typically conceived of as shared 
features of physical environments). With the “cognitive revolution,” the notion of 
identical elements was reformulated as mental symbolic representations. That is, 
transfer occurs to the extent to which an individual’s symbolic representations of 
initial learning situations and transfer situations are identical, overlap, or are 
related (Anderson, Corbett, Koedinger, & Pelletier, 1995). From these traditional 
perspectives, transfer mechanisms are factors that can be controlled in order to 
produce transfer (De Corte, 1999). van Oers (2004) criticized the traditional 
approaches for focusing exclusively on the conditions for transfer and defining 
transfer on the basis of result qualities. On the other hand, once the conceptual 
roots of transfer are questioned, the notion of a transfer mechanism doesn’t make 
sense in the same deterministic way. We need a notion of mechanism that refers to 
an explanation of how social environments afford and constrain the generalization 
of learning; thus shifting the focus from external factors that can be controlled to 
conceiving of transfer as a constrained socially situated phenomenon. The 
focusing interactions framework offers one such approach.  
Our work is grounded in an alternative perspective on transfer called the “actor-
oriented transfer” (AOT) approach (Lobato, 2006, 2008). From this perspective, 
transfer is defined as the generalization of learning or more broadly as the 
influence of prior experiences on learners’ activity in novel situations. The AOT
perspective responds to the critique that traditional transfer experiments privilege 
the perspective of the observer and thus can become what Lave (1988) calls an 
"unnatural, laboratory game in which the task becomes to get the subject to match 
the experimenter's expectations," rather than an investigation of the "processes 
employed as people naturally bring their knowledge to bear on novel problems" 
(p. 20). Instead of predetermining what counts as transfer under models of expert 
performance, the AOT perspective seeks to understand the processes by which 
people generalize their learning experiences, regardless of whether or not these 
generalizations situations lead to correct or normative performance. Taking an 
actor-oriented approach to transfer often reveals idiosyncratic ways in which 
individual learners create relations of similarity (Lobato 2008). At first these 
idiosyncratic forms of transfer may seem random. However, our work on focusing 
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interactions is demonstrating a basis by which the nature of individuals' 
generalizations (actor-oriented transfer) is constrained by socio-cultural practices.

METHODS
We created four after-school classes of 8-9 seventh graders per class and selected 
four teachers (one per class) using a screening interview so as to maximize the 
chances that different aspects of the same mathematical content would be 
emphasized in each class. During semi-structured interviews, conducted at the 
conclusion of each instructional session, students were asked to reason with 
several transfer tasks. The tasks were set in contexts that had not been addressed in 
any of the classrooms but covered common mathematical content. Because we 
wanted to be able to attribute differences in the ways students reasoned during the 
interviews to differences in the mathematical foci that emerged in class, the 
research design controlled for other potential explanatory sources, such as time-
on-task, student ability, and mathematical content. To control for time-on-task, 
each class met for the same amount of time – 10 hours. To control for student 
ability level, students were assigned to classes using a blocked random assignment 
based on results from a screening test. To control for content, the teachers were 
provided with the same set of overarching content goals for a unit on slope and 
linear functions but were given freedom in terms of how to achieve those goals.  
In the interest of space, we will present findings from the first two classes (referred 
to as Classes 1 and 2), even though we collected data in four classes. Both teachers 
used reform oriented curricular materials and a single context – speed in Class 1 
and growing visual patterns in Class 2. Additionally, both instructional sessions 
moved from explorations of contextual problems at the beginning of the unit to 
conventional representations of linear functions such as tables, equations, and 
graphs. Analysis of the interview and classroom data followed the interpretive 
techniques of grounded theory in which the categories of meaning were induced 
from the data (Strauss & Corbin, 1990).  

RESULTS
Interview Results: Transfer Differences  
Qualitative analysis of the interview data indicated distinct differences in what 
students from Class 1 versus Class 2 noticed about tables and graphs of linear 
functions. One major difference arose when students were shown a graphical 
display of data involving the amount of water that had been pumped into a pool 
over time (see Figure 1) and were asked to find the slope of the line. The majority 
of students from Class 1 attended to the gallons and minutes amounts represented 
by the coordinate pairs. In contrast, nearly 90% of the Class 2 students appeared to 
see the graphs as constituting “boxes,” ignored the quantities, and consequently 
were unable to correctly identify and interpret the slope.
For example, Chanise demonstrates a typical response from Class 2. She initially 
talked about stairs, wrote “rise/run” on her paper, and then created a “stair step” 
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between the points (0,0) and (3,6). She determined the rise as 2 and the run as 3 by 
counting boxes and ignoring the quantities represented by (3,6). She repeated this 
process by drawing a stair step between (3,6) and (5,10), again counting squares to 
arrive at a rise of 1 and run of 2. She concluded that the slope couldn’t be found 
because 2/3 and ½ are not the same: “It doesn’t work because it’s different amount 
on the sides and the rise and the runs.”
In contrast, none of the Class 1 students ignored quantities and counted boxes. 
Over half of the students treated the slope as 2 gal/min. Hector’s reasoning typical. 
He focused on the quantities represented by the coordinate pairs rather than 
counting boxes. He determined correctly that the slope is 2 because “like the speed 
will be going by 2 because for every 1 minute it um, that'll be 2 gallons.” In 
summary, while the majority of students from Class 1 appeared to notice the 
quantities of water and time represented in a graph, nearly all of the students in 
Class 2 ignored the quantities and counted boxes.

Figure 1. Graphical representation of water pumping data. 
Classroom Analysis: The Focusing Interactions Framework  
According to Goodwin (1994), the “ability to see a meaningful event is not a 
transparent, psychological process, but is instead a socially situated activity” (p. 
606). We seek to explain how different ways of seeing emerged across the two 
classrooms by developing the focusing interactions framework. According to 
Goodwin, an event being seen – a relevant center of knowledge – emerges through 
the interplay between a domain of scrutiny and a set of discursive practices being 
deployed within a specific activity. Following Goodwin, we argue that the act of 
students’ noticing a mathematical regularity (a center of focus) emerges through 
the interplay between features of a mathematical task, a set of discursive practices 
(focusing interactions) and engagement in particular types of mathematical 
activity. Thus there are four constructs in the focusing interactions framework: a) 
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centers of focus; b) focusing interactions, c) features of mathematical tasks; and d) 
the nature of mathematical activity. Each will be briefly characterized and 
illustrated using data from the study.   
Centers of focus refers to the mathematical features, regularities, or conceptual 
objects to which students attend. This construct captures what individual students 
notice mathematically during class. It also represents the individual, cognitive 
component of the framework. For a particular mathematical task or problem, there 
may be several centers of focus, and for any given center of focus there may be 
several students who seem to be attending to that particular center of focus.
Through analysis of the videotaped classroom data, distinct differences emerged in 
what students were attending to mathematically while they were graphing and 
finding the slopes of lines. In Class 1, the students treated the points to be graphed 
as measurable quantities. For example, in the speed context, the point (4, 10) was 
treated as the distance of 10 cm that was covered in 4 sec. In contrast, students 
from Class 2 spoke about points as physical locations. For example, the teacher in 
Class 2 introduced points as “a way of helping people with directions” to your 
house; for the point (1, 4) you go “right 1 street and then go up 4 streets.” The 
students picked up on this language and plotted points by going “up and over” on 
the grid. 
Additionally students from Class 1 treated a line as a collection of same speed 
values while students from Class 2 talked about lines as physical objects – 
mountains, slope, and ramps. We conjecture that this led to a focus in Class 1 on 
lines as mathematical objects and in Class 2 on lines as physical objects. Finally, 
the majority of students in Class 1 talked about slope as a relationship between 
quantities, e.g., as the speed of particular characters who were walking. In 
contrast, the students in Class 2 spoke about slope as a characteristic of a physical 
object, e.g., the steepness of a set of stairs.  
Focusing interactions refer to the set of discursive practices (including gesture, 
diagrams, and talk) that give rise to particular centers of focus. It is through this 
construct that we account for the social organization of noticing. One such 
discursive practice is that of highlighting (Goodwin, 1994). Highlighting refers to 
visible operations upon external phenomena, such as labeling, marking, and 
annotating. Highlighting can shape the perceptions of others by making certain 
material prominent. Another type of discursive practice prominent in the Class 1 
data was that of “quantitative dialog.” Here the teacher presses for students to link 
numeric statements with what they refer to in the situation (in this case, the speed 
context).
As illustrated in the transcript below, the teacher in Class 1 introduced graphing by 
asking students to generate a distance and time pair that had the same speed as 
known pair. She then asked them to graph the distance and time pair (before 
introducing the numeric shorthand for representing coordinate pair). This directed 
attention to the measureable quantities. Consequently, when the first student 
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between the points (0,0) and (3,6). She determined the rise as 2 and the run as 3 by 
counting boxes and ignoring the quantities represented by (3,6). She repeated this 
process by drawing a stair step between (3,6) and (5,10), again counting squares to 
arrive at a rise of 1 and run of 2. She concluded that the slope couldn’t be found 
because 2/3 and ½ are not the same: “It doesn’t work because it’s different amount 
on the sides and the rise and the runs.”
In contrast, none of the Class 1 students ignored quantities and counted boxes. 
Over half of the students treated the slope as 2 gal/min. Hector’s reasoning typical. 
He focused on the quantities represented by the coordinate pairs rather than 
counting boxes. He determined correctly that the slope is 2 because “like the speed 
will be going by 2 because for every 1 minute it um, that'll be 2 gallons.” In 
summary, while the majority of students from Class 1 appeared to notice the 
quantities of water and time represented in a graph, nearly all of the students in 
Class 2 ignored the quantities and counted boxes.

Figure 1. Graphical representation of water pumping data. 
Classroom Analysis: The Focusing Interactions Framework  
According to Goodwin (1994), the “ability to see a meaningful event is not a 
transparent, psychological process, but is instead a socially situated activity” (p. 
606). We seek to explain how different ways of seeing emerged across the two 
classrooms by developing the focusing interactions framework. According to 
Goodwin, an event being seen – a relevant center of knowledge – emerges through 
the interplay between a domain of scrutiny and a set of discursive practices being 
deployed within a specific activity. Following Goodwin, we argue that the act of 
students’ noticing a mathematical regularity (a center of focus) emerges through 
the interplay between features of a mathematical task, a set of discursive practices 
(focusing interactions) and engagement in particular types of mathematical 
activity. Thus there are four constructs in the focusing interactions framework: a) 
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centers of focus; b) focusing interactions, c) features of mathematical tasks; and d) 
the nature of mathematical activity. Each will be briefly characterized and 
illustrated using data from the study.   
Centers of focus refers to the mathematical features, regularities, or conceptual 
objects to which students attend. This construct captures what individual students 
notice mathematically during class. It also represents the individual, cognitive 
component of the framework. For a particular mathematical task or problem, there 
may be several centers of focus, and for any given center of focus there may be 
several students who seem to be attending to that particular center of focus.
Through analysis of the videotaped classroom data, distinct differences emerged in 
what students were attending to mathematically while they were graphing and 
finding the slopes of lines. In Class 1, the students treated the points to be graphed 
as measurable quantities. For example, in the speed context, the point (4, 10) was 
treated as the distance of 10 cm that was covered in 4 sec. In contrast, students 
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students picked up on this language and plotted points by going “up and over” on 
the grid. 
Additionally students from Class 1 treated a line as a collection of same speed 
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mountains, slope, and ramps. We conjecture that this led to a focus in Class 1 on 
lines as mathematical objects and in Class 2 on lines as physical objects. Finally, 
the majority of students in Class 1 talked about slope as a relationship between 
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Focusing interactions refer to the set of discursive practices (including gesture, 
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annotating. Highlighting can shape the perceptions of others by making certain 
material prominent. Another type of discursive practice prominent in the Class 1 
data was that of “quantitative dialog.” Here the teacher presses for students to link 
numeric statements with what they refer to in the situation (in this case, the speed 
context).
As illustrated in the transcript below, the teacher in Class 1 introduced graphing by 
asking students to generate a distance and time pair that had the same speed as 
known pair. She then asked them to graph the distance and time pair (before 
introducing the numeric shorthand for representing coordinate pair). This directed 
attention to the measureable quantities. Consequently, when the first student 
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graphed the pair, she looked to the vertical axis labelled “distance” to locate the 30 
corresponding to the 30 cm. She highlighted the axis by gesturally sweeping her 
hand from the axis to the point. She repeated a similar highlighting gesture for the 
time quantity. Her activity contrasts with that of Class 2, where plotting points 
occurred in a grid with no reference to what was represented by the axes.  

Teacher:  What was one value that we know about that's the same speed as 10cm 
and 4 seconds? 

Student:  Um, 30 and 12 seconds 
Teacher:  Can anybody come up here and graph this [points to the annotation 

above the graph, “30 cm in 12 sec”] for me? Kalisha? 
Manuel:  Like a line graph or a bar? 
Teacher:  A point.  
Kalisha:  [sweeps hand right from the 30 on the vertical axes labelled “distance”; 

sweeps hand up from the 12 on the horizontal axis labelled “time”; 
marks a point; repeats sweeping gestures]  

Teacher:  How did she do it Ana? 
Ana:  She did it, because she went on the 30 and then she went all the way to 

the 12 line at the bottom, 12 um seconds 
Teacher:  You have to make sure that 30 is with the distance and then she went 

over here to the line that was 12 seconds, and we write that (12,30).  

Mathematical tasks refer to the features of the problems and activities that 
contribute to the emergence of particular centers of focus. Specifically, we are 
interested in how affordances and constraints of the task context influence what 
students notice mathematically. For example, in Class 2, the scales on the axes 
were never labelled and were always treated as a scale of one. This likely 
influenced the students’ subsequent attention to graphs as grids with little attention 
to how the axes were scaled.   
The fourth component of our framework, the nature of mathematical activity,
addresses the participatory organization of the classroom that establishes the roles 
and expectations governing students and teachers actions, which seem to 
contribute to the emergence of particular centers of focus. We are particularly 
interested in whether or not students are expected to develop their own ideas, share 
their strategies, justify their reasoning, and work with other students ideas. We are 
also interested in whether or not the teacher provides most of the mathematical 
content and how tightly the teacher guides class interactions.
In Class 1, students were encouraged to notice and share their discoveries 
regarding the points they had graphed on a line. For example, one student noticed 
that she could create points on a particular line (y = 2.5x) by starting with a given 
point and adding 2.5 cm and 1 sec over and over again to generate additional 
points on the line. Another student shared that instead of adding, he multiplied 2.5 
by the seconds to get the distance amount. This contribution helped students shift 

Lobato 

PME 33 - 2009 1- 7 

their focus from iterative to multiplicative patterns, which subsequently aided in 
the construction of slope as a rate. In contrast, the interaction pattern in Class 2 
was more tightly guided with of the new information coming from the teacher and 
with students providing short calculational responses.  

DISCUSSION  
In Class 1, points and lines appeared to be treated as mathematical objects and in 
Class 2, they appeared to be treated as physical objects and locations. This 
difference is significant. For example, if stairs are treated as a mathematical object, 
then one can form a ratio relationship between the height and tread of each step 
and see that the ratio is constant despite differences in size between the steps (as in 
the stairs on the left in Figure 2). However, if one treats stairs as a physical object 
(as Chanise appeared to do in the transfer task described previously), then each 
step must be identical in a given staircase, as is the case in the physical world (see 
the stairs on the right in Figure 2). Treating stairs as a physical rather than a 
mathematical object constrains one’s ability to form a ratio between the heights 
and treads of the stair steps, which has ramifications for learning about slope. In 
the first case, slope can be formed as a ratio; in the second case, slope is a simply a 
pair of two whole numbers.   

Figure 2. An illustration of stairs as a mathematical versus a physical object 
In this study, the different centers of focus that emerged in each class were related 
to the ways in which students transferred their learning experiences. In reasoning 
with transfer tasks involving graphs of linear functions, students in Class 1 
appeared to notice the quantities represented by the axes while students in Class 2 
appeared to treat the graph as a grid of boxes and ignore the quantities. While 
students in Class 1 treated points and lines as mathematical objects representing 
quantities, students in Class 2 treated points and lines as physical objects and 
locations. Furthermore, what students noticed mathematically depended upon 
differences in the discursive practices, features of the tasks, and the nature of the 
mathematical activities in the two classes.
As new transfer processes are identified and elaborated, we can challenge current 
instructional approaches to transfer and development new ones. For example, it is 
a widespread belief that “knowledge that is taught in only a single context is less 
likely to support flexible transfer than knowledge that is taught in multiple 
contexts” (see a summary of research in Bransford et al., 2000, p. 78). However, 
this work on focusing interactions suggests that what is critical for the 
generalization of learning is not the number of contextual situations explored but 
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also interested in whether or not the teacher provides most of the mathematical 
content and how tightly the teacher guides class interactions.
In Class 1, students were encouraged to notice and share their discoveries 
regarding the points they had graphed on a line. For example, one student noticed 
that she could create points on a particular line (y = 2.5x) by starting with a given 
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their focus from iterative to multiplicative patterns, which subsequently aided in 
the construction of slope as a rate. In contrast, the interaction pattern in Class 2 
was more tightly guided with of the new information coming from the teacher and 
with students providing short calculational responses.  

DISCUSSION  
In Class 1, points and lines appeared to be treated as mathematical objects and in 
Class 2, they appeared to be treated as physical objects and locations. This 
difference is significant. For example, if stairs are treated as a mathematical object, 
then one can form a ratio relationship between the height and tread of each step 
and see that the ratio is constant despite differences in size between the steps (as in 
the stairs on the left in Figure 2). However, if one treats stairs as a physical object 
(as Chanise appeared to do in the transfer task described previously), then each 
step must be identical in a given staircase, as is the case in the physical world (see 
the stairs on the right in Figure 2). Treating stairs as a physical rather than a 
mathematical object constrains one’s ability to form a ratio between the heights 
and treads of the stair steps, which has ramifications for learning about slope. In 
the first case, slope can be formed as a ratio; in the second case, slope is a simply a 
pair of two whole numbers.   

Figure 2. An illustration of stairs as a mathematical versus a physical object 
In this study, the different centers of focus that emerged in each class were related 
to the ways in which students transferred their learning experiences. In reasoning 
with transfer tasks involving graphs of linear functions, students in Class 1 
appeared to notice the quantities represented by the axes while students in Class 2 
appeared to treat the graph as a grid of boxes and ignore the quantities. While 
students in Class 1 treated points and lines as mathematical objects representing 
quantities, students in Class 2 treated points and lines as physical objects and 
locations. Furthermore, what students noticed mathematically depended upon 
differences in the discursive practices, features of the tasks, and the nature of the 
mathematical activities in the two classes.
As new transfer processes are identified and elaborated, we can challenge current 
instructional approaches to transfer and development new ones. For example, it is 
a widespread belief that “knowledge that is taught in only a single context is less 
likely to support flexible transfer than knowledge that is taught in multiple 
contexts” (see a summary of research in Bransford et al., 2000, p. 78). However, 
this work on focusing interactions suggests that what is critical for the 
generalization of learning is not the number of contextual situations explored but 
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the particular mathematical regularities and properties to which students’ attention 
is drawn and that students notice.   
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GENDER EFFECTS IN ORIENTATION ON PRIMARY 
STUDENTS’ PERFORMANCE ON ITEMS RICH IN GRAPHICS 
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This study investigated the longitudinal performance of 378 students who completed 
mathematics items rich in graphics. Specifically, this study explored student 
performance across axis (e.g., numbers lines), opposed-position (e.g., line and 
column graphs) and circular (e.g., pie charts) items over a three-year period (ages 9-
11 years). The results of the study revealed significant performance differences in the 
favour of boys on graphics items that were represented in horizontal and vertical 
displays. There were no gender differences on items that were represented in a 
circular manner.
INTRODUCTION
The burgeoning information age has provided new and increased demands on our 
capacity to represent, manipulate and decode information in graphical forms. 
Increasingly, graphs are used to (re)present information and predict trends. Data can 
be transformed into detailed and dynamic graphic displays with increased 
sophistication (and ease), and consequently, the challenges faced by students 
decoding such graphics in school mathematics has changed. The purpose of this 
paper is to investigate the effect that the orientation of the graphic has on students’ 
ability to decode various visual representations. In particular, we examine the 
performance of males and females on basic orientation items since there are gender 
differences (in favour of males) on map items (Diezmann & Lowrie, 2008).  
A FRAMEWORK FOR VISUAL PROCESSING 
Information Graphics 
Visual representations, such as number lines, graphs, charts, and maps are part of the 
emerging field of information graphics found throughout current school curricula—
with such graphics regularly used to represent mathematics content in standardized 
testing (Logan & Greenlees, 2008). Furthermore, the actual structure and 
composition of the graphic is generally treated in a single holistic static form rather 
than the actual elements contained in the graphic (Kosslyn, 2006). Recent studies 
have shown that the elements (including graph type and structure) contained within a 
graphics-rich item have a strong influence on decoding performance (see Lowrie & 
Diezmann, 2005). Consequently, the visual elements (e.g., line, position, slope, area) 
used in constructing a graphic have an impact on how well students understand and 
interpret the task, and select appropriate strategies and solution pathways. 
Mathematical information can be contained in text, keys, legends, axes or labels 
(Kosslyn, 2006), as well as elements of density and saturation (Bertin, 1967/1983). 
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This information is often represented in multiple forms in any graphic, and thus it is 
not surprising that young children may find it difficult simply moving between the 
text of a question and the information in the graphic (Hittleman, 1985). Even with 
much older college students, individuals tend to read and re-read graphs in order to 
keep track of the information in the axes and labels (Carpenter & Shah, 1989). With 
respect to map items, Bertin (1967/1983) argued that a decoder was required to make 
sense of the linear aspects of parallelism (specifically categories of horizontal and 
vertical orientation) and the variation of circular systems (e.g., pie charts).
In our previous research (Diezmann & Lowrie, 2008; Lowrie & Diezmann, 2005) we 
have found that a student’s capacity to decode the information embedded in a graphic 
is demanding in its own right. This is particularly the case when students are required 
to decode items from standardized tests—with new forms of item representation (rich 
in graphics)—placing increased demands on cognitive and perceptual processing.  
Gender differences on mathematics items 
Although most gender differences are attributed to general experiences rather than 
neurological makeup (Halpern, 2000), males tend to outperform females on spatial 
tasks (e.g., Bosco, Longoni, & Vecchi, 2004) and particularly mapping tasks 
(Silverman & Choi, 2006). Diezmann and Lowrie (2008) have suggested that these 
performance differences are associated with confidence and attitudes toward 
mathematics and the everyday (out-of-school) experiences that students are exposed 
to—including increased exposure to technology-based entertainment games.
Saucier et al. (2002) suggested that males tend to utilise Euclidean-based strategies to 
describe directions and distance when decoding map items—in the sense that they 
use directional language (e.g., north, west, top). By contrast, females tended to use 
landmark-based approaches (e.g., left right, below) to make sense of visual 
information. In their study it was noteworthy that males outperformed females on 
tasks that were Euclidean in nature but there were no gender differences on tasks that 
were represented in a landmark-based form. 
The present study goes beyond previous research by investigating basic elements of 
graphic design (Kosslyn, 2006) by analysing performance on horizontal, vertical and 
circular elements of graphics that combine to produce map items (Bertin 1967/1983). 
Moreover, we take note of Fennema and Leder’s (1993) challenge to ensure that 
studies that consider gender differences in mathematics are focused and strategic. To 
isolate the horizontal, vertical and circular elements of graphics in our study, we 
selected graphics for investigation which predominately have specific structural 
properties (e.g., circulare orientation on a pie chart, see Appendix) rather than use 
map items which contain a multiplicity of orientations.
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METHOD
This investigation is part of a 3-year longitudinal study which sought to interpret and 
describe primary students’ capacity to decode information graphics that represent 
mathematics information. The aims of the study were to: 

1. To document primary-aged students’ knowledge of graphical items (e.g., 
number lines, graphs, pie charts) in relation to graphic orientation; and 

2. To establish whether there are gender differences in students’ decoding 
performance in relation to graphic orientation. 

The Instrument and Items 
The 15 orientation items (the five horizontal, vertical and circular-represented items) 
from the Graphical Languages in Mathematics [GLIM] Test were used in the analysis 
(for a description of the GLIM test see Diezmann & Lowrie, in press). The GLIM is a 
36-item multiple-choice instrument developed to assess students’ ability to interpret 
items from six graphical languages including number lines and graphs. The 15 items 
varied in complexity, required substantial levels of graphical interpretation and 
conformed to reliability and validity measures (Lowrie & Diezmann, 2005).  
The GLIM orientation items were administered to students in a mass-testing situation 
annually for three consecutive years. The items were classified in relation to graphic 
structure. Horizontal items included single axis items (e.g., number lines) and 
opposed-position items (eg., column graphs) that were represented horizontally. 
Vertical items included axis and opposed-position items that were vertically 
orientated. Circular items included connection items (e.g., tree diagrams) and 
miscellaneous items (e.g., pie charts) which required students to decode information 
using topographical processing. The Appendix presents two of the items from each of 
the three orientation categories.  
Participants
The participants comprised 378 students (M=204; F=174) from eight primary schools 
across two states in Australia. The cohort completed the 15 orientation items of the 
GLIM test each year for three years. The students were in Grade 4 or equivalent 
when first administered the test (aged 9 or 10). Students’ socio-economic status was 
varied and less than 5% of the students had English as a second language.
RESULTS
Before analysis were undertaken, Guttman's (1950) unidimensional scaling technique 
was used to determine the suitability of the three orientation categories. The scale, 
which is validated prior to further data analysis, implies a development sequence for 
performance of items within a scale. On this scale, values greater than 0.9 are 
considered to indicate a highly predictive response pattern among items. Values over 
0.6 are considered to indicate a scale that is unidimensional and cumulative. The 
coefficient of reproducibility for the three orientation categories were horizontal
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orientation (.86), vertical orientation (.84), and circular orientation (.91). The five 
items contained within each of the three orientation categories were included in the 
analysis given the strong coefficient measures—since the categories predicted high 
response patterns among these variables. 
The two aims of the study were investigated through an analysis of the participants’ 
responses to the 15 orientation-based items of the GLIM test. These items (the 
independent variable) were classified as either horizontal, vertical or circular 
graphical representations (see Appendix). A multivariate analysis of covariance 
(MANCOVA) was used to analyse mean scores across Grade and Gender dependent 
variables. A spatial reasoning measure (students’ scores on Raven’s Standard 
Progressive Matrices (1989)) was deemed to be an appropriate covariate [F(2, 
1029=150.4, p<.01]. The MANCOVA revealed statistically significant differences 
between the mean scores of students across both Grade [F(6, 2052=24.38, p<.01] and 
Gender [F(3, 1025=10.85, p<.01] variables. There was no statistically significant 
interaction (Grade x Gender) [F(6,2052=1.12, p=.35]. Table 1 presents the means 
(and standard deviations) for grade and gender over the 3-year period.

 Grade 4 Grade 5 Grade 6 
 Total M F Total M F Total M F 

Hor. 2.75 
(1.16) 

2.92
(1.11) 

2.55
(1.15)

3.19
(1.23)

3.44
(1.20)

2.90
(1.21)

3.44
(1.14) 

3.56
(1.14) 

3.31
(1.12)

Vert. 3.45
(1.11) 

3.58
(1.07)

3.29
(1.15)

3.89
(1.05)

4.04
(0.96)

3.71
(1.11)

4.14
(0.93) 

4.24
(0.91) 

4.02
(0.94)

Circ. 2.90 
(1.23) 

2.91
(1.29) 

2.89
(1.17)

3.26
(1.21)

3.31
(1.28)

3.20
(1.21)

3.61
(1.12) 

3.72
(1.03) 

3.48
(1.20)

Table 2: Means (and Standard Deviations) of Student Scores by Grade and Gender 
Student performance increased between 12-16% from Grade 4 to Grade 5 across the 
three orientation categories. For both the horizontal and vertical categories the 
increases from Grade 5 to Grade 6 were 6-8%. By contrast the increase for the 
circular category from Grade 5 to Grade 6 was 11%. Subsequent ANOVA’s revealed 
statistically significant differences in the performance of students across the three 
years of the study on both horizontal-orientation [F(2, 1036=36.38, p<.01] and 
vertical-orientation [F(2, 1036=52.92, p<.01] variables. Subsequent post-hoc 
analysis indicated that student improvement was significant across each grade level 
for each of the two orientation variables. 
There were also statistically significant differences between the performance of boys 
and girls across two of the orientation variables: horizontal-orientation [F(1, 
1034=24.23, p<.01] and vertical-orientation [F(1, 1034=14.26, p<.01]. For each 
variable, across each year of the study, the mean scores for the boys were higher than 
that of the girls. With respect to the vertical-orientation items means scores for boys 
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were between 5%-9% higher than girls while they were between 6%-15% higher on 
horizontal-orientation items. By contrast there was no statistically significant 
difference between boys and girls on the circular-orientation variable [F(1, 
1034=.56, p=.452].
DISCUSSION 
Our study examined the effect orientation had on the performance of primary-aged 
students’ capacity to decode items rich in graphics. Student performance increased 
significantly over the 3 year period for both the horizontal and vertical categories. 
When the graphics were represented in either a horizontal or vertical manner, boys 
outperformed girls in each of the three years of the investigation. In fact, the mean 
scores for the boys were approximately twelve months ahead of that of the girls. By 
contrast there was no statistical difference between the performance of boys and girls 
on items that were represented in a circular structure. These results go beyond 
Diezmann and Lowrie’s (2008) earlier findings which highlighted gender differences, 
in favour of boys, on map items that required both horizontal and vertical decoding.  
We suggest that the performance differences between boys and girls are associated 
with the way in which items are structured—graphical representations that require 
vertical or horizontal decoding are, in essence, Euclidean based. Our study has 
reduced these components to a more fundamental level by analysing the elements of 
graphical languages that in effect combine to produce maps, namely horizontal, 
vertical and circular elements. Significantly, there were no gender differences on 
items which did not contain the linear aspects of parallelism (Bertin, 1967/1983). As 
Silverman and Choi, (2006) found, females tend to use more holistic typographical 
approaches to solve graphics tasks, which are effectively employed in the circular 
items from the GLIM instrument.  
CONCLUSIONS
The finding of gender differences in favour of boys on items that contained 
horizontal or vertical elements has four educational implications. First, everyday 
instruction in mathematics needs to provide opportunities for girls to become 
proficient in interpreting (and creating) visual elements in horizontal and/or vertical 
formats (e.g., graphs, maps and axis items). Such instruction should begin at an early 
age and the effectiveness of instruction should be monitored as gender differences in 
mathematics achievement increase over time (Winkelmann, van den Heuvel-
Panhuizen, & Robitzsch, 2008). Second, there needs to be a shift in emphasis in the 
use of vertical or horizontal representations, such as number lines. The finding of 
gender differences in favour of boys suggest that initially girls need to learn about 
number lines rather than from number lines. Third, caution needs to be taken in 
interpreting or creating mathematics achievement tests. Given that items with 
graphics have a content dimension and a representational dimension, girls may be 
disadvantaged in a test where the types of graphics are more likely to be solved by 
boys than girls. Additionally, the content of an item may be masked by its 
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orientation (.86), vertical orientation (.84), and circular orientation (.91). The five 
items contained within each of the three orientation categories were included in the 
analysis given the strong coefficient measures—since the categories predicted high 
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graphical representations (see Appendix). A multivariate analysis of covariance 
(MANCOVA) was used to analyse mean scores across Grade and Gender dependent 
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Progressive Matrices (1989)) was deemed to be an appropriate covariate [F(2, 
1029=150.4, p<.01]. The MANCOVA revealed statistically significant differences 
between the mean scores of students across both Grade [F(6, 2052=24.38, p<.01] and 
Gender [F(3, 1025=10.85, p<.01] variables. There was no statistically significant 
interaction (Grade x Gender) [F(6,2052=1.12, p=.35]. Table 1 presents the means 
(and standard deviations) for grade and gender over the 3-year period.
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increases from Grade 5 to Grade 6 were 6-8%. By contrast the increase for the 
circular category from Grade 5 to Grade 6 was 11%. Subsequent ANOVA’s revealed 
statistically significant differences in the performance of students across the three 
years of the study on both horizontal-orientation [F(2, 1036=36.38, p<.01] and 
vertical-orientation [F(2, 1036=52.92, p<.01] variables. Subsequent post-hoc 
analysis indicated that student improvement was significant across each grade level 
for each of the two orientation variables. 
There were also statistically significant differences between the performance of boys 
and girls across two of the orientation variables: horizontal-orientation [F(1, 
1034=24.23, p<.01] and vertical-orientation [F(1, 1034=14.26, p<.01]. For each 
variable, across each year of the study, the mean scores for the boys were higher than 
that of the girls. With respect to the vertical-orientation items means scores for boys 
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were between 5%-9% higher than girls while they were between 6%-15% higher on 
horizontal-orientation items. By contrast there was no statistically significant 
difference between boys and girls on the circular-orientation variable [F(1, 
1034=.56, p=.452].
DISCUSSION 
Our study examined the effect orientation had on the performance of primary-aged 
students’ capacity to decode items rich in graphics. Student performance increased 
significantly over the 3 year period for both the horizontal and vertical categories. 
When the graphics were represented in either a horizontal or vertical manner, boys 
outperformed girls in each of the three years of the investigation. In fact, the mean 
scores for the boys were approximately twelve months ahead of that of the girls. By 
contrast there was no statistical difference between the performance of boys and girls 
on items that were represented in a circular structure. These results go beyond 
Diezmann and Lowrie’s (2008) earlier findings which highlighted gender differences, 
in favour of boys, on map items that required both horizontal and vertical decoding.  
We suggest that the performance differences between boys and girls are associated 
with the way in which items are structured—graphical representations that require 
vertical or horizontal decoding are, in essence, Euclidean based. Our study has 
reduced these components to a more fundamental level by analysing the elements of 
graphical languages that in effect combine to produce maps, namely horizontal, 
vertical and circular elements. Significantly, there were no gender differences on 
items which did not contain the linear aspects of parallelism (Bertin, 1967/1983). As 
Silverman and Choi, (2006) found, females tend to use more holistic typographical 
approaches to solve graphics tasks, which are effectively employed in the circular 
items from the GLIM instrument.  
CONCLUSIONS
The finding of gender differences in favour of boys on items that contained 
horizontal or vertical elements has four educational implications. First, everyday 
instruction in mathematics needs to provide opportunities for girls to become 
proficient in interpreting (and creating) visual elements in horizontal and/or vertical 
formats (e.g., graphs, maps and axis items). Such instruction should begin at an early 
age and the effectiveness of instruction should be monitored as gender differences in 
mathematics achievement increase over time (Winkelmann, van den Heuvel-
Panhuizen, & Robitzsch, 2008). Second, there needs to be a shift in emphasis in the 
use of vertical or horizontal representations, such as number lines. The finding of 
gender differences in favour of boys suggest that initially girls need to learn about 
number lines rather than from number lines. Third, caution needs to be taken in 
interpreting or creating mathematics achievement tests. Given that items with 
graphics have a content dimension and a representational dimension, girls may be 
disadvantaged in a test where the types of graphics are more likely to be solved by 
boys than girls. Additionally, the content of an item may be masked by its 
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representation. Finally, the literature on orientation and gender effects in mathematics 
typically focuses on dynamic orientation—a change in orientation. The findings of 
this study indicate that static orientation of visual elements in graphics is also a 
fruitful avenue for the exploration of gender differences in maps and other graphics 
typically used in mathematics.  
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APPENDIX: ORIENTATION ITEMS FROM THE GLIM INSTRUMENT 
A. Horizontal Orientation Item1 B. Horizontal Orientation Item2

The following graph shows the length of time taken for 
the four stages in the life of a butterfly. 

How many days are there in the caterpillar stage? 

The graph compares the maximum length and mass to 
which some whales grow. 

A fisherman reported that a whale 25 metres long and 
weighing approximately 80 tonnes had beached itself. 
Which species of whale could this be? 

A. Vertical Orientation Item3 B. Vertical Orientation Item4

What is the mass of the apple? This graph shows the number of visitors to the picnic 
area for Saturdays and Sundays. 

Which month had the most visitors on Sundays? 

A. Circular Orientation Item5 B. Circular Orientation Item6

A simple food web 

The animals in this food web eat only what is shown. 

If all the animal plankton die which of the following will 
also die? 

In 2003, Jemma budgeted $30 on clothes. 
Approximately how much money did she get that year? 
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THE ‘VERBIFICATION’ OF MATHEMATICS 
Lisa Lunney Borden 
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As part of a larger project focused on transforming mathematics education for 
Aboriginal students in Atlantic Canada, this paper reports on the role of the 
Mi’kmaw language in mathematics teaching. Examining how mathematical concepts 
are described the Mi’kmaw language gives insight into ways of thinking. A change in 
discourse patterns to reflect Mi’kmaw verb-based grammar structures, referred to as 
‘verbification’, is described through the example of a grade 3 lesson on prisms and 
pyramids. ‘Veribification’ shows tremendous promise as a way to support Mi'kmaw 
learners as they negotiate their space between school-based mathematics and their 
own cultural ways of knowing and doing mathematics. 

RATIONALE
The Mi’kmaq are the Aboriginal inhabitants of Atlantic Canada. Mi’kmaw 
communities in Nova Scotia have a unique jurisdictional agreement with the 
Government of Canada that gives them control over their education system and 
collective bargaining power. Disengagement from mathematics and science is a 
concern for many teachers in these schools as they grapple with the tensions between 
school-based mathematics and Mi’kmaw ways of reasoning about things seen as 
mathematical. Having taught in one of these schools for ten years I had experienced 
these tensions myself. I wanted my students to be successful learners of mathematics, 
yet I also suspected that the disengagement I sometimes witnessed in my classroom 
emerged in response to conflicting worldviews.  
It has been argued that many Aboriginal students disengage from mathematics and 
science because of this discrepancy between their own culture and the cultural values 
embedded in school-based mathematics programs (Cajete, 1994; Ezeife, 2003; 
Aikenhead, 2002; NCTM, 2002). For some students the cost of participation means 
denying self and community to participate in the dominant view of mathematics. 
Often times these costs are seen as too great and children choose not to participate. 
Doolittle (2006) cautions that, in learning mathematics, “as something is gained, 
something might be lost too. We have some idea of the benefit, but do we know 
anything at all about the cost?” (p.19) If we are to meet the needs of Mi’kmaw 
students, and all Aboriginal learners, we must move towards a decolonized approach 
to education that allows for the inclusion of indigenous world views (Aikenhead, 
2002; Orr, Paul & Paul, 2002; Tompkins, 2002; Battiste, 2000; Battiste, 1998).  The 
journey of this research project has been an attempt to uncover key issues that must 
be attended to in transforming mathematics education for Mi’kmaw students. 
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METHODOLOGY 
Research for many Aboriginal people has been intimately connected with 
colonization and imperialism (Smith, 1999) and thus, any attempts to conduct 
research in aboriginal communities are often met with resistance and scepticism, and 
probably rightfully so. To ensure that work is accepted within the academy some 
indigenous researchers have attempted to bring indigenous values to traditional 
research paradigms (Wilson, 2003). Yet, such pasting of indigenous perspectives 
onto Western paradigms has not been proven effective in the decolonization of these 
paradigms and has not been effective in giving voice to the indigenous community 
(R. Bishop, 2005; Denzin, 2005; Smith, 1999). These practices, despite best 
intentions, through their demands for validity and generalisability have tended to 
essentialise the indigenous other.  
As a response to this challenge, a new paradigm of decolonizing research or 
indigenist research has emerged (Denzin, 2005) and is seen as a way to “research 
back to power” (Smith, 2005, p. 90). The indigenist approach to research “is formed 
around the three principles of resistance, political integrity, and privileging 
indigenous voices” (Smith, 2005, p.89) and has a “purposeful agenda for 
transforming the institution of research, the deep underlying structures and taken-for-
granted ways of organizing, conducting, and disseminating research and knowledge” 
(p.88). There is an underlying “commitment to moral praxis, to issues of self-
determination, empowerment, healing, love, community solidarity, respect for the 
earth, and respect for elders” (Denzin, 2005, p.943). Such paradigms create space to 
privilege indigenous knowledge (Denzin, 2005; Smith, 2005) and acknowledge that 
knowledge production must happen in a relational context (Denzin, 2005).
In search of an appropriate indigenist paradigm, I sought the advice of many 
community elders. I searched for a way to describe the activity of people coming 
together to discuss an issue or solve a problem. During an informal conversation with 
one community leader, it was suggested that I use the word mawikinutimatimk which 
means ‘coming together to learn together’. I checked with other community members 
who confirmed that this would be an appropriate word to describe the approach to 
research that I was seeking. It implies that everyone comes to the table with gifts and 
talents to share — everyone has something that they can learn. It conjures an image 
of a community of learners working in circle where all members are equally 
important and necessary. Each participant that joins in the circle has something 
unique to contribute. Thus mawikinutimatimk became the methodology for this 
project.
The project was conducted in two Mi’kmaw K to 6 schools. Times were arranged to 
meet with participant groups once or twice each month over a nine month period. 
Teachers, support staff, and elders were invited to participate. There were a total of 7 
participants in one school group and 10 participants in the other school which was 
larger. Not all participants attended every session. Ten after-school sessions were 
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held in one school and twelve in the other school. In addition to our conversations, I 
also frequently spent the day at each school and was often invited to work with 
teachers in their classrooms co-planning and co-teaching a lesson, or modelling a 
lesson. After-school conversations were recorded and transcribed. Classroom 
sessions were not recorded but field notes were kept and experiences from the 
classroom sessions were often discussed during our after-school sessions. Our 
conversations were often stimulated by inviting participants to simply notice and 
reflect on the tensions and challenges with mathematics for their students and share 
their thoughts with the group. 

FINDINGS AND DISCUSSION 
Through our conversations, four key areas of concern emerged as themes: 1) the need 
to learn from Mi’kmaw language, 2) the importance of attending to value differences 
between Mi’kmaw concepts of mathematics and school-based mathematics, 3) the 
importance of attending to ways of learning and knowing, and 4) the significance of 
making ethnomathematical connections for students. For this report, I will elaborate 
on the need to learn from Mi’kmaw language. 
Learning from language 
The important role of indigenous language in understanding mathematics was 
demonstrated by Denny (1981) who used a “learning from language’ approach while 
working with a group of Inuit elders in Northern Canada to explore mathematical 
words in the Inuktitut language. Rather than developing curriculum and translating it 
into Inuktitut, they used the mathematical words to develop the curriculum and 
associated mathematics activities.  More recently Bill Barton (2008) has shared the 
stories of his similar struggles in translating mathematics concepts into the Maori 
language. He has argued that mathematics evolves with language and as such claims 
that:

A proper understanding of the link between language and mathematics may be the key to 
finally throwing off the shadow of imperialism and colonialisation that continues to 
haunt education for indigenous groups in a modern world of international languages and 
global curricula. (p.9). 

During our mawikinutimatimk sessions, our conversations frequently turned to the 
need to learn from the Mi’kmaw language. Through asking questions such as 
“What’s the word for…?” or “Is there a word for…?” the group began to gain new 
insight into the ways of thinking embedded in the language, something Mi’kmaw 
participants referred to as Lnuitasi (the ways of thinking of our people). For example, 
a resource teacher in one of the schools came to one session wondering about the 
Mi’kmaw word for ‘middle’. She had concerns about an assessment report received 
on one student that stated he had been unable to point to the object in the middle. 
Knowing this child spoke mostly Mi’kmaq at home she wondered if this was a 
language issue. After an extensive conversation about many different words used in 
different contexts to describe being in the middle, the conclusion was that the word 
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METHODOLOGY 
Research for many Aboriginal people has been intimately connected with 
colonization and imperialism (Smith, 1999) and thus, any attempts to conduct 
research in aboriginal communities are often met with resistance and scepticism, and 
probably rightfully so. To ensure that work is accepted within the academy some 
indigenous researchers have attempted to bring indigenous values to traditional 
research paradigms (Wilson, 2003). Yet, such pasting of indigenous perspectives 
onto Western paradigms has not been proven effective in the decolonization of these 
paradigms and has not been effective in giving voice to the indigenous community 
(R. Bishop, 2005; Denzin, 2005; Smith, 1999). These practices, despite best 
intentions, through their demands for validity and generalisability have tended to 
essentialise the indigenous other.  
As a response to this challenge, a new paradigm of decolonizing research or 
indigenist research has emerged (Denzin, 2005) and is seen as a way to “research 
back to power” (Smith, 2005, p. 90). The indigenist approach to research “is formed 
around the three principles of resistance, political integrity, and privileging 
indigenous voices” (Smith, 2005, p.89) and has a “purposeful agenda for 
transforming the institution of research, the deep underlying structures and taken-for-
granted ways of organizing, conducting, and disseminating research and knowledge” 
(p.88). There is an underlying “commitment to moral praxis, to issues of self-
determination, empowerment, healing, love, community solidarity, respect for the 
earth, and respect for elders” (Denzin, 2005, p.943). Such paradigms create space to 
privilege indigenous knowledge (Denzin, 2005; Smith, 2005) and acknowledge that 
knowledge production must happen in a relational context (Denzin, 2005).
In search of an appropriate indigenist paradigm, I sought the advice of many 
community elders. I searched for a way to describe the activity of people coming 
together to discuss an issue or solve a problem. During an informal conversation with 
one community leader, it was suggested that I use the word mawikinutimatimk which 
means ‘coming together to learn together’. I checked with other community members 
who confirmed that this would be an appropriate word to describe the approach to 
research that I was seeking. It implies that everyone comes to the table with gifts and 
talents to share — everyone has something that they can learn. It conjures an image 
of a community of learners working in circle where all members are equally 
important and necessary. Each participant that joins in the circle has something 
unique to contribute. Thus mawikinutimatimk became the methodology for this 
project.
The project was conducted in two Mi’kmaw K to 6 schools. Times were arranged to 
meet with participant groups once or twice each month over a nine month period. 
Teachers, support staff, and elders were invited to participate. There were a total of 7 
participants in one school group and 10 participants in the other school which was 
larger. Not all participants attended every session. Ten after-school sessions were 
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held in one school and twelve in the other school. In addition to our conversations, I 
also frequently spent the day at each school and was often invited to work with 
teachers in their classrooms co-planning and co-teaching a lesson, or modelling a 
lesson. After-school conversations were recorded and transcribed. Classroom 
sessions were not recorded but field notes were kept and experiences from the 
classroom sessions were often discussed during our after-school sessions. Our 
conversations were often stimulated by inviting participants to simply notice and 
reflect on the tensions and challenges with mathematics for their students and share 
their thoughts with the group. 

FINDINGS AND DISCUSSION 
Through our conversations, four key areas of concern emerged as themes: 1) the need 
to learn from Mi’kmaw language, 2) the importance of attending to value differences 
between Mi’kmaw concepts of mathematics and school-based mathematics, 3) the 
importance of attending to ways of learning and knowing, and 4) the significance of 
making ethnomathematical connections for students. For this report, I will elaborate 
on the need to learn from Mi’kmaw language. 
Learning from language 
The important role of indigenous language in understanding mathematics was 
demonstrated by Denny (1981) who used a “learning from language’ approach while 
working with a group of Inuit elders in Northern Canada to explore mathematical 
words in the Inuktitut language. Rather than developing curriculum and translating it 
into Inuktitut, they used the mathematical words to develop the curriculum and 
associated mathematics activities.  More recently Bill Barton (2008) has shared the 
stories of his similar struggles in translating mathematics concepts into the Maori 
language. He has argued that mathematics evolves with language and as such claims 
that:

A proper understanding of the link between language and mathematics may be the key to 
finally throwing off the shadow of imperialism and colonialisation that continues to 
haunt education for indigenous groups in a modern world of international languages and 
global curricula. (p.9). 

During our mawikinutimatimk sessions, our conversations frequently turned to the 
need to learn from the Mi’kmaw language. Through asking questions such as 
“What’s the word for…?” or “Is there a word for…?” the group began to gain new 
insight into the ways of thinking embedded in the language, something Mi’kmaw 
participants referred to as Lnuitasi (the ways of thinking of our people). For example, 
a resource teacher in one of the schools came to one session wondering about the 
Mi’kmaw word for ‘middle’. She had concerns about an assessment report received 
on one student that stated he had been unable to point to the object in the middle. 
Knowing this child spoke mostly Mi’kmaq at home she wondered if this was a 
language issue. After an extensive conversation about many different words used in 
different contexts to describe being in the middle, the conclusion was that the word 
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‘middle’ does not really have a direct translation and as such is probably not a 
concept that is talked about at home very often, even when the conversation is 
happening in English. This awareness helped the teacher to take a different approach 
with the student, setting up opportunities for the child to experience the meaning of 
‘middle’. The student was then easily able to point to the object in the middle. 
The Notion of Motion 
As we continued to explore our translation questions, a key idea about the structure 
of the Mi’kmaw language and its potential impact on mathematics learning once 
again emerged for me. Mi'kmaq is a verb-based language. In Mi'kmaq, words for 
shapes and numbers act as verbs. Other indigenous languages including Maori share 
a similar grammatical structure (Barton, 2008). During one particular session in one 
of the two schools, Richard, a technology teacher and Mi’kmaw language expert 
shared with the group some ideas about the concept of ‘straight’. He explained that 
the word pekaq means ‘it goes straight’. There is a sense of motion embedded in the 
word. Similarly paktaqtek is a word to describe something that is straight such as a 
fence. He explained that here “is a sense of motion from here to the other end – 
pektaqtek [it goes straight].”
The role of using verbs in mathematics teaching is something I had become curious 
about prior to beginning this project. I had noted in my own teaching, a transition 
from asking noun-based questions such as “What is the slope?” to asking verb-based 
questions such as “How is the graph changing?” I am certain that I did this quite 
unconsciously initially although I am also sure that I was listening to the way 
students were talking and tried to model my language with similar grammar 
structures. It was only upon reflection that I realized I was changing my discourse to 
be more verb-based than noun-based. I found in my own experience that students 
often understood better when I used more verbs and when we talked about how 
things were changing, moving, and so on. I was excited to have the opportunity to 
explore this concept in our mawikinutimatimk sessions. 
Nominalisation and ‘Verbification’ 
Pimm and Wagner (2003) claim that a feature of written mathematical discourse is 
nominalisation – “actions and processes being turned into nouns” (p. 163). 
Mathematics as taught in most schools has a tendency toward noun phrases and turns 
even processes such as multiplication, addition, and square root into things 
(Schleppegrell, 2007). The dominance of English in school-based mathematics 
results in this objectifying tendency. ‘We talk of mathematical objects because that is 
what the English language makes available for talking, but it is just a way of talking’ 
(Barton, 2008, p.127). What would happen if we talked differently in mathematics? 
What would happen if we drew upon the grammar structures of Mi'kmaq instead of 
English?
Research relating to mathematical discourse suggests that there is a need to support 
students as they move from everyday language to more formal mathematical 
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language (Schleppegrell, 2007). I would argue that it is not simply a matter of using 
everyday language; there is a need to go further and incorporate the grammatical 
structures of the students. It has been argued that mathematics could have developed 
differently and that ‘a non-objectifying mathematics is possible’ (Barton, 2008, 
p.127). I argue that mathematical discourse in the Mi'kmaw classroom should draw 
on the extensive use of verbs. I refer to this as the ‘verbification’ of mathematics. The 
following story from a classroom experience during the research project gives an 
example of how the ‘verbification’ of mathematics supported student understanding. 
Prisms and Pyramids 
Mary, a pre-service teacher at one of the schools, had asked me to help her with her 
lesson on prisms and pyramids in her grade three class. She was a bit uncomfortable 
with this unit because she was unfamiliar with the geometric concepts and worried 
about the quantity of vocabulary terms. I was excited to help her, so we planned the 
lesson activities together and I agreed to help her teach the class.
We began the class on the carpet and passed around some solids, inviting students to 
tell us something about them, we chose a cube and a square based pyramid. Each 
student was asked to say one thing about the solid when it came to them. Some 
counted vertices and reported how many corners; others counted faces but called 
them sides. One student offered that the cube was red while another was pleased to 
report that it felt soft as he rubbed it against his face. One young girl placed the prism 
on the floor and stated “It can sit still!” This was exciting. 
We also used the carpet opportunity to re-introduce some vocabulary that the students 
would have learned in grade 2. They were talking about the sides and the corners and 
a few had counted edges although this vocabulary term did not seem to be shared by 
all. I took the lead on reviewing these terms. I asked the students if they knew a fancy 
name for side and I held the cube up next to my own face. “What is this?” I asked 
fanning my hand in front of my face. They all shouted “Face!” “That’s right,” I said. 
“I use my face to look at you and the cube can look at you with all six of his faces.” I 
rotated the cube a few times so that they could see each face looking at them in the 
same way I was looking at them. I then wanted them to get the word edge but I was 
determined not to tell them. “Does anyone know what we call these parts where the 
sides come together?” I asked running my fingers along the edges. Many of the 
students wanted to call them corners but I told them there was another word we use 
for these in mathematics. Then in a moment of inspiration I held up the cube and 
began to run my hand across the top face and as I moved toward the edge I said “I go 
over the…?” “Edge!” they all shouted. “Yes,” I said, “we go over the edge as we 
move across the top. These parts where the sides come together are called the edges.”  
After the carpet activity we asked students to pair up and each group was given a 
geometric solid (ether a prism or a pyramid) to explore at their tables. We had 
planned which solids we would use for the lesson and we carefully chose which 
group received each solid varying the complexity of the task to some extent. They 
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‘middle’ does not really have a direct translation and as such is probably not a 
concept that is talked about at home very often, even when the conversation is 
happening in English. This awareness helped the teacher to take a different approach 
with the student, setting up opportunities for the child to experience the meaning of 
‘middle’. The student was then easily able to point to the object in the middle. 
The Notion of Motion 
As we continued to explore our translation questions, a key idea about the structure 
of the Mi’kmaw language and its potential impact on mathematics learning once 
again emerged for me. Mi'kmaq is a verb-based language. In Mi'kmaq, words for 
shapes and numbers act as verbs. Other indigenous languages including Maori share 
a similar grammatical structure (Barton, 2008). During one particular session in one 
of the two schools, Richard, a technology teacher and Mi’kmaw language expert 
shared with the group some ideas about the concept of ‘straight’. He explained that 
the word pekaq means ‘it goes straight’. There is a sense of motion embedded in the 
word. Similarly paktaqtek is a word to describe something that is straight such as a 
fence. He explained that here “is a sense of motion from here to the other end – 
pektaqtek [it goes straight].”
The role of using verbs in mathematics teaching is something I had become curious 
about prior to beginning this project. I had noted in my own teaching, a transition 
from asking noun-based questions such as “What is the slope?” to asking verb-based 
questions such as “How is the graph changing?” I am certain that I did this quite 
unconsciously initially although I am also sure that I was listening to the way 
students were talking and tried to model my language with similar grammar 
structures. It was only upon reflection that I realized I was changing my discourse to 
be more verb-based than noun-based. I found in my own experience that students 
often understood better when I used more verbs and when we talked about how 
things were changing, moving, and so on. I was excited to have the opportunity to 
explore this concept in our mawikinutimatimk sessions. 
Nominalisation and ‘Verbification’ 
Pimm and Wagner (2003) claim that a feature of written mathematical discourse is 
nominalisation – “actions and processes being turned into nouns” (p. 163). 
Mathematics as taught in most schools has a tendency toward noun phrases and turns 
even processes such as multiplication, addition, and square root into things 
(Schleppegrell, 2007). The dominance of English in school-based mathematics 
results in this objectifying tendency. ‘We talk of mathematical objects because that is 
what the English language makes available for talking, but it is just a way of talking’ 
(Barton, 2008, p.127). What would happen if we talked differently in mathematics? 
What would happen if we drew upon the grammar structures of Mi'kmaq instead of 
English?
Research relating to mathematical discourse suggests that there is a need to support 
students as they move from everyday language to more formal mathematical 
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language (Schleppegrell, 2007). I would argue that it is not simply a matter of using 
everyday language; there is a need to go further and incorporate the grammatical 
structures of the students. It has been argued that mathematics could have developed 
differently and that ‘a non-objectifying mathematics is possible’ (Barton, 2008, 
p.127). I argue that mathematical discourse in the Mi'kmaw classroom should draw 
on the extensive use of verbs. I refer to this as the ‘verbification’ of mathematics. The 
following story from a classroom experience during the research project gives an 
example of how the ‘verbification’ of mathematics supported student understanding. 
Prisms and Pyramids 
Mary, a pre-service teacher at one of the schools, had asked me to help her with her 
lesson on prisms and pyramids in her grade three class. She was a bit uncomfortable 
with this unit because she was unfamiliar with the geometric concepts and worried 
about the quantity of vocabulary terms. I was excited to help her, so we planned the 
lesson activities together and I agreed to help her teach the class.
We began the class on the carpet and passed around some solids, inviting students to 
tell us something about them, we chose a cube and a square based pyramid. Each 
student was asked to say one thing about the solid when it came to them. Some 
counted vertices and reported how many corners; others counted faces but called 
them sides. One student offered that the cube was red while another was pleased to 
report that it felt soft as he rubbed it against his face. One young girl placed the prism 
on the floor and stated “It can sit still!” This was exciting. 
We also used the carpet opportunity to re-introduce some vocabulary that the students 
would have learned in grade 2. They were talking about the sides and the corners and 
a few had counted edges although this vocabulary term did not seem to be shared by 
all. I took the lead on reviewing these terms. I asked the students if they knew a fancy 
name for side and I held the cube up next to my own face. “What is this?” I asked 
fanning my hand in front of my face. They all shouted “Face!” “That’s right,” I said. 
“I use my face to look at you and the cube can look at you with all six of his faces.” I 
rotated the cube a few times so that they could see each face looking at them in the 
same way I was looking at them. I then wanted them to get the word edge but I was 
determined not to tell them. “Does anyone know what we call these parts where the 
sides come together?” I asked running my fingers along the edges. Many of the 
students wanted to call them corners but I told them there was another word we use 
for these in mathematics. Then in a moment of inspiration I held up the cube and 
began to run my hand across the top face and as I moved toward the edge I said “I go 
over the…?” “Edge!” they all shouted. “Yes,” I said, “we go over the edge as we 
move across the top. These parts where the sides come together are called the edges.”  
After the carpet activity we asked students to pair up and each group was given a 
geometric solid (ether a prism or a pyramid) to explore at their tables. We had 
planned which solids we would use for the lesson and we carefully chose which 
group received each solid varying the complexity of the task to some extent. They 
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were given three tasks to do. Each group was asked to make footprints of each side in 
moon sand and record the shapes they made on a recording sheet. They were each 
also asked to report back on how many faces, vertices and edges their object had, and 
were also asked to add any other properties they felt were important. They were also 
asked to build the object with toothpicks and clay, and to report anything interesting 
they noticed while completing this task.  
After their exploration, each group was asked to tell the class whether their solid was 
a pyramid or a prism and the responses were quite interesting. One pair of students 
declared that they had a pyramid because it looked like a pyramid. When prompted to 
explain what they meant by that they said “well it goes like, forming into a triangle.” 
With this, they made a hand gesture showing how the sides were merging to a point. 
Another student also used a hand gesture to explain her declaration that her group had 
a prism “because it goes like this” and motioned her hands up and down in uniform 
fashion. A real challenge arose when it came time for the group with the triangular 
prism to report back. There was some debate about which category it belonged to. 
“It kind of forms into a triangle” suggested one student but this seemed to be not 
enough to commit to it being a prism. “What if we look at it like this?” I asked as I 
rotated the picture card on the board so that it now appeared to be standing on its’ 
triangular base. “Oh! It’s a prism” a girl from the back offered, “Because it goes like 
this” and she motioned again with her hands up and down in a uniform manner. This 
seemed to convince her classmates who offered supporting arguments such as “Yeah, 
it’s not coming to a point all around like the other ones.” They all agreed that 
although it kind of looked like a pyramid in some ways, it was definitely a prism. 
We then began to talk about the properties of these two types of solids based on how 
we had classified them on the board under the two headings. I asked students to tell 
me some things that all prisms had in common and some things that all pyramids had 
in common. We talked about some of the strategies they had been using earlier such 
as being the same thickness up and down or coming to a point. I asked students if 
they thought pyramids could stand on their heads and they all agreed that they could 
not because they come to a point. They did however believe that prisms could stand 
on their heads. This became an important way to distinguish between the two types of 
solids they had been exploring. I explained how these faces that we were referring to 
as feet and heads were known as bases and students were able to recognize that a 
prism had two congruent bases and a pyramid had only one base.  
So where is the verbification in this classroom episode? The first moment of verb 
based discourse came from the student on the carpet who noticed that the cube could 
“sit still”. We also spoke about looking with the face and going over the edge.  Even 
the students’ descriptions of the prisms as “going like this” indicated the motion 
embedded in their conceptual understandings. Talking about these properties with a 
sense of motion made them much easier to understand.  
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Perhaps the best example of verbification however came when we began to talk about 
the properties of prisms and pyramids. The children spoke about how the objects 
were forming. The students talked about the pyramids “coming to a point” or 
“forming into a triangle.” It is interesting to note that the Mi’kmaw word ‘kiniskwiaq’
means ‘it comes to a point’. This connects to the sense of motion that is embedded in 
descriptions of shape in Mi'kmaq. This discourse led us to connect back to the ability 
to sit still that had been shared at the carpet. Could the pyramid stand on its head? No 
it could not.
This classroom episode gives just one example of how increasing the use of verb-
based discourse patterns supports Mi’kmaw children’s linguistically-structured way 
of understanding. In ensuing mawikinutimatimk sessions, Mary and I frequently 
referred to this lesson and shared our enthusiasm about the effects of our 
‘verbification’ with the group who concluded that more investigation in this area was 
necessary. 

CONCLUSIONS
This pervasiveness of nominalization in mathematics stands in direct contrast to ways 
of thinking about and doing mathematics in Mi'kmaq. Often in my own teaching 
career my Mi’kmaw students would tell me I was ‘talking crazy talk’ which I came to 
learn, often meant that I was using too many nouns. To these students it made no 
sense to talk about all of these static objects, there was no sense of motion, nothing 
was happening. There is perhaps a pervasive belief that mathematics is about objects 
and facts, things that can only be described as nouns. Could it be different? What 
does it mean to do mathematics? Byers (2007) argued that mathematics is a creative 
endeavour that is far more about the doing than the objects of mathematics. It is about 
observing change and puzzling over ambiguity. Turning mathematical processes into 
objects may provide some people with a way to talk about them in a more efficient 
manner but it also denies the journey of discovery from which the process emerged. 
It could be argued that turning processes into objects is useful as it allows us to then 
perform new processes on these objects; performing action on actions. Unfortunately, 
in school-based mathematics, much nominalisation ends there, and students are 
presented with these ideas as things to know rather than processes to use. 
More work needs to be done in determining what can be learned from studying 
indigenous languages and their structures. There is a need to explore the ways in 
which language is used in mathematics classrooms and how it might be transformed 
to be more in line with Mi'kmaw and other grammar structures. As shown in the 
larger context of our mawikinutimatimk conversations, attention to language is even 
more helpful when connected to other issues at play in the local context. Even so, the 
issues relating to the structure of language alone, helps us to see potential tensions for 
Mi’kmaw students in mathematics and potential resolutions to these tensions. This 
shows tremendous promise as a way to support Mi'kmaw learners as they negotiate 
their space between school-based mathematics and their own cultural ways of 
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were given three tasks to do. Each group was asked to make footprints of each side in 
moon sand and record the shapes they made on a recording sheet. They were each 
also asked to report back on how many faces, vertices and edges their object had, and 
were also asked to add any other properties they felt were important. They were also 
asked to build the object with toothpicks and clay, and to report anything interesting 
they noticed while completing this task.  
After their exploration, each group was asked to tell the class whether their solid was 
a pyramid or a prism and the responses were quite interesting. One pair of students 
declared that they had a pyramid because it looked like a pyramid. When prompted to 
explain what they meant by that they said “well it goes like, forming into a triangle.” 
With this, they made a hand gesture showing how the sides were merging to a point. 
Another student also used a hand gesture to explain her declaration that her group had 
a prism “because it goes like this” and motioned her hands up and down in uniform 
fashion. A real challenge arose when it came time for the group with the triangular 
prism to report back. There was some debate about which category it belonged to. 
“It kind of forms into a triangle” suggested one student but this seemed to be not 
enough to commit to it being a prism. “What if we look at it like this?” I asked as I 
rotated the picture card on the board so that it now appeared to be standing on its’ 
triangular base. “Oh! It’s a prism” a girl from the back offered, “Because it goes like 
this” and she motioned again with her hands up and down in a uniform manner. This 
seemed to convince her classmates who offered supporting arguments such as “Yeah, 
it’s not coming to a point all around like the other ones.” They all agreed that 
although it kind of looked like a pyramid in some ways, it was definitely a prism. 
We then began to talk about the properties of these two types of solids based on how 
we had classified them on the board under the two headings. I asked students to tell 
me some things that all prisms had in common and some things that all pyramids had 
in common. We talked about some of the strategies they had been using earlier such 
as being the same thickness up and down or coming to a point. I asked students if 
they thought pyramids could stand on their heads and they all agreed that they could 
not because they come to a point. They did however believe that prisms could stand 
on their heads. This became an important way to distinguish between the two types of 
solids they had been exploring. I explained how these faces that we were referring to 
as feet and heads were known as bases and students were able to recognize that a 
prism had two congruent bases and a pyramid had only one base.  
So where is the verbification in this classroom episode? The first moment of verb 
based discourse came from the student on the carpet who noticed that the cube could 
“sit still”. We also spoke about looking with the face and going over the edge.  Even 
the students’ descriptions of the prisms as “going like this” indicated the motion 
embedded in their conceptual understandings. Talking about these properties with a 
sense of motion made them much easier to understand.  
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Perhaps the best example of verbification however came when we began to talk about 
the properties of prisms and pyramids. The children spoke about how the objects 
were forming. The students talked about the pyramids “coming to a point” or 
“forming into a triangle.” It is interesting to note that the Mi’kmaw word ‘kiniskwiaq’
means ‘it comes to a point’. This connects to the sense of motion that is embedded in 
descriptions of shape in Mi'kmaq. This discourse led us to connect back to the ability 
to sit still that had been shared at the carpet. Could the pyramid stand on its head? No 
it could not.
This classroom episode gives just one example of how increasing the use of verb-
based discourse patterns supports Mi’kmaw children’s linguistically-structured way 
of understanding. In ensuing mawikinutimatimk sessions, Mary and I frequently 
referred to this lesson and shared our enthusiasm about the effects of our 
‘verbification’ with the group who concluded that more investigation in this area was 
necessary. 

CONCLUSIONS
This pervasiveness of nominalization in mathematics stands in direct contrast to ways 
of thinking about and doing mathematics in Mi'kmaq. Often in my own teaching 
career my Mi’kmaw students would tell me I was ‘talking crazy talk’ which I came to 
learn, often meant that I was using too many nouns. To these students it made no 
sense to talk about all of these static objects, there was no sense of motion, nothing 
was happening. There is perhaps a pervasive belief that mathematics is about objects 
and facts, things that can only be described as nouns. Could it be different? What 
does it mean to do mathematics? Byers (2007) argued that mathematics is a creative 
endeavour that is far more about the doing than the objects of mathematics. It is about 
observing change and puzzling over ambiguity. Turning mathematical processes into 
objects may provide some people with a way to talk about them in a more efficient 
manner but it also denies the journey of discovery from which the process emerged. 
It could be argued that turning processes into objects is useful as it allows us to then 
perform new processes on these objects; performing action on actions. Unfortunately, 
in school-based mathematics, much nominalisation ends there, and students are 
presented with these ideas as things to know rather than processes to use. 
More work needs to be done in determining what can be learned from studying 
indigenous languages and their structures. There is a need to explore the ways in 
which language is used in mathematics classrooms and how it might be transformed 
to be more in line with Mi'kmaw and other grammar structures. As shown in the 
larger context of our mawikinutimatimk conversations, attention to language is even 
more helpful when connected to other issues at play in the local context. Even so, the 
issues relating to the structure of language alone, helps us to see potential tensions for 
Mi’kmaw students in mathematics and potential resolutions to these tensions. This 
shows tremendous promise as a way to support Mi'kmaw learners as they negotiate 
their space between school-based mathematics and their own cultural ways of 
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knowing and doing mathematics. As part of the presentation, I will share the ideas 
arising from the conversations about language, and will also connect these ideas with 
the other three central themes discussed in the research conversations. 
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The purpose of this paper was to explore the relation among the abilities, investigative 

process, generality and algebraic thinking when the fifth and sixth graders solved a 

linear pattern with pictorial contents. The author developed an ability model of solving 

pictorial patterns according to related theorems (e.g., Herbert & Brown, 1997; Ma, 

2008; Orton & Orton, 1999) and 40 students’ problem solving. The model denotes that 

there are levels of 0, 1, 2, 3a, 3b, 4a, 4b, 4c. Students are from level 0, 1 (seeing of 

sensory) and level 2, 3a (pattern seeking), arithmetic thinking, to level 3b (pattern 

recognition), arithmetic-algebraic thinking transition with understanding how to 

approach generality, and finally to level 4 (generalization), algebraic thinking with 

ability in making a general rule. In addition the students at level 4 can achieve far 

generalization, while those at level 3b can achieve near generalization. 

INTRODUCTION 

Mathematics can be described as a science of pattern and order (Schoenfeld, 1992). 

Patterning activities (e.g., English & Warren, 1999; van De Walle, 2004) directly 

develop a sense of pattern and regularity and they provide students with practice in the 

skills of searching for patterns, extending patterns, and making generalizations. These 

processes will involve in variable and the concept of function. Currently curriculum 

document relative to patterning activities recommend that students investigate patterns 

in shape and number, formulate verbal rules, and then generalize the situation (Booth 

& Blane, 1992). As a result, Usiskin (1999) states the view that algebra is the language 

of patterns. Patterning activities play a significant role for primary graders to establish 

the algebra foundation (Herbert & Brown, 1997). Thus, patterns are greatly important 

for establishing a coherent research base in early algebra (Carraher & Schliemann, 

2007). 

The school practice involving generalization in algebra often starts from pictorial and 

numerical patterns. Orton, Orton, and Roper (1999) suggest that there are three 

purposes for setting pattern tasks within a pictorial context. The first one is for those 

students who think from a more geometrical approach. The second one is that pictorial 

content might be more elementary than purely symbolic content. The third one is just 

to vary the format to create more problems to be solved. Ma (2002) investigates 

10-11-year-old students’ preference for pictorial or numerical patterns. She finds that 

84.4% students prefer pictorial patterns because of easiness, novelty and interest, or 

more hints. There are three methods of translating a picture to a numerical 

representation. 1. Count the objects (e.g., dots, sticks, etc.) for each shape presented in 
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the task, then immediately converting them into numbers. 2. Look at how many more 

objects are required in each new shape. 3. See the shapes (Orton et al., 1999).  

The investigative process to solve the patterns in numbers and shapes consists of three 

phases: 1. pattern seeking: extracting information, 2. pattern recognition: mathematical 

analysis, 3. generalization: interpreting and applying what was learned (Herbert & 

Brown, 1997). Expressing generality is described as one of four roots of algebra 

(Mason, Graham, Pimm, & Gowar, 1985). Stacey (1989) refers to two kinds of 

generalizations, that is, near generalizations (e.g., term 10 or 20) and far 

generalizations (e.g., term 100). The generalization problems require students to see, 

say, record, and test a pattern. Thus, the first stage of it for the learner is always 

“seeing” which refers to grasping mentally a pattern or relationship (Mason et al., 

1985). Thus, the key to success seemed to be at the first stage of pattern perception 

(Lee, 1996). Based on the perspective above, the author extends Herbert and Brown’s 

(1997) processes to a lower phase of seeing of sensory. The way of students to see for 

generalizing problem gave rise to a way of counting. The phase involves whether 

students are aware of the ignoring and stressing in the midst of seeing.  

Ma (2008) combines and revises the stage and level of children’s patterning abilities, 

suggested by Orton and Orton (1999). She establishes the levels about upper graders 

solving linear patterns with pictorial contents. They are 0, 1, 2, 3a, 3b, 4a, 4b, 4c. The 

procedure is adopted in which students’ responses to what is noticed are placed at one 

of the levels. Level 0: no progress at all. Level 1: student notices some properties of the 

numbers, with perhaps partial patterns described. Level 2: student notices but not to 

describe a pattern, so the next number might not be described. Level 3: student knows 

how to obtain the next number using patterns extrapolated from the differences. 3a: 

recognize a relationship between successive terms, but only notice the answer; 3b: 

recognize a relationship between successive terms and the structure in relation to the 

shape. Level 4: student shows clear evidence of understanding the relationship, though 

an algebraic formula might not be expressed. 4a: a correct verbal statement; 4b: a 

worthy attempt at an algebraic expression; 4c: a correct algebraic representation. 

The fifth and sixth graders who have not received the formal algebra instruction are in 

the arithmetic-algebra transition. They are the suitable candidates to exploit alternative 

strategies, which then provide them the potential for developing algebraic thinking. 

The activity of pictorial patterns is the best way to connect early algebra to concrete 

context (English & Warren, 1999). In textbooks, linear patterns are the type of patterns 

used most often. Linear patterns are those in which the difference between successive 

terms is constant. This paper would take a linear pattern with pictorial contexts as an 

example to investigated upper graders’ performances about patterning abilities, the 

investigative process, generality, and algebraic thinking. The specific research 

questions are: 1. What are the relationships between students’ patterning abilities and 

the investigative process? 2. What are the relationships between students’ patterning 

abilities and algebraic thinking? 

Ma 
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METHOD 

Design of the study  

The subjects carried out the patterning activities via an Internet discussion board. It 

will be a pedagogy innovation that mathematical activities are shifted to the Internet to 

carry out. Several pedagogical strategies may be used, including giving students 

sufficient time to generate and explore their ideas. An Internet discussion board, which 

function is a Bulletin Board Systems, is easily learned and used, and even fifth and 

sixth graders are familiar with the usage of it. Working on mathematics via the Internet 

can motivate students’ interests and gain low-achievers’ confidence in grades five and 

six content (Ma, 2004, 2005). It can be viewed as another channel for supporting upper 

graders to work on mathematics (Ma, 2005). Each participant had a specific account 

and password to enter the board.  

Besides word typing and recording of an Internet discussion board, new functions such 

as basic summation and figures and tables pasting, enable students to express 

themselves more effectively. At the same time, students’ data were conveniently 

collected due to the database functions of the board. 

Participants 

The subjects were forty upper-grade students in Taiwan. They were twenty-eight 

11-year-old pupils of grade six in a rural school and twelve 10-year-old pupils of grade 

five in an urban school. There were 16 boys and 12 girls in grade six and 6 boys and 6 

girls in grade five. They had basic computer skills and used the Internet regularly. Each 

subject was anonymous but had a fixed code, such as bm5, mbl1, mgm1, gh1. They 

were free to develop generalization under a non-threatening environment of Internet. 

Instrument 

Eight problems were given to the students to build patterns. These problems were 

revised by the researchers, who considered reference material such as numerical 

patterns of the Assessment of Performance Unit (undated), Orton and Orton (1999), 

and Hargreaves et al. (1999), as well as pictorial patterns of Orton et al. (1999). Among 

these eight problems, problems 1, 3, 5, and 7 were presented with pictorial contents, 

while problems 2, 4, 6, and 8 were presented with numerical contents. 

Procedures 

In the patterning activities, the teachers posed a problem on the Internet once two to 

three weeks. The students were asked to search for a pattern, extend the pattern, and 

develop a generalization for the pattern. They worked on the problems at lunch time or 

after school in their computer room. They were advised to solve the problems by 

themselves, because what they did had nothing to do with their academic achievement 

and their own methods were the best. The students were allowed to solve a problem 

based on their own perception over and over again. After having solved the problems 

on the Internet, students who had demonstrated unclear ideas or had much better 

performance on this activity were subsequently interviewed individually by their 
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generalizations (e.g., term 100). The generalization problems require students to see, 

say, record, and test a pattern. Thus, the first stage of it for the learner is always 

“seeing” which refers to grasping mentally a pattern or relationship (Mason et al., 

1985). Thus, the key to success seemed to be at the first stage of pattern perception 

(Lee, 1996). Based on the perspective above, the author extends Herbert and Brown’s 

(1997) processes to a lower phase of seeing of sensory. The way of students to see for 

generalizing problem gave rise to a way of counting. The phase involves whether 

students are aware of the ignoring and stressing in the midst of seeing.  

Ma (2008) combines and revises the stage and level of children’s patterning abilities, 

suggested by Orton and Orton (1999). She establishes the levels about upper graders 

solving linear patterns with pictorial contents. They are 0, 1, 2, 3a, 3b, 4a, 4b, 4c. The 

procedure is adopted in which students’ responses to what is noticed are placed at one 

of the levels. Level 0: no progress at all. Level 1: student notices some properties of the 

numbers, with perhaps partial patterns described. Level 2: student notices but not to 

describe a pattern, so the next number might not be described. Level 3: student knows 

how to obtain the next number using patterns extrapolated from the differences. 3a: 

recognize a relationship between successive terms, but only notice the answer; 3b: 

recognize a relationship between successive terms and the structure in relation to the 

shape. Level 4: student shows clear evidence of understanding the relationship, though 

an algebraic formula might not be expressed. 4a: a correct verbal statement; 4b: a 

worthy attempt at an algebraic expression; 4c: a correct algebraic representation. 

The fifth and sixth graders who have not received the formal algebra instruction are in 

the arithmetic-algebra transition. They are the suitable candidates to exploit alternative 

strategies, which then provide them the potential for developing algebraic thinking. 

The activity of pictorial patterns is the best way to connect early algebra to concrete 

context (English & Warren, 1999). In textbooks, linear patterns are the type of patterns 

used most often. Linear patterns are those in which the difference between successive 

terms is constant. This paper would take a linear pattern with pictorial contexts as an 

example to investigated upper graders’ performances about patterning abilities, the 

investigative process, generality, and algebraic thinking. The specific research 

questions are: 1. What are the relationships between students’ patterning abilities and 

the investigative process? 2. What are the relationships between students’ patterning 

abilities and algebraic thinking? 
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Design of the study  

The subjects carried out the patterning activities via an Internet discussion board. It 

will be a pedagogy innovation that mathematical activities are shifted to the Internet to 

carry out. Several pedagogical strategies may be used, including giving students 

sufficient time to generate and explore their ideas. An Internet discussion board, which 

function is a Bulletin Board Systems, is easily learned and used, and even fifth and 

sixth graders are familiar with the usage of it. Working on mathematics via the Internet 

can motivate students’ interests and gain low-achievers’ confidence in grades five and 

six content (Ma, 2004, 2005). It can be viewed as another channel for supporting upper 

graders to work on mathematics (Ma, 2005). Each participant had a specific account 

and password to enter the board.  

Besides word typing and recording of an Internet discussion board, new functions such 

as basic summation and figures and tables pasting, enable students to express 

themselves more effectively. At the same time, students’ data were conveniently 

collected due to the database functions of the board. 

Participants 

The subjects were forty upper-grade students in Taiwan. They were twenty-eight 

11-year-old pupils of grade six in a rural school and twelve 10-year-old pupils of grade 

five in an urban school. There were 16 boys and 12 girls in grade six and 6 boys and 6 

girls in grade five. They had basic computer skills and used the Internet regularly. Each 

subject was anonymous but had a fixed code, such as bm5, mbl1, mgm1, gh1. They 

were free to develop generalization under a non-threatening environment of Internet. 

Instrument 

Eight problems were given to the students to build patterns. These problems were 

revised by the researchers, who considered reference material such as numerical 

patterns of the Assessment of Performance Unit (undated), Orton and Orton (1999), 

and Hargreaves et al. (1999), as well as pictorial patterns of Orton et al. (1999). Among 

these eight problems, problems 1, 3, 5, and 7 were presented with pictorial contents, 

while problems 2, 4, 6, and 8 were presented with numerical contents. 

Procedures 

In the patterning activities, the teachers posed a problem on the Internet once two to 

three weeks. The students were asked to search for a pattern, extend the pattern, and 

develop a generalization for the pattern. They worked on the problems at lunch time or 

after school in their computer room. They were advised to solve the problems by 

themselves, because what they did had nothing to do with their academic achievement 

and their own methods were the best. The students were allowed to solve a problem 

based on their own perception over and over again. After having solved the problems 

on the Internet, students who had demonstrated unclear ideas or had much better 

performance on this activity were subsequently interviewed individually by their 
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teacher. This methodology enabled the researchers to match the methods and processes 

students used when responding to the problems. Thus, data relating to students’ 

understanding of patterns was collected in two forms: one was the written form to 

which students responded on the Internet discussion board, and the other was in oral 

form by interviewing students on a one-to-one basis.  

ANALYSIS OF PROTOCOL 

This article will take problem 5, a linear pattern with pictorial contexts, as an example. 

The pattern will be shown as Figure 1. The problem is as follows: How many dots will 

be used to make the 5
th

 and the 20
th

 shapes? How many in general? Ten protocols, three 

methods of translating a picture, will be analysed here. They direct quote from the 

Internet posting. Focusing on them is justified for three reasons. First, students needed 

to leave a rich trace of what they were thinking as they progressed. The trace included 

the written form and the interviews. Second, responses generated by these students 

needed to depend on their own perception. Third, students needed to find a rule 

associated with the pattern at least. 

Figure 1: T shape 

Count the objects, then immediately converting the shapes into numbers  

24 of 40 students adopted this method. Two protocols are chosen as examples here. 

1. bm5: The first is 5, the second is 8, and the third is 11. 5+3=8. 8+3=11. Thus, the 

20
th 

will be 20+3=23. The 100
th

 will be 100+3=103. The n
th

 would be “n+3”. 

Student bm5 made a wrong description of the 20
th

, 100
th

, n
th 

(e.g., 20+3=23). Thus, he 

did not yet achieve a near generalizing task. His ability was at level 2, because he 

noticed a pattern but did not yet derive the next number. He extracted information from 

the pattern (i.e., +3), so his process showed the phase of pattern seeking.  

2. mbl2: 5 dots, 8 dots, 11 dots. 5+3=8. 8+3=11. 11+3=14. 14+3=17. There are 17 dots 

in the fifth T. 17*3=51, 17+51=68. There would be 68 dots in the twentieth T. 

Student mbl2 relied on a recursive approach and only produced a local rule (i.e., +3). 

He adopted a short-cut method (i.e., A20=A5 x 3+A5; here An expresses the number of 

the n
th

) .He did not achieve near generalization. He recognized a relationship between 

successive terms (i.e., +3), but only noticed the answer, so his ability was at level 3a. 

He could extract information (+3), so his process showed the phase of pattern seeking. 

Look at how many more objects are required 

10 of 40 students adopted this method. Four protocols are chosen as examples here. 

Ma 
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3. gm3: Add a dot to the three vertexes of the T shape respectively. Keep going and 

you would get the answers. 5+3=8. 8+3=11. … 14+3=17….61+3=64. The 

twentieth would be 64. 

All the processes gm3 solved the problem were similar with mbl2’s. Thus, gm3’s 

ability was at level 3a, and process showed the phase of pattern seeking. At last, she 

achieved a near generalizing task (i.e., the twentieth) based on a recursive approach. 

4. bh3: The rule is “8-5=3", each T shape adds 3 dots.” The first shape is 5. The 

second shape is 5+3. The third shape is 5+3+3. The fourth shape is 5+3+3+3. 

…The tenth shape is 5+3+3+3+3+3+3+3+3+3. 

Student bh3 conceived of the adding processes he was using relative to the method of 

showing all the addends, not just the last result plus the new amount (e.g., 5+3+3+3). 

Thus, he recognized the structure in relation to the shape, and his ability was at level 3b. 

Also he made mathematical analysis (5+3+…+3), so his processes showed the phase 

of pattern recognition. Lastly he achieved near generalizing task (i.e., the tenth). 

5. bh5: Totally add on three dots each time, because add a dot to the right, left, and 

under sides of T shape respectively. The fifth will be 11 plus 3 plus 3. The fifth 

will be 5 plus 3 plus 3 plus 3 plus 3, because 11 are 5 plus 3 plus 3. There 

would be 302 dots in the 100
th

 because 3 times 99 is 297 and 297 plus 5 is 302.  

Student bh5 focused on the method itself. He made a worthy attempt at an algebraic 

expression “3 times 99 is 297 and 297 plus 5 is 302.” He achieved a far generalizing 

task (i.e., the 100
th

). Thus, his responses with showing clear evidence of understanding 

the relationship were at level 4b. His processes showed generalization phase. 

6. mbm1: 5 dots in the first; what you have to do is plus 3 on each new shape. Shape 5 is 

17, and shape 20 would be 5+19 groups of 3. Shape 100 would be 5+99 groups 

of 3. Shape n would be 5+ (n-1) groups of 3.  

All the processes mbm1 solved the problem were same with bh5’s except a correct 

algebraic representation (An=5+ (n-1) groups of 3). He achieved a far generalizing task 

(Shape 100). His ability was at level 4c. His processes showed generalization phase. 

See the shapes 

6 of 40 students adopted this method. Four protocols are chosen as examples here. 

7. mgm1: There are 6 dots minus 1 dot in the first shape. There are 8 dots minus 1 dot in 

the second. There are 10 dots minus 1 dot in the third. …Keep going and you 

would get the hundredth. … There would be “x n” in the nth shape.  

The individual interviews revealed that mgm1 viewed all T shapes as the structure of 

two lines with equal length. She was unaware of the incorrect content of seeing the 

picture (i.e., two lines with equal length), so her process only showed the phase of 

seeing of sensory. Her ability was at level 1, because she only noticed some properties 

of the pictures with partial patterns described (e.g., the structure of two lines).  

8. mbh1: Add 2 on the horizontal and 1 on the vertical each time. Shape 3 is 7 on the 

horizontal and 4 on the vertical.…. Shape 5 is 11 on the horizontal and 6 on the 
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teacher. This methodology enabled the researchers to match the methods and processes 

students used when responding to the problems. Thus, data relating to students’ 

understanding of patterns was collected in two forms: one was the written form to 

which students responded on the Internet discussion board, and the other was in oral 

form by interviewing students on a one-to-one basis.  

ANALYSIS OF PROTOCOL 

This article will take problem 5, a linear pattern with pictorial contexts, as an example. 

The pattern will be shown as Figure 1. The problem is as follows: How many dots will 

be used to make the 5
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 and the 20
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 shapes? How many in general? Ten protocols, three 

methods of translating a picture, will be analysed here. They direct quote from the 

Internet posting. Focusing on them is justified for three reasons. First, students needed 

to leave a rich trace of what they were thinking as they progressed. The trace included 

the written form and the interviews. Second, responses generated by these students 

needed to depend on their own perception. Third, students needed to find a rule 

associated with the pattern at least. 

Figure 1: T shape 
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24 of 40 students adopted this method. Two protocols are chosen as examples here. 
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did not yet achieve a near generalizing task. His ability was at level 2, because he 

noticed a pattern but did not yet derive the next number. He extracted information from 

the pattern (i.e., +3), so his process showed the phase of pattern seeking.  

2. mbl2: 5 dots, 8 dots, 11 dots. 5+3=8. 8+3=11. 11+3=14. 14+3=17. There are 17 dots 

in the fifth T. 17*3=51, 17+51=68. There would be 68 dots in the twentieth T. 

Student mbl2 relied on a recursive approach and only produced a local rule (i.e., +3). 

He adopted a short-cut method (i.e., A20=A5 x 3+A5; here An expresses the number of 

the n
th

) .He did not achieve near generalization. He recognized a relationship between 

successive terms (i.e., +3), but only noticed the answer, so his ability was at level 3a. 

He could extract information (+3), so his process showed the phase of pattern seeking. 

Look at how many more objects are required 
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task (i.e., the 100
th
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All the processes mbm1 solved the problem were same with bh5’s except a correct 

algebraic representation (An=5+ (n-1) groups of 3). He achieved a far generalizing task 

(Shape 100). His ability was at level 4c. His processes showed generalization phase. 
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6 of 40 students adopted this method. Four protocols are chosen as examples here. 

7. mgm1: There are 6 dots minus 1 dot in the first shape. There are 8 dots minus 1 dot in 

the second. There are 10 dots minus 1 dot in the third. …Keep going and you 

would get the hundredth. … There would be “x n” in the nth shape.  
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two lines with equal length. She was unaware of the incorrect content of seeing the 

picture (i.e., two lines with equal length), so her process only showed the phase of 

seeing of sensory. Her ability was at level 1, because she only noticed some properties 

of the pictures with partial patterns described (e.g., the structure of two lines).  

8. mbh1: Add 2 on the horizontal and 1 on the vertical each time. Shape 3 is 7 on the 

horizontal and 4 on the vertical.…. Shape 5 is 11 on the horizontal and 6 on the 
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vertical. …Shape 20 is 41 on the horizontal and 21 on the vertical. …Finally 5 

times 21 equals 105, and 5 times 41 equals 205. Shape 100 would be 105 on 

the vertical 100 and 205 on the horizontal.  

In the interview, mbh1 said that 11 is the first “3” plus 2 plus 2 plus 2 plus 2 on 

horizontal 5, and 6 is the first “2” plus 1 plus 1 plus 1 plus 1 on vertical 5. He did near 

generalization (i.e., Shape 20). At last, he failed to achieve a far generalizing task 

because of adopting a short-cut method (A100=A20 x5). His ability was at level 3b and 

processes showed the phase of pattern recognition, like bh3’s. 

9. gh1: The first T is 3 on the up and 3 on the down. The second is 5 on the up and 4 on 

the down. The third is 7 on the up and 5 on the down. 3.3, 5.4, 7.5].  The first 

is 3 and keep plus 2 each time. I get 3, 5, 7, 9, 11,... The first is 3 and keep plus 

1 each time. I get 3, 4, 5, 6, 7, … The tenth is 3+(2x9) =21 on the up and 3+(1x 

9)=12 on the down. 21 plus 12 equals 33. … The hundredth is 3+(2x99)=201 

on the up and 3+(1x99)=102 on the down. Then add 201 on 102.  

Student gh1 focused on component parts of T shapes and on the method itself. She 

recognized the structure in relation to the shape and number. She made a worthy 

attempt at an algebraic expression and achieved a far generalizing task (i.e., the 

hundredth). Thus, her ability was at level 4b. Her processes showed generalization 

phase. Note that the author thought about students’ method itself, not the numerical 

answer. Thus, it was not regarded that gh1 ignored T shape which overlaps in a 

common central dot (e.g., “201+102” should be“201+102-1”). 

10. mgh2: The first T is 5 dots; it is 1.1.3. The second is 8 dots; it is. 2.2.4. The third is 11; 

it is 3.3.5. … 4.4.6, 5.5.7. The first, second, and third number is the length of 

the left, right, and down of T shape respectively. The 5
th

 T would be 5.5.7 and 

total 17 dots. Thus, the 10
th

 would be 10.10.12 and total 32 dots; the 20
th

 would 

be 20.20.22 and total 62 dots. Keep going, and the 100
th

 would be 100.100.102 

and total 302 dots. They will be the shape number times 3 plus 2. 

Student mgh2 focused on component parts of T shape and on the method itself. She 

recognized the structure in relation to the shape and number. She made an attempt at an 

algebraic expression (the shape number times 3 plus 2) and achieved a far generalizing 

task. Thus, her ability was at level 4b. Her processes showed generalization phase. 

CONCLUSION 

1. The relationships between students’ patterning abilities and the processes  

(1) Students’ abilities at level 0 and 1 are corresponding to the phase of seeing of 

sensory. Level 1: (7. mgm1). Her processes showed the phase of seeing of sensory. (2) 

Students’ responses at level 2 and 3a are corresponding to the phase of pattern seeking. 

Level 2: (1. bm5). Level 3a: (2. mbl2) and (3. gm3). The processes of bm5, mbl2 and 

gm3 showed the phase of pattern seeking. (3) Students’ responses at level 3b are 

corresponding to the phase of pattern recognition. Level 3b: (4. bh3) and (8. mbh1). 

The processes of bh3 and mbh1 showed the phase of pattern recognition. (4) Students’ 
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responses at level 4 are corresponding to generalization phase. Level 4b: (5. bh5), (9. 

gh1), and (10. mgh2). Level 4c: (6. mbm1). The processes of bh5, gh1, mgh2 and 

mbm1 showed generalization phase. 

2. The relationships between students’ patterning abilities and algebraic thinking

(1) Students at level 0, 1, 2 and 3a engaged in arithmetic thinking, because they did not 

achieve near or far generalization. Note that students at level 3a, who could (e.g., 3. 

gm3) or could not (e.g., 2. mbl2) achieve the twentieth, did not guarantee to do a near 

generalizing task. (2) Students at level 3b might involve arithmetic-algebraic thinking 

transition, because their thinking about the methods of arithmetic will be a possible 

precursor to approach generality. Level 3b: (4. bh3) and (8. mbh1). Student bh3 or 

mbh1 might easily make progress from an additive approach (e.g., 5+3+3 or 3+2+2+2) 

to a multiplicative approach (5+3x2 or 3+2x3), while he could understand 

multiplication as repeated addition (e.g., 3+3=3x2). These multiplicative numerical 

expressions will be the foundation for algebraic expressions. (3) Students at level 4 

engaged in algebraic thinking, because they had abilities in making a general rule. 

These results coincide with those of Ma’s study (2008).  

3. The author developed an ability model of solving pictorial patterns with pictorial 

contents according to related theorems (e.g., Herbert & Brown, 1997; Ma, 2008; Orton 

& Orton, 1999) and the findings of this study. It denotes that there are levels of 0, 1, 2, 

3a, 3b, 4a, 4b, 4c. Students are from level 0, 1 (seeing of sensory) and level 2, 3a 

(pattern seeking), arithmetic thinking, to level 3b (pattern recognition), 

arithmetic-algebraic thinking transition with understanding how to approach 

generality, and finally to level 4 (generalization), algebraic thinking with ability in 

making a general rule. In addition students at level 4 can achieve far generalization, 

while those at level 3b can achieve near generalization. The model will be shown as 

Figure 2. 

Figure 2: The ability model 
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The study presented in this report is part of a research project concerning elementary 

school students’ developmental stages of representations. The purpose of this paper 

was to analyze the solid cuboids illustrated by elementary school students in Taiwan, 

and to compare the students’ drawing results with Mitchelmore’s (1978) stages of 

representation of regular solid figures. The conclusions were drawn as follows. (a). 

Based on 1,423 elementary students’ drawings collected from this study, compared to 

the sample drawing given by Mitchelmore two decades ago, elementary school 

students in Taiwan seemed to have more representations of a prism. (b). The overall 

percentage that the students were assigned to each stage of representation of prism, 

from Stage 1 to Stage 4, were 18.73% (Stage 1), 21.76% (Stage 2), 18.73% (Stage 3A), 

21.97% (Stage 3B), and 16.80% (Stage 4) respectively. It seemed that most of students 

were assigned to Stage 3B, followed by Stage 2. 

INSTRUCTION 

Mathematics is a powerful tool for solving practical problems and a highly creative 

field of study.  One of the reasons is that ideas can be expressed with symbols, charts, 

graphs, and diagrams (Van de Walle, 2004).  Symbols, graphs, and charts, as well as 

physical representations such as counters, fraction bars, and Cuisenaire rods are also 

powerful learning tools.  Representations in the broadest sense, according to Kaput 

(1985), is something that indicates something else, and so must essentially involve 

some kind of relationship between symbol and referent, although each may itself be a 

complex entity.  Moving from one representation to another is an important way to add 

understanding to an idea.  In addition, different representations of mathematics ideas 

could be transformed with each others (Van de Walle, 2004).  See Figure 1.

Representation has been one of the focuses of the mathematics education.  It is one of 

five procedure standards in Principles and Standards for School Mathematics (National 

Council of Teachers of Mathematics [NCTM], 2000). Representation refers to “the act 

of capturing a mathematical concept or relationship in some form and to form itself” (p. 

67).  Students should be able to “create and use representations to organize, record, and 

communicate mathematical ideas” (p.67), “select, apply, and translate among 

mathematical representations to solve problems” (p.69), and “use representations to 

model and interpret physical, social, and mathematical phenomena” (p. 70).  It helps 

people to understand mathematical ideas, and to use these ideas.  When students 
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develop flexibility with a variety of representations for mathematical ideas, not only do 

they add to their own understanding, but also obtain skill in applying mathematical 

ideas to new areas and communicating ideas to others. (Van de Walle, 2004). 

Representation has also been one of the research interests (Goldin, 1987, 1998, 2000, 

2003; Goldin, & Kaput, 1996; Lesh, Post, & Behr, 1987; Mitchelmore, 1973, 1974, 

1975, 1980; Monk, 2003; Wu & Chen, 2004; Wu, Ma, & Chen, 2006; Wu, Ma, & Li, 

2007).  Among these research studies, Mitchelmore (1978, 1980) investigated 80 

Jamaica elementary and middle school children regarding their 3D representations.  

According to Mitchelmore, children’s representation of regular solid figures includes 

four stages: plane schematic, space schematic, prerealistic, and realistic stages.  During 

the plane schematic, the child draws the solid figure as a singe face, or by a general 

outline.  In the space schematic stage, more than one orthoscopical faces are shown, or 

hidden faces are included.  The drawings in the prerealistic stage tried to represents the 

view from a single viewpoint and illustrate depth.  During the last stages, parallel edges 

in spaces are represented by near-parallel lines. 

Mitchelmore’s set of development stages (1978, 1980) has been the focus of 

researchers interested in students’ 3D drawings. However, this set of stages was 

developed based on Jamaica students’ responses more than 20 years ago.  Since then, 

the environment has been changed dramatically, and students today have many 

different ways to acquire information.  It would be interesting to conduct a new 

investigation on students’ drawings of solid figures. 

Figure 1. Five different representations of mathematical ideas (Van 

De Walle, 2004, p. 30) 
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PURPOSE OF THE STUDY 

The purpose of this paper was to analyze the solid cuboids illustrated by elementary 

school students in Taiwan, and to compare the students’ drawing results with 

Mitchelmore’s (1978) stages of representation of regular solid figures. 

METHODS 

This study was conducted during spring semester, 2004.  The participants were 1,423 

elementary school students across grades 1 to 6, 708 males and 715 females.  The 

numbers of students for each grade, from 1st to 6th, were 241, 242, 244, 240, 225, and 

231, respectively.  During an art class, students were assigned into 6 groups, sitting in a 

line.  Each group was given a 30 cm by 18 cm by 18 cm cuboid, placing on their left 

front side.  (See Figures 2 and 3.)  All students could observe three planes of the cuboid, 

and each student would have the similar view of the cuboid as in Figure 3.  Students 

were asked to draw that figure on paper.  Students were also instructed not to copy 

others’ images, or to discuss their thinking with others.   

RESULTS AND CONCLUSIONS 

The drawing results were arranged according to Mitchelmore’s theory, and the 

differences were compared.  The distributions of each stage and the examples of each 

stage were illustrated in Table 1 and Table 2 (Appendix), respectively. 

Stage 
1 2 3A 3B 4 Total 

Frequency 272 316 272 319 244 1423 

Percent 18.73% 21.76% 18.73% 21.97% 16.80% 100% 

Table 1. The distributions of each stage 

Cuboid Student

Figure 2.  Seat arrangement 

Figure 3. Cuboid 

from students’ view 
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Stage 1 – Plane Schematic Stage 

The results of this study indicate that there were 18.73% of participants in this category.  

Elements in the plane schematic stage remained the same.  Students used a plane 

rectangle to represent a cuboid.   

Stage 2 – Space Schematic Stage 

Mitchelmore (1980) describes the drawing in this stage as three visible were shown, 

but the majority of people might think it is a 2-dimentional figure, rather than a 

3-dimentional figure.  However, eight types of drawing from this study were found.  

They are: (1) two visible faces only, (2) three visible faces incorrectly represented, (3) 

three visible faces, but could not be recognized as a cuboid, (4) three visible faces with 

a hidden one,  (5) three visible faces with two hidden ones, (6) three visible faces, but 

more like a triangular prism, (7) two visible faces, and share a straight (top or bottom) 

line, and (8) two visible faces, and could be a 3-d representation from a different 

viewing angle.  These drawing all indicated that these students had very few spatial 

concepts.  Among these eight types of drawings, only the second ones fit 

Mitchelmore’s description, and the rest did not.  There were 21.76% of participants in 

this category.   

Stage 3A –Prerealistic Stage A 

According to Mitchelmore, in stage 3A, only 3 visible faces are shown, the edge of two 

adjacent faces is represented by a single line, and the faces are distorted from their 

actual shape to show depth.  However, during stage 3A, not all elements will be shown.  

Participants in this study provided more detailed information, such as (1) only one 

element represented 3-dimentional, (2) three visible faces and a hidden one, some 

3-dimentional elements were shown, (3) three visible faces, but the base were shown as 

a straight line, and the top did not have a pair of the parallel lines, (4) three visible faces, 

and the top illustrated as a pair of the parallel lines, but the base were shown as a 

straight line.  All these drawings showed that students had been trying to represent the 

cuboid.  These students had incomplete spatial perceptions.  There were 18.73% of 

participants in this category.   

Stage 3B –Prerealistic Stage B 

Mitchelmore describes students in this stage should meet all three criteria in stage 3A.  

The differences between this stage and stage 4 were whether all parallel edges were 

illustrated by parallel lines.  In this study, there were two types of representations, (1) 

the base line was straight, and the quadrilateral on top did not shown as a parallelogram 

or a trapezoid, and (2) the dash line for the hidden edges were shown incorrectly.  

There were 21.97% of participants in this category.   

Stage 4 – Realistic Stage 

According to Mitchelmore (1980), students in this stage illustrate all parallel edges by 

parallel lines, and represent a face orthoscopically only if it is in the frontal plane.  It 

indicates that the student has established a Euclidean frame of reference to represent 
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3-dimentional spatial relations.  In addition to the stage criteria described by 

Mitchelmore, the participant in this stage illustrated a cuboid with all perspective 

drawing correctly.   

The drawing results of this study included three types: (1) all parallel edges illustrated 

by parallel lines, and only the frontal plane was shown orthoscopically, (2) all 

perspective drawing correctly, and use solid lines to illustrate the hidden edges, and (3) 

all perspective drawing correctly, and use dash lines to illustrate the hidden edges.  

Interestingly, some students’ illustrated the front and back faces using two rectangles 

with different sizes.  In those cases, not all parallel edges were illustrated by parallel 

lines as Mitchelmore described.  There were 16.80% of participants in this category.   

CONCLUSIONS 

The conclusions were drawn as follows. (a). Based on 1,423 elementary students’ 

drawings collected from this study, compared to the sample drawing given by 

Mitchelmore two decades ago, elementary school students in Taiwan seemed to have 

more representations of a prism. (b). The overall percentage that the students were 

assigned to each stage of representation of prism, from Stage 1 to Stage 4, were 

18.73% (Stage 1), 21.76% (Stage 2), 18.73% (Stage 3A), 21.97% (Stage 3B), and 

16.80% (Stage 4) respectively. It seemed that most of students were assigned to Stage 

3B, followed by Stage 2. 

This finding might provide educators a new direction of geometry curriculum 

development, and to plan lessons suitable for students’ representation abilities.  These 

finding will be analyzed by grades and gender in the near future, in order to study the 

stages for each grade by majority. 
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Stage 1 – Plane Schematic Stage 
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a hidden one,  (5) three visible faces with two hidden ones, (6) three visible faces, but 
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line, and (8) two visible faces, and could be a 3-d representation from a different 

viewing angle.  These drawing all indicated that these students had very few spatial 

concepts.  Among these eight types of drawings, only the second ones fit 

Mitchelmore’s description, and the rest did not.  There were 21.76% of participants in 

this category.   
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According to Mitchelmore, in stage 3A, only 3 visible faces are shown, the edge of two 

adjacent faces is represented by a single line, and the faces are distorted from their 

actual shape to show depth.  However, during stage 3A, not all elements will be shown.  

Participants in this study provided more detailed information, such as (1) only one 

element represented 3-dimentional, (2) three visible faces and a hidden one, some 

3-dimentional elements were shown, (3) three visible faces, but the base were shown as 

a straight line, and the top did not have a pair of the parallel lines, (4) three visible faces, 

and the top illustrated as a pair of the parallel lines, but the base were shown as a 

straight line.  All these drawings showed that students had been trying to represent the 

cuboid.  These students had incomplete spatial perceptions.  There were 18.73% of 

participants in this category.   

Stage 3B –Prerealistic Stage B 

Mitchelmore describes students in this stage should meet all three criteria in stage 3A.  

The differences between this stage and stage 4 were whether all parallel edges were 

illustrated by parallel lines.  In this study, there were two types of representations, (1) 

the base line was straight, and the quadrilateral on top did not shown as a parallelogram 

or a trapezoid, and (2) the dash line for the hidden edges were shown incorrectly.  

There were 21.97% of participants in this category.   

Stage 4 – Realistic Stage 

According to Mitchelmore (1980), students in this stage illustrate all parallel edges by 

parallel lines, and represent a face orthoscopically only if it is in the frontal plane.  It 

indicates that the student has established a Euclidean frame of reference to represent 
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3-dimentional spatial relations.  In addition to the stage criteria described by 

Mitchelmore, the participant in this stage illustrated a cuboid with all perspective 

drawing correctly.   

The drawing results of this study included three types: (1) all parallel edges illustrated 

by parallel lines, and only the frontal plane was shown orthoscopically, (2) all 

perspective drawing correctly, and use solid lines to illustrate the hidden edges, and (3) 

all perspective drawing correctly, and use dash lines to illustrate the hidden edges.  

Interestingly, some students’ illustrated the front and back faces using two rectangles 

with different sizes.  In those cases, not all parallel edges were illustrated by parallel 

lines as Mitchelmore described.  There were 16.80% of participants in this category.   

CONCLUSIONS 

The conclusions were drawn as follows. (a). Based on 1,423 elementary students’ 

drawings collected from this study, compared to the sample drawing given by 

Mitchelmore two decades ago, elementary school students in Taiwan seemed to have 

more representations of a prism. (b). The overall percentage that the students were 

assigned to each stage of representation of prism, from Stage 1 to Stage 4, were 

18.73% (Stage 1), 21.76% (Stage 2), 18.73% (Stage 3A), 21.97% (Stage 3B), and 

16.80% (Stage 4) respectively. It seemed that most of students were assigned to Stage 

3B, followed by Stage 2. 

This finding might provide educators a new direction of geometry curriculum 

development, and to plan lessons suitable for students’ representation abilities.  These 

finding will be analyzed by grades and gender in the near future, in order to study the 

stages for each grade by majority. 
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Appendix 

Stages and 

Examples by 

Mitchelmore 

Examples from this study 

Plane Schematic A plane rectangle 

(1) Two visible faces only 

(2) Three visible faces incorrectly 

represented 

(3) Three visible faces, but could not be 

recognized as a cuboid 

(4) Three visible faces with a hidden one 

(5) Three visible faces with two hidden ones

(6) Three visible faces, but more like a 

triangular prism 

(7) Two visible faces, and share a straight 

line (top or bottom) 

Space Schematic 

(8) Two visible faces, and could be a 3-D 

representation from a different viewing 

angle 
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Appendix 

Stages and 

Examples by 

Mitchelmore 

Examples from this study 

Plane Schematic A plane rectangle 

(1) Two visible faces only 

(2) Three visible faces incorrectly 

represented 

(3) Three visible faces, but could not be 

recognized as a cuboid 

(4) Three visible faces with a hidden one 

(5) Three visible faces with two hidden ones

(6) Three visible faces, but more like a 

triangular prism 

(7) Two visible faces, and share a straight 

line (top or bottom) 

Space Schematic 

(8) Two visible faces, and could be a 3-D 

representation from a different viewing 

angle 
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Stages and 

Examples by 

Mitchelmore 

Examples from this study 

(1) Only one element represented 

3-dimentional 

(2) Three visible faces and a hidden one, 

some 3-dimentional elements were 

shown 

(3) Three visible faces and a hidden one, 

some 3-dimentional elements were 

shown 

Prerealistic 3A 

(4) Three visible faces, and the top 

illustrated as a pair of the parallel lines, 

but the base were shown as a straight 

line 

(1) The base line was straight, and the 

quadrilateral on top did not shown as a 

parallelogram or a trapezoid 

Prerealistic 3B 

(2) The dash line for the perspective 

drawing were not shown correctly 

(1) All parallel edges illustrated by parallel 

lines, and only the frontal plane was 

shown orthoscopically 

(2) All perspective drawing correctly, and 

use solid lines to illustrate the hidden 

edges 

Realistic

(3) All perspective drawing correctly, and 

use dash lines to illustrate the hidden 

edges 

Table 2  Different representations based on Mitchelmore’s stages 
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EXPLOITING THE FEEDBACK OF THE APLUSIX CAS TO 
MEDIATE THE EQUIVALENCE BETWEEN ALGEBRAIC 
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This paper stems from the ReMath European project1 that focuses on the role of 
representations in dynamic digital artefacts (DDAs), and on the role of 
theoretical frameworks with respect to their use in educational contexts. Framed 
within the Theory of Semiotic Mediation, the paper presents some results  
concerning how the potentialities of the Aplusix DDA, and in particular of the 
feedback component, can be exploited by the teacher in relation with the notion 
of equivalence between algebraic expressions. Through a semiotic analysis of 
excerpts from a classroom discussion, evidence of the semiotic process triggered 
by the teacher’s interventions is provided. 

INTRODUCTION
The key issue addressed by the ReMath European project is the role played by 
representations of mathematical objects offered by a Digital Dynamic Artefact 
(DDA) when used in educational contexts. Seven teams have been involved in 
the project, six DDAs (or new versions of already existent DDAs) have been 
developed, thirteen pedagogical plans (Earp & Pozzi, 2006) have been designed, 
many local experiments of them have been carried out in different countries. 
The methodology used in planning the whole experiment consists in a cross-
experiment (Artigue & al., 2007) in which the different teams are supposed to 
experiment a DDA they are familiar with, since they have developed it, and a 
DDA they are not familiar with, that is, developed by another team. These are 
respectively called ‘familiar experiment’ and ‘alien experiment’. In this 
contribution we report on an alien experiment based on the Aplusix DDA 
(Nicaud & al., 2006). The teaching experiment has been framed by the Theory 
of Semiotic Mediation, which is outlined in the next section. 
THE THEORY OF SEMIOTIC MEDIATION 
The Theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 2008) drawing 
from a Vygotskian paradigm considers learning processes deeply linked to 
teaching processes, in a social context. It states that the use of artefacts to 
accomplish a task leads the individual to the construction of personal meanings 

                                          
1 Representations in Mathematics with Digital Media, Project number IST4-26751, [http://remath.cti.gr/]. 
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(Vygotsky, 1978), which are related to the actual use of the artefact. Under the 
guidance of an expert (typically the teacher), students' personal meanings may 
evolve towards mathematical meanings, i.e. meanings coherent with the 
mathematical theory. 

Thus any artefact will be referred to as tool of semiotic mediation as long as it is (or 
it is conceived to be) intentionally used by the teacher to mediate a mathematical 
content through a designed didactical intervention. (Bartolini Bussi & Mariotti, 
2008, p. 754) 

In this perspective, the function of semiotic mediation of an artefact is not 
automatically activated with the use of the artefact. In order to make meanings 
emerge it is crucial to identify the relationship, called the semiotic potential of 
the artefact (Bartolini Bussi & Mariotti, 2008), between the use of the artefact 
and the mathematical knowledge. Awareness of the semiotic potential of an 
artefact is a requisite for the teacher for developing suitable tasks for making 
meanings emerge, and for guiding the evolution of students' personal meanings 
towards mathematical meanings. Not only does the Theory of Semiotic 
Mediation provide a frame for designing the teaching sequence, but it also gives 
a frame for its analysis. In considering the process of teaching-learning in a 
semiotic perspective, it focuses on signs and on the process of transformation of 
such signs. In this context, the use of the term “sign” is deeply inspired by 
Peirce and is consistent with the claim of including different and more flexible 
kinds of signs (Radford et al., 2007, Arzarello et al., 2009). Transformation of 
signs can be considered an indication of learning intended as a change in the 
relationship between subject and knowledge: every intervention of the teacher 
with the goal of fostering or inhibiting such transformation can be considered a 
didactic action (teaching). As a consequence, the analysis of the educational 
process is to be centred around the description of semiotic processes as 
processes of evolution of signs. In order to accomplish such analysis a 
classification of signs, based on the level of connection with the artefact and its 
use, has been stated. Such a classification allows a description of the evolution 
process, characterized by a gradual detachment of signs from the reference 
context to contingent situations. It also gives the possibility of defining 
sequences of related signs which are called semiotic chains. Based on the 
original notion of chain of signification introduced by Walkerdine (1990, p.121), 
the notion of semiotic chain is consistent with the ones elaborated by Hall 
(2000) and Presmeg (2006), but holds a particular emphasis on the role of an 
artefact in triggering the semiotic process. In fact, a semiotic chain develops 
from what are called artefact signs (Bartolini Bussi & Mariotti, 2008, p. 756), 
strictly related to the use of the artefact, to the mathematical signs, that are the 
objective of the teaching-learning activity. 
THE APLUSIX DDA: FEEDBACK-SIGNS 
Aplusix is a computer algebra system which allows students to perform both 
arithmetical and literal calculations (Nicaud & al., 2006). One of the main 
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characteristics of Aplusix is the presence of feedback that it provides when set 
up in Training mode (for a description of Aplusix feedback see Maffei & 
Mariotti, 2006). The feedback is based on the equivalence between two 
consequent boxes, each of them containing an expression. More specifically, 
different signs show whether the current expression is equivalent/not equivalent 
to the previous one, or whether it is not well-formed (Fig. 1). We called them 
feedback-signs.

Figure 1. Three different feedbacks provided in Aplusix environment. 
The black lines show that the first expression is equivalent to the second, the red 
crossed lines show that the first expression is not equivalent to the second, and 
the blue crossed lines show that the expression you are writing is not well-
formed (i.e. a plus sign requires an argument). 

THE SEMIOTIC POTENTIAL OF THE FEEDBACK-SIGNS 
The feedback-signs provided by Aplusix have a twofold meaning. We can refer 
to them using the terms primary interpretation and developed interpretation. Let 
us, for example, consider the sign ‘red crossed lines’. Its meaning is rooted in a 
social convention which can be reinterpreted in the school context; in fact, both 
the presence of the colour red and of the cross in the inscription refers to the 
sign of error which have the red colour and the cross in the set of its 
representations. While the primary interpretation could refer to common sense, 
the developed interpretation refers to a mathematical knowledge and for its 
nature is not immediate or immediately shared. Since the reaction of the 
machine is coherent with the mathematical knowledge at all times, the feedback-
signs may become a possible instrument of semiotic mediation for the meaning 
of equivalence between algebraic expressions. 
THE TEACHING EXPERIMENT 
Educational and research features 
According to the aims of the ReMath project, a pedagogical plan in which 
educational and research goals were strictly intertwined has been designed. The 
development of the pedagogical plan, centred on the use of the Aplusix DDA, 
has been guided by the Theory of Semiotic Mediation (Bartolini Bussi & 
Mariotti, 2008). The semiotic potential of the artefact has been exploited to 
introduce students to the equivalence of algebraic expressions, which is one of 
the main goals of the pedagogical plan. The implementation of the pedagogical 
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(Vygotsky, 1978), which are related to the actual use of the artefact. Under the 
guidance of an expert (typically the teacher), students' personal meanings may 
evolve towards mathematical meanings, i.e. meanings coherent with the 
mathematical theory. 

Thus any artefact will be referred to as tool of semiotic mediation as long as it is (or 
it is conceived to be) intentionally used by the teacher to mediate a mathematical 
content through a designed didactical intervention. (Bartolini Bussi & Mariotti, 
2008, p. 754) 

In this perspective, the function of semiotic mediation of an artefact is not 
automatically activated with the use of the artefact. In order to make meanings 
emerge it is crucial to identify the relationship, called the semiotic potential of 
the artefact (Bartolini Bussi & Mariotti, 2008), between the use of the artefact 
and the mathematical knowledge. Awareness of the semiotic potential of an 
artefact is a requisite for the teacher for developing suitable tasks for making 
meanings emerge, and for guiding the evolution of students' personal meanings 
towards mathematical meanings. Not only does the Theory of Semiotic 
Mediation provide a frame for designing the teaching sequence, but it also gives 
a frame for its analysis. In considering the process of teaching-learning in a 
semiotic perspective, it focuses on signs and on the process of transformation of 
such signs. In this context, the use of the term “sign” is deeply inspired by 
Peirce and is consistent with the claim of including different and more flexible 
kinds of signs (Radford et al., 2007, Arzarello et al., 2009). Transformation of 
signs can be considered an indication of learning intended as a change in the 
relationship between subject and knowledge: every intervention of the teacher 
with the goal of fostering or inhibiting such transformation can be considered a 
didactic action (teaching). As a consequence, the analysis of the educational 
process is to be centred around the description of semiotic processes as 
processes of evolution of signs. In order to accomplish such analysis a 
classification of signs, based on the level of connection with the artefact and its 
use, has been stated. Such a classification allows a description of the evolution 
process, characterized by a gradual detachment of signs from the reference 
context to contingent situations. It also gives the possibility of defining 
sequences of related signs which are called semiotic chains. Based on the 
original notion of chain of signification introduced by Walkerdine (1990, p.121), 
the notion of semiotic chain is consistent with the ones elaborated by Hall 
(2000) and Presmeg (2006), but holds a particular emphasis on the role of an 
artefact in triggering the semiotic process. In fact, a semiotic chain develops 
from what are called artefact signs (Bartolini Bussi & Mariotti, 2008, p. 756), 
strictly related to the use of the artefact, to the mathematical signs, that are the 
objective of the teaching-learning activity. 
THE APLUSIX DDA: FEEDBACK-SIGNS 
Aplusix is a computer algebra system which allows students to perform both 
arithmetical and literal calculations (Nicaud & al., 2006). One of the main 
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characteristics of Aplusix is the presence of feedback that it provides when set 
up in Training mode (for a description of Aplusix feedback see Maffei & 
Mariotti, 2006). The feedback is based on the equivalence between two 
consequent boxes, each of them containing an expression. More specifically, 
different signs show whether the current expression is equivalent/not equivalent 
to the previous one, or whether it is not well-formed (Fig. 1). We called them 
feedback-signs.

Figure 1. Three different feedbacks provided in Aplusix environment. 
The black lines show that the first expression is equivalent to the second, the red 
crossed lines show that the first expression is not equivalent to the second, and 
the blue crossed lines show that the expression you are writing is not well-
formed (i.e. a plus sign requires an argument). 

THE SEMIOTIC POTENTIAL OF THE FEEDBACK-SIGNS 
The feedback-signs provided by Aplusix have a twofold meaning. We can refer 
to them using the terms primary interpretation and developed interpretation. Let 
us, for example, consider the sign ‘red crossed lines’. Its meaning is rooted in a 
social convention which can be reinterpreted in the school context; in fact, both 
the presence of the colour red and of the cross in the inscription refers to the 
sign of error which have the red colour and the cross in the set of its 
representations. While the primary interpretation could refer to common sense, 
the developed interpretation refers to a mathematical knowledge and for its 
nature is not immediate or immediately shared. Since the reaction of the 
machine is coherent with the mathematical knowledge at all times, the feedback-
signs may become a possible instrument of semiotic mediation for the meaning 
of equivalence between algebraic expressions. 
THE TEACHING EXPERIMENT 
Educational and research features 
According to the aims of the ReMath project, a pedagogical plan in which 
educational and research goals were strictly intertwined has been designed. The 
development of the pedagogical plan, centred on the use of the Aplusix DDA, 
has been guided by the Theory of Semiotic Mediation (Bartolini Bussi & 
Mariotti, 2008). The semiotic potential of the artefact has been exploited to 
introduce students to the equivalence of algebraic expressions, which is one of 
the main goals of the pedagogical plan. The implementation of the pedagogical 

PME 33 - 2009 4 - 67

 Volume 04 COMPLETE 290509.indb   67 6/4/09   2:21:08 PM



Maffei, Sabena, Mariotti 

1- 4 PME 33 - 2009 

plan involved two 9th grade Italian classes, at the very beginning of high school, 
for about 20 hours. Data collected consists in log files of Aplusix, students' 
worksheets and written reports, audio and video-recordings, field notes by 
teachers and researchers. They were collected during the various phases of the 
teaching sequence, and analysed in an integrated way, providing the fabric for a 
semiotic analysis of which we will present an example in the next section. 
The role of the DDA 
One of the main objectives of our teaching experiment consisted in describing 
the role played by the DDA with respect to the stated educational goals. By 
analysing students' ongoing production through a semiotic lens, we have been 
able to identify key elements that provide evidence of the role played by Aplusix 
components, in particular by the feedback, both in students’ learning processes, 
and in the teaching strategy. In the following, attention will be given to the 
interaction between the teacher and the students during a classroom discussion, 
aiming at identifying the emergence of the semiotic chains that link the emerged 
artefact-sign to the mathematical signs. 

DATA ANALYSIS: TEXTURE OF MEANINGS IN THE SEMIOTIC 
CHAIN 
We report on an excerpt from a collective discussion that followed the first 
activity with the DDA. Students are requested to work in pairs in Aplusix to 
accomplish a task of numerical calculation. As already said, when the students 
manipulate an expression, Aplusix constantly provides feedback related to the 
mathematical meaning of equivalence between expressions. The link between 
such kinds of feedback and its mathematical meaning is not automatic, but 
instead a matter of interpretation. It is just to stress their semiotic nature that we 
have introduced the term feedback-signs. The main goal of this first activity 
consists in making students interpret the three feedback-signs; students are 
therefore requested to observe the feedback given by Aplusix during calculation 
tasks. They are also asked to take note on a sheet of paper of how the signs 
change during the development of the calculation, providing a meaning for each 
of them. In the collective discussion following the activity with the artefact, the 
teacher aims at exploiting the semiotic potential of the feedback-signs and 
intends to make the students aware of the mathematical meanings of them. Here 
after an excerpt from the discussion. 

1. Teacher:  Have you all finished? There were four questions, the first asked to 
note down the signs appearing between a line (gesture as in Fig. 2 on 
the left) and the following one (gesture as in Fig. 2 on the right). 

What are the signs appearing 
between a line and the 
following one? 

Figure 2. The teacher’s 
hand as picking something 
at two different heights. 
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2. Mattia: The first sign appearing when you write in the second passage, 
is…two vertical lines with an x over them (gestures as in Fig.3) 

          
Figure 3. Mattia draws two vertical lines top-down in the air indicating the 

feedback-sign “||". 
3. Teacher: An x, two vertical lines with an x over them. 
4. Davide: Parallel. 
5. Mattia: And then, when you complete the passage, the x disappears. 
6. Teacher: The x disappears. Is what he has said right? (The teacher draws on 

the blackboard the three signs) […] 
19. Amalia: Well, there are three signs…well, those two vertical lines are when 

the passage is right and concluded […] 
39. Teacher: What does it mean "to be right"? 
40. Martina: That you didn’t make any mistakes in the calculations. 
41. Amalia: That you have not mistaken anything and you can go to the 

following passage […] 
60. Teacher: And how can we do that not using the computer, understand that 

things are right without seeing the signs? Why are they right? 
61. Ambra: Because if the calculation follows a logical thread, it is right. 
62. Teacher: Because if the calculation follows a logical thread, it is right. What 

does it mean to follow a logical thread? 
63. Martina: To do certain operations […] 
66. Teacher: Why are passages right? What does it mean to have the passages 

right? Where does the logical thread lead? […] 
67. Amalia: Because basically the last passage must give you the result of the 

first one. 
68. Teacher: The last passage must give you the result of the first one: what does 

it mean? 
69. Amalia: And yes because basically if you solve the first passage the result 

must be…equal to the second. 
70. Teacher: Let's help her to say it well […] 
73. Sabrina: Yes because finally the result is the simplification of the first, each 

passage has the same result. 
74. Teacher: And so? 
75. Amalia: Basically, if we have…I don't know…6/3 and we reduce it to the 

minimal terms it comes 2, doesn't it? (The teacher writes on the 
blackboard 6/3 and 2, side each other) So I tell that 2 is the result of 
the first passage […] 
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plan involved two 9th grade Italian classes, at the very beginning of high school, 
for about 20 hours. Data collected consists in log files of Aplusix, students' 
worksheets and written reports, audio and video-recordings, field notes by 
teachers and researchers. They were collected during the various phases of the 
teaching sequence, and analysed in an integrated way, providing the fabric for a 
semiotic analysis of which we will present an example in the next section. 
The role of the DDA 
One of the main objectives of our teaching experiment consisted in describing 
the role played by the DDA with respect to the stated educational goals. By 
analysing students' ongoing production through a semiotic lens, we have been 
able to identify key elements that provide evidence of the role played by Aplusix 
components, in particular by the feedback, both in students’ learning processes, 
and in the teaching strategy. In the following, attention will be given to the 
interaction between the teacher and the students during a classroom discussion, 
aiming at identifying the emergence of the semiotic chains that link the emerged 
artefact-sign to the mathematical signs. 

DATA ANALYSIS: TEXTURE OF MEANINGS IN THE SEMIOTIC 
CHAIN 
We report on an excerpt from a collective discussion that followed the first 
activity with the DDA. Students are requested to work in pairs in Aplusix to 
accomplish a task of numerical calculation. As already said, when the students 
manipulate an expression, Aplusix constantly provides feedback related to the 
mathematical meaning of equivalence between expressions. The link between 
such kinds of feedback and its mathematical meaning is not automatic, but 
instead a matter of interpretation. It is just to stress their semiotic nature that we 
have introduced the term feedback-signs. The main goal of this first activity 
consists in making students interpret the three feedback-signs; students are 
therefore requested to observe the feedback given by Aplusix during calculation 
tasks. They are also asked to take note on a sheet of paper of how the signs 
change during the development of the calculation, providing a meaning for each 
of them. In the collective discussion following the activity with the artefact, the 
teacher aims at exploiting the semiotic potential of the feedback-signs and 
intends to make the students aware of the mathematical meanings of them. Here 
after an excerpt from the discussion. 

1. Teacher:  Have you all finished? There were four questions, the first asked to 
note down the signs appearing between a line (gesture as in Fig. 2 on 
the left) and the following one (gesture as in Fig. 2 on the right). 

What are the signs appearing 
between a line and the 
following one? 

Figure 2. The teacher’s 
hand as picking something 
at two different heights. 
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2. Mattia: The first sign appearing when you write in the second passage, 
is…two vertical lines with an x over them (gestures as in Fig.3) 

          
Figure 3. Mattia draws two vertical lines top-down in the air indicating the 

feedback-sign “||". 
3. Teacher: An x, two vertical lines with an x over them. 
4. Davide: Parallel. 
5. Mattia: And then, when you complete the passage, the x disappears. 
6. Teacher: The x disappears. Is what he has said right? (The teacher draws on 

the blackboard the three signs) […] 
19. Amalia: Well, there are three signs…well, those two vertical lines are when 

the passage is right and concluded […] 
39. Teacher: What does it mean "to be right"? 
40. Martina: That you didn’t make any mistakes in the calculations. 
41. Amalia: That you have not mistaken anything and you can go to the 

following passage […] 
60. Teacher: And how can we do that not using the computer, understand that 

things are right without seeing the signs? Why are they right? 
61. Ambra: Because if the calculation follows a logical thread, it is right. 
62. Teacher: Because if the calculation follows a logical thread, it is right. What 

does it mean to follow a logical thread? 
63. Martina: To do certain operations […] 
66. Teacher: Why are passages right? What does it mean to have the passages 

right? Where does the logical thread lead? […] 
67. Amalia: Because basically the last passage must give you the result of the 

first one. 
68. Teacher: The last passage must give you the result of the first one: what does 

it mean? 
69. Amalia: And yes because basically if you solve the first passage the result 

must be…equal to the second. 
70. Teacher: Let's help her to say it well […] 
73. Sabrina: Yes because finally the result is the simplification of the first, each 

passage has the same result. 
74. Teacher: And so? 
75. Amalia: Basically, if we have…I don't know…6/3 and we reduce it to the 

minimal terms it comes 2, doesn't it? (The teacher writes on the 
blackboard 6/3 and 2, side each other) So I tell that 2 is the result of 
the first passage […] 
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79. Teacher: […] How do we say that the result of 6/3 is 2? In mathematics, when 
we speak, how can we say that the result of 6/3 is 2? 

80. Cora: That the result of 6 divided by 3 gives 2. 
81. Teacher: Yes, but…what do we say of these two 

(pointing to 6/3 and 2 with the two 
hands, Fig. 4) here? 

82. Sabrina: That they are equivalent to each other 
83. Teacher: That? 
84. Sabrina: Yes, that they are equivalent to one 

another, they are equivalent. 
85. Teacher: And what does it mean that they are equivalent? 
86. Amalia: That they are equal…  
87. Students: That they have the same value. 

From the beginning of the discussion the teacher focuses on the interpretation of 
the feedback-signs of Aplusix (#1). As emerging from the discussion (#1-19), 
and confirmed by the collected written sheets, all the students' interpret the 
feedback-sign as "right passage" (see #19: “Two vertical lines […] when the 
passage is right and concluded”). The personal meanings that students develop 
from the first activity with the artefact are consistent with the primary
interpretation of the feedback. According to the classification provided by the 
Theory of Semiotic Mediation, the inscription “||" can be considered an artefact-
sign, since its meaning is strictly related to the activity with the artefact. Under 
the guidance of the teacher it becomes the first element of a semiotic chain
leading to the mathematical sign, referring to the notion of equivalence, Once it 
happened, the feedback-sign “||” has reached the level of the developed
interpretation. In fact in the excerpt we can observe the following evolution for 
the interpretation of Aplusix feedback-sign “||”: 
right / no mistakes (#19-41) becomes passages with the same result (#67-73)
becomes equivalence between passages (#82-84)
This semiotic chain comes into existence thanks to a didactic strategy that, 
starting from the activity with the artefact, is focused on the students’ semiotic 
processes. This strategy uses, in a synergic way, different kinds of semiotic 
resources: speech, gestures (an example is in #1, Fig. 2, and the same kind of 
gesture-speech enactment is widespread in the whole protocol), and inscriptions 
on the blackboard (#81, Fig. 4). In particular, the teacher constantly stimulates 
the students to make the meanings of the signs involved explicit (‘what does it 
mean?’, #39, 62, 66, 68), to elaborate from the emerging contributions (‘Let's 
help her to say it well’, #70; ‘and so?’, #74), and to detach from the artefact 
(‘how can we do that not using the computer’, #60) to relate to mathematics 
domain (‘in mathematics, when we speak, how can we say that’, #79). Beyond 
the recurrent typical semiotic question “what does it mean”, the teacher’s 
strategy encompasses sentences and actions that have the functions of echoing
and amplifying some students’ contributions to the whole classroom (#3, 6, 62, 

Figure 4. The teacher 
pointing to 6/3 and 2.

Maffei, Sabena, Mariotti 

PME 33 - 2009 1- 7 

68, 83), and generally focusing attention towards certain elements (see for 
instance the deictic gesture in Fig. 4). By repeating and re-formulating students' 
contributions on the one hand, and making explicit reference to mathematics 
domain on the other hand, the teacher fosters the weaving of a texture of 
meanings in which the meaning of equivalence comes to be sided and 
overlapped to that of the right passage. This double interpretation of the 
feedback-signs emerging from Aplusix is the core of the semiotic potential of 
this specific feature of the software in solving a given task. In the following 
excerpt, from a discussion that occurred a week later, we can see how this 
texture of meaning is correctly managed by the students and referred to the 
artefact-signs (‘black equal’ and ‘red equal’): 

1. Mattia: Aplusix uses some symbols, for instance when we write, and make a 
new passage: when we finish writing the passage, if the passage is 
equivalent to the previous one, and therefore it is right, we have a 
symbol telling us that it is right, whereas if the passage that we have 
written is wrong with respect to the previous passage, we have 
another symbol. 

2. Teacher: So he is saying that if we have two 
different expressions that are equivalent 
then we have in Aplusix a symbol that 
is?

3. Davide: The black equal  
4. Teacher: The black equal, two bars (gesture as 

in Fig. 5). If on the contrary these two 
expressions are not equivalent. 

5. Davide: The red equal comes. 

As in many other cases in the protocols (see also above) we observe how the 
teacher uses, in a synergic way, different semiotic resources: in this case, the 
utterance is accompanied by a gesture that depicts the feedback-sign provided 
by the software. As it has been pointed out by many researches on the role of 
gestures in mathematics learning (see for instance Arzarello & al., 2009), a strict 
coordination among the various resources is found in the students as well (e.g. 
see # 2, Fig. 3). 
CONCLUSIONS
We stress two issues that arise from the analysis of the classroom discussion. 
Firstly, the pivotal role of the teacher to develop the semiotic chain starting 
from the artefact signs and leading to a mathematical meaning. Indeed the 
teacher acts with a semiotic concern: she continuously asks questions to make 
the meanings of the signs emerge and develop. The nature of the semiotic 
process that she triggers can be analysed through the twofold interpretation of 
the feedback-signs as primary and developed. In this view, the teacher’s action 
consists in making students shift from the primary interpretation to the 
developed interpretation. As a second result we highlight that accomplishing this 
transition requires that the students and the teacher interact through a constant 

Figure 5. Two hands 
mimicking the two bars 

of Aplusix feedback-
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79. Teacher: […] How do we say that the result of 6/3 is 2? In mathematics, when 
we speak, how can we say that the result of 6/3 is 2? 

80. Cora: That the result of 6 divided by 3 gives 2. 
81. Teacher: Yes, but…what do we say of these two 

(pointing to 6/3 and 2 with the two 
hands, Fig. 4) here? 

82. Sabrina: That they are equivalent to each other 
83. Teacher: That? 
84. Sabrina: Yes, that they are equivalent to one 

another, they are equivalent. 
85. Teacher: And what does it mean that they are equivalent? 
86. Amalia: That they are equal…  
87. Students: That they have the same value. 

From the beginning of the discussion the teacher focuses on the interpretation of 
the feedback-signs of Aplusix (#1). As emerging from the discussion (#1-19), 
and confirmed by the collected written sheets, all the students' interpret the 
feedback-sign as "right passage" (see #19: “Two vertical lines […] when the 
passage is right and concluded”). The personal meanings that students develop 
from the first activity with the artefact are consistent with the primary
interpretation of the feedback. According to the classification provided by the 
Theory of Semiotic Mediation, the inscription “||" can be considered an artefact-
sign, since its meaning is strictly related to the activity with the artefact. Under 
the guidance of the teacher it becomes the first element of a semiotic chain
leading to the mathematical sign, referring to the notion of equivalence, Once it 
happened, the feedback-sign “||” has reached the level of the developed
interpretation. In fact in the excerpt we can observe the following evolution for 
the interpretation of Aplusix feedback-sign “||”: 
right / no mistakes (#19-41) becomes passages with the same result (#67-73)
becomes equivalence between passages (#82-84)
This semiotic chain comes into existence thanks to a didactic strategy that, 
starting from the activity with the artefact, is focused on the students’ semiotic 
processes. This strategy uses, in a synergic way, different kinds of semiotic 
resources: speech, gestures (an example is in #1, Fig. 2, and the same kind of 
gesture-speech enactment is widespread in the whole protocol), and inscriptions 
on the blackboard (#81, Fig. 4). In particular, the teacher constantly stimulates 
the students to make the meanings of the signs involved explicit (‘what does it 
mean?’, #39, 62, 66, 68), to elaborate from the emerging contributions (‘Let's 
help her to say it well’, #70; ‘and so?’, #74), and to detach from the artefact 
(‘how can we do that not using the computer’, #60) to relate to mathematics 
domain (‘in mathematics, when we speak, how can we say that’, #79). Beyond 
the recurrent typical semiotic question “what does it mean”, the teacher’s 
strategy encompasses sentences and actions that have the functions of echoing
and amplifying some students’ contributions to the whole classroom (#3, 6, 62, 

Figure 4. The teacher 
pointing to 6/3 and 2.

Maffei, Sabena, Mariotti 

PME 33 - 2009 1- 7 

68, 83), and generally focusing attention towards certain elements (see for 
instance the deictic gesture in Fig. 4). By repeating and re-formulating students' 
contributions on the one hand, and making explicit reference to mathematics 
domain on the other hand, the teacher fosters the weaving of a texture of 
meanings in which the meaning of equivalence comes to be sided and 
overlapped to that of the right passage. This double interpretation of the 
feedback-signs emerging from Aplusix is the core of the semiotic potential of 
this specific feature of the software in solving a given task. In the following 
excerpt, from a discussion that occurred a week later, we can see how this 
texture of meaning is correctly managed by the students and referred to the 
artefact-signs (‘black equal’ and ‘red equal’): 

1. Mattia: Aplusix uses some symbols, for instance when we write, and make a 
new passage: when we finish writing the passage, if the passage is 
equivalent to the previous one, and therefore it is right, we have a 
symbol telling us that it is right, whereas if the passage that we have 
written is wrong with respect to the previous passage, we have 
another symbol. 

2. Teacher: So he is saying that if we have two 
different expressions that are equivalent 
then we have in Aplusix a symbol that 
is?

3. Davide: The black equal  
4. Teacher: The black equal, two bars (gesture as 

in Fig. 5). If on the contrary these two 
expressions are not equivalent. 

5. Davide: The red equal comes. 

As in many other cases in the protocols (see also above) we observe how the 
teacher uses, in a synergic way, different semiotic resources: in this case, the 
utterance is accompanied by a gesture that depicts the feedback-sign provided 
by the software. As it has been pointed out by many researches on the role of 
gestures in mathematics learning (see for instance Arzarello & al., 2009), a strict 
coordination among the various resources is found in the students as well (e.g. 
see # 2, Fig. 3). 
CONCLUSIONS
We stress two issues that arise from the analysis of the classroom discussion. 
Firstly, the pivotal role of the teacher to develop the semiotic chain starting 
from the artefact signs and leading to a mathematical meaning. Indeed the 
teacher acts with a semiotic concern: she continuously asks questions to make 
the meanings of the signs emerge and develop. The nature of the semiotic 
process that she triggers can be analysed through the twofold interpretation of 
the feedback-signs as primary and developed. In this view, the teacher’s action 
consists in making students shift from the primary interpretation to the 
developed interpretation. As a second result we highlight that accomplishing this 
transition requires that the students and the teacher interact through a constant 
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of Aplusix feedback-
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back and forth between the primary interpretation and some attempts to reach 
the developed interpretation. The evolution doesn’t follow a linear trend, from 
the primary interpretation to the developed one. On the contrary, the semiotic 
chain maintains a coexistence of both of them, in the process of unfolding the 
meaning of the Aplusix feedback-signs.
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A COMPARISON OF FOURTH AND SIXTH GRADE STUDENTS’ 
REASONING IN SOLVING STRANDS OF OPEN-ENDED TASKS  
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This paper reports on the forms of reasoning elicited as fourth grade students in a 
suburban district and sixth grade students in an urban district worked on similar 
tasks involving reasoning with the use of Cuisenaire rods. Analysis of the two data 
sets shows similarities in the reasoning used by both groups of students on specific 
tasks, and the tendency of a particular task to elicit all forms of reasoning in both 
groups of students. Attributes of that task and ways that those attributes can be 
replicated in other domains may have implications in the teaching of early reasoning. 

INTRODUCTION
The NCTM states in its Principles and Standards for School Mathematics (2000) that
a primary goal of mathematics education in grades K-12 are the development of 
reasoning (and proof). Further, the document points out that students must be 
exposed to different forms of reasoning and must learn to choose and use appropriate 
forms of reasoning, citing: “Students need to encounter and build proficiency in all 
these [e.g., reasoning by contradiction, cases, and direct deductive reasoning] forms 
with increasing sophistication as they move through the curriculum” (p. 59). 
In the study described in this paper, we examined the forms of reasoning that were 
elicited by two different groups of students, fourth graders and sixth graders, 
investigating problems from strands of open-ended tasks and providing justification 
for their solutions. We identified the occurrence of direct reasoning, reasoning by 
contradiction, reasoning using upper and lower bounds, reasoning by cases, and 
generic reasoning (as defined in Table 1 below). The research questions guiding our 
work are: (1) what similarities or differences in forms of reasoning are exhibited by 
both groups of students as they worked on equivalent tasks? (2) Do certain tasks tend 
to elicit particular forms of reasoning? And, (3) if so, what are their characteristics?  
THEORETICAL FRAMEWORK AND RELATED LITERATURE
The ability to reason is crucial for students to develop both a need and appreciation 
for making convincing arguments. It is also a basic requirement for supporting 
arguments in justification and proof making in the learning of mathematics. Several 
studies have documented the ability of elementary and middle school students to 
reason and provide justification for their reasoning as they work collaboratively in a 
supportive environment (Ball, 1991; Lampert, 1990; Maher & Martino, 1996; 
Mueller, 2007; Mueller & Maher, 2008; Steencken, 2001; Steencken & Maher, 2003; 
Yackel & Cobb, 1994).
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Psychologists have defined reasoning as the process of coordinating evidence, ideas, 
and beliefs to draw conclusions about what is true (Leighton, 2003). Mathematical 
reasoning has been described by Yackel and Hanna (2003) as both the use of 
induction, deduction, association, and inference to draw conclusions about quantity 
and structure, and a “communal activity in which learners participate as they interact 
with one another to solve mathematical problems” (p. 228). The second description 
situates mathematical reasoning in a context that allows for it to be elicited, while the 
first qualifies the forms of reasoning that are useful when doing mathematics. This 
study builds on and extends the research by examining patterns in the forms of 
reasoning elicited by elementary and middle school students as they worked on open 
ended tasks. 

METHODOLOGY 
This study draws from two data sets. The first is a longitudinal study of students’ 
mathematical thinking that was conducted by researchers in a fourth grade classroom 
of twenty-five students in a suburban school in New Jersey1. The second source of 
data is an informal after-school math program consisting of twenty-four sixth grade 
students that was conducted by researchers in an low socioeconomic, urban 
community in New Jersey, drawn from a school consisting of 99% Latino and 
African American students2. In the schools of this study, computation with fractions 
is introduced in grade 5. Hence, the fourth graders were not yet taught operations 
with fractions and related fraction ideas, while those in grade six had been taught 
procedures related to fraction ideas and operations. For both classes, the series of 
sessions were videotaped with at least two cameras. For this paper, we report data 
from the first seven 60 minute sessions from the fourth grade study and the first five 
60-75 minute sessions from the sixth grade study3. The fourth graders began their 
work in pairs; while the sixth graders worked in groups of three or four. Both groups 
investigated tasks involving Cuisenaire rods. The strands of tasks were the same or 
very similar in both studies. Students were encouraged to provide justification for 
their solutions and to challenge and question the explanations of others.
Video recordings and transcripts were analyzed using the analytical model outlined 
by Powell, Francisco & Maher (2003). The transcripts were coded for forms of 
reasoning. For the purposes of this study, the forms of reasoning were defined as 
                                          

1 This study, directed by Robert B. Davis and Carolyn A. Maher was supported, in part, by grant MDR 9053597 from the National 
Science Foundation and by grant 93-992022-8001 from the N.J. Department of Higher Education, directed by Carolyn A Maher. The 
views expressed in this paper are those of the authors and not necessarily those of the funding agencies. 
2 The Informal Mathematical Learning Project (IML) directed by Carolyn A. Maher, Arthur B. Powell, and Keith Weber, was 
supported by a grant from the National Science Foundation (ROLE: REC0309062). The views expressed in this paper are those of 
the authors and not necessarily those of the funding agency. 
3 See Mueller 2007 and Mueller & Maher, 2008 for a detailed analysis of the second set of data
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follows. First, direct reasoning was based on the assumption that “the hypothesis 
contains enough information to allow the construction of a series of logically 
connected steps leading to the conclusion” (Cupillari, 2005, p. 12). Second, 
reasoning by contradiction was based on the agreement that whenever a statement is 
true, its contrapositive is also true; or that a statement is equivalent to its 
contrapositive (Cupillari, 2005). Third, reasoning by cases involved students 
defending an argument by defending separate instances. Fourth, reasoning using 
upper and lower bounds was noted when the upper and/or lower bound of a subset S 
of some partially ordered set was defined, and an argument was then formed to 
justify a statement about the subset within the defined bounds (for example, that it is 
empty). Fifth, generic reasoning involved reasoning about a paradigmatic example 
whose properties can be applied to the set under discussion and lends insight into a 
more general truth, which in turn verifies the claim made about the particular 
example (Rowland, 2002) 
Finally, the two data sets were compared, and similarities and differences were noted.
Task Grade 4 Grade 6 
If we call the dark green rod one, what number 
name would I give the light green rod? 

Direct  Direct  

Someone told me that the red rod is half as long as 
the yellow rod. What do you think? 

Contradiction  Contradiction 

If we call the blue rod one, which rod will have the 
number name one half? 

All 5 forms 
noted

All 5 forms 
noted

If we call the orange rod one, what number name 
will I give the white rod? 

Direct  Direct  

If we call the orange rod one, what number name 
will I give the red rod? 

Direct Direct 

Is 1/5 = 2/10? Direct Direct & 
Contradiction

Table 1: Sample Tasks and Forms of Reasoning that Emerged 

RESULTS
Throughout the sessions, all students contributed to the discussion and direct and 
indirect forms of reasoning were elicited. Analysis of the data showed similarities 
between the forms of reasoning used by students in both grades. A representative 
sample of tasks that elicited similar forms of reasoning in both groups of students is 
listed in Table 1. Due to space limitations, this paper will discuss the similarities 
between the reasoning used by the fourth and sixth graders as they worked on the 
task: “If we call the blue rod one, which rod will have the number name one half?” 
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Psychologists have defined reasoning as the process of coordinating evidence, ideas, 
and beliefs to draw conclusions about what is true (Leighton, 2003). Mathematical 
reasoning has been described by Yackel and Hanna (2003) as both the use of 
induction, deduction, association, and inference to draw conclusions about quantity 
and structure, and a “communal activity in which learners participate as they interact 
with one another to solve mathematical problems” (p. 228). The second description 
situates mathematical reasoning in a context that allows for it to be elicited, while the 
first qualifies the forms of reasoning that are useful when doing mathematics. This 
study builds on and extends the research by examining patterns in the forms of 
reasoning elicited by elementary and middle school students as they worked on open 
ended tasks. 

METHODOLOGY 
This study draws from two data sets. The first is a longitudinal study of students’ 
mathematical thinking that was conducted by researchers in a fourth grade classroom 
of twenty-five students in a suburban school in New Jersey1. The second source of 
data is an informal after-school math program consisting of twenty-four sixth grade 
students that was conducted by researchers in an low socioeconomic, urban 
community in New Jersey, drawn from a school consisting of 99% Latino and 
African American students2. In the schools of this study, computation with fractions 
is introduced in grade 5. Hence, the fourth graders were not yet taught operations 
with fractions and related fraction ideas, while those in grade six had been taught 
procedures related to fraction ideas and operations. For both classes, the series of 
sessions were videotaped with at least two cameras. For this paper, we report data 
from the first seven 60 minute sessions from the fourth grade study and the first five 
60-75 minute sessions from the sixth grade study3. The fourth graders began their 
work in pairs; while the sixth graders worked in groups of three or four. Both groups 
investigated tasks involving Cuisenaire rods. The strands of tasks were the same or 
very similar in both studies. Students were encouraged to provide justification for 
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Video recordings and transcripts were analyzed using the analytical model outlined 
by Powell, Francisco & Maher (2003). The transcripts were coded for forms of 
reasoning. For the purposes of this study, the forms of reasoning were defined as 
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follows. First, direct reasoning was based on the assumption that “the hypothesis 
contains enough information to allow the construction of a series of logically 
connected steps leading to the conclusion” (Cupillari, 2005, p. 12). Second, 
reasoning by contradiction was based on the agreement that whenever a statement is 
true, its contrapositive is also true; or that a statement is equivalent to its 
contrapositive (Cupillari, 2005). Third, reasoning by cases involved students 
defending an argument by defending separate instances. Fourth, reasoning using 
upper and lower bounds was noted when the upper and/or lower bound of a subset S 
of some partially ordered set was defined, and an argument was then formed to 
justify a statement about the subset within the defined bounds (for example, that it is 
empty). Fifth, generic reasoning involved reasoning about a paradigmatic example 
whose properties can be applied to the set under discussion and lends insight into a 
more general truth, which in turn verifies the claim made about the particular 
example (Rowland, 2002) 
Finally, the two data sets were compared, and similarities and differences were noted.
Task Grade 4 Grade 6 
If we call the dark green rod one, what number 
name would I give the light green rod? 

Direct  Direct  

Someone told me that the red rod is half as long as 
the yellow rod. What do you think? 

Contradiction  Contradiction 

If we call the blue rod one, which rod will have the 
number name one half? 

All 5 forms 
noted

All 5 forms 
noted

If we call the orange rod one, what number name 
will I give the white rod? 

Direct  Direct  

If we call the orange rod one, what number name 
will I give the red rod? 

Direct Direct 

Is 1/5 = 2/10? Direct Direct & 
Contradiction

Table 1: Sample Tasks and Forms of Reasoning that Emerged 

RESULTS
Throughout the sessions, all students contributed to the discussion and direct and 
indirect forms of reasoning were elicited. Analysis of the data showed similarities 
between the forms of reasoning used by students in both grades. A representative 
sample of tasks that elicited similar forms of reasoning in both groups of students is 
listed in Table 1. Due to space limitations, this paper will discuss the similarities 
between the reasoning used by the fourth and sixth graders as they worked on the 
task: “If we call the blue rod one, which rod will have the number name one half?” 
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This task was posed during the second session of each study, and both groups of 
students worked to find the nonexistent rod that could be called one half of the blue 
rod (which is nine centimeters long). In both groups of students, the arguments were 
rich and varied, and correct lines of reasoning by contradiction, upper and lower 
bounds, cases, and generic reasoning were presented. In both groups, the students 
used direct reasoning to offer faulty solutions to the task. 
The Fourth Grade 
Reasoning Using Upper and Lower Bounds 
In the fourth grade, David offered a solution and presented an argument using upper 
and lower bounds (c.f. Maher & Davis, 1995). He said, “I don’t think that you can do 
that because if you put two yellows that'd be too big, but then if you put two purples 
… that’d be too short”. When questioned by the researcher if there was any rod 
between the purple and the yellow, David replied, “I don’t think there is anything.”  
David then presented his argument at the overhead projector. He showed that the 
length of the purple rod was one white rod shorter than the yellow rod, and then lined 
up the rods in a “staircase” pattern to show that, when ordered according to length, 
each successive rod was one white rod longer than the previous rod. He demonstrated 
that there is no rod that is shorter than the yellow rod and also longer than the purple 
rod.  
Direct Reasoning (incorrect) 
Erik incorrectly reasoned that the purple and yellow rod could each be called one half 
of the blue rod. Erik said, “See, I figured if you take a yellow and a purple it’s equal 
[to the length of the blue rod]. They’re not exactly the same, but they’re both halves. 
Because the purple would be half of this even though the yellow is bigger because if 
you put the purple on the bottom and the yellow on top it’s equal, so they’re both 
halves, but only one’s bigger than the other. So it equals up to the same thing.” 
Reasoning by Contradiction 
Many students disagreed with Erik’s suggestion. Alan and Jessica used the definition 
of one half to counter Erik’s claim. 

Alan: When you’re dividing things into halves, both halves have to be equal – in 
order to be considered a half. 

Jessica: This isn’t a half. Those two aren’t both even halves. 

Alan made the definition of one half explicit. Jessica then showed the contradiction 
inherent in Erik’s argument by saying that the purple and yellow rods aren’t the same 
length, and therefore cannot be called one half of the blue rod. This counterargument 
is a sophisticated use of reasoning by contradiction, as it considers the faulty claim 
that Erik proposed and uses a definition to show the contradiction in the argument. 
Reasoning by Cases 

Maher, Mueller, Yankelewitz 

PME 33 - 2009 1- 5 

David then used an argument by cases to show that all rods can be classified as even 
or odd, and that their ability to be divided in half can be determined from that 
classification. He showed that the white, light green, yellow, black, and blue rods are 
“odd” because no rod exists that is one half their length. He then showed that the 
remaining rods are “even”. To illustrate his point, he showed that two purple rods 
equal the length of the brown rod and two yellow rods are equal to the length of the 
orange rod, proving that the brown and yellow rods are even. 
Generic Reasoning 
David’s argument by cases also contained an element of generic reasoning. By using 
the example of the blue rod, he showed that its properties can be applied to all “odd” 
rods in the set. After showing this general truth, he returned to the specific case of the 
blue rod, showing that since it belongs to the category of “odd” rods, there does not 
exist a rod that is half its length.
The Sixth Grade 
In the sixth grade informal math session, similar arguments were used. There, direct 
reasoning, generic reasoning, and reasoning by cases, upper and lower bounds, and 
contradiction were used, and their arguments closely resembled those of the fourth 
grade students. 
Direct Reasoning (incorrect) 
Michael and Shirelle each proposed a solution similar to Erik’s, suggesting that the 
yellow and purple rods are two halves of the blue rod. They showed that a purple and 
yellow train equals the blue rod, and called each of the rods half of the blue rod. 
Reasoning by Contradiction 
Chris used an argument by contradiction to show that there was no rod whose length 
was half of the blue rod. Building a model of nine white rods lined up next to the blue 
rod, he said, “Since there’s nine white little rods you can’t really divide that into a 
half so you can’t really divide by two because you get a decimal or remainder so 
there is really no half, no half of blue because of the white rods.” 
Chris argued that since there were nine of the smallest size rods, and nine is not 
divisible by two, there was no rod that was one half of the blue rod. He used the fact 
that each rod was equal in length to a multiple of the white rods, and that if the length 
of the blue rod couldn’t be divided into two equal groups of white rods, no rod that 
was half of the blue rod existed. Chris’ use of decimals and remainders in his 
argument highlights one difference between the two groups of students. Due to their 
more extensive exposure to mathematics, the sixth graders included some 
mathematical ideas in their arguments that were not used by the fourth graders. 
Reasoning Using Upper and Lower Bounds 
Dante presented an argument using upper and lower bounds at the overhead 
projector. After repeating his argument by contradiction that the yellow is longer than 
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that there is no rod that is shorter than the yellow rod and also longer than the purple 
rod.  
Direct Reasoning (incorrect) 
Erik incorrectly reasoned that the purple and yellow rod could each be called one half 
of the blue rod. Erik said, “See, I figured if you take a yellow and a purple it’s equal 
[to the length of the blue rod]. They’re not exactly the same, but they’re both halves. 
Because the purple would be half of this even though the yellow is bigger because if 
you put the purple on the bottom and the yellow on top it’s equal, so they’re both 
halves, but only one’s bigger than the other. So it equals up to the same thing.” 
Reasoning by Contradiction 
Many students disagreed with Erik’s suggestion. Alan and Jessica used the definition 
of one half to counter Erik’s claim. 

Alan: When you’re dividing things into halves, both halves have to be equal – in 
order to be considered a half. 

Jessica: This isn’t a half. Those two aren’t both even halves. 

Alan made the definition of one half explicit. Jessica then showed the contradiction 
inherent in Erik’s argument by saying that the purple and yellow rods aren’t the same 
length, and therefore cannot be called one half of the blue rod. This counterargument 
is a sophisticated use of reasoning by contradiction, as it considers the faulty claim 
that Erik proposed and uses a definition to show the contradiction in the argument. 
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David then used an argument by cases to show that all rods can be classified as even 
or odd, and that their ability to be divided in half can be determined from that 
classification. He showed that the white, light green, yellow, black, and blue rods are 
“odd” because no rod exists that is one half their length. He then showed that the 
remaining rods are “even”. To illustrate his point, he showed that two purple rods 
equal the length of the brown rod and two yellow rods are equal to the length of the 
orange rod, proving that the brown and yellow rods are even. 
Generic Reasoning 
David’s argument by cases also contained an element of generic reasoning. By using 
the example of the blue rod, he showed that its properties can be applied to all “odd” 
rods in the set. After showing this general truth, he returned to the specific case of the 
blue rod, showing that since it belongs to the category of “odd” rods, there does not 
exist a rod that is half its length.
The Sixth Grade 
In the sixth grade informal math session, similar arguments were used. There, direct 
reasoning, generic reasoning, and reasoning by cases, upper and lower bounds, and 
contradiction were used, and their arguments closely resembled those of the fourth 
grade students. 
Direct Reasoning (incorrect) 
Michael and Shirelle each proposed a solution similar to Erik’s, suggesting that the 
yellow and purple rods are two halves of the blue rod. They showed that a purple and 
yellow train equals the blue rod, and called each of the rods half of the blue rod. 
Reasoning by Contradiction 
Chris used an argument by contradiction to show that there was no rod whose length 
was half of the blue rod. Building a model of nine white rods lined up next to the blue 
rod, he said, “Since there’s nine white little rods you can’t really divide that into a 
half so you can’t really divide by two because you get a decimal or remainder so 
there is really no half, no half of blue because of the white rods.” 
Chris argued that since there were nine of the smallest size rods, and nine is not 
divisible by two, there was no rod that was one half of the blue rod. He used the fact 
that each rod was equal in length to a multiple of the white rods, and that if the length 
of the blue rod couldn’t be divided into two equal groups of white rods, no rod that 
was half of the blue rod existed. Chris’ use of decimals and remainders in his 
argument highlights one difference between the two groups of students. Due to their 
more extensive exposure to mathematics, the sixth graders included some 
mathematical ideas in their arguments that were not used by the fourth graders. 
Reasoning Using Upper and Lower Bounds 
Dante presented an argument using upper and lower bounds at the overhead 
projector. After repeating his argument by contradiction that the yellow is longer than 
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the purple by one white rod and so each cannot be one half of the blue rod, he 
showed that there are no other rods that can be called one half of the blue rod. He 
said, “Usually for the blue piece, it would usually be purple or yellow but yellow 
would be one um one white piece over it and the pink would be, I mean purple would 
be one white piece under it.” 
Dante argued that either the purple or the yellow would be possible halves of the blue 
rod. However, he explained that the length of two yellow rods is one white rod longer 
than the blue rod, and that the length two purple rods is one white rod shorter than the 
blue rod. This argument showed that the yellow rod is an upper bound and the purple 
rod is a lower bound, and that there is no rod that is exactly one half of the blue rod. 
Reasoning by Cases, Generic Reasoning 
Justina then presented an argument by cases similar to David’s. She called David’s 
“odd” rods “singles”, since those rods cannot be paired with a rod that is half its 
length. She then showed that the white, light green, yellow, black, and blue rods fall 
into this category. Similar to David’s argument, her argument also contained an 
element of generic reasoning. 

CONCLUSIONS AND IMPLICATIONS 
 In both studies, all forms of reasoning identified prior to the study were 
elicited, and varied arguments were presented to justify solutions that were offered. 
Many similarities in forms of reasoning used were noted, as can be seen from the 
sample results in Table 1. It can be concluded that careful task design can enable all 
students to reason effectively and learn to use different forms of arguments as they do 
mathematics. One significant difference that was noted between the forms of 
reasoning elicited for the different tasks. For the majority of tasks posed during the 
sessions in both studies, direct reasoning was the most common form used by the 
students. For example, of the six tasks analyzed in the table, four of the tasks elicited 
direct reasoning. When working on the task presented above, however, direct 
reasoning was only used to make incorrect claims, while reasoning by cases, 
contradiction, upper and lower bounds, and generic reasoning was used to provide 
correct solutions to the problem. This discrepancy highlights the tendency of this task 
to elicit forms of reasoning other than direct reasoning and the fact that different tasks 
tend to elicit different forms of reasoning consistently.  
 The discrepancy that was noted in the results pointed to a possible answer to 
the third and fourth research questions. We examined the task that elicited these 
different forms of reasoning to identify the characteristics of the task that may have 
been the cause of this difference. One possible reason for this difference is the 
structure of the task. Many other tasks required students to show the truth of a 
statement, and lent themselves to direct arguments. This task, however, encouraged 
students to show an argument by contradiction since, in the given set, there was no 
rod with number name one half, when blue was called one. This invited students to 
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use other forms of reasoning, as called for in the NCTM standards, and resulted in the 
display of rich, varied arguments. The significant differences between the two groups 
under study, including their differences in age and socioeconomic status, as well as 
the different settings in which the tasks were posed, suggest that carefully designed 
tasks can provide the opportunity for all students to gain knowledge in using different 
forms of reasoning, meeting a primary goal of mathematics education. In order for 
students to practice using mathematical reasoning in all its forms, it might be helpful 
for teachers to introduce tasks that have the potential to elicit various forms of 
reasoning.  
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the purple by one white rod and so each cannot be one half of the blue rod, he 
showed that there are no other rods that can be called one half of the blue rod. He 
said, “Usually for the blue piece, it would usually be purple or yellow but yellow 
would be one um one white piece over it and the pink would be, I mean purple would 
be one white piece under it.” 
Dante argued that either the purple or the yellow would be possible halves of the blue 
rod. However, he explained that the length of two yellow rods is one white rod longer 
than the blue rod, and that the length two purple rods is one white rod shorter than the 
blue rod. This argument showed that the yellow rod is an upper bound and the purple 
rod is a lower bound, and that there is no rod that is exactly one half of the blue rod. 
Reasoning by Cases, Generic Reasoning 
Justina then presented an argument by cases similar to David’s. She called David’s 
“odd” rods “singles”, since those rods cannot be paired with a rod that is half its 
length. She then showed that the white, light green, yellow, black, and blue rods fall 
into this category. Similar to David’s argument, her argument also contained an 
element of generic reasoning. 

CONCLUSIONS AND IMPLICATIONS 
 In both studies, all forms of reasoning identified prior to the study were 
elicited, and varied arguments were presented to justify solutions that were offered. 
Many similarities in forms of reasoning used were noted, as can be seen from the 
sample results in Table 1. It can be concluded that careful task design can enable all 
students to reason effectively and learn to use different forms of arguments as they do 
mathematics. One significant difference that was noted between the forms of 
reasoning elicited for the different tasks. For the majority of tasks posed during the 
sessions in both studies, direct reasoning was the most common form used by the 
students. For example, of the six tasks analyzed in the table, four of the tasks elicited 
direct reasoning. When working on the task presented above, however, direct 
reasoning was only used to make incorrect claims, while reasoning by cases, 
contradiction, upper and lower bounds, and generic reasoning was used to provide 
correct solutions to the problem. This discrepancy highlights the tendency of this task 
to elicit forms of reasoning other than direct reasoning and the fact that different tasks 
tend to elicit different forms of reasoning consistently.  
 The discrepancy that was noted in the results pointed to a possible answer to 
the third and fourth research questions. We examined the task that elicited these 
different forms of reasoning to identify the characteristics of the task that may have 
been the cause of this difference. One possible reason for this difference is the 
structure of the task. Many other tasks required students to show the truth of a 
statement, and lent themselves to direct arguments. This task, however, encouraged 
students to show an argument by contradiction since, in the given set, there was no 
rod with number name one half, when blue was called one. This invited students to 
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use other forms of reasoning, as called for in the NCTM standards, and resulted in the 
display of rich, varied arguments. The significant differences between the two groups 
under study, including their differences in age and socioeconomic status, as well as 
the different settings in which the tasks were posed, suggest that carefully designed 
tasks can provide the opportunity for all students to gain knowledge in using different 
forms of reasoning, meeting a primary goal of mathematics education. In order for 
students to practice using mathematical reasoning in all its forms, it might be helpful 
for teachers to introduce tasks that have the potential to elicit various forms of 
reasoning.  
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In this paper we establish a link between the Onto-Semiotic Approach to mathematics 
cognition and instruction (Godino, Batanero and Font, 2007) and the Cognitive 
Science of Mathematics (Lakoff and Núñez, 2000). We use an a priori 
characterization of “optimizing intuition” as the context for reflection. 

INTRODUCTION
One characteristic of the research community in mathematics education is its large 
diversity of different theoretical perspectives and research paradigms. Although 
diversity is not considered a problem but a rich resource for grasping complex 
realities, we need strategies for connecting theories or research results obtained with 
different theoretical approaches. Each theoretical perspective tends to privilege some 
reality dimensions over others. Thus, it is not always an easy task to find links among 
research questions, descriptions, methodologies and conclusions that are elaborated 
within different paradigms. A specific research effort is needed in this direction. In 
this paper we establish a link between the Onto-Semiotic Approach to mathematics
cognition and instruction and the Cognitive Science of Mathematics. We use an a 
priori characterization of “optimizing intuition” as the context for reflection. The 
confirmation of the existence (or not) of this type of intuition should be the result of a 
posteriori research. 
The available literature on intuition is reviewed, the theoretical framework is 
presented and the constructs of the theoretical framework are used to explain what is 
meant by optimizing intuition in this work. 

LITERATURE REVIEW 
The relationships between intuition and rigor have been studied and debated in the 
field of Mathematical Education. Fischbein (1994) defines the notion of intuition and 
analyzes the essential role that it plays in students’ mathematical and scientific 
processes. He classifies intuitions in two ways: according to its functions and 
according to its origins, although he warns that these distinctions should not be 
considered as absolute ones. Using Fischbein’s work as a reference, Tirosh and Stavy 
(1999) developed the theory of the intuitive rules which allows the analysis of 
students’ inappropriate answers to a wide variety of mathematical tasks.   
One possible classification of types of intuition is to consider the mathematical 
content to which intuition is applied. This classification of intuitions strengthens our 
question about the existence of an “optimizing intuition”. 
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THEORETICAL FRAMEWORK 
Below are summaries of the theoretical framework used in this work: The Onto-
semiotic Approach and the Cognitive Science of Mathematics.
The Onto-Semiotic Approach (OSA) 
In Figure 1 we represent some of the different theoretical notions of the Onto-
Semiotic Approach to mathematics cognition and instruction (Godino, Batanero & 
Font, 2007; Font and Contreras, 2008). Here mathematical activity plays a central 
role and is modelled in terms of systems of operative and discursive practices. From 
these practices the different types of mathematical objects (language, arguments, 
concepts, propositions, procedures and problems) which are related, emerge building 
cognitive or epistemic configurations among them. (hexagon in Figure 1).  

Figure 1. An onto-semiotic representation of mathematical knowledge 
The problem-situations promote and contextualise the activity; languages (symbols, 
notations, graphics) represent the other entities and serve as tools for action; 
arguments justify the procedures and propositions that relate the concepts. Lastly, the 
objects that appear in mathematical practices and those emerging from these practices 
depend on the “language game” in which they participate, and might be considered 
from the five facets of dual dimensions (decagon in Figure 1): personal/institutional, 
elemental/systemic, expression/content, ostensive/non-ostensive and 
extensive/intensive. The dualities as well as objects can be analysed from a process-
product perspective, a kind of analysis that leads us to the processes in Figure 1. In 
the OSA, instead of giving a general definition of process, it has been opted for a 
selection of a list of processes that are considered important in mathematical activity 
(those of Figure 1), without claiming that it includes all the processes implicit in 
mathematical activity because, among other reasons, some of the most important of 
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them (for example, the solving of problems or modelling) are more than just 
processes and should be considered hyper or mega-processes. 
Cognitive Science of Mathematics 
Lakoff and Núñez (2000) state that the mathematical structures people build have to 
be looked for in daily cognitive processes such as the schemes of images and the 
metaphoric thinking. Such processes allow us to explain how the construction of 
mathematical objects is supported by the way in which our body interacts with the 
objects in everyday life. To reach abstract thinking, we need to use more basic 
schemes which are derived from the very immediate experience of our bodies. We 
use these basic schemes, called image schemes, to give sense, through metaphorical 
mappings, to our experiences in abstract domains. Lakoff and Núñez (2000) claim 
that the metaphors create a conceptual relationship between the source domain 
and the target domain. They distinguish two types of conceptual metaphors in 
relation to mathematics. A) Grounding metaphors: They relate a source domain 
out of mathematics with a target domain inside mathematics. B) Linking 
metaphors: They have their source and target domains in mathematics. 
Lakoff and Núñez (2000) analyze four grounding metaphors whose target domain is 
arithmetic. In these four metaphors, we can find an approximation to the relationship 
of order, which is vital to the understanding of the concepts of maximum and 
minimum. On the other hand, these authors also consider that the graphics of the 
functions are structured through the metaphorical mapping of the “The Source-Path-
Goal schema”. Such a mapping conceptualizes the graphic of the function in terms of 
motion along a path - as when a function is described as “going up”, “reaching” a 
maximum, and “going down” again. In this way, the idea of the ups and downs of a 
road is essential to the understanding of the concepts of maximum and minimum. 
The link between these frameworks 
In different research works conducted within the OSA framework, theoretical 
connections have been developed between this approach and the theory of Lakoff and 
Núñez. In Acevedo (2008) metaphorical processes are related to the 16 processes 
showed in Figure 1. To accomplish this task, the researchers use the graphic 
representation of functions as the context for reflection. In the present work, we are 
interested in commenting in detail the understanding of what metaphorical processes 
are. That understanding results from observing these processes from the “unitary – 
systemic” duality proposed in the OSA (Acevedo, 2008).
In Lakoff’s and Núñez’s works, the unitary – systemic duality has a central role. On 
the one hand, the metaphor is unitary (A is B). On the other hand, the metaphor 
allows us to generate a new system of practices (systemic perspective) as a result of 
our understanding of the target domain in terms of the source domain. Lakoff and
Núñez develop the unitary–systemic duality for different metaphors. A good example 
can be the metaphor of the container, which according to Núñez (2000) is a metaphor 
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(those of Figure 1), without claiming that it includes all the processes implicit in 
mathematical activity because, among other reasons, some of the most important of 
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them (for example, the solving of problems or modelling) are more than just 
processes and should be considered hyper or mega-processes. 
Cognitive Science of Mathematics 
Lakoff and Núñez (2000) state that the mathematical structures people build have to 
be looked for in daily cognitive processes such as the schemes of images and the 
metaphoric thinking. Such processes allow us to explain how the construction of 
mathematical objects is supported by the way in which our body interacts with the 
objects in everyday life. To reach abstract thinking, we need to use more basic 
schemes which are derived from the very immediate experience of our bodies. We 
use these basic schemes, called image schemes, to give sense, through metaphorical 
mappings, to our experiences in abstract domains. Lakoff and Núñez (2000) claim 
that the metaphors create a conceptual relationship between the source domain 
and the target domain. They distinguish two types of conceptual metaphors in 
relation to mathematics. A) Grounding metaphors: They relate a source domain 
out of mathematics with a target domain inside mathematics. B) Linking 
metaphors: They have their source and target domains in mathematics. 
Lakoff and Núñez (2000) analyze four grounding metaphors whose target domain is 
arithmetic. In these four metaphors, we can find an approximation to the relationship 
of order, which is vital to the understanding of the concepts of maximum and 
minimum. On the other hand, these authors also consider that the graphics of the 
functions are structured through the metaphorical mapping of the “The Source-Path-
Goal schema”. Such a mapping conceptualizes the graphic of the function in terms of 
motion along a path - as when a function is described as “going up”, “reaching” a 
maximum, and “going down” again. In this way, the idea of the ups and downs of a 
road is essential to the understanding of the concepts of maximum and minimum. 
The link between these frameworks 
In different research works conducted within the OSA framework, theoretical 
connections have been developed between this approach and the theory of Lakoff and 
Núñez. In Acevedo (2008) metaphorical processes are related to the 16 processes 
showed in Figure 1. To accomplish this task, the researchers use the graphic 
representation of functions as the context for reflection. In the present work, we are 
interested in commenting in detail the understanding of what metaphorical processes 
are. That understanding results from observing these processes from the “unitary – 
systemic” duality proposed in the OSA (Acevedo, 2008).
In Lakoff’s and Núñez’s works, the unitary – systemic duality has a central role. On 
the one hand, the metaphor is unitary (A is B). On the other hand, the metaphor 
allows us to generate a new system of practices (systemic perspective) as a result of 
our understanding of the target domain in terms of the source domain. Lakoff and
Núñez develop the unitary–systemic duality for different metaphors. A good example 
can be the metaphor of the container, which according to Núñez (2000) is a metaphor 
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used to structure the theory of classes. For this author, this metaphor is ontologic and 
unconscious and has its origin in every day life. (Núñez, 2000, p. 13): 
Unitary:                “Classes are containers”
Systemic:

Source Domain  Target Domain 
Container Schemas Classes

Interior of Container Schemas Classes

Objects in Interiors Class members 

Being an Object of an Interior The Membership Relation 

An Interior of one Container Schema 
within a Larger One 

A subclass in a Larger Class 

The Overlap of the Interiors of Two 
Container Schemas 

The Intersection of Two 
Classes

The Totality of the Interiors of Two 
Container Schemas 

The Union of Two Classes 

The Exterior of a Container Schemas The Complement of a Class 

Table 1. The metaphor “Classes are containers”
In fact, most research on metaphors has been mainly targeted at studying such a 
duality. In other words, given a metaphor, the source and the target domains are 
decomposed to determine what concepts, properties, relationships, etc. from the 
source domain are transferred to the target domain. The systemic vision of a 
metaphor leads us to understand it as a generator of new practices.
Because the OSA considers that on the one hand, among other aspects, an 
epistemic/cognitive configuration, depending on whether the adopted point of view is 
institutional or personal, has to be activated to do mathematical practices, and that on 
the other hand the systemic vision of the metaphor leads us to understand it as a 
generator of new practices, it is natural to ask ourselves the following question: How
is the metaphor related to the building components of epistemic/cognitive 
configurations? The conclusion drawn by Acevedo (2008) on linking metaphors is 
that a linking metaphor projects an epistemic/cognitive configuration on another one. 
The epistemic/cognitive configuration construct allows us to explain and precise the 
structure that is projected on the linking metaphors. There is a source domain that has 
the structure of an epistemic/cognitive configuration (whether the adopted point of 
view is institutional or personal) which projects itself on a target domain that also has 
the structure of an epistemic/cognitive configuration. This way of understanding the 
preservation of the metaphoric projection improves the explanation of such a 
preservation given by Lakoff and Núñez (2000), in which they just give a two-
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column table in which mainly properties and concepts are mixed. The reader can 
intuit that the properties are projected on properties and the concepts on concepts. 
Still unresolved is the question of what structure is projected in the case of a 
grounding metaphor. We believe that unlike the linking metaphors, only some parts 
of the epistemic/cognitive configuration are projected. The specific study of each 
grounding metaphor will allow the identification of such parts. 

THE OPTIMIZING INTUITION IN THIS RESEARCH 
Now we explain what we mean by optimizing intuition in our research. To 
accomplish this goal, we will use the following question as a context for reflection: 
Why are there people who consider it evident that a graphic that looks like a parabola 
that is shown to them (Figure 2.A) has a maximum? To answer this question, we use 
three of the processes considered in Figure 1 (idealization, generalization, and 
argumentation), the image schemes, and the metaphorical mappings, in the way they 
were applied in Acevedo’s doctoral thesis (2008). 
Above all, intuition has to do with the process of idealization (Font and Contreras 
2008). Let’s suppose that the teacher draws on the blackboard the Figure 2(A) on the 
left and that he talks about it as if he were displaying the graphic of a parabola and 
simultaneously expecting that the students interpret such a figure similarly. The 
teacher and students talk about Figure 2(A) as if it were a parabola. If we look 
carefully at Figure 2(A), we observe that the graphic is not actually a parabola. It is 
clear that the teacher hopes the students will go through the same process of 
idealization of Figure 2(A) and draw it on the sheet of paper as he has done. That is 
to say, Figure 2(A) is an ideal figure, explicitly or implicitly, for the type of discourse 
the teacher and students make about it. Figure 2(A), drawn on the sheet of paper, is 
concrete and ostensive (in the sense that it is drawn with ink and is observable by 
anyone who is in the classroom) and, as a result of the process of idealization, one 
has a non-ostensive object (the parabola) in the sense that one supposes it is a 
mathematical object that cannot be presented directly. On the other hand, this non-
ostensive object is particular. In the onto-semiotic approach, this type of 
“individualized” object is called an extensive object. Therefore, as a result of the 
process of idealization, we have moved from an ostensive, which was extensive, to a 
non-ostensive that continues to be an extensive object. 
The process of idealization is a process that duplicates entities because besides the 
ostensive that is present in the world of human material experiences, it gives 
existence (at least in a virtual way) to an idealized non-ostensive. Font, Godino, 
Planas and Acevedo (in press) argue that the key notion of objectual metaphor is 
central to the understanding of how the teacher’s discourse helps to develop the 
students’ comprehension of the non ostensive mathematical objects as objects that 
have “existence”. In fact, there are classic authors, such as Plato, that have considered 
intuition precisely as a bridge that allows the move between the space-temporal world 
of ostensives and the ideal world of non ostensives.  
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the structure of an epistemic/cognitive configuration (whether the adopted point of 
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preservation of the metaphoric projection improves the explanation of such a 
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column table in which mainly properties and concepts are mixed. The reader can 
intuit that the properties are projected on properties and the concepts on concepts. 
Still unresolved is the question of what structure is projected in the case of a 
grounding metaphor. We believe that unlike the linking metaphors, only some parts 
of the epistemic/cognitive configuration are projected. The specific study of each 
grounding metaphor will allow the identification of such parts. 

THE OPTIMIZING INTUITION IN THIS RESEARCH 
Now we explain what we mean by optimizing intuition in our research. To 
accomplish this goal, we will use the following question as a context for reflection: 
Why are there people who consider it evident that a graphic that looks like a parabola 
that is shown to them (Figure 2.A) has a maximum? To answer this question, we use 
three of the processes considered in Figure 1 (idealization, generalization, and 
argumentation), the image schemes, and the metaphorical mappings, in the way they 
were applied in Acevedo’s doctoral thesis (2008). 
Above all, intuition has to do with the process of idealization (Font and Contreras 
2008). Let’s suppose that the teacher draws on the blackboard the Figure 2(A) on the 
left and that he talks about it as if he were displaying the graphic of a parabola and 
simultaneously expecting that the students interpret such a figure similarly. The 
teacher and students talk about Figure 2(A) as if it were a parabola. If we look 
carefully at Figure 2(A), we observe that the graphic is not actually a parabola. It is 
clear that the teacher hopes the students will go through the same process of 
idealization of Figure 2(A) and draw it on the sheet of paper as he has done. That is 
to say, Figure 2(A) is an ideal figure, explicitly or implicitly, for the type of discourse 
the teacher and students make about it. Figure 2(A), drawn on the sheet of paper, is 
concrete and ostensive (in the sense that it is drawn with ink and is observable by 
anyone who is in the classroom) and, as a result of the process of idealization, one 
has a non-ostensive object (the parabola) in the sense that one supposes it is a 
mathematical object that cannot be presented directly. On the other hand, this non-
ostensive object is particular. In the onto-semiotic approach, this type of 
“individualized” object is called an extensive object. Therefore, as a result of the 
process of idealization, we have moved from an ostensive, which was extensive, to a 
non-ostensive that continues to be an extensive object. 
The process of idealization is a process that duplicates entities because besides the 
ostensive that is present in the world of human material experiences, it gives 
existence (at least in a virtual way) to an idealized non-ostensive. Font, Godino, 
Planas and Acevedo (in press) argue that the key notion of objectual metaphor is 
central to the understanding of how the teacher’s discourse helps to develop the 
students’ comprehension of the non ostensive mathematical objects as objects that 
have “existence”. In fact, there are classic authors, such as Plato, that have considered 
intuition precisely as a bridge that allows the move between the space-temporal world 
of ostensives and the ideal world of non ostensives.  
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Intuition is also related to the generalization process because intuition can be 
considered as the process that allows us to see the general in the particular, a fact that 
is coherent with Fischbein’s perspective (1994). In this case, there is also a 
generalization process according to which we consider this parabola as a particular 
case of any curve that has “a similar shape to that of a parabola”. (In the OSA, this set 
is called an intensive object) 
The relationship between intuition and generalization, for classic authors such as 
Descartes, is necessary to explain one of the basic characteristics of mathematical 
reasoning: the use of generic elements. Descartes proposes in his fifth meditation: it 
is necessary to consider a specific object for intuition, which cannot refer to itself but 
to particular objects, to be able to act. Intuition allows grasping what is general in 
what is particular (capturing the essence). It is not the goal of this work to deepen 
into the problem of the relationship between the generic element and intuition. We 
want just to highlight that any characterization of intuition should consider its 
relationship with generalization. Additionally, when intuition is related to the 
generalization derived from the use of generic elements, the complementary and 
dynamic relationship between rigor and intuition is highlighted. That is, intuition can 
be found in the intermediate steps of a proof or of the solution of a problem. 
Given that intuition is usually considered as a clear and swift intellectual sensation of 
knowledge, of direct and immediate understanding, without using a conscious and 
explicit logical reasoning, we can consider that in intuition there is no explicit 
argumentation even though there is an implicit inference. In the case showed in 
Figure 2 the inference could be, for instance, “as in the curve there is first a part that 
goes up and then a part that goes down, there must be a point of maximum height”.  

Figure 2. Idealization and generalization 
The idea that intuition allows us to know the evident truth of specific mathematical 
propositions was a key element in what is known as the classic theory of truth, valid 
until the appearance of non-Euclidian geometries. Briefly, that theory states that: 1) A 
statement is mathematically true if and only if the statement can be deduced from 
intuitive axioms; 2) Deduction from intuitive axioms is a necessary and sufficient 
condition of mathematical truth; 3) People perceive certain mathematical properties 
(e.g. axioms) as truths evident in themselves. 

Malaspina, Font 

PME 33 - 2009 1- 7 

We propose then the use of a vectorial metaphor in which the intuitive process is a 
vector with three components (Any of them could be “null” in some cases). 

Intuition = (idealization, generalization, argumentation) 
With this metaphor, it can be seen that intuition acts upon universal mathematical 
ideas (which are present through their associated ostensives) to get to results that are 
considered true without (or almost without) an explicit argumentation. In fact, the 
different ways in which intuition can be understood differ in the emphasis that they 
give to each one of the three components of the “intuition vector”. 
The task now is to find an explanation to the argumentation component in the specific 
case we are dealing with; that is, how we can explain that it is evident that “because it 
first goes up and then comes down, there must be a maximum”. We claim there are 
reasons to assume that there is an optimizing intuition which makes this type of 
statements to be considered evident. This optimizing intuition has its origin in 
basically two types of everyday experiences. The first has to do with the fact that in 
everyday life we frequently have to face optimization problems such as when we try 
to find the best way to go from one place to another (not necessarily the shortest), 
also when we try to make the best buy, etc. This type of situations has an optimizing 
reasoning that seeks to find the best solution to a given situation. 
The second type of experiences is related to the fact that we are subjects who 
experience how certain physical characteristics such as physical strength, health, etc 
vary as time goes by and go through critical moments (maxima and minima). In this 
second type of experiences we should consider also those related with the fact that we 
move frequently along roads which have ups and downs. We maintain that these two 
types of situations of everyday life allow us to make metaphorical mappings that 
contribute to the understanding of optimization problems. On the other hand, the very 
bodily experiences facilitate the appearance of the following optimizing image 
scheme (Figure 3), which can subsequently be projected in more abstract domains. 
We maintain that the metaphorical mapping of these domains of experience 
(preferences, consumer, etc) and of the optimizing scheme produce an understanding 
intuition of optimization problems, which is the one that allows us to answer 
intuitively the question with which we began this part of this section. The optimizing 
scheme derived from “The Source-Path-Goal schema”.  
Using Fischbein’s classification as a reference, which distinguishes between primary 
and secondary intuitions, we believe that this intuition would be, in our opinion, of 
the primary type, which remains as stable acquisitions during the entire life, and that, 
as a consequence of the development of formal abilities, can gain in precision. 
In terms of the epistemic/cognitive configuration, one of the characteristics of the 
primary optimizing intuition is that the epistemic/cognitive configurations of the 
solution of optimization problems solved with optimizing intuition do not present the 
argument that justifies why the solution obtained is the optimum, given that it is 
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Intuition is also related to the generalization process because intuition can be 
considered as the process that allows us to see the general in the particular, a fact that 
is coherent with Fischbein’s perspective (1994). In this case, there is also a 
generalization process according to which we consider this parabola as a particular 
case of any curve that has “a similar shape to that of a parabola”. (In the OSA, this set 
is called an intensive object) 
The relationship between intuition and generalization, for classic authors such as 
Descartes, is necessary to explain one of the basic characteristics of mathematical 
reasoning: the use of generic elements. Descartes proposes in his fifth meditation: it 
is necessary to consider a specific object for intuition, which cannot refer to itself but 
to particular objects, to be able to act. Intuition allows grasping what is general in 
what is particular (capturing the essence). It is not the goal of this work to deepen 
into the problem of the relationship between the generic element and intuition. We 
want just to highlight that any characterization of intuition should consider its 
relationship with generalization. Additionally, when intuition is related to the 
generalization derived from the use of generic elements, the complementary and 
dynamic relationship between rigor and intuition is highlighted. That is, intuition can 
be found in the intermediate steps of a proof or of the solution of a problem. 
Given that intuition is usually considered as a clear and swift intellectual sensation of 
knowledge, of direct and immediate understanding, without using a conscious and 
explicit logical reasoning, we can consider that in intuition there is no explicit 
argumentation even though there is an implicit inference. In the case showed in 
Figure 2 the inference could be, for instance, “as in the curve there is first a part that 
goes up and then a part that goes down, there must be a point of maximum height”.  

Figure 2. Idealization and generalization 
The idea that intuition allows us to know the evident truth of specific mathematical 
propositions was a key element in what is known as the classic theory of truth, valid 
until the appearance of non-Euclidian geometries. Briefly, that theory states that: 1) A 
statement is mathematically true if and only if the statement can be deduced from 
intuitive axioms; 2) Deduction from intuitive axioms is a necessary and sufficient 
condition of mathematical truth; 3) People perceive certain mathematical properties 
(e.g. axioms) as truths evident in themselves. 
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We propose then the use of a vectorial metaphor in which the intuitive process is a 
vector with three components (Any of them could be “null” in some cases). 

Intuition = (idealization, generalization, argumentation) 
With this metaphor, it can be seen that intuition acts upon universal mathematical 
ideas (which are present through their associated ostensives) to get to results that are 
considered true without (or almost without) an explicit argumentation. In fact, the 
different ways in which intuition can be understood differ in the emphasis that they 
give to each one of the three components of the “intuition vector”. 
The task now is to find an explanation to the argumentation component in the specific 
case we are dealing with; that is, how we can explain that it is evident that “because it 
first goes up and then comes down, there must be a maximum”. We claim there are 
reasons to assume that there is an optimizing intuition which makes this type of 
statements to be considered evident. This optimizing intuition has its origin in 
basically two types of everyday experiences. The first has to do with the fact that in 
everyday life we frequently have to face optimization problems such as when we try 
to find the best way to go from one place to another (not necessarily the shortest), 
also when we try to make the best buy, etc. This type of situations has an optimizing 
reasoning that seeks to find the best solution to a given situation. 
The second type of experiences is related to the fact that we are subjects who 
experience how certain physical characteristics such as physical strength, health, etc 
vary as time goes by and go through critical moments (maxima and minima). In this 
second type of experiences we should consider also those related with the fact that we 
move frequently along roads which have ups and downs. We maintain that these two 
types of situations of everyday life allow us to make metaphorical mappings that 
contribute to the understanding of optimization problems. On the other hand, the very 
bodily experiences facilitate the appearance of the following optimizing image 
scheme (Figure 3), which can subsequently be projected in more abstract domains. 
We maintain that the metaphorical mapping of these domains of experience 
(preferences, consumer, etc) and of the optimizing scheme produce an understanding 
intuition of optimization problems, which is the one that allows us to answer 
intuitively the question with which we began this part of this section. The optimizing 
scheme derived from “The Source-Path-Goal schema”.  
Using Fischbein’s classification as a reference, which distinguishes between primary 
and secondary intuitions, we believe that this intuition would be, in our opinion, of 
the primary type, which remains as stable acquisitions during the entire life, and that, 
as a consequence of the development of formal abilities, can gain in precision. 
In terms of the epistemic/cognitive configuration, one of the characteristics of the 
primary optimizing intuition is that the epistemic/cognitive configurations of the 
solution of optimization problems solved with optimizing intuition do not present the 
argument that justifies why the solution obtained is the optimum, given that it is 
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considered evident that the found value is the optimum. To get more details you can 
refer to Malaspina (2008). 

Figure 3. Metaphorical mapping of the optimizing scheme 
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ENHANCEMENT OF STUDENTS’ ARGUMENTATION THROUGH 

EXPOSURE TO OTHERS’ APPROACHES 

Joanna Mamona-Downs  

University of Patras, Greece 

In this paper, we discuss and illustrate the advantages of making available to 

students the work of their peers that yield a result in another form. Reflection on the 

structural differences inherent can give students a channel to strengthen the 

exposition that they originally gave 

INTRODUCTION 

An interest in Mathematics Education Literature is to encourage students to solve the 

same task in different ways.  One obvious motive is to persuade students that there is 

no 'official' road to take in argumentation.  Beyond this, the production of 'multiple 

solutions' (i.e. two or more solutions to the same task) may prompt students to reflect 

on their work, and ask why two (or more) approaches lead to the same result.  

One special case arises when different legitimate approaches to a task yield different 

forms of the result.  Such multiple answer tasks can be profitable in motivational 

terms; instead of just pondering why two approaches lead to the same statement, the 

students are engaged on the reconciliation of different guises of the result.  Asking 

why one approach leads to one expression whereas a second leads to another might 

force students to gain structural insight. 

In this paper, we are interested in particular in helping students that have reached a 

correct answer, but have some problems in writing down a ‘satisfactory’ presentation.  

The form of the help is to show each student the work of another whose result format 

is different.  The student is asked to comment on whether the newly exposed material 

clarifies his/her original approach.  The idea is that the structure evident in the 

approach used by the colleague may assist the student to advance his/her working.  

Then the student is guided by the researcher/teacher to obtain a particular 

mathematical construct that provides a common base for the student to express both 

approaches in 'acceptable' mathematical form.  The construct then becomes a channel 

of reconciliation explaining the appearance of the differing results.  

The explicit aims of this paper are to illustrate by an example 

 How the exposition of two different forms of the result to the same task can 

lead to enhanced appreciation of the mathematical system supported by the 

task environment. 

 How the environment of multiple answer tasks can prompt an improvement 

in quality of student proof production in one or more of the associated 

solutions. 
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BACKGROUND MATERIAL 

In the introduction, we refer to the term ‘satisfactory’ presentation.  In the wide range 

of view concerning explanation, argumentation and proof found in the literature, it is 

apt to elaborate what we mean by it.  First, we regard a presentation as a public 

artifact rather than a private one (Raman, 2003); its purpose is to communicate to the 

reader in an impersonal manner.  From this prospective, convincing is not enough; 

full articulation is also required (Mamona-Downs & Downs, 2009b).  Any mental 

argumentation occurring in the working has to be refined in order to create a proof, 

even though the presentation might well hide in its expression many facets of the 

thinking processes that were used to generate it (Haimo, 1995).  A ‘satisfactory’ 

presentation is the laying out of an argument that is not only secure in an embodied 

sense, but also one that is free of suggestion; in particular, every implication made 

refers to explicitly defined objects and symbolism.  This does not mean that formal 

demonstration is required (in fact the very notion of a strict proof is problematic, see 

e.g., Hanna & Jahnke, 1996; Thurston, 1995), but a degree of adherence to a 

mathematical language such as the one referred by Thurston and partially 

characterized in Downs & Mamona-Downs (2005) has to be maintained.  

Quite often students have in their reach convincing argumentation, but they either do 

not realize that this does not qualify as a satisfactory presentation or are not able to 

affect the required transfer.  We distinguish two categories.  First, students can 

develop a mental argument, but are at loss to ‘mathematisize’ their thoughts.  Second, 

students have found an appropriate mathematical framework in which to work in, but 

their personal thinking processes causes problems in translating them into the 

mathematical ‘syntax’.  The first category constitutes a behavior that has been noted 

often in the literature (e.g. Moore, 1994), the second is noted less.  (The notions of 

procept and the proceptual divide due to Gray and Tall, 1994, are relevant to the 

second category, but the proceptual divide tends to be associated more to ‘blind’ 

symbolic operation rather than problems in regulating mathematical expression.  The 

depiction of ‘symbol sense’ by Arcavi, 1994, perhaps sets a better balance.)  

In this respect, we suggest a teaching device involving students comparing their own 

work with those of their peers.  This general stratagem of course is commonly 

practiced in educational circles.  However, we arrange that the material imported 

constitutes a different approach to that made by the receiving student.  The student 

has to reconcile two solutions, making the task a multiple-solution connecting task, 

(see Leikin & Levav-Waynberg, 2007).  Further if the two solutions lead to different 

results, this would be suggestive that the reconciliation has to combine two 

perspectives of the structure implicit in the task environment.   Having available more 

than one way of ‘seeing’ a mathematical system is potent in both realizing and 

enhancing argumentation (Mason, 1989).  By encouraging them to reflect on the 

differences in structure inherent in two separate approaches, students can be guided 

to craft a mathematical construct that acts as a common basis to expound both. 

Mamona-Downs 
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THE EXAMPLE 

Method 

The example was raised in project work taken by mathematics undergraduates 

attending a problem solving course, taught by the author.  The course largely 

followed the ideas of Polya (1973) concerning strategy making and heuristics and of 

Schoenfeld (1985) concerning metacognition, especially executive control and 

accessing knowledge.  Further, the conversion of mental argumentation into accepted 

mathematical frameworks was given some stress (Mamona-Downs & Downs, 

2009a).  The course was intended for the attending students to improve their own 

problem solving skills and mathematical literacy. 

Half of the weight of the grading of the course was assigned to the students' 

contribution in project work.  Each student was involved in one project.  The students 

worked individually or in small groups of two or three.  The time that the students 

had to complete their work was 3 weeks.  The design of the projects were not 

particularly concerned about 'openness'.  Instead, a sequence of tasks is given where 

the resolving of the later tasks likely requires either an indirect or direct reference to 

the solution of previous tasks.  Usually, each project is assigned to two groups.  After 

the project was handed back and appraised, I asked each group (as a body) for a 

semi-structured interview of 1-3/2 hours.  If the working of the other group tackling 

the same project shows substantial differences to the work done by the group 

interviewed, this usually was made as a major point to be discussed in the interview.  

The example below is dealt in this context.     

The task 

The subject of the project at hand concerned the greatest power of one natural 

number that divides another given natural.  Printed at the top of the assignment sheet 

was the following definition concerning symbolic convention. 

 "Given a natural number n, the symbol 2
r
|| n means that the number r is the 

greatest whole number for which 2
r
 divides n". 

This symbolism is commonly used in textbooks of number theory.  Although its form 

can seem to be somehow convoluted, the students had past experience with it and 

showed no difficulty in interpreting it properly.  

The particular task considered here is as follows: 

Part(a): Let nN (where N denotes the natural numbers). Find rn satisfying 

2rn 2n!

Part (b): Let m.  Find sm satisfying: 

2sm m!
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BACKGROUND MATERIAL 

In the introduction, we refer to the term ‘satisfactory’ presentation.  In the wide range 

of view concerning explanation, argumentation and proof found in the literature, it is 

apt to elaborate what we mean by it.  First, we regard a presentation as a public 

artifact rather than a private one (Raman, 2003); its purpose is to communicate to the 

reader in an impersonal manner.  From this prospective, convincing is not enough; 

full articulation is also required (Mamona-Downs & Downs, 2009b).  Any mental 

argumentation occurring in the working has to be refined in order to create a proof, 

even though the presentation might well hide in its expression many facets of the 

thinking processes that were used to generate it (Haimo, 1995).  A ‘satisfactory’ 

presentation is the laying out of an argument that is not only secure in an embodied 

sense, but also one that is free of suggestion; in particular, every implication made 

refers to explicitly defined objects and symbolism.  This does not mean that formal 

demonstration is required (in fact the very notion of a strict proof is problematic, see 

e.g., Hanna & Jahnke, 1996; Thurston, 1995), but a degree of adherence to a 

mathematical language such as the one referred by Thurston and partially 

characterized in Downs & Mamona-Downs (2005) has to be maintained.  

Quite often students have in their reach convincing argumentation, but they either do 

not realize that this does not qualify as a satisfactory presentation or are not able to 

affect the required transfer.  We distinguish two categories.  First, students can 

develop a mental argument, but are at loss to ‘mathematisize’ their thoughts.  Second, 

students have found an appropriate mathematical framework in which to work in, but 

their personal thinking processes causes problems in translating them into the 

mathematical ‘syntax’.  The first category constitutes a behavior that has been noted 

often in the literature (e.g. Moore, 1994), the second is noted less.  (The notions of 

procept and the proceptual divide due to Gray and Tall, 1994, are relevant to the 

second category, but the proceptual divide tends to be associated more to ‘blind’ 

symbolic operation rather than problems in regulating mathematical expression.  The 

depiction of ‘symbol sense’ by Arcavi, 1994, perhaps sets a better balance.)  

In this respect, we suggest a teaching device involving students comparing their own 

work with those of their peers.  This general stratagem of course is commonly 

practiced in educational circles.  However, we arrange that the material imported 

constitutes a different approach to that made by the receiving student.  The student 

has to reconcile two solutions, making the task a multiple-solution connecting task, 

(see Leikin & Levav-Waynberg, 2007).  Further if the two solutions lead to different 

results, this would be suggestive that the reconciliation has to combine two 

perspectives of the structure implicit in the task environment.   Having available more 

than one way of ‘seeing’ a mathematical system is potent in both realizing and 

enhancing argumentation (Mason, 1989).  By encouraging them to reflect on the 

differences in structure inherent in two separate approaches, students can be guided 

to craft a mathematical construct that acts as a common basis to expound both. 
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THE EXAMPLE 

Method 

The example was raised in project work taken by mathematics undergraduates 

attending a problem solving course, taught by the author.  The course largely 

followed the ideas of Polya (1973) concerning strategy making and heuristics and of 

Schoenfeld (1985) concerning metacognition, especially executive control and 

accessing knowledge.  Further, the conversion of mental argumentation into accepted 

mathematical frameworks was given some stress (Mamona-Downs & Downs, 

2009a).  The course was intended for the attending students to improve their own 

problem solving skills and mathematical literacy. 

Half of the weight of the grading of the course was assigned to the students' 

contribution in project work.  Each student was involved in one project.  The students 

worked individually or in small groups of two or three.  The time that the students 

had to complete their work was 3 weeks.  The design of the projects were not 

particularly concerned about 'openness'.  Instead, a sequence of tasks is given where 

the resolving of the later tasks likely requires either an indirect or direct reference to 

the solution of previous tasks.  Usually, each project is assigned to two groups.  After 

the project was handed back and appraised, I asked each group (as a body) for a 

semi-structured interview of 1-3/2 hours.  If the working of the other group tackling 

the same project shows substantial differences to the work done by the group 

interviewed, this usually was made as a major point to be discussed in the interview.  

The example below is dealt in this context.     

The task 

The subject of the project at hand concerned the greatest power of one natural 

number that divides another given natural.  Printed at the top of the assignment sheet 

was the following definition concerning symbolic convention. 

 "Given a natural number n, the symbol 2
r
|| n means that the number r is the 

greatest whole number for which 2
r
 divides n". 

This symbolism is commonly used in textbooks of number theory.  Although its form 

can seem to be somehow convoluted, the students had past experience with it and 

showed no difficulty in interpreting it properly.  

The particular task considered here is as follows: 

Part(a): Let nN (where N denotes the natural numbers). Find rn satisfying 

2rn 2n!

Part (b): Let m.  Find sm satisfying: 

2sm m!
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We shall discuss students' working on part (a) mostly; we shall refer to part (b) only 

in the context how the approaches appearing in part (a) extend naturally. 

The two different forms of rn raised. 

The two groups of students assigned to this particular project will be denoted Group 1 

and Group 2.  In the project work, Group 1 attained the result rn = 2
n
 - 1, whilst 

Group 2 gave their final answer as: 

rn  n 
i.2n i

2











i1

n1



The reasoning used. 

For Group 1, the reasoning is presented below (translated into English from Greek): 

"We know that from the numbers 1, 2, 3,…, 2
n
, there are 2

n-1
 numbers which are 

divided by 2.  We note that from the numbers 1, 2, 3,…, 2
n-1

, there are 2
n-2

 numbers 

that are divided by 2.  We note that from the numbers 1, 2, 3,…, 2
n-2

, there are 2
n-3

numbers that are divided by 2.  Continuing to the end we have that 2
n
! =1.2.3…2

n
 is 

divided by 2 raised to the power 2
n-1

 +2
n-2

 +2
n-3

  +… +2
2
 +2+1. "     

For Group 2, the approach used was basically following the lines of the argument 

below: 

"Let S: =1, 2, 3,…, 2
n.  For i=0, 1, 2,…, n define Si = s S: 2

i
||s. Then 

rn  Si

i1

n

 . i (1)

To obtain |Si|, consider Di: = s S: s = k.2
i
, k.  Clearly, |Di| =2

n-i
. 

Now Si  Di and s  Si Di  s=k.2
i
 where k is odd.  Therefore 

Si  1

2
D

i
 2

n i1
when i  n and Si 1 when i  n

 Substituting into (1) we obtain: 

rn  n  2
n i1

i1

n1

 . i

However the above is somehow a 'cleaned up' version of the given in the script of 

Group 2.  The main discrepancy is that Group 2 made their exposition in terms of 

equivalent classes, determined by the equivalent relation '~' on N defined by  

~ r such that (2
r
|| )  (2

r
|| ).   

Comments on the presentation of Group 1. 

Basically the exposition put forward by Group 1 in their written response of part (a) 

simply states lists of numbers (from which the evens are calculated) without 

attempting to explain where these lists of numbers appear from.  However, if a reader 
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'catches' the unexpressed central idea (on the mental level) motivating the production 

of the lists appearing in such a suggestive recursive manner, he or she would perceive 

the platform on which the approach is based on.  Another reader might not 'catch on'.  

The reader has to interpret the written material, not to understand explicit 

argumentation. The students of Group 1 admitted in the interview that what they 

wrote down did not constitute a proof.  They expressed difficulties to expand on their 

description of their 'method' in informal terms.  Further, they considered that the 

attempts they had made in this respect were simply making the clarity of their 

exposition worse rather than better, so in the end they only wrote the rather minimal 

explanation that they state.   The students clearly were frustrated in not being able to 

express their argument in a more complete manner.  It should be noted that once they 

obtained the putative result 2n-1, they had the opportunity to prove their result by 

induction.  By following induction, it had little importance how tentatively the 

induction hypothesis was obtained.  The students of Group 1 did not undertake 

induction.  This in a way was surprising because in general the participants of the 

course showed themselves adept in applying it. Likely, they had 'invested' a lot of 

effort to engineer their answer; the implementation of the technique of induction can 

have a psychological effect in that the original thinking would be left on the 'side-

lines'. 

Comments on the presentation of Group 2. 

The use of the equivalence relation, as the students explained in the interview, helped 

them to organize their work. Their resorting to the equivalent relation rather than 

employing the sets Si represents a particular way of analysis, where first the numbers 

1, …, 2
n
 are taken separately as ‘components’ of 2

n
!, and then are classed according 

to having the same property or rank.  The sets Si are formed first by stipulating a 

property, and then determining which of the ‘components’ satisfies it. The difference 

in our case is only a cognitive one, which could be captured by contrasting the terms 

‘assigned to’ and ‘belonging’.  

The written argument put forward by the students employing the equivalence relation 

for part (a) is essentially a valid proof.  The symbolism associated to equivalent 

relations is more sophisticated to that of sets. The only shortcomings in their 

presentation appear in the form of symbol abuse; for example, there are cases of 

classes being related with elements, and some indexed symbols that are not explicitly 

defined.  These flaws are minor, in the sense that the reader can easily read the 

intention beyond the logical liberties.  However this is not true for part (b). Here, 

although the students were processing a sound mental argumentation and indeed 

obtained a legitimate result, their symbolic modeling of the argument brought in 

flaws and aspects of vagueness that ran right through their exposition. In this case, 

the reader only can surmise the students’ intention, and this is done only with 

considerable effort.  (Unfortunately space restrictions prevented us to reproduce the 

students’ work here.) 
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We shall discuss students' working on part (a) mostly; we shall refer to part (b) only 

in the context how the approaches appearing in part (a) extend naturally. 

The two different forms of rn raised. 

The two groups of students assigned to this particular project will be denoted Group 1 

and Group 2.  In the project work, Group 1 attained the result rn = 2
n
 - 1, whilst 

Group 2 gave their final answer as: 

rn  n 
i.2n i

2











i1

n1



The reasoning used. 

For Group 1, the reasoning is presented below (translated into English from Greek): 

"We know that from the numbers 1, 2, 3,…, 2
n
, there are 2

n-1
 numbers which are 

divided by 2.  We note that from the numbers 1, 2, 3,…, 2
n-1

, there are 2
n-2

 numbers 

that are divided by 2.  We note that from the numbers 1, 2, 3,…, 2
n-2

, there are 2
n-3

numbers that are divided by 2.  Continuing to the end we have that 2
n
! =1.2.3…2

n
 is 

divided by 2 raised to the power 2
n-1

 +2
n-2

 +2
n-3

  +… +2
2
 +2+1. "     

For Group 2, the approach used was basically following the lines of the argument 

below: 

"Let S: =1, 2, 3,…, 2
n.  For i=0, 1, 2,…, n define Si = s S: 2

i
||s. Then 

rn  Si

i1

n

 . i (1)

To obtain |Si|, consider Di: = s S: s = k.2
i
, k.  Clearly, |Di| =2

n-i
. 

Now Si  Di and s  Si Di  s=k.2
i
 where k is odd.  Therefore 

Si  1

2
D

i
 2

n i1
when i  n and Si 1 when i  n

 Substituting into (1) we obtain: 

rn  n  2
n i1

i1

n1

 . i

However the above is somehow a 'cleaned up' version of the given in the script of 

Group 2.  The main discrepancy is that Group 2 made their exposition in terms of 

equivalent classes, determined by the equivalent relation '~' on N defined by  

~ r such that (2
r
|| )  (2

r
|| ).   

Comments on the presentation of Group 1. 

Basically the exposition put forward by Group 1 in their written response of part (a) 

simply states lists of numbers (from which the evens are calculated) without 

attempting to explain where these lists of numbers appear from.  However, if a reader 
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'catches' the unexpressed central idea (on the mental level) motivating the production 

of the lists appearing in such a suggestive recursive manner, he or she would perceive 

the platform on which the approach is based on.  Another reader might not 'catch on'.  

The reader has to interpret the written material, not to understand explicit 

argumentation. The students of Group 1 admitted in the interview that what they 

wrote down did not constitute a proof.  They expressed difficulties to expand on their 

description of their 'method' in informal terms.  Further, they considered that the 

attempts they had made in this respect were simply making the clarity of their 

exposition worse rather than better, so in the end they only wrote the rather minimal 

explanation that they state.   The students clearly were frustrated in not being able to 

express their argument in a more complete manner.  It should be noted that once they 

obtained the putative result 2n-1, they had the opportunity to prove their result by 

induction.  By following induction, it had little importance how tentatively the 

induction hypothesis was obtained.  The students of Group 1 did not undertake 

induction.  This in a way was surprising because in general the participants of the 

course showed themselves adept in applying it. Likely, they had 'invested' a lot of 

effort to engineer their answer; the implementation of the technique of induction can 

have a psychological effect in that the original thinking would be left on the 'side-

lines'. 

Comments on the presentation of Group 2. 

The use of the equivalence relation, as the students explained in the interview, helped 

them to organize their work. Their resorting to the equivalent relation rather than 

employing the sets Si represents a particular way of analysis, where first the numbers 

1, …, 2
n
 are taken separately as ‘components’ of 2

n
!, and then are classed according 

to having the same property or rank.  The sets Si are formed first by stipulating a 

property, and then determining which of the ‘components’ satisfies it. The difference 

in our case is only a cognitive one, which could be captured by contrasting the terms 

‘assigned to’ and ‘belonging’.  

The written argument put forward by the students employing the equivalence relation 

for part (a) is essentially a valid proof.  The symbolism associated to equivalent 

relations is more sophisticated to that of sets. The only shortcomings in their 

presentation appear in the form of symbol abuse; for example, there are cases of 

classes being related with elements, and some indexed symbols that are not explicitly 

defined.  These flaws are minor, in the sense that the reader can easily read the 

intention beyond the logical liberties.  However this is not true for part (b). Here, 

although the students were processing a sound mental argumentation and indeed 

obtained a legitimate result, their symbolic modeling of the argument brought in 

flaws and aspects of vagueness that ran right through their exposition. In this case, 

the reader only can surmise the students’ intention, and this is done only with 

considerable effort.  (Unfortunately space restrictions prevented us to reproduce the 

students’ work here.) 
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The reconciliation 

For the project work described above, both groups grasped a suitable argument to 

answer the task, but had difficulties in expressing their argument.  One group 

suggests a recursive process but this is left implicit as to its basis.  The other group 

firmly posits the argument on a mathematical framework, but the students have 

problems in controlling the associated symbolism.  Both groups give appropriate 

results, but in differing manifestations.  In the two interviews (one for each group), 

the interviewer (the author) was interested in exposing to each group the work of the 

other group.  One motive in this was to see whether reviewing another approach 

would prompt the students to restyle their own for the sake of improved articulation. 

Due to space restrictions, no details or student protocols are given.   Instead, we give 

a précis of what occurred in one interview, where the interviewees are the two 

students of Group 1. 

In the interview of Group 1, the students realized that the equivalence classes used by 

Group 2 simply gather the elements of {1, 2, 3,…,2
n
} that have a common greatest 

power of 2 as a divisor.  After some time, they also understood the central core that 

supports the argumentation of Group 2; for each gathering, every member 

‘contributes’ the same power of two, and so the total contribution is the number of 

members times the suitable power; the final result is gotten by the summation of the 

contributions from all the gatherings.  They expressed that the presentation given by 

Group 2 in terms of equivalence relations seemed somewhat over-complicated, yet 

they did not propose an alternative mathematical framework in which the argument 

could be couched.  (For instance, they did not explicitly form the system of sets Si

mentioned before).  As far as comparing their own approach with the one given by 

Group 2, there was recognition by the students that their enumeration process cuts 

through rather than respects the gatherings.  However they seemed at this point not to 

have the means to analyze this difference further. 

At this point the interview came to an impasse.  The interviewer decided to intervene. 

She suggested to the students to allocate a symbol M to the factorial of 2
n
.  M was the 

product of the natural numbers of 1 up to 2
n
; the order in which these numbers are 

multiplied has no mathematical significance. The interviewer suggested that the 

students write down M in a resorted order that would reflect the approach of Group 2.  

After some discussion between the students and several aborted attempts they came 

up with the following: 

They appreciated in doing this that the j’s under the separate product signs identified 

the gatherings implicit in the approach of Group 2 in ‘blocks’, and the result could be 

tackled by considering these blocks.        

After, the interviewer reminded the students of their own presentation, and in 

particular asked them if they could explain what was signified by their first sentence 
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"We know that from the numbers 1, 2, 3,…, 2
n
, there are 2

n-1
 numbers which are 

divided by 2" in terms of the expression above.  In response, they wrote down:  

They made an action on the first expression that in essence comprised in dividing by 

two all the even numbers; to preserve the equality the suitable power of two has to be 

reinstalled before the product signs.  Recursively, further similar actions are now 

obvious to perform: 

What is left in the parenthesis is a multiplication of odd numbers, so in total is odd. 

Hence rn is 

In this way the students were able to convert their mental argumentation, up to now 

expressed only in a suggestive manner, within a concrete mathematical framework. 

CONCLUSION 

Multiple solution tasks are deemed by some mathematics educators to be a useful 

channel for encouraging students to make connections.  Such connections may take 

many manifestations; for example, they may reveal various aspects of the interior 

structure of the task environment, or identify different areas of knowledge that can be 

resourced to obtain the diverse solutions of the task.  In this paper, we examine a 

more practical question; can a student refine his/her argument through an 

examination of the work of peers that puts forward approaches at variance to the 

student’s. We consider a special case of multiple solution tasks; those that have 

different solutions paths leading to different formulations of the result. The advantage 

in doing this is twofold.  First, in terms of motivation, students are more likely to be 

interested how two approaches lead to differing ‘results’ rather than two that produce 

the same.  Second, in terms of teacher guidance, the teacher can prompt a student to 

reflect on his/her work whilst discussing other students’ output.  In doing this, the 

sense of ‘ownership’ of the student for his/her own argument can be respected.  In the 

paper, an illustration is given how a mathematical construct obtained by a group of 

students provided a framework allowing full articulation of the ‘alternative’ 

argument.  The same construct was acted on by the students in such a way that their 

own line of thinking also became apparent; further, they could express their thinking 

far more concretely than before by referring to the construct.  Thus the students were 
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suggests a recursive process but this is left implicit as to its basis.  The other group 

firmly posits the argument on a mathematical framework, but the students have 

problems in controlling the associated symbolism.  Both groups give appropriate 

results, but in differing manifestations.  In the two interviews (one for each group), 

the interviewer (the author) was interested in exposing to each group the work of the 

other group.  One motive in this was to see whether reviewing another approach 

would prompt the students to restyle their own for the sake of improved articulation. 

Due to space restrictions, no details or student protocols are given.   Instead, we give 

a précis of what occurred in one interview, where the interviewees are the two 

students of Group 1. 

In the interview of Group 1, the students realized that the equivalence classes used by 

Group 2 simply gather the elements of {1, 2, 3,…,2
n
} that have a common greatest 

power of 2 as a divisor.  After some time, they also understood the central core that 

supports the argumentation of Group 2; for each gathering, every member 

‘contributes’ the same power of two, and so the total contribution is the number of 

members times the suitable power; the final result is gotten by the summation of the 

contributions from all the gatherings.  They expressed that the presentation given by 

Group 2 in terms of equivalence relations seemed somewhat over-complicated, yet 

they did not propose an alternative mathematical framework in which the argument 

could be couched.  (For instance, they did not explicitly form the system of sets Si

mentioned before).  As far as comparing their own approach with the one given by 

Group 2, there was recognition by the students that their enumeration process cuts 

through rather than respects the gatherings.  However they seemed at this point not to 

have the means to analyze this difference further. 

At this point the interview came to an impasse.  The interviewer decided to intervene. 

She suggested to the students to allocate a symbol M to the factorial of 2
n
.  M was the 

product of the natural numbers of 1 up to 2
n
; the order in which these numbers are 

multiplied has no mathematical significance. The interviewer suggested that the 

students write down M in a resorted order that would reflect the approach of Group 2.  

After some discussion between the students and several aborted attempts they came 

up with the following: 

They appreciated in doing this that the j’s under the separate product signs identified 

the gatherings implicit in the approach of Group 2 in ‘blocks’, and the result could be 

tackled by considering these blocks.        

After, the interviewer reminded the students of their own presentation, and in 

particular asked them if they could explain what was signified by their first sentence 
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"We know that from the numbers 1, 2, 3,…, 2
n
, there are 2

n-1
 numbers which are 

divided by 2" in terms of the expression above.  In response, they wrote down:  

They made an action on the first expression that in essence comprised in dividing by 

two all the even numbers; to preserve the equality the suitable power of two has to be 

reinstalled before the product signs.  Recursively, further similar actions are now 

obvious to perform: 

What is left in the parenthesis is a multiplication of odd numbers, so in total is odd. 

Hence rn is 

In this way the students were able to convert their mental argumentation, up to now 

expressed only in a suggestive manner, within a concrete mathematical framework. 

CONCLUSION 

Multiple solution tasks are deemed by some mathematics educators to be a useful 

channel for encouraging students to make connections.  Such connections may take 

many manifestations; for example, they may reveal various aspects of the interior 

structure of the task environment, or identify different areas of knowledge that can be 

resourced to obtain the diverse solutions of the task.  In this paper, we examine a 

more practical question; can a student refine his/her argument through an 

examination of the work of peers that puts forward approaches at variance to the 

student’s. We consider a special case of multiple solution tasks; those that have 

different solutions paths leading to different formulations of the result. The advantage 

in doing this is twofold.  First, in terms of motivation, students are more likely to be 

interested how two approaches lead to differing ‘results’ rather than two that produce 

the same.  Second, in terms of teacher guidance, the teacher can prompt a student to 

reflect on his/her work whilst discussing other students’ output.  In doing this, the 

sense of ‘ownership’ of the student for his/her own argument can be respected.  In the 

paper, an illustration is given how a mathematical construct obtained by a group of 

students provided a framework allowing full articulation of the ‘alternative’ 

argument.  The same construct was acted on by the students in such a way that their 

own line of thinking also became apparent; further, they could express their thinking 

far more concretely than before by referring to the construct.  Thus the students were 
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both improving the formulation of their argumentation and effecting reconciliation 

between two structural perspectives of the task environment.  
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MATHEMATISATIONS WHILE NAVIGATING WITH A GEO-
MATHEMATICAL MICROWORLD  
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Twelve students of the 10th grade participated in a constructivist teaching 
experiment focusing on what kind of mathematical meanings students construct while 
using a navigational software called “Cruislet”. It is a dynamic digital artefact 
designed to provide learners with the ability to be involved in mathematizing  
activities focusing on the use of vectors navigating in 3d large scale spaces. The 
analysis of the data reveals that students through a process of mathematization of 
geographical space construct meanings concerning the concepts of vectors, 
coordinates and  functions. 

Mathematics and Geography are very poorly connected in curricula all over the 
world. The mathematics of positioning, orientation and functional relationships 
represented as curves in space are tightly embedded in the context of Geographical 
spaces. In the quest to look for ways in which the generation of mathematical 
meaning for students may become richer in situations where they appreciate the 
utility of mathematical ideas (Ainley & Pratt, 2002), we designed a digital 
microworld embedding mathematical concepts in geographical space. In designing 
the microworld and the respective tasks we gave ourselves some distance from the 
traditional structure of the mathematics curriculum and looked for learnable 
mathematics concerning position and orientation in geographical three dimensional 
(3D) space, building on previous research on students’ cartography (Yiannoutsou & 
Kynigos, 2004). In the design of the learning environment, we adopted the approach 
of students’ gradual mathematization within game-like activities in problem 
situations that are experientially relevant to students (Gravenmeijer et al, 2000). 
Hence, our intention was to involve students in activities through which they would 
use symbols, make and verify hypotheses in order to solve a particular real problem 
in a rich learning environment. Quite some years ago, Hoyles et al (1989) identified 
four kinds of mathematical activity students engage in when working with 
microworlds, i.e. using mathematical ideas at the beginning without much clarity of 
their function and nature, then discriminating these amongst other concepts and 
features of the tool, generalising them beyond concrete cases and synthesizing 
between those embedded in the activity and those in other mathematical contexts. In 
our study we wanted to understand the nature of mathematizations students would 
lead to when engaged in activities such as experimenting, constructing classifications, 
making and verifying conjectures, generalisations and formalizations. The tools and 
tasks we gave them were designed as a half-baked (h-b) microworld (Kynigos, 2007), 
i.e. tools allowing them to navigate avatars in any way by making choices between 
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vectorial and Cartesian  displacement controllers and to construct avatar trips by 
writing computer programs of sequential functional displacements. We called this 
‘the Cruislet environment’ (Figure 3). H-b microworlds are designed to incorporate 
an interesting idea but at the same time to invite changes to their functionalities and 
are mediated to the targeted users as unfinished artefacts which need their input. In 
that sense, they invite constructionist activity (Kafai et al, 1996), they are designed
for mathematizations through instrumentalization  (Guin and Trouche, 1999). A 
digital medium becomes an instrument as it is internalised collaboratively by the 
students (Mariotti, 2002) while it is being changed often quite distinctly to what was 
designed by the researchers. The implication of this perspective is that students' 
expressions can gain mathematical legitimacy, even if they differ from and/or they 
are shaped and structured by the artefact in ways that lead them to diverge from 
curriculum mathematics. These kinds of constructionist environment provide 
dynamic visual means that support immediate visualization of multiple linked 
representations (Kaput, 1992). The key point here is that students can build their 
models into the medium that can act as a support for developing new meanings by 
investigating their hypothesis and argumentations.  

THE CRUISLET ENVIRONMENT 
The ‘Cruislet’ environment has been designed and developed within the ReMath 
project. It is a digital medium based on GIS (Geographic Information Systems) 
technology that incorporates a Logo programming language. It is designed for 
mathematically driven navigations in virtual 3D geographical spaces and is 
comprised of two interdependent representational systems for defining a 
displacement in 3D space, a spherical coordinate (vector) and a geographical 
coordinate system. The environment enables the user to explore spatial visualization 
and mathematical concepts by controlling and measuring the behaviours of avatars. 
The avatars can be airplanes and their displacement is represented by a vector. In this 
study we focus on what kind of mathematical meanings students construct while 
navigating in geographical space of Cruislet environment. Cruislet is primarily a 
navigational medium but it is also constructionist (Kafai & Resnick, 1996) since 
avatar trips can be constructed and visualised. It is designed to provide opportunities 
for learners to engage in expression of mathematical ideas through meaningful 
formalism (Kynigos and Psycharis, 2003) by means of programming and 
interdependent representations of Cartesian and Vector-differential geometrical 
systems.  

METHODOLOGY 
The research methodology is a constructivist teaching experiment along the same 
lines as described by Cobb, Yackel and Wood (1992).The researcher acts as a teacher 
interacting with the children aiming to investigate their thinking. The researcher, 
reflecting on these interactions, tries to interpret children’s actions and finally forms 
models-assumptions concerning their conceptions. These assumptions are evaluated 
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and consequently either verified or revised. Twenty four students of the 1st grade of 
upper high school, (aged 15-16 years old) participated in this experiment. Students 
worked in pairs in the PC lab. Each pair of students worked on the tasks using 
Cruislet software. To begin with, a set of tasks comprising simple avatar 
displacements were given including trips to specific places (cities) and back and trips 
described simply by distance covered. In the main tasks that were included in the 
teaching experiment students were encouraged to experiment with programs defining 
the relative displacements of  two airplanes by varying the geographical coordinates 
of their new positions. Reflecting on their actions they encouraged to explore the rate 
of change of these positions and formulate the function that defines this dependent 
relationship. This function was hidden and the students had to guess it in the first 
phase of the activity based on repeated moves of aeroplane A and observations of the 
relative positions and moves of planes A and B.  Initially, students were asked to 
study the relation between the two aeroplanes, the rate of change of their 
displacements and consequently find the linear function (decode the rule of the 
game). In order to decode "the rule of the game", they should give various values to 
coordinates (Lat, Long, Height) that define the position of the first plane. They were 
encouraged to communicate their observations about the position of the second plane 
to each other and form conjectures about the relationship between the positions of the 
two aeroplanes. In the second phase students were encouraged to build their own 
rules of the game by changing the function of the relative displacements of the two 
aeroplanes. The data consists of audio and screen recordings as well as students’ 
activity sheets and notes. In our analysis we used students’ verbal transcriptions as 
well as their interaction with the provided representations displayed on the computer 
screen.
VECTORS
While interacting with Cruislet environment, students defined the vector of 
displacement and through this activity they got involved with the notion of vector. As 
a result, several meanings emerged concerning vectors and their properties. In this 
session we present meanings regarding vectors in relation to geographical concepts. 
Vectors’ magnitude 
Vectors’ magnitude is represented by R in spherical coordinates, so it had to be 
defined when this system of reference was utilised. During their experimentation 
students realized that R was remaining constant for a displacement between two 
specific cities and additionally that was independent of the direction of the 
displacement. In the following episode students displace the airplane between two 
cities in their attempt to find their distance.

S1: This must be their distance. (Shows the vector created by airplane’s displacement 
from Arta to Amfissa) 

S2: Yes. But how can we find it?
S1: The R m. (Meaning R in spherical coordinates).  
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vectorial and Cartesian  displacement controllers and to construct avatar trips by 
writing computer programs of sequential functional displacements. We called this 
‘the Cruislet environment’ (Figure 3). H-b microworlds are designed to incorporate 
an interesting idea but at the same time to invite changes to their functionalities and 
are mediated to the targeted users as unfinished artefacts which need their input. In 
that sense, they invite constructionist activity (Kafai et al, 1996), they are designed
for mathematizations through instrumentalization  (Guin and Trouche, 1999). A 
digital medium becomes an instrument as it is internalised collaboratively by the 
students (Mariotti, 2002) while it is being changed often quite distinctly to what was 
designed by the researchers. The implication of this perspective is that students' 
expressions can gain mathematical legitimacy, even if they differ from and/or they 
are shaped and structured by the artefact in ways that lead them to diverge from 
curriculum mathematics. These kinds of constructionist environment provide 
dynamic visual means that support immediate visualization of multiple linked 
representations (Kaput, 1992). The key point here is that students can build their 
models into the medium that can act as a support for developing new meanings by 
investigating their hypothesis and argumentations.  

THE CRUISLET ENVIRONMENT 
The ‘Cruislet’ environment has been designed and developed within the ReMath 
project. It is a digital medium based on GIS (Geographic Information Systems) 
technology that incorporates a Logo programming language. It is designed for 
mathematically driven navigations in virtual 3D geographical spaces and is 
comprised of two interdependent representational systems for defining a 
displacement in 3D space, a spherical coordinate (vector) and a geographical 
coordinate system. The environment enables the user to explore spatial visualization 
and mathematical concepts by controlling and measuring the behaviours of avatars. 
The avatars can be airplanes and their displacement is represented by a vector. In this 
study we focus on what kind of mathematical meanings students construct while 
navigating in geographical space of Cruislet environment. Cruislet is primarily a 
navigational medium but it is also constructionist (Kafai & Resnick, 1996) since 
avatar trips can be constructed and visualised. It is designed to provide opportunities 
for learners to engage in expression of mathematical ideas through meaningful 
formalism (Kynigos and Psycharis, 2003) by means of programming and 
interdependent representations of Cartesian and Vector-differential geometrical 
systems.  

METHODOLOGY 
The research methodology is a constructivist teaching experiment along the same 
lines as described by Cobb, Yackel and Wood (1992).The researcher acts as a teacher 
interacting with the children aiming to investigate their thinking. The researcher, 
reflecting on these interactions, tries to interpret children’s actions and finally forms 
models-assumptions concerning their conceptions. These assumptions are evaluated 
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and consequently either verified or revised. Twenty four students of the 1st grade of 
upper high school, (aged 15-16 years old) participated in this experiment. Students 
worked in pairs in the PC lab. Each pair of students worked on the tasks using 
Cruislet software. To begin with, a set of tasks comprising simple avatar 
displacements were given including trips to specific places (cities) and back and trips 
described simply by distance covered. In the main tasks that were included in the 
teaching experiment students were encouraged to experiment with programs defining 
the relative displacements of  two airplanes by varying the geographical coordinates 
of their new positions. Reflecting on their actions they encouraged to explore the rate 
of change of these positions and formulate the function that defines this dependent 
relationship. This function was hidden and the students had to guess it in the first 
phase of the activity based on repeated moves of aeroplane A and observations of the 
relative positions and moves of planes A and B.  Initially, students were asked to 
study the relation between the two aeroplanes, the rate of change of their 
displacements and consequently find the linear function (decode the rule of the 
game). In order to decode "the rule of the game", they should give various values to 
coordinates (Lat, Long, Height) that define the position of the first plane. They were 
encouraged to communicate their observations about the position of the second plane 
to each other and form conjectures about the relationship between the positions of the 
two aeroplanes. In the second phase students were encouraged to build their own 
rules of the game by changing the function of the relative displacements of the two 
aeroplanes. The data consists of audio and screen recordings as well as students’ 
activity sheets and notes. In our analysis we used students’ verbal transcriptions as 
well as their interaction with the provided representations displayed on the computer 
screen.
VECTORS
While interacting with Cruislet environment, students defined the vector of 
displacement and through this activity they got involved with the notion of vector. As 
a result, several meanings emerged concerning vectors and their properties. In this 
session we present meanings regarding vectors in relation to geographical concepts. 
Vectors’ magnitude 
Vectors’ magnitude is represented by R in spherical coordinates, so it had to be 
defined when this system of reference was utilised. During their experimentation 
students realized that R was remaining constant for a displacement between two 
specific cities and additionally that was independent of the direction of the 
displacement. In the following episode students displace the airplane between two 
cities in their attempt to find their distance.

S1: This must be their distance. (Shows the vector created by airplane’s displacement 
from Arta to Amfissa) 

S2: Yes. But how can we find it?
S1: The R m. (Meaning R in spherical coordinates).  
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S2: No, it’s not R m.Oh, you‘re right! Wait. (Displace the airplane from Amfissa to 
Arta and they watch R values in direction). 

S1:You see? It’s the same.  

The interesting issue is that although they displaced the airplane towards one 
direction, they wanted to verify that the distance was remaining constant for the 
inverse displacement as well. If fact S1 used this as an evidence to persuade S2 that R 
represents the distance between the two cities. Our interpretation of S1’s way of 
thinking is that perhaps he used his intuitions or pre-existed knowledge to apply a 
property of vectors’ magnitude in this particular situation.  
Addition of vectors 
An interesting episode was that of a team that used intuitions to identify the resulting 
displacement if this is defined by multiple displacements. This was occurred while 
students were trying to construct the rules of a game for the other team. To be more 
specific, students’ idea included the relative displacement of two airplanes, based on 
planes’ coordinates. Here we focus only on the correlation of two planes’ 
displacement (named red and blue by students), as they were moving relatively to 
theta angle and particularly their dependence can be represented as Thetablue = Theta 
white +180 .  One of the preconditions of the game was also that the first (white) 
must go to a particular city (i.e. Thessaloniki) to end the first phase of the game. 
Initially students sketched their idea in order to explain it to the teacher, as shown in 
Figure 1. In the following excerpts, the students explain their drawing:

S2: As we go up, the other, the spy, will go down contrarily, towards Crete. […] Let’s 
say, if we go 10 step upwards, he goes down 10 step downwards’.  

S1: Blue is conversely commensurate. That is to say, we go 10 meters, he goes 10 
meters above. When we get to Thessaloniki, he will get to Rethymno. 

From their dialogue we can assume that they were thinking about multiple 
displacements, as specified by the length of each displacement (i.e. 10 meters).  We 
see that S1 seems to think of the result of these displacements as he mentions the 
final destination of each airplane. The interesting thing is that he argues that when the 
first will be at a specific city, the other will be at a specific city as well, 
independently of the number of displacements, implying that he used his intuition to 
add the vectors of displacements and find the final destination of the 2nd plane. As 
the researcher was not sure if S1 used vectors’ addition, she asked him to draw 
another figure and picture planes’ position when the displacements would not be at 
the same line and asked him if the second airplane would be placed in the same city 
as in the first case. The student answered ‘If we go to Thessaloniki, he‘ll be at Crete’
and draw the schema shown in figure 2. From his drawing we can see that although 
he hasn’t added the vectors graphically he is thinking that the only thing that matters 
is the starting and the ending point. 
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Figure 1: Drawings of airplane’s displacements Figure 2: Addition of vectors 

So whatever the direction of vectors would be, the second plane would be placed in a 
specific city, taking into account that there is a dependent relationship between the 
two airplane. We find this episode interesting, due to the way students use their 
intuitions to express mathematical meanings without using vector’s terms, that is to 
say  without mathematical formalism. 
COORDINATE SYSTEMS 
Students didn’t always choose one system of reference to navigate in space, but 
several times combined both to make a displacement. In this way they created links 
either between distributed coordinates (e.g. height of geographical and fi of spherical) 
or between all three of coordinates for the two systems of reference.  
In their attempt to place the plane at a specific height, students used primiraly the 
height coordinate. However, there were some teams that were using spherical 
coordinates to carry out almost all displacements. Based on students actions on a 
team like that, students were trying to find a way to raise the airplane’s height to a 
specific value, while utilizing the spherical coordinates. In fact one of them gave the 
idea to use the fi coordinate and raise the airplane by asking the other one: ‘The 
height is fi?’ and afterwards he edited the fi coordinate’s value in order to raise the 
plane. This statement is interesting as the student endeavour to create meaning 
around the fi angle that represents airplane’s perpendicular angle, in relation to the 
height that the plane will be placed. 
Another episode where students create a link between coordinates is that of longitude 
and theta coordinates. In the following episode the students of a team argue about the 
system of reference that displace the airplane ‘right – left’. 

S2:  It goes right and left. (referring to longitude) 
:  Right and left.

S2: Yes. 
S1:  No. Theta is right and left.
S2:  These are the degrees.

Athens
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S2: No, it’s not R m.Oh, you‘re right! Wait. (Displace the airplane from Amfissa to 
Arta and they watch R values in direction). 

S1:You see? It’s the same.  

The interesting issue is that although they displaced the airplane towards one 
direction, they wanted to verify that the distance was remaining constant for the 
inverse displacement as well. If fact S1 used this as an evidence to persuade S2 that R 
represents the distance between the two cities. Our interpretation of S1’s way of 
thinking is that perhaps he used his intuitions or pre-existed knowledge to apply a 
property of vectors’ magnitude in this particular situation.  
Addition of vectors 
An interesting episode was that of a team that used intuitions to identify the resulting 
displacement if this is defined by multiple displacements. This was occurred while 
students were trying to construct the rules of a game for the other team. To be more 
specific, students’ idea included the relative displacement of two airplanes, based on 
planes’ coordinates. Here we focus only on the correlation of two planes’ 
displacement (named red and blue by students), as they were moving relatively to 
theta angle and particularly their dependence can be represented as Thetablue = Theta 
white +180 .  One of the preconditions of the game was also that the first (white) 
must go to a particular city (i.e. Thessaloniki) to end the first phase of the game. 
Initially students sketched their idea in order to explain it to the teacher, as shown in 
Figure 1. In the following excerpts, the students explain their drawing:

S2: As we go up, the other, the spy, will go down contrarily, towards Crete. […] Let’s 
say, if we go 10 step upwards, he goes down 10 step downwards’.  

S1: Blue is conversely commensurate. That is to say, we go 10 meters, he goes 10 
meters above. When we get to Thessaloniki, he will get to Rethymno. 

From their dialogue we can assume that they were thinking about multiple 
displacements, as specified by the length of each displacement (i.e. 10 meters).  We 
see that S1 seems to think of the result of these displacements as he mentions the 
final destination of each airplane. The interesting thing is that he argues that when the 
first will be at a specific city, the other will be at a specific city as well, 
independently of the number of displacements, implying that he used his intuition to 
add the vectors of displacements and find the final destination of the 2nd plane. As 
the researcher was not sure if S1 used vectors’ addition, she asked him to draw 
another figure and picture planes’ position when the displacements would not be at 
the same line and asked him if the second airplane would be placed in the same city 
as in the first case. The student answered ‘If we go to Thessaloniki, he‘ll be at Crete’
and draw the schema shown in figure 2. From his drawing we can see that although 
he hasn’t added the vectors graphically he is thinking that the only thing that matters 
is the starting and the ending point. 
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Figure 1: Drawings of airplane’s displacements Figure 2: Addition of vectors 

So whatever the direction of vectors would be, the second plane would be placed in a 
specific city, taking into account that there is a dependent relationship between the 
two airplane. We find this episode interesting, due to the way students use their 
intuitions to express mathematical meanings without using vector’s terms, that is to 
say  without mathematical formalism. 
COORDINATE SYSTEMS 
Students didn’t always choose one system of reference to navigate in space, but 
several times combined both to make a displacement. In this way they created links 
either between distributed coordinates (e.g. height of geographical and fi of spherical) 
or between all three of coordinates for the two systems of reference.  
In their attempt to place the plane at a specific height, students used primiraly the 
height coordinate. However, there were some teams that were using spherical 
coordinates to carry out almost all displacements. Based on students actions on a 
team like that, students were trying to find a way to raise the airplane’s height to a 
specific value, while utilizing the spherical coordinates. In fact one of them gave the 
idea to use the fi coordinate and raise the airplane by asking the other one: ‘The 
height is fi?’ and afterwards he edited the fi coordinate’s value in order to raise the 
plane. This statement is interesting as the student endeavour to create meaning 
around the fi angle that represents airplane’s perpendicular angle, in relation to the 
height that the plane will be placed. 
Another episode where students create a link between coordinates is that of longitude 
and theta coordinates. In the following episode the students of a team argue about the 
system of reference that displace the airplane ‘right – left’. 

S2:  It goes right and left. (referring to longitude) 
:  Right and left.

S2: Yes. 
S1:  No. Theta is right and left.
S2:  These are the degrees.

Athens
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S1:  Yes, the degrees it turns to the left or right.  
S2:  I’m saying to displace at the same time.

This episode is interesting as it depicts the way students verbally express the way 
they realize the displacement while using longitude or theta angle of spherical 
coordinates. In both cases they use the expression ‘right – left’ giving the 
displacement a sense of direction. However, S2 supports that longitude doesn’t have 
to do only with turning like theta, but with displacing as well. The way he 
externalizes his thought demonstrates that he is aware of the interdependent 
relationship between longitude and theta.   
FUNCTION AS COVARIATION 

Figure 3: The Cruislet environment, (Logo procedure)
Students engaged with the notion of function, through their experimentation with the 
dependent relationship between two airplanes’ positions, which was defined by a 
black – box Logo procedure (Figure 3). In their attempt to find out the hidden 
function, they were able to coordinate changes in the direction and the amount of 
change of the dependent variable in tandem with an imagined change of the 
independent variable. Our results indicate that students developed covariational 
reasoning abilities, resulting in viewing the function as covariation. Initially most of 
the students expressed the covariation of the airplanes’ positions using verbal 
descriptions, such as behind, front, left, etc. as they were visualizing the result of the 
airplanes’ displacements. In the following episode students express the dependent 
relationship while looking at the result displayed on the screen.

S1: So, he always wants to be close to us on our left.
R: Yes.
S1: And he is beneath, further down to us. Beneath.  
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S2: And behind. 

Students experimented by giving several values to geographical coordinates in Logo 
and formed conjectures about the correlation between airplanes’ positions. Through 
their interaction with the available representations, they successfully found the 
dependent relation of the function in each coordinate, resulting in their coming into 
contact with the concept of function as a local dependency.
As they were thinking the height coordinates had a proportional relationship, they 
suggested to carry out a division to find it.   

S2: When we go up 1000, he goes up 1000. 
R: Do you mean that if we go from 7000 to 8000 he goes from… let’s say 2500 to 3500. 
S2: He is at… 3000. No. Give me a moment. At 8000 he was at 5500. At 7000 he was 

at 4500. At 5000 he is as 2500. And then…. 
S1: We could do the division to see the rate. 

It is interesting to mention that students separated latitude and longitude coordinates 
on the one hand and that of height on the other as they were trying to decode the 
hidden functional relationship between the airplanes’ height coordinates. In 
particular, they didn’t encounter difficulties in decoding latitude and longitude 
relationship in contrast to their attempts to find the height dependency. Although all 
three functions regarding coordinates were linear, students conceived the functional 
relationship between height mainly as proportional, in contrast to latitude and 
longitude that were comprehended as linear, from the beginning. In the following 
episode, students endeavor to apply the rate of change of the function to decode the 
height relationship.

CONCLUSIONS

The study revealed particular ways in which these students constructed mathematical 
meanings related to vectors, coordinates and functional relationships through a 
process of incorporating references to geographical places in an ad-hoc way. What 
was interesting to us was the way in which what initially seemed to the students to be 
a game – like activity with airplanes on 3D terrains gradually incorporated 
mathematizations which were perceived as functional tools to play the game or to 
solve a task. The students were interested in the game of constructing ‘guess – my – 
flight’ puzzles for other students by inserting hidden functional relationships between 
two airplanes’ displacements. From a theoretical perspective we saw a helpful 
relevance in studying mathematizations in a constructionist environment as path 
towards clarifying the idea of instrumentalization by design. Guin and Trouche and 
other theorists have illuminated the idea that humans do not only generate 
instruments by leaving the artefacts untouched but change the functionalities of these 
artefacts as well in the process of instrumetalization. It seems worthwhile to us to try 
to find ways to further analyze the idea of intrumentalization in a pedagogical 
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S1:  Yes, the degrees it turns to the left or right.  
S2:  I’m saying to displace at the same time.

This episode is interesting as it depicts the way students verbally express the way 
they realize the displacement while using longitude or theta angle of spherical 
coordinates. In both cases they use the expression ‘right – left’ giving the 
displacement a sense of direction. However, S2 supports that longitude doesn’t have 
to do only with turning like theta, but with displacing as well. The way he 
externalizes his thought demonstrates that he is aware of the interdependent 
relationship between longitude and theta.   
FUNCTION AS COVARIATION 

Figure 3: The Cruislet environment, (Logo procedure)
Students engaged with the notion of function, through their experimentation with the 
dependent relationship between two airplanes’ positions, which was defined by a 
black – box Logo procedure (Figure 3). In their attempt to find out the hidden 
function, they were able to coordinate changes in the direction and the amount of 
change of the dependent variable in tandem with an imagined change of the 
independent variable. Our results indicate that students developed covariational 
reasoning abilities, resulting in viewing the function as covariation. Initially most of 
the students expressed the covariation of the airplanes’ positions using verbal 
descriptions, such as behind, front, left, etc. as they were visualizing the result of the 
airplanes’ displacements. In the following episode students express the dependent 
relationship while looking at the result displayed on the screen.

S1: So, he always wants to be close to us on our left.
R: Yes.
S1: And he is beneath, further down to us. Beneath.  
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S2: And behind. 

Students experimented by giving several values to geographical coordinates in Logo 
and formed conjectures about the correlation between airplanes’ positions. Through 
their interaction with the available representations, they successfully found the 
dependent relation of the function in each coordinate, resulting in their coming into 
contact with the concept of function as a local dependency.
As they were thinking the height coordinates had a proportional relationship, they 
suggested to carry out a division to find it.   

S2: When we go up 1000, he goes up 1000. 
R: Do you mean that if we go from 7000 to 8000 he goes from… let’s say 2500 to 3500. 
S2: He is at… 3000. No. Give me a moment. At 8000 he was at 5500. At 7000 he was 

at 4500. At 5000 he is as 2500. And then…. 
S1: We could do the division to see the rate. 

It is interesting to mention that students separated latitude and longitude coordinates 
on the one hand and that of height on the other as they were trying to decode the 
hidden functional relationship between the airplanes’ height coordinates. In 
particular, they didn’t encounter difficulties in decoding latitude and longitude 
relationship in contrast to their attempts to find the height dependency. Although all 
three functions regarding coordinates were linear, students conceived the functional 
relationship between height mainly as proportional, in contrast to latitude and 
longitude that were comprehended as linear, from the beginning. In the following 
episode, students endeavor to apply the rate of change of the function to decode the 
height relationship.

CONCLUSIONS

The study revealed particular ways in which these students constructed mathematical 
meanings related to vectors, coordinates and functional relationships through a 
process of incorporating references to geographical places in an ad-hoc way. What 
was interesting to us was the way in which what initially seemed to the students to be 
a game – like activity with airplanes on 3D terrains gradually incorporated 
mathematizations which were perceived as functional tools to play the game or to 
solve a task. The students were interested in the game of constructing ‘guess – my – 
flight’ puzzles for other students by inserting hidden functional relationships between 
two airplanes’ displacements. From a theoretical perspective we saw a helpful 
relevance in studying mathematizations in a constructionist environment as path 
towards clarifying the idea of instrumentalization by design. Guin and Trouche and 
other theorists have illuminated the idea that humans do not only generate 
instruments by leaving the artefacts untouched but change the functionalities of these 
artefacts as well in the process of instrumetalization. It seems worthwhile to us to try 
to find ways to further analyze the idea of intrumentalization in a pedagogical 
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context, i.e. ways in which it is connected to the generation of meanings is specially 
designed learning environments.  
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EXPLORING THE MATHEMATICAL MACHINES FOR 
GEOMETRICAL TRANSFORMATIONS:  

A COGNITIVE ANALYSIS 
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Samuele Antonini 

University of Pavia, Italy 

In this article we present some results of a cognitive study on Mathematical 
Machines taken from the history of mathematics. In particular, we will propose a 
classification of the utilization schemes of pantographs for geometrical 
transformations. This classification, useful to describe the interaction between a 
subject and the machine, can be an efficient tool to analyse the exploration processes 
involved in the identification of the transformation and of the mathematical law 
incorporated in the machine. 

INTRODUCTION
The study presented in this report is part of a wide research project concerning the 
teaching and learning of mathematics by means of instruments . The instruments 
involved in our study are working reconstruction of historical mathematical 
instruments, called Mathematical Machines. These machines belong to the collection 
of the Mathematical Machines Laboratory (MMLab: www.mmlab.unimore.it), a 
research centre at the Department of Mathematics in Modena (Italy). In the last 
twenty years, the MMLab researches has been mainly focused on the epistemological 
and pedagogical aspects involved in the activities with the Mathematical Machines 
(Bartolini Bussi & Pergola, 1996; Bartolini Bussi, 2000; Bartolini Bussi, 2005; 
Bartolini Bussi, Mariotti, & Ferri, 2005, Bartolini Bussi & Maschietto, 2008; 
Maschietto & Martignone, 2008).
In order to implement MMLab researches we carry out a cognitive analysis of 
Mathematical Machines exploration processes. In particular, we analyse pantographs 
for geometrical transformation, which establish a local correspondence between 
points of limited plane regions (connecting them physically by an articulated system) 
and incorporate some mathematical properties in such a way that allow the 
implementation of a geometrical transformation (i.e. axial symmetry, central 
symmetry, translation, homothety, rotation). 

                                          
The study is realized within the project PRIN 2007B2M4EK (“Instruments and representations in the teaching and 

learning of mathematics: theory and practice”) jointly funded by the Italian MIUR, the University of Modena and 
Reggio Emilia and the University of Siena.  
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These pantographs are based on physical as well as on mathematical principles. For 
this reason the first step of our research has been the study of the interaction between 
subject and machine (Martignone & Antonini, to appear). In this paper, we present 
the second step of the research that concerns the analysis of the relationships between 
the manipulation and the exploration processes involved in the identification of the 
mathematical law incorporated in the machine. 

THEORETICAL FRAMEWORK 
A suitable tool to analyse the processes through which a subject interacts with a 
machine can be found within cognitive ergonomics, in particular in Rabardel’s 
studies (Rabardel, 1995; Béguin & Rabardel, 2000). Rabardel conceived the 
instruments as psychological and social realities and studied the instrument-mediated 
activity: according to him an instrument (to be distinguished from the material -or 
symbolic- object, the artefact) is defined as a hybrid entity made up of both artefact-
type components and schematic components that are called utilization schemes.

“What we propose to call “utilization scheme” (Rabardel, 1995) is an active structure 
into which past experiences are incorporated and organized, in such a way that it 
becomes a reference for interpreting new data” (Béguin & Rabardel, 2000)

In the following section we describe how the utilization schemes emerge in the case 
of pantographs for geometrical transformations. 
The pantographs utilization schemes
In literature there are not previous cognitive studies of this type on Mathematical 
Machines activities (a classification of utilization schemes of instruments of different 
nature is proposed in Arzarello et al., 2002). For this reason, the first step of our 
research has been the identification of Mathematical Machine utilization schemes: in 
particular we have proposed a first classification of pantograph for geometrical 
transformations utilization schemes (Martignone & Antonini, to appear). 
The utilization schemes observed during pantographs exploration has been classified 
into two large families: 

the utilization schemes linked to the components of the articulated system: 
namely, the research of fixed points, movable points (with different degrees 
of freedom), plotter points and straight path, the measure of rods length, the 
research of geometric figures representing the articulated system or some 
part of it, the construction of geometric figures that extend the articulated 
system components, the research of relationships between the recognized 
geometric figures and the analysis of the machine drawings; 
the utilization schemes linked to the machine movements.  

In the last quoted family we identified two main sub-families of utilization schemes 
(labelled: M-1 and M-2) summarized and described in the following tables (Table 1; 
Table 2). 
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M-1: The utilization schemes aimed at finding particular linkage configurations 
obtained stopping the action in specific moments. 

Linkage Movement that stops in Movements description 

Generic Configurations Movement that stops in a configuration 
which is considered representative of all 
configurations observed (that does not 

have "too special" features)
Particular Configurations Movement that stops in a configuration 

that presents special features (i.e. right 
angles, rods positions…) 

Limit Configurations Movement that stops in configurations in 
which the geometric figures that represent 

the articulated system degenerate  
Limit zones Movement that stops in the machine limit 

zones (i.e. the reachable plane points) 
Table 1: Utilization schemes linked to the machine movements, the sub-family M-1  
M-2: The utilization schemes aimed at analysing invariants or changes during 
continuous movements: 

Linkage Continuous movements Movements description: 

Wandering movement Moving the articulated system randomly, 
without following a particular trajectory 

Bounded movement Moving the articulated system, blocking 
particular points or rods  

Guided movement Moving the articulated system, forcing a 
point to follow a line or a specific figure 

Movement of a particular configuration  Moving the articulated system, 
maintaining a particular configuration 

Movement between limit configurations Moving the articulated system so that it 
can successively assume the different 

“limit configurations” 
Movement of dependence Moving (in a free, guided or bound way) 

a particular point and see what another 
particular point does 

Movement in the action zones Moving the articulated system so that all 
the possible parts of the plane are reached

Table 2: Utilization schemes linked to the machine movements, the sub-family M-2 
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These pantographs are based on physical as well as on mathematical principles. For 
this reason the first step of our research has been the study of the interaction between 
subject and machine (Martignone & Antonini, to appear). In this paper, we present 
the second step of the research that concerns the analysis of the relationships between 
the manipulation and the exploration processes involved in the identification of the 
mathematical law incorporated in the machine. 

THEORETICAL FRAMEWORK 
A suitable tool to analyse the processes through which a subject interacts with a 
machine can be found within cognitive ergonomics, in particular in Rabardel’s 
studies (Rabardel, 1995; Béguin & Rabardel, 2000). Rabardel conceived the 
instruments as psychological and social realities and studied the instrument-mediated 
activity: according to him an instrument (to be distinguished from the material -or 
symbolic- object, the artefact) is defined as a hybrid entity made up of both artefact-
type components and schematic components that are called utilization schemes.

“What we propose to call “utilization scheme” (Rabardel, 1995) is an active structure 
into which past experiences are incorporated and organized, in such a way that it 
becomes a reference for interpreting new data” (Béguin & Rabardel, 2000)

In the following section we describe how the utilization schemes emerge in the case 
of pantographs for geometrical transformations. 
The pantographs utilization schemes
In literature there are not previous cognitive studies of this type on Mathematical 
Machines activities (a classification of utilization schemes of instruments of different 
nature is proposed in Arzarello et al., 2002). For this reason, the first step of our 
research has been the identification of Mathematical Machine utilization schemes: in 
particular we have proposed a first classification of pantograph for geometrical 
transformations utilization schemes (Martignone & Antonini, to appear). 
The utilization schemes observed during pantographs exploration has been classified 
into two large families: 

the utilization schemes linked to the components of the articulated system: 
namely, the research of fixed points, movable points (with different degrees 
of freedom), plotter points and straight path, the measure of rods length, the 
research of geometric figures representing the articulated system or some 
part of it, the construction of geometric figures that extend the articulated 
system components, the research of relationships between the recognized 
geometric figures and the analysis of the machine drawings; 
the utilization schemes linked to the machine movements.  

In the last quoted family we identified two main sub-families of utilization schemes 
(labelled: M-1 and M-2) summarized and described in the following tables (Table 1; 
Table 2). 
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M-1: The utilization schemes aimed at finding particular linkage configurations 
obtained stopping the action in specific moments. 

Linkage Movement that stops in Movements description 

Generic Configurations Movement that stops in a configuration 
which is considered representative of all 
configurations observed (that does not 

have "too special" features)
Particular Configurations Movement that stops in a configuration 

that presents special features (i.e. right 
angles, rods positions…) 

Limit Configurations Movement that stops in configurations in 
which the geometric figures that represent 

the articulated system degenerate  
Limit zones Movement that stops in the machine limit 

zones (i.e. the reachable plane points) 
Table 1: Utilization schemes linked to the machine movements, the sub-family M-1  
M-2: The utilization schemes aimed at analysing invariants or changes during 
continuous movements: 

Linkage Continuous movements Movements description: 

Wandering movement Moving the articulated system randomly, 
without following a particular trajectory 

Bounded movement Moving the articulated system, blocking 
particular points or rods  

Guided movement Moving the articulated system, forcing a 
point to follow a line or a specific figure 

Movement of a particular configuration  Moving the articulated system, 
maintaining a particular configuration 

Movement between limit configurations Moving the articulated system so that it 
can successively assume the different 

“limit configurations” 
Movement of dependence Moving (in a free, guided or bound way) 

a particular point and see what another 
particular point does 

Movement in the action zones Moving the articulated system so that all 
the possible parts of the plane are reached

Table 2: Utilization schemes linked to the machine movements, the sub-family M-2 
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In Martignone and Antonini (to appear), we have shown that this classification can be 
efficiently used to describe the interactions between subjects and Mathematical 
Machines.
In this paper, we shall see that the utilization schemes classification can be an 
interpretative tool for analysing exploration processes in activities with pantographs 
for geometrical transformations, where the term “exploration” refers to the process 
that leads to the formulation of a conjecture.  

METHODOLOGY 
The goal of our study has been to identify the machines utilization schemes and to 
investigate how these schemes are linked to the exploration processes. Because the 
focus was on the processes involved in the interaction between the subjects and the 
machines, in these first steps of the research we wanted to limit, as much as possible, 
the subjects’ difficulties derived from the application of geometrical theory. For this 
reason, we selected subjects that were familiar with (Euclidean) geometry and with 
problem-solving but that did not have an a priori specific knowledge about these 
machines: the subjects are mathematicians (three pre-service teachers, two university 
students and one young researcher in mathematics) who were new in working with 
Mathematical Machines. This choice allowed us to collect observations about the 
generation of conjecture on the mathematical law implemented by the machine and, 
subsequently, argumentation and proof of mathematical statements that can explain 
the machine working. 
The task given to the subject (who knows that the machine is an instrument that 
makes a geometric transformation) was the following one:  

To identify the mathematical law locally realized by the articulated system.
In particular, to justify how the machine “forces a point to follow a 
trajectory or to be transformed according to a given law” and then to prove 
the existing relationship between the machine properties (structure, 
working…) and the mathematical law implemented. 

The method used for investigation was the clinical interview. Subjects were asked to 
explore a machine and to think aloud during the exploration process. These 
interviews were videotaped and the analysis is based both on the transcripts of the 
interviews and on the manipulative activities. 

A PROTOCOL ANALYSIS
In this paragraph we will show the opening phase of Scheiner’s pantograph 
exploration. The pantograph of Scheiner (Fig.1-2) is a machine made by four bars 
pivoted so that they form a parallelogram (APCB) and a point pivoted on the plane 
(O). The points P, Q and O are in the same line and P and Q are corresponding in the 
homothetic transformation of centre O and ratio BO/AO. 
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Fig.1: A photograph of Scheiner’s 
pantograph

Fig.2: Scheiner’s pantograph virtual 
image

The analysis focuses on the alternation between different utilization schemes 
associated to the exploration of static and dynamic machine features: i.e. the 
characteristics of the articulated system physical components and the machine 
movements, respectively. In particular we present two levels of analysis: a first one 
after each transcript sections (where we show the different utilization schemes) and a 
second one at the end of the protocol excerpt (where we analyse how these schemes 
developed, intertwined and grounded the exploration strategies). 
First analysis level 
The subject (a Math researcher that we will call Carlo), as requested by the given 
task, tries to understand how the machine works and what it does. 

1 C: Then...(he is looking at the machine) the leads ... ah, those two points here 
(he touches them: Fig. 3)

After having read the task, he starts the exploration analysing the articulated system 
components: in particular he locates the plotter points (research of plotter points).

2 C: I'm looking how it is done (he begins to move the linkage) as far as I 
know, it could also be pivoted in other points ... (he moves the 
linkage)…therefore it is pivoted only here (he touches the fixed point: 
Fig. 4)

Carlo begins to move the articulated system  (wandering movement) focusing on the 
possible degree of freedom of the linkage points; therefore he identifies what points 
are pivoted (research of fixed points).

Fig.3: Carlo touches the plotter points Fig.4: Carlo touches the fixed point 
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In Martignone and Antonini (to appear), we have shown that this classification can be 
efficiently used to describe the interactions between subjects and Mathematical 
Machines.
In this paper, we shall see that the utilization schemes classification can be an 
interpretative tool for analysing exploration processes in activities with pantographs 
for geometrical transformations, where the term “exploration” refers to the process 
that leads to the formulation of a conjecture.  

METHODOLOGY 
The goal of our study has been to identify the machines utilization schemes and to 
investigate how these schemes are linked to the exploration processes. Because the 
focus was on the processes involved in the interaction between the subjects and the 
machines, in these first steps of the research we wanted to limit, as much as possible, 
the subjects’ difficulties derived from the application of geometrical theory. For this 
reason, we selected subjects that were familiar with (Euclidean) geometry and with 
problem-solving but that did not have an a priori specific knowledge about these 
machines: the subjects are mathematicians (three pre-service teachers, two university 
students and one young researcher in mathematics) who were new in working with 
Mathematical Machines. This choice allowed us to collect observations about the 
generation of conjecture on the mathematical law implemented by the machine and, 
subsequently, argumentation and proof of mathematical statements that can explain 
the machine working. 
The task given to the subject (who knows that the machine is an instrument that 
makes a geometric transformation) was the following one:  

To identify the mathematical law locally realized by the articulated system.
In particular, to justify how the machine “forces a point to follow a 
trajectory or to be transformed according to a given law” and then to prove 
the existing relationship between the machine properties (structure, 
working…) and the mathematical law implemented. 

The method used for investigation was the clinical interview. Subjects were asked to 
explore a machine and to think aloud during the exploration process. These 
interviews were videotaped and the analysis is based both on the transcripts of the 
interviews and on the manipulative activities. 

A PROTOCOL ANALYSIS
In this paragraph we will show the opening phase of Scheiner’s pantograph 
exploration. The pantograph of Scheiner (Fig.1-2) is a machine made by four bars 
pivoted so that they form a parallelogram (APCB) and a point pivoted on the plane 
(O). The points P, Q and O are in the same line and P and Q are corresponding in the 
homothetic transformation of centre O and ratio BO/AO. 
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Fig.1: A photograph of Scheiner’s 
pantograph

Fig.2: Scheiner’s pantograph virtual 
image

The analysis focuses on the alternation between different utilization schemes 
associated to the exploration of static and dynamic machine features: i.e. the 
characteristics of the articulated system physical components and the machine 
movements, respectively. In particular we present two levels of analysis: a first one 
after each transcript sections (where we show the different utilization schemes) and a 
second one at the end of the protocol excerpt (where we analyse how these schemes 
developed, intertwined and grounded the exploration strategies). 
First analysis level 
The subject (a Math researcher that we will call Carlo), as requested by the given 
task, tries to understand how the machine works and what it does. 

1 C: Then...(he is looking at the machine) the leads ... ah, those two points here 
(he touches them: Fig. 3)

After having read the task, he starts the exploration analysing the articulated system 
components: in particular he locates the plotter points (research of plotter points).

2 C: I'm looking how it is done (he begins to move the linkage) as far as I 
know, it could also be pivoted in other points ... (he moves the 
linkage)…therefore it is pivoted only here (he touches the fixed point: 
Fig. 4)

Carlo begins to move the articulated system  (wandering movement) focusing on the 
possible degree of freedom of the linkage points; therefore he identifies what points 
are pivoted (research of fixed points).

Fig.3: Carlo touches the plotter points Fig.4: Carlo touches the fixed point 
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3 C: ... well, I can... I'm trying to see the movement I can do (he moves the 
linkage by opening and closing the rods) well, seeing the movements that 
I can do (he is moving when he stops in a generic configuration) …it is 
coming to my mind the angle bisector, but…no the bar should be pivoted 
in another point…in the middle…[…] 

He is moving the articulated system in order to understand how should be the 
possible movements (movements between limit configurations) when he stops in a 
generic configuration because this reminds to him the geometrical construction of 
the angle bisector; this idea is just left because the linkage configuration does not fit 
the proprieties of that construction.  

4 C: OK, then… I see that if here, for example, I do a circle (without the lead, 
he moves the central plotter describing a circle) it comes out a circle also 
on the other side ... and if I make a straight line here…it is very difficult to 
make a straight line, I have also a straight line on the other side (he moves 
the linkage in silence always describing the line) ... now what ... 
(continues to move the linkage) ... well ... (he continues to move the 
linkage following different straight lines with different inclinations) ... if I 
make a straight line here ... ...there are fixed straight lines (he describes a 
straight line that seems to pass through the fixed point)...

The machine configurations explored through the continuous movement do not seem 
to help him to understand the math law incorporated in the machine. For this reason 
he changes strategy and he tries to see what the plotter points do if they are forced to 
move along specific paths (guided movements). In particular he moves one of the 
plotters and observes how the other point behaves (he does not use the leads and so 
he can analyse only the movements). It is interesting to notice what kind of trajectory 
he chooses: circular and straight. These paths are not chosen randomly, in fact Carlo 
knows that these lines have different properties which could highlight the 
characteristics of the transformation implemented by the machine: specifically the 
machine seems to perform similar movements: he says that circles are transformed 
into circles and straight lines in straight lines (analysis of "virtual" drawings) but, it 
seems that he does not notice the changing of size.

5 C: (he looks at the motionless machine in silence) …no, it is not that …the 
fact that this (he points to the small triangle PQC) is smaller in this way… 
it comes to mind ... an homothety … could it be an homothety? A 
homothety … it comes to mind also because these three points are 
aligned, are aligned? [The protocol continued with the construction of an 
argumentation and a proof that the transformation is a homothety.]  

Carlo leaves the previous exploration strategies linked to the production and analysis 
of “virtual” figures and he returns to the linkage structure analysis. In these few lines 
we can observe a concatenation of different utilization schemes (i.e. the research of 
geometric figures in the linkage structure combined with the construction of 
geometric figures and the following individuation of relationships between the 
recognized geometric figures that extend the articulated system components).  
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Second analysis level 
The protocol analysis, carried out in the previous paragraph, can be considered the 
first step in the study of the machine exploratory process: in fact after the 
individuation of the utilization schemes, we can analyse the sequence of these 
schemes and their relationship during the exploration phase.
Carlo’s protocol is interesting because shows an interlacement of different utilization 
schemes families. In fact, in the first phrases (1-3) Carlo, trying to discovered some 
of the machine key features, alternates utilization schemes related to the 
exploration of the machine components (research of plotter points and fixed points) 
and utilization schemes linked to the movements (wandering movement, 
movements between limit configurations that stop in a generic configuration). This 
interlacement continued also in the following part (phrases: 4-5) when he tries to 
determine which transformation the machine performs. At first, Carlo focuses on the 
plotter points movements, but, not using the leads, he does not see immediately that 
the machine implements an homothety: he is only aware of the fact that straight lines 
are transformed into straight lines and circles into circles (guided movements and 
analysis of "virtual" drawings). In order to recognize for certain the transformation, 
he needs to add to this information about the movements other data coming from the 
properties of the machine structure. Therefore he turns to schemes that explore the 
machine structure (research of geometric figures in the linkage structure, 
construction of geometric figures, individuation of relationships between the 
recognized geometric figures that extend the articulated system components). 
The sequence of this utilization schemes collapses in the production of the conjecture 
about the transformation made by the machine. The conjecture is reinforced by the 
fact that the plotter points and the fixed point are aligned.  

CONCLUDING REMARKS 
This research report presents some results of a cognitive study on Mathematical 
Machines. This study has been developed through progressive construction of 
interpretative tools that allow the analysis of the processes involved in the exploration 
of these instruments. The first step of the research has been the identification and the 
consequent classification of utilization schemes of a particular family of 
Mathematical Machines, the pantograph for geometrical transformations (Table 1 and 
Table 2). In this paper we have shown that this classification can be efficiently used 
to observe, describe and analyse cognitive processes involved in the exploration of 
mathematical properties incorporated in the machines.
Further researches are needed in different directions. In particular the studies in 
progress concern the argumentative processes and their relationship with the 
utilization schemes and cultural factors during activities with the Mathematical 
Machines. These studies are founded on results that come from previous 
investigations (collected in Boero, 2007), carried out in different environments, 
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3 C: ... well, I can... I'm trying to see the movement I can do (he moves the 
linkage by opening and closing the rods) well, seeing the movements that 
I can do (he is moving when he stops in a generic configuration) …it is 
coming to my mind the angle bisector, but…no the bar should be pivoted 
in another point…in the middle…[…] 

He is moving the articulated system in order to understand how should be the 
possible movements (movements between limit configurations) when he stops in a 
generic configuration because this reminds to him the geometrical construction of 
the angle bisector; this idea is just left because the linkage configuration does not fit 
the proprieties of that construction.  

4 C: OK, then… I see that if here, for example, I do a circle (without the lead, 
he moves the central plotter describing a circle) it comes out a circle also 
on the other side ... and if I make a straight line here…it is very difficult to 
make a straight line, I have also a straight line on the other side (he moves 
the linkage in silence always describing the line) ... now what ... 
(continues to move the linkage) ... well ... (he continues to move the 
linkage following different straight lines with different inclinations) ... if I 
make a straight line here ... ...there are fixed straight lines (he describes a 
straight line that seems to pass through the fixed point)...

The machine configurations explored through the continuous movement do not seem 
to help him to understand the math law incorporated in the machine. For this reason 
he changes strategy and he tries to see what the plotter points do if they are forced to 
move along specific paths (guided movements). In particular he moves one of the 
plotters and observes how the other point behaves (he does not use the leads and so 
he can analyse only the movements). It is interesting to notice what kind of trajectory 
he chooses: circular and straight. These paths are not chosen randomly, in fact Carlo 
knows that these lines have different properties which could highlight the 
characteristics of the transformation implemented by the machine: specifically the 
machine seems to perform similar movements: he says that circles are transformed 
into circles and straight lines in straight lines (analysis of "virtual" drawings) but, it 
seems that he does not notice the changing of size.

5 C: (he looks at the motionless machine in silence) …no, it is not that …the 
fact that this (he points to the small triangle PQC) is smaller in this way… 
it comes to mind ... an homothety … could it be an homothety? A 
homothety … it comes to mind also because these three points are 
aligned, are aligned? [The protocol continued with the construction of an 
argumentation and a proof that the transformation is a homothety.]  

Carlo leaves the previous exploration strategies linked to the production and analysis 
of “virtual” figures and he returns to the linkage structure analysis. In these few lines 
we can observe a concatenation of different utilization schemes (i.e. the research of 
geometric figures in the linkage structure combined with the construction of 
geometric figures and the following individuation of relationships between the 
recognized geometric figures that extend the articulated system components).  
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Second analysis level 
The protocol analysis, carried out in the previous paragraph, can be considered the 
first step in the study of the machine exploratory process: in fact after the 
individuation of the utilization schemes, we can analyse the sequence of these 
schemes and their relationship during the exploration phase.
Carlo’s protocol is interesting because shows an interlacement of different utilization 
schemes families. In fact, in the first phrases (1-3) Carlo, trying to discovered some 
of the machine key features, alternates utilization schemes related to the 
exploration of the machine components (research of plotter points and fixed points) 
and utilization schemes linked to the movements (wandering movement, 
movements between limit configurations that stop in a generic configuration). This 
interlacement continued also in the following part (phrases: 4-5) when he tries to 
determine which transformation the machine performs. At first, Carlo focuses on the 
plotter points movements, but, not using the leads, he does not see immediately that 
the machine implements an homothety: he is only aware of the fact that straight lines 
are transformed into straight lines and circles into circles (guided movements and 
analysis of "virtual" drawings). In order to recognize for certain the transformation, 
he needs to add to this information about the movements other data coming from the 
properties of the machine structure. Therefore he turns to schemes that explore the 
machine structure (research of geometric figures in the linkage structure, 
construction of geometric figures, individuation of relationships between the 
recognized geometric figures that extend the articulated system components). 
The sequence of this utilization schemes collapses in the production of the conjecture 
about the transformation made by the machine. The conjecture is reinforced by the 
fact that the plotter points and the fixed point are aligned.  

CONCLUDING REMARKS 
This research report presents some results of a cognitive study on Mathematical 
Machines. This study has been developed through progressive construction of 
interpretative tools that allow the analysis of the processes involved in the exploration 
of these instruments. The first step of the research has been the identification and the 
consequent classification of utilization schemes of a particular family of 
Mathematical Machines, the pantograph for geometrical transformations (Table 1 and 
Table 2). In this paper we have shown that this classification can be efficiently used 
to observe, describe and analyse cognitive processes involved in the exploration of 
mathematical properties incorporated in the machines.
Further researches are needed in different directions. In particular the studies in 
progress concern the argumentative processes and their relationship with the 
utilization schemes and cultural factors during activities with the Mathematical 
Machines. These studies are founded on results that come from previous 
investigations (collected in Boero, 2007), carried out in different environments, 
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concerning the study of the dynamic explorations and the transition between the 
conjecturing phase and the proof construction.
We think that the study on these processes will offer teachers tools that could be 
efficient to set up educational activities with the Mathematical Machines that can be 
productive for learning some geometrical topic but also for developing students’ 
explorative and argumentative aptitudes. 
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MODELING AND PROOF IN HIGH SCHOOL 
Mara V. Martinez   &  Bárbara M. Brizuela 

University of Illinois at Chicago  Tufts University    
In this paper we propose a refinement of Chevallard’s mathematical modeling 
process while still fully agreeing with his position that modeling is a key process in 
knowing mathematics. In doing this, based on our empirical study, we claim, 1) that 
there are at least two other stages in the mathematical modeling process; 2) that 
mathematical modeling is a non-linear process; and 3) there exists non-linearity at 
the interior of each modeling stage. We will illustrate each of these claims with 
episodes from our classroom intervention; one of the goals was to provide high 
school students the opportunity to use algebra as a modeling tool to prove. 

INTRODUCTION
We fully agree with placing modeling at the center of knowing mathematics, 
following Chevallard (1985, 1989). While adopting this position, the goal of our 
paper is to work towards a refinement of Chevallard’s mathematical modeling 
process. Chevallard (1989) proposed three stages in this process: (1) “Identification 
of Variables and Parameters;” (2) “Establishing Relationships Among Variables and 
Parameters;” and (3) “Working the Model to Establish New Relationships.” While 
Chevallard provides the framework for our work, we will put forth three claims 
regarding a revised process: (1) there are at least two other stages in the mathematical 
modeling process: “Interpretation of the Problem” and “Production of Competing 
Hypotheses”; (2) mathematical modeling is a non-linear process; (3) the existence of 
non-linearity at the interior of each stage is evidenced by the presence of partial 
models. We will provide evidence for our proposed revision through an in-depth 
analysis of a triad of 9th/10th grade students (14-15 years of age approximately) who 
worked with the first author of this paper on a didactical sequence (the “Calendar 
Sequence”) focused on students’ use of algebra as a modeling tool to prove during 
fifteen one-hour-long lessons (see Martinez, 2008, in preparation; Martinez and 
Brizuela, under review). 

DEFINITIONS OF MATHEMATICAL MODELING 
Chevallard’s definition of mathematical modeling 
Chevallard (1989) described the three stages of the modeling process in the following 
way:

(1) We define the system that we want to study by identifying the pertinent aspects in 
relation to the study of the system that we want to carry out, in other words, the set of 
variables through which we decide to cut off from reality the domain to be studied … (2) 
Now we build a model by establishing a certain number of relations R, R’, R’’, etc., 
among the variables chosen in the first stage, the model of the systems to study is the set

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 113-120. Thessaloniki, Greece: PME.
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of these relations. (3) We ‘work’ the model obtained through stages 1-2, with the goal of 
producing knowledge of the studied system, knowledge that manifests itself by new 
relations among the variables of the system. (p. 53. Emphasis in original)

In Chevallard’s (1985, 1989) point of view, mathematical modeling plays a key role 
in knowing mathematics. His theoretical perspective has been valuable to 
conceptualize the stages underlying mathematical modeling, as described above. 
Another important aspect is his consideration of both extra-mathematical and intra-
mathematical contexts resulting in a broadening of mathematical modeling for 
problem situations both inside mathematics (intra-mathematical context) as well and 
in contrast to real world contexts (extra-mathematical context). In addition, of special 
interest to us is Chevallard’s understanding of algebra as a modeling tool.
Additional perspectives on mathematical modeling 
Lesh and colleagues have largely studied modeling with an emphasis on “real world” 
contexts (e.g., Lesh, et al., 2003; Lesh & Doerr, 2003; Lesh, Lester, & Hjalmarson, 
2003; Lesh & Zawojewski, 2007). Lesh and his colleagues understand the 
development of models as part of problem solving. Students begin their learning 
experience by developing conceptual systems (i.e., models) for making sense of real-
life situations where it is necessary to create, revise, or adapt a mathematical way of 
thinking (i.e., a mathematical model; Lesh & Zawojewski, 2007). Given model-
eliciting activities, students are expected to bring their own personal meaning to bear 
on a problem, and to test and revise their interpretation over a series of modeling 
cycles. Lesh describes the modeling process as consisting of four interacting 
processes that do not occur in any fixed order: 1) description: establishing a map 
from the model world to the real or imagined world; 2) manipulation of the model to 
generate predictions or actions related to the problem solving situation; 3) prediction
(or translation), that involves carrying back results into the real or imagined world; 
and 4) verification of the usefulness of actions or predictions.
Hanna and Jahnke (2007) also investigate modeling within extra-mathematical 
contexts. They use arguments from physics as a method to build an explanatory 
proof. According to Hanna and Jahnke (2007), “modeling often has to do with 
creating a non-physical representation of a physical system” (p. 147) and relate their 
approach to “reality related proofs.” However, of special importance for our study is 
that they view modeling and proof as being inextricably linked and as having 
complementary roles. Additionally, they relate their view of modeling to that held by 
applied scientists, as, “a circular or spiral process of setting up a model, drawing 
conclusions, modifying the model, drawing conclusions, and so on” (p. 150). We 
borrow from Lesh and his colleagues their view of modeling as consisting of 
interacting stages that do not occur in a particular order, and from Hanna and Jahnke 
their view regarding the connections between modeling and proof, and their view of 
modeling as being a circular or spiral process. 
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On the other hand, other researchers (e.g., Bolea, Bosch, & Gascón, 1999; 
Chevallard, 1985, 1989; Gascón, 1993-1994), working more closely to Chevallard’s 
theoretical perspective, place a central focus on the study of modeling in and of itself 
as well as on the meaning and implications of conceiving algebra as a modeling tool 
in the school curriculum. Within this group of authors, Chevallard, Bosch, and 
Gascón (1997) claim that an essential characteristic of a mathematical activity 
consists of building a (mathematical) model about systems (within intra-
mathematical or extra-mathematical contexts) to be studied, to use it, and to produce 
an interpretation of the obtained results. In others words, the mathematical activity 
can be characterized as making (mathematical) models of systems in (intra or extra-
mathematical) contexts. The authors underline three aspects involved in building a 
mathematical model: the routine utilization of pre-existing mathematical models, the 
learning of models as well as the way of using them, and the creation of mathematical 
knowledge. From this group of colleagues we borrow their vision of the importance 
of modeling not just extra-mathematical contexts but also intra-mathematical 
contexts, as well as their vision regarding algebra as a modeling tool central to the 
mathematics curriculum. 

METHODOLOGY 
Participants
In this paper, we will describe and analyze the work of three 9th/10th grade students 
(Abbie, Desiree, and Grace) who participated in a teaching intervention, led by the 
first author of this paper, in which a total of nine 9th/10th graders took part, at a public 
charter school in the Boston area, Massachusetts, in the USA. 
Procedure
Lessons: Fifteen one-hour lessons were held once a week. These lessons were part of 
the regular school schedule but not part of their regular mathematics classes. In this 
paper we will report on data collected during Lessons 1 and 2, in which students 
focused on Problem 1, which was implemented during the first half of the 
intervention during which students worked with variables, algebraic expressions, and 
equivalent algebraic expressions.

Problem 1 
Part 1: Consider a square of two by two formed by the days of a certain month, as 
shown below. For example, a square of two by two can be  1  2  
          8 9 
These squares will be called 2x2 calendar squares. Calculate the difference between 
the products of the numbers in the extremes of the diagonals. Find the 2x2 calendar 
square that gives the biggest outcome. You may use any month of any year that you 
want.
Part 2: Show and explain why the outcome is going to be -7 always. 

4 - 114 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   114 6/4/09   2:22:20 PM



Martinez, Brizuela 

1- 2 PME 33 - 2009 

of these relations. (3) We ‘work’ the model obtained through stages 1-2, with the goal of 
producing knowledge of the studied system, knowledge that manifests itself by new 
relations among the variables of the system. (p. 53. Emphasis in original)

In Chevallard’s (1985, 1989) point of view, mathematical modeling plays a key role 
in knowing mathematics. His theoretical perspective has been valuable to 
conceptualize the stages underlying mathematical modeling, as described above. 
Another important aspect is his consideration of both extra-mathematical and intra-
mathematical contexts resulting in a broadening of mathematical modeling for 
problem situations both inside mathematics (intra-mathematical context) as well and 
in contrast to real world contexts (extra-mathematical context). In addition, of special 
interest to us is Chevallard’s understanding of algebra as a modeling tool.
Additional perspectives on mathematical modeling 
Lesh and colleagues have largely studied modeling with an emphasis on “real world” 
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experience by developing conceptual systems (i.e., models) for making sense of real-
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eliciting activities, students are expected to bring their own personal meaning to bear 
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cycles. Lesh describes the modeling process as consisting of four interacting 
processes that do not occur in any fixed order: 1) description: establishing a map 
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(or translation), that involves carrying back results into the real or imagined world; 
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Hanna and Jahnke (2007) also investigate modeling within extra-mathematical 
contexts. They use arguments from physics as a method to build an explanatory 
proof. According to Hanna and Jahnke (2007), “modeling often has to do with 
creating a non-physical representation of a physical system” (p. 147) and relate their 
approach to “reality related proofs.” However, of special importance for our study is 
that they view modeling and proof as being inextricably linked and as having 
complementary roles. Additionally, they relate their view of modeling to that held by 
applied scientists, as, “a circular or spiral process of setting up a model, drawing 
conclusions, modifying the model, drawing conclusions, and so on” (p. 150). We 
borrow from Lesh and his colleagues their view of modeling as consisting of 
interacting stages that do not occur in a particular order, and from Hanna and Jahnke 
their view regarding the connections between modeling and proof, and their view of 
modeling as being a circular or spiral process. 
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Figure 1. Problem 1 from the Calendar Sequence. 
In Problem 1 (Figure 1), students were asked to analyze the nature of the outcome of 
the described calculation (subtraction of the cross product). It was expected that 
students would anticipate some kind of variation in the outcome in relation to the set 
of days where the operator is applied and that students would find out, through 
exploration, that the same outcome is always obtained, no matter where they apply 
the operator. The challenge for the students was to find out why this happens, and 
whether this is “always” going to be the case. At this stage in the problem, from a 
mathematical point of view, algebra becomes a tool to solve the problem. Thus, one 
of the challenges in Problem 1 is to show the limitations of using a non-exhaustive 
finite set of examples to prove that proposition is true, and to encourage students to 
use algebra as a tool that allows them to express all cases using a unique expression.

FINDINGS 
Claim 1: There are at least two other stages in the mathematical modeling 
process.
Interpretation of the Problem: Given that our interest in mathematical modeling, 
specifically the use of algebra as a modeling tool to prove, is educational, it is crucial 
to include a stage that accounts for students’ processes when they are mainly focused 
on understanding the statement of the problem, which does not exclude questions 
regarding the statement of the problem from re-appearing once students start to 
“solve” the problem. In Abbie, Desiree, and Grace’s group, the first five minutes of 
small group work were characterized by trying to understand the meaning of the 
statement of the problem. Among the issues that surfaced during this interpretation 
stage were: potential strategies to solve the problem; reaching an agreement 
regarding the operations involved; the nature of the numbers considered (negative, 
positive, absolute value); and the delimitation of the domain to study. After these 
initial minutes, the students reached an agreement regarding these issues and their 
main focus shifted towards the production of hypotheses regarding the outcome.  
Production of Competing Hypotheses: This stage is characterized by students’ 
production of competing hypotheses as part of their investigation of the nature of the 
outcome. Students pondered how to obtain the largest number and how to 
characterize the nature of the dependence between the outcome and different aspects 
of the problem situations such as a square’s position within the month, across months 
and years, and what day of the week is the first day of the month. In Figure 2, we 
show the process by which our three students produced a variety of competing 
hypotheses and later agreed on a final hypothesis. Students employed a significant 
amount of time trying to understand the behaviour of the outcome and its 
dependence/independence to different elements of the context. In the example given, 
students constructed a variety of competing hypotheses (H1, H2, H3, and H4 in 
Figure 2) until they were relatively convinced about the truth-value of their final 
hypothesis (H5). What has to be proved is not obtained through a straightforward 
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process, but rather through students’ analysis of the likelihood of the truth-value of 
each of a succession of competing hypotheses. H1 linked the numeric outcome to the 
square’s position at the beginning of the month, while H2 is a claim about the 
outcome’s independence of the month that it was placed in. After abandoning H1 and 
H2, H3 was momentarily embraced: possibility of the outcome’s dependence on the 
month where it is placed, which is in contradiction with H2. H4 seems to be a 
refinement of H3, given that it relates the potential variation of the outcome with 
what day of the week is the first day of the month. Students identify as the potential 
source for the variation in the outcome not only in what month the square is placed 
but also what day of the week is the first day in that month. The students hypothesize 
that a potential source of variation in the outcome is the relative arrangement of the 
days. To test their hypothesis, they tried months that differ in what day of the week is 
the first day of the month, always resulting in the same outcome, -7. Students seemed 
convinced given that they tried all possible unfavourable scenarios and they still got 
the same outcome, therefore they produced their concluding hypothesis (H5) stating 
the outcome is always -7 regardless of different arrangements of numbers, months, 
and first days of the month. We distinguish between two kinds of hypotheses: 
exploratory and concluding, the latter being the hypothesis to be proved. They differ 
in terms of the purpose and degree of certainty regarding their truth-value. An 
example of an exploratory hypothesis is provided by Desiree when she posed the 
following question to her group: “What happens if you start like at the beginning?” 
referring to the impact on the numeric outcome when placing the square at the 
beginning of the month. This is different from their concluding hypothesis as stated 
by Abbie: “They are always going to be the same.” As discussed earlier, this 
concluding hypothesis was produced as the result of exploring various hypotheses, 
analyzing them using examples and properties of the relations involved, and getting a 
sense of the degree of certainty about its truth value.
Claim 2: Mathematical modeling is a non-linear process.
We claim that the mathematical modeling process is non-linear: stages can occur in 
non-consecutive order, and therefore does not necessarily follow the path as 
described by Chevallard (1985, 1989). As illustrated in Table 1, students already 
started analyzing some relations among variables (i.e., “Establishing Relationships 
Among Variables” stage) in the Interpretation of the Problem stage. In our analysis, it 
is possible to identify a main focus to students’ work during a certain period of time. 
For instance, during the first five minutes, as the students were trying to understand 
the statement of the problem, elements from other modeling stages appeared. During 
“Interpretation of the Problem,” Abbie noticed the relationships between elements in 
the corner of the diagonal of the square (i.e., “Establishing Relationships Among 
Variables”). At that moment, her group did not elaborate on her comment until later 
when they were mainly producing hypotheses; more specifically, until the moment of 
writing the expression to prove their concluding hypothesis, illustrating that stages do 
not necessarily happen in a fixed order. 
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exploration, that the same outcome is always obtained, no matter where they apply 
the operator. The challenge for the students was to find out why this happens, and 
whether this is “always” going to be the case. At this stage in the problem, from a 
mathematical point of view, algebra becomes a tool to solve the problem. Thus, one 
of the challenges in Problem 1 is to show the limitations of using a non-exhaustive 
finite set of examples to prove that proposition is true, and to encourage students to 
use algebra as a tool that allows them to express all cases using a unique expression.

FINDINGS 
Claim 1: There are at least two other stages in the mathematical modeling 
process.
Interpretation of the Problem: Given that our interest in mathematical modeling, 
specifically the use of algebra as a modeling tool to prove, is educational, it is crucial 
to include a stage that accounts for students’ processes when they are mainly focused 
on understanding the statement of the problem, which does not exclude questions 
regarding the statement of the problem from re-appearing once students start to 
“solve” the problem. In Abbie, Desiree, and Grace’s group, the first five minutes of 
small group work were characterized by trying to understand the meaning of the 
statement of the problem. Among the issues that surfaced during this interpretation 
stage were: potential strategies to solve the problem; reaching an agreement 
regarding the operations involved; the nature of the numbers considered (negative, 
positive, absolute value); and the delimitation of the domain to study. After these 
initial minutes, the students reached an agreement regarding these issues and their 
main focus shifted towards the production of hypotheses regarding the outcome.  
Production of Competing Hypotheses: This stage is characterized by students’ 
production of competing hypotheses as part of their investigation of the nature of the 
outcome. Students pondered how to obtain the largest number and how to 
characterize the nature of the dependence between the outcome and different aspects 
of the problem situations such as a square’s position within the month, across months 
and years, and what day of the week is the first day of the month. In Figure 2, we 
show the process by which our three students produced a variety of competing 
hypotheses and later agreed on a final hypothesis. Students employed a significant 
amount of time trying to understand the behaviour of the outcome and its 
dependence/independence to different elements of the context. In the example given, 
students constructed a variety of competing hypotheses (H1, H2, H3, and H4 in 
Figure 2) until they were relatively convinced about the truth-value of their final 
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process, but rather through students’ analysis of the likelihood of the truth-value of 
each of a succession of competing hypotheses. H1 linked the numeric outcome to the 
square’s position at the beginning of the month, while H2 is a claim about the 
outcome’s independence of the month that it was placed in. After abandoning H1 and 
H2, H3 was momentarily embraced: possibility of the outcome’s dependence on the 
month where it is placed, which is in contradiction with H2. H4 seems to be a 
refinement of H3, given that it relates the potential variation of the outcome with 
what day of the week is the first day of the month. Students identify as the potential 
source for the variation in the outcome not only in what month the square is placed 
but also what day of the week is the first day in that month. The students hypothesize 
that a potential source of variation in the outcome is the relative arrangement of the 
days. To test their hypothesis, they tried months that differ in what day of the week is 
the first day of the month, always resulting in the same outcome, -7. Students seemed 
convinced given that they tried all possible unfavourable scenarios and they still got 
the same outcome, therefore they produced their concluding hypothesis (H5) stating 
the outcome is always -7 regardless of different arrangements of numbers, months, 
and first days of the month. We distinguish between two kinds of hypotheses: 
exploratory and concluding, the latter being the hypothesis to be proved. They differ 
in terms of the purpose and degree of certainty regarding their truth-value. An 
example of an exploratory hypothesis is provided by Desiree when she posed the 
following question to her group: “What happens if you start like at the beginning?” 
referring to the impact on the numeric outcome when placing the square at the 
beginning of the month. This is different from their concluding hypothesis as stated 
by Abbie: “They are always going to be the same.” As discussed earlier, this 
concluding hypothesis was produced as the result of exploring various hypotheses, 
analyzing them using examples and properties of the relations involved, and getting a 
sense of the degree of certainty about its truth value.
Claim 2: Mathematical modeling is a non-linear process.
We claim that the mathematical modeling process is non-linear: stages can occur in 
non-consecutive order, and therefore does not necessarily follow the path as 
described by Chevallard (1985, 1989). As illustrated in Table 1, students already 
started analyzing some relations among variables (i.e., “Establishing Relationships 
Among Variables” stage) in the Interpretation of the Problem stage. In our analysis, it 
is possible to identify a main focus to students’ work during a certain period of time. 
For instance, during the first five minutes, as the students were trying to understand 
the statement of the problem, elements from other modeling stages appeared. During 
“Interpretation of the Problem,” Abbie noticed the relationships between elements in 
the corner of the diagonal of the square (i.e., “Establishing Relationships Among 
Variables”). At that moment, her group did not elaborate on her comment until later 
when they were mainly producing hypotheses; more specifically, until the moment of 
writing the expression to prove their concluding hypothesis, illustrating that stages do 
not necessarily happen in a fixed order. 
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Figure 2. Proposed Production of Competing Hypotheses Stage. Hypothesis are 
represented on the left in order of appearance. On the right, excerpts of students’ 

discussion along with the time code and the student initial.
Claim 3: Partial models within stages of the mathematical modeling process. 
Even though Chevallard’s mathematical modeling process has proved useful, it does 
not account for the complexity involved at the interior of each of the modeling stages. 
Within Chevallard’s stages of Identification of Variables and Parameters (i.e., first 
stage) and Establishing Relationships Among Variables and Parameters (i.e., third 
stage), we have found that students produce partial models of the situation under 
consideration. A partial model is a model that includes some (but not all) variables, 
parameters, or relations among them. Thus, a complete model is what we would 
traditionally call model, and it includes all variables, parameters, and relations that 
are relevant to study the situation under consideration. For instance, building on the 
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relations identified when they first encountered the problem, Abbie proposed to write 
with “algebra” the following: “All right so this is what I have 'x' times 'x' minus 8, 

Transcript Stage Significance 
[00:05:41.20] and [00:06:07.23] 
Production of H1 and H2. 

Production of Competing 
Hypotheses

New proposed 
stage.

[00:06:15.19] A: There's always 
going to be a difference of 8 
between this one and this one, 1, 
2, 3, 4, 5, 6, and a difference of 6 
between this one and this one. 

Establishing Relationships 
Among Variables 

Chevallard 
proposed this as 
the final stage in 
the modeling 
process.

[00:09:10.03] Production of H3. Production of Competing 
Hypotheses

New proposed 
stage.

[00:09:53.17] A: The thing about 
this is still 8 and still 6 is still 
true.

Establishing Relationships 
Among Variables 

Chevallard 
proposed this as 
the final stage in 
the modeling 
process.

[00:09:39.06] Production of H4. Production of Competing 
Hypotheses

New proposed 
stage.

Table 1. Illustration of non-linearity of the modeling process. 
minus 'y' times 'y' minus 6 that's basically what we're doing, yes.” At this moment 
they had produced a partial model of the situation since they were not aware of the 
relation between x and y. After producing that expression, they continued to check 
whether it was correct or incorrect; in order to do that, they were going to replace the 
letters with numbers. In the process of doing so, Abbie realized that y and x are in 
fact related: “'y' and 'x' aren't like random numbers … so we can say everything in 
terms of this number right here.” This is when a complete mathematical model was 
produced, including one independent variable x and three dependent variables x-1, x-
8, and (x-1)-6 with explicit relationships among the different variables. In this case, 
students’ goal was to write down the expression representing the model that they 
thought captured all necessary information, in order to work on it with the ultimate 
goal of proving their concluding hypothesis. However, they came to realize that there 
were two relationships that they had overlooked. Therefore they “went back” to re-
write these “unnoticed” relationships.

CONCLUDING REMARKS 
In this paper, we have proposed a refinement of Chevallard’s mathematical modeling 
process. We proposed the inclusion of at least two others stages namely: 
“Interpretation of the Problem” and “Production of Competing Hypotheses”. In 
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relations identified when they first encountered the problem, Abbie proposed to write 
with “algebra” the following: “All right so this is what I have 'x' times 'x' minus 8, 
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minus 'y' times 'y' minus 6 that's basically what we're doing, yes.” At this moment 
they had produced a partial model of the situation since they were not aware of the 
relation between x and y. After producing that expression, they continued to check 
whether it was correct or incorrect; in order to do that, they were going to replace the 
letters with numbers. In the process of doing so, Abbie realized that y and x are in 
fact related: “'y' and 'x' aren't like random numbers … so we can say everything in 
terms of this number right here.” This is when a complete mathematical model was 
produced, including one independent variable x and three dependent variables x-1, x-
8, and (x-1)-6 with explicit relationships among the different variables. In this case, 
students’ goal was to write down the expression representing the model that they 
thought captured all necessary information, in order to work on it with the ultimate 
goal of proving their concluding hypothesis. However, they came to realize that there 
were two relationships that they had overlooked. Therefore they “went back” to re-
write these “unnoticed” relationships.

CONCLUDING REMARKS 
In this paper, we have proposed a refinement of Chevallard’s mathematical modeling 
process. We proposed the inclusion of at least two others stages namely: 
“Interpretation of the Problem” and “Production of Competing Hypotheses”. In 
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addition, we provided evidence illustrating the non-linearity (stages do not happen in 
a fixed order) of the mathematical modeling process. Lastly, we showed students’ 
partial models as an indication of the complexity at the interior of the stages in the 
modeling process. 
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STUDYING TEACHERS’ PEDAGOGICAL ARGUMENTATION 
Metaxas Nikolaos, Potari Despina, Zachariades Theodossios
Department of Mathematics, University of Athens, Greece 

We present a case study analysis of the arguments used by an experienced high-
school teacher. We employ the model of argumentation schemes in adjunction with 
Toulmin’s scheme. We focus on the content and the structure of the arguments used, 
and examine the different aspects of teacher knowledge that emerge. There is 
evidence of a structured example space which instantiates through the use of 
pedagogical examples as a conclusive and integral part of teacher’s argumentation. 
This example space is based on a sense of deep pedagogical intuition framed by 
teacher’s craft knowledge. 

INTRODUCTION
There is a growing amount of research in mathematics education literature focusing 
on mathematical arguments (structures of inference with mathematical meaning) 
produced by students and teachers of mathematics. The main methodological tools 
for the analysis of these arguments are primarily Toulmin’s model (Toulmin, 2003). 
Some researchers use Toulmin’s model as a lens through which they document 
students’ learning progresses in a classroom (Krummheuer 1995), while other 
researchers study the quality of a certain mathematical argument (Pedemonte, 2007). 
Nevertheless not much has been done in the direction of analysing the pedagogical 
arguments of teachers. In this paper we use Toulmin’s model coupled with 
argumentation scheme analysis (Walton and Reed, 2005; Walton, Reed & Macagno, 
2008) to dissect the structure of argumentation of mathematics teachers when they 
interpret and comment on students’ answers and design teaching interventions to help 
students overcome emerged difficulties. By examining the kind of arguments they 
employ and studying their structure we seek to investigate some aspects of teacher 
knowledge (Schulman, 1987; Ball, Thames & Phelps, 2007) that is lying beneath 
each argumentative scheme. So we examine the following questions: (a) what is the 
kind of arguments teachers use, (b) what is the structure of these arguments and (c) 
what can be inferred about teachers’ knowledge.

THEORETICAL PERSPECTIVE 
Toulmin’s (2003) model asserts that most arguments consist of six basic parts, each 
of which plays a different role in an argument. The claim (C) is the position or claim
being argued for. The data (D) are the foundation or supporting evidence on which 
the argument is based. The warrant (W) is the principle, provision or chain of 
reasoning that connects the data to the claim. Warrants operate at a higher level of 
generality than a claim or reason, and they are not normally explicit. The Backing (B) 
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provides the support, justification or reasons to back up the warrant by presenting 
further evidence. The modal qualifier (Q) represents the verbalization of the relative 
strength of an argument and the rebuttal (R) consists of exceptions to the claim 
stating the conditions under which it would not hold. Since Krummheuer (1995) a lot 
of research has been taken place using Toulmin’s scheme. Nevertheless there are 
some notable difficulties. The notion of warrant has proved notoriously difficult to 
interpret, while due to the elliptic form of human argumentation not all the premises 
are explicitly stated. In order to bypass such turns, we turn to a useful tool in 
argumentation theory: the theory of argumentation schemes. These are forms of 
argument that represent structures of common types of arguments used in everyday 
discourse as well as in special contexts like those of scientific and legal 
argumentation . Their flexibility to accommodate deductive, inductive and abductive 
(or defeasible) forms of arguments has led to a recent paradigm shift in logic, 
artificial intelligence and cognitive science. Recent work in analysis of presumptive 
argumentation and argumentation schemes (Walton et al.; 2008) has led to an 
extensive compendium of argumentation schemes on which we base our work in the 
classification of the arguments used by mathematics teachers. The structure and the 
content of argumentation schemes can reveal facets of teachers’ pedagogical content 
knowledge (PCK). We use the term PCK in the sense of Schulman (1987) as refined 
by Ball et al (2007) who proposed a further classification of content knowledge for 
teaching. Two basic components of this classification are i) PCK, which contains the 
subdomains of knowledge of content and students (KCS, is knowledge that combines 
knowing about students and knowing about mathematics) and knowledge of content 
and teaching (KCT, is knowledge that combines knowing about teaching and 
knowing about mathematics), and ii) specialized content knowledge (SCK) which is 
the mathematical knowledge and skill uniquely needed by teachers in the conduct of 
their work and belongs to the general domain of content knowledge. Finding an 
example to make a specific mathematical point is one of the mathematical tasks of 
teaching that characterize SCK and mirror a teacher’s conceptions of mathematical 
objects involved in an example generation task, his pedagogical repertoire, his 
difficulties and possible inadequacies in his perceptions (Zazkis & Leikin, 2007). We 
examine the examples that teachers provide in order to support an argument, as an 
indicator of their mathematical and pedagogical knowledge. We employ the notion of 
example space by Watson and Mason (2005) which is a collection of examples that 
fulfill a specific function influenced by individual’s experience and memory, as well 
as by the specific requirements of an example generating task. In our case several 
argumentation schemes include as support examples of pedagogical issues. In order 
to differentiate them from mere mathematical examples or empirical examples (that 
are used as data of an argument) and to emphasize the metalevel they belong to 
relatively to the ground level of the didactic episode they talk about, we adopt the 
term metaexamples (Metaxas, 2008).  
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METHODOLOGY 
This study is part of a larger research project investigating PCK and SCK that high 
school mathematics teachers have as well as the evolution of their knowledge bases. 
The participants were 18 high school mathematics teachers with a degree in 
mathematics and were enrolled in a 2-year master’s program in mathematics 
education.  In partial fulfilment of their master’s degree, they had to attend thirteen 2-
hour classes of a semester long graduate course in Didactics of Calculus and this 
study was based on this course. 
Process: The process in tentative chronological order was as follows: i) Observation 
and video recording of the lessons of the course. The lessons were based on a number 
of tasks which contained hypothetical didactic situations (Biza, Nardi & Zachariades, 
2007) and they triggered off extensive discussions on mathematical, pedagogical and 
didactical issues, while the role of the instructor (and member of the research project) 
was that of a facilitator. The class was scheduled to adhere to the basic complex 
science principles (Davis & Simmt, 2006) of decentralized control (a complex form 
is bottom-up; its emergence does not depend on central organizers or governing 
structures), neighbour interactions (the neighbours that must ‘bump’ against one 
another are warrants, ideas, and other parts of argumentation) and enabling 
constraints (The participants, for example, expect the topics of discussion to be 
appropriate to their work etc.). ii) A half an hour tutoring audio-taped session with a 
high school student. The student was given a worksheet with some calculus tasks 
designed by each participant teacher and in the tutoring session the teacher discussed 
with the student his/her responses. This happened during the first week of the classes 
and the same was repeated during last week. iii) Two semi-structured interviews with 
six of the participants. The interviews were based on teachers’ answers to the tasks 
and on the analysis of their videotaped classes and audio taped tutoring sessions. The 
two interviews, approximately 90 minutes each, were held during the first and last 
week of the semester. The purpose of the questions addressed to the teachers was to 
make them elaborate on their written answers and oral arguments they used in class 
and unveil their argumentation base. iv) Transcription and analysis of all video and 
audio tapes. v) Triangulation of the initial results obtained, by means of a third 
interview with every one of the six teachers where they commented on our own 
interpretations.
Data and data analysis: Data consisted of the: i) teachers’ responses on the tasks 
used in the class, ii) videotapes of all classes, iii) two audio-taped half hour tutoring 
sessions of each participant with a high school student of his choice, iv) two semi-
structured audio-taped interviews with each participant. We analysed line by line the 
dialogues, coded the parts of every argument as D,C,W,B,R or Q (the elements of 
Toulmin’s model) and categorized them using a levelling structure similar to analysis 
by Chinn and Anderson (1998) : we consider  wherever applicable, a Backing as 
simply a Datum in a second argument frame whose Claim is the Warrant (either 
explicit or entailed) from the first argument frame. This presupposes the existence of 
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provides the support, justification or reasons to back up the warrant by presenting 
further evidence. The modal qualifier (Q) represents the verbalization of the relative 
strength of an argument and the rebuttal (R) consists of exceptions to the claim 
stating the conditions under which it would not hold. Since Krummheuer (1995) a lot 
of research has been taken place using Toulmin’s scheme. Nevertheless there are 
some notable difficulties. The notion of warrant has proved notoriously difficult to 
interpret, while due to the elliptic form of human argumentation not all the premises 
are explicitly stated. In order to bypass such turns, we turn to a useful tool in 
argumentation theory: the theory of argumentation schemes. These are forms of 
argument that represent structures of common types of arguments used in everyday 
discourse as well as in special contexts like those of scientific and legal 
argumentation . Their flexibility to accommodate deductive, inductive and abductive 
(or defeasible) forms of arguments has led to a recent paradigm shift in logic, 
artificial intelligence and cognitive science. Recent work in analysis of presumptive 
argumentation and argumentation schemes (Walton et al.; 2008) has led to an 
extensive compendium of argumentation schemes on which we base our work in the 
classification of the arguments used by mathematics teachers. The structure and the 
content of argumentation schemes can reveal facets of teachers’ pedagogical content 
knowledge (PCK). We use the term PCK in the sense of Schulman (1987) as refined 
by Ball et al (2007) who proposed a further classification of content knowledge for 
teaching. Two basic components of this classification are i) PCK, which contains the 
subdomains of knowledge of content and students (KCS, is knowledge that combines 
knowing about students and knowing about mathematics) and knowledge of content 
and teaching (KCT, is knowledge that combines knowing about teaching and 
knowing about mathematics), and ii) specialized content knowledge (SCK) which is 
the mathematical knowledge and skill uniquely needed by teachers in the conduct of 
their work and belongs to the general domain of content knowledge. Finding an 
example to make a specific mathematical point is one of the mathematical tasks of 
teaching that characterize SCK and mirror a teacher’s conceptions of mathematical 
objects involved in an example generation task, his pedagogical repertoire, his 
difficulties and possible inadequacies in his perceptions (Zazkis & Leikin, 2007). We 
examine the examples that teachers provide in order to support an argument, as an 
indicator of their mathematical and pedagogical knowledge. We employ the notion of 
example space by Watson and Mason (2005) which is a collection of examples that 
fulfill a specific function influenced by individual’s experience and memory, as well 
as by the specific requirements of an example generating task. In our case several 
argumentation schemes include as support examples of pedagogical issues. In order 
to differentiate them from mere mathematical examples or empirical examples (that 
are used as data of an argument) and to emphasize the metalevel they belong to 
relatively to the ground level of the didactic episode they talk about, we adopt the 
term metaexamples (Metaxas, 2008).  
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METHODOLOGY 
This study is part of a larger research project investigating PCK and SCK that high 
school mathematics teachers have as well as the evolution of their knowledge bases. 
The participants were 18 high school mathematics teachers with a degree in 
mathematics and were enrolled in a 2-year master’s program in mathematics 
education.  In partial fulfilment of their master’s degree, they had to attend thirteen 2-
hour classes of a semester long graduate course in Didactics of Calculus and this 
study was based on this course. 
Process: The process in tentative chronological order was as follows: i) Observation 
and video recording of the lessons of the course. The lessons were based on a number 
of tasks which contained hypothetical didactic situations (Biza, Nardi & Zachariades, 
2007) and they triggered off extensive discussions on mathematical, pedagogical and 
didactical issues, while the role of the instructor (and member of the research project) 
was that of a facilitator. The class was scheduled to adhere to the basic complex 
science principles (Davis & Simmt, 2006) of decentralized control (a complex form 
is bottom-up; its emergence does not depend on central organizers or governing 
structures), neighbour interactions (the neighbours that must ‘bump’ against one 
another are warrants, ideas, and other parts of argumentation) and enabling 
constraints (The participants, for example, expect the topics of discussion to be 
appropriate to their work etc.). ii) A half an hour tutoring audio-taped session with a 
high school student. The student was given a worksheet with some calculus tasks 
designed by each participant teacher and in the tutoring session the teacher discussed 
with the student his/her responses. This happened during the first week of the classes 
and the same was repeated during last week. iii) Two semi-structured interviews with 
six of the participants. The interviews were based on teachers’ answers to the tasks 
and on the analysis of their videotaped classes and audio taped tutoring sessions. The 
two interviews, approximately 90 minutes each, were held during the first and last 
week of the semester. The purpose of the questions addressed to the teachers was to 
make them elaborate on their written answers and oral arguments they used in class 
and unveil their argumentation base. iv) Transcription and analysis of all video and 
audio tapes. v) Triangulation of the initial results obtained, by means of a third 
interview with every one of the six teachers where they commented on our own 
interpretations.
Data and data analysis: Data consisted of the: i) teachers’ responses on the tasks 
used in the class, ii) videotapes of all classes, iii) two audio-taped half hour tutoring 
sessions of each participant with a high school student of his choice, iv) two semi-
structured audio-taped interviews with each participant. We analysed line by line the 
dialogues, coded the parts of every argument as D,C,W,B,R or Q (the elements of 
Toulmin’s model) and categorized them using a levelling structure similar to analysis 
by Chinn and Anderson (1998) : we consider  wherever applicable, a Backing as 
simply a Datum in a second argument frame whose Claim is the Warrant (either 
explicit or entailed) from the first argument frame. This presupposes the existence of 
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a conceptual continuity among the arguments, which allows including them in the 
same unit, which we call it, a chain. A chain is a series of argumentation schemes that 
are linked with each other by a claim, a warrant, a backing or a rebuttal and share a 
common idea or concept in a gradually expanding web of interlocking argument 
frames. Each argumentation scheme is characterized by the level of depth it has in the 
chain (first level for the first scheme in order of a chain etc.). So for example, D/3 
means a Datum in the third argumentation scheme of a certain chain. In order to 
study the kind and structure of inferences used, we characterized the arguments of 
each argumentation scheme according to a compendium of schemes (Walton et al., 
2008). At the same time, we categorized each such scheme according to the kind of 
teachers’ knowledge it exhibited (PCK, SCK, CKS, CKT). In order to check any 
discrepancy among our records we included a comparison of data collected in the 
video and audio tapes with the data from written records. We also allowed for a 
grounded approach: trying to take notice of any emerging pattern, either in the 
content or in the structure. Due to space limitations, we will present here the case of 
one of the teachers-participants, John (pseudo-name), with 20 years teaching 
experience of teaching calculus in high school. John was in the third semester of his 
graduate studies.

RESULTS
We will present some of the results based on the two interviews with John while 
including a characteristic extract from his first interview.  
Types of arguments used 
As it is clear from table 1 below, John mostly used five types of arguments while 
only in 4 out of 44 total cases he relied on a theoretical (pedagogical) argument with 
no support from experience. The main types of argumentation schemes (Walton et 
al., 2008) that John used were: argument from illustration (Premise 1: usually if x has 
property F the x has property G, Premise 2: in this case x has property F and G, 
Conclusion : the rule is valid), argument from analogy (Similarity Premise : generally 
case C is similar to case F, Base Premise : A is true in case C, Conclusion : A is true 
in case F), argument from classification (Premise 1: k has property F, Premise 2: for 
all x, if x has property F then x can be classified as having property G, Conclusion : k 
has property G), abductive argument from effect to cause (F is a set of facts in the 
form of an event that has occurred, E is a satisfactory explanation of F, therefore E is 
plausible as an hypothesis for the cause of F) and argument from opposite (the 
opposite of S has property P, therefore S has property not-P). The first three of the 
above kinds of arguments are basically inductive in their structure with one of their 
premises to be personal experience. This would probably mean that John was still 
relying heavily on intuitive knowledge he gained through his experience either as a 
teacher or as a high school student even after three semesters experience at graduate 
level. His extensive use of metaexamples (15 out of 19 argumentative chains contain 
metaexamples) concurs with the empirical backing that the above kind of arguments 
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usually have and help reducing the “cost” for understanding an argument (in the 
sense of Besnard and Hunter, 2008). 

Number of 
arguments  

rguments 
from 

opposite

rguments 
from 

analogy

rguments 
from 

classification 

rguments 
from 

illustration 

rguments 
from effect 

to cause 

General
pedagogical
arguments 

46 2 22 6 10 2 4 

Table 1: Classification of arguments used in two interviews 
Structure of argumentation 
The pattern we see also in the extract below, namely the conclusion of an 
argumentative chain by the means of a metaexample, is indicative of a more general 
trend : 13 out of 19 argumentative chains have a metaexample as a backing in the last 
argument of the chain. It signifies probably the conclusive character that his 
experience had for John, as he himself stated: “all the teaching episodes that I have 
experienced as a teacher or as a student, have strongly shaped my views and I regard 
them as a definite and valuable asset”. On another aspect, considering the appearance 
of the modal qualifiers (Q and R) of the Toulmin’s scheme, we note that 13 out of 14 
of their total appearances are realized in arguments that are not backed by empirical 
data.

1 J(ohn) What I do is writing certain examples on the board, so       D/1 
2  I regard that a general solution method can be inferred from concrete 
3  examples….                                             C/1 
4  For example, to check the continuity of a function I give some specific 
5  functions and discuss how to prove their continuity                 B/1  
6  Obviously, you can not see all the cases ….          R/1 & D/2 
7  but still this teaching approach has better results        C/2 
8  Otherwise, I think that describing to the students a general method from 
9  the very beginning you narrow their thinking….                 Q/2 & W/2
10  the students can not think if constantly follow someone else’s instructions 

                                     B/2 & D/3 
11  Only after the examples we can generalize the method                       C/3 
12  ….I think if the student discovers some rules on his own he understand 
13  better the mathematics behind them.                     W/3  
14  For example, in finding the number of the roots of an equation using 
15  Bolzano’s theorem the student may realize the meaning of “at least one 
16  root” in the theorem statement                                      B/3 & D/4 
17 R Could this example be confusing for the not-so-good students?
18 J It depends on the classroom environment.                                      C/4 
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a conceptual continuity among the arguments, which allows including them in the 
same unit, which we call it, a chain. A chain is a series of argumentation schemes that 
are linked with each other by a claim, a warrant, a backing or a rebuttal and share a 
common idea or concept in a gradually expanding web of interlocking argument 
frames. Each argumentation scheme is characterized by the level of depth it has in the 
chain (first level for the first scheme in order of a chain etc.). So for example, D/3 
means a Datum in the third argumentation scheme of a certain chain. In order to 
study the kind and structure of inferences used, we characterized the arguments of 
each argumentation scheme according to a compendium of schemes (Walton et al., 
2008). At the same time, we categorized each such scheme according to the kind of 
teachers’ knowledge it exhibited (PCK, SCK, CKS, CKT). In order to check any 
discrepancy among our records we included a comparison of data collected in the 
video and audio tapes with the data from written records. We also allowed for a 
grounded approach: trying to take notice of any emerging pattern, either in the 
content or in the structure. Due to space limitations, we will present here the case of 
one of the teachers-participants, John (pseudo-name), with 20 years teaching 
experience of teaching calculus in high school. John was in the third semester of his 
graduate studies.

RESULTS
We will present some of the results based on the two interviews with John while 
including a characteristic extract from his first interview.  
Types of arguments used 
As it is clear from table 1 below, John mostly used five types of arguments while 
only in 4 out of 44 total cases he relied on a theoretical (pedagogical) argument with 
no support from experience. The main types of argumentation schemes (Walton et 
al., 2008) that John used were: argument from illustration (Premise 1: usually if x has 
property F the x has property G, Premise 2: in this case x has property F and G, 
Conclusion : the rule is valid), argument from analogy (Similarity Premise : generally 
case C is similar to case F, Base Premise : A is true in case C, Conclusion : A is true 
in case F), argument from classification (Premise 1: k has property F, Premise 2: for 
all x, if x has property F then x can be classified as having property G, Conclusion : k 
has property G), abductive argument from effect to cause (F is a set of facts in the 
form of an event that has occurred, E is a satisfactory explanation of F, therefore E is 
plausible as an hypothesis for the cause of F) and argument from opposite (the 
opposite of S has property P, therefore S has property not-P). The first three of the 
above kinds of arguments are basically inductive in their structure with one of their 
premises to be personal experience. This would probably mean that John was still 
relying heavily on intuitive knowledge he gained through his experience either as a 
teacher or as a high school student even after three semesters experience at graduate 
level. His extensive use of metaexamples (15 out of 19 argumentative chains contain 
metaexamples) concurs with the empirical backing that the above kind of arguments 
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usually have and help reducing the “cost” for understanding an argument (in the 
sense of Besnard and Hunter, 2008). 

Number of 
arguments  

rguments 
from 

opposite

rguments 
from 

analogy

rguments 
from 

classification 

rguments 
from 

illustration 

rguments 
from effect 

to cause 

General
pedagogical
arguments 

46 2 22 6 10 2 4 

Table 1: Classification of arguments used in two interviews 
Structure of argumentation 
The pattern we see also in the extract below, namely the conclusion of an 
argumentative chain by the means of a metaexample, is indicative of a more general 
trend : 13 out of 19 argumentative chains have a metaexample as a backing in the last 
argument of the chain. It signifies probably the conclusive character that his 
experience had for John, as he himself stated: “all the teaching episodes that I have 
experienced as a teacher or as a student, have strongly shaped my views and I regard 
them as a definite and valuable asset”. On another aspect, considering the appearance 
of the modal qualifiers (Q and R) of the Toulmin’s scheme, we note that 13 out of 14 
of their total appearances are realized in arguments that are not backed by empirical 
data.

1 J(ohn) What I do is writing certain examples on the board, so       D/1 
2  I regard that a general solution method can be inferred from concrete 
3  examples….                                             C/1 
4  For example, to check the continuity of a function I give some specific 
5  functions and discuss how to prove their continuity                 B/1  
6  Obviously, you can not see all the cases ….          R/1 & D/2 
7  but still this teaching approach has better results        C/2 
8  Otherwise, I think that describing to the students a general method from 
9  the very beginning you narrow their thinking….                 Q/2 & W/2
10  the students can not think if constantly follow someone else’s instructions 

                                     B/2 & D/3 
11  Only after the examples we can generalize the method                       C/3 
12  ….I think if the student discovers some rules on his own he understand 
13  better the mathematics behind them.                     W/3  
14  For example, in finding the number of the roots of an equation using 
15  Bolzano’s theorem the student may realize the meaning of “at least one 
16  root” in the theorem statement                                      B/3 & D/4 
17 R Could this example be confusing for the not-so-good students?
18 J It depends on the classroom environment.                                      C/4 
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19  If classroom norms encourage the dialogue, a weak student won’t hesitate 
20  to express his confusion whenever he feels so.                               W/4 
21  For example, I could ask them to construct a first order equation with no 
22  roots. Any student could feel free to ask for clarification.                     B/4 

In particular in the extract we cite, we see that in the first scheme John was stating his 
didactic method which he claimed it adheres to general pedagogical principle (line 2). 
An explicit warrant is missing, but he supplied as backing an example of a case in 
calculus (metaexample) (line 4) to illustrate his method. It’s an argumentation 
scheme from analogy (Walton et al., 2008) with a premise based on his experience 
(so basically inductive). His rebuttal (line 6), which actually is an undercut of the 
claim (Besnard and Huntler, 2008) means that some uncertainty remains about the 
universality of his claim but (turning the previous undercut to a datum for a second 
level argument) he warranted his preferred method by stating another pedagogical 
argument and a qualifier is used to express the uncertainty of the validity of this 
argument (lines 8, 9). His 2nd level backing (line 10) now serves as a datum to a 3rd

level argument. The warrants at levels 3 & 4 (lines 12,13 and 19,20) are again general 
pedagogical (student’s initiated search and classroom norms) which are backed by 
metaexamples of teaching a certain calculus paragraph (lines 14-16 and 21-22). Both 
arguments are arguments from illustration (at level 3 it is coupled with a defeasible 
form of modus tollens). 

Argumentation and teachers’ knowledge 
This extensive use of metaexamples in his argumentation schemes indicates the 
existence of a rich example space (in the sense of Watson and Mason, 2005) which is 
an indicator of familiarity with pedagogical issues like students’ misconceptions, 
teaching methods etc. We concur with the view of Watson and Mason (2005) that “to 
understand mathematics means, among other things, to be familiar with conventional 
example spaces” and we note that in our case John’s example space is pedagogical in 
nature and thus extends the above mentioned notion to the direction of pedagogical 
content knowledge. It is of significant importance that all the (meta)examples 
provided by John, were given by him spontaneously and as an integral part of his 
argumentation schemes. This means they are experienced as members of a structured 
space. Furthermore, the existence of a structured example space on the level of 
pedagogical knowledge shows a certain level of knowledge of the types of KCS and 
KCT. The conclusive character that his experience had for John as noted before, 
demonstrates a considerable degree of confidence in his empirical intuitions. This 
agrees with Fischbein’s remark (1987) that overconfidence is related to the degree of 
intuitiveness of the various items considered and experience plays a fundamental role 
in shaping these intuitions either primary or secondary. The overconfidence is also 
indicated by the function of the modal quantifiers that we encounter. It augments the 
above mentioned note regarding metaexamples and empirical foundation and surely 
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casts a shadow on the strength of theoretical pedagogical knowledge that teachers -
students are learning. This deep belief in his personal pedagogical experience without 
an equivalent abstract foundation is reminiscent of “deep intuition” of mathematics 
(Semadeni, 2008) that sometimes students may have without backing it with a sound 
theoretical knowledge. We could in a sense talk also here about a deep intuition of 
pedagogy (either as KCS or KCT) that doesn’t rely on a deep theoretical knowledge. 
This deep intuition is a common characteristic among all the teachers that 
participated in this project. 
Conclusion
In this paper, we have presented our preliminary findings emerging from our work on 
the study of argumentation of high-school math teachers. In particular, we analyzed 
the structure and the pedagogical content of their arguments. Methodologically, we 
used the theoretical framework of argumentation schemes extending Toulmin’s 
model in order to obtain a more precise characterization of the arguments involved 
while with the notion of argumentation chain we took accountability of the 
intertwined nature of teachers’ reasoning. In the case study of John, most of the 
arguments he used belonged to the “applying rules to cases” category (Walton et al., 
2008) which are arguments that relate to a situation in which some sort of general 
rule is applied to the specifics of a given case. His backings in these argumentation 
schemes were mainly metaexamples while whenever he used modal qualifiers his 
premise was a general pedagogical rule, remark etc. It seems that a certain pattern 
emerges: he is overconfident about his personal empirical knowledge while he is 
quite reserved about general pedagogical statements. Furthermore, his accessibility to 
a wide range of metaexamples and his readiness to use them for supporting his 
arguments, indicates a strong pedagogical content knowledge (KCS and KCT) and a 
structured pedagogical personal example space that entail a deep pedagogical 
intuition. Also the place of them in the last part of an argument, shows again a belief 
in the concluding power of empirical knowledge. The suggested framework is a 
guideline, it is neither comprehensive nor complete but it offers a way to pose new 
questions that are related to teacher reasoning and knowledge.
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casts a shadow on the strength of theoretical pedagogical knowledge that teachers -
students are learning. This deep belief in his personal pedagogical experience without 
an equivalent abstract foundation is reminiscent of “deep intuition” of mathematics 
(Semadeni, 2008) that sometimes students may have without backing it with a sound 
theoretical knowledge. We could in a sense talk also here about a deep intuition of 
pedagogy (either as KCS or KCT) that doesn’t rely on a deep theoretical knowledge. 
This deep intuition is a common characteristic among all the teachers that 
participated in this project. 
Conclusion
In this paper, we have presented our preliminary findings emerging from our work on 
the study of argumentation of high-school math teachers. In particular, we analyzed 
the structure and the pedagogical content of their arguments. Methodologically, we 
used the theoretical framework of argumentation schemes extending Toulmin’s 
model in order to obtain a more precise characterization of the arguments involved 
while with the notion of argumentation chain we took accountability of the 
intertwined nature of teachers’ reasoning. In the case study of John, most of the 
arguments he used belonged to the “applying rules to cases” category (Walton et al., 
2008) which are arguments that relate to a situation in which some sort of general 
rule is applied to the specifics of a given case. His backings in these argumentation 
schemes were mainly metaexamples while whenever he used modal qualifiers his 
premise was a general pedagogical rule, remark etc. It seems that a certain pattern 
emerges: he is overconfident about his personal empirical knowledge while he is 
quite reserved about general pedagogical statements. Furthermore, his accessibility to 
a wide range of metaexamples and his readiness to use them for supporting his 
arguments, indicates a strong pedagogical content knowledge (KCS and KCT) and a 
structured pedagogical personal example space that entail a deep pedagogical 
intuition. Also the place of them in the last part of an argument, shows again a belief 
in the concluding power of empirical knowledge. The suggested framework is a 
guideline, it is neither comprehensive nor complete but it offers a way to pose new 
questions that are related to teacher reasoning and knowledge.
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PRE-SERVICE ELEMENTARY TEACHERS’ UTILIZATION OF 
AN EQUIPARTITIONING LEARNING TRAJECTORY TO BUILD 

MODELS OF STUDENT THINKING 
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In this design study, we investigate how 29 pre-service elementary teachers used an 
equipartitioning learning trajectory to build models of student thinking. Results 
indicate that teachers used the processes of describing, comparing, inferring, and 
restructuring in constructing models of student thinking. 

INTRODUCTION
In the past two decades, research on learning has focused on understanding how 
student thinking changes and evolves over time. Some researchers have verified 
consistent findings relating to these constructs, which they have articulated in the 
form of learning trajectories. While this has contributed greatly to the knowledge 
base of how students learn, the field has just begun to explore the extent to which 
learning trajectories can be integrated into the practice of teaching or in the 
preparation of pre-service teachers (PSTs). 

RELATED LITERATURE 
Different terminology and definitions have been used to describe learning trajectories 
in the literature. According to Clements, Wilson, and Samara (2004), a learning 
trajectory is comprised of a mathematical goal, domain-specific developmental 
progressions that children advance through, and activities that correspond with these 
distinct levels of progression. Catley, Lehrer, and Reiser (2005) suggest learning 
should be viewed as the process of developing key conceptual structures (Case & 
Griffin, 1990), or big ideas, which coordinate and integrate isolated conceptual 
components, indicating that instruction can be viewed as an orientation towards core 
ideas that direct teaching and assessment around foundational concepts. They suggest 
that teaching should trace a prospective developmental corridor (Brown & 
Campione, 1996), or a conceptual corridor (Confrey, 2006), that spans grades and 
ages, with central concepts introduced early in the school experience and 
progressively refined, elaborated, and extended (Catley et al., 2005). 
Learning trajectories play an important role in instructional design. Designing 
instruction around central concepts, or “big ideas,” results in greater coherence and 
alignment between teaching and learning (Catley et al., 2005). Simon (1995) 
indicates that a hypothetical learning trajectory, a teacher’s anticipation of the 
progression of the learning path, provides a rationale for designing instruction, taking 
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into account the learning goal that defines the direction, learning activities, and the 
teacher’s prediction of the potential reasoning and learning of students. Gravemeijer 
(2004) asserts that teachers need a framework for exemplary instructional activities, 
along the learning path, that can be used as a catalyst for students to reinvent 
mathematics, which are articulated in local instruction theories.
A common theme among the various terminologies is that knowledge progresses 
from less sophisticated to more sophisticated levels of understanding in a relatively 
predictable way. Building on the work of others in the fields of mathematics 
education, science education, and the learning sciences, Confrey, Maloney, Nguyen, 
Wilson, and Mojica (2008) define a learning trajectory, as: 

a researcher-conjectured, empirically-supported description of the ordered network of 
experiences a student encounters through instruction (i.e., activities, tasks, tools, forms of 
interaction and methods of evaluation), in order to move from informal ideas, through 
successive refinements of representation, articulation, and reflection, towards 
increasingly complex concepts over time. 

We view a learning trajectory as a tool that can be utilized by PSTs to inform key 
instructional activities, such as planning, teaching, and assessing. While student 
understanding cannot be observed directly, learning trajectories seek to identify and 
describe key items, constructs, and behaviors, which can be observed. From these, we 
will investigate the extent to which an equipartitioning learning trajectory can 
mediate elementary PSTs’ ability to construct models of student thinking. 

THEORETICAL FRAMEWORK 
According to Cobb and Steffe (1983), students construct models of mathematical 
concepts, while teachers or researchers build models of students’ thinking. 
Hollebrands, Wilson, and Lee (in review) identified four distinct processes that PSTs 
employ in creating such models: Describing, Comparing, Inferring, and 
Restructuring. Describing is characterized by PSTs’ explicit attention to students’ 
actions and words, written or verbal, in making decisions about students’ thinking. 
When PSTs construct models of students’ reasoning, by relating the students’ work to 
their own, they are comparing, making either explicit or implicit comparisons 
between their own work to that of students’. In inferring, PSTs analyze students’ 
work and build models of student thinking by making inferences about how students 
reason, using students’ work as evidence. Restructuring is characterized by PSTs’ use 
of models of student thinking in their own practice of teaching. Models of student 
thinking inform their own thinking and regulate instructional decisions. These four 
distinct behaviors can serve as a framework with which to examine the effects of 
learning trajectories on the building of models of student thinking. 
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METHODS
Participants
This paper reports findings from a larger on-going study involving 57 PSTs (51 
juniors and 6 sophomores) enrolled in one of two sections of a mathematics methods 
course within the elementary education department at a large southeastern U. S. 
university. This one-semester course met for 75 minutes twice weekly. The PSTs also 
interned weekly in K-2 classrooms. This paper focuses on participants from one 
section of this course (26 juniors and 3 sophomores). 
Design
This design study involves “engineering particular forms of learning and 
systematically studying those forms of learning with the context defined by the 
means of supporting them” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p.9). 
The study took place during eight weeks of the methods course, targeting the 
teaching and learning of equipartitioning. The first author of the paper was the 
instructor of both sections of the course. 
One goal of a design study is to create instructional activities or tasks for classroom 
use (Cobb, 2000). Thus, a series of instructional activities, or interventions, were 
designed and implemented to investigate the extent to which PSTs use an 
equipartitioning learning trajectory to build models of student thinking. These 
interventions included the following: 

engagement with equipartitioning tasks to develop PST content knowledge; 
an introduction to the articulation of an equipartitioning learning trajectory; 
instruction in the conduct of clinical interviews with different types 
equipartitioning tasks; and, 
instruction in the analysis of video and student work. 

Confrey et al. (2008) conducted a synthesis of the literature on equipartitioning and 
other areas of rational number reasoning, where they articulate a learning trajectory 
for rational number reasoning concepts and organize children’s reasoning of 
equipartitioning into four cases: (A) sharing a discrete collection, (B) sharing a 
continuous object, and sharing multiple continuous objects between (C) more people 
than objects and (D) more objects than people. Confrey et al. (2008) has built a 
progress variable for equipartitioning (see Table 1), describing the behaviors and 
verbalizations of different levels of understanding of equipartitioning. Within each 
level (i.e., 1.1, 1.2, etc.), the Confrey at al. (2008) describes another level of the 
progression of knowledge: methods, multiple methods, justification, naming, 
reversibility, and properties.
During the course, PSTs were first introduced to the construct of a learning 
trajectory. Next, they were introduced to the equipartitioning learning trajectory for 
rational number reasoning (Confrey et al., 2008) that situates equipartitioning within 
this realm of rational number reasoning, to help PSTs recognize the foundations of 
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employ in creating such models: Describing, Comparing, Inferring, and 
Restructuring. Describing is characterized by PSTs’ explicit attention to students’ 
actions and words, written or verbal, in making decisions about students’ thinking. 
When PSTs construct models of students’ reasoning, by relating the students’ work to 
their own, they are comparing, making either explicit or implicit comparisons 
between their own work to that of students’. In inferring, PSTs analyze students’ 
work and build models of student thinking by making inferences about how students 
reason, using students’ work as evidence. Restructuring is characterized by PSTs’ use 
of models of student thinking in their own practice of teaching. Models of student 
thinking inform their own thinking and regulate instructional decisions. These four 
distinct behaviors can serve as a framework with which to examine the effects of 
learning trajectories on the building of models of student thinking. 
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METHODS
Participants
This paper reports findings from a larger on-going study involving 57 PSTs (51 
juniors and 6 sophomores) enrolled in one of two sections of a mathematics methods 
course within the elementary education department at a large southeastern U. S. 
university. This one-semester course met for 75 minutes twice weekly. The PSTs also 
interned weekly in K-2 classrooms. This paper focuses on participants from one 
section of this course (26 juniors and 3 sophomores). 
Design
This design study involves “engineering particular forms of learning and 
systematically studying those forms of learning with the context defined by the 
means of supporting them” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p.9). 
The study took place during eight weeks of the methods course, targeting the 
teaching and learning of equipartitioning. The first author of the paper was the 
instructor of both sections of the course. 
One goal of a design study is to create instructional activities or tasks for classroom 
use (Cobb, 2000). Thus, a series of instructional activities, or interventions, were 
designed and implemented to investigate the extent to which PSTs use an 
equipartitioning learning trajectory to build models of student thinking. These 
interventions included the following: 

engagement with equipartitioning tasks to develop PST content knowledge; 
an introduction to the articulation of an equipartitioning learning trajectory; 
instruction in the conduct of clinical interviews with different types 
equipartitioning tasks; and, 
instruction in the analysis of video and student work. 

Confrey et al. (2008) conducted a synthesis of the literature on equipartitioning and 
other areas of rational number reasoning, where they articulate a learning trajectory 
for rational number reasoning concepts and organize children’s reasoning of 
equipartitioning into four cases: (A) sharing a discrete collection, (B) sharing a 
continuous object, and sharing multiple continuous objects between (C) more people 
than objects and (D) more objects than people. Confrey et al. (2008) has built a 
progress variable for equipartitioning (see Table 1), describing the behaviors and 
verbalizations of different levels of understanding of equipartitioning. Within each 
level (i.e., 1.1, 1.2, etc.), the Confrey at al. (2008) describes another level of the 
progression of knowledge: methods, multiple methods, justification, naming, 
reversibility, and properties.
During the course, PSTs were first introduced to the construct of a learning 
trajectory. Next, they were introduced to the equipartitioning learning trajectory for 
rational number reasoning (Confrey et al., 2008) that situates equipartitioning within 
this realm of rational number reasoning, to help PSTs recognize the foundations of 
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equipartitioning in developing a more robust understanding of a rational number than 
is currently enacted in United States classrooms (Confrey et al., 2008). Over the 
eight-week period, PSTs were exposed to parts of the equipartitioning learning 
trajectory and progress variable one case at a time. 

Case Equipartitioning Progress Variable 
D 1.8 m objects shared among p people, m >p
C 1.7 m objects shared among p people, p >m
B 1.6 Splitting a continuous whole object into odd # of parts (n > 3) 
B 1.5 Splitting a continuous whole object among 2n people, n > 2, & 2n  2i

B 1.4 Splitting continuous whole objects into three parts 
B 1.3 Splitting continuous whole objects into 2n shares, with n > 1 
A 1.2 Dealing discrete items among p = 3 - 5 people, with no remainder; mn

objects, n = 3, 4, or 5 
A, B 1.1 Partitioning using 2-split (continuous and discrete quantities) 

Table 1: Equipartitioning Progress Variable and Cases A - D. 
As each case was introduced, instructional activities initially focused on 
equipartitioning tasks to assess and support the development of PSTs’ content 
knowledge of equipartitioning. The equipartitioning/splitting construct (Confrey et 
al., 2008) was new to all of the PSTs. After the PSTs had engaged in equipartitioning 
tasks and discussed their own solutions, as well as the underlying mathematical 
structures of the tasks, they were introduced to the components of the learning 
trajectory and progress variable. When these components were introduced, video 
exemplars of K-2 students, engaged in working with equipartitioning tasks, were 
presented. Next, instructional activities focused on analyzing other video exemplars 
of K-2 students. The video exemplars illustrated a range of students’ verbalizations 
and activity as they participated in clinical interviews on the same equipartitioning 
tasks with which PSTs had previously engaged. Class discussion focused on 
analyzing student thinking with respect to the equipartitioning learning trajectory. 
Student work samples were also incorporated into class discussions. Lastly, PSTs 
implemented equipartitioning tasks with students in their K-2 classrooms. 
During the final week of the study, PSTs engaged in an individual video analysis of 
student thinking, during a regular class meeting (approximately 75 minutes). PSTs 
viewed three video clips of a five-year old kindergarten student, Emma, who had 
engaged in several equipartitioning tasks during a clinical interview. Prior to viewing 
the video clips, PSTs were asked to solve each of the tasks on their own and to 
anticipate how a K-2 student might solve each task. After these two components were 
completed, they viewed the first video clip and responded to questions such as: a) 
What does Emma understand? Explain. b) What does Emma have difficulty with? 
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Explain. PSTs then viewed the second and third clips, each time reflecting on their 
own interpretation of Emma’s understanding before moving on to the next clip. Their 
written responses to the video analysis were coded for evidence of using the 
processes of describing, comparing, inferring, and restructuring.
Data Collection and Analysis 
Data collection was designed to take advantage of PSTs’ experiences in K-2 
classrooms to gather evidence about how they engage in teaching and assessing 
students while using an equipartitioning learning trajectory. Data included video 
recordings of each class meeting, audio recordings of small group discussions, and 
the researcher’s field notes of observations of PSTs’ work with K-2 students, pre- and 
post-tests for assessing PSTs’ knowledge of equipartitioning and teaching, all 
coursework completed, including an individual video analysis and clinical interviews 
conducted by PSTs, their own analysis of student thinking, and their reflections. 

RESULTS
Results from the analysis of PSTs’ individual video analyses will be reported. Two 
video clips that PSTs examined will be summarized. In Clip 1, Emma has just been 
asked to share 24 pieces of pirate treasure between four pirates, and is not told the 
total number of pieces of treasure. Emma creates four 3 x 2 arrays with the coins, 
saying each pirate’s share is “six cents.” Emma is then told that one of the pirates has 
left on a ship and is asked to share the pirate treasure fairly among the three 
remaining pirates. Emma pulls all the treasure back together in one pile. Then, she 
builds three 4 x 2 arrays. She says, “the magic number is eight.” A transcript 
summarizing the remaining part of the clip follows: 

Interviewer: How do you know they each get the same amount? 
Emma: Last time it was six. Now, you just added two more [points to two coins 

on top row of one 4 x 2 array]. Cause he had six [points to the location of 
the fourth pirate’s share from previous task]. They added two more to 
each one, which makes six. One, two, [points to two coins on the top row 
of one 4 x 2 array] three, four, [points to two coins on the top row of the 
second 4 x 2 array] five, six [points to two coins on the top row of third 4 
x 2 array]. 

In Clip 2, Emma has been asked to share a circular birthday cake fairly between two 
pirates. She draws a line through the center of the circle and says, “it’s halves” as she 
points to each half. When asked how she knows, Emma shrugs and says she just 
does. She is asked again to justify her solution. Emma creates the following story. 

Interviewer: How do you know that this pirate’s share is the same as this pirate’s? 
Emma: This is a pirate. They’re like, ‘do you want to share this cake?’ ‘Ok.’ And, 

they are like, ‘how will we split it?’ ‘We could cut it like that [folds the 
circular piece of paper into two distinctly noncongruent parts]. ‘And, I’ll 
have the big and you could have the tiny.’ ‘No, that won’t work. We need 
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equipartitioning in developing a more robust understanding of a rational number than 
is currently enacted in United States classrooms (Confrey et al., 2008). Over the 
eight-week period, PSTs were exposed to parts of the equipartitioning learning 
trajectory and progress variable one case at a time. 

Case Equipartitioning Progress Variable 
D 1.8 m objects shared among p people, m >p
C 1.7 m objects shared among p people, p >m
B 1.6 Splitting a continuous whole object into odd # of parts (n > 3) 
B 1.5 Splitting a continuous whole object among 2n people, n > 2, & 2n  2i

B 1.4 Splitting continuous whole objects into three parts 
B 1.3 Splitting continuous whole objects into 2n shares, with n > 1 
A 1.2 Dealing discrete items among p = 3 - 5 people, with no remainder; mn

objects, n = 3, 4, or 5 
A, B 1.1 Partitioning using 2-split (continuous and discrete quantities) 

Table 1: Equipartitioning Progress Variable and Cases A - D. 
As each case was introduced, instructional activities initially focused on 
equipartitioning tasks to assess and support the development of PSTs’ content 
knowledge of equipartitioning. The equipartitioning/splitting construct (Confrey et 
al., 2008) was new to all of the PSTs. After the PSTs had engaged in equipartitioning 
tasks and discussed their own solutions, as well as the underlying mathematical 
structures of the tasks, they were introduced to the components of the learning 
trajectory and progress variable. When these components were introduced, video 
exemplars of K-2 students, engaged in working with equipartitioning tasks, were 
presented. Next, instructional activities focused on analyzing other video exemplars 
of K-2 students. The video exemplars illustrated a range of students’ verbalizations 
and activity as they participated in clinical interviews on the same equipartitioning 
tasks with which PSTs had previously engaged. Class discussion focused on 
analyzing student thinking with respect to the equipartitioning learning trajectory. 
Student work samples were also incorporated into class discussions. Lastly, PSTs 
implemented equipartitioning tasks with students in their K-2 classrooms. 
During the final week of the study, PSTs engaged in an individual video analysis of 
student thinking, during a regular class meeting (approximately 75 minutes). PSTs 
viewed three video clips of a five-year old kindergarten student, Emma, who had 
engaged in several equipartitioning tasks during a clinical interview. Prior to viewing 
the video clips, PSTs were asked to solve each of the tasks on their own and to 
anticipate how a K-2 student might solve each task. After these two components were 
completed, they viewed the first video clip and responded to questions such as: a) 
What does Emma understand? Explain. b) What does Emma have difficulty with? 
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Explain. PSTs then viewed the second and third clips, each time reflecting on their 
own interpretation of Emma’s understanding before moving on to the next clip. Their 
written responses to the video analysis were coded for evidence of using the 
processes of describing, comparing, inferring, and restructuring.
Data Collection and Analysis 
Data collection was designed to take advantage of PSTs’ experiences in K-2 
classrooms to gather evidence about how they engage in teaching and assessing 
students while using an equipartitioning learning trajectory. Data included video 
recordings of each class meeting, audio recordings of small group discussions, and 
the researcher’s field notes of observations of PSTs’ work with K-2 students, pre- and 
post-tests for assessing PSTs’ knowledge of equipartitioning and teaching, all 
coursework completed, including an individual video analysis and clinical interviews 
conducted by PSTs, their own analysis of student thinking, and their reflections. 

RESULTS
Results from the analysis of PSTs’ individual video analyses will be reported. Two 
video clips that PSTs examined will be summarized. In Clip 1, Emma has just been 
asked to share 24 pieces of pirate treasure between four pirates, and is not told the 
total number of pieces of treasure. Emma creates four 3 x 2 arrays with the coins, 
saying each pirate’s share is “six cents.” Emma is then told that one of the pirates has 
left on a ship and is asked to share the pirate treasure fairly among the three 
remaining pirates. Emma pulls all the treasure back together in one pile. Then, she 
builds three 4 x 2 arrays. She says, “the magic number is eight.” A transcript 
summarizing the remaining part of the clip follows: 

Interviewer: How do you know they each get the same amount? 
Emma: Last time it was six. Now, you just added two more [points to two coins 

on top row of one 4 x 2 array]. Cause he had six [points to the location of 
the fourth pirate’s share from previous task]. They added two more to 
each one, which makes six. One, two, [points to two coins on the top row 
of one 4 x 2 array] three, four, [points to two coins on the top row of the 
second 4 x 2 array] five, six [points to two coins on the top row of third 4 
x 2 array]. 

In Clip 2, Emma has been asked to share a circular birthday cake fairly between two 
pirates. She draws a line through the center of the circle and says, “it’s halves” as she 
points to each half. When asked how she knows, Emma shrugs and says she just 
does. She is asked again to justify her solution. Emma creates the following story. 

Interviewer: How do you know that this pirate’s share is the same as this pirate’s? 
Emma: This is a pirate. They’re like, ‘do you want to share this cake?’ ‘Ok.’ And, 

they are like, ‘how will we split it?’ ‘We could cut it like that [folds the 
circular piece of paper into two distinctly noncongruent parts]. ‘And, I’ll 
have the big and you could have the tiny.’ ‘No, that won’t work. We need 
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the same amount so it will be fair.’ ‘Ok. Why don’t we cut it in the 
middle?’ ‘Ok.’ [folds the circular piece of paper into two congruent halves 
down the center]. See, that is exactly how I folded it [holds up folded 
circle]. [Then she puts the folded circle on top of her first circle and 
redraws the center line.] 

Describing
Some PSTs used the process of describing. They engaged in this process by 
identifying student verbalizations and activity. Almost all PSTs focused on the 
verbalizations and behaviors identified in the equipartitioning learning trajectory and 
progress variable, rather than focusing on other constructs, like counting. For 
example, some PSTs, like Bonnie, made general observations of Clip 1 such as, “She 
understands how to share the coins fairly with the three pirates.” Other PSTs 
described a specific action that they observed when responding to their interpretation 
of what Emma understands. Wendy described Emma’s actions by stating, “She split 
up larger numbers into smaller groups.” Yet others focused on the constructs of 
equipartitioning and counting. Marianne stated, “She counts the piles at the end to 
make sure each one is even.” Marianne referred to the arrays as “piles,” and she 
described the behavior of counting as a verification to make sure that the shares are 
“even.” Throughout the design study, Marianne frequently used the word “even” to 
mean “equal.” Using counting to verify that shares are the same is a justification 
relating to this specific task within the progress variable. 
Comparing
Very few PSTs engaged in the process of comparing student activity and 
verbalizations to their own. No direct comparisons by PSTs were observed. None of 
the PSTs made explicit comparisons to their own solutions in building models of 
Emma’s thinking. A few implicit comparisons were made. For example, regarding 
Clip 2, Maria stated, “She drew a line horizontally through the middle of the circle. 
Then, she folded another circle in half, and placed the folded half on a portion of the 
drawn circle.” Next to her statement, Maria drew a circle with a horizontal line down 
the center. In Maria’s own solution before she viewed Clip 2, she drew a circle with a 
vertical line through the center and wrote, “Divide the cake down the middle 
vertically.” Maria only noticed behaviors that were similar to her own and made no 
inferences about how such behaviors relate to what Emma might understand. 
Inferring or Restructuring 
It was difficult to distinguish between inferring and restructuring; thus, we 
categorized these responses together. PSTs engaged in the processes of inferring and 
restructuring by making inferences about student activity and verbalizations and by 
restructuring their own knowledge. These processes were identified more than any 
others. With respect to Clip 1, many PSTs responded that Emma understood that she 
needed to redistribute the fourth pirate’s share to the other three pirates or that Emma 
had some understanding of compensation. Susan stated 
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Emma knows that each pirate needs to have an equal share. She seemed to understand 
that after a pirate left and there were only three, you could divide the treasure up and 
distribute two pieces of that pirate’s treasure to the pirates that were left. 

Similarly, Sophia described Emma’s understanding as 
She understands the very basics of division and compensation because she was able to 
see that she needed to disperse two more coins among the three remaining groups 
without having to re-count and deal out the chips. She clearly knows how to compensate 
and quickly alter the groups when the situation changes. 

Many PSTs, like Kelly, responded that they would want to ask Emma, “Why does 
each of the three pirates get two of the pirate’s coins that left?” and “How did you 
know that eight was the magic number?” These PSTs were able to identify specific 
questions to help them better assess Emma’s understanding from Clip 1. Kelly’s 
response is representative of most of the questions created by the PSTs. 

DISCUSSION 
In a study involving 18 PSTs, Hollebrands et al. (in review) found that PSTs engaged 
in distinctive processes while examining videocases of students engaged in statistical 
tasks as they used technology. While we were able to categorize most PST responses 
into the categories of describing, comparing, inferring, and restructuring, we found 
that it was difficult in many cases to distinguish between the processes of inferring
and restructuring. Since the processes of describing and comparing were so distinct, 
further research should be conducted to explore whether inferring is a special case of 
restructuring and whether other processes exist. 
We found that many students engaged in the processes of inferring or restructuring,
while almost no PSTs utilized the process of comparing in their model building 
process. Further research should also examine the role of the learning trajectory in 
these processes. In other words, does using a learning trajectory influence the types 
of processes that PSTs engage in? Would the absence of a learning trajectory in the 
same domain-specific areas result in the same model building processes? No claims 
can yet be made with regard to these questions. A research agenda focused on these 
issues could help us better understand how to use learning trajectories to help 
teachers build more robust models of student thinking as they engage in instructional 
activities, such as planning, teaching, and assessing. 
Hollebrands et al. suggest that the categories of describing, comparing, inferring, and 
restructuring are a valuable framework for considering how PSTs tap into and create 
their own understanding. We found that this framework was useful in articulating 
PSTs process of building models based on the examination of student’s 
verbalizations, activity, and work samples. Similar to Hollebrands et al., we believe 
that this framework can be a powerful lens for understanding how PSTs construct and 
restructure their own mathematical knowledge. 
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the same amount so it will be fair.’ ‘Ok. Why don’t we cut it in the 
middle?’ ‘Ok.’ [folds the circular piece of paper into two congruent halves 
down the center]. See, that is exactly how I folded it [holds up folded 
circle]. [Then she puts the folded circle on top of her first circle and 
redraws the center line.] 

Describing
Some PSTs used the process of describing. They engaged in this process by 
identifying student verbalizations and activity. Almost all PSTs focused on the 
verbalizations and behaviors identified in the equipartitioning learning trajectory and 
progress variable, rather than focusing on other constructs, like counting. For 
example, some PSTs, like Bonnie, made general observations of Clip 1 such as, “She 
understands how to share the coins fairly with the three pirates.” Other PSTs 
described a specific action that they observed when responding to their interpretation 
of what Emma understands. Wendy described Emma’s actions by stating, “She split 
up larger numbers into smaller groups.” Yet others focused on the constructs of 
equipartitioning and counting. Marianne stated, “She counts the piles at the end to 
make sure each one is even.” Marianne referred to the arrays as “piles,” and she 
described the behavior of counting as a verification to make sure that the shares are 
“even.” Throughout the design study, Marianne frequently used the word “even” to 
mean “equal.” Using counting to verify that shares are the same is a justification 
relating to this specific task within the progress variable. 
Comparing
Very few PSTs engaged in the process of comparing student activity and 
verbalizations to their own. No direct comparisons by PSTs were observed. None of 
the PSTs made explicit comparisons to their own solutions in building models of 
Emma’s thinking. A few implicit comparisons were made. For example, regarding 
Clip 2, Maria stated, “She drew a line horizontally through the middle of the circle. 
Then, she folded another circle in half, and placed the folded half on a portion of the 
drawn circle.” Next to her statement, Maria drew a circle with a horizontal line down 
the center. In Maria’s own solution before she viewed Clip 2, she drew a circle with a 
vertical line through the center and wrote, “Divide the cake down the middle 
vertically.” Maria only noticed behaviors that were similar to her own and made no 
inferences about how such behaviors relate to what Emma might understand. 
Inferring or Restructuring 
It was difficult to distinguish between inferring and restructuring; thus, we 
categorized these responses together. PSTs engaged in the processes of inferring and 
restructuring by making inferences about student activity and verbalizations and by 
restructuring their own knowledge. These processes were identified more than any 
others. With respect to Clip 1, many PSTs responded that Emma understood that she 
needed to redistribute the fourth pirate’s share to the other three pirates or that Emma 
had some understanding of compensation. Susan stated 
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Emma knows that each pirate needs to have an equal share. She seemed to understand 
that after a pirate left and there were only three, you could divide the treasure up and 
distribute two pieces of that pirate’s treasure to the pirates that were left. 

Similarly, Sophia described Emma’s understanding as 
She understands the very basics of division and compensation because she was able to 
see that she needed to disperse two more coins among the three remaining groups 
without having to re-count and deal out the chips. She clearly knows how to compensate 
and quickly alter the groups when the situation changes. 

Many PSTs, like Kelly, responded that they would want to ask Emma, “Why does 
each of the three pirates get two of the pirate’s coins that left?” and “How did you 
know that eight was the magic number?” These PSTs were able to identify specific 
questions to help them better assess Emma’s understanding from Clip 1. Kelly’s 
response is representative of most of the questions created by the PSTs. 

DISCUSSION 
In a study involving 18 PSTs, Hollebrands et al. (in review) found that PSTs engaged 
in distinctive processes while examining videocases of students engaged in statistical 
tasks as they used technology. While we were able to categorize most PST responses 
into the categories of describing, comparing, inferring, and restructuring, we found 
that it was difficult in many cases to distinguish between the processes of inferring
and restructuring. Since the processes of describing and comparing were so distinct, 
further research should be conducted to explore whether inferring is a special case of 
restructuring and whether other processes exist. 
We found that many students engaged in the processes of inferring or restructuring,
while almost no PSTs utilized the process of comparing in their model building 
process. Further research should also examine the role of the learning trajectory in 
these processes. In other words, does using a learning trajectory influence the types 
of processes that PSTs engage in? Would the absence of a learning trajectory in the 
same domain-specific areas result in the same model building processes? No claims 
can yet be made with regard to these questions. A research agenda focused on these 
issues could help us better understand how to use learning trajectories to help 
teachers build more robust models of student thinking as they engage in instructional 
activities, such as planning, teaching, and assessing. 
Hollebrands et al. suggest that the categories of describing, comparing, inferring, and 
restructuring are a valuable framework for considering how PSTs tap into and create 
their own understanding. We found that this framework was useful in articulating 
PSTs process of building models based on the examination of student’s 
verbalizations, activity, and work samples. Similar to Hollebrands et al., we believe 
that this framework can be a powerful lens for understanding how PSTs construct and 
restructure their own mathematical knowledge. 
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KINDERGARTEN STUDENTS’ UNDERSTANDING OF 
PROBABILITY CONCEPTS 

Nicholas G. Mousoulides* & Lyn D. English** 
* University of Cyprus, **Queensland University

This study explored kindergarten students’ intuitive strategies and understandings in 
probabilities. The paper aims to provide an in depth insight into the levels of 
probability understanding across four constructs, as proposed by Jones (1997), for 
kindergarten students. Qualitative evidence from two students revealed that even 
before instruction pupils have a good capacity of predicting most and least likely 
events, of distinguishing fair probability situations from unfair ones, of comparing 
the probability of an event in two sample spaces, and of recognizing conditional 
probability events. These results contribute to the growing evidence on kindergarten 
students’ intuitive probabilistic reasoning. The potential of this study for improving 
the learning of probability, as well as suggestions for further research, are discussed. 

INTRODUCTION AND THEORETICAL FRAMEWORK 
The importance of having all students develop a sound awareness of probability 
concepts and appropriately use these concepts in solving problems has been 
recognized in recent curriculum documents (e.g., National Council of Teachers of 
Mathematics, 2000). These recommendations adopt the position that young students, 
even at the kindergarten level, need to explore the processes of probability (NCTM, 
2000). The teaching of probability is, however, not an easy task (Fischbein & 
Schnarch, 1997; Langrall & Mooney, 2005). As argued by Shaughnessy (1992), 
modeling probabilistic situations is complex and the teaching of probability concepts 
is often hindered by students’ primitive intuitions and alternative conceptions. 
Following recommendations for early introduction of probability concepts in school 
curricula and for students to exhibit probabilistic thinking, there is a need for students 
to understand probability concepts that are multifaceted and develop over time 
(Jones, Langrall, Thornton, & Mogill, 1997). Although there has been substantial 
research on young children’s probabilistic thinking (e.g., Fischbein, 1975; Fischbein, 
& Schnarch, 1997; Piaget & Inhelder, 1975; Shaughnessy, 1992), little recent 
research has been done in the field of teaching and learning probabilities to young 
learners and further on how young learners’ intuitive models and strategies on 
probability concepts are incorporated into solving problems related to probability.    
Fischbein (1975) reported that ‘probability matching’, “the expression of … the 
intuition of relative frequency” (p.58), had been observed and generally well 
established in pre school children. Although the concept of ratio appears to be crucial 
to the development of probabilistic reasoning (Piaget & Inhelder, 1951) and therefore 
the concept of chance cannot be obtained before proportional reasoning is mastered 
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(Greer, 2001), the intuitive foundations of pre-school students can serve for the 
development of probabilistic knowledge. As primary intuitions of chance and the 
concept of change certainly exist in pre-school students (Greer, 2001; Langrall & 
Mooney, 2005), it is important to take these intuitions into consideration in designing 
and implementing problem-solving activities in probability. Moreover, it is generally 
agreed that even before formal instruction in probability, children already acquire an 
elementary understanding of probability and are able to compare the probability of 
two situations in a qualitative way (e.g., English, 1993; Fischbein, 1975; Fischbein & 
Gazit, 1984; Sharma, 2005).
For the purposes of the present study we used the cognitive framework proposed by 
Jones and colleagues (1997, 1999), which can be used to describe and predict 
students’ probabilistic thinking. In line with previous research, the proposed 
framework assumes that probabilistic thinking is multifaceted and develops slowly 
over time. Four key constructs are incorporated in the framework, to satisfactorily 
capture the manifold nature of probabilistic thinking and its interconnections. These 
constructs are sample space, probability of an event, probability comparisons, and 
conditional probability. Furthermore, young children’s probabilistic thinking is 
described across four levels for each of the four constructs: the subjective level, the 
transitional level, the informal quantitative level, and the numerical level (Jones et al., 
1997, 1999).
Since the present study focuses on exploring and identifying young learners’ 
probabilistic thinking, students’ actions at the subjective and transitional level are 
presented next. At the subjective level, children can list an incomplete set of 
outcomes for a one-stage experiment, predict most/least likely events partially based 
on subjective judgments, and recognize certain and impossible events. Children can 
also compare the probability of the same event in two different sample spaces, cannot 
distinguish “fair” probability situations from “unfair” ones, and recognize when 
certain and impossible events arise in a non-replacement situation (Jones et al., 1997, 
p.111). At the transitional level, the children list a complete set of outcomes for a 
one-stage experiment and sometimes list a complete set of outcomes for a two-stage 
experiment using limited and unsystematic strategies. Children can predict most/least 
likely events based on quantitative judgments (but sometimes may revert to 
subjective judgments), and make probability comparisons based on quantitative 
judgments (may not quantify correctly and may have limitations when non-
contiguous events are involved). At the transitional level children begin to distinguish 
“fair” probability situations from “unfair” ones, recognize that the probability of 
some events changes in a non-replacement situation. Recognition is, however, 
incomplete and is usually restricted only to events that have previously occurred 
(Jones et al., 1997, p.111). 
The aim of the present study was to investigate kindergarten students’ intuitive 
probabilistic strategies and understandings in solving problems related to 
probabilities. For this purpose, the framework developed by Jones and colleagues 
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(1997) was used as a basis for identifying, exploring, and providing an in depth 
analysis of kindergarten students’ thinking strategies.   

DESCRIPTION OF THE STUDY 
Participants and Procedures 
Students in a large rural kindergarten school formed the population for this study. 
Four classes of the school are currently participating in a 2-year longitudinal study of 
students’ probabilistic thinking and mathematical modeling. The school population is 
representative of a broad spectrum of multicultural and socioeconomic backgrounds. 
Twelve students, six from each of the two grade levels (one grade for 3-4 year olds 
and one for 5-6 year olds) were randomly selected and served as case studies. Prior to 
the start of this study, none of the students had been exposed to probability 
instruction. Due to space limitations, the interview of one pair of students (one from 
each grade level) is presented in this paper, namely Alex, 4 years and 3 months and 
Chris, 6 years and 1 month. It should be noted that both students are ranked (by their 
teachers) among the best in their classes.
The data reported here are from the first year of the respective longitudinal study and 
are drawn from one of the problem activities the children completed during the first 
year. The Car Racing problem (see Figure 1a and 1b) is a math applet, developed in 
Scratch (http://scratch.mit.edu), a freeware visual programming software, that can 
directly run from the Web. The problem presented a spinner (see Figure 1a for initial 
colours), three cars and a number of different representations related to the car racing. 

(a)        (b)  
Figure 1: The Car Racing Activity. 

These included the position of each car, a bar chart for the three colours and a 
“pattern style” representation for the different trials. Additionally, the applet gave 
students and teacher the opportunity to recolour the spinner (see Figure 1b for an 
example).

4 - 138 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   138 6/4/09   2:22:28 PM



Mousoulides, English 

1- 2 PME 33 - 2009 

(Greer, 2001), the intuitive foundations of pre-school students can serve for the 
development of probabilistic knowledge. As primary intuitions of chance and the 
concept of change certainly exist in pre-school students (Greer, 2001; Langrall & 
Mooney, 2005), it is important to take these intuitions into consideration in designing 
and implementing problem-solving activities in probability. Moreover, it is generally 
agreed that even before formal instruction in probability, children already acquire an 
elementary understanding of probability and are able to compare the probability of 
two situations in a qualitative way (e.g., English, 1993; Fischbein, 1975; Fischbein & 
Gazit, 1984; Sharma, 2005).
For the purposes of the present study we used the cognitive framework proposed by 
Jones and colleagues (1997, 1999), which can be used to describe and predict 
students’ probabilistic thinking. In line with previous research, the proposed 
framework assumes that probabilistic thinking is multifaceted and develops slowly 
over time. Four key constructs are incorporated in the framework, to satisfactorily 
capture the manifold nature of probabilistic thinking and its interconnections. These 
constructs are sample space, probability of an event, probability comparisons, and 
conditional probability. Furthermore, young children’s probabilistic thinking is 
described across four levels for each of the four constructs: the subjective level, the 
transitional level, the informal quantitative level, and the numerical level (Jones et al., 
1997, 1999).
Since the present study focuses on exploring and identifying young learners’ 
probabilistic thinking, students’ actions at the subjective and transitional level are 
presented next. At the subjective level, children can list an incomplete set of 
outcomes for a one-stage experiment, predict most/least likely events partially based 
on subjective judgments, and recognize certain and impossible events. Children can 
also compare the probability of the same event in two different sample spaces, cannot 
distinguish “fair” probability situations from “unfair” ones, and recognize when 
certain and impossible events arise in a non-replacement situation (Jones et al., 1997, 
p.111). At the transitional level, the children list a complete set of outcomes for a 
one-stage experiment and sometimes list a complete set of outcomes for a two-stage 
experiment using limited and unsystematic strategies. Children can predict most/least 
likely events based on quantitative judgments (but sometimes may revert to 
subjective judgments), and make probability comparisons based on quantitative 
judgments (may not quantify correctly and may have limitations when non-
contiguous events are involved). At the transitional level children begin to distinguish 
“fair” probability situations from “unfair” ones, recognize that the probability of 
some events changes in a non-replacement situation. Recognition is, however, 
incomplete and is usually restricted only to events that have previously occurred 
(Jones et al., 1997, p.111). 
The aim of the present study was to investigate kindergarten students’ intuitive 
probabilistic strategies and understandings in solving problems related to 
probabilities. For this purpose, the framework developed by Jones and colleagues 
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(1997) was used as a basis for identifying, exploring, and providing an in depth 
analysis of kindergarten students’ thinking strategies.   

DESCRIPTION OF THE STUDY 
Participants and Procedures 
Students in a large rural kindergarten school formed the population for this study. 
Four classes of the school are currently participating in a 2-year longitudinal study of 
students’ probabilistic thinking and mathematical modeling. The school population is 
representative of a broad spectrum of multicultural and socioeconomic backgrounds. 
Twelve students, six from each of the two grade levels (one grade for 3-4 year olds 
and one for 5-6 year olds) were randomly selected and served as case studies. Prior to 
the start of this study, none of the students had been exposed to probability 
instruction. Due to space limitations, the interview of one pair of students (one from 
each grade level) is presented in this paper, namely Alex, 4 years and 3 months and 
Chris, 6 years and 1 month. It should be noted that both students are ranked (by their 
teachers) among the best in their classes.
The data reported here are from the first year of the respective longitudinal study and 
are drawn from one of the problem activities the children completed during the first 
year. The Car Racing problem (see Figure 1a and 1b) is a math applet, developed in 
Scratch (http://scratch.mit.edu), a freeware visual programming software, that can 
directly run from the Web. The problem presented a spinner (see Figure 1a for initial 
colours), three cars and a number of different representations related to the car racing. 

(a)        (b)  
Figure 1: The Car Racing Activity. 

These included the position of each car, a bar chart for the three colours and a 
“pattern style” representation for the different trials. Additionally, the applet gave 
students and teacher the opportunity to recolour the spinner (see Figure 1b for an 
example).
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Data Collection and Instrumentation 
A semi-structured interview protocol based on the framework proposed by Jones and 
colleagues (1997) was administered by the authors. The interview assessment 
comprised tasks related to the Car Racing problem. The tasks were associated with 
sample space, with probability of an event, with probability comparisons, and with 
conditional probability (see selected tasks, Table 1). The tasks enabled the 
researchers to explore students’ probabilistic thinking across the two levels of the 
framework. The data sources included video-tapes of students’ responses to the 
interview questions and our own field notes. The two students worked together. Some 
questions, however, were directed to one of them, while in other questions students 
were asked to first discuss the question between them and then answer. 

Sample Space Probability of an 
Event

Probability 
Comparisons 

Conditional
Probability 

What colour will 
you get if you spin 
the spinner again 
and again? Is that 
all? How do you 

know?

Which colour has 
the least chance to 
appear? (1/2 was 
yellow, 1/3 was 
blue and 1/6 was 

green)

Colour the spinner 
in a way that you 
will have the best 

chance to win, 
using at least two 

colours.

What colour has 
the best chance of 
getting? Why? (no 
yellow in last four 

trials and all 
colours were 1/3) 

Table 1: Selected Tasks from the Interview.  

The transcripts were reviewed by the authors and data were analysed using 
interpretative techniques (Miles & Huberman, 1994) to explore and identify 
developments in students’ probabilistic thinking with respect to: (a) the four key 
constructs of the proposed framework (sample space, probability of an event, 
probability comparisons and conditional probability), and (b) the two levels of 
probabilistic thinking (subjective and transitional).  

RESULTS AND DISCUSSION  
We report here on the students’ understanding of probability concepts in terms of the 
two levels of probabilistic thinking as reported by Jones and colleagues (1997) and 
discuss possible further enhancements of the proposed framework, based on the 
results of the study. The individual responses and discussions between the two 
students were analyzed, and summaries and exemplars were produced to illuminate a 
number of the probabilistic thinking strategies outlined in the proposed framework 
and to suggest new thinking strategies. None of the students tended to generate the 
same level of probabilistic thinking for all four constructs. We therefore decided to 
present their results are follows: First we focus on students’ probabilistic thinking 
strategies that are related to Level 1 (Subjective), and then we focus on their 
strategies that appear to be linked to Level 2 (Transitional).  
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Level 1 Probabilistic Thinking Strategies 
Alex, the younger child exhibited both level 1 and level 2 probability thinking 
strategies. It should be noted, however, that he did not provide correct answers for all 
questions and problem situations related to the four constructs at level 1. 
Consequently, he provided fewer correct responses to problems corresponding to 
level 2. Chris, the older child successfully answer all questions related to all four 
level 1 constructs. 
An explicit difference in the two students’ responses was the absence of any 
subjective beliefs in Chris’ judgements. He totally based his answers and comments 
on his probabilistic related intuitions and on his understandings on other 
mathematical constructs. On the contrary, Alex quite frequently based his comments 
on subjective beliefs. However, he did not consistently use subjective knowledge, but 
he rather used it when he felt that he could not use any of his prior mathematical or 
other understandings. On sample space related questions, he easily listed all possible 
outcomes when, for example, colours had equal probabilities. Sometimes, in 
questions that colour probabilities were not equal, he only listed his favourite colour 
or the colour that was more likely to happen. On a task, for example, where 5/6 of the 
spinner was shaded yellow and 1/6 blue, he reported that it was not fair because green 
was missing. He responded that only yellow would appear, since blue was too small 
compared to yellow. Somehow contradictory to what Jones (1997) reported, 
sometimes Alex spontaneously listed all expected outcomes. He could even recolor 
the spinner in a number of ways as to match a predefined list of outcomes. So, for 
example, when he was prompted to recolor the spinner in a way that only green and 
blue were the possible outcomes, he coloured 4/6 green and 2/6 blue. When asked if 
that was the only solution, he coloured one green slice into blue. His two solutions 
are presented in Figure 2.  

Figure 2:  Alex’s solutions.
A typical thinking strategy of Alex in probability comparisons, which was consistent 
in almost all his actions and responses, was his tendency to believe that the number of 
slices was more important than the size of them. When he was presented with a task 
where 1/3 was yellow, 2/6 was green and 2/6 was blue, he reported that it was not fair 
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Data Collection and Instrumentation 
A semi-structured interview protocol based on the framework proposed by Jones and 
colleagues (1997) was administered by the authors. The interview assessment 
comprised tasks related to the Car Racing problem. The tasks were associated with 
sample space, with probability of an event, with probability comparisons, and with 
conditional probability (see selected tasks, Table 1). The tasks enabled the 
researchers to explore students’ probabilistic thinking across the two levels of the 
framework. The data sources included video-tapes of students’ responses to the 
interview questions and our own field notes. The two students worked together. Some 
questions, however, were directed to one of them, while in other questions students 
were asked to first discuss the question between them and then answer. 

Sample Space Probability of an 
Event

Probability 
Comparisons 

Conditional
Probability 

What colour will 
you get if you spin 
the spinner again 
and again? Is that 
all? How do you 

know?

Which colour has 
the least chance to 
appear? (1/2 was 
yellow, 1/3 was 
blue and 1/6 was 

green)

Colour the spinner 
in a way that you 
will have the best 

chance to win, 
using at least two 

colours.

What colour has 
the best chance of 
getting? Why? (no 
yellow in last four 

trials and all 
colours were 1/3) 

Table 1: Selected Tasks from the Interview.  

The transcripts were reviewed by the authors and data were analysed using 
interpretative techniques (Miles & Huberman, 1994) to explore and identify 
developments in students’ probabilistic thinking with respect to: (a) the four key 
constructs of the proposed framework (sample space, probability of an event, 
probability comparisons and conditional probability), and (b) the two levels of 
probabilistic thinking (subjective and transitional).  

RESULTS AND DISCUSSION  
We report here on the students’ understanding of probability concepts in terms of the 
two levels of probabilistic thinking as reported by Jones and colleagues (1997) and 
discuss possible further enhancements of the proposed framework, based on the 
results of the study. The individual responses and discussions between the two 
students were analyzed, and summaries and exemplars were produced to illuminate a 
number of the probabilistic thinking strategies outlined in the proposed framework 
and to suggest new thinking strategies. None of the students tended to generate the 
same level of probabilistic thinking for all four constructs. We therefore decided to 
present their results are follows: First we focus on students’ probabilistic thinking 
strategies that are related to Level 1 (Subjective), and then we focus on their 
strategies that appear to be linked to Level 2 (Transitional).  
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Level 1 Probabilistic Thinking Strategies 
Alex, the younger child exhibited both level 1 and level 2 probability thinking 
strategies. It should be noted, however, that he did not provide correct answers for all 
questions and problem situations related to the four constructs at level 1. 
Consequently, he provided fewer correct responses to problems corresponding to 
level 2. Chris, the older child successfully answer all questions related to all four 
level 1 constructs. 
An explicit difference in the two students’ responses was the absence of any 
subjective beliefs in Chris’ judgements. He totally based his answers and comments 
on his probabilistic related intuitions and on his understandings on other 
mathematical constructs. On the contrary, Alex quite frequently based his comments 
on subjective beliefs. However, he did not consistently use subjective knowledge, but 
he rather used it when he felt that he could not use any of his prior mathematical or 
other understandings. On sample space related questions, he easily listed all possible 
outcomes when, for example, colours had equal probabilities. Sometimes, in 
questions that colour probabilities were not equal, he only listed his favourite colour 
or the colour that was more likely to happen. On a task, for example, where 5/6 of the 
spinner was shaded yellow and 1/6 blue, he reported that it was not fair because green 
was missing. He responded that only yellow would appear, since blue was too small 
compared to yellow. Somehow contradictory to what Jones (1997) reported, 
sometimes Alex spontaneously listed all expected outcomes. He could even recolor 
the spinner in a number of ways as to match a predefined list of outcomes. So, for 
example, when he was prompted to recolor the spinner in a way that only green and 
blue were the possible outcomes, he coloured 4/6 green and 2/6 blue. When asked if 
that was the only solution, he coloured one green slice into blue. His two solutions 
are presented in Figure 2.  

Figure 2:  Alex’s solutions.
A typical thinking strategy of Alex in probability comparisons, which was consistent 
in almost all his actions and responses, was his tendency to believe that the number of 
slices was more important than the size of them. When he was presented with a task 
where 1/3 was yellow, 2/6 was green and 2/6 was blue, he reported that it was not fair 
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for yellow. He said, “Green is best because it has two slices and it is my favourite 
colour. Blue is the same …has more than yellow”.     
On conditional probability tasks, both children experienced difficulties. Our problem 
setting did not include any tasks related to item replacement (or not). Alternatively, 
we used the pattern related representation that appear on the top of the applet screen 
and that presented a history of the game results. In a task where 1/3 was yellow, 1/3 
was green and 1/3 was blue, in the first five attempts the spinner returned blue, blue, 
green, blue and green. When asked what colour had the best chance of getting, both 
students identified yellow as the best for the next spinning, since according to them 
“it has not appeared yet” and “it is time now for yellow”.
Level 2 Probabilistic Thinking Strategies 
Quite impressive, Chris, the 6-year old pupil, reported typical level 2 probabilistic 
thinking strategies, in almost all four constructs. This was impressive not only 
because of his age, but also because of the absence of any formal instruction. Chris 
consistently identified a complete set of outcomes. We do not claim here that he used 
a generative strategy, since there are not enough data to support this claim. 
Consequently, in Chris’ answers, similar to Alex’s, there was quite frequently a 
tendency to overlook outcomes, rather than consider sample space and probability in 
combination. Chris exemplified quantitative reasoning in comparing probabilities. 
Similar to what Jones (1997) reported, Chris always correctly used the “more of” the 
target colour strategy. In stark contrast to Jones’ proposed framework, Chris tended 
to recognize the effect of conditional probability of related events. When asked, for 
example, how he could increase the probability of green without using the green 
painter in a setting where 1/2 was green and 1/2 was blue, he reported that he could 
use the yellow painter to paint one or more blue slices.  
Another difference from Jones’ second level of probabilistic cognitive framework 
was the absence of any subjective reasoning in Chris’ answers. No doubt, Chris is not 
a level 3 pupil in any of the four constructs and he is probably not a level 2 pupil in 
all constructs. He tried his best to employ quantitative reasoning on all items relating 
to the probability of an event. Since his knowledge of fractions was very limited, he 
used the number of slices for each colour as the basis for his quantitative reasoning. 
When presented, for example, with a task where 4/6 was green, 1/6 was yellow and 
1/6 was blue, he reported that “the probability of green was four times bigger than the 
probability of blue”. Quite interesting, in a consecutive task where 3/6 was green, 1/6 
was yellow and 2/6 was blue, when asked to compare probabilities of the different 
colours, he replied that “probability of green was 3 times bigger than the probability 
of yellow…I can not compare green and blue…it is two times…no…I do not know”.  

CONCLUDING POINTS 
Although there has been substantial research on the probability constructs 
investigated in this study (e.g., English, 1993; Fischbein, & Schnarch, 1997; Piaget & 
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Inhelder, 1975), we claim that the present study provides some interesting insights 
into kindergarten students’ probabilistic thinking, insights that are needed to guide 
classroom instruction and assessment. Although the purpose of the study was not to 
validate the framework proposed by Jones and colleagues (1997) at the kindergarten 
level, the results of the study revealed that students at the kindergarten school and 
before any formal instruction on probabilities hold and successfully employ in 
problem solving a number of probabilistic concepts. Even at the age of four, the case 
study student’s probabilistic thinking across all four constructs appeared to be 
consistent. Further, the six-year-old student not only did not use any subjective 
knowledge in his work, but he also further realised the appropriateness of the 
quantitative reasoning in comparing probabilities and in calculating the probability of 
events, without any formal instruction on fractions. This kind of knowledge on 
students’ probabilistic thinking should enhance information available to curriculum 
designers and teachers. 
In accord with the framework of Jones and colleagues (1997, 1999), we claim that 
even at the age of four, without any formal instruction and based on their intuitive 
strategies, students start developing strategies for some of the four constructs at level 
1 of the proposed framework. Further, the results showed that the six-year-old who 
participated in the study started developing successful quantitative and qualitative 
strategies for all four constructs at both levels. Further, even problem posing was not 
part of the tasks, the older student managed to pose correct probability problems for 
the younger student in order to exemplify his thinking during their discussion on 
several interview tasks. We do not claim that this is the case for all or for the majority 
of students and we are aware that very often students, especially at this age level are 
often distracted and misled by subjective knowledge, contradictory intuitions and 
other irrelevant aspects of the problems presented to them (English, 1993; Langrall & 
Mooney, 2005). However, the results provide some evidence that probability 
concepts should be introduced to students at the kindergarten level and teaching 
needs to consider all aspects related to students’ prior intuitive strategies and 
cognitive models related to probability and number sense.    
The results of the study illuminate the framework constructs by identifying more in-
depth insights into students’ probabilistic thinking. We need to address here the 
contribution of the software applet in framing the context of the problem situation 
presented to students and in providing fundamentally new representational resources 
(Greer, 2001). Clearly substantial more research is needed to identify the extent to 
which the car race scenario, the different representations (spinner, bar-chart like 
graph, pattern style), and the active manipulation of the spinner (changing colours at 
the beginning and during an experiment) contributed in enhancing student’s 
probabilistic thinking.   
The small sample size and given that both students were high achievers may limit the 
extent to which conclusions about the probabilistic thinking strategies students hold 
at the kindergarten level can be drawn. Further studies are needed to investigate in 
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for yellow. He said, “Green is best because it has two slices and it is my favourite 
colour. Blue is the same …has more than yellow”.     
On conditional probability tasks, both children experienced difficulties. Our problem 
setting did not include any tasks related to item replacement (or not). Alternatively, 
we used the pattern related representation that appear on the top of the applet screen 
and that presented a history of the game results. In a task where 1/3 was yellow, 1/3 
was green and 1/3 was blue, in the first five attempts the spinner returned blue, blue, 
green, blue and green. When asked what colour had the best chance of getting, both 
students identified yellow as the best for the next spinning, since according to them 
“it has not appeared yet” and “it is time now for yellow”.
Level 2 Probabilistic Thinking Strategies 
Quite impressive, Chris, the 6-year old pupil, reported typical level 2 probabilistic 
thinking strategies, in almost all four constructs. This was impressive not only 
because of his age, but also because of the absence of any formal instruction. Chris 
consistently identified a complete set of outcomes. We do not claim here that he used 
a generative strategy, since there are not enough data to support this claim. 
Consequently, in Chris’ answers, similar to Alex’s, there was quite frequently a 
tendency to overlook outcomes, rather than consider sample space and probability in 
combination. Chris exemplified quantitative reasoning in comparing probabilities. 
Similar to what Jones (1997) reported, Chris always correctly used the “more of” the 
target colour strategy. In stark contrast to Jones’ proposed framework, Chris tended 
to recognize the effect of conditional probability of related events. When asked, for 
example, how he could increase the probability of green without using the green 
painter in a setting where 1/2 was green and 1/2 was blue, he reported that he could 
use the yellow painter to paint one or more blue slices.  
Another difference from Jones’ second level of probabilistic cognitive framework 
was the absence of any subjective reasoning in Chris’ answers. No doubt, Chris is not 
a level 3 pupil in any of the four constructs and he is probably not a level 2 pupil in 
all constructs. He tried his best to employ quantitative reasoning on all items relating 
to the probability of an event. Since his knowledge of fractions was very limited, he 
used the number of slices for each colour as the basis for his quantitative reasoning. 
When presented, for example, with a task where 4/6 was green, 1/6 was yellow and 
1/6 was blue, he reported that “the probability of green was four times bigger than the 
probability of blue”. Quite interesting, in a consecutive task where 3/6 was green, 1/6 
was yellow and 2/6 was blue, when asked to compare probabilities of the different 
colours, he replied that “probability of green was 3 times bigger than the probability 
of yellow…I can not compare green and blue…it is two times…no…I do not know”.  

CONCLUDING POINTS 
Although there has been substantial research on the probability constructs 
investigated in this study (e.g., English, 1993; Fischbein, & Schnarch, 1997; Piaget & 
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Inhelder, 1975), we claim that the present study provides some interesting insights 
into kindergarten students’ probabilistic thinking, insights that are needed to guide 
classroom instruction and assessment. Although the purpose of the study was not to 
validate the framework proposed by Jones and colleagues (1997) at the kindergarten 
level, the results of the study revealed that students at the kindergarten school and 
before any formal instruction on probabilities hold and successfully employ in 
problem solving a number of probabilistic concepts. Even at the age of four, the case 
study student’s probabilistic thinking across all four constructs appeared to be 
consistent. Further, the six-year-old student not only did not use any subjective 
knowledge in his work, but he also further realised the appropriateness of the 
quantitative reasoning in comparing probabilities and in calculating the probability of 
events, without any formal instruction on fractions. This kind of knowledge on 
students’ probabilistic thinking should enhance information available to curriculum 
designers and teachers. 
In accord with the framework of Jones and colleagues (1997, 1999), we claim that 
even at the age of four, without any formal instruction and based on their intuitive 
strategies, students start developing strategies for some of the four constructs at level 
1 of the proposed framework. Further, the results showed that the six-year-old who 
participated in the study started developing successful quantitative and qualitative 
strategies for all four constructs at both levels. Further, even problem posing was not 
part of the tasks, the older student managed to pose correct probability problems for 
the younger student in order to exemplify his thinking during their discussion on 
several interview tasks. We do not claim that this is the case for all or for the majority 
of students and we are aware that very often students, especially at this age level are 
often distracted and misled by subjective knowledge, contradictory intuitions and 
other irrelevant aspects of the problems presented to them (English, 1993; Langrall & 
Mooney, 2005). However, the results provide some evidence that probability 
concepts should be introduced to students at the kindergarten level and teaching 
needs to consider all aspects related to students’ prior intuitive strategies and 
cognitive models related to probability and number sense.    
The results of the study illuminate the framework constructs by identifying more in-
depth insights into students’ probabilistic thinking. We need to address here the 
contribution of the software applet in framing the context of the problem situation 
presented to students and in providing fundamentally new representational resources 
(Greer, 2001). Clearly substantial more research is needed to identify the extent to 
which the car race scenario, the different representations (spinner, bar-chart like 
graph, pattern style), and the active manipulation of the spinner (changing colours at 
the beginning and during an experiment) contributed in enhancing student’s 
probabilistic thinking.   
The small sample size and given that both students were high achievers may limit the 
extent to which conclusions about the probabilistic thinking strategies students hold 
at the kindergarten level can be drawn. Further studies are needed to investigate in 
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depth the probabilistic thinking of young students, covering a broad spectrum of 
multicultural and socioeconomic backgrounds. Clearly, more research is needed to 
examine the extent to which instructional programs influence the development of 
probabilistic thinking and to identify the critical steps in students’ development of 
probability concepts. Such research would result in a more pervasive description of 
students’ probabilistic thinking and could be even more useful in informing 
instruction in kindergarten and elementary school.  
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STYLES AND STRATEGIES IN EXAM-TYPE QUESTIONS 
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This paper focuses on the links between the ‘thinking styles’ (Sternberg, 1999) of 

students following a BSc in Mathematics and the strategies they employ when they 

deal with exam-type questions. The students’ strategies were identified according to 

the ‘A-B- classification’, a classification that builds on Weber’s (2005) ‘semantic’, 

‘syntactic’ and ‘procedural’. The students’ ‘Initial Strategies’ seem to be linked with 

the students’ thinking styles, whereas the students’ ‘Back-Up Strategies’ seem to be 

linked with the nature of the exam-type questions. The identified links between styles 

and strategies are discussed, drawing from Skemp’s (1979) views about reality (inner 

and social) and survival (respectively, internal consistency and social survival). 

INTRODUCTION 

Mathematical thinking is one of the main fields of interest of mathematics education 

research (Gutiérrez & Boero, 2006). It is posited that mathematical thinking occurs at 

the interaction of specificity (the students’ actual thinking about mathematics) and 

generality (the students’ preferred way to think about mathematics). The existence of 

‘specificity’ is not questioned, as students do think about mathematics, but 

‘generality’ has been a matter of debate, although cognitive consistencies have been 

found in the students’ mathematical thinking (Gray & Pitta-Pantazi, 2006; Pinto & 

Tall, 1999). Could such consistencies go beyond the scope of mathematics and 

become a general cognitive preference? 

In the general educational and psychological research, Zhang & Sternberg (2006) 

suggest that various researchers argue for the existence of such general cognitive 

preferences, usually described by the construct of style. In this study, Sternberg’s 

(1999) thinking styles are considered, in order to identify the implications, if any, of 

students having a specific thinking style profile in their dealing with university 

mathematics. At issue is the question: What is the nature of the relationship(s) 

between the students’ thinking style profile and their strategy choice(s) when they 

deal with exam-type questions?

THEORETICAL FRAMEWORK 

Thinking styles are defined as the “preferred way[s] of using the ability one has” 

(Sternberg, 1999, p. 8). Thinking styles are conceptualised as being relatively stable 

over time and context and they are value-differentiated: the students’ stylistic profile 
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2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 145-152. Thessaloniki, Greece: PME.
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may help them to deal with some tasks, while it may ‘obstruct’ their efforts to 

successfully survive other tasks. The purpose of this paper is to consider an element 

of a wider study into mathematics undergraduates thinking styles (Moutsios-Rentzos, 

submitted) and to examine the role of the students’ thinking styles in undergraduate 

mathematics exam-type questions. 

Although some mathematics educators have worked on the wider notion of ‘cognitive 

styles’ (Duffin & Simpson, 2006), it was decided that Sternberg’s more narrowly 

defined ‘thinking styles’ were more suitable for the study as they derive from a 

coherent theory: the Theory of Mental Self-Government (MSG). MSG is based on a 

metaphor between the way that the individuals organise their thinking and the way 

that society is governed (Sternberg, 1999). Thirteen thinking styles are identified and 

organised in five dimensions
2
. Moreover, Zhang and Sternberg (2006) identified 

three types of thinking styles: a) Type I (linked with “low degrees of structure, 

cognitive complexity, nonconformity, and autonomy”, ibid, p. 164), b) Type II

(opposite to Type I preferences), and c) Type III (linked with either Type I or Type II 

depending on the task and the "individual’s level of interest in the task”, ibid, p. 167). 

Kirby (1988) identified as a strategy the “combination of tactics, or a choice of 

tactics, that forms a coherent plan to solve a problem” (p. 230-231). Strategies are 

heavily dependent on the characteristics of the question. For example, in exam-type 

questions, the students are expected to present a mathematically acceptable proof. 

Weber (2005) identified three strategies that the students employ in a proof 

construction: procedural (the student attempts “to locate a proof of a statement that is 

similar in form and use this existing proof as a template for producing a new one”; 

ibid, p. 353), syntactic (the student “logically manipulating mathematical statements 

without referring to intuitive representations of mathematical concepts”; ibid, p. 355) 

and semantic (the student “uses the informal representations to guide the formal work 

that one produces”; ibid, p. 356). In the current study, Initial Strategy (the students’ 

first strategy choice) was differentiated from Back-Up Strategy (a different strategy to 

the Initial Strategy; not re-attacking the question with the same kind of strategy). 

Bergqvist (2007) found that about 70% of the questions included in university 

mathematics examinations could be successfully dealt with imitative reasoning

(Lithner, 2008). ‘Imitative reasoning’ can be linked with Weber’s ‘procedural’ and/or 

‘syntactic’ strategies, thus it is reasonable to conjecture that students may employ 

such strategies when they deal with exam-type questions. Moreover, it seems 

reasonable to expect that students with a preference for Type II thinking styles 

                                          

2Succinctly: 1) functions (‘legislative’, preference for creativity; ‘executive’, preference for implementing rules, 

‘judicial’, preference for judging), 2) forms (‘monarchic’, preference for focusing on only one goal; ‘hierarchic’, 

preference for having multiple prioritised objectives, ‘oligarchic’, preference for having multiple equally important 

targets, ‘anarchic’, preference for flexibility), 3) levels (‘local’, preference for details and the concrete; ‘global’, 

preference for the general and the abstract), 4) leanings (‘liberal’, preference for originality; ‘conservative’, preference 

for conformity), and 5) scope (‘internal’, preference for working alone; ‘external’, preference for working in a group). 
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(linked with conformity) would choose more ‘procedural’ or ‘syntactic’ strategies 

when dealing with exam-type questions (Bergqvist, 2007) than the students with a 

preference for Type I thinking styles (linked with creativity). Finally, drawing from 

previous studies (for example, Zhang & Sternberg, 2006), students’ attainment and 

the nature of task were also considered in this study. 

THE STERNBERG-WAGNER THINKING STYLES INVENTORY (TSI)

A translated to Greek version of the Sternberg-Wagner Thinking Styles Inventory 

(TSI; Sternberg, 1999) was used for the identification of the students’ thinking styles. 

TSI is a self-report, paper-and-pencil test, consisting of 104 seven-scale Likert type 

items (8 for each style) asking students to indicate a range of individual preferences, 

for example: “I like problems, where I can try my own way of solving them” 

(‘legislative’; Sternberg, 1999, p. 28), “I like projects that have a clear structure and a 

set plan and goal” (‘executive’; ibid, p. 33). Each participant’s preference for a style 

is labelled (six labels ranging from ‘very low’ to ‘very high’) according to the norms 

developed by Sternberg’s research. Although TSI has shown good cross-cultural 

validity (Zhang & Sternberg, 2006), there does not appear to be an existing norm for 

the Greek population. Therefore, in a previous study (Moutsios-Rentzos & Simpson, 

2005), the participants’ scores were also labelled according to ‘adjusted norm’ 

produced from the data of this population following Sternberg’s (1999) process. The 

latter norm serves as a ‘tighter lens’, which helps in spotting intra-population 

differences. In this study, style identification was based on the adjusted norms (as 

they did not contradict with Sternberg’s norms). 

METHODOLOGY 

The design of the study included questionnaires and interviews whilst, although the 

focus was on the 2
nd

 year students (99 students: 45 males and 54 females) following a 

BSc in Mathematics in a Greek University, the questionnaires were also administered 

to a broader sample of undergraduates (224 students: 112 males and 112 females), in 

order to validate the translated to Greek TSI (‘t-TSI’) and the ‘adjusted’ norms. 15 

second year students were interviewed in order to determine their strategies. In sum, 

the design of the study included the identification: 1) of the students’ thinking styles, 

2) of clusters of students with similar style profiles, 3) of suitable representatives of 

these clusters, and 4) of the strategy choice(s) of those representatives. 

The questionnaires included the t-TSI and questions about the students’ age, gender, 

year group and attainment. The interviews –two for each interviewee– were designed 

to last from 40 to 60 minutes each and were video recorded. Six questions in exam-

type format were included (see Table 1) from courses in analysis and algebra. The 

first four questions in Table 1 were common questions that students may encounter in 

exams, while the last two were non-common. The interviewees were asked to ‘think 

aloud’ and to provide exam-type answers, whilst it was stressed that the researcher’s 

focus was on the strategies they used to solve the questions. Drawing from Weber’s 
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tactics, that forms a coherent plan to solve a problem” (p. 230-231). Strategies are 

heavily dependent on the characteristics of the question. For example, in exam-type 

questions, the students are expected to present a mathematically acceptable proof. 

Weber (2005) identified three strategies that the students employ in a proof 

construction: procedural (the student attempts “to locate a proof of a statement that is 

similar in form and use this existing proof as a template for producing a new one”; 

ibid, p. 353), syntactic (the student “logically manipulating mathematical statements 

without referring to intuitive representations of mathematical concepts”; ibid, p. 355) 

and semantic (the student “uses the informal representations to guide the formal work 

that one produces”; ibid, p. 356). In the current study, Initial Strategy (the students’ 

first strategy choice) was differentiated from Back-Up Strategy (a different strategy to 

the Initial Strategy; not re-attacking the question with the same kind of strategy). 

Bergqvist (2007) found that about 70% of the questions included in university 

mathematics examinations could be successfully dealt with imitative reasoning

(Lithner, 2008). ‘Imitative reasoning’ can be linked with Weber’s ‘procedural’ and/or 

‘syntactic’ strategies, thus it is reasonable to conjecture that students may employ 

such strategies when they deal with exam-type questions. Moreover, it seems 

reasonable to expect that students with a preference for Type II thinking styles 
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(linked with conformity) would choose more ‘procedural’ or ‘syntactic’ strategies 

when dealing with exam-type questions (Bergqvist, 2007) than the students with a 

preference for Type I thinking styles (linked with creativity). Finally, drawing from 

previous studies (for example, Zhang & Sternberg, 2006), students’ attainment and 

the nature of task were also considered in this study. 

THE STERNBERG-WAGNER THINKING STYLES INVENTORY (TSI)

A translated to Greek version of the Sternberg-Wagner Thinking Styles Inventory 

(TSI; Sternberg, 1999) was used for the identification of the students’ thinking styles. 

TSI is a self-report, paper-and-pencil test, consisting of 104 seven-scale Likert type 

items (8 for each style) asking students to indicate a range of individual preferences, 

for example: “I like problems, where I can try my own way of solving them” 

(‘legislative’; Sternberg, 1999, p. 28), “I like projects that have a clear structure and a 

set plan and goal” (‘executive’; ibid, p. 33). Each participant’s preference for a style 

is labelled (six labels ranging from ‘very low’ to ‘very high’) according to the norms 

developed by Sternberg’s research. Although TSI has shown good cross-cultural 

validity (Zhang & Sternberg, 2006), there does not appear to be an existing norm for 

the Greek population. Therefore, in a previous study (Moutsios-Rentzos & Simpson, 

2005), the participants’ scores were also labelled according to ‘adjusted norm’ 

produced from the data of this population following Sternberg’s (1999) process. The 

latter norm serves as a ‘tighter lens’, which helps in spotting intra-population 

differences. In this study, style identification was based on the adjusted norms (as 

they did not contradict with Sternberg’s norms). 

METHODOLOGY 

The design of the study included questionnaires and interviews whilst, although the 

focus was on the 2
nd

 year students (99 students: 45 males and 54 females) following a 

BSc in Mathematics in a Greek University, the questionnaires were also administered 

to a broader sample of undergraduates (224 students: 112 males and 112 females), in 

order to validate the translated to Greek TSI (‘t-TSI’) and the ‘adjusted’ norms. 15 

second year students were interviewed in order to determine their strategies. In sum, 

the design of the study included the identification: 1) of the students’ thinking styles, 

2) of clusters of students with similar style profiles, 3) of suitable representatives of 

these clusters, and 4) of the strategy choice(s) of those representatives. 

The questionnaires included the t-TSI and questions about the students’ age, gender, 

year group and attainment. The interviews –two for each interviewee– were designed 

to last from 40 to 60 minutes each and were video recorded. Six questions in exam-

type format were included (see Table 1) from courses in analysis and algebra. The 

first four questions in Table 1 were common questions that students may encounter in 

exams, while the last two were non-common. The interviewees were asked to ‘think 

aloud’ and to provide exam-type answers, whilst it was stressed that the researcher’s 

focus was on the strategies they used to solve the questions. Drawing from Weber’s 
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(2001) technique, the interviewees 

were provided with any mathematical 

knowledge they asked for, but not the 

answer. Thus, the focus was on 

examining the students’ manner of 

accessing mathematical knowledge, 

since it was hypothesised that this 

would help in revealing the students’ 

strategy choices. The students’ 

strategies were initially identified 

according to Weber (2005). The 

purpose was to examine whether or 

not this classification could 

sufficiently describe the students’ 

strategies and, if not, to identify any additional ‘missing’ categories. 

THE TRANSLATED TSI AND STYLE CLUSTERS 

The data analysis suggested the sufficient validity and reliability of t-TSI
3
. 

As a result of data analysis two style Cores (akin to the Types found by Zhang & 

Sternberg, 2006) were identified: Core I thinking styles (creative, original, critical 

and non-prioritised thinking) and Core II thinking styles (procedural, already tested 

and prioritised thinking). From these, two clusters were identified: Cluster 1C2C (high 

Core I and/or low Core II) and Cluster 3C4C (high Core II and/or low Core I). 

Interviews were carried out with those students who were ‘closer’ to the centre of the 

cluster to which they were assigned. 

THE -- STRATEGY CLASSIFICATION 

The data analysis suggested that the students’ strategies differed in whether the 

students explored the ‘truth’ of the statement they were asked to prove (truth 

development) or not (proof development). Following this differentiation, the A-B-
strategy classification, was introduced, expanding on Weber’s (2005) ‘semantic’, 

‘syntactic’ and procedural’. Overall, the students appeared to employ five strategies 

when they dealt with an exam type question (see Table 2): a) the Alpha strategy (‘A’; 

akin to ‘semantic’), b) the Beta strategy (‘B’; akin to ‘syntactic’), c) the Delta-Beta

strategy (‘B’; akin to ‘procedural’), d) the Delta-Alpha strategy (‘A’; different 

arguments employed for ‘ascertaining’ and for ‘persuading’; in the sense of Harel & 

                                          

3 The alpha coefficients for 8 of the 13 measured styles were above 0.7. Three style scales were less reliable (but over 

0.53), which, still, is in accordance with previous studies (Zhang & Sternberg, 2006). Principal axis factoring (oblimin 

with Kaiser normalisation) led to a 3-factor solution (63.8% of variance). The first factor is related to creative, original, 

critical and non-prioritised thinking, the second factor is linked to procedural, already tested and prioritised thinking and 

the third factor embodies the ‘scope’ dimension of MSG (‘internal’-‘external’). 

Let a, b, c Z and (a,b)=1 and a|bc. Prove that a|c. 

Let a sequence (an) R, nN. Prove that if (an) is 

convergent, then (an) is bounded. 
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Let A, B non-empty subsets of the real numbers R 

and A, B are bounded. Does the sup(AB) exist? If 

yes, find it. Justify in full your answer. 

Let G = <a>, cyclic, finite group, rank n. Prove that 

a, , is generator of G, if and only if (, n)=1. 

Let aN. Prove that a is divisible by 9, if and only if 

the sum of its digits is divisible by 9. 
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Let f: RR and f periodic with period T>0. If 

lim
x f(x) = bR, then prove that f is constant. 

Table 1: The exam-type questions. 
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Sowder (1998), and e) the Delta-Delta strategy 

(‘’;flexible). The A-B- strategies can be 

grouped into three Strategy Types depending on 

their links with truth, memory or flexibility (see 

Table 2): -type (‘truth’; Alpha & ), -type

(‘memory’; Beta & B), and -type (‘flexibility’; 

). Finally, the students’ strategies were 

independently identified according to the A-B-
classification by a colleague. The inter-rater 

reliability analysis suggests the ‘almost perfect’ 

agreement (Kappa=0.924, p<.001) between the two raters. 

LINKING STYLE PROFILES WITH STRATEGY CHOICES 

The typical representative of Cluster 1C2C (Core I/Core II) preferred -type Initial 

Strategies, rarely resorted to Back-Up Strategies, and chose -type strategies for 

‘known’ questions. In contrast, the typical representative of Cluster 3C4C (Core 

II/Core I) preferred -type Initial Strategies, resorted more frequently to Back-Up 

Strategies, and had a low preference for -type Initial Strategies. 

Figure 1: Inter-Cluster Initial Strategy Comparison

More than half (55.56%) of the Initial Strategies employed by the members of 1C2C

were -type (see Figure 1), whereas almost three quarters (73.47%) of the Initial 

Strategies employed by the members of 3C4C were -type. The analysis (Mann-

Whitney) suggested that the members of 1C2C employed significantly more -type 

strategies (U = 6.5, p<0.05, r = -.66) and significantly less -type strategies (U = 2, 

p<0.05, r = -.79) than the members of 3C4C. Moreover, the members of 1C2C in 

comparison with the members of 3C4C chose significantly more (U = 7.5, p<0.05, r = 

-.63) Alpha strategies (37.04% vs. 10.20%) and significantly less (U = 6.5, p<0.05, r 

= -.55)  strategies (42.86% vs. 16.67%). 

 Strategy Types 

-type 

‘truth’ 

-type 

‘memory’ 

-type 

‘flexibility’

A 

‘semantic’
  

B 

‘procedural’A
-B

-

A

- 

B

‘syntactic’


- 

Table 2: The A-B- classification
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II/Core I) preferred -type Initial Strategies, resorted more frequently to Back-Up 
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were -type (see Figure 1), whereas almost three quarters (73.47%) of the Initial 
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p<0.05, r = -.79) than the members of 3C4C. Moreover, the members of 1C2C in 
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= -.55)  strategies (42.86% vs. 16.67%). 

 Strategy Types 

-type 

‘truth’ 

-type 

‘memory’ 

-type 

‘flexibility’

A 

‘semantic’
  

B 

‘procedural’A
-B

-

A

- 

B

‘syntactic’


- 

Table 2: The A-B- classification

PME 33 - 2009 4 - 149

 Volume 04 COMPLETE 290509.indb   149 6/4/09   2:22:36 PM



Moutsios-Rentzos 

  

1- 6 PME 33 - 2009 

Although no significant differences were found in the use of Back-Up Strategies, the 

students assigned to 3C4C appeared to employ more than twice  Back-Up 

Strategies than those assigned to 1C2C

In the context of the nature of task, the statistical analysis suggested that the members 

of Cluster 1C2C appeared to employ significantly different (p<0.05, Fisher’s exact 

test) Initial Strategies (more -type and less -type) to those used by the members of 

Cluster 3C4C in the two ‘non-common’ questions: the ‘divisible by 9’ and the 

‘periodic-constant’. Furthermore, some questions appeared to attract specific 

strategies (e.g. the ‘convergent-bounded’ question attracted more -type strategies). 

It seems that there is a link between the Initial Strategies that the students employ and 

the cluster to which they are assigned: the members of Clusters 1C2C seemed to prefer 

more -type and less -type Initial Strategies than the members of Cluster 3C4C (see 

Figure 2). For the ‘common’ tasks, this link is ‘skewed’ depending on whether the 

task is expected to favour -type or -type strategies. For ‘non-common’ tasks, this 

link is amplified (which explains the statistically significant identified strategy 

differences). It is conjectured that the fact that these tasks are ‘non-common’ reduces 

the exam (and/or university) effect on the students’ way of thinking, allowing for 

their thinking styles to be more dominant, leading to the amplification of the contrast 

between the strategy choices made by the members of the two style clusters. 


 









 

  

Figure 2: Linking thinking styles with strategies. 

It appears that the effect of style on Back-Up Strategy is minimised, mainly affecting 

the frequency of the students’ resorting to a Back-Up Strategy (for example, 3C4C is 

linked with higher preference for Back-Up Strategy). It is conjectured that the 

students’ need to successfully survive the exam type situation overrides their Initial 

Strategy preference and they resort to -type or -type strategies, which seem more 

‘appropriate’ for exams (Bergqvist, 2007). Furthermore, although the members of 

both clusters choose similar Back-Up Strategies, the ‘high’ attaining members of 

3C4C choose twice as many Back-Up Strategies. Consequently, it is argued that 

stylistic preferences and ‘high’ attainment, appear to regulate a link between nature 

of task and Back-Up Strategy (see Figure 2), rather than forming a style-strategy link 

(as in the case of Initial Strategy). 
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CONCLUSION: VIEWING THE RESULTS THROUGH SKEMP’S THEORY 

According to Skemp (1979), students’ survival is realised in three modes: actual, 

social and internal. In this study, Skemp’s social survival and internal consistency

highlight the duality of the students’ goal setting and goal achieving when they deal 

with a mathematical question, thus helping to explain the links between style, Initial 

Strategy and Back-Up Strategy as outlined in Figure 2. 

For Cluster 1C2C (Core I/Core II), students’ need for internal consistency leads 

them to choose an Initial Strategy that can be linked to creative, original, critical and 

non-prioritised thinking. In an exam type question, this appears to translate into a 

strategy that incorporates the exploration of whether or not the given statement is 

‘true’, whether or not it ‘makes sense’ and thus the selection of -type strategies. 

Such a choice allows the students to be critical of the validity of the given statement, 

which can also help them in being creative and original (in their search for an 

ascertaining argument). On the other hand, the students’ need to socially survive 

leads them to choose a persuading argument that is either the ascertaining argument 

presented in a mathematically acceptable manner (Alpha strategy) or a completely 

new argument ( strategy). 

In contrast, for Cluster 3C4C (Core I/Core II), students’ need for internal 

consistency leads them to choose an Initial Strategy that can be linked to procedural, 

already tested and prioritised thinking. In an exam type question, this appears to 

translate into a strategy that draws from memory, either in the form of reproduction 

of an answer or in the form of remembering certain techniques that help in answering 

exam type questions. Furthermore, this choice is also in accordance with the social 

survival of an exam type question. Therefore, these students appear to prefer a -type 

Initial Strategy as it incorporates these elements, thus allowing those students to be 

consistent with both their inner and social reality. 

The situation radically changes when the students search for a Back-Up strategy. The 

failure of the students’ Initial Strategy leads them to re-evaluate the task itself, thus 

changing the realities in which the students have to survive. When employing a Back-

Up Strategy, the students view the question ‘stripped’ of its multiple dimensions, 

being projected only on the ‘exam-type status’ space, affecting the students’ inner 

reality: internal consistency is now mainly linked to the students’ perception of an 

exam-type question, thus minimising the role of style. Therefore, the students would 

search for -type or -type strategies, as they are considered to be more ‘suitable’ for 

such questions (Bergqvist, 2007). Therefore, for both clusters, the students choose -

type and/or -type Back-Up Strategies, in order to satisfy their need for internal 

consistency and social survival. Overall, Skemp’s theory suggests that the students 

choose different strategies, because they survive different (perceived) situations. 

In conclusion, ‘thinking styles’ seem to be useful for the identification of students 

who employ qualitatively different strategies when they deal with exam-type 

questions. It is argued that these students survive different realities and, therefore, 
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Although no significant differences were found in the use of Back-Up Strategies, the 

students assigned to 3C4C appeared to employ more than twice  Back-Up 

Strategies than those assigned to 1C2C

In the context of the nature of task, the statistical analysis suggested that the members 

of Cluster 1C2C appeared to employ significantly different (p<0.05, Fisher’s exact 

test) Initial Strategies (more -type and less -type) to those used by the members of 

Cluster 3C4C in the two ‘non-common’ questions: the ‘divisible by 9’ and the 

‘periodic-constant’. Furthermore, some questions appeared to attract specific 

strategies (e.g. the ‘convergent-bounded’ question attracted more -type strategies). 

It seems that there is a link between the Initial Strategies that the students employ and 

the cluster to which they are assigned: the members of Clusters 1C2C seemed to prefer 

more -type and less -type Initial Strategies than the members of Cluster 3C4C (see 

Figure 2). For the ‘common’ tasks, this link is ‘skewed’ depending on whether the 

task is expected to favour -type or -type strategies. For ‘non-common’ tasks, this 

link is amplified (which explains the statistically significant identified strategy 

differences). It is conjectured that the fact that these tasks are ‘non-common’ reduces 

the exam (and/or university) effect on the students’ way of thinking, allowing for 

their thinking styles to be more dominant, leading to the amplification of the contrast 

between the strategy choices made by the members of the two style clusters. 


 









 

  

Figure 2: Linking thinking styles with strategies. 

It appears that the effect of style on Back-Up Strategy is minimised, mainly affecting 

the frequency of the students’ resorting to a Back-Up Strategy (for example, 3C4C is 

linked with higher preference for Back-Up Strategy). It is conjectured that the 

students’ need to successfully survive the exam type situation overrides their Initial 

Strategy preference and they resort to -type or -type strategies, which seem more 

‘appropriate’ for exams (Bergqvist, 2007). Furthermore, although the members of 

both clusters choose similar Back-Up Strategies, the ‘high’ attaining members of 

3C4C choose twice as many Back-Up Strategies. Consequently, it is argued that 

stylistic preferences and ‘high’ attainment, appear to regulate a link between nature 

of task and Back-Up Strategy (see Figure 2), rather than forming a style-strategy link 

(as in the case of Initial Strategy). 
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CONCLUSION: VIEWING THE RESULTS THROUGH SKEMP’S THEORY 

According to Skemp (1979), students’ survival is realised in three modes: actual, 

social and internal. In this study, Skemp’s social survival and internal consistency

highlight the duality of the students’ goal setting and goal achieving when they deal 

with a mathematical question, thus helping to explain the links between style, Initial 

Strategy and Back-Up Strategy as outlined in Figure 2. 

For Cluster 1C2C (Core I/Core II), students’ need for internal consistency leads 

them to choose an Initial Strategy that can be linked to creative, original, critical and 

non-prioritised thinking. In an exam type question, this appears to translate into a 

strategy that incorporates the exploration of whether or not the given statement is 

‘true’, whether or not it ‘makes sense’ and thus the selection of -type strategies. 

Such a choice allows the students to be critical of the validity of the given statement, 

which can also help them in being creative and original (in their search for an 

ascertaining argument). On the other hand, the students’ need to socially survive 

leads them to choose a persuading argument that is either the ascertaining argument 

presented in a mathematically acceptable manner (Alpha strategy) or a completely 

new argument ( strategy). 

In contrast, for Cluster 3C4C (Core I/Core II), students’ need for internal 

consistency leads them to choose an Initial Strategy that can be linked to procedural, 

already tested and prioritised thinking. In an exam type question, this appears to 

translate into a strategy that draws from memory, either in the form of reproduction 

of an answer or in the form of remembering certain techniques that help in answering 

exam type questions. Furthermore, this choice is also in accordance with the social 

survival of an exam type question. Therefore, these students appear to prefer a -type 

Initial Strategy as it incorporates these elements, thus allowing those students to be 

consistent with both their inner and social reality. 

The situation radically changes when the students search for a Back-Up strategy. The 

failure of the students’ Initial Strategy leads them to re-evaluate the task itself, thus 

changing the realities in which the students have to survive. When employing a Back-

Up Strategy, the students view the question ‘stripped’ of its multiple dimensions, 

being projected only on the ‘exam-type status’ space, affecting the students’ inner 

reality: internal consistency is now mainly linked to the students’ perception of an 

exam-type question, thus minimising the role of style. Therefore, the students would 

search for -type or -type strategies, as they are considered to be more ‘suitable’ for 

such questions (Bergqvist, 2007). Therefore, for both clusters, the students choose -

type and/or -type Back-Up Strategies, in order to satisfy their need for internal 

consistency and social survival. Overall, Skemp’s theory suggests that the students 

choose different strategies, because they survive different (perceived) situations. 

In conclusion, ‘thinking styles’ seem to be useful for the identification of students 

who employ qualitatively different strategies when they deal with exam-type 

questions. It is argued that these students survive different realities and, therefore, 
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they need different pedagogical treatment. Further research could focus on designing 

appropriate pedagogies. 
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CHALLENGING “THE LAWS OF MATH” 
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This paper reports on the strategies chosen by a group of sixth grade students in an 
urban informal learning program as they worked to solve an open-ended, non-
routine task. In particular, the paper focuses on the ability of these students to rise 
above their previous, procedure-based misconceptions and arrive at a 
mathematically reasonable solution. Factors in the problem task and the problem-
solving environment are analyzed to determine the conditions that encouraged
students to approach mathematics as a logical, meaningful, sense-making activity. 

INTRODUCTION
The Principles and Standards for School Mathematics (NCTM, 2000) stress the role 
of reasoning and proof in the curriculum. However, students’ misconceptions often 
hinder their ability to reason. When these misconceptions prevent students from 
reasoning correctly, students must be open to adapt their schemas to accommodate 
their new understandings. With support, students can overcome these mental 
roadblocks by building alternative representations and by sharing and discussing their 
new ways of thinking. In this paper, we share an episode from an after-school 
mathematics program where a group of students were prompted to rethink what they 
know about fraction “rules”. They did this by building their own evidence and 
convincing themselves and others to believe in their power to reason.

THEORETICAL FRAMEWORK 
Davis (1992) asserts that, given opportunities, students will create their own ways of 
understanding and build representations and understanding based on their previous 
knowledge and experiences. However, Davis points out that what students learn is 
built upon this foundation of understanding and therefore future learning may be 
limited by previous understanding.  
Often, the mathematical instruction in schools does not validate children’s natural, 
experience-based understandings; instead, it requires students to adapt their reasoning 
styles to fit those valued by schools (Malloy, 1999). The traditional approach to 
teaching mathematical concepts emphasizes students’ memorization of rules and 
procedures and manipulation of symbols. Many of these rules may seem meaningless 
to children, having been learned by rote methods (Davis 1994). Erlwanger (1973) 
reports the case of Benny, a twelve-year-old boy in the sixth grade using Individually 
Prescribed Instruction (IPI), who learned that mathematics consists of different rules 
for different problems that were invented at one time but work like magic. In Benny’s 
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eyes, mathematics was not a rational and logical subject where one has to reason, 
analyse, seek relationships, make generalizations, and verify answers; rather, it was a
game where one discovers the rules and uses them to solve problems (Erlwanger, 
1973). Benny created his own “rules” for adding fractions based on what he 
perceived as random procedures. Kamii and Diminck (1998) argue that teaching rules 
and conventions can be harmful because they cause children to relinquish their own 
ideas and disconnect the content from the concepts. When exposed to this kind of 
instruction, students often remember erroneous rules and procedures, as was seen 
with Benny. Kamii and Warrington (1999) propose that the focus of instruction 
should shift from teaching that emphasizes physical and social knowledge to that 
which values and encourages children’s own reasoning. 
Yackel and Hanna (2003) concur and argue the view of mathematics as reasoning can 
be contrasted with the view of mathematics as a rule-oriented activity. Other 
researchers support the fact that the sole teaching of algorithms can be detrimental 
and counterproductive to the development of children’s numerical reasoning. Mack
(1990) came to this conclusion after finding that algorithms often keep students from 
even trying to use their own reasoning. Through her work with eight sixth-grade 
students, she also found that students often remember erroneous algorithms and have 
more faith in these rules than in their own thinking.  
According to Skemp (1971) “…to understand something is to assimilate it into an 
appropriate schema” (p. 45). Therefore, a student’s level of understanding is 
dependent upon the schema he or she has created during instruction. Understanding 
develops as students form connection between new and old knowledge and create 
appropriate schemas to make sense of new knowledge. These schemas are built on 
previous understanding as students make connections between schemas. Often, 
students run into roadblocks that they must overcome through building alternative 
representations and with the sharing of ideas. Students exhibit logical understanding 
when afforded the opportunity to justify their reasoning in a community of learners 
and thus are able to adapt previous [mis]understandings/beliefs.  

METHODOLOGY AND DATA SOURCE 
This research is a component of a larger ongoing longitudinal study, Informal 
Mathematics Learning Project, (IML)1 that was conducted as part of an after-school 
partnership between a state university and a school district located in an economically 
depressed, urban area. The district’s student population consists of 98 percent African 
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American and Latino students. Our study focuses on the development of reasoning of 
middle-school students. We report on the first cohort of students, 24 sixth-graders, 
who, over five, 60-75 minute sessions, worked on fraction tasks, interacted with 
peers, and had ample time to explore, discuss and explain their ideas. Cuisenaire rods 
were made available to the students as they worked on the tasks. The students worked 
in groups of four and participated in whole class discussions. They were invited to 
collaborate and discuss their ideas with one another, were encouraged to justify and 
make sense of their solutions, and were challenged to convince one another of the 
validity of their reasoning. 
Video recordings and transcripts were analysed using the analytical model outlined 
by Powell, Francisco & Maher (2003). The video data were described at frequent 
intervals; critical events (episodes of reasoning) were identified and transcribed, 
codes were developed for flagging for solutions offered by students and the 
justifications given to support these solutions. Arguments and justifications were 
coded according to the form of reasoning being used, direct or indirect, and as valid 
or invalid, based on whether or not the argument started with appropriate premises 
and the deductions within the argument were a valid consequence of previous 
assertions. Students’ construction of solutions and their subsequent justifications 
were then traced across the data in an effort to document and analyse their journey to 
mathematical understanding.

RESULTS
During the third session of the after-school program, the blue rod was given the 
number name one and students were asked to give a number name for the white and 
red rods. The task was then revisited at the beginning of the fourth session. After 
students worked in small groups and then shared results with the larger community, 
they were asked to give a number name to the yellow rod, when blue was named one.  
A Group of Three: Chanel, Dante and Michael 
Chanel lined up five white rods next to the yellow rod and used direct reasoning to 
name the yellow rod five-ninths. She then initiated the task of naming all of the rods 
using the staircase model (see Figure 1). She named the remainder of the rods, using 
direct reasoning based on the incremental increase of one white rod or one-ninth and 
used the staircase model as a guide and named the rods until she arrived at the orange 
rod. As she was working she said the names of all of the rods, “One-ninth, two-
ninths, three-ninths, four-ninths, five-ninths, six-ninths, seven-ninths, eight-ninths, 
nine-ninths, ten..– wow, oh, I gotta think about that one, nine-tenths”. Chanel showed 
Dante her strategy of using the staircase to name the rods and explained the dilemma 
of naming the orange rod to Dante, “See this is One-ninth, two-ninths, three-ninths, 
four-ninths, five-ninths, six-ninths, seven-ninths, eight-ninths, nine-ninths - what’s 
this one?”. Dante replied, “That would be ten-ninths. Actually that should be one. 
That would start the new one”. He initially named the orange rod ten-ninths but 
corrected himself and said that the orange rod would “start a new cycle”; and named 
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eyes, mathematics was not a rational and logical subject where one has to reason, 
analyse, seek relationships, make generalizations, and verify answers; rather, it was a
game where one discovers the rules and uses them to solve problems (Erlwanger, 
1973). Benny created his own “rules” for adding fractions based on what he 
perceived as random procedures. Kamii and Diminck (1998) argue that teaching rules 
and conventions can be harmful because they cause children to relinquish their own 
ideas and disconnect the content from the concepts. When exposed to this kind of 
instruction, students often remember erroneous rules and procedures, as was seen 
with Benny. Kamii and Warrington (1999) propose that the focus of instruction 
should shift from teaching that emphasizes physical and social knowledge to that 
which values and encourages children’s own reasoning. 
Yackel and Hanna (2003) concur and argue the view of mathematics as reasoning can 
be contrasted with the view of mathematics as a rule-oriented activity. Other 
researchers support the fact that the sole teaching of algorithms can be detrimental 
and counterproductive to the development of children’s numerical reasoning. Mack
(1990) came to this conclusion after finding that algorithms often keep students from 
even trying to use their own reasoning. Through her work with eight sixth-grade 
students, she also found that students often remember erroneous algorithms and have 
more faith in these rules than in their own thinking.  
According to Skemp (1971) “…to understand something is to assimilate it into an 
appropriate schema” (p. 45). Therefore, a student’s level of understanding is 
dependent upon the schema he or she has created during instruction. Understanding 
develops as students form connection between new and old knowledge and create 
appropriate schemas to make sense of new knowledge. These schemas are built on 
previous understanding as students make connections between schemas. Often, 
students run into roadblocks that they must overcome through building alternative 
representations and with the sharing of ideas. Students exhibit logical understanding 
when afforded the opportunity to justify their reasoning in a community of learners 
and thus are able to adapt previous [mis]understandings/beliefs.  

METHODOLOGY AND DATA SOURCE 
This research is a component of a larger ongoing longitudinal study, Informal 
Mathematics Learning Project, (IML)1 that was conducted as part of an after-school 
partnership between a state university and a school district located in an economically 
depressed, urban area. The district’s student population consists of 98 percent African 
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American and Latino students. Our study focuses on the development of reasoning of 
middle-school students. We report on the first cohort of students, 24 sixth-graders, 
who, over five, 60-75 minute sessions, worked on fraction tasks, interacted with 
peers, and had ample time to explore, discuss and explain their ideas. Cuisenaire rods 
were made available to the students as they worked on the tasks. The students worked 
in groups of four and participated in whole class discussions. They were invited to 
collaborate and discuss their ideas with one another, were encouraged to justify and 
make sense of their solutions, and were challenged to convince one another of the 
validity of their reasoning. 
Video recordings and transcripts were analysed using the analytical model outlined 
by Powell, Francisco & Maher (2003). The video data were described at frequent 
intervals; critical events (episodes of reasoning) were identified and transcribed, 
codes were developed for flagging for solutions offered by students and the 
justifications given to support these solutions. Arguments and justifications were 
coded according to the form of reasoning being used, direct or indirect, and as valid 
or invalid, based on whether or not the argument started with appropriate premises 
and the deductions within the argument were a valid consequence of previous 
assertions. Students’ construction of solutions and their subsequent justifications 
were then traced across the data in an effort to document and analyse their journey to 
mathematical understanding.

RESULTS
During the third session of the after-school program, the blue rod was given the 
number name one and students were asked to give a number name for the white and 
red rods. The task was then revisited at the beginning of the fourth session. After 
students worked in small groups and then shared results with the larger community, 
they were asked to give a number name to the yellow rod, when blue was named one.  
A Group of Three: Chanel, Dante and Michael 
Chanel lined up five white rods next to the yellow rod and used direct reasoning to 
name the yellow rod five-ninths. She then initiated the task of naming all of the rods 
using the staircase model (see Figure 1). She named the remainder of the rods, using 
direct reasoning based on the incremental increase of one white rod or one-ninth and 
used the staircase model as a guide and named the rods until she arrived at the orange 
rod. As she was working she said the names of all of the rods, “One-ninth, two-
ninths, three-ninths, four-ninths, five-ninths, six-ninths, seven-ninths, eight-ninths, 
nine-ninths, ten..– wow, oh, I gotta think about that one, nine-tenths”. Chanel showed 
Dante her strategy of using the staircase to name the rods and explained the dilemma 
of naming the orange rod to Dante, “See this is One-ninth, two-ninths, three-ninths, 
four-ninths, five-ninths, six-ninths, seven-ninths, eight-ninths, nine-ninths - what’s 
this one?”. Dante replied, “That would be ten-ninths. Actually that should be one. 
That would start the new one”. He initially named the orange rod ten-ninths but 
corrected himself and said that the orange rod would “start a new cycle”; and named 
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it one-tenth. Michael named the orange rod a whole and explained that it was 
equivalent to ten white rods and Chanel agreed.

Chanel: It should be called a whole. 
Dante: This is one, this is nine-ninths also known as one. This should be blue and 

this would start the new one – would be one-tenth.  

 1 cm 

Figure 1. “Staircase” Model of Cuisenaire Rods. 

After students worked for about five minutes drawing rod models, Dante told the 
group that that he heard another group calling the orange rod ten-ninths.

Dante: Why are they calling it ten-ninths and [it] ends at ninths? 
Michael: Not the orange one. The orange one’s a whole. 
Dante:  But I’m hearing from the other group from over here, they calling it ten-

ninths. 
Michael:  Don’t listen to them! The orange one is a whole because it takes ten of 

these to make one.
Dante: I’m hearing it because they speaking out loud. They’re calling it ten-

ninths 
Michael: They might be wrong! … 
Chanel: Let me tell you something, how can they call it ten-ninths if the 

denominator is smaller than the numerator? 
Dante: Yeah how is the numerator bigger than the denominator? It ends at the 

denominator and starts a new one. See you making me lose my brain. 

As the students were working a researcher joined their group. Dante shared his 
conjecture, “It’s the end of it and it starts the new one to one-tenth because the blue 
ends it and so the orange starts a new one just like - pretend there were smaller ones 
than just a white. So this would be considered like blue, a one”. The researcher 
reminded him that the white rod was named one-ninth and that this fact could not 
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change. Again she asked him for the name of the blue rod and he stated, “It would 
probably be ten-ninths”. When prompted, Dante explained that the length of ten 
white rods was equivalent to the length of an orange rod. The researcher asked Dante 
to persuade his partners.

Chanel:  No, because I don’t believe you because –
Michael:  I thought it was a whole.  
Dante:  But how can the numerator be bigger than the denominator? 
R1: It can. It is. This is an example of where the numerator is bigger than the 

denominator.  
Chanel: But the denominator can’t be bigger than the numerator, I thought. 
Michael: That’s the law of facts. 
R1: Who told you that? 
Chanel:  My teacher. 
Dante: One of our teachers 
Michael:  That’s the law of math.  

In the above dialogue, we see that even though Dante named the orange rod ten-
ninths, using previous knowledge (of the name of the white rod) and a concrete 
model, he still questioned his answer. His prior understanding of the “rule” was so 
strong that he questioned himself even after building a concrete model and explaining 
the concept. 
The Whole Class
At the end of the session groups were asked to share their results with the class. One 
of the students shared the groups’ solution with the class: “We had a challenge that 
says if we call the blue rod one, what do we call the orange rod?” Students were 
asked to share their results. Malika and Lorrin named the orange rod ten-ninths and 
reported that they initially thought the numerator could not be larger than the 
denominator.  

Lorrin Because, before, we thought that because we knew that the numerator 
would be larger than the denominator and we thought that the 
denominator always had to be larger but we found out that that was not 
true. Because two yellow rods equal five-ninths, and five-ninths plus five-
ninths equal ten-ninths  

Malika We found out the denominator doesn’t have to be larger than the 
numerator because we found out that two yellows equal five-ninths so 
five-ninths plus five-ninths equals ten-ninths. 

Kia-Lyn and Kori explained that the blue rod had two number names. 
Kia-Lynn We found that the blue rod has two number names and the orange one has 

two number names. So because the orange one and the blue one – I 
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it one-tenth. Michael named the orange rod a whole and explained that it was 
equivalent to ten white rods and Chanel agreed.

Chanel: It should be called a whole. 
Dante: This is one, this is nine-ninths also known as one. This should be blue and 

this would start the new one – would be one-tenth.  

 1 cm 

Figure 1. “Staircase” Model of Cuisenaire Rods. 

After students worked for about five minutes drawing rod models, Dante told the 
group that that he heard another group calling the orange rod ten-ninths.

Dante: Why are they calling it ten-ninths and [it] ends at ninths? 
Michael: Not the orange one. The orange one’s a whole. 
Dante:  But I’m hearing from the other group from over here, they calling it ten-

ninths. 
Michael:  Don’t listen to them! The orange one is a whole because it takes ten of 

these to make one.
Dante: I’m hearing it because they speaking out loud. They’re calling it ten-

ninths 
Michael: They might be wrong! … 
Chanel: Let me tell you something, how can they call it ten-ninths if the 

denominator is smaller than the numerator? 
Dante: Yeah how is the numerator bigger than the denominator? It ends at the 

denominator and starts a new one. See you making me lose my brain. 

As the students were working a researcher joined their group. Dante shared his 
conjecture, “It’s the end of it and it starts the new one to one-tenth because the blue 
ends it and so the orange starts a new one just like - pretend there were smaller ones 
than just a white. So this would be considered like blue, a one”. The researcher 
reminded him that the white rod was named one-ninth and that this fact could not 
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change. Again she asked him for the name of the blue rod and he stated, “It would 
probably be ten-ninths”. When prompted, Dante explained that the length of ten 
white rods was equivalent to the length of an orange rod. The researcher asked Dante 
to persuade his partners.

Chanel:  No, because I don’t believe you because –
Michael:  I thought it was a whole.  
Dante:  But how can the numerator be bigger than the denominator? 
R1: It can. It is. This is an example of where the numerator is bigger than the 

denominator.  
Chanel: But the denominator can’t be bigger than the numerator, I thought. 
Michael: That’s the law of facts. 
R1: Who told you that? 
Chanel:  My teacher. 
Dante: One of our teachers 
Michael:  That’s the law of math.  

In the above dialogue, we see that even though Dante named the orange rod ten-
ninths, using previous knowledge (of the name of the white rod) and a concrete 
model, he still questioned his answer. His prior understanding of the “rule” was so 
strong that he questioned himself even after building a concrete model and explaining 
the concept. 
The Whole Class
At the end of the session groups were asked to share their results with the class. One 
of the students shared the groups’ solution with the class: “We had a challenge that 
says if we call the blue rod one, what do we call the orange rod?” Students were 
asked to share their results. Malika and Lorrin named the orange rod ten-ninths and 
reported that they initially thought the numerator could not be larger than the 
denominator.  

Lorrin Because, before, we thought that because we knew that the numerator 
would be larger than the denominator and we thought that the 
denominator always had to be larger but we found out that that was not 
true. Because two yellow rods equal five-ninths, and five-ninths plus five-
ninths equal ten-ninths  

Malika We found out the denominator doesn’t have to be larger than the 
numerator because we found out that two yellows equal five-ninths so 
five-ninths plus five-ninths equals ten-ninths. 

Kia-Lyn and Kori explained that the blue rod had two number names. 
Kia-Lynn We found that the blue rod has two number names and the orange one has 

two number names. So because the orange one and the blue one – I 
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thought that – our group had found out - that the orange is bigger than the 
blue one but when you add a one-ninth, a white rod, to the blue top it kind 
of matches. It kind of matches and we found out that you can also call the 
blue rod one and one-ninth and the orange one, without the one-ninth, 
without the white rod, is also called one-ninth, too. 

Kori  So we were saying that if this [orange] is called one -
Kia-Lynn It’s also called one – um ten-ninths as Malika and Lorrin had said. But if 

you have one…white rod and you add it to the blue, it’s one-ninth plus 
one is one and one-ninth and so if the blue rod and one white [they are 
using overhead rods to show a train of the blue rod and a white rod lined 
up next to an orange rod]. If you put them together then this means that 
it’s ten-ninths also known as one and one-ninth. 

Finally, Dante presented his strategy: 
Dante Well all I did was start from the beginning – start from the white – and 

you and all the way to the orange and what – like Kia-Lynn’s group just 
said - I had found a different way to do it. Because all I - I had used an 
orange, two purples, and a red and since these two are purple and this is 
supposed to be purple but I had purple and I used a red since four and four 
are eight so which will make it eight-ninths right here and then plus two to 
make it ten-ninths. [He builds this model on the OH] That’s what I made. 

R2 So it’s another way of showing that orange is equivalent to ten-ninths? 
Dante Um hum. And then I just did it in order – then the one I did right here – I 

just did it in order of whites by doing ten whites. [he shows the model 
lined up next to ten white rods] 

DISCUSSION AND IMPLICATIONS 
Specific factors in the after-school session enabled the students to challenge and 
revise their ways of thinking about mathematics.  These factors include, but are not 
limited to, the following: challenging, open-ended tasks that invite students to extend 
their learning as they build and justify solutions, the promotion of student 
collaboration in small groups and the opportunity to share ideas in the whole class 
forum, the portrayal of student as determinant of what makes sense, strategic teacher 
questioning, and the opportunity to build models using concrete materials.
The tasks were open-ended such that students could expand on a given task, as Chanel 
worked to name all the rods by using her staircase model. In addition, the students were 
provided tools to build models and therefore they could conceptualize the fraction 
relationships.  The Cuisenaire rods offered a concrete, visual model of ten-ninths and the 
students were thereby provided the means to show, using concrete evidence, that this fraction 
did indeed exist. Further, the physical environment promoted student collaboration and it was 
further encouraged by the researchers asking students to listen to each other’s ideas and to 
judge the merit of each others justifications.
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Importantly, the researcher’s careful questioning prompted students to explain their reasoning 
and invite their classmates to evaluate their thinking. When Chanel first grappled with naming 
the orange rod the researcher suggested she share her dilemma with Dante. After being 
afforded more time to think about the task, Dante was asked to explain his thinking. Rather 
than correcting Dante, the researcher reminded him of the facts that were already established 
(the white rod was named one-ninth). This subtle prompt enabled him to revise his thinking 
through the use of his own reasoning. Dante was then asked by the researcher to explain his 
thinking and convince his partners that his reasoning was correct. By working to convince his 
partners, Dante was able to reaffirm his reasoning and further convince himself of its validity.  
Dante was further encouraged to have confidence in his own thinking during the second 
phase of the activity. After students were provided the opportunity to explain their thinking 
and discuss their ideas in their small groups, they participated in a whole class discussion, 
providing the opportunity for them to validate their ways of reasoning about the problem. 
Further, the arguments presented by others introduced them to alternative models and 
justifications. Although, with his partners Dante used the staircase model to incrementally 
increase the names of the rods by one-ninth, in his presentation he chose a different 
representation. After viewing the other presenters and listening to their presentations his 
thinking was validated and thus he expressed confidence in his solution. This confidence led 
him to show two alternative models for naming the orange rod. 
Malika and Lorrin shared that they also previously believed that the numerator of a fraction 
could not be larger than the denominator; however, their reasoning and concrete evidence to 
show that five-ninths plus five-ninths is equivalent to ten-ninths was a stronger influence on 
their ultimate decision. In an environment that encourages reasoning, these students learned to 
trust their own logical ability and were thereby able to challenge and rethink their earlier 
understanding. 
The nature of the tasks and the time allotted for exploration allowed students to work at their 
own pace and readiness level. As the other students grappled with convincing themselves that 
ten-ninths was a viable number name, Kia-Lyn and Kori took the task to the next level and 
showed that ten-ninths is equivalent to one and one-ninth. In an environment that allowed 
students to act as teachers and present new concepts to their peers, the students were exposed 
to new ideas in a manner that was conducive to their assimilation. 
When students are encouraged to reason and become members of a community of engaged, 
active learners, they are able to exhibit understanding and build trust in their own thinking. 
Implementation of conditions of learning similar to those described here may be the critical 
approach that can enable all students to reason and to build the true understanding and 
reasoning that is the goal of all mathematics learning. 
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thought that – our group had found out - that the orange is bigger than the 
blue one but when you add a one-ninth, a white rod, to the blue top it kind 
of matches. It kind of matches and we found out that you can also call the 
blue rod one and one-ninth and the orange one, without the one-ninth, 
without the white rod, is also called one-ninth, too. 

Kori  So we were saying that if this [orange] is called one -
Kia-Lynn It’s also called one – um ten-ninths as Malika and Lorrin had said. But if 

you have one…white rod and you add it to the blue, it’s one-ninth plus 
one is one and one-ninth and so if the blue rod and one white [they are 
using overhead rods to show a train of the blue rod and a white rod lined 
up next to an orange rod]. If you put them together then this means that 
it’s ten-ninths also known as one and one-ninth. 

Finally, Dante presented his strategy: 
Dante Well all I did was start from the beginning – start from the white – and 

you and all the way to the orange and what – like Kia-Lynn’s group just 
said - I had found a different way to do it. Because all I - I had used an 
orange, two purples, and a red and since these two are purple and this is 
supposed to be purple but I had purple and I used a red since four and four 
are eight so which will make it eight-ninths right here and then plus two to 
make it ten-ninths. [He builds this model on the OH] That’s what I made. 

R2 So it’s another way of showing that orange is equivalent to ten-ninths? 
Dante Um hum. And then I just did it in order – then the one I did right here – I 

just did it in order of whites by doing ten whites. [he shows the model 
lined up next to ten white rods] 

DISCUSSION AND IMPLICATIONS 
Specific factors in the after-school session enabled the students to challenge and 
revise their ways of thinking about mathematics.  These factors include, but are not 
limited to, the following: challenging, open-ended tasks that invite students to extend 
their learning as they build and justify solutions, the promotion of student 
collaboration in small groups and the opportunity to share ideas in the whole class 
forum, the portrayal of student as determinant of what makes sense, strategic teacher 
questioning, and the opportunity to build models using concrete materials.
The tasks were open-ended such that students could expand on a given task, as Chanel 
worked to name all the rods by using her staircase model. In addition, the students were 
provided tools to build models and therefore they could conceptualize the fraction 
relationships.  The Cuisenaire rods offered a concrete, visual model of ten-ninths and the 
students were thereby provided the means to show, using concrete evidence, that this fraction 
did indeed exist. Further, the physical environment promoted student collaboration and it was 
further encouraged by the researchers asking students to listen to each other’s ideas and to 
judge the merit of each others justifications.
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Importantly, the researcher’s careful questioning prompted students to explain their reasoning 
and invite their classmates to evaluate their thinking. When Chanel first grappled with naming 
the orange rod the researcher suggested she share her dilemma with Dante. After being 
afforded more time to think about the task, Dante was asked to explain his thinking. Rather 
than correcting Dante, the researcher reminded him of the facts that were already established 
(the white rod was named one-ninth). This subtle prompt enabled him to revise his thinking 
through the use of his own reasoning. Dante was then asked by the researcher to explain his 
thinking and convince his partners that his reasoning was correct. By working to convince his 
partners, Dante was able to reaffirm his reasoning and further convince himself of its validity.  
Dante was further encouraged to have confidence in his own thinking during the second 
phase of the activity. After students were provided the opportunity to explain their thinking 
and discuss their ideas in their small groups, they participated in a whole class discussion, 
providing the opportunity for them to validate their ways of reasoning about the problem. 
Further, the arguments presented by others introduced them to alternative models and 
justifications. Although, with his partners Dante used the staircase model to incrementally 
increase the names of the rods by one-ninth, in his presentation he chose a different 
representation. After viewing the other presenters and listening to their presentations his 
thinking was validated and thus he expressed confidence in his solution. This confidence led 
him to show two alternative models for naming the orange rod. 
Malika and Lorrin shared that they also previously believed that the numerator of a fraction 
could not be larger than the denominator; however, their reasoning and concrete evidence to 
show that five-ninths plus five-ninths is equivalent to ten-ninths was a stronger influence on 
their ultimate decision. In an environment that encourages reasoning, these students learned to 
trust their own logical ability and were thereby able to challenge and rethink their earlier 
understanding. 
The nature of the tasks and the time allotted for exploration allowed students to work at their 
own pace and readiness level. As the other students grappled with convincing themselves that 
ten-ninths was a viable number name, Kia-Lyn and Kori took the task to the next level and 
showed that ten-ninths is equivalent to one and one-ninth. In an environment that allowed 
students to act as teachers and present new concepts to their peers, the students were exposed 
to new ideas in a manner that was conducive to their assimilation. 
When students are encouraged to reason and become members of a community of engaged, 
active learners, they are able to exhibit understanding and build trust in their own thinking. 
Implementation of conditions of learning similar to those described here may be the critical 
approach that can enable all students to reason and to build the true understanding and 
reasoning that is the goal of all mathematics learning. 
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INVESTIGATING TEACHERS’ USE OF QUESTIONS IN THE 
MATHEMATICS CLASSROOM 

Tracey Muir
University of Tasmania 

As part of a study investigating effective numeracy practices, the types of questions 
asked by teachers during a series of mathematics lessons were examined. The 
findings indicated that the types of questions teachers asked influenced the nature of 
the students’ responses and that probing questions were particularly utilised to 
encourage student explanations. 

BACKGROUND TO THE STUDY 
A significant amount of Australian mathematical research in the past decade has 
focused on teachers and their classroom activity, with the most common theme being 
characteristics of effective teachers (Groves, Mouseley & Forgasz, 2006). Extensive 
research in this area has also been conducted in the UK (e.g., Askew, Brown, Rhodes, 
Johnson & Wiliam, 1997) and New Zealand (Anthony & Walshaw, 2007). Among 
other factors, these studies all identified the importance of teachers’ questioning and 
the expectation that students explain and justify their answers. Although some of the 
reports of these studies have involved illustrative examples of some of the exchanges 
that occurred between teachers and students, there have been surprisingly few 
research studies into the issues of classroom discussion and questioning (Groves, et 
al., 2006). This paper addresses the gap in the literature in this area through providing 
qualitative examples of the nature of teachers’ questioning in three Tasmanian upper 
primary classrooms and their relative effectiveness in eliciting explanations and 
justifications from students.  
Probing and challenging students’ thinking 
There is widespread agreement in the literature that effective teachers consistently 
require students to explain their mathematical thinking and ideas (e.g., Askew et al., 
1997; Clarke et al., 2002; Groves et al., 2006; Reynolds & Muijs, 1999) and some 
studies have examined the types of questions asked. For example, Hardman, Smith, 
Mroz & Wall (2003) documented the occurrence of probing questions (where the 
teacher stayed with the same student to ask further questions) and uptake questions 
(where the teacher incorporated a student’s answer into a subsequent question). Their 
findings indicated that although the use of these questions had the potential to 
facilitate purposeful discussion, the questions used by the teachers in their study 
rarely went beyond the recall and clarification of information, indicating that it is the 
quality of the follow-up move made by the teacher, rather than the questions 
themselves that facilitates a more interactive learning environment (Kyriacou & 
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Issitt, 2008). Similarly, Tanner, Jones, Kennewell, and Beauchamp (2005) found that 
the use of questioning to scaffold students’ learning is under-exploited and that only 
about 25% of questions asked by the teachers in their study actually encouraged 
students to think more deeply about their ideas. 
Types of questions 
In addition to probe and uptake questions, distinction has been made in the literature 
between the use of open-ended and closed questions (Sullivan & Lilburn, 2004). 
Although closed questions simply require an answer or response, usually given from 
memory, open-ended questions tend to require a student to think more deeply and to 
give a response that involves more than just recalling a fact or reproducing a skill.
Student responses 
In one of the few studies that documented student responses, Wood (2002) found that 
differences in students’ thinking and reasoning could be attributed to the type of 
questions asked, and that the detail of students’ descriptions varied depending on the 
extent to which the teachers demanded comprehensiveness and clarity through their 
questioning. A lack of comparable research, however, indicates that while there has 
been a focus on ‘good questions’, it is perhaps more difficult to define what 
constitutes good answers to these questions. Still less research has been conducted 
into documenting extended exchanges used by teachers. Over 30 years ago, Gall 
(1970) argued that follow-up questioning of the student’s initial response, such as 
through the use of probing and uptake questions (Hardman et al., 2003) has 
substantial impact on student learning and that more research needs to be undertaken 
in this area.

METHODOLOGY 
Participants and procedure 
Three teachers were chosen for the study using purposive and opportune sampling 
(Burns, 2000). The teachers all taught upper primary grades and in primary schools 
that were geographically similar and had classes of similar size. The teachers selected 
were all highly regarded by their principals as being ‘good practitioners’ in terms of 
having established positive relationships with their students and effective behaviour 
management and organisational practices (not necessarily particularly effective 
teachers of mathematics). 
The researcher observed between four and seven mathematics lessons for each of the 
three teachers, with a total of 17 lessons being observed overall. The introductory and 
plenary sessions of the lessons where exchanges occurred between the teacher and 
the students as a whole class were videotaped, field notes were taken and student 
work samples collected. Each case study teacher conducted a sequence of lessons on 
a particular mathematics topic and all data were collected for one teacher before the 
next set of observations occurred. The video footage was fully transcribed within 
hours of observation and the footage was viewed collaboratively with the individual 
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teachers. This allowed for discussion to occur about the lesson and for the researcher 
to clarify observations made (these discussions were audio-taped and were integral to 
a second part of the study which focused on teachers’ self reflection, but which is 
beyond the scope of this paper). 
Data analysis 
Data analysis commenced during the data collection process and units of analysis 
were created through ascribing codes to the data (Miles & Huberman, 1984). The 
transcript of the lessons were analysed and every verbal exchange was assigned a 
code; frequency counts of each type of question and response were recorded. Table 1 
shows the categories that were used to classify the questions asked by the teachers. 
Although some probing questions could be further classified as either open or closed, 
if they were asked of the same student, then they were counted as probes only. The 
categories were derived from recommendations found in the literature (e.g., Gall, 
1970; Sullivan & Lilburn, 2004) regarding the effective use of particular types of 
questions.

Type of question Explanation Illustrative example 

Open 1 Requires explanation (may 
begin with how/why?) 

“How will that raise us 
money?” [John, lesson 
2] 

Open 2 Requires justification, 
generalisation or seeking of 
alternatives (may begin 
with what if? 

“What if the number 
didn’t fit evenly? What 
would we do then?” 
[John, lesson 1] 

Closed Allows for only one 
acceptable answer 

“Who can tell me what a 
half would be as a 
percentage?” [Ronald, 
lesson 2] 

Non-
mathematical

Generic question “Who got a similar 
answer?”

Probe Teacher stays with the 
same child to ask further 
questions

“Why do you think there 
are two combinations 
Abbie?” [Sue, lesson 1] 

Uptake Teacher incorporates 
student’s answer into a 
subsequent question 

(Asks class) “Do you 
think there would be 
more than 45?” [Sue, 
lesson 3] 

Table 1: Classification of questions 
Students’ responses to the questions asked by the teachers were also analysed and the 
following categories were used to classify their responses: explanation, sharing, 
justification, question, challenge, answer/response. Explanations differed from 
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Issitt, 2008). Similarly, Tanner, Jones, Kennewell, and Beauchamp (2005) found that 
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Types of questions 
In addition to probe and uptake questions, distinction has been made in the literature 
between the use of open-ended and closed questions (Sullivan & Lilburn, 2004). 
Although closed questions simply require an answer or response, usually given from 
memory, open-ended questions tend to require a student to think more deeply and to 
give a response that involves more than just recalling a fact or reproducing a skill.
Student responses 
In one of the few studies that documented student responses, Wood (2002) found that 
differences in students’ thinking and reasoning could be attributed to the type of 
questions asked, and that the detail of students’ descriptions varied depending on the 
extent to which the teachers demanded comprehensiveness and clarity through their 
questioning. A lack of comparable research, however, indicates that while there has 
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teachers. This allowed for discussion to occur about the lesson and for the researcher 
to clarify observations made (these discussions were audio-taped and were integral to 
a second part of the study which focused on teachers’ self reflection, but which is 
beyond the scope of this paper). 
Data analysis 
Data analysis commenced during the data collection process and units of analysis 
were created through ascribing codes to the data (Miles & Huberman, 1984). The 
transcript of the lessons were analysed and every verbal exchange was assigned a 
code; frequency counts of each type of question and response were recorded. Table 1 
shows the categories that were used to classify the questions asked by the teachers. 
Although some probing questions could be further classified as either open or closed, 
if they were asked of the same student, then they were counted as probes only. The 
categories were derived from recommendations found in the literature (e.g., Gall, 
1970; Sullivan & Lilburn, 2004) regarding the effective use of particular types of 
questions.

Type of question Explanation Illustrative example 

Open 1 Requires explanation (may 
begin with how/why?) 

“How will that raise us 
money?” [John, lesson 
2] 

Open 2 Requires justification, 
generalisation or seeking of 
alternatives (may begin 
with what if? 

“What if the number 
didn’t fit evenly? What 
would we do then?” 
[John, lesson 1] 

Closed Allows for only one 
acceptable answer 

“Who can tell me what a 
half would be as a 
percentage?” [Ronald, 
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Non-
mathematical

Generic question “Who got a similar 
answer?”

Probe Teacher stays with the 
same child to ask further 
questions

“Why do you think there 
are two combinations 
Abbie?” [Sue, lesson 1] 

Uptake Teacher incorporates 
student’s answer into a 
subsequent question 

(Asks class) “Do you 
think there would be 
more than 45?” [Sue, 
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Table 1: Classification of questions 
Students’ responses to the questions asked by the teachers were also analysed and the 
following categories were used to classify their responses: explanation, sharing, 
justification, question, challenge, answer/response. Explanations differed from 
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sharing in that students were required to explain their answer or strategy and 
justifications referred to instances where students were required to elaborate on their 
explanation and usually occurred in response to a probing question. The challenge 
category was derived in response to situations whereby students questioned or 
challenged the answer or method proposed. For example: 

Lauren: If you weren’t saying how many you surveyed, it would still be the same 
wouldn’t it? Like 50% could have been out of 10 000 [people] or out of 100 [people]. 

The answer/response category referred to situations whereby students provided brief 
short responses or answers and were typically three words or less. 

RESULTS
Types of questions asked 
For every part of the lessons that were videotaped for each teacher a summary of the 
types of questions asked and student responses was recorded. Table 2 provides an 
overview of this data in relation to open, closed and probe questions and the 
frequency of students’ explanations or use of answer/responses. The table shows that 
the majority of questions asked by Sue and John were classified as probes, whereas 
Ronald asked more closed questions than other question types. In contrast to 
Hardman et al.’s (2003) findings that teachers used probing questions in only 11% of 
questioning exchanges, the table shows more frequent use of this type of question. 
The teachers in this study also used more open questions than the 10% recorded in 
Hardman et al.’s (2003) study. 

Question types Student responses Teacher
Open Closed Probe Explanation Response/Answer 

Sue 27% 28% 45% 44% 34% 
John 23% 31% 46% 19% 54% 
Ronald 16% 48% 36% 18% 72% 

Table 2: Percentage of question types asked and student responses received by each 
teacher

In order to determine the types of questions that were likely to produce explanations, 
the data were further analysed. Table 3 shows that open questions produced more 
explanations than any other type of question, supporting the finding that open 
questions require more than recalling a fact or reproducing a skill (e.g., Sullivan & 
Lilburn, 2004). Ronald’s frequent use of closed questions resulted in only 18% of 
student answers being classified as explanations. From the data it would appear that 
open questions have the potential to avoid the tendency of brief student exchanges 
with fewer than three words (Smith et al., 2004, as cited in Tanner et al., 2005) and to 
thereby facilitate purposeful discussion. 
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Teacher Question type 
 Open Probe (open) Closed Probe (closed) 
Sue 57 37 3 3 
John 36 41 9 14 
Ronald 45 29 16 10 

Table 3: Question types that produced explanations 
Probing questions 
All three teachers made use of probing questions in their exchanges with students. 
The frequency of this varied between teachers, but it was notable that the use of 
probing questions increased when the teachers conducted their ‘whole class’ 
discussions with small groups. For example, in the fifth lesson observed for John, 
nearly 70% of all questions asked by him were classified as probes. This lesson was 
characterised by two separate teaching groups that provided an enhanced opportunity 
to conduct extended exchanges with individuals. 
An examination of the probing exchanges conducted by Sue, John and Ronald 
revealed that overall, probing questions were used in four main ways: to probe further 
into students’ thinking, to encourage students to move beyond explanation to 
justification, as a scaffold to facilitate students’ conceptual understanding and as a 
means to help other students understand or follow a particular student’s strategy. For 
example, Sue often used probes in response to students who provided one-word 
answers or needed encouragement to expand on their answers. Probing questions 
such as “Why do you think 10 Randall?” and “OK, you got 7. Would you like to 
explain what you did?”, encouraged students to articulate their thinking and assisted 
in promoting purposeful discussion. The following exchange, which occurred in a 
discussion about surveys and sample size, illustrates how probes were also used to 
encourage students to move beyond explanations to justifications: 

Teacher: If I asked 10 people, 100 people … 1000 people or 10 000 people, which one is 
going to be the best survey do you think? 
Brad: 100 
Teacher: Why do you think that? 
Brad: Because it seems like the percentage is out of 100, so it kind of sounds like out of a 
hundred
Sebastian: 10 000 
Teacher: Why do you think 10 000? 
Sebastian: Because if you ask 100 people, you could have asked people that just liked 
one thing; the more people you ask the more even it’s going to be. You might 100 people 
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challenged the answer or method proposed. For example: 

Lauren: If you weren’t saying how many you surveyed, it would still be the same 
wouldn’t it? Like 50% could have been out of 10 000 [people] or out of 100 [people]. 
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Hardman et al.’s (2003) study. 

Question types Student responses Teacher
Open Closed Probe Explanation Response/Answer 

Sue 27% 28% 45% 44% 34% 
John 23% 31% 46% 19% 54% 
Ronald 16% 48% 36% 18% 72% 

Table 2: Percentage of question types asked and student responses received by each 
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In order to determine the types of questions that were likely to produce explanations, 
the data were further analysed. Table 3 shows that open questions produced more 
explanations than any other type of question, supporting the finding that open 
questions require more than recalling a fact or reproducing a skill (e.g., Sullivan & 
Lilburn, 2004). Ronald’s frequent use of closed questions resulted in only 18% of 
student answers being classified as explanations. From the data it would appear that 
open questions have the potential to avoid the tendency of brief student exchanges 
with fewer than three words (Smith et al., 2004, as cited in Tanner et al., 2005) and to 
thereby facilitate purposeful discussion. 

Muir

PME 33 - 2009 1- 5 

Teacher Question type 
 Open Probe (open) Closed Probe (closed) 
Sue 57 37 3 3 
John 36 41 9 14 
Ronald 45 29 16 10 

Table 3: Question types that produced explanations 
Probing questions 
All three teachers made use of probing questions in their exchanges with students. 
The frequency of this varied between teachers, but it was notable that the use of 
probing questions increased when the teachers conducted their ‘whole class’ 
discussions with small groups. For example, in the fifth lesson observed for John, 
nearly 70% of all questions asked by him were classified as probes. This lesson was 
characterised by two separate teaching groups that provided an enhanced opportunity 
to conduct extended exchanges with individuals. 
An examination of the probing exchanges conducted by Sue, John and Ronald 
revealed that overall, probing questions were used in four main ways: to probe further 
into students’ thinking, to encourage students to move beyond explanation to 
justification, as a scaffold to facilitate students’ conceptual understanding and as a 
means to help other students understand or follow a particular student’s strategy. For 
example, Sue often used probes in response to students who provided one-word 
answers or needed encouragement to expand on their answers. Probing questions 
such as “Why do you think 10 Randall?” and “OK, you got 7. Would you like to 
explain what you did?”, encouraged students to articulate their thinking and assisted 
in promoting purposeful discussion. The following exchange, which occurred in a 
discussion about surveys and sample size, illustrates how probes were also used to 
encourage students to move beyond explanations to justifications: 

Teacher: If I asked 10 people, 100 people … 1000 people or 10 000 people, which one is 
going to be the best survey do you think? 
Brad: 100 
Teacher: Why do you think that? 
Brad: Because it seems like the percentage is out of 100, so it kind of sounds like out of a 
hundred
Sebastian: 10 000 
Teacher: Why do you think 10 000? 
Sebastian: Because if you ask 100 people, you could have asked people that just liked 
one thing; the more people you ask the more even it’s going to be. You might 100 people 
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who all like KFC, but the rest of the world don’t like KFC, so the survey of 100 might 
say 40%, but it’s really more like 3% who like KFC. 

Ronald in particular made use of probing questions to expose other students to 
different ways of thinking. These exchanges were mainly conducted with Sebastian, a 
very capable student who frequently demonstrated higher order thinking and was 
adept at explaining the mathematics he used: 

Teacher: OK, is there anything else we could have converted those into? 
Sebastian: Fractions, but that would have been very hard. 
Teacher: Fractions, why would that have been hard? 
Sebastian: Because once you’ve converted them, they’re still different, like a third, and a 
quarter, and you actually want them the same, so it would be easier with decimals. 
Teacher: Yes, so it would be easier to convert them back to decimals wouldn’t it? 
Sebastian: Yes because they’re pretty much the same as percentages, like .75 is 75%. 

When probing questions were used as a scaffold to facilitate students’ understanding 
they assumed more of a closed nature and resulted in primarily answer/responses. 
This was often appropriate, however, in the context of the lesson and served to 
maintain the focus on the particular mathematical concept being taught. The 
following excerpt taken from one of John’s lessons on volume demonstrates how 
probing questions were used as a scaffold to further one student’s understanding of 
how the formula for volume is derived: 

Teacher: Explain yours to me would you Cameron? 
Cameron: There’s 2 rows of 15 which equals 30 cubic centimetres. 
Teacher: So how long is your rectangular prism? 
Cameron: 15 centimetres. 
Teacher: 15 centimetres long. How wide? 
Cameron: 2 centimetres. 
Teacher: 2 centimetres wide. How high? 
Cameron: 1 centimetre. 
Teacher: 1 centimetre – remember what we said last week – if we multiply the length by 
the width by the height we would get how many were in the shape. 
Cameron: 2 times 15 is 30. 
Teacher: 15 times 2 is 30. Times 1? 
Cameron: Is 30. 

The above exchange illustrates how probing questions, even when they are 
essentially closed in nature, can be used to scaffold a student’s understanding. It also 
demonstrates the importance of using qualitative data to further inform findings 
derived from quantitative data. In this instance a high frequency count of closed 
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questions did not necessarily indicate that purposeful discussion and valuable 
communication did not occur. 

DISCUSSION AND CONCLUSIONS 
One feature that was evident from all three teachers’ questioning practice was the 
promotion of a positive classroom environment. The teachers regularly used positive 
reinforcement and encouraged students to participate in the discussions. In all three 
classrooms the students appeared comfortable with being asked to explain their 
thinking and willing to share their ideas. The teachers’ practices reflected that at least 
part of their numeracy teaching was “based on dialogue between teachers and pupils 
to explore understandings” (Askew et al., 1997, p. 32).
Further analysis, however, of the nature of the explanations extracted from students 
revealed that the discussion was often dominated by social, rather than cognitive 
discourse. The following example from Sue illustrates this tendency: 

Teacher: What about you Cam? What did you do? 
Cam: I just did one and timesed [sic] it by two for the first one 
Teacher: OK, so you worked the first one out and timesed it by two. OK, how did you go 
Amelia?

Although Sue provided the opportunity for all children to contribute, she did not 
attempt to link their contributions to each other. In the above excerpt, for example, 
she could have asked students if they had completed it a similar way, or used a 
variation of the numbers in the problem to try Cam’s method to solve it or simply 
asked for feedback on the logic of Cam’s method. This may have resulted in more 
purposeful discussion and moved the discourse from a social function that was 
helpful to learning, to one which was fundamental to learning (Alexander, 2000, as 
cited in Pratt, 2006). 
While the results indicated that the teachers were willing to have extended exchanges 
with students, the exchanges were often similar in nature to those identified by 
Hardman et al. (2003) in that they were often limited to recall or clarification of 
information. This suggests that the teachers may have been aware of reform practices 
that recommended that students should be encouraged to communicate with others 
and explain their answers, but had not extended this to stimulate more purposeful 
discussion. While it was encouraging that the teachers were willing to use probing 
questions in a variety of ways, there were few examples of student-student exchange 
and questions that resulted in students’ justifying their answers were rare. The 
teachers provided the opportunity for discussion to occur, but often did not capitalise 
on utilising explanations to maximise conceptual understanding, supporting the 
contention that is the quality of the follow-up move made by the teacher, rather than 
the questions themselves, that facilitates a more interactive learning environment 
(Kyriacou & Issitt, 2008).
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say 40%, but it’s really more like 3% who like KFC. 
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different ways of thinking. These exchanges were mainly conducted with Sebastian, a 
very capable student who frequently demonstrated higher order thinking and was 
adept at explaining the mathematics he used: 

Teacher: OK, is there anything else we could have converted those into? 
Sebastian: Fractions, but that would have been very hard. 
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Sebastian: Because once you’ve converted them, they’re still different, like a third, and a 
quarter, and you actually want them the same, so it would be easier with decimals. 
Teacher: Yes, so it would be easier to convert them back to decimals wouldn’t it? 
Sebastian: Yes because they’re pretty much the same as percentages, like .75 is 75%. 

When probing questions were used as a scaffold to facilitate students’ understanding 
they assumed more of a closed nature and resulted in primarily answer/responses. 
This was often appropriate, however, in the context of the lesson and served to 
maintain the focus on the particular mathematical concept being taught. The 
following excerpt taken from one of John’s lessons on volume demonstrates how 
probing questions were used as a scaffold to further one student’s understanding of 
how the formula for volume is derived: 

Teacher: Explain yours to me would you Cameron? 
Cameron: There’s 2 rows of 15 which equals 30 cubic centimetres. 
Teacher: So how long is your rectangular prism? 
Cameron: 15 centimetres. 
Teacher: 15 centimetres long. How wide? 
Cameron: 2 centimetres. 
Teacher: 2 centimetres wide. How high? 
Cameron: 1 centimetre. 
Teacher: 1 centimetre – remember what we said last week – if we multiply the length by 
the width by the height we would get how many were in the shape. 
Cameron: 2 times 15 is 30. 
Teacher: 15 times 2 is 30. Times 1? 
Cameron: Is 30. 

The above exchange illustrates how probing questions, even when they are 
essentially closed in nature, can be used to scaffold a student’s understanding. It also 
demonstrates the importance of using qualitative data to further inform findings 
derived from quantitative data. In this instance a high frequency count of closed 
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questions did not necessarily indicate that purposeful discussion and valuable 
communication did not occur. 

DISCUSSION AND CONCLUSIONS 
One feature that was evident from all three teachers’ questioning practice was the 
promotion of a positive classroom environment. The teachers regularly used positive 
reinforcement and encouraged students to participate in the discussions. In all three 
classrooms the students appeared comfortable with being asked to explain their 
thinking and willing to share their ideas. The teachers’ practices reflected that at least 
part of their numeracy teaching was “based on dialogue between teachers and pupils 
to explore understandings” (Askew et al., 1997, p. 32).
Further analysis, however, of the nature of the explanations extracted from students 
revealed that the discussion was often dominated by social, rather than cognitive 
discourse. The following example from Sue illustrates this tendency: 

Teacher: What about you Cam? What did you do? 
Cam: I just did one and timesed [sic] it by two for the first one 
Teacher: OK, so you worked the first one out and timesed it by two. OK, how did you go 
Amelia?

Although Sue provided the opportunity for all children to contribute, she did not 
attempt to link their contributions to each other. In the above excerpt, for example, 
she could have asked students if they had completed it a similar way, or used a 
variation of the numbers in the problem to try Cam’s method to solve it or simply 
asked for feedback on the logic of Cam’s method. This may have resulted in more 
purposeful discussion and moved the discourse from a social function that was 
helpful to learning, to one which was fundamental to learning (Alexander, 2000, as 
cited in Pratt, 2006). 
While the results indicated that the teachers were willing to have extended exchanges 
with students, the exchanges were often similar in nature to those identified by 
Hardman et al. (2003) in that they were often limited to recall or clarification of 
information. This suggests that the teachers may have been aware of reform practices 
that recommended that students should be encouraged to communicate with others 
and explain their answers, but had not extended this to stimulate more purposeful 
discussion. While it was encouraging that the teachers were willing to use probing 
questions in a variety of ways, there were few examples of student-student exchange 
and questions that resulted in students’ justifying their answers were rare. The 
teachers provided the opportunity for discussion to occur, but often did not capitalise 
on utilising explanations to maximise conceptual understanding, supporting the 
contention that is the quality of the follow-up move made by the teacher, rather than 
the questions themselves, that facilitates a more interactive learning environment 
(Kyriacou & Issitt, 2008).
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MATHEMATICS SUCCESS AMONG STUDENTS OF ETHIOPIAN 
ORIGIN IN ISRAEL (SEO): A CASE STUDY 

Tiruwork Mulat and Abraham Arcavi 
The Weizmann Institute of Science     The Weizmann Institute of Science 

In this study we explored success stories of five students of Ethiopian origin (SEO) 
who enrolled in a pre-academic program at a prestigious technological university in 
Israel. Our goal was to understand how these students perceive and interpret their 
experiences and achievements as learners in advanced level mathematics classes, 
where SEO as a distinct ethnic group are significantly underrepresented. Using 
qualitative case study methodology, we identified perceived personal variables such 
as: a positive mathematics and academic identity, self-regulated learning (e.g. 'lone 
learning), personal attribution for success and failure in mathematics, and ethnic 
identification enhanced with a strong sense of commitment to the ethnic group as 
playing key roles contributing to achieving and maintaining success against the odds.  

INTRODUCTION
Many studies have investigated the economical, social, and educational difficulties 
encountered by most Ethiopian Jews since their extensive immigration to Israel, 
which began in the early 1980s. More specifically, Ethiopian Jews have encountered 
many barriers and stereotypes from different sectors of society, mainly because of 
their unique cultural and historical background and their distinctive black skin in a 
predominantly white society (Kaplan & Solomon, 1998; BenEzer, 2002). The vast 
majority of this ethnic minority live in poor and depressed neighbourhoods in 
peripheral cities and they remain as a separate and segregated group. This is in stark 
contrast to their previous expectations and their continuous strong desire to be 
identified with and integrated into the broader Jewish society (BenEzer, 2002). The 
academic achievements of the students of Ethiopian origin (SEO), half of whom are 
second-generation immigrants, lag significantly behind the national average, despite 
the numerous intervention and remedial programs. Many studies have documented 
the overall academic underachievement, particularly in mathematics, the relatively 
high dropout rates, and the high representation of SEO in special education programs 
(Wagaw, 1993; Lipshiz, Noam & Habib, 1998 (in Hebrew); Tzruiel & Kaufman, 
1999; Levin, Shohami & Sapoliski, 2003 (in Hebrew); Wolde-Tsadick, 2007; 
Rosenblum, Goldblatt, & Moin, 2008). Many SEO are considered ‘under prepared’, 
‘low achievers’ or ‘unmotivated’ and are consequently placed in the lower-level 
mathematics matriculation tracks in the senior high schools. For example, during the 
years 1999-2003, among all students who were eligible for the 'Bagrut' in 
mathematics (the matriculation exam taken at the end of grade twelve in different 
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subjects), only 2% were in the advanced track1, compared with 17% of the entire 
student population2. This placement of a disproportionately large number of SEO in 
the lower tracks have undermined many SEO's ability to pursue careers in scientific 
and technological fields as well as their access to study at prestigious academic 
institutions (Wolde-Tsadick, 2007).  
Accumulating research has revealed that many immigrant children from low 
socioeconomic backgrounds are at risk of academic failure in their host country. 
Thus, Ethiopian Jews, who on the whole, have arrived with economic and 
educational disadvantages, would be at high risk. In general, immigrant and ethnic 
(racial) minorities often encounter social, economical, and cultural disadvantages, as 
well as barriers related to their racial or ethnic background that create situations in 
which their academic achievements are at risk. However, several studies revealed that 
there are differential achievements between the various groups of minorities and 
among individuals within the minority groups, implying that these factors do not 
fully account for minority students' success or failure (e.g., Ogbu, 1991; Ajose, 1995; 
Martin, 2000, 2003; OECD, 2006). Moreover, it is argued that overemphasizing the 
importance of factors, often uncontrollable by educators, can become an excuse for 
not striving towards improvement within schools (Stigler & Hiebert, 1999). Within 
learning contexts, many studies link personal and social/environmental factors, 
providing insights on the reasons why individuals choose to engage or disengage in 
different learning activities and contexts and how these affect their academic 
(mathematics) achievements. 
It is claimed that although contextual factors (socioeconomic and educational 
backgrounds, limited access to resources, as well as school quality, race, ethnicity, 
and language) are informative, they are also deterministic and ignore crucial factors 
such as individual agency, identity, and motivation (Martin, 2000; Schoenfeld, 2002). 
Consequently several studies highlight the 'identity' construct as an important concept 
to consider in mathematics education research, because it draws together a range of 
interrelated elements such as beliefs, attitudes, emotions, cognitive capacity, and life 
histories that are integral to understanding students mathematics achievement (Steele, 
1997; Martin, 2000; Boaler, William, & Zevenbergen, 2000; Nasir, 2000; Sfard & 
Prusak, 2005).
Understanding the characteristics and circumstances of students' underachievement 
may contribute to the development of strategies that minimize or inhibit the harmful 
consequences of the risk factors. Yet, studying success is claimed to be a 

                                             
1 In the Israeli education system not all students are eligible for matriculation; eligibility is 
determined according to the students' prior achievements. Those eligible have three levels: 
basic (3 units), intermediate (4 units), and advanced (5 units). 
2 Data-source – Israeli Ministry of Education, 2004, Jerusalem 
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complementary promising approach to research, since studies of failure regardless of 
their academic depth and seriousness, will not necessarily account for why and how 
some students succeed or can succeed (Garmezy, 1991; Martin, 2003). It is further 
argued that, understanding success would not only contribute to the understanding of 
the phenomena, but it would also support the efforts "to uncover a range of solutions 
focused on what works, where, when, and why, rather than trying to lump all students 
together and applying one-size-fits-all interventions" (Martin, 2003, p.18).   
Previous studies didn't reveal much regarding differential achievements in 
mathematics within SEO, and especially little is known about those who, in spite of 
their circumstances, study in the advanced level matriculation tracks. In this study, 
we focused on successful SEO in mathematics and explored how they perceive and 
interpret their experiences as mathematics learners in the context of being a student 
of Ethiopian origin, while many of their SEO peers with comparable capabilities, 
socioeconomic backgrounds, home environments, and school resources have been 
significantly underachieving. We sought to answer the question: what perceived 
personal variables (beliefs, values, behavior, etc.) among successful SEO, play key 
roles contributing to achieving and maintaining success in advanced level 
mathematics?  
Since a disproportionately high number of SEO have an increased risk for 
mathematics underachievement, the search for alterable factors that foster academic 
trajectories against the different barriers is particularly important. Ultimately the 
understandings we may gain from successful students may contribute to both the 
theoretical knowledge about mathematics learning by students from disadvantaged 
ethnic groups, and to the development of appropriate intervention programs designed 
to meet the needs of underachieving SEO in mathematics.

METHODOLOGY 
We used a qualitative collective case study research design (Strauss and Corbin, 
1990; Stake, 1995; Shkedi, 2005) for our study. The qualitative methodology is 
suggested as suitable for capturing and understanding individual perspectives, lived 
experiences, behaviors, and feelings (Stake, 1995; Strauss & Corbin, 1990). It is also 
claimed to be ideal for the understanding of an understudied group of people or 
phenomenon in order to gain more in-depth information that may be difficult to 
convey otherwise (Strauss & Corbin, 1990).The main sources of our data consist of 
students’ self reports, self-reflections on and self-constructions of their experiences as 
students of Ethiopian origin learning mathematics. Additional data sources for 
triangulation included a number of mathematics classroom observations and many 
informal conversations. 
Sample: five SEO (18-19 years old), who enrolled (a year after completing high 
school) in a special pre-academic program in a selective technological university, 
participated in this study. Qualitative research, which stresses in-depth investigation 
such as this study, uses purposeful sampling (as opposed to random sampling), with 
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subjects), only 2% were in the advanced track1, compared with 17% of the entire 
student population2. This placement of a disproportionately large number of SEO in 
the lower tracks have undermined many SEO's ability to pursue careers in scientific 
and technological fields as well as their access to study at prestigious academic 
institutions (Wolde-Tsadick, 2007).  
Accumulating research has revealed that many immigrant children from low 
socioeconomic backgrounds are at risk of academic failure in their host country. 
Thus, Ethiopian Jews, who on the whole, have arrived with economic and 
educational disadvantages, would be at high risk. In general, immigrant and ethnic 
(racial) minorities often encounter social, economical, and cultural disadvantages, as 
well as barriers related to their racial or ethnic background that create situations in 
which their academic achievements are at risk. However, several studies revealed that 
there are differential achievements between the various groups of minorities and 
among individuals within the minority groups, implying that these factors do not 
fully account for minority students' success or failure (e.g., Ogbu, 1991; Ajose, 1995; 
Martin, 2000, 2003; OECD, 2006). Moreover, it is argued that overemphasizing the 
importance of factors, often uncontrollable by educators, can become an excuse for 
not striving towards improvement within schools (Stigler & Hiebert, 1999). Within 
learning contexts, many studies link personal and social/environmental factors, 
providing insights on the reasons why individuals choose to engage or disengage in 
different learning activities and contexts and how these affect their academic 
(mathematics) achievements. 
It is claimed that although contextual factors (socioeconomic and educational 
backgrounds, limited access to resources, as well as school quality, race, ethnicity, 
and language) are informative, they are also deterministic and ignore crucial factors 
such as individual agency, identity, and motivation (Martin, 2000; Schoenfeld, 2002). 
Consequently several studies highlight the 'identity' construct as an important concept 
to consider in mathematics education research, because it draws together a range of 
interrelated elements such as beliefs, attitudes, emotions, cognitive capacity, and life 
histories that are integral to understanding students mathematics achievement (Steele, 
1997; Martin, 2000; Boaler, William, & Zevenbergen, 2000; Nasir, 2000; Sfard & 
Prusak, 2005).
Understanding the characteristics and circumstances of students' underachievement 
may contribute to the development of strategies that minimize or inhibit the harmful 
consequences of the risk factors. Yet, studying success is claimed to be a 

                                             
1 In the Israeli education system not all students are eligible for matriculation; eligibility is 
determined according to the students' prior achievements. Those eligible have three levels: 
basic (3 units), intermediate (4 units), and advanced (5 units). 
2 Data-source – Israeli Ministry of Education, 2004, Jerusalem 
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complementary promising approach to research, since studies of failure regardless of 
their academic depth and seriousness, will not necessarily account for why and how 
some students succeed or can succeed (Garmezy, 1991; Martin, 2003). It is further 
argued that, understanding success would not only contribute to the understanding of 
the phenomena, but it would also support the efforts "to uncover a range of solutions 
focused on what works, where, when, and why, rather than trying to lump all students 
together and applying one-size-fits-all interventions" (Martin, 2003, p.18).   
Previous studies didn't reveal much regarding differential achievements in 
mathematics within SEO, and especially little is known about those who, in spite of 
their circumstances, study in the advanced level matriculation tracks. In this study, 
we focused on successful SEO in mathematics and explored how they perceive and 
interpret their experiences as mathematics learners in the context of being a student 
of Ethiopian origin, while many of their SEO peers with comparable capabilities, 
socioeconomic backgrounds, home environments, and school resources have been 
significantly underachieving. We sought to answer the question: what perceived 
personal variables (beliefs, values, behavior, etc.) among successful SEO, play key 
roles contributing to achieving and maintaining success in advanced level 
mathematics?  
Since a disproportionately high number of SEO have an increased risk for 
mathematics underachievement, the search for alterable factors that foster academic 
trajectories against the different barriers is particularly important. Ultimately the 
understandings we may gain from successful students may contribute to both the 
theoretical knowledge about mathematics learning by students from disadvantaged 
ethnic groups, and to the development of appropriate intervention programs designed 
to meet the needs of underachieving SEO in mathematics.

METHODOLOGY 
We used a qualitative collective case study research design (Strauss and Corbin, 
1990; Stake, 1995; Shkedi, 2005) for our study. The qualitative methodology is 
suggested as suitable for capturing and understanding individual perspectives, lived 
experiences, behaviors, and feelings (Stake, 1995; Strauss & Corbin, 1990). It is also 
claimed to be ideal for the understanding of an understudied group of people or 
phenomenon in order to gain more in-depth information that may be difficult to 
convey otherwise (Strauss & Corbin, 1990).The main sources of our data consist of 
students’ self reports, self-reflections on and self-constructions of their experiences as 
students of Ethiopian origin learning mathematics. Additional data sources for 
triangulation included a number of mathematics classroom observations and many 
informal conversations. 
Sample: five SEO (18-19 years old), who enrolled (a year after completing high 
school) in a special pre-academic program in a selective technological university, 
participated in this study. Qualitative research, which stresses in-depth investigation 
such as this study, uses purposeful sampling (as opposed to random sampling), with 
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the goal of becoming “saturated” with information on the topic (Shkedi, 2005). As 
Merriam (1998) explains, purposeful sampling is used when an investigator wants to 
''discover, understand and gain insight and therefore must select a sample from which 
the most can be learned'' (p. 61).  
Following a pilot study to locate sites and candidates, this sample consisting of three 
males and two females were recruited to participate in this study. They were selected 
among a total of thirteen SEO who were studying in a special pre-academic program 
(sponsored by a national project for academic excellence) at a very prestigious 
technological university. Selection criteria for this site and the participants in this 
program were: availability of a relatively large number of potential candidates in one 
institute; agreement of the respective authorities to conduct the study in the site, and 
students' willingness to participate as well as their accessibility and availability upon 
request for the purpose of data collection.  These participants constituted a diverse 
group regarding: a) the high school they attended (type, resources, and location) c) 
their parents' education and employment, and d) their immigration status.
Data collection and analysis: the data reported in this study were collected through 
semi-structured interviews held by the first author at the university, and lasted, on 
average, 1½ hours each. They included leading questions such as, how would you 
describe your schooling?  What do you think of yourself as a student/as a 
mathematics student? To whom/or what do you attribute your success? How do you 
learn, at school or at home? What do you think/know about mathematics? Etc. In 
these interviews, the interviewer collaborated with and probed the participants in a 
variety of ways in order to unpack their knowledge and the nature of their 
experiences as mathematics learners and as students of Ethiopian origin. The 
interviews were conducted (in Hebrew) with extreme care and in a conversational 
and emergent manner. The interviewer knowledge of the cultural codes of 
communication and general condition of the ethnic community, being herself a 
member of the same ethnic group, were instrumental in obtaining rich first-hand 
information from these students without fear of misunderstanding, and in gaining the 
students' trust and openness to share their stories. 

The transcribed interview data generated from the cases were analyzed at two levels: 
a detailed analysis of each case, followed by formulating themes within the case, and 
then more broadly, a thematic analysis across the cases (Strauss and Corbin, 1990; 
Shkedi, 2005). Data analysis constituted three coding phases (Strauss & Corbin, 
1990): open, axial and selective coding, using the constant comparison method at all 
phases in both levels of analyses: within the case and across the cases.

FINDINGS 
The personal variables that emerged from the data, which were perceived to play 
prominent roles in the pursuit of the students' success in mathematics, were as 
follows: a positive mathematical and academic identity, personal attributions for 

Mulat, Arcavi 

1- 5                   PME 33 - 2009 

success and failure in mathematics, and fostered use of self regulated learning, 'lone' 
learning being prominent and ethnic identification enhanced with a strong sense of 
personal agency and commitment to the ethnic group as playing key roles 
contributing to achieving and maintaining success against the odds. These variables 
were found to be closely interrelated and dependent on each other, as will be 
described below. 
Most SEO begin their school career with disadvantages as first- or second-generation 
immigrants, and must work hard and persist to catch up with their non-SEO 
classmates. Students' awareness of the importance of general academic success in 
future life, a belief that they share with their parents, and the instrumentality of 
mathematics to achieve this end were  generally strong motivating factors to succeed. 
Thus, their effort to maintain success in advanced level mathematics was part of 
preparing themselves to attain their academic goals. However, a stronger source of 
success was their mathematical identity (Martin 2000, 2003), which refers to the 
students' self-efficacy beliefs, beliefs in their capability to perform in mathematical 
contexts (Bandura, 1997), the perceived importance of mathematics, a growing 
interest and enjoyment in meaningful mathematics learning, and seeing mathematics 
as playing as critical role to achieve their academic and socio-economic goals as well 
as the perceived centrality of mathematics in their developing identity. 
The students attributed their success also to factors that are malleable and 
controllable by them: effort (investing much time, persisting, doing more than what is 
expected), and fostered self-regulation. Their occasional failures were attributed to 
the same factors: a lack of effort and poor self-regulation. Such attribution beliefs 
were important factors that motivated the students to persist in the face of difficulties. 
Self-regulation includes holding self-efficacy beliefs, useful attributions for success 
and failure, and choosing and shaping a productive work environment (Zimmermann, 
1989). Students learned to regulate their cognitive actions, mathematics related 
motivational beliefs (mathematics identity) and behavior in order to maintain their 
success. Students' self-regulation strategies were efficient, enabling them to succeed 
according to the schools' expectations. They reported that to succeed in mathematics 
at school and to fulfil the teachers' expectations, one needs to learn well the 
procedures, as they were taught in the classroom. Thus, as hard-working students 
who wanted to succeed, these students 'played the game' very well, but with 
hindsight, they were dissatisfied about not being challenged intellectually with 
problems that required them to think. 
'Lone' learning, which was the preferred strategy of these students, is an example of 
students' enacting self-regulating strategies. One of the things these students seemed 
to fear most were external distractions. To these students, collaborative learning with 
others was perceived as a potential source of distraction, which would make their 
time-on-task inefficient. Thus, it seems that 'lone' learning was a convenient strategy 
for them to fulfil school requirements for deep understanding of the mathematical 
idea and to achieve good grades. This finding however is in contrast to some studies 
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the goal of becoming “saturated” with information on the topic (Shkedi, 2005). As 
Merriam (1998) explains, purposeful sampling is used when an investigator wants to 
''discover, understand and gain insight and therefore must select a sample from which 
the most can be learned'' (p. 61).  
Following a pilot study to locate sites and candidates, this sample consisting of three 
males and two females were recruited to participate in this study. They were selected 
among a total of thirteen SEO who were studying in a special pre-academic program 
(sponsored by a national project for academic excellence) at a very prestigious 
technological university. Selection criteria for this site and the participants in this 
program were: availability of a relatively large number of potential candidates in one 
institute; agreement of the respective authorities to conduct the study in the site, and 
students' willingness to participate as well as their accessibility and availability upon 
request for the purpose of data collection.  These participants constituted a diverse 
group regarding: a) the high school they attended (type, resources, and location) c) 
their parents' education and employment, and d) their immigration status.
Data collection and analysis: the data reported in this study were collected through 
semi-structured interviews held by the first author at the university, and lasted, on 
average, 1½ hours each. They included leading questions such as, how would you 
describe your schooling?  What do you think of yourself as a student/as a 
mathematics student? To whom/or what do you attribute your success? How do you 
learn, at school or at home? What do you think/know about mathematics? Etc. In 
these interviews, the interviewer collaborated with and probed the participants in a 
variety of ways in order to unpack their knowledge and the nature of their 
experiences as mathematics learners and as students of Ethiopian origin. The 
interviews were conducted (in Hebrew) with extreme care and in a conversational 
and emergent manner. The interviewer knowledge of the cultural codes of 
communication and general condition of the ethnic community, being herself a 
member of the same ethnic group, were instrumental in obtaining rich first-hand 
information from these students without fear of misunderstanding, and in gaining the 
students' trust and openness to share their stories. 

The transcribed interview data generated from the cases were analyzed at two levels: 
a detailed analysis of each case, followed by formulating themes within the case, and 
then more broadly, a thematic analysis across the cases (Strauss and Corbin, 1990; 
Shkedi, 2005). Data analysis constituted three coding phases (Strauss & Corbin, 
1990): open, axial and selective coding, using the constant comparison method at all 
phases in both levels of analyses: within the case and across the cases.

FINDINGS 
The personal variables that emerged from the data, which were perceived to play 
prominent roles in the pursuit of the students' success in mathematics, were as 
follows: a positive mathematical and academic identity, personal attributions for 
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success and failure in mathematics, and fostered use of self regulated learning, 'lone' 
learning being prominent and ethnic identification enhanced with a strong sense of 
personal agency and commitment to the ethnic group as playing key roles 
contributing to achieving and maintaining success against the odds. These variables 
were found to be closely interrelated and dependent on each other, as will be 
described below. 
Most SEO begin their school career with disadvantages as first- or second-generation 
immigrants, and must work hard and persist to catch up with their non-SEO 
classmates. Students' awareness of the importance of general academic success in 
future life, a belief that they share with their parents, and the instrumentality of 
mathematics to achieve this end were  generally strong motivating factors to succeed. 
Thus, their effort to maintain success in advanced level mathematics was part of 
preparing themselves to attain their academic goals. However, a stronger source of 
success was their mathematical identity (Martin 2000, 2003), which refers to the 
students' self-efficacy beliefs, beliefs in their capability to perform in mathematical 
contexts (Bandura, 1997), the perceived importance of mathematics, a growing 
interest and enjoyment in meaningful mathematics learning, and seeing mathematics 
as playing as critical role to achieve their academic and socio-economic goals as well 
as the perceived centrality of mathematics in their developing identity. 
The students attributed their success also to factors that are malleable and 
controllable by them: effort (investing much time, persisting, doing more than what is 
expected), and fostered self-regulation. Their occasional failures were attributed to 
the same factors: a lack of effort and poor self-regulation. Such attribution beliefs 
were important factors that motivated the students to persist in the face of difficulties. 
Self-regulation includes holding self-efficacy beliefs, useful attributions for success 
and failure, and choosing and shaping a productive work environment (Zimmermann, 
1989). Students learned to regulate their cognitive actions, mathematics related 
motivational beliefs (mathematics identity) and behavior in order to maintain their 
success. Students' self-regulation strategies were efficient, enabling them to succeed 
according to the schools' expectations. They reported that to succeed in mathematics 
at school and to fulfil the teachers' expectations, one needs to learn well the 
procedures, as they were taught in the classroom. Thus, as hard-working students 
who wanted to succeed, these students 'played the game' very well, but with 
hindsight, they were dissatisfied about not being challenged intellectually with 
problems that required them to think. 
'Lone' learning, which was the preferred strategy of these students, is an example of 
students' enacting self-regulating strategies. One of the things these students seemed 
to fear most were external distractions. To these students, collaborative learning with 
others was perceived as a potential source of distraction, which would make their 
time-on-task inefficient. Thus, it seems that 'lone' learning was a convenient strategy 
for them to fulfil school requirements for deep understanding of the mathematical 
idea and to achieve good grades. This finding however is in contrast to some studies 
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that claim 'lone' learning as a non-effective strategy for meaningful mathematics 
learning. For example, Triesman (1992) revealed that social and academic isolation 
were sources of the main difficulties that affected African-American students' 
achievement in a calculus course at a prestigious university, whereas the social and 
academic interactions between the Asian–American peers promoted their 
achievements.
In addition, students' ethnic identity (Phinney, 1990), becomes salient through their 
'solo status' experience in the advanced mathematics classes, as the only members of 
a distinct group. Students' awareness of the existing stereotypes, as well as social and 
cultural barriers unique to their group could have undermined their self-efficacy 
beliefs and personal agency (i.e., the belief in one's power to attain goals through 
actions), and eventually their intellectual functioning (Steele, 1997) and success in 
mathematics. Yet, for these students, the challenges they faced was the basis of their 
belief that they are on a mission, representing their ethnic group as successful 
members. We found two wide social goals strongly integrated with the personal 
(social) identities of these students. One goal faces outwards and it refers to their self-
imposed role of creating a positive image of Ethiopians within Israeli society at large, 
and the other goal faces inwards and is driven by the belief that their success would 
influence their peers (especially the younger generation) by establishing strong role 
models. Success particularly in mathematics was thus perceived by the participants as 
crucial and instrumental to this end. Although this sense of responsibility 
strengthened their ethnic identification (Phinney, 1990), their self-concept, their 
academic motivation, and persistence, it was an additional burden unique to them. 
This is in line with Martinez and Dukes (1997), who argued that a strong ethnic 
identity reduces the impact of negative stereotypes and social denigration on 
individuals.  
From our findings, the existing negative stereotypes concerning the competence of 
SEO in advanced mathematics, which the participants are also usually aware of, did 
not influence them negatively. These students held personal agency, a sense of 
control and confidence in their ability to deal with problematic situations (Bandura, 
1997). The barriers strengthened their mathematical identity, their ethnic identity, as 
well as their self-efficacy beliefs, which are considered to be one of the strongest 
predictors of mathematics performance among students (OECD, 2006). The students' 
sense of confidence and motivation was also enhanced with the perceived 
motivational support and high expectations that they received from their parents. 
In sum, beyond the theoretical importance of these findings, there are some important 
practical implications. Programs based on promoting these desirable characteristics 
among SEO could potentially increase the success stories among underachieving 
SEO. Furthermore, since studies on differential mathematics/academic achievements 
within SEO are scarce, more research on the issue will be valuable.
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that claim 'lone' learning as a non-effective strategy for meaningful mathematics 
learning. For example, Triesman (1992) revealed that social and academic isolation 
were sources of the main difficulties that affected African-American students' 
achievement in a calculus course at a prestigious university, whereas the social and 
academic interactions between the Asian–American peers promoted their 
achievements.
In addition, students' ethnic identity (Phinney, 1990), becomes salient through their 
'solo status' experience in the advanced mathematics classes, as the only members of 
a distinct group. Students' awareness of the existing stereotypes, as well as social and 
cultural barriers unique to their group could have undermined their self-efficacy 
beliefs and personal agency (i.e., the belief in one's power to attain goals through 
actions), and eventually their intellectual functioning (Steele, 1997) and success in 
mathematics. Yet, for these students, the challenges they faced was the basis of their 
belief that they are on a mission, representing their ethnic group as successful 
members. We found two wide social goals strongly integrated with the personal 
(social) identities of these students. One goal faces outwards and it refers to their self-
imposed role of creating a positive image of Ethiopians within Israeli society at large, 
and the other goal faces inwards and is driven by the belief that their success would 
influence their peers (especially the younger generation) by establishing strong role 
models. Success particularly in mathematics was thus perceived by the participants as 
crucial and instrumental to this end. Although this sense of responsibility 
strengthened their ethnic identification (Phinney, 1990), their self-concept, their 
academic motivation, and persistence, it was an additional burden unique to them. 
This is in line with Martinez and Dukes (1997), who argued that a strong ethnic 
identity reduces the impact of negative stereotypes and social denigration on 
individuals.  
From our findings, the existing negative stereotypes concerning the competence of 
SEO in advanced mathematics, which the participants are also usually aware of, did 
not influence them negatively. These students held personal agency, a sense of 
control and confidence in their ability to deal with problematic situations (Bandura, 
1997). The barriers strengthened their mathematical identity, their ethnic identity, as 
well as their self-efficacy beliefs, which are considered to be one of the strongest 
predictors of mathematics performance among students (OECD, 2006). The students' 
sense of confidence and motivation was also enhanced with the perceived 
motivational support and high expectations that they received from their parents. 
In sum, beyond the theoretical importance of these findings, there are some important 
practical implications. Programs based on promoting these desirable characteristics 
among SEO could potentially increase the success stories among underachieving 
SEO. Furthermore, since studies on differential mathematics/academic achievements 
within SEO are scarce, more research on the issue will be valuable.
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COGNITIVE PROCESSES ASSOCIATED WITH THE 
PROFESSIONAL DEVELOPMENT OF MATHEMATICS 

TEACHERS
Muñoz-Catalán, M.C., Climent, N. & Carrillo, J.

University of Huelva (Spain) 
This paper proposes a model of professional development which highlights the 
teacher’s cognitive processes, based on Sfard’s stages of interiorisation, 
condensation and reification. The model is applied to the case study of a primary 
teacher participating in a collaborative project for professional development. This 
adaptation of Sfard’s stages proves to be of especial value when interpreting the 
process of the teacher’s professional development from a cognitive perspective.

TOWARDS A MODEL OF PROFESSIONAL DEVELOPMENT 
In studies of professional development and teacher training, the teacher has been 
considered from various perspectives. Our interest lies in the processes involved in 
generating teachers’ knowledge, and builds on Brown and Borko’s (1992) description 
of professional development in which the teacher is seen as apprentice. These 
researchers take “a view of the teacher as an adult learner whose development results 
from changes in cognitive structures; these cognitive structures … are the thinking 
patterns by which a person relates to the environment” (ibid., p. 227). 
From this perspective, we understand that the teacher learns in contact with their 
peers through a consensual process involving their personal conceptual schema, 
beliefs and motivations, in which language and communication play a fundamental 
role. In this respect we coincide with the considerations of ontology, epistemology 
and learning theory characteristic of social constructivism (Ernest, 1996). We share 
the view that the individual and the group are interconnected and knowledge is built 
as part of the social process (Carrillo et al, 2008). In this paper, however, discussion 
is focused on a model which takes account of the cognitive processes implemented 
by the teacher in the course of professional development, highlighting the influence 
of the group on those processes, for which purpose we refer to Sfard (1991). 
Sfard states that acquisition of new mathematical notions usually begins with an 
operative conception of the notion, and that the transition from computational 
operations to abstract objects is a difficult process requiring three stages: 
interiorisation, condensation and reification. 
Sfard uses ‘conception’ to refer to the internal representations and associations 
evoked by a concept, reserving this latter term (synonym of ‘notion’) for a 
mathematical idea expressed in its conventional form. 
Although it would be a mistake to identify the nature of mathematical understanding 
with that of professional understanding, or the process of abstracting a mathematical 
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notion from operative to structural conception with the process of acquiring 
professional knowledge, we believe the process of professional development does 
share some degree of parallelism with the process of abstraction which is involved in 
moving from low level work (interiorisation) to higher level work (reification) (from 
a cognitive point of view). Our aim, however, is to adapt Sfard’s (1991) stages to the 
professional development of teachers, and to then particularise them to the case of a 
collaborative context (Feldman, 1993). 
It is not possible to maintain the differentiation between the conception of the notion 
(in this case the specific professional issues) as process and as object. Extending the 
definitions above to the case of professional development, the key to moving from 
one stage to another would lie in the maturity (understood as the increasing 
complexity of reflection upon the phenomenon of education, or as the assimilation of 
elements which deepen professional knowledge) with which the issue in question was 
approached. Hence, as will be seen in the example in section two, the interiorisation 
stage is characterised by familiarity with the issue, and is most probably initiated with 
the analysis of similar situations. It is characterised by the teacher mulling over 
something that does not seem quite right or that they feel could be improved. This 
may be accompanied by specific solutions (to these particular circumstances, that is, 
without making generalisations about the underlying issue or perceiving its wider 
dimensions), which themselves may or may not be put into practice. The 
condensation stage involves freeing oneself from the particular and seeing the issue 
as something more general, which means introducing a new variable into mapping 
the terrain of professional practice. It can be seen not only when a teacher reflects on 
their practice prospectively (that is, when planning) or retrospectively, but also while 
activities are being put into practice and decisions are being taken about them. The 
reification stage would add to the above an understanding of the issue in its 
complexity (relative to the level at which the teacher is operating, one cannot speak 
of an ‘absolute’ understanding), along with its relations and derivations. 
We can thus imagine the teacher progressing along a kind of professional 
development helix, where the role of the teacher trainer becomes that of providing 
learning contexts which will further the progress. The contents of the helix have been 
thoroughly studied and range from teachers’ everyday activities to professional 
knowledge (Shulman, 1986, Hill et al, 2008). This professional knowledge can partly 
be seen deployed in situations directly related to the classroom (eg planning). The 
helix also involves direction, defined by the three stages of interiorisation, 
condensation and reification. Finally, the helix has a specific shape, given to it by 
reflection. Reflection is both content and generatrix of the helix – content in that we 
have included it within professional knowledge, taking reflexive practice as 
reference; generatrix in that it is the means by which the helix is created. Reflection 
likewise allows progress through the three stages mentioned above, and in its turn 
leaves a trace in the contents of professional knowledge. 
Julia’s development viewed through the lens of the continuous helix model 
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In the study and promotion of professional development, collaborative contexts 
(involving teachers and researchers) have shown themselves to be especially 
appropriate (Llinares and Krainer, 2006). Climent (2005) and Climent and Carrillo 
(2003) analyse the professional development of primary teachers participating in a 
collaborative research project (PIC: ‘Proyecto de Investigación Colaborativa’), in 
terms of both reflection on practice (for which the PIC has proved a fruitful context) 
and teacher training. 
The PIC started in 1999 and is made up of two experienced primary teachers, a 
novice teacher (Julia), a novice and two experienced researchers. In an atmosphere of 
co-operation in which discussion and reflection play a vital role, its work pays special 
attention, among other issues, to the participants’ reflections on their conceptions of 
their pedagogical content knowledge concerning school mathematics. 
Julia showed great interest in forming part of the project, as she considered it an 
opportunity to continue her training with other teaching professionals. We collected 
information during two years, in which Julia acted for the first time as group tutor (to 
6-year-old pupils). We used a wide variety of data collection techniques in two 
contexts: Julia’s classes and the PIC. Chief amongst these were her classroom diaries, 
interviews, classroom recordings and recordings of the PIC sessions. 
In this paper we focus on a single aspect of her practice: planning. It was highly 
significant that initially Julia considered each day’s plan as a rigid document which 
had to be followed to the letter, independently of local factors (the tiredness of the 
students, particular difficulties, etc). Due in large part to her individual reflection and 
the group reflection in the PIC, Julia began to consider the planning stage in a more 
flexible light and was able to foresee such difficulties at this stage and to incorporate 
ideas to deal with them. Below we briefly describe this process, highlighting the key 
role that reflection played as a force for moulding her professional development. 
Interiorisation
Julia approached her teaching in conformity with the culture at her school: teaching 
was traditional, with minimal use made of manual exercises and a high degree of 
reliance on the textbook. From the start, Julia used it as the principal source of her 
teaching material, showing reluctance to leave a section half done, even when her 
pupils showed clear signs of fatigue, When she started the second teaching unit she 
began to keep a class diary, a practice she continued into the following unit. 
Analysing the diary entries for the instances where her pedagogical sensibility was 
overridden by her desire to complete a particular section, we noted that her personal 
reflections showed little potential for change. They did not seek to prioritise and 
select key sections from the textbook, or to modify this in any way, but remained at 
the level of sequencing the activities in terms of difficulty or conceptual demands so 
as to improve the pupils’ chances of getting through them. In short, the diary entries 
only allowed her to become aware of her difficulties and to consider ideas for 
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notion from operative to structural conception with the process of acquiring 
professional knowledge, we believe the process of professional development does 
share some degree of parallelism with the process of abstraction which is involved in 
moving from low level work (interiorisation) to higher level work (reification) (from 
a cognitive point of view). Our aim, however, is to adapt Sfard’s (1991) stages to the 
professional development of teachers, and to then particularise them to the case of a 
collaborative context (Feldman, 1993). 
It is not possible to maintain the differentiation between the conception of the notion 
(in this case the specific professional issues) as process and as object. Extending the 
definitions above to the case of professional development, the key to moving from 
one stage to another would lie in the maturity (understood as the increasing 
complexity of reflection upon the phenomenon of education, or as the assimilation of 
elements which deepen professional knowledge) with which the issue in question was 
approached. Hence, as will be seen in the example in section two, the interiorisation 
stage is characterised by familiarity with the issue, and is most probably initiated with 
the analysis of similar situations. It is characterised by the teacher mulling over 
something that does not seem quite right or that they feel could be improved. This 
may be accompanied by specific solutions (to these particular circumstances, that is, 
without making generalisations about the underlying issue or perceiving its wider 
dimensions), which themselves may or may not be put into practice. The 
condensation stage involves freeing oneself from the particular and seeing the issue 
as something more general, which means introducing a new variable into mapping 
the terrain of professional practice. It can be seen not only when a teacher reflects on 
their practice prospectively (that is, when planning) or retrospectively, but also while 
activities are being put into practice and decisions are being taken about them. The 
reification stage would add to the above an understanding of the issue in its 
complexity (relative to the level at which the teacher is operating, one cannot speak 
of an ‘absolute’ understanding), along with its relations and derivations. 
We can thus imagine the teacher progressing along a kind of professional 
development helix, where the role of the teacher trainer becomes that of providing 
learning contexts which will further the progress. The contents of the helix have been 
thoroughly studied and range from teachers’ everyday activities to professional 
knowledge (Shulman, 1986, Hill et al, 2008). This professional knowledge can partly 
be seen deployed in situations directly related to the classroom (eg planning). The 
helix also involves direction, defined by the three stages of interiorisation, 
condensation and reification. Finally, the helix has a specific shape, given to it by 
reflection. Reflection is both content and generatrix of the helix – content in that we 
have included it within professional knowledge, taking reflexive practice as 
reference; generatrix in that it is the means by which the helix is created. Reflection 
likewise allows progress through the three stages mentioned above, and in its turn 
leaves a trace in the contents of professional knowledge. 
Julia’s development viewed through the lens of the continuous helix model 
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In the study and promotion of professional development, collaborative contexts 
(involving teachers and researchers) have shown themselves to be especially 
appropriate (Llinares and Krainer, 2006). Climent (2005) and Climent and Carrillo 
(2003) analyse the professional development of primary teachers participating in a 
collaborative research project (PIC: ‘Proyecto de Investigación Colaborativa’), in 
terms of both reflection on practice (for which the PIC has proved a fruitful context) 
and teacher training. 
The PIC started in 1999 and is made up of two experienced primary teachers, a 
novice teacher (Julia), a novice and two experienced researchers. In an atmosphere of 
co-operation in which discussion and reflection play a vital role, its work pays special 
attention, among other issues, to the participants’ reflections on their conceptions of 
their pedagogical content knowledge concerning school mathematics. 
Julia showed great interest in forming part of the project, as she considered it an 
opportunity to continue her training with other teaching professionals. We collected 
information during two years, in which Julia acted for the first time as group tutor (to 
6-year-old pupils). We used a wide variety of data collection techniques in two 
contexts: Julia’s classes and the PIC. Chief amongst these were her classroom diaries, 
interviews, classroom recordings and recordings of the PIC sessions. 
In this paper we focus on a single aspect of her practice: planning. It was highly 
significant that initially Julia considered each day’s plan as a rigid document which 
had to be followed to the letter, independently of local factors (the tiredness of the 
students, particular difficulties, etc). Due in large part to her individual reflection and 
the group reflection in the PIC, Julia began to consider the planning stage in a more 
flexible light and was able to foresee such difficulties at this stage and to incorporate 
ideas to deal with them. Below we briefly describe this process, highlighting the key 
role that reflection played as a force for moulding her professional development. 
Interiorisation
Julia approached her teaching in conformity with the culture at her school: teaching 
was traditional, with minimal use made of manual exercises and a high degree of 
reliance on the textbook. From the start, Julia used it as the principal source of her 
teaching material, showing reluctance to leave a section half done, even when her 
pupils showed clear signs of fatigue, When she started the second teaching unit she 
began to keep a class diary, a practice she continued into the following unit. 
Analysing the diary entries for the instances where her pedagogical sensibility was 
overridden by her desire to complete a particular section, we noted that her personal 
reflections showed little potential for change. They did not seek to prioritise and 
select key sections from the textbook, or to modify this in any way, but remained at 
the level of sequencing the activities in terms of difficulty or conceptual demands so 
as to improve the pupils’ chances of getting through them. In short, the diary entries 
only allowed her to become aware of her difficulties and to consider ideas for 
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improvements which never materialised. However, they do indicate that such issues 
were beginning to stir in Julia, awakening in her certain dissatisfaction. 
It was the collective reflection in one of the group sessions analysing a video of her 
teaching which contributed a new outlook. At the beginning of the lesson, Julia asked 
the pupils, on the spur of the moment, to accurately define a rectangle. Such were the 
demands of this task that she spent nearly an hour trying to get the pupils to deduce 
from a series of examples the defining features of a rectangle – such as parallel or 
perpendicular sides – even though they were clearly feeling extremely tired. In her 
subsequent reflection, in both her diary and the PIC, Julia acknowledged the pupils’ 
intuitive understanding of the concept, but she didn’t consider leaving the activity 
unfinished, because she wanted them ‘to be a little bit more precise …because I think 
that they generalise too much”. The response of one of the experienced teachers in 
the PIC to this rationale was especially interesting: 

Inés: You don’t think it was because you wanted to get somewhere and you saw that they 
weren’t getting there? […] / Julia: There was a moment when I saw it was too much for 
them…/ I:  Why do they have to get to that point? / J: Because it doesn’t seem right to 
me not to finish things […] / I: […] No, what happens, Julia, is that sometimes we get 
involved in something and we have to [… know] how to go back over something, in the 
sense of saying, ‘OK, for whatever reason, this isn’t working out, and it’s OK if this 
doesn’t work out,’ and you say, ‘OK, we’ll have another go at this tomorrow.’ […] 
because […] the one who goes away with the sense that things haven’t been finished is 
you, but not the children. 

Reflection with other professionals helped Julia become more fully aware of what her 
decisions were aiming to achieve, and of the importance of noting the pupils’ 
reactions and responding to them. Her improved understanding of the situation 
provided Julia with new elements of judgement which would later be useful for 
facing situations from another perspective. In the case described above, in which the 
pupils’ difficulties condition the course of the planning, we can say that Julia was 
undergoing an interiorisation phase, in that it was now that she was becoming aware 
that such situations could arise in the classroom and that there were various ways of 
responding to them. 
Condensation
At the end of the first year, Julia conducted four problem-solving activities on 
number decomposition, which had been designed in the PIC. Below we describe the 
implementation of the fourth of these, called ‘The Same, Bigger, or Smaller’, and for 
which Julia had no teaching notes to follow (table 1). 

Select the numbers which add up to: 

a) 27
b) 36
c) 43
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A) Is the addition of 23 and 15 greater than 20? Than 30? Than 40? 50? (Repeat with 
‘less than’). B) Is the addition of 23 and 32 greater than 20? Than 30? Than 40? 50? 
(The same with less). C) Is the addition of 19 and 32 greater than 20? Than 30? Than 
40? 50? (The same with less) 

Table 1. ‘The Same, Bigger, or Smaller’ 
At the preparation stage, Julia predicted various difficulties that could arise, 
stemming principally from students’ limited familiarity with making estimations: 
“…there will be some who, without meaning to, or thinking about it, will try to add 
up all the combinations of numbers and this makes it a really laborious task for 
them”. Once in class, Julia looked very doubtful, foreseeing the difficulties. She 
started the explanation without making overt mention of specific numbers and 
writing symbols instead. Then, she decided to introduce some numerical examples. 
By means of leading questions, she focused the pupils’ attention on the numbers 
which were grouped together, with the aim that these became meaningful to them and 
they realised which were the smallest and the largest. She also drew their attention to 
cases in which it was not possible to express them as the sum of three others, such as 
15 (which can be obtained only with two numbers: 10 and 5). Next, taking three 
numbers to be added together from the group (12, 10 and 13), she gave 35 as an 
example, and explained the strategy of estimation which they could follow in order to 
find out the numbers required to be added together and so solve the problem. 
At first, the work was done individually. It was noticeable that many pupils found it 
hard to concentrate. In the feedback phase, she was interested not only in the results, 
but in the reasoning followed. She tended to select the more able pupils. In the 
second phase of the activity, the whole class worked together, with the pupils having 
to do mental calculations so as to estimate the result of the addition of two numbers. 
She frequently had to ask pupils to pay attention because they seemed tired (the 
previous activity was 40 minutes long) and she tried to keep them participating, but 
in the end it became very difficult to continue. Finally, Julia worked through all three 
estimations, but went through the last two more quickly. 
Although she managed to do the three estimations, her impression was that of having 
left the activity half way: “I see that the problem is that they normally solve almost 
everything successfully, and this time it began to be a bit frustrating … and we had to 
finish earlier than expected.” [PIC session] 
This episode is representative of the condensation stage. Her decision not to continue 
in the way that had been foreseen would seem to indicate that Julia was more inclined 
to take into account the pupils’ learning difficulties and to adapt her original plan to 
meet them. Also significant is that this decision was made while the class was in 
progress (favoured to a certain extent by her previous reflection), whereas at the 
interiorisation level Julia only arrived at such a realisation after the event. 
She was beginning to view her planning with a certain degree of flexibility, and to be 
able to explain her decisions openly in the PIC. It seems the joint reflection had a 
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improvements which never materialised. However, they do indicate that such issues 
were beginning to stir in Julia, awakening in her certain dissatisfaction. 
It was the collective reflection in one of the group sessions analysing a video of her 
teaching which contributed a new outlook. At the beginning of the lesson, Julia asked 
the pupils, on the spur of the moment, to accurately define a rectangle. Such were the 
demands of this task that she spent nearly an hour trying to get the pupils to deduce 
from a series of examples the defining features of a rectangle – such as parallel or 
perpendicular sides – even though they were clearly feeling extremely tired. In her 
subsequent reflection, in both her diary and the PIC, Julia acknowledged the pupils’ 
intuitive understanding of the concept, but she didn’t consider leaving the activity 
unfinished, because she wanted them ‘to be a little bit more precise …because I think 
that they generalise too much”. The response of one of the experienced teachers in 
the PIC to this rationale was especially interesting: 

Inés: You don’t think it was because you wanted to get somewhere and you saw that they 
weren’t getting there? […] / Julia: There was a moment when I saw it was too much for 
them…/ I:  Why do they have to get to that point? / J: Because it doesn’t seem right to 
me not to finish things […] / I: […] No, what happens, Julia, is that sometimes we get 
involved in something and we have to [… know] how to go back over something, in the 
sense of saying, ‘OK, for whatever reason, this isn’t working out, and it’s OK if this 
doesn’t work out,’ and you say, ‘OK, we’ll have another go at this tomorrow.’ […] 
because […] the one who goes away with the sense that things haven’t been finished is 
you, but not the children. 

Reflection with other professionals helped Julia become more fully aware of what her 
decisions were aiming to achieve, and of the importance of noting the pupils’ 
reactions and responding to them. Her improved understanding of the situation 
provided Julia with new elements of judgement which would later be useful for 
facing situations from another perspective. In the case described above, in which the 
pupils’ difficulties condition the course of the planning, we can say that Julia was 
undergoing an interiorisation phase, in that it was now that she was becoming aware 
that such situations could arise in the classroom and that there were various ways of 
responding to them. 
Condensation
At the end of the first year, Julia conducted four problem-solving activities on 
number decomposition, which had been designed in the PIC. Below we describe the 
implementation of the fourth of these, called ‘The Same, Bigger, or Smaller’, and for 
which Julia had no teaching notes to follow (table 1). 

Select the numbers which add up to: 

a) 27
b) 36
c) 43
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A) Is the addition of 23 and 15 greater than 20? Than 30? Than 40? 50? (Repeat with 
‘less than’). B) Is the addition of 23 and 32 greater than 20? Than 30? Than 40? 50? 
(The same with less). C) Is the addition of 19 and 32 greater than 20? Than 30? Than 
40? 50? (The same with less) 

Table 1. ‘The Same, Bigger, or Smaller’ 
At the preparation stage, Julia predicted various difficulties that could arise, 
stemming principally from students’ limited familiarity with making estimations: 
“…there will be some who, without meaning to, or thinking about it, will try to add 
up all the combinations of numbers and this makes it a really laborious task for 
them”. Once in class, Julia looked very doubtful, foreseeing the difficulties. She 
started the explanation without making overt mention of specific numbers and 
writing symbols instead. Then, she decided to introduce some numerical examples. 
By means of leading questions, she focused the pupils’ attention on the numbers 
which were grouped together, with the aim that these became meaningful to them and 
they realised which were the smallest and the largest. She also drew their attention to 
cases in which it was not possible to express them as the sum of three others, such as 
15 (which can be obtained only with two numbers: 10 and 5). Next, taking three 
numbers to be added together from the group (12, 10 and 13), she gave 35 as an 
example, and explained the strategy of estimation which they could follow in order to 
find out the numbers required to be added together and so solve the problem. 
At first, the work was done individually. It was noticeable that many pupils found it 
hard to concentrate. In the feedback phase, she was interested not only in the results, 
but in the reasoning followed. She tended to select the more able pupils. In the 
second phase of the activity, the whole class worked together, with the pupils having 
to do mental calculations so as to estimate the result of the addition of two numbers. 
She frequently had to ask pupils to pay attention because they seemed tired (the 
previous activity was 40 minutes long) and she tried to keep them participating, but 
in the end it became very difficult to continue. Finally, Julia worked through all three 
estimations, but went through the last two more quickly. 
Although she managed to do the three estimations, her impression was that of having 
left the activity half way: “I see that the problem is that they normally solve almost 
everything successfully, and this time it began to be a bit frustrating … and we had to 
finish earlier than expected.” [PIC session] 
This episode is representative of the condensation stage. Her decision not to continue 
in the way that had been foreseen would seem to indicate that Julia was more inclined 
to take into account the pupils’ learning difficulties and to adapt her original plan to 
meet them. Also significant is that this decision was made while the class was in 
progress (favoured to a certain extent by her previous reflection), whereas at the 
interiorisation level Julia only arrived at such a realisation after the event. 
She was beginning to view her planning with a certain degree of flexibility, and to be 
able to explain her decisions openly in the PIC. It seems the joint reflection had a 
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significant influence, providing her with the necessary pedagogic support to take 
decisions like these.
Reification
One year later, the possibility of Julia repeating the decomposition activities was 
discussed in the PIC. Taking into account her experience and her pupils’ current 
knowledge, she decided that they would be appropriate, albeit with various 
modifications. With regard to the activity ‘The Same, Bigger or Smaller’, she omitted 
it and selected another from an activity bank created in the PIC. Julia took this 
decision not only because of the feelings of failure experienced the previous year, but 
also as a result of questioning the rationale of the activity itself, considering that the 
difficulty lay in the degree of abstraction demanded, by a mental task involving 
numbers without reference to a specific context. Nevertheless, when she was 
planning the lesson, she considered the possibility of including a modified version: 

“I could make the numbers easier…But it was going to look like the one we did 
yesterday,… about estimation... Maybe I’d have been wrong and I’d have got a pleasant 
surprise, but as last year was far from being productive, I thought, ‘Where’s the point of 
wasting an hour by repeating the experience?” [PIC session] 

She choose an alternative activity, which consisted in completing four dominoes laid 
out in a square so that the total represented along each of the four sides always came 
to be the same (10) (figure 1). 

Fig. 1: Example of the activity ‘Domino Squares’ 
In fact, this activity is very similar to the first part of ‘The Same, Bigger or Smaller’ 
in that there is still a fixed amount (10 in the example) which is to be obtained by 
adding the other three numbers which are also given (from 0 to 6). The concepts 
involved in ‘The Same, Bigger, or Smaller’ were focused on separately in two of the 
activities ultimately included in her plan. It can be noted that what had been modified 
was the mode of presenting these concepts, but not the concepts themselves. 
We identify her reasoning with the development of the reification stage because Julia 
now showed herself able to consider the pupils’ learning difficulties at the actual time 
of planning. She makes use of her knowledge of the features of the activities and their 
corresponding cognitive demands to look for an alternative means of working on the 
mathematical contents. She had a degree of professional knowledge, with respect to 
activities and learners, which was also available to her during her lesson planning 
(and not merely an awareness of this variable). Previously, she had been making use 
of an activity designed by the group and acted more as a guide for what had been 
decided elsewhere (with a stake in the debate, certainly, but with an understandably 
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diminished sense of her own authority given that it had been her first year as teacher 
and member of the group). Her greater professional understanding, then, made 
possible and was closely linked to the increased flexibility of her lesson planning 
with respect to the pupils’ difficulties.  
She no longer became aware of such difficulties only if they arose, either afterwards 
upon reflection (as in the interiorisation stage), or during the class itself (as in the 
condensation stage). This behaviour led her to make suggestions for improvements to 
subsequent lessons (although not always put into practice) in the former case, and to 
make slight adjustments as she went, in the second. However, at the reification stage 
she no longer took a reactive attitude to difficulties, but rather anticipated them in the 
planning process, so giving a fuller pedagogical treatment to the content. In other 
words, Julia successfully converted consideration of pupils’ difficulties into an 
element to be treated independently of the circumstances in which they arose. 
3. Final reflections 
Each stage is defined by an “advance” in Julia’s cognitive and/or teaching dimension. 
The interiorisation stage supposes the deployment of the idea that the pupils’ 
difficulties require consideration once the class plan is in operation. It is accompanied 
in this case by suggestions for treatment which for the moment are not put into 
action. The condensation stage treats pupils’ difficulties cognitively as one more 
variable in the analysis of what happens in the classroom. This is reflected in the 
decisions made during the course of the lesson. In this case the progress is less 
cognitive, or unconnected to action, as in the previous stage. It is knowledge in action 
(Schön, 1983). In the reification stage, the potential pupils’ problems are taken into 
account from the planning onwards, giving less importance to externally established 
pedagogic treatment. So it is also a case of cognition in action (at the planning 
phase).
We are aware that various factors influence this process of abstraction, but we 
highlight the context of the PIC because it has shown itself to be a meeting point 
which promotes and enriches reflection on classroom practice, and encourages the 
consideration of other variables in lesson planning (Ticha y Hospesová, 2006). 
From the analysis of teachers’ learning systems (Krainer, 2004), we can note that, 
through joint reflection with others (reflection-networking) and acting and reflecting 
on her own practice (action-autonomy-reflection), Julia gained additional competence 
and self-confidence in autonomous planning and interaction (autonomy and action) 
and in her ability to reflect on mathematical teaching practice and to reflect and 
communicate with colleagues and take advantage of their ideas (reflection and 
networking). There is no doubt that Julia’s participation in the PIC, providing 
resources and principles on which she could base her decisions, was a source of  
valuable support, but credit must also be given to her individual reflection. 
We can say that in her process of professional development, Julia completed a 
preliminary cycle of interiorisation-condensation-reification, with respect to one 
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significant influence, providing her with the necessary pedagogic support to take 
decisions like these.
Reification
One year later, the possibility of Julia repeating the decomposition activities was 
discussed in the PIC. Taking into account her experience and her pupils’ current 
knowledge, she decided that they would be appropriate, albeit with various 
modifications. With regard to the activity ‘The Same, Bigger or Smaller’, she omitted 
it and selected another from an activity bank created in the PIC. Julia took this 
decision not only because of the feelings of failure experienced the previous year, but 
also as a result of questioning the rationale of the activity itself, considering that the 
difficulty lay in the degree of abstraction demanded, by a mental task involving 
numbers without reference to a specific context. Nevertheless, when she was 
planning the lesson, she considered the possibility of including a modified version: 

“I could make the numbers easier…But it was going to look like the one we did 
yesterday,… about estimation... Maybe I’d have been wrong and I’d have got a pleasant 
surprise, but as last year was far from being productive, I thought, ‘Where’s the point of 
wasting an hour by repeating the experience?” [PIC session] 

She choose an alternative activity, which consisted in completing four dominoes laid 
out in a square so that the total represented along each of the four sides always came 
to be the same (10) (figure 1). 

Fig. 1: Example of the activity ‘Domino Squares’ 
In fact, this activity is very similar to the first part of ‘The Same, Bigger or Smaller’ 
in that there is still a fixed amount (10 in the example) which is to be obtained by 
adding the other three numbers which are also given (from 0 to 6). The concepts 
involved in ‘The Same, Bigger, or Smaller’ were focused on separately in two of the 
activities ultimately included in her plan. It can be noted that what had been modified 
was the mode of presenting these concepts, but not the concepts themselves. 
We identify her reasoning with the development of the reification stage because Julia 
now showed herself able to consider the pupils’ learning difficulties at the actual time 
of planning. She makes use of her knowledge of the features of the activities and their 
corresponding cognitive demands to look for an alternative means of working on the 
mathematical contents. She had a degree of professional knowledge, with respect to 
activities and learners, which was also available to her during her lesson planning 
(and not merely an awareness of this variable). Previously, she had been making use 
of an activity designed by the group and acted more as a guide for what had been 
decided elsewhere (with a stake in the debate, certainly, but with an understandably 
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diminished sense of her own authority given that it had been her first year as teacher 
and member of the group). Her greater professional understanding, then, made 
possible and was closely linked to the increased flexibility of her lesson planning 
with respect to the pupils’ difficulties.  
She no longer became aware of such difficulties only if they arose, either afterwards 
upon reflection (as in the interiorisation stage), or during the class itself (as in the 
condensation stage). This behaviour led her to make suggestions for improvements to 
subsequent lessons (although not always put into practice) in the former case, and to 
make slight adjustments as she went, in the second. However, at the reification stage 
she no longer took a reactive attitude to difficulties, but rather anticipated them in the 
planning process, so giving a fuller pedagogical treatment to the content. In other 
words, Julia successfully converted consideration of pupils’ difficulties into an 
element to be treated independently of the circumstances in which they arose. 
3. Final reflections 
Each stage is defined by an “advance” in Julia’s cognitive and/or teaching dimension. 
The interiorisation stage supposes the deployment of the idea that the pupils’ 
difficulties require consideration once the class plan is in operation. It is accompanied 
in this case by suggestions for treatment which for the moment are not put into 
action. The condensation stage treats pupils’ difficulties cognitively as one more 
variable in the analysis of what happens in the classroom. This is reflected in the 
decisions made during the course of the lesson. In this case the progress is less 
cognitive, or unconnected to action, as in the previous stage. It is knowledge in action 
(Schön, 1983). In the reification stage, the potential pupils’ problems are taken into 
account from the planning onwards, giving less importance to externally established 
pedagogic treatment. So it is also a case of cognition in action (at the planning 
phase).
We are aware that various factors influence this process of abstraction, but we 
highlight the context of the PIC because it has shown itself to be a meeting point 
which promotes and enriches reflection on classroom practice, and encourages the 
consideration of other variables in lesson planning (Ticha y Hospesová, 2006). 
From the analysis of teachers’ learning systems (Krainer, 2004), we can note that, 
through joint reflection with others (reflection-networking) and acting and reflecting 
on her own practice (action-autonomy-reflection), Julia gained additional competence 
and self-confidence in autonomous planning and interaction (autonomy and action) 
and in her ability to reflect on mathematical teaching practice and to reflect and 
communicate with colleagues and take advantage of their ideas (reflection and 
networking). There is no doubt that Julia’s participation in the PIC, providing 
resources and principles on which she could base her decisions, was a source of  
valuable support, but credit must also be given to her individual reflection. 
We can say that in her process of professional development, Julia completed a 
preliminary cycle of interiorisation-condensation-reification, with respect to one 

PME 33 - 2009 4 - 183

 Volume 04 COMPLETE 290509.indb   183 6/4/09   2:23:03 PM



Muñoz-Catalán, Climent,  Carrillo 

1- 8 PME 33 - 2009 

element of her teaching, that of planning. Once ‘reified’, we consider that this new 
conceptualisation of planning itself undergoes a process of development, in which 
she would begin to take account of more and more considerations in her lesson 
planning and to be able to foresee more alternatives for dealing with particular 
elements.
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We investigate whether and how printed diagrams vs. interactive diagrams, video 
clips vs. interactive animations, create different contexts for mathematics learning. 
The present paper analyzes an experiment in which two algebra activities are 
presented to students in a task-based interview. One activity, describing a motion 
situation, is presented in a video clip and in an interactive diagram (ID). A second 
activity, requiring the description of a linear function, is illustrated by a printed 
diagram and by an ID. Analysis of the problem-solving processes of the two activities 
that include IDs indicates that the process of concept construction occurred as a 
result of the students' decision to change the representation of the data in the activity, 
build a focused collection of data, expand the given representations, or build new 
ones. Both activities shed light on the ways in which problem solvers use sketchy IDs 
designed to encourage the problem solver to interact with the diagrams in a way that 
transforms sketchy information into an important component of conceptual learning.

ILLUSTRATING INTERACTIVE DIAGRAMS
The domain of digital interactive mathematics textbooks is new and largely 
unexplored. We seek to identify practices associated with the design of this type of 
textbook and to focus on a few functions of interactive visual representations, mainly 
on ways to design activities and learn with interactive diagrams. By diagram we 
mean a drawing, plan, scheme, or other method of clarifying or demonstrating a 
concept, an object, and etc. An interactive diagram (ID) is a relatively small and 
simple software application (an applet) built around a pre-constructed visual 
example. IDs should not be assumed to be transparent: they call for interactive work, 
and the tools needed form an integral part of the diagram. Creating such a setting that 
requires action and participation from the student has been the ultimate mission of the 
curriculum reform movement and of the development of microworlds over the last 
two decades (e.g., Hoyles & Noss, 2003, Kaput & Hegedus, 2002, Schwartz, 1999). 
There are profound differences between the traditional page in math textbooks that 
appears on paper and the new page that derives its principles of design and 
organization from the screen and the affordances of technology. Based on visual 
semiotic investigation by Yerushalmy (2005), illustrating diagrams are the most 
frequent ones in paper math textbooks. In general, interactive illustrating diagrams
are simply operated unsophisticated representations, and most dynamic diagrams 
found as applets on the Web are of this type. They are intended to orient the student’s 
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thinking to the structure and objectives of the activity by usually offering a single 
graphical representation and relatively simple actions. Elaborating IDs provide the 
means students may need to engage in activities that lead to the formulation of a 
solution and to operate at a meta-cognitive level. Narrative IDs are designed to call 
for action in a specific way that supports the construction of the principal ideas of the 
activity and may serve to balance open-ended explorations and support autonomous 
inquiry. The present paper studies how the designed artifacts are used and analyzes 
the potential and constraints of the design functions of the diagram. We analyze the 
work of 13-year-old students in task-based interviews focused on two algebra 
activities adopted from Yerushalmy, Katriel, & Shternberg (2002/4). One activity 
deals with a temporal phenomenon and was first illustrated by a video clip that 
students were asked to describe. Subsequently a similar motion situation was 
presented as an illustrating animation. On both the clip and the animation, users could 
watch at all times locations on the runway, continue the run, or initialize the motion 
(Figure 1.1). The second activity, an analytical one, requires writing a symbolic 
expression to describe a given linear function graph. It was first illustrated by a paper 
diagram (Figure 1.2 left) and then by an ID (right). Students could read Cartesian 
numerical values by the marks on the paper or by interactively pointing with the 
mouse. 

Figure 1.2Figure 1.1

According to design functions, both IDs are illustrating IDs because they allow only 
the viewing of the given examples and a limited degree of intervention by activation 
of controls in the animation and the graph. While analyzing the problem-solving 
processes we asked how the similar design of the two diagrams in each of the two 
domains (temporal and analytic) is reflected in the students' problem solving 
processes. Ten 8th-grade students were interviewed. All interviews were videotaped 
and transcribed. We illustrate the general observations with one interview in each of 
the activities.
Video clip and animated simulation of motion  
Unlike static diagrams, video clips and animations are intended to reduce verbal 
explanations and be more efficient than signs and symbols in describing dynamic 
processes (Jones & Scaife, 2000). But because research on animation (Hegarty, Kriz, 
& Cate, 2003) suggests that learning by watching a motion picture is very limited, we 
embedded tools in both in the video clip and the animation that allow students to 
stop, continue, and restart the motion. Students played the video clip several times, 
following the motion without pausing. They used spatial terms, such as left and right, 
to identify the runners. They invested time in analyzing the runners' bodily motions, 
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trying to reach a conclusion about the effect of bodily motion on the running 
procedure. Finally, they concentrated on the runners' actions at the start of the run and 
summarized the final results of the race:

Dan:  When they ran, they moved their body a little bit back and their feet a 
little bit forward and… this maybe gave them, I think, more acceleration. 
And in the end the one that was on the left won, sort of. They all made 
almost the same movements; just that there were some that started running 
and some that jumped out later and some that jumped a little sooner. The 
left part was a bit sooner… and… until… but until… until a couple of 
seconds, and the right side won, covered more distance between them. It 
almost came to the same position. Here, and you can see here (on the 
screen a picture of the relative position of the runners at the finish line)
that the right and the left side [runners] came about second, and these two 
people and the last are about at the same line. 

In an attempt to reach a diagrammatic description the interviewer asked Dan to think 
about additional ways of describing the motion, and Dan suggested building a series 
of "critical pictures" that describe the change in the relative positions of the runners: 

Dan:  Ah, you show the pictures of the people from the start line, and then you 
show their pictures when they jump of, you show their pictures in the 
middle and during this process, to see… and you show the most critical 
pictures, the moments someone passes someone, or someone that… and 
in the end you show the picture… the ending picture that shows all the 
people that... who won first place, second, third, fourth… yes, the 
important points… the critical points, let’s say, if they’re at the same 
distance, in that distance it’s not critical, you don’t need to shoot every 
time like in a movie the same picture… you need to picture the points 
that matter, that will prove that he passed this and that.

While working with an activity in the ID format, Dan used colors on the animated ID 
to identify the runners. He, as well as the other interviewees, was intrigued by the 
relative slowness of one of the runners in the beginning of the movement and by his 
victory in the end despite the faster movement of the second runner, who did not win.  

Dan:  The man on the pink line starts out fast, later he begins to lose pace, and 
the blue passes him. The black stays in the back and in the end he came 
first, even though at the beginning he jumped off to late and was slow, in 
the end, he gained acceleration and passed all of them. The red continued 
at about the same difference, like, almost the same distance he was 
between them. No, not the same distance, I mean, his running pace was 
fixed.

Interviewer: How do you know he runs at a fixed pace? 

To demonstrate his conclusion, Dan reactivated the animation, described the run 
again, and toyed for a while with an idea of describing the motion using a graph or 
table:
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thinking to the structure and objectives of the activity by usually offering a single 
graphical representation and relatively simple actions. Elaborating IDs provide the 
means students may need to engage in activities that lead to the formulation of a 
solution and to operate at a meta-cognitive level. Narrative IDs are designed to call 
for action in a specific way that supports the construction of the principal ideas of the 
activity and may serve to balance open-ended explorations and support autonomous 
inquiry. The present paper studies how the designed artifacts are used and analyzes 
the potential and constraints of the design functions of the diagram. We analyze the 
work of 13-year-old students in task-based interviews focused on two algebra 
activities adopted from Yerushalmy, Katriel, & Shternberg (2002/4). One activity 
deals with a temporal phenomenon and was first illustrated by a video clip that 
students were asked to describe. Subsequently a similar motion situation was 
presented as an illustrating animation. On both the clip and the animation, users could 
watch at all times locations on the runway, continue the run, or initialize the motion 
(Figure 1.1). The second activity, an analytical one, requires writing a symbolic 
expression to describe a given linear function graph. It was first illustrated by a paper 
diagram (Figure 1.2 left) and then by an ID (right). Students could read Cartesian 
numerical values by the marks on the paper or by interactively pointing with the 
mouse. 

Figure 1.2Figure 1.1

According to design functions, both IDs are illustrating IDs because they allow only 
the viewing of the given examples and a limited degree of intervention by activation 
of controls in the animation and the graph. While analyzing the problem-solving 
processes we asked how the similar design of the two diagrams in each of the two 
domains (temporal and analytic) is reflected in the students' problem solving 
processes. Ten 8th-grade students were interviewed. All interviews were videotaped 
and transcribed. We illustrate the general observations with one interview in each of 
the activities.
Video clip and animated simulation of motion  
Unlike static diagrams, video clips and animations are intended to reduce verbal 
explanations and be more efficient than signs and symbols in describing dynamic 
processes (Jones & Scaife, 2000). But because research on animation (Hegarty, Kriz, 
& Cate, 2003) suggests that learning by watching a motion picture is very limited, we 
embedded tools in both in the video clip and the animation that allow students to 
stop, continue, and restart the motion. Students played the video clip several times, 
following the motion without pausing. They used spatial terms, such as left and right, 
to identify the runners. They invested time in analyzing the runners' bodily motions, 
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trying to reach a conclusion about the effect of bodily motion on the running 
procedure. Finally, they concentrated on the runners' actions at the start of the run and 
summarized the final results of the race:

Dan:  When they ran, they moved their body a little bit back and their feet a 
little bit forward and… this maybe gave them, I think, more acceleration. 
And in the end the one that was on the left won, sort of. They all made 
almost the same movements; just that there were some that started running 
and some that jumped out later and some that jumped a little sooner. The 
left part was a bit sooner… and… until… but until… until a couple of 
seconds, and the right side won, covered more distance between them. It 
almost came to the same position. Here, and you can see here (on the 
screen a picture of the relative position of the runners at the finish line)
that the right and the left side [runners] came about second, and these two 
people and the last are about at the same line. 

In an attempt to reach a diagrammatic description the interviewer asked Dan to think 
about additional ways of describing the motion, and Dan suggested building a series 
of "critical pictures" that describe the change in the relative positions of the runners: 

Dan:  Ah, you show the pictures of the people from the start line, and then you 
show their pictures when they jump of, you show their pictures in the 
middle and during this process, to see… and you show the most critical 
pictures, the moments someone passes someone, or someone that… and 
in the end you show the picture… the ending picture that shows all the 
people that... who won first place, second, third, fourth… yes, the 
important points… the critical points, let’s say, if they’re at the same 
distance, in that distance it’s not critical, you don’t need to shoot every 
time like in a movie the same picture… you need to picture the points 
that matter, that will prove that he passed this and that.

While working with an activity in the ID format, Dan used colors on the animated ID 
to identify the runners. He, as well as the other interviewees, was intrigued by the 
relative slowness of one of the runners in the beginning of the movement and by his 
victory in the end despite the faster movement of the second runner, who did not win.  

Dan:  The man on the pink line starts out fast, later he begins to lose pace, and 
the blue passes him. The black stays in the back and in the end he came 
first, even though at the beginning he jumped off to late and was slow, in 
the end, he gained acceleration and passed all of them. The red continued 
at about the same difference, like, almost the same distance he was 
between them. No, not the same distance, I mean, his running pace was 
fixed.

Interviewer: How do you know he runs at a fixed pace? 

To demonstrate his conclusion, Dan reactivated the animation, described the run 
again, and toyed for a while with an idea of describing the motion using a graph or 
table:
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Dan:  And there is the thing of the table that you can show how much he runs to 
a… km per second… You can do it in a graph form. He actually started 
picking up speed; you can see it in a graphic shape, let’s say the graph 
rises when he has 20.

But Dan pointed out that he could not really do this because “I need data,” and 
returned to the idea of describing the motion by building a series of "critical pictures" 
that describe the change in the relative positions of the runners that he brought up 
while working with the clip. He started the animation, paused in locations that he 
viewed as important, and described the situation. Each time he stopped he drew a 
diagram on paper to represent the captured moment: 

Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5 
Dan:  Ok, this is also an important critical point (Figure 2.1): the black still stays 

in the back, while they are already beginning. …the pink continues to lead 
and the black is still stuck at the back. Then (Figure 2.2) actually the blue 
now is ahead of him, the red continues sort of... continues in the same 
pace. The pink begins to slow down. The red passes already… the red 
passes… the red passes the pink. The black soon, here (Figure 2.3) it 
shows that he begins to gain acceleration and that the pink stays a bit 
behind. In a situation like this, here, when everyone begins to slow down, 
and here the black passes. In the end, the pink that started stays in… came 
in last. Ah, and the end (Figure 2.4) it’s the blue came last. Wait a second. 
This is actually the point where the black is no longer in the picture, 
because he won. In the end the blue stays last.  

At this point Dan's event sequence of static diagrams (Figure 2.5) prompted him to 
mentally recreate and describe the entire race, pointing to the runners' changes of 
speed in correlation with changes in their relative positions.  

Dan:  So in the end it shows that the pink that at first advanced, that began to 
gain acceleration, and the blue that passed him later, who also began to be 
the fastest; actually the black accelerated and passed him. The blue and 
the red started slowing a bit and the red continued at the same pace, and in 
the end passed the blue and came third. The black was first. The pink 
came second and the red came in third place. And the blue stayed… came 
last, even though in the middle he started leading in the distances, and 
then the black began to pass everyone, and won actually. 

Observing Dan and the rest of the interviewees it became apparent that although the 
two interactive representations provided similar interactive control tools they 
generated different descriptions. The bodily movements and gestures of all the 
runners were important details in the motion analysis based on the video clip, the 
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interactive diagram based on color coded animation promoted comparative 
descriptions. Interviewees differentiated between the runners, addressing each one 
and the relative progress of each, and were able to describe the chain of events in a 
schematic way that served as a static model from which they were able to reconstruct 
the dynamic process.
Paper diagram and interactive illustrating diagram of linear function 
The second, analytical, activity required writing a symbolic expression describing a 
given linear function graph. It was first given as a paper diagram on which students 
could read Cartesian numerical values by the marks on the paper, compute the slope 
of the line, and use as many point values as they needed to write the function's 
expression. All the students studied linear functions in graphic, numeric, and 
symbolic representations and were familiar with the symbolic representation 
f(x)=ax+b. The challenge of the activity was to find the function on a diagram on 
which the y-intercept point and the slope were not shown. 
 With the paper diagram Roni found the coordinates of the marked points but was not 
able to write the symbolic expression of the function. 

Roni:  It won’t help me much, to do it without anything, like that, on paper, I 
can’t do it alone. 

Of the six interviews we analyzed two students were able to solve the problem given 
as a paper diagram. The four students who asked for help and were unable to 
complete the task then requested to work with the interactive version of the diagram. 
After Roni read an activity in the ID format she moved with the mouse over the graph 
of the function and checked the coordinates of the points on the graph. She lingered 
over the x-intercept (probably because the y-intercept did not exist on the given 
diagram) and decided to create a table of values: 

Roni:  I will try to construct a table of values. I'm trying to find 
points of integers. (She moved the mouse up and down the 
line several times, monitored the changes of the 
coordinate values on the line, picked coordinates to write 
in the table, and wrote differences between the values.)

Interviewer:  Would you explain what are you doing? 
Roni:  I’m checking the intervals for the slope. The software does not really help 

me, aside from finding points, at the moment. The slope is four, 4x.
(writing 4x on the page).

Interviewer:  How do you know that the slope is four? 
Roni:  Because these are the intervals here, and here it is one and it comes out 

four divided by one. And y… I guess that the free term would be about 
minus 13 (Roni extends the line with the mouse outside the borders of the 
diagram until she envisions that it “meets with the y-axis”). I can’t really 
see it here, because I can’t increase the scale, but by the slope and that it’s 
going to be minus 10 and it goes a little below… I don’t exactly know the 
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Dan:  And there is the thing of the table that you can show how much he runs to 
a… km per second… You can do it in a graph form. He actually started 
picking up speed; you can see it in a graphic shape, let’s say the graph 
rises when he has 20.

But Dan pointed out that he could not really do this because “I need data,” and 
returned to the idea of describing the motion by building a series of "critical pictures" 
that describe the change in the relative positions of the runners that he brought up 
while working with the clip. He started the animation, paused in locations that he 
viewed as important, and described the situation. Each time he stopped he drew a 
diagram on paper to represent the captured moment: 

Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5 
Dan:  Ok, this is also an important critical point (Figure 2.1): the black still stays 

in the back, while they are already beginning. …the pink continues to lead 
and the black is still stuck at the back. Then (Figure 2.2) actually the blue 
now is ahead of him, the red continues sort of... continues in the same 
pace. The pink begins to slow down. The red passes already… the red 
passes… the red passes the pink. The black soon, here (Figure 2.3) it 
shows that he begins to gain acceleration and that the pink stays a bit 
behind. In a situation like this, here, when everyone begins to slow down, 
and here the black passes. In the end, the pink that started stays in… came 
in last. Ah, and the end (Figure 2.4) it’s the blue came last. Wait a second. 
This is actually the point where the black is no longer in the picture, 
because he won. In the end the blue stays last.  

At this point Dan's event sequence of static diagrams (Figure 2.5) prompted him to 
mentally recreate and describe the entire race, pointing to the runners' changes of 
speed in correlation with changes in their relative positions.  

Dan:  So in the end it shows that the pink that at first advanced, that began to 
gain acceleration, and the blue that passed him later, who also began to be 
the fastest; actually the black accelerated and passed him. The blue and 
the red started slowing a bit and the red continued at the same pace, and in 
the end passed the blue and came third. The black was first. The pink 
came second and the red came in third place. And the blue stayed… came 
last, even though in the middle he started leading in the distances, and 
then the black began to pass everyone, and won actually. 

Observing Dan and the rest of the interviewees it became apparent that although the 
two interactive representations provided similar interactive control tools they 
generated different descriptions. The bodily movements and gestures of all the 
runners were important details in the motion analysis based on the video clip, the 
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interactive diagram based on color coded animation promoted comparative 
descriptions. Interviewees differentiated between the runners, addressing each one 
and the relative progress of each, and were able to describe the chain of events in a 
schematic way that served as a static model from which they were able to reconstruct 
the dynamic process.
Paper diagram and interactive illustrating diagram of linear function 
The second, analytical, activity required writing a symbolic expression describing a 
given linear function graph. It was first given as a paper diagram on which students 
could read Cartesian numerical values by the marks on the paper, compute the slope 
of the line, and use as many point values as they needed to write the function's 
expression. All the students studied linear functions in graphic, numeric, and 
symbolic representations and were familiar with the symbolic representation 
f(x)=ax+b. The challenge of the activity was to find the function on a diagram on 
which the y-intercept point and the slope were not shown. 
 With the paper diagram Roni found the coordinates of the marked points but was not 
able to write the symbolic expression of the function. 

Roni:  It won’t help me much, to do it without anything, like that, on paper, I 
can’t do it alone. 

Of the six interviews we analyzed two students were able to solve the problem given 
as a paper diagram. The four students who asked for help and were unable to 
complete the task then requested to work with the interactive version of the diagram. 
After Roni read an activity in the ID format she moved with the mouse over the graph 
of the function and checked the coordinates of the points on the graph. She lingered 
over the x-intercept (probably because the y-intercept did not exist on the given 
diagram) and decided to create a table of values: 

Roni:  I will try to construct a table of values. I'm trying to find 
points of integers. (She moved the mouse up and down the 
line several times, monitored the changes of the 
coordinate values on the line, picked coordinates to write 
in the table, and wrote differences between the values.)

Interviewer:  Would you explain what are you doing? 
Roni:  I’m checking the intervals for the slope. The software does not really help 

me, aside from finding points, at the moment. The slope is four, 4x.
(writing 4x on the page).

Interviewer:  How do you know that the slope is four? 
Roni:  Because these are the intervals here, and here it is one and it comes out 

four divided by one. And y… I guess that the free term would be about 
minus 13 (Roni extends the line with the mouse outside the borders of the 
diagram until she envisions that it “meets with the y-axis”). I can’t really 
see it here, because I can’t increase the scale, but by the slope and that it’s 
going to be minus 10 and it goes a little below… I don’t exactly know the 
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free term, I also can’t exactly write the function accurately. It is about 4x-
15.

Interviewer:  Can you check whether this is true? 
Roni:  Yes. I substituted 5… after the substitution, when Y equals 5 then X 

equals 5 also, 5 multiplied by 4, 20, 20 minus 15 really equals 5… so this 
is the symbolic expression. 

Roni followed the changes of the coordinates along the line, tracked the coordinates 
on the graph, and organized values of consecutive integers in a table. Two of the 
three points she chose to treat were the marked points on the graph. She calculated 
the differences between the values in the table and the ratio between the differences 
to find the slope, concluded that the slope was 4, and wrote in the expression of the 
function as 4x. To obtain to the constant term she extended the line, using mouse 
movement, over the borders of the system, until the imaginary intersection with the y-
axis. She estimated where the line would cross the y-axis and suggested that the 
function is approximately 4x-15. To check, she substituted one coordinate in the 
function and obtained the expected correct result. Working with ID, Roni was able to 
solve the task. ID served as a scaffold for the activity: watching the coordinates 
resulted in a table on a page and the calculation of the slope and the expression 
f(x)=ax+b. An intriguing question is what kept her from completing the activity 
when working with the paper diagram. It was possible to read the slope by the rise of 
8 in an interval of 2 between the marked points: (4, 1) and (6, 9). We think that one 
important reason is that the ID turned the static sketch into a detailed graph. The 
option to read any point on the line led Roni to create a familiar representation on 
request. As Timna (2008) found in a recent study comparing student conceptions of 
line and point when presented on paper and on screen, the technological environment 
that allows seeing the coordinates of the points increases the diversity of student 
attitudes toward the concepts of "point" and "straight line" and toward the 
relationship between them, and produces a sensory experience that is different from 
the experience of working with pencil and paper. The dynamics of mouse tracing 
have led Roni to imagine the undrawn part of the line, enabling her to reach the 
missing information about the y-intercept.

DISCUSSION 
Both activities shed light on the ways in which problem solvers use sketchy IDs 
designed to encourage the problem solver to interact with the diagrams in a way that 
transforms sketchy information into an important component of conceptual learning. 
The animated simulation designed as a dynamic sketch of a race and the interactive 
diagram of the graph include fewer details than their corresponding static diagram. 
By contrast, the video clip and the paper graph diagram were both detailed specific 
examples. We observed the interviewees' language and gestures to understand how 
sketchy information and simple interactive features are being used in problem 
solving. The two versions of the motion problem share the same interactive features, 
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with run, stop, and restart options. These tools proved to be necessary in our 
experiment and helped students focus on events during the process. Although both 
the clip and the animation presented a similar motion episode, the work followed a 
different path. In the clip the emphasis was on getting the story right, which required 
attending to details such as the runners' body motion. As a result, documenting a 
sequence of events became a complicated task. Speiser & Walter (1996), who 
describe the "catwalk" pictures used to learn calculus of motion, described the 
students' decisions about where to watch and what to describe as governing the 
narrative. Although "catwalk" pictures or video clips represent an important stage in 
the modeling process, they sometimes keep learners too close to the situation and 
prevent them from thinking in the abstract. The diagrammatic nature of the ID 
presentation made it easier to distinguish between the runners, to address each one 
using colors, and to identify their relative progress. Moreover, the two races (in the 
clip and in the animation) were different in the given example. The clip showed a 
close race, whereas the animated ID was designed as a generic example with an 
exceptional case that captured the students' attention and became a pivot in the 
description of the race. As a result, it was easier to document and chart a sequence of 
events that students deemed important, and then mentally replay the sequence, 
turning it into a purified motion episode. Comparing the students' work on paper and 
their work with the interactive linear function graph, attention to and awareness of 
details in the given diagram, and the personal choices students make in the 
construction of additional details are important considerations.  Although the two 
pictures (the printed picture and the one on screen) were similar, the ID made it 
possible to address the given graph as a sketch that reveals the "big picture": a line 
with a positive slope that intersects "somewhere below." The terms used by the 
students reflect this concentration on the sketchy description of the object, but at the 
same time the sketch can be interactively unfolded into a detailed numeric diagram, 
which caused students to change their focus from data testing to choosing the 
necessary data. Analysis of the problem-solving processes of the two activities that 
include IDs indicates that the process of concept construction occurred as a result of 
the students' decision to change the representation of the data in the activity, build a 
focused collection of data, expand the given representations, or build new ones. 

IMPLICATIONS
An important role of research in mathematics education about the new digital culture 
in school mathematics is to inform teachers about new processes of knowing and 
about the stability of known processes. The present study of interactive diagrams 
identifies such processes in the domain of school algebra – a domain that in the last 
decade has undergone major changes, including several innovative uses of 
technology. We hope that our work contributes to the ways in which teachers, 
curriculum developers, and designers of digital books design activities. 
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free term, I also can’t exactly write the function accurately. It is about 4x-
15.

Interviewer:  Can you check whether this is true? 
Roni:  Yes. I substituted 5… after the substitution, when Y equals 5 then X 

equals 5 also, 5 multiplied by 4, 20, 20 minus 15 really equals 5… so this 
is the symbolic expression. 

Roni followed the changes of the coordinates along the line, tracked the coordinates 
on the graph, and organized values of consecutive integers in a table. Two of the 
three points she chose to treat were the marked points on the graph. She calculated 
the differences between the values in the table and the ratio between the differences 
to find the slope, concluded that the slope was 4, and wrote in the expression of the 
function as 4x. To obtain to the constant term she extended the line, using mouse 
movement, over the borders of the system, until the imaginary intersection with the y-
axis. She estimated where the line would cross the y-axis and suggested that the 
function is approximately 4x-15. To check, she substituted one coordinate in the 
function and obtained the expected correct result. Working with ID, Roni was able to 
solve the task. ID served as a scaffold for the activity: watching the coordinates 
resulted in a table on a page and the calculation of the slope and the expression 
f(x)=ax+b. An intriguing question is what kept her from completing the activity 
when working with the paper diagram. It was possible to read the slope by the rise of 
8 in an interval of 2 between the marked points: (4, 1) and (6, 9). We think that one 
important reason is that the ID turned the static sketch into a detailed graph. The 
option to read any point on the line led Roni to create a familiar representation on 
request. As Timna (2008) found in a recent study comparing student conceptions of 
line and point when presented on paper and on screen, the technological environment 
that allows seeing the coordinates of the points increases the diversity of student 
attitudes toward the concepts of "point" and "straight line" and toward the 
relationship between them, and produces a sensory experience that is different from 
the experience of working with pencil and paper. The dynamics of mouse tracing 
have led Roni to imagine the undrawn part of the line, enabling her to reach the 
missing information about the y-intercept.

DISCUSSION 
Both activities shed light on the ways in which problem solvers use sketchy IDs 
designed to encourage the problem solver to interact with the diagrams in a way that 
transforms sketchy information into an important component of conceptual learning. 
The animated simulation designed as a dynamic sketch of a race and the interactive 
diagram of the graph include fewer details than their corresponding static diagram. 
By contrast, the video clip and the paper graph diagram were both detailed specific 
examples. We observed the interviewees' language and gestures to understand how 
sketchy information and simple interactive features are being used in problem 
solving. The two versions of the motion problem share the same interactive features, 
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with run, stop, and restart options. These tools proved to be necessary in our 
experiment and helped students focus on events during the process. Although both 
the clip and the animation presented a similar motion episode, the work followed a 
different path. In the clip the emphasis was on getting the story right, which required 
attending to details such as the runners' body motion. As a result, documenting a 
sequence of events became a complicated task. Speiser & Walter (1996), who 
describe the "catwalk" pictures used to learn calculus of motion, described the 
students' decisions about where to watch and what to describe as governing the 
narrative. Although "catwalk" pictures or video clips represent an important stage in 
the modeling process, they sometimes keep learners too close to the situation and 
prevent them from thinking in the abstract. The diagrammatic nature of the ID 
presentation made it easier to distinguish between the runners, to address each one 
using colors, and to identify their relative progress. Moreover, the two races (in the 
clip and in the animation) were different in the given example. The clip showed a 
close race, whereas the animated ID was designed as a generic example with an 
exceptional case that captured the students' attention and became a pivot in the 
description of the race. As a result, it was easier to document and chart a sequence of 
events that students deemed important, and then mentally replay the sequence, 
turning it into a purified motion episode. Comparing the students' work on paper and 
their work with the interactive linear function graph, attention to and awareness of 
details in the given diagram, and the personal choices students make in the 
construction of additional details are important considerations.  Although the two 
pictures (the printed picture and the one on screen) were similar, the ID made it 
possible to address the given graph as a sketch that reveals the "big picture": a line 
with a positive slope that intersects "somewhere below." The terms used by the 
students reflect this concentration on the sketchy description of the object, but at the 
same time the sketch can be interactively unfolded into a detailed numeric diagram, 
which caused students to change their focus from data testing to choosing the 
necessary data. Analysis of the problem-solving processes of the two activities that 
include IDs indicates that the process of concept construction occurred as a result of 
the students' decision to change the representation of the data in the activity, build a 
focused collection of data, expand the given representations, or build new ones. 

IMPLICATIONS
An important role of research in mathematics education about the new digital culture 
in school mathematics is to inform teachers about new processes of knowing and 
about the stability of known processes. The present study of interactive diagrams 
identifies such processes in the domain of school algebra – a domain that in the last 
decade has undergone major changes, including several innovative uses of 
technology. We hope that our work contributes to the ways in which teachers, 
curriculum developers, and designers of digital books design activities. 
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THE ROLE OF VISUALISATION AND EXEMPLIFICATION 
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In this paper we report a study that aims to analyse curriculum content, pedagogical 
practice and student perceptions of the often counter-intuitive but significant concept 
of infinite series. Our analyses of texts used to introduce the concept to students in 
the UK and in Canada highlight that the presentation of the concept is largely a-
historical and decontextualised, with few graphical representations and even fewer 
applications or intra-mathematical references to the concept’s significance and 
relevance. We also draw on interviews with university lecturers to discuss how 
pedagogical practice can assist students’ overcoming of persistent perceptions, such 
as ‘if terms of the sequence become smaller then the series converges’ through uses 
of evocative images and key examples of divergence and convergence. 

LEARNING AND TEACHING THE CONCEPT OF INFINITE SERIES 
The work we report in this paper is the first, self-contained, phase of a study that 
investigates the learning and teaching of a complex, often counter-intuitive but 
significant mathematical concept, the concept of infinite series. The applications of 
infinite series in mathematics and science are wide ranging and crucial (González-
Martín & Nardi, 2007). In mathematics, for example, the concept of infinite series is 
a fundamental element of the Riemann Integral, the calculation of the area under a 
curve. Infinite numbers, such as , are expressed, and can therefore be studied, as 
infinite series (here the sum of 0.3 + 0.03 + 0.003 + …). In Medicine and Biology 
infinite series provide ways of modelling situations such as the distribution of 
medications or poisons. Overall infinite series are central to the mathematical 
education of a wide range of scientists and professionals. It is therefore quite 
surprising that the studies of its learning and teaching are rather few.
Students’ difficulties with the concept of infinite series have been reported mostly 
indirectly in the works that study the concept of convergence (e.g. Robert, 1982) – 
often in the context of the infinite series underlying some mathematical situations 
such as integration (e.g. Fay & Webster, 1985). These studies suggest that early 
misunderstandings of the concept may originate in perceptions of infinity, such as 
that the sum of infinitely many quantities is always infinitely great, and may result in 
some of the difficulties with understanding the concept of Riemann integral and, 
particularly, improper integral (e.g. González-Martín, 2006). These studies also 
suggest that the absence of visual understanding (e.g. Alcock & Simpson, 2004) 
associated with the concept of infinite series poses severe limitations in students’ 
understanding and application of the concept (e.g. Mamona, 1990). 
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In sum previous research suggests that students appear to have little understanding of 
what the concept actually means, have no visual imagery associated with it and see 
little or no relevance to it in mathematical and other situations. As is often the case 
with the teaching of complex mathematical topics at upper-secondary and university 
levels (e.g. Artigue, Batanero & Kent, 2007), teaching, through reduction to an 
algorithmic approach – e.g. exercises that require an often blind application of 
formulae; static use of graphical representations; absence of a connection to other 
crucial concepts; no attempt to alter related misconceptions about infinity etc. – may 
evade addressing students’ difficulties. Our study aims to explore whether this is the 
case with curriculum content and pedagogical practice and, if so, to propose 
appropriate modifications. 

A STUDY OF CURRICULUM CONTENT AND PEDAGOGICAL PRACTICE 
The work we report here is part of a study currently in progress in the UK and 
Canada which aims to investigate the teaching and learning of infinite series through: 

I. Study of the student learning experience with regard to:
a. Analysis of curriculum content and pedagogical practice;
b. Analysis of students’ perceptions 

II. Design, implementation and evaluation of a pedagogical intervention that 
addresses student needs as emerging from I. 

Here we report analyses regarding Ia. Our work concerning curriculum content 
within Ia was launched with a preliminary analysis, conducted by the Canadian team 
led by the third author (González-Martín, 2008) of eight recent (1993-2008) upper-
secondary texts used towards students’ first encounter with the concept. We note that, 
as books are not the only, and not always the dominant, resource students use, we are 
also examining lecture notes, exercise sheets etc. where the concept is introduced, 
even informally, for the first time. Analogously to the three dimensions described by 
Artigue (1992) this preliminary analysis aimed to address the following questions:

Epistemological: what are the mathematical ideas these texts aim to convey, 
particularly in the light of the concept’s history? 
Cognitive: what student learning issues do these texts aim to address?  
Didactical: what teaching are these texts conducive to, particularly 
considering the institutional context in which the concept is taught? 

This preliminary analysis suggested that, even though the concept enjoys substantial 
coverage in most texts (an average of 15% of total number of main text pages), its 
presentation is largely a-historical and decontextualised, almost exclusively in the 
algebraic register (Duval, 1995) and with few graphical representations (average of 
about 0.1 picture per page, slightly increasing from older to newer texts) and 
applications. Particularly with regard to applications only two of the texts offer real-
life applications of the concept and only three present applications of the concept in 
other disciplines (including Medicine, Economics etc.); and it’s not always the more 
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recent texts that present more applications. Finally, there are hardly any historical 
references in these texts – with the exception of a few, but usually out of context, 
references to Zeno’s paradox – and no attempt is made to present the concept’s 
evolution in the history of mathematics. In sum the texts studied by the Canadian 
team do not appear to take into account research results regarding the pedagogical 
potential of introducing concepts via multiple representations (e.g. Duval, 1995) and 
with a historical-epistemological perspective. The algebraic register and 
representations are privileged and, overall, the introduction to this concept remains 
quite formal.  
The discussion we present in what follows is based on the analysis of seven texts1 by 
the UK team (first two authors). We identified these texts with the help of lecturers 
teaching the concept to undergraduates in mathematics, science and engineering in 
the UK. We also draw on interviews with a small number of these lecturers. The texts 
we discuss here are amongst those mostly recommended by the lecturers to students 
in university or foundation courses of applied and pure mathematics. Our interviews 
and text analysis address questions that have emerged from the literature and 
González-Martín’s preliminary analysis. 
These questions include:  

Do the text and pedagogical practice support – and how – students’ 
overcoming of key misconceptions tantalising the learning of the concept of 
infinite series, such as ‘infinitely many addends, infinitely great sum’, for 
example, through reference to this concept’s epistemology and history? 
Does the text and pedagogical practice use – and how – visual 
representations in order to enrich students’ understanding of the concept? 
In what order does the concept appear in the text and lectures (for example, 
in relation to the appearance of the notion of numerical sequence of which it 
is a logical precedent). And does this order – and how – take into 
consideration the fundamental differences between a mathematically 
‘appropriate’ order and the ways in which students acquire a new concept?
Do the text and pedagogical practice instil – and how – an algorithmic and 
mechanical approach to the concept (despite recent research and policy 
advice to the contrary)? 
Do the text and pedagogical practice contextualise – and how – the concept 
in terms of its raison-d’être in mathematics and its applications in 
mathematical and other situations? 

Here we address some of these questions through drawing on our first-level analysis 
of these seven texts and the interview with one lecturer (with about sixteen years of 
teaching experience, in applied and pure mathematics as well as other disciplines, and 
affiliated with a well-regarded mathematics department). Our overall aim is to 
explore how texts and – through the perspective of the lecturer – pedagogical practice 
address certain student needs with regard to the learning of infinite series. 
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In sum previous research suggests that students appear to have little understanding of 
what the concept actually means, have no visual imagery associated with it and see 
little or no relevance to it in mathematical and other situations. As is often the case 
with the teaching of complex mathematical topics at upper-secondary and university 
levels (e.g. Artigue, Batanero & Kent, 2007), teaching, through reduction to an 
algorithmic approach – e.g. exercises that require an often blind application of 
formulae; static use of graphical representations; absence of a connection to other 
crucial concepts; no attempt to alter related misconceptions about infinity etc. – may 
evade addressing students’ difficulties. Our study aims to explore whether this is the 
case with curriculum content and pedagogical practice and, if so, to propose 
appropriate modifications. 

A STUDY OF CURRICULUM CONTENT AND PEDAGOGICAL PRACTICE 
The work we report here is part of a study currently in progress in the UK and 
Canada which aims to investigate the teaching and learning of infinite series through: 

I. Study of the student learning experience with regard to:
a. Analysis of curriculum content and pedagogical practice;
b. Analysis of students’ perceptions 

II. Design, implementation and evaluation of a pedagogical intervention that 
addresses student needs as emerging from I. 

Here we report analyses regarding Ia. Our work concerning curriculum content 
within Ia was launched with a preliminary analysis, conducted by the Canadian team 
led by the third author (González-Martín, 2008) of eight recent (1993-2008) upper-
secondary texts used towards students’ first encounter with the concept. We note that, 
as books are not the only, and not always the dominant, resource students use, we are 
also examining lecture notes, exercise sheets etc. where the concept is introduced, 
even informally, for the first time. Analogously to the three dimensions described by 
Artigue (1992) this preliminary analysis aimed to address the following questions:

Epistemological: what are the mathematical ideas these texts aim to convey, 
particularly in the light of the concept’s history? 
Cognitive: what student learning issues do these texts aim to address?  
Didactical: what teaching are these texts conducive to, particularly 
considering the institutional context in which the concept is taught? 

This preliminary analysis suggested that, even though the concept enjoys substantial 
coverage in most texts (an average of 15% of total number of main text pages), its 
presentation is largely a-historical and decontextualised, almost exclusively in the 
algebraic register (Duval, 1995) and with few graphical representations (average of 
about 0.1 picture per page, slightly increasing from older to newer texts) and 
applications. Particularly with regard to applications only two of the texts offer real-
life applications of the concept and only three present applications of the concept in 
other disciplines (including Medicine, Economics etc.); and it’s not always the more 
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recent texts that present more applications. Finally, there are hardly any historical 
references in these texts – with the exception of a few, but usually out of context, 
references to Zeno’s paradox – and no attempt is made to present the concept’s 
evolution in the history of mathematics. In sum the texts studied by the Canadian 
team do not appear to take into account research results regarding the pedagogical 
potential of introducing concepts via multiple representations (e.g. Duval, 1995) and 
with a historical-epistemological perspective. The algebraic register and 
representations are privileged and, overall, the introduction to this concept remains 
quite formal.  
The discussion we present in what follows is based on the analysis of seven texts1 by 
the UK team (first two authors). We identified these texts with the help of lecturers 
teaching the concept to undergraduates in mathematics, science and engineering in 
the UK. We also draw on interviews with a small number of these lecturers. The texts 
we discuss here are amongst those mostly recommended by the lecturers to students 
in university or foundation courses of applied and pure mathematics. Our interviews 
and text analysis address questions that have emerged from the literature and 
González-Martín’s preliminary analysis. 
These questions include:  

Do the text and pedagogical practice support – and how – students’ 
overcoming of key misconceptions tantalising the learning of the concept of 
infinite series, such as ‘infinitely many addends, infinitely great sum’, for 
example, through reference to this concept’s epistemology and history? 
Does the text and pedagogical practice use – and how – visual 
representations in order to enrich students’ understanding of the concept? 
In what order does the concept appear in the text and lectures (for example, 
in relation to the appearance of the notion of numerical sequence of which it 
is a logical precedent). And does this order – and how – take into 
consideration the fundamental differences between a mathematically 
‘appropriate’ order and the ways in which students acquire a new concept?
Do the text and pedagogical practice instil – and how – an algorithmic and 
mechanical approach to the concept (despite recent research and policy 
advice to the contrary)? 
Do the text and pedagogical practice contextualise – and how – the concept 
in terms of its raison-d’être in mathematics and its applications in 
mathematical and other situations? 

Here we address some of these questions through drawing on our first-level analysis 
of these seven texts and the interview with one lecturer (with about sixteen years of 
teaching experience, in applied and pure mathematics as well as other disciplines, and 
affiliated with a well-regarded mathematics department). Our overall aim is to 
explore how texts and – through the perspective of the lecturer – pedagogical practice 
address certain student needs with regard to the learning of infinite series. 
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In accordance with the questions listed above we have recorded in a spreadsheet the 
following information on each text – see also (Nardi, Biza & González-Martín, 
2008):

The number of pages dedicated to the concept of infinite series. 
The number and type of figural representations (e.g. graphs, drawings etc.) 
and the ratio of representation per page. 
The number and type of applications of the concept of series (e.g. real life 
applications, applications in other disciplines, problem solving, modelling 
etc.) and the ratio of application per page. 
The number and type of historical references (e.g. simple references to 
events, integration of history in teaching etc.) and the ratio of references per 
page.

Regarding historical references, we found none and so we do not discuss them further 
even though the discussion of their pedagogical potential remains significant. 
Regarding applications, we found three: two in Bostock and Chandler (0.10 per page) 
and one in Gilbert and Jordan (0.13 per page). One provided a context for a 

materially-based calculation of 
1

1
2

n

n

(a piece of string cut in half, and then in half 

etc.). The other two made a rather decorative reference to formulae relevant to 
Economics and Physics and proceeded with the usual application of the mathematical 
processes. We note that in the Spivak text, although we found no extra-mathematical 
applications (namely applications outside the field of mathematics), we identified a 
tendency for intra-mathematical connections (namely connections not necessarily 
between different disciplines but between mathematical topics). So, for example, in 

an exercise on p.411, the non-convergence of 
1

1
n n

, the harmonic series, is connected 

to the discussion of the infinite number of positive rational numbers. 
We allocate the rest of the discussion in this paper to the use of visual representations 
in the texts as well as in lectures and lecture notes. 

VISUALISATION AND EXEMPLIFICATION  IN TEXTS AND TEACHING 
Regarding visual representations, we found eleven figures related to series in three 
texts: three in Kreyszig, five in Spivak and three in Stephenson (0.23, 0.19 and 0.12 
figures per page respectively). These figures are used mainly for the visual 
representation of the series terms or the partial sums as points on the number line 
(Figures 1, 2 and 3) or areas of rectangles (Figures 4 and 5).
In particular, Figure 1 features a neighbourhood of s(x1), a visual expression for the 
inequality 1 1ns x s x . Figure 2 features the partial sums s1, s2, s3, s4 of the 
series 1 2 3 4 ...x x x x , where {xn} is a monotonic decreasing to zero sequence. 
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According to the Leibniz Theorem this series converges and the illustration of Figure 
2 supports the claim in the proof that: 

2 4 6 1 3 5..., ... and , if is even and is oddk ts s s s s s s s k l

 Figure 1. Kreyszig, p. 172 Figure 2. Kreyszig, p. A70 

Figure 3 features the terms and the partial sums of the series: 1 1 1
... 1

2 4 8
.

Through this picture, not only the order of the terms is illustrated but the convergence 
of the series is evident and as Spivak suggests this is “an infinite sum which can 
always be remembered from the picture” (Spivak, 1967, p. 391). 

Figure 3. Spivak, p. 391

Figure 4 visualises the symbolic expression: 
1

( 1) ( )
n

n
f n f f n  for monotonic 

functions, whereas Figure 5 features “[…] a graphical argument. Each term of the 
series represents the area of the rectangle with base equal to the unity and height 
equal to the magnitude of the term” (Stephenson 1973, 72) 

 Figure 4. Spivak, p. 396  Figure 5. Stephenson, p. 72 
In some of the texts we found the following non-figural but rather evocative 
representation of the proof of the divergence of the harmonic series (via grouping of 
the terms) – we return to this in our discussion of the lecturer interview data:

Figure 6. A non-figural representation of the divergence of 
1

1
n n
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In accordance with the questions listed above we have recorded in a spreadsheet the 
following information on each text – see also (Nardi, Biza & González-Martín, 
2008):

The number of pages dedicated to the concept of infinite series. 
The number and type of figural representations (e.g. graphs, drawings etc.) 
and the ratio of representation per page. 
The number and type of applications of the concept of series (e.g. real life 
applications, applications in other disciplines, problem solving, modelling 
etc.) and the ratio of application per page. 
The number and type of historical references (e.g. simple references to 
events, integration of history in teaching etc.) and the ratio of references per 
page.

Regarding historical references, we found none and so we do not discuss them further 
even though the discussion of their pedagogical potential remains significant. 
Regarding applications, we found three: two in Bostock and Chandler (0.10 per page) 
and one in Gilbert and Jordan (0.13 per page). One provided a context for a 
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etc.). The other two made a rather decorative reference to formulae relevant to 
Economics and Physics and proceeded with the usual application of the mathematical 
processes. We note that in the Spivak text, although we found no extra-mathematical 
applications (namely applications outside the field of mathematics), we identified a 
tendency for intra-mathematical connections (namely connections not necessarily 
between different disciplines but between mathematical topics). So, for example, in 

an exercise on p.411, the non-convergence of 
1

1
n n

, the harmonic series, is connected 

to the discussion of the infinite number of positive rational numbers. 
We allocate the rest of the discussion in this paper to the use of visual representations 
in the texts as well as in lectures and lecture notes. 

VISUALISATION AND EXEMPLIFICATION  IN TEXTS AND TEACHING 
Regarding visual representations, we found eleven figures related to series in three 
texts: three in Kreyszig, five in Spivak and three in Stephenson (0.23, 0.19 and 0.12 
figures per page respectively). These figures are used mainly for the visual 
representation of the series terms or the partial sums as points on the number line 
(Figures 1, 2 and 3) or areas of rectangles (Figures 4 and 5).
In particular, Figure 1 features a neighbourhood of s(x1), a visual expression for the 
inequality 1 1ns x s x . Figure 2 features the partial sums s1, s2, s3, s4 of the 
series 1 2 3 4 ...x x x x , where {xn} is a monotonic decreasing to zero sequence. 
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According to the Leibniz Theorem this series converges and the illustration of Figure 
2 supports the claim in the proof that: 

2 4 6 1 3 5..., ... and , if is even and is oddk ts s s s s s s s k l

 Figure 1. Kreyszig, p. 172 Figure 2. Kreyszig, p. A70 

Figure 3 features the terms and the partial sums of the series: 1 1 1
... 1

2 4 8
.

Through this picture, not only the order of the terms is illustrated but the convergence 
of the series is evident and as Spivak suggests this is “an infinite sum which can 
always be remembered from the picture” (Spivak, 1967, p. 391). 

Figure 3. Spivak, p. 391

Figure 4 visualises the symbolic expression: 
1

( 1) ( )
n

n
f n f f n  for monotonic 

functions, whereas Figure 5 features “[…] a graphical argument. Each term of the 
series represents the area of the rectangle with base equal to the unity and height 
equal to the magnitude of the term” (Stephenson 1973, 72) 

 Figure 4. Spivak, p. 396  Figure 5. Stephenson, p. 72 
In some of the texts we found the following non-figural but rather evocative 
representation of the proof of the divergence of the harmonic series (via grouping of 
the terms) – we return to this in our discussion of the lecturer interview data:

Figure 6. A non-figural representation of the divergence of 
1

1
n n
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The scarcity as well as the often decorative, inconsequential nature of the figural 
representations used in the texts we examined led us to the preliminary conclusion 
that the texts do not seem to encourage the – largely supported by the relevant 
research (e.g Alcock & Simpson, 2004) – dynamic interplay between the algebraic 
and the graphic registers in their introductions to the concept of series.
Using some of the representations we exemplified above, as a trigger for discussion, 
in the interviews we explored how pedagogical practice may rise above merely 
replicating the texts’ almost exclusive emphasis on the algebraic register. Below we 
quote from one interview for this purpose. 
The lecturer agrees with our preliminary conclusion about the scarcity of 
visualisation and applications in books and attributes this partly to ‘the rightful fear’, 
originating mostly in the pure mathematics community, that ‘when we are drawing 
one diagram we are showing one example whereas of course, we are trying to show a 
general argument’. So even though he ‘like[s] to draw as much as [he] can’ he also 
acknowledges that he risks his drawing being seen as ‘a mere toy’. Despite these 
risks he insists that diagrams are ‘a good heuristic’ and offers – see below – several 
examples of this in the context of series. To stress the value of visual representations 
to the students he describes his practice of acknowledging their presence in student 
written work both with encouraging verbal commentary and ‘certainly some credit, 
though not full, some marks’. 
At the heart of the lecturer’s argument is that, above all, visual representations can be 
‘persuasive’ and can help students overcome limited or misleading perceptions 
concerning series. One such perception, that is very common amongst newcomers to 
the concept and needs to be overcome ‘before all else’, is that ‘all I need is for the 
terms to get smaller and then I have convergence’ (another one is confusing the series 

xn with the sequence {xn}, particularly as students need to understand partial sums 
Sn of the terms of {xn} as  a sequence itself). The lecturer offers two explanations for 
the origins of the student belief that if the terms of the sequence become smaller then 
the series converges. First, their previous experience with series may consist entirely 

of working with the geometric series
0

n

n

x (which, for 0<x<1, is convergent and the 

terms of the sequence indeed become smaller). Second, their previous experience and 
practice is often limited to a very small number of examples, almost always of 
convergent series: convergence offers the opportunity to formulate questions with ‘an 
answer to arrive at, a number’ and, at least in school, this closure is seen as an 
opportunity for a ‘satisfying’ student experience. As a result students may arrive at 
university with divergence being something ‘they have never been confronted with’. 
The role of key examples (Mason & Watson, 2005) in altering student beliefs such as 
the above can be instrumental. The interviewee elaborates the harmonic series as one 
of these key examples: under the influence of above mentioned belief students start 
off absolutely convinced of its convergence. But the series is divergent. 
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When we showed the lecturer Figure 6 
he recalled a figural-concretised version 
of this (Figure 7) that he uses often. He 
also stressed the effectiveness, in his 
experience, of offering students ‘visual 
portrayals’ of divergence and 
convergence and mentioned the 
following two: ‘squares and rectangles’ 
(e.g. for the geometric series for powers 
of ½) and ‘staircase’ (with its ‘capacity 
to be of a particular height’ equal to the 
sum of the infinite series this is a ‘good 
demonstration’ of convergence; 
significantly, with a slight modification 
in the size of its ‘steps’ it becomes a 
‘dramatic’ demonstration of 
divergence).
In the above we discuss pedagogical practice concerning the introduction to the 
concept of series in terms of how this practice can address urgent cognitive needs of 
the students. In this case these needs relate to key perceptions of the concept (e.g. 
confusing series with sequences; the belief that if the terms of the sequence become 
smaller then the series converges). The pedagogical practices for addressing these 
needs include the use of key examples (e.g. the harmonic series) and highly evocative 
representations (such as the ones in Figures 3, 6 and 7) that may generate productive 
conflict with these perceptions. 

CONCLUDING REMARKS AND FURTHER STEPS 
In this paper we presented analyses of texts used in the introduction of the concept of 
series to upper secondary and university level students in order to explore whether, 
and how, texts address student cognitive needs with regard to the learning of key 
concepts. We also began to address how pedagogical practice attempts to address 
those needs through reference to lecturer interview data. Our analysis of the texts 
concluded that the presentation of the concept, while substantial in its extent, is 
largely a-historical and decontextualised, with few graphical representations and even 
fewer applications or intra-mathematical references to the concept’s significance and 
relevance. Furthemore, bearing in mind the recommendations made in the relevant 
literature and the interview data, we proposed that privileging, almost exclusively, the 
formal-algebraic register denies students the insight that can be gained from engaging 
with visual representations (Duval, 1995), key examples (Watson & Mason, 2005) 
and an epistemologico-historical perspective on the concept (González-Martín & 
Nardi, 2007). We will explore the conjectures emerging from this proposition while 
completing phase Ia and launching phases Ib and II of the study. 

Figure 7. Harmonic series, divergence 
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that the texts do not seem to encourage the – largely supported by the relevant 
research (e.g Alcock & Simpson, 2004) – dynamic interplay between the algebraic 
and the graphic registers in their introductions to the concept of series.
Using some of the representations we exemplified above, as a trigger for discussion, 
in the interviews we explored how pedagogical practice may rise above merely 
replicating the texts’ almost exclusive emphasis on the algebraic register. Below we 
quote from one interview for this purpose. 
The lecturer agrees with our preliminary conclusion about the scarcity of 
visualisation and applications in books and attributes this partly to ‘the rightful fear’, 
originating mostly in the pure mathematics community, that ‘when we are drawing 
one diagram we are showing one example whereas of course, we are trying to show a 
general argument’. So even though he ‘like[s] to draw as much as [he] can’ he also 
acknowledges that he risks his drawing being seen as ‘a mere toy’. Despite these 
risks he insists that diagrams are ‘a good heuristic’ and offers – see below – several 
examples of this in the context of series. To stress the value of visual representations 
to the students he describes his practice of acknowledging their presence in student 
written work both with encouraging verbal commentary and ‘certainly some credit, 
though not full, some marks’. 
At the heart of the lecturer’s argument is that, above all, visual representations can be 
‘persuasive’ and can help students overcome limited or misleading perceptions 
concerning series. One such perception, that is very common amongst newcomers to 
the concept and needs to be overcome ‘before all else’, is that ‘all I need is for the 
terms to get smaller and then I have convergence’ (another one is confusing the series 

xn with the sequence {xn}, particularly as students need to understand partial sums 
Sn of the terms of {xn} as  a sequence itself). The lecturer offers two explanations for 
the origins of the student belief that if the terms of the sequence become smaller then 
the series converges. First, their previous experience with series may consist entirely 
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practice is often limited to a very small number of examples, almost always of 
convergent series: convergence offers the opportunity to formulate questions with ‘an 
answer to arrive at, a number’ and, at least in school, this closure is seen as an 
opportunity for a ‘satisfying’ student experience. As a result students may arrive at 
university with divergence being something ‘they have never been confronted with’. 
The role of key examples (Mason & Watson, 2005) in altering student beliefs such as 
the above can be instrumental. The interviewee elaborates the harmonic series as one 
of these key examples: under the influence of above mentioned belief students start 
off absolutely convinced of its convergence. But the series is divergent. 
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When we showed the lecturer Figure 6 
he recalled a figural-concretised version 
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experience, of offering students ‘visual 
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confusing series with sequences; the belief that if the terms of the sequence become 
smaller then the series converges). The pedagogical practices for addressing these 
needs include the use of key examples (e.g. the harmonic series) and highly evocative 
representations (such as the ones in Figures 3, 6 and 7) that may generate productive 
conflict with these perceptions. 
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concepts. We also began to address how pedagogical practice attempts to address 
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largely a-historical and decontextualised, with few graphical representations and even 
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relevance. Furthemore, bearing in mind the recommendations made in the relevant 
literature and the interview data, we proposed that privileging, almost exclusively, the 
formal-algebraic register denies students the insight that can be gained from engaging 
with visual representations (Duval, 1995), key examples (Watson & Mason, 2005) 
and an epistemologico-historical perspective on the concept (González-Martín & 
Nardi, 2007). We will explore the conjectures emerging from this proposition while 
completing phase Ia and launching phases Ib and II of the study. 
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ENDNOTES
1. Bostock & Chandler (2000). Core maths for advanced level (3rd ed.); Gilbert & 
Jordan (2002). Guide to mathematical methods (2nd ed.); Haggarty (1989). 
Fundamentals of Mathematical Analysis; Kreyszig (2006). Advanced engineering 
mathematics (9th ed.); Priestley (2003). Introduction to Complex Analysis (2nd ed.); 
Spivak (1967). Calculus; Stephenson (1973). Mathematical methods for Science 
students (2nd ed.). 
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CHARACTERIZATION OF BUS CONDUCTORS’ WORKPLACE 

MATHEMATICS – AN EXTENSION TO SAXE’S FOUR 

PARAMETER MODEL 
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The line of research on everyday mathematics has pointed out the importance of 

situations that evoke superior performance in quantitative reasoning in everyday 

settings, and researchers have called for further investigation of everyday practices 

that involve mental mathematics. The general aim of this study is to develop a better 

understanding of the mathematics used in everyday situations. In particular, this 

study focuses on investigating the mental mathematics involved in bus conductors’ 

work in Chennai, India. In this paper, we discuss the extent to which different goal-

related activities and the dynamics of their workplaces contribute to their use of 

mental computation.

INTRODUCTION  

In the last two decades several researchers have analyzed and documented the 

mathematics practices of adults as well as children, which take place outside the 

school settings (e.g., Carraher, Carraher, & Schliemann, 1987; D’ Ambrosio, 1985; 

Gerdes, 1996; Saxe, 1991). This association has given rise to the recognition of 

different forms of mathematics such as situated cognition, ethnomathematics, and 

everyday cognition. The essential principle guiding such studies is the 

acknowledgement of the fact that people in several walks of life perform 

mathematical activities out of school, at home, and at work. One area of study that 

has stemmed from the research field of everyday cognition is concerned with 

investigating the mathematical practices of adults in various workplaces. This line of 

research gives some insight into how people conceptualize the role of mathematics in 

their work. More recent research in workplace mathematics has attempted to uncover 

the mathematical practices of specific groups such as nurses (Noss, Hoyles, & Pozzi, 

2000), automobile workers (Magajna & Monaghan, 2003), and carpet layers 

(Masingila, 1994). Researchers have investigated the nature of mathematical 

knowledge used in workplaces and examined how it is similar to and different from 

mathematics learned in school.  

Although over the past 15 years, mathematics education research has begun to 

explore the nature of the mathematics used in different workplaces, very few studies 

have investigated the nature of workplace mathematics in India. Guided by the desire 

to add to mathematics education research in India, the general aim of this study is to 

develop a better understanding of the mathematics used in everyday situations. In 

particular, the research purpose associated with this study is to observe, understand, 

describe, and analyze the mental mathematical practices of bus conductors in their 
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workplace and examine what this knowledge can add to the study of everyday 

mathematics.  

THEORETICAL FRAMEWORK  

Starting with a broad theoretical field of everyday cognition, we narrowed our focus 

to concentrate on workplace mathematics. The assumptions underlying the present 

study are that conductors’ workplace mathematical practices are influenced by their 

working conditions and that their practice-linked goals emerge and change as 

individual conductors participate in this practice. The three component analytical 

framework and four-parameter model developed by Saxe (1991) are used to explore 

the research purposes of this study. Saxe’s framework consists of three analytic 

components that are concerned with goals, forms and functions, and the interplay 

among various cognitive forms. The first component pertains to the analysis of 

practice-linked goals that emerge and keep changing as individuals participate in 

their cultural activities, whatever they might be. The second component analyses how 

“cultural forms” influence the practice of the participants and how these forms shift 

in their functions with increased participation. The third component focuses on the 

interplay between cognitive processes of individuals who participate in distinct 

practices.  

The purpose of this study was to gain insight into the use of mental computation in 

the bus conductors’ workplaces. The research reported in this paper is part of a larger 

project that investigated the workplace mathematical practices of bus conductors in 

Chennai, India. In this paper, we discuss the extent to which different goal-related 

activities and the dynamics of bus conductors’ workplace contribute to their use of 

mental computation. In particular, we address the following research question and 

propose an extension to Saxe’s four-parameter model to suit the findings of this 

study: In what ways do the bus conductors’ goal-directed activities influence their 

mental computational activities? 

METHODOLOGY 

Research methods  

Addressing the research question required understanding, identification, and analysis 

of bus conductors’ work, work-related goals, goal-oriented activities, and work-

related, goal-oriented mental mathematical activities. An instrumental case study 

approach was employed to carry out this study. The bus conductors are employees of 

the government organization, Metropolitan Transport Corporation (MTC). A 

convenience sampling method was used to determine two bus depots from which to 

select the conductors.  Once the two bus depots were chosen, a purposive sampling 

was employed and five participants were carefully and appropriately chosen based on 

participants’ years of service, educational qualifications, service records, and their 

willingness to participate in the study. The five conductors who participated in this 

study are called Mr. Alpha, Mr. Beta, Mr. Gamma, Mr. Delta, and Mrs. Omega.  
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Data collected included official documents, field notes, summary of observations and 

informal conversations, transcriptions of formal and semi structured interviews and 

personal reflections. Documents that were examined and used for this study included 

a conductor’ manual, route information manual, conductors’ service records, 

administrative documents, newspaper articles, and web sources. Over a period of 

three months, the primary researcher accompanied and observed each bus conductor 

during their work shifts four-six times, before, after, and during their bus trips. 

Observation sessions were always accompanied by short informal and semi 

structured interviews, which took place whenever an opportunity arose or at break 

times. Informal interviews were aimed at obtaining information about participants’ 

perceptions of mathematics, their views about the role of mathematics in their work-

related activities, and their opinions about formal school taught mathematics. Semi 

structured interview sessions dealt with questions related to the on-site observations 

and their work-related documents. Using copies of work-related documents the 

conductors used during the observation sessions, the primary researcher identified 

specific mathematical activities in which they engaged. The participants were asked 

to give verbal explanations for some of their actions, to reflect on their actions, and 

provide insights into their mathematical understanding. They were probed regarding 

their choice of solution strategies, use of alternate strategies, and use of school taught 

strategies.  

Analysis  

With data gathered from the study, it is now possible to conceive of bus conductors’ 

work as consisting of a three-phase structure.  

Sign-on time   Spread over time     Sign-off time  

(Before bus trips)  (During bus trips)  (End of bus trips) 

In the first phase, conductors obtained information regarding their bus routes, bus 

services and bus drivers and collected the required artifacts before they entered into 

the second phase of their work – the bus trips. During this phase, bus conductors 

commuted several times on a bus from point A to point B along different routes. 

They picked up and dropped off commuters en route and regulated their entry into 

and exit from the bus. Bus conductors’ duties included issuing a ticket to a commuter 

based on the entry and exit point, tendering the exact change back to the commuter 

when the commuter gave more money than the required amount, keeping a record of 

the number of tickets sold, calculating the daily allowance based on the day’s 

collection, and submitting the trip earnings to the supervisor at the end of a shift. 

After completing all of their scheduled bus trips, conductors entered into the third 

phase of their work-shift. During this phase they remitted their overall earnings to the 

accountant and collected their daily allowance. 
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Overall Goals Related to Mathematical Activities  

Based on the data collected from observations, field visits, and interviews with bus 

conductors, we identified specific goals and goal-directed, work-related activities that 

required conductors to do mental computation. Every day, as bus conductors reported 

to work, they aimed to complete all of their work-related duties. To help them 

complete their duties, conductors set overall work-related goals. These overall goals 

were fixed and determined the general plan of approach that the conductors followed 

to complete their goals. To execute their plan of approach, conductors carried out 

goal-oriented activities. Attached to some of the work-related, goal-oriented activities 

were mental mathematical activities. In table 1, we have presented bus conductors’ 

overall goals, goal-oriented activities, and related mental computational activities. 

Overall Goal Goal-Oriented activities 
Mental Computational 

Activities 

Authenticate every 

passenger’s travel in 

the bus (spread-over 

time). 

Approach passengers and gather 

information. 

Issue tickets quickly and efficiently. 

Solve mental computational 

problems associated with 

ticket transactions.  

Complete official 

documents (spread-

over time). 

Complete Traffic Return (official 

document) after each fare stage.  

Complete waybill (official 

document) to determine overall 

earnings. 

Solve mental computational 

problems associated with 

determination of (a) total 

number of tickets sold in 

each denomination, (b) 

collection amounts for each 

ticket denomination, and (c) 

total collection amount.  

Submit daily earnings 

(sign-off time).  

Complete waybill using information 

from a TR and ticket bundles. 

Calculate daily earnings using 

waybill information. 

Use overall daily earnings to 

calculate batta (daily allowance). 

Solve mental computational 

problems associated with 

calculation of batta using 

daily collection information. 

Table 1: Description of work-related and mental computational activities.  

Use of mental computation  

During a work shift, conductors used mental computation to complete ticket 

transactions, to complete a waybill (an official document used to keep track of the 

number of tickets sold in each ticket denomination) and to determine their batta. To 

carry out a ticket transaction, conductors determined the number of fare stages 

between the entry point and the exit point, calculated ticket fares for single and 

multiple passengers, and determined the balance amount due to passengers, if any. To 
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complete a waybill, they calculated the ticket collection amount in each denomination 

and the overall collection amount. They used the overall collection amount to 

determine their batta.  

Determination of total earnings: Conductors used the waybill to record the number 

of tickets sold in each denomination and used this information to calculate overall 

earnings. In table 2, we present information adapted from Mrs. Omega’s waybill

contents (official record).  

Ticket denomination 

(In rupees and paise) 

Total number of tickets sold Total amount collected 

2.00 424 848.00 

3.00 349 1047.00 

3.50 123 430.50 

4.00 79 316.00 

4.50 43 193.50 

Token ticket 1 30.00 

Table 2: Total earnings by ticket denomination. 

Mrs. Omega was asked to explain her thinking as she completed the waybill entries 

corresponding to each ticket denomination and the total amount corresponding to 

each ticket denomination. At work, she said that she resorted to conductors’ 

mathematics to determine ticket collection amounts. She explained the way in which 

she mentally calculated the total ticket earnings for each denomination. 

I have sold 123 tickets corresponding to 3.50 ticket denomination. Our (conductors’) 

technique is to calculate ticket amount for every 100 tickets. Thus the collection amount 

is Rs. 350 for the first 100 tickets. I should now account for the remaining 23 tickets. I 

first calculate ticket amount for the first 10 tickets, which is Rs. 35.00. I double it to get 

Rs. 70.00 for 20 tickets. I now add Rs. 350 and Rs. 70 to get Rs. 420.  I then calculate 

collection amount for 3 more tickets, which is Rs. 10.50. Now I add this to Rs. 420 to get 

Rs. 430.50. I do it all in my mind.  

Using the above technique, Mrs. Omega was able to quickly determine daily 

earnings. Further, she said that she successfully used this form of mathematics to 

work on new bus routes with varying ticket denominations.  

Calculation of batta: Here we use data from Mr. Gamma’s waybill (official record) 

to demonstrate his use of mental computation as he determined his batta. Mr. Gamma 

determined his daily allowance at the end of his work shift. On a certain day, the 

waybill records indicated that Mr. Gamma claimed Rs. 89 as the batta and remitted 

Rs. 2894 to the accountant (field note). I asked Mr. Gamma to explain how he arrived 

at these figures. I present Mr. Gamma’s batta calculation techniques below in his 

own words. 
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Batta is the sum of fixed and variable allowances. In an ordinary service, for every 100 

rupees collected, the variable allowance is Rs. 2.35. Total amount collected: 1000 + 1000 

+ 953 = 2953.  

Variable batta is 23.50 + 23.50 + 23.50 = 70.50

I also sold three token tickets that day; for each ticket I will get 10 paise each. Thus the 

total variable batta is 71 after rounding to the nearest rupee.  The fixed allowance is 

18.50. If this amount is added to Rs. 71.00, I get the batta as Rs. 89.50. In order to 

subtract this amount from 2953.00, I first subtracted 100, to get 2853.I then compensated 

by adding the extra amount that I took away by adding 10.50 to it. Thus the total amount 

after deducting batta is 2863.50. To this amount, I added the advance amount that I 

received during sign-on time (Rs. 30.00) to get the total amount as 2893.50. This is what 

I owe the accountant. 

DISCUSSION 

Characterization of conductors’ mathematics 

Conductors’ workplace mathematics has certain unique characteristics that are 

shaped by the context and the tools specific to their workplace. The first 

characteristic concerns their understanding about the specifics of their workplace 

activities. This includes knowledge about different bus depots and routes of the MTC, 

fare stages along different routes, and knowledge about ticket fares. When conductors 

completed ticket transactions, they drew upon their understanding of work-related 

notions such as determination of fare stages, fare stage numbers, and ticket prices 

associated with fare stages. This understanding, which we term work-specific 

knowledge, helped conductors determine the ticket fares and the balance amount due 

to the passengers and thus execute ticket transactions smoothly. Second, certain 

observed mathematical activities of bus conductors have close connection to school-

learnt mathematical concepts. All conductors acknowledged that the mathematical 

ideas that they learnt at school helped them solve problems at work. They pointed out 

that they used school-learnt arithmetic concepts to solve problems that arose out of 

ticket transactions and waybill calculations. Unlike participants in certain other 

workplace investigations (e.g. those involving candy sellers and newspaper vendors) 

who did not have access to school education, all of this study’s participants possessed 

varying levels of school education. This fact, juxtaposed with the conductors’ belief 

that they used school-learnt arithmetic concepts at work, leads us to conclude that bus 

conductors integrated school-taught mathematical ideas with other features specific 

to their workplace to solve work-related mental mathematical problems. Third, the 

use of monetary units played a significant role in shaping their mental mathematical 

ideas. When describing the factors that helped them compute mentally efficiently, 

conductors were quick to single out the use of monetary units. They said that they 

completed mental mathematical problems that involved whole numbers, decimals, 

and fractions by treating the whole number part as the rupee equivalent and the 

decimal part as the paise equivalent. Mrs. Omega’s comments on this topic 

highlighted the advantage of the use of monetary units.  
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Mrs. Omega: We used to have 1.75, 2.35 and such types of ticket denominations before. 

Calculations could become very confusing. I agree with what other 

conductors said about the use of money. It is very easy to do calculations. 

There is also another benefit. How can you be sure you are correct? This 

is where money can help. You can check if you are doing correct 

calculations by looking at the money in hand.  

Although the conductors noted that they knew how to solve such problems mentally 

(without the use of monetary units), the availability of these units helped them 

complete the problems more quickly. In summary, conductors’ workplace 

mathematics is the result of integration of work-specific knowledge, formal school-

learnt mathematical ideas, and the knowledge about the currency system.  

Emergent Goals Related to Mental Computational Activities 

Elsewhere we have described in detail, using Saxe’s four-parameter model, bus 

conductor’s and our perceptions of emergent goals using Saxe’s four context-related 

parameters: activity structures, conventions and artifacts, social interactions, and 

prior understandings (Naresh & Presmeg, 2008). Bus conductors’ emergent goals 

were related to activities such as issuing tickets, carrying out transactions, 

maintaining a record of transactions and so on. The activity structures, artifacts, and 

their prior understandings of the practice influenced the emergent goals. We claimed 

that the differing perceptions of bus conductor’s work-related goals were 

complementary, and completely consonant with Saxe’s four-parameter model.  

Extension of Saxe’s Four-Parameter Model 

In the original model proposed by Saxe, the structure of the emergent mathematical 

goals is explored in terms of four context-related parameters – activity structures, 

prior understandings, social interactions, and conventions and artifacts. In order to 

suit the findings of this study, it was necessary to slightly modify Saxe’s original 

model. Figure 1 presents a connection between bus conductors’ overall goals, goal-

directed activities, and the emergent goals associated with the mathematical 

activities. In Figure 1, the double arrows should be interpreted as “gives rise to”. The 

emergent goals connected with mathematical activities were influenced by four 

context related parameters – activity cycles, social interactions, work-related artifacts 

and tools, and prior knowledge and skills. In Figure 1, the single arrows connected to 

the emergent goals indicate the “influence of” context related parameters on the 

emergent goals. For example, the emergent goal associated with a ticket transaction 

could be “I issued 5 tickets to a passenger who travelled from Adyar signal (entry 

point) to Purasawalkam (exit point)”. Here the conductor obtained information 

regarding the number of tickets and the entry and the exit points when the ticket 

transaction process was initiated. Thus, the goal associated with this ticket 

transactional activity surfaced and disappeared at those instants when the related 

activity was initiated and completed. Similar goals (associated with ticket 

transactions and waybill and batta calculations) arose and faded with the initiation 

and completion of related activities. Another facet to the emergent goals is provided 
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model. Figure 1 presents a connection between bus conductors’ overall goals, goal-

directed activities, and the emergent goals associated with the mathematical 

activities. In Figure 1, the double arrows should be interpreted as “gives rise to”. The 

emergent goals connected with mathematical activities were influenced by four 

context related parameters – activity cycles, social interactions, work-related artifacts 

and tools, and prior knowledge and skills. In Figure 1, the single arrows connected to 

the emergent goals indicate the “influence of” context related parameters on the 

emergent goals. For example, the emergent goal associated with a ticket transaction 

could be “I issued 5 tickets to a passenger who travelled from Adyar signal (entry 

point) to Purasawalkam (exit point)”. Here the conductor obtained information 

regarding the number of tickets and the entry and the exit points when the ticket 

transaction process was initiated. Thus, the goal associated with this ticket 

transactional activity surfaced and disappeared at those instants when the related 

activity was initiated and completed. Similar goals (associated with ticket 

transactions and waybill and batta calculations) arose and faded with the initiation 

and completion of related activities. Another facet to the emergent goals is provided 
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by our interpretation of these goals. When we described and analyzed the emergent 

goals associated with bus conductors’ mathematical activities, we focused on 

bringing out the mathematical problems associated with these activities, which were 

expressed directly by the conductors.  

Figure 1: Extended four-parameter model 
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The concept of infinity has an important place in secondary and higher education 
curricula. The aim of this study is to investigate primary and secondary intuitions of 
Turkish primary school students in relation to the concept of infinity as well as to 
determine to what extent schooling is successful in the attainment of the concept of 
infinity. Qualitative research techniques were used in this study. Data collection 
included open-ended questionnaires conducted with 131 primary school students aged 
13-14 and semi-structured interviews with ten of these students. The data were 
analysed by categorisation. Results indicated that students’ personal experiences 
mainly determined their concept of infinity and that formal education had minimal 
effects. Some misconceptions were also found to exist.
INTRODUCTION
The concept of infinity is intuitive per se. The history of mathematics indicates that 
certain concepts are not immediately internalised. It can even take decades or centuries 
for the mathematics world to accept such concepts (Fischbein, 1987). Unwillingness to 
regard infinite sets as a mathematics object could be extended to the time of Aristo, 
who argues that infinity is only a potential rather than a reality (Tirosh, 1999). The 
concept of infinity had caused several controversies emerging from its own nature. 
Galileo and Gauss concluded that real infinity could not be included in rational and 
consistent reasoning. Gauss emphasized in 1831 that an infinite multitude can never be 
allowed to be used as a complete quantity. Kant, on the other hand, referred to the 
infinity of space and time and argued that human mind cannot comprehend either the 
finiteness or infinity of the world in terms of both space and time. (Fischbein, 2001) 
Philosophers and mathematicians distinguished real and potential infinity. Real infinity 
is a concept difficult and even impossible to grasp by human intelligence as in the 
examples of “the infinity of the world, the infinity of the points on a line”. Controversies 
start to emerge when real infinity is studied (ibid.).  For example, the definition of 
infinite sets by Cantor constitutes a crucial perceptual handicap in relation to the idea of 
infinity as it includes the concept of “equivalence of a set with one of its prime sub-
sets”. The acceptance of this equilibrium requires perceptual effort because it 
necessitates the acceptance of the idea that “the whole is bigger than its parts” may not 
be valid for all sets. Therefore it is a small probability that the definition of infinite sets 
be naturally used by students who have yet learned the theory of sets (Tirosh, 1999).
Since Cantor the concept of infinity which includes aforementioned difficulties has 
been widely studied. Fiscbein et al. (1979,4-5), although indirectly, proposed the work 
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of  Piaget and Inhelder (1956, p.125-149) to be the beginning of studies on children’s 
understanding of infinity (Monaghan, 2001). Since this study on the repetitive division 
of geometric figures research on the concept of infinity have advanced. Research on 
intuitive methods students’ use to determine the finiteness or the infinity of a set (Falk 
et al., 1986; Tsamir, 1994) showed that eight year-olds were able to understand that the 
infinity of the set of natural numbers. 11-12 year-old children then discover the non-
dimensionality of points and subsequently argue that line segments can be infinitely 
divided. In these studies, children were asked whether some processes will come to an 
end or not. Children who argued that the process would not end were accepted by the 
researchers to comprehend that the obtained set is infinite (Tirosh, 1999). Infinity 
intuitions do not change and remain stable after the age of twelve (Fischbein et
al.,1979) which confirms the researches conducted with older children and reported 
that students had difficulties in comprehending the Cantorian set theory ( Narli and 
Baser, 2008; Tsamir and Tirosh, 1992,1994)  
Infinity is an intuitive knowledge which is naturally comprehended and its accuracy 
absolutely accepted. However, this process does not emerge on its own. Intuitive 
knowledge is either acquired through educational intervention and not natural 
experience (secondary intuition, Fischbein 1987, p. 71) or developed by the individual 
independent of a systematic education as a result of personal experiences (primary 
intuition, ibid., p. 202). In terms of the relationship between the two on the same 
concept, such as infinity, secondary intuition could be less consistent than primary 
intuition. Primary and secondary intuitions on the concept of infinity play an important 
role in mathematics especially in the full comprehension of numbers. This study aimed 
to determine students’ primary and secondary intuitions in relation to infinity and to 
investigate to what extent schooling effects students’ idea of infinity............... There is 
no “infinity” topic in Turkish curricula of primary school mathematics on its own. 
Moreover there is no relation or expressions in the objective of “Numbers” relevant to 
infinity. Although similar studies exist in literature (Singer and Voica, 2003; Tirosh, 
1999), there is almost none in Turkey. A study in Turkish context would contribute to 
literature of infinity. 
METHODS
This research has interpretive approaches (Cohen et al., 2000, p.22). Case study is used 
as a research strategy to make an in-depth examination of students’ intuition of infinity 
concept in this study (ibid., p.181-182). Qualitative techniques were conducted to 
collect data; the open-ended questionnaire and semi-structured interview. Content 
validity of the data collection instruments was obtained by a detailed consideration of 
the scope of research by four tutors in Department of Mathematics Education. In order 
to ensure reliability qualitative data were categorised and coded (Miles and Huberman, 
1984:23). Compatibility rates among these categories were then calculated. The coding 
revealed a compatibility rate of %92. 
Purposeful sampling technique (Patton, 1990) of non-probability sampling methods, 
which accept individuals or events as they are, was used for the selection of the sample 
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(Cohen et al., 2000). The sample of this study was selected from eighth grade students 
of a primary school of the Ministry of National Education. Open-ended questionnaires 
were administered with 131 students selected from two primary schools in Izmir, one in 
the centre and one in a province. The interviews were then conducted with ten of these 
students. Table 1 presents the sample distribution of the study. 
RESULTS
The analysis of open-ended questionnaires and semi-structured interviews was 
considered to indicate the source of students’ intuitions of infinity. 
The open-ended questionnaire
The open-ended questionnaire used in the study was composed of 7 questions. Three of 
these questions were analysed in this article.
Students’ ideas in relation to infinity; The first question addressed to the students in 
the open-ended questionnaire was “What occurs to your mind when you think of 
infinity and how would you define infinity in your own words?” The answers to this 
question were categorised in six items (Table 1). 

CATEGORIES Number of Students Percentages 
1.Endlessness and continuity 91 69% 
3.Spatial 44 33% 
5.Countable and Operational  30 23% 
2.Emotions and Beliefs  27 20% 
6.Other  23 17% 
4.Relating to life 18 13% 
Table 1. Students’ ideas in relation to infinity 

As presented in Table 1, endlessness and continuity category has the highest 
frequency. Students tend to explain infinity with continuous and endless concepts. “a
long thing without an end such as sea. For example you can stay at a point; it is a 
length whose end cannot be seen for example natural numbers are infinite. They go to 
infinity.” Some of the explanations in this group accept the existence of a beginning but 
not an end to infinity: “Things without an end, I mean I think of things with a beginning 
but without an end.” To a lesser extent the explanations in this group implied neither a 
beginning nor an end: “Some things are innumerable, it is used for things which do not 
have a definite beginning and end – they don’t have a beginning nor an end”. There are 
also statements which accept both types of infinity “A concept with a beginning but 
without an end or without a beginning and an end”. However, there were still a small 
number of infinity statements in relation to formal education: “Natural numbers are 
infinite, thus I think of natural numbers”.
emotions and beliefs category includes answers which students deduced from their 
emotions of infinity and from social orientations (religious beliefs). Some students in 
this group preferred to define infinity based on the effects of infinity on their inner 
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of geometric figures research on the concept of infinity have advanced. Research on 
intuitive methods students’ use to determine the finiteness or the infinity of a set (Falk 
et al., 1986; Tsamir, 1994) showed that eight year-olds were able to understand that the 
infinity of the set of natural numbers. 11-12 year-old children then discover the non-
dimensionality of points and subsequently argue that line segments can be infinitely 
divided. In these studies, children were asked whether some processes will come to an 
end or not. Children who argued that the process would not end were accepted by the 
researchers to comprehend that the obtained set is infinite (Tirosh, 1999). Infinity 
intuitions do not change and remain stable after the age of twelve (Fischbein et
al.,1979) which confirms the researches conducted with older children and reported 
that students had difficulties in comprehending the Cantorian set theory ( Narli and 
Baser, 2008; Tsamir and Tirosh, 1992,1994)  
Infinity is an intuitive knowledge which is naturally comprehended and its accuracy 
absolutely accepted. However, this process does not emerge on its own. Intuitive 
knowledge is either acquired through educational intervention and not natural 
experience (secondary intuition, Fischbein 1987, p. 71) or developed by the individual 
independent of a systematic education as a result of personal experiences (primary 
intuition, ibid., p. 202). In terms of the relationship between the two on the same 
concept, such as infinity, secondary intuition could be less consistent than primary 
intuition. Primary and secondary intuitions on the concept of infinity play an important 
role in mathematics especially in the full comprehension of numbers. This study aimed 
to determine students’ primary and secondary intuitions in relation to infinity and to 
investigate to what extent schooling effects students’ idea of infinity............... There is 
no “infinity” topic in Turkish curricula of primary school mathematics on its own. 
Moreover there is no relation or expressions in the objective of “Numbers” relevant to 
infinity. Although similar studies exist in literature (Singer and Voica, 2003; Tirosh, 
1999), there is almost none in Turkey. A study in Turkish context would contribute to 
literature of infinity. 
METHODS
This research has interpretive approaches (Cohen et al., 2000, p.22). Case study is used 
as a research strategy to make an in-depth examination of students’ intuition of infinity 
concept in this study (ibid., p.181-182). Qualitative techniques were conducted to 
collect data; the open-ended questionnaire and semi-structured interview. Content 
validity of the data collection instruments was obtained by a detailed consideration of 
the scope of research by four tutors in Department of Mathematics Education. In order 
to ensure reliability qualitative data were categorised and coded (Miles and Huberman, 
1984:23). Compatibility rates among these categories were then calculated. The coding 
revealed a compatibility rate of %92. 
Purposeful sampling technique (Patton, 1990) of non-probability sampling methods, 
which accept individuals or events as they are, was used for the selection of the sample 
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(Cohen et al., 2000). The sample of this study was selected from eighth grade students 
of a primary school of the Ministry of National Education. Open-ended questionnaires 
were administered with 131 students selected from two primary schools in Izmir, one in 
the centre and one in a province. The interviews were then conducted with ten of these 
students. Table 1 presents the sample distribution of the study. 
RESULTS
The analysis of open-ended questionnaires and semi-structured interviews was 
considered to indicate the source of students’ intuitions of infinity. 
The open-ended questionnaire
The open-ended questionnaire used in the study was composed of 7 questions. Three of 
these questions were analysed in this article.
Students’ ideas in relation to infinity; The first question addressed to the students in 
the open-ended questionnaire was “What occurs to your mind when you think of 
infinity and how would you define infinity in your own words?” The answers to this 
question were categorised in six items (Table 1). 

CATEGORIES Number of Students Percentages 
1.Endlessness and continuity 91 69% 
3.Spatial 44 33% 
5.Countable and Operational  30 23% 
2.Emotions and Beliefs  27 20% 
6.Other  23 17% 
4.Relating to life 18 13% 
Table 1. Students’ ideas in relation to infinity 

As presented in Table 1, endlessness and continuity category has the highest 
frequency. Students tend to explain infinity with continuous and endless concepts. “a
long thing without an end such as sea. For example you can stay at a point; it is a 
length whose end cannot be seen for example natural numbers are infinite. They go to 
infinity.” Some of the explanations in this group accept the existence of a beginning but 
not an end to infinity: “Things without an end, I mean I think of things with a beginning 
but without an end.” To a lesser extent the explanations in this group implied neither a 
beginning nor an end: “Some things are innumerable, it is used for things which do not 
have a definite beginning and end – they don’t have a beginning nor an end”. There are 
also statements which accept both types of infinity “A concept with a beginning but 
without an end or without a beginning and an end”. However, there were still a small 
number of infinity statements in relation to formal education: “Natural numbers are 
infinite, thus I think of natural numbers”.
emotions and beliefs category includes answers which students deduced from their 
emotions of infinity and from social orientations (religious beliefs). Some students in 
this group preferred to define infinity based on the effects of infinity on their inner 
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worlds: “It’s loneliness”, “It’s immortality”, “It’s freedom”, “When I think of infinity 
I’m somewhat scared, I feel as if I’ll be lost in infinity”. It is interesting that students 
explain infinity with extreme feelings. Culture which is the source of higher order 
cognitive processes affect students’ views (Vygotsky, 1978). A group of students 
reflected society’s beliefs and religious views in their definitions of infinity: “Infinity
are goods which will never come to end, which will never run out, for example: after 
life is a never ending infinite life. An infinite life means that we will live there 
throughout our lifetime without dying”.
A group of students tried to define infinity influenced by visual stimulus. They 
generally thought of infinity as a place which cannot be restricted or which is endless:
“An endless tunnel and not thinking of anything in that tunnel”, “I think of space”.
Some students relate infinity to life: “Infinity for me means to live long, life without an 
end”. Eventually some students identify infinity with immortality. This resulted in 
some students to even deny infinity: “If there was infinity plants would not die they 
would all be still alive”. 
Countable and operational category includes students’ formal statements of infinity: “I
first think of numbers without an end which last forever, Natural numbers are infinite, 
thus I think of natural numbers”. Moreover some students make a distinction: “There
are two types. One is the endlessness of the world and universe, and the other is the 
infinity of natural numbers in mathematics, an empty set”. Although definitions of 
infinity in relation to students’ knowledge gained through formal schooling were 
elicited, formal education seems to be insufficient in teaching students the idea of 
infinity (Table 1). Moreover students may be mistaken by their identification of being 
uncountable and infinite: “It means that some things are innumerous, it is used for 
things without a certain beginning or end”.
There were also other definitions beyond these categories. “I remember unlimited 
internet and msn”, “I don’t remember anything”, “They are things I can’t do” 
Students’ First Encounters with the Concept of Infinity; Table 2 summarises the 
answers elicited in response to the question “When (at what age), where and how did 
you first encounter the concept of infinity?” from the open-ended questionnaire. Almost 
half of the students were found to encounter the concept of infinity at school. While 
some students said “At school – at preschool – at secondary school – at primary 
school”, others replied in terms of lesson and topic: “at Mathematics lesson – I learnt 
that universe is infinite in the planets topic – I encountered it when we were learning 
space-in the topic of sets-in numbers-in rational numbers –in natural numbers –in 
citizenship lesson (thought it was the concept of humanity)- by asking how many 
numbers there are”. Some students stated that they first encountered the concept of 
infinity within their family: “One day I was trying to count the stars. Then my mum 
said “you can’t count stars because they are infinite” -at home- within my family- 
while I was talking to mum. While some students mentioned that they encountered the 
concept of infinity at very early ages (below 10), some mentioned later ages such as 13-
14. Individual responses were grouped as “other”; “for as long as I know myself”.
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CATEGORIES Number of Students Percentages 
1.Age; (1-10) 

(10-12) 
(12-14) 

52
9
5

39%
6%
3%

2.At school, during the lessons,  
from my teacher 72 55% 

3.At home, from the family 22 16% 
4.Other   45 34% 

Table 2. Students’ views about when they first encountered the concept of infinity  
Students’ encounters with the concept of infinity at school; Table 3 summarises 
students’ responses on whether they had encountered the concept of infinity in formal 
education. The number of students who expressed that they didn’t encounter the 
concept of infinity at school is almost nonexistent. Almost half of the students stated 
that they were introduced to the concept of infinity at school. The highest frequency in 
terms of lesson and unit was observed in the mathematics lesson. 

CATEGORIES Number of Students Percentages 
I have
I haven’t
I don’t know

69
7
2

%52
%5
%1

Lessons
In mathematics lesson
In other lessons (Turkish, Sciences, History, Arts, 
Knowledge of Life, Religion, Geography, Social) 

74
46

%56
%35

Units
In the units related to numbers such as Integers 
Other (Sets, Geometry, Space, Lines, Pressure 

57
23

%42
%17

Other
Everywhere-I had some information in this concept- 
While we were learning about Atatürk “Atatürk has 
an infinite place in our hearts, he never died and 
will never die” etc… 

16 %12 

    Table 3. Students’ views on how at school they encountered the concept of infinity 
Data obtained from semi-structured interviews  
The interview answers were observed to largely overlap with the categories obtained 
from the open-ended questionnaires. During the interviews the students did not seem to 
have a certain idea of infinity and they explicitly stated that: “… infinity, erm, how can 
I say, without an end. I mean even thinking about it doesn’t have an end”,
“…something endless, unreachable”,“…endlessness, freedom”. One of the interesting 

4 - 212 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   212 6/4/09   2:23:12 PM



Narli, Delice, Narli 

1- 4                 PME 33 - 2009 

worlds: “It’s loneliness”, “It’s immortality”, “It’s freedom”, “When I think of infinity 
I’m somewhat scared, I feel as if I’ll be lost in infinity”. It is interesting that students 
explain infinity with extreme feelings. Culture which is the source of higher order 
cognitive processes affect students’ views (Vygotsky, 1978). A group of students 
reflected society’s beliefs and religious views in their definitions of infinity: “Infinity
are goods which will never come to end, which will never run out, for example: after 
life is a never ending infinite life. An infinite life means that we will live there 
throughout our lifetime without dying”.
A group of students tried to define infinity influenced by visual stimulus. They 
generally thought of infinity as a place which cannot be restricted or which is endless:
“An endless tunnel and not thinking of anything in that tunnel”, “I think of space”.
Some students relate infinity to life: “Infinity for me means to live long, life without an 
end”. Eventually some students identify infinity with immortality. This resulted in 
some students to even deny infinity: “If there was infinity plants would not die they 
would all be still alive”. 
Countable and operational category includes students’ formal statements of infinity: “I
first think of numbers without an end which last forever, Natural numbers are infinite, 
thus I think of natural numbers”. Moreover some students make a distinction: “There
are two types. One is the endlessness of the world and universe, and the other is the 
infinity of natural numbers in mathematics, an empty set”. Although definitions of 
infinity in relation to students’ knowledge gained through formal schooling were 
elicited, formal education seems to be insufficient in teaching students the idea of 
infinity (Table 1). Moreover students may be mistaken by their identification of being 
uncountable and infinite: “It means that some things are innumerous, it is used for 
things without a certain beginning or end”.
There were also other definitions beyond these categories. “I remember unlimited 
internet and msn”, “I don’t remember anything”, “They are things I can’t do” 
Students’ First Encounters with the Concept of Infinity; Table 2 summarises the 
answers elicited in response to the question “When (at what age), where and how did 
you first encounter the concept of infinity?” from the open-ended questionnaire. Almost 
half of the students were found to encounter the concept of infinity at school. While 
some students said “At school – at preschool – at secondary school – at primary 
school”, others replied in terms of lesson and topic: “at Mathematics lesson – I learnt 
that universe is infinite in the planets topic – I encountered it when we were learning 
space-in the topic of sets-in numbers-in rational numbers –in natural numbers –in 
citizenship lesson (thought it was the concept of humanity)- by asking how many 
numbers there are”. Some students stated that they first encountered the concept of 
infinity within their family: “One day I was trying to count the stars. Then my mum 
said “you can’t count stars because they are infinite” -at home- within my family- 
while I was talking to mum. While some students mentioned that they encountered the 
concept of infinity at very early ages (below 10), some mentioned later ages such as 13-
14. Individual responses were grouped as “other”; “for as long as I know myself”.

Narli, Delice, Narli 

PME 33 - 2009  1- 5 

CATEGORIES Number of Students Percentages 
1.Age; (1-10) 

(10-12) 
(12-14) 

52
9
5

39%
6%
3%

2.At school, during the lessons,  
from my teacher 72 55% 

3.At home, from the family 22 16% 
4.Other   45 34% 

Table 2. Students’ views about when they first encountered the concept of infinity  
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    Table 3. Students’ views on how at school they encountered the concept of infinity 
Data obtained from semi-structured interviews  
The interview answers were observed to largely overlap with the categories obtained 
from the open-ended questionnaires. During the interviews the students did not seem to 
have a certain idea of infinity and they explicitly stated that: “… infinity, erm, how can 
I say, without an end. I mean even thinking about it doesn’t have an end”,
“…something endless, unreachable”,“…endlessness, freedom”. One of the interesting 
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points emerged during the interviews was that students initially tended to state that 
infinity would have a beginning but not an end. However, these responses were later 
observed to shift. There were also students who right away stated that infinity could be 
without a beginning or an end. Some students initially objected to infinity having a 
beginning and an end, though later accepted that it could have an end. When prompted 
to provide an example for infinity with or without a beginning or end, they tended to 
look for examples in things they could see. This could cause delusions. When the 
subjects were asked about the infinity of numbers, they oriented towards finding a 
beginning and end to numbers and thus were inclined to provide an answer. When the 
students were asked about when they first encountered the concept of infinity, despite a 
clear answer the responses included at school “… in sciences they say space and the 
like are infinite and in mathematics they say numbers are infinite” or out of school 
“…my mother’s advice is infinite”. About the opposite of infinity that is finiteness 
students usually have much clear expressions “you start doing something and finish it 
either this way or that, it’s something that ends, with limits, with a certain ending, 
something restricted, the person who prevents you”.
DISCUSSION 
Students’ definitions of infinity with their own words were generally related to their 
primary intuitions except “Countable and Operational” category. Students mostly used 
informal expression in their definitions of infinity. Their expressions were consistent 
with the definitions of Singer and Vocia (2003). Additionally, this study also included a 
“related to life” category which is different than Singer and Voica. This research 
indicated a similarity between primary intuitions of young students and teacher trainees.  
Findings indicated that students were inclined to explain infinity using concepts of 
endlessness and continuity. Students also related infinity to extreme emotional 
statements such as “loneliness, death” etc. Such emotions might seem endless during 
the time they are experienced and thus could be related to infinity. Statements in 
relation to beliefs in this category were mainly elicited from students who lived in the 
suburbs. Social structure could be argued to affect primary intuitions especially higher 
influence of religion in the suburbs was considered. ........That might show the influence 
of cultural difference on intuitions in relation to infinity. Therefore comparative studies 
may be done between cultures and countries. Conducting a study in Turkey is good 
opportunity to compare with other countries and culture  
Students who used spatial-visual expressions in relation to infinity always described 
unrestricted places. This could imply that students do not think about limitedness and 
infinity together. Problems in students understanding of the infinity of limited real 
intervals could thus emerge. Literature reports the existence of primary school students 
who accept real spaces to be infinite by also accepting finite sets as limited sets as well 
as infinite sets as unlimited sets (Singer and Voica, 2003).
As some students were observed to relate infinity to life, students could be argued to 
create links between the concept of life and infinity. Thus, future research into 
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intuitions for life, could further our understanding of students’ intuitions of infinity in 
relation to this category. 
Most of the formal statements used by the students that were categorised under 
“Countable and Operational” were about mathematics and number sets. It is thus 
possible to conclude that secondary intuitions in relation to infinity are mainly 
influenced by number sets. It was interesting to elicit responses such as “There are two 
types. First is the endlessness of the world and universe. Second is the infinity of 
natural numbers in mathematics”. This could be primal evidence for the existence of 
primary school students who can comprehend real and potential infinity. 
Although students first encountered the concept of infinity at school their initial 
statements in relation to the concept of infinity were generally informal. This could 
indicate that schooling was not influential enough to substantially change students’ 
ideas of infinity. Moreover, students expressed that they rather came across infinity in 
mathematics lesson at school. In terms of units, number sets are foregrounded. Thus, 
the concept of infinity could be related to the teaching of numbers.  
Students generally used statements which referred to their life out of school. These 
statements included cultural elements such as religion. This could indicate that society 
and personal experiences influence primary intuitions in relation to infinity. Students’ 
formal definitions of infinity were mainly about numbers. Furthermore these statements 
were not clear and primary intuitions were of little support to these statements. 
Internalisation processes for the concept of infinity, which is difficult to comprehend 
and could only be expressed by intuition, should be enriched by considering students’ 
personal conceptualisation skills and daily life, numbers, geometry and the like. Despite 
difficulties in defining the concept of the infinity, conceptual images could be enriched 
by experiences, activities and projects (Vinner, 1991).
CONCLUSION and SUGGESTIONS 
The findings indicate that students did not have a clear idea of infinity and that their 
ideas of infinity were not learned through formal schooling. Students mainly defined 
infinity related to their experiences out of school. This could indicate that schooling 
was not sufficiently beneficial to the development of ideas regarding infinity. Thus, 
being a crucial element of intuitional understanding the concept of infinity should be 
attached sufficient importance in the primary school curriculum. Activities and projects 
could be designed accordingly for this purpose. An example for such an activity could 
be to calculate when a ball, thrown from a certain height, would stop by bouncing half 
its original height each time or placing an object in the middle of a rectangular prism 
with all interior walls except the top surface covered in mirrors and see infinite points. 
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infinity together. Problems in students understanding of the infinity of limited real 
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who accept real spaces to be infinite by also accepting finite sets as limited sets as well 
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relation to this category. 
Most of the formal statements used by the students that were categorised under 
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influenced by number sets. It was interesting to elicit responses such as “There are two 
types. First is the endlessness of the world and universe. Second is the infinity of 
natural numbers in mathematics”. This could be primal evidence for the existence of 
primary school students who can comprehend real and potential infinity. 
Although students first encountered the concept of infinity at school their initial 
statements in relation to the concept of infinity were generally informal. This could 
indicate that schooling was not influential enough to substantially change students’ 
ideas of infinity. Moreover, students expressed that they rather came across infinity in 
mathematics lesson at school. In terms of units, number sets are foregrounded. Thus, 
the concept of infinity could be related to the teaching of numbers.  
Students generally used statements which referred to their life out of school. These 
statements included cultural elements such as religion. This could indicate that society 
and personal experiences influence primary intuitions in relation to infinity. Students’ 
formal definitions of infinity were mainly about numbers. Furthermore these statements 
were not clear and primary intuitions were of little support to these statements. 
Internalisation processes for the concept of infinity, which is difficult to comprehend 
and could only be expressed by intuition, should be enriched by considering students’ 
personal conceptualisation skills and daily life, numbers, geometry and the like. Despite 
difficulties in defining the concept of the infinity, conceptual images could be enriched 
by experiences, activities and projects (Vinner, 1991).
CONCLUSION and SUGGESTIONS 
The findings indicate that students did not have a clear idea of infinity and that their 
ideas of infinity were not learned through formal schooling. Students mainly defined 
infinity related to their experiences out of school. This could indicate that schooling 
was not sufficiently beneficial to the development of ideas regarding infinity. Thus, 
being a crucial element of intuitional understanding the concept of infinity should be 
attached sufficient importance in the primary school curriculum. Activities and projects 
could be designed accordingly for this purpose. An example for such an activity could 
be to calculate when a ball, thrown from a certain height, would stop by bouncing half 
its original height each time or placing an object in the middle of a rectangular prism 
with all interior walls except the top surface covered in mirrors and see infinite points. 
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INVESTIGATING INDONESIAN ELEMENTARY TEACHERS’ 
MATHEMATICAL KNOWLEDGE FOR TEACHING GEOMETRY 

Dicky Ng
Boston University 

This paper reports on an exploratory study investigating Indonesian elementary 
school teachers' mathematical knowledge for teaching (MKT) geometry to determine 
factors that influence this particular knowledge. A survey was administered to 167 
elementary school teachers to collect data on their educational background, and an 
adapted version of the U.S. based MKT instrument was used to measure subjects’ 
MKT. Analyses of variances on subjects’ MKT revealed significantly differences 
based on the number of years of teaching experience, educational level attained, 
school type, and grade range taught. A multiple regression model was developed and 
showed that educational level, school type, grade range taught were significant 
predictors of elementary teachers’ mathematical knowledge for teaching geometry.

INTRODUCTION
Improving teachers’ content knowledge has been central to improving student 
achievement in mathematics (Hill, Rowan, & Ball, 2005). Elementary teachers in the 
United States and many developing countries are typically in the bottom one-third of 
high school graduates (National Center on Education and the Economy, 2007). 
Moreover, these teachers are trained to be generalists and may not have extensive 
knowledge of mathematics. In the case of geometry, prospective teachers study 
geometry once as students themselves when in secondary school, and then typically 
encounter geometric concepts only once more in a college course before they are 
certified to teach (Grover & Connor, 2000). Therefore, it is not surprising that studies 
show that pre-service and in-service elementary teachers’ content knowledge of 
geometry is particularly poor (Jones, Mooney, & Harries; Mooney, Fletcher, & Jones, 
2003; Fujita & Jones, 2006).  
With the growing attention to subject matter knowledge that is situated in the 
classroom, researchers have argued that teachers need a specialized content 
knowledge (Ball, 1999). This knowledge, termed mathematical knowledge for 
teaching (MKT), represents an idiosyncratic type of professional knowledge 
necessary for the various aspects of teaching mathematics (Ball, Hill, & Bass, 2005). 
Measures have been developed to capture this type of knowledge (Learning 
Mathematics for Teaching, 2006), and have been used to evaluate professional 
development programs (Hill & Ball, 2004). The MKT measures have also been used 
to study the relationship between mathematical knowledge and student achievement 
(Hill, Rowan, & Ball, 2005), and to study the relationship between mathematical 
knowledge and the mathematical quality of instruction (Hill, Blunk, Charalambous, 
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Lewis, Phelps. Sleep, & Ball, 2008). However, the MKT construct and measures 
were based on teaching in the United States, and hence, may or may not be applicable 
to other cultural settings since evidence suggests that teaching is a cultural activity 
(Stigler & Hiebert, 1999). Studies to examine construct equivalence and the validity 
of the measures in several countries are under way (e.g. Delaney, Ball, Hill, 
Schilling, & Zopf, 2008) and will provide different cultural perspectives on what 
teachers need to know.
This study, built on this area of research on mathematical knowledge for teaching, 
had two purposes. The first purpose was to examine how well the U.S.-based 
construct performed in a developing country. In other words, can the measures be 
used to discriminate among elementary teachers based on their mathematical 
knowledge for teaching? The second purpose was to investigate factors related to 
Indonesian teachers' mathematical knowledge for teaching geometry. 

METHODOLOGY 
Subjects in this study consisted of 167 elementary teachers enrolled in professional 
development programs in Indonesia. Two instruments were used. The first instrument 
consisted of a survey that required subjects to provide background information on 
number of years of teaching experience, grade levels taught, educational level 
attained, school type (public or private), number of hours of professional 
development completed, number of college level geometry courses taken, and 
instructional practices. The instructional practices scale consisted of eight questions, 
each with a 6-point Likert-scaled response, ranging from never to every day. These 
questions were classified into two subscales: traditional instructional practice and 
reform instructional practice. The second instrument was the mathematical 
knowledge for teaching (MKT) geometry measure developed by the Learning 
Mathematics for Teaching project (LMT, 2006) which was translated into Indonesian 
and adapted for cultural suitability. This measure consisted of 19 multiple-choice 
questions (based on third through eighth grade geometry content) with a range of 3 to 
7 possible solutions. This measure was also administered to the same sample of 
subjects mentioned earlier. Subjects' responses were recoded, 0 for incorrect answers 
and 1 for correct answers. Raw scores were obtained and then converted to MKT 
scores, which are linear and can be expressed in standard deviation units.  
To determine how well the MKT measure distinguished one individual from another, 
the reliability of the measure using Cronbach’s alphas was calculated. Analyses of 
variance were conducted to examine differences between the teachers based on the 
background variables. To explore factors that might be contributing to teachers’ 
MKT, a multiple linear regression model using a backward elimination selection 
process was conducted to determine which factors were significant predictors of 
teachers’ mathematical knowledge for teaching geometry.
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ANALYSES
The Cronbach’s alpha for the MKT measures was 0.634, which measures the amount 
of observed individual differences attributable to true variance in subjects’ 
mathematical knowledge for teaching. A good measure will have a reliability of at 
least 0.7. However, Figure 1 shows that the distribution of the subjects based on their 
mathematical knowledge for teaching was close to a normal distribution. This result 
shows that the measures were able to discriminate the subjects based on their 
mathematical knowledge for teaching.

Figure 1: Distribution of Mathematical Knowledge for Teaching (MKT) Scores. 
Analysis of variances revealed that there were significant differences between groups 
of subjects based on their years of experience in teaching (p<0.05) as shown in Table 
1. The relationship between years of teaching experience and subjects' MKT score 
was not linear. However, the number of subjects who had taught zero to one year 
(N=8) and the number of subjects who had taught two to four years (N=18) were 
relatively smaller compared to the other groups. Ignoring these two groups resulted in 
a more linear relationship between number of years of teaching experience and the 
mean MKT score, but the relationship was an inverse one; subjects who had taught 
for a longer period of time tended to have lower MKT scores. The result of this study 
contradicts Hill's (2007) study on middle school teachers in the United States, where 
teachers with more experience were found to have better mathematical knowledge for 
teaching. The discrepancy may be attributed to difference in the sample; Hill’s study 
consisted of middle school teachers who were better prepared in the terms of 
mathematics content compared to elementary teachers who were generalists. Possible 
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least 0.7. However, Figure 1 shows that the distribution of the subjects based on their 
mathematical knowledge for teaching was close to a normal distribution. This result 
shows that the measures were able to discriminate the subjects based on their 
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Analysis of variances revealed that there were significant differences between groups 
of subjects based on their years of experience in teaching (p<0.05) as shown in Table 
1. The relationship between years of teaching experience and subjects' MKT score 
was not linear. However, the number of subjects who had taught zero to one year 
(N=8) and the number of subjects who had taught two to four years (N=18) were 
relatively smaller compared to the other groups. Ignoring these two groups resulted in 
a more linear relationship between number of years of teaching experience and the 
mean MKT score, but the relationship was an inverse one; subjects who had taught 
for a longer period of time tended to have lower MKT scores. The result of this study 
contradicts Hill's (2007) study on middle school teachers in the United States, where 
teachers with more experience were found to have better mathematical knowledge for 
teaching. The discrepancy may be attributed to difference in the sample; Hill’s study 
consisted of middle school teachers who were better prepared in the terms of 
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reasons for Indonesian elementary teachers’ weaker knowledge over years of 
experience include the lack of requirements for Indonesian teachers to continue 
learning content throughout their careers (Bjork, 2005), limited opportunities for 
teachers to access resources (Saito, Imansyah, Kuboki, & Hendayana, 2007), and the 
minimal number of high quality professional development programs in Indonesia 
(Bjork, 2005; Joni, 2000).

Years of Teaching Experience N IRT Mean (SD) p-value 
0-1 year 
2-4 years 
5-9 years 

10-15 years 
16-20 years 
> 21 years 

8
18
31
35
31
44

-0.99 (0.37) 
-0.64 (0.74) 
-0.48 (0.67) 
-0.71 (0.67) 
-0.69 (0.51) 
-0.95 (0.60) 

0.033

Table 1: Mathematical Knowledge for Teaching (MKT) Score Based on Number of 
Years of Experience (N = 167, significant at 0.05 level). 

There is a possibility that the relationship between subjects’ number of years of 
teaching experience and their IRT score is indeed not linear. Subjects who had taught 
only for one year were considered to be novices and had lower MKT scores because 
they were still in the process of adjusting to the profession, even if they had 
completed a high-quality pre-service program that prepared them with the necessary 
content knowledge for teaching. On the other hand, subjects with more experience in 
teaching might have completed a pre-service training programs that was not very 
rigorous or mathematics focused, since the requirement for prospective elementary 
teachers in Indonesia has changed significantly over the past 60 years. These subjects 
mathematical content knowledge for teaching might be weak because they only 
completed the minimal teacher education requirements. Although these subjects had 
more experiences in the classroom which exposed them to specialized content 
knowledge for teaching, they did not have a strong content knowledge base on which 
to build their content knowledge for teaching. 
Higher education levels, as expected, contributed to teachers having better 
mathematical knowledge for teaching (Table 2). Subjects who had four years of 
training scored significantly higher on the MKT measures than those who had two 
years of training, and subsequently they did better than those with only a high school 
diploma. It is unclear, however, whether this pattern will continue or will taper off 
beyond four years of higher education. None of the subjects in this study had earned a 
degree beyond a bachelor's degree. 
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Educational Level N IRT Mean (SD) p-value 
High School Diploma 

Diploma Degree 
Bachelor Degree 

23
78
66

-1.01 (0.57) 
-0.85 (0.55) 
-0.50 (0.69) 

<0.001

Table 2: Mathematical Knowledge for Teaching (MKT) Score Based on Education 
Level (N = 167, significant at 0.001 level). 

This study showed that teachers’ mathematical knowledge for teaching did not differ 
between those teaching lower elementary level and upper elementary level grades. 
However, the range of grade levels teachers have taught contributed to their 
mathematical knowledge for teaching (Table 3). Teachers who had taught a wider 
range of grades did significantly better on the MKT measures than those who had 
taught only one or two grades even after controlling for number of years of teaching 
experience.

School Type N IRT Mean (SD) p-value 
Grade Range Taught 

1-2 grades 
3-4 grades 
5-6 grades 

55
63
49

-0.88 (0.62) 
-0.74 (0.65) 
-0.56 (0.60) 

0.038*

Table 3: Mathematical Knowledge for Teaching (MKT) Score Based on Grade 
Range Taught (N =167, significant at 0.05 level). 

The regression model of teachers’ overall score on their background information 
indicated that there is a relationship between educational background, school type, 
grade range taught, and reform instructional practice and mathematical knowledge 
for teaching geometry even when holding other factors constant (Table 4). One 
exception is years of teaching experience. Although there were differences in 
subjects’ mathematical knowledge for teaching scores, based on their teaching 
experiences as shown from the analysis of variance mentioned previously, the 
regression model did not identify experience in teaching to be a significant predictor 
of teachers’ knowledge for teaching. Educational background, school type, grade 
range taught, and reform instructional practice were predictors of higher levels of 
mathematical knowledge for teaching geometry. Having a diploma was associated 
with about 0.16 standard deviations on the MKT score; a bachelor degree increases 
the score by 0.375 standard deviations. Teachers who taught a range of three to four 
grades performed almost a tenth of an extra point on the MKT measures; teachers 
who taught a range of five to six grades had an increase of 0.31 standard deviations. 
Teaching in private schools was associated with an increase of 0.32 standard 
deviations compared to teaching in public schools. Finally, each additional frequency 
of using reform instructional practice was associated with nearly 0.02 standard 
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learning content throughout their careers (Bjork, 2005), limited opportunities for 
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minimal number of high quality professional development programs in Indonesia 
(Bjork, 2005; Joni, 2000).
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teaching might have completed a pre-service training programs that was not very 
rigorous or mathematics focused, since the requirement for prospective elementary 
teachers in Indonesia has changed significantly over the past 60 years. These subjects 
mathematical content knowledge for teaching might be weak because they only 
completed the minimal teacher education requirements. Although these subjects had 
more experiences in the classroom which exposed them to specialized content 
knowledge for teaching, they did not have a strong content knowledge base on which 
to build their content knowledge for teaching. 
Higher education levels, as expected, contributed to teachers having better 
mathematical knowledge for teaching (Table 2). Subjects who had four years of 
training scored significantly higher on the MKT measures than those who had two 
years of training, and subsequently they did better than those with only a high school 
diploma. It is unclear, however, whether this pattern will continue or will taper off 
beyond four years of higher education. None of the subjects in this study had earned a 
degree beyond a bachelor's degree. 
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Educational Level N IRT Mean (SD) p-value 
High School Diploma 

Diploma Degree 
Bachelor Degree 

23
78
66

-1.01 (0.57) 
-0.85 (0.55) 
-0.50 (0.69) 

<0.001

Table 2: Mathematical Knowledge for Teaching (MKT) Score Based on Education 
Level (N = 167, significant at 0.001 level). 

This study showed that teachers’ mathematical knowledge for teaching did not differ 
between those teaching lower elementary level and upper elementary level grades. 
However, the range of grade levels teachers have taught contributed to their 
mathematical knowledge for teaching (Table 3). Teachers who had taught a wider 
range of grades did significantly better on the MKT measures than those who had 
taught only one or two grades even after controlling for number of years of teaching 
experience.

School Type N IRT Mean (SD) p-value 
Grade Range Taught 

1-2 grades 
3-4 grades 
5-6 grades 

55
63
49

-0.88 (0.62) 
-0.74 (0.65) 
-0.56 (0.60) 

0.038*

Table 3: Mathematical Knowledge for Teaching (MKT) Score Based on Grade 
Range Taught (N =167, significant at 0.05 level). 

The regression model of teachers’ overall score on their background information 
indicated that there is a relationship between educational background, school type, 
grade range taught, and reform instructional practice and mathematical knowledge 
for teaching geometry even when holding other factors constant (Table 4). One 
exception is years of teaching experience. Although there were differences in 
subjects’ mathematical knowledge for teaching scores, based on their teaching 
experiences as shown from the analysis of variance mentioned previously, the 
regression model did not identify experience in teaching to be a significant predictor 
of teachers’ knowledge for teaching. Educational background, school type, grade 
range taught, and reform instructional practice were predictors of higher levels of 
mathematical knowledge for teaching geometry. Having a diploma was associated 
with about 0.16 standard deviations on the MKT score; a bachelor degree increases 
the score by 0.375 standard deviations. Teachers who taught a range of three to four 
grades performed almost a tenth of an extra point on the MKT measures; teachers 
who taught a range of five to six grades had an increase of 0.31 standard deviations. 
Teaching in private schools was associated with an increase of 0.32 standard 
deviations compared to teaching in public schools. Finally, each additional frequency 
of using reform instructional practice was associated with nearly 0.02 standard 
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deviations, which is considerable given that the average teacher scored 16.12 points 
on their reform instructional practice scale.  

Predictor Slope  p-value 
Intercept -0.49 0.008 
Grade Range Taught 

1-2 grades span 
3-4 grades span 
5-6 grades span 

-0.31
-0.22

0

0.024
(0.008)
(0.047)

-
Educational Background 

High School Diploma 
Diploma Degree 
Bachelor Degree 

0
-0.375
-0.216

0

0.017
(0.009)
(0.037)

-
School Type 

Public
Private

-0.32
0

0.001
(0.001)

-
Reform Instructional 
Practice

0.018 0.041 

Table 4: Multiple Regression Model for Item Response Theory Score on 
Mathematical Knowledge for Teaching. 

CONCLUSION
This exploratory study showed that the MKT measures were relatively useful in 
discriminating between subjects based on their mathematical knowledge for teaching. 
In this study, the number of years of teaching experience was not a significant 
predictor of mathematical knowledge for teaching. Unless continuous opportunity for 
teacher learning is supported throughout their career, teachers may not improve their 
knowledge solely by teaching for an extended period of time. Implications from this 
study suggest that one way teachers develop their mathematical knowledge for 
teaching is by teaching across a range of grade levels. Schools may want to 
implement this practice as an option for teacher development. More studies, however, 
are necessary to examine what aspects of teaching across grade levels contribute to 
teachers' MKT.
This study provides support for educational policy initiatives that require higher 
education standards for pre-service teachers in developing countries. Prospective 
elementary teachers appear to benefit from at least four years of college in terms of 
their mathematical knowledge for teaching. Many countries, including Indonesia, 
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require elementary school teachers to earn at least a four year college degree. 
However, in practice this requirement is waived in many developing countries due to 
teacher shortages.
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This paper describes preservice teachers’ reported experience of problem posing 
based on self-selected original digital images. The 176 participants from Australia 
and Canada designed open-ended problems as part of their mathematics education 
course. Their 444 problems and accompanying photos have been analysed to explore 
the types of problems posed and the focus of the mathematical connections. Findings 
indicate that preservice teachers are challenged when posing open-ended problems 
however, this process enables them to develop strategies for problem posing and to 
become more critically aware of the mathematical potential within their environment.
INTRODUCTION
Learning to pose mathematical problems to students is a significant aspect of 
mathematics teaching. Teachers select problems to assess their students’ 
understanding of mathematics. They decide on appropriate problems as examples to 
illustrate a mathematical concept. And they select, adapt and extend mathematical 
problems to provide a context for learning mathematical skills, concepts and inquiry. 
Deciding on what counts as an appropriate problem or worthwhile problem to pose is 
a complex and important task. It is a significant aspect of planning. Problems or tasks 
selected give students implicit images about what counts as mathematical inquiry or 
what it means to do mathematics (Schoenfeld, 1992). Problems contextualize, 
provide possibilities for inquiry, and can pedagogically frame students’ attention 
toward noticing mathematical ideas. Some problems more than others may be better-
quality exemplars for learning specific concepts (Watson & Mason, 2005). Other 
problems and how they are varied might be better at inviting abstraction and 
generalization or help students in seeing mathematical ideas (Marton & Booth, 1997; 
Marton & Tsai, 2001).
How teachers use mathematical problems and tasks in the classroom is receiving 
increased attention. Stein, Grover, and Henningsen (1996) reported that it is 
extremely difficult for teachers to maintain with students the high cognitive demand 
of potentially high-level tasks that were initially research-informed. Teachers adapt 
tasks based on what they know about their students, their understanding of the 
mathematical topic, teaching goals, and classroom environment. How and why 
teachers change and adapt tasks was the topic of a research forum at the 2008 
International Group for the Psychology of Mathematics Education meeting. Herbst 
(2008) examined the stakes for teachers of investing class time on certain tasks and 
how accountability, management and institutional obligations might play into 
teachers’ decisions to change a task while teaching. Herbst stated that the teacher “is 
responsible for the task as a representation of the mathematics to be learned and for 
2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
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the task as an opportunity to study and learn mathematics” (2008, p. 126). How might 
teachers learn to use tasks in this way? 
Sullivan (2008) offered a research-based model for developing task-based lessons 
particularly to address barriers to mathematics learning for some students. The model 
includes: a) teachers selecting tasks and deciding on their sequence, b) enabling 
prompts to support students experiencing difficulty, c) extending prompts for those 
who complete the initial task readily, d) making implicit teaching strategies more 
explicit so that all students have access the intended goals and expectations, and e) 
developing a learning community. Sullivan’s model is important for providing 
possibilities for how to support teachers incorporating designed tasks into their 
teaching. Yet, in this case the task is given. Although the model emphasizes making 
the pedagogical practices explicit it leaves hidden the task design practices. Watson 
(2008) instead suggested that “[a]nother way to engage teachers with tasks is to 
involve them in the design process” (p. 152).  Given that a task is both a 
representation of mathematics to learn and an opportunity to learn Watson further 
stated “it makes sense, therefore, to work with teachers on task design rather than 
only on task implementation” (2008, p. 153). 
Over the past few years we have been working in the spirit of Watson’s call of task 
design but in our case with preservice teachers. In this paper we build on our previous 
research in which we examined preservice teachers’ responses to the experience of 
posing mathematical problems (Bragg & Nicol, 2008; Nicol, 2006; Nicol & Bragg, 
forthcoming). Specifically, we examine the types of problems preservice teachers 
create, what they notice and attend to and the challenges they experience when 
designing mathematical problems within the context of a teacher education course.  
THEORETICAL CONSIDERATIONS 
Our current research is informed by a theory of variation (Marton & Booth, 1997; 
Marton & Tsui, 2004; Runesson, 2006) and conceptualization of learning and 
awareness (Watson & Mason, 2006). A theory of variation posits that learning 
involves the development of a capability to discern or notice critical aspects of a 
phenomenon while at the same time being focally aware of these aspects. It is 
assumed that learners only discern that which varies and so discerning requires 
experiencing variation.  Thus the critical features of a phenomenon are brought to the 
fore of our awareness when we experience variation in those features and are at the 
same time able to compare the current instance with our past experience of the 
feature. Watson and Mason (2006) argued that awareness of discernment is more 
likely if it is experienced against a background of relative invariance. For example, if 
students have only experienced addition number sentences of the form a + b = c then 
it is less likely that they will be aware that c = a + b is a different way of writing the 
same equation. Comparing these two situations and systematically varying the 
placement of the equals sign, or the number of terms to be added can help direct 
students’ attention to critical features of a number sentence or algebraic equation. 
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Thus experiencing a phenomenon in a new or different way can change students’ 
awareness of its structure.
Marton and Booth (1997) referred to the something or phenomenon to be learned as 
the object of learning. The object of learning has, according to Marton and Booth 
(1997) and Marton and Tsui (2004), different characteristics depending on the 
perspective of different actors throughout the teaching and learning experience.  
From the teacher’s viewpoint the object is referred to as the intended object of 
learning, from the researcher’s perspective it is the enacted object of learning, and 
from the student’s perspective it is the lived object of learning. The use of variation 
theory for developing pedagogical problems and using these problems with students 
in mathematics classroom situations is documented in various recent studies. The 
effectiveness of a pattern of simultaneous variation was demonstrated in studies by 
Pang, Linder and Fraser (2006) where economic principles of supply and demand 
were simultaneously varied. In addition, Al-Marani (2007) documented how 
deliberate and systematic use of dimensions of variation had some influence on 
students’ learning of algebra concepts. Our study adds to this research and focuses on 
the experiences of preservice teachers learning to pose open-ended mathematical 
problems within the context of a mathematics teacher education course for 
elementary teachers.  
Variation theory was used to inform and develop adaptations to the task posed to 
preservice teachers. Our intended object of learning was to help preservice teachers 
broaden the common ground or space of learning between themselves and their future 
students by learning to pose mathematical problems that were open-ended inspired by 
a set of digital images collected by preservice teachers. As with other studies using 
variation theory, this study could be described as action research - Author B is one of 
the researchers and also the teacher educator.  Our study explored the lived object of 
learning of preservice teachers: the kinds of open-ended problems they posed, what 
they noticed, and what they found challenging in the process. 
METHODOLOGY 
The participants were given the task of creating a set of Problem Pictures during their 
mathematics education course taught by Author B. The task required that the students 
capture four original photos and develop a set of 3 to 4 accompanying open-ended 
problems for each photo. The photos and problems were to have some connection to 
and be suitable for elementary aged students. Sullivan and Lilburn’s (2004) definition 
of a “good” problem was employed to assist the preservice teachers in developing 
open-ended questions. The three main features of a good question are; 1) it requires 
more than remembering a fact of reproducing a skill, 2) students learn by doing the 
task and teachers learn from the students’ attempts, and 3) there are several 
acceptable answers (p. 2). The following is an example of an open-ended problem 
given by Anna a participant in this study with an accompanying photo of Dakota her 
dog; “Dakota has gained weight recently. The vet recommends that everyday Dakota 
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the task as an opportunity to study and learn mathematics” (2008, p. 126). How might 
teachers learn to use tasks in this way? 
Sullivan (2008) offered a research-based model for developing task-based lessons 
particularly to address barriers to mathematics learning for some students. The model 
includes: a) teachers selecting tasks and deciding on their sequence, b) enabling 
prompts to support students experiencing difficulty, c) extending prompts for those 
who complete the initial task readily, d) making implicit teaching strategies more 
explicit so that all students have access the intended goals and expectations, and e) 
developing a learning community. Sullivan’s model is important for providing 
possibilities for how to support teachers incorporating designed tasks into their 
teaching. Yet, in this case the task is given. Although the model emphasizes making 
the pedagogical practices explicit it leaves hidden the task design practices. Watson 
(2008) instead suggested that “[a]nother way to engage teachers with tasks is to 
involve them in the design process” (p. 152).  Given that a task is both a 
representation of mathematics to learn and an opportunity to learn Watson further 
stated “it makes sense, therefore, to work with teachers on task design rather than 
only on task implementation” (2008, p. 153). 
Over the past few years we have been working in the spirit of Watson’s call of task 
design but in our case with preservice teachers. In this paper we build on our previous 
research in which we examined preservice teachers’ responses to the experience of 
posing mathematical problems (Bragg & Nicol, 2008; Nicol, 2006; Nicol & Bragg, 
forthcoming). Specifically, we examine the types of problems preservice teachers 
create, what they notice and attend to and the challenges they experience when 
designing mathematical problems within the context of a teacher education course.  
THEORETICAL CONSIDERATIONS 
Our current research is informed by a theory of variation (Marton & Booth, 1997; 
Marton & Tsui, 2004; Runesson, 2006) and conceptualization of learning and 
awareness (Watson & Mason, 2006). A theory of variation posits that learning 
involves the development of a capability to discern or notice critical aspects of a 
phenomenon while at the same time being focally aware of these aspects. It is 
assumed that learners only discern that which varies and so discerning requires 
experiencing variation.  Thus the critical features of a phenomenon are brought to the 
fore of our awareness when we experience variation in those features and are at the 
same time able to compare the current instance with our past experience of the 
feature. Watson and Mason (2006) argued that awareness of discernment is more 
likely if it is experienced against a background of relative invariance. For example, if 
students have only experienced addition number sentences of the form a + b = c then 
it is less likely that they will be aware that c = a + b is a different way of writing the 
same equation. Comparing these two situations and systematically varying the 
placement of the equals sign, or the number of terms to be added can help direct 
students’ attention to critical features of a number sentence or algebraic equation. 
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deliberate and systematic use of dimensions of variation had some influence on 
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capture four original photos and develop a set of 3 to 4 accompanying open-ended 
problems for each photo. The photos and problems were to have some connection to 
and be suitable for elementary aged students. Sullivan and Lilburn’s (2004) definition 
of a “good” problem was employed to assist the preservice teachers in developing 
open-ended questions. The three main features of a good question are; 1) it requires 
more than remembering a fact of reproducing a skill, 2) students learn by doing the 
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walk 10% further than she did the day before. What are some possible distances that 
Dakota could walk for 8 days? Show your work”. 
The participants in this research were from one Australian and one Canadian 
university. The data were collected from three cohorts over two years. The two 
Canadian cohorts (C2007 n=33 and C2008 n=23) were engaged in a 13 week 
mathematics education course as part of a post-graduate teacher education program. 
The mathematics education course was in the first semester of their teacher education 
program. They engaged in one day a week teaching practicum experience running 
concurrently with the course. The Australian cohort (A2008 n=120) were in the final 
semester of a four year under-graduate Bachelor of education program. They had 
accrued 90 days of teaching practicum and completed two mathematics education 
courses prior to this final 10 week mathematics education course.
The data collected consisted of students’ work samples in the form of the Problem 
Pictures they had developed (as described above), researcher field notes, and a 
written response survey completed by participants at the conclusion of the course. For 
the purpose of this paper we draw upon the students’ work samples and their written 
survey responses.
A written survey of 15 open response questions was developed to understand the 
creation of Problem Pictures from the preservice teachers’ perspective and was 
administered through an online survey program (SurveyMonkey). This paper 
specifically explores the participants’ responses to the strategies the students 
employed and the challenges faced in the creation of open-ended questions based on 
original photos.  
The researchers met on several occasions to develop and cross check a coding system 
for the student work samples and survey responses. The data were coded 
independently and the researchers met again to cross check for consistency and 
themes that arose from the data. A statistical computer programme, SPSS, was 
employed to collate and analyse the data gathered from the student work samples. 
The statistical methods employed were an examination of frequency and percentage 
of the open-endedness of the problems, the focus and the appropriateness of the 
mathematics to the problems, and the use of the photos. These data are presented in 
the form of tables in this paper. A qualitative computer program, Nvivo, was 
employed for analysis of the online survey data. The survey data are presented in a 
narrative form and are typical of the views articulated by the many of the participants.
RESULTS AND DISCUSSION 
This section presents work samples and survey data to illustrate the types of Problem 
Pictures preservice teachers design.  At the time of writing this paper, an analysis of 
the data from the Canadian 2007 cohort was completed and is presented. The survey 
data suggested that the preservice teachers found designing problems of an open-
ended nature difficult. Their experience as problem solvers was in finding one correct 
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answer and the Problem Pictures task was their first formal experience in creating 
problems. Andrea’s experience was typical of those in this group,

“For most [of the problems], I thought of a question for the picture, and then tried to turn 
it into an open ended question.  It worked sometimes, but wasn't the most efficient 
method.  However, it was difficult to think open-endedly as so much of what we learn is 
about exact answers etc.  I think this open-ended theory is something that needs to be 
further explored in the classroom.” 

Despite their recent induction to this process, an analysis of the 444 problems 
revealed that 97% of the problems were open-ended in nature. It was clear from the 
work samples that the process of creating open-ended problems was achievable for 
novice teachers despite the initial uncertainty and challenge of the task.
The local curriculum standards had an impact on the preservice teachers’ selection of 
the intended object of learning in their problems. As noted by Alice, “I used the IRPs 
[curriculum document] as a guide and tried to cover a variety of the Prescribed 
Learning Outcomes with the questions”. For coding purposes the mathematical focus 
of the problems were categorised in line with the provincial curriculum document for 
(see table 1 below). The data indicated that the mathematical focus of the Problem 
Pictures (n=444) were: Shape and Space (38%); Number (37%); Pattern (12%), and; 
Statistics and Probability (12%). Whilst the traditional preferred focus of Number in 
mathematical problems is popular in the context of these Problem Pictures, a high 
percentage of problems focused on Shape and Space. It is possible that the context of 
the photo appeared to lend itself more towards shape and space type problems, it was 
noted that a relatively high number of photos of buildings were featured. A common 
shape related question was, “Indentify 3 symmetrical shapes in this photo. Draw 
these shapes and show the lines of symmetry.” Most of the Statistics and Probability 
questions were focused on data analysis in the form of creating surveys or plotting 
charts based on data from the photos. For example, “Which fruit do you think is the 
most popular in your classroom? Create a survey, record and chart your results.” 
Pattern problems were strongly linked to lower grade levels in repeating or extending 
patterns in the photo rather than linking with more algebraic related problems. 
Accompanying each problem was a statement of the intended object of learning to 
clarify the mathematical focus for the reader. The mathematical statement was 
assessed for its strength of relationship to the problem by the researchers. A three 
point scale was devised for coding; 0 = no link, 1 = partial link, 2 = strong link. The 
data indicated that the strength of the relationship was: No link (32%); Partial link 
(42%), and; Strong link (26%). It appears that linking the intended object of learning 
to the problem was a more challenging task than creating an open-ended question for 
these preservice teachers. However, this was not articulated in the survey responses. 
The result is not surprising given the minimal knowledge these participants had with 
the local curriculum framework and limited classroom experience. However, with 
nearly a third of the problems not linked to the stated intended object of learning it is 
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walk 10% further than she did the day before. What are some possible distances that 
Dakota could walk for 8 days? Show your work”. 
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courses prior to this final 10 week mathematics education course.
The data collected consisted of students’ work samples in the form of the Problem 
Pictures they had developed (as described above), researcher field notes, and a 
written response survey completed by participants at the conclusion of the course. For 
the purpose of this paper we draw upon the students’ work samples and their written 
survey responses.
A written survey of 15 open response questions was developed to understand the 
creation of Problem Pictures from the preservice teachers’ perspective and was 
administered through an online survey program (SurveyMonkey). This paper 
specifically explores the participants’ responses to the strategies the students 
employed and the challenges faced in the creation of open-ended questions based on 
original photos.  
The researchers met on several occasions to develop and cross check a coding system 
for the student work samples and survey responses. The data were coded 
independently and the researchers met again to cross check for consistency and 
themes that arose from the data. A statistical computer programme, SPSS, was 
employed to collate and analyse the data gathered from the student work samples. 
The statistical methods employed were an examination of frequency and percentage 
of the open-endedness of the problems, the focus and the appropriateness of the 
mathematics to the problems, and the use of the photos. These data are presented in 
the form of tables in this paper. A qualitative computer program, Nvivo, was 
employed for analysis of the online survey data. The survey data are presented in a 
narrative form and are typical of the views articulated by the many of the participants.
RESULTS AND DISCUSSION 
This section presents work samples and survey data to illustrate the types of Problem 
Pictures preservice teachers design.  At the time of writing this paper, an analysis of 
the data from the Canadian 2007 cohort was completed and is presented. The survey 
data suggested that the preservice teachers found designing problems of an open-
ended nature difficult. Their experience as problem solvers was in finding one correct 
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answer and the Problem Pictures task was their first formal experience in creating 
problems. Andrea’s experience was typical of those in this group,

“For most [of the problems], I thought of a question for the picture, and then tried to turn 
it into an open ended question.  It worked sometimes, but wasn't the most efficient 
method.  However, it was difficult to think open-endedly as so much of what we learn is 
about exact answers etc.  I think this open-ended theory is something that needs to be 
further explored in the classroom.” 

Despite their recent induction to this process, an analysis of the 444 problems 
revealed that 97% of the problems were open-ended in nature. It was clear from the 
work samples that the process of creating open-ended problems was achievable for 
novice teachers despite the initial uncertainty and challenge of the task.
The local curriculum standards had an impact on the preservice teachers’ selection of 
the intended object of learning in their problems. As noted by Alice, “I used the IRPs 
[curriculum document] as a guide and tried to cover a variety of the Prescribed 
Learning Outcomes with the questions”. For coding purposes the mathematical focus 
of the problems were categorised in line with the provincial curriculum document for 
(see table 1 below). The data indicated that the mathematical focus of the Problem 
Pictures (n=444) were: Shape and Space (38%); Number (37%); Pattern (12%), and; 
Statistics and Probability (12%). Whilst the traditional preferred focus of Number in 
mathematical problems is popular in the context of these Problem Pictures, a high 
percentage of problems focused on Shape and Space. It is possible that the context of 
the photo appeared to lend itself more towards shape and space type problems, it was 
noted that a relatively high number of photos of buildings were featured. A common 
shape related question was, “Indentify 3 symmetrical shapes in this photo. Draw 
these shapes and show the lines of symmetry.” Most of the Statistics and Probability 
questions were focused on data analysis in the form of creating surveys or plotting 
charts based on data from the photos. For example, “Which fruit do you think is the 
most popular in your classroom? Create a survey, record and chart your results.” 
Pattern problems were strongly linked to lower grade levels in repeating or extending 
patterns in the photo rather than linking with more algebraic related problems. 
Accompanying each problem was a statement of the intended object of learning to 
clarify the mathematical focus for the reader. The mathematical statement was 
assessed for its strength of relationship to the problem by the researchers. A three 
point scale was devised for coding; 0 = no link, 1 = partial link, 2 = strong link. The 
data indicated that the strength of the relationship was: No link (32%); Partial link 
(42%), and; Strong link (26%). It appears that linking the intended object of learning 
to the problem was a more challenging task than creating an open-ended question for 
these preservice teachers. However, this was not articulated in the survey responses. 
The result is not surprising given the minimal knowledge these participants had with 
the local curriculum framework and limited classroom experience. However, with 
nearly a third of the problems not linked to the stated intended object of learning it is 
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an important consideration when assisting preservice teachers with problem posing to 
ensure that meaningful links are made to the intended object of learning. 
The nature of the use of the photo was explored to determine the relationship with the 
content of the problem. A problem was coded as Interactive if the photo was 
necessary to complete the problem and Illustrative if the photo was a motivational 
device or visual enhancement to the problem but unnecessary for solving the task.  
Figure 1 depicts a photo with an interactive and illustrative problem. A larger 
proportion of the problems were considered Interactive (59%) versus Illustrative 
(41%). The preservice teachers attempted to engage the students with the context of 
the photo in a meaningful way. The preservice teachers stated that designing 
interactive questions was extremely challenging for all questions. However, their 
awareness of the potential for mathematics in the environment had elevated as 
reported in Authors (2008).

Interactive What types of patterns do you see in this 
picture? Describe and draw different patterns you see. 
Illustrative The perimeter of the chain link fence of 
Richardson Elementary School is 300m. What different 
shapes of the schoolyard can you make with a perimeter 
of 300m? Construct your new schoolyard fence, label 
sides and show your new formula for perimeter. Share 
and compare with a partner. 

Figure 1. Problem Picture with Interactive and Illustrative Problems.  
Survey results indicate that preservice teachers appreciated the opportunity to explore 
mathematics through taking and analysing digital images. Most preservice teachers 
(95%) stated that the task was challenging. Sarah’s comment is representative of 
others when she stated: “It took me more than an hour to generate one question.” 
Others found it easier to develop a single question for an image but found it 
extremely difficult to create more for that same image. They did, however develop 
different strategies that helped them design open-ended problems. These included: 1) 
thinking of a closed question then removing some information; 2) looking at the 
photo and thinking about major math topic areas; 3) forming questions around the 
curricular topics then fitting these with the photo; 4) imagining themselves as young 
children; 5) playing with the language of the problem to make it more open. Of those 
surveyed only one preservice teacher stated her main strategy for creating a problem 
was asking herself if the problem made sense.
CONCLUSION
Our study explores elementary preservice teachers’ experiences and the types of 
problem they posed during a mathematics teacher education course. Our results 
indicate that preservice teachers can pose open-ended mathematics problems and that 
posing these problems within the context of collecting digital images broadens their 
awareness of what is possible in mathematics teaching and learning. Nonetheless 
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preservice teachers indicate that posing open-ended problems inspired by the world 
around them is a challenging task. Posing one open-ended problem from an image 
was challenging but achievable, posing more than one moved preservice teachers to 
develop strategies for creating open-ended problems that could be used across 
images. Thus keeping the photo invariant, that is, requiring that preservice teachers 
pose more than one problem for each photo increased their awareness of problem 
posing practices. They developed strategies for creating open-ended problems that 
were then used across the various images and they compared these to the process of 
designing closed problems. Opportunities to develop mathematical problems with 
images increased their awareness of what counts as a possible mathematics problem. 
Our results also indicate that in developing open-ended problems inspired by images, 
preservice teaches were concerned with attending to the appropriateness of the 
problem for children related to the intended object of learning and to what they 
thought would be an interesting context for students. At the same time few preservice 
teachers mentioned creating math problems as exemplars of big mathematical ideas 
or as problems they personally were inspired to solve. The problems preservice 
teachers posed were thus created from a pedagogical perspective (for students to 
solve) rather than a personal perspective (for them to solve). 
The challenge preservice teachers experienced in posing open-ended problems is 
shared with practicing teachers. Gerofsky’s (2004) analysis of teachers’ use and 
development of word problems indicated that even experienced teachers who may see 
the world with “calculus eyes” may have difficulty seeing the world with other 
concepts such as fractions. Teachers and preservice teachers could be supported with 
strategies for creating and adapting problems. The work of Prestage and Perks (2007) 
provided such support for adapting and extending math problems given an initial 
task. What might these strategies look like in the context of developing problems 
from collected images? Might these strategies help preservice teachers shift their 
attention to explore mathematics for themselves or to create questions that encourage 
their students to generalize? Might they provide more explicit opportunities for 
preservice teachers to observe variation or regularities in creating problems and thus 
become more familiar and experienced with the practice of problem posing? These 
questions are important to consider as we continue to explore pedagogical strategies 
for developing a space of learning that supports preservice teachers in learning to 
pose good problems that may contribute to their future students’ mathematical sense-
making.
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an important consideration when assisting preservice teachers with problem posing to 
ensure that meaningful links are made to the intended object of learning. 
The nature of the use of the photo was explored to determine the relationship with the 
content of the problem. A problem was coded as Interactive if the photo was 
necessary to complete the problem and Illustrative if the photo was a motivational 
device or visual enhancement to the problem but unnecessary for solving the task.  
Figure 1 depicts a photo with an interactive and illustrative problem. A larger 
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the photo in a meaningful way. The preservice teachers stated that designing 
interactive questions was extremely challenging for all questions. However, their 
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of 300m? Construct your new schoolyard fence, label 
sides and show your new formula for perimeter. Share 
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Figure 1. Problem Picture with Interactive and Illustrative Problems.  
Survey results indicate that preservice teachers appreciated the opportunity to explore 
mathematics through taking and analysing digital images. Most preservice teachers 
(95%) stated that the task was challenging. Sarah’s comment is representative of 
others when she stated: “It took me more than an hour to generate one question.” 
Others found it easier to develop a single question for an image but found it 
extremely difficult to create more for that same image. They did, however develop 
different strategies that helped them design open-ended problems. These included: 1) 
thinking of a closed question then removing some information; 2) looking at the 
photo and thinking about major math topic areas; 3) forming questions around the 
curricular topics then fitting these with the photo; 4) imagining themselves as young 
children; 5) playing with the language of the problem to make it more open. Of those 
surveyed only one preservice teacher stated her main strategy for creating a problem 
was asking herself if the problem made sense.
CONCLUSION
Our study explores elementary preservice teachers’ experiences and the types of 
problem they posed during a mathematics teacher education course. Our results 
indicate that preservice teachers can pose open-ended mathematics problems and that 
posing these problems within the context of collecting digital images broadens their 
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preservice teachers indicate that posing open-ended problems inspired by the world 
around them is a challenging task. Posing one open-ended problem from an image 
was challenging but achievable, posing more than one moved preservice teachers to 
develop strategies for creating open-ended problems that could be used across 
images. Thus keeping the photo invariant, that is, requiring that preservice teachers 
pose more than one problem for each photo increased their awareness of problem 
posing practices. They developed strategies for creating open-ended problems that 
were then used across the various images and they compared these to the process of 
designing closed problems. Opportunities to develop mathematical problems with 
images increased their awareness of what counts as a possible mathematics problem. 
Our results also indicate that in developing open-ended problems inspired by images, 
preservice teaches were concerned with attending to the appropriateness of the 
problem for children related to the intended object of learning and to what they 
thought would be an interesting context for students. At the same time few preservice 
teachers mentioned creating math problems as exemplars of big mathematical ideas 
or as problems they personally were inspired to solve. The problems preservice 
teachers posed were thus created from a pedagogical perspective (for students to 
solve) rather than a personal perspective (for them to solve). 
The challenge preservice teachers experienced in posing open-ended problems is 
shared with practicing teachers. Gerofsky’s (2004) analysis of teachers’ use and 
development of word problems indicated that even experienced teachers who may see 
the world with “calculus eyes” may have difficulty seeing the world with other 
concepts such as fractions. Teachers and preservice teachers could be supported with 
strategies for creating and adapting problems. The work of Prestage and Perks (2007) 
provided such support for adapting and extending math problems given an initial 
task. What might these strategies look like in the context of developing problems 
from collected images? Might these strategies help preservice teachers shift their 
attention to explore mathematics for themselves or to create questions that encourage 
their students to generalize? Might they provide more explicit opportunities for 
preservice teachers to observe variation or regularities in creating problems and thus 
become more familiar and experienced with the practice of problem posing? These 
questions are important to consider as we continue to explore pedagogical strategies 
for developing a space of learning that supports preservice teachers in learning to 
pose good problems that may contribute to their future students’ mathematical sense-
making.
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THE RELATIONSHIP BETWEEN READING COMPREHENSION 
AND NUMERACY AMONG NORWEGIAN GRADE 8 STUDENTS 

Guri A. Nortvedt
University of Oslo 

 In the autumn of 2007, Norwegian grade 8 students sat national tests in reading and 
numeracy. Tests scores on the item level have been linked for a national sample of 
students, allowing for a correlation analysis of the relationship between reading and 
numeracy. The overall tendency shows that good readers achieve high numeracy 
scores while struggling readers also have low numeracy scores. The correlation 
between reading comprehension and numeracy reaches as high as 0.714. Correlation 
is stronger for items within the content area of number than for other content areas. 
Gender and reading comprehension level explain 54 % of the variance in numeracy 
sum scores. Item format is of less importance.

INTRODUCTION
Mathematics textbooks, national tests and exams all draw heavily on word problems. 
One concern among many mathematics teachers is that, even though reading 
mathematical text is considered part of the core aims of schooling, word problems 
disadvantage both bilingual and weak students. Prior research has well documented 
strong relationships between reading and numeracy (see for instance Roe & Taube, 
2006); the relationship between the two, however, is not easy to understand.
Reading and numeracy were declared core basic skills for the Norwegian curricula 
implemented in the autumn of 2006 and test constructs for the national tests where 
defined accordingly (NDETi, 2006a; 2006b). In the autumn of 2007, Norwegian 
grade 8 students sat national tests in reading comprehension and numeracy. Test 
scores have been linked for a national sample of students, allowing for a correlation 
analysis of the relationship between reading and numeracy. The aim of this paper is 
to present and discuss some of the results from this analysis. 

PRIOR RESEARCH 
The connection between reading comprehension and doing mathematics—as in 
solving routine problems and problem solving—has intrigued research for a long 
time. Knifong and Holtan (1977) for instance, investigated erred word problems and 
found little evidence that poor reading abilities where the cause for student errors.  
Their investigation contrasts the many studies of the connection between reading 
comprehension and problem solving where the main hypothesises is that reading 
comprehension underlies success in solving word problems (see for instance Reed, 
1999; Verschaffel, de Corte, & Greer, 2000; Österholm, 2005). Cummins, Kintsch, 
Reusser and Wiemer (1988), unlike Knifong and Holtan, suggest a connection 
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between error patterns and comprehension strategies, and that erred problems often 
are the correct solution of the problem as students comprehend it.  
To understand or to comprehend a (word) problem is to form a mental representation 
that allows the student to progress towards producing a solution to the given problem 
(Nortvedt, 2008; Thevenot, Devidal, Barrouillet, & Fayol, 2007; Verschaffel et al., 
2000). To arrive at such a mental representation, the student first needs to read the 
problem. Roe and Taube (2006) found that literacy measures for reading and 
mathematics correlated 0.57 for Norwegian and Swedish students in an analysis of 
Programme for International Student Assessment (PISA) 2003 data. Their analysis 
revealed that proficiency in reading is positively correlated to solving mathematics 
items in general. They also found that proficiency in reading plays a more important 
role in solving some items than others (change and relationship items). The crucial 
item aspect is not text length but rather content, format and difficulty (ibid., p. 138). 
Österholm considers not “mathematics in itself (…) the most dominant aspect 
affecting the reading comprehension process, but the use of symbols in the text is the 
more relevant factor” (Österholm, 2005, p. 325). Students use a wide range of 
strategies to identify relevant information in word problems (Cook, 2006); while 
struggling students can be characterized as using surface-level strategies, proficient 
students apply deep-level strategies to discriminate between textual elements. 
The literature of the field gives the general emerging picture that reading 
comprehension play a crucial role, even though causes of student errors can be found 
elsewhere, as in failure to master algorithms. Vilenius-Tuohimaa, Aunola and Nurmi 
(2008), who control for decoding, also support this and find that although technical 
reading increases performance on solving word problems, comprehension still has a 
significant correlation of 0.38 to solving the same problems.  

DESIGN AND METHODS 
National tests in reading comprehension and numeracy for grade 8ii comprise the 
tests used for this research. Students sit both tests in the last weeks of September. 
Expert groups at Norwegian universities develop the tests on behalf of NDET. 
Teachers score their own students’ tests and report all student scores on a national 
web site (NDET, 2008). The Ministry of Education have granted access to the results 
of the students in the national sample for the present research project, allowing for 
data at the item level.  
Sample
Of a national, representative sample of 1360 students from 26 schools throughout 
Norway, 1265 students (M = 631, F = 633) participated in both tests. Norwegian 
classrooms are inclusive, and, hence, all ability levels are represented in the sample. 
Analysis
As the aim of this study is to analyse the influence of reading comprehension to 
solving a numeracy test, only results for students present for both tests are included in 
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the analysis. Tests are linked at the student level, allowing for correlation analysis. 
Some analysis is performed at the student level on the linked database. However, data 
at the item level resulting from the analysis at the student level and from a classical 
item analysis of the tests are used to construct a second database. This database 
consists of data for each of the 76 items in the numeracy tests allowing for correlation 
analysis comparing item characteristics.
Students have been assigned to three proficiency groups based on their scores on the 
two tests. Students scoring below the 20th percentile on both tests have been assigned 
to the low-performing group and students scoring above the 80th percentile on both 
tests have been assigned to the high-achieving group. Each group consists of 
approximately 12 % of the sample of 1264 students. 
The numeracy test 
The test construct for the numeracy test is given in a national framework, developed 
by NDET on behalf of the Norwegian Ministry of Education (NDET, 2006b). The 
purpose of the test is to assess students’ numeracy skills, i.e., their knowledge of 
numbers, measurement and basic statistics. A majority of the problems should be 
applied or given some everyday context (ibid.). All items have at least one line of 
text. Seven items have short texts like “find the sum”, two of the seven are multiple 
choice items.  
Every item in the test is assigned to one of the content areas based on content analysis 
by the group developing the test and in accordance with reviews from content experts 
(Ravlo, 2008). The numeracy test consists of 71 exercises giving a total of 76 items. 
Each item can receive one score point.  Multiple choice items make up the majority 
of items (51). The rest are open-response formats where students have to construct an 
answer in an appropriate format, mainly a number. For a few items, students will 
finish a diagram or make a drawing. Test reliability is high: 0.947 measured with 
Cronbach’s Alpha. Table 1 shows other reliability measures for the numeracy test. 

Content area/Item format Number of items Cronbach’s Alpha 
Number 46 0.928 
Measurement 19 0.782 
Statistics 11 0.679 
MC items 51 0.926 
OR items 25 0.862 

Table 1: Numeracy test reliability measures
The reading test 
The framework developed by NDET for the reading test is similar to that of the PISA 
Study, defining the sub-competencies of reading comprehension as the capacity to 
retrieve, interpret and reflect on text content (OECD, 1999; NDET, 2006b). The test 
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between error patterns and comprehension strategies, and that erred problems often 
are the correct solution of the problem as students comprehend it.  
To understand or to comprehend a (word) problem is to form a mental representation 
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(Nortvedt, 2008; Thevenot, Devidal, Barrouillet, & Fayol, 2007; Verschaffel et al., 
2000). To arrive at such a mental representation, the student first needs to read the 
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role in solving some items than others (change and relationship items). The crucial 
item aspect is not text length but rather content, format and difficulty (ibid., p. 138). 
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(2008), who control for decoding, also support this and find that although technical 
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DESIGN AND METHODS 
National tests in reading comprehension and numeracy for grade 8ii comprise the 
tests used for this research. Students sit both tests in the last weeks of September. 
Expert groups at Norwegian universities develop the tests on behalf of NDET. 
Teachers score their own students’ tests and report all student scores on a national 
web site (NDET, 2008). The Ministry of Education have granted access to the results 
of the students in the national sample for the present research project, allowing for 
data at the item level.  
Sample
Of a national, representative sample of 1360 students from 26 schools throughout 
Norway, 1265 students (M = 631, F = 633) participated in both tests. Norwegian 
classrooms are inclusive, and, hence, all ability levels are represented in the sample. 
Analysis
As the aim of this study is to analyse the influence of reading comprehension to 
solving a numeracy test, only results for students present for both tests are included in 
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item analysis of the tests are used to construct a second database. This database 
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analysis comparing item characteristics.
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two tests. Students scoring below the 20th percentile on both tests have been assigned 
to the low-performing group and students scoring above the 80th percentile on both 
tests have been assigned to the high-achieving group. Each group consists of 
approximately 12 % of the sample of 1264 students. 
The numeracy test 
The test construct for the numeracy test is given in a national framework, developed 
by NDET on behalf of the Norwegian Ministry of Education (NDET, 2006b). The 
purpose of the test is to assess students’ numeracy skills, i.e., their knowledge of 
numbers, measurement and basic statistics. A majority of the problems should be 
applied or given some everyday context (ibid.). All items have at least one line of 
text. Seven items have short texts like “find the sum”, two of the seven are multiple 
choice items.  
Every item in the test is assigned to one of the content areas based on content analysis 
by the group developing the test and in accordance with reviews from content experts 
(Ravlo, 2008). The numeracy test consists of 71 exercises giving a total of 76 items. 
Each item can receive one score point.  Multiple choice items make up the majority 
of items (51). The rest are open-response formats where students have to construct an 
answer in an appropriate format, mainly a number. For a few items, students will 
finish a diagram or make a drawing. Test reliability is high: 0.947 measured with 
Cronbach’s Alpha. Table 1 shows other reliability measures for the numeracy test. 

Content area/Item format Number of items Cronbach’s Alpha 
Number 46 0.928 
Measurement 19 0.782 
Statistics 11 0.679 
MC items 51 0.926 
OR items 25 0.862 

Table 1: Numeracy test reliability measures
The reading test 
The framework developed by NDET for the reading test is similar to that of the PISA 
Study, defining the sub-competencies of reading comprehension as the capacity to 
retrieve, interpret and reflect on text content (OECD, 1999; NDET, 2006b). The test 
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contains continuous as well as non-continuous texts. A few items are connected to 
each text. Each item is assigned to one of the construct areas by the research group 
developing the test (ILS/UiO, 2008). The reading test consists of 43 items, mainly 
multiple choice items (30). Each item gives a maximum of one point, no partial 
points are assigned. Students must give a short written response for open-response 
items, with one or two lines of space provided. The reliability of the reading test is 
0.887 (Cronbach’s Alpha). Table 2 reveals other reliability measures for this test. 

Sub-competencies/ Text format Number of items Cronbach’s Alpha 
Retrieve 18 0.784 
Interpret 17 0.709 
Reflect 8 0.720 
Continuous 22 0.821 
Non-continuous 21 0.789 

Table 2: Reading comprehension test reliability measures 

TEST RESULTS 
On average, students score 39.4 points or 52% of a total of 76 (SE = 0.448, SD = 
15.915) for the numeracy test. Boys score significantly higher than girls, having 
averages of 40.95 and 37.86, respectively. The difference arises with boys 
outperforming girls on multiple choice items, where the difference in favour of boys 
is 2.76 score points (p = .001). When comparing the three content areas, boys score 
significantly better than girls in number and measurement (p = .001). In number, the 
difference is 2.15 score points.
The average sum score for the reading test is 26.62 score points (62 %) out of 43 (SE 
= 0.232, SD = 8.236). Girls outperform boys, average scores are 27.6 and 25.63, 
respectively (p = .001). Notable differences in favour of girls can be found for all 
sub-constructs as well as for all the item and text formats. Differences are significant 
at the .05 level; however, some are small measured in score points.

CORRELATING DIFFERENT ASPECTS OF READING AND NUMERACY 
To sum up, while boys outperform girls on the numeracy test, girls outperform boys 
in reading. Measured in standard deviations, the differences are 0.19 and 0.24, 
respectively. In Figure 1 the relationship between reading and numeracy is displayed. 
The size of the Pearson correlationiii between reading and numeracy is 0.714 (p < 
.001); a strong connection exists between how students score on the reading test and 
the numeracy test.
Even given the differences between boys and girls on reading and numeracy, gender 
and reading comprehension level can explain 54 % of the variance in the numeracy 
sum score, F(2, 1261) = 750, p = .001. Reading alone can explain 46 % of the 
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variance, F(1,1262) = 1062, p = .001. Splitting the sum score on the numeracy test 
into a sum score for multiple choice items and a sum score for open-response items 
gives correlations with reading at 0.676 and 0.714, respectively (p < .001 for both). 
Gender and reading comprehension level explain about the same amount of variance 
in the sum scores for the two item formats; for multiple choice items 50 % of the 
variance, F(2,1261) = 633, p = .001; for open-response format 52 % of the variance, 
F(2,1261) = 690, p = .001. 

Fig. 1. Z-scores in reading and numeracy 
Strong correlations can be found between the different aspects of reading 
comprehension and numeracy. Of the different reading aspects, retrieving 
information has the highest correlation to the numeracy aspects as well as to 
numeracy overall. Of all the part-part correlations, the highest is between retrieve 
information and number. However, the correlations between the different aspects of 
numeracy are higher than between the same aspect and the different reading 
constructs.  

 Reading 
sum score 

Retrieve Interpret Reflect Cont. text Non-cont.
text

Number 0.690 0.677 0.577 0.555 0.581 0.698 
Measurement 0.624 0.628 0.516 0.494 0.514 0.642 
Statistics 0.628 0.626 0.536 0.543 0.555 0.648 

Table 3. Pearson correlation: All significant at the .001 level (2-tailed) 
The correlation for non-continuous texts (0.734) is higher than the correlation for 
continuous texts (0.600) to numeracy overall (p = .001 for both), and also to the 
different numeracy constructs. As many numeracy items contain tables or figures and 
are non-continuous texts themselves, this result might not be surprising.  
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respectively. In Figure 1 the relationship between reading and numeracy is displayed. 
The size of the Pearson correlationiii between reading and numeracy is 0.714 (p < 
.001); a strong connection exists between how students score on the reading test and 
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Even given the differences between boys and girls on reading and numeracy, gender 
and reading comprehension level can explain 54 % of the variance in the numeracy 
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variance, F(1,1262) = 1062, p = .001. Splitting the sum score on the numeracy test 
into a sum score for multiple choice items and a sum score for open-response items 
gives correlations with reading at 0.676 and 0.714, respectively (p < .001 for both). 
Gender and reading comprehension level explain about the same amount of variance 
in the sum scores for the two item formats; for multiple choice items 50 % of the 
variance, F(2,1261) = 633, p = .001; for open-response format 52 % of the variance, 
F(2,1261) = 690, p = .001. 

Fig. 1. Z-scores in reading and numeracy 
Strong correlations can be found between the different aspects of reading 
comprehension and numeracy. Of the different reading aspects, retrieving 
information has the highest correlation to the numeracy aspects as well as to 
numeracy overall. Of all the part-part correlations, the highest is between retrieve 
information and number. However, the correlations between the different aspects of 
numeracy are higher than between the same aspect and the different reading 
constructs.  

 Reading 
sum score 

Retrieve Interpret Reflect Cont. text Non-cont.
text

Number 0.690 0.677 0.577 0.555 0.581 0.698 
Measurement 0.624 0.628 0.516 0.494 0.514 0.642 
Statistics 0.628 0.626 0.536 0.543 0.555 0.648 

Table 3. Pearson correlation: All significant at the .001 level (2-tailed) 
The correlation for non-continuous texts (0.734) is higher than the correlation for 
continuous texts (0.600) to numeracy overall (p = .001 for both), and also to the 
different numeracy constructs. As many numeracy items contain tables or figures and 
are non-continuous texts themselves, this result might not be surprising.  
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CORRELATION ANALYSIS ON THE ITEM LEVEL 
All items on the numeracy test have been correlated to the sum scores in reading and 
numeracy before plotting the correlations in Figure 2. All correlations are significant 
at the .05 level. As could be expected, given the strong relationship between reading 
and numeracy scores on the student level, the correlation between the correlation 
measures are also high: 0.871 (p < .001).

Fig. 2. Item correlation to reading and numeracy sum scores 
Next all numeracy test items have been sorted according to their correlation to the 
reading sum score. Two groups of items are of special interest: the 10 items with the 
highest correlation to reading and the 10 items with the lowest. The 10 items with the 
highest correlation all have a correlation above 0.400 to reading. The correlation to 
numeracy is higher. Of the 10 items, 8 appear in the first half of the test. P-values are 
between 35% and 74%, on average 51%. All but two items are within the content 
area number. The last two have been assigned to the statistics area. Seven of the 
items are open-response format. The 10 items with the lowest correlation to reading 
all have a correlation below 0.218. The correlation to the numeracy sum score is 
higher and has a wider range as does the distribution in difficulty level; p-values are 
between 20 % and 86 %, on average 44 %. Only two of these items are open-
response items. Items are evenly distributed across the three content areas and 
considering the item’s placement in the test.  
The majority of the high-correlation items are of an open-response format. For the 
whole test, approximately one third of the items have this format. Open-response 
items seemingly correlate higher to reading than multiple choice items do; the 
average correlation is higher. However, the correlation between item format and 
reading is not significant. A regression analysis reveals that content area, item format 
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and p-value together can explain 14.3% of the variance in item correlation to reading 
comprehension, F(3, 72) = 4.010, p = .011. This relationship is less straightforward to 
interpret and understand. An investigation of the two groups of low- and high-
achieving students and the items with the lowest and highest correlation to reading 
reveals a pattern regarding average sum score for the two groups of 10 items. High- 
achievers appear disadvantaged by items with low correlation to reading, and vice 
versa for low-achievers. The difference in difficulty level for the two groups of items 
is relatively small, but to the low-achievers especially, the difference is large.

 Partial sum score 
High-correlation items

Partial sum score 
Low-correlation items 

Low-achievers 1.01 2.72 
High-achievers 8.97 6.71 
Full sample 5.08 4.37 

Table 4. Partial sum scores for low and high achievers 
Extending this analysis to other groups of 10 items modifies the picture slightly, but 
low-achievers remain particularly disadvantaged by items with high correlation to 
reading and the high-achievers likewise by items with low correlation to reading. 
Within groups, boys and girls display the same pattern. Among the low-achieving 
students, the pattern is slightly stronger for boys. 

CONCLUDING REMARKS 
As in prior research, the relationship between reading comprehension and numeracy 
proves rather strong (Roe & Taube, 2006; Vilenius-Tuohimaa et al., 2008). Text 
formats that resemble the mathematical format, as in non-continuous text, better 
predict numeracy scores. Being able to retrieve information has a higher correlation 
to numeracy sum scores than the other two reading sub-competencies. This might be 
because students need to retrieve information from all numeracy items, but only some 
of items demand students to reflect on and interpret the text in order to be able to 
determine the nature of the mathematical relationships in the text (Cook, 2006; 
Cummins et al, 1988; Reed, 1999). Number correlates stronger to reading than the 
other two content areas, unlike in the Roe and Taube study (2006). Item format, p-
value and content area explain some of the variation in correlation to reading 
comprehension for single items. Item format less than in Roe and Taube (ibid.) More 
puzzling, however, is how low- and high-achievers are more advantaged for items 
with low or high correlation to reading. One possible explanation to results on the 
items with high correlation to reading comprehension is that struggling readers more 
often use surface-level strategies such as searching for key words, while proficient 
readers master deep-level reading like using the problem question to guide 
discrimination between text elements (Cook, 2006). To discriminate and to recognize 
mathematical relationships in the text, students draw on prior knowledge (Roe & 
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higher and has a wider range as does the distribution in difficulty level; p-values are 
between 20 % and 86 %, on average 44 %. Only two of these items are open-
response items. Items are evenly distributed across the three content areas and 
considering the item’s placement in the test.  
The majority of the high-correlation items are of an open-response format. For the 
whole test, approximately one third of the items have this format. Open-response 
items seemingly correlate higher to reading than multiple choice items do; the 
average correlation is higher. However, the correlation between item format and 
reading is not significant. A regression analysis reveals that content area, item format 
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and p-value together can explain 14.3% of the variance in item correlation to reading 
comprehension, F(3, 72) = 4.010, p = .011. This relationship is less straightforward to 
interpret and understand. An investigation of the two groups of low- and high-
achieving students and the items with the lowest and highest correlation to reading 
reveals a pattern regarding average sum score for the two groups of 10 items. High- 
achievers appear disadvantaged by items with low correlation to reading, and vice 
versa for low-achievers. The difference in difficulty level for the two groups of items 
is relatively small, but to the low-achievers especially, the difference is large.

 Partial sum score 
High-correlation items

Partial sum score 
Low-correlation items 

Low-achievers 1.01 2.72 
High-achievers 8.97 6.71 
Full sample 5.08 4.37 

Table 4. Partial sum scores for low and high achievers 
Extending this analysis to other groups of 10 items modifies the picture slightly, but 
low-achievers remain particularly disadvantaged by items with high correlation to 
reading and the high-achievers likewise by items with low correlation to reading. 
Within groups, boys and girls display the same pattern. Among the low-achieving 
students, the pattern is slightly stronger for boys. 

CONCLUDING REMARKS 
As in prior research, the relationship between reading comprehension and numeracy 
proves rather strong (Roe & Taube, 2006; Vilenius-Tuohimaa et al., 2008). Text 
formats that resemble the mathematical format, as in non-continuous text, better 
predict numeracy scores. Being able to retrieve information has a higher correlation 
to numeracy sum scores than the other two reading sub-competencies. This might be 
because students need to retrieve information from all numeracy items, but only some 
of items demand students to reflect on and interpret the text in order to be able to 
determine the nature of the mathematical relationships in the text (Cook, 2006; 
Cummins et al, 1988; Reed, 1999). Number correlates stronger to reading than the 
other two content areas, unlike in the Roe and Taube study (2006). Item format, p-
value and content area explain some of the variation in correlation to reading 
comprehension for single items. Item format less than in Roe and Taube (ibid.) More 
puzzling, however, is how low- and high-achievers are more advantaged for items 
with low or high correlation to reading. One possible explanation to results on the 
items with high correlation to reading comprehension is that struggling readers more 
often use surface-level strategies such as searching for key words, while proficient 
readers master deep-level reading like using the problem question to guide 
discrimination between text elements (Cook, 2006). To discriminate and to recognize 
mathematical relationships in the text, students draw on prior knowledge (Roe & 
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Taube, 2006), which high-achievers possess to a much larger extent. Explanations to 
the reversed pattern, that students are more ‘equal’ when it comes to solving items 
with a low correlation to reading, reminds to be found.  
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MODELLING PARTICIPATION IN PRE-COLLEGE 
MATHEMATICS EDUCATION 

Andrew Noyes
University of Nottingham 

Concerns about declining participation in pre-college (Advanced level) mathematics 
education have been growing in England in recent years.  In this paper I develop a 
statistical model for exploring participation at Advanced level with a particular focus 
on examining the between-school differences in completion rates.  After accounting 
for learners’ prior attainment, social background and the school mix there remains 
considerable variation in completion of pre-college mathematics. Much more of this 
is attributable to the post-compulsory school (16+) than on experiences up to age 16.    

INTRODUCTION
International concerns about the declining numbers of students following science, 
technology, engineering and mathematics (STEM) courses are well documented 
(Committee on Science, Engineering and Public Policy, 2007; Gago, 2004; Roberts, 
2002).  The Royal Society’s recent ‘state of the nation’ report (2008) offers a detailed 
overview of the patterns of STEM attainment and participation in the UK. The 
underlying motivation for these concerns is the securing of future economic 
productivity, the argument being that in order to be positioned at the forefront of the 
global economy advanced nations need to be leaders in the production and 
application of scientific knowledge.  Therefore, high levels of engagement in STEM 
education are essential and substantial sums of money are being committed to a range 
of policies to increase participation.
Matthews and Pepper’s (2007) analysis for the Qualifications and Curriculum 
Authority (QCA) looks in considerable detail at the particular case of mathematics in 
England.  The QCA are engaged in a programme of reform of 14-19 mathematics 
qualifications. These include the piloting of new qualifications and developments of 
existing qualifications in order to develop a range of mathematics learning pathways 
for the full range of students.  The express aim of this programme is to improve the 
quality of mathematics education in schools and colleges, thereby widening and 
increasing participation, particularly at Advanced level. 
However, in all of these studies and policy recommendations, although there is a 
great deal of analysis of trends across cohorts by social variables, there is little in the 
way of attempt to measure between-school variation in completion of pre-college 
mathematics.  How much difference do schools make in steering students towards or 
away from further mathematical study; in retaining or losing them to mathematics? 
The danger in exploring such questions is that tools developed to explore school 
effects might then being used uncritically by policymakers as a managerial 
technology of the standards agenda.  Nonetheless, the analysis is worthwhile. 
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There is some research in science (e.g. Cleaves, 2005) and mathematics (Brown, 
Brown, & Bibby, 2008; Hernandez-Martinez et al., 2008; Mendick, 2005) about 
student choices beyond compulsory schooling but often this accounts for individual 
choice rather than structural effects.   As ‘choice’ is a problematic concept (Ball, 
Davies, David, & Reay, 2002) I want to explore the extent to which schools effect 
completion of pre-college or A level mathematics. From the studies on participation 
in mathematics we know that enjoyment and success are key factors in students 
deciding to continue.  We would expect, therefore that schools would have some 
effect on these and other measures associated with likely participation but research to 
date has not tried to quantify the between-school variation in participation.
Given the interest in widening and increasing participation in pre-college 
mathematics this paper explores variation between schools.  Firstly I am interested in 
whether or not there is any significant difference linking the school one attends (both 
up to 16 and from 16) to one’s chances of completing a pre-college (A level) 
mathematics qualification.  It might also be useful to have some estimate of the level 
of this effect. Secondly, we need to understand what the causes of such differences 
might be. This is a more complex question and beyond the scope of this paper 
although I will explore some possible avenues for enquiry.
The dataset 
In order to explore this first question I make use of England’s National Pupil 
Database (NPD) and Pupil Level Annual School Census (PLASC).  These extensive 
datasets include students’ qualification records throughout their educational careers 
as well as a range of social measures (e.g. gender, ethnicity, eligibility for free school 
meals, etc).  The dataset records the schools attended by each student which allows us 
to explore the nested, multilevel structure of the data. We might expect any between-
school variation to be unstable at the school level, in other words, year on year 
variations within a school might be considerable but it is not the aim of this paper to 
explore this (see Gray, Goldstein, & Thomas, 2001, for an example of a related 
analysis on year-on-year A level attainment). 
The dataset used here is the 2005 cohort of 16 year olds completing their GCSE 
(General Certificate of Secondary Education) qualifications in the East and West 
Midlands (Government Office Regions) of England who then completed any 
Advanced level qualification over the following two years (36696 students).  Several 
decisions have been made in preparing this data for multilevel modelling.  I have 
explained these elsewhere in more detail (Noyes, 2008) but the key points for this 
analysis are: 

Only students completing one or more A level courses are included in the 
dataset, i.e. I am concerned only with those students who have chosen some 
A levels, and might have included mathematics amongst these; 
I have only included students who obtained a GCSE grade C in mathematics 
as this is the official eligibility criteria for entry to A Level mathematics.  
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However, this presents a significant problem since entrance criteria vary 
between schools; 
Only those students from mainstream state secondary schools are included 
here (around 90% of the cohort) 

Learner trajectories do not all fit into this two year cycle (i.e. 2005-7) but it is 
generally applicable. This analysis accounts for student qualifications in the two 
years following GCSE awards in 2005.  When modelling completion, we are unable 
to tell from the dates of awards whether an AS (the first half of the full A level) in 
2007 took one or two years to complete.  The model considers whether a student has 
gained at least this AS qualification. 
Another limitation of using the NPD/PLASC data is that it only reports results (and 
therefore entries) and so doesn’t give the full picture about participation and attrition.  
Survey data from another strand of the larger project (Noyes & Sealey, 2008) 
indicates that approximately 10% of Year 12 students who start mathematics do not 
complete.  This is one of the highest attrition rates for Advanced level subjects and a 
different methodology is required to explore that aspect of participation.
Modelling school effects on the completion of any Advanced level mathematics 
The modelling in this analysis consists of three level, cross-classified binary response 
models.  Students (level 1) are nested within schools at Key Stage 4 (level 2) and 
either the same or a different school from 16-18 (level 3).  The majority of these 
students (58%) stay in the same school but since there is movement at 16 both into 
and out of many schools, levels 2 and 3 of the model are cross-classified.  A dummy 
variable is included to account for changing schools at 16. Models are run initially 
using predictive quasi-likelihood (PQL) estimation and these coefficients then act as 
prior estimates for the Markov Chain Monte Carlo (MCMC) estimation which a) 
gives more reliable estimates of the size of effect attributable to a range of factors and 
b) is required due to the cross-classified data structure.   
The modelling is developed from a single level logistic regression model in which the 
binary response (0,1) (whether or not they completed any A level mathematics 
between 2005-7) for the ith student with prior attainment xi is yi. Denoting as i the 
probability that yi = 1 gives the general model: 

f ( i ) = 0 + 1xi + ei

There are a number of possible link functions f ( i) which can be used in such logistic 
regression models but here I adopt the logit link function (Rasbash, Steele, Browne, 
& Prosser, 2005) where f( i) = log ( i/(1- i)).  The following model is developed for 
the ith student in the jth school for GCSE (up to 16) and the kth school for A level 
mathematics (post-16): 

logit ( ijk) = 0jk + 1xijk + eijk

0jk  = 0  + v0k + u0j  , v0k  ~ N(0, v
2) , u0j  ~ N(0, u

2) , eijk  ~ N(0, e
2)
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The model is run in MLwiN.  Due to the size and complexity of the model a burn in 
period of 5000 was used and 200000 iterations of the model were run in order for the 
effective sample size to be sufficiently high (>1000).  The resulting parameter 
estimates are shown in Table 1. 

Fixed Part  
Constant -5.764 (0.155) 
GCSE mathematics grade (ref. grade C)  
  Grade B 1.755 (0.067) 
  Grade A 3.432 (0.074) 
  Grade A* 4.630 (0.096) 
Female -0.824 (0.037) 
Difference of GCSE mathematics and English grades 0.486 (0.027) 
Difference of GCSE mathematics and average grade 0.283 (0.041) 
Number of A level entries 0.658 (0.036) 
IDACI score 0.654 (0.150) 
Ethnicity (ref. White British. Only statistically significant categories included here) 
  Any Other Asian Background 0.950 (0.191) 
  Indian 0.946 (0.075) 
  Pakistani 0.802 (0.119) 
  African 1.151 (0.233) 
  Bangladeshi 0.691 (0.224) 
  Chinese 1.167 (0.193) 
Post_16 School s.d. of number of A level entries -0.128 (0.042) 
Random Part  
Post-16 between-school variance 0.569 (0.075) 
Pre-16 between-school variance 0.252 (0.038) 
Number of post-16 centres  509 
Number of  pre-16 centres  634 

Table 1 Parameter estimates for the three-level, cross-classified model of Advanced 
level mathematics completion 2005-7 

Notes: Free School Meals (FSM), Special Educational Needs (SEN), English as an 
Additional Language (EAL) and changing school were not significant predictors. 
Centre variables (at Level 3 of the model) are potentially misleading as this dataset 
only contains A level students; a large college would have many non-Advanced level 
students too and so such centre level measures would no doubt have different effect. 
IDACI (Income Deprivation Affecting Children Index) here is left on the 0 (low 
deprivation) to 1 (high deprivation) scale.

Noyes

PME 33 - 2009 1- 5 

A number of things are worth pointing out from the above model.  Firstly, consider 
the between-school variance in completion of some A level mathematics. The 
variance participation coefficient (Goldstein, Browne, & Rasbash, 2002) is the total 
amount of residual variance attributable to levels 2 and 3 in the model and can be 
estimated in more than one way.  Here I use the following linear threshold model: 

VPC = u
2/( u

2 +3.29)
Using this I calculate estimates for the variances as 0.569/(0.569+3.29) = 0.147 at 
level 3, i.e. the A level centres, and 0.252/(0.252+3.29) = 0.071 at level 2; the GCSE 
centres.  So around 15% of the residual variance in completion of any Advanced 
level mathematics is attributable to which school you attend after 16.  Schools 
attended for GCSE contribute half as much variation again. Together, the schools 
attended account for over 20% of the variation of completion of some pre-college 
mathematics, after accounting for prior attainment, social background and school 
mix. This is substantial and much greater than the typical between-school variances 
of secondary school contextual value added modelling. Survey data arising from a 
different strand of this project supports this result, showing that take-up, withdrawal 
from AS and continuation to A2 all vary considerably between schools/colleges 
(Noyes & Sealey, 2008). 
The most significant predictor of completion of A level mathematics is, 
unsurprisingly, prior attainment. I could calculate predicted probabilities for GCSE 
grades A*, A, B and C. However, this is actually not that helpful since the other 
performance and social measures also combine to make significant differences in 
these probability estimates as I will show below.
A positive difference between GCSE mathematics grade and students English and 
mean GCSE grades increases the likelihood of them completing some A level 
mathematics.  This seems sensible and relates to evidence that self-efficacy 
influences likelihood of continued study.  It is also reasonable that completing a 
greater number of A levels increases the chances of having some mathematics 
included in one’s portfolio of qualifications.  From interviews with students and 
teachers it is clear that different schools and colleges have different policies on A 
level entries.  Having explored the potential significance of this by including school 
level measures (mean and standard deviation of the number of subjects awarded) only 
one measure was significant. The negative influence of ‘K5centre_s.d. of number of 
Advanced level entries’ suggests that heterogeneity of intake has some small 
detrimental effect upon likely completion of some mathematics.  However, caution 
needs to be exercised here as we don’t know the true mix of the centres from this data 
as we have only included students on A level pathways.  That said, if this measure of 
heterogeneity were important then it would only become more so if the full range of 
college students were included in the model. 
Turning to the social variables we can see, as anticipated from the research literature, 
that gender has a significant impact on participation with girls being less likely to 
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complete some mathematics.  The IDACI score shows that students from more 
deprived backgrounds are actually more likely to study some mathematics, when all 
other factors have been taken into account.  I have shown elsewhere (Noyes, 2008) 
that GCSE mathematics performance is associated with social class. So any ‘classed’ 
pattern of post-compulsory mathematics participation was shaped earlier in the 
education system.  It should also not be a surprise that the impact of ethnicity is very 
variable with Chinese/Indian/Pakistani/African students having a much increased 
predicted probability of completing some mathematics compared to the White British 
base category. 
Having looked at the effect of these background variables we can make probability 
estimates for different students.  For example, let us consider GCSE grade A 
mathematics students taking 3 A levels, remaining in the same school for A levels, 
with a very low (i.e. 0) IDACI score:   

 White British Chinese 
Male 0.41 0.69 
Female 0.23 0.50 

Table 2: Predicted probabilities of completing pre-college mathematics course 
The differences here are striking and reflect a far more complex patterning of 
participation than can be explored using only GCSE maths grades or gender, which 
are the typical units of analysis in England. 
An examination of the level 3 residuals suggests that around 10% of schools are 
significantly different (at 5% level) from the typical school and I am interested in 
understanding why these differences exist. Are they temporary, annual or short term 
fluctuations, which are now out of date since this cohort of students finished some 
time ago? Or, on the other hand, is there something about the school, the recruitment 
policy, the teaching and learning, etc., which is contributing to these between-school 
differences.  Further modelling might help to answer the first of these questions but 
the second one requires different research tools.  One challenge is that the cohorts of 
interest (schools significantly different from mean) cannot be identified until it is too 
late.  If, on the other hand, the school effect is more stable over time then school case 
study work can be used to explore these issues further.  Another strand of the project 
is working in a number of case study schools in order to explore how curriculum, 
school and departmental cultures, teaching and learning approaches might help to 
create these significant different schools 

DISCUSSION 
One of the motivations for my modelling of A level mathematics completion is to 
problematise the notion of school effectiveness, looking at it from a different 
direction.  Recently the press has reported that England has done well in the latest 
TIMSS study: we have ‘gone up’ in mathematics and science. Not reported as loudly 
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was that students appear to be enjoying their work less.  This issue is at the heart of 
how schools effect participation in pre-college mathematics. Are schools which are 
very successful in maximising contextual value added (CVA, for mathematics) also 
good at encouraging these students to continue their study of mathematics?  If we 
could model mathematics CVA for 11-16 year olds and compare these models with 
models for A level mathematics for the same cohort how much correlation would 
there be?  This paper is one part of that analysis.
The model above suggests that the amount of between-school variance in completion 
of any Advanced level mathematics is in excess of 20%, with the amount attributable 
to the post-16 schools about double that attributable to the pre-16 schools.  Why this 
should be is not clear although the variable retention rate in A level centres referred 
to earlier probably has an effect.  
We know that gender has a significant impact on participation and this is shown in 
the models although prior attainment has a far greater impact.  Raising the GCSE 
attainment of girls would probably be the best way of increasing their (and overall) 
participation in pre-college mathematics. Although the impact of gender is significant 
it is only similar in size to some of the ethnicity categories.  However, these ethnic 
groups are relatively small so the overall effect size (Schagen & Elliot, 2004) of 
gender is bigger. 
The number of A levels taken is clearly important.  If a student takes more A levels 
(the maximum in this dataset is 7.5) then the chances of mathematics being included 
among them is increased.  The parameter estimate for an extra A level (0.7) is not 
dissimilar, but opposite in effect, to that of being female (-0.8).  This factor is 
included as it would seem sensible that school policies on the number of entries 
would have an impact on completion and therefore school residuals.  For example, a 
policy that all students must complete 4 A level courses in year 12 (compared to 
another school in which one need only do 2 as a minimum) would have quite a 
difference.  Although teachers have pointed out these policies in schools in which we 
are working the best way to access this was to include centre level variables.  In the 
models I used mean and standard deviation of A level entries per candidate and of 
mean GCSE score. These were largely insignificant (at the 5% level).  Unsurprisingly 
higher average prior attainment of the year 12/13 cohort has a positive effect on 
completion of any A level mathematics. More unexpected is the small negative effect 
of increased school mix, i.e. wider range of number of A levels entered. Changing 
school between GCSE and A level seems to have a small negative effect but this is 
not statistically significant in this model.  
So, finally, this analysis is part of a larger study exploring the trajectories of learners 
of mathematics.  Throughout the paper I have suggested further analyses that need to 
build on these models.  These include within-centre cohort models that will identify 
trends over time; comparisons of school effects from 11-16 and 16-18 (for 11-18 
schools); contextual value added models for A level mathematics.
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Having looked at the effect of these background variables we can make probability 
estimates for different students.  For example, let us consider GCSE grade A 
mathematics students taking 3 A levels, remaining in the same school for A levels, 
with a very low (i.e. 0) IDACI score:   

 White British Chinese 
Male 0.41 0.69 
Female 0.23 0.50 

Table 2: Predicted probabilities of completing pre-college mathematics course 
The differences here are striking and reflect a far more complex patterning of 
participation than can be explored using only GCSE maths grades or gender, which 
are the typical units of analysis in England. 
An examination of the level 3 residuals suggests that around 10% of schools are 
significantly different (at 5% level) from the typical school and I am interested in 
understanding why these differences exist. Are they temporary, annual or short term 
fluctuations, which are now out of date since this cohort of students finished some 
time ago? Or, on the other hand, is there something about the school, the recruitment 
policy, the teaching and learning, etc., which is contributing to these between-school 
differences.  Further modelling might help to answer the first of these questions but 
the second one requires different research tools.  One challenge is that the cohorts of 
interest (schools significantly different from mean) cannot be identified until it is too 
late.  If, on the other hand, the school effect is more stable over time then school case 
study work can be used to explore these issues further.  Another strand of the project 
is working in a number of case study schools in order to explore how curriculum, 
school and departmental cultures, teaching and learning approaches might help to 
create these significant different schools 

DISCUSSION 
One of the motivations for my modelling of A level mathematics completion is to 
problematise the notion of school effectiveness, looking at it from a different 
direction.  Recently the press has reported that England has done well in the latest 
TIMSS study: we have ‘gone up’ in mathematics and science. Not reported as loudly 
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was that students appear to be enjoying their work less.  This issue is at the heart of 
how schools effect participation in pre-college mathematics. Are schools which are 
very successful in maximising contextual value added (CVA, for mathematics) also 
good at encouraging these students to continue their study of mathematics?  If we 
could model mathematics CVA for 11-16 year olds and compare these models with 
models for A level mathematics for the same cohort how much correlation would 
there be?  This paper is one part of that analysis.
The model above suggests that the amount of between-school variance in completion 
of any Advanced level mathematics is in excess of 20%, with the amount attributable 
to the post-16 schools about double that attributable to the pre-16 schools.  Why this 
should be is not clear although the variable retention rate in A level centres referred 
to earlier probably has an effect.  
We know that gender has a significant impact on participation and this is shown in 
the models although prior attainment has a far greater impact.  Raising the GCSE 
attainment of girls would probably be the best way of increasing their (and overall) 
participation in pre-college mathematics. Although the impact of gender is significant 
it is only similar in size to some of the ethnicity categories.  However, these ethnic 
groups are relatively small so the overall effect size (Schagen & Elliot, 2004) of 
gender is bigger. 
The number of A levels taken is clearly important.  If a student takes more A levels 
(the maximum in this dataset is 7.5) then the chances of mathematics being included 
among them is increased.  The parameter estimate for an extra A level (0.7) is not 
dissimilar, but opposite in effect, to that of being female (-0.8).  This factor is 
included as it would seem sensible that school policies on the number of entries 
would have an impact on completion and therefore school residuals.  For example, a 
policy that all students must complete 4 A level courses in year 12 (compared to 
another school in which one need only do 2 as a minimum) would have quite a 
difference.  Although teachers have pointed out these policies in schools in which we 
are working the best way to access this was to include centre level variables.  In the 
models I used mean and standard deviation of A level entries per candidate and of 
mean GCSE score. These were largely insignificant (at the 5% level).  Unsurprisingly 
higher average prior attainment of the year 12/13 cohort has a positive effect on 
completion of any A level mathematics. More unexpected is the small negative effect 
of increased school mix, i.e. wider range of number of A levels entered. Changing 
school between GCSE and A level seems to have a small negative effect but this is 
not statistically significant in this model.  
So, finally, this analysis is part of a larger study exploring the trajectories of learners 
of mathematics.  Throughout the paper I have suggested further analyses that need to 
build on these models.  These include within-centre cohort models that will identify 
trends over time; comparisons of school effects from 11-16 and 16-18 (for 11-18 
schools); contextual value added models for A level mathematics.

PME 33 - 2009 4 - 247

 Volume 04 COMPLETE 290509.indb   247 6/4/09   2:23:37 PM



Noyes

1- 8 PME 33 – 2009 

REFERENCES
Ball, S., Davies, J., David, M., & Reay, D. (2002). 'Classification' and 'Judgement': social 

class and the 'cognitive structures' of Higher Education. British Journal of Sociology 
of Education, 23(1), 51-72. 

Brown, M., Brown, P., & Bibby, T. (2008). "I would rather die": reasons given by 16-year-
olds for not continuing their study of mathematics. Research in Mathematics 
Education, 10(1), 3-18. 

Cleaves, A. (2005). The formation of science choices in secondary school. International
Journal of Science Education, 27(4), 471-486. 

Committee on Science, E. a. P. P. (2007). Rising above the gathering storm: energizing and 
employing America for a brighter future. Washington, DC: The National Academies 
Press.

Gago, J. M. (2004). Increasing human resources for science and technology in Europe.
Brussels: European Commission. 

Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning Variation in Multilevel 
Models. Understanding Statistics, 1(4), 223-231. 

Gray, J., Goldstein, H., & Thomas, S. (2001). Predicting the future: the role of past 
performance in determining trends in institutional effectiveness at A level. British 
Educational Research Journal, 27(4), 391-405. 

Hernandez-Martinez, P., Black, L., Williams, J., Davis, P., Pampaka, M., & Wake, G. 
(2008). Mathematics students' aspirations for higher education: class, ethnicity, 
gender and interpretive repertoire styles. Research Papers in Education, 23(2), 153-
165.

Matthews, A., & Pepper, D. (2007). Evaluation of Participation in A level Mathematics: 
final report. London: Qualifications and Curriculum Authority. 

Mendick, H. (2005). Mathematical stories: why do more boys than girls choose to study 
mathematics at AS-level in England? British Journal of Sociology of Education, 
26(2), 235-251. 

Noyes, A. (2008). Who completes AS/2 mathematics? submitted for review to Research in 
Mathematics Education.

Noyes, A., & Sealey, P. (2008). Investigating the retention of A level mathematics students: 
a case study. working paper.

Rasbash, J., Steele, F., Browne, W., & Prosser, B. (2005). A User's Guide to MLWin 
(version 2.0): Centre for Multilevel Modelling, University of Bristol. 

Roberts, G. (2002). SET for success: The supply of people with science, technology, 
engineering and mathematics skills. London: Department for Education and Science. 

Royal Society. (2008). Science and mathematics education 14-19: A 'state of the nation' 
report on the participation and attainment of 14-19 year olds in science and 
mathematics in the UK. London: The Royal Society. 

Schagen, I., & Elliot, K. (Eds.). (2004). But what does it mean? The use of effect sizes in 
educational research. Slough NFER. 

4 - 248 PME 33 - 20094 - 248 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   248 6/4/09   2:23:37 PM



2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 1, pp. XXX-YYY. Thessaloniki, Greece: 

PME.  1- 1 

PROCESS AND MEANS OF REINTERPRETING TACIT 

PROPERTIES IN UNDERSTANDING THE INCLUSION 

RELATIONS BETWEEN QUADLIRATERALS 
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Okayama University, Japan 

This study investigates the process and means of understanding inclusion relations 

between quadrilaterals. We argue that the main difficulty in comprehending inclusion 

relations comes from the pre-existing tacit properties children have in their minds, 

such as “all angles are not 90 degrees in a parallelogram”. We conducted a teaching 

experiment focusing on how these properties can be changed or reinterpreted to be 

more accurate. Results showed that a process of tautologous evolution based on the 

equilibration between positive and negative aspects was a natural phenomenon in 

children’s understanding of inclusion relations. Moreover, we identified the acts of 

correctly interpreting the language used and the use of analogies with other, more 

easily grasped inclusion relations as effective means. 

INTRODUCTION 

This paper is part of a study that explores how elementary school students can 

improve their interpretation of geometric figures towards deductive geometry at the 

secondary level. Specifically, we investigate the process and means of fifth graders’ 

understanding of quadrilateral inclusion relations through a teaching experiment. As 

van Hiele (1985) notes, inclusion relations are recognized when the definitions of 

figures come into play at the third level (We use 1-5 numeration model); similarly, 

we assume that students’ understanding of inclusion relations develops along with 

their recognition of figure definitions (Silfverberg and Matsuo, 2008). 

However, previous studies have shown that a majority of students still find it difficult 

to understand these concepts even after learning proofs in secondary geometry (Senk, 

1989; Okazaki and Fujita, 2007). In particular, one difficult problem is that children 

naturally develop strong tacit models in their mind that they have abstracted from 

daily experience and the typical examples continually provided by their teachers 

(Wilson, 1986; Fischbein, 1989; Hershkowitz, 1990). The tacit models can influence 

students’ interpretations of geometric figures, such that they often fail to classify 

some figures inclusively; further, regression phenomena may occur once they come 

to understand the correct inclusion relations, that is, they return to their previous 

exclusive classifications when the tacit models are activated (Okazaki, 1995). Thus 

our teaching experiment is focused on clarifying how children can overcome their 

tacit models in understanding the inclusion relations between geometric figures. 
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THEORETICAL BACKGROUND 

Several researchers have reported that difficulties in learning mathematics often stem 

from tendencies of students to rely on concept images rather than concept definitions 

(Vinner, 1991). Fischbein (1993) introduced a figural concept that has both 

conceptual and figural aspects, noting that figural aspects are typically dominant.  

For this study, we follow Piaget’s (1985) concept of equilibration between the 

positive and negative aspects of things: “the mind spontaneously centers on 

affirmations, or the positive characteristics of objects, actions, and operations. 

Negations are neglected or are constructed only secondarily and laboriously” (p.13). 

Namely, Piaget states it is necessary to construct new aspects called ‘negations’ and 

coordinate them with affirmations (positive aspects) to equilibrate schemes in 

disequilibrium, which is a result of the primacy of positive aspects. We believe that in 

parallelograms, for example, the positive aspects often considered by students are its 

properties such as ‘parallel opposite sides’ that they have learned explicitly in school, 

while the negative aspects correspond to the variability of each side and angle 

(Wilson, 1986). This variability, however, goes relatively unstressed in the teaching 

process. Children’s schemes may then be exposed as tacit models once they have 

given noncritical meanings to a parallelogram’s attributes based on its visual images 

(Fischbein, 1989; Hershkowitz, 1990). In actuality, students are likely to tacitly add 

properties such as ‘unequal adjacent angles’ and ‘unequal adjacent sides’ to a 

parallelogram in addition to its true properties (Okazaki, 1995): 

Initial state of a student’s conception of ‘parallelogram’ = 2121 qqpp  

   :1p  Opposite sides are parallel, :2p  Opposite sides are parallel, ... 

   :1q  The sizes of adjacent sides are not equal.  

   :2q  The sizes of adjacent angles are not equal. 

These tacit properties are robust (Fischbein, 1989). Okazaki (1995) found that even 

regression phenomena can occur. For example, when a child first understands the 

inclusion relation between rhombuses and parallelograms, because a rhombus has all 

the properties of a parallelogram, the child may revert to their previous exclusive 

classifications as soon as they become aware of these ‘tacit properties’ of 

parallelograms (We use the term ‘tacit property’ hereafter). In this way, tacit 

properties may appear like a “ghost” in the child’s mind until they can be replaced.  

One way to eliminate these tacit properties has been suggested by Okazaki (1995). 

The method is not to remove the property q , but rather to add q  (e.g., there are 

cases in which the lengths of adjacent sides of a parallelogram are equal). This 

method can be described as follows: 

qp          )( qqp            p     (tautologous evolution) 

It shows that if a tautology is made, then q  is subsequently eliminated (Murakami, 

2002). Although mathematically this is the same as the simple removal of q , we 

believe it is different psychologically. Simple removal would imply that the teacher 
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has denied the child’s tacit properties. However, in such teaching, the child may keep 

having the tacit properties in their mind. In the alternative method of tautologous 

evolution, however, the child’s existing concept ( q ) is protected, and for this reason 

it becomes necessary to newly construct ( q ). Below, we examine such a process. 

Moreover, we think that the meanings of both linguistic and functional activities are 

worthy of consideration, that is, “correctly interpreting the language used for class 

inclusions” and “understanding why such class inclusions are more useful than 

partition classifications” (de Villiers, 1994), respectively. We believe that these 

activities play important roles in the transition to deductive geometry. 

METHODOLOGY 

We distributed a preliminary questionnaire (see Okazaki and Fujita, 2007) to fifth 

graders in a public school, and chose 14 children who could provide correct answers 

to questions related to the properties of figures but did not soundly understand their 

inclusion relations. For instance, the students well know “The lengths of the opposite 

sides of parallelograms are equal”, but they were unsure of the statement “There is a 

parallelogram which has all equal angles”.  

We conducted teaching experiments (Steffe and Thompson, 

2000) for the paired children. First, the teacher (author) asks 

what ideas and images they have of a “parallelogram”, and 

checks what they consider to be its intensions and 

extensions. Next, the teacher encourages the children to see 

parallelograms dynamically using the operative material (Fig. 1), in which a 

parallelogram can be made to transform continuously into various shapes of 

parallelograms, two of which are a rhombus and rectangle. Then, the teacher instructs 

the children to write down what changes and what does not change. 

Then, the teacher asks them about two inclusion relations between quadrilaterals: (1) 

rhombus and parallelogram and (2) rectangle and parallelogram. The teacher may 

also try to evoke cognitive conflicts in the students’ cognition by reminding them that 

a rhombus and rectangle appeared in the parallelogram transformation, or by asking 

why one inclusion relation may be true while the other may be false. Once they agree 

with the inclusion relations, the teacher suggests the existence of tacit properties to 

check whether the regression phenomenon may happen. When they return to the 

exclusive classification, he encourages them to reflect on the notes they wrote down 

in Step 2. If they understand the inclusion relations, the teacher checks their final 

conception of “parallelogram”. 

All exchanges were recorded on video camera, and transcripts were made of the 

video data. We analyzed them qualitatively by noting when and how the students 

changed or further developed their views and why such changes happened. Through 

these analyses, we attempted to construct a model of the children’s understanding of 

the inclusion relations of geometric figures.  

Figure 1. Operative material
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THEORETICAL BACKGROUND 

Several researchers have reported that difficulties in learning mathematics often stem 

from tendencies of students to rely on concept images rather than concept definitions 

(Vinner, 1991). Fischbein (1993) introduced a figural concept that has both 

conceptual and figural aspects, noting that figural aspects are typically dominant.  

For this study, we follow Piaget’s (1985) concept of equilibration between the 

positive and negative aspects of things: “the mind spontaneously centers on 

affirmations, or the positive characteristics of objects, actions, and operations. 

Negations are neglected or are constructed only secondarily and laboriously” (p.13). 

Namely, Piaget states it is necessary to construct new aspects called ‘negations’ and 

coordinate them with affirmations (positive aspects) to equilibrate schemes in 

disequilibrium, which is a result of the primacy of positive aspects. We believe that in 

parallelograms, for example, the positive aspects often considered by students are its 

properties such as ‘parallel opposite sides’ that they have learned explicitly in school, 

while the negative aspects correspond to the variability of each side and angle 

(Wilson, 1986). This variability, however, goes relatively unstressed in the teaching 

process. Children’s schemes may then be exposed as tacit models once they have 

given noncritical meanings to a parallelogram’s attributes based on its visual images 

(Fischbein, 1989; Hershkowitz, 1990). In actuality, students are likely to tacitly add 

properties such as ‘unequal adjacent angles’ and ‘unequal adjacent sides’ to a 

parallelogram in addition to its true properties (Okazaki, 1995): 

Initial state of a student’s conception of ‘parallelogram’ = 2121 qqpp  

   :1p  Opposite sides are parallel, :2p  Opposite sides are parallel, ... 

   :1q  The sizes of adjacent sides are not equal.  

   :2q  The sizes of adjacent angles are not equal. 

These tacit properties are robust (Fischbein, 1989). Okazaki (1995) found that even 

regression phenomena can occur. For example, when a child first understands the 

inclusion relation between rhombuses and parallelograms, because a rhombus has all 

the properties of a parallelogram, the child may revert to their previous exclusive 

classifications as soon as they become aware of these ‘tacit properties’ of 

parallelograms (We use the term ‘tacit property’ hereafter). In this way, tacit 

properties may appear like a “ghost” in the child’s mind until they can be replaced.  

One way to eliminate these tacit properties has been suggested by Okazaki (1995). 

The method is not to remove the property q , but rather to add q  (e.g., there are 

cases in which the lengths of adjacent sides of a parallelogram are equal). This 

method can be described as follows: 

qp          )( qqp            p     (tautologous evolution) 

It shows that if a tautology is made, then q  is subsequently eliminated (Murakami, 

2002). Although mathematically this is the same as the simple removal of q , we 

believe it is different psychologically. Simple removal would imply that the teacher 
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has denied the child’s tacit properties. However, in such teaching, the child may keep 

having the tacit properties in their mind. In the alternative method of tautologous 

evolution, however, the child’s existing concept ( q ) is protected, and for this reason 

it becomes necessary to newly construct ( q ). Below, we examine such a process. 

Moreover, we think that the meanings of both linguistic and functional activities are 

worthy of consideration, that is, “correctly interpreting the language used for class 

inclusions” and “understanding why such class inclusions are more useful than 

partition classifications” (de Villiers, 1994), respectively. We believe that these 

activities play important roles in the transition to deductive geometry. 

METHODOLOGY 

We distributed a preliminary questionnaire (see Okazaki and Fujita, 2007) to fifth 

graders in a public school, and chose 14 children who could provide correct answers 

to questions related to the properties of figures but did not soundly understand their 

inclusion relations. For instance, the students well know “The lengths of the opposite 

sides of parallelograms are equal”, but they were unsure of the statement “There is a 

parallelogram which has all equal angles”.  

We conducted teaching experiments (Steffe and Thompson, 

2000) for the paired children. First, the teacher (author) asks 

what ideas and images they have of a “parallelogram”, and 

checks what they consider to be its intensions and 

extensions. Next, the teacher encourages the children to see 

parallelograms dynamically using the operative material (Fig. 1), in which a 

parallelogram can be made to transform continuously into various shapes of 

parallelograms, two of which are a rhombus and rectangle. Then, the teacher instructs 

the children to write down what changes and what does not change. 

Then, the teacher asks them about two inclusion relations between quadrilaterals: (1) 

rhombus and parallelogram and (2) rectangle and parallelogram. The teacher may 

also try to evoke cognitive conflicts in the students’ cognition by reminding them that 

a rhombus and rectangle appeared in the parallelogram transformation, or by asking 

why one inclusion relation may be true while the other may be false. Once they agree 

with the inclusion relations, the teacher suggests the existence of tacit properties to 

check whether the regression phenomenon may happen. When they return to the 

exclusive classification, he encourages them to reflect on the notes they wrote down 

in Step 2. If they understand the inclusion relations, the teacher checks their final 

conception of “parallelogram”. 

All exchanges were recorded on video camera, and transcripts were made of the 

video data. We analyzed them qualitatively by noting when and how the students 

changed or further developed their views and why such changes happened. Through 

these analyses, we attempted to construct a model of the children’s understanding of 

the inclusion relations of geometric figures.  

Figure 1. Operative material

PME 33 - 2009 4 - 251

 Volume 04 COMPLETE 290509.indb   251 6/4/09   2:23:39 PM



Okazaki 

1- 4 PME 33 - 2009 

RESULTS 

We found as results of our analysis that 13 of the 14 students could comprehend two 

inclusion relations. Specifically, we could identify three types of understanding: (1) 

tautologous evolution (5 pairs), (2) analogies to equivalent inclusion relations (1 pair), 

and (3) a search for the relations of diagonals (1 pair). Here, we examine (1) and (2) 

due to space limitations. 

(1) Understanding the process of tautologous evolution 

First, the students Hiro and Nao (aliases) gave the following answers as the properties 

of a parallelogram: ‘parallel opposite sides’, ‘equal opposite angles’, and ‘equal 

opposite sides’. Next, they observed whether these properties were maintained during 

the continual transformations of the operative material (Fig. 1), while also noting that 

the angle and side sizes of the figure could change as long as it remained a 

parallelogram. They then summarized these observations on paper. 

Next, the teacher asked them whether a rhombus is a parallelogram. They responded 

affirmatively even when the teacher pointed out the fact that the four sides were equal. 

Thus we conclude that the students’ concept of “parallelogram” did not include the 

tacit properties related to the sides. The situation was different, however, in the case 

of a rectangle and parallelogram. They did not agree with the inclusion relation. 

Nao: It is different when it is 90 degrees. (He gestures for Hiro to agree.) 

Hiro: Yes, he’s right. 

Nao: Because the parallelogram is... The opposite angles are equal, and the opposite 

sides are parallel, but only the opposite angles are equal. 

T: In a parallelogram, are the adjacent angles not equal? 

Hiro & Nao: No, they aren’t equal. 

We can see from this data that the children could at least recognize a parallelogram 

qppp  321
 ( :1p  parallel opposite sides, :2p  equal opposite angles, :3p  equal 

opposite sides, :q  unequal adjacent angles).  

Next, when the teacher asked the children to check whether the properties of a 

parallelogram are maintained in the case of a rectangle, they entered a state of 

disequilibrium. After some reflection, Hiro said ‘I have decided to include it as a 

parallelogram, because it has all the properties of a parallelogram’, and Nao agreed 

with Hiro. Although they could state the inclusion relations in terms of common 

properties, the teacher decided to bring up the tacit property again because the 

children still seemed to have q  as part of their conception of parallelograms. 

T: But you said the angles are different in a parallelogram, right? 

Hiro: (After a short discussion in a small voice) They are different things. 

Nao: Yes, these are different. 

T: So you don’t think a rectangle is a parallelogram? 

Hiro & Nao: No, we don’t. 

We subsequently confirmed that this regression phenomenon occurred, and indeed it 
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occurred in all the pairs of children. The following shows how the children were 

made to reflect on the variability of the angles in a parallelogram. 

T: What do you think when you see this sheet? You wrote that the size of the angles and 

the length of the sides can change. 

Nao: Oh, then it is included! Earlier we said that the size of the angles is changeable. So, 

we can also include it as a “parallelogram” when the angles are 90 degrees. 

T: So, is it a member or not? 

Hiro: No. Because the size of the angles in the rectangle changed, but they can’t be 

changed. 

Although Nao could identify the inclusion relation by observing the changes in the 

angles, Hiro could not. Although Hiro incorrectly interpreted the transformation, we 

believe his intention was to basically differentiate a rectangle (90 degree angles) from 

the other figures (parallelograms with angles other than 90 degrees). Next is an 

example of the teacher using an analogy with the rhombus-parallelogram relation 

with which Hiro had already agreed. 

Teacher: A while ago, you agreed that a rhombus is a special type of parallelogram. 

This time, however, the problem is whether a rectangle is a special type of 

parallelogram. 

Nao: Yes, it is. We say yes. 

Hiro: No, we cannot say so. 

Nao: Because it’s special, it’s special... even if the angles change in a parallelogram, it 

remains a parallelogram. A rectangle is a special type of parallelogram. 

Hiro: Oh, I see. 

Hiro was then convinced of, and agreed with, the rectangle-parallelogram relation 

because he could correctly interpret the word ‘special’ that Nao had stressed. 

Last, the teacher asked them to describe exactly what a parallelogram was as a 

geometric figure. They then stated “The opposite sides are parallel, the opposite 

angles are equal, but the sizes of the angles are changeable; the lengths of opposite 

sides are equal, but the lengths of sides are changeable”. Hiro and Nao were the only 

two children who included negative aspects in their definition. However, the other 

children could also describe a parallelogram by overcoming their tacit properties. 

(2) Understanding by analogy with equivalent inclusion relations 

Similar to Hiro and Nao, Mike and Aki also agreed with the 

rhombus-parallelogram relation, but they refused the rectangle-

parallelogram relation, which was stated as follows: ‘In a 

parallelogram opposite angles are equal, but all the angles are 

not equal.’ Mike and Aki’s tacit properties had developed so 

strongly that they continued to deny the correct rectangle-parallelogram relation. For 

them, 90 degrees was an inherent property that only rectangles (and squares) 

possessed, and that also served as a way to differentiate rectangles from other shapes. 

Moreover, the methods of ‘reflecting on negative aspects’ and ‘analogy with the 

Figure 2.
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RESULTS 

We found as results of our analysis that 13 of the 14 students could comprehend two 

inclusion relations. Specifically, we could identify three types of understanding: (1) 

tautologous evolution (5 pairs), (2) analogies to equivalent inclusion relations (1 pair), 

and (3) a search for the relations of diagonals (1 pair). Here, we examine (1) and (2) 

due to space limitations. 

(1) Understanding the process of tautologous evolution 

First, the students Hiro and Nao (aliases) gave the following answers as the properties 

of a parallelogram: ‘parallel opposite sides’, ‘equal opposite angles’, and ‘equal 

opposite sides’. Next, they observed whether these properties were maintained during 

the continual transformations of the operative material (Fig. 1), while also noting that 

the angle and side sizes of the figure could change as long as it remained a 

parallelogram. They then summarized these observations on paper. 

Next, the teacher asked them whether a rhombus is a parallelogram. They responded 

affirmatively even when the teacher pointed out the fact that the four sides were equal. 

Thus we conclude that the students’ concept of “parallelogram” did not include the 

tacit properties related to the sides. The situation was different, however, in the case 

of a rectangle and parallelogram. They did not agree with the inclusion relation. 

Nao: It is different when it is 90 degrees. (He gestures for Hiro to agree.) 

Hiro: Yes, he’s right. 

Nao: Because the parallelogram is... The opposite angles are equal, and the opposite 

sides are parallel, but only the opposite angles are equal. 

T: In a parallelogram, are the adjacent angles not equal? 

Hiro & Nao: No, they aren’t equal. 

We can see from this data that the children could at least recognize a parallelogram 

qppp  321
 ( :1p  parallel opposite sides, :2p  equal opposite angles, :3p  equal 

opposite sides, :q  unequal adjacent angles).  

Next, when the teacher asked the children to check whether the properties of a 

parallelogram are maintained in the case of a rectangle, they entered a state of 

disequilibrium. After some reflection, Hiro said ‘I have decided to include it as a 

parallelogram, because it has all the properties of a parallelogram’, and Nao agreed 

with Hiro. Although they could state the inclusion relations in terms of common 

properties, the teacher decided to bring up the tacit property again because the 

children still seemed to have q  as part of their conception of parallelograms. 

T: But you said the angles are different in a parallelogram, right? 

Hiro: (After a short discussion in a small voice) They are different things. 

Nao: Yes, these are different. 

T: So you don’t think a rectangle is a parallelogram? 

Hiro & Nao: No, we don’t. 

We subsequently confirmed that this regression phenomenon occurred, and indeed it 
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occurred in all the pairs of children. The following shows how the children were 

made to reflect on the variability of the angles in a parallelogram. 

T: What do you think when you see this sheet? You wrote that the size of the angles and 

the length of the sides can change. 

Nao: Oh, then it is included! Earlier we said that the size of the angles is changeable. So, 

we can also include it as a “parallelogram” when the angles are 90 degrees. 

T: So, is it a member or not? 

Hiro: No. Because the size of the angles in the rectangle changed, but they can’t be 

changed. 

Although Nao could identify the inclusion relation by observing the changes in the 

angles, Hiro could not. Although Hiro incorrectly interpreted the transformation, we 

believe his intention was to basically differentiate a rectangle (90 degree angles) from 

the other figures (parallelograms with angles other than 90 degrees). Next is an 

example of the teacher using an analogy with the rhombus-parallelogram relation 

with which Hiro had already agreed. 

Teacher: A while ago, you agreed that a rhombus is a special type of parallelogram. 

This time, however, the problem is whether a rectangle is a special type of 

parallelogram. 

Nao: Yes, it is. We say yes. 

Hiro: No, we cannot say so. 

Nao: Because it’s special, it’s special... even if the angles change in a parallelogram, it 

remains a parallelogram. A rectangle is a special type of parallelogram. 

Hiro: Oh, I see. 

Hiro was then convinced of, and agreed with, the rectangle-parallelogram relation 

because he could correctly interpret the word ‘special’ that Nao had stressed. 

Last, the teacher asked them to describe exactly what a parallelogram was as a 

geometric figure. They then stated “The opposite sides are parallel, the opposite 

angles are equal, but the sizes of the angles are changeable; the lengths of opposite 

sides are equal, but the lengths of sides are changeable”. Hiro and Nao were the only 

two children who included negative aspects in their definition. However, the other 

children could also describe a parallelogram by overcoming their tacit properties. 

(2) Understanding by analogy with equivalent inclusion relations 

Similar to Hiro and Nao, Mike and Aki also agreed with the 

rhombus-parallelogram relation, but they refused the rectangle-

parallelogram relation, which was stated as follows: ‘In a 

parallelogram opposite angles are equal, but all the angles are 

not equal.’ Mike and Aki’s tacit properties had developed so 

strongly that they continued to deny the correct rectangle-parallelogram relation. For 

them, 90 degrees was an inherent property that only rectangles (and squares) 

possessed, and that also served as a way to differentiate rectangles from other shapes. 

Moreover, the methods of ‘reflecting on negative aspects’ and ‘analogy with the 
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rhombus-parallelogram relation’ was not effective for them. The following is an 

episode in which the teacher asked Mike and Aki to define a parallelogram to make 

them realize that their long definition was not economic (de Villiers, 1994). 

Teacher: Well, what would you say if asked to describe a parallelogram? 

Mike & Aki: The lengths of opposite sides are equal. The sides of opposite angles are 

equal, and opposite sides are parallel. 

Teacher: These characteristics hold for a rectangle, too, right? 

Mike & Aki: (After a reflection) The angles are different... It’s okay if the angles are 

different... hmm... there is true for a parallelogram, but not for a rectangle... 

They eventually could not describe a parallelogram in such a way that it would 

exclude rectangles. Thus we found that even if a child has the concept of a tacit 

property strongly, the property is not always expressed precisely through language. 

Next, the experiment shifted to a discussion of square-rectangle and square-rhombus 

relations. The children easily recognized the square-rhombus relation even when the 

teacher pointed out the 90 degree angles characteristic of a square, but they denied 

the square-rectangle relation strongly. Okazaki and Fujita (2007) found that this 

phenomenon was widespread among Japanese students. The following is an episode 

in which the teacher suggested that the square-rhombus relation was similar to the 

rectangle-parallelogram relation. 

T: Well, a rhombus is usually shaped like this, but you agreed that it was a rhombus 

when it had 90-degree angles. Shall we compare this with the case of rectangle 

and parallelogram? The magnitudes of the angles of a parallelogram are usually 

different, but when they are all 90 degrees... Do you think they are similar? 

Mike & Aki: (Looking surprised.) Yes! 

T: If you say that a rhombus remains a rhombus when the angles are 90 degrees... 

Mike: It’s a parallelogram... When the angles are 90 degrees, we can say it’s a rhombus. 

So, even though it is a rectangle, we can say it’s a type of parallelogram. 

Aki: Yes. We can include it because it has the same qualities of a square when it has 90-

degree angles. 

The analogy with the square-rhombus relation was effective for them. We consider 

that it is more related to mathematical attitude where they tried to comprehend the 

various relations consistently, rather than the logic of the inclusion, because they had 

already had the logic at least for the square-rhombus relation. 

DISCUSSION 

We believe that for children to understand inclusion relations, they need to be able to 

grasp a figure dynamically and confirm which properties are maintained during the 

figure’s dynamic transformation (Leung, 2008). Indeed, all of the children could 

attempt to recognize the inclusion relations in our study when the related properties 

were stressed. However, we found that the recognition of the geometric properties 

alone was not always sufficient for the understanding of the inclusion relations. 

Namely, the children often reverted back to their previous, exclusive classifications 
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as soon as they became aware of the tacit properties that had pre-existed in their 

minds. As mentioned earlier, we propose that the process of tautologous evolution is 

a natural way for children to overcome their pre-existing tacit properties. 

The understanding of the children in this study included the tacit property of ‘the 

interior angles of a parallelogram are not 90 degrees’. Our hypothesis was that the 

children’s recognition of the variability of sides and angles (negative aspects) would 

serve as an important component for constructing the understanding that there are 

cases in which adjacent angles are of equal size. Here, it should be noted that because 

such negative aspects are ‘constructed only secondarily and laboriously’ (Piaget, 

1985), their cognitive “power” is relatively weak, and as a result sometimes the tacit 

property is superior (Okazaki, 1995). Thus in this study we instructed the children to 

write down these aspects for the purpose of reflection at later stages of the 

experiment. Results showed that 10 of the 14 children could successfully reflect on 

the language used in the descriptions, construct tautologies, and thus eventually 

replace their tacit properties with more accurate concepts. To summarize, the basic 

process and means may be described as follows. 

As additional means, we found that the correct understanding of the word ‘special’ 

played a crucial role in properly understanding the inclusion relations. We believe 

that this, along with reflection on the notes each student wrote down regarding the 

negative aspects in the above description, corresponded to the linguistic meaning of 

the activity (de Villiers, 1994). 

We found that analogical approaches were also effective. Japanese students tend to 

have an accurate understanding of rhombus-parallelogram and square-rhombus 

relations (Okazaki and Fujita, 2007), and these two relations functioned well as 

analogies for those who were not at first able to recognize the correct rectangle-

parallelogram relation. Nonetheless, we believe these approaches should be used 

carefully because the effect can be the opposite if the base relation is not stable.  

We conclude that after properly understanding the inclusion relations, the children 

were able to see parallelograms as a set of properties that are not influenced visually. 

Furthermore, we feel that they could develop a broader understanding of the general 

relational characteristics that connect different geometric figures (van Hiele, 1986). 

In this sense we believe the children’s level of understanding went beyond the second 

van Hiele level. We nevertheless feel it is still premature to declare they had reached 

the third level, because they still did not know the role of definitions in proofs (de 

Villiers, 1994) and that properties can be ordered (van Hiele, 1985). Therefore we 

qppp n  21

)(21 qqppp n  

nppp  21

A. Dynamic transformation of the figure and recognition of property conservation

B. Understanding the variability of the sides and angles, and associating them with 

the properties of a parallelogram 
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rhombus-parallelogram relation’ was not effective for them. The following is an 

episode in which the teacher asked Mike and Aki to define a parallelogram to make 

them realize that their long definition was not economic (de Villiers, 1994). 

Teacher: Well, what would you say if asked to describe a parallelogram? 

Mike & Aki: The lengths of opposite sides are equal. The sides of opposite angles are 

equal, and opposite sides are parallel. 

Teacher: These characteristics hold for a rectangle, too, right? 

Mike & Aki: (After a reflection) The angles are different... It’s okay if the angles are 

different... hmm... there is true for a parallelogram, but not for a rectangle... 

They eventually could not describe a parallelogram in such a way that it would 

exclude rectangles. Thus we found that even if a child has the concept of a tacit 

property strongly, the property is not always expressed precisely through language. 

Next, the experiment shifted to a discussion of square-rectangle and square-rhombus 

relations. The children easily recognized the square-rhombus relation even when the 

teacher pointed out the 90 degree angles characteristic of a square, but they denied 

the square-rectangle relation strongly. Okazaki and Fujita (2007) found that this 

phenomenon was widespread among Japanese students. The following is an episode 

in which the teacher suggested that the square-rhombus relation was similar to the 

rectangle-parallelogram relation. 

T: Well, a rhombus is usually shaped like this, but you agreed that it was a rhombus 

when it had 90-degree angles. Shall we compare this with the case of rectangle 

and parallelogram? The magnitudes of the angles of a parallelogram are usually 

different, but when they are all 90 degrees... Do you think they are similar? 

Mike & Aki: (Looking surprised.) Yes! 

T: If you say that a rhombus remains a rhombus when the angles are 90 degrees... 

Mike: It’s a parallelogram... When the angles are 90 degrees, we can say it’s a rhombus. 

So, even though it is a rectangle, we can say it’s a type of parallelogram. 

Aki: Yes. We can include it because it has the same qualities of a square when it has 90-

degree angles. 

The analogy with the square-rhombus relation was effective for them. We consider 

that it is more related to mathematical attitude where they tried to comprehend the 

various relations consistently, rather than the logic of the inclusion, because they had 

already had the logic at least for the square-rhombus relation. 

DISCUSSION 

We believe that for children to understand inclusion relations, they need to be able to 

grasp a figure dynamically and confirm which properties are maintained during the 

figure’s dynamic transformation (Leung, 2008). Indeed, all of the children could 

attempt to recognize the inclusion relations in our study when the related properties 

were stressed. However, we found that the recognition of the geometric properties 

alone was not always sufficient for the understanding of the inclusion relations. 

Namely, the children often reverted back to their previous, exclusive classifications 
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as soon as they became aware of the tacit properties that had pre-existed in their 

minds. As mentioned earlier, we propose that the process of tautologous evolution is 

a natural way for children to overcome their pre-existing tacit properties. 

The understanding of the children in this study included the tacit property of ‘the 

interior angles of a parallelogram are not 90 degrees’. Our hypothesis was that the 

children’s recognition of the variability of sides and angles (negative aspects) would 

serve as an important component for constructing the understanding that there are 

cases in which adjacent angles are of equal size. Here, it should be noted that because 

such negative aspects are ‘constructed only secondarily and laboriously’ (Piaget, 

1985), their cognitive “power” is relatively weak, and as a result sometimes the tacit 

property is superior (Okazaki, 1995). Thus in this study we instructed the children to 

write down these aspects for the purpose of reflection at later stages of the 

experiment. Results showed that 10 of the 14 children could successfully reflect on 

the language used in the descriptions, construct tautologies, and thus eventually 

replace their tacit properties with more accurate concepts. To summarize, the basic 

process and means may be described as follows. 

As additional means, we found that the correct understanding of the word ‘special’ 

played a crucial role in properly understanding the inclusion relations. We believe 

that this, along with reflection on the notes each student wrote down regarding the 

negative aspects in the above description, corresponded to the linguistic meaning of 

the activity (de Villiers, 1994). 

We found that analogical approaches were also effective. Japanese students tend to 

have an accurate understanding of rhombus-parallelogram and square-rhombus 

relations (Okazaki and Fujita, 2007), and these two relations functioned well as 

analogies for those who were not at first able to recognize the correct rectangle-

parallelogram relation. Nonetheless, we believe these approaches should be used 

carefully because the effect can be the opposite if the base relation is not stable.  

We conclude that after properly understanding the inclusion relations, the children 

were able to see parallelograms as a set of properties that are not influenced visually. 

Furthermore, we feel that they could develop a broader understanding of the general 

relational characteristics that connect different geometric figures (van Hiele, 1986). 

In this sense we believe the children’s level of understanding went beyond the second 

van Hiele level. We nevertheless feel it is still premature to declare they had reached 

the third level, because they still did not know the role of definitions in proofs (de 

Villiers, 1994) and that properties can be ordered (van Hiele, 1985). Therefore we 
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conclude that the children who successfully accomplished the learning of inclusion 

relations attained a level of comprehension somewhere between the second and the 

third van Hiele levels. Our future task will thus be to clarify further steps of learning 

that permit children to accelerate their transition towards deductive geometry. 
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In order to develop more detailed knowledge about possible effects of beliefs in 
mathematics education, it is suggested that we look more in-depth at more general 
types of theories. In particular, the study of relations between epistemological beliefs 
and communication is put forward as a good starting point in this endeavor. Theories 
of the constructs of epistemological beliefs and communication are analyzed in order 
to try to create a coherent theoretical foundation for the study of relations between 
the two constructs. Although some contradictions between theories are found, a type 
of unification is suggested, building on the theories of epistemological resources and 
discursive psychology. 

INTRODUCTION 

Regarding the study of beliefs, educational research has somewhat neglected theo-
retical aspects (Op't Eynde, De Corte, & Verschaffel, 2002; Thompson, 1992). 
Within cognitive psychology some more attention has been given to the development 
of theoretical models or frameworks, in particular regarding epistemological beliefs 
(see Hofer & Pintrich, 2002). Many studies about beliefs in mathematics education 
have been descriptive, by focusing on what different types of beliefs exist among 
students or teachers, where beliefs are seldom more directly related to other factors, 
such as students’ learning (De Corte, Op't Eynde, & Verschaffel, 2002). By using 
theoretical frameworks from cognitive psychology, connections between epistemo-
logical beliefs and several different aspects of learning have been studied more in-
depth, showing many connections (Pintrich, 2002). Mathematics education research 
could therefore benefit from relating to and utilizing more general types of research 
about epistemological beliefs, in particular regarding theory and relations between 
beliefs and aspects of learning. 

A starting point for research about beliefs in mathematics education focused on 
students’ learning and problem solving (Schoenfeld, 1983), but there seems to have 
been a shift in focus from students to teachers, and to the relation between teachers’ 
beliefs and teaching practice. A general problem with this kind of research is the 
focus on such a “large” construct as teaching practice, since many factors can influ-
ence the decisions a teacher makes during lessons (Skott, 2005). Thus, there is a need 
to study possible influences of beliefs at a more detailed level. Cognitive psycholo-
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gist have done such more detailed studies of relations between beliefs and other 
aspects of cognition, but almost all these results come from studies of correlations 
and there is a need for more theoretical work on explaining how and why these con-
nections exist (Pintrich, 2002). 

Communication is central to processes of teaching and learning, as it is to all social 
situations: 

Language is so central to all social activities it is easy to take for granted. Its very 
familiarity sometimes makes it transparent to us. […] Moreover, language is not just a 
code for communication. It is inseparably involved with processes of thinking and 
reasoning. (Potter & Wetherell, 1987, p. 9) 

The last part of the quote stresses the close connection between the use of language 
and thinking. One way to study relations between beliefs and aspects of cognition and 
behavior in more detail can therefore be to examine relations between beliefs and 
communication. Such relations can include how beliefs can affect, or be affected by, 
communication, for example how one expresses oneself or how one interprets some-
thing expressed by someone else (in writing or orally). Another perspective on the 
relations between beliefs and communication is to not see them as two separate 
“objects” that can affect each other, but as more integrated aspects of cognition 
and/or behavior. 

So far I have discussed both beliefs in general and also epistemological beliefs in 
particular. From here on I will limit myself to epistemological beliefs, for several 
reasons: A more focused theme is thereby created while at the same time it is general 
enough to be relevant for the study of many educational situations and phenomena, 
and also there exist elaborate theoretical frameworks for this type of belief. 

The first step in the project of studying relations between epistemological beliefs and 
communication has been to focus on theoretical aspects of the two constructs; beliefs 
and communication. So far I have studied the notion of beliefs by examining existing 
types of definitions in mathematics education research literature (Österholm, 2009). It 
is common to define beliefs through the distinction between beliefs and knowledge, 
but for educational research the analysis of existing definitions shows that this 
distinction is problematic since it tends to create “an idealized picture of knowledge, 
as something pure and not ‘contaminated’ with affect or context” (Österholm, 2009, 
p. 6). Instead of focusing on this distinction one can utilize the notion of a person’s 
conceptions (as also suggested by Thompson, 1992) and focus on what a certain con-
ception is about, such as epistemology. Thus, it is not important whether we label 
something as epistemological belief or epistemological knowledge. This conclusion is 
somewhat consistent with research in cognitive psychology, where the general notion 
of personal epistemology is used, which will be discussed later. 

Purpose and structure of paper 

In order to study relations between epistemological beliefs and communication, there 
is a need to have a theoretical framework that in a meaningful and coherent way 
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defines both these two constructs and describes possible ways to study them. This 
paper constitutes the starting point in the process of creating such a framework. 
Existing theories of the two main constructs will be analyzed and related to each 
other in order to examine if and how such theories can be used in the creation of the 
needed type of framework. The present paper will discuss (1) theoretical frameworks 
of each construct separately, including how the theory of one construct views the 
other construct, and (2) possibilities to unify frameworks of both constructs. 

THEORIES OF EPISTEMOLOGICAL BELIEFS 

Focus is here on theories of personal epistemology (Hofer & Pintrich, 2002), since 
this area of research is where a most comprehensive theoretical treatment of episte-
mological beliefs exists. However, even if all theories within this area of research 
agree on the basic focus of the research; “an individual’s cognition about knowledge 
and knowing” (Pintrich, 2002, p. 390), personal epistemology is not a unitary theo-
retical framework. Pintrich notes that differences between theories of personal episte-
mology can be related to more fundamentally different ways of viewing human 
cognition; developmental, cognitive and contextual approaches. An analysis of the 
different types of theories reveals that the developmental and cognitive approaches to 
personal epistemology cannot readily explain the empirical results showing a context 
dependence of epistemological beliefs (Louca, Elby, Hammer, & Kagey, 2004). 
Actually, many research methods used within these two approaches (implicitly) 
presuppose that epistemological beliefs are independent of context, for example by 
using questionnaires to simply ask a person about his or her beliefs (Hammer & Elby, 
2002). 

Instead of defining beliefs as a property of individuals’ mental representations, 
Hammer and colleagues (Hammer & Elby, 2002; Louca et al., 2004) define beliefs by 
referring to more fine-grained parts of mental representations called epistemological 
resources. These resources are directly related to specific individual experiences and 
are not more abstract types of epistemological theories that are applied in different 
situations. In a certain situation, different epistemological resources can be activated 
and thereby utilized in the activity at hand. For example, the resource ‘knowledge as 
propagated stuff’ can be seen when children determine that they know something 
because one of their parents has told them so (Hammer & Elby, 2002, p. 178). Beliefs 
can then be defined as a property of the whole of all resources that have been acti-
vated in a specific situation. 

The view of communication 

Since all theories of personal epistemology focus on (the activation of) certain parts 
of mental representations, communication is not part of such a theory but becomes a 
relevant topic when discussing how to study these mental representations. That is, 
communication becomes a mean for “identifying which cognitive structures should 
be attributed to individual minds” (Hammer & Elby, 2002, p. 184). 
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gist have done such more detailed studies of relations between beliefs and other 
aspects of cognition, but almost all these results come from studies of correlations 
and there is a need for more theoretical work on explaining how and why these con-
nections exist (Pintrich, 2002). 

Communication is central to processes of teaching and learning, as it is to all social 
situations: 

Language is so central to all social activities it is easy to take for granted. Its very 
familiarity sometimes makes it transparent to us. […] Moreover, language is not just a 
code for communication. It is inseparably involved with processes of thinking and 
reasoning. (Potter & Wetherell, 1987, p. 9) 

The last part of the quote stresses the close connection between the use of language 
and thinking. One way to study relations between beliefs and aspects of cognition and 
behavior in more detail can therefore be to examine relations between beliefs and 
communication. Such relations can include how beliefs can affect, or be affected by, 
communication, for example how one expresses oneself or how one interprets some-
thing expressed by someone else (in writing or orally). Another perspective on the 
relations between beliefs and communication is to not see them as two separate 
“objects” that can affect each other, but as more integrated aspects of cognition 
and/or behavior. 

So far I have discussed both beliefs in general and also epistemological beliefs in 
particular. From here on I will limit myself to epistemological beliefs, for several 
reasons: A more focused theme is thereby created while at the same time it is general 
enough to be relevant for the study of many educational situations and phenomena, 
and also there exist elaborate theoretical frameworks for this type of belief. 

The first step in the project of studying relations between epistemological beliefs and 
communication has been to focus on theoretical aspects of the two constructs; beliefs 
and communication. So far I have studied the notion of beliefs by examining existing 
types of definitions in mathematics education research literature (Österholm, 2009). It 
is common to define beliefs through the distinction between beliefs and knowledge, 
but for educational research the analysis of existing definitions shows that this 
distinction is problematic since it tends to create “an idealized picture of knowledge, 
as something pure and not ‘contaminated’ with affect or context” (Österholm, 2009, 
p. 6). Instead of focusing on this distinction one can utilize the notion of a person’s 
conceptions (as also suggested by Thompson, 1992) and focus on what a certain con-
ception is about, such as epistemology. Thus, it is not important whether we label 
something as epistemological belief or epistemological knowledge. This conclusion is 
somewhat consistent with research in cognitive psychology, where the general notion 
of personal epistemology is used, which will be discussed later. 

Purpose and structure of paper 

In order to study relations between epistemological beliefs and communication, there 
is a need to have a theoretical framework that in a meaningful and coherent way 
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defines both these two constructs and describes possible ways to study them. This 
paper constitutes the starting point in the process of creating such a framework. 
Existing theories of the two main constructs will be analyzed and related to each 
other in order to examine if and how such theories can be used in the creation of the 
needed type of framework. The present paper will discuss (1) theoretical frameworks 
of each construct separately, including how the theory of one construct views the 
other construct, and (2) possibilities to unify frameworks of both constructs. 

THEORIES OF EPISTEMOLOGICAL BELIEFS 

Focus is here on theories of personal epistemology (Hofer & Pintrich, 2002), since 
this area of research is where a most comprehensive theoretical treatment of episte-
mological beliefs exists. However, even if all theories within this area of research 
agree on the basic focus of the research; “an individual’s cognition about knowledge 
and knowing” (Pintrich, 2002, p. 390), personal epistemology is not a unitary theo-
retical framework. Pintrich notes that differences between theories of personal episte-
mology can be related to more fundamentally different ways of viewing human 
cognition; developmental, cognitive and contextual approaches. An analysis of the 
different types of theories reveals that the developmental and cognitive approaches to 
personal epistemology cannot readily explain the empirical results showing a context 
dependence of epistemological beliefs (Louca, Elby, Hammer, & Kagey, 2004). 
Actually, many research methods used within these two approaches (implicitly) 
presuppose that epistemological beliefs are independent of context, for example by 
using questionnaires to simply ask a person about his or her beliefs (Hammer & Elby, 
2002). 

Instead of defining beliefs as a property of individuals’ mental representations, 
Hammer and colleagues (Hammer & Elby, 2002; Louca et al., 2004) define beliefs by 
referring to more fine-grained parts of mental representations called epistemological 
resources. These resources are directly related to specific individual experiences and 
are not more abstract types of epistemological theories that are applied in different 
situations. In a certain situation, different epistemological resources can be activated 
and thereby utilized in the activity at hand. For example, the resource ‘knowledge as 
propagated stuff’ can be seen when children determine that they know something 
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The view of communication 

Since all theories of personal epistemology focus on (the activation of) certain parts 
of mental representations, communication is not part of such a theory but becomes a 
relevant topic when discussing how to study these mental representations. That is, 
communication becomes a mean for “identifying which cognitive structures should 
be attributed to individual minds” (Hammer & Elby, 2002, p. 184). 
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THEORIES OF COMMUNICATION 

One way to define communication is to describe it as the transmission of information 
from a sender to a receiver, for example when one person says something and another 
person hears and interprets this. This quite simple model of communication has 
received much criticism for being too simplistic, for example since (1) the model 
describes language as a static system but language do change, even during one spe-
cific conversation, (2) language is not only referential but also constitutive, and (3) 
language is important for doing things (e.g., greeting and denying) (Taylor, 2001, pp. 
6-7). Thus, instead of viewing the use of language in communication as a mere 
medium by which information is encoded and transmitted, a more constructive view 
of language can be adopted: The use of language is seen as “a medium of action” 
(Potter & te Molder, 2005, p. 3, emphasis added), and not solely a medium for trans-
mission of information or for anything else. Such a view is fundamental in certain 
types of discourse analysis (Taylor, 2001) and analysis of natural interaction (Potter 
& te Molder, 2005), both which include a broad range of different types of research 
and which have many overlaps between them. However, this type of research has 
mostly focused on sociology and “questions of psychology have rarely been expli-
citly addressed” but that “discursive psychology is the perspective that has addressed 
cognition in the context of interaction most systematically in a psychological 
context” (Potter & te Molder, 2005, pp. 18-19). Thus, for the purpose of the present 
paper, when focusing on cognitive aspects of beliefs, discursive psychology is a good 
candidate for a suitable, more detailed perspective on communication. 

As for all discourse analytic approaches, discursive psychology focuses on the lan-
guage itself, and how it is used in natural occurring situations. Thus, instead of 
viewing psychological vocabulary as referring to some mental states, “these words 
are themselves an autonomous part of particular social practices” (Potter & Wetherell, 
1987, p. 179). More specifically for discursive psychology, this perspective works in 
three ways (Edwards & Potter, 2005, pp. 241-242): (a) By exploring situated, rhe-
torical uses of psychological terms such as angry, know or believe, (b) by examining 
how psychological themes are handled without necessarily being expressed explic-
itly, for example to explore how intent, doubt or belief is constructed and made 
public indirectly through descriptions of events, objects, persons etc., and (c) by re-
specifying standard psychological topics in terms of discourse practices, for example 
regarding the theory and measurement of attitude or of causal attributions, where 
often a criticism towards existing theories and measures in cognitive psychology is a 
central aspect. 

The view of epistemological beliefs 

Communication is here seen as the central site for psychology and not as a window to 
something else, where a researcher should not try “to see through their [speakers or 
writers] words to some underlying meaning, or to uncover attitudes or beliefs of 
which the speakers themselves are unaware” (Taylor, 2001, p. 19). Thus, as also 
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noted above, discursive psychology defines cognitive notions (such as belief) as parts 
of discourse practices instead of as parts of mental representations/processes. 

THEORETICAL UNIFICATIONS 

A general difference between cognitive psychology and discourse analytic 
approaches is that the object of study is either mental representations/processes or the 
use of language. This difference is not only an empirical matter but is also theoretical, 
since either the mental or the discourse is seen as ‘where the action is’. An analysis of 
theoretical possibilities for studying relations between epistemological beliefs and 
communication is here done in the following way: Discussions of potential limi-
tations and developments within the theories of epistemological resources and discur-
sive psychology will be used as a foundation for a discussion of the possibility to 
integrate the two theories. 

Epistemological resources as a starting point 

Within this theoretical approach, two aspects need improvement, for the study of 
relations between epistemological beliefs and communication: First, Pintrich (2002, 
p. 394) points to the general need within research about personal epistemology to 
develop models of how epistemological thinking may be represented cognitively. 
Second, communication needs to be problemized more in-depth, where a person’s 
statements cannot be seen as a direct reflection of mental representations. This 
second aspect refers both to a methodological problem (i.e., how to get a good 
‘picture’ as possible of mental representations) and also to a theoretical problem (i.e., 
how to model communication and interaction). For the focus of the present paper, 
theories need to be of the kind that somehow relates communication to cognitive 
representations and processes. To include at least some aspects of communication 
within such a theory, Kintsch’s (1998) theory of ‘comprehension’ could be possible 
to use. This theory includes detailed models of mental representations (using asso-
ciative networks) and of the process of interpreting/comprehending something 
‘external’ (such as a text or an oral statement), and have proven useful when for 
example describing and predicting readers’ comprehension of texts. 

The descriptions of epistemological resources as a fine-grained cognitive network 
and the utilization of these resources as the activation of different resources depend-
ing on the context (see Louca et al., 2004) also fit within Kintsch’s (1998) compre-
hension framework: The activation of resources can be modeled through the associa-
tive property of mental representations, which is a driving force in the activation of 
prior knowledge (resources) in the process of comprehension, in contrast to the acti-
vation of some abstract or general type of belief. 

Discursive psychology as a starting point 

From this theoretical perspective, one can see a need for redefining ‘beliefs’ in gen-
eral and ‘epistemological resources’ in particular, in terms of discourse practices 
(however, for reasons discussed in the introduction, I am not primarily interested in 
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noted above, discursive psychology defines cognitive notions (such as belief) as parts 
of discourse practices instead of as parts of mental representations/processes. 

THEORETICAL UNIFICATIONS 

A general difference between cognitive psychology and discourse analytic 
approaches is that the object of study is either mental representations/processes or the 
use of language. This difference is not only an empirical matter but is also theoretical, 
since either the mental or the discourse is seen as ‘where the action is’. An analysis of 
theoretical possibilities for studying relations between epistemological beliefs and 
communication is here done in the following way: Discussions of potential limi-
tations and developments within the theories of epistemological resources and discur-
sive psychology will be used as a foundation for a discussion of the possibility to 
integrate the two theories. 

Epistemological resources as a starting point 

Within this theoretical approach, two aspects need improvement, for the study of 
relations between epistemological beliefs and communication: First, Pintrich (2002, 
p. 394) points to the general need within research about personal epistemology to 
develop models of how epistemological thinking may be represented cognitively. 
Second, communication needs to be problemized more in-depth, where a person’s 
statements cannot be seen as a direct reflection of mental representations. This 
second aspect refers both to a methodological problem (i.e., how to get a good 
‘picture’ as possible of mental representations) and also to a theoretical problem (i.e., 
how to model communication and interaction). For the focus of the present paper, 
theories need to be of the kind that somehow relates communication to cognitive 
representations and processes. To include at least some aspects of communication 
within such a theory, Kintsch’s (1998) theory of ‘comprehension’ could be possible 
to use. This theory includes detailed models of mental representations (using asso-
ciative networks) and of the process of interpreting/comprehending something 
‘external’ (such as a text or an oral statement), and have proven useful when for 
example describing and predicting readers’ comprehension of texts. 

The descriptions of epistemological resources as a fine-grained cognitive network 
and the utilization of these resources as the activation of different resources depend-
ing on the context (see Louca et al., 2004) also fit within Kintsch’s (1998) compre-
hension framework: The activation of resources can be modeled through the associa-
tive property of mental representations, which is a driving force in the activation of 
prior knowledge (resources) in the process of comprehension, in contrast to the acti-
vation of some abstract or general type of belief. 

Discursive psychology as a starting point 

From this theoretical perspective, one can see a need for redefining ‘beliefs’ in gen-
eral and ‘epistemological resources’ in particular, in terms of discourse practices 
(however, for reasons discussed in the introduction, I am not primarily interested in 
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the notion of beliefs but on notions of epistemology). Such a respecification can be 
achieved by an analysis of the discourse in situations where a treatment of knowledge 
or learning occurs, or by an analysis of how people explicitly use and refer to episte-
mological notions. These types of analyses have some similarity with suggestions by 
Hammer and Elby (2002) of how to find possible epistemological resources by exam-
ining how people reason and draw conclusions in situations where they need to make 
some kind of judgment of knowledge. This kind of overlap between the different 
theories can be taken as a starting point in a possible unification, for example by 
seeing the activity, the discourse, as the site where epistemological beliefs come to 
existence, through explicit or implicit references to prior experiences (epistemo-
logical resources). 

One limitation in discursive psychology is that thinking as an individual and silent 
activity is not included, since all psychological terms are specified in terms of 
discourse practices. Sfard (2008) suggests a type of expansion of a discourse analytic 
approach by defining thinking as the individual version of communicating. This 
suggestion somewhat removes the distinction between the mental/individual and the 
public/discourse. Therefore, such a theory can be seen as a possibility for joining the 
theory of epistemological resources (a theory about mental representations/processes) 
and the theory of discursive psychology (a theory about discourse practices). 

A mixture of epistemological resources and discursive psychology 

The two theories have so far often been described in a contrasting manner, in parti-
cular regarding how they see the existence or relevance of mental representations and 
processes. However, to focus a discussion on this issue may result in 

fruitless debates about the reality or non-reality of mental entities, which can easily end 
in the kind of linguistic imperialism which denies all significance to cognitive processes 
(Potter & Wetherell, 1987, p. 180). 

Therefore, in order to study aspects of epistemological beliefs and communication 
under the same theoretical framework, it is suggested that we both see the relevance 
of mental representations and processes and also adopt a constructive view of lan-
guage (i.e., highlight the constitutive property). This suggestion is of course not new 
in a broader perspective (e.g., see the description of different authors’ positions by 
Potter & te Molder, 2005, p. 5), but most relevant for the present paper is to discuss 
possible ways to draw on this suggestion specifically for theories of epistemological 
resources and discursive psychology, which is done in the following. 

Epistemological resources are here not seen as necessarily consisting of mental enti-
ties that directly say something about epistemology, but that the resources consist of 
prior experiences that can be used for some kind of judgment of knowledge. 
Although not described in this manner by Hammer and colleagues (Hammer & Elby, 
2002; Louca et al., 2004), this description seems to be in line with their description of 
looking at examples of children’s behavior where they make some type of judgment 
of knowledge as an origin of a resource that can be used in other situations. 
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The utilization of prior experiences can be described in more detail by using a model 
of the structure of mental representations (i.e., memory of prior experiences) and a 
model of how these representations can be activated and utilized (i.e., the mental 
process), such as the theory of ‘comprehension’ mentioned earlier (Kintsch, 1998). 
Such models can then be used as a foundation for describing and explaining how and 
why certain prior experiences (resources) are used, and others are not, in a specific 
situation. This placement of a situation within a context, through references to and 
utilization of prior experiences, can also be seen as central to discourse analytic 
approaches, in particular since prior experiences is not limited to events long prior to 
a specific situation but can also include for example earlier statements in one conver-
sation. 

Epistemological belief is not seen as a property of mental representations but as a 
property of the activity in a certain situation, which is dependent on prior experiences 
(epistemological resources). However, beliefs are not determined by existing resour-
ces since the discourse is constitutive and not only a reference to mental represen-
tations. Thus, beliefs are being constructed in a specific situation. In this way, episte-
mological beliefs can be seen as different ways of thinking, where the processes of 
utilizing prior experiences and of participating in a discursive practice are of funda-
mental importance. 

CONCLUSIONS 

The present analysis has revealed different theoretical possibilities for future studies 
of relations between epistemological beliefs and communication. In particular, it 
seems possible to join the theories of epistemological resources and discursive psy-
chology, through some additions or clarifications: (1) to include a model of the 
structure and utilization of mental representations, (2) that mental representations are 
primarily seen as describing the memory of prior experiences, and (3) that the utili-
zation of prior experiences is seen as a central aspect of the contextualization of dis-
courses. This suggested unification of theories is therefore seen as a good starting 
point for a continued development of theory and for future empirical studies. 
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In this paper we focus on the development of pedagogical content knowledge (PCK) 
and examine this development in the light of the notions of intersubjectivity and 
alterity. We base our examination on data obtained from a teacher preparation 
program in which 20 teacher candidates take part. On the basis of the analysis of the 
data we argue that development of PCK is a dialogical process and such 
development could be described in terms of increasing intersubjectivity amongst the 
participants and that alterity accounts for the different approaches adopted to teach 
a topic at hand in such a way that makes it comprehensible to the others.
INTRODUCTION
The notion of pedagogical content knowledge (PCK) has long been on the agenda of 
mathematics educators. The term was described as the “subject matter for teaching” 
by Shulman (1986, p.9) while referring to the knowledge required teaching a 
particular subject in such a way that makes it comprehensible to the others. Shulman 
considers knowledge of student understanding, and teaching strategies and 
representations as the two main components of PCK. Later exploration of PCK 
developed this notion further and different models with additional components (e.g. 
knowledge of assessment and of curriculum) were articulated (Park and Oliver, 
2008). For our study, we examined these components with the purpose of designing a 
course aimed at developing PCK for the teacher candidates. To this end, we designed 
a course as part of teacher preparation program for the mathematics teacher 
candidates. After the course, we observed development in the participant candidates’ 
PCK. In our attempt to make sense of the development of teacher candidates’ PCK, 
we found the notions of intersubjectivity and alterity useful. In this paper we will 
argue that these notions provide a useful framework in explaining the nature and 
dimensions of the development of PCK and deepen our understanding of the 
complexity of the dynamics involved in such a development.  
In what follows we first attend to the notions of intersubjectivity and alterity as the 
framework of this paper. Later we detail the course design based on the works of 
Magnusson et al. (1999). Then data obtained from the participant teacher candidates 
are provided and analysed in the light of the intersubjectivity and alterity.
                                          
* This study is part of a project (project number 107K531) funded by TUBITAK (The Scientific and 
Technological Research Council of Turkey).
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THEORETICAL FRAMEWORK 
Theoretical framework of this paper is centered on two opposing tendencies which 
might be viewed as characterizing any dialogue: intersubjectivity and alterity. The 
importance of these two tendencies may vary depending on the specific conditions of 
the communication; yet both are always at work in any given dialogue (Wertsch, 1991). 
Dialogue here is used in the sense of Bakhtin (1981) who considers it as a constant 
interaction between meanings which potentially affect others. Following Bakhtin our 
account of dialogue is very general, not limited to face-to-face verbal interaction, but 
concerns verbal communication of any type whatsoever; in this respect even a book 
(i.e. “verbal performance in print”) is dialogic (see Wertsch, 1991).
The problem of intersubjectivity is, generally speaking, related to the conditions 
under which participants in a dialogue achieve a coherent and viable interaction. In 
this respect Uhlenbeck (1978) draws attention to the necessity of shared 
understanding of what has gone before in order to understand the speaker’s intention 
and meaning. Schegoff (1991) views shared understanding as a crucial ingredient for 
the coherence and viability of an interaction. For otherwise there occur divergences 
in understandings, which, according to Schegoff (1991, p.158), embody 
‘breakdowns’ of intersubjectivity, that is, ‘trouble’ “in socially shared cognition of 
the talk and conduct in the interaction.” To achieve the coherence and viability of 
interaction, authors, such as Clark (1996), insist on the establishment of a common 
ground on which participants of a dialogue can interact successfully, can share their 
understandings with one another. In the light of these considerations, intersubjectivity 
is concerned with, broadly speaking, the extent to which different aspects of an 
activity is shared amongst the participants and/or held in common such as 
perspectives, understandings and assumptions (see also Wertsch, 1998).  
Although in theory it is possible to talk about ‘pure’ intersubjectivity, in practice it 
rarely happens. The basic problem with pure intersubjectivity is that it treats the 
message as transmitting an unaltered meaning and ignores the differences in, for 
instance, interpretations, perceptions and perspectives on the talked-about reality. 
This brings us to the issue of alterity. The term ‘alterity’ is derived from the writings 
of Bakhtin who rejects the transmission of meaning through language (Bakhtin, 
1986). He ascribes the other (as opposed to the self) a focal position in the creation of 
meaning of an event, of the talked-about reality due to the differences that the other 
brings with his/her own world view and due to the fact that one sees the talked-about 
reality from his/her own perspective and through his/her own conceptual horizon (see 
Wertsch, 1991). To sum up, alterity is concerned with the differences in perspectives, 
conceptual horizons and world views as well as with the differences and the changes 
occurring in perceptions, understandings and interpretations in the course of dialogue.
We believe that any development of PCK whether it be gained through a preparation 
program or material experiences of teaching in actual classrooms comes about via 
dialogue (in the broadest sense) because teachers (candidates) interact with their own 
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peers, students, books, curriculum scripts and so on and these interactions contribute 
to their PCK. Limiting our considerations in this paper to the development of PCK 
during a course designed for prospective teachers, we argue that such development 
can be viewed in terms of increasing intersubjectivity among the participants and that 
alterity accounts for the differences in participants interpretations of how to make the 
subject at hand comprehensible to the others. Next we attend to the context of the 
study and methodology.
CONTEXT OF THE STUDY AND METHODOLOGY 
This paper stems from a research project for which a course was designed for 
mathematics teacher candidates to develop PCK. In designing the course, based on 
the work of Magnusson et al. (1999) we drew on five components of PCK: 
knowledge of multiple representations, of student difficulties, of instructional 
strategies for teaching, of assessment and of mathematics curriculum. All these 
components guided the design of the course. One of the authors conducted 
workshops to the teacher candidates on each of these components by focusing on the 
mathematical topic of derivative. Twenty teacher candidates participated in the 
course during which they read relevant texts such as student difficulties and 
misconceptions in different mathematical topics and assessment (e.g. Ozmantar et al., 
2008), prepared lesson plans, examined curriculum scripts, designed and conducted 
microteachings, and followed their peers during microteaching sessions. 
The data on which this paper reports came from teacher candidates’ lesson plans, 
interviews on the preparation of lesson plans, candidates’ detailed teaching notes, and 
video-record of microteachings. At the beginning of the course, every candidate was 
asked to prepare a lesson plan to introduce the concept of derivative at a point. The 
aim was to see how they would go about introducing the topic and to figure out their 
prior knowledge on each of the abovementioned PCK components. We also gave a 
set of questions on derivative to identify, if they have, their difficulties with the topic. 
We conducted semi-structured interviews with ten of the candidates. After the 
workshops, the candidates were asked to prepare the lesson plan on the same topic 
once again by drawing on what they learnt during the workshops and also asked to 
evaluate their initial lesson plans. Having collected the second lesson plans we 
interviewed the candidates to obtain their reflections on their initial plans and to find 
out whether they considered the components of PCK in their second lesson plans. 
Following these interviews ten of them, based on their plans, did microteachings.  
In our analysis of the data we scrutinised the microteachings along with the teaching 
notes and critically evaluated the teacher candidates’ approaches to introduction of 
the derivative. We also examined and compared the lesson plans prepared before and 
after the workshops together with interview transcripts. In our analyses we realised a 
telling difference in their lesson plans before and after the workshops. We also 
recognized that before the workshops there was a huge gap between our 
understanding of the components of PCK and those of the teacher candidates. 
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THEORETICAL FRAMEWORK 
Theoretical framework of this paper is centered on two opposing tendencies which 
might be viewed as characterizing any dialogue: intersubjectivity and alterity. The 
importance of these two tendencies may vary depending on the specific conditions of 
the communication; yet both are always at work in any given dialogue (Wertsch, 1991). 
Dialogue here is used in the sense of Bakhtin (1981) who considers it as a constant 
interaction between meanings which potentially affect others. Following Bakhtin our 
account of dialogue is very general, not limited to face-to-face verbal interaction, but 
concerns verbal communication of any type whatsoever; in this respect even a book 
(i.e. “verbal performance in print”) is dialogic (see Wertsch, 1991).
The problem of intersubjectivity is, generally speaking, related to the conditions 
under which participants in a dialogue achieve a coherent and viable interaction. In 
this respect Uhlenbeck (1978) draws attention to the necessity of shared 
understanding of what has gone before in order to understand the speaker’s intention 
and meaning. Schegoff (1991) views shared understanding as a crucial ingredient for 
the coherence and viability of an interaction. For otherwise there occur divergences 
in understandings, which, according to Schegoff (1991, p.158), embody 
‘breakdowns’ of intersubjectivity, that is, ‘trouble’ “in socially shared cognition of 
the talk and conduct in the interaction.” To achieve the coherence and viability of 
interaction, authors, such as Clark (1996), insist on the establishment of a common 
ground on which participants of a dialogue can interact successfully, can share their 
understandings with one another. In the light of these considerations, intersubjectivity 
is concerned with, broadly speaking, the extent to which different aspects of an 
activity is shared amongst the participants and/or held in common such as 
perspectives, understandings and assumptions (see also Wertsch, 1998).  
Although in theory it is possible to talk about ‘pure’ intersubjectivity, in practice it 
rarely happens. The basic problem with pure intersubjectivity is that it treats the 
message as transmitting an unaltered meaning and ignores the differences in, for 
instance, interpretations, perceptions and perspectives on the talked-about reality. 
This brings us to the issue of alterity. The term ‘alterity’ is derived from the writings 
of Bakhtin who rejects the transmission of meaning through language (Bakhtin, 
1986). He ascribes the other (as opposed to the self) a focal position in the creation of 
meaning of an event, of the talked-about reality due to the differences that the other 
brings with his/her own world view and due to the fact that one sees the talked-about 
reality from his/her own perspective and through his/her own conceptual horizon (see 
Wertsch, 1991). To sum up, alterity is concerned with the differences in perspectives, 
conceptual horizons and world views as well as with the differences and the changes 
occurring in perceptions, understandings and interpretations in the course of dialogue.
We believe that any development of PCK whether it be gained through a preparation 
program or material experiences of teaching in actual classrooms comes about via 
dialogue (in the broadest sense) because teachers (candidates) interact with their own 
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peers, students, books, curriculum scripts and so on and these interactions contribute 
to their PCK. Limiting our considerations in this paper to the development of PCK 
during a course designed for prospective teachers, we argue that such development 
can be viewed in terms of increasing intersubjectivity among the participants and that 
alterity accounts for the differences in participants interpretations of how to make the 
subject at hand comprehensible to the others. Next we attend to the context of the 
study and methodology.
CONTEXT OF THE STUDY AND METHODOLOGY 
This paper stems from a research project for which a course was designed for 
mathematics teacher candidates to develop PCK. In designing the course, based on 
the work of Magnusson et al. (1999) we drew on five components of PCK: 
knowledge of multiple representations, of student difficulties, of instructional 
strategies for teaching, of assessment and of mathematics curriculum. All these 
components guided the design of the course. One of the authors conducted 
workshops to the teacher candidates on each of these components by focusing on the 
mathematical topic of derivative. Twenty teacher candidates participated in the 
course during which they read relevant texts such as student difficulties and 
misconceptions in different mathematical topics and assessment (e.g. Ozmantar et al., 
2008), prepared lesson plans, examined curriculum scripts, designed and conducted 
microteachings, and followed their peers during microteaching sessions. 
The data on which this paper reports came from teacher candidates’ lesson plans, 
interviews on the preparation of lesson plans, candidates’ detailed teaching notes, and 
video-record of microteachings. At the beginning of the course, every candidate was 
asked to prepare a lesson plan to introduce the concept of derivative at a point. The 
aim was to see how they would go about introducing the topic and to figure out their 
prior knowledge on each of the abovementioned PCK components. We also gave a 
set of questions on derivative to identify, if they have, their difficulties with the topic. 
We conducted semi-structured interviews with ten of the candidates. After the 
workshops, the candidates were asked to prepare the lesson plan on the same topic 
once again by drawing on what they learnt during the workshops and also asked to 
evaluate their initial lesson plans. Having collected the second lesson plans we 
interviewed the candidates to obtain their reflections on their initial plans and to find 
out whether they considered the components of PCK in their second lesson plans. 
Following these interviews ten of them, based on their plans, did microteachings.  
In our analysis of the data we scrutinised the microteachings along with the teaching 
notes and critically evaluated the teacher candidates’ approaches to introduction of 
the derivative. We also examined and compared the lesson plans prepared before and 
after the workshops together with interview transcripts. In our analyses we realised a 
telling difference in their lesson plans before and after the workshops. We also 
recognized that before the workshops there was a huge gap between our 
understanding of the components of PCK and those of the teacher candidates. 
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However following the workshops, as is clear from the interviews, candidates 
developed certain understandings which created a common ground. Hence we 
focused on the issue of intersubjectivity in making sense of the candidates’ 
development. Our analysis of microteaching records along with second lesson plans 
brought the issue of alterity into our attention as there were quite different, yet in our 
view successful, approaches adopted by the candidates in introducing the concept of 
derivative despite the fact they all were part of the same course, followed the same 
program and received the same content. In the following section, we provide data and 
analyse them from the lenses of intersubjectivity and alterity.
THE DATA 
In this section we provide excerpts from the interviews with teacher candidates on 
their first and second (before and after workshops on PCK) lesson plans along with 
our analyses of their microteaching records. During the semi-structured interviews 
we asked questions about the five components of PCK. Analysis of the interviews on 
the first lesson plans reveals that before the course their understandings of the five 
components were rather different than those of the researchers. For example with 
regard to the multiple-representation component we asked candidates what kind of 
representations could be used while introducing derivative. Answers of two 
candidates were as follows (RP and AG stands for the initials of the candidates):

RP: While giving the geometrical interpretation of derivative, graph might be used. 
Apart from this something colourful, if possible, particularly while explaining 
instantaneous velocity, pictures of automobiles, or radar pictures or maybe a driver 
got caught to the radar, or it might even be a dialogue between the police and a 
driver or that kind of things. That would be good. 

AG: Representations regarding the purpose of using derivative in real life; this can be 
found in velocity for instance…then the transition from the graph of velocity to the 
acceleration and after giving the meaning of these, they come from slope…in 
different ways derivative could be expressed but I can’t really answer this. 

As is apparent from the answers, students’ understandings of multiple representations 
of derivative was inappropriate or at least wanting. Clearly they were not able to 
make sense of the talked-about reality that derivative can be represented in different 
ways, for example, graphically, algebraically or by means of table of values. We do 
not think this stems from deficiency of conceptual knowledge as derivative test given 
these teacher candidates suggest that they can read and interpret different 
representations. Surely knowledge and awareness of different representations of a 
particular topic is indispensable component of PCK for otherwise it is not possible 
for a teacher to select the appropriate forms of content representation (see Shulman, 
1986). Hence there was a great alterity not only amongst the teacher candidates 
themselves but also between the candidates and the course designers as to multiple 
representations of derivative. During the interviews on the first lesson plans, we also 
asked what kind of difficulties students might have in understanding the derivative. 
They answered as follows:  

Ozmantar, Akkoc, Bingolbali  

PME 33 - 2009 1- 5 

RP: Introducing the concept of derivative…they might have difficulties if they don’t 
know limit and continuity but I don’t think they would have much trouble, it’s 
just… I mean if you explain well… but later they could have difficulty.

AG: Student may ask why we find derivative, anyway students generally have “why we 
learn maths” kind of questions “we don’t use maths” they say. I mean 
derivative…they may have difficulty in understanding the purpose.

The literature is replete with the student difficulties in understanding three different 
aspects of derivative as rate of change, as the slope of the tangent line and as the limit 
of difference quotient (see Bingolbali, 2008 for an extensive review). However the 
teacher candidates were not aware of these difficulties and in this sense there were 
divergences among the teacher candidates and the researchers in their understandings 
and perspectives. The situation with the other components of PCK was not much 
different but due to space limitations we suffice to provide these excerpts which, we 
believe, give the reader an idea about the extent to which different aspects of the PCK 
is shared among the participants (i.e. teacher candidates and the course designers). 
After the workshops on the five components of PCK, there were dramatic changes in 
the perspectives of the candidates. In order for readers to better appreciate the 
importance of the changes, it will be useful to briefly summarise RP’s approach to 
introducing derivative in her first and second lesson plans. In her first lesson plan, RP 
immediately starts with providing algebraic (limit) definition of derivative and then 
illustrates the application of the definition with an example. Next she explains the 
physical interpretation of derivative as instantaneous velocity and gives a problem in 
which instantaneous velocity is calculated with the limit definition of derivative. 
Later she moves to geometrical interpretation noting that derivative at a point equals 
to the slope of tangent line at that point and gives an example to illustrate this. 
In her second lesson plan, she begins with a problem to find the average velocity in 
intervals. She fills a table of values by finding average velocity in different intervals 
in the neighbourhood of a point. She uses this to get students to predict the 
instantaneous velocity which she later finds via limiting process. She relates this to 
the rate of change and notes that derivative at a point is the rate of change at that 
point and gives the limit definition of derivative. She then interprets this definition on 
a graph and shows that limit definition refers to the limit of secant lines which is the 
slope of the tangent line at a point. She returns back to table of values and relate 
geometrical interpretations to this table and to the rate of change. Finally she returns 
to instantaneous velocity and connect this to the slope of tangent line at a point.
The development and the change from RP’s first to second lesson plan is all too 
apparent. In the first plan, her lack of knowledge of five aspects of PCK, for example 
multiple representations, clearly affects her planning and she prefers a definition-
application kind of structure without really relating different aspects of derivative 
with one another. However in her second approach she adopts a chain composed of 
problem-discovery-hypothesis-corroboration-generalising-interconnecting (MEB, 
2005). Such a dramatic change reflects her development during the PCK course. This 
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However following the workshops, as is clear from the interviews, candidates 
developed certain understandings which created a common ground. Hence we 
focused on the issue of intersubjectivity in making sense of the candidates’ 
development. Our analysis of microteaching records along with second lesson plans 
brought the issue of alterity into our attention as there were quite different, yet in our 
view successful, approaches adopted by the candidates in introducing the concept of 
derivative despite the fact they all were part of the same course, followed the same 
program and received the same content. In the following section, we provide data and 
analyse them from the lenses of intersubjectivity and alterity.
THE DATA 
In this section we provide excerpts from the interviews with teacher candidates on 
their first and second (before and after workshops on PCK) lesson plans along with 
our analyses of their microteaching records. During the semi-structured interviews 
we asked questions about the five components of PCK. Analysis of the interviews on 
the first lesson plans reveals that before the course their understandings of the five 
components were rather different than those of the researchers. For example with 
regard to the multiple-representation component we asked candidates what kind of 
representations could be used while introducing derivative. Answers of two 
candidates were as follows (RP and AG stands for the initials of the candidates):

RP: While giving the geometrical interpretation of derivative, graph might be used. 
Apart from this something colourful, if possible, particularly while explaining 
instantaneous velocity, pictures of automobiles, or radar pictures or maybe a driver 
got caught to the radar, or it might even be a dialogue between the police and a 
driver or that kind of things. That would be good. 

AG: Representations regarding the purpose of using derivative in real life; this can be 
found in velocity for instance…then the transition from the graph of velocity to the 
acceleration and after giving the meaning of these, they come from slope…in 
different ways derivative could be expressed but I can’t really answer this. 

As is apparent from the answers, students’ understandings of multiple representations 
of derivative was inappropriate or at least wanting. Clearly they were not able to 
make sense of the talked-about reality that derivative can be represented in different 
ways, for example, graphically, algebraically or by means of table of values. We do 
not think this stems from deficiency of conceptual knowledge as derivative test given 
these teacher candidates suggest that they can read and interpret different 
representations. Surely knowledge and awareness of different representations of a 
particular topic is indispensable component of PCK for otherwise it is not possible 
for a teacher to select the appropriate forms of content representation (see Shulman, 
1986). Hence there was a great alterity not only amongst the teacher candidates 
themselves but also between the candidates and the course designers as to multiple 
representations of derivative. During the interviews on the first lesson plans, we also 
asked what kind of difficulties students might have in understanding the derivative. 
They answered as follows:  
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RP: Introducing the concept of derivative…they might have difficulties if they don’t 
know limit and continuity but I don’t think they would have much trouble, it’s 
just… I mean if you explain well… but later they could have difficulty.

AG: Student may ask why we find derivative, anyway students generally have “why we 
learn maths” kind of questions “we don’t use maths” they say. I mean 
derivative…they may have difficulty in understanding the purpose.

The literature is replete with the student difficulties in understanding three different 
aspects of derivative as rate of change, as the slope of the tangent line and as the limit 
of difference quotient (see Bingolbali, 2008 for an extensive review). However the 
teacher candidates were not aware of these difficulties and in this sense there were 
divergences among the teacher candidates and the researchers in their understandings 
and perspectives. The situation with the other components of PCK was not much 
different but due to space limitations we suffice to provide these excerpts which, we 
believe, give the reader an idea about the extent to which different aspects of the PCK 
is shared among the participants (i.e. teacher candidates and the course designers). 
After the workshops on the five components of PCK, there were dramatic changes in 
the perspectives of the candidates. In order for readers to better appreciate the 
importance of the changes, it will be useful to briefly summarise RP’s approach to 
introducing derivative in her first and second lesson plans. In her first lesson plan, RP 
immediately starts with providing algebraic (limit) definition of derivative and then 
illustrates the application of the definition with an example. Next she explains the 
physical interpretation of derivative as instantaneous velocity and gives a problem in 
which instantaneous velocity is calculated with the limit definition of derivative. 
Later she moves to geometrical interpretation noting that derivative at a point equals 
to the slope of tangent line at that point and gives an example to illustrate this. 
In her second lesson plan, she begins with a problem to find the average velocity in 
intervals. She fills a table of values by finding average velocity in different intervals 
in the neighbourhood of a point. She uses this to get students to predict the 
instantaneous velocity which she later finds via limiting process. She relates this to 
the rate of change and notes that derivative at a point is the rate of change at that 
point and gives the limit definition of derivative. She then interprets this definition on 
a graph and shows that limit definition refers to the limit of secant lines which is the 
slope of the tangent line at a point. She returns back to table of values and relate 
geometrical interpretations to this table and to the rate of change. Finally she returns 
to instantaneous velocity and connect this to the slope of tangent line at a point.
The development and the change from RP’s first to second lesson plan is all too 
apparent. In the first plan, her lack of knowledge of five aspects of PCK, for example 
multiple representations, clearly affects her planning and she prefers a definition-
application kind of structure without really relating different aspects of derivative 
with one another. However in her second approach she adopts a chain composed of 
problem-discovery-hypothesis-corroboration-generalising-interconnecting (MEB, 
2005). Such a dramatic change reflects her development during the PCK course. This 
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development in fact leads to the establishment of a common ground between the 
teacher candidates and the course designers. To illustrate this let us turn to RP’s 
interview on her second plan. With regard to the multiple representations, for 
example, RP was not only able to explain them but also able to devise ways in her 
lesson plan in connecting these representations to three main aspects of derivative:

RP:  Triple representations, as we call it multiple representations: physical, geometrical 
and algebraic. I used them three. I mean I gave table of values. With the help of 
numerical table, after taking the limit of rates of changes, I [wanted] students to 
generalise this limiting to derivative… only after the limiting process of rates of 
change, that I gave the algebraic definition of derivative. After showing the 
relation between rate of change and the slope of the tangent, I [had students] found 
the slope of tangent line as equivalent to derivative and did so through the 
instantaneous velocity…

When asked about student difficulties regarding the introduction of derivative, she 
noted the student difficulties in connecting different aspects and added:

RP: [students] memorise the algebraic definition and just say derivative is the slope 
without making much sense of it…they believe that equation of the tangent line 
equals to the derivative at that point…they don’t know why the limit of the rate of 
change gives us the derivative [at a point].  

RP’s awareness of student difficulties shaped her second lesson plan. She paid much 
more attention to connecting different representations and relating them to the 
different aspects of derivative. We have observed similar developments in other 
teacher candidates as to five components of PCK. However, the development does 
not necessarily bring about the same approach to introducing derivative; there was a 
great diversity amongst the approaches. For instance, our interviews with AG clearly 
show the similar development as in RP but AG’s approach was rather different. To 
succinctly summarise, AG started with composing table of values in different 
intervals for a function and later depicted these values on a graph. Then she brought 
in the idea of rate of change and stressed slope of secant lines. Next she related rate 
of change with the slope of tangent line and the instantaneous velocity. Only after all 
these she gave the limit definition of derivative and connected them all together. Such 
diversity points to the existence of alterity in the developmental path of candidates. 
DISCUSSION  
In our analysis it becomes evident that teacher candidates taking part in our course 
displayed remarkable development with regard to the five components of PCK. This 
observation can be easily corroborated on the basis of lesson plans prepared before 
and after the course, interview transcripts and microteachings as exemplified in the 
previous section. We are convinced that intersubjectivity and alterity can be viewed 
as characterizing this development. At the beginning of the preparation program, 
there was not a common ground neither amongst the teacher candidates themselves 
nor between them and the course designers. However during the course, the 
participants developed a shared understanding of the issues with regard to the five 
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components of PCK and hence in the second interviews one can sense an established 
common ground amongst the participants. This surely indicates the teacher 
candidates’ development of PCK. On this basis it can be argued that the development 
of PCK can be viewed in terms of increasing intersubjectivity. 
Development of this intersubjectivity achieved through the dialogue. When viewed 
from a Bakhtinian perspective, the dialogue was not just between the teacher 
candidates and the course designers. The candidates were also in interaction with the 
meanings that others brought into the program such as the writers of the texts on 
different components of PCK and curriculum scripts that they were reading and 
examining as part of the program. Further to this, during the program candidates 
worked in small groups with their peers in understanding the multiple 
representations, students’ difficulties, how to draw on these difficulties in 
overcoming them, what kind of assessment could be used to evaluate student 
comprehension of the topic taught and so on. All these interactions contribute to the 
development of their PCK and hence increasing intersubjectivity.
However, this development cannot be best understood in terms of intersubjectivity 
alone. Alterity was equally important for such development to come about. It is true 
that before attending the course due to high alterity participants were not able to 
make sense of the talked-about reality (the five components of PCK) and there were 
differences among their perspectives which initially embodied the breakdowns of 
intersubjectivity (Schegoff, 1991). Yet these differences played an engine role in 
achieving intersubjectivity in that the candidates were struggling to make sense of the 
components of PCK and it was through this struggle that they come to terms with the 
issues such as multiple representations or student difficulties. The changes in their 
understandings and interpretations were all too apparent as evidenced by the second 
interviews and lesson plans in which they, as exemplified in our analysis section, 
paid attention to, for instance, the different representations and devised ways to make 
the connections among them comprehensible to the others. During the course, the 
teacher candidates were working with one of the course designers who had 
dramatically different perspectives on the components of PCK. Yet it was this 
accompany with the different that led candidates to develop. Hence we share 
Bakhtin’s view that meaning of an event, which in our case is the components of 
PCK, is created by virtue of the co-existence or co-being with the different. 
Alterity did exist not only before the candidates’ participation of the course but also 
after their participation. Despite the fact that the candidates were the part of the same 
course, working and discussing collaboratively and led by the same lecturer, read the 
same texts and examined the same curriculum scripts, their interpretation of how to 
make the introduction of derivative at a point comprehensible to the others varied 
from person to person. As explained in data analysis section, RP and AG’s 
approaches to introducing derivative were quite different, though successful, and in 
this sense alterity was still existent after the course. This, we think, is quite 
understandable when we realise that each person was looking at the issue from 
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development in fact leads to the establishment of a common ground between the 
teacher candidates and the course designers. To illustrate this let us turn to RP’s 
interview on her second plan. With regard to the multiple representations, for 
example, RP was not only able to explain them but also able to devise ways in her 
lesson plan in connecting these representations to three main aspects of derivative:

RP:  Triple representations, as we call it multiple representations: physical, geometrical 
and algebraic. I used them three. I mean I gave table of values. With the help of 
numerical table, after taking the limit of rates of changes, I [wanted] students to 
generalise this limiting to derivative… only after the limiting process of rates of 
change, that I gave the algebraic definition of derivative. After showing the 
relation between rate of change and the slope of the tangent, I [had students] found 
the slope of tangent line as equivalent to derivative and did so through the 
instantaneous velocity…

When asked about student difficulties regarding the introduction of derivative, she 
noted the student difficulties in connecting different aspects and added:

RP: [students] memorise the algebraic definition and just say derivative is the slope 
without making much sense of it…they believe that equation of the tangent line 
equals to the derivative at that point…they don’t know why the limit of the rate of 
change gives us the derivative [at a point].  

RP’s awareness of student difficulties shaped her second lesson plan. She paid much 
more attention to connecting different representations and relating them to the 
different aspects of derivative. We have observed similar developments in other 
teacher candidates as to five components of PCK. However, the development does 
not necessarily bring about the same approach to introducing derivative; there was a 
great diversity amongst the approaches. For instance, our interviews with AG clearly 
show the similar development as in RP but AG’s approach was rather different. To 
succinctly summarise, AG started with composing table of values in different 
intervals for a function and later depicted these values on a graph. Then she brought 
in the idea of rate of change and stressed slope of secant lines. Next she related rate 
of change with the slope of tangent line and the instantaneous velocity. Only after all 
these she gave the limit definition of derivative and connected them all together. Such 
diversity points to the existence of alterity in the developmental path of candidates. 
DISCUSSION  
In our analysis it becomes evident that teacher candidates taking part in our course 
displayed remarkable development with regard to the five components of PCK. This 
observation can be easily corroborated on the basis of lesson plans prepared before 
and after the course, interview transcripts and microteachings as exemplified in the 
previous section. We are convinced that intersubjectivity and alterity can be viewed 
as characterizing this development. At the beginning of the preparation program, 
there was not a common ground neither amongst the teacher candidates themselves 
nor between them and the course designers. However during the course, the 
participants developed a shared understanding of the issues with regard to the five 
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components of PCK and hence in the second interviews one can sense an established 
common ground amongst the participants. This surely indicates the teacher 
candidates’ development of PCK. On this basis it can be argued that the development 
of PCK can be viewed in terms of increasing intersubjectivity. 
Development of this intersubjectivity achieved through the dialogue. When viewed 
from a Bakhtinian perspective, the dialogue was not just between the teacher 
candidates and the course designers. The candidates were also in interaction with the 
meanings that others brought into the program such as the writers of the texts on 
different components of PCK and curriculum scripts that they were reading and 
examining as part of the program. Further to this, during the program candidates 
worked in small groups with their peers in understanding the multiple 
representations, students’ difficulties, how to draw on these difficulties in 
overcoming them, what kind of assessment could be used to evaluate student 
comprehension of the topic taught and so on. All these interactions contribute to the 
development of their PCK and hence increasing intersubjectivity.
However, this development cannot be best understood in terms of intersubjectivity 
alone. Alterity was equally important for such development to come about. It is true 
that before attending the course due to high alterity participants were not able to 
make sense of the talked-about reality (the five components of PCK) and there were 
differences among their perspectives which initially embodied the breakdowns of 
intersubjectivity (Schegoff, 1991). Yet these differences played an engine role in 
achieving intersubjectivity in that the candidates were struggling to make sense of the 
components of PCK and it was through this struggle that they come to terms with the 
issues such as multiple representations or student difficulties. The changes in their 
understandings and interpretations were all too apparent as evidenced by the second 
interviews and lesson plans in which they, as exemplified in our analysis section, 
paid attention to, for instance, the different representations and devised ways to make 
the connections among them comprehensible to the others. During the course, the 
teacher candidates were working with one of the course designers who had 
dramatically different perspectives on the components of PCK. Yet it was this 
accompany with the different that led candidates to develop. Hence we share 
Bakhtin’s view that meaning of an event, which in our case is the components of 
PCK, is created by virtue of the co-existence or co-being with the different. 
Alterity did exist not only before the candidates’ participation of the course but also 
after their participation. Despite the fact that the candidates were the part of the same 
course, working and discussing collaboratively and led by the same lecturer, read the 
same texts and examined the same curriculum scripts, their interpretation of how to 
make the introduction of derivative at a point comprehensible to the others varied 
from person to person. As explained in data analysis section, RP and AG’s 
approaches to introducing derivative were quite different, though successful, and in 
this sense alterity was still existent after the course. This, we think, is quite 
understandable when we realise that each person was looking at the issue from 
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his/her own perspectives, conceptual horizon and world views (Wertsch, 1991). 
Existence of such differences resulting from alterity suggests the plurality of PCK for 
any particular topic and that, we believe, is a source of valuable enrichment. Hence 
we take Bakhtin’s view that alterity should be accepted and defined positively rather 
than associated with some kind of insufficiency.  
As a final point we wish to note here that as our analysis and discussion hitherto 
implies in the course of development of PCK intersubjectivity and alterity are often 
co-existent at different degrees and with relative importance. Therefore, development 
of PCK as a dialogic process cannot be best understood in terms of one or the other in 
isolation but rather through a consideration of both of these tendencies.  
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Cognitive development of any concept is related with affective development. The 
present study investigates the structure of students’ beliefs about the use of different 
types of representation and their respective self-efficacy beliefs in relation to their 
cognitive performance on the concepts of fractions and decimals. The interest is 
concentrated on differences between student’s structure at primary and secondary 
education and on differences at the interrelations between cognitive and affective 
factors. Results revealed that multiple-representation flexibility, ability on solving 
problems with various modes of representation, beliefs about use of representations 
and self-efficacy beliefs about using them constructed an integrated model with 
strong interrelations in different educational levels. 
INTRODUCTION
The relationship between cognition and affect has attracted increased interest on the 
part of mathematics educators, particularly in the search for causal relationship 
between affect and achievement in mathematics (Zan, Brown, Evans & Hannula, 
2006). This is due to the fact that the mathematical activity is marked out by a strong 
interaction between cognitive and emotional aspect. The affective domain is a 
complex structural system consisting of four main dimensions or components: 
emotions, attitudes, values and beliefs (Goldin, 2001). At the present study we focus 
on students’ beliefs and their self-efficacy beliefs about using different types of 
representations in mathematics learning and understanding. We concentrated our 
attention on the notion of fractions and decimals. Fractions are among the most 
essential (Harrison & Greer, 1993), but complex mathematical concepts that children 
meet in school mathematics (Charalambous & Pitta-Pantazi, 2007).  
Mathematics is a specialized language with its own contexts, metaphors, symbol 
systems and purposes (Pimm, 1995). One’s behavior and choices, when confronted 
with a task, are determined by her/his beliefs and personal theories, rather than 
her/his knowledge of the specifics of the task. Numerous studies on the use of 
representations have attempted to explain their contribution to learning concepts and 
to efficiency in problem solving. Among the many strategies that have been 
suggested to improve efficacy in solving math word problems, using diagrams and 
more generally external representations has been described as one of the most 
effective (Uesaka, Manalo & Ichikawa, 2007).
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Beliefs is a multifaceted construct, which can be described as one’s subjective 
“understandings, premises, or propositions about the world” (Philipp, 2007, p. 259). 
The construct of self-efficacy beliefs signifies a person’s perceived ability or 
capability to successfully perform a given task or behaviour. Bandura (1997) defines 
self-efficacy as one’s perceived ability to plan and execute tasks to achieve specific 
goals. Self-efficacy beliefs have received increasing attention in educational research, 
primarily in studies for academic motivation and self-regulation (Pintrich & Schunk, 
1995). It was found that self-efficacy is a major determinant of the choices that 
individuals make, the effort they expend, the perseverance they exert in the face of 
difficulties, and the thought patterns and emotional reactions they experience 
(Bandura, 1986).
Recognizing the same concept in multiple systems of representations, the ability to 
manipulate the concept within these representations as well as the ability to convert 
flexibly the concept from one system of representation to another are necessary for 
the acquisition of the concept (Lesh, Post, & Behr, 1987) and allow students to see 
rich relationships (Even, 1998). The different types of external representations in 
teaching and learning mathematics are widely acknowledged by the mathematics 
education community (NCTM, 2000). Given that a representation cannot describe 
fully a mathematical construct and that each representation has different advantages, 
using multiple representations for the same mathematical situation is at the core of 
mathematical understanding (Duval, 2006). The necessity of using a variety of 
representations or models in supporting and assessing students’ constructions of 
fractions is stressed by a number of studies (Lamon, 2001). 
An issue that has received major attention from the education community over the 
last years refers to the students’ difficulties when moving from primary to secondary 
school and to the discontinuities in the curriculum requirements, the use of teaching 
approaches, aids and methods. Pajares and Graham (1999) investigated the extent to 
which mathematics self-beliefs change during the first year of middle school. By the 
end of the academic year, students described mathematics as less valuable, and they 
reported decreased effort and persistence. The findings of the Deliyianni, Elia, 
Panaoura and Gagatsis’s (2007) study suggest that there is a noteworthy difference 
between primary and secondary education in Cyprus concerning the representations 
used in mathematics textbooks on fractions. There are also differences in the 
functions the various representations in the school textbooks fulfil.  
Most mathematics textbooks today make use of a variety of representations more 
extensively than every before in order to promote understanding (Elia, Gagatsis & 
Demetriou, 2007). Much more research is needed for the students’ beliefs about the 
role of those representations in relation to their self-efficacy beliefs for using them as 
a tool for the better understanding of the mathematical concepts (Patterson & 
Norwood, 2004). The present study investigated students’ beliefs at primary and 
secondary education about the use of different representations for the learning of the 
fractions and decimals and their self-efficacy beliefs about the use of different forms 
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of representations. It examines the confirmation of the structure of cognitive and 
affective factors concerning students’ beliefs and self-efficacy beliefs about the use of 
multiple representations and their performance on fractions and decimals. The 
interest concentrated on the interrelations among the abovementioned cognitive and 
affective factors and the respective differences on those dimensions at primary and 
secondary education. 
METHOD
The study was conducted among 1701 students of 10 to 14 year of age who were 
randomly selected from urban and rural schools in Cyprus. Specifically, students 
belonging to 83 classrooms of primary (Grade 5 and 6) and secondary (Grade 7 and 
8) schools were tested.
A questionnaire was developed for measuring students’ beliefs about the use of 
different types of representations for understanding the concept of fractions. The 
questionnaire comprised of 27 Likert type items of five points (1=strongly disagree, 
5=strongly agree). The reliability of the whole questionnaire was very high 
(Cronbach’s alpha was 0.88). For example there were items such as “I can easily find 
the diagram that corresponds to an equation of fractions” and “When I solve a 
problem with fractions, I use the number line for executing the operations”. At the 
same time a test was developed for measuring students’ ability on multiple 
representation flexibility as far as fraction addition and decimal number addition is 
concerned. There were treatment, recognition, conversion, diagrammatic problem-
solving and verbal problem-solving tasks (further details for the tasks can be found at 
the paper of Deliyianni et al., 2008). 
The tests and the questionnaire were administered to the students by their teachers at 
the end of the school year in usual classroom conditions. Right and wrong or no 
answers were scored as 1 and 0, respectively. Solutions in treatment, recognition and 
translation tasks were assessed as correct if the appropriate answer, diagram, equation 
or shading were given respectively, while a solution in the problems was assessed as 
correct if the right answer was given.  
RESULTS
In order to confirm the structure of students’ cognitive and affective abilities in the 
concepts of fractions and decimals at primary and secondary education, a CFA 
(Confirmatory Factor Analysis) model was constructed by using the Bentler’s (1995) 
EQS programme. The tenability of a model can be determined by using the following 
measures of goodness of fit: x2 /df <1.95, CFI>0.9 and RMSEA<0.06. 
Figure 1 presents the results of the elaborated model that fits the data reasonably well 
for both the levels of education (primary education: x2 /2713= 1.42, CFI=0.911 and 
RMSEA=0.026,secondary education: x2/2707=1.49, CFI=0.913 and RMSEA=0.027). 
The second order model which is considered appropriate for interpreting students’ 
beliefs and abilities involves 15 first order factors and 4 second order factors. The 
five first order factors (F1 to F5) express the multiple representation flexibility 
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Beliefs is a multifaceted construct, which can be described as one’s subjective 
“understandings, premises, or propositions about the world” (Philipp, 2007, p. 259). 
The construct of self-efficacy beliefs signifies a person’s perceived ability or 
capability to successfully perform a given task or behaviour. Bandura (1997) defines 
self-efficacy as one’s perceived ability to plan and execute tasks to achieve specific 
goals. Self-efficacy beliefs have received increasing attention in educational research, 
primarily in studies for academic motivation and self-regulation (Pintrich & Schunk, 
1995). It was found that self-efficacy is a major determinant of the choices that 
individuals make, the effort they expend, the perseverance they exert in the face of 
difficulties, and the thought patterns and emotional reactions they experience 
(Bandura, 1986).
Recognizing the same concept in multiple systems of representations, the ability to 
manipulate the concept within these representations as well as the ability to convert 
flexibly the concept from one system of representation to another are necessary for 
the acquisition of the concept (Lesh, Post, & Behr, 1987) and allow students to see 
rich relationships (Even, 1998). The different types of external representations in 
teaching and learning mathematics are widely acknowledged by the mathematics 
education community (NCTM, 2000). Given that a representation cannot describe 
fully a mathematical construct and that each representation has different advantages, 
using multiple representations for the same mathematical situation is at the core of 
mathematical understanding (Duval, 2006). The necessity of using a variety of 
representations or models in supporting and assessing students’ constructions of 
fractions is stressed by a number of studies (Lamon, 2001). 
An issue that has received major attention from the education community over the 
last years refers to the students’ difficulties when moving from primary to secondary 
school and to the discontinuities in the curriculum requirements, the use of teaching 
approaches, aids and methods. Pajares and Graham (1999) investigated the extent to 
which mathematics self-beliefs change during the first year of middle school. By the 
end of the academic year, students described mathematics as less valuable, and they 
reported decreased effort and persistence. The findings of the Deliyianni, Elia, 
Panaoura and Gagatsis’s (2007) study suggest that there is a noteworthy difference 
between primary and secondary education in Cyprus concerning the representations 
used in mathematics textbooks on fractions. There are also differences in the 
functions the various representations in the school textbooks fulfil.  
Most mathematics textbooks today make use of a variety of representations more 
extensively than every before in order to promote understanding (Elia, Gagatsis & 
Demetriou, 2007). Much more research is needed for the students’ beliefs about the 
role of those representations in relation to their self-efficacy beliefs for using them as 
a tool for the better understanding of the mathematical concepts (Patterson & 
Norwood, 2004). The present study investigated students’ beliefs at primary and 
secondary education about the use of different representations for the learning of the 
fractions and decimals and their self-efficacy beliefs about the use of different forms 
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of representations. It examines the confirmation of the structure of cognitive and 
affective factors concerning students’ beliefs and self-efficacy beliefs about the use of 
multiple representations and their performance on fractions and decimals. The 
interest concentrated on the interrelations among the abovementioned cognitive and 
affective factors and the respective differences on those dimensions at primary and 
secondary education. 
METHOD
The study was conducted among 1701 students of 10 to 14 year of age who were 
randomly selected from urban and rural schools in Cyprus. Specifically, students 
belonging to 83 classrooms of primary (Grade 5 and 6) and secondary (Grade 7 and 
8) schools were tested.
A questionnaire was developed for measuring students’ beliefs about the use of 
different types of representations for understanding the concept of fractions. The 
questionnaire comprised of 27 Likert type items of five points (1=strongly disagree, 
5=strongly agree). The reliability of the whole questionnaire was very high 
(Cronbach’s alpha was 0.88). For example there were items such as “I can easily find 
the diagram that corresponds to an equation of fractions” and “When I solve a 
problem with fractions, I use the number line for executing the operations”. At the 
same time a test was developed for measuring students’ ability on multiple 
representation flexibility as far as fraction addition and decimal number addition is 
concerned. There were treatment, recognition, conversion, diagrammatic problem-
solving and verbal problem-solving tasks (further details for the tasks can be found at 
the paper of Deliyianni et al., 2008). 
The tests and the questionnaire were administered to the students by their teachers at 
the end of the school year in usual classroom conditions. Right and wrong or no 
answers were scored as 1 and 0, respectively. Solutions in treatment, recognition and 
translation tasks were assessed as correct if the appropriate answer, diagram, equation 
or shading were given respectively, while a solution in the problems was assessed as 
correct if the right answer was given.  
RESULTS
In order to confirm the structure of students’ cognitive and affective abilities in the 
concepts of fractions and decimals at primary and secondary education, a CFA 
(Confirmatory Factor Analysis) model was constructed by using the Bentler’s (1995) 
EQS programme. The tenability of a model can be determined by using the following 
measures of goodness of fit: x2 /df <1.95, CFI>0.9 and RMSEA<0.06. 
Figure 1 presents the results of the elaborated model that fits the data reasonably well 
for both the levels of education (primary education: x2 /2713= 1.42, CFI=0.911 and 
RMSEA=0.026,secondary education: x2/2707=1.49, CFI=0.913 and RMSEA=0.027). 
The second order model which is considered appropriate for interpreting students’ 
beliefs and abilities involves 15 first order factors and 4 second order factors. The 
five first order factors (F1 to F5) express the multiple representation flexibility 
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(MRF) for the concepts of fractions and decimals. Specifically, F1: recognition tasks 
with the same number of digits, F2: recognition tasks with different number of digits, 
F3: treatment tasks, F4: conversion tasks in which the initial representation is 
symbolic and the target one is a diagram, F5: conversion tasks from a diagrammatic 
to a symbolic representation. Those five first order factors regressed on a second 
order factor concerning students’ multiple representation flexibility. The next second 
order factor express problem solving ability. It is consisted of two first order factors 
(F6: problem solving ability on problems with a diagrammatic representation and F7: 
problem solving performance on verbal problems). The third second order factor 
express students’ self-efficacy beliefs about the use of representations. It consisted of 
three first order factors (F8: self-efficacy beliefs about the conversion from one type 
of representation to another, F9: general self-efficacy beliefs about mathematics, F10: 
self-efficacy beliefs about the use of verbal representations). The fourth second order 
factor explains students’ beliefs about the use and the role of representations on 
learning and understanding. It is consisted of three first order factors (F11: beliefs 
about the use of number line, F12: beliefs about the use of models, materials and 
representations, F13: beliefs about the use of diagrams in problem solving).
The interest concentrated on the interrelations between the second-order factors, as 
indications of the impact of affective factors on cognitive performance and vice-
versa. The highest statistically significant (p<0.05) interrelation is between the 
multiple representation flexibility and problem solving performance (primary .915, 
secondary .954), indicating that students who are efficient in using different types of 
representations have higher performance on problem solving tasks with 
representations.  As it was expected, very high is the relation of students’ beliefs 
about the use of representations and their self-efficacy beliefs (primary .877, 
secondary .816). Students’ with high self-efficacy beliefs about their ability to use 
representations, express positive beliefs about the use of representations on teaching 
and learning. The relation is lower in secondary education where teachers use fewer 
representations and consequently students have less positive beliefs about their 
usefulness and less positive self-efficacy beliefs due to the lack of recent experiences. 
The relations between the self-efficacy beliefs about the use of representations with 
the problem-solving ability (primary: .572, secondary .626) and the multiple-
representation flexibility are higher in secondary education (primary .590, secondary 
.621), indicating that students have more precise self-representation about their 
cognitive and affective performance. There are no statistically significant 
interrelations of beliefs about the use of representations with the multiple-
representation flexibility. That means that the students encounter conversion and 
recognition tasks as exercises which have no contribution on the constructing of 
positive beliefs for representations’ value as teaching tools on the learning procedure. 
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Figure 1: The CFA model of students’ cognitive and affective abilities in fractions 
and decimals at primary and secondary education 

Note: 1. MRF= Multiple representation flexibility, PS= Problem solving Ability, SB= 
Self-efficacy beliefs, B= Beliefs, 2. The first and second coefficients of each factor 
stand for the application of the model at primary and secondary education 
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(MRF) for the concepts of fractions and decimals. Specifically, F1: recognition tasks 
with the same number of digits, F2: recognition tasks with different number of digits, 
F3: treatment tasks, F4: conversion tasks in which the initial representation is 
symbolic and the target one is a diagram, F5: conversion tasks from a diagrammatic 
to a symbolic representation. Those five first order factors regressed on a second 
order factor concerning students’ multiple representation flexibility. The next second 
order factor express problem solving ability. It is consisted of two first order factors 
(F6: problem solving ability on problems with a diagrammatic representation and F7: 
problem solving performance on verbal problems). The third second order factor 
express students’ self-efficacy beliefs about the use of representations. It consisted of 
three first order factors (F8: self-efficacy beliefs about the conversion from one type 
of representation to another, F9: general self-efficacy beliefs about mathematics, F10: 
self-efficacy beliefs about the use of verbal representations). The fourth second order 
factor explains students’ beliefs about the use and the role of representations on 
learning and understanding. It is consisted of three first order factors (F11: beliefs 
about the use of number line, F12: beliefs about the use of models, materials and 
representations, F13: beliefs about the use of diagrams in problem solving).
The interest concentrated on the interrelations between the second-order factors, as 
indications of the impact of affective factors on cognitive performance and vice-
versa. The highest statistically significant (p<0.05) interrelation is between the 
multiple representation flexibility and problem solving performance (primary .915, 
secondary .954), indicating that students who are efficient in using different types of 
representations have higher performance on problem solving tasks with 
representations.  As it was expected, very high is the relation of students’ beliefs 
about the use of representations and their self-efficacy beliefs (primary .877, 
secondary .816). Students’ with high self-efficacy beliefs about their ability to use 
representations, express positive beliefs about the use of representations on teaching 
and learning. The relation is lower in secondary education where teachers use fewer 
representations and consequently students have less positive beliefs about their 
usefulness and less positive self-efficacy beliefs due to the lack of recent experiences. 
The relations between the self-efficacy beliefs about the use of representations with 
the problem-solving ability (primary: .572, secondary .626) and the multiple-
representation flexibility are higher in secondary education (primary .590, secondary 
.621), indicating that students have more precise self-representation about their 
cognitive and affective performance. There are no statistically significant 
interrelations of beliefs about the use of representations with the multiple-
representation flexibility. That means that the students encounter conversion and 
recognition tasks as exercises which have no contribution on the constructing of 
positive beliefs for representations’ value as teaching tools on the learning procedure. 
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Figure 1: The CFA model of students’ cognitive and affective abilities in fractions 
and decimals at primary and secondary education 

Note: 1. MRF= Multiple representation flexibility, PS= Problem solving Ability, SB= 
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The loadings of the whole model are higher in the case of secondary education. 
Therefore the particular cognitive structure is an integrated model on cognitive and 
affective factors concerning the use of representations for the concepts of decimals 
and fractions which becomes more stable across the educational levels, as a result of 
the continuous experiences in the teaching procedure and the more precise self-
representation about the cognitive and affective performance.  
DISCUSSION 
Learning involves information that is represented in different forms. Given that each 
representation has different advantages and limitations, using multiple representations 
is important of mathematical understanding (Duval, 2006). The main emphasis of the 
present study was on investigating the structure of students’ beliefs and self-efficacy 
beliefs about the use of representations and their cognitive performance (multiple 
representation-flexibility and problem-solving ability tasks) on the concepts of 
fractions and decimals. Results confirmed that multiple-representation flexibility, 
ability on solving problems with representations, beliefs about use of representations 
and self-efficacy beliefs about using them constructed an integrated model with 
strong interrelations in different educational levels. All the abovementioned cognitive 
and affective dimensions have impact on decimal and fraction addition 
understanding. The results indicated the important role of the multiple-representation
flexibility and problem-solving ability in primary and secondary school students’ 
fraction and decimal number addition understanding and the important role of beliefs 
about the use of different representations for the specific concepts and their 
respective self-efficacy beliefs. The invariance across primary and secondary 
education on the structure of the model underlines the need to develop curriculum 
and teaching methods which have a continuity from primary to secondary education.
Although the conversion and recognition tasks have not important contribution on 
developing positive beliefs about the use of representations, there is an indirect 
impact, as far as tasks for developing multiple-representation flexibility seems to be a 
presupposition for developing the ability to solve problems with multiple 
representations. Problem-solving ability correlates with self-efficacy beliefs and those 
with beliefs about the use of representations. Recent experiences and success in 
solving tasks with representations affect the development of self-efficacy beliefs and 
as a consequence construct positive beliefs about the use of representations. The 
lower relations in secondary education than in primary education indicate that 
students need more experiences of using a variety of representations at this level of 
education in order to stable their beliefs on the specific domain. On the one hand, the 
difference can be explained by the fact that students face difficulties in multiple- 
representation tasks which are increased in secondary education since no emphasis is 
placed on learning with multiple representations. On the other hand, the lower 
relation can be explained by the construction of a more precise self-image when 
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students become older (Demetriou & Panaoura, 2006), while younger students tend to 
overestimate their performance and have very high self-efficacy beliefs.  
The significant interrelation of students’ self-efficacy beliefs with their multiple-
representation flexibility and the problem-solving ability confirm that students with 
lower performance on mathematics have at the same time negative self-efficacy 
beliefs about their ability to use representations because they cannot use them 
fluently and flexibly as a tool to overcome obstacle on understanding the concepts of 
fractions and decimals. This is an important indication for teachers, curriculum 
designers and researchers in order to improve students’ self-efficacy beliefs and 
beliefs about the use of representations and mainly their understanding of difficult 
mathematical concepts which are presented in different representational forms, such 
as the concepts of fractions and decimals. It would be interesting and useful in future 
to examine the effects of intervention programs aiming to develop students’ cognitive 
performance concerning fraction and decimal numbers by improving dimensions of 
affective factors such as beliefs and self-efficacy beliefs and vice versa. 
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lower performance on mathematics have at the same time negative self-efficacy 
beliefs about their ability to use representations because they cannot use them 
fluently and flexibly as a tool to overcome obstacle on understanding the concepts of 
fractions and decimals. This is an important indication for teachers, curriculum 
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beliefs about the use of representations and mainly their understanding of difficult 
mathematical concepts which are presented in different representational forms, such 
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performance concerning fraction and decimal numbers by improving dimensions of 
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MAPPING EXPERIENCE OF DIMENSION 
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This study explored how individuals experience and think about dimension. Through 
an analysis of the literature, followed by a phenomenographic study of how 
individuals experience dimension, we present a characterisation of dimensional 
thinking, which can inform future research and pedagogic practice. 
INTRODUCTION
Dimension is implicit in many geometric ideas though little research has explicitly 
focussed on dimension. This study reports on a phenomenographic study reporting on 
how dimension is experienced. The mathematics curriculum in schools treats 
geometry as independent from reality and as a consequence, independent from 
students’ prior-experiences and knowledge. As Glenn (1979) argues:

The child comes to school with a good practical working knowledge of this world, but 
instead of building on it we tend to force all subsequent learning into the two-
dimensional abstraction (p.21). 

It is globally accepted that both three-dimensional and two-dimensional geometry are 
of great importance to children. On the one hand, three-dimensional shapes are 
important because they correspond to the everyday lives of the students, while two-
dimensional shapes are presented in books, in child’s drawings, and arguably in some 
everyday phenomena such as shadows. 
In the UK, official materials (DfEE, 1999) present quite separately 2D and 3D shapes 
and their properties and therefore it seems likely that students’ may not be 
encouraged to make the connections between the two types of geometry. In addition, 
the limited time offered in the curriculum for geometry, the attitudes of teachers’ 
towards this ‘frightening’ area of mathematics together with the avoidance of 
including geometry in the students’ examinations act as excuses for ignoring the 
teaching and learning of geometry compared to the rest of the curriculum and thus the 
teaching and learning of dimension. 
WHERE IS DIMENSION EXPERIENCED? 
Dimension is experienced in different ways across a variety of settings. 
In everyday life: Whereas 3D objects are encountered and manipulated every day, 
two-dimensional geometry is less explicit, restricted to phenomena such as shadows 
and idealisations of surfaces.
Formally: More formally, dimension can be considered to be a parameter or 
measurement required to specify the size of an object. In Geography, dimensions are 
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used for locating a place on a 2-dimensional map or even locating a person on earth 
while in Sciences, dimensions are considered as degrees of freedom. In mathematics, 
n linearly independent vectors are required to describe any location in n-dimensional
space. However no definition of dimension adequately captures the concept in all 
situations and so mathematicians have formulated numerous definitions of dimension 
for different types of spaces. All mathematical definitions on dimension, however, 
are inspired by the notion of the dimension of Euclidean n-space E n (see Figure 1).

Figure 1: 2-dimensional renderings (i.e. flat drawings) 
In school: Geometry and dimension in particular have a dual nature: the theory and 
the reality. Consequently, many educators have suggested that school geometry 
should promote the relationship between reality and abstraction (Battista & Clements, 
1988; Fujita & Jones, 2002; Jones & Mooney, 2003; Pritchard, 2003; Usiskin, 1982). 
In dynamic geometry settings: Some progress has been made in supporting those 
connections. The invention of dynamic geometry software, for example, has led to 
the notion of “figure” as a bridge between unrestrained drawing and the mental 
geometric ideal (Laborde, 1995). More recently, such technological developments 
have moved into the third dimension (see Figure 2). 

Figure 2: A cube in Cabri 3D 
The aim of this study was to map experiences of dimension across these settings 
through a phenomenographic study. In order to interpret accounts of such experiences 
across these settings, we paid particular attention to three aspects. 
First, we considered the heuristics people use to make sense of dimension, which will 
point to intuitions (Fischbein, 1987) perhaps expressed in situated terms. The 
question raised now is what kind of intuitions people have regarding dimension, a 
focus directly relevant to practicing teachers and educators. 
Second, we noted how people’s accounts of experiencing dimension incorporate 
visualisations. While one of the aims of the UK school curriculum is to develop in 
students the ability to visualise (Royal Society/JMC 11-19 report, 2001; Usiskin, 
1982), Guttierez (1996) points out that little research has been conducted regarding 
visualisation in 3-dimensional geometry. What is available tends to show the 
limitation in young students’ visualisation skills, such as making volume judgements 
based on one or two dimensions only (Piaget, 1968; Piaget, Inhelder, & Szeminska, 
1960; Raghubir & Krishna, 1999).
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Third, we attended to how individual’s primitive knowledge emerges in people’s 
accounts. Ogden (1937), for example, talks about a special type of geometry called 
‘naive geometry’, which includes all those self-evident geometric forms, referred to 
as prototypes by Üstün and Ubuz (2004) and others. In the case of geometry, the 
creation of these prototypes is unavoidable and begins from the child’s first 
experiences of the real world. 
A PHENOMENOGRAPHIC APPROACH 
Phenomenography provides a research methodology to study the “ways in which 
people experience, perceive, apprehend, understand and conceptualise various 
phenomena in and aspects of the world around us” (Marton, 1994). Students 
experience a specific phenomenon from various perspectives, and therefore they 
create multiple understandings of that phenomenon. 
Semi-structured interviews were designed around questions regarding the exploration 
of the individuals’ dimensional thinking. This study did not aim to represent the 
wider population, an aim beyond the available resources, but instead identifies 
instances of experience highlighting variation in how dimension is experienced. We 
focus on (i) two pairs of UK students, referred to as (S) in the protocols, 10 years old 
and regarded as upper-middle ability by their teachers, and (ii) eight teachers, four 
from the UK and four from Cyprus, primary (P) and secondary school teachers of 
mathematics (M) and physics (Ph).
The purpose of the questions used was the exploration of individuals’ experiences of 
dimension, including accounts of how they thought about dimension, inside and 
outside the school environment. Although some of these questions might have been 
examined through lessons in class (e.g. What is the difference between 2D and 3D? 
How many dimensions does a line have?), most of them were questions that the 
individuals might have never thought about (e.g. Can you think of examples in the 
real world which are not 3-dimensional? How many dimensions does a reflection in 
the mirror have? How many dimensions does a shadow have?). Teachers’ interviews 
also included questions exploring their views on the curriculum (e.g. How do you 
think the notion of dimension should progress in the mathematics curriculum? What 
experiences do you think should students have that might help them to progress?). 
Below, we present thematically the findings as they arose from these interviews. 
FINDINGS 
The findings showed that people experience and think about dimension in a variety of 
ways as set out below. 
Dimension as Action 
Dimension was frequently experienced as the outcome of an action:

Paige (S):  Maybe you could get like a flat shape and stick it onto a cube or 
something these would be like two dimensions because one part it is 2D 
and the other part it is 3D 
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‘naive geometry’, which includes all those self-evident geometric forms, referred to 
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dimension, including accounts of how they thought about dimension, inside and 
outside the school environment. Although some of these questions might have been 
examined through lessons in class (e.g. What is the difference between 2D and 3D? 
How many dimensions does a line have?), most of them were questions that the 
individuals might have never thought about (e.g. Can you think of examples in the 
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experiences do you think should students have that might help them to progress?). 
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FINDINGS 
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In the above case, the action provided a means for connecting 2D and 3D. At other 
times, distinctions between 2D and 3D were articulated. Kristina (P), Michalis (P) 
and Irene (M) referred to depth and height when talking about the difference between 
2D and 3D. Dimensions could also be added. Nicholas (S) and Chelsea (S) argued 
that, if a point has one dimension, then the square which has 4 points should be a 4-
dimensional object. Michalis (P) and Elena (P), when asked what dimension meant to 
them, referred to locating and measuring: 

Michalis (P):  It’s the placement in space. 
Elena (P):  It is a measurement of distances on a plane that might exist. 

The actions that are required in this perspective on dimension seem then to embrace 
connecting, distinguishing, adding, locating and measuring, and include both the 
expression of dimension as an act and as an outcome of an action. 
Dimension as State 
Seeing dimension as a state was articulated by Kai (S):

Kai (S):  Our planet is on a round surface and if we didn’t have the third dimension 
we would have been 2D or 1D or something like that, but if we were 1D 
we would be unseeable (not visible) and if we were 2D we would be 
really flat and we couldn’t really survive in there. 

According to Michalis (P), the place where the object is located was considered a 
very important element for defining the number of dimensions the object has: 

Michalis (P):  It depends where the point is at. If it is on a piece of paper it would have 
1-2 dimensions, but if it is in space then it would be 3-dimensional. 

Similarly, Themis (Ph) pointed out that a point cannot exist by itself and it has to 
belong somewhere. Expressing the plane and space as an object was common among 
the teachers. For example, Themis (Ph) proposed that a plane is an example of a 2D 
object while 3D corresponds to Space. 
Material Dimension 
Students’ naive thinking was typically situated and expressed heuristically. We noted 
many claims by students, as indicated by the following characterisations: ‘the smaller 
the dimension, the more flexible and bending the object is’, ‘the smaller dimension a 
shape has, the easier it is to be transformed’, ‘the more dimension, the thicker the 
object’, ‘the thicker a line, the greater its dimension’, ‘the smaller is more difficult to 
see the shape’, ‘the more vertices or edges an object has, the greater its dimension’. 
Each of these heuristics related the notion of dimension to everyday materialistic 
experiences. Teachers also sometimes discussed dimension as if it were a tangible 
object. Thus, when asked whether something can have 0 dimensions, Michalis (P) 
responded, “No, because it would have no matter.” For Michalis (P), dimension was 
a property, dependent on the object it represents. 
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Abstract Dimension 
Even the teachers were at times inconsistent, especially when it came to discuss 
dimension in non-materialistic ways: 

Researcher:  Can something have 0 dimensions? 
Elena (M):  I don’t know... the point? [after a while]
Researcher:  How many dimensions does a point have? 
Elena (M):  I think one. 

Similarly, when Michalis (P) was asked if there is something with 1 dimension, he 
answered negatively pointing out that everything should have at least two dimensions 
but, when he was later asked for the number the dimensions of a line, he replied that 
it is zero. On the other hand, Griff (Ph) spoke of 1D and 0D as being idealisations 
that do not exist in the real world. 
Dimension as prototype 
Students often made use of prototypes in their responses, for example ‘flat shapes’ 
when describing 2D, and ‘standing up shapes’ or ‘shapes that pop up’ when talking 
about 3D. It was also noted that even teachers, such as Kristina (P) answered some 
questions with automatic prototypes: 

Researcher: Can you think of examples in the real world which are not 3D? 
Kristina (P):  Anything flat that doesn’t have depth. 

Such statements seems to be ritual echoes of experiences probably based in school. 
Some prototypes however seemed to be connected with everyday experiences. 
Kristina (P) often referred to dimension as something in outer space, most likely 
influenced by science fiction films and the media. 
Dimension as hierarchy 
There was also discussion about the pedagogy of dimension and a suitable 
curriculum. Michalis (P) and Themis (Ph) talked of the importance of teaching a 
notion first by using simple terms and then using the abstract ones while Irene (M) 
also made the distinction between the use of physical objects in the teaching of 
dimension in the primary school and the abstract terms to be introduced in the 
secondary school. Talking about secondary education, Irene (M) suggested that the 
teaching of 1D should come first and then the higher dimensions to follow: 

Irene (M):  Well, I would definitely start from the 1st dimension and then explain to 
them what a dot means, but as I explain the 2nd and 3rd dimension I would 
definitely move back and constantly compare it with 1 dimension and 2 
dimensions if we are talking about 3 dimensions. 

On the contrary, Griff (Ph) proposed that aspects connected to the real world should 
be taught first before moving on to the idealisations of 1D and 2D. As for the start of 
teaching 3D geometry, the teachers’ answers varied from proposing that it should 
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start from early years through play to Griff’s (Ph) opinion that the teaching of 3D is 
not of a great importance because everything is now mapped onto 2D surfaces.
CHARACTERISING DIMENSIONAL THINKING 
In this section, we discuss the findings in the phenomenographic study and propose a 
series of characterisations of how dimension is experienced, leading us towards a 
definition of dimensional thinking. 
Location
Seeing dimension as a state involves locating a point (for example) on a line, a plane 
or in space. It is possible for dimensional thinking to focus on the object itself (for 
example the point) or the domain of that object. Dimensional thinking involves the 
gradual separating of these two aspects of location, clarifying questions such as: 
‘What is the relationship between the object itself and the domain it is in?’ and ‘How 
does the domain influence the object?’
Measuring
The phenomenographic study showed that individuals can often perceive dimension 
as measuring or as a measurement. Indeed, The UK National Numeracy Strategy 
(DfEE, 1999) presents dimension under the topic of Shape, Space and Measures, 
where metric units are taught and measurement is a central focus. Actions such as 
adding, which are appropriate for measurements, are not however appropriate for 
dimension itself. Dimensional thinking seems to involve the gradual abstraction of a 
notion that stands outside of measurement, in the sense that it is not subject to the 
same actions, even though dimension is inevitably rooted in measuring. 
Abstracting dimension 
Students’ responses revealed that their thinking is restricted to a materialistic 
perspective. Teachers did discuss both material and abstracted aspects of dimension 
but they often tended not to separate them. Reaching more sophisticated meanings for 
dimension will inevitably involve passing through naïve states of thinking where the 
actions associated with measuring are confused with those that might be appropriate 
for dimension itself. More sophisticated thinking about dimension would require a 
clear distinguishing of the two and an appreciation of the relationship between them 
in order to reach the abstract perspective of geometry, which includes all these points 
and lines that are nothing more than approximations of ‘ideal objects’ in an ‘ideal 
world’(Atiyah, cited in Pritchard, 2003). 
Representing dimension 
As discussed above, dimension can be experienced materialistically or abstractly. At 
a naïve level, this distinction is not made and in fact naive thoughts were often based 
on vision, touch and thickness, expressed as materially-oriented heuristics (see 
§ Material Dimension). Measuring is an action that enables the specification of 
dimension and leads to the association of perceptual qualities with the notion of 
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dimension. There is after all an element of truth in the heuristic, ‘the more dimension, 
the thicker the object’, but ultimately such representations of dimension have to 
evolve towards a sense of dimension that is not perceptually related. 
Visualising dimension 
When dimension is visualised, there is typically a dependence on prototypical cases. 
These prototypes are certainly useful tools or resources for thinking about and 
communicating geometric ideas. For example, students were able to imagine a square 
moving into a 3rd dimension and “becoming” a cube. We believe that even 
sophisticated dimensional thinking will draw upon such prototypes but we would 
expect it to be less restricted to those prototypes. 
Relationships across dimensions 
To gain an expert-like sense of dimension requires an appreciation of what is 
different about 0, 1, 2 and 3 (and more) dimensions and for these distinctions to be 
consistent within an abstracted concept of dimension. The example the previous 
section shows how these students were able in some prototypical cases to move their 
thinking between 2 and 3 dimensions. It is reasonable to speculate that experiences 
that cut across differing numbers of dimensions might support the construction of 
such relationships that begin to articulate what is invariant and what changes as you 
move across dimensions. Such tasks may be intractable in the material world but may 
be feasible in the mental or virtual worlds. 
FUTURE WORK 
The findings gathered from the phenomenographic study formed a characterisation of 
dimensional thinking, based on identifying the ways in which some individuals think 
about dimension. Other ways of thinking about dimension are not excluded and the 
aspects of dimensional thinking noted were not all of the same frequency.
A pervasive aspect of the responses is the inconsistency in people’s thinking about 
dimension. The map created from the phenomenographic study provides some sense 
of the variety of experience but it does not reflect this inconsistency in a satisfactory 
way. The interviews acted as ‘a camera, grabbing snap-shots’ of people’s experience. 
Developing that metaphor further, we would like to ‘capture video’ of how 
dimensional thinking changes during activity. The phenomenographic study has 
proposed in its characterisations a sense of what more sophisticated dimensional 
thinking might look like. Further study might focus on cross-dimensional tasks set in 
virtual worlds to report on the micro-evolution of dimensional thinking through 
carefully designed tasks. Such a study would seek first to identify naïve ideas already 
held but then to perturb such thinking in order to explore limitations and potentials.  
References 
Battista, M. T., & Clements, D. H. (1988). A Case for a Logo-based Elementary School 
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This study is one part of a research project which focuses on students’ performance 
in a number of tasks concerning the concept of ratio. Sixteen 6th grade students were 
clinically interviewed in order to categorize their responses to real life tasks which 
include all the aspects of the concept of ratio. From the analysis of the data a number 
of issues about their strategies emerged. It seems that students’ reasoning does not 
follow a predetermined path, and varies across the tasks. Moreover, the impact of the 
qualitative elements of the tasks seems to affect their reasoning. A qualititative – 
proportional approach is adopted in the cases where the proportionality is not 
adequately formed.   

The concepts of ratio and proportion have been widely studied. A number of research 
studies have focused on the performances and strategies of sixth – eighth graders 
solving proportion problems (Karplus, Pulos and Stage, 1983; Tourniaire, 1986; 
Adjiage and Pluvinage, 2007). Lachance and Confrey (2002) in their study aimed at 
building a path of understanding from ratio and proportion to decimal notation, focus 
on the multiplicative notion of ratio. Under this perspective, ratio is considered to be 
the multiplicative comparison of two quantities and it is connected to the operations 
of multiplication and division. In the proposed alternative model for developing 
mathematical understanding, children’s experiences with the multiplicative notion of 
ratio are the basis for their understanding of fractions, decimals and percents. 
Furthermore, fractions, decimal and percents are considered to be subsets of ratios. A 
ratio is an ordered pair of quantities that includes a comparison between their 
magnitudes. The ratios could be distinguished based on the kind of quantities that are 
included in the comparison. More particularly, ratios that involve the comparison of a 
part of the quantity to the whole quantity are called “Part-to-Whole Ratios”, while the 
comparison of one part of a whole to another part of the same whole refers to a “Part-
to-Part” ratio. Figure 1 could be used to illustrate an example of each of the two 
different kinds of ratio. 

- The two grey parts are compared to the whole 2:4. (Part-to-
Whole ratio)

- The two grey parts are compared to the other two white parts of 
the same whole 2:2. (Part-to-Part ratio) 

Figure 1 
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Fractions and percentages can be considered as Part-to-Whole ratios and 
consequently are subsets of the concept of ratios. Ratios that involve comparisons of 
unalike quantities with different measures are called Rates. Such rates that are 
considered to be fundamental principles of physics and chemistry are speed (u=d/t), 
which is defined as the ratio of the distance that an object covers in a period of time 
to this period, density (d=m/v) as well as the price of a product (€/product). 

 STUDENTS' STRATEGIES 
According to the NCTM Curriculum and Evaluation Standards (1989), ‘the ability to 
reason proportionally develops in students throughout grades 5–8. It is of such great 
importance that it merits however much time and effort that must be expended to 
assure its careful development’ (p. 82). (Ben-Chaim, Fey, Fitzgerald, Benedetto & 
Miller, 1998). It must also be pointed out that previous research has shown that 
young students (6-8 year-olds) seem to deal with similarity as an operative 
equivalence, which is evident in their understanding of, and reasoning about, ratios 
(Van denBrink and Streefland, 1979). It must be outlined that Steinthorsdottir (2006) 
reviewing the literature on proportional reasoning indicates that the development of 
student’s strategies follows a four level path. That path was first evinced by Piaget 
and Inhelder (1958). Initially, students’ responses on ratio problems are incomplete. 
That means that students are not able to relate the data of the task and support what 
they believe. Afterwards students use qualitative approaches to ratio and proportion 
tasks in terms of focusing on the qualitive relations of the ratios. They then proceed 
to additive ones which are the first attempt at quantifying the relationships but ratio 
and proportion are proved to be based on multiplicative reasoning. Finally, students 
arrive at proportional reasoning and multiplicative strategies. After additive 
compensations and before proportional reasoning there is what Piaget calls 
preportionality (Piaget et al., 1968). Strategies on proportion problems can be 
categorized according to a strategy scale developed by Karplus et al., (1983). This 
scale has four levels: incomplete, qualitative, additive, and proportional. 
Using “the lemonade problem” we will try to exemplify the four levels of students’ 
strategies in proportion problems. The task is as follows: “If you want to make some 
tasty lemonade you must mix one lemon and two spoonfuls of sugar in a glass of 
water. How many ingredients are needed in order to make a jug of lemonade? The 
jug is equal to five glasses of water”. Below we illustrate representative students’ 
responses in each category:  

1. Incomplete Strategy 
- 5 lemons and 5 spoonfuls of sugar, because there are 5 glasses of lemonade. 
- I can not know how many lemons or spoonfuls of sugar are needed. 

2. Qualitative Strategy 
- 8 lemons and 8 spoonfuls of sugar, because there is much more lemonade, so there 

should be much more lemons as well as sugar. 
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3. Additive Strategy 
- - 6 lemons and 7 spoonfuls of sugar, because there should be 5 more lemons and 

spoonfuls of sugar than water. 

4. Proportional Strategies 
- - 5 lemons and 10 spoonfuls of sugar, because there should be twice as much 

sugar as lemons. 
- -  5 lemons and 10 spoonfuls of sugar, because there should be five times as many 

lemons as sugar. 

In this study we investigate students’ strategies to a number of ratio – proportion 
problems and try to classify their responses using the above categorization. 

RATIOS TASKS 
The four problems, below, were categorized into the three groups according to what 
the ratio represented.

1. Frogs are champion jumpers. A 7,62 cm frog can hop 152,40 cm. That means the 
frog is jumping 20 times its body’s length. Let’s measure your height. If you, like 
a frog, could hop 20 times your body length (your height), how far could you go?

2. Your father had bought you a chocolate. While he was 
coming home he met a child who lived in the same 
neighborhood, cut the chocolate and gave him two of the five 
pieces. The piece left is drawn below (Figure 2). How much 
chocolate is left for you? Could you draw the whole 
chocolate?

3. The children of a classroom are separated into two groups A 
and B. The first group has 15 children and group B has five 
children. Then we give 8 rolls and ask them to share them in 
order that no group complains. 

4. If you want to make some tasty lemonade you must mix one lemon and two 
spoonfuls of sugar in a glass of water. How many ingredients are needed in order 
to make a jug of lemonade? The jug we have is equal to five glasses of water. 

In the “chocolate” problem the ratio used in the task represents a part of the chocolate 
to the whole chocolate. In the “rolls” problem the ratio used expresses a comparison 
between parts of different quantities. In the “lemonade” problem the ratio compares 
dissimilar quantities (rate). Finally, the problem “if you hopped like a frog” 
introduces proportional reasoning to the children through a correlation of fun and 
science, imagination and reality. 
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Fractions and percentages can be considered as Part-to-Whole ratios and 
consequently are subsets of the concept of ratios. Ratios that involve comparisons of 
unalike quantities with different measures are called Rates. Such rates that are 
considered to be fundamental principles of physics and chemistry are speed (u=d/t), 
which is defined as the ratio of the distance that an object covers in a period of time 
to this period, density (d=m/v) as well as the price of a product (€/product). 

 STUDENTS' STRATEGIES 
According to the NCTM Curriculum and Evaluation Standards (1989), ‘the ability to 
reason proportionally develops in students throughout grades 5–8. It is of such great 
importance that it merits however much time and effort that must be expended to 
assure its careful development’ (p. 82). (Ben-Chaim, Fey, Fitzgerald, Benedetto & 
Miller, 1998). It must also be pointed out that previous research has shown that 
young students (6-8 year-olds) seem to deal with similarity as an operative 
equivalence, which is evident in their understanding of, and reasoning about, ratios 
(Van denBrink and Streefland, 1979). It must be outlined that Steinthorsdottir (2006) 
reviewing the literature on proportional reasoning indicates that the development of 
student’s strategies follows a four level path. That path was first evinced by Piaget 
and Inhelder (1958). Initially, students’ responses on ratio problems are incomplete. 
That means that students are not able to relate the data of the task and support what 
they believe. Afterwards students use qualitative approaches to ratio and proportion 
tasks in terms of focusing on the qualitive relations of the ratios. They then proceed 
to additive ones which are the first attempt at quantifying the relationships but ratio 
and proportion are proved to be based on multiplicative reasoning. Finally, students 
arrive at proportional reasoning and multiplicative strategies. After additive 
compensations and before proportional reasoning there is what Piaget calls 
preportionality (Piaget et al., 1968). Strategies on proportion problems can be 
categorized according to a strategy scale developed by Karplus et al., (1983). This 
scale has four levels: incomplete, qualitative, additive, and proportional. 
Using “the lemonade problem” we will try to exemplify the four levels of students’ 
strategies in proportion problems. The task is as follows: “If you want to make some 
tasty lemonade you must mix one lemon and two spoonfuls of sugar in a glass of 
water. How many ingredients are needed in order to make a jug of lemonade? The 
jug is equal to five glasses of water”. Below we illustrate representative students’ 
responses in each category:  

1. Incomplete Strategy 
- 5 lemons and 5 spoonfuls of sugar, because there are 5 glasses of lemonade. 
- I can not know how many lemons or spoonfuls of sugar are needed. 

2. Qualitative Strategy 
- 8 lemons and 8 spoonfuls of sugar, because there is much more lemonade, so there 

should be much more lemons as well as sugar. 
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3. Additive Strategy 
- - 6 lemons and 7 spoonfuls of sugar, because there should be 5 more lemons and 

spoonfuls of sugar than water. 

4. Proportional Strategies 
- - 5 lemons and 10 spoonfuls of sugar, because there should be twice as much 

sugar as lemons. 
- -  5 lemons and 10 spoonfuls of sugar, because there should be five times as many 

lemons as sugar. 

In this study we investigate students’ strategies to a number of ratio – proportion 
problems and try to classify their responses using the above categorization. 

RATIOS TASKS 
The four problems, below, were categorized into the three groups according to what 
the ratio represented.

1. Frogs are champion jumpers. A 7,62 cm frog can hop 152,40 cm. That means the 
frog is jumping 20 times its body’s length. Let’s measure your height. If you, like 
a frog, could hop 20 times your body length (your height), how far could you go?

2. Your father had bought you a chocolate. While he was 
coming home he met a child who lived in the same 
neighborhood, cut the chocolate and gave him two of the five 
pieces. The piece left is drawn below (Figure 2). How much 
chocolate is left for you? Could you draw the whole 
chocolate?

3. The children of a classroom are separated into two groups A 
and B. The first group has 15 children and group B has five 
children. Then we give 8 rolls and ask them to share them in 
order that no group complains. 

4. If you want to make some tasty lemonade you must mix one lemon and two 
spoonfuls of sugar in a glass of water. How many ingredients are needed in order 
to make a jug of lemonade? The jug we have is equal to five glasses of water. 

In the “chocolate” problem the ratio used in the task represents a part of the chocolate 
to the whole chocolate. In the “rolls” problem the ratio used expresses a comparison 
between parts of different quantities. In the “lemonade” problem the ratio compares 
dissimilar quantities (rate). Finally, the problem “if you hopped like a frog” 
introduces proportional reasoning to the children through a correlation of fun and 
science, imagination and reality. 
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METHODOLOGY 
The research methodology is clinical interview. The clinical research methods are 
based on the principles of constructivism and are aimed at the investigation of 
children’s conceptions. The researcher acts as a teacher interacting with the children 
aiming to investigate their thinking. The researcher, by reflecting on these 
interactions, tries to interpret children’s actions and finally forms models-
assumptions concerning their conceptions. These assumptions are evaluated and 
consequently either verified or revised. (Bell, 1993; Hunting, 1997).
Participants: Sixteen children of the 6th grade participated in this experiment. The 
sixth grade class was chosen because in this particular grade ratio and proportion first 
appear in the Greek school curriculum. This class was a mixed ability class, with a 
disproportionate number of females and males (5 females, 11 males). Students were 
divided into 7 groups (five pairs and two groups of three students). Each group of 
students was interviewed for about an hour on the tasks concerning ratios. The 
students were asked to solve the four ratio - proportional problems. The researchers 
provided them with equipment such as ruler, scissors, paper - pencil for optional use. 
The interviews were audio taped. 
Analysis of the data: The data consists of the 7 transcribed audio recordings and 
researcher’s field notes. Initially, we attempt to analyse the transcribed teaching 
experiments by coding the strategies that were developed by each child. Then, by 
scrutinizing the data line by line we identified children’s conceptions and we formed 
categories that describe children’s thinking about ratios.  

ANALYSIS 
We organized the results separately according to what strategy each child used. In 
table 1 the categorization of the strategies that developed each student in each task 
are presented. It must be clarified that “I” means that children used incomplete 
strategy in order to solve the task, “Q” qualitative strategy, “A” additive and “P” 
means proportional. However there were students whose responses could not be 
categorized at any level of the scale. These students seem to approach the task 
proportionally but they could not support their thoughts. Their strategies fall between 
the proportional and the qualitative level. For these strategies we introduce a new 
category, the P-Q one.
First of all it is of great importance that students do not confront each task in the 
same way, as is easily observed in Table 1. The strategy that each student uses in 
order to solve the first task may not be the same as for the second, the third or the 
fourth. For instance, student S1 seems to think proportionally in the first and the 
fourth task but his strategy on the second and the third task is characterized as 
incomplete. There is no one student who followed the same route in dealing with the 
four tasks. Obviously there may be some factors that have a great influence on 
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children’s choice of solution strategy which vary from task to task while many of 
them seem to be able to reasoning proportionally. 

Incomplete strategies 
There were eight responses that are characterized as incomplete. These students did 
not manage to support their thought appropriately and they were not able to reach a 
certain level of reasoning. For example, student S1 in his trial to find a solution to the 
rolls task could not understand how to share the rolls and his response was: 

S1: We do not know if the rolls are from Thessalonica where rolls are too big. 
S3: Of course. … 
S1: We should take more rolls in order for all the children to eat. 

Qualitative strategies 
Qualitative approach is one of the interesting strategies that students use because it 
allows children to reason about relations between combinations, increases and 
decreases and comparisons but without quantification. (Singer, Kohn & Resnick, 
1997) Such a strategy was used by student S12 on the “if you hopped like a frog” task. 
His strategy was based on empirical, intuitive data. Interacting with his classmate S13
they assumed that jumping like a frog results in a 33 meters jump through the 
multiplication of their height by 20 times. 

S12:  I think that 33 meters that we found from the multiplication is too high.
S12:  I think that 15 meters is more logical.  
Researcher:   Do not forget that you could jump like a frog. 
S12:  33 meters is too much. 
Researcher:  So what do you think? 

Tasks/
Students S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

If you 
hopped
like frog 

P P P P Q P P P P P P Q P P I I 

The
chocolate I I A A A A A Q Q Q Q Q P-Q Q Q Q 

The rolls I Q P-Q A P-Q P-Q P-Q P-Q Q Q A Q P-Q A Q A 

The
Lemonade P Q Q P P P P P P P P I P P I I 

Table 1: Students’ strategies in ratios problems 
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children’s choice of solution strategy which vary from task to task while many of 
them seem to be able to reasoning proportionally. 

Incomplete strategies 
There were eight responses that are characterized as incomplete. These students did 
not manage to support their thought appropriately and they were not able to reach a 
certain level of reasoning. For example, student S1 in his trial to find a solution to the 
rolls task could not understand how to share the rolls and his response was: 

S1: We do not know if the rolls are from Thessalonica where rolls are too big. 
S3: Of course. … 
S1: We should take more rolls in order for all the children to eat. 

Qualitative strategies 
Qualitative approach is one of the interesting strategies that students use because it 
allows children to reason about relations between combinations, increases and 
decreases and comparisons but without quantification. (Singer, Kohn & Resnick, 
1997) Such a strategy was used by student S12 on the “if you hopped like a frog” task. 
His strategy was based on empirical, intuitive data. Interacting with his classmate S13
they assumed that jumping like a frog results in a 33 meters jump through the 
multiplication of their height by 20 times. 

S12:  I think that 33 meters that we found from the multiplication is too high.
S12:  I think that 15 meters is more logical.  
Researcher:   Do not forget that you could jump like a frog. 
S12:  33 meters is too much. 
Researcher:  So what do you think? 

Tasks/
Students S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

If you 
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S12:  15 meters. 

Additive strategies 
Nine of the sixty four responses belong to the additive category. Ratios and 
proportions require appreciation of multiplicative relations between numbers. On the 
contrary, some students applied their well-practiced knowledge of the additive 
properties of whole numbers to ratio tasks. An instant example of this situation is the 
dialogue between S10 and S11.

S10: We should give five rolls to the fifteen students and three rolls to the five 
students because the first group is larger than the second and the rolls are 
not enough for all. 

S11: In this way the five children would take too many rolls. 
Researcher: Why do they seem too many to you? 
S11: If we give the 5 children three rolls there will be two less rolls than 

children. If we give the ten children five rolls there will be five less rolls 
than children. This is not fair, they will complain. 

Proportional strategies 
The majority of the students used proportional strategies in order to confront the tasks 
as is clarified by Table 1. Twenty three (23) of their responses were based on 
proportional thought. Specifically for the first task “if you hopped like a frog” student 
S4 was sure about his view and supported it whereas his classmate insisted on 
disagreeing with him. 

S4 : Frogs can jump 20 times the length of their body. So if we were frogs we 
could jump 20 times our height. We must multiply our height by 20. 

Another representative type of proportional strategy used by students was S10 answer. 
The researcher interrupted the students’ conversation in order to understand why they 
multiplied. 

Researcher: Why did you multiply? 
S10:  Because the problem mentions that a frog can jump 20 times the length of 

its body. If we jump like a frog we can jump 20 times our height. 

“The Lemonade” task was faced proportionally by most of the students. Student S14 
response comprises a definite sample of proportional thought. 

S14: If one glass of water needs one lemon, five glasses will need five lemons 
and ten spoonfuls of sugar. 

Researcher: How did you find that? 
S14: I multiply 5 times one lemon and 5 times the two spoonfuls. 

Proportional – qualitative strategies 
However there were seven (7) responses which could not be coded in any of the 
levels of the scale. These answers were between qualitative and proportional strategy. 
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As is already mentioned after additive compensations and before proportional 
reasoning there is what Piaget calls preportionality (Piaget et al., 1968). We cannot 
range the answers to preportionality but, to an intermediary stage. Students who are 
thinking in such a way can understand the multiplicative relationships between the 
variables as well as the qualitative relations between the amounts. It must be 
emphasized that they can make numerical judgements about combinations, changes 
and comparisons but they cannot reach the exact proportional reasoning. 
Consequently, they seem not to be sure about their strategy and they doubt about 
outcomes. For the “rolls” task S6 and S7 were two such students who were trying to 
make multiplicative judgements but the outcome and their intuitions did not allow 
them to reason proportionally.  

S7:  We should divide 20 children by 8 rolls
Researcher:  Why do you believe you should perform this division? 
S7:  In order to find how many rolls each child will take. 

They performed the division and found 2,5. 
S8:  They would take 2 rolls and a half of a roll. 
S7:  No, no we do not have enough rolls. We should divide 15 by 8 and 5 by 8. 
Researcher:  Why? 
S8: To find how many rolls the fifteen children will take and how many the 

five but if we add them we will find 2,5? 
S7:  We’ll see. 

As we can see S7 divided in order to find out how many rolls each child would take. 
However he observes that if each child takes two rolls and a half, the rolls will not be 
enough for all. Consequently, he suggests dividing fifteen by eight and five by 8 in 
order to find how many rolls the fifteen and the five children would take 
correspondingly. It seems that S7 wants to follow a proportional strategy but, thinking 
qualitatively, doubts the outcome and his intuition does not allow him to develop 
such a strategy. 

CONCLUSIONS
This article focused on the strategies used by the students in order to deal with 
problems with ratio and proportion. Through our research and decoding of the 
children’s interviews the internal thinking concerning their reasoning was revealed. 
However, the already developed scale that literature has imposed seemed to be 
inefficient. Some children’s thoughts could not be categorized according to the levels 
of this scale. Piaget had already mentioned a stage between additive and proportional 
reasoning which he called preportionality, showing in this way that children’s 
reasoning development does not follow a predetermined path. More specifically, 
through our experiments, the specially formed problems gave the children the 
opportunity to use strategies similar to those they would use in real life. As a 
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S11: If we give the 5 children three rolls there will be two less rolls than 

children. If we give the ten children five rolls there will be five less rolls 
than children. This is not fair, they will complain. 
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The majority of the students used proportional strategies in order to confront the tasks 
as is clarified by Table 1. Twenty three (23) of their responses were based on 
proportional thought. Specifically for the first task “if you hopped like a frog” student 
S4 was sure about his view and supported it whereas his classmate insisted on 
disagreeing with him. 

S4 : Frogs can jump 20 times the length of their body. So if we were frogs we 
could jump 20 times our height. We must multiply our height by 20. 

Another representative type of proportional strategy used by students was S10 answer. 
The researcher interrupted the students’ conversation in order to understand why they 
multiplied. 

Researcher: Why did you multiply? 
S10:  Because the problem mentions that a frog can jump 20 times the length of 

its body. If we jump like a frog we can jump 20 times our height. 

“The Lemonade” task was faced proportionally by most of the students. Student S14 
response comprises a definite sample of proportional thought. 

S14: If one glass of water needs one lemon, five glasses will need five lemons 
and ten spoonfuls of sugar. 

Researcher: How did you find that? 
S14: I multiply 5 times one lemon and 5 times the two spoonfuls. 

Proportional – qualitative strategies 
However there were seven (7) responses which could not be coded in any of the 
levels of the scale. These answers were between qualitative and proportional strategy. 
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thinking in such a way can understand the multiplicative relationships between the 
variables as well as the qualitative relations between the amounts. It must be 
emphasized that they can make numerical judgements about combinations, changes 
and comparisons but they cannot reach the exact proportional reasoning. 
Consequently, they seem not to be sure about their strategy and they doubt about 
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As we can see S7 divided in order to find out how many rolls each child would take. 
However he observes that if each child takes two rolls and a half, the rolls will not be 
enough for all. Consequently, he suggests dividing fifteen by eight and five by 8 in 
order to find how many rolls the fifteen and the five children would take 
correspondingly. It seems that S7 wants to follow a proportional strategy but, thinking 
qualitatively, doubts the outcome and his intuition does not allow him to develop 
such a strategy. 

CONCLUSIONS
This article focused on the strategies used by the students in order to deal with 
problems with ratio and proportion. Through our research and decoding of the 
children’s interviews the internal thinking concerning their reasoning was revealed. 
However, the already developed scale that literature has imposed seemed to be 
inefficient. Some children’s thoughts could not be categorized according to the levels 
of this scale. Piaget had already mentioned a stage between additive and proportional 
reasoning which he called preportionality, showing in this way that children’s 
reasoning development does not follow a predetermined path. More specifically, 
through our experiments, the specially formed problems gave the children the 
opportunity to use strategies similar to those they would use in real life. As a 
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consequence, the children expressed their opinions using their intuition and 
experience. This study suggests that some of the student’s strategies which can not be 
categorized into the fourth level scale comprise another separate stage, the P-Q. In 
addition it seems that children, although able to reason proportionally follow different 
strategies in order to solve each task, probably affected by some factors such as the 
elements of the task. On-going research in this domain should reveal the factors that 
influence student’s strategies in ratio tasks as well as the stages that a student follows 
in order to confront such problems.  
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This paper presents some results of a larger study that investigates endogenous 
(students’ motivational constructs) and exogenous factors (teachers’ practices) that 
influence students’ mathematical performance. The participants of the study were 
321 sixth grade students and their 15 teachers. Students’ data were collected through 
a questionnaire comprised of six Likert-type scales measuring motivational 
constructs and a test measuring students’ performance in fractions, while teachers’ 
practices were collected via an observational protocol. Findings revealed the 
importance of multi-level modelling in the analysis of the endogenous and exogenous 
factors that promote students’ performance in mathematics. 

THEORETICAL BACKGROUND AND AIMS 
Motivation is treated in Mathematics education as a desirable outcome and a means 
to enhance understanding (Stipek et al., 1998). Motivation researchers propose a 
model of achievement goal theory in which students’ achievement goals are 
embedded in multiple sociocultural contexts and are a product of prior and current 
experiences in those contexts (Friedel et al., 2007). Moreover they provide substantial 
evidences of instructional practices that foster students’ motivation (Anderman et al., 
2002). These instructional practices are alike the ones developed by mathematics 
educators to achieve both learning and motivational outcomes (Stipek et al., 1998).  
Building on the results of previous research (Pantziara & Philippou, 2007) the present 
study investigates endogenous (students’ motivation) and exogenous factors 
(deviations in instructional practices) that may influence students’ mathematics 
performance.  
Students’ learning and motivation 
In the realm of Mathematics education, the socio-constructivist perspective on 
learning is characterized both by its focus on the situatedness of learning and by the 
recognition of the close interactions between (meta)cognitive, motivational and 
affective factors in students’ learning. Clearly is perceived that students’ motivation 
as well as other motivational constructs are an integral part of students’ learning 
(Op’t Eynde et al., 2006). 
Hannula (2006) states that motivation cannot directly be observed but it can be 
noticeable only by its interaction with affect, cognition and behaviour. We define 
motivation as the inclination to do certain things and avoid doing some others 
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(Hannula, 2006). Achievement motivation literature focuses on the prediction and 
explanation of competence-relevant behaviour. One of the various approaches to 
achievement motivation is Achievement goal theory. This theory was developed 
within a social-cognitive framework and it has studied in depth many variables which 
are considered as antecedents of students’ motivation constructs. Some of these 
variables are students’ competence based variables, such as need of achievement or 
fear of failure, self-based variables, such as self efficacy beliefs, demographic 
variables, e.g. gender and also the environment (Elliot et al., 2005). 
Achievement goals are conceptualized as the competence-relevant aims that 
individuals strive for in achievement settings, and these different aims are posited to 
lead to differential performance outcomes. Two distinct goals have been emphasized 
in the literature, namely mastery goals that focus on learning and understanding, and 
performance goals that focus on the demonstration of competence.  Recently, there 
has been a theoretical and empirical differentiation between performance-approach 
goals, where students focus on how to outperform others, and performance-avoidance 
goals, where students aim to avoid looking inferior or incompetent in relation to 
others (Elliot et al., 2005). These goals have been related consistently to different 
patterns of achievement-related affect, cognition and behaviour (Anderman et al., 
2002; Elliot & Church, 1997). 
Mastery goals are characterized as a challenge-based form of regulation that evokes a 
host of positive processes (effort expenditure, persistence, task absorption) and 
facilitate many positive outcomes like achievement and interest (Elliot & Church, 
1997). Performance-approach goals are viewed as evoking many of the same positive 
processes evoked by mastery goals (e.g., effort expenditure, persistence), as both 
goals represent approach forms of regulation developed by challenge appraisals. 
However, the focus on the demonstration of competence in these goals is not 
correlated with some processes and outcomes (e.g., deep processing, intrinsic 
interest), but it is presumed to enable these goals to facilitate performance in a 
broader range of situations (Elliot et al, 2005). Performance-avoidance goals entail 
regulating according to a negative normative possibility that is posited to evoke a 
host of negative processes (distraction, anxiety, and avoidance of help-seeking) that 
undermine performance in most achievement settings (Elliot & Church, 1997; Elliot 
et al., 2005). 
Instructional practices and students’ learning
Goal theorists posit that children are sensitive to the emphasis teachers place on 
different types of achievement goals, as expressed through instructional practices and 
the ways in which teachers respond to children’s accomplishments or shortcomings 
(Friedel et al., 2007). These instructional practices are presumed to influence 
students’ achievement through the adoption of certain achievement goals by students. 
Thus, earlier studies on achievement goals specify various classroom instructional 
practices as contributing to the development of different types of goals and 
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consequently, eliciting different patterns of motivation and achievement outcomes 
(e.g. Anderman et al., 2002). Goal orientation theorists lying on a large literature on 
classroom motivational environments focus on six categories that contribute to the 
classroom motivational environment. The categories, represented by the acronym 
TARGET refer to task, authority, recognition, grouping, evaluation and time. Task 
refers to specific activities, such as problem solving or routine algorithm, open or 
closed questions in which students are engaged in; Authority refers to students’ level 
of autonomy in the classroom; Recognition refers to whether the teacher values the 
progress or the final outcome of students’ performance and how the teacher treats  
students’ mistakes (as a part of the learning process or as cause for punishment); 
Grouping refers to whether students work with different or similar ability peers; 
Evaluation refers to how the teacher treats assessment, giving publicly grades and test 
scores, or focusing on feedback as a means for improvement and mastery; Time 
refers to whether the schedule of the activities is rigid or flexible. 
This framework has been adapted and developed by goal theory researchers working 
within classroom context (Anderman et al., 2002). Using classroom observations and 
qualitative analysis, they found that instructional practises in classrooms in where 
students adopted mastery goals differed from instructional practises in classroom 
characterized by students’ low mastery goals or high performance goals listing 
specific instructional practices that developed either mastery or performance goals. 
In mathematics education domain, Stipek et al. (1998) in a relevant study referring to 
instructional practices and their effect on students’ learning and motivation found that 
affective climate was a powerful predictor of students’ motivation and mastery 
orientation. Students in classrooms in which teachers emphasized effort, pressed 
students for understanding, treating students’ misconception and in which autonomy 
was encouraged, reported more positive emotions while doing fractions work and 
enjoying mathematics relatively more than other students. 
While much progress has been made toward understanding how the elements of the 
classroom context relate to children’s goal orientations and although there are 
numerous studies investigating the relationships between achievement goals and 
specific motivational constructs or achievement (Elliot et al., 2005), relatively few 
studies have investigated students’ achievement goals in the realm of mathematics 
education. Most importantly, to the best of our knowledge none of these studies used 
multilevel analysis to identify endogenous (students’ motivational constructs) and 
exogenous factors (instructional practices) that may influence students’ performance 
in mathematics. In this respect the aims of this study were:  

1. To test the validity of the measures for the six motivational factors: fear of 
failure, self-efficacy, interest, mastery goals, performance-approach goals and 
performance-avoidance goals, in a specific social context. 
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Mastery goals are characterized as a challenge-based form of regulation that evokes a 
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regulating according to a negative normative possibility that is posited to evoke a 
host of negative processes (distraction, anxiety, and avoidance of help-seeking) that 
undermine performance in most achievement settings (Elliot & Church, 1997; Elliot 
et al., 2005). 
Instructional practices and students’ learning
Goal theorists posit that children are sensitive to the emphasis teachers place on 
different types of achievement goals, as expressed through instructional practices and 
the ways in which teachers respond to children’s accomplishments or shortcomings 
(Friedel et al., 2007). These instructional practices are presumed to influence 
students’ achievement through the adoption of certain achievement goals by students. 
Thus, earlier studies on achievement goals specify various classroom instructional 
practices as contributing to the development of different types of goals and 
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consequently, eliciting different patterns of motivation and achievement outcomes 
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classroom motivational environments focus on six categories that contribute to the 
classroom motivational environment. The categories, represented by the acronym 
TARGET refer to task, authority, recognition, grouping, evaluation and time. Task 
refers to specific activities, such as problem solving or routine algorithm, open or 
closed questions in which students are engaged in; Authority refers to students’ level 
of autonomy in the classroom; Recognition refers to whether the teacher values the 
progress or the final outcome of students’ performance and how the teacher treats  
students’ mistakes (as a part of the learning process or as cause for punishment); 
Grouping refers to whether students work with different or similar ability peers; 
Evaluation refers to how the teacher treats assessment, giving publicly grades and test 
scores, or focusing on feedback as a means for improvement and mastery; Time 
refers to whether the schedule of the activities is rigid or flexible. 
This framework has been adapted and developed by goal theory researchers working 
within classroom context (Anderman et al., 2002). Using classroom observations and 
qualitative analysis, they found that instructional practises in classrooms in where 
students adopted mastery goals differed from instructional practises in classroom 
characterized by students’ low mastery goals or high performance goals listing 
specific instructional practices that developed either mastery or performance goals. 
In mathematics education domain, Stipek et al. (1998) in a relevant study referring to 
instructional practices and their effect on students’ learning and motivation found that 
affective climate was a powerful predictor of students’ motivation and mastery 
orientation. Students in classrooms in which teachers emphasized effort, pressed 
students for understanding, treating students’ misconception and in which autonomy 
was encouraged, reported more positive emotions while doing fractions work and 
enjoying mathematics relatively more than other students. 
While much progress has been made toward understanding how the elements of the 
classroom context relate to children’s goal orientations and although there are 
numerous studies investigating the relationships between achievement goals and 
specific motivational constructs or achievement (Elliot et al., 2005), relatively few 
studies have investigated students’ achievement goals in the realm of mathematics 
education. Most importantly, to the best of our knowledge none of these studies used 
multilevel analysis to identify endogenous (students’ motivational constructs) and 
exogenous factors (instructional practices) that may influence students’ performance 
in mathematics. In this respect the aims of this study were:  

1. To test the validity of the measures for the six motivational factors: fear of 
failure, self-efficacy, interest, mastery goals, performance-approach goals and 
performance-avoidance goals, in a specific social context. 
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2. To construct and test the validity of an observational protocol that includes 
convergent variables referring to instructional practices in the classroom from 
the mathematics education domain and the achievement motivation one. 

3. To identify students’ motivational constructs and instructional practices 
suggested by achievement motivation theory and mathematics education theory 
that affect students’ performance in the mathematics classroom. 

METHOD
Participants were 321 sixth grade students, 136 males and 185 females from 15 intact 
classes and their 15 mathematics teachers. All students-participants completed a 
questionnaire concerning their motivation in mathematics and a test for achievement 
in the mid of the second semester of the school year.
The motivation questionnaire comprised of six sub-scales measuring: a) mastery 
goals (five items), b) performance goals (five items), c) performance avoidance goals 
(four items), d) self-efficacy (five items), e) fear of failure (nine items), and f) interest 
(seven items). The whole questionnaire comprised 35 Likert-type, 5-point items (1- 
strongly disagree, and 5 strongly agree). The first four subscales were adopted from 
the Patterns of Adaptive Learning Scales (PALS) (Midgley et al., 2000); respective 
sample items in each of these four subscales were, “one of my goals in mathematics 
is to learn as much as I can” (Mastery goal), “One of my goals is to look smart in 
comparison to the other students in my class.” (Performance goal), “One of my goals 
is to keep others from thinking I’m not smart in class.” (Performance-avoidance 
goal), and “I’m certain I can master the skills taught in mathematics this year” 
(efficacy beliefs). Students’ fear of failure was assessed using nine items adopted 
from the Herman’s fear of failure scale (Elliot & Church, 1997); a specimen item was 
“I often avoid a task because I am afraid that I will make mistakes”. Finally, we used 
Elliot and Church (1997) seven-item scale to measure students’ interest in 
achievement tasks; a specimen item was, “I found mathematics interesting”. These 35 
items were randomly spread throughout the questionnaire, to avoid the formation of 
possible reaction patterns.  
Regarding students’ performance in mathematics we developed a test measuring 
students’ understanding of fractions. The tasks comprising the test were adopted from 
published research and specifically concerned students’ understanding of fraction as 
part of a whole, as measurement, equivalent fractions, fraction comparison and 
addition of fractions with common and non common denominators (e.g. Stipek et al, 
1998).
To examine teachers’ instructional practices we used a specially developed protocol 
to code teachers’ mathematics instruction in the 15 classes during two 40-minutes 
periods each. The protocol was based on the convergence between instructional 
practices described by Achievement goal theory and the Mathematics education 
reform literature. Specifically, we developed a list of codes around six structures, 
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based on previous literature (Anderman et al., 2002; Stipek et al., 1998), which were 
found to influence students’ motivation and achievement. These structures were: task,
visual aids, practices towards the task, affective sensitivity, messages to students, and 
recognition. The structure task included algorithms, problem solving, teaching self-
regulation strategies, open-ended questions, closed questions, constructing the new 
concept on an acquired one, generalizing and conjecturing. We checked whether 
teachers made use of visual aids during their lesson. Practices towards the task
included the teacher giving direct instructions to students, asking for justification, 
asking for multiple ways for the solution of problems, pressing for understanding by 
asking questions, dealing with students’ misconceptions, or seeking only for the 
correct response, helping students and rewording the question posed. Affective 
sensitivity included behaviour such as teachers’ anger, using sarcasm, being sensible 
to students, having high expectations for the students, teachers’ interest towards 
mathematics or fear for mathematics. Messages to students included learning through 
active engagement, reference to the interest and value of mathematics tasks, students’ 
mistakes being part of the learning process or being forbidden, and learning being 
receiving information and following directions. Finally, recognition referred to praise 
for students’ achievement, effort, behaviour and the use of external rewards by the 
teachers. During the two classroom observations lasted for 40 minutes for each 
teacher, we searched for incidences of occurrence of each code in each structure.   
FINDINGS 
Regarding the first aim of the study, we conducted confirmatory factor analysis using 
EQS (Hu & Bentler, 1999) in order to examine whether the factor structure yields the 
six motivational constructs expected by the theory. For a detailed description of the 
process followed for the identification of the six factors see Pantziara and Philippou 
(2007). From the analysis the factor performance-avoidance goals failed to be 
confirmed. In line with motivation theory, a five-factor model was tested (see fig. 1). 
Items from each scale are hypothesized to load only on their respective latent 
variables. The fit of this model was found to be quite satisfactory (the indices found 
x2 =691.104, df= 208, p<0.000; CFI=0.770 and RMSEA=0.086). After the addition 
of correlations among the five factors the measuring model has been further 
improved (x2 =343.487, df= 198, p<0.000; CFI=0.931 and RMSEA=0.049).
Concerning the second aim of the study, the analysis of the observations involved 
estimating the mean score of each code for the two 40-minutes observations using the 
SPSS and creating a matrix display of all the frequencies of the coded data from each 
classroom. Each cell of data corresponded to a coding structure. 
From a first glance, the observational protocol succeeded in detecting differences in 
teachers’ practises during the mathematics lessons (Pantziara and Philippou, 2007). 
For instance, regarding the structure task, teachers 4, 9, 13, and 15 used more 
algorithmic tasks than the others, while teachers 2, 4, and 7 used more problem 
solving activities than their other colleagues. From the category practices towards the 
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part of a whole, as measurement, equivalent fractions, fraction comparison and 
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visual aids, practices towards the task, affective sensitivity, messages to students, and 
recognition. The structure task included algorithms, problem solving, teaching self-
regulation strategies, open-ended questions, closed questions, constructing the new 
concept on an acquired one, generalizing and conjecturing. We checked whether 
teachers made use of visual aids during their lesson. Practices towards the task
included the teacher giving direct instructions to students, asking for justification, 
asking for multiple ways for the solution of problems, pressing for understanding by 
asking questions, dealing with students’ misconceptions, or seeking only for the 
correct response, helping students and rewording the question posed. Affective 
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mistakes being part of the learning process or being forbidden, and learning being 
receiving information and following directions. Finally, recognition referred to praise 
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teacher, we searched for incidences of occurrence of each code in each structure.   
FINDINGS 
Regarding the first aim of the study, we conducted confirmatory factor analysis using 
EQS (Hu & Bentler, 1999) in order to examine whether the factor structure yields the 
six motivational constructs expected by the theory. For a detailed description of the 
process followed for the identification of the six factors see Pantziara and Philippou 
(2007). From the analysis the factor performance-avoidance goals failed to be 
confirmed. In line with motivation theory, a five-factor model was tested (see fig. 1). 
Items from each scale are hypothesized to load only on their respective latent 
variables. The fit of this model was found to be quite satisfactory (the indices found 
x2 =691.104, df= 208, p<0.000; CFI=0.770 and RMSEA=0.086). After the addition 
of correlations among the five factors the measuring model has been further 
improved (x2 =343.487, df= 198, p<0.000; CFI=0.931 and RMSEA=0.049).
Concerning the second aim of the study, the analysis of the observations involved 
estimating the mean score of each code for the two 40-minutes observations using the 
SPSS and creating a matrix display of all the frequencies of the coded data from each 
classroom. Each cell of data corresponded to a coding structure. 
From a first glance, the observational protocol succeeded in detecting differences in 
teachers’ practises during the mathematics lessons (Pantziara and Philippou, 2007). 
For instance, regarding the structure task, teachers 4, 9, 13, and 15 used more 
algorithmic tasks than the others, while teachers 2, 4, and 7 used more problem 
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task justification of students’ answers were asked from almost all teachers except 
from teachers 2, 3, 10, and 13. Regarding teachers’ affective sensitivity, teacher 1

expressed anger while teacher 7 
showed great sensitivity to students. 
Concerning the structure messages all 
teachers apart from teachers 1 and 15 
treated students’ erroneous responses 
as part of the learning process, while 
regarding the structure recognition,
teachers 1 and 7 rewarded students for 
their performance. 
With regard to the third aim of the 
study, the identification of students’ 
motivational constructs and 
instructional practices suggested by 
achievement motivation theory and 
mathematics education that affect 
students’ performance in mathematics 
we applied Multilevel analysis using 
the program MLwin (Opdenakker & 
Van Damme, 2006). Multilevel 
analysis is a methodology for the 
analysis of data with complex patterns 
of variability, with a focus on nested 
sources of variability: e.g. students in 
classes, classes in schools, etc. The 
main statistical model of multilevel 

analysis is the hierarchical linear model, an extension of the multiple linear 
regression model to a model that includes nested random effects. Multilevel statistical 
models are always needed if a multi-stage sampling design has been employed (a 
sample of students withing classes in our case) because the clustering of the data 
should be taken into consideration avoiding the drawing of wrong conclusions 
(Opdenakker & Van Damme, 2006). The simplest case of this model is the random 
effects analysis model (null model). This model allows the estimation of variance at 
each distinguished level (e.g. students and teachers). The null model can be expanded 
by the inclusion of explanatory variables at all levels. In our case a two level model 
was employed with students’ performance as the depended variable and students’
motivational constructs and teachers’ practices as the exploratory variables.
The null model’s analysis showed that the amount of variation at the students’ level 
was 92% and at the teachers’ level was 8%. Following the procedure described by 
MLwin analysis (Opdenakker & Van Damme, 2006) we then added in the model 

Fig 1: The factor model of
 students’ motivation with 

factor parameter estimates. 
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students’ demographic variables (father’s and mother’s educational background). 
Mother’s educational background had statistically significant effect on students’ 
performance. This variable explained 10% of the total variance, 8% at students’ level 
and 2% at teachers’ level. Next we added to the model students’ motivational 
constructs (mastery and performance goals, self-efficacy, and fear of failure).  
Mastery goals had statistically significant positive effect on students’ performance 
while fear of failure had statistically significant negative effect. Self-efficacy beliefs 
and performance goals did not have statistically significant effect on students’ 
performance. This model explained the 21% of the total variance, 19% at the 
students’ level and 2% at the teachers’ level. 
Next we added to the model teachers’ practices concerning the structure task. The 
teachers use of open-ended questions had statistically significant effect on students’ 
performance. This model explained 23% of the total variance solely at teachers’ 
level. Then we added teacher’s practices concerning the category practices towards 
the task but none of these practices had significant effect on students’ performance. 
Unexpectedly,   none of the practices of the other categories had significant effect on 
students’ performance. 
Next, we followed Stipek et al. (1998) process grouping positive and negative 
instructional practices in each of the six categories regarding the observational 
protocol. The subcategory positive teachers’ practices from the structure task 
(problem solving, self-regulation strategies, open-ended questions, constructing the 
new concept on an acquired one, generalizing and conjecturing), had statistically 
significant effect on students’ performance. Figure 2 presents the results of the 
multilevel analysis in identifying exploratory variables that affect students’ 
performance in mathematics.  

DISCUSSION 
Building on earlier results (Pantziara & Philippou, 2007), the current study examined 
the effect of endogenous and exogenous factors on students’ mathematics 
performance using the multilevel analysis. In line with the results of other studies 
(e.g. Elliot & Church, 1997) fear of failure was found to have statistically significant 
negative effect on students’ performance. In addition mastery goals were found to 

Fig 2: Results of the Multilevel analysis on students’ performance.
*p<0.05, **p<0.001
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students’ demographic variables (father’s and mother’s educational background). 
Mother’s educational background had statistically significant effect on students’ 
performance. This variable explained 10% of the total variance, 8% at students’ level 
and 2% at teachers’ level. Next we added to the model students’ motivational 
constructs (mastery and performance goals, self-efficacy, and fear of failure).  
Mastery goals had statistically significant positive effect on students’ performance 
while fear of failure had statistically significant negative effect. Self-efficacy beliefs 
and performance goals did not have statistically significant effect on students’ 
performance. This model explained the 21% of the total variance, 19% at the 
students’ level and 2% at the teachers’ level. 
Next we added to the model teachers’ practices concerning the structure task. The 
teachers use of open-ended questions had statistically significant effect on students’ 
performance. This model explained 23% of the total variance solely at teachers’ 
level. Then we added teacher’s practices concerning the category practices towards 
the task but none of these practices had significant effect on students’ performance. 
Unexpectedly,   none of the practices of the other categories had significant effect on 
students’ performance. 
Next, we followed Stipek et al. (1998) process grouping positive and negative 
instructional practices in each of the six categories regarding the observational 
protocol. The subcategory positive teachers’ practices from the structure task 
(problem solving, self-regulation strategies, open-ended questions, constructing the 
new concept on an acquired one, generalizing and conjecturing), had statistically 
significant effect on students’ performance. Figure 2 presents the results of the 
multilevel analysis in identifying exploratory variables that affect students’ 
performance in mathematics.  

DISCUSSION 
Building on earlier results (Pantziara & Philippou, 2007), the current study examined 
the effect of endogenous and exogenous factors on students’ mathematics 
performance using the multilevel analysis. In line with the results of other studies 
(e.g. Elliot & Church, 1997) fear of failure was found to have statistically significant 
negative effect on students’ performance. In addition mastery goals were found to 

Fig 2: Results of the Multilevel analysis on students’ performance.
*p<0.05, **p<0.001
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have statistically significant effect on students’ performance contrary to the results of 
other studies (Elliot et al., 2005) which did not traced any effect.  
Regarding the environmental factors, in support to the socio-constructivist 
perspective (Op’t Eynde et al., 2006), mother’s education influences students’ 
performance. In line with Stipek’s et al. (1998) findings, the use of open-ended 
questions and the grouped instructional practices labelled as positive under the 
category task had significant effect on students’ performance. Worth mentioning, was 
the fact that most effect on student’s performance found to have students’ variables.  
This may be due to the new analytical tools used (multilevel analysis) or to the small 
number of teachers involved in the study. Thus, further research is needed using 
multilevel analysis in domains regarding achievement goals and mathematics 
education for the identification of endogenous and exogenous factors that promote 
students’ motivation and achievement in mathematics. 
References 
Anderman, L., Patrick, H., Hruda L., & Linnenbrink, E. (2002). Observing Classroom Goal 

structures to Clarify and Expand Goal Theory. In C. Midgley (Ed.), Goals, Goal structures, and 
Patterns of Adaptive Learning (pp 243-278). Mahwah: Lawrence Erlbaum Associates. 

Elliot, A., Shell M., Henry, K., & Maier, M. (2005). Achievement, goals, Performance 
contingencies, and performance Attainment: An Experimental Test. Journal of Educational 
Psychology, 97(4), 630-640. 

Elliot, A., & Church, M. (1997). A hierarchical model of approach and avoidance achievement 
motivation. Journal of Personality and Social Psychology, 72, 218-232. 

Friedel, J., Cortina, K., Turner J., & Midgley, C. (2007). Contemporary Educational Psychology 
32, 434-458. 

Hannula, M. S. (2006). Motivation in mathematics: Goals reflected in Emotions. Educational
Studies in Mathematics, 63(2), 165 – 178. 

Hu, L., & Bentler, P.M. (1999). Cutoff criteria in fix indexes in covariance structure analysis: 
Conventional criteria versus new alternatives. Structural Equation Modelling, 6 (1), 1-55. 

Midgley, C. et al. (2000). Manual for the Patterns of Adaptive Learning Scales. Retrieved  
November 2nd 2004, from http://www.umich.edu/~pals/manuals.html 

Opdenakker, M., & Van Damme, J. (2006). Teacher characteristics and teaching styles as 
effectiveness enhancing factors of classroom practice. Teaching and Teacher Education, 22, 1-
21.

Op’t Eynde, P., De Corte, E., & Verschaffel., L. (2006). Accepting emotional Complexity. A socio-
constructivist perspective on the role of emotions in the mathematics classroom. Education
Studies in Mathematics, 63, 193-207. 

Pantziara, M., & Philippou, G. (2007). Students’ Motivation and Achievement and Teachers’ 
Practices in the Classroom.  In J. Woo, H., Lew, K. Park & D. Seo. (Eds.), Proc. 31st Conf. of the 
Int. Group for the Psychology of Mathematics Education (Vol. 4, pp. 57-64). PME: Seoul

Stipek, D., Salmon, J., Givvin, K. et al. (1998). The value (and convergence) of practices suggested 
by motivation research and promoted by mathematics education reformers. Journal of Research 
in Mathematics Education, 29, 465-488.

4 - 304 PME 33 - 20094 - 304 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   304 6/4/09   2:24:10 PM



2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the 
International Group for the Psychology of Mathematics Education, Vol. 1, pp. XXX-YYY. Thessaloniki, Greece: 
PME. 1- 1 

ESTIMATING AREAS AND VERIFYING CALCULATIONS IN 
THE TRADITIONAL AND COMPUTATIONAL ENVIRONMENT 
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We present summarized strategies used by 5th and 6th graders estimating the area of 
irregular shapes and verifying their results, using the paper-and-pencil environment 
or the computational one. We also present our conclusions from the analysis of the 
collected data. 

INTRODUCTION
Mathematics in general and especially geometry teaching and learning seem to be 
supported by the introduction of the so-called Information and Communication 

echnology (ICT). On the one hand, there exists a lot of software that could be used 
for math teaching at all educational levels. On the other hand, there is equally a great 
number of research studies focusing on the usage of ICT in Mathematics Education. 
However, it is not satisfactorily known the way ICT changes the landscape in 
Mathematics Education: change in time-management in the classroom, change in 
didactic contract, in students’ problem solving strategies and possibly in students’ 
conceptions and mistakes. In this paper we present an inclusive view of a project 
concerning primary school students which lasted three years. The aim of the project 
was to explore and enhance students’ comprehension of the concept of area with an 
emphasis on problem solving techniques for the estimation of the area of irregular 
plane figures. We present summarized and systematically strategies used by the 
students either for estimating the area of irregular shapes or for verifying their results 
using the “classical technology” of paper-and-pencil or the computational one (i.e., 
Dynamic Geometry Software or other environments appropriate for Geometry). We 
consider that the verification process is equally important to the process of the 
estimation of the area since verification is an important part of the problem solving 
process itself but unfortunately it is not extensively explored. In the next section we 
briefly present research findings concerning area teaching and usage of technology in 
math education. After that, we describe our study and then follows the section of the 
results. We end with conclusions and some indications for future research.         

BRIEF LITERATURE REVIEW 
The concept of area and its parameters constitute a strong motivation for research in 
the domain of mathematics education. Problem solving involving the area of irregular 
shapes enable students to develop techniques for the estimation of the area using 
specific problem solving strategies (Rickard, 1996). The pupils use the cut-and-paste 
technique in order to compare areas of irregular shapes, which indicates an 
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understanding of the preservation of area through transformation (Baturo & Nasons, 
1996). They also use the square grid as a measurement device. Additionally since, in 
these shapes, the coverage with whole measurement units is not attainable, the 
students have to develop various methods of approximate calculations based on the 
usage of sub-units or partial units (Clements & Stephan, 2004; Reynolds & Wheatley, 
1996). This problem-solving landscape has recently been influenced to a great extent 
by the introduction of new technologies. For example, they affect the way students 
explore properties of mathematical entities (functions, shapes) in addition to the way 
calculations are made. Students can use the computer as a device for exploring 
various solution paths and decision making; they can try out ideas and strategies and 
simultaneously receive feedback on those ideas and strategies (Clements 2000; 
Balachef & Kaput, 1997). However it seems that the technological tools not only 
develop students’ problem solving skills in general, but they also facilitate the 
verification process (Papadopoulos & Dagdilelis, in press).

DESCRIPTION OF THE STUDY 
The study was accomplished by 52 students of the 5th grade (18 in the computer 
environment and 34 in the traditional) and 46 students of the 6th grade (18 and 28 
students respectively) of a primary school in an urban area of Greece. It is part of a 
larger research project that aimed to explore students’ comprehension of the concept 
of area, emphasizing on problem solving techniques for the estimation of the area of 
irregular shapes. Through their regular classes in mathematics the students had 
already been taught the concept of area and the formulas for the calculation of the 
area of known shapes (i.e., triangle, square, rectangle, etc). The project took part in 
parallel with the normal teaching. Emphasis was given to the development and usage 
of various tools enabling them to calculate areas of irregular shapes like the usage of 
grids in a geoboard, the subdivision of an area unit into subunits, the cut and paste 
method. The tasks were non-standard in the sense that they could not be solved by 
merely relying on known formulas or procedures (see some examples in Appendix 
A). Problems like these are not included in the official textbooks. In the computer 
environment three different applications were used in order to undertake the tasks: 
MSPaint (the well known program of painting), GeoComputer (an electronic 
geoboard) and Cabri Geometer (Dynamic Geometry Software). The students worked 
individually on the same problems trying to solve a problem per session without 
interventions from the researchers. In the paper-pencil environment our data were 
constituted of the students’ worksheets. In the computer environment the Camtasia 
Studio software was capturing (in a movie format) anything that was happening on 
the computer screen so as the researcher could have access to the intermediate phases 
of every student’s problem solving process. The next day we called the students for 
audio-taped interview in order to use more direct questioning concerning the 
motivation of their working. The analysis of our data allowed us to study and 
highlight an additional dimension of problem solving. The geometry software (and in 
general the computer environment) besides the development of certain strategies for 

Papadopoulos, Dagdilelis 

PME 33 - 2009 1- 3 

estimating the area of these shapes influenced the development of verification 
processes applied by the students. It is important to remind that verification plays an 
important role in primary school level since the issue of proof is completely absent in 
this level. 

PRESENTATION AND ORDERING OF THE STRATEGIES 
Observing the students’ efforts to solve the problems we recorded a series of different 
problem-solving strategies as they are presented below: 
Absence of any strategy. In this category the students did not apply any strategy. 
They worked using trial and error processes.
Strategy based on misconceptions.  In this case the students were based on 
misconceptions connected to certain plane shapes. These misconceptions determined 
the students’ reaction to a certain problem. 
Strategy based on prototypes. This strategy has its origin to the prototypical 
examples of basic geometrical concepts which become the basis for prototypical 
judgment since the students use these examples as a model in their reasoning. Thus, 
these prototypes determine the first step of the reaction to a given task. 
Visual and e-visual strategies.   The students are based only on what they ‘see’. The 
image, in front of them, is so strong that it can justify their choices. This strategy 
becomes more powerful in the computer environment since the students now can 
manipulate the image enhancing thus the legitimacy of this strategy. (Arcavi, 2003). 
Reaction based strategy. This strategy is exclusively connected with the computer 
environment. The students had the possibility to make direct comparisons and to find 
relations between what they thought or what they expected as a result and what they 
saw on their computer screen. Thus visualizing the results of their activities on the 
screen, they could immediately react when there was a contradiction between them. 
Incorporation of shapes in a recognizable frame through personal intervention. 
The problems included irregular shapes which were constituted by both segment lines 
and curved lines. Due to these curved lines the students could not identify the shapes 
as known ones and consequently they could not apply any known formula for the 
calculation of their area. So, some of them substituted the curved lines with segment 
lines creating thus shapes that were familiar and could be handled by them. 
The strategy of creating a grid.  Some students trying to solve a problem invented 
and created a grid. There was not any prompt in the problem’s context (either explicit 
or implicit) towards the creation of the grid. On the contrary, the problem was 
oriented towards splitting the irregular shape to sub-shapes known to the students. 
However, some students instead of splitting the shape they preferred to draw this 
‘personal’ grid in order to find the area of the shape.
 “Cut-Paste” and “Decomposition to basic units”. In the ‘cut and paste’ strategy 
the students divide a complex shape into pieces and rearrange these pieces so as to 
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understanding of the preservation of area through transformation (Baturo & Nasons, 
1996). They also use the square grid as a measurement device. Additionally since, in 
these shapes, the coverage with whole measurement units is not attainable, the 
students have to develop various methods of approximate calculations based on the 
usage of sub-units or partial units (Clements & Stephan, 2004; Reynolds & Wheatley, 
1996). This problem-solving landscape has recently been influenced to a great extent 
by the introduction of new technologies. For example, they affect the way students 
explore properties of mathematical entities (functions, shapes) in addition to the way 
calculations are made. Students can use the computer as a device for exploring 
various solution paths and decision making; they can try out ideas and strategies and 
simultaneously receive feedback on those ideas and strategies (Clements 2000; 
Balachef & Kaput, 1997). However it seems that the technological tools not only 
develop students’ problem solving skills in general, but they also facilitate the 
verification process (Papadopoulos & Dagdilelis, in press).

DESCRIPTION OF THE STUDY 
The study was accomplished by 52 students of the 5th grade (18 in the computer 
environment and 34 in the traditional) and 46 students of the 6th grade (18 and 28 
students respectively) of a primary school in an urban area of Greece. It is part of a 
larger research project that aimed to explore students’ comprehension of the concept 
of area, emphasizing on problem solving techniques for the estimation of the area of 
irregular shapes. Through their regular classes in mathematics the students had 
already been taught the concept of area and the formulas for the calculation of the 
area of known shapes (i.e., triangle, square, rectangle, etc). The project took part in 
parallel with the normal teaching. Emphasis was given to the development and usage 
of various tools enabling them to calculate areas of irregular shapes like the usage of 
grids in a geoboard, the subdivision of an area unit into subunits, the cut and paste 
method. The tasks were non-standard in the sense that they could not be solved by 
merely relying on known formulas or procedures (see some examples in Appendix 
A). Problems like these are not included in the official textbooks. In the computer 
environment three different applications were used in order to undertake the tasks: 
MSPaint (the well known program of painting), GeoComputer (an electronic 
geoboard) and Cabri Geometer (Dynamic Geometry Software). The students worked 
individually on the same problems trying to solve a problem per session without 
interventions from the researchers. In the paper-pencil environment our data were 
constituted of the students’ worksheets. In the computer environment the Camtasia 
Studio software was capturing (in a movie format) anything that was happening on 
the computer screen so as the researcher could have access to the intermediate phases 
of every student’s problem solving process. The next day we called the students for 
audio-taped interview in order to use more direct questioning concerning the 
motivation of their working. The analysis of our data allowed us to study and 
highlight an additional dimension of problem solving. The geometry software (and in 
general the computer environment) besides the development of certain strategies for 
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estimating the area of these shapes influenced the development of verification 
processes applied by the students. It is important to remind that verification plays an 
important role in primary school level since the issue of proof is completely absent in 
this level. 

PRESENTATION AND ORDERING OF THE STRATEGIES 
Observing the students’ efforts to solve the problems we recorded a series of different 
problem-solving strategies as they are presented below: 
Absence of any strategy. In this category the students did not apply any strategy. 
They worked using trial and error processes.
Strategy based on misconceptions.  In this case the students were based on 
misconceptions connected to certain plane shapes. These misconceptions determined 
the students’ reaction to a certain problem. 
Strategy based on prototypes. This strategy has its origin to the prototypical 
examples of basic geometrical concepts which become the basis for prototypical 
judgment since the students use these examples as a model in their reasoning. Thus, 
these prototypes determine the first step of the reaction to a given task. 
Visual and e-visual strategies.   The students are based only on what they ‘see’. The 
image, in front of them, is so strong that it can justify their choices. This strategy 
becomes more powerful in the computer environment since the students now can 
manipulate the image enhancing thus the legitimacy of this strategy. (Arcavi, 2003). 
Reaction based strategy. This strategy is exclusively connected with the computer 
environment. The students had the possibility to make direct comparisons and to find 
relations between what they thought or what they expected as a result and what they 
saw on their computer screen. Thus visualizing the results of their activities on the 
screen, they could immediately react when there was a contradiction between them. 
Incorporation of shapes in a recognizable frame through personal intervention. 
The problems included irregular shapes which were constituted by both segment lines 
and curved lines. Due to these curved lines the students could not identify the shapes 
as known ones and consequently they could not apply any known formula for the 
calculation of their area. So, some of them substituted the curved lines with segment 
lines creating thus shapes that were familiar and could be handled by them. 
The strategy of creating a grid.  Some students trying to solve a problem invented 
and created a grid. There was not any prompt in the problem’s context (either explicit 
or implicit) towards the creation of the grid. On the contrary, the problem was 
oriented towards splitting the irregular shape to sub-shapes known to the students. 
However, some students instead of splitting the shape they preferred to draw this 
‘personal’ grid in order to find the area of the shape.
 “Cut-Paste” and “Decomposition to basic units”. In the ‘cut and paste’ strategy 
the students divide a complex shape into pieces and rearrange these pieces so as to 
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create a new shape of different form but of the same area in order to facilitate the 
calculation of the area of the shape. The only criterion for the transference of the 
pieces was ‘which’ one fits perfectly ‘where’ (Mamona-Downs & Papadopoulos, 
2006). In the ‘decomposition to basic units’ strategy the students initially search for a 
basic unit that is iterated in the shape. After that they calculate the area in two steps. 
Firstly they count the whole basic measurement units in the interior of the shape. 
However since the shape is irregular it is not covered completely with whole units. 
So, in the second step, the students are dealing with the remaining partial units. 
Definition or Properties based strategy. In this strategy we have solution 
procedures that show successful employment of mathematical knowledge concerning 
geometry. We consider this strategy as indicative of a higher level of 
‘mathematization’ and this is why we put it in the top of the hierarchy of strategies. 
The students in order to justify their answers are based heavily on the definitions and 
the properties of the plane figures. 
Trying to solve the tasks, the students initially applied a specific strategy (of the 
above mentioned ones) to estimate the area of the shape. This was a complex process 
since the shapes were irregular and there were not ready formulas or recipes for 
estimating their area. During this process the students had the chance to follow 
another of the already available strategies to verify now the correctness of their 
results. (In some cases they applied a completely new process for verifying the 
results). This is why we approach the ordering of these strategies in two ways: from 
the ‘estimation’ point of view and from the ‘verification’ point if view. 
Table 1 presents the ordering of the strategies applied for estimating the area of the 
irregular shapes into six categories (‘estimation’ point of view). The ordering of 
categories 1, 2 and 3 is plausible. Next, since the obstacles from misconceptions and 
prototypes are overridden, we put the visualization and visually driven strategies (that 
are based but not completely on visualization) (category 4). Even though there is no 
‘real’ reasoning in a certain mathematical level these strategies are characterized by 
an organized thinking. However, category 4 does not have the coherence of the 
category 5 strategies which presuppose executive control skills. Finally we put 
category 6 as the strategy with the greatest mathematical significance. 
Categ – 1  Absence of any strategy 
Categ – 2 Strategy based on misconceptions 
Categ – 3 Strategy based on prototypes 
Categ – 4 Visualization-Visually  driven strategies (reaction, incorporation, grid)
Categ – 5 Cut and Paste - Decomposition 
Categ – 6 Definition-Properties based strategy 

Table 1: Ordering the problem solving strategies 
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From these strategies, visualization, reaction-based, and properties-based were 
applied for verification purposes also. The cut and paste was also applied in two 
different forms:  
Verification through Erasing–and-Redrawing. Due to the fact that the students felt 
that they could not successfully accomplish the computational transferral of the 
pieces, after they identified the pieces that fit one to each other, they preferred to 
erase the first partial square unit and then to redraw it in its new place so as to fit with 
the second partial square unit. It is obvious that this strategy could not be applied in 
the paper-and-pencil environment and this is because the worksheets included the 
tasks printed and the students could not erase the already existed lines 
Transformation-Based Verification. In this strategy the students tried to transform 
an unfamiliar shape to a familiar one of different known form but of the same area. 
However there were also applied and some new verification approaches. 
Outline and Auto-Measure Verification. The “Area” tool of Cabri would give the 
students an answer concerning the area of the whole irregular shape. Then and in 
order to verify this result the students decided to divide the shape to subshapes by 
drawing segments. However, these sub-shapes are not identifiable by the software. So 
they had to somehow overcome this difficulty. They thought then to re-draw these 
sub-shapes by using certain tools (e.g., the 'Polygon' tool). Working like that they 
made them recognizable to the program and now they were able to use the 'Area' tool 
to verify whether they correctly calculated the sub-areas 
Formula based verification. This strategy was equally available to both 
environments and the students applied this strategy in a similar manner. After the 
initial estimation of the shape's area, the students split (when possible) the shape to 
subshapes. Using the appropriate tools, they measured bases and heights, they 
calculated the area of each sub-shape, they added the partial results and they 
compared the new final result with the initial one. 
Copy-Paste" Verification. The students used this approach in the laboratory when 
they had to work in an electronic grid. The initial shape was constituted from 
complete, as well as partial, square units. These partial square units combined in 
two's formed a whole square unit. So the students, in order to verify their assumption, 
selected the partial square units (usually triangles) and by copy-and-paste transferred 
them to the remaining part of the grid on the computer screen. Then, they changed 
the orientation of these triangles so as to fit one to the other. Thus, they verified their 
initial thought. 
All the verification strategies were ordered according to: a) whether they are 
completely based on empiricism and b) their mathematical ‘significance’ 
(Papadopoulos & Dagdilelis, in press). The analysis resulted into three main 
categories as can be seen in Table 2: 

4 - 308 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   308 6/4/09   2:24:30 PM



Papadopoulos, Dagdilelis 

1- 4 PME 33 - 2009 

create a new shape of different form but of the same area in order to facilitate the 
calculation of the area of the shape. The only criterion for the transference of the 
pieces was ‘which’ one fits perfectly ‘where’ (Mamona-Downs & Papadopoulos, 
2006). In the ‘decomposition to basic units’ strategy the students initially search for a 
basic unit that is iterated in the shape. After that they calculate the area in two steps. 
Firstly they count the whole basic measurement units in the interior of the shape. 
However since the shape is irregular it is not covered completely with whole units. 
So, in the second step, the students are dealing with the remaining partial units. 
Definition or Properties based strategy. In this strategy we have solution 
procedures that show successful employment of mathematical knowledge concerning 
geometry. We consider this strategy as indicative of a higher level of 
‘mathematization’ and this is why we put it in the top of the hierarchy of strategies. 
The students in order to justify their answers are based heavily on the definitions and 
the properties of the plane figures. 
Trying to solve the tasks, the students initially applied a specific strategy (of the 
above mentioned ones) to estimate the area of the shape. This was a complex process 
since the shapes were irregular and there were not ready formulas or recipes for 
estimating their area. During this process the students had the chance to follow 
another of the already available strategies to verify now the correctness of their 
results. (In some cases they applied a completely new process for verifying the 
results). This is why we approach the ordering of these strategies in two ways: from 
the ‘estimation’ point of view and from the ‘verification’ point if view. 
Table 1 presents the ordering of the strategies applied for estimating the area of the 
irregular shapes into six categories (‘estimation’ point of view). The ordering of 
categories 1, 2 and 3 is plausible. Next, since the obstacles from misconceptions and 
prototypes are overridden, we put the visualization and visually driven strategies (that 
are based but not completely on visualization) (category 4). Even though there is no 
‘real’ reasoning in a certain mathematical level these strategies are characterized by 
an organized thinking. However, category 4 does not have the coherence of the 
category 5 strategies which presuppose executive control skills. Finally we put 
category 6 as the strategy with the greatest mathematical significance. 
Categ – 1  Absence of any strategy 
Categ – 2 Strategy based on misconceptions 
Categ – 3 Strategy based on prototypes 
Categ – 4 Visualization-Visually  driven strategies (reaction, incorporation, grid)
Categ – 5 Cut and Paste - Decomposition 
Categ – 6 Definition-Properties based strategy 
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From these strategies, visualization, reaction-based, and properties-based were 
applied for verification purposes also. The cut and paste was also applied in two 
different forms:  
Verification through Erasing–and-Redrawing. Due to the fact that the students felt 
that they could not successfully accomplish the computational transferral of the 
pieces, after they identified the pieces that fit one to each other, they preferred to 
erase the first partial square unit and then to redraw it in its new place so as to fit with 
the second partial square unit. It is obvious that this strategy could not be applied in 
the paper-and-pencil environment and this is because the worksheets included the 
tasks printed and the students could not erase the already existed lines 
Transformation-Based Verification. In this strategy the students tried to transform 
an unfamiliar shape to a familiar one of different known form but of the same area. 
However there were also applied and some new verification approaches. 
Outline and Auto-Measure Verification. The “Area” tool of Cabri would give the 
students an answer concerning the area of the whole irregular shape. Then and in 
order to verify this result the students decided to divide the shape to subshapes by 
drawing segments. However, these sub-shapes are not identifiable by the software. So 
they had to somehow overcome this difficulty. They thought then to re-draw these 
sub-shapes by using certain tools (e.g., the 'Polygon' tool). Working like that they 
made them recognizable to the program and now they were able to use the 'Area' tool 
to verify whether they correctly calculated the sub-areas 
Formula based verification. This strategy was equally available to both 
environments and the students applied this strategy in a similar manner. After the 
initial estimation of the shape's area, the students split (when possible) the shape to 
subshapes. Using the appropriate tools, they measured bases and heights, they 
calculated the area of each sub-shape, they added the partial results and they 
compared the new final result with the initial one. 
Copy-Paste" Verification. The students used this approach in the laboratory when 
they had to work in an electronic grid. The initial shape was constituted from 
complete, as well as partial, square units. These partial square units combined in 
two's formed a whole square unit. So the students, in order to verify their assumption, 
selected the partial square units (usually triangles) and by copy-and-paste transferred 
them to the remaining part of the grid on the computer screen. Then, they changed 
the orientation of these triangles so as to fit one to the other. Thus, they verified their 
initial thought. 
All the verification strategies were ordered according to: a) whether they are 
completely based on empiricism and b) their mathematical ‘significance’ 
(Papadopoulos & Dagdilelis, in press). The analysis resulted into three main 
categories as can be seen in Table 2: 
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1. Empirical 2. Numerical 3. Idiosyncratic 
a. Visual  a. Formula-based  a. Copy – Paste 
b. Adaptation-based  b. Outline and Auto-Measure b. Erasing -and- Redrawing 
  c. Transformation-based 
  d. Properties-based 

Figure 2: Ordering Verification Strategies 
Let see now how all this information could be summarized in a single table (Table 3). 

Strategy Paper & 
Pencil
environment
For the 
estimation of 
area

Computer
environment
For the 
estimation of 
area

Paper & 
pencil
environment
For
verification

Computer
environment
For
verification

Absence of 
strategy X X   

Misconceptions X X   
Prototypes X X   
Visualization X X X X 
Reaction based  X  X 
Incorporate into 
a recognizable 
frame

X    

Grid X X   
Cut-and-Paste & 
Decomposition X X   

Properties X X X X 
Formula   X X 
Outline and 
auto-measure    X 

Copy-and-paste    X 
Erasing-and-
redrawing*    X 

Transformation*   X X 
                  * These two cases could be considered as special cases of Cut-and-Paste. However the intention of the 
user is different in each case. In the first one the solvers’ intention is just to create complete units whereas in 
the second the solver tries to transform an irregular shape to a known one.

Table 3: Synthesis of the applied strategies 
Studying Table 3 one could make some comments. First of all, we make comments 
about the number of strategies used for estimating the area of the shapes. We 
recorded nearly 14 different strategies concerning the specific problems posed to the 
students. Even though one could doubt about some of them, however, a large number 
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still remains. The majority of these took place in the computer environment. Another 
interesting finding is that the verification processes are more or less equal in number 
to the ones applied for area estimation. The existence of the computer environment 
was in favour of the frequent usage of verification processes since in many cases 
verification was facilitated from the software itself. The kinds of verification 
processes in the computer environment were twice the number of the ones in the 
traditional environment. Moreover, some kinds of verification took place exclusively 
in the computer environment such as the verification through copy-and-paste or 
through transformation. On the contrary, there were not processes that took place 
exclusively in the traditional environment. Finally, there seems to exist a 
differentiation between the strategies employed for area estimation and the ones 
employed for verification. We agree with Margolinas (1993) that it is the intention of 
the solver that distinguishes an estimation process from a verification one. Thus, it is 
possible for the same strategy (for example cut-and-paste) to be used either as a way 
to estimate the area of an irregular shape or as a way to verify the already estimated 
area of the shape. The role that the solver attributes to the applied process is different 
to each one of them. Our expectation was that in both cases (estimation of area – 
verification of a result) the students would apply more or less the same processes. 
However, as can be seen at Table 3, there exists a clear distinction between the 
processes applied in these two cases. For instance, the usage of the grid seems to be 
used for the estimation of the area but not for verifying a result.

CONCLUSIONS
In relation to the primary school level, our research allowed us to record a series of 
certain processes for estimating the area of irregular plane figures as well as for 
verifying these estimations so much in the computer environment as in the paper and 
pencil one. We proposed a systematic ordering of these processes to certain 
categories. We summarized the total collection of the applied strategies in a single 
table. The findings allowed us to form the following statement: problem solving 
concerning area of irregular plane figures is in favour of the development of certain 
strategies especially when students work in the computer environment. Some of them 
are closer to empiricism while others are indicative of an exploitation of the acquired 
mathematical knowledge. Similarly, given that the students could not apply known 
processes or formulas due to the irregularity of the shapes, it seemed that the 
computational environment facilitated the development of a repertoire of verification 
processes. As can be seen from the relevant table, this development took place in a 
wider variety compared to the traditional environment. This in itself was an answer to 
our initial expectation about the equally distributed processes between the two 
environments. So, these processes are not equally distributed and this remains an 
open issue for future research. The relatively small number of participants (almost 
100 students in total) could be regarded as a factor that restricts the generality of our 
findings. However, the fact that the duration of this study was approximately three 
years and the collected data were thoroughly examined reduced the impact of the 
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still remains. The majority of these took place in the computer environment. Another 
interesting finding is that the verification processes are more or less equal in number 
to the ones applied for area estimation. The existence of the computer environment 
was in favour of the frequent usage of verification processes since in many cases 
verification was facilitated from the software itself. The kinds of verification 
processes in the computer environment were twice the number of the ones in the 
traditional environment. Moreover, some kinds of verification took place exclusively 
in the computer environment such as the verification through copy-and-paste or 
through transformation. On the contrary, there were not processes that took place 
exclusively in the traditional environment. Finally, there seems to exist a 
differentiation between the strategies employed for area estimation and the ones 
employed for verification. We agree with Margolinas (1993) that it is the intention of 
the solver that distinguishes an estimation process from a verification one. Thus, it is 
possible for the same strategy (for example cut-and-paste) to be used either as a way 
to estimate the area of an irregular shape or as a way to verify the already estimated 
area of the shape. The role that the solver attributes to the applied process is different 
to each one of them. Our expectation was that in both cases (estimation of area – 
verification of a result) the students would apply more or less the same processes. 
However, as can be seen at Table 3, there exists a clear distinction between the 
processes applied in these two cases. For instance, the usage of the grid seems to be 
used for the estimation of the area but not for verifying a result.

CONCLUSIONS
In relation to the primary school level, our research allowed us to record a series of 
certain processes for estimating the area of irregular plane figures as well as for 
verifying these estimations so much in the computer environment as in the paper and 
pencil one. We proposed a systematic ordering of these processes to certain 
categories. We summarized the total collection of the applied strategies in a single 
table. The findings allowed us to form the following statement: problem solving 
concerning area of irregular plane figures is in favour of the development of certain 
strategies especially when students work in the computer environment. Some of them 
are closer to empiricism while others are indicative of an exploitation of the acquired 
mathematical knowledge. Similarly, given that the students could not apply known 
processes or formulas due to the irregularity of the shapes, it seemed that the 
computational environment facilitated the development of a repertoire of verification 
processes. As can be seen from the relevant table, this development took place in a 
wider variety compared to the traditional environment. This in itself was an answer to 
our initial expectation about the equally distributed processes between the two 
environments. So, these processes are not equally distributed and this remains an 
open issue for future research. The relatively small number of participants (almost 
100 students in total) could be regarded as a factor that restricts the generality of our 
findings. However, the fact that the duration of this study was approximately three 
years and the collected data were thoroughly examined reduced the impact of the 
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factor of the sample size. In any case, future research could offer the chance for a 
more systematic study of our hypotheses as they are expressed in this paper. 
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TOWARDS A TEACHING APPROACH FOR IMPROVING 
MATHEMATICS INDUCTIVE REASONING PROBLEM SOLVING  

Eleni Papageorgiou
Cyprus Pedagogical Institute 

The study aimed at proposing and assessing a training program that integrates both 
inductive reasoning problem solving and the development of mathematical concepts. 
This approach was developed on the basis of a general theory of inductive reasoning, 
which delineates six related classes of problems and the corresponding solution 
processes and it was implemented to sixth grade students. Data were collected 
through a written test consisted of mathematics problems of the six structures. Three 
repeated measurements were conducted with a break of 3-4 months between them. 
Findings revealed a significant improvement of mathematics inductive reasoning 
problem solving of the trained students while the training effect persisted for at least 
four months after the implementation of the program.  

INTRODUCTION AND THEORETICAL BACKGROUND 
Inductive reasoning is the highest-order cognitive skill that characterizes learning 
potential. It is considered to be a central component of critical thinking and one of the 
basic learning skills that contributes to problem solving (Haverty, Koedinger, Klahr, 
& Alibali, 2000). It is defined as the process of inferring a general rule by 
observation and analysis of specific instances (Haverty et al., 2000), and therefore it 
is a vital process for everyday life and for scientific investigation in particular.  
In mathematics education inductive reasoning is enclosed among the most important 
goals of the curriculum (NCTM, 2000). It is closely related to the exploration and the 
generalization of different kinds of patterns that serve the basis of structural 
knowledge in mathematics learning (Johnassen, Beissner, & Yacci, 1993). As a 
generalization process, it is also fundamental to the development of many 
mathematical concepts, especially in algebraic concepts and in problem solving 
situations (Haverty et al., 2000; Orton & Orton, 1994; Warren, 2006). Consequently, 
mathematics teaching should focus on fostering basic skills in generalizing, and 
expressing and systematically justifying generalizations (Kaput & Blanton, 2001), as 
well as in developing strategies for solving various types of inductive reasoning 
mathematics problems. Nevertheless, in elementary education there is little emphasis 
on inductive reasoning as object of study; rather it is considered that could be 
developed as a by-product of the teaching of the content as defined in traditional 
curriculum (Hamers, De Koning, & Sijtsma, 1998). Classroom activities usually 
focus on mathematical products rather on mathematical processes and strategies. 
Inductive reasoning problems are likely to be marginalized by the press towards 
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computational skills (Thompson, Philipp, Thompson, & Boyd, 1994) or appear in an 
abbreviated, arithmetic form (Blanton & Kaput, 2005). Consequently, many students 
have a lot of difficulties in solving problems.  
Considering the valuable aspect of inductive reasoning in learning, research studies 
focused on designing teaching programs for improving inductive thinking in 
schooling (Klauer & Phye, 1994). Although these programs were oriented towards 
thinking processes and promoted inductive reasoning as a tool for problem solving, 
they were developed in a general content domain using content-free and daily life 
problem formats. Even in mathematics education, where inductive reasoning is an 
important process to investigate the gaining of a deeper understanding of 
mathematical cognition (Haverty, et al., 2000), there is a lack of the appropriate 
guidelines for designing comprehensive content-related approaches for improving 
inductive thinking within the content of the mathematics curriculum.  
The present study, attempted to apply a teaching approach that integrate inductive 
reasoning problem solving procedures in a mathematics concept-development 
context. The proposed approach is based on a prescriptive theory of inductive 
reasoning (Klauer & Phye, 1994) while it is in line with the pedagogical principles 
and methods presented in the literature. The focus of the study was twofold: (a) to 
investigate whether the proposed approach improved students’ mathematics 
conceptual knowledge and their ability to solve mathematics inductive reasoning 
problems of different structures, and (b) to specify the nature of change of  students’ 
mathematics inductive reasoning through the passing of time.  
A prescriptive theory of inductive reasoning 
Klauer (Klauer & Phye, 1994) suggests that inductive thinking could be improved 
through the teaching of the steps of an induction process that are necessary and 
sufficient to arrive at a generalization. These essential steps are resulted from an 
analytic definition of inductive reasoning, which delimits inductive reasoning 
problems from other types of problems (e.g. deductive) specifying their cognitive 
solution processes. This definition considers that inductive reasoning is the 
systematic and analytic comparison of objects aiming at detecting similarities and/or 
differences among them with respect to attributes or relations. It also presupposes 
that all types of inductive reasoning problems could be classified into two main 
subsets, the group-problems and the row-problems. The group-problems are dealing 
with attributes while the row-problems are dealing with scanning relations. Each 
subset comprises three different types of problems that could be discriminated in 
terms of the cognitive processes needed for their solution. That is, the group-
problems set includes: (a) problems that require finding similarity of attributes among 
objects, (b) problems that are related with noting differences among objects with 
respect to attributes; and (c) problems that require a determination of both common 
and different attributes of objects. The row-problems set involves: (a) problems that 
require finding similarity among relationships; (b) problems that require detecting 
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differences in relationships; and (c) problems that require finding either equivalence 
or dissimilarity of relationships. From a teaching perspective, the essential steps that 
are necessary for a successful inductive reasoning problem solving are the 
followings: First to train students to recognize the reasoning structure of an inductive 
task (group or row structure scheme), and then to apply the appropriate cognitive 
solution process. According to Klauer the mastery of these steps will improve 
students’ ability to solve any type and complexity of inductive reasoning problems. 
The proposed approach 
The proposed teaching program was designed on the basis of a mathematics cognitive 
framework of inductive reasoning that delineates students’ abilities in solving various 
mathematics problems that all require the use of inductive reasoning (Christou & 
Papageorgiou, 2007). These abilities correspond to the cognitive processes of 
similarity, dissimilarity, and integration, and are associated with the level of attributes 
and the level of relations, which specify the aspects that are compared in a 
mathematics inductive task. Thus, instruction aimed at helping  students to 
distinguish whether a problem involves relations or attributes (reasoning structure) 
and then to identify whether there is a need to find similarity or difference or both 
similarity and difference (integration) in the attributes or in the relations involved in 
the problem (processing structure), in order for the problem to be solved.  
In line with Klauer’s training program, instruction proceeded through three 
hierarchical levels that correspond to three successive phases of knowledge 
development: (a) the conceptual-analytical level that corresponds to the development 
of the declarative knowledge; (b) the procedural level that corresponds to the 
development of the procedural knowledge; and (c) the strategic level, which is related 
to the development of the metacognitive knowledge. These three levels of instruction 
overlapped and proceeded developmentally throughout the time the program was 
carried out.
The conceptual-analytical phase aimed at the conceptual recognition of the different 
structures of inductive reasoning problems. Thus, instructional activities asked 
students to classify given problems into two main groups in terms of their reasoning 
structure, i.e. the kind of the objects needed to be compared (attributes or relations), 
and then to identify the different problem-formats included in each group. Teaching 
at this phase emphasized cooperation and discussion between students in order to 
facilitate discrimination of the various types of problems and to localize similarities 
and/or dissimilarities between different problem-formats. Furthermore, students 
encouraged to construct concept maps and diagrams to represent the relations existed 
among different problem-formats with respect to their solution comparison processes 
(processing structure) and then to relate unknown problems to the previous ones by 
analogy.
The procedural phase aimed at teaching students how to solve inductive reasoning 
problems of different structures. Problem solving at this phase involved also the 
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that all types of inductive reasoning problems could be classified into two main 
subsets, the group-problems and the row-problems. The group-problems are dealing 
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subset comprises three different types of problems that could be discriminated in 
terms of the cognitive processes needed for their solution. That is, the group-
problems set includes: (a) problems that require finding similarity of attributes among 
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respect to attributes; and (c) problems that require a determination of both common 
and different attributes of objects. The row-problems set involves: (a) problems that 
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differences in relationships; and (c) problems that require finding either equivalence 
or dissimilarity of relationships. From a teaching perspective, the essential steps that 
are necessary for a successful inductive reasoning problem solving are the 
followings: First to train students to recognize the reasoning structure of an inductive 
task (group or row structure scheme), and then to apply the appropriate cognitive 
solution process. According to Klauer the mastery of these steps will improve 
students’ ability to solve any type and complexity of inductive reasoning problems. 
The proposed approach 
The proposed teaching program was designed on the basis of a mathematics cognitive 
framework of inductive reasoning that delineates students’ abilities in solving various 
mathematics problems that all require the use of inductive reasoning (Christou & 
Papageorgiou, 2007). These abilities correspond to the cognitive processes of 
similarity, dissimilarity, and integration, and are associated with the level of attributes 
and the level of relations, which specify the aspects that are compared in a 
mathematics inductive task. Thus, instruction aimed at helping  students to 
distinguish whether a problem involves relations or attributes (reasoning structure) 
and then to identify whether there is a need to find similarity or difference or both 
similarity and difference (integration) in the attributes or in the relations involved in 
the problem (processing structure), in order for the problem to be solved.  
In line with Klauer’s training program, instruction proceeded through three 
hierarchical levels that correspond to three successive phases of knowledge 
development: (a) the conceptual-analytical level that corresponds to the development 
of the declarative knowledge; (b) the procedural level that corresponds to the 
development of the procedural knowledge; and (c) the strategic level, which is related 
to the development of the metacognitive knowledge. These three levels of instruction 
overlapped and proceeded developmentally throughout the time the program was 
carried out.
The conceptual-analytical phase aimed at the conceptual recognition of the different 
structures of inductive reasoning problems. Thus, instructional activities asked 
students to classify given problems into two main groups in terms of their reasoning 
structure, i.e. the kind of the objects needed to be compared (attributes or relations), 
and then to identify the different problem-formats included in each group. Teaching 
at this phase emphasized cooperation and discussion between students in order to 
facilitate discrimination of the various types of problems and to localize similarities 
and/or dissimilarities between different problem-formats. Furthermore, students 
encouraged to construct concept maps and diagrams to represent the relations existed 
among different problem-formats with respect to their solution comparison processes 
(processing structure) and then to relate unknown problems to the previous ones by 
analogy.
The procedural phase aimed at teaching students how to solve inductive reasoning 
problems of different structures. Problem solving at this phase involved also the 

PME 33 - 2009 4 - 315

 Volume 04 COMPLETE 290509.indb   315 6/4/09   2:24:32 PM



Papageorgiou

1- 4 PME 33 - 2009 

attainment of new knowledge. Thus, instructional activities focused on constructing 
cognitive schemes of the new concepts that could be infused in an inductive 
processing structure. For facilitated learning, worked-examples were mainly used to 
relate problems involved new concepts to familiar ones by analogy.  Furthermore, 
worked-examples and flowcharts were used to demonstrate the solution steps of each 
problem structure an to model problem solving processes in order for the students to 
localize similarities and/or differences between them.
Finally, the strategic phase aimed at accelerating the spontaneous application of the 
six reasoning processes in solving inductive reasoning mathematics problems. 
Therefore, the training activities encouraged students to solve problems of different 
representations and complexity, to describe the solution processes and to justify their 
thinking procedures in terms of the structures of the problems.  
The problems used during the training were derived from 6th grade mathematics 
curriculum and were related to attributes and relations of numbers and geometrical 
figures. Examples of some concepts intended to be developed through the proposed 
approach were: (a) the properties of numbers and numbers’ operations, such as the 
multiplication of the odds and even numbers, (b) the attributes and features of the 2D 
and 3D geometrical figures, (c) numerical proportions, and (d) various types of 
number-sequences, like the sequence of the squared or the triangular numbers, 
arithmetic and geometric sequences, as well as patterns with geometrical figures.  
METHOD
Participants and procedure
The sample of the study consisted of 137 sixth grade students (63 boys and 74 girls), 
from seven existing classes at elementary schools in an urban area of Cyprus. The 
study was based on an experimental-control design, thus sixty students comprised the 
experimental group while the rest comprised the control group. Students were 
assigned to the two groups according to their performance on mathematics inductive 
reasoning problem solving on the first measurement, which was carried out at the 
beginning of the study. The two groups were of the same performance. 
Data were collected through a written test that measured students’ performance on 
mathematics inductive reasoning problems of the six different structures delineated 
by the cognitive mathematics inductive reasoning framework. The same test was 
administered to students three times. The interval between successive administrations 
was 3-4 months.
Students of the experimental group were involved in the activities of the proposed 
program after the first measurement. The duration of the intervention was twelve 40-
minutes teaching periods that were spread over nine weeks during the regular 
mathematics lessons. Students of the control group did not have any systematic 
instruction in inductive reasoning.  
The assessment instrument 
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Twenty-one problems of six different structures comprised the test developed to 
measure mathematics inductive reasoning problem solving ability (see Table 1). 
Students had 60 minutes to complete the test. The scale reliability of the whole 
questionnaire was found to be very high. The Cronbach’s alpha coefficients for the 
whole set of problems were 0.85, 0.88, and 0.88, at first, second and third 
measurement, respectively.
 Attributes tasks Relations tasks 
Similarity The numbers below have 

something in common. Write the 
common feature of the numbers: 
4, 16, 8, 32, 20, 100, 40 

Complete with the right number. 
 1       5 13      29       …… 
(a) 33   (b) 37   (c) 45   (d) 61 

Dissimilarity Find the numbers that does not 
fit in with the others and put it in 
a circle. Explain. 
 9     21     11 15     12     6   23   

One of the figures disturbs the 
sequence. Find it and define the 
right sequence.

Integration Write the number 24 in the 
appropriate cell. Explain. 

6     18 
   12 

16    8 
     2 

3     15 
    9 

7      25 
 5 

Complete the empty cell with the 
appropriate number. 

8 4 2 

1 1
2

1
4

1
8

1
16 ;

Table 1: Examples of problem formats used in the test 
Data analysis 
A univariate analysis of covariance (ANCOVA) was implemented to the data in two 
parts. Initially, ANCOVA was used to examine whether the proposed approach 
improved students’ ability to solve the whole set of problems included in the test. 
Thus, post-test attainments were used as depended variables, while the corresponding 
pre-test scores were used as covariates. Then, this kind of analysis was carried out to 
investigate the durability of the training effect; therefore it is preceded on comparing 
the scores of the two groups revealed from the third measurement to their pre-test 
attainments.  
Finally, a multivariate analysis of covariance (MANCOVA) was used to explore 
students’ improvement on solving each of the six different problem-formats as well 
as problems of the same reasoning (attributes and relations problems) or processing 
structure (similarity, dissimilarity and integration problems). Thus, in this case we set 
as depended variables the post-test scores related to each of the six kinds of problems 
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attainment of new knowledge. Thus, instructional activities focused on constructing 
cognitive schemes of the new concepts that could be infused in an inductive 
processing structure. For facilitated learning, worked-examples were mainly used to 
relate problems involved new concepts to familiar ones by analogy.  Furthermore, 
worked-examples and flowcharts were used to demonstrate the solution steps of each 
problem structure an to model problem solving processes in order for the students to 
localize similarities and/or differences between them.
Finally, the strategic phase aimed at accelerating the spontaneous application of the 
six reasoning processes in solving inductive reasoning mathematics problems. 
Therefore, the training activities encouraged students to solve problems of different 
representations and complexity, to describe the solution processes and to justify their 
thinking procedures in terms of the structures of the problems.  
The problems used during the training were derived from 6th grade mathematics 
curriculum and were related to attributes and relations of numbers and geometrical 
figures. Examples of some concepts intended to be developed through the proposed 
approach were: (a) the properties of numbers and numbers’ operations, such as the 
multiplication of the odds and even numbers, (b) the attributes and features of the 2D 
and 3D geometrical figures, (c) numerical proportions, and (d) various types of 
number-sequences, like the sequence of the squared or the triangular numbers, 
arithmetic and geometric sequences, as well as patterns with geometrical figures.  
METHOD
Participants and procedure
The sample of the study consisted of 137 sixth grade students (63 boys and 74 girls), 
from seven existing classes at elementary schools in an urban area of Cyprus. The 
study was based on an experimental-control design, thus sixty students comprised the 
experimental group while the rest comprised the control group. Students were 
assigned to the two groups according to their performance on mathematics inductive 
reasoning problem solving on the first measurement, which was carried out at the 
beginning of the study. The two groups were of the same performance. 
Data were collected through a written test that measured students’ performance on 
mathematics inductive reasoning problems of the six different structures delineated 
by the cognitive mathematics inductive reasoning framework. The same test was 
administered to students three times. The interval between successive administrations 
was 3-4 months.
Students of the experimental group were involved in the activities of the proposed 
program after the first measurement. The duration of the intervention was twelve 40-
minutes teaching periods that were spread over nine weeks during the regular 
mathematics lessons. Students of the control group did not have any systematic 
instruction in inductive reasoning.  
The assessment instrument 
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Twenty-one problems of six different structures comprised the test developed to 
measure mathematics inductive reasoning problem solving ability (see Table 1). 
Students had 60 minutes to complete the test. The scale reliability of the whole 
questionnaire was found to be very high. The Cronbach’s alpha coefficients for the 
whole set of problems were 0.85, 0.88, and 0.88, at first, second and third 
measurement, respectively.
 Attributes tasks Relations tasks 
Similarity The numbers below have 

something in common. Write the 
common feature of the numbers: 
4, 16, 8, 32, 20, 100, 40 

Complete with the right number. 
 1       5 13      29       …… 
(a) 33   (b) 37   (c) 45   (d) 61 

Dissimilarity Find the numbers that does not 
fit in with the others and put it in 
a circle. Explain. 
 9     21     11 15     12     6   23   

One of the figures disturbs the 
sequence. Find it and define the 
right sequence.

Integration Write the number 24 in the 
appropriate cell. Explain. 

6     18 
   12 

16    8 
     2 

3     15 
    9 

7      25 
 5 

Complete the empty cell with the 
appropriate number. 

8 4 2 

1 1
2

1
4

1
8

1
16 ;

Table 1: Examples of problem formats used in the test 
Data analysis 
A univariate analysis of covariance (ANCOVA) was implemented to the data in two 
parts. Initially, ANCOVA was used to examine whether the proposed approach 
improved students’ ability to solve the whole set of problems included in the test. 
Thus, post-test attainments were used as depended variables, while the corresponding 
pre-test scores were used as covariates. Then, this kind of analysis was carried out to 
investigate the durability of the training effect; therefore it is preceded on comparing 
the scores of the two groups revealed from the third measurement to their pre-test 
attainments.  
Finally, a multivariate analysis of covariance (MANCOVA) was used to explore 
students’ improvement on solving each of the six different problem-formats as well 
as problems of the same reasoning (attributes and relations problems) or processing 
structure (similarity, dissimilarity and integration problems). Thus, in this case we set 
as depended variables the post-test scores related to each of the six kinds of problems 
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or to each subset of problems, and as covariates we regarded the corresponding pre-
test scores.
RESULTS
Regarding the whole set of mathematics inductive reasoning problems, results 
showed that students who received training outperformed the control group at the 
post-test (F(1, 134)=32.779, p<0.05). This indicates that the training program has a 
positive impact on students’ mathematics inductive reasoning problem solving after 
intervention. Furthermore, the training effect could be persistent at least four months 
after training, as revealed from the outcomes of the second part of the ANCOVA  
(F(1, 134)=5.254, p<0.05). Table 2 presents the statistic indices resulted from the two-
phase analysis of covariance.  

Measurement Group of Students X
Sum of 
Squares F p-value 

Experimental 0.871 
Second

Control 0.731 
0.641 32.779 <0.05 

Experimental 0.768 
Third

Control 0.701 
0.149 5.254 <0.05 

Table 2: Students’ attainments on the second and third measurements 
With respect to each of the six kinds of problems, the results of the MANCOVA 
showed that the experimental group of students performed significantly better than 
the control group on the four kinds of problems after the implementation of the 
intervention (Pillai’s F(6, 129)=9.051, p<0.05). Specifically, the significant differences 
between the two-group performances were observed on attributes-similarity problems 
and on attributes-dissimilarity problems as well as on relations-similarity problems 
and relations-dissimilarity problems (see Table 3). Despite the improvement of the 
experimental group on solving both attributes-integration and relations-integration 
problems, this improvement was not significantly higher than the control group’s 
ability. From a broader perspective, findings also revealed that the experimental 
group performed significantly higher than the control group on all the five sets of 
problems that formed on the basis of their reasoning structure (attributes and relations 
problems) (Pillai’s F(2,133)=14.506, p<0.05) or their processing structure (similarity, 
dissimilarity and integration problems) (Pillai’s F(3,132)=14.372, p<0.05). Given that 
the mathematics inductive reasoning of the two groups were equal at the beginning of 
the study (t1,135=-1.948, p>0.05), these results indicate that the training effect have a 
positive impact on students’ ability to solve various types of problems. Furthermore, 
the training effect contributed to the deeper understanding of the mathematical 
concepts involved. 

Problem’s Structure Group of 
Students Mean SD Sum of 

Squares F p-value
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Experimental 0.920 0.209
Similarity 

Control 0.782 0.290
1.118 30.334 <0.05 

Experimental 0.817 0.379
Dissimilarity 

Control 0.708 0.424
1.075 8.603 <0.05 

Experimental 0.758 0.298

A
ttr

ib
ut

es
 P
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bl
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Integration
Control 0.714 0.329

0.194 2.186 >0.05 

Experimental 0.908 0.145
Similarity 

Control 0.867 0.197
0.149 6.140 <0.05 

Experimental 0.792 0.284
Dissimilarity 

Control 0.584 0.321
1.986 34.279 <0.05 

Experimental 0.883 0.192

R
el

at
io

ns
 p

ro
bl
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s

Integration
Control 0.847 0.247

0.135 3.230 >0.05 

Table 3: Students’ post-test attainments on the six types of problems 
CONCLUSIONS
In this study we attempted to design a teaching model for developing inductive 
thinking within the content of the school mathematics in real-classroom situations. 
Findings revealed that this approach is effective since it improves students’ ability to 
solve mathematics inductive reasoning problems of various structures. The use of the 
worked-examples in developing both the conceptual and the procedural knowledge of 
inductive reasoning mathematics problem solving seemed to guide students in their 
schemes construction and therefore in learning. This supports the idea that inductive 
reasoning problem solving and concept development could be integrated through 
appropriate training in a regular mathematics lesson. Though improvement was 
observed on all the six problem-formats included in instruction, the size of the 
training effect was different according to the problems’ complexity. Integration 
problems seemed to need much more practice than the other types of problems for 
gaining spontaneous application of the solution procedures; they require the 
simultaneous application of two cognitive strategies and therefore they demand much 
more capacity of working memory to proceduralize the combination of the associated 
cognitive schemes, especially when they involve newly acquired concepts.
Nevertheless, the study is of great importance because incorporates problem solving 
and concept-development in real-classroom instruction. Thus, this approach could be 
used as a tool in teachers’ instruction for developing inductive reasoning mathematics 
problem solving as well as the developing of specific mathematical concepts. Also, it 
could be used as a prototype for designing instructional programmes for improving 
thinking skills within the different subjects of the school curriculum.  
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test scores.
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Regarding the whole set of mathematics inductive reasoning problems, results 
showed that students who received training outperformed the control group at the 
post-test (F(1, 134)=32.779, p<0.05). This indicates that the training program has a 
positive impact on students’ mathematics inductive reasoning problem solving after 
intervention. Furthermore, the training effect could be persistent at least four months 
after training, as revealed from the outcomes of the second part of the ANCOVA  
(F(1, 134)=5.254, p<0.05). Table 2 presents the statistic indices resulted from the two-
phase analysis of covariance.  
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0.641 32.779 <0.05 

Experimental 0.768 
Third

Control 0.701 
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Table 2: Students’ attainments on the second and third measurements 
With respect to each of the six kinds of problems, the results of the MANCOVA 
showed that the experimental group of students performed significantly better than 
the control group on the four kinds of problems after the implementation of the 
intervention (Pillai’s F(6, 129)=9.051, p<0.05). Specifically, the significant differences 
between the two-group performances were observed on attributes-similarity problems 
and on attributes-dissimilarity problems as well as on relations-similarity problems 
and relations-dissimilarity problems (see Table 3). Despite the improvement of the 
experimental group on solving both attributes-integration and relations-integration 
problems, this improvement was not significantly higher than the control group’s 
ability. From a broader perspective, findings also revealed that the experimental 
group performed significantly higher than the control group on all the five sets of 
problems that formed on the basis of their reasoning structure (attributes and relations 
problems) (Pillai’s F(2,133)=14.506, p<0.05) or their processing structure (similarity, 
dissimilarity and integration problems) (Pillai’s F(3,132)=14.372, p<0.05). Given that 
the mathematics inductive reasoning of the two groups were equal at the beginning of 
the study (t1,135=-1.948, p>0.05), these results indicate that the training effect have a 
positive impact on students’ ability to solve various types of problems. Furthermore, 
the training effect contributed to the deeper understanding of the mathematical 
concepts involved. 
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Table 3: Students’ post-test attainments on the six types of problems 
CONCLUSIONS
In this study we attempted to design a teaching model for developing inductive 
thinking within the content of the school mathematics in real-classroom situations. 
Findings revealed that this approach is effective since it improves students’ ability to 
solve mathematics inductive reasoning problems of various structures. The use of the 
worked-examples in developing both the conceptual and the procedural knowledge of 
inductive reasoning mathematics problem solving seemed to guide students in their 
schemes construction and therefore in learning. This supports the idea that inductive 
reasoning problem solving and concept development could be integrated through 
appropriate training in a regular mathematics lesson. Though improvement was 
observed on all the six problem-formats included in instruction, the size of the 
training effect was different according to the problems’ complexity. Integration 
problems seemed to need much more practice than the other types of problems for 
gaining spontaneous application of the solution procedures; they require the 
simultaneous application of two cognitive strategies and therefore they demand much 
more capacity of working memory to proceduralize the combination of the associated 
cognitive schemes, especially when they involve newly acquired concepts.
Nevertheless, the study is of great importance because incorporates problem solving 
and concept-development in real-classroom instruction. Thus, this approach could be 
used as a tool in teachers’ instruction for developing inductive reasoning mathematics 
problem solving as well as the developing of specific mathematical concepts. Also, it 
could be used as a prototype for designing instructional programmes for improving 
thinking skills within the different subjects of the school curriculum.  
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PRESCHOOLERS’ SEMIOTIC ACTIVITY: ADDITIVE 
PROBLEM-SOLVING AND THE REPRESENTATION OF 

QUANTITY  
Maria Papandreou 

Aristotle University of Thessaloniki 

The present study aims to investigate preschoolers’ semiotic activity during their 
attempt to solve an arithmetic problem concerning the addition of seven quantities. 
The analysis of 117 preschoolers’ drawings in combination with their verbal 
descriptions resulted in the creation of 16 “notation types” distributed in four main 
categories: letters or words, pictograms, arbitrary non-conventional symbols and 
numerals. The results support a teaching perspective focusing on the integration of 
drawing in preschoolers’ mathematics education.

THEORETICAL FRAMEWORK 
Young children find difficulty in structuring a proper internal representation of an 
arithmetic problem. However, it has been suggested that the meaning of the problem 
could be grasped through its visualization, which is said to facilitate the solving 
process (DeWindt-King & Goldin, 2003). One of the strategies towards the 
visualization of the problem the researchers are studying is the integration of drawing 
activities (Edens & Potter, 2007; Saundry and Nicol, 2006; Smith, 2003). It is 
supported that when the children are encouraged to invent their own graphical 
representations of a mathematical problem, they are able to attribute a meaning and 
reflect on it (Dijk et al., 2004). 
Another factor affecting the process for solving arithmetic problems is conventional 
symbols. Young children are not able to organize and manage data using them 
properly (Polland & van Oers, 2007). Although the children in the West every day 
come across numbers on several occasions, and not before long they master their 
ability to recognize them, this is not exactly the case when it comes to writing them 
and mainly to grasping their meaning (Munn, 1994). Relevant research on this field 
shows that the children graphically represent quantity in different ways (Hughes, 
1986; Munn, 1994; Kato et al., 2002; Thomas et al. 2002; Carruthers & Worthington, 
2005; Rogers, 2008). Even if they use arithmetic symbols, they do not always follow 
the conventional way as adults do. This fact shows that they have not fully 
understood the meaning and function of symbols (Munn, 1994; Thomas et al. 2002). 
Nunes (1997) explains this difficulty by dividing symbolic representations into 
“extended” and “compressing” representations. The numeration system provides 
“compressing” representations while physical objects give “extended” representations 
(e.g., number 5 represents five objects). However, it is argued that if we encourage 
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the children to invent and explore their own symbols through drawing activities 
(“schematizing” for Polland & van Oers, 2007), their representation ability and by 
extension their understanding of mathematical symbols is later facilitated. By using, 
recognizing and interpreting their self-invented symbols children are often able to 
talk about the problem and its solution (Carruthers & Worthington, 2005), to 
communicate their thoughts and ideas, to compare their own symbols with those of 
the others and to reconsider them. In this way, their symbolic capabilities increase 
(Polland & van Oers, 2007). In other words, they discover symbols functions 
regarding them as tools for thought and communication. This understanding is very 
likely to help them later, in formal education, realise the meaning and purpose of 
conventional symbols (Polland & van Oers, 2007; Carruthers & Worthington, 2005).  
Although drawing activities seem to be a privileged teaching environment for 
mathematics education, research in this field has little developed particularly as 
regards young ages. Considering that drawing is a kind of semiotic activity –
inventing symbols and attributing meanings– explored by the children already from a 
very early age (Van Oers, 1997) and that children’s drawing ability is part of the 
development of their representation ability (Matthews, 1996; Kress, 1997), the 
integration of drawing in preschoolers’ mathematics education constitutes a 
challenging teaching perspective. A number of issues arise. How do children 
represent quantitative data when they have to deal with arithmetic problems? What 
meanings do they attribute to their signs? Are they able to describe – talk about their 
“notations”? What kind of strategies do they develop and how are these strategies 
connected with their graphic representations? According to this perspective, the 
present study investigates the ways the children invent in order to graphically 
represent the quantitative data of an additive problem during its solving process.  

METHOD
The research was carried out in eight nursery classes, including a total of 117 
children, with 34 of them aged 4-5 years old (average 4,6 years, group ), and 83 of 
them aged 5-6 years old (average 5,7 years, group B), in normal class conditions. The 
children worked individually at the same time on the same additive problem derived 
from a fairy tale. The storytelling approach in mathematics education can both offer 
experiences meaningful to the students and promote their engagement in the 
mathematical task (Nicol & Crespo, 2005). The structure of the additive problem 
concerns the addition of seven quantities and has the form of 1+1+1+2+3+4+1=13 
(referring to those who helped the pumpkin come out of the ground). It was presumed 
that this structure would allow us to record both the way the children would represent 
the quantities from one to four within a specific context and the way they would use 
these representations in order to manage the solution of the specific additive problem.  
At first, the children listened to the fairy tale and then they only listened to the part 
including the problem, since they were given the following instruction: “use your 
paper and pencil in any way you can in order to find out how many took the pumpkin 
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out». The use of the words write and draw was avoided so that the children’s 
production could remain unaffected. In addition, considering that talk helps us 
understand a child’s internal representational capacity (Saundry & Nicol, 2006), 
personal interviews were later carried out during which every child was asked to 
describe his or her drawing, e.g., what have you done here and what’s this, while 
reflective questions were also asked, e.g., how many of them finally took the 
pumpkin out, what did you do to find it, what have you written/ put down/ drawn, 
what did you do first (in case the student has used 2 or 3 notations at the same time). 

DATA ANALYSIS 
At a first level, the different representation types detected in children’s drawings 
were codified according to the categories resulting from previous research on written 
records of the quantity of objects  (Hughes, 1986, Munn; 1994, Kato et al., 2002; 
Rogers, 2008) or numbers (Thomas et al, 2002). Four main categories emerged from 
this first analysis: (I) letters or words: any kind of writing except numerals, (II) 
pictograms: images representing features of the problem (III) non-conventional 
symbols: drawings of tally marks, dots, circles or squares and (IV) numerals: any 
kind of written numerals. At a second level, the detailed study of children’s drawings 
in combination with their verbal explanations describing their drawings revealed a 
range of subcategories. While describing their drawings, the children provided 
additional information about their intentions and the way they used specific notations. 
It should be noted that 1 up to 4 different notations were recorded in each drawing.  

RESULTS
In this way, the four main categories gave a total of sixteen different “notation types” 
used for representing the problem data. Because a large number of children used 
more than one notation, the 117 drawings included 187 notations. In order to 
illustrate the “notation types”, we below discuss representative examples for each 
main category separately.  
. Letters or words (writing).  

Figure 1: “Letters or words” (I) 
Some children “write” the kind of data. Writing signs, usually combined with other 
notations, were detected in some of the drawings. The analysis of the drawings 
finally produced three different types of writing (Fig. 1). 
a. Pseudo-letters, pretending writing. Dimos, just like other children of mainly 

group , uses exclusively pseudo-letters and interprets his drawing saying “I was 

a                 Dimos, Gr. A Ib, ( Ve, IVb)  Androniki, Gr.B Ic, ( Vc)     Gregory, Gr. B
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the children to invent and explore their own symbols through drawing activities 
(“schematizing” for Polland & van Oers, 2007), their representation ability and by 
extension their understanding of mathematical symbols is later facilitated. By using, 
recognizing and interpreting their self-invented symbols children are often able to 
talk about the problem and its solution (Carruthers & Worthington, 2005), to 
communicate their thoughts and ideas, to compare their own symbols with those of 
the others and to reconsider them. In this way, their symbolic capabilities increase 
(Polland & van Oers, 2007). In other words, they discover symbols functions 
regarding them as tools for thought and communication. This understanding is very 
likely to help them later, in formal education, realise the meaning and purpose of 
conventional symbols (Polland & van Oers, 2007; Carruthers & Worthington, 2005).  
Although drawing activities seem to be a privileged teaching environment for 
mathematics education, research in this field has little developed particularly as 
regards young ages. Considering that drawing is a kind of semiotic activity –
inventing symbols and attributing meanings– explored by the children already from a 
very early age (Van Oers, 1997) and that children’s drawing ability is part of the 
development of their representation ability (Matthews, 1996; Kress, 1997), the 
integration of drawing in preschoolers’ mathematics education constitutes a 
challenging teaching perspective. A number of issues arise. How do children 
represent quantitative data when they have to deal with arithmetic problems? What 
meanings do they attribute to their signs? Are they able to describe – talk about their 
“notations”? What kind of strategies do they develop and how are these strategies 
connected with their graphic representations? According to this perspective, the 
present study investigates the ways the children invent in order to graphically 
represent the quantitative data of an additive problem during its solving process.  

METHOD
The research was carried out in eight nursery classes, including a total of 117 
children, with 34 of them aged 4-5 years old (average 4,6 years, group ), and 83 of 
them aged 5-6 years old (average 5,7 years, group B), in normal class conditions. The 
children worked individually at the same time on the same additive problem derived 
from a fairy tale. The storytelling approach in mathematics education can both offer 
experiences meaningful to the students and promote their engagement in the 
mathematical task (Nicol & Crespo, 2005). The structure of the additive problem 
concerns the addition of seven quantities and has the form of 1+1+1+2+3+4+1=13 
(referring to those who helped the pumpkin come out of the ground). It was presumed 
that this structure would allow us to record both the way the children would represent 
the quantities from one to four within a specific context and the way they would use 
these representations in order to manage the solution of the specific additive problem.  
At first, the children listened to the fairy tale and then they only listened to the part 
including the problem, since they were given the following instruction: “use your 
paper and pencil in any way you can in order to find out how many took the pumpkin 
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out». The use of the words write and draw was avoided so that the children’s 
production could remain unaffected. In addition, considering that talk helps us 
understand a child’s internal representational capacity (Saundry & Nicol, 2006), 
personal interviews were later carried out during which every child was asked to 
describe his or her drawing, e.g., what have you done here and what’s this, while 
reflective questions were also asked, e.g., how many of them finally took the 
pumpkin out, what did you do to find it, what have you written/ put down/ drawn, 
what did you do first (in case the student has used 2 or 3 notations at the same time). 
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were codified according to the categories resulting from previous research on written 
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more than one notation, the 117 drawings included 187 notations. In order to 
illustrate the “notation types”, we below discuss representative examples for each 
main category separately.  
. Letters or words (writing).  

Figure 1: “Letters or words” (I) 
Some children “write” the kind of data. Writing signs, usually combined with other 
notations, were detected in some of the drawings. The analysis of the drawings 
finally produced three different types of writing (Fig. 1). 
a. Pseudo-letters, pretending writing. Dimos, just like other children of mainly 

group , uses exclusively pseudo-letters and interprets his drawing saying “I was 

a                 Dimos, Gr. A Ib, ( Ve, IVb)  Androniki, Gr.B Ic, ( Vc)     Gregory, Gr. B
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writing the animals”. It is possible that the instruction “use your paper and pencil in 
any way...” may lead him to invent some symbols he considers a kind of “writing”. 
Ib. Fortuitous letters (trying to write the kind of data). Androniki, in combination 
with other notations ( Ve, IVb), tries to “write” in fortuitous letters the persons and 
animals reported in the data, which she later “reads”: “Ivan, 4 cats, 3 pigs, etc.” 
Ic. Letters or the real words representing the kind of data. Gregory writes correctly 
the first letter of each kind of data word (from right to left, he writes with Greek 
letters: I, N, A, , , ,  under the numerals). This notation helps him later 
recognize the kind of data. 
II. Pictograms. 

Figure 2: “Pictograms” (II) 
Figure 2 shows four pictorial representations corresponding to the “notation types” of 
this category. The pictograms often include numerals (IVb), as shown in Christina’s 
and Spyros’ drawings.

a. Related to the fairy tale but not necessarily to the problem. Like Maria, who 
draws the pumpkin and Ivan’s house. She possibly interprets the instruction 
according to the class habit of drawing after listening to a fairy tale.
IIb. Global representation of quantity without accuracy. Katerina makes a lot of 
figures and later says while describing her drawing: “I made them all; there were a 
lot of them”. She fails to recognize the different persons and data, but focuses on the 
fact there are lots of them.
IIc. Representation of groups. Christina draws one figure for each piece of data (e.g., 
one girl for Natalia but one pig for the 2 pigs, and one cat for the 3 cats, etc.). This 
does not help her later remember the arithmetic data; she describes the kind and at 
last she counts the seven figures one by one.   
IId. One-to-one correspondence. Spyros draws one by one all the persons and 
animals described by the problem’s data. He analyses every piece of quantitative data 
in the respective figures, e.g., he hears two pigs and draws two pigs, etc. This type of 
notation helps him later name all these figures one by one.

IIa      Maria, Gr.A  IIb    Katerina, Gr, A IId,(IVb) Spyros, Gr.A 
Christina  
IIc, (IVb)             Gr. B    
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III. Arbitrary, non-conventional symbols (tally marks, circles, dots, etc.) 

Figure 3: “Arbitrary, non-conventional symbols” (III) 
Figure 3 shows three representative drawings of this category. 
IIIa. Global representation of quantity without accuracy. Maria draws a lot of crosses 
and says: “there are many, too many of them”.
IIIb. Representation of the groups. Lida draws one dot for every piece of arithmetic 
data, meaning 6 dots for Ivan, Natalia, a cow, 2 pigs, 3 cats and 4 chickens. She 
focuses on the kind of data rather than on quantity.  
IIIc. One-to-one correspondence. Aggelos uses the symbol X to represent one by one 
all those who took the pumpkin out. Like Spyros (Figure 2, IId), he interprets the 
“compressing” representations provided by the data (e.g., 3 cats) as “extended” 
representations (XXX) (Nunes, 1997). 
IV. umerals 

Figure 4: IV “Numerals” 
The children used the arithmetic symbols in six different ways in order to represent 
the data and the solution of the problem (Fig. 4).  
IVa. Fortuitous numerals. This type of number use seems to be impertinent to the 
arithmetic data of the problem, as shown in Antigoni’s drawing (Fig. 4). They 
possibly write fortuitous numbers as a general and indefinite answer to a problem 
“including” and “asking for” numbers.
IVb. Only one numeral, which represents the problem solution. This type of notation 
was extensively and almost always used along with other notations (Fig. 2, 3, 4). 
IVc. Representation of groups with successive numerals according to the order the 
data is read. Maria (Fig. 4) writes one numeral for each group. Although the children 
that use this notation use numerals, they seem to take into account only the 

IVa                  Antigoni, Gr. B IVb, (IIIC)         Gregory, Gr. B 

IVd, (IVb)  Konstantina, Gr. B 

IVc            Maria, Gr. B 

IVe, (IIIc,IVd,IVb) Christa,Gr.B     IVf            Rania, Gr. B 

IIIc, (IVb)       Aggelos, Gr, B IIIb                      Lida, Gr, A IIIa                     Maria, Gr, A 
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qualitative rather than the quantitative character of the seven different pieces of data, 
as it happens with “notation types”: IIc and IIIb.
IVd. One-to-one correspondence with numerals. The children who use this notation 
(Konstantina, Fig. 4) write a numeral for every person or animal, choosing for each 
of them the numeral that corresponds to the quantity of its particular group (e.g., from 
right to left, she writes for Ivan 1, for 2 pigs 22, for three cats 333, etc.) 
IVe. Numerals which represent every single piece of data. In this case, children like 
Christa (Fig. 4) record the numerals that correspond to the data they hear. 
IVf. One-to-one correspondence with successive numerals starting from one. he
children that use this notation type do not use any other notations. They probably do 
not need them during problem solving. However, quite a lot of them find difficulty in 
writing double-digit numbers. This becomes more evident when they later describe 
their drawing and regard them as single-digit numbers (Rania, Fig.4). 

a Ib Ic IIa IIb IIc IId IIIa IIIb IIIc IVa IVb IVc IVd IVe IVf
A 10.3 2.6 0 11.1 2.6 2.6 28.2 7.7 5.1 7.7 2.6 7.7 7.7 0 2.6 2.6
B 0.7 1.4 0.7 2.7 0 0 25.7 1.4 0.7 15.5 2 27.7 4.7 5.4 2.7 8.8

Table 1: Frequencies (%) of notation types for groups A and B 
Table 1 shows the frequencies of the notation types analysed above for the two 
groups of children (A & B). Children of group  use mainly pictorial representations 
with those of type IId being in higher percentages (28.2%). There are some children 
that use arbitrary symbols and even numerals of different types. Some pretend to be 
writing (Ia: 10.3%), although it actually becomes evident from their explanations 
(Dimos, Fig. 1) that they pretend to be solving the arithmetic problem. 
The notations mostly used by the children of group B are of three types. More 
specifically, they use pictorial representations with one-to-one correspondence ( d: 
25.7%), a numeral which represents the problem’s solution ( Vb: 27.7%) and non-
conventional symbols with one-to-one correspondence (IIIc: 15.5%). Some of them 
(8.8%) also use the notation type IVf, meaning one-to-one correspondence with 
successive numerals starting from one. Broadly speaking, group  uses non-
conventional symbols and numerals more than group  does. 

CONCLUSIONS
This study has produced two important findings, which are discussed below. 

Preschoolers invent a diversity of notations to represent the arithmetic data 
of an additive problem when they try to solve it through drawing activities. 

Our results show that the children did not find any difficulty through drawing 
activities to invent their symbols and solve the problem. All notation types except one 
( a) were related to the arithmetic problem, although some of them were more 
pertinent (IId, IIIc, IVf) than others ( a, Ib, IIb). Even the children that pretended to 
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be writing (Ia) declare intentions relating to the problem. It is possible that the 
context of the arithmetic problem resulting from a fairy tale familiar to the children 
helps them realise the mathematical meaning of the problem (Nicol & Crespo, 2005). 
This finding supports what other researchers have said about the importance of 
drawing activities both for problem solving (Edens & Potter, 2007; Saundry & Nicol, 
2006) and for the invention of symbols by the children (Dijk et al., 2004).  

Four main categories of graphical representations were found: (I) letters or 
words, (II) pictograms, (III) non-conventional symbols and (IV) numerals, 
each of them comprising several subcategories.  

Similar categories are reported by different studies (Kato et al., 2002; Munn, 1994; 
Hughes, 1986; Rogers, 2008), which investigated through clinical-type experimental 
situations the way the children represent small quantities of objects (1-5). But our 
results revealed lots of different ways (“notation types”) of using these 
representations, which are possibly related to the kind of task. In previous studies the 
children had to represent only one quantity at a time, while in our case they have to 
solve a complex additive problem. The children should initially virtually represent in 
their mind the arithmetic data and then represent it graphically before they use these 
representations in problem solving. Moreover, in previous research the children used 
mainly arbitrary symbols and numerals to represent the quantity of the objects 
presented (Hughes, 1986; Kato et al., 2002; Rogers, 2008). The present results 
showed that while they (mainly the children of group ) use these categories in high 
percentages, they also use pictograms in quite high percentages (both groups). In the 
former studies the quantities refer to objects rather than to persons and animals, as it 
happens in our study. It is very possible that this fact in combination with the fairy 
tale context may “lead” the children to the pictorial representation of the data.
However, there are still a number of issues to investigate. What is the meaning 
attributed to each notation type? What solving strategies do they develop and how 
appropriate is each of them? This seems to be a reasonably wide field for future 
research and development of propositions about the way such results could be 
exploited by teaching.
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THE GROWTH OF MATHEMATICAL PATTERNING 
STRATEGIES IN PRESCHOOL CHILDREN  

Marina M. Papic, Joanne T. Mulligan, & Michael C. Mitchelmore 
Macquarie University, Sydney, Australia 

The development of patterning strategies during the year prior to formal schooling 
was studied in 53 children from two similar preschools. One preschool implemented 
a 6-month intervention focussing on Repeating and Spatial patterns. An interview-
based Early Mathematical Patterning Assessment (EMPA) was developed and 
administered pre- and post-intervention, and again following the first year of formal 
schooling. The intervention group outperformed the comparison group across a wide 
range of patterning tasks at the post and follow-up assessments, most also being able 
to extend and explain Growing Patterns which they had not previously experienced. 
Several initiatives in early childhood mathematics curriculum are promoting the 
development of mathematical patterning and algebraic reasoning (Carraher, 
Schliemann, Brizuela, & Earnest, 2006; Clements, 2004; Doig, 2005). For example, 
Australian state mathematics curricula, as well as national and state assessment 
programs, now incorporate a Patterns and Algebra strand (NSW Board of Studies, 
2002; Ministerial Council on Education, Employment, Training and Youth Affairs 
2008). However, despite a recent surge of research interest in early algebra (Kieran, 
2004; Warren, 2003), the research base that might justify a greater emphasis on 
patterning is rather insubstantial. 
In this paper, we describe a study designed to assess the effects of an early 
intervention, focused on patterning, on the development of children’s mathematical 
thinking.
MATHEMATICAL PATTERNING  
  We understand the term pattern to mean any replicable regularity. In early 
childhood mathematics, children experience three main types of pattern (Papic, 
2004):

Repeating patterns, where a unit of repeat (Threlfall, 1999) is repeated 
indefinitely 
Spatial structure patterns such as triangles, blocks, arrays and grids 
Growing patterns consisting of a sequence of elements which change 
systematically

Recently, several mathematics education researchers have focused on the early 
acquisition of patterning and its role in mathematical development. A series of 
studies forming the Australian Pattern and Structure Mathematics Awareness Project 
(PASMAP) indicates that children’s Awareness of Mathematical Pattern and 
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Structure (AMPS) in the first three years of schooling generalizes across a wide range 
of mathematical content domains to the extent that it can be regarded as a general 
cognitive characteristic (Mulligan & Mitchelmore, in press). 
There are very few studies of patterning in early childcare settings. One recent 
observational study (Waters, 2004) found that Australian preschoolers initiate and 
talk about their own patterns, ranging from simple repetition to geometric forms. 
Waters’s study also highlighted the limited knowledge of preschool teachers in 
relation to the types of mathematical patterns and their pedagogical potential.  
The present study addressed the following research questions:

1. In what ways does a preschool intervention promoting mathematical 
patterning affect the complexity of children’s patterning concepts and skills 
and the development of other mathematical processes such as 
multiplicative thinking? 

2. Is the influence of such an intervention maintained after children’s first 
year of formal schooling? 

METHOD
An intervention preschool (IP) was selected in the south-western area of Sydney. A 
non-intervention preschool (NP), similar in size and structure to the IP, was identified 
within the same region. Both preschools had comparable enrolments (38 children in 
each), staffing levels, and resources and had identical approaches to the curriculum. 
The children in both preschools came from low to middle socioeconomic families, 
with a high percentage from non-English speaking backgrounds.  
The participants comprised initially 53 preschoolers aged from 3 years 9 months to 5 
years. There were 27 children (16 boys and 11 girls) in the IP group and 26 (16 boys 
and 10 girls) in the NP group. All children spent a minimum of six hours a day at 
preschool for at least two days a week. The teaching staff remained the same in both 
centres for the 6-month duration of the intervention. 
Only 35 of the participating children were available for the assessment on completion 
of the preschool year. Thirty-two of these were traced to 27 different institutions on 
completion of the first year of formal schooling for the follow-up assessment. Despite 
the attrition, there was no indication that these samples were biased.  
An Early Mathematical Patterning Assessment (EMPA) was developed prior to 
commencement of the intervention. Eleven task categories were devised to assess 
children’s ability to reproduce, create, identify, extend, and copy from memory 
Repeating, Spatial and Growing Patterns, in a variety of modes (summarized in Table 
1). The EMPA was administered as a semi-structured individual interview on three 
occasions: at the start and end of the intervention and again at the end of the first year 
of formal schooling. The first and second assessments included the same 29 
Repeating and Spatial Patterns tasks, but the 22 tasks for the third assessment were 
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increased in complexity or redesigned as Growing Patterns. All interviews were 
audio recorded and 20% were video recorded.

Category Description 
Repeating Patterns 

Tower Copy, continue and represent simple (AB) and complex (ABC) 
repetitions, using blocks and by drawing. 

Border Complete border patterns using cut out tiles, identify whether a 
border pattern has a clear start or finish. 

Hopscotch Copy hopscotch patterns using square tiles, by drawing and draw 
from memory. Design own hopscotch pattern. 

Number Identify next numeral and colour in repeating patterns of two or 
three numerals that use two or three colors. 

Spatial Structure Patterns 
Array Copy array patterns using counters and by drawing. 
Block Copy rectangular block patterns using blocks and by drawing. 
Grid Copy rectangular grid patterns by drawing 
Subitizing Identify number of dots in regular and irregular patterns and 

within grids. Identify number of blocks in staircase patterns. 
Triangular 1 Copy various triangular dot patterns using counters and by 

drawing.
Growing Patterns

Triangular 2 Continue growing triangular dot patterns and justify response. 
Square Tiles Continue growing square patterns and justify response. 

Table 1: EMPA Task Categories 
Another interview assessment, the 56-item Schedule for Early Number Assessment 1 
(SENA 1) (NSW Department of Education & Training, 2001), part of the state-wide 
numeracy program, was administered following the third EMPA assessment.
The first researcher worked closely with the IP teachers in developing, implementing 
and monitoring an intervention that provided explicit opportunities for children to 
develop patterning skills through problem-based tasks focused on the notion of unit 
of repeat. The intervention comprised two main components: 

Structured individual and small group pattern-eliciting tasks were based on 
the Tower, Subitizing and Hopscotch tasks (see Table 1). Children’s 
responses to the Tower tasks were easily categorized into developmental 
levels of pattern recognition, which allowed the design of a framework to 
guide later instruction.
“Patternizing” the regular preschool program emerged as the teachers 
realized how much children were learning from the initial patterning 
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Structure (AMPS) in the first three years of schooling generalizes across a wide range 
of mathematical content domains to the extent that it can be regarded as a general 
cognitive characteristic (Mulligan & Mitchelmore, in press). 
There are very few studies of patterning in early childcare settings. One recent 
observational study (Waters, 2004) found that Australian preschoolers initiate and 
talk about their own patterns, ranging from simple repetition to geometric forms. 
Waters’s study also highlighted the limited knowledge of preschool teachers in 
relation to the types of mathematical patterns and their pedagogical potential.  
The present study addressed the following research questions:

1. In what ways does a preschool intervention promoting mathematical 
patterning affect the complexity of children’s patterning concepts and skills 
and the development of other mathematical processes such as 
multiplicative thinking? 

2. Is the influence of such an intervention maintained after children’s first 
year of formal schooling? 

METHOD
An intervention preschool (IP) was selected in the south-western area of Sydney. A 
non-intervention preschool (NP), similar in size and structure to the IP, was identified 
within the same region. Both preschools had comparable enrolments (38 children in 
each), staffing levels, and resources and had identical approaches to the curriculum. 
The children in both preschools came from low to middle socioeconomic families, 
with a high percentage from non-English speaking backgrounds.  
The participants comprised initially 53 preschoolers aged from 3 years 9 months to 5 
years. There were 27 children (16 boys and 11 girls) in the IP group and 26 (16 boys 
and 10 girls) in the NP group. All children spent a minimum of six hours a day at 
preschool for at least two days a week. The teaching staff remained the same in both 
centres for the 6-month duration of the intervention. 
Only 35 of the participating children were available for the assessment on completion 
of the preschool year. Thirty-two of these were traced to 27 different institutions on 
completion of the first year of formal schooling for the follow-up assessment. Despite 
the attrition, there was no indication that these samples were biased.  
An Early Mathematical Patterning Assessment (EMPA) was developed prior to 
commencement of the intervention. Eleven task categories were devised to assess 
children’s ability to reproduce, create, identify, extend, and copy from memory 
Repeating, Spatial and Growing Patterns, in a variety of modes (summarized in Table 
1). The EMPA was administered as a semi-structured individual interview on three 
occasions: at the start and end of the intervention and again at the end of the first year 
of formal schooling. The first and second assessments included the same 29 
Repeating and Spatial Patterns tasks, but the 22 tasks for the third assessment were 
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increased in complexity or redesigned as Growing Patterns. All interviews were 
audio recorded and 20% were video recorded.

Category Description 
Repeating Patterns 

Tower Copy, continue and represent simple (AB) and complex (ABC) 
repetitions, using blocks and by drawing. 

Border Complete border patterns using cut out tiles, identify whether a 
border pattern has a clear start or finish. 

Hopscotch Copy hopscotch patterns using square tiles, by drawing and draw 
from memory. Design own hopscotch pattern. 

Number Identify next numeral and colour in repeating patterns of two or 
three numerals that use two or three colors. 

Spatial Structure Patterns 
Array Copy array patterns using counters and by drawing. 
Block Copy rectangular block patterns using blocks and by drawing. 
Grid Copy rectangular grid patterns by drawing 
Subitizing Identify number of dots in regular and irregular patterns and 

within grids. Identify number of blocks in staircase patterns. 
Triangular 1 Copy various triangular dot patterns using counters and by 

drawing.
Growing Patterns

Triangular 2 Continue growing triangular dot patterns and justify response. 
Square Tiles Continue growing square patterns and justify response. 

Table 1: EMPA Task Categories 
Another interview assessment, the 56-item Schedule for Early Number Assessment 1 
(SENA 1) (NSW Department of Education & Training, 2001), part of the state-wide 
numeracy program, was administered following the third EMPA assessment.
The first researcher worked closely with the IP teachers in developing, implementing 
and monitoring an intervention that provided explicit opportunities for children to 
develop patterning skills through problem-based tasks focused on the notion of unit 
of repeat. The intervention comprised two main components: 

Structured individual and small group pattern-eliciting tasks were based on 
the Tower, Subitizing and Hopscotch tasks (see Table 1). Children’s 
responses to the Tower tasks were easily categorized into developmental 
levels of pattern recognition, which allowed the design of a framework to 
guide later instruction.
“Patternizing” the regular preschool program emerged as the teachers 
realized how much children were learning from the initial patterning 
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activities. The first researcher worked collaboratively with teachers to 
scaffold rich patterning explorations within their regular curriculum. 

RESULTS
Children’s EMPA responses were first coded for accuracy, then their patterning 
strategies were described and classified. The first researcher’s coding was verified by 
an independent coder, yielding an inter-coder reliability of 89%.  
There is not sufficient space for us to describe the strategy classification. Instead, we 
shall present the quantitative results comparing children in the intervention preschool 
(IP) and the non-intervention preschool (NP) and simply quote supporting data from 
the strategy analysis. No statistical tests were applied because the two samples were 
not randomly selected.  
Repeating Patterns 
Figure 1 shows the change in performance in the Repeating Pattern tasks at 
Assessments 1 and 2 in the IP and NP groups. For each task category, the data show 
the average number of correct responses as a percentage of the total number of tasks.  

Figure 1.  Repeating Patterns: Pre- and post-intervention assessment data. 
At the initial assessment, the NP children were moderately more successful across all 
Repeating Patterns tasks than the IP children. However, at the end of the intervention 
period, the IP group consistently outperformed the NP group. The contrast was 
particularly evident for the Number tasks, where the IP children improved 
substantially but the NP children showed no improvement.  
By the end of the intervention, there were very few of the apparently random 
responses seen initially in both groups. Many NP children continued to follow a 
direct comparison strategy, copying patterns one element at a time, but this strategy 
was no longer used by IP children. Most NP children used an alternation strategy 
(e.g., alternating colors) throughout, but most of the IP children had switched to a 
strategy based on recognition of the unit of repeat. 
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Spatial Structure Patterns 
Figure 2 reports the results for the four categories of Spatial Structure Pattern. The 
two groups of children performed at a very similar level at Assessment 1. By 
Assessment 2, the IP children had made considerable gains in all task categories 
whereas the NP children had only improved on the Array tasks. The NP group found 
it particularly difficult to identify the number, shape, size, orientation, and spatial and 
numerical structure of the triangular dot patterns in the Triangular 1 task. The NP 
children actually regressed on Subitizing tasks, frequently reverting to counting 
individual items even for a simple three-dot pattern.  

Figure 2.  Spatial Structure tasks: Pre- and post-intervention assessment data. 
Strategy analysis revealed four levels of structural representation similar to those 
reported by Mulligan and Mitchelmore (in press). By the end of the intervention, the 
percentage of highest-level responses among the IP children had increased 
substantially. By contrast, among the NP children the only level to show a substantial 
change was the lowest one: The percentage of random responses had decreased. 
Follow-Up Assessment 
Figure 3 shows a comparison between the IP and NP groups on the third 
administration of the EMPA. For the Repeating Pattern tasks (Towers, Borders, 
Hopscotch, Number), there were striking differences in favour of the IP group 
consistent with the pattern of responses shown at Assessment 2. The majority of the 
IP children continued to use the “unit of repeat” strategy they had demonstrated 12 
months earlier, whereas most NP children still used the far less efficient direct 
comparison and alternation strategies. 
Neither the IP nor the NP children had been exposed to Growing Patterns before 
Assessment 3. Although the IP children’s performance on these tasks was not as 
strong as for the Repeating Pattern tasks, many of them could identify, extend and 
justify both the Triangular 2 (1, 3, 6) and Square Tile (1, 4, 9) patterns. In 
comparison, none of the NP children gave a correct response. More than half of the 
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activities. The first researcher worked collaboratively with teachers to 
scaffold rich patterning explorations within their regular curriculum. 

RESULTS
Children’s EMPA responses were first coded for accuracy, then their patterning 
strategies were described and classified. The first researcher’s coding was verified by 
an independent coder, yielding an inter-coder reliability of 89%.  
There is not sufficient space for us to describe the strategy classification. Instead, we 
shall present the quantitative results comparing children in the intervention preschool 
(IP) and the non-intervention preschool (NP) and simply quote supporting data from 
the strategy analysis. No statistical tests were applied because the two samples were 
not randomly selected.  
Repeating Patterns 
Figure 1 shows the change in performance in the Repeating Pattern tasks at 
Assessments 1 and 2 in the IP and NP groups. For each task category, the data show 
the average number of correct responses as a percentage of the total number of tasks.  

Figure 1.  Repeating Patterns: Pre- and post-intervention assessment data. 
At the initial assessment, the NP children were moderately more successful across all 
Repeating Patterns tasks than the IP children. However, at the end of the intervention 
period, the IP group consistently outperformed the NP group. The contrast was 
particularly evident for the Number tasks, where the IP children improved 
substantially but the NP children showed no improvement.  
By the end of the intervention, there were very few of the apparently random 
responses seen initially in both groups. Many NP children continued to follow a 
direct comparison strategy, copying patterns one element at a time, but this strategy 
was no longer used by IP children. Most NP children used an alternation strategy 
(e.g., alternating colors) throughout, but most of the IP children had switched to a 
strategy based on recognition of the unit of repeat. 
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Spatial Structure Patterns 
Figure 2 reports the results for the four categories of Spatial Structure Pattern. The 
two groups of children performed at a very similar level at Assessment 1. By 
Assessment 2, the IP children had made considerable gains in all task categories 
whereas the NP children had only improved on the Array tasks. The NP group found 
it particularly difficult to identify the number, shape, size, orientation, and spatial and 
numerical structure of the triangular dot patterns in the Triangular 1 task. The NP 
children actually regressed on Subitizing tasks, frequently reverting to counting 
individual items even for a simple three-dot pattern.  

Figure 2.  Spatial Structure tasks: Pre- and post-intervention assessment data. 
Strategy analysis revealed four levels of structural representation similar to those 
reported by Mulligan and Mitchelmore (in press). By the end of the intervention, the 
percentage of highest-level responses among the IP children had increased 
substantially. By contrast, among the NP children the only level to show a substantial 
change was the lowest one: The percentage of random responses had decreased. 
Follow-Up Assessment 
Figure 3 shows a comparison between the IP and NP groups on the third 
administration of the EMPA. For the Repeating Pattern tasks (Towers, Borders, 
Hopscotch, Number), there were striking differences in favour of the IP group 
consistent with the pattern of responses shown at Assessment 2. The majority of the 
IP children continued to use the “unit of repeat” strategy they had demonstrated 12 
months earlier, whereas most NP children still used the far less efficient direct 
comparison and alternation strategies. 
Neither the IP nor the NP children had been exposed to Growing Patterns before 
Assessment 3. Although the IP children’s performance on these tasks was not as 
strong as for the Repeating Pattern tasks, many of them could identify, extend and 
justify both the Triangular 2 (1, 3, 6) and Square Tile (1, 4, 9) patterns. In 
comparison, none of the NP children gave a correct response. More than half of the 
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NP children treated the given pattern as the start of a repeating pattern and repeated 
the three given elements exactly. 
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Figure 3.  Follow-up assessment data: Repeating Patterns and Growing Patterns. 
On the Schedule for Early Number Assessment 1 (SENA 1), the IP children scored 
higher on average (82%) than the NP children (63%). They were superior in all 
assessment categories, including numeral identification, forward and backward 
counting, unitising, and simple arithmetical problem solving. 
DISCUSSION AND CONCLUSION 
This study has provided empirical evidence that children as young as 4 years can 
develop complex patterning concepts. The intervention resulted in gains in children’s 
understanding of simple numerical and spatial patterns well beyond those made by 
the comparison group.  
It seems that the intervention had acted to draw the IP children’s attention to structure 
at a far deeper level than is achieved through regular pre-school activities. A likely 
source of this change is the teaching strategy, adopted throughout the intervention, 
whereby teachers repeatedly encouraged children to look for structural similarities 
and differences between the given pattern and their copy of it. According to Mason, 
Drury, and Bills (2007), “becoming aware of similarities and differences results in 
stressing or fore-grounding and consequently ignoring or back-grounding, which is 
the basis for both generalization and abstraction” (p. 55). We conjecture that the IP 
children had abstracted many concepts such as collinearity and equal spacing as well 
as primitive generalizations such as “many patterns have a unit of repeat”. 
It was the IP children’s concept of unit of repeat that most clearly differentiated them 
from the NP children. The unit of repeat concept is particularly valuable because it 
leads naturally into the concept of multiplication indeed, several IP children were 
observed skip counting. It may have been this increased level of understanding of 
number that was responsible for the IP children’s advantage on the statewide SENA 
assessment at the end of their first year of formal schooling.  
The most impressive result of the intervention was perhaps the success of the IP 
children on the Growing Patterns tasks one year after the end of the intervention. By 
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contrast, the NP children seemed to be making random guesses. It is not clear why 
this difference occurred when none of the IP children had been exposed to Growing 
Patterns during the intervention (and probably at no time before the tasks were 
administered). It is possible that, as a result of the intervention, the IP children had 
not only become aware of many examples of numerical and spatial structure but had 
acquired a greater tendency to look for mathematical patterns. They would certainly 
have been better able to recognise the structure of the individual components (square 
and triangular patterns of dots). They may then have spontaneously generalised their 
idea of a pattern from one where the successive components are identical to one 
where there is a constant relationship between them.   
If this explanation is correct, it would further support the argument put forward by 
Mulligan and Mitchelmore (in press) that Awareness of Mathematical Pattern and 
Structure (AMPS) is a general feature of young children’s cognition that predicts 
their later mathematical achievement. The intervention included many activities that 
would have strengthened the preschool children’s AMPS, and the result was a level 
of understanding that readily transferred to a more complex patterning task one year 
later.
Warren (2005) asserted that 9-year old children find growing patterns more difficult 
than repeating patterns because of an over-emphasis on repeating patterns in early 
mathematics curricula. Our findings suggest that it may rather be due to the way 
repeating patterns are treated. Responses from the NP group, as well as the state 
syllabus (NSW Board of Studies, 2002), suggest that teachers restrict their examples 
to alternating patterns which would strictly reduce the likelihood of children 
gaining the powerful concept of unit of repeat. A simple curriculum change to the 
syllabus could have a significant impact on children’s later learning. 
Further research is needed to explore the impact of early patterning activities such as 
those used in our intervention on children’s mathematical development overall, in 
subsequent years of schooling and in different populations of children. Possible gains 
may be found in several areas not fully explored in the present study for example, 
the development of multiplication, functional thinking and symbolization. Research 
is also needed into how easily preschool teachers can learn concepts such as unit of 
repeat and incorporate them into their teaching. The results of this study are, to say 
the least, encouraging. 
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NP children treated the given pattern as the start of a repeating pattern and repeated 
the three given elements exactly. 
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Figure 3.  Follow-up assessment data: Repeating Patterns and Growing Patterns. 
On the Schedule for Early Number Assessment 1 (SENA 1), the IP children scored 
higher on average (82%) than the NP children (63%). They were superior in all 
assessment categories, including numeral identification, forward and backward 
counting, unitising, and simple arithmetical problem solving. 
DISCUSSION AND CONCLUSION 
This study has provided empirical evidence that children as young as 4 years can 
develop complex patterning concepts. The intervention resulted in gains in children’s 
understanding of simple numerical and spatial patterns well beyond those made by 
the comparison group.  
It seems that the intervention had acted to draw the IP children’s attention to structure 
at a far deeper level than is achieved through regular pre-school activities. A likely 
source of this change is the teaching strategy, adopted throughout the intervention, 
whereby teachers repeatedly encouraged children to look for structural similarities 
and differences between the given pattern and their copy of it. According to Mason, 
Drury, and Bills (2007), “becoming aware of similarities and differences results in 
stressing or fore-grounding and consequently ignoring or back-grounding, which is 
the basis for both generalization and abstraction” (p. 55). We conjecture that the IP 
children had abstracted many concepts such as collinearity and equal spacing as well 
as primitive generalizations such as “many patterns have a unit of repeat”. 
It was the IP children’s concept of unit of repeat that most clearly differentiated them 
from the NP children. The unit of repeat concept is particularly valuable because it 
leads naturally into the concept of multiplication indeed, several IP children were 
observed skip counting. It may have been this increased level of understanding of 
number that was responsible for the IP children’s advantage on the statewide SENA 
assessment at the end of their first year of formal schooling.  
The most impressive result of the intervention was perhaps the success of the IP 
children on the Growing Patterns tasks one year after the end of the intervention. By 
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contrast, the NP children seemed to be making random guesses. It is not clear why 
this difference occurred when none of the IP children had been exposed to Growing 
Patterns during the intervention (and probably at no time before the tasks were 
administered). It is possible that, as a result of the intervention, the IP children had 
not only become aware of many examples of numerical and spatial structure but had 
acquired a greater tendency to look for mathematical patterns. They would certainly 
have been better able to recognise the structure of the individual components (square 
and triangular patterns of dots). They may then have spontaneously generalised their 
idea of a pattern from one where the successive components are identical to one 
where there is a constant relationship between them.   
If this explanation is correct, it would further support the argument put forward by 
Mulligan and Mitchelmore (in press) that Awareness of Mathematical Pattern and 
Structure (AMPS) is a general feature of young children’s cognition that predicts 
their later mathematical achievement. The intervention included many activities that 
would have strengthened the preschool children’s AMPS, and the result was a level 
of understanding that readily transferred to a more complex patterning task one year 
later.
Warren (2005) asserted that 9-year old children find growing patterns more difficult 
than repeating patterns because of an over-emphasis on repeating patterns in early 
mathematics curricula. Our findings suggest that it may rather be due to the way 
repeating patterns are treated. Responses from the NP group, as well as the state 
syllabus (NSW Board of Studies, 2002), suggest that teachers restrict their examples 
to alternating patterns which would strictly reduce the likelihood of children 
gaining the powerful concept of unit of repeat. A simple curriculum change to the 
syllabus could have a significant impact on children’s later learning. 
Further research is needed to explore the impact of early patterning activities such as 
those used in our intervention on children’s mathematical development overall, in 
subsequent years of schooling and in different populations of children. Possible gains 
may be found in several areas not fully explored in the present study for example, 
the development of multiplication, functional thinking and symbolization. Research 
is also needed into how easily preschool teachers can learn concepts such as unit of 
repeat and incorporate them into their teaching. The results of this study are, to say 
the least, encouraging. 
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DOES THE BUILDING AND TRANSFORMING ON LVAR MODES 

IMPACT STUDENTS WAY OF THINKING? 

Stavroula Patsiomitou and Anastassios Emvalotis   

Department of Primary Education of Ioannina, University of Ioannina  

In this paper we describe a twofold teaching experiment carried out in a secondary-

level mathematics class in Greece which sought to investigate a) how the building 

and testing of LVAR (Linking Visual Active Representations) modes by the students 

supported by the Geometer’s Sketchpad dynamic geometry software, impacts on 

students way of  thinking with regard to the conjecturing and proving processes; and 

b) if transformations through different semi-predesigned LVAR modes lead students 

to structure mental transformations relative to the development of their van Hiele 

level.  

LINKING VISUAL ACTIVE REPRESENTATIONS   

The study presented here addresses one part of the fourth phase of the didactic 

experiment which was conducted in a secondary school Mathematics class in Athens, 

Greece. This process was linked to the developing of strategies for solving problems, 

or anticipating those strands of the solution relating to individual or collaborative 

thought processes by linking the steps in the constructional, transformational or 

explorative actions (or processes) in the proof via a sequence of actions using the 

different interaction techniques supported by the Geometer’s Sketchpad v4  DGS 

environment (Jackiw, 1991). This mode of design in the software and the results of 

the testing with students led to the need to define the meaning of Linking Visual 

Active Representations (LVAR) (see Patsiomitou, 2008a; Patsiomitou & Koleza, 

2008; Patsiomitou, 2008b). Some of the study’s findings concerning semi-

predesigned LVAR, the taking of decisions relating to the interaction techniques 

used, and the receiving of feedback on the students’ proving processes were reported 

at an earlier PME meeting (Patsiomitou and Koleza, 2008), correlated with the 

developing of students van Hiele level. The current study sought to investigate how 

the building and transforming of different LVAR modes (Patsiomitou, 2008b), 

impacts on students thinking abilities during the proving process. The study focus 

was affected on concerns formulated by Dina van Hiele Hiele-Geldof (in Fuys et al., 

1984) who had the objective “to investigate the improvement of learning 

performance by a change in the learning method”. Crowley (1987) argues that 

“geometric thinking can be [made] accessible to everyone” by “refining the phases of 

learning, developing van Hiele based materials and implementing those materials and 

philosophies in the classroom setting.” Many researchers who used the Geometer’s 

Sketchpad have conducted studies, using the van Hiele model as descriptor for their 

analysis and concluded that students achieved significantly higher scores between the 
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pre- and post-tests or significantly outperformed their peers who had received 

traditional instruction (see for example Almeqdadi, 2000). In Geometer’s Sketchpad 

v4 DGS environment, LVAR are interpreted as “encoding the properties and 

relationships for a represented world consisting of mathematical structures or 

concepts” (Sedig & Sumner, 2006) in line with Goldin and Janvier (1998): a) “a 

physical situation, or situation in the physical environment” modelled mathematically 

embodying mathematical ideas; b) a combination of “syntactic and structural 

characteristics” enhanced by selected basic or task –based (Sedig & Sumner, 2006) 

different interaction techniques facilitated by the DG Sketchpad v4 environment 

where the problem is transferred or a geometrical theory is discussed. The semi pre-

constructed LVAR have the following features: 1) “aid to make the final 

configuration appear less complex because all the inevitable auxiliary intermediate 

lines that must be drawn to achieve the final construction” (Schumann and Green, 

1994), does not appear immediately but in linking dynamic illustration steps, keeping 

attention close to the aim of the overall construction and 2) enjoy an advantage over 

pre-constructed diagrams that can not only be manipulated and explored, since 

students can also act on them using the full range of program features (which renders 

them Active) and 3) provide the students with the guidance they require, and helps 

them replace their pre-existing knowledge by assimilating new knowledge or 

accommodating it as complementary to what they already know or by confirming / 

anticipating the pupil’s thought processes. On the other hand the requirement for 

students to construct everything themselves even if the constructions are made in 

dynamic geometry environments may lead to “the actual construction process failing 

to correspond to the mental modular representation of the construction process” 

(Schumann and Green, ibid.). In the next section we will examine the correlation 

between the different LVAR modes and the van Hiele model.  

LVAR modes and the van Hiele model 

The link between visual and deductive way of thinking in the van Hiele model is the 

essence of the transition from the lower levels (Recognition and Analysis), to the 

upper ones (Formal deduction and Rigor). The original five-level classification is the 

following: Recognition (Level 1), Analysis (Level 2), Informal deduction (Level 3), 

Formal deduction (Level 4) and Rigor (Level 5). Another important aspect of this 

model is the five phases it specifies in the apprenticeship process, which are, in brief: 

information (inquiry), directed orientation, explicitation, free orientation and 

integration (Fuys et al., 1984). Instruction that takes this sequence into account 

promotes the acquisition of a higher level of thought. This model of teaching phases 

is used for the interpretation of the LVAR modes in this paper. Many researchers (for 

example Burger & Shaughnessy, 1986) support that sequencing instruction has 

positive effects on students’ success. The different LVAR modes can be built using a 

combination of different transformational processes and interaction techniques 

supported by the Sketchpad environment. The LVAR modes corresponding to the 

apprenticeship phases reported above are described as follows (Patsiomitou, 2008b):  
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Mode A-the inquiry/information mode: In this phase of the problem, the students 

familiarize themselves with the field under investigation using the instantiated parts of 

the diagrams which lead them to discover a certain structure. Mode B-the directed 

orientation mode: In concrete terms, the sequential linked constructional steps of the 

solution to the problem emerge step-by step. Mode C–the explicitation mode: 

Transformations in increasingly complex linked dynamic representations of the same 

phase of the problem modify the on-screen configurations simultaneously. Mode D–the 

free orientation mode: Every phase in the solution can be displayed side by side on the 

same page of the software in an overview. Mode E–the integration mode: Successive 

configurations on different pages that are linked cognitively and not necessarily 

constructionally, compose the solution to the problem in global terms as a series of steps.  

This categorization of the LVAR modes through experiment describes the way 

hypotheses are formed when the students face a problem in the dynamic geometry 

environment and how they manage the transition from Mode A (informational) and 

mode B (the directed orientation mode) to Mode E (integration), meaning the 

transition from the conjecturing to the proving phase (see for example Arzarello et 

al., 1998). In other words, the building of LVAR modes mirrors the constructs of 

inductive and deductive way of thinking with regard to the conjecturing and proving 

processes, carefully analysing every action and decision made as the students solved 

a problem using the LVAR modes in Geometer’s Sketchpad. For Peirce (1960), 

conjecture is synonymous with abduction in which “we find some surprising fact 

which would be explained by supposing that it was a case of a certain rule, and 

thereupon adopt that supposition” (Fann, 1970). The theoretical framework includes 

the notions of instrumental genesis. During the instrumental genesis the user 

structures that Rabardel (1995) calls utilization schemes meaning the mental schemes 

that organize the activity though the tool/artefact (Trouche, 2004). The LVAR 

transformations which occurred due to techniques had a significant impact: during 

the instrumental approach, the student structured utilization schemes, of the tools, and 

consequently mental images of the operational processes, since any transformation of 

the pre-image figure (input) resulted in the transformation of the image (output). 

RESEARCH METHODOLOGY 

The didactic experiment was conducted in a class at a public high school in Athens 

during the second term of the academic year. Firstly the researchers examined the 

student’s level of geometric thought using the test developed by Usiskin (1982) at the 

University of Chicago which is in accordance to the van Hiele model. During the 4-th 

phase of the research process, the pairs of the experimental group explored an open-

ended problem (problem 1) within a dynamic geometry environment, building

LVAR. Thereafter the problem was reformulated (problem 2) in an open–ended 

realistic problem  taking into account the retroactions by the research group and was 

explored by the pairs of the experimental group, which interplayed with different 

LVAR modes to solve the problem aiming to proof every step. The methodology of 

the class experiment discussed in this paper includes the building and testing of semi-
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pre- and post-tests or significantly outperformed their peers who had received 

traditional instruction (see for example Almeqdadi, 2000). In Geometer’s Sketchpad 

v4 DGS environment, LVAR are interpreted as “encoding the properties and 

relationships for a represented world consisting of mathematical structures or 

concepts” (Sedig & Sumner, 2006) in line with Goldin and Janvier (1998): a) “a 

physical situation, or situation in the physical environment” modelled mathematically 

embodying mathematical ideas; b) a combination of “syntactic and structural 

characteristics” enhanced by selected basic or task –based (Sedig & Sumner, 2006) 

different interaction techniques facilitated by the DG Sketchpad v4 environment 

where the problem is transferred or a geometrical theory is discussed. The semi pre-

constructed LVAR have the following features: 1) “aid to make the final 

configuration appear less complex because all the inevitable auxiliary intermediate 

lines that must be drawn to achieve the final construction” (Schumann and Green, 

1994), does not appear immediately but in linking dynamic illustration steps, keeping 

attention close to the aim of the overall construction and 2) enjoy an advantage over 

pre-constructed diagrams that can not only be manipulated and explored, since 

students can also act on them using the full range of program features (which renders 

them Active) and 3) provide the students with the guidance they require, and helps 

them replace their pre-existing knowledge by assimilating new knowledge or 

accommodating it as complementary to what they already know or by confirming / 

anticipating the pupil’s thought processes. On the other hand the requirement for 

students to construct everything themselves even if the constructions are made in 

dynamic geometry environments may lead to “the actual construction process failing 

to correspond to the mental modular representation of the construction process” 

(Schumann and Green, ibid.). In the next section we will examine the correlation 

between the different LVAR modes and the van Hiele model.  

LVAR modes and the van Hiele model 

The link between visual and deductive way of thinking in the van Hiele model is the 

essence of the transition from the lower levels (Recognition and Analysis), to the 

upper ones (Formal deduction and Rigor). The original five-level classification is the 

following: Recognition (Level 1), Analysis (Level 2), Informal deduction (Level 3), 

Formal deduction (Level 4) and Rigor (Level 5). Another important aspect of this 

model is the five phases it specifies in the apprenticeship process, which are, in brief: 

information (inquiry), directed orientation, explicitation, free orientation and 

integration (Fuys et al., 1984). Instruction that takes this sequence into account 

promotes the acquisition of a higher level of thought. This model of teaching phases 

is used for the interpretation of the LVAR modes in this paper. Many researchers (for 

example Burger & Shaughnessy, 1986) support that sequencing instruction has 

positive effects on students’ success. The different LVAR modes can be built using a 

combination of different transformational processes and interaction techniques 

supported by the Sketchpad environment. The LVAR modes corresponding to the 

apprenticeship phases reported above are described as follows (Patsiomitou, 2008b):  
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Mode A-the inquiry/information mode: In this phase of the problem, the students 

familiarize themselves with the field under investigation using the instantiated parts of 

the diagrams which lead them to discover a certain structure. Mode B-the directed 

orientation mode: In concrete terms, the sequential linked constructional steps of the 

solution to the problem emerge step-by step. Mode C–the explicitation mode: 

Transformations in increasingly complex linked dynamic representations of the same 

phase of the problem modify the on-screen configurations simultaneously. Mode D–the 

free orientation mode: Every phase in the solution can be displayed side by side on the 

same page of the software in an overview. Mode E–the integration mode: Successive 

configurations on different pages that are linked cognitively and not necessarily 

constructionally, compose the solution to the problem in global terms as a series of steps.  

This categorization of the LVAR modes through experiment describes the way 

hypotheses are formed when the students face a problem in the dynamic geometry 

environment and how they manage the transition from Mode A (informational) and 

mode B (the directed orientation mode) to Mode E (integration), meaning the 

transition from the conjecturing to the proving phase (see for example Arzarello et 

al., 1998). In other words, the building of LVAR modes mirrors the constructs of 

inductive and deductive way of thinking with regard to the conjecturing and proving 

processes, carefully analysing every action and decision made as the students solved 

a problem using the LVAR modes in Geometer’s Sketchpad. For Peirce (1960), 

conjecture is synonymous with abduction in which “we find some surprising fact 

which would be explained by supposing that it was a case of a certain rule, and 

thereupon adopt that supposition” (Fann, 1970). The theoretical framework includes 

the notions of instrumental genesis. During the instrumental genesis the user 

structures that Rabardel (1995) calls utilization schemes meaning the mental schemes 

that organize the activity though the tool/artefact (Trouche, 2004). The LVAR 

transformations which occurred due to techniques had a significant impact: during 

the instrumental approach, the student structured utilization schemes, of the tools, and 

consequently mental images of the operational processes, since any transformation of 

the pre-image figure (input) resulted in the transformation of the image (output). 

RESEARCH METHODOLOGY 

The didactic experiment was conducted in a class at a public high school in Athens 

during the second term of the academic year. Firstly the researchers examined the 

student’s level of geometric thought using the test developed by Usiskin (1982) at the 

University of Chicago which is in accordance to the van Hiele model. During the 4-th 

phase of the research process, the pairs of the experimental group explored an open-

ended problem (problem 1) within a dynamic geometry environment, building

LVAR. Thereafter the problem was reformulated (problem 2) in an open–ended 

realistic problem  taking into account the retroactions by the research group and was 

explored by the pairs of the experimental group, which interplayed with different 

LVAR modes to solve the problem aiming to proof every step. The methodology of 

the class experiment discussed in this paper includes the building and testing of semi-
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predesigned LVAR by a pair of students in the experimental group.The discussions 

were videotaped and examined simultaneously with the interviewers’ fieldnotes 

during the inquiring process. The first part (problem 1) will describe how the students 

built the LVAR representations; the second (problem 2), how they manipulated and 

acted on semi-predesigned LVAR. We will focus on those key parts of a pair’s 

dialogue, relating to the construction of meanings and deductive reasoning. M1 is a 

male pupil (van Hiele level: 1 at the pre-test) and M2 is a female pupil (van Hiele 

level: 2 at the pre-test) tested about 4 months ago. Van Hiele levels are used as 

descriptors in this analysis. The analysis of the results that follows is based on 

observations in class and of the video. Research questions: 1) How does the building 

of LVAR modes impact on students’ transformation of verbal statements with regard 

to the construction of meanings, conjecturing and the proving process? 2) Does the 

building and transforming of LVAR modes lead students to structure mental 

transformations relative to the development of their van Hiele level?   

Problem 1: Construct a triangle ABC with no angle greater than 120 degrees, and 

then construct equilateral triangles on the sides of the triangle ABC. Join the vertices 

of the equilateral triangles with the opposite sides of the triangle ABC. What do you 

observe?  

Fieldnote1: With the definition and use of the “equilateral triangle” custom tool, the 

students developed a “conversing” (Sedig & Sumner, 2006) with the diagram on the 

screen using a basic interaction. This process can operate in a complementary

manner to students pre-existing knowledge, or as a confirmation of the students 

mental approach. With a problem like this, the students are not confronted with 

auxiliary elements because dragging the vertices generates snapshots of several 

possible pair-congruent triangles that can often lead the students to obstacles relating 

to the equalities of the shapes. On the first page (Fig. 1), student M1 is unable to find 

the pair of congruent triangles. He is not even able to focus on the segment as an 

element of the triangle to which it belongs; he therefore chooses to compare the 

triangle  as a triangle whose side is C. 

Fig.1 Fig.2 Fig.3 Fig.4 

In the screenshots (Fig. 1-3) below, we can see the elements of the diagram that have 

been sequentially highlighted. The students explore the problem and start using task–

based interactions like highlighting, colouring, labelling etc. (Sedig & Sumner, 

ibid.), to aid referencing and facilitate the visualization. This process can operate in a 

guiding / auxiliary manner whereby pre-existing knowledge is assimilated or 

accommodated. After the students have constructed the highlighted diagrams using 
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the techniques provided step-by-step by the software, student M1 was able to compare 

the triangles BEC and ACD (Fig. 3) despite their being differently orientated with 

regard to the ZAC, ABE triangles (Fig. 2). Fieldnote 2: The students try to prove that 

segment AD intersects the segments BE, ZC at a common point. They define the 

“circumscribed circle of equilateral” custom tool and activate it on the triangles , 

AEC. The circle around the triangle BCD has not been constructed and the angles 

BOC, BDC have not been measured but they discuss: 

M2: Since these angles (BOC, BDC) are supplements, the quadrilateral..  

She points to the shape and she tries to express the right geometric terminology but 

she doesn’t know it, so the interviewer intervenes:  

Interviewer …. can be inscribed within the circle.  

M1: ….due to the (opposite) angles. 

The student verbalizes a hypothesis to confirm the conclusion she wants to reach. If 

the student knew that the angles had a sum equal to 180

, it would be presented with 

a deductive way of thinking, meaning that if she knew Case A: the opposite angles 

have a sum equal to 180 degrees, she would apply the Rule B: a quadrilateral is 

inscribed within a circle if and only if the sum of two opposite angles equals 180 

degrees and prove Result C: this quadrilateral is inscribed. In this case, however, she 

assumes/posits that she needs, in order to reach a conclusion. The students have 

therefore made abduction, because they select the right geometric property and 'what 

rule it is the case of' in Pierce language. Referring to the example by Peirce, we can 

say that M4’s reasoning is: Case A & Rule B, thus Result C. In this case, the student 

uses the property of the inscribed quadrilateral inversely, despite not having been 

taught beforehand. The students thus formulate the conjecture in a logical way, which 

reverses the stream of thought. By means of this process, the student has constructed 

the meaning of the inscribed circle and the suitable terminology occurs during 

experimentation with the software. They then apply the “circumscribed” tool to the 

third triangle. In this case, the tool functions confirmatively. 

Problem 2: A power plant is to be built to serve the needs of the cities of A (Athens), 

P (Patras) and T (Thessaloniki).Where should the power plant be located in order to 

use the least amount of high-voltage cable that will feed electricity to the three cities? 

(see for example Patsiomitou, 2008b) 

Mode A-the inquiry/information mode. Fieldnote 3: The problem can be 

modelled, representing the three cities by three points on the screen A, P, T and can 

be solved by finding a point K with minimum sum ( KA+KP+KT) of distances to all 

three cities (Fig. 5). The researcher had constructed a table containing measurements 

of the angles AKP, AKT, PKT and calculations and the results on the table are linked 

to the effect of the movement of the mouse on the screen (Figure 5). Changing the 

position of point K by dragging, it is dynamically linked to the modifications in the 

resultant angles in the table and the upcoming modification in the sum of the 

segments. This process is an experimental process in which the students act on the 
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predesigned LVAR by a pair of students in the experimental group.The discussions 

were videotaped and examined simultaneously with the interviewers’ fieldnotes 

during the inquiring process. The first part (problem 1) will describe how the students 

built the LVAR representations; the second (problem 2), how they manipulated and 

acted on semi-predesigned LVAR. We will focus on those key parts of a pair’s 

dialogue, relating to the construction of meanings and deductive reasoning. M1 is a 

male pupil (van Hiele level: 1 at the pre-test) and M2 is a female pupil (van Hiele 

level: 2 at the pre-test) tested about 4 months ago. Van Hiele levels are used as 

descriptors in this analysis. The analysis of the results that follows is based on 

observations in class and of the video. Research questions: 1) How does the building 

of LVAR modes impact on students’ transformation of verbal statements with regard 

to the construction of meanings, conjecturing and the proving process? 2) Does the 

building and transforming of LVAR modes lead students to structure mental 

transformations relative to the development of their van Hiele level?   

Problem 1: Construct a triangle ABC with no angle greater than 120 degrees, and 

then construct equilateral triangles on the sides of the triangle ABC. Join the vertices 

of the equilateral triangles with the opposite sides of the triangle ABC. What do you 

observe?  

Fieldnote1: With the definition and use of the “equilateral triangle” custom tool, the 

students developed a “conversing” (Sedig & Sumner, 2006) with the diagram on the 

screen using a basic interaction. This process can operate in a complementary

manner to students pre-existing knowledge, or as a confirmation of the students 

mental approach. With a problem like this, the students are not confronted with 

auxiliary elements because dragging the vertices generates snapshots of several 

possible pair-congruent triangles that can often lead the students to obstacles relating 

to the equalities of the shapes. On the first page (Fig. 1), student M1 is unable to find 

the pair of congruent triangles. He is not even able to focus on the segment as an 

element of the triangle to which it belongs; he therefore chooses to compare the 

triangle  as a triangle whose side is C. 

Fig.1 Fig.2 Fig.3 Fig.4 

In the screenshots (Fig. 1-3) below, we can see the elements of the diagram that have 

been sequentially highlighted. The students explore the problem and start using task–

based interactions like highlighting, colouring, labelling etc. (Sedig & Sumner, 

ibid.), to aid referencing and facilitate the visualization. This process can operate in a 

guiding / auxiliary manner whereby pre-existing knowledge is assimilated or 

accommodated. After the students have constructed the highlighted diagrams using 
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the techniques provided step-by-step by the software, student M1 was able to compare 

the triangles BEC and ACD (Fig. 3) despite their being differently orientated with 

regard to the ZAC, ABE triangles (Fig. 2). Fieldnote 2: The students try to prove that 

segment AD intersects the segments BE, ZC at a common point. They define the 

“circumscribed circle of equilateral” custom tool and activate it on the triangles , 

AEC. The circle around the triangle BCD has not been constructed and the angles 

BOC, BDC have not been measured but they discuss: 

M2: Since these angles (BOC, BDC) are supplements, the quadrilateral..  

She points to the shape and she tries to express the right geometric terminology but 

she doesn’t know it, so the interviewer intervenes:  

Interviewer …. can be inscribed within the circle.  

M1: ….due to the (opposite) angles. 

The student verbalizes a hypothesis to confirm the conclusion she wants to reach. If 

the student knew that the angles had a sum equal to 180

, it would be presented with 

a deductive way of thinking, meaning that if she knew Case A: the opposite angles 

have a sum equal to 180 degrees, she would apply the Rule B: a quadrilateral is 

inscribed within a circle if and only if the sum of two opposite angles equals 180 

degrees and prove Result C: this quadrilateral is inscribed. In this case, however, she 

assumes/posits that she needs, in order to reach a conclusion. The students have 

therefore made abduction, because they select the right geometric property and 'what 

rule it is the case of' in Pierce language. Referring to the example by Peirce, we can 

say that M4’s reasoning is: Case A & Rule B, thus Result C. In this case, the student 

uses the property of the inscribed quadrilateral inversely, despite not having been 

taught beforehand. The students thus formulate the conjecture in a logical way, which 

reverses the stream of thought. By means of this process, the student has constructed 

the meaning of the inscribed circle and the suitable terminology occurs during 

experimentation with the software. They then apply the “circumscribed” tool to the 

third triangle. In this case, the tool functions confirmatively. 

Problem 2: A power plant is to be built to serve the needs of the cities of A (Athens), 

P (Patras) and T (Thessaloniki).Where should the power plant be located in order to 

use the least amount of high-voltage cable that will feed electricity to the three cities? 

(see for example Patsiomitou, 2008b) 

Mode A-the inquiry/information mode. Fieldnote 3: The problem can be 

modelled, representing the three cities by three points on the screen A, P, T and can 

be solved by finding a point K with minimum sum ( KA+KP+KT) of distances to all 

three cities (Fig. 5). The researcher had constructed a table containing measurements 

of the angles AKP, AKT, PKT and calculations and the results on the table are linked 

to the effect of the movement of the mouse on the screen (Figure 5). Changing the 

position of point K by dragging, it is dynamically linked to the modifications in the 

resultant angles in the table and the upcoming modification in the sum of the 

segments. This process is an experimental process in which the students act on the 
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diagram transforming the shape, by dragging point K and making conjectures, that 

the minimal sum is observed when the angles are close to 120 degrees. The students 

construct statements using inductive reasoning. That means the students allow 

inferring that A entails B from multiple instantiations of B: “A: the angles are close 

to 120 degrees”, “B: the sum of the distances is minimum”. So the inductive 

statements occur due to empirical evidence to be true. Their inductive inference from 

experimentation, confirms they can infer to hold the whole class of angle 

measurements from particular instances of angle measurements, meaning they began 

with particulars and concluded with a general rule.  

Parts of Mode B and Mode E. Fieldnote 4: On screen, the students have diagram of 

figure 5, which did not remind them either of the problem they had already proved or 

of a possible solution to the problem in question. The researcher prompts the students 

to click on every hide /show action button that are connected with transformations on 

the shape or to act of their own volition. Here is an excerpt of student’s discussion: 

Fig.5 Fig.6 Fig.7 Fig.8 Fig.9 

M2:P is an equilateral because angle P is equal to 60

 and P=P (Fig. 6) 

M1:…because the triangles are equal (he points to the triangles TKP, T) 

Interviewer: Has the sum T+P+A been transformed to other segments?  

M2: P is equal to  and T  to T and the segment A…..(Fig. 6) 

M1: has not been modified (it has stayed the same) (Fig. 6, 7) … the sum becomes

minimum (the sum) when it (TA) becomes a straight line (Fig.7) 

Fieldnote 5: Student M2 uses deductive way of thinking to prove that the triangle 

P is an equilateral. The students interact with the LVAR and use a theorem to 

prove their reasoning, with students finishing each others’ sentences. During the 

interaction with LVAR (enacting the rotation of the triangle TKP by 60
o
) and through 

instrumental genesis student M1 has constructed a utilization scheme which leads the 

student to conceptually grasp the meaning of the equality of the triangles. The 

students construct the segment  (Fig. 7). This is a crucial point in the research, 

when they perceive the relation between the diagram in the figure 7 and the diagram 

in the first problem: “It’s like the equilateral we constructed before” they discuss.  

M2: we want the sum ++ to equal the segment , which means we have to 

construct a line equal to .  That means we will construct an equilateral on TA. 

Fieldnote 6: In the dialogues, the phrases marked in bold are indicative of the 

students’ levels. Student M2 constructs the equilateral (Fig. 8) using the custom tool 
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and then joins the points P and L. M2 has cognitively linked the solution to the 

problem with the proof of the problem 1 they had worked through previously. The 

student use Problem 1 as a Proposition or a Rule in Pierce’s logic which means they 

are employing deductive reasoning. They progressed from a (general) rule and 

presented results relating to the particular inferred case.After the students have 

acquired an overview of the Modes C and D the student M1 in Mode E constructs the 

triangles directly on the map and notes “there is no need to construct the circles, only 

the equilaterals. Then we have to join the opposite points” (Fig. 9). This means that 

the students have developed thinking processes and applied skills, developing a 

mathematical model to interpret the realistic problem.  

DISCUSSION  

During the exploration of problem 1 through assimilation/accommodation generating 

by the building of the LVAR, the student M2 “expresses her hypothesis not as a 

deductive sentence but as abduction namely a reverse deduction” (Arzarello et al., 

1998). When students come to explore Problem 2 through different modes of LVAR, 

the reverse is true: they input the figure which was taken as output in Problem 1 

through building LVAR. This leads the students to formulate conjectures, initially 

using an inductive way of thinking in Mode A. In Mode B, students actually 

implement logical connections in the form of articulated logical concatenations

(Arzarello et al., ibid.) to produce meaningful arguments. In Mode E, M1’s logical 

sentence includes a semperasma. Although he was a level 1 in the pre-test, he 

condenses actions into an interpretation of the mathematical results, 

proposing/determining a simple solution process to demonstrate problem solving by 

applying interaction techniques. As the composition of the LVAR changes, there is a 

transformation in students’ verbal formulations due to rules subjacent to the user’s 

organized actions. Semperasma (Patsiomitou, 2008b): the building and transforming 

of the semi-predesigned LVAR leads the students to pass from a visual way of 

thinking to a theoretical geometrical one, or to pupils’ mental transformations. 

Students use verbal formulations to exchange their ideas meaning that they transform 

their mental objects into a language mapping, corresponding to LVAR 

transformations on pages in the software.
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diagram transforming the shape, by dragging point K and making conjectures, that 
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inferring that A entails B from multiple instantiations of B: “A: the angles are close 

to 120 degrees”, “B: the sum of the distances is minimum”. So the inductive 

statements occur due to empirical evidence to be true. Their inductive inference from 

experimentation, confirms they can infer to hold the whole class of angle 

measurements from particular instances of angle measurements, meaning they began 

with particulars and concluded with a general rule.  

Parts of Mode B and Mode E. Fieldnote 4: On screen, the students have diagram of 

figure 5, which did not remind them either of the problem they had already proved or 

of a possible solution to the problem in question. The researcher prompts the students 

to click on every hide /show action button that are connected with transformations on 

the shape or to act of their own volition. Here is an excerpt of student’s discussion: 

Fig.5 Fig.6 Fig.7 Fig.8 Fig.9 
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 and P=P (Fig. 6) 
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M2: P is equal to  and T  to T and the segment A…..(Fig. 6) 

M1: has not been modified (it has stayed the same) (Fig. 6, 7) … the sum becomes

minimum (the sum) when it (TA) becomes a straight line (Fig.7) 

Fieldnote 5: Student M2 uses deductive way of thinking to prove that the triangle 

P is an equilateral. The students interact with the LVAR and use a theorem to 

prove their reasoning, with students finishing each others’ sentences. During the 

interaction with LVAR (enacting the rotation of the triangle TKP by 60
o
) and through 

instrumental genesis student M1 has constructed a utilization scheme which leads the 

student to conceptually grasp the meaning of the equality of the triangles. The 

students construct the segment  (Fig. 7). This is a crucial point in the research, 

when they perceive the relation between the diagram in the figure 7 and the diagram 

in the first problem: “It’s like the equilateral we constructed before” they discuss.  

M2: we want the sum ++ to equal the segment , which means we have to 

construct a line equal to .  That means we will construct an equilateral on TA. 

Fieldnote 6: In the dialogues, the phrases marked in bold are indicative of the 

students’ levels. Student M2 constructs the equilateral (Fig. 8) using the custom tool 

Patsiomitou,  Emvalotis  

PME 33 - 2009 1- 7 

and then joins the points P and L. M2 has cognitively linked the solution to the 

problem with the proof of the problem 1 they had worked through previously. The 

student use Problem 1 as a Proposition or a Rule in Pierce’s logic which means they 

are employing deductive reasoning. They progressed from a (general) rule and 

presented results relating to the particular inferred case.After the students have 

acquired an overview of the Modes C and D the student M1 in Mode E constructs the 
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the equilaterals. Then we have to join the opposite points” (Fig. 9). This means that 

the students have developed thinking processes and applied skills, developing a 

mathematical model to interpret the realistic problem.  

DISCUSSION  

During the exploration of problem 1 through assimilation/accommodation generating 

by the building of the LVAR, the student M2 “expresses her hypothesis not as a 

deductive sentence but as abduction namely a reverse deduction” (Arzarello et al., 

1998). When students come to explore Problem 2 through different modes of LVAR, 

the reverse is true: they input the figure which was taken as output in Problem 1 

through building LVAR. This leads the students to formulate conjectures, initially 

using an inductive way of thinking in Mode A. In Mode B, students actually 

implement logical connections in the form of articulated logical concatenations

(Arzarello et al., ibid.) to produce meaningful arguments. In Mode E, M1’s logical 

sentence includes a semperasma. Although he was a level 1 in the pre-test, he 

condenses actions into an interpretation of the mathematical results, 

proposing/determining a simple solution process to demonstrate problem solving by 

applying interaction techniques. As the composition of the LVAR changes, there is a 

transformation in students’ verbal formulations due to rules subjacent to the user’s 

organized actions. Semperasma (Patsiomitou, 2008b): the building and transforming 

of the semi-predesigned LVAR leads the students to pass from a visual way of 

thinking to a theoretical geometrical one, or to pupils’ mental transformations. 

Students use verbal formulations to exchange their ideas meaning that they transform 

their mental objects into a language mapping, corresponding to LVAR 

transformations on pages in the software.
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UNDERSTANDING AND REASONING IN A NON-STANDARD 
DIVISION TASK 

Erkki  Pehkonen & Raimo Kaasila 
University of Helsinki & University of Lapland 

Abstract: Here we focus on Finnish pre-service elementary teachers’ (N = 269) and 
upper secondary students’ (N = 1434) understanding of division. In the 
questionnaire, we used the following non-standard division problem: “We know, that 
498 : 6 = 83. How could you conclude from this relationship (without using long 
division algorithm) what is 491 : 6?” The problem mainly measures adaptive 
reasoning. Based on the results we conclude that division seems not to be fully 
understood: only one fifth of participants produced a completely correct solution. 
The most central reason for mistakes was insufficient reasoning strategies.
INTRODUCTION
Teacher education programmes face a major challenge in trying affect elementary 
teacher students’ views of mathematics, that is, their beliefs, attitudes and knowledge. 
This paper draws on the work of the research project ”Elementary teachers’ 
mathematics” financed by the Academy of Finland (project #8201695), in which data 
were collected on 269 pre-service elementary teachers at three Finnish universities 
(Helsinki, Turku, Lapland). Two questionnaires were administered in autumn 2003 to 
assess the pre-service teachers’ knowledge, attitudes and skills in mathematics at the 
beginning of their mathematics education course. The aim of the questionnaires was 
to measure their experiences of mathematics, their views of mathematics and their 
mathematical proficiency in certain topics. As part of the project we also collected 
comparison data on 1434 upper secondary students (grade 11, average age 17-18 
years) from 34 Finnish schools selected at random. In the paper we concentrate on 
pre-service teachers’ and upper secondary students’ understanding of division and 
reasoning strategies used.
In the Finnish comprehensive school curriculum (NBE 2004) one of the principal 
goals as early as the second grade is that pupils should master and understand basic 
calculations. Therefore, many upper secondary school students may think that 
division is a “piece of cake”. However, division is the most complex operation 
children have to learn in elementary school. Earlier studies show that also pre-service 
teachers and upper secondary students have clear weaknesses in understanding 
division (e.g., Simon 1993, Campbell 1996, Merenluoto & Pehkonen 2002).  One of 
the main reasons for these weaknesses is that pre-service teachers have primitive 
models of division (e.g. Graeber & al. 1989; Simon 1993). Even after learners at 
school have had formal-algorithmic teaching, they continue to be influenced by 
primitive partitive and quotitive models (Fischbein & al. 1985).
THEORETICAL FRAMEWORK 
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The division task used in this study measures several ot the strands of mathematical 
proficiency mentioned by Kilpatrick (2001), e.g. conceptual understanding, 
procedural fluency and adaptive reasoning. Yet, we view our task as measuring  
adaptive reasoning above all: to solve the task participants  must reflect on and give 
justification of mathematical arguments, especially the relationships between 
operations.
Understanding division 
Division is an important but complex arithmetical operation to consider in elementary 
teacher education. There are many reasons for its complexity: 1) division is taught as 
the inverse of multiplication, so understanding of division requires good 
understanding of multiplication; 2) division involving big numbers requires good 
estimation skills; 3) within the models of equal groups and equal measures two 
aspects of division can be differentiated: quotitive division (how many sevens there 
are in 21) and partitive division (21 divided by 7). (e.g. Anghileri & al., 2002) 
People can use very different strategies in solving division problems. Some of them 
are useful and some are misleading. Prior research has identified the following useful 
strategies (e.g. Heirdsfield & al., 1999): 1) Several different counting strategies, (a) 
skip counting, (b) repeated addition and subtraction, (c) chunks; 2) using a basic fact; 
3) holistic strategies. 
In a study by Graeber & al (1989), 129 female pre-service teachers had high scores 
on all verbal problems involving the partitive model of division. They were less 
successful on the quotitive division problems and these primitive models influence 
pre-service teachers’ choice of operations. Primitive models seem to reflect an 
understanding whereby a student separate things into equal size groups. The problem 
is whether pre-service teachers or upper secondary students can use this view to make 
sense of the abstract aspects of division. In Simon’s (1993) study of pre-service 
elementary teachers the whole-number part of the quotient, the fractional part of the 
quotient, the remainder, and the products generated in long division did not seem to 
be connected with a concrete notion of what it means to divide a quantity.
Campbell (1996) studied 21 pre-service elementary teachers’ understandings of 
division with remainder. He conducted clinical interviews with the students, who 
tried to solve four tasks with abstract contexts. The task we use here has some 
similarities in contrast to the following task used by Campbell (1996, 179): “Consider 
the number 6 ·147 +1, which we will refer to as A. If you divide A by 6, what is the 
remainder? What is the quotient?” In Campbell’s (1996, 182-183) study of the 19 
participants who tried to solve this task, 15 calculated the dividend although it 
entailed additional trouble. Of those 15 respondents 9 calculated the dividend and 
relied upon long division in solving the task. Of those 4 who did not calculate the 
dividend, only 2 correctly identified the remainder and the quotient.
Zazkis & Campbell (1996) investigated 21 pre-service elementary school teachers’ 
understanding of divisibility and the multiplicative structure of natural numbers in an 
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abstract context. The following is an example of the tasks used: “Consider the 
numbers 12 358 and 12 368. Is there a number between these two numbers that is 
divisible by 7 or by 12?” Many pre-service teachers used long division as the 
procedural activity, but some degree of conceptual understanding was evident as 
well.
In a study by Silver & al. (1993), a total of 195 sixth, seventh and eighth graders from 
a large middle school solved three quotient division problems involving remainders 
with a real-world context (the number of the buses needed). The symbol forms of the 
word problems were a) 540:40; b) 532:40 and c) 554:40. Of the respondents, 91 % 
used appropriate procedures, and 73 % of them applied long division. Only 43 % of 
the participants understood that the result - the number of buses – was an integer.  
Focus of the paper 
In this paper we focus on the following research questions: What kind of reasoning 
strategies do pre-service elementary teachers and upper secondary students use in 
solving a certain non-standard division task? How do the reasoning strategies used by 
pre-service elementary teachers and upper secondary students differ from each other? 
EMPIRICAL RESEARCH 
Research participants and data 
The study forms a part of the research project ”Elementary teachers’ mathematics”
being carried out in three Finnish universities (Helsinki, Turku, Lapland). Of the 269 
pre-service elementary teachers participating in the research, 35 % have completed  
advanced studies in school mathematics in upper secondary school. Two 
questionnaires were designed, the first measuring the pre-service teachers’ 
mathematical proficiency in certain topics, and the second their attitudes towards 
mathematics at the beginning of their university studies. The questionnaires were 
administered at the first lecture in mathematics education studies in all universities in 
autumn 2003. Students had 60 minutes time for the questionnaires and were not 
allowed to use calculators. Additional results of the project are described in Kaasila 
& al. (2008). 
In conjunction with the project we also collected comparison data with the same 
questionnaires from upper secondary school. Altogether 50 schools were selected at 
random from all Finnish upper secondary schools. A letter was sent to the directors of 
the schools in the sample, in which they were asked to select from their school one 
group of students in the general and one in the advanced second-year mathematics 
course. We received responses from 34 schools representing a total of 65 student 
groups. Thus, in total obtained data on 1434 students.  
The initial proficiency test contained a total of 12 mathematical tasks. The focal 
content areas were the rational numbers and related operations (in particular 
division), because previous research indicates that these are problem areas (e.g. 
Hannula & al. 2002).  All in all, the initial proficiency test focused on content 
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The division task used in this study measures several ot the strands of mathematical 
proficiency mentioned by Kilpatrick (2001), e.g. conceptual understanding, 
procedural fluency and adaptive reasoning. Yet, we view our task as measuring  
adaptive reasoning above all: to solve the task participants  must reflect on and give 
justification of mathematical arguments, especially the relationships between 
operations.
Understanding division 
Division is an important but complex arithmetical operation to consider in elementary 
teacher education. There are many reasons for its complexity: 1) division is taught as 
the inverse of multiplication, so understanding of division requires good 
understanding of multiplication; 2) division involving big numbers requires good 
estimation skills; 3) within the models of equal groups and equal measures two 
aspects of division can be differentiated: quotitive division (how many sevens there 
are in 21) and partitive division (21 divided by 7). (e.g. Anghileri & al., 2002) 
People can use very different strategies in solving division problems. Some of them 
are useful and some are misleading. Prior research has identified the following useful 
strategies (e.g. Heirdsfield & al., 1999): 1) Several different counting strategies, (a) 
skip counting, (b) repeated addition and subtraction, (c) chunks; 2) using a basic fact; 
3) holistic strategies. 
In a study by Graeber & al (1989), 129 female pre-service teachers had high scores 
on all verbal problems involving the partitive model of division. They were less 
successful on the quotitive division problems and these primitive models influence 
pre-service teachers’ choice of operations. Primitive models seem to reflect an 
understanding whereby a student separate things into equal size groups. The problem 
is whether pre-service teachers or upper secondary students can use this view to make 
sense of the abstract aspects of division. In Simon’s (1993) study of pre-service 
elementary teachers the whole-number part of the quotient, the fractional part of the 
quotient, the remainder, and the products generated in long division did not seem to 
be connected with a concrete notion of what it means to divide a quantity.
Campbell (1996) studied 21 pre-service elementary teachers’ understandings of 
division with remainder. He conducted clinical interviews with the students, who 
tried to solve four tasks with abstract contexts. The task we use here has some 
similarities in contrast to the following task used by Campbell (1996, 179): “Consider 
the number 6 ·147 +1, which we will refer to as A. If you divide A by 6, what is the 
remainder? What is the quotient?” In Campbell’s (1996, 182-183) study of the 19 
participants who tried to solve this task, 15 calculated the dividend although it 
entailed additional trouble. Of those 15 respondents 9 calculated the dividend and 
relied upon long division in solving the task. Of those 4 who did not calculate the 
dividend, only 2 correctly identified the remainder and the quotient.
Zazkis & Campbell (1996) investigated 21 pre-service elementary school teachers’ 
understanding of divisibility and the multiplicative structure of natural numbers in an 
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abstract context. The following is an example of the tasks used: “Consider the 
numbers 12 358 and 12 368. Is there a number between these two numbers that is 
divisible by 7 or by 12?” Many pre-service teachers used long division as the 
procedural activity, but some degree of conceptual understanding was evident as 
well.
In a study by Silver & al. (1993), a total of 195 sixth, seventh and eighth graders from 
a large middle school solved three quotient division problems involving remainders 
with a real-world context (the number of the buses needed). The symbol forms of the 
word problems were a) 540:40; b) 532:40 and c) 554:40. Of the respondents, 91 % 
used appropriate procedures, and 73 % of them applied long division. Only 43 % of 
the participants understood that the result - the number of buses – was an integer.  
Focus of the paper 
In this paper we focus on the following research questions: What kind of reasoning 
strategies do pre-service elementary teachers and upper secondary students use in 
solving a certain non-standard division task? How do the reasoning strategies used by 
pre-service elementary teachers and upper secondary students differ from each other? 
EMPIRICAL RESEARCH 
Research participants and data 
The study forms a part of the research project ”Elementary teachers’ mathematics”
being carried out in three Finnish universities (Helsinki, Turku, Lapland). Of the 269 
pre-service elementary teachers participating in the research, 35 % have completed  
advanced studies in school mathematics in upper secondary school. Two 
questionnaires were designed, the first measuring the pre-service teachers’ 
mathematical proficiency in certain topics, and the second their attitudes towards 
mathematics at the beginning of their university studies. The questionnaires were 
administered at the first lecture in mathematics education studies in all universities in 
autumn 2003. Students had 60 minutes time for the questionnaires and were not 
allowed to use calculators. Additional results of the project are described in Kaasila 
& al. (2008). 
In conjunction with the project we also collected comparison data with the same 
questionnaires from upper secondary school. Altogether 50 schools were selected at 
random from all Finnish upper secondary schools. A letter was sent to the directors of 
the schools in the sample, in which they were asked to select from their school one 
group of students in the general and one in the advanced second-year mathematics 
course. We received responses from 34 schools representing a total of 65 student 
groups. Thus, in total obtained data on 1434 students.  
The initial proficiency test contained a total of 12 mathematical tasks. The focal 
content areas were the rational numbers and related operations (in particular 
division), because previous research indicates that these are problem areas (e.g. 
Hannula & al. 2002).  All in all, the initial proficiency test focused on content 
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knowledge different from that tested in upper secondary courses and on the 
mathematics component of the matriculation examination. 
The non-standard division task we used is the following:

 “We know that 498 : 6 = 83. How could you conclude from this 
relationship (without using the long division algorithm), what is 491: 6 
= ?”

Data analysis 
We did not find in the research literature a task similar to the one used in this study.  
As mentioned earlier, our task shares certain features with that used by Campbell 
(1996); however, it also differs in a number of respects: Firstly, in the task used by 
Campbell, the dividend is explicitly mentioned as the ‘right hand side’ of the division 
algorithm, whereby respondents have an opportunity to directly identify the quotient 
and the remainder. In our task, the starting equation is given in the form of division 
and does not involve a remainder.  Secondly, unlike Campbell, we do not mention in 
the context of our task the concepts of remainder and quotient. Thirdly, the 
participants in our study did not have permission to use the long division algorithm or 
a calculator, which were central aids in Campbell’s study.   
In the first phase of this study (see Kaasila & al. 2005) we broke the 269 pre-service 
elementary teachers’ solutions down into main categories and subcategories by 
applying analytic induction. This involves scanning the data for categories of 
phenomena and for relationships among such categories, developing typologies upon 
an examination of initial cases, and then modifying them on the basis of subsequent 
cases (cf. LeCompte, Preissle, & Tesch, 1993).
In the second phase of the study (see Hellinen & Pehkonen 2008), a deductive 
approach was used: the 1434 upper secondary students’ solutions were categorized  
using essentially the same classification as used in the first phase when analysing pre-
service elementary teachers’ solutions. A number of categories were identified in 
addition to those formed in the first phase.
In the third phase we harmonised the categories we found in the phases one and two 
by reanalysing a part of the pre-service elementary teachers’ solutions. At the end we 
compared the pre-service elementary teachers’ reasoning (or solution) strategies with 
the upper secondary students’ reasoning strategies. For more details see Kaasila & al. 
(2009).
RESULTS
The problem was solved totally correctly by one fifth of the pre-service teachers and 
the upper secondary students. The typical correct and erroneous categories of 
strategies used by the pre-service teachers and the upper secondary students are 
presented in Table 1 and Table 2, respectively. More details can be found in the paper 
Kaasila & al. (2009). 
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Table 1. Main categories of successful strategies used by the pre-service teachers and 
the upper secondary students (N1 = pre-service teachers, altogether 269; N2 = upper 
secondary students, altogether 1434). 

Successful strategies N1 % N2 % 
Using subtraction and division 43 16 196 17 
Using multiplication and division 6 2 6 0.5 
Other strategies 5 2 19 1.5 
All 54 20 221 19 

Table 2. Main categories of erroneous strategies used by the pre-service teachers and 
the upper secondary students (N1 = pre-service teachers, altogether 269; N2 = upper 
secondary students, altogether 1434). 

Erroneous strategies N1 % N2 % 
Almost correct strategy 60 22 231 20 
Thinking limited to integers 59 22 165 14 
Clear misconception 12 5 42 4 
Other mistakes / irrelevant strategies 84 31 494 43 
All 215 80 932 81 

Successful strategies 
According to Table 1 only 20 % of the pre-service teachers and 19 % of the upper 
secondary students used a strategy leading to the correct answer. These successful 
strategies we divided into three main categories, described below: 
1) Using subtraction and division: 16 % of the pre-service teachers and 17 % of the 
upper secondary students used this strategy:
Example 1. The difference of 498 and 491 is 7. Hence, 6 is contained in 491 two 
times less, i.e. 81 times. As 5 units remain, making 5/6, the answer is 81 5/6 (20301)
2) The connection between multiplication and division: 2 % of the pre-service 
teachers and 0.5 % of the upper secondary students solved the task correctly using 
this method:  
Example 2.  83 · 6 = 498, 81 · 6 = 498 – 6 – 6 = 486. 
                 491 –  486 = 5,  491: 6 = 81 5/6 (6089)  

1 The four digit number in the bracket after the example refers to the test participant. When refering 
pre-service teachers, the first number is 1,2,3 or 4,  and when refering secondary students the first 
number is 5 or 6. 
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knowledge different from that tested in upper secondary courses and on the 
mathematics component of the matriculation examination. 
The non-standard division task we used is the following:

 “We know that 498 : 6 = 83. How could you conclude from this 
relationship (without using the long division algorithm), what is 491: 6 
= ?”

Data analysis 
We did not find in the research literature a task similar to the one used in this study.  
As mentioned earlier, our task shares certain features with that used by Campbell 
(1996); however, it also differs in a number of respects: Firstly, in the task used by 
Campbell, the dividend is explicitly mentioned as the ‘right hand side’ of the division 
algorithm, whereby respondents have an opportunity to directly identify the quotient 
and the remainder. In our task, the starting equation is given in the form of division 
and does not involve a remainder.  Secondly, unlike Campbell, we do not mention in 
the context of our task the concepts of remainder and quotient. Thirdly, the 
participants in our study did not have permission to use the long division algorithm or 
a calculator, which were central aids in Campbell’s study.   
In the first phase of this study (see Kaasila & al. 2005) we broke the 269 pre-service 
elementary teachers’ solutions down into main categories and subcategories by 
applying analytic induction. This involves scanning the data for categories of 
phenomena and for relationships among such categories, developing typologies upon 
an examination of initial cases, and then modifying them on the basis of subsequent 
cases (cf. LeCompte, Preissle, & Tesch, 1993).
In the second phase of the study (see Hellinen & Pehkonen 2008), a deductive 
approach was used: the 1434 upper secondary students’ solutions were categorized  
using essentially the same classification as used in the first phase when analysing pre-
service elementary teachers’ solutions. A number of categories were identified in 
addition to those formed in the first phase.
In the third phase we harmonised the categories we found in the phases one and two 
by reanalysing a part of the pre-service elementary teachers’ solutions. At the end we 
compared the pre-service elementary teachers’ reasoning (or solution) strategies with 
the upper secondary students’ reasoning strategies. For more details see Kaasila & al. 
(2009).
RESULTS
The problem was solved totally correctly by one fifth of the pre-service teachers and 
the upper secondary students. The typical correct and erroneous categories of 
strategies used by the pre-service teachers and the upper secondary students are 
presented in Table 1 and Table 2, respectively. More details can be found in the paper 
Kaasila & al. (2009). 
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Table 1. Main categories of successful strategies used by the pre-service teachers and 
the upper secondary students (N1 = pre-service teachers, altogether 269; N2 = upper 
secondary students, altogether 1434). 

Successful strategies N1 % N2 % 
Using subtraction and division 43 16 196 17 
Using multiplication and division 6 2 6 0.5 
Other strategies 5 2 19 1.5 
All 54 20 221 19 

Table 2. Main categories of erroneous strategies used by the pre-service teachers and 
the upper secondary students (N1 = pre-service teachers, altogether 269; N2 = upper 
secondary students, altogether 1434). 

Erroneous strategies N1 % N2 % 
Almost correct strategy 60 22 231 20 
Thinking limited to integers 59 22 165 14 
Clear misconception 12 5 42 4 
Other mistakes / irrelevant strategies 84 31 494 43 
All 215 80 932 81 

Successful strategies 
According to Table 1 only 20 % of the pre-service teachers and 19 % of the upper 
secondary students used a strategy leading to the correct answer. These successful 
strategies we divided into three main categories, described below: 
1) Using subtraction and division: 16 % of the pre-service teachers and 17 % of the 
upper secondary students used this strategy:
Example 1. The difference of 498 and 491 is 7. Hence, 6 is contained in 491 two 
times less, i.e. 81 times. As 5 units remain, making 5/6, the answer is 81 5/6 (20301)
2) The connection between multiplication and division: 2 % of the pre-service 
teachers and 0.5 % of the upper secondary students solved the task correctly using 
this method:  
Example 2.  83 · 6 = 498, 81 · 6 = 498 – 6 – 6 = 486. 
                 491 –  486 = 5,  491: 6 = 81 5/6 (6089)  

1 The four digit number in the bracket after the example refers to the test participant. When refering 
pre-service teachers, the first number is 1,2,3 or 4,  and when refering secondary students the first 
number is 5 or 6. 
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3) Other strategies leading to the correct answer: 2 % of the pre-service teachers and 
1.6 % of the upper secondary students solved the task correctly using other strategies. 
In the next example the pre-service teacher drew an auxiliary diagram, a circle 
divided into six equal sections: 
Example 3. Seven units are to be subtracted from each quotient. This means one from 
each and makes 82. After that, one more unit remains to be subtracted from the total 
of six quotients, i.e. 1 : 6 = 1/6, or 0.17 as a decimal fraction, from each quotient. 
Thus the answer is 81.83. (4022)  
Erroneous strategies
Misleading or otherwise erroneous strategies were used by 80 % of the pre-service 
teachers and by 81 % of the upper secondary students. We divided these strategies 
into four main categories (see Table 2): 
1) Almost correct strategy:  22 % of the pre-service teachers and 20 % of the upper 
secondary students solved the task almost correctly. The solution of this group 
indicates a fairly high level of conceptual understanding but all the phases of the 
solution were not accurately reported, or students made some careless mistakes. In 
the next example the respondent did not justify in detail why the remainder was 5.
Example 4. 498 – 6 = 492. So 492 : 6 = 82; 491 : 6 = 81 remainder 5. (3093)
2) Thinking limited to integers: 22 % of the pre-service teachers and 14 % of the 
upper secondary students were not able to calculate the quotient. In the following 
example the respondent did not even seem to think that the answer might be 
something else than an integer: 
Example 5. The number 491 is 7 units smaller than 498. Therefore 6 should go one 
time less into 491. I can’t think of any explanation for the fact that 6 goes only 81 
times into 491. (3016)  
3) Clear misconception: 5 % of the pre-service teachers and 4 % of the upper 
secondary students had clear misconceptions in their answers. In the next example the 
respondent subtracted the difference of the dividends from the quotient:  
Example 6.  498 – 491 = 7; 83 – 7 = 76. (3057) 
4) Other mistakes / irrelevant strategies: 31 % of the pre-service teachers and 43 % of 
the upper secondary students obtained no answer at all or presented a solution that 
was not relevant to the research.
Example 7. I can’t do it without a calculator (3079).               
DISCUSSION The results indicate that the task was very challenging: only about 
one fifth of the participants were able to produce a totally correct solution. More than 
half of the participants either produced no result at all or used misguided strategies. 
Although division is known to be a difficult operation that has many interpretations, 
the result is still surprisingly poor. We were especially surprised that so many pre-
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service teachers and upper secondary students failed to provide justification with their 
responses, although it was specifically asked for in the instructions for the task. 
When comparing the reasoning strategies used by the pre-service teachers with those 
used by the upper secondary students, we see that the results do not differ very much 
from each other. Altogether 20 % of the pre-service teachers and 19 % of the upper 
secondary students used a strategy in their solution that led to the correct answer. The 
reasoning strategies used in these groups were also quite similar. Almost all who 
obtained the correct result used both subtraction and division in their reasoning.  
We identified three main reasons for mistakes or incomplete solutions: 1) Staying on 
the integer level: 10 % of the pre-service teachers and 4 % of the upper secondary 
student gave their answer as an integer, and it seems that in these cases they did not 
even think that the answer might be something else than an integer; 2) Inability to 
handle the remainder: Some of the respondents seemed to understand that the result 
was not an integer but a fraction, but they could not handle the remainder. For 
example, they expressed the remainder in the answer in tenths not in sixths (cf. 
Campbell 1996, 180). It seems that in school dealing with remainders has been a 
procedural matter, with too little attention focused on the idea that the fractional part 
of the quotient provides different (yet related) information from the remainder 
(Simon 1993); 3) Insufficient reasoning strategies: A little more than a fifth of the 
participants solved the task almost correctly. In these cases, all the phases of the 
solution were not accurately reported. The reason for insufficient reasoning strategies 
may be a lack of language skills, because the respondents had great difficulties in 
providing written explanations of their reasoning (see also Silver et al. 1993).  
On the basis of this study we can suggest some guidelines for the content of 
mathematics courses in teacher education and in school: learners need a) a concrete, 
contextualised knowledge of division and b) the ability to examine division as an 
abstract mathematical object (cf. Simon 1993). Above all else learners need c) tasks 
and situations through which they can develop their adaptive reasoning skills. 
According to our study, a lack of reasoning skills may be the main factor causing 
students difficulties when solving non-standard division tasks.  
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3) Other strategies leading to the correct answer: 2 % of the pre-service teachers and 
1.6 % of the upper secondary students solved the task correctly using other strategies. 
In the next example the pre-service teacher drew an auxiliary diagram, a circle 
divided into six equal sections: 
Example 3. Seven units are to be subtracted from each quotient. This means one from 
each and makes 82. After that, one more unit remains to be subtracted from the total 
of six quotients, i.e. 1 : 6 = 1/6, or 0.17 as a decimal fraction, from each quotient. 
Thus the answer is 81.83. (4022)  
Erroneous strategies
Misleading or otherwise erroneous strategies were used by 80 % of the pre-service 
teachers and by 81 % of the upper secondary students. We divided these strategies 
into four main categories (see Table 2): 
1) Almost correct strategy:  22 % of the pre-service teachers and 20 % of the upper 
secondary students solved the task almost correctly. The solution of this group 
indicates a fairly high level of conceptual understanding but all the phases of the 
solution were not accurately reported, or students made some careless mistakes. In 
the next example the respondent did not justify in detail why the remainder was 5.
Example 4. 498 – 6 = 492. So 492 : 6 = 82; 491 : 6 = 81 remainder 5. (3093)
2) Thinking limited to integers: 22 % of the pre-service teachers and 14 % of the 
upper secondary students were not able to calculate the quotient. In the following 
example the respondent did not even seem to think that the answer might be 
something else than an integer: 
Example 5. The number 491 is 7 units smaller than 498. Therefore 6 should go one 
time less into 491. I can’t think of any explanation for the fact that 6 goes only 81 
times into 491. (3016)  
3) Clear misconception: 5 % of the pre-service teachers and 4 % of the upper 
secondary students had clear misconceptions in their answers. In the next example the 
respondent subtracted the difference of the dividends from the quotient:  
Example 6.  498 – 491 = 7; 83 – 7 = 76. (3057) 
4) Other mistakes / irrelevant strategies: 31 % of the pre-service teachers and 43 % of 
the upper secondary students obtained no answer at all or presented a solution that 
was not relevant to the research.
Example 7. I can’t do it without a calculator (3079).               
DISCUSSION The results indicate that the task was very challenging: only about 
one fifth of the participants were able to produce a totally correct solution. More than 
half of the participants either produced no result at all or used misguided strategies. 
Although division is known to be a difficult operation that has many interpretations, 
the result is still surprisingly poor. We were especially surprised that so many pre-
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service teachers and upper secondary students failed to provide justification with their 
responses, although it was specifically asked for in the instructions for the task. 
When comparing the reasoning strategies used by the pre-service teachers with those 
used by the upper secondary students, we see that the results do not differ very much 
from each other. Altogether 20 % of the pre-service teachers and 19 % of the upper 
secondary students used a strategy in their solution that led to the correct answer. The 
reasoning strategies used in these groups were also quite similar. Almost all who 
obtained the correct result used both subtraction and division in their reasoning.  
We identified three main reasons for mistakes or incomplete solutions: 1) Staying on 
the integer level: 10 % of the pre-service teachers and 4 % of the upper secondary 
student gave their answer as an integer, and it seems that in these cases they did not 
even think that the answer might be something else than an integer; 2) Inability to 
handle the remainder: Some of the respondents seemed to understand that the result 
was not an integer but a fraction, but they could not handle the remainder. For 
example, they expressed the remainder in the answer in tenths not in sixths (cf. 
Campbell 1996, 180). It seems that in school dealing with remainders has been a 
procedural matter, with too little attention focused on the idea that the fractional part 
of the quotient provides different (yet related) information from the remainder 
(Simon 1993); 3) Insufficient reasoning strategies: A little more than a fifth of the 
participants solved the task almost correctly. In these cases, all the phases of the 
solution were not accurately reported. The reason for insufficient reasoning strategies 
may be a lack of language skills, because the respondents had great difficulties in 
providing written explanations of their reasoning (see also Silver et al. 1993).  
On the basis of this study we can suggest some guidelines for the content of 
mathematics courses in teacher education and in school: learners need a) a concrete, 
contextualised knowledge of division and b) the ability to examine division as an 
abstract mathematical object (cf. Simon 1993). Above all else learners need c) tasks 
and situations through which they can develop their adaptive reasoning skills. 
According to our study, a lack of reasoning skills may be the main factor causing 
students difficulties when solving non-standard division tasks.  
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PROBLEM POSING: COMPARISON BETWEEN EXPERTS AND 

NOVICES 

Pelczer, I., Gamboa, F. 

National Autonomous University of Mexico, Mexico 

In the present paper, we compare experts’ and novices’ problem posing. The analysis 

is made from process’ point of view, looking for differences in trajectories that can 

be defined on a problem posing model. The model was defined on base of 

experiments done with high-school and university students, Olympiad participants 

and secondary / high-school teachers. The model is of a “generate and test” type 

consisting of five phases: setup, transformation, formulation, evaluation and 

assessment. The main finding is that novices’ problem posing process consist of a, 

mostly, sequential follow of  two particular phases; meanwhile in experts’ case there 

is a cyclical parsing of the phases. The reason of this difference seems to reside on 

knowledge, especially in what we call strategic and control knowledge.   

INTRODUCTION 

Problem posing received increasing attention during the last decade from behalf of 

mathematics educators. One of the trends consists of using problem posing in 

teaching; Japan, for example, has a strong tradition in this line (for example, Imaoka, 

2001; Kanno et al., 2007). Another one, teaches problem posing; the book of Brown 

and Walter (1990) is good example of this. Both of them are practical approaches, 

however, from the point of view of the main interest of the conducted research the 

trends can be grouped into 1) relation between problem posing and problem solving; 

2) problem posing abilities and the processes involved in the posing task; 3) 

classification of problem posing tasks and 4) problem posing and creativity. Although 

all these investigations contributed with valuable information about the problem 

posing process, there is no generally accepted problem posing model. Remains under 

debate whether there is a need for such model or, as a matter of fact, we are in a more 

general case of problem solving and, therefore, a problem solving model it would be 

enough to explain all the observed cases. The main challenge in problem posing 

research remains the definition of a framework, of a theoretical basis, that would 

allow to integrate the variety of results obtained on particular aspects. 

In the paper we present a model of problem posing and we concentrate on comparing 

experts and novices by their trajectories defined by the phases of the model. Since the 

main interest is on comparison, the model will be described briefly such to create the 

context necessary for the purpose of the paper. We shall also discuss some 

differences between problem posing and solving from the point of view of the 

involved knowledge in the model.  
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METHODOLOGY 

For defining the model, the principle of analytic induction was applied to a series of 

experiments ran with high school and first year university students (considered as 

novice)  along with Olympiad participants and secondary / high school teachers 

(experts). All the participants had to pose three sequence problems such to have one 

easy, one of average difficulty and a difficult one. After completing the task, they 

answered a questionnaire concerning the problem posing process. The participants 

were encouraged to freely comment the task. Complementary, few interviews were 

done with university students. Overall, in the experiments participated 44 high school 

students; 25 university students; 22 Olympiad participants; 41 middle school teachers 

and 22 high school teachers. The model represents a synthesis of several partial 

analysis (Pelczer & Gamboa, 2008a; Pelczer et al., 2008b; Voica & Pelczer, 2009).   

THE MODEL 

The principle of analytic induction (Patton, 2002) was applied to the questionnaire 

and interview answers such to uncover common themes. In words of Taylor and 

Bogdan (1984, p. 124): “analytic induction, in contrast to grounded theory, begins 

with an analyst’s deduced propositions or theory-derived hypotheses and is a 

procedure for verifying theories and propositions based on qualitative data”. The 

questions of the questionnaire can be grouped as roughly corresponding to the: 

understanding, planning, implementing and looking back phases of the Pólya’s 

problem solving model. However, research posterior to Pólya on problem solving 

stressed the importance of metacognitive skills as ones that underlie the application 

of algorithms and heuristics. 

As Flavell (1976) defined : “Metacognition refers to one’s knowledge concerning 

one’s cognitive processes and products or anything related to them….Metacognition 

refers, among other things, to the active monitoring and consequent regulation and 

orchestration of these processes in relation to the cognitive objects or data on which 

they bear, usually in the service of some concrete goal or objective”. 

Distinguishing between cognitive and metacognitive behaviors is not easy. Roberts 

and Erdos (1993) noted: “definitional issues concerning metacognition are 

complicated and it is difficult to know how much of metacognition is meta and how 

much is cognition” (p. 259). In intent to systematize the study of metacognition, 

frameworks for metacognitive processes were proposed (Davidson, Dueser & 

Sternberg, 1994; Schoenfeld, 1985; Gieger & Galbrath, 1998). For example, 

Davidson et al. (1994) identified four metacognitive processes applicable in any 

domain: identify and define the problem; mentally represent the problem; plan how to 

proceed; evaluate what you know about your performance. These are very general 

categories of metacognitive behaviors, so our purpose is to refine them and identify 

the cognitive stages to which each belongs. 
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The common themes in the participant’s problem posing were compared against 

Sharples’ account of creative writing (Sharples, 1999). In his account, the process of 

creation is seen as cycle of cognitive engagement and reflection subject to a series of 

constraints. The model we define consist of five stages, not necessarily parsed in 

sequential order: setup, transformation, formulation, evaluation and final assessment. 

In the following table we describe these stages along with the sub-processes 

involved, however we shall not detail since our interest is to define trajectories based 

on the model. 

Stage Sub processes 

Setup Interpret task’s restrictions; Define constraints and 

context (topic, domain); Preliminary definition of some 

evaluation criteria; Reflect on necessary knowledge, 

recall problems; Design main idea (strategy); Define start 

point (knowledge, theorem, problem, situation); 

Formulate an initial expression 

Transformation Analyze problem characteristics; Identify available 

techniques; Reflect on techniques from the point of view 

of their application; Perform transformation; Assess 

consequences; Reflect on the appropriateness of the 

technique. 

Formulation Identify possible questions; Reflect on the type of 

formulations in which these questions can have sense 

(formal, textual, everyday situation); Assess the value of 

each formulation and context; Select a formulation 

Evaluation Assess the proposed formulation (problem) with the 

initially set criteria; Assess problem’s meta-

characteristics, the technique and formulation; Decide if 

changes are needed (accept problem as finished or 

modify); If changes are needed, decide the aspect to be 

modified. 

Final assessment Reflect on the worth of the strategy, applied techniques 

and formulation; Identify the most important steps in the 

generation; Reflect  on difficulty and interestingness; 

Reflect on the relation between technique, formulation 

and difficulty / interestingness; Reflect on one’s 

confidence in handling the task, degree of satisfaction 

with the process and result. 

Table 1: Stages and sub processes in problem posing. 

Based on the model, we identified the stages novices and experts pass (the trajectory) 

and compared them. In the following we present the result of the comparison. 
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METHODOLOGY 

For defining the model, the principle of analytic induction was applied to a series of 

experiments ran with high school and first year university students (considered as 

novice)  along with Olympiad participants and secondary / high school teachers 

(experts). All the participants had to pose three sequence problems such to have one 

easy, one of average difficulty and a difficult one. After completing the task, they 

answered a questionnaire concerning the problem posing process. The participants 

were encouraged to freely comment the task. Complementary, few interviews were 

done with university students. Overall, in the experiments participated 44 high school 

students; 25 university students; 22 Olympiad participants; 41 middle school teachers 

and 22 high school teachers. The model represents a synthesis of several partial 

analysis (Pelczer & Gamboa, 2008a; Pelczer et al., 2008b; Voica & Pelczer, 2009).   

THE MODEL 

The principle of analytic induction (Patton, 2002) was applied to the questionnaire 

and interview answers such to uncover common themes. In words of Taylor and 

Bogdan (1984, p. 124): “analytic induction, in contrast to grounded theory, begins 

with an analyst’s deduced propositions or theory-derived hypotheses and is a 

procedure for verifying theories and propositions based on qualitative data”. The 

questions of the questionnaire can be grouped as roughly corresponding to the: 

understanding, planning, implementing and looking back phases of the Pólya’s 

problem solving model. However, research posterior to Pólya on problem solving 

stressed the importance of metacognitive skills as ones that underlie the application 

of algorithms and heuristics. 

As Flavell (1976) defined : “Metacognition refers to one’s knowledge concerning 

one’s cognitive processes and products or anything related to them….Metacognition 

refers, among other things, to the active monitoring and consequent regulation and 

orchestration of these processes in relation to the cognitive objects or data on which 

they bear, usually in the service of some concrete goal or objective”. 

Distinguishing between cognitive and metacognitive behaviors is not easy. Roberts 

and Erdos (1993) noted: “definitional issues concerning metacognition are 

complicated and it is difficult to know how much of metacognition is meta and how 

much is cognition” (p. 259). In intent to systematize the study of metacognition, 

frameworks for metacognitive processes were proposed (Davidson, Dueser & 

Sternberg, 1994; Schoenfeld, 1985; Gieger & Galbrath, 1998). For example, 

Davidson et al. (1994) identified four metacognitive processes applicable in any 

domain: identify and define the problem; mentally represent the problem; plan how to 

proceed; evaluate what you know about your performance. These are very general 

categories of metacognitive behaviors, so our purpose is to refine them and identify 

the cognitive stages to which each belongs. 
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The common themes in the participant’s problem posing were compared against 

Sharples’ account of creative writing (Sharples, 1999). In his account, the process of 

creation is seen as cycle of cognitive engagement and reflection subject to a series of 

constraints. The model we define consist of five stages, not necessarily parsed in 

sequential order: setup, transformation, formulation, evaluation and final assessment. 

In the following table we describe these stages along with the sub-processes 

involved, however we shall not detail since our interest is to define trajectories based 

on the model. 

Stage Sub processes 

Setup Interpret task’s restrictions; Define constraints and 

context (topic, domain); Preliminary definition of some 

evaluation criteria; Reflect on necessary knowledge, 

recall problems; Design main idea (strategy); Define start 

point (knowledge, theorem, problem, situation); 

Formulate an initial expression 

Transformation Analyze problem characteristics; Identify available 

techniques; Reflect on techniques from the point of view 

of their application; Perform transformation; Assess 

consequences; Reflect on the appropriateness of the 

technique. 

Formulation Identify possible questions; Reflect on the type of 

formulations in which these questions can have sense 

(formal, textual, everyday situation); Assess the value of 

each formulation and context; Select a formulation 

Evaluation Assess the proposed formulation (problem) with the 

initially set criteria; Assess problem’s meta-

characteristics, the technique and formulation; Decide if 

changes are needed (accept problem as finished or 

modify); If changes are needed, decide the aspect to be 

modified. 

Final assessment Reflect on the worth of the strategy, applied techniques 

and formulation; Identify the most important steps in the 

generation; Reflect  on difficulty and interestingness; 

Reflect on the relation between technique, formulation 

and difficulty / interestingness; Reflect on one’s 

confidence in handling the task, degree of satisfaction 

with the process and result. 

Table 1: Stages and sub processes in problem posing. 

Based on the model, we identified the stages novices and experts pass (the trajectory) 

and compared them. In the following we present the result of the comparison. 
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COMPARISON BETWEEN NOVICE AND EXPERTS 

High school students (considered as novices, since was the first time they were taking 

an introductory analysis course) had a very simple way to generate the problems. In 

most cases, the setup phase ended with the final problem. They do not perform 

subsequent transformations in order to get the final expression. Instead, they try to 

solve the problem and, in case of no exit, abandon and propose a new expression. In 

this case, problem posing oscillates between a first proposal (setup), formulation and 

evaluation (see figure 1). The evaluation is done by an attempt to solve it, but when 

the student fails to solve he doesn’t try to modify the expression such to become 

solvable but rather (randomly) define another expression.  

In this particular case, it does not seem to occur any final assessment. Very few 

students tried to reach a new problem and their search is more random then goal-

oriented. They neither seem to dispose of strategic knowledge (that is, how to outline 

the process) since they propose problems that are weak modifications of recalled 

examples. Knowledge of techniques (that is, modifications that can be performed) is 

also weak; even when they are able to identify the type of problem (and they can 

solve it) they can’t invent ways of proposing a new problem of that type. 

We give two examples. In the first one, the student tries out several expressions, 

don’t know how to continue and finally opt for a very simple problem expression. 

This behavior corresponds to the loop Engagement –Evaluation –Engagement, since 

there is really no transformation, formulation but instead a random invention of an 

expression about which it is hoped to be easy to solve (figure 1). The other type of 

observed trajectory involves transformation instead of a new beginning on the task. 

Once evaluation is performed (like trying to solve) there is a return to the 

transformation step. Several transformations can be done at once, so we have a 

successive Transformation-Evaluation phase (figure 2). 

Figure 1. Example for the Setup – Evaluation - Setup loop; Two abandons before the 

proposal of final form 
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Figure 2. Example for the Setup –Evaluation –Transformation - Evaluation loop;  

Since there it is no indication on how he got to this expression, we suppose that he 

wrote it down without any further verification. These expressions seem to be taken 

directly from memory (rather then “reconstructed” on base of some stored features of 

the problem). The student recalls that he saw something of this form and tries to write 

it down. He modifies the expression (it is not really clear why) and, in the end, gives 

a new one. Although at this moment we have a transformation and a kind of 

evaluation of the proposed expression, the problem posing process remains at the 

level of a complete novice. At this level it seems that memory and recall has a strong 

accent, meanwhile there is almost no trace of strategic, domain–specific or task 

specific knowledge.  

The most complex problem posing process that we could identify from the work of 

the high school students shows the existence of a simple strategy: using a domain-

specific rule in order to get new problems (figure 3, two different examples).  
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Figure 3. The use of domain specific rule for posing a problem 

In these examples we can see that the students realized that some of the domain-

specific rules can be employed also for new constructions not only for solving 

problems. It remains an open issue whether they have tools and knowledge to 

construct an arbitrary sequence that fits into the restriction (like in above cases, 

constructing a sequence with given property – tending to zero) or they just rely again 

on memory retrieval. However, the student’s process can be described in terms of 

Setup-Formulation-Evaluation stages and no cycles are present. 

We state a preliminary conclusion: high school student’s problem posing process is 

mostly a linear process that relies heavily on the retrieval of problems seen (and 

solved) before and, at most, uses a very limited domain specific knowledge (in form 

of domain-specific rules).  
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it down. He modifies the expression (it is not really clear why) and, in the end, gives 

a new one. Although at this moment we have a transformation and a kind of 

evaluation of the proposed expression, the problem posing process remains at the 

level of a complete novice. At this level it seems that memory and recall has a strong 

accent, meanwhile there is almost no trace of strategic, domain–specific or task 

specific knowledge.  

The most complex problem posing process that we could identify from the work of 

the high school students shows the existence of a simple strategy: using a domain-

specific rule in order to get new problems (figure 3, two different examples).  
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Figure 3. The use of domain specific rule for posing a problem 

In these examples we can see that the students realized that some of the domain-

specific rules can be employed also for new constructions not only for solving 

problems. It remains an open issue whether they have tools and knowledge to 

construct an arbitrary sequence that fits into the restriction (like in above cases, 

constructing a sequence with given property – tending to zero) or they just rely again 

on memory retrieval. However, the student’s process can be described in terms of 

Setup-Formulation-Evaluation stages and no cycles are present. 

We state a preliminary conclusion: high school student’s problem posing process is 

mostly a linear process that relies heavily on the retrieval of problems seen (and 

solved) before and, at most, uses a very limited domain specific knowledge (in form 

of domain-specific rules).  
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Olympiad participants’ and teachers’ problem posing process is more complex: they 

try to formulate more explicit criteria for assessment, make transformations and even 

try to build “interesting” problems. In some cases from an initial formulation new 

problems are proposed. Also, the last step, final assessment is present in some cases. 

The most interesting fact is that here we have an influence between the different 

behaviors: for example, evaluation can impose changes (and going back) to previous 

phases and cause a change in formulation or in transformations, and in cases, even 

the start over of the process. Final assessment has the role of overall assessment of 

the process and can influence future executions of similar tasks. We shall give some 

examples in order to illustrate some of the backward transition between different 

stages. 

One of the teachers commented at the end of the first problem: “Meanwhile I was 

posing this problem I thought it is too easy and a recurrence relation would be more 

proper…” As second problem then he proposes the same one, but rewrites the generic 

terms as a recurrence relation. This is a clear example on how a process from Final 

assessment can affect the whole process in subsequent tasks (we have an “Final 

assessment-Setup” feedback). The influence can come in form of a reformulation of 

difficulty level or as the necessity to use more complex transformations. 

Another teacher wrote the following comment at the end of the proposed problem: 

“Initially I thought of a sequence like 566555666655555…and wanted to give three 

questions about it such to have an easy, an average and a difficult one. It was difficult 

for me to find a formulation for difficult problem and I abandoned the idea”. In this 

case, the Formulation phase affects the whole process and the lack of a satisfying 

question leads to start over (“Formulation-Setup” feedback). 

A third teacher reports that he thought of combining three theorems in the problems 

(in particular, all three in the difficult problem – see figure below). In his words “For 

the difficult problem it was necessary to think more and I tried out different 

expressions until getting the final formulation” (“Evaluation-Transformation”).  

Figure 4. The expressions analyzed for the difficult problem (he selected the last one) 

In figure 4 we see how several transformations were effectuated before the final 

formulation was given (cyclic process on Transformation). The same phenomena can 

be observed at some University students and Olympiad participants: often they start 

from a known results and re-describe the constituting elements (repeated  

Transformation). In some occasions, this get concretized in formulating several 

questions related to a problem. 
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It is important to underline that these participants also thought of the whole process 

and frequently expressed their feelings about it. These feelings, related to the task 

solving experience, are likely to influence future approaches to similar task.  

In conclusion, novices’ and experts’ trajectories are different. We synthesize our 

results in figure 5. The transformation  stage can miss at novices. 

a. b.

Figure 5. Trajectories of novices (a.) and experts (b.) 

The distinct trajectories illustrate the differences between novices and experts and 

can serve as basis for teaching problem posing.  

CONCLUSIONS AND DISCUSSION 

In this article we discussed: 1) a model for classroom problem posing and 2) 

differences between novices and experts as it can be identified on the proposed 

model. The model consist of five stages: setup, transformation, formulation, 

evaluation and final assessment. Each stages contains several sub-processes. At a 

closer look the proposed model resembles to some extent the problem solving model 

proposed by Yimer and Ellerton (2006). Naturally, the question that arises is: do we 

need a model for problem posing or, in fact, problem posing is “covered” by a 

problem solving model. We argue that there is a need for a separate model, since the 

sub-processes involved in the stages are different and the knowledge has to be 

applied in a distinct way. In particular, when we look at textbook problems, most of 

them are well-formulated so one can build a completely and clearly defined problem 

space with well-identified start and end points. More than that, most often that space 

is quite common to most of students (like the one associated to the most common 

solution). However, during problem posing one has to invent the problem space even 

if there is a clear start and final state. The meaning of these two states can present 

huge variations when they appear in different problem spaces. Therefore, we argue 

that differences between problem posing and solving models occur especially at 

meta-cognitive level.  

On other hand, the analysis we carried out shows that novices’ and experts’ problem 

posing defines different trajectories. By this way, the model helps also to follow the 

novice’s advance in problem posing. When analyzing the relation of different stages 

with knowledge types involved in problem posing we get hints about how to teach 
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can serve as basis for teaching problem posing.  

CONCLUSIONS AND DISCUSSION 

In this article we discussed: 1) a model for classroom problem posing and 2) 

differences between novices and experts as it can be identified on the proposed 

model. The model consist of five stages: setup, transformation, formulation, 

evaluation and final assessment. Each stages contains several sub-processes. At a 

closer look the proposed model resembles to some extent the problem solving model 

proposed by Yimer and Ellerton (2006). Naturally, the question that arises is: do we 

need a model for problem posing or, in fact, problem posing is “covered” by a 

problem solving model. We argue that there is a need for a separate model, since the 

sub-processes involved in the stages are different and the knowledge has to be 

applied in a distinct way. In particular, when we look at textbook problems, most of 

them are well-formulated so one can build a completely and clearly defined problem 

space with well-identified start and end points. More than that, most often that space 

is quite common to most of students (like the one associated to the most common 

solution). However, during problem posing one has to invent the problem space even 

if there is a clear start and final state. The meaning of these two states can present 

huge variations when they appear in different problem spaces. Therefore, we argue 

that differences between problem posing and solving models occur especially at 

meta-cognitive level.  

On other hand, the analysis we carried out shows that novices’ and experts’ problem 

posing defines different trajectories. By this way, the model helps also to follow the 

novice’s advance in problem posing. When analyzing the relation of different stages 

with knowledge types involved in problem posing we get hints about how to teach 
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problem posing and how to address to personalize instruction. However, these lines 

remain open for future investigation. 
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THE CASE OF KARLA IN THE EXPERIMENTAL TEACHING OF 

FRACTIONS 

Paula B. Perera & Marta E. Valdemoros 

CINVESTAV-IPN, Mexico 

The case study we present is a part of a doctoral research, which was carried out in a 

fourth grade group (children aged 9) of a public elementary school. This research 

dealt with the notion of fraction and some of its meanings (part-whole relationship, 

intuitive quotient, measure, and rudiments of multiplicative operator) in the 

development of an experimental teaching. This study was composed of: initial 

questionnaire, teaching program, final questionnaire, and interviews. Karla was 

chosen as one of our cases because, in solving the questionnaires, she made use of 

various pictorial representations and she also showed an outstanding performance 

during the teaching sessions.  

THEORETICAL FRAMEWORK 

Freudenthal (1983) and Goffree (2000) propose that the education which is taught 

through the development of concepts accentuates the formal attitude of definitions. 

These authors suggest that teaching should be founded upon the experience of the 

student so that concepts do not remain isolated in his/her mind and they could be 

applied in solving everyday problems.  

Freudenthal (1983) and Streefland (1991, 1993) establish the relationship that exists 

between the didactic approach and the mathematical reasoning regarding the teaching 

of fractions in elementary education. The lines of work of these researchers have 

been adopted in the designing of our methodological instruments as well as for their 

application in the development of the present doctoral study, which is partially 

described here.  

Thomas Kieren has conducted studies on the construction of fractional numbers; his 

objective is to find out which is the genesis of such numbers. This author recognizes 

various intuitive constructs (measure, quotient, multiplicative operator and ratio) 

which serve as the basis for the constitution of the concepts which are relative to the 

fractions. Moreover, he identifies a fifth intuitive construct: the part-whole 

relationship which acts as a support for the construction of the four constructs 

previously mentioned (Kieren, 1983). 

In the same way, Kieren (1980) considers the part-whole relationship as a whole 

(continuous or discrete) subdivided into equal parts, pinpointing as fundamental the 

relationship that exists between the whole and a number designed in parts. The 

fraction as a measure is recognized by him as the assignation of a number to a region 

or a magnitude (of one, two or three dimensions), the final product of the equitable 
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partition of one unit. In relation to the fraction as a quotient, he regards it as the result 

of the division of one or several objects into a determined number of people or parts 

(Kieren, 1980, 1983, 1988, 1992). As for the fraction as operator, he identifies it as a 

multiplicative transformator of a set towards another equivalent set, this 

transformation may be thought too as the amplification or reduction of a geometric 

shape into another shape associated with the use of fractions. The fraction as a ratio is 

distinguished as the numerical comparison between two magnitudes (Kieren, 1980). 

In our teaching program, we treat the meanings of the fraction linked to the part-

whole relationship, measure, intuitive quotient, and multiplicative operator

proposed by this researcher.  

Bergeron y Herscovics (1987) indicate that the quantification of the part-whole 

relationship leads us to differentiate three levels of the notion of measure, the 

iterative measure which implies the reiterative use of one unit of measure, when the 

quantity measured is an exact multiple of the unit of measure, the fractional 

measure, understood as the resulting of the equidivision of the whole or one of its 

parts and the sub-unitary measure, which refers to the fraction considered as a new 

unit to take more accurate measures.  

On the other hand, Kieren (1993) presents a resourceful model for the comprehension 

of mathematics. This model comprises eight incrusted levels of knowledge or 

efficient actions, which are: primitive making, make an image, have an image, notice 

property, formalize, observe, structure and invent. For this study we took into 

account the first three levels that correspond to the most intuitive thought of the 

individual, that is to say, partition as a “primitive action”, “make an image” as the 

problems of distribution that anticipate in the use of different partitions and fractions 

to represent the same quantity, and “have an image” as equivalent fractions generated 

by means of a given fraction.  

Furthermore, we have taken into account the ideas produced by Kieren (1983, 1992, 

1993) with reference to the construction of the fractional number on behalf of the 

student, and also those of Solé and Coll (1999) which refer to the way how the child 

learns the content which is intended to be taught. What has been mentioned above 

provided us a point of view about the cognitive aspects of the subjects in our study 

that we consider to carry out the experimental teaching and the case study.  

RESEARCH PROBLEM 

Various researchers (Figueras, 1988; Valdemoros, 1993, 1997, 2001; Pitkethly and 

Hunting, 1996; Perera, and Valdemoros, 2002) immersed in the field of educational 

studies in mathematics, indicate that fractions are one of the mathematical contents 

that causes difficulties both in their teaching and learning, in elementary levels. 

Together with these problematic issues, researchers such as Steencken y Maher 

(2003), Bulgar (2003), Nabor (2003) among others, have devoted their time to 

conduct teaching experiments on the subject of the knowledge of fractions with 

students of elementary education.  
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Taking into account the complexity that the construction of fractional numbers 

represents for children, we came out with a research question: What teaching 

situations should be employed by the teacher in order to facilitate the learning of 

fractional numbers in children incorporated to the fourth grade of elementary 

education?  

Consequently, the problem of this research is directed to know how does a realistic 

and constructivist mathematical teaching, influence the child in the acquisition of 

the notions relative to the fraction.  

METHOD 

The study of the case reported here is a part of a doctoral research, which was carried 

out in a fourth grade group (children aged 9) of a public elementary school in Mexico 

City, where we develop an experimental teaching with a constructivist approach that 

contains activities referred to different scenarios of the children’s daily life. The 

methodological instruments for this experiment were: initial questionnaire, teaching 

program, final questionnaire and interviews. With the case study we concluded the 

field work, carrying out in its middle part a deep assessment of the teaching.  

Methodological Instruments 

The initial exploratory questionnaire consisted of 13 tasks related to the meanings of 

fraction: part-whole relationship, quotient (in relation to the sharing tasks), 

measure and the rudiments of the multiplicative operator.  

The teaching program was composed of activities that revolve around various 

“scenarios” associated to the children’s real life, in which there were several 

situations where fractions could be applied.  

The final questionnaire comprised 13 analogous tasks to those items posed in the 

initial questionnaire and to those carried out in the teaching sessions. The purpose of 

this instrument was to assess the advances reached by students in the teaching 

program.  

The interview was the fundamental methodological instrument of the case study. Its 

purpose was to delve into the relevant learning processes of the students interviewed. 

The interview was semi-structured (according to Cohen and Manion, 1990). This 

instrument consisted of six tasks, each one was directed to the application of one 

meaning of the fraction, the first and the third items were directed to the part-whole 

relationship, the second one to measure, the fourth and the fifth tasks to the quotient 

(sharing problems) and the sixth one to the multiplicative operator. Three children 

were interviewed for the case study; they were chosen according to the results 

obtained in the questionnaires and in the teaching sessions.  
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The Case of Karla

The case of Karla is the only one to be considered in this report. The mentioned girl 

was chosen for her evident ability to express her ideas through the use of pictograms
1
, 

while solving problems.  

In the following paragraphs we present the most relevant aspects that we identify in 

the qualitative analysis carried out to the methodological instruments applied to the 

case of Karla.  

Initial Questionnaire 

We observed that Karla possessed a scarce knowledge about fractions, since she only 

obtained 4 correct answers out of the 13 tasks comprised in this questionnaire.  

Karla had trouble subdividing a continuous or discrete whole into a determined 

number of equal parts and she gave as an answer a natural number. The girl had 

difficulties identifying the whole and its resulting partition, in sharing tasks. Upon 

increasing to double or decreasing to half the sides of a given shape, Karla expanded 

and reduced the figures, ignoring the corresponding multiplicative operators; for this 

girl, expanding to double only meant “making it bigger”, while decreasing to half, 

only meant “making it smaller”. 

The Teaching Program 

In the sessions of the teaching program, Karla identified and wrote the fractions 

represented in a whole. In the same way, she was able to produce equivalent fractions 

when a fraction was given. In the sharing problems, she conveyed symbolic-

arithmetic expressions of a fraction in order to name the part of the whole that was 

distributed. These tasks brought about in her the anticipation to the addition of 

fractions with equal denominator. The applications of multiplicative operator favored 

Karla’s intuitive recognition of the multiplicative operator 1/2.  

We noticed that Karla mentally reconstructed her reality, in the way she solved the 

tasks that composed the didactic “scenarios”, emerging in her answers the connection 

and the use of various meanings of fraction (according to the constructs of Kieren, 

1993). Also, the activities in the instructional “scenarios” brought about interaction, 

exchange of ideas, discussion of viewpoints among her and her classmates, but above 

all, the advance in her knowledge since the reflection upon the posed problems was 

caused.  

On the other hand, we should emphasize that the representations given by Karla in 

her answers proved an accurate application of some of the semantic contents of 

fraction, such as partition, equivalence, the identification of a unit, the reconstruction 

of the whole, and the part-whole relationship.  

Final Questionnaire  

                                                
1 Pictograms: They are drawings in which the qualitative and quantitative aspects are linked. Furthermore, it is possible 

to operate with pictograms (Valdemoros, 1993).  
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Karla showed noticeable progress in her knowledge regarding fractions, after having 

participated in the experimental teaching. This is proved by the 12 tasks that she 

solved correctly out of the 13 items comprised in the final questionnaire.  

Karla overcame the difficulty she showed in the initial questionnaire, when 

subdividing a continuous or discrete whole into a determined number of equal parts. 

Similarly, we observed that she manifested progress in her knowledge when making 

equitable and exhaustive sharing, since in the initial questionnaire she presented 

distributions without concluding or carrying them out. She used symbolic-arithmetic 

expressions of the fraction to name the parts she obtained as the result of her 

strategies, knowledge that she did not exhibit in the initial questionnaire. Moreover, 

she worked intuitively with operators 1/2 and 1/3 to decrease the sides of a given 

shape, a process she did not carry out in the initial questionnaire.  

RESULTS OF THE INTERVIEW OF KARLA 

In the following paragraphs we present the analysis of the tasks involved in the 

interview, which revolved around the most important passages in the elaborations of 

Karla, both in the initial and final questionnaires.  

In the task that involves the reconstruction of the whole out of one part, Karla 

recognized the complement of the fraction without difficulty. She reiterated the part 

(1/6), drawing it successively until she obtained the whole. In order to quantify the 

whole, the girl made use of a pictorial representation, as the basis to obtain symbolic-

arithmetic expressions, which she added up; this strategy is shown in Figure 1. 

Figure 1. Pictorial representation of Karla in her reconstruction of the whole. 

Regarding the task referred to the part-whole relationship, Karla developed the 

solution to the problem without difficulties, she subdivided the whole into three equal 

parts, recognizing the parts as thirds; she wrote 1/3 to answer the question of the task. 

Karla manifested that 1/3 is equals to 2/6 and, at the same time, it is equals to 4/12; it 

is noticeable that she manages the equivalence of fractions by multiplying the 

numerator and the denominator by 2, Figure 2 illustrates this situation.  

For the sharing task, Karla succeeded in the way she faced it; she carried out 

partitions and equitable and exhaustive distributions, this led her to identify what was 

bound to be given to each child in the distribution. In order to solve this task, Karla 

On children’s day celebration, 1/6 of the cake the teacher brought was left.  

Draw the missing part of the cake to complete it. 

                  

 =   
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made use of a pictogram in which she represented her strategy and expressed her 

answer through the development of an addition (see Figure 3). 

In the task of measure (which involves covering a rectangular shape with a unit of 

measure of a quadrangular figure), we observed that Karla had difficulties covering 

the given surface with a preestablished unit of measure, this brought about that she 

obtained different fractions from those required in the task. That is to say, the 

limitation was that Karla did not show ability to cover the given surface with the unit 

of measure that was indicated.                                         

   

  

                  
                                         Figure 2. Answer of Karla to the  part-whole task.

                             Figure 3. The strategy Karla used when solving a sharing problem.    

                              Figure 4. Karla’s drawing relating to the multiplicative operator.

Ivan, Sergio and Luis distributed five sandwiches into equal parts among 

themselves. 

                 
How many sandwiches were given to each child?    +
                                                                                        3

Perla drew a vase in exactly the same shape of the one below, but of a 

different size; she reduced to half each of the sides. Draw it yourself!  

                              

          From the following set of toys:         

     What fraction do balls represent?   =   

        balls and dollsall toys
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We noticed in Karla the ability she had to solve tasks related to the multiplicative 

operator. Upon reducing to half the sides of a shape, she used the algorithm of 

division, she counted the little squares of each side and she divided the result in two. 

In this activity, Karla intuitively admitted the existence of other fractional operators 

(1/3 and1/4), by expressing that we can divide each one of the magnitudes of the 

sides of a shape into 3 or 4 if we want to reduce it to 1/3 or 1/4 of its original size. 

Figure 4 illustrates this result.  

CONCLUSIONS  

We emphasize that Karla privileged pictorial referents in the development of the 

strategies she used to solve the given tasks. The representations of the problematic 

situations through the use of pictograms made it easy for her to obtain correct results 

in the activities. 

Pictorial representations are appropriate resources that Karla used to clearly express 

her thoughts (according to what was proposed by Valdemoros, 1993, 1997). 

In the same way, the pictorial representations used by Karla in order to contextualize 

the problematic situations in the “scenarios”, meant a useful resource for her to 

strengthen the links between one and the other meaning of fractions. Furthermore, 

upon solving tasks, the connections she established between the different meanings of 

fraction made it possible for her the construction of mental images.  

Globally, the experimental teaching and the didactic “scenarios” included in it 

enriched the knowledge of Karla about fractions, multiplying her intuitive resources, 

meanings and strategies.  
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LESSON STUDY WITH A TWIST: RESEARCHING LESSON 
DESIGN BY STUDYING CLASSROOM IMPLEMENTATION 

Robyn Pierce and Kaye Stacey 
University of Melbourne 

In this paper we propose that ‘lesson study’ may be adapted from its primary use as a 
professional development strategy for use as a valuable research strategy, especially 
to identify principles of good lesson design. We report on a project undertaken in two 
Australian schools where lesson study research was used to investigate the design of 
a lesson which aimed to access some of the pedagogical affordances of new 
technology (TI-Nspire). An example of principles for use of multiple representations 
is given. Using lesson study as a research strategy allowed the collection of rich data 
suitable for the thematic analysis of lesson design and also secondary analysis for 
other purposes, from all stake holders and under varying conditions. Professional 
development was a valuable outcome for participating teachers. 

LESSON STUDY 
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challenge that deserves more than a trial and error approach. As will be discussed 
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research strategy; the details of one study using this approach; brief results of the 
study in terms of the insights gained by using a lesson study approach; and finally 
some conclusions about using lesson study as a research strategy.   
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Lesson study has its origins in Japan where it has been used with the primary goal of 
professional development for teachers. For comprehensive details of Japanese lesson 
study see for example Isoda, Stephens, Ohara & Miyakawa (2007). In traditional 
lesson study a group of teachers plan a lesson; the lesson is taught by one of this 
group of teachers with the others from the school observing, perhaps with some 
visitors. Then, at a debriefing, the lesson design and teaching practice is analysed in 
detail so that the lesson can be revised and the teaching methods can be refined. This 
process is repeated over an extended period of time with the goal of producing 
quality lesson plans and improvement in teachers’ understanding of student learning.
In recent years lesson study has been used to support professional development in 
many countries. See for example APEC – Tsukuba (no date). Lesson study as a 
professional development process has been researched in settings outside of Japan, 
for example: Indonesia (Marsigit, 2007) Australia and Malaysia (White, Lim & 
Chiew, 2005; White & Southwell, 2003), and the Chicago Lesson Study Group in 
USA. In each case the researchers have observed the need for some cultural adaption 
to make lesson study work. Marsigit reports on teachers initially observing a 
discussing a video of a lesson taught elsewhere rather than their own while White, 
Lim and Chiew commented on the importance of participants in Australia being 
volunteers and the importance of active support of the school leadership in Malaysia. 
Our adaption of lesson study also focuses on the discussion and development of a 
single lesson but in our case, in addition to the goal of professional development, we 
wished to use lesson study as a strategy for researching design principles for lessons 
using TI-Nspire (and similar technologies). In-school lesson study clearly fits into an 
action research paradigm with local goals, but we wished to use it as a setting for 
traditional research to develop principles of lesson design robust beyond the school 
setting and with traditional standards of research evidence. We hypothesised that the 
lesson study research approach would allow input (direct or indirect) to researching 
the design process from all stake holders in a classroom setting. At the same time it 
would offer teachers the opportunity to reflect on their own practice and so gain 
professionally from participation in this research.

THIS STUDY 
In the study reported here, we chose to focus on exploring the principles of design for 
a lesson that used the dynamic simulation of a real situation, linked many 
representations, and used the document facility. Pierce and Stacey (submitted) have 
developed a framework that lists 10 types of pedagogical opportunities afforded by 
mathematical analysis software. This study addresses the opportunities of simulation 
and multiple representations, and is part of a research program to systematically 
study the design of lessons exploiting the other pedagogical opportunities.
As part of the cultural adaption, it was decided that the research team would write the 
lesson. This was for two reasons: the project teachers were new to the use of TI-
Nspire and further, the critique of the lesson in the debriefing would be strongly 
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focussed on the lesson and would not be seen as criticism of the teachers themselves. 
At the request of our project schools we planned a lesson to be taught at the end of a 
unit of work on quadratic functions for year 10 (16 year old) students. The 
introduction to the lesson is shown in Figure 1. The lesson plans in their final version 
are available from http://extranet.edfac.unimelb.edu.au/DSME/RITEMATHS/.

Marina owns a fish shop, and wants to create a new sign above the shop. She likes 
geometric ideas, and thinks a square with a triangle looks like a fish. Marina draws a 
square with a horizontal diagonal, starting from the left wall of her shop. This makes 
the body. Then she extends two sides of the square as far as the right wall of the shop.
This makes the tail. The shop is 10 metres wide. Marina soon realises that there is 
more than one possible configuration (see above) and wonders, “What is the best 
possible sign?” She uses mathematics to investigate. 

Figure 1. Introduction to Marina’s fish sign lesson
In the first lesson version, students used both pen-and-paper measurements, 
calculations and algebra, and TI-Nspire assisted mathematics to explore the 
relationship between the length of the body of the fish and the total area. The students 
used multiple representations in order to understand the various mathematical aspects 
of the problem (Figure 2). Next students were asked to solve an optimisation 
problem: Marina wishes to illuminate the total area of the fish but wishes to minimise 
her use of power (i.e. minimise area). Finally students found the relationship between 
body length and total area for fish signs of this given shape with arbitrary total width.

THE LESSON STUDY PROCESS AND DATA COLLECTION 
Two schools volunteered for the lesson study. The schools were principally interested 
in the professional development opportunities it offered. Each phase of the lesson 
study process was taken as an opportunity for research data collection. First the 
researchers drafted the lesson and sent it to the two potential Cycle 1 teachers at 
School 1 for feedback. Researchers met with these teachers to discuss their feedback 
on the lesson and this discussion was audio-recorded. The lesson was revised and 
sent to the teacher who volunteered teach the lesson with observers present. 
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At the request of our project schools we planned a lesson to be taught at the end of a 
unit of work on quadratic functions for year 10 (16 year old) students. The 
introduction to the lesson is shown in Figure 1. The lesson plans in their final version 
are available from http://extranet.edfac.unimelb.edu.au/DSME/RITEMATHS/.

Marina owns a fish shop, and wants to create a new sign above the shop. She likes 
geometric ideas, and thinks a square with a triangle looks like a fish. Marina draws a 
square with a horizontal diagonal, starting from the left wall of her shop. This makes 
the body. Then she extends two sides of the square as far as the right wall of the shop.
This makes the tail. The shop is 10 metres wide. Marina soon realises that there is 
more than one possible configuration (see above) and wonders, “What is the best 
possible sign?” She uses mathematics to investigate. 

Figure 1. Introduction to Marina’s fish sign lesson
In the first lesson version, students used both pen-and-paper measurements, 
calculations and algebra, and TI-Nspire assisted mathematics to explore the 
relationship between the length of the body of the fish and the total area. The students 
used multiple representations in order to understand the various mathematical aspects 
of the problem (Figure 2). Next students were asked to solve an optimisation 
problem: Marina wishes to illuminate the total area of the fish but wishes to minimise 
her use of power (i.e. minimise area). Finally students found the relationship between 
body length and total area for fish signs of this given shape with arbitrary total width.

THE LESSON STUDY PROCESS AND DATA COLLECTION 
Two schools volunteered for the lesson study. The schools were principally interested 
in the professional development opportunities it offered. Each phase of the lesson 
study process was taken as an opportunity for research data collection. First the 
researchers drafted the lesson and sent it to the two potential Cycle 1 teachers at 
School 1 for feedback. Researchers met with these teachers to discuss their feedback 
on the lesson and this discussion was audio-recorded. The lesson was revised and 
sent to the teacher who volunteered teach the lesson with observers present. 
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Figure 2. Dynamically linked multiple representations 
Lesson Cycle 1 started with the presenting teacher preparing to teach the lesson. This 
led to some clarifying phone and email conversations which were recorded. At the 
appointed time the presenting teacher taught the lesson, as set out in the lesson plan, 
in front of the other 4 year 10 teachers, the research team and an international visitor. 
This lesson was video and audio-recorded, digital photos were taken of students’ 
work including calculator screens and of the teacher’s board work. Following the 
class all participants (including students) were asked to answer the following 
questions. Most space was allocated for answering the last question.

What did you think was the key point of this lesson?  
What new mathematical ideas do you think students learnt?  
What new use of TI-Nspire do you think students learnt during this lesson? 
What do you think was the best feature of the lesson? 
How do you think this lesson could be improved?

For the teachers and researchers these survey items set the direction for the focus 
group conducted after the lesson, over a simple lunch. This discussion was audio-
recorded and later transcribed. Initially only 2 teachers at this school had volunteered 
to teach this lesson in front of us and colleagues, but following this first discussion of 
the lesson, all of the other year 10 teachers volunteered. Each time the lesson was 
taught at least two observers were present (including other teachers when their 
timetables allowed), and an audio-recording, digital photos and observation notes 
were collected. Following each lesson, the presenting teacher was interviewed. 
Finally, we held another whole group meeting to consolidate these reflections.  
The redesign phase involved thematic analysis of the data through reading, re-
reading, studying of digital images and further discussions among the research team 
as to how to solve the problems that emerged in the original design. The revised 
lesson was then sent to the presenting teacher at School 2 for Cycle 2, who then met 
with the research team to discuss the revised lesson. This was also audio-recorded. 
Lesson Cycle 2 followed the same pattern as Cycle 1 and, in addition to teachers from 
the Cycle 2 school and researchers, two teachers from School 1 also chose to attend 
the first and main teaching of the revised lesson. Data were collected from the same 
sources as Cycle 1 with the addition of a 12 Likert scale item survey for students to 
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try to identify the parts of the lesson and technology use which they found hard or 
easy. In total the lesson (in initial and revised form) was observed 9 times.   
The lesson study format provided rich data collected from multiple sources which 
showed the lesson from the perspective of students, teachers and researchers (lesson 
writers). Focus group discussions and presenting teachers’ interviews gave sufficient 
information for analysis, reworking of the lesson and evaluation of the revised lesson.

FINDINGS ON PROFESSIONAL DEVELOPMENT  
Since the major goal of the collaborating schools is staff professional development, 
we report briefly on this. As noted in other studies, some cultural adaptation was 
required. Having the research team write the lesson and strongly focussing the follow 
up discussions on improving the lesson design rather than the teaching made the 
teachers feel comfortable to participate first in critiquing and then in teaching the 
lesson. This was clearly evidenced when, following the first discussion of the lesson 
at School 1 and the first teaching of the lesson at School 2, more teachers volunteered 
to have their teaching of the lesson observed and discussed. We began with 3 
volunteers, and ended with 9. This was a major step in the context of Australian 
secondary schools, where typically teaching has occurred behind closed doors.  
Effective professional development did occur. In particular teachers learnt about 
teaching with technology by observing each other and sharing ideas. This was 
evident in the quality of technology use observed in the lessons of teachers who had 
initially not thought they had the technology expertise required. Further evidence of 
professional development success is that the project schools have committed to a 
second year of lesson study with the research team. They have gone ahead, although 
they now know from experience that participation places high demands on the 
participating teachers and in particular the school coordinator.

FINDINGS ON LESSON STUDY AS A RESEARCH STRATEGY 
We have noted above that lesson study as a research strategy enabled the collection 
of very rich data, from the perspectives of all categories of participants, and enabled 
triangulation of results. Opinions often varied (there is after all no one right way to 
design a lesson), but there was substantial agreement on many issues. Although we 
observed only one ‘lesson’ being taught, the circumstances varied more than might 
have been expected given that we only used two schools: some classes were girls 
only, others boys only; some high ability and others mainstream classes. The 
conditions for teaching with technology also varied considerably due to teacher 
preference and equipment actually present in different classrooms. Nspire was used 
with and without computer data projector, with and without teachers’ calculator 
view-screen; with and without interactive whiteboard. In one case, there was only the 
handheld with view-screen projected on a shiny whiteboard. In another, the teacher 
used an interactive white board, computer display and calculator viewscreen. These 
varying conditions have permitted deep analysis of the lesson and highlighted issues 
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that are common across the different teaching contexts. This should lead to the design 
of lesson plans, student worksheets and TI-Nspire files that are robust for use with 
minimal adaption in a wide range of contexts. 
The lesson study strategy allowed us to study particular aspects that were deliberately 
built into the lesson design, for example in this case, the use of multiple 
representations. While the data were suitable for thematic analysis of the lesson 
design, our guest observers also noted it is suitable for re-analysis for a range of 
diverse purposes. Given the cost of collecting data, the diversity and potential for 
secondary analysis of data we were able to collect during lesson study makes ‘lesson 
study’ a valuable research strategy. To illustrate the type of results obtained, we 
briefly describe below three findings that inform the design of lessons taking 
advantage of easy access to multiple representations.  

EXAMPLE RESEARCH RESULTS FROM THE STUDY LESSON 
The lesson was designed to allow students to explore many different mathematical 
representations of the problem. It was envisaged that the students would move 
quickly through initial activities using practical measuring, dynamic diagrams and 
data collection, and that working with these simpler representations would support 
students’ understanding of the abstract symbolic work that followed. However this 
lesson feature needed to be handled much more carefully than we did in Cycle 1. 
Some students found difficulties with early activities and this presented the teacher 
with the dilemma of either dealing with these problems or moving on. Some of the 
teachers we observed saw great value in particular representations (for example 
measuring a pen-and-paper scale diagram or analysing a graph of total area versus 
body length). They spent extra time on these representations and had little or no time 
left for the symbolic algebra, which we saw as an essential part of the lesson. In 
addition working with multiple representations required working with different 
‘applications’ in the software each requiring some special technical as well as 
mathematical knowledge.
The number of representations needed to be restricted and the lesson plan needed to 
give clearer guidance regarding the priorities for student learning in the lesson. 
Nearly all participants agreed that using multiple representations also caused students 
to lose motivation in the Cycle 1 version. We intended that students should explore 
the problem from a number of perspectives in order to gain a rich understanding of 
the mathematics involved, but when students sensed they had ‘solved’ the problem 
(e.g. by dragging a dynamic diagram, or putting a regression curve through collected 
data) they were reluctant to go further. An experienced researcher/observer asked: 

…What’s the motivation for the algebra? I mean, if they’ve done this regression and 
got this answer, there’s no motivation for the algebra. 

In the Cycle 2 version, each representation was given a different purpose, and this 
solved the motivation problem. For example, students used the dynamic fish diagram 
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without any measurements only to make a guess from visual estimation of whether 
(and then how) the total area of the fish sign varied with the body length. In this case 
lesson study highlighted the value of asking open questions.
The Cycle 1 lesson observations also highlighted issues of cognitive load that arise 
when using multiple representations. Dealing with different screens for different 
representations and having the ‘clutter’ of several features and variable names on a 
single screen created extraneous cognitive load. As mathematical novices students’ 
attention was not immediately attracted to what their teacher saw as important but 
rather they were distracted by other features. A presenting teacher reflected: 

The information’s on the screen. Right? To you and I, the answer’s there, it’s just there. 
… it staggers me that it’s so hard for a lot of kids to see that. … 

The Cycle 2 files which ‘hid’ all information not of immediate concern to the student 
were much more successful. Seufert, Jänsen & Brünken, (2007) showed that working 
with multiple representations may create extra cognitive load and so impede learning 
and Sweller, van Merrienboer and Paas (1998) pointed out that the cognitive load 
involved in an activity will not be the same for an expert as a novice. These warnings 
have not been prominent in the algebra education literature. Lesson study enabled us 
to identify the sources of extraneous cognitive load and so improve the lesson design.  

CONCLUSIONS
The aim of this paper has been to discuss the use of lesson study as a research tool. 
As others have found, some cultural adaptation was required to undertake lesson 
study within the schools. Teachers’ increasing participation indicated that the 
adaptation was successful. The schools’ desire for professional development was met, 
which has led to their requests for involvement in future lesson study research. 
Lesson study research proved to provide rich data of a range of types, under 
surprisingly varied conditions (given only two schools were involved) and from all 
perspectives, including students. The study reported above indicates that the intensive 
collection of data provides sufficient information to progress the improvement of a 
lesson through a design cycle process. More importantly, the study of the one lesson 
was a test-bed for lesson design principles of wider applicability. The present paper 
has given, as an example, findings about principles for using multiple representations. 
This has great potential, extensively discussed in the research literature, but we 
identified that potential loss of focus, loss of motivation and cognitive overload 
needed to be addressed. The second cycle of lesson study tested designs to overcome 
these issues. We commend lesson study research as a fresh approach to research with 
significant benefits to researchers and teachers.  
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rather they were distracted by other features. A presenting teacher reflected: 

The information’s on the screen. Right? To you and I, the answer’s there, it’s just there. 
… it staggers me that it’s so hard for a lot of kids to see that. … 

The Cycle 2 files which ‘hid’ all information not of immediate concern to the student 
were much more successful. Seufert, Jänsen & Brünken, (2007) showed that working 
with multiple representations may create extra cognitive load and so impede learning 
and Sweller, van Merrienboer and Paas (1998) pointed out that the cognitive load 
involved in an activity will not be the same for an expert as a novice. These warnings 
have not been prominent in the algebra education literature. Lesson study enabled us 
to identify the sources of extraneous cognitive load and so improve the lesson design.  

CONCLUSIONS
The aim of this paper has been to discuss the use of lesson study as a research tool. 
As others have found, some cultural adaptation was required to undertake lesson 
study within the schools. Teachers’ increasing participation indicated that the 
adaptation was successful. The schools’ desire for professional development was met, 
which has led to their requests for involvement in future lesson study research. 
Lesson study research proved to provide rich data of a range of types, under 
surprisingly varied conditions (given only two schools were involved) and from all 
perspectives, including students. The study reported above indicates that the intensive 
collection of data provides sufficient information to progress the improvement of a 
lesson through a design cycle process. More importantly, the study of the one lesson 
was a test-bed for lesson design principles of wider applicability. The present paper 
has given, as an example, findings about principles for using multiple representations. 
This has great potential, extensively discussed in the research literature, but we 
identified that potential loss of focus, loss of motivation and cognitive overload 
needed to be addressed. The second cycle of lesson study tested designs to overcome 
these issues. We commend lesson study research as a fresh approach to research with 
significant benefits to researchers and teachers.  
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In our increasingly technological world, it is more and more important to encourage 
students to develop their abilities to reason and think creatively, especially in 
mathematics. The aim of this study is to investigate whether individuals’ cognitive 
styles are related to their mathematical creativity. Mathematical creativity is 
measured in terms of fluency, flexibility and originality whereas individuals’ 
cognitive styles are measured in terms of object imagery, spatial imagery and verbal. 
The study was conducted with 96 prospective elementary school teachers. The results 
suggest that spatial imagery cognitive style is related to mathematical fluency, 
flexibility and originality. On the other hand, object imagery cognitive style is 
negatively related to mathematical originality and verbal cognitive style is negatively 
related to mathematical flexibility.

INTRODUCTION
The need for individuals who can provide innovative solutions to our problems 
becomes particularly great in today’s world. Creativity is undoubtedly the result of a 
complex process, one not easily broken down for more manageable examination. Yet, 
to break it down we have to, and must, understand its internal structure.  
Research in the field of creativity has revolved around three orientations: study of the 
products of creativity, the creative personality and the cognitive processes involved in 
the creative arts. The orientation of this paper attempts to examine not the products of 
creativity or the creative individual, but the cognitive variables necessary for the 
creative process. It is the purpose of this paper to demonstrate that the creative 
process might be related to various cognitive styles such as spatial imagery, object 
imagery and verbal (Blazhenkova & Kozhevnikov, in press). 
THEORETICAL FRAMEWORK 
Creativity
Creativity is a complex construct and as such, it has been defined in several ways. A 
widely accepted definition of creativity which is used in this study is the one 
provided by Torrance (1994). Torrance (1974) defines fluency, flexibility and 
originality as the main characteristics of creative individuals. Fluency is the ability of 
producing many ideas, while flexibility refers to the number, the degree and the focus 
of approaches that is observed in a solution. Originality refers to the possibility of 
holding extraordinary, new and unique ideas (Gil, Ben-Zvi & Apel, 2008).

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 377-384. Thessaloniki, Greece: PME.
 4 - 377

 Volume 04 COMPLETE 290509.indb   377 6/4/09   2:25:10 PM



Pitta-Pantazi, Christou 

1- 2 PME 33 - 2009 

Creativity in mathematics is often looked at as the exclusive domain of professional 
mathematicians (Shriraman, 2008). Few studies have examined creativity in 
classrooms, particularly in its manifestation in individuals with different cognitive 
characteristics. It is only in the last ten years that there has been a renewed interest in 
the phenomenon of creativity. In this paper the notion of mathematical creativity is 
developed from literature in psychology. In particular the dimensions of fluency, 
flexibility, and originality are used to construct a framework for studying and 
assessing mathematical creativity of prospective elementary school teachers.
Cognitive styles 
The construct of cognitive style has been widely researched in psychology (for a 
review, see Rayner & Riding, 1997). It can be defined as “an individual’s 
characteristic and consistent approach to organising and processing information” 
(Tennant, cited in Riding, 1997). Although there appear to be various 
conceptualisations of cognitive styles (for a classification, see Sternberg & 
Grigorenko, 1997), most of the researchers agree that cognitive style is a construct 
which is relatively stable over domain and time.  
In the field of mathematics education, the verbaliser/imager distinction was the one 
that attracted most attention. However, it needs to be noted that this distinction was 
not referred to as “cognitive style” but as preferred type/mode of thinking, or type of 
students (Kruteskii, 1976; Lean & Clements, 1981; Presmeg, 1986a, 1986b; Breen, 
1997; Pitta & Gray, 1999). The broad idea documented by a number of researchers 
was that visual-spatial processes are distinct from verbal processes and that 
mathematics involves not only verbal processes but also visual reasoning (Presmeg, 
1986; Sfard, 1991). 
Recently, Blazhenkova and Kozhevnikov (in press) suggested that there exist two 
distinct imagery subsystems that help individuals process visual information in 
different ways. Specifically, they suggest that there is an object imagery system and a 
spatial imagery system. The object imagery system processes the “visual appearance 
of objects and scenes in terms of their shape, color information and texture”, while 
the spatial imagery system processes “object location, movement, spatial 
relationships and transformations and other spatial attributes of processing” (p. 1475). 
Thus, recent research identified two distinct types of visualizers. Object visualizers 
who use imagery to construct images of objects and process visual information 
globally and holistically as whole perceptual objects and spatial visualizers who use 
imagery to represent spatial relations, make complex spatial transformations and 
process visual images analytically and sequentially, part-by-part (Kozhevnikov, 
Kosslyn, & Shephard, 2005). Rosenberg (1987) and Kozhevnikov et al. (2005) also 
found that object imagery can be beneficial for visual art tasks, whereas 
Kozhevnikov, Hegarty and Mayer (2002) found that spatial imagery can be beneficial 
for physics, mechanical engineering tasks, technical drawing and mathematics.
Purpose of the study 
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The realm of creative thinking offers an opportunity for examining the performance 
and competence aspects of different cognitive styles that “have potentially profound 
implications for learning and the structuring of knowledge” (Messick, 1994, p. 129). 
Thus, the purpose of the present study was to investigate whether mathematical 
creativity is related to specific cognitive style, namely to verbal, spatial imagery, and 
object imagery.

METHOD
Participants and procedure 
Ninety six prospective teachers participated in the study. A mathematical creativity 
test and a self-report cognitive style questionnaire were administered to participants 
at the same day. The mathematical creativity test was used to measure participants’ 
mathematical creative abilities in area, shape, pattern, problem solving and number. 
The questionnaire, which was a translation of the computerised Object-Spatial 
Imagery and Verbal Questionnaire (OSIVQ) (Blazhenkova & Kozhevnikov, in 
press), measured participants’ cognitive styles.
The mathematical creativity test 
The mathematical creativity test included seven tasks: two on the area of polygons, 
one on shapes (triangles), two on shape patterns, one on problem posing and one on 
reasoning with numbers. This variety of tasks was purposeful in order to provide a 
balanced test towards the three cognitive styles under investigation. It was 
hypothesised that spatial visualisers might perform better in spatial tasks such as 
those on polygon areas and shapes. Object visualisers might be more successful with 
pattern tasks, whereas verbalisers might find problem posing and reasoning with 
numbers easier. In the area tasks prospective teachers were provided with a square 
and an L-shape and requested to divide them in a number of shapes having the same 
area. The shape task presented a triangle with many embedded triangles inside it and 
participants were asked to state the number of triangles that they could see (Spatial 
imagery task). One of the pattern tasks asked participants to use two different types 
of triangles and construct as many different kinds of patterns as they could, whereas, 
the other pattern task required students to use colours to create a pattern in a diagram 
with overlapping shapes (Object imagery task). There were also two tasks that called 
upon participants’ verbal abilities. One of them asked prospective teachers to write 
three different word problems which could be solved with the operation 51÷4, but 
would have three different correct responses: (a)

4
312 , (b) 13 and (c) 12. In the other 

verbal task the numbers 2, 3, 4, 5, 7, 9, 10, 15, 21, 25, 28, 49 were presented. 
Participants were asked to construct groups of four numbers with a common 
characteristic and name these groups (Verbal tasks). It needs to be stressed that all of 
the above tasks required participants to find multiple solutions, a characteristic of 
creative mathematical activity (Leikin & Lev, 2007).
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mathematicians (Shriraman, 2008). Few studies have examined creativity in 
classrooms, particularly in its manifestation in individuals with different cognitive 
characteristics. It is only in the last ten years that there has been a renewed interest in 
the phenomenon of creativity. In this paper the notion of mathematical creativity is 
developed from literature in psychology. In particular the dimensions of fluency, 
flexibility, and originality are used to construct a framework for studying and 
assessing mathematical creativity of prospective elementary school teachers.
Cognitive styles 
The construct of cognitive style has been widely researched in psychology (for a 
review, see Rayner & Riding, 1997). It can be defined as “an individual’s 
characteristic and consistent approach to organising and processing information” 
(Tennant, cited in Riding, 1997). Although there appear to be various 
conceptualisations of cognitive styles (for a classification, see Sternberg & 
Grigorenko, 1997), most of the researchers agree that cognitive style is a construct 
which is relatively stable over domain and time.  
In the field of mathematics education, the verbaliser/imager distinction was the one 
that attracted most attention. However, it needs to be noted that this distinction was 
not referred to as “cognitive style” but as preferred type/mode of thinking, or type of 
students (Kruteskii, 1976; Lean & Clements, 1981; Presmeg, 1986a, 1986b; Breen, 
1997; Pitta & Gray, 1999). The broad idea documented by a number of researchers 
was that visual-spatial processes are distinct from verbal processes and that 
mathematics involves not only verbal processes but also visual reasoning (Presmeg, 
1986; Sfard, 1991). 
Recently, Blazhenkova and Kozhevnikov (in press) suggested that there exist two 
distinct imagery subsystems that help individuals process visual information in 
different ways. Specifically, they suggest that there is an object imagery system and a 
spatial imagery system. The object imagery system processes the “visual appearance 
of objects and scenes in terms of their shape, color information and texture”, while 
the spatial imagery system processes “object location, movement, spatial 
relationships and transformations and other spatial attributes of processing” (p. 1475). 
Thus, recent research identified two distinct types of visualizers. Object visualizers 
who use imagery to construct images of objects and process visual information 
globally and holistically as whole perceptual objects and spatial visualizers who use 
imagery to represent spatial relations, make complex spatial transformations and 
process visual images analytically and sequentially, part-by-part (Kozhevnikov, 
Kosslyn, & Shephard, 2005). Rosenberg (1987) and Kozhevnikov et al. (2005) also 
found that object imagery can be beneficial for visual art tasks, whereas 
Kozhevnikov, Hegarty and Mayer (2002) found that spatial imagery can be beneficial 
for physics, mechanical engineering tasks, technical drawing and mathematics.
Purpose of the study 
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The realm of creative thinking offers an opportunity for examining the performance 
and competence aspects of different cognitive styles that “have potentially profound 
implications for learning and the structuring of knowledge” (Messick, 1994, p. 129). 
Thus, the purpose of the present study was to investigate whether mathematical 
creativity is related to specific cognitive style, namely to verbal, spatial imagery, and 
object imagery.

METHOD
Participants and procedure 
Ninety six prospective teachers participated in the study. A mathematical creativity 
test and a self-report cognitive style questionnaire were administered to participants 
at the same day. The mathematical creativity test was used to measure participants’ 
mathematical creative abilities in area, shape, pattern, problem solving and number. 
The questionnaire, which was a translation of the computerised Object-Spatial 
Imagery and Verbal Questionnaire (OSIVQ) (Blazhenkova & Kozhevnikov, in 
press), measured participants’ cognitive styles.
The mathematical creativity test 
The mathematical creativity test included seven tasks: two on the area of polygons, 
one on shapes (triangles), two on shape patterns, one on problem posing and one on 
reasoning with numbers. This variety of tasks was purposeful in order to provide a 
balanced test towards the three cognitive styles under investigation. It was 
hypothesised that spatial visualisers might perform better in spatial tasks such as 
those on polygon areas and shapes. Object visualisers might be more successful with 
pattern tasks, whereas verbalisers might find problem posing and reasoning with 
numbers easier. In the area tasks prospective teachers were provided with a square 
and an L-shape and requested to divide them in a number of shapes having the same 
area. The shape task presented a triangle with many embedded triangles inside it and 
participants were asked to state the number of triangles that they could see (Spatial 
imagery task). One of the pattern tasks asked participants to use two different types 
of triangles and construct as many different kinds of patterns as they could, whereas, 
the other pattern task required students to use colours to create a pattern in a diagram 
with overlapping shapes (Object imagery task). There were also two tasks that called 
upon participants’ verbal abilities. One of them asked prospective teachers to write 
three different word problems which could be solved with the operation 51÷4, but 
would have three different correct responses: (a)

4
312 , (b) 13 and (c) 12. In the other 

verbal task the numbers 2, 3, 4, 5, 7, 9, 10, 15, 21, 25, 28, 49 were presented. 
Participants were asked to construct groups of four numbers with a common 
characteristic and name these groups (Verbal tasks). It needs to be stressed that all of 
the above tasks required participants to find multiple solutions, a characteristic of 
creative mathematical activity (Leikin & Lev, 2007).
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To measure mathematical creativity three dimensions were evaluated: fluency 
(number of correct responses), flexibility (number of different types of responses or 
categories of responses) and originality (extraordinary, new and unique responses) 
(Torrance, 1994). Every response of the mathematical creativity test was given a 
score from 0 to 4 for each one of these three dimensions (fluency, flexibility and 
originality).
The cognitive style questionnaire
The self-report cognitive style questionnaire (OSIVQ) (Blazhenkova & 
Kozhevnikov, in press) was used to assess the individual differences in spatial 
imagery, object imagery and verbal cognitive style. Prospective teachers were asked 
to read 45 statements and rate each item on a 5-point Likert scale with 1 indicating 
total disagreement and 5 total agreement. Ratings 2 to 4 indicated intermediate 
degrees of agreement/disagreement. Fifteen of the items measured object imagery 
preference and experiences, fifteen items measured spatial imagery preference and 
experiences and fifteen items measured verbal preference and experiences. These 
items addressed qualitative characteristics of the images (My images are colourful 
and bright), preferences to specific types of visual images or verbal  thinking (When
remembering a scene, I use verbal descriptions rather than mental pictures), habitual 
and learning preferences (I usually do not try to visualize or sketch diagrams when 
reading a textbook), professional preferences (If I were asked to choose among 
engineering professions or visual arts I would choose visual arts) and individuals’ 
estimations of their abilities in using spatial or object imagery or verbal processing 
(My verbal skills are excellent).
For each participant, the fifteen item ratings for each factor were averaged to create 
object imagery, spatial imagery and verbal scale scores.  

RESULTS
The main purpose of the study was to learn more about the relations between 
cognitive styles and creativity in mathematics. In this study, we used the object-
spatial-verbal cognitive style dimension as predictor variable for students’ creativity. 
Specifically, through multiple regression analyses with criterion (dependent) 
variables the mathematical creativity dimensions of fluency, flexibility and 
originality, and predictors (independent) the spatial imagery, object imagery and 
verbal cognitive styles.
The correlations among students’ cognitive styles and their performance in fluency, 
flexibility, and originality are presented in Table 1. As can be seen from Table 1, the 
spatial imagery cognitive style significantly correlated with students’ creative 
abilities in fluency, flexibility and originality, while object imagery cognitive style 
did not correlate with any of the components of creativity. Verbal cognitive ability 
negatively correlated with flexibility (r=-0.292), i.e., the ability of students to find a 
number of different types of responses or categories of responses. We furthered 
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examined the nature of these correlations and non correlations between cognitive 
styles and the components of creativity by analysing the data with multiple 
regressions.

Fluency Flexibility Originality
Spatial Imagery Cognitive Style .199* .321* .208*
Object Imagery Cognitive Style -.053 -.113 -.130
Verbal Cognitive Style -.078 -.292* -.135

*  Correlation is significant at the 0.05 level (2-tailed). 
Table 1: Correlations among creativity and spatial imagery, object imagery and 
verbal cognitive styles. 
Table 2 presents the results of the multiple regressions. Two distinct characteristics 
arise from the analysis of data. First, it seems that object imagery and verbal 
cognitive styles are negatively related to creativity, since all standardized regression 
coefficients are negative numbers. This trend appears systematically in all creativity 
dimensions (fluency, flexibility, and originality) as shown by the betas in Table 2. 
However, not all the negative relations are statistically significant. Object imagery 
cognitive style can somewhat predict the originality of students in a statistically 
significant manner and it can explain more than 15% of the variance in originality. 
However, the negative sign of beta (b=-0.293, p=.016) means that as the object 
imagery cognitive style of prospective teachers’ increases, their performance in 
originality decreases. In the same way we can interpret the negative relation between 
the verbal dimension and flexibility (b=-0.220, p=.031). As prospective teachers’ 
verbal cognitive style increases, their flexibility in solving mathematical tasks 
decreases in a statistically significant way. 
The second important observation of the data analysis refers to the relation between 
spatial imagery cognitive style and mathematical creativity. Spatial imagery cognitive 
style is a statistically significant predictor of prospective teachers’ abilities in fluency, 
flexibility and originality (see betas in Table 2), and explains a large proportion of 
variance (more than 30%) in creativity. This means that as far as prospective teachers 
tend to prefer the spatial visualization processing, their performance in fluency, 
flexibility and originality is much higher than those who seem to prefer the verbal 
and object visualization processing of information. This result confirms the 
importance of distinguishing between spatial and object imagery as it was noted by 
Blazhenkova and Kozhevnikov (in press).  
 Fluency Flexibility Originality 

b p b p b p 
Spatial Imagery Cognitive Style .195 .050* .226 .027* .297 .004* 
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To measure mathematical creativity three dimensions were evaluated: fluency 
(number of correct responses), flexibility (number of different types of responses or 
categories of responses) and originality (extraordinary, new and unique responses) 
(Torrance, 1994). Every response of the mathematical creativity test was given a 
score from 0 to 4 for each one of these three dimensions (fluency, flexibility and 
originality).
The cognitive style questionnaire
The self-report cognitive style questionnaire (OSIVQ) (Blazhenkova & 
Kozhevnikov, in press) was used to assess the individual differences in spatial 
imagery, object imagery and verbal cognitive style. Prospective teachers were asked 
to read 45 statements and rate each item on a 5-point Likert scale with 1 indicating 
total disagreement and 5 total agreement. Ratings 2 to 4 indicated intermediate 
degrees of agreement/disagreement. Fifteen of the items measured object imagery 
preference and experiences, fifteen items measured spatial imagery preference and 
experiences and fifteen items measured verbal preference and experiences. These 
items addressed qualitative characteristics of the images (My images are colourful 
and bright), preferences to specific types of visual images or verbal  thinking (When
remembering a scene, I use verbal descriptions rather than mental pictures), habitual 
and learning preferences (I usually do not try to visualize or sketch diagrams when 
reading a textbook), professional preferences (If I were asked to choose among 
engineering professions or visual arts I would choose visual arts) and individuals’ 
estimations of their abilities in using spatial or object imagery or verbal processing 
(My verbal skills are excellent).
For each participant, the fifteen item ratings for each factor were averaged to create 
object imagery, spatial imagery and verbal scale scores.  

RESULTS
The main purpose of the study was to learn more about the relations between 
cognitive styles and creativity in mathematics. In this study, we used the object-
spatial-verbal cognitive style dimension as predictor variable for students’ creativity. 
Specifically, through multiple regression analyses with criterion (dependent) 
variables the mathematical creativity dimensions of fluency, flexibility and 
originality, and predictors (independent) the spatial imagery, object imagery and 
verbal cognitive styles.
The correlations among students’ cognitive styles and their performance in fluency, 
flexibility, and originality are presented in Table 1. As can be seen from Table 1, the 
spatial imagery cognitive style significantly correlated with students’ creative 
abilities in fluency, flexibility and originality, while object imagery cognitive style 
did not correlate with any of the components of creativity. Verbal cognitive ability 
negatively correlated with flexibility (r=-0.292), i.e., the ability of students to find a 
number of different types of responses or categories of responses. We furthered 
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examined the nature of these correlations and non correlations between cognitive 
styles and the components of creativity by analysing the data with multiple 
regressions.

Fluency Flexibility Originality
Spatial Imagery Cognitive Style .199* .321* .208*
Object Imagery Cognitive Style -.053 -.113 -.130
Verbal Cognitive Style -.078 -.292* -.135

*  Correlation is significant at the 0.05 level (2-tailed). 
Table 1: Correlations among creativity and spatial imagery, object imagery and 
verbal cognitive styles. 
Table 2 presents the results of the multiple regressions. Two distinct characteristics 
arise from the analysis of data. First, it seems that object imagery and verbal 
cognitive styles are negatively related to creativity, since all standardized regression 
coefficients are negative numbers. This trend appears systematically in all creativity 
dimensions (fluency, flexibility, and originality) as shown by the betas in Table 2. 
However, not all the negative relations are statistically significant. Object imagery 
cognitive style can somewhat predict the originality of students in a statistically 
significant manner and it can explain more than 15% of the variance in originality. 
However, the negative sign of beta (b=-0.293, p=.016) means that as the object 
imagery cognitive style of prospective teachers’ increases, their performance in 
originality decreases. In the same way we can interpret the negative relation between 
the verbal dimension and flexibility (b=-0.220, p=.031). As prospective teachers’ 
verbal cognitive style increases, their flexibility in solving mathematical tasks 
decreases in a statistically significant way. 
The second important observation of the data analysis refers to the relation between 
spatial imagery cognitive style and mathematical creativity. Spatial imagery cognitive 
style is a statistically significant predictor of prospective teachers’ abilities in fluency, 
flexibility and originality (see betas in Table 2), and explains a large proportion of 
variance (more than 30%) in creativity. This means that as far as prospective teachers 
tend to prefer the spatial visualization processing, their performance in fluency, 
flexibility and originality is much higher than those who seem to prefer the verbal 
and object visualization processing of information. This result confirms the 
importance of distinguishing between spatial and object imagery as it was noted by 
Blazhenkova and Kozhevnikov (in press).  
 Fluency Flexibility Originality 

b p b p b p 
Spatial Imagery Cognitive Style .195 .050* .226 .027* .297 .004* 
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Object Imagery Cognitive Style -.186 .070 -.140 .157 -.293 .016* 

Verbal Cognitive Style -.104 .317 -.220 .031* -.082 .412 

* Statistical significance p<0.05 
Table 2: Multiple regression analyses with dependent variables fluency, flexibility 
and originality, and independent variables spatial imagery, object imagery and verbal 
cognitive styles. 

DISCUSSION  
A number of studies have been carried out to understand the role of visual and verbal 
thinking in mathematics (Kruteskii, 1976; Lean & Clements, 1981; Presmeg, 1986a, 
1986b, 2006; Breen, 1997). However, most studies investigated the effects of visual 
imagery as a unitary, undifferentiated construct. This study provides evidence that 
different types of visual imagery, namely object and spatial imagery, may have 
significantly different effects on mathematical creativity. This result may be an 
explanation why previous studies found no relation between the use of visual 
representations and problem solving (Lean & Clements, 1981; Presmeg, 1986a, 
2006).
The results of this study showed that spatial imagery cognitive style is a significant 
predictor of students’ mathematical creativity and its dimensions: mathematical 
fluency, flexibility and originality. This is in accord with previous research by 
Kozhevnikov et al. (2002) who found that spatial imagery is beneficial for 
mathematics. On the other hand, object imagery cognitive style appeared to have a 
negative relation to originality and verbal cognitive style a negative relation to 
flexibility.
It is likely that spatial visualizers were able to manipulate abstract, schematic, spatial 
images in a more analytic and step-by-step way, whereas object visualizers were not 
able to suppress concrete, pictorial information which were irrelevant to the solution 
of the mathematical problems. Object visualizers may have tended to see the 
problems in a more holistic, iconic manner which was inhibiting their mathematical 
creativity and especially the creation of original and novel mathematical solutions. 
This finding is consistent to previous studies (for example, Gray & Pitta, 1999) who 
found that concrete, vivid images may be persistent during mathematical operations 
and tend to inhibit mathematical solutions. Similarly, there may have been cases 
where verbal processing interfered, resulting to the obstruction of mathematical 
flexibility.
From the results obtained in the present study, it cannot be generalised that object 
imagery or verbal cognitive styles are obstacles to all mathematical domains and 
tasks. It is possible that object imagery or verbal cognitive style may be facilitating 
certain mathematical domains and tasks. For instance, it is possible that object 
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imagery or verbal cognitive style may enhance the learning of mnemonic rules and 
mathematical formulas. However, these hypotheses need to be tested. 
Overall, the results of the current study suggest that it is helpful to know students’ 
cognitive styles since it can be useful to develop appropriate teaching materials and 
methods in the mathematics classroom. The question remains however, whether those 
who are creative in mathematics have a spatial imagery preference as a result of 
experience or whether they reflect inborn abilities. Therefore, an interesting direction 
for future research is to investigate whether students can be trained to use their spatial 
visualization. It might be that training may enhance spatial imagery and subsequently 
facilitate mathematical creativity.
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Table 2: Multiple regression analyses with dependent variables fluency, flexibility 
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cognitive styles. 

DISCUSSION  
A number of studies have been carried out to understand the role of visual and verbal 
thinking in mathematics (Kruteskii, 1976; Lean & Clements, 1981; Presmeg, 1986a, 
1986b, 2006; Breen, 1997). However, most studies investigated the effects of visual 
imagery as a unitary, undifferentiated construct. This study provides evidence that 
different types of visual imagery, namely object and spatial imagery, may have 
significantly different effects on mathematical creativity. This result may be an 
explanation why previous studies found no relation between the use of visual 
representations and problem solving (Lean & Clements, 1981; Presmeg, 1986a, 
2006).
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Kozhevnikov et al. (2002) who found that spatial imagery is beneficial for 
mathematics. On the other hand, object imagery cognitive style appeared to have a 
negative relation to originality and verbal cognitive style a negative relation to 
flexibility.
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From the results obtained in the present study, it cannot be generalised that object 
imagery or verbal cognitive styles are obstacles to all mathematical domains and 
tasks. It is possible that object imagery or verbal cognitive style may be facilitating 
certain mathematical domains and tasks. For instance, it is possible that object 
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imagery or verbal cognitive style may enhance the learning of mnemonic rules and 
mathematical formulas. However, these hypotheses need to be tested. 
Overall, the results of the current study suggest that it is helpful to know students’ 
cognitive styles since it can be useful to develop appropriate teaching materials and 
methods in the mathematics classroom. The question remains however, whether those 
who are creative in mathematics have a spatial imagery preference as a result of 
experience or whether they reflect inborn abilities. Therefore, an interesting direction 
for future research is to investigate whether students can be trained to use their spatial 
visualization. It might be that training may enhance spatial imagery and subsequently 
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This paper focuses on the identification of students’ levels of sophistication in 
representing 3D shapes. Unstructured interviews were conducted in order to obtain 
data from forty 5th to 9th grade students in Cyprus. The results of the study showed 
that students have difficulties in representing 3D shapes, in interpreting 2D 
representations of 3D shapes, in building 3D objects based on plane representations 
and in mentally manipulating 3D shapes. In addition, the analysis of the data 
revealed that students’ representational processes and thinking are developed 
through four levels of sophistication.  

INTRODUCTION
The representation of three dimensional (3D) shapes provides opportunities for 
learners not only to develop spatial awareness, geometrical intuition and the ability to 
visualise, but also to develop knowledge and understanding of, and ability to use, 
geometrical properties and theorems (Jones & Mooney, 2003). The Principles and 
Standards of the National Council of Teachers of Mathematics (2000) recommends 
that two dimensional (2D) and 3D spatial visualization and representation are core 
skills that all students should develop to become experienced in using a variety of 
representations for three-dimensional shapes. Gutierrez (1996) asserts that it is 
essential for children to acquire and develop abilities allowing them to handle 
different 2D representations of 3D objects. A single type of representation can hardly 
represent a complete real-world object. Thus, switching between 2D and 3D 
representations is usually very important (Ho & Eastman, 2005). In an attempt to 
develop a coherent framework of students’ representation processes and thinking in 
3D geometry, the present describes 5th to 9th grade students’ levels of sophistication 
in manipulating different representational modes of 3D objects.  

THEORETICAL CONSIDERATIONS 
Students’ ability to manipulate different representation modes of 3D objects is one of 
the most substantial ingredients to be successful in 3D geometry tasks. A 3D object 
can be represented in a 2D drawing or in a 3D model. A model is considered as a 
close representation of a 3D object because it resembles the geometric object. 
Parzysz (1988) asserts that a drawing is a distant representation because there is a 
loss of information when moving from 3D space to plane representations. This loss of 
information can have various causes because under this projection each point of the 
plane corresponds to infinitely many points of the space (Bako, 2003). Thus, it often 
becomes difficult to guess, from the drawing, some properties of the 3D object. Some 
2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
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 4 - 385

 Volume 04 COMPLETE 290509.indb   385 6/4/09   2:25:12 PM



Pittalis, Mousoulides,  Christou 

1- 2                     PME 33 - 2009 

properties of the representation can be understood if the reader tries to visualise non 
displayed parts of the object (Parzysz, 1988). However, plane representations are the 
most frequent type of representation modes used to represent 3D geometrical objects 
in school textbooks (Gutierrez, 1992). Even though students in grades 6 through 8 are 
familiar with a variety of types of representation modes, they have great difficulty in 
successfully communicating spatial information (Ben-Chaim, Lappan, & Houang, 
1989). Bishop (1983) and Parzysz (1988) point out that the representation of a 3D 
object by means of a 2D figure demands considerable conventionalizing which is not 
trivial and not learned in traditional school curriculum. Students are asked to use 
conventionalisation rules without any attempt to directly teach conventions. Students’ 
ability to represent 3D objects is directly connected with the difficulties of the 
various representation modes and the mental representations involved (Parzysz, 
1988). Researchers (Clements & Battista, 1992; Parzysz, 1988; Presmeg, 2006) 
studied these difficulties and concluded that there is a need to explicitly interpret and 
utilise conventions in drawing 3D objects. Otherwise, students may misread a 
drawing and do not understand whether it represents a 2D or a 3D object. 
Gutierrez (1996) describes four types of plane representations that are most 
frequently used in 3D geometry teaching: perspective, layers, orthogonal or side 
views, coded orthogonal and isometric. Perspective type of representation is the kind 
of drawing naturally made by children. In this type of representation, lines which are 
parallel in real life are drawn to intersect at the vanishing point. A layer 
representation is made of several horizontal sections of the solid at some particular 
heights, to present the variations from bottom to top. An orthogonal type of 
representation consists of three views which are displayed separately: the front view, 
the side view and the top view. Coded orthogonal representation is an enriched type 
of orthogonal view with information about some characteristics of the solid. Finally, 
isometric view is a type of parallel projection in which the three Cartesian axes form 
angles of 120 degrees. There are important differences in the difficulty between 
building solids and drawing their plane representations based on the type of 
representation. For example, Gutierrez’s study (1996) showed that drawing side 
views is easier than building from side views, but drawing isometric projections is 
more difficult than building from an isometric representation.  
Students and adults have great difficulties in drawing 3D objects, such as 
representing parallel and perpendicular lines in space (Mitchelmore, 1980). For 
example, in the perspective and isometric views right angles are drawn differently. In 
addition, students have to combine into a unified mental image the different 
perspectives of an object. Initially, a student draws a rough sketch based on the front 
view of the object and then modifies the sketch based on other perspective of the 
object.
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THE PRESENT STUDY 
The present study tries to add to the research literature on students’ ability. Through 
observations and insights into students’ 3D geometry thinking, this study attempts to 
provide a starting point for better understanding students’ levels of sophistication in 
representing 3D shapes. In this study, by the term “representing a 3D shape”, we 
refer to the interpretation of a 2D representation of a 3D shape, the building of a 3D 
object based on a plane representation and the drawing of a 2D representation of a 3D 
shape.
Subjects
Forty students from fifth to ninth grade at two primary and two middle schools in 
urban districts in Cyprus formed the population. The school population is 
representative of a broad spectrum socioeconomic background. Eight children, from 
each grade, were randomly selected and served as case studies in this research.
The Tasks - Data Collection and Procedures 
Students were involved in a number of tasks that referred to the building of a 3D 
object based on a 2D type of representation, to the drawing of a 2D representation of 
a cube, to the interpretation of various forms of 2D representations of 3D objects and 
to the translation of one type of representation to another one. Due to space 
limitations, in the present study we present students’ work in two tasks. 
Task 1: The orthogonal view of a 3D object was presented to students (see Figure 1) 
and they were asked to build a 3D object by using multilink cubes. Before working 
with the cubes, we asked them to visualise the object and describe it. While working 
with the cubes, students had to explain their actions. Finally, after the completion of 
the construction, students had to decide whether they could remove one cube from 
the construction without altering the orthogonal view of the object.   

Front view Side view Top view 

Figure 1: The orthogonal view of the 3D object 
Task 2: A plastic cube was placed in front of students and they were asked to observe 
it and draw it. Based on students’ drawings, appropriate questions were raised. For 
example, in the case that a student drew the cube in a transparent view, we asked 
him/her whether he/she could match the edges that appeared in the drawing with the 
edges of the concrete cube. In addition, students had to identify parallel and 
perpendicular edges in the drawing and explain why some edges that intersect 
perpendicularly appear in a different way in the drawing.
We videotaped students’ interviews to capture their actions as they discussed their 
work. The setting was informal with students being able to analyse and build 
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properties of the representation can be understood if the reader tries to visualise non 
displayed parts of the object (Parzysz, 1988). However, plane representations are the 
most frequent type of representation modes used to represent 3D geometrical objects 
in school textbooks (Gutierrez, 1992). Even though students in grades 6 through 8 are 
familiar with a variety of types of representation modes, they have great difficulty in 
successfully communicating spatial information (Ben-Chaim, Lappan, & Houang, 
1989). Bishop (1983) and Parzysz (1988) point out that the representation of a 3D 
object by means of a 2D figure demands considerable conventionalizing which is not 
trivial and not learned in traditional school curriculum. Students are asked to use 
conventionalisation rules without any attempt to directly teach conventions. Students’ 
ability to represent 3D objects is directly connected with the difficulties of the 
various representation modes and the mental representations involved (Parzysz, 
1988). Researchers (Clements & Battista, 1992; Parzysz, 1988; Presmeg, 2006) 
studied these difficulties and concluded that there is a need to explicitly interpret and 
utilise conventions in drawing 3D objects. Otherwise, students may misread a 
drawing and do not understand whether it represents a 2D or a 3D object. 
Gutierrez (1996) describes four types of plane representations that are most 
frequently used in 3D geometry teaching: perspective, layers, orthogonal or side 
views, coded orthogonal and isometric. Perspective type of representation is the kind 
of drawing naturally made by children. In this type of representation, lines which are 
parallel in real life are drawn to intersect at the vanishing point. A layer 
representation is made of several horizontal sections of the solid at some particular 
heights, to present the variations from bottom to top. An orthogonal type of 
representation consists of three views which are displayed separately: the front view, 
the side view and the top view. Coded orthogonal representation is an enriched type 
of orthogonal view with information about some characteristics of the solid. Finally, 
isometric view is a type of parallel projection in which the three Cartesian axes form 
angles of 120 degrees. There are important differences in the difficulty between 
building solids and drawing their plane representations based on the type of 
representation. For example, Gutierrez’s study (1996) showed that drawing side 
views is easier than building from side views, but drawing isometric projections is 
more difficult than building from an isometric representation.  
Students and adults have great difficulties in drawing 3D objects, such as 
representing parallel and perpendicular lines in space (Mitchelmore, 1980). For 
example, in the perspective and isometric views right angles are drawn differently. In 
addition, students have to combine into a unified mental image the different 
perspectives of an object. Initially, a student draws a rough sketch based on the front 
view of the object and then modifies the sketch based on other perspective of the 
object.
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THE PRESENT STUDY 
The present study tries to add to the research literature on students’ ability. Through 
observations and insights into students’ 3D geometry thinking, this study attempts to 
provide a starting point for better understanding students’ levels of sophistication in 
representing 3D shapes. In this study, by the term “representing a 3D shape”, we 
refer to the interpretation of a 2D representation of a 3D shape, the building of a 3D 
object based on a plane representation and the drawing of a 2D representation of a 3D 
shape.
Subjects
Forty students from fifth to ninth grade at two primary and two middle schools in 
urban districts in Cyprus formed the population. The school population is 
representative of a broad spectrum socioeconomic background. Eight children, from 
each grade, were randomly selected and served as case studies in this research.
The Tasks - Data Collection and Procedures 
Students were involved in a number of tasks that referred to the building of a 3D 
object based on a 2D type of representation, to the drawing of a 2D representation of 
a cube, to the interpretation of various forms of 2D representations of 3D objects and 
to the translation of one type of representation to another one. Due to space 
limitations, in the present study we present students’ work in two tasks. 
Task 1: The orthogonal view of a 3D object was presented to students (see Figure 1) 
and they were asked to build a 3D object by using multilink cubes. Before working 
with the cubes, we asked them to visualise the object and describe it. While working 
with the cubes, students had to explain their actions. Finally, after the completion of 
the construction, students had to decide whether they could remove one cube from 
the construction without altering the orthogonal view of the object.   

Front view Side view Top view 

Figure 1: The orthogonal view of the 3D object 
Task 2: A plastic cube was placed in front of students and they were asked to observe 
it and draw it. Based on students’ drawings, appropriate questions were raised. For 
example, in the case that a student drew the cube in a transparent view, we asked 
him/her whether he/she could match the edges that appeared in the drawing with the 
edges of the concrete cube. In addition, students had to identify parallel and 
perpendicular edges in the drawing and explain why some edges that intersect 
perpendicularly appear in a different way in the drawing.
We videotaped students’ interviews to capture their actions as they discussed their 
work. The setting was informal with students being able to analyse and build 
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constructions that they thought would help them without time limits. Unstructured 
interviews were used in order to keep ourselves open to noticing hidden structures 
and processes in students’ thinking. Each interview lasted around 30 minutes. 

RESULTS
A qualitative interpretive (Miles & Huberman, 1994) framework was used in the 
analysis of the data.  After multiple readings and examinations of the data generated 
during the study, four levels of sophistication were identified in representing 3D 
shapes. The four levels were warranted based on the emerging patterns in students’ 
processes and thinking in interpreting 2D representations of a 3D object, building a 
3D object based on plane representations and drawing a plane representation of a 
cube. Table 1 makes easy the conceptualisation of the developmental patterns in 
students’ processes and thinking in the two tasks across the four levels of 
sophistication. Although the comparison of different grades’ students thinking in 
representing 3D shapes goes beyond the purpose of the study, it is important to report 
that each level consisted of students from all the grades 

Level Students’ processes and thinking 

1 Construction of three different objects instead of one based on the three sides of 
the orthogonal view 
Drawing isolated squares to represent a cube 
Inability to understand the 3D nature of objects in 2D representations

2 Coordination two of the three sides of the orthogonal view in the building of a 
3D object 
Drawing a cube using a procedural method without conceptualising the 
conventions applied, fragile thinking 
Absence of mental manipulation of 2D representation of 3D objects 

3 Description and construction of a 3D object based on its orthogonal view
Drawing a cube in transparent and non transparent format 
Not able to mentally manipulate 3D objects 

4 Description and construction of a 3D object based on its orthogonal view and 
mental manipulation of the object  
Drawing a cube by utilising, conceptualising and reflecting on the necessary 
conventions

Table 1: Characteristics of the four levels of sophistication 
First Level of Sophistication 
Students of the first level of sophistication had significant difficulties in representing 
3D objects. Their answers exhibited that they could not conceptualise the three 
dimensions of objects in 2D representations. For example, students at this level did 
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not realise in the first task that the three faces of the orthogonal view represent the 
same object. A fifth grade girl asked which of the three objects had to be constructed. 
Thus, students of this level decided that the front, side and top view of the orthogonal 
drawing were not linked and built three different objects by using multilink cubes 
that corresponded to the three faces (see figures 2(a), 2(b) and 2(c)). When the 
researcher reminded that he asked them to build one object, they just joined the three 
solids they had built up (see figure 2(d)). Students did not understand the spatial 
relations between the cubes presented in the side and top view of the object. Then, 
students were prompted to examine whether their construction fitted the given 
orthogonal view. Students spent much time working with the multilink cubes and 
built several objects. Most of them rotated their constructions and tried to figure out 
whether they corresponded to the three given views. However, none of them 
succeeded because they insisted on putting one column of two cubes on the right 
edge of the front view to fulfil the requirements of the side view, as presented in 
Figure 2(e). Moreover, the majority of the students put a column of three cubes 
behind the side view to form the shape of the top view (see Figure 2(f)). They did not 
realise that the back column of the inversed “T” shape of the top view represents also 
the right column of the side view. 

  Figure 2: First level students’ constructions 
Students of the first level did not succeed in drawing a cube in a proper way. Students 
neither accepted nor used the necessary conventions in representing a solid cube in a 
2D drawing. The majority of the students drew isolated squares. A small number of 
students drew two squares (the one covering the other), as it is presented in Figure 
3(a), and then they drew segments to join the vertices (see Figure 3(b)). However, 
when students were asked to explain their procedure, they could not do it. They 
answered that they had memorised this procedure. They could not explain which 
edges of their drawing were viewable in the concrete cube and which ones were 
viewable only in the drawing due to the transparent format. When they were asked 
whether the marked angle (see Figure 3(b)) is a right one, they answered that it is not. 
Then, we asked them to show this angle in the concrete cube. This question confused 
them and responded that if we measured the angle with another protector the angle 
could be a right one.

(a) (b) (c)

(d) (e) (f) 
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interviews were used in order to keep ourselves open to noticing hidden structures 
and processes in students’ thinking. Each interview lasted around 30 minutes. 

RESULTS
A qualitative interpretive (Miles & Huberman, 1994) framework was used in the 
analysis of the data.  After multiple readings and examinations of the data generated 
during the study, four levels of sophistication were identified in representing 3D 
shapes. The four levels were warranted based on the emerging patterns in students’ 
processes and thinking in interpreting 2D representations of a 3D object, building a 
3D object based on plane representations and drawing a plane representation of a 
cube. Table 1 makes easy the conceptualisation of the developmental patterns in 
students’ processes and thinking in the two tasks across the four levels of 
sophistication. Although the comparison of different grades’ students thinking in 
representing 3D shapes goes beyond the purpose of the study, it is important to report 
that each level consisted of students from all the grades 

Level Students’ processes and thinking 

1 Construction of three different objects instead of one based on the three sides of 
the orthogonal view 
Drawing isolated squares to represent a cube 
Inability to understand the 3D nature of objects in 2D representations

2 Coordination two of the three sides of the orthogonal view in the building of a 
3D object 
Drawing a cube using a procedural method without conceptualising the 
conventions applied, fragile thinking 
Absence of mental manipulation of 2D representation of 3D objects 

3 Description and construction of a 3D object based on its orthogonal view
Drawing a cube in transparent and non transparent format 
Not able to mentally manipulate 3D objects 

4 Description and construction of a 3D object based on its orthogonal view and 
mental manipulation of the object  
Drawing a cube by utilising, conceptualising and reflecting on the necessary 
conventions

Table 1: Characteristics of the four levels of sophistication 
First Level of Sophistication 
Students of the first level of sophistication had significant difficulties in representing 
3D objects. Their answers exhibited that they could not conceptualise the three 
dimensions of objects in 2D representations. For example, students at this level did 
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not realise in the first task that the three faces of the orthogonal view represent the 
same object. A fifth grade girl asked which of the three objects had to be constructed. 
Thus, students of this level decided that the front, side and top view of the orthogonal 
drawing were not linked and built three different objects by using multilink cubes 
that corresponded to the three faces (see figures 2(a), 2(b) and 2(c)). When the 
researcher reminded that he asked them to build one object, they just joined the three 
solids they had built up (see figure 2(d)). Students did not understand the spatial 
relations between the cubes presented in the side and top view of the object. Then, 
students were prompted to examine whether their construction fitted the given 
orthogonal view. Students spent much time working with the multilink cubes and 
built several objects. Most of them rotated their constructions and tried to figure out 
whether they corresponded to the three given views. However, none of them 
succeeded because they insisted on putting one column of two cubes on the right 
edge of the front view to fulfil the requirements of the side view, as presented in 
Figure 2(e). Moreover, the majority of the students put a column of three cubes 
behind the side view to form the shape of the top view (see Figure 2(f)). They did not 
realise that the back column of the inversed “T” shape of the top view represents also 
the right column of the side view. 

  Figure 2: First level students’ constructions 
Students of the first level did not succeed in drawing a cube in a proper way. Students 
neither accepted nor used the necessary conventions in representing a solid cube in a 
2D drawing. The majority of the students drew isolated squares. A small number of 
students drew two squares (the one covering the other), as it is presented in Figure 
3(a), and then they drew segments to join the vertices (see Figure 3(b)). However, 
when students were asked to explain their procedure, they could not do it. They 
answered that they had memorised this procedure. They could not explain which 
edges of their drawing were viewable in the concrete cube and which ones were 
viewable only in the drawing due to the transparent format. When they were asked 
whether the marked angle (see Figure 3(b)) is a right one, they answered that it is not. 
Then, we asked them to show this angle in the concrete cube. This question confused 
them and responded that if we measured the angle with another protector the angle 
could be a right one.

(a) (b) (c)

(d) (e) (f) 
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Figure 3: First level students’ cube drawing 
Second Level of Sophistication 
Students of the second level of sophistication failed in building the 3D object. 
However, based on their justifications, we concluded that their thinking had 
qualitative differences compared to previous level students’ thinking. Students of the 
second level realised that the three faces of the orthogonal view represent the same 
object. They coordinated only the front and side view of the object in the construction 
of the object (see Figure 2(e)). Students thought that the edges of the front and side 
views have to be joined and as a result they did not take into consideration the top 
view. A sixth grade student supported that there was a mistake in the orthogonal view 
because the top view could not be combined with the other two views. When students 
were prompted to re-examine the correctness of their construction, the majority 
started over and built-up a new object taking into consideration the front and top 
views. However, they did not realise that their construction was correct (see Figure 
4(a) and extended their construction by adding one column in the right part of the 
object to match the side view (see Figure 4(b)). 

    Figure 4: Second level students’ constructions 
Students’ inability to utilise the necessary conventions in drawing 3D objects was 
evident in Task 2. The majority of the students did not observe the concrete cube at 
all, but they implemented blindly the typical procedure of drawing two squares and 
then joining their vertices. Students did not conceptualise their actions and they failed 
in drawing the cube in a non transparent view. None of the students interpreted the 
necessary convention for the drawing of the right angles in the projection view. 
Instead, they answered that the marked angle (see Figure 3(b)) did not look a right 
one because they had made a rough sketch. Their thinking seemed to be very fragile.   
Third Level of Sophistication 
Students of the third level implemented a variety of processes in representing 3D 
objects and used in a proper way the necessary conventions in drawing 3D objects. 
Students in the first task described their construction based on its orthogonal view. 
Their first attempt to build the object resulted in the construction presented in Figure 
4(b). However, they realised on their own that their construction was wrong; they 
rotated it and observed at the same time the object and the orthogonal view and made 

(a) (b) 

(a) (b) 
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easily the necessary changes. When students corrected their construction they were 
asked whether they could remove a cube from the construction without changing the 
orthogonal view. Students failed to identify the two possible answers mentally 
(appear in darker colour in Figure 4(a)), but managed to do it after several trials.
Students of the third level seemed to utilise the necessary conventions in drawing 3D 
objects. The majority of the students drew a perspective view of a cube and explained 
which of the edges in their drawing were visible due to the transparent view of their 
sketch. They had no difficulties in making another drawing of the cube in a non 
transparent format. They displayed pairs of parallel edges and edges that intersect 
perpendicularly. However, the majority of students did not explain why the marked 
angle was not ninety degrees in the drawing. They just mentioned that “it is a right 
angle, but makes a visual illusion that it is smaller than ninety degrees”.      
Fourth Level of Sophistication 
Students of the fourth level described accurately the object before constructing it 
since the orthogonal view of the object helped them to create a mental image of the 
object. In addition, the majority of the students drew the perspective view of the 
object. They constructed very easily the object correctly, after observing very 
carefully the three sides of the orthogonal view. It seemed that they coordinated the 
three sides mentally. Students were very confident for their actions and justified all 
their actions. Students’ internal mental image of the object helped them to grasp the 
spatial relations. Thus, they had no difficulty in identifying mentally the two possible 
cubes that could be removed without changing the orthogonal view of the object. 
Students were successful in the drawing of the perspective view of a cube. An 
illustrative difference from the remaining students was the fact that they understood 
and implemented appropriately the conventions used in the 2D representation of 3D 
objects. As a result, they explained that although all the edges of a cube intersect 
perpendicularly, in the drawing some angles appear differently. They justified this 
procedure by claiming that the marked angle represents a right angle that looks 
smaller due to the perspective view. Our questions did not confuse them but 
prompted them to think more convincing arguments instead. Most of them explained 
that the marked angle would have been drawn ninety degrees if the angle view of the 
observer was different.

CONCLUDING REMARKS 
The results of the study showed that the majority of 5th to 9th grade students have 
great difficulties in representing 3D objects, as supported by previous researchers 
(Ben-Chaim, Lappan, & Houang, 1989). A number of students do not even 
understand the 3D nature of objects in their 2D drawings and cannot conceptualise 
the necessary conventions in drawing and interpreting 2D representations of 3D 
objects. Students exhibit these problems in interpreting plane representations, 
building objects based on 2D representations and in drawing 3D shapes. This result 
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all, but they implemented blindly the typical procedure of drawing two squares and 
then joining their vertices. Students did not conceptualise their actions and they failed 
in drawing the cube in a non transparent view. None of the students interpreted the 
necessary convention for the drawing of the right angles in the projection view. 
Instead, they answered that the marked angle (see Figure 3(b)) did not look a right 
one because they had made a rough sketch. Their thinking seemed to be very fragile.   
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Students of the third level implemented a variety of processes in representing 3D 
objects and used in a proper way the necessary conventions in drawing 3D objects. 
Students in the first task described their construction based on its orthogonal view. 
Their first attempt to build the object resulted in the construction presented in Figure 
4(b). However, they realised on their own that their construction was wrong; they 
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easily the necessary changes. When students corrected their construction they were 
asked whether they could remove a cube from the construction without changing the 
orthogonal view. Students failed to identify the two possible answers mentally 
(appear in darker colour in Figure 4(a)), but managed to do it after several trials.
Students of the third level seemed to utilise the necessary conventions in drawing 3D 
objects. The majority of the students drew a perspective view of a cube and explained 
which of the edges in their drawing were visible due to the transparent view of their 
sketch. They had no difficulties in making another drawing of the cube in a non 
transparent format. They displayed pairs of parallel edges and edges that intersect 
perpendicularly. However, the majority of students did not explain why the marked 
angle was not ninety degrees in the drawing. They just mentioned that “it is a right 
angle, but makes a visual illusion that it is smaller than ninety degrees”.      
Fourth Level of Sophistication 
Students of the fourth level described accurately the object before constructing it 
since the orthogonal view of the object helped them to create a mental image of the 
object. In addition, the majority of the students drew the perspective view of the 
object. They constructed very easily the object correctly, after observing very 
carefully the three sides of the orthogonal view. It seemed that they coordinated the 
three sides mentally. Students were very confident for their actions and justified all 
their actions. Students’ internal mental image of the object helped them to grasp the 
spatial relations. Thus, they had no difficulty in identifying mentally the two possible 
cubes that could be removed without changing the orthogonal view of the object. 
Students were successful in the drawing of the perspective view of a cube. An 
illustrative difference from the remaining students was the fact that they understood 
and implemented appropriately the conventions used in the 2D representation of 3D 
objects. As a result, they explained that although all the edges of a cube intersect 
perpendicularly, in the drawing some angles appear differently. They justified this 
procedure by claiming that the marked angle represents a right angle that looks 
smaller due to the perspective view. Our questions did not confuse them but 
prompted them to think more convincing arguments instead. Most of them explained 
that the marked angle would have been drawn ninety degrees if the angle view of the 
observer was different.

CONCLUDING REMARKS 
The results of the study showed that the majority of 5th to 9th grade students have 
great difficulties in representing 3D objects, as supported by previous researchers 
(Ben-Chaim, Lappan, & Houang, 1989). A number of students do not even 
understand the 3D nature of objects in their 2D drawings and cannot conceptualise 
the necessary conventions in drawing and interpreting 2D representations of 3D 
objects. Students exhibit these problems in interpreting plane representations, 
building objects based on 2D representations and in drawing 3D shapes. This result 
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might suggest that students lack the necessary spatial visualisation skills (Gutierrez, 
1996). Four levels of sophistication were identified in representing 3D shapes based 
on students’ representation processes and thinking. The differences between the four 
levels of sophistication students’ thinking suggest that the development of students’ 
spatial visualisation skills may induce their 3D representation processes. From the 
perspective of teachers, the present results may be used in order to include in their 
instruction appropriate activities aiming at improving students’ ability to read, 
interpret and draw plane representations of 3D shapes. Students should be involved in 
a variety of activities that will help them to investigate in a constructivist learning 
environment the conventions applied in the plane representation of 3D shapes.
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This paper presents a report on how a group of immigrant bilingual students use 
their languages in the learning of mathematics. We have developed our research with 
immigrant bilinguals in Catalonia, Spain, that arrived at a young age from South-
American countries. We propose a critical sociolinguistic approach, which draws on 
social theory in the analysis of how language is involved in the construction of 
teaching and learning opportunities. Our data points to the differences that the 
Spanish dominant bilingual students have in the use of Catalan and Spanish during 
their engagement in mathematical activity. They tend to use the two languages for 
different purposes, depending on the complexity of the mathematical practices, and in 
relation to different social settings that coexist within the classroom. 

INTRODUCTION
A majority of students in immigrant bilingual mathematics classrooms in Catalonia, 
have Spanish as a first language, however, they learn mathematics in Catalan, the 
official language of learning and teaching mathematics. How do these Spanish 
dominant bilingual students use languages during mathematics teaching and learning? 
Do they switch languages during mathematical activity? If so, what are some of the 
factors that seem to promote their language switching within the context of specific 
lessons? In this paper we explore the above questions by drawing on a wider study 
involving immigrant bilingual children that were either born in Catalonia or went 
there at a young age from South-American countries and attended a Catalan school. 
We discuss two of the most recurrent themes in the data: 1) the acquisition of specific 
vocabulary in the second language; and 2) the development of mathematical 
argumentations in the first language.   
By studying bilingual learners, we hope to come to a better understanding of how the 
use of the languages is mediated by the interpretation of the different contexts of 
mathematical school practices. Although many researchers recognize that the choice 
of language in bilinguals may vary depending on where and how the language is used 
(Daller, Van Hout & Treffers-Daller, 2003), we still have to further develop research 
on this topic in the case of contexts of mathematical practices.  

A SOCIOLINGUISTIC APPROACH TO BILINGUISM 
In this study we propose a critical sociolinguistic approach, which draws on social 
theory in the analysis of how language is involved in the construction of teaching and 
learning opportunities. We consider the construction and use of the language 
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essentially as a social process embedded in social interaction that takes place in social 
participation structures where issues of identity and power are structural. This process 
of construction and use of language is about how individuals, groups and the contexts 
mutually constitute one another and work to maintain certain power relationships and 
change others. Our approach is influenced by the perspectives of several researchers 
on mathematical learning and multilinguism such as Barwell (2005), Clarkson 
(2007), Moschkovich (2007), and Setati (2005). These authors assume the integrity of 
the language and culture of minority groups, and emphasize the need for developing a 
sense of “language awareness” in the domain of mathematics education research. 
They have in common: a) the attention to the on-going struggles over power, and 
resulting inequalities, in multilingual contexts of mathematical practice; b) the 
analysis of both social structure and agency; c) the need for sociolinguistic work to 
draw on social theory in our understanding of school mathematics; and d) the interest 
in how difference and dominance may be created in face-to-face classroom 
interactions.
The phenomena of language contact and linguistic diversity are particularly 
represented by bilinguism, in relation to the knowledge of and the ability to use two 
languages. In our work, a bilingual is someone who has learned to understand and 
speak the world by means of two languages, although the understanding may not be 
the same depending on the language that is being used. We focus on how bilinguals 
integrate the diversity of understandings, and how they put together their knowledge 
of two languages to use in communication. The integration of languages and the 
construction of joint knowledge are always problematic as language contact involves 
one kind or another of social imbalance that reflect tensions among groups. The 
selection of one language as well as the maintenance or the eventual shift to the other, 
are types of imbalance that are related to the differences in the knowledge of the 
languages, and to the social contexts where the languages are used. Caldas and 
Caron-Caldas (2002) argue that a bilingual’s preference for either of her/his two 
languages is context sensitive: the shift to the language with a higher status may be 
favoured by the students’ perception of conditions of gaining access to social goods, 
while the maintenance of the language with a lower status may be associated to the 
perception of conditions of segregation and marginalization.

CONTEXT AND METHOD 
Catalan is a Romanic language that shares many linguistic structural properties with 
Spanish. These structural similarities distinguish this research from studies on 
immigrant bilinguals in Europe that are faced with the problem of comparing the use 
of language pairs with large structural differences, such as Norwegian and Turkish or 
Arabic. While Catalan and Spanish are both common street languages in Catalonia, 
Catalan is the official language of teaching and learning. This means that teachers are 
required to produce written texts in Catalan and to use Catalan in their oral talk.
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The main data for this study came from regular lessons in a secondary school 
bilingual class in Barcelona, Spain, with twenty-four students about twelve years old 
and an experienced bilingual Catalan native speaker teacher. Data was collected over 
five consecutive lessons of fifty minutes each. The lessons were planned for the 
students to spend time working in small groups. The goals in the class included 
giving the students the experience of “thinking like mathematicians” and “learning 
basic facts about the mathematics”. Students had been informed that they were 
expected to “develop some ability to think critically about mathematics in open-
ended situations”. For the five lessons that were video-recorded, the contents were 
related to geometrical transformations. The unit, “Our dynamic planet”, included a 
variety of mathematical activities that were thought as a way to allow students to 
pose questions and solve problems in real contexts. In the third lesson, the students 
were asked to mathematically represent a tornado. 
In the class, there were eight students from South-America who were Spanish 
dominant bilingual, whereas the other sixteen students from Catalonia, mostly from 
Barcelona, were Catalan dominant bilingual, except for one of them who was a 
second generation immigrant and came from a Colombian family. All the students 
had a different bilingual proficiency profile due to the differences in their 
biographies. Although they were not “balanced bilinguals”, most of them could be 
seen as almost native-like competent in their second language. They all had similar 
working class backgrounds; most of their parents had not completed high school, 
were limited Catalan proficient and immigrated to Catalonia for work reasons. Our 
research was focused on the nine students who spoke Spanish at home. The data for 
this report comes from one of the regular small groups (WG1), whose members were 
Máximo (M) –a second generation Colombian boy–, Luna (L) –a girl born in Peru– 
and Nicolás (N) and Eliseo (E) –two boys born in Colombia. The teacher described 
the four students in this group as having an average mathematical competency.   
For the five class periods, the teacher and one of the students in each group wore a 
wireless microphone. There was also a static camera placed in one corner to capture 
the general picture of the entire classroom environment. For the analysis, different 
portions of the students’ interactions within the small groups and with the teacher 
were first isolated and then transcribed. After having examined that language 
switching occurred, by quantifying the shifts from Catalan to Spanish and from 
Spanish to Catalan, we drew on ethnomethodology and interactional sociolinguistics 
to describe the contents of the talk that were observable and interpretable when 
reading the interactions. The use of a constant comparative method led to the 
development of interrelated themes that seemed to be promoting language switching. 
We now discuss two of the more recurrent themes.    

RESULTS
Our data points to differences in the use of the languages during the Spanish 
dominant bilingual students’ engagement in mathematical activity. When the students 
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analysis of both social structure and agency; c) the need for sociolinguistic work to 
draw on social theory in our understanding of school mathematics; and d) the interest 
in how difference and dominance may be created in face-to-face classroom 
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represented by bilinguism, in relation to the knowledge of and the ability to use two 
languages. In our work, a bilingual is someone who has learned to understand and 
speak the world by means of two languages, although the understanding may not be 
the same depending on the language that is being used. We focus on how bilinguals 
integrate the diversity of understandings, and how they put together their knowledge 
of two languages to use in communication. The integration of languages and the 
construction of joint knowledge are always problematic as language contact involves 
one kind or another of social imbalance that reflect tensions among groups. The 
selection of one language as well as the maintenance or the eventual shift to the other, 
are types of imbalance that are related to the differences in the knowledge of the 
languages, and to the social contexts where the languages are used. Caldas and 
Caron-Caldas (2002) argue that a bilingual’s preference for either of her/his two 
languages is context sensitive: the shift to the language with a higher status may be 
favoured by the students’ perception of conditions of gaining access to social goods, 
while the maintenance of the language with a lower status may be associated to the 
perception of conditions of segregation and marginalization.

CONTEXT AND METHOD 
Catalan is a Romanic language that shares many linguistic structural properties with 
Spanish. These structural similarities distinguish this research from studies on 
immigrant bilinguals in Europe that are faced with the problem of comparing the use 
of language pairs with large structural differences, such as Norwegian and Turkish or 
Arabic. While Catalan and Spanish are both common street languages in Catalonia, 
Catalan is the official language of teaching and learning. This means that teachers are 
required to produce written texts in Catalan and to use Catalan in their oral talk.
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biographies. Although they were not “balanced bilinguals”, most of them could be 
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to describe the contents of the talk that were observable and interpretable when 
reading the interactions. The use of a constant comparative method led to the 
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are getting familiar with the task and the new mathematical vocabulary, they tend to 
use Catalan, both with their small group peers, who are Spanish dominant, and with 
the teacher. However, when they start reflecting on the resolution of the task, they 
tend to use Spanish as if it was easier for them to complete and communicate their 
mathematical processes in this language. The experience of searching for 
mathematical explanations seems to be a factor that initiates students’ switching 
between languages. We know about this type of findings in relation to English as a 
second language and with pairs of languages that have many structural linguistic 
differences such as Vietnamese and English or Iranian and English. But there is not 
literature regarding language switching by Catalan and Spanish bilingual students in 
Catalan mathematics classrooms. The language context given by the socio-political 
situation in our country, where Spanish has a low social standing, makes it relevant to 
pay attention to the particularities of this group of bilingual students and their efforts 
towards the public use of Catalan, the language with a higher status.
The acquisition of specific vocabulary in the second language 
In the five lessons, during the first minutes the teacher gives priority to the 
introduction of mathematical vocabulary concerning geometry. She asks the students 
if they know the meaning of a certain word that has been written on the board or 
orally introduced, and urges them to use it in the context of the task. She does not 
translate the word into Spanish neither do the students ask for a translation. She 
begins by only explaining vaguely the mathematical meaning of the new word and 
leaves the students to explore in small groups the underlying concepts in the context 
of the task. In the interactions with the teacher, the immigrant students tend to use 
Catalan, their less proficient language, when they are prompted to introduce new 
terms. The following two excerpts from the third lesson are entirely in Catalan. The 
first excerpt shows part of the moment when the words “helicoidal”, “helicoid” and 
“helix” are presented. Particularly interesting here is the way in which the speakers 
co-learn individual vocabulary terms by repeating one another’s talk, completing the 
other’s turns and providing supportive feedback. The teacher (T) models language 
behavior by only using the Catalan and suggesting the idea of “word family”:  

T:    Sabeu què és un moviment helicoïdal? / Do you know what a helicoidal motion is? 
M:   Bé, sabem el que és un tornado. / Well, we know what a tornado is.
N:    I sabem que un tornado es mou amb facilitat i rapidesa. / And we know that a 

tornado moves easily and quickly.  
T:    Un tornado va recte endavant i també gira. És un moviment helicoïdal. / A tornado 

goes straight forward and it also turns around. This is a helicoidal motion. 
M:   Un tornado va recte i cap avall. Com es diu? Helicoïdal? / A tornado goes straight 

forward and down. How do you say it? Helicoidal? 
T: Es diu igual. Un moviment helicoïdal. Una helicoïde. Una hèlix. És el mateix. / You 

say it the same. A helicoidal motion. A helicoid. A helix. It is the same.
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N:   I un tornado és un moviment helicoïdal. / Then a tornado is a helicoidal motion.
M:   És un moviment helicoïdal que va recta avall i gira. / It is a helicoidal motion that 

goes down straight forward and turns around.    

In the interactions with the Spanish dominant students in the small group initial 
discussions, the immigrant bilinguals also tend to use Catalan. They go on with the 
use of Catalan in the context of getting familiar with the new words when talking to 
their peers, even when the teacher is not standing next to them. In the excerpt below, 
they do not accept incorporating the word “spiral”, which does not fit into the 
helicoid’s word family but could be seen, however, as part of a “concept family”. 
Both the helicoid and the spiral have in common the idea of representing a curve in 
motion and some of the shared geometrical meanings associated to these words are 
helpful in the representation of a tornado. Eliseo points to the idea that the 
understanding of the concept “tornado” is more important than the words we use for 
it, but then rejects talking about spirals. One can sense in this excerpt possible 
tensions between the focus on the language and the focus on the mathematics, 
specifically between the idea of practicing the new vocabulary (“We are talking about 
helixes, not spirals”) and the idea of exploring geometrically similar mathematical 
concepts (“It is a bit of a spiral”). All the utterances were in Catalan except for the last 
one, below we only reproduce the English translation in order to reduce the length.

L:  We need to make the spiral. 

N:  Not a spiral, a helicoid, a helix.

E:  What we really need to make is a tornado. And we need to name it a helicoid. 

L:  Do we need to make the arrows like yesterday?

E:  We need to understand what a tornado is and then we find a name for it.

N:  But now they are arrows of a helicoidal motion. It is a bit of a spiral. 

E:  We are talking about helixes, not spirals.

L:  We are talking about helicoidal arrows.

M: We need to decide the arrows that we draw and that’s all.

E:  First we think about the arrows, then we draw them and then we talk about it.

M: [Spanish] This idea of the arrows is not easy. We have to imagine the different 
movements that exist within the tornado.

Máximo uses Catalan when reproducing the new terms and changes to Spanish when 
starting to develop more sophisticated arguments based on the coexistence of different 
simple motions within a helicoid. The students’ initial interactions around the notion 
of helicoid are centered on how this notion is represented in the context of the task and 
in relation to the teacher’s language priorities. They give priority to the use of the new 
words (a word family) instead of making distinctions or stating similarities between a 
spiral and a helicoid (a concept family). In the next section, we show that, in general, 
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are getting familiar with the task and the new mathematical vocabulary, they tend to 
use Catalan, both with their small group peers, who are Spanish dominant, and with 
the teacher. However, when they start reflecting on the resolution of the task, they 
tend to use Spanish as if it was easier for them to complete and communicate their 
mathematical processes in this language. The experience of searching for 
mathematical explanations seems to be a factor that initiates students’ switching 
between languages. We know about this type of findings in relation to English as a 
second language and with pairs of languages that have many structural linguistic 
differences such as Vietnamese and English or Iranian and English. But there is not 
literature regarding language switching by Catalan and Spanish bilingual students in 
Catalan mathematics classrooms. The language context given by the socio-political 
situation in our country, where Spanish has a low social standing, makes it relevant to 
pay attention to the particularities of this group of bilingual students and their efforts 
towards the public use of Catalan, the language with a higher status.
The acquisition of specific vocabulary in the second language 
In the five lessons, during the first minutes the teacher gives priority to the 
introduction of mathematical vocabulary concerning geometry. She asks the students 
if they know the meaning of a certain word that has been written on the board or 
orally introduced, and urges them to use it in the context of the task. She does not 
translate the word into Spanish neither do the students ask for a translation. She 
begins by only explaining vaguely the mathematical meaning of the new word and 
leaves the students to explore in small groups the underlying concepts in the context 
of the task. In the interactions with the teacher, the immigrant students tend to use 
Catalan, their less proficient language, when they are prompted to introduce new 
terms. The following two excerpts from the third lesson are entirely in Catalan. The 
first excerpt shows part of the moment when the words “helicoidal”, “helicoid” and 
“helix” are presented. Particularly interesting here is the way in which the speakers 
co-learn individual vocabulary terms by repeating one another’s talk, completing the 
other’s turns and providing supportive feedback. The teacher (T) models language 
behavior by only using the Catalan and suggesting the idea of “word family”:  

T:    Sabeu què és un moviment helicoïdal? / Do you know what a helicoidal motion is? 
M:   Bé, sabem el que és un tornado. / Well, we know what a tornado is.
N:    I sabem que un tornado es mou amb facilitat i rapidesa. / And we know that a 

tornado moves easily and quickly.  
T:    Un tornado va recte endavant i també gira. És un moviment helicoïdal. / A tornado 

goes straight forward and it also turns around. This is a helicoidal motion. 
M:   Un tornado va recte i cap avall. Com es diu? Helicoïdal? / A tornado goes straight 

forward and down. How do you say it? Helicoidal? 
T: Es diu igual. Un moviment helicoïdal. Una helicoïde. Una hèlix. És el mateix. / You 

say it the same. A helicoidal motion. A helicoid. A helix. It is the same.

Planas, Iranzo, Setati

PME 33 - 2009 1- 5 

N:   I un tornado és un moviment helicoïdal. / Then a tornado is a helicoidal motion.
M:   És un moviment helicoïdal que va recta avall i gira. / It is a helicoidal motion that 

goes down straight forward and turns around.    

In the interactions with the Spanish dominant students in the small group initial 
discussions, the immigrant bilinguals also tend to use Catalan. They go on with the 
use of Catalan in the context of getting familiar with the new words when talking to 
their peers, even when the teacher is not standing next to them. In the excerpt below, 
they do not accept incorporating the word “spiral”, which does not fit into the 
helicoid’s word family but could be seen, however, as part of a “concept family”. 
Both the helicoid and the spiral have in common the idea of representing a curve in 
motion and some of the shared geometrical meanings associated to these words are 
helpful in the representation of a tornado. Eliseo points to the idea that the 
understanding of the concept “tornado” is more important than the words we use for 
it, but then rejects talking about spirals. One can sense in this excerpt possible 
tensions between the focus on the language and the focus on the mathematics, 
specifically between the idea of practicing the new vocabulary (“We are talking about 
helixes, not spirals”) and the idea of exploring geometrically similar mathematical 
concepts (“It is a bit of a spiral”). All the utterances were in Catalan except for the last 
one, below we only reproduce the English translation in order to reduce the length.

L:  We need to make the spiral. 

N:  Not a spiral, a helicoid, a helix.

E:  What we really need to make is a tornado. And we need to name it a helicoid. 

L:  Do we need to make the arrows like yesterday?

E:  We need to understand what a tornado is and then we find a name for it.

N:  But now they are arrows of a helicoidal motion. It is a bit of a spiral. 

E:  We are talking about helixes, not spirals.

L:  We are talking about helicoidal arrows.

M: We need to decide the arrows that we draw and that’s all.

E:  First we think about the arrows, then we draw them and then we talk about it.

M: [Spanish] This idea of the arrows is not easy. We have to imagine the different 
movements that exist within the tornado.

Máximo uses Catalan when reproducing the new terms and changes to Spanish when 
starting to develop more sophisticated arguments based on the coexistence of different 
simple motions within a helicoid. The students’ initial interactions around the notion 
of helicoid are centered on how this notion is represented in the context of the task and 
in relation to the teacher’s language priorities. They give priority to the use of the new 
words (a word family) instead of making distinctions or stating similarities between a 
spiral and a helicoid (a concept family). In the next section, we show that, in general, 
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the students’ switching in the middle of certain conversations seems to be sensitive to 
the type of practices. They tend to switch from Catalan –when “getting familiar with 
the new vocabulary”– to Spanish –when “solving the task”– and maintain the switch 
to Spanish during the time devoted to argumentation in the small group.
The development of mathematical argumentations in the first language
The excerpts above show how well particular mathematical vocabulary is used in the 
context of the Catalan language but do not give information concerning which of the 
mathematical meanings for the new words (“helicoidal”, “helicoid” and “helix”) are 
known, neither do they inform about the process of further exploring some of the 
geometrical concepts that are being represented by these words. The Spanish 
dominant students go back to their first language in the small group when they start 
experiencing some difficulties in the process of resolution and when they try to 
complete their explanations and, more generally, the mathematical task. This is the 
case with WG1 in the third lesson. Below, we reproduce the English translation of a 
conversation that happens entirely in Spanish:

N:  It can be a diagonal arrow.

L: But the tornado does not follow a diagonal direction, it goes down and turns around at 
the same time.

M:  The helicoid is like a broken arrow [he makes the drawing on the left in Figure 1].  

E:  A tornado is much more complicated. I will do it like this [the drawing on the right].     

L:  I don’t think that a tornado may be represented with arrows. When you look at it, it 
doesn’t go by staggering, now this direction and then the other.  

N:  None of your drawings are real. A tornado moves like a circle and you have only 
made rectilinear lines. 

E:  Now it does make sense to talk about the spiral.

Figure 1. Some of the students’ drawings representing a tornado. 

The following excerpt starts with Luna asking for help in Spanish (S). Nicolás goes 
back to Catalan (C) and points to some key terms for the understanding of the task. As 
soon as Luna shows to have understood the meaning of the key words in the context 
of the task, Nicolás goes on with the mathematical explanations of the arrows in 
Figure 1 and uses again Spanish. Eliseo insists on introducing the notion of spiral, 
which is now accepted, probably because now it is not seen as an obstacle in the 
learning of new vocabulary. The references to the curves of a spiral will help to 
complete the linear representations in Figure 1 with curves (see Figure 2). It is 
interesting to note that while the approach to the task seems to be centered on the 
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learning of a word family, the notion of spiral is not accepted and the idea of 
curvilinear lines is not considered. Later, when the approach seems to be centered on 
the learning of the mathematics, the consideration of the notion of spiral is allowed 
and a more accurate representation of a tornado is achieved.

L:  [S] The question asks to represent a tornado, doesn’t it?

N:  [C] Yes, it says that we need to mathematically represent a tornado.

L:  [C] It’s not to talk about a tornado, it is to mathematically represent it.

E: [S] The drawing of a tornado can be useful before its representation.

N:  [S] It is clear that only one arrow is not enough, a tornado is more than a translation. 
E: [S] We need to think about the drawing of a spiral. We would draw curves.  

Figure 3. Eliseo’s final drawings representing a tornado. 

These four immigrant bilinguals use their two languages for different purposes. They 
use Catalan when getting familiar with new vocabulary, when situating the use of this 
vocabulary in the context of the given task, and when beginning to organize 
approaches to the resolution of the task. However, they use Spanish, their dominant 
language and the language that they share with their small group peers, when arguing 
at various degrees of specificity and developing more complex comprehension 
processes that are not centered on the repetition of some of the teacher’s words and 
sentences. Our findings, concerning the use of the first language when elaborating on 
an argumentation, fit with Moschkovich’s data (2007) where Latino students use 
Spanish to justify an answer or elaborate on an explanation and return to English when 
being asked by the teacher to give priority to the acquisition of new vocabulary.  
The data from the whole group interactions in the five lessons shows that the group of 
Máximo tends not to speak when the teacher asks the groups to present their 
reasoning. Their engagement with the mathematics in Spanish does not lead to an 
increased participation in Catalan outside the context of the small group, although 
they are allowed to use the Spanish language. On the few occasions that the teacher 
asks these students to interact, they make short interactions in Catalan. Conversely, 
the local bilingual students tend to volunteer information unprompted, even 
interrupting the teacher to do so.  

FINAL REMARKS 
We have illustrated data concerning the use of the two languages by a group of 
bilingual students. These students tend to use each of the two languages in different 
domains of mathematical practices (acquiring vocabulary vs. explaining and arguing), 
and in relation to different social settings within the classroom (small group vs. whole 
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the students’ switching in the middle of certain conversations seems to be sensitive to 
the type of practices. They tend to switch from Catalan –when “getting familiar with 
the new vocabulary”– to Spanish –when “solving the task”– and maintain the switch 
to Spanish during the time devoted to argumentation in the small group.
The development of mathematical argumentations in the first language
The excerpts above show how well particular mathematical vocabulary is used in the 
context of the Catalan language but do not give information concerning which of the 
mathematical meanings for the new words (“helicoidal”, “helicoid” and “helix”) are 
known, neither do they inform about the process of further exploring some of the 
geometrical concepts that are being represented by these words. The Spanish 
dominant students go back to their first language in the small group when they start 
experiencing some difficulties in the process of resolution and when they try to 
complete their explanations and, more generally, the mathematical task. This is the 
case with WG1 in the third lesson. Below, we reproduce the English translation of a 
conversation that happens entirely in Spanish:

N:  It can be a diagonal arrow.

L: But the tornado does not follow a diagonal direction, it goes down and turns around at 
the same time.

M:  The helicoid is like a broken arrow [he makes the drawing on the left in Figure 1].  

E:  A tornado is much more complicated. I will do it like this [the drawing on the right].     

L:  I don’t think that a tornado may be represented with arrows. When you look at it, it 
doesn’t go by staggering, now this direction and then the other.  

N:  None of your drawings are real. A tornado moves like a circle and you have only 
made rectilinear lines. 

E:  Now it does make sense to talk about the spiral.

Figure 1. Some of the students’ drawings representing a tornado. 

The following excerpt starts with Luna asking for help in Spanish (S). Nicolás goes 
back to Catalan (C) and points to some key terms for the understanding of the task. As 
soon as Luna shows to have understood the meaning of the key words in the context 
of the task, Nicolás goes on with the mathematical explanations of the arrows in 
Figure 1 and uses again Spanish. Eliseo insists on introducing the notion of spiral, 
which is now accepted, probably because now it is not seen as an obstacle in the 
learning of new vocabulary. The references to the curves of a spiral will help to 
complete the linear representations in Figure 1 with curves (see Figure 2). It is 
interesting to note that while the approach to the task seems to be centered on the 
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learning of a word family, the notion of spiral is not accepted and the idea of 
curvilinear lines is not considered. Later, when the approach seems to be centered on 
the learning of the mathematics, the consideration of the notion of spiral is allowed 
and a more accurate representation of a tornado is achieved.

L:  [S] The question asks to represent a tornado, doesn’t it?

N:  [C] Yes, it says that we need to mathematically represent a tornado.

L:  [C] It’s not to talk about a tornado, it is to mathematically represent it.

E: [S] The drawing of a tornado can be useful before its representation.

N:  [S] It is clear that only one arrow is not enough, a tornado is more than a translation. 
E: [S] We need to think about the drawing of a spiral. We would draw curves.  

Figure 3. Eliseo’s final drawings representing a tornado. 

These four immigrant bilinguals use their two languages for different purposes. They 
use Catalan when getting familiar with new vocabulary, when situating the use of this 
vocabulary in the context of the given task, and when beginning to organize 
approaches to the resolution of the task. However, they use Spanish, their dominant 
language and the language that they share with their small group peers, when arguing 
at various degrees of specificity and developing more complex comprehension 
processes that are not centered on the repetition of some of the teacher’s words and 
sentences. Our findings, concerning the use of the first language when elaborating on 
an argumentation, fit with Moschkovich’s data (2007) where Latino students use 
Spanish to justify an answer or elaborate on an explanation and return to English when 
being asked by the teacher to give priority to the acquisition of new vocabulary.  
The data from the whole group interactions in the five lessons shows that the group of 
Máximo tends not to speak when the teacher asks the groups to present their 
reasoning. Their engagement with the mathematics in Spanish does not lead to an 
increased participation in Catalan outside the context of the small group, although 
they are allowed to use the Spanish language. On the few occasions that the teacher 
asks these students to interact, they make short interactions in Catalan. Conversely, 
the local bilingual students tend to volunteer information unprompted, even 
interrupting the teacher to do so.  

FINAL REMARKS 
We have illustrated data concerning the use of the two languages by a group of 
bilingual students. These students tend to use each of the two languages in different 
domains of mathematical practices (acquiring vocabulary vs. explaining and arguing), 
and in relation to different social settings within the classroom (small group vs. whole 
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group). First, when the Spanish dominant bilinguals in our study are prompted by the 
teacher to get familiar with the task within their small group and learn new 
mathematical vocabulary, they change to Catalan, which is the language in which this 
vocabulary is introduced. Second, when these students go more deeply into the 
resolution of the task within their small group, they change to Spanish although 
eventually they may go back to Catalan for certain clarifications. Third, when the time 
for the whole group discussion starts, they only intervene if they are directly asked by 
the teacher to do so and, when this happens, they use Catalan. For a further 
interpretation of this sort of language switching, we need to frame it in terms of the 
students’ expectations about what they might achieve –or lose– by speaking in one of 
the two languages, given their different levels of language and mathematical 
proficiency and the role of each language within that classroom.
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“…BECAUSE ‘OF’ IS ALWAYS MINUS…” -  
STUDENTS EXPLAINING THEIR CHOICE OF OPERATIONS  

IN MULTIPLICATIVE WORD PROBLEMS WITH FRACTIONS 

Susanne Prediger – IEEM Dortmund, Germany 

The correct choice of operations is well known to be an obstacle for students when 
solving word problems. The presented study contributes to the discussion on possible 
explanations by investigating explicitly given reasons for choices in a written test 
with 269 German grammar school students. It shows that no uni-dimensional account 
can be given for the multi-faceted phenomenon of choice of operation. 

Various empirical studies have documented difficulties in students’ performance with 
word problems. Different obstacles were specified for a successful mathematization 
of word problems, some of them concerning the external appearance of word 
problems like length and readability of texts, others concerning their internal 
structure, like familiarity of contexts, necessary choice of operations, number type, 
didactic contracts for questions of validation etc (cf. Verschaffel et al., 2000, for an 
overview). Among all these important aspects, the choice of operations and their 
background gained a special attention for word problems with non-natural numbers. 
Many researchers studied the choice of operations for one-step multiplicative word 
problems with two decimal numbers (e.g. Fischbein et al., 1985; Bell et al, 1981; Bell 
et al., 1989; Harel et al., 1994). This study builds upon them, but extends them by  
1.  a focus on fractions rather than on decimals (demanded by Harel et al., 1994),
2.  an enriched test design, including various models of multiplication and items for 

other layers of competence, and  
3.  a deeper analysis of reasons for choices given by the students themselves. By this, 

we attempt to enlarge usual quantitative research designs.

EXISTING RESULTS AND THEORETICAL EXPLANATIONS FOR 
DIFFICULTIES WITH THE CHOICE OF OPERATIONS 
Solving word problems is only one aspect in a multi-faceted landscape of 
competences that are to be developed for fractions. Following Fischbein et al. (1985), 
this landscape can be structured in a multi-level model for competence with fractions
(elaborated especially on the intuitive level in Prediger, 2008): 

Formal Level, including the definitions of concepts and of operations, structures, 
and theorems relevant to a specific content domain; formally represented by 
axioms, definitions, theorems and their proofs,  
Algorithmic Level, comprising procedural skills - here of multiplying - and the 
capability to explain the successive steps of the standard procedures,
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Intuitive Level, characterized as the type of mostly implicit knowledge that is 
often accepted directly and confidently as being obvious, including different 
layers:

mathematizing competence, i.e. ability to translate word problems into terms, 
intuitive rules, i.e. individual conceptions about existing laws and coherences, 
individual interpretations of operations, and 
individual interpretations of numbers (decimals, fractions etc.). 

Individual interpretations of operations and numbers have been conceptualized as 
(mental) models (Fischbein et al., 1985; Greer, 1994; Usiskin, 2008) or 
‘Grundvorstellungen’ (GVs, see vom Hofe et al., 2006; Prediger, 2008). They 
constitute the meanings of mathematical concepts based on familiar contexts.  
In order to give more precise accounts for students’ deficits in their mathematizing 
competences for multiplicative word problems, various researchers investigated into 
students’ choice of operations. A robust finding is that number types involved in the 
problem statement strongly affect the difficulty of the mathematization process, the 
so-called multiplier effect: For multiplicative problems with an integer multiplier, the 
correct choice of operation is easier than for decimal multipliers > 1, and those are 
easier than for problems with multiplier < 1, from which one knows that the result 
must be smaller than the factors (e.g. Bell et al., 1981; Bell et al., 1989).  
Basically, two different theoretical accounts have been given for the multiplier effect: 
First, Bell et al. (1981) emphasized the importance of the intuitive rule 
“multiplication makes bigger” (here shortly called the ‘order property’) and its 
generalization from natural to fractional numbers as the main obstacle for choosing 
multiplication for word problems with multiplier < 1 (cf. Bell et al., 1981; vom Hofe 
et al., 2006). Fischbein et al. (1985) gave empirical evidence for an explanation 
situating the difficulty one layer underneath: They emphasized that the pertinacity of 
the intuitive rule “multiplication makes bigger” is often connected with the 
continuing maintenance of the interpretation of multiplication in the repeated 
addition model (which does not work for decimal or fractional multipliers). Both 
accounts can be integrated, as shown in Prediger (2008), since the intuitive rule is 
often based upon uncompleted conceptual changes on the layer of interpretations of 
multiplication (similarly Greer, 1994). That means, that those students who have 
widened their repertoire of interpretations for multiplication (and hence mastered the 
discontinuity of the repeated addition model) can also change their intuitive rules 
concerning the order property of multiplication.  
Although later studies started to widen the structure of situations in view (e.g. Bell et 
al., 1989, considered not only repeated addition models, but also prices, speed and 
currency-conversion), the great variety of other individual models for the 
multiplication of fractions and naturals are still to be explored more systematically.

Prediger
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CENTRAL METHODOLOGICAL IDEA AND RESEARCH QUESTIONS OF 
THE PRESENT STUDY 
In order to specify aspects in students’ thinking and in word problems that influence 
students’ choice of operations, three main research strategies have been adopted so 
far:
1.  Studying effects of factors by comparing difficulties when systematically varying 

operation-choice test items (e.g. Bell et al., 1989; de Corte / Verschaffel, 1996).
2. Searching for statistical coherences in a written test, covering different layers of 

competence (e.g. vom Hofe et al., 2006; Bell et al., 1981; Prediger, 2008). 
3. Qualitative in-depth analysis by clinical interviews (for example Bell et al., 1981 in 

their first phase, Wartha, 2007). 
Research strategies 1 and 2 can only give statistical coherences (by comparing, in 
contingency tables or with correlations), but no account for causal connections. That 
is why some quantitative studies have been complemented by qualitative in-depth 
studies in clinical interviews, but they only allow small numbers of participants.  
4.  Qualitative deeper analysis of written answers 

This study tries to combine advantages of qualitative and quantitative strategies by 
applying an intermediate strategy: We conducted a written test with open items, 
coded answers in an explorative procedure and quantified frequencies of 
constructed codes afterwards. This generated insights beyond statistical 
coherences.

RESEARCH DESIGN: CORE ITEMS, PARTICIPANTS, DATA ANALYSIS
The empirical material presented here was part of a study conducted by a written test 
with twelve test items (see Prediger / Matull, 2008). This paper focuses on two core 
items (the other ten items that are shortly characterized in Table 1):  
Item 7 a.) One kilogram tangerine costs 1.50 €. Kate wants to buy 3/4 kg. How can she calculate the price?

  1,5 – 3/4   1,5 : 3/4   3/41,5  none of these, but this:
b.)  Give reasons for your answer given in a) 

Item 9  a.) How can you calculate 2/3 of 36?   36-2/3    36 : 2/3   2/3  36  none of these, but this: 
b.) Give reasons for your answer given in a.) 

Item 7 and 9 follow the choice of operation methodology (cf. Fischbein et al., 1985, 
Bell et al., 1989), in which students are asked to give or choose a term without 
calculating the answer. Crucial for research strategy 4 is the added part b.), asking for 
reasons of choices in an open item format.  
Item 7 asks for a mathematization in a situation acting across quantities, which is 
(according to Usiskin, 2008), especially difficult for students. Item 9 has the same 
structure, but refers to a situation in which the multiplication is used for taking a part 
of a whole number, one of the most important models for the multiplication of 
fractions.
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Intuitive Level, characterized as the type of mostly implicit knowledge that is 
often accepted directly and confidently as being obvious, including different 
layers:

mathematizing competence, i.e. ability to translate word problems into terms, 
intuitive rules, i.e. individual conceptions about existing laws and coherences, 
individual interpretations of operations, and 
individual interpretations of numbers (decimals, fractions etc.). 

Individual interpretations of operations and numbers have been conceptualized as 
(mental) models (Fischbein et al., 1985; Greer, 1994; Usiskin, 2008) or 
‘Grundvorstellungen’ (GVs, see vom Hofe et al., 2006; Prediger, 2008). They 
constitute the meanings of mathematical concepts based on familiar contexts.  
In order to give more precise accounts for students’ deficits in their mathematizing 
competences for multiplicative word problems, various researchers investigated into 
students’ choice of operations. A robust finding is that number types involved in the 
problem statement strongly affect the difficulty of the mathematization process, the 
so-called multiplier effect: For multiplicative problems with an integer multiplier, the 
correct choice of operation is easier than for decimal multipliers > 1, and those are 
easier than for problems with multiplier < 1, from which one knows that the result 
must be smaller than the factors (e.g. Bell et al., 1981; Bell et al., 1989).  
Basically, two different theoretical accounts have been given for the multiplier effect: 
First, Bell et al. (1981) emphasized the importance of the intuitive rule 
“multiplication makes bigger” (here shortly called the ‘order property’) and its 
generalization from natural to fractional numbers as the main obstacle for choosing 
multiplication for word problems with multiplier < 1 (cf. Bell et al., 1981; vom Hofe 
et al., 2006). Fischbein et al. (1985) gave empirical evidence for an explanation 
situating the difficulty one layer underneath: They emphasized that the pertinacity of 
the intuitive rule “multiplication makes bigger” is often connected with the 
continuing maintenance of the interpretation of multiplication in the repeated 
addition model (which does not work for decimal or fractional multipliers). Both 
accounts can be integrated, as shown in Prediger (2008), since the intuitive rule is 
often based upon uncompleted conceptual changes on the layer of interpretations of 
multiplication (similarly Greer, 1994). That means, that those students who have 
widened their repertoire of interpretations for multiplication (and hence mastered the 
discontinuity of the repeated addition model) can also change their intuitive rules 
concerning the order property of multiplication.  
Although later studies started to widen the structure of situations in view (e.g. Bell et 
al., 1989, considered not only repeated addition models, but also prices, speed and 
currency-conversion), the great variety of other individual models for the 
multiplication of fractions and naturals are still to be explored more systematically.
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The paper and pencil test was written by 269 students in five Grade 7 classes (age 
about 12 years) and five Grade 9 classes (age about 14 years) in German grammar 
schools which comprise the (assumingly) higher achieving 40 % of students.
The students’ answers were evaluated quantitatively in a points rationing scheme. 
The values were used for statistical investigations on correlative coherences and 
contingencies of performances for different items.  
For a deeper exploration, the self-constructed word problems to Item 5 and 6 and the 
reasons given for operation choice in Item 7 and 9 were analysed qualitatively by 
coding the manifested individual conceptions and strategies. Whereas a coding 
scheme for Item 5 and 6 pre-existed (from Prediger, 2008 with an interrater 
agreement of Cohen’s kappa 0.93), the coding scheme for the reasons in Items 7 and 
9 first had to be constructed from the data. In an explorative coding procedure, 
categories were built by comparing answers due to their similarity. Some could be 
anticipated by the existing literature (like the pertinacity of the order property 
“multiplication makes bigger and division makes smaller”, see Bell et al., 1981), but 
other interesting, unforeseen codes (see Table 2, e.g. restructure strategy) had to be 
constructed in the process. Once finally established, the coding scheme of Item 7 and 
9 achieved an interrater agreement of Cohen’s kappa 0.83.
RESULTS
1. Statistical results 
Table 1 gives an overview on the scores and frequencies of complete solutions for all 
test items. Item 7 and 9 are among the most difficult, with only 0.7 % complete 
solutions for Item 7 and 4 % for Item 9 and average scores of 14 % and 12 %, resp. 
The distributions of performances in Item 7a and 9a are compared to other operation 
choice items in Figure 1. 

Item Content
Frequency of 

complete 
solutions 

Average of
reached scores

1 Multiply fractions (technically) 62 % 3,15  of  4 79 % 
12 Confirm commutativity of multiplication 54 % 1,55 of  2 77 % 
5 Find a word problem for a given equation with addition 54 % 1,39 of  2 70 % 
4 Explain the meaning of a given fraction  49 % 1,37 of  2 68 % 
3 Identify a multiplication in rectangle picture 67 % 1,33 of  2 67 % 
8 Mathematize situation allowing repeated addition (natural multiplier) 20 % 1,21 of  2 60 % 
2 Order property (multiplication makes bigger?) 34 % 0,77  of  2 38 % 

10 Specify part of a fraction and mathematize  1 % 1,24 of  5 25 % 
11 Mathematize a situation of scaling down 1 % 0,30 of  2 15 % 
9 Mathematize situation with part of whole number (2/3 of 36) 4 % 0,27 of  2 14 % 
7 Mathematize situation acting across quantities (kg x €) 0,7 % 0,24 of  2 12 % 
6 Find a word problem  for a given equation with multiplication 3 % 0,11 of  2 6 % 

Table 1: Scores of items, ordered due to average scores 
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The far best results were reached for Item 8a, in 
which 91% of the students activated the well-known 
model of repeated addition and chose the 
multiplicative terms 2/10  15 or 15 2/10 (More 
precisely, 38 % chose one, 53 % both.). In contrast, 
in all other items, no more than 93 of 269 students 
chose the multiplicative term (< 35 %, the guess 
probability was 33% for Item 8 and 9).  
Reasons for these operation choices can first be 
studied by statistical methods. Chi-squared tests for 
independence in the contingency tables of Item 7 
and 2 (or Item 9 and 2, resp.) gave evidence for an 
association between unsuccessful operation choice 
and wrong intuitive rules about multiplication 
making bigger: The null hypothesis of independence 
of outcomes in Item 2 and 7 could be rejected with a chi-square of 9.65, being highly 
significant (p < 0.008). For Item 2 and 9, a chi-square of 42.34 allowed to reject the 
null hypotheses of independences with p <0.001. In contrast, the contingency tables 
between Item 7 and 3, and Item 9 and 3 showed no significant dependence of item 
outcomes. By these results, we could confirm classical findings on the importance of 
the intuitive rule “multiplication makes bigger”, shortly said the order property of 
multiplication.  
Nevertheless, contingency tables and chi-squared tests cannot account for causal
connections between layers of competence. That is why the analysis was deepened by 
coding the reasons given by the students. 
2. Deeper analysis of reasons 
The answers in Item 7b and 9b were coded according to the reasons given for the 
choices of operations. As we were especially interested in those answers that gave 
access to the choosing strategy behind the given reason, we filtered all answers that 
did not allow the interpreters any access to the strategy, as for example “Because you 
have to take this.” (Kim). 
Table 2 gives a quantitative overview on the answers that were filtered or coded 
according to the reconstructable choosing strategies behind the given reasons. The 
explorative coding process ended with a categorization of codes into three main 
categories: order strategies, restructuring strategies and keyword strategies, by which 
most of the reconstructable answers could be captured (79 %). The categories shall be 
explained by examples in the following.  
In Item 9, 69 of 269 students chose correctly a multiplicative term for mathematizing 
2/3 of 36. Only in 5 of the reasons given, the researchers could identify points that 
allowed any access to their thinking. One of the students activated an order strategy, 
i.e. she successfully made use of her intuitive rule: “For fractions and multiplication, 

Figure 1: Comparison of chosen  
 terms for  Items 7-11 
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Item 7 Item 9 

Mult Div Sub Oth Mult Div Sub Oth 

Chosen Term 93 81 36 59 69 120 19 61 

Answers allowing no access to 
strategy for interpreter  

90 72 29 55 63 73 11 51 

Overall part of  
reconstruc-
table strate-

gies

Reconstructable strategies behind the formulated reasons:

Order Strategy: multiplication makes … 1 7 1 0 1 2 0 0 12 / 95 =  13 % 

Keyword Strategy: of-tasks are… tasks 0 0 0 0 4 25 3 0 34 / 95 = 35 % 

Restructure Strategy Use other parts  0 3 6 0 0 17 5 0 28 / 95  = 29 % 

Others 2 0 0 3 0 5 0 10 20 / 95 = 21% 

Guessing Strategy 0 0 0 0 0 0 0 0 0 / 0 = 0 % 

Table 2: Operation choice and frequencies of reconstructable strategies of choice

you always get less.” (Liza) (Although Liza’s rule is not of sufficient generality, it 
worked here).
Five of the students referred to the keyword “of”. For them, this seems to be a rule 
guiding their operation choice, for example, “because of is the same as times” 
(Eddie) or “of-tasks are times-tasks” (Sam). We subsumed these answered under the 
so-called keyword-strategy. 
Whereas Liza, Sam and Eddie drew upon their strategies successfully, order strategy 
and keyword strategy were more often used for choosing the wrong operation 
division: Among all 120 wrongly chosen divisions, 49 were justified in a way that 
allows access to the underlying strategies and conceptions. 25 of these 49 belonged to 
misleading order strategies: “When you multiply, it becomes more, when you 
subtract, it also becomes less, but just wrong.” That is why Karen chose division.
17 other participants restructured the situation in an idiosyncratic way, by mixing 
wholes and parts like Paul, writing “because you need a part”. Anna’s answer was 
also categorized as restructure strategy, as she tried to solve the following task: “You 
must calculate, how often 2/3 fit into the 36 for getting the new fraction.” 
The rate of restructure strategies was even higher for subtraction: 19 students 
wrongly chose subtraction for Item 9, and among the 8 reasons that gave access to 
their thinking, there were 5 with restructure strategies. Most of them explained their 
constructed term 36 – 1/3 while referring to false referent wholes, like Ali “When 
you want to have e.g. 2/3, then 1/3 is left! They are subtracted (in this case) from 36.”
The strategy that was most often reconstructable for the operation choice in Item 9 
was the keyword strategy: 4 choices of multiplication were (correctly) explained by 
this (see above), but even more (25) choices of division, like in Terry’s answer: 
“Well I want to know how much is 2/3 of 36, not 36-2/3 or 2/3 ·36, though, division.”  
With the same argument, 3 students explained their choice of subtraction by the 
keyword strategy, like Eve: “2/3 of 36, thus minus”, another one already cited in the 
title.
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Two of the three main strategies reconstructed for Item 9 also reappeared in Item 7: 
Whereas the keyword strategy was not that important here, restructure and order 
strategies also appeared in the reasons given for Item 7 (see Table 2).
In conclusion, we resume that order strategies were not as important as suggested by 
Bell et al. (1981) for our sample. Only 12 of 96 interpretable answers showed order 
strategies (13 %). In contrast, keyword strategies (35 %) and restructure strategies 
(2 9  %) were found in significantly more cases. This relativizes other findings. 
Guessing Strategies have not been formulated by any student of this sample (of 
higher streamed students). This is very different in another sample of 561 lower 
streamed students, in which 14% of the answers to the same two items were “I have 
guessed” (see Prediger / Matull, 2008). Apparently, higher streamed students know 
that this answer is not accepted in mathematics classrooms for higher achieving 
students, so even if they guessed, they did not write it. 

DISCUSSION  
The findings of this study affirm the thesis (formulated in Prediger, 2008) that 
difficulties on one layer of competence (here the mathematizing competence, 
operationalized as choice of operations) cannot be explained uni-dimensionally 
because they might be located on different layers of competence. The reconstructed 
categories of choosing strategies have their roots on different layers:  

The order strategy comprises all reasons given with reference to a sustainable or 
non sustainable intuitive rule on the order property of multiplication (making 
bigger or smaller).  But although being privileged in existing studies, like Bell et 
al., 1981, it could only be reconstructed in 13 % of the accessible cases in this 
study.
In contrast, the restructure strategy (that was reconstructable in 29 % of all 
accessible cases) does refer to misconceptions on the layer of interpretations of 
fractions, a layer that has not yet had sufficient attention in empirical studies.  
The guessing strategy (not appearing in the grammar school sample) and the 
keyword strategy (reconstructable in 35 % of all accessible cases) are interpretable 
as (sometimes misleading) schemes on the layer of mathematizing competence 
itself. The use of a keyword strategy alone cannot be taken as empirical evidence 
for deficits on layers underneath, but it shows that the students did not activate a 
deeper layer of interpretations in this situation. But additional cross-references in 
the raw data table showed that none of the 25 students who activated a keyword 
strategy for choosing division in Item 9 had been able to find a correct word 
problem for a given multiplication in Item 6. This indicates that wrong keyword 
strategies might often be connected to missing interpretations for the 
multiplication of fractions.  

To sum up, the study could show some connections between layers of competence 
that can account for wrong operation-choices better than pure correlative results. This 
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multiplication of fractions.  

To sum up, the study could show some connections between layers of competence 
that can account for wrong operation-choices better than pure correlative results. This 
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gives hints for new research strategies in this field.
Obviously, the short paper must leave many questions unanswered, especially more 
precise connections between the reconstructed choosing strategies and the answers to 
other items. In further research, we plan to investigate a larger sample of students of 
all achievement levels.  

Remark. The study was conducted within the research project “Stratification of student 
conceptions – The case of multiplication of fractions”, financed by the research fund DFG - 
Deutsche Forschungsgemeinschaft (Prediger / Matull, 2008). I thank Ina Matull and all coders for 
their work. 
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“THREE EIGHTHS OF WHICH WHOLE?” - DEALING WITH 
CHANGING REFERENT WHOLES AS A KEY TO THE PART-OF-

PART-MODEL FOR THE MULTIPLICATION OF FRACTIONS 
Susanne Prediger & Andrea Schink – IEEM Dortmund, Germany 

One important meaning of the multiplication of fractions is the part-of-part-model, by 
which 4/5 x 2/3 is interpreted as 4/5 of 2/3. Students’ understanding of this model is 
often constrained by the difficulty of changing referent wholes. The paper presents 
first investigations of a learning arrangement that was designed in order to deal with 
this obstacle and to increase students’ awareness about changing referent wholes by 
associating different representations. The qualitative analysis of prospective 
teachers’ products and processes gives insights into individual constructions of 
meanings and terms for part-of-part-situations.  
THEORETICAL BACKGROUND AND EXISTING FINDINGS 
Theoretical background: Grundvorstellungen in different representations 
The (individual and normative) meaning of 
operations can be conceptualized in different ways. 
This paper draws upon the notion of Grund-
vorstellungen, shortly GV (vom Hofe et al., 2006), 
being the cognitive building blocks for interpreting 
and mathematizing in processes of modelling (see 
Figure 1). We take this notion nearly synonymously 
to mental models in Fischbein’s sense as a 
“meaningful interpretation of a phenomenon or 
concept” (Fischbein, 1989, p. 129). While mathem-
atizing, GVs are activated to find models of a 
situation; while interpreting, GVs provide models for 
the formal mathematical expression.  
GVs are not only represented by their abstract form, like by saying “multiplication of 
fractions can be interpreted by the part-of-part-interpretation”, but also by 
paradigmatic situations or graphical representations. For example, the meaning of 4/5 
x 2/3 as 4/5 of 2/3 is more accessible in a picture or a context: Jim has 
2/3 of a pizza left from lunch. For dinner, he eats 4/5 of the rest of the 
pizza. So, he eats 8/15 of the original pizza.
Our research illustrates how individual processes of constructing GVs can be 
enhanced by intermodal transfer, i.e. by associating different representations for GVs. 
By this we follow Gerster & Schultz (2004) and others who conceptualize 
understanding of operations as a successful interplay between different modes of 
representations.

Fig. 1: GVs as translation - 
tools in modelling processes 
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Empirical starting point: Changing referent wholes as obstacle
to understand the part-of-part-model for multiplication
Although the already mentioned part-of-part-interpretation is one of the most 
important mental models for the multiplication of fractions, empirical studies show 
limited success in students’ acquisition of this GV (vom 
Hofe et al., 2006; Prediger, 2008).  
Previous findings point at one important obstacle for 
students to construct the part-of-part-model: the change 
of referent wholes (e.g. Mack, 2000). In Schink (2008), 
this is exemplified by a student who approached parts of 
parts through paper-folding (original paper complete and 
zoomed in Figure 2). Having successfully folded 1/8 of 
1/5, he correctly obtained 40 rectangles in his paper. The 
obstacle is manifest in his notation “1/8” for 8 rectangles 
(in the left 1/5-stripe of Figure 2). Realizing that the 
partner wrote 1/40, he corrected one of them into 1/40.  
The problem with changing referent wholes appears for interpretations in all 
representations: Whereas the 2/3 in the pizza-situation refers to one original whole 
pizza, the second factor, 4/5, refers only to the rest of the pizza, thus it has another 
referent whole. But the result 8/15 again refers to the original pizza, i.e. the whole 
one. Hence, constructing meaning for the part-of-part-model necessitates a clear 
orientation on the question “What is the whole?” (cf. Mack, 2000). 
As mentioned by many researchers, problems with changing referent wholes or units 
also appear in non-multiplicative contexts, and not only for fractions (e.g. in 
Harel/Confrey, 1994), Well known is that when students formulate word problems 
for given additions, one of the most typical mistakes is to join parts of two different 
referent wholes (Prediger, 2008).

Design of a learning arrangement built upon associating representations 
Starting from these empirical findings on typical difficulties, a learning arrangement 
was designed that allows students to develop or enlarge their individual GVs of 
addition and multiplication of fractions and to gain awareness for different referent 
wholes and the question “What is the whole for this fraction?”.
The so-called Excursion-Problem shown in Figure 3 is one part of this learning 
arrangement that demands the construction of terms for single-step and two-step 
additive and multiplicative situations. It builds upon the interplay of different 
representations by giving three texts of (paradigmatic) situations and three pictures 
which have to be associated. The case study presented here investigates how this 
arrangement supports the construction of adequate GVs and terms. 

Fig. 2: 1
8 of 1

5  is 1
8  or 1

40 ?
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RESEARCH QUESTIONS AND DESIGN  
As a first step in an ongoing design research project, this study investigates the 
didactical potential of the above problem in a preservice teacher education course for 
prospective (mostly middle-school) teachers in their 2nd or 3rd year. Their working 
processes in groups of 2-3 were observed, partly video-taped and transcribed. 66 
written answers were collected that document the products. The data analysis of 
products and processes followed four research questions:
(1) How do the participants relate situations, pictures and terms? Which terms do 

they construct especially for the more complex Situation 3?  
(2) How do the participants deal with changing referent wholes, and in how far do 

they gain an increasing awareness during the process?
(3) How does the requested activity of associating representations (situation, pictures, 

terms) influence the process of constructing or choosing models and terms?  
(4) Which obstacles hinder participants in their construction processes? 
Research question (1) and (2) were addressed for all participants by analyzing and 
categorizing the 66 written documents (see quantitative overview in the next section). 
Research question (3) and (4) were in the core of a more detailed case study on Laura 
and Paul, two prospective middle-school teachers. The transcript and the video of 
their process were analysed qualitatively turn by turn, then coded and categorized in a 
procedure of open coding. Selected dimensions and results of the analysis are 
presented here.

Excursion-Problem  
Here, you see different situations and different pictures. 
Which belong together? And why? 
Give answers to the questions and terms for the situations.  
One picture will remain unused, construct a fitting situation. 
Two situations belong to one picture. 

1 The class 6d has 36 students. Each child is in one 
club. 1/3 of them are in a music club, 1/4 of them are 
in a sports club. Which part of the class is in a sports 
or music club?  

2 The class 6a also has 36 students.  
1/3 of the class are boys. 1/4 of these boys 
are in a football club. Which part of the class 
are male football players?  

3 In the class 6c, 1/3 of the students want to go to the ocean for their excursion. 3/8 of the rest of the 
students prefer the mountains. Which part of the class wants to go to the ocean or the mountains?  

Picture 1             Picture 2              Picture 3 

Fig. 3: “Excursion-Problem”, designed for enhancing students’ GVs 
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PME 33 - 2009 4 - 411

 Volume 04 COMPLETE 290509.indb   411 6/4/09   2:25:52 PM



Prediger, Schink

1- 4 PME 33 - 2009 

ANALYSIS AND DISCUSSION OF PROCESSES AND PRODUCTS
Variety of constructed terms - Quantitative overview on products  
Nearly all participants could assign Situation 1 and 2 to suitable pictures. The 
describing additive (1/3 + 1/4) and multiplicative terms (1/3 x 1/4 or 1/4 x 1/3) were 
successfully constructed in 45 of 66 (and 42, resp.) documents. Hence, the big 
majority of participants could activate a part-of-part-model in this setting (although 
only  23 % of them chose a part-of-part-situation in an earlier problem when asked to 
invent a situation for a given multiplication of fractions).
As anticipated, Situation 3 was more challenging for the participants, since it 
demands a complex combination of GVs to construct the term 1/3 + 3/8 x 2/3. In 
sum, 23 different terms (not including multi-step calculations) were constructed, with 
varying appropriateness for describing the situation (see Figure 4). Only 15+4 
documents gave a complete term description for the group of ocean- and mountain-
fans, in fractions or absolute numbers. 
The categorization also took revised terms into account. As far as they appeared in 
the written documents (e.g. scratched out or later corrected), they allow interesting 
insights into the processes of conjecture and refutation. The fact that 12 participants 
notated wrong terms but revised them afterwards, gives a first evidence that the 
designed Excursion-Problem offers the desired potential to affiliate the intended 
processes of developing GVs. Only 5 documents ended with terms in which wrong 
operations were chosen or fractions of different referent wholes were combined. 
However, these 5 and 11 more documents without terms emphasize the importance of 
the issue. 
Most documents (7+11+9+3+1=31) contain partly adequate solutions which refer 
only to a subgroup (e.g. the subgroup of mountain-fans) or describe the situation in a  
Categories:
appropriateness
of term 

Subcategories: What
and how does term describe?  
(abs. num. = absolute number)

Examples for 
written terms 

Frequency of occurrences of  
this type of term as final results  
(in brackets: frequency of revised terms)

Adequate terms group as part  “1/3+2/3x3/8”  or  “1/3+3/8x(1-1/3)” 15 (1) 
Nearly
adequate terms group in abs. num. “1/3x36+3/8x24” or

“1/3x36 + (36-1/3x36)x3/8“  4 (0) 

Partly adequate 
terms or  

subgroup (as parts)
in more steps or one single term 

e.g. “2/3x3/8” or  
“(36-36/3)x3/8    [(36-36/3)x3/8]/36=1/4”  7 (1) 

calculations subgroup (in abs. num.)  
in more steps or one single term 

e.g. “36x2/3x3/8” or
“36:3      36-24       24x3/8” 11 (0) 

 group (as part) in more steps  e.g. “1-1/3      2/3x3/8    1/3+9/36”  9 (0) 
 group (in abs. num.) in more steps e.g. “1/3x36=12   36-12=24    3/8x24=9  21”  3 (0) 
 others “1/3+1/4” [fraction taken from picture]  1 (2) 
Wrong or  no term or fractions no written term or all scratched out   6  
no terms only fractions or verbal descriptions  “21/36”; “1/3 of the whole (=12 

children)+3/8 of the rest (=9 children)”  5 (1) 

 wrong term e.g. “1/3x3/8”, “1/3+3/8” or “1/4x1/3” 5 (12) 

Fig. 4:  Overview on terms, constructed for Situation 3 in 66 documents 

Prediger, Schink

PME 33 - 2009 1- 5 

multi-step calculation instead of a single term. Hence, most participants were 
apparently able to give meaning to the situation itself and to realize the importance of 
changing referent wholes, but were nevertheless not able to give a complete term 
description. The underlying reasons cannot be reconstructed by an analysis of 
products alone; a case study gives more insights into the process and its obstacles. 
A long search for a term – The case of Laura’s and Paul’s process 
Laura and Paul, two prospective middle-school teachers, intensively worked on the 
Excursion-Problem for 25 minutes. A detailed analysis of their interesting case 
provided insights into patterns and obstacles of an unfinished process (cf. research 
question (3) & (4)). Due to place restrictions, only the key results can be sketched 
which were drawn from the qualitative coding procedure (shortly documented in 
Figure 5).
Within 6 minutes, Laura and Paul successfully assign Picture 1 and 3 to Situation 2 
and 1, resp., and find the terms 1/3 x 1/4 and 1/3 + 1/4. Unlike many colleagues, 
Laura immediately activates the part-of-part-model for multiplication.  
Their work on Situation 3 starts by drawing individual pictures (based upon the 
assumption that 3/8 refers to the whole class, not to the non-ocean-group). When they 
hear that they should only use existing pictures, they restart by re-reading the text:
104 L …oh, 3/8 of the rest of the students prefer…

Once having realized that the remaining group of non-ocean-fans was meant 
(abbreviated by “nog” in Figure 5), Laura immediately associates Picture 3. So, 8 
minutes after having started with Situation 3, the right picture is found, and they 
recognize the difference between the class and the non-ocean-group as referent 
wholes for the first time. The remaining 11 minutes are dedicated to the search of a 
term.  
110 L [writes down “1/3 x 3/8, because you take 1/3 of the class and then 3/8 of the rest“. 

She types on the calculator, apparently receives 3/24, later she scratches out the 
equation]

112 L [looks on her picture] No, these are 9/36. Thus 1/4.  
114 L So 1/4 times 1/3 [writes “1/4 x 1/3 = 1/12”, types on the calculator, scratches it out]

Although she is aware that 1/3 and 3/8 have different referent wholes (evidenced by 
her verbal formulation in line 110), she combines the fractions unconventionally, 
apparently because “3/8 of the rest” signals multiplication, even if this rest is not 
described by 1/3. The calculator serves her (here and later) as important tool for 
falsifying constructed terms.  
As the fractions extracted from the text do not work, Laura controls their meaning in 
the picture. Keeping the multiplication, she exchanges 3/8 by 1/4 in her next term, 
because she extracts 9/36 by counting from the picture and by syntactically reducing 
9/36 = 1/4. Although all fractions in this second term refer to the class, the calculator 
does again not produce the desired results. 
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described by 1/3. The calculator serves her (here and later) as important tool for 
falsifying constructed terms.  
As the fractions extracted from the text do not work, Laura controls their meaning in 
the picture. Keeping the multiplication, she exchanges 3/8 by 1/4 in her next term, 
because she extracts 9/36 by counting from the picture and by syntactically reducing 
9/36 = 1/4. Although all fractions in this second term refer to the class, the calculator 
does again not produce the desired results. 
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Paul studies the text intensively and recognizes the abstract structure “join of parts” 
that is to be mathematized by an addition (119). Adopting this insight (125), Laura
Trans-
cript
Line
and
Actor

Intermediate terms  
(w=written, s= only spoken, 
p=only pointed at already 
written terms, c= 
apparently entered into 
calculator)

Referent whole 
for each number
(nog=remaining non-
ocean-group, abs.n.= 
absolute number)

Activated GV
for chosen operation

Associated  
Representation
(most often: number 
taken from… 
t = text, p = picture,  
r= already obtained 
result, tpr = t or p or 
r)

Prompt for 
dropping the term
(f calc =  falsified by 
calculator, p=control 
of result in the 
picture, T/P= 
communication with 
teacher /Paul)

110 L w “1/3 x 3/8” class x nog x   part of ? t    x t f calc, p 
114 L ws “1/4 x 1/3” class x class x   part of part p   x tpr f calc 
119 P s take together ? +   join parts t (not dropped) 
125-
128 L 

ws “1/3 + 3/8” class x nog +   join parts tpr + t f calc, p 

152 L s “3/8 of 24” rest of abs.n.  (no term) t       pr does not help 
152 L ws “4/12 + 3/12” class + class +   join parts pr  + pr no fit to text 
154 L w “36 – 1/3”  abs. n. – class -    not 

reconstructable
r    – tpr f calc 

159 L p “4/12 + 3/12”  class + class +   join parts pr  + pr no fit to text, T 
169-
181 L 

ws “1/3 + 3/8”  class + nog +   join parts tpr + t L: f calc 
P: diff ref 
wholes,T

184 L c “1/3 x 3/8” (?) class x nog x   part of part  tpr x t f calc 
194 L s “3/8 ref. to 36”   (no term) tp     r does not help, T 
198 L wsc “24 x 3/8”  abs. n. x nog  x   part of whole pr  x  t (not dropped), T 
202 L s “36  9”  abs. n. : abs. n.      1/9 as part r (not dropped) ,T 
205 L ws “1/3 + 1/4”  class + class +   join parts r   + tpr no ideal fit to 

text, used as 
one step 

208 L s “1/3 ref. to 36”  (no term) r P 
211 L s “24 x 3/8”  abs. n. x nog x   part of whole r P 
211 L s “1/3 + 1/4”  class + class +   join parts r (not dropped) P 
212 P w “3/8 x 24”  nog x abs.n. x part of whole r (not dropped) 
213 L w “1/3 + 1/4 = 7/12= 21/36 

 3/8 of 24,
      referred to the whole” 

class + class 
abs.n.

+   join parts 
x   part of whole 

r final  
expression

Fig. 5: Chronology of Laura’s & Paul’s search for a term for Situation 3 
varies the term into 1/3 + 3/8. In this variation, she keeps the numbers from the text 
and changes the operation (128). Again, she falsifies the result 17/24 given by the 
calculator by counting in the picture.
128
130

L [writes “1/3 + 3/8”, enters it into the calculator, writes “=8/24 + 9/24 = 17/24”, 
counts in the picture] [laughs] I still cannot calculate 

Paul extracts 3/12 from the picture as a fraction that describes the part of the 
mountain-group when referred to the class. His attempt to associate this fraction also 
to the text of Situation 3 raises a new question: How to receive the 3/12 by a term 
involving 3/8? Paul knows in principle what to do, but cannot mathematize it:
151 P Well, we should first calculate what these 3/8 [3 sec. break] are of the whole
152 L ...3/8 of 24 are 3/12 because there are 36 – err, 24 – no 9/24 [scratches out the  

“1/3 = 4/12” and “3/8=9/24”] I cannot! 
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Anyway, the result is [writes at the same time] 1 err 4/12 + 3/12  = 7/12, isn’t it?  

Although already having distinguished the class and the non-ocean-group as different 
referent wholes for 1/3 and 3/8, the relation between both is still not completely clear.  
Line 152 shows the conceptual difficulty in a nutshell: within one utterance, Laura 
refers the mountain-group (described by 3/8) to the non-ocean-group (described by 
the absolute number 24), then to the whole class (described by the absolute number 
36), and then (with the 9/24) to the non-ocean-group (this time conceptualized as 1). 
In contrast, they never describe the non-ocean-group as 2/3 or as 24/36, which would 
allow to conceptualize the non-ocean-group as part of the class (as 1), so that the 
referent wholes could be nested in each other. This constraint hinders them to relate 
3/8 to 1/4 by mathematizing 3/8 x 24/36 = 1/4.  
Although the term 1/3 + 1/4 at least gives the right result 21/36, they consider it not 
to be sufficient, because they cannot relate it to the text:  
162 P Well, from the picture, we can justify it [he means the term “3/12 + 4/12”], but we do 

not find a term that associates it more directly 
163 L Because this is not direct, it is only read off [meant is from the picture]

As they do not succeed, Laura comes back to 1/3 + 3/8, although the calculator 
falsified it, and Paul explicitly states that it is not appropriate: 
181 P But you cannot add 1/3 and 3/8, because the 3/8 do not refer to the whole picture here 

After trying other terms and discussing with 
the teacher (see Figure 5 for a complete 
chronology), the teacher signals that the time 
is over. Laura is finally satisfied with a verbal 
description of the connection as printed here:
Discussion: First answers to the research questions in the case of Laura & Paul 
(1) Like most of the participants, Laura and Paul quickly relate situations and 
pictures. Unlike many of their colleagues, both immediately mathematize Situation 2 
by a multiplicative term. We conclude that they are familiar with the part-of-part-
model for multiplication and also the join-model for addition. But these building 
blocks alone do not enable them to combine them in one complete term for the more 
complex Situation 3; so they end with an intermediate result that associates 3/8 of 24 
to 1/4 only verbally.
(2) Whereas Paul is quickly aware of different referent wholes involved in Situation 
3, Laura first confuses them. Associating representations helps her to gain awareness 
for the difference between the whole class and the non-ocean-group, but she 
continues to mix parts and absolute numbers. Finally, she gains awareness for the 
referents.
(3) Although Laura seems to know abstract representations of elementary GVs (“of is 
multiplication”), she cannot activate them for mathematizing the more complex 
situation. In this challenging constellation, the interplay of a greater variety of 

Translation:
“3/8 of 24,
referred
to the whole”
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Paul studies the text intensively and recognizes the abstract structure “join of parts” 
that is to be mathematized by an addition (119). Adopting this insight (125), Laura
Trans-
cript
Line
and
Actor

Intermediate terms  
(w=written, s= only spoken, 
p=only pointed at already 
written terms, c= 
apparently entered into 
calculator)

Referent whole 
for each number
(nog=remaining non-
ocean-group, abs.n.= 
absolute number)

Activated GV
for chosen operation

Associated  
Representation
(most often: number 
taken from… 
t = text, p = picture,  
r= already obtained 
result, tpr = t or p or 
r)

Prompt for 
dropping the term
(f calc =  falsified by 
calculator, p=control 
of result in the 
picture, T/P= 
communication with 
teacher /Paul)

110 L w “1/3 x 3/8” class x nog x   part of ? t    x t f calc, p 
114 L ws “1/4 x 1/3” class x class x   part of part p   x tpr f calc 
119 P s take together ? +   join parts t (not dropped) 
125-
128 L 

ws “1/3 + 3/8” class x nog +   join parts tpr + t f calc, p 

152 L s “3/8 of 24” rest of abs.n.  (no term) t       pr does not help 
152 L ws “4/12 + 3/12” class + class +   join parts pr  + pr no fit to text 
154 L w “36 – 1/3”  abs. n. – class -    not 

reconstructable
r    – tpr f calc 

159 L p “4/12 + 3/12”  class + class +   join parts pr  + pr no fit to text, T 
169-
181 L 

ws “1/3 + 3/8”  class + nog +   join parts tpr + t L: f calc 
P: diff ref 
wholes,T

184 L c “1/3 x 3/8” (?) class x nog x   part of part  tpr x t f calc 
194 L s “3/8 ref. to 36”   (no term) tp     r does not help, T 
198 L wsc “24 x 3/8”  abs. n. x nog  x   part of whole pr  x  t (not dropped), T 
202 L s “36  9”  abs. n. : abs. n.      1/9 as part r (not dropped) ,T 
205 L ws “1/3 + 1/4”  class + class +   join parts r   + tpr no ideal fit to 

text, used as 
one step 

208 L s “1/3 ref. to 36”  (no term) r P 
211 L s “24 x 3/8”  abs. n. x nog x   part of whole r P 
211 L s “1/3 + 1/4”  class + class +   join parts r (not dropped) P 
212 P w “3/8 x 24”  nog x abs.n. x part of whole r (not dropped) 
213 L w “1/3 + 1/4 = 7/12= 21/36 

 3/8 of 24,
      referred to the whole” 

class + class 
abs.n.

+   join parts 
x   part of whole 

r final  
expression

Fig. 5: Chronology of Laura’s & Paul’s search for a term for Situation 3 
varies the term into 1/3 + 3/8. In this variation, she keeps the numbers from the text 
and changes the operation (128). Again, she falsifies the result 17/24 given by the 
calculator by counting in the picture.
128
130

L [writes “1/3 + 3/8”, enters it into the calculator, writes “=8/24 + 9/24 = 17/24”, 
counts in the picture] [laughs] I still cannot calculate 

Paul extracts 3/12 from the picture as a fraction that describes the part of the 
mountain-group when referred to the class. His attempt to associate this fraction also 
to the text of Situation 3 raises a new question: How to receive the 3/12 by a term 
involving 3/8? Paul knows in principle what to do, but cannot mathematize it:
151 P Well, we should first calculate what these 3/8 [3 sec. break] are of the whole
152 L ...3/8 of 24 are 3/12 because there are 36 – err, 24 – no 9/24 [scratches out the  

“1/3 = 4/12” and “3/8=9/24”] I cannot! 
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Anyway, the result is [writes at the same time] 1 err 4/12 + 3/12  = 7/12, isn’t it?  

Although already having distinguished the class and the non-ocean-group as different 
referent wholes for 1/3 and 3/8, the relation between both is still not completely clear.  
Line 152 shows the conceptual difficulty in a nutshell: within one utterance, Laura 
refers the mountain-group (described by 3/8) to the non-ocean-group (described by 
the absolute number 24), then to the whole class (described by the absolute number 
36), and then (with the 9/24) to the non-ocean-group (this time conceptualized as 1). 
In contrast, they never describe the non-ocean-group as 2/3 or as 24/36, which would 
allow to conceptualize the non-ocean-group as part of the class (as 1), so that the 
referent wholes could be nested in each other. This constraint hinders them to relate 
3/8 to 1/4 by mathematizing 3/8 x 24/36 = 1/4.  
Although the term 1/3 + 1/4 at least gives the right result 21/36, they consider it not 
to be sufficient, because they cannot relate it to the text:  
162 P Well, from the picture, we can justify it [he means the term “3/12 + 4/12”], but we do 

not find a term that associates it more directly 
163 L Because this is not direct, it is only read off [meant is from the picture]

As they do not succeed, Laura comes back to 1/3 + 3/8, although the calculator 
falsified it, and Paul explicitly states that it is not appropriate: 
181 P But you cannot add 1/3 and 3/8, because the 3/8 do not refer to the whole picture here 

After trying other terms and discussing with 
the teacher (see Figure 5 for a complete 
chronology), the teacher signals that the time 
is over. Laura is finally satisfied with a verbal 
description of the connection as printed here:
Discussion: First answers to the research questions in the case of Laura & Paul 
(1) Like most of the participants, Laura and Paul quickly relate situations and 
pictures. Unlike many of their colleagues, both immediately mathematize Situation 2 
by a multiplicative term. We conclude that they are familiar with the part-of-part-
model for multiplication and also the join-model for addition. But these building 
blocks alone do not enable them to combine them in one complete term for the more 
complex Situation 3; so they end with an intermediate result that associates 3/8 of 24 
to 1/4 only verbally.
(2) Whereas Paul is quickly aware of different referent wholes involved in Situation 
3, Laura first confuses them. Associating representations helps her to gain awareness 
for the difference between the whole class and the non-ocean-group, but she 
continues to mix parts and absolute numbers. Finally, she gains awareness for the 
referents.
(3) Although Laura seems to know abstract representations of elementary GVs (“of is 
multiplication”), she cannot activate them for mathematizing the more complex 
situation. In this challenging constellation, the interplay of a greater variety of 

Translation:
“3/8 of 24,
referred
to the whole”

PME 33 - 2009 4 - 415

 Volume 04 COMPLETE 290509.indb   415 6/4/09   2:25:54 PM



Prediger, Schink

1- 8 PME 33 - 2009 

representations for GVs in pictures and paradigmatic situations is a big help for Laura 
and Paul. By linking representations, they construct the meaning of the context and 
gain awareness of different referents. Each interpretation or construction of a 
symbolic element can always be validated in another representation. However, 
representations offer benefits and difficulties: The picture also suggests a misleading 
absolute view instead of focussing on parts; the calculator is an important tool to 
falsify terms, but also distracts Laura from controlling the meaning of her terms.  
(4) Two further obstacles hinder Laura and Paul to find the term: Their unquestioned implicit 
premise that a term always consists of only two numbers, and the missing attempt to make use of 
nested referent wholes instead of varying referent wholes: They refer to 24 or to 36, but never to 
24/36 or 2/3 as the part of the non-ocean-group of the whole class. We hypothesize that Laura and 
Paul could have found the term if the teacher would have given them an impulse to overcome 
these constraints. 
CHANGING REFERENT WHOLES – A MANAGEABLE CHALLENGE
Although the Excursion-Problem was originally designed for students of age 11, it proved to be 
productive for enhancing learning processes even for prospective teachers. It might be received as 
disappointing that the prospective teachers could only find a complete term in 19 of 66 
documents. On the other hand, the first insights into their processes give hope that well designed 
learning arrangements can help them to manage the challenge (this is in line with Greer 1992 
who gives kindred recommendations for designs with emphasis on construction of models and 
meanings).
Our empirical findings on the complex interplay of representations might be of major importance 
far beyond the concrete subject “part-of-part-model for fractions”. Learners can fruitfully rely on 
different representations, but we are far from understanding in detail what happens in these 
processes. Future research should focus on this point more intensively.
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RESOURCES USED AND “ACTIVATED” BY TEACHERS WHEN 
MAKING SENSE OF MATHEMATICAL SITUATIONS 

Jérôme Proulx & Nadine Bednarz 
Université du Québec à Montréal, Canada 

In previous work, we have outlined points that appeared significant for the 
mathematical education of mathematics teachers. Issues of school mathematics, in 
opposition to academic mathematics, and of engaging teachers in a practice of 
mathematizing (Bauersfeld, 1998), in opposition to being exposed to standardized 
knowledge, were argued as fundamental dimension of an approach better articulated 
with mathematics teaching practices. A two-year project was developed along that 
perspective with a group of secondary mathematics teachers. To illustrate the 
potential of the approach, we analyse the resources used and activated by teachers 
when making sense of a mathematical situation proposed by the teacher educators. 
As Ball and Bass (2003) made clear, the manner in which mathematics teachers 
engage with a mathematical situation in their teaching is quite different from the way 
mathematicians would. This obvious, albeit insightful, assertion leads us as a 
community to profoundly rethink the mathematical education that is provided to 
mathematics teachers (at the pre- and in-service levels). One issue that has received 
recent attention is the gap between the mathematical experiences encountered in 
university courses/in-service education and in the practice of teaching mathematics in 
schools. Critiques are abundant, mainly in relation to the nature of the mathematical 
content explored in academic courses (focused on formalism, compacted ideas and 
abstract forms [see Ball & Bass, 2003; Moreira & David, 2008]) and to the manner in 
which this content is approached (through lecturing and exposition modes [see 
Bauersfeld, 1998; Burton, 2004]). This divide raises questions about the current 
orientations of mathematics teacher education programs and suggests a rethinking of 
the mathematical experiences and learning opportunities teachers are exposed to 
through their professional formation.  
Our research interests are located within that perspective: conceptualizing and 
studying an approach to in-service education that attempts to offer teachers 
experiences better aligned with their mathematics teaching practices. That is, as we 
have presented elsewhere (Proulx & Bednarz, 2008), an initiative focused on (1) the 
development and enrichment of teachers’ knowledge of the mathematics they teach 
(i.e., school mathematics) and on (2) their immersion in an engaging practice as 
mathematical “doers” – taking into consideration both aspects of nature and manner
highlighted above. One main research objective is to characterize the mathematical 
meaning and practices teachers (as mathematics doers) develop throughout this 
initiative, and in return to study the potential of such an approach. In this paper we 
present preliminary findings of this ongoing project in which we focus on the 
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manners in which teachers made sense of, and the knowledge they enacted about, a 
mathematical situation related to “school mathematics.”  

THEORETICAL ORIENTATIONS UNDERLYING THE APPROACH 
The in-service approach developed with teachers is articulated on the exploration of   
what we call “school mathematics” and on an engagement in a culture of 
mathematizing; two interrelated components we define below.  
Defining school mathematics 
Our understanding of “school mathematics” is oriented by Moreira and David’s 
(2005) theoretical distinction of academic mathematics and school mathematics as 
different fields of knowledge. They use the term academic mathematics to refer “to 
the scientific body of knowledge produced by the community of professional 
mathematicians,” whereas school mathematics is defined as “the set of validated 
knowledge, specifically associated with the development of school education in 
mathematics […] includ[ing] knowledge produced by mathematics teachers in their 
school practices […] as well as knowledge produced by research on teaching and 
learning of mathematical concepts and processes at school” (pp. 1-2). Thus, school 
mathematics represents not only concepts present in curricular documents outlining 
what teachers have to teach, but also the mathematical elements that surround them 
and emerge in its learning and teaching. For example, when teaching mathematical 
concepts, various related mathematical issues unfold: key reasoning, specific 
approaches/ways of making sense, range of specific procedures and representations, 
different conceptions or difficulties experienced, etc. For teacher education practices, 
theorizing school mathematics in this way “move[s us] away from the idea of school 
mathematics as a discipline taught at school to re-conceptualize it as a body of 
knowledge specifically associated with mathematics teaching at school” (p. 2). 
Manners of doing/mathematical practices: Immersing teachers in a culture 
The manner in which content is approached also appears fundamental. The intention 
is to engage teachers in a practice of doing mathematics, in what Bauersfeld (1998, p. 
215) refers to a “culture of mathematization as a practice.” As Burton (2004) 
suggests, issues of mathematical practices requires a shift, from mathematical 
knowledge to mathematical knowing; from mathematics as an object-oriented 
discipline for someone to know, to mathematics as something that one does. 
Participants in a culture of mathematics are seen as producers of mathematical 
knowledge and meanings. In the construction of such a culture, where concepts are 
explored and worked on, participants are encouraged to generate ideas, questions and 
problems, to make explicit and share understandings, to develop explanations and 
argumentations, to negotiate meanings and explore different ways of understanding 
problems, concepts, symbolisms and strategies and to validate other’s understandings 
and explanations (see, e.g., Seeger, Voigt & Waschescio, 1998). Teachers’ 
immersion in mathematical practices requires that these aspects be encouraged.  
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METHODOLOGICAL CONSIDERATIONS 
A group of 6 voluntary secondary mathematics teachers (7th to 12th grade) participate 
in the 2-year project. The initiative is structured around day-long monthly workshop 
during the school year. All sessions are videotaped to keep a record of the sessions’ 
unfoldings, and a researcher journal is kept about occurring events and reflections 
these provoke. Our role in this research is two-dimensional as we take the position of 
both teacher educators and researchers (see Proulx, 2007). This posture is aligned 
with recent innovative participative research approaches that combine both research 
and educative concerns (Cochran-Smyth & Lytle, 2004; Tabach, 2006). As teacher 
educators, we design and conduct sessions where we participate actively in the 
development of the mathematical practices and understandings occurring in them. 
This position, as Wong (1995) explains, offers us, as researchers, a privileged access 
to the meanings built in action and enriches the possibilities for making sense of and 
understanding their intricacies by being intertwined in them. 
The sessions activities revolve around “school mathematics” tasks for teachers to 
engage with, on mathematical topics teachers want to explore (e.g., algebra, fractions, 
measurement). Tasks are designed on the basis of conceptual content analyses, many 
inspired from the mathematics education literature. In regard to mathematical culture, 
tasks are also designed on the basis of enacting significant aspects of mathematical 
practices (e.g., validation, argumentation and negotiation of meanings, using 
symbolism, posing and solving problems). 

SOME PRELIMINARY FINDINGS: TEACHERS’ SENSE MAKING 
The analysis we offer here is centred on teachers’ exploration of a “school 
mathematics” task, in which a non-traditional solution for dividing fractions (coming 
from a student) is presented to the teachers for discussion. The analysis focuses on 
the ways teachers engaged in the situation, documenting the ways in which they 
made sense of it through the exploration. (Because of space constraints, aspects of 
mathematical culture are not elaborated on here.) The analysis sheds light, as we will 
see, on the intricate nature of the various dimensions (mathematical, didactical and 
pedagogical) teachers bring forth as they engage in and explore this task: 

Moment 1: Multiple entries to the appropriation of the situation 
The first reaction came from Ana who right away mentioned that “It does not work” 
and offered what she called a counter-example (

4
5

3
14

4
3

5
14 ), adding: “You only need 

a counter-example to show that something is false. I have found a counter example, 

A colleague reported this procedure, used by an 11-year-old to divide fractions:   

4
13

520
226

5
2

20
26

Is this procedure adequate/correct? Does it always work? How? 
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manners in which teachers made sense of, and the knowledge they enacted about, a 
mathematical situation related to “school mathematics.”  

THEORETICAL ORIENTATIONS UNDERLYING THE APPROACH 
The in-service approach developed with teachers is articulated on the exploration of   
what we call “school mathematics” and on an engagement in a culture of 
mathematizing; two interrelated components we define below.  
Defining school mathematics 
Our understanding of “school mathematics” is oriented by Moreira and David’s 
(2005) theoretical distinction of academic mathematics and school mathematics as 
different fields of knowledge. They use the term academic mathematics to refer “to 
the scientific body of knowledge produced by the community of professional 
mathematicians,” whereas school mathematics is defined as “the set of validated 
knowledge, specifically associated with the development of school education in 
mathematics […] includ[ing] knowledge produced by mathematics teachers in their 
school practices […] as well as knowledge produced by research on teaching and 
learning of mathematical concepts and processes at school” (pp. 1-2). Thus, school 
mathematics represents not only concepts present in curricular documents outlining 
what teachers have to teach, but also the mathematical elements that surround them 
and emerge in its learning and teaching. For example, when teaching mathematical 
concepts, various related mathematical issues unfold: key reasoning, specific 
approaches/ways of making sense, range of specific procedures and representations, 
different conceptions or difficulties experienced, etc. For teacher education practices, 
theorizing school mathematics in this way “move[s us] away from the idea of school 
mathematics as a discipline taught at school to re-conceptualize it as a body of 
knowledge specifically associated with mathematics teaching at school” (p. 2). 
Manners of doing/mathematical practices: Immersing teachers in a culture 
The manner in which content is approached also appears fundamental. The intention 
is to engage teachers in a practice of doing mathematics, in what Bauersfeld (1998, p. 
215) refers to a “culture of mathematization as a practice.” As Burton (2004) 
suggests, issues of mathematical practices requires a shift, from mathematical 
knowledge to mathematical knowing; from mathematics as an object-oriented 
discipline for someone to know, to mathematics as something that one does. 
Participants in a culture of mathematics are seen as producers of mathematical 
knowledge and meanings. In the construction of such a culture, where concepts are 
explored and worked on, participants are encouraged to generate ideas, questions and 
problems, to make explicit and share understandings, to develop explanations and 
argumentations, to negotiate meanings and explore different ways of understanding 
problems, concepts, symbolisms and strategies and to validate other’s understandings 
and explanations (see, e.g., Seeger, Voigt & Waschescio, 1998). Teachers’ 
immersion in mathematical practices requires that these aspects be encouraged.  
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METHODOLOGICAL CONSIDERATIONS 
A group of 6 voluntary secondary mathematics teachers (7th to 12th grade) participate 
in the 2-year project. The initiative is structured around day-long monthly workshop 
during the school year. All sessions are videotaped to keep a record of the sessions’ 
unfoldings, and a researcher journal is kept about occurring events and reflections 
these provoke. Our role in this research is two-dimensional as we take the position of 
both teacher educators and researchers (see Proulx, 2007). This posture is aligned 
with recent innovative participative research approaches that combine both research 
and educative concerns (Cochran-Smyth & Lytle, 2004; Tabach, 2006). As teacher 
educators, we design and conduct sessions where we participate actively in the 
development of the mathematical practices and understandings occurring in them. 
This position, as Wong (1995) explains, offers us, as researchers, a privileged access 
to the meanings built in action and enriches the possibilities for making sense of and 
understanding their intricacies by being intertwined in them. 
The sessions activities revolve around “school mathematics” tasks for teachers to 
engage with, on mathematical topics teachers want to explore (e.g., algebra, fractions, 
measurement). Tasks are designed on the basis of conceptual content analyses, many 
inspired from the mathematics education literature. In regard to mathematical culture, 
tasks are also designed on the basis of enacting significant aspects of mathematical 
practices (e.g., validation, argumentation and negotiation of meanings, using 
symbolism, posing and solving problems). 

SOME PRELIMINARY FINDINGS: TEACHERS’ SENSE MAKING 
The analysis we offer here is centred on teachers’ exploration of a “school 
mathematics” task, in which a non-traditional solution for dividing fractions (coming 
from a student) is presented to the teachers for discussion. The analysis focuses on 
the ways teachers engaged in the situation, documenting the ways in which they 
made sense of it through the exploration. (Because of space constraints, aspects of 
mathematical culture are not elaborated on here.) The analysis sheds light, as we will 
see, on the intricate nature of the various dimensions (mathematical, didactical and 
pedagogical) teachers bring forth as they engage in and explore this task: 

Moment 1: Multiple entries to the appropriation of the situation 
The first reaction came from Ana who right away mentioned that “It does not work” 
and offered what she called a counter-example (

4
5

3
14

4
3

5
14 ), adding: “You only need 

a counter-example to show that something is false. I have found a counter example, 

A colleague reported this procedure, used by an 11-year-old to divide fractions:   

4
13

520
226

5
2

20
26

Is this procedure adequate/correct? Does it always work? How? 
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thus it is false.” (Note that Ana appears to collapse issues of obtaining a simplified 
answer and of mathematical validity of a procedure. This issue comes back later.) 
Whereas Ana’s reaction to the task was mathematical, Joe and Marco’s reply to the 
situation was more at a didactical level, preoccupied with what students would do 
with Ana’s example. They mentioned that the problem students would face is not of 
mathematical inappropriateness, but of trying to avoid obtaining another division of 
fractions with, this time,

4
5

3
14 as an answer; having them going in circles. 

As the discussion continued, Neli and Marco changed the focus and began 
questioning the “question” posed in the problem, because for them it was not clear 
enough for students to know what to do. In particular, Neli asked for clarification of 
the question: if “give a simplified fraction as an answer” was present in the question 
then Ana’s answer would not be acceptable. Neli and Marco’s questioning of the 
question mainly focused on pedagogical issues: their intentions were not explicitly 
about the nature or the sort of knowledge that could be provoked by the question’s 
formulation, but about making sure to eliminate possible confusion in students, in 
order to make everything clear. Thus, already in this first moment, the analysis show 
that teachers engaged in different ways in the task and its discussion, using 
mathematical (Ana), didactical (Joe & Marco) and pedagogical matters (Marco & 
Neli) as points of entry. 
Moment 2: New questioning, orienting teachers toward “why does it work?” 
Oriented by our intention of engaging teachers in a mathematical culture and since 
teachers appeared to agree that both answer and procedure were correct, we probed 
teachers to question the meaning behind the procedure (Why did it work?). 
Many of the teachers answered that they checked it by using the “multiply by the 
inverse” algorithm. As they explained this, Pia realized that she did not know why the 
“multiply by the inverse” algorithm worked – something others agreed to. She added 
that when students ask why it works, they tell them “this is how it is,” but in fact they 
themselves do not really know. Thus, as teachers attempted to justify why the first 
algorithm worked, they realized that their own means of dividing fractions needed 
justification (as a mirror effect, where the validation of the algorithm appeared to lead 
teachers to question and validate the very argument they were putting up.) 
After teachers slightly drifted away and began sharing various mathematical ways of 
doing the multiplication by the inverse algorithm (i.e., 26

20
5
2

), we questioned them 

anew to know if they would accept 
4

5
3

14

4
3

5
14 as an answer to a division of fractions 

problem. As some said yes and others no, they all appeared to agree that “something” 
was missing: some questioned again the question; some said that the student would 
not get much far and would stay with a “similar” question; Ana mentioned that this 
answer could be simplified using a calculator and then become valid ( 15

113 ). This led 
back to the issue of difference between a mathematically valid and an efficient 
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answer. As Joe insisted,
4

5

3
14 is mathematically valid, as it is not false, but does not lead 

one far and thus is not much efficient to solve the problem. This led teachers to 
become sensitized to the difference between a valid procedure, being true or non-
false, and an efficient one – a significant meta-mathematical reflection. 
In the midst of questions like “why does the algorithm work?” and “would you accept 
this answer?” Marco expressed positively that it was mathematically true since he 
proved that it worked “all the time.” And before offering his proof, Marco explained 
what he would do in front of a student who would give that sort of answer. Since he, 
like the other teachers asserted, had never seen this algorithm, he would first try it for 
himself, at a mathematical level, to make sure it worked and gave a correct answer. 
And if so, he would give the points to the student. But then, at a more didactical 
level, he would ask the student to explain what he did, and why, to make sure the 
student understood what he/she did and had not calculate this by “chance.” Asked 
how he would make sure that it worked, Marco offered his proof. 

(1) a
b

c
d

 = )( dcba

(2) = dcba
(3)  = dbca
(4) = )( dbca  (this step was added afterward in the explanation)
(5) = 

db
ca

This proof is based on symbolic manipulations. Marco’s strategy was to transform in 
line (2) a division of a division (÷(c÷d) into a multiplication (÷c×d), and the reverse 
in line (4) – something that is reminiscent, albeit mathematically wrong even if it 
leads to a right answer, to the issue that “– followed by a – becomes a +”, forgetting 
the distinction between a sign and an operation, which inhibits the reasoning on 
divisions to be valid. We find two aspects intertwined in Marco’s explanations of 
what he would do with this student answer: there is a mathematical component where 
he wants to check the answer for himself and positions himself as a mathematical 
doer, and there is a didactical component where he positions himself as a 
mathematics teacher and wants to verify the student understanding. Within both 
components, there is the teacher’s intention to show that the procedure is correct for 
him and, in a mirroring sort of effect, to see the reasoning underlying the use of such 
a procedure by the student, illustrating well how both dimensions are intertwined. 
Thus, in this second moment, validation aspects are central, in relation to 
mathematical, didactical as well as meta-mathematical aspects. What this shows is 
that the mathematical non-familiarity of the division procedure offered and the fact 
that its correctness is not obvious, triggered interesting teachers’ reactions. We see 
this in Marco’s need to prove for oneself that the procedure worked (a mathematical 
action triggered by didactical intention to be able to position oneself on students’ 
work) and at the same time check for students’ understanding (a didactical intention). 
We see also this in the group’s meta-discussion of the meaning and difference 
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thus it is false.” (Note that Ana appears to collapse issues of obtaining a simplified 
answer and of mathematical validity of a procedure. This issue comes back later.) 
Whereas Ana’s reaction to the task was mathematical, Joe and Marco’s reply to the 
situation was more at a didactical level, preoccupied with what students would do 
with Ana’s example. They mentioned that the problem students would face is not of 
mathematical inappropriateness, but of trying to avoid obtaining another division of 
fractions with, this time,

4
5

3
14 as an answer; having them going in circles. 

As the discussion continued, Neli and Marco changed the focus and began 
questioning the “question” posed in the problem, because for them it was not clear 
enough for students to know what to do. In particular, Neli asked for clarification of 
the question: if “give a simplified fraction as an answer” was present in the question 
then Ana’s answer would not be acceptable. Neli and Marco’s questioning of the 
question mainly focused on pedagogical issues: their intentions were not explicitly 
about the nature or the sort of knowledge that could be provoked by the question’s 
formulation, but about making sure to eliminate possible confusion in students, in 
order to make everything clear. Thus, already in this first moment, the analysis show 
that teachers engaged in different ways in the task and its discussion, using 
mathematical (Ana), didactical (Joe & Marco) and pedagogical matters (Marco & 
Neli) as points of entry. 
Moment 2: New questioning, orienting teachers toward “why does it work?” 
Oriented by our intention of engaging teachers in a mathematical culture and since 
teachers appeared to agree that both answer and procedure were correct, we probed 
teachers to question the meaning behind the procedure (Why did it work?). 
Many of the teachers answered that they checked it by using the “multiply by the 
inverse” algorithm. As they explained this, Pia realized that she did not know why the 
“multiply by the inverse” algorithm worked – something others agreed to. She added 
that when students ask why it works, they tell them “this is how it is,” but in fact they 
themselves do not really know. Thus, as teachers attempted to justify why the first 
algorithm worked, they realized that their own means of dividing fractions needed 
justification (as a mirror effect, where the validation of the algorithm appeared to lead 
teachers to question and validate the very argument they were putting up.) 
After teachers slightly drifted away and began sharing various mathematical ways of 
doing the multiplication by the inverse algorithm (i.e., 26

20
5
2

), we questioned them 

anew to know if they would accept 
4

5
3

14

4
3

5
14 as an answer to a division of fractions 

problem. As some said yes and others no, they all appeared to agree that “something” 
was missing: some questioned again the question; some said that the student would 
not get much far and would stay with a “similar” question; Ana mentioned that this 
answer could be simplified using a calculator and then become valid ( 15

113 ). This led 
back to the issue of difference between a mathematically valid and an efficient 
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answer. As Joe insisted,
4

5

3
14 is mathematically valid, as it is not false, but does not lead 

one far and thus is not much efficient to solve the problem. This led teachers to 
become sensitized to the difference between a valid procedure, being true or non-
false, and an efficient one – a significant meta-mathematical reflection. 
In the midst of questions like “why does the algorithm work?” and “would you accept 
this answer?” Marco expressed positively that it was mathematically true since he 
proved that it worked “all the time.” And before offering his proof, Marco explained 
what he would do in front of a student who would give that sort of answer. Since he, 
like the other teachers asserted, had never seen this algorithm, he would first try it for 
himself, at a mathematical level, to make sure it worked and gave a correct answer. 
And if so, he would give the points to the student. But then, at a more didactical 
level, he would ask the student to explain what he did, and why, to make sure the 
student understood what he/she did and had not calculate this by “chance.” Asked 
how he would make sure that it worked, Marco offered his proof. 

(1) a
b

c
d

 = )( dcba

(2) = dcba
(3)  = dbca
(4) = )( dbca  (this step was added afterward in the explanation)
(5) = 

db
ca

This proof is based on symbolic manipulations. Marco’s strategy was to transform in 
line (2) a division of a division (÷(c÷d) into a multiplication (÷c×d), and the reverse 
in line (4) – something that is reminiscent, albeit mathematically wrong even if it 
leads to a right answer, to the issue that “– followed by a – becomes a +”, forgetting 
the distinction between a sign and an operation, which inhibits the reasoning on 
divisions to be valid. We find two aspects intertwined in Marco’s explanations of 
what he would do with this student answer: there is a mathematical component where 
he wants to check the answer for himself and positions himself as a mathematical 
doer, and there is a didactical component where he positions himself as a 
mathematics teacher and wants to verify the student understanding. Within both 
components, there is the teacher’s intention to show that the procedure is correct for 
him and, in a mirroring sort of effect, to see the reasoning underlying the use of such 
a procedure by the student, illustrating well how both dimensions are intertwined. 
Thus, in this second moment, validation aspects are central, in relation to 
mathematical, didactical as well as meta-mathematical aspects. What this shows is 
that the mathematical non-familiarity of the division procedure offered and the fact 
that its correctness is not obvious, triggered interesting teachers’ reactions. We see 
this in Marco’s need to prove for oneself that the procedure worked (a mathematical 
action triggered by didactical intention to be able to position oneself on students’ 
work) and at the same time check for students’ understanding (a didactical intention). 
We see also this in the group’s meta-discussion of the meaning and difference 
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between a mathematically valid procedure and an efficient one – drawing out the 
unclear distinction that implicitly lied here for teachers. 
Moment 3: And how would students justify this answer? 
Marco’s comments that he would ask the student for a justification led us as teacher 
educators to ask in return for the sort of justification they thought students could 
offer. Again, some teachers mentioned that students would do the “multiplying by the 
inverse” algorithm. Another solution brought forth was to do the same thing Marco 
did, but with numbers, transforming the operation 5

2
20
26 in (26÷20)÷(2÷5). (But Joe and 

Neli mentioned that students would not be able to do this.) Another solution offered 
by Neli would be to see division as the inverse of multiplication and use that to 
validate, in that if 20

26 divided by 5
2 gave 4

13 , then 4
13 multiplied by 5

2 should give 20
26 . Another 

way of validating, offered by Ana earlier, was to enter numbers in the calculator and 
check the answer – obtaining 15

113 as an answer, which represented a simplified and 
acceptable answer for Ana. Through teachers’ answers of potential students’ 
responses, we see again intertwined aspects at a didactical level when they assert that 
“students could do… students could not do…” and aspects at a mathematical level 
where they make sense mathematically and probe for potential ways of explaining.  
Moment 4: Reflections on the relevance of the procedure 
At this point, we thought that it could be interesting to present what other teachers (to 
whom we have presented this task on other occasions) have found. One teacher had 
suggested that both fractions be placed under a common denominator, something that 
would always render a division by 1 at the denominator (and since teachers in the 
current group had previously suggested that what is needed is for both numerators 
and both denominators to have common factors, this made a lot of sense). [e.g., 

4
5

3
14

4
3

5
14  would give 14

5
3
4

56
20

15
20

56
15

20
20

56
15

1
56
15

.] This solution pleased teachers, 

especially Neli who saw the link with the addition and subtraction algorithm, opening 
to a “general way” of operating with fractions that would simplify what students are 
taught, that is, to place them under a common denominator. (This idea led some 
teachers to flag the fact that the division, in the case of 5

2
20
26 becomes much more 

evident as it becomes 20
26 divided by 20

8 which could then be reduced/simplified to the 
operation 26 divided by 8. But, as Joe and Neli explained, this is a very difficult step 
to understand for students and they probably would not be able to reason these steps.) 
Albeit mathematical in essence, both reasoning were also influenced by a didactical 
issue of offering a more accessible approach to solve divisions of fractions. 
Commenting on this procedure, Marco raised the fact that it is not the most efficient 
algorithm since calculations can be long and it seems more relevant to multiply by 
the inverse. Implicitly, here, Marco was raising a pedagogical issue related to “time 
constraints.” Another discussion began about issues of efficiency, not in regard to 
mathematics itself, but to students since Joe mentioned the importance of letting 
students develop their own ways of solving through developing personal algorithms, 
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where this was an illustration of. We see here reflections concerning the advantage of 
this algorithm in regard to other algorithms, to the limits of one algorithm or its limits 
in regard to its accessibility to students and concerning issues of time, to the possible 
justification students could use, and so on. Again, there is an important integration of 
mathematical, didactical and pedagogical dimensions through the discussion and 
teachers’ ways of engaging with/in the task. 

DISCUSSION OF OUTCOMES 
To push further our analysis of meanings teachers developed through their 
interactions during the exploration of this “school mathematics” task, we use Lave’s 
(1988) concept of structuring resources. Lave has elaborated this concept to 
underline, from a situated cognition perspective, the importance of context and of the 
actions of a person in an ongoing activity for the “structuration” of a specific social 
practice. For Lave, an “activity” (in our case, exploring “an answer proposed by a 
student to divide fractions”) gains a certain structure from its specific context (e.g., 
the proposed activity is one among many possible solutions to divide fractions and 
thus orients reactions), and in return provides structuring resources to the activity 
itself as well as for other subsequent activities (e.g., for making sense of a student’s 
solution in class, for approaching division of fractions in teaching). This iterative 
view of being structured and of structuring is opposed to assumptions that see 
activities and settings as isolated and unrelated, as well as to the notion of universal 
and generalizable forms of knowledge that can be inserted and transferred into any 
situation and to anybody. This concept of structuring resources sheds a refreshing 
light on the diversity of resources that teachers draw from in order to make sense of 
and develop an understanding of a situation they are confronted with, and which in 
return structures the manner in which they appropriate this same situation (and other 
situations related to their mathematical teaching practices).
As the data illustrates, teachers “activated” mathematical resources of different order 
to make sense of the situation (e.g., offering a counter-example, proving the adequacy 
of the procedure, offering validation processes, discussing meta-mathematical issues 
of efficiency and validity). They also enacted didactical resources to appropriate and 
give meaning to the situation (e.g., on students’ difficulties, conceptual limits and 
possible solutions, ways of assessing their understanding, possible interventions), as 
well as pedagogical resources (e.g., issues of clarifying the question to avoid 
confusion, issues of time as a constraint, issues of efficiency and of rapid solving). 
These various resources are structuring the activity of the teachers and the way they 
see the situation, and are iteratively being structured in return as the interactions and 
explorations unfold. The “interaction” between the situation, the ongoing activity and 
the resources developed by the teachers seems to be characteristic of the sessions’ 
unfolding, as well as descriptive of teachers’ activity and engagements in the tasks. 
These resources appear also strongly intertwined, as teachers enacted as much 
mathematical, didactical and pedagogical issues: some teachers appropriated the 

4 - 422 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   422 6/4/09   2:25:57 PM



Proulx, Bednarz 

1- 6 PME 33 — 2009 

between a mathematically valid procedure and an efficient one – drawing out the 
unclear distinction that implicitly lied here for teachers. 
Moment 3: And how would students justify this answer? 
Marco’s comments that he would ask the student for a justification led us as teacher 
educators to ask in return for the sort of justification they thought students could 
offer. Again, some teachers mentioned that students would do the “multiplying by the 
inverse” algorithm. Another solution brought forth was to do the same thing Marco 
did, but with numbers, transforming the operation 5

2
20
26 in (26÷20)÷(2÷5). (But Joe and 

Neli mentioned that students would not be able to do this.) Another solution offered 
by Neli would be to see division as the inverse of multiplication and use that to 
validate, in that if 20

26 divided by 5
2 gave 4

13 , then 4
13 multiplied by 5

2 should give 20
26 . Another 

way of validating, offered by Ana earlier, was to enter numbers in the calculator and 
check the answer – obtaining 15

113 as an answer, which represented a simplified and 
acceptable answer for Ana. Through teachers’ answers of potential students’ 
responses, we see again intertwined aspects at a didactical level when they assert that 
“students could do… students could not do…” and aspects at a mathematical level 
where they make sense mathematically and probe for potential ways of explaining.  
Moment 4: Reflections on the relevance of the procedure 
At this point, we thought that it could be interesting to present what other teachers (to 
whom we have presented this task on other occasions) have found. One teacher had 
suggested that both fractions be placed under a common denominator, something that 
would always render a division by 1 at the denominator (and since teachers in the 
current group had previously suggested that what is needed is for both numerators 
and both denominators to have common factors, this made a lot of sense). [e.g., 

4
5

3
14

4
3

5
14  would give 14

5
3
4

56
20

15
20

56
15

20
20

56
15

1
56
15

.] This solution pleased teachers, 

especially Neli who saw the link with the addition and subtraction algorithm, opening 
to a “general way” of operating with fractions that would simplify what students are 
taught, that is, to place them under a common denominator. (This idea led some 
teachers to flag the fact that the division, in the case of 5

2
20
26 becomes much more 

evident as it becomes 20
26 divided by 20

8 which could then be reduced/simplified to the 
operation 26 divided by 8. But, as Joe and Neli explained, this is a very difficult step 
to understand for students and they probably would not be able to reason these steps.) 
Albeit mathematical in essence, both reasoning were also influenced by a didactical 
issue of offering a more accessible approach to solve divisions of fractions. 
Commenting on this procedure, Marco raised the fact that it is not the most efficient 
algorithm since calculations can be long and it seems more relevant to multiply by 
the inverse. Implicitly, here, Marco was raising a pedagogical issue related to “time 
constraints.” Another discussion began about issues of efficiency, not in regard to 
mathematics itself, but to students since Joe mentioned the importance of letting 
students develop their own ways of solving through developing personal algorithms, 
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where this was an illustration of. We see here reflections concerning the advantage of 
this algorithm in regard to other algorithms, to the limits of one algorithm or its limits 
in regard to its accessibility to students and concerning issues of time, to the possible 
justification students could use, and so on. Again, there is an important integration of 
mathematical, didactical and pedagogical dimensions through the discussion and 
teachers’ ways of engaging with/in the task. 

DISCUSSION OF OUTCOMES 
To push further our analysis of meanings teachers developed through their 
interactions during the exploration of this “school mathematics” task, we use Lave’s 
(1988) concept of structuring resources. Lave has elaborated this concept to 
underline, from a situated cognition perspective, the importance of context and of the 
actions of a person in an ongoing activity for the “structuration” of a specific social 
practice. For Lave, an “activity” (in our case, exploring “an answer proposed by a 
student to divide fractions”) gains a certain structure from its specific context (e.g., 
the proposed activity is one among many possible solutions to divide fractions and 
thus orients reactions), and in return provides structuring resources to the activity 
itself as well as for other subsequent activities (e.g., for making sense of a student’s 
solution in class, for approaching division of fractions in teaching). This iterative 
view of being structured and of structuring is opposed to assumptions that see 
activities and settings as isolated and unrelated, as well as to the notion of universal 
and generalizable forms of knowledge that can be inserted and transferred into any 
situation and to anybody. This concept of structuring resources sheds a refreshing 
light on the diversity of resources that teachers draw from in order to make sense of 
and develop an understanding of a situation they are confronted with, and which in 
return structures the manner in which they appropriate this same situation (and other 
situations related to their mathematical teaching practices).
As the data illustrates, teachers “activated” mathematical resources of different order 
to make sense of the situation (e.g., offering a counter-example, proving the adequacy 
of the procedure, offering validation processes, discussing meta-mathematical issues 
of efficiency and validity). They also enacted didactical resources to appropriate and 
give meaning to the situation (e.g., on students’ difficulties, conceptual limits and 
possible solutions, ways of assessing their understanding, possible interventions), as 
well as pedagogical resources (e.g., issues of clarifying the question to avoid 
confusion, issues of time as a constraint, issues of efficiency and of rapid solving). 
These various resources are structuring the activity of the teachers and the way they 
see the situation, and are iteratively being structured in return as the interactions and 
explorations unfold. The “interaction” between the situation, the ongoing activity and 
the resources developed by the teachers seems to be characteristic of the sessions’ 
unfolding, as well as descriptive of teachers’ activity and engagements in the tasks. 
These resources appear also strongly intertwined, as teachers enacted as much 
mathematical, didactical and pedagogical issues: some teachers appropriated the 
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“same” situation through different angles, some engaged themselves at different 
times through different angles, and some entered in ways that had implicitly a double 
nature (e.g., mathematical and didactical). All those points of entry appear to play a 
role in their work. They do not play out in isolation but act in connection and are 
nested in one another, and influence each other. When confronted with mathematical 
situations, teachers appear to not only use their mathematical resources, but also build 
on their didactical and pedagogical ones, forming as a whole a very specific, teacher-
oriented, professional way of engaging in a “mathematical” situation; one which we 
are only beginning as a community to develop an appreciation of. 
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This paper reports on a design experiment conducted to explore 17-year-old 
students’ constructions of meanings, emerging from their interpretations and uses of 
algebraic-like equations in the context of constructing and controlling animated 
models. We particularly focused on the students’ engagement in reification 
processes, e.g. making sense of structural aspects of equations, involved in 
conceptualising them as objects that underlie their animated models’ behaviour. 

THEORETICAL BACKGROUND 
In this paper we report on a classroom research [1] aiming to explore 17-year-old 
students’ construction of meanings emerging from the use of algebraic-like equations 
employed as means to create and animate concrete entities in the form of Newtonian 
models. The students worked collaboratively in groups of two or three using a 
constructionist computational environment called “MoPiX” [2], developed at the 
London Knowledge Lab (http://www.lkl.ac.uk/mopix/) (Winters et al., 2006). MoPiX 
allows students to construct virtual models consisting of objects whose properties and 
behaviours are defined and controlled by the equations assigned to them. We 
primarily focused on how students interpreted and used the available equations while 
they engaged in reification processes (Sfard, 1991), e.g. making sense of structural 
aspects of equations, involved in conceptualising them as objects that underlie the 
behaviour of their models. 
Recognising the meaning of symbols in equations, the ways in which they are related 
to generalisations integrated within specific equations and the ways in which a 
particular arrangement of symbols in an equation expresses a particular meaning, are 
all fundamental elements to the mathematical and scientific thinking. Research has 
been showing rather conclusively that the use of symbolic formalisms constitutes an 
obstacle for many students beginning to study more advanced mathematics 
(Dubinsky, 2000). Traditional approaches to teaching equations as part of the 
mathematics of motion or mechanics seem to fail to challenge the students’ intuitions 
since they usually encompass static representations such as tables and graphs which 
are subsequently converted into equations. Lacking any chance of interacting with the 
respective representations, students fail to identify meaningful links between the 
components and relationships in such systems and the extensive use of mathematical 
expressions (diSessa, 1993).
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In the relevant research in the mathematics education field, a central question 
concerns the nature of equations and the ways in which they can be understood by 
students. Most of the respective studies are based on the distinction between the two 
major stances that students adopt towards equations: the process stance and the object 
stance (Kieran, 1992; Sfard, 1991). The process stance is mainly related with a 
surface “reading” of an equation concentrated into the performance of computational 
actions, following a specific sequence of operations (i.e. computing values). The 
object stance, however, is related to the actual entity -the equation itself- and the 
outcome of the computational actions performed (i.e. the computational product). 
Elaborating further on the distinction between the above stances and the ways by 
which students understand algebraic expressions (and thus equations), mathematics 
educators brought into play the idea of students moving from process–oriented views 
to object–oriented ones via a process of abstraction which has been termed reification
(Sfard, 1991) and has been considered to underlie the learning of algebra in general. 
Sfard’s theory of reification (1991) describes three levels of mathematical conceptual 
development which eventually lead to the construction of a new concept. In the first 
level -the stage of interiorisation- the learner gets acquainted with processes 
involving operations performed on lower-level mathematical objects. At the second 
level -the stage of condensation- the learner is able to condense processes, viewing 
them as a whole. At the third level, corresponding to reification, the learner is able to 
view mathematical concepts as objects in their own right and use them as inputs in 
higher-order processes which might be precursors to new constructs. 
Adopting a constructionist framework (Harel and Papert, 1991) in the present study 
we used a computational environment that is designed to enhance the link between 
formalism and concrete models, allowing us to study the ways in which the use of 
formalism, when put in the role of an expression of an action or a construct (a 
model), can operate as a mathematical representation for constructionist meaning-
making. Our central research aim was to study students’ construction of meanings, 
emerging from their uses of the available mathematical formalism, when engaged in 
reification processes. Particularly, we were interested to shed light upon the 
relationship between the evolution of students’ understandings with their emerging 
engagement in different aspects of the abstraction processes (i.e. interiorisation, 
condensation and reification) concerning the conception of equations as objects. 

THE COMPUTATIONAL ENVIRONMENT 
MoPiX (constitutes a programmable environment that provides the user the 
opportunity to construct and animate models representing phenomena such as 
collisions and motions. In order to assign behaviours and properties to the objects 
taking part in the animations, the user attributes equations that may already exist in 
the computational environment’s “Library” or equations that she constructs by 
herself. The MoPiX equations incorporate both formal notation symbols (i.e. Vx, x, t) 
as well as programming – natural language utterances (i.e. Circle, appearance). 
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However, their main 
characteristic is that 
they constitute 
functions of time. The 
environment constantly 
computes the attributes 
given to the objects in 
the form of equations 
and updates the display, 
generating on the 
screen the visual effect 
of an animation.  
MoPiX offers a strong 

visual image of equations as containers into which numbers, variables and relations 
can be placed, allowing students to make easily connections between the structure of 
an equation and the quantities represented in it. It also allows the user to have deep 
structure access (diSessa, 2000) to the models animated as the equations attributed to 
the objects do not constitute “black boxes”, unavailable for inspection or 
modifications. The manipulations performed to a model’s symbolic facet (i.e. the 
equations) generally produce visual results on the Stage, from which students can get 
meaningful feedback. 

TASKS
For the first phase of the activities we developed the “One Red Ball” microworld 
which consisted of a single red ball performing a combined motion (Figure 1). The 
students were asked to execute the model, observe the animation and discuss with 
their peers the behaviours generated. In order to stimulate students to start using the 
equations themselves, we asked them to try to reproduce the red ball’s motion. In this 
process, we encouraged them to interpret and use equations from the “Library” and 
link the equations they used to the behaviours they had previously identified. As we 
deliberately made the original red ball move rather slowly we expected students to 
start expressing their personal ideas about their own object’s motion (e.g. make it 
move faster) and thus start editing equations so as to ascribe it new behaviours. 
For the second phase of the activities we designed a half–baked microworld 
(Kynigos, 2007), i.e. a microworld that incorporates an interesting idea but it is 
incomplete by design so as to invite students to deconstruct it, build on its parts and 
change it. The “Juggler” half-baked microworld (Kynigos, 2007) consisted of three 
interrelated objects: a red ball and two rackets. The ball’s behaviour was partially the 
same as the “One Red Ball’s”, however, when it hit the rackets, it bounced, moving 
away in specific ways. We asked the students to execute the Juggler’s model, observe 
the animation and identify each object’s behaviour. The students were encouraged to 
discuss with their peers on how they would change the “Juggler” microworld and 

Figure 1: The MoPiX environment 

Vertical motion 
equations

Horizontal motion 
equations

Ball’s and Pen’s 
properties 
equations

x(ME,0) = 73.35 
x(ME,t) = x(ME,t-1)+Vx(ME,t) 
Vx(ME,0) = 3 
Vx(ME,t)=Vx(ME,t-1)+Ax(ME,t)
Ax(ME,t) = 0 

y(ME,0) = 42.55 
y(ME,t) = y(ME,t-1)+Vy(ME,t) 
Vy(ME,0) = 9 
Ay(ME,t) = -.098 
Vy(ME,t)= Vy(ME,t-1)+Ay(ME,t)

appearance(ME,t) = Circle 
height(ME,t) = 50 
width(ME,t) = 50 
redColour(ME,t) = 100 
penDown(ME,t) = 1 
thicknessPen(ME,t) = 6 
greenColourPen(ME,t) = 100
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model), can operate as a mathematical representation for constructionist meaning-
making. Our central research aim was to study students’ construction of meanings, 
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embed in it their own ideas. In this process, students were expected to deconstruct the 
microworld so as to link the behaviours animated to the equations and reconstruct it, 
employing strategies that would depict their ideas about their model’s behaviours. 

METHOD
The experiment took place in a Secondary Vocational Education school in Athens for 
25 school hours with one class of eight 12th grade students studying mechanical 
engineering and two researchers. The adopted methodological approach was based on 
participant observation of human activities, taking place in real time. A screen 
capture software was used so as to record the students’ voices and their interactions 
with the MoPiX environment. The data corpus also included the students’ MoPiX 
models and the researchers’ field notes. We verbatim transcribed the audio recordings 
of two groups of students and also several significant learning incidents from other 
workgroups. The unit of analysis was the episode, defined as an extract of actions and 
interactions performed in a continuous period of time around a particular issue. The 
episodes presented were selected (a) to involve interactions with the available tool 
during which the MoPiX equations were used to construct mathematical meaning and 
(b) to represent clearly aspects of a reification process. 

ANALYSIS AND INTERPRETATIONS 
Conceiving the MoPiX equations operationally– The phase of Interiorisation
Attempting to make their objects move exactly like the “One Red Ball”, the students 
interpreted and used during the previous phase of their experimentations several 
motion equations that they found categorised in the environment’s “Library”. 
However, as they gained familiarity with the MoPiX formalism, they didn’t seem 
willing to confine themselves in merely reproducing a given motion. Expressing their 
own ideas about the way their objects should move, the students started modifying 
the pre-defined library equations. 
The students of Group B, for instance, looking in the library for equations that would 
make their object move vertically, came across the “Vy(ME,0)=0”. This equation 
prescribes the velocity of an object in y axis at the zero time instance (left part of the 
equation) to be 0 (right part of the equation). 

S2 [To S1 who attributed the “Vy(ME,0)=0”] Press “Play”. You didn’t do 
anything. You just made the velocity 0 at the zero time instance. Its initial 
velocity is 0. You did nothing to it. It didn’t change, to move downwards. 

S1 Yes, yes. 
S2 That’s what I’m saying. Change it. Give it some initial…, we should give 

it an initial velocity. Isn’t it better?
R2 Whatever you like. 
S2 Give “3” as an initial velocity. The equation you used before, with the 

difference that after the equal sign, we will place a “3”. There, move it up.
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S1 No. That was stupid. Let’s change the velocity. Increase it.

After attributing the “Vy(ME,0)=0” equation to their object and started the 
animation, the students realised that the equation they used didn’t make their object 
move downwards as they had expected. This observation triggered the 
implementation of a series of changes on the right part of the equation, beginning 
with converting “0” into “3”. The students went on replacing the arithmetic value on 
the right side of the equation with other ones, attributing each time the new equation 
to their object so as to verify its effect. However, this procedure seemed to be rather 
mechanical. All the new equations were in the form of “Vy(ME,0)=___” which 
means that they merely determined the object’s velocity at the zero time instance and 
thus had no apparent effect to the object’s motion. Nevertheless, the students 
continued replacing the arithmetic value on the right side of these equations with new 
ones, a process that implies an operational conception of the notion of equation. The 
continuous replacements indicate that students viewed the expression “Vx(ME,0)” on 
the left side as an unknown quantity (an “x”) which had be equal to a specific 
arithmetic value (“x=____”). They seemed to disregard the structure of the 
“Vx(ME,0)” expression and the meaning its comprising symbols conveyed and 
considered the right part of the equation as a placeholder into which numbers should 
inserted in order to provide an arithmetic value for the unknown quantity. 
Conceiving the MoPiX equations operationally – The phase of Condensation  
Having determined the meaning of the symbols in the “Vy(ME,0)=0” equation, the 
same students, continuing their experimentations, sought for ways to make the 
velocity of their object to constantly be “3”. 

S2 How can we insert the 2nd, 3rd time instance… in there? [the equation]
S1 In the 0 time instance, it’s 3…  
S2 Do we need a symbol for this? 
R2 Do we need a symbol? It’s a good question. How you plan to express it? 
S2 With symbols we usually express something that we can’t describe 

accurately.
S1 Plus… t! [He types Vy(ME,t)=3 and points at “t”] So, when I look at this 

symbol 
S2 I’ll know it represents the infinity. 

In the above extract, the students seem to have relocated their focus from just 
replacing arithmetic values to determine an unknown quantity into forming functional 
relations. Although they could have followed the previous strategy and start replacing 
the “0” on the left side of the equation with other numerical values (i.e. 2 , 3, …) so 
as to form several equations that would define the velocity at different “time 
instances”, the students took a moment to think of ways to incorporate all the 
numerical values in one equation that would describe the velocity at all “time 
instances”. This approach led them to introduce a symbol which they would “look at 
and know that it represents the infinity”. The students seem to have dethatched their 
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mathematical activity from simply attributing specific arithmetic values to an 
unknown quantity and to attempt to form a functional relationship among two 
varying quantities: the velocity and the time. Symbolising all the upcoming time 
instances with “t” –an in-built MoPiX symbol– the students seem to have taken a 
more decontextualised stance towards the notion of equation and at the same time to 
have condensed the up to that point number attributing processes into a whole. 
Conceiving the MoPiX equations structurally – The phase of Reification 
During the two previous phases of their experimentations, the students edited Library 
equations and manipulated in-built MoPiX symbols, such as the “t”. The changes 
performed restricted to the content of the existing equations (e.g. substituting a 
numerical value for another one or for a variable) while structure was left intact. The 
next episode describes how the Group A students, in the course of changing the 
“Juggler” microworld, didn’t just edit existing equations but constructed two new 
ones from scratch. The idea these students wanted to bring into effect was to “make a 
ball change its colour according to an ellipse’s position”. 

S1 When it [the ball] is situated in a Y below the Y of this one [the ellipse]
for example… 

R1 I’m thinking… Will the ball know when it is below or above the ellipse? 
S2 That’s what we will define. We will define the Ys. 
S1 This. The: “I am below now”. How will we write this? 
S2 Using the Ys. Using the s. The Ys. That is: when its  is 401, it is red. 

When the Y is something less than 400, it’s green!

Having conceptualized the effect they would like their new equation to have, the 
students decided about two distinct elements regarding the equation under 
construction: its content (i.e. the symbols to be used) and its structure (i.e. the signs 
between the symbols). However, as there was no in-built MoPiX symbol to express 
the idea of an object becoming green under certain conditions, they had to invent a 
new symbol: the “gineprasino” (i.e. “become green” in Greek). To represent the 
ball’s position they used its Y coordinate in the form of a quantity varying over time 
(i.e. “y(ME,t)”), whereas to represent the ellipse’s position, its Y coordinate in terms 
of the constant arithmetic value (i.e. “274”) corresponding to the object’s position at 
the time. Adding a “less than” sign in between, the equation eventually developed 
was the “gineprasino(ME,t)=y(ME,t) 274”.
Since this equation described the event to which the ball would respond (being below 
the ellipse) and not the ball’s exact behaviour after the event would have occurred 
(change its colour), the students decided to construct another equation. A Library 
equation which explains what happens to a ball’s velocity when it hits on one of the 
Stage’s sides, led students to duplicate this equation’s structure, eliminate any content 
and use it as a template to designate what will happen to the ball’s colour when it 
goes below the ellipse. The second equation encompassed in-built MoPiX symbols, 
the “gineprasino” variable in two different forms and numerical values (0 and 100) to 
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express the percentage of the green colour the ball would contain in each case (i.e. 
being above or below the ellipse). The second equation developed was the: 
“greenColour(ME,t) = not(gineprasino(ME,t))×0 + gineprasino(ME,t)×100”. 

Figure 2: The ball’s different percentage of green colour according to its Y position
The above episode implies a qualitative transformation of the students’ mathematical 
activity form process-oriented into object-oriented. The operational conceptions 
regarding the MoPiX equations seem to have now given their place to more structural 
ones. In the process of constructing their first equation, the students invented a new –
meaningful to them– symbol to which they attributed the properties of a varying over 
time quantity, used and manipulated in-built MoPiX symbols and inserted an 
inequality operator to specify the relation between their symbols. Translating their 
own ideas into algebraic equations, defining both their content (i.e. the symbols) and 
structure (i.e. the relation among the symbols) indicates that students have 
conceptualised the MoPiX equations as a “fully-fledged mathematical objects” 
(Sfard, 1991 pp.12). 
A structural conception of the MoPiX equations is also advocated by the students’ 
series of actions in the process of constructing the second equation. Striving to 
transform their idea into a MoPiX equation, the students indentified a mapping 
between an existing Library equation and the one they attempted to create. 
Subtracting the Library equation’s structure and eliminating its content, the students 
formed a template whose fields they completed using terms relevant to the behaviour 
they wished to attribute to their object. This is a clear indication that the students 
were able to recognise the existence of structures external to the symbols themselves 
and to use them as landmarks to navigate their equations’ construction process. 
It is noticeable, however, that in the process of constructing the second equation, the 
students’ conceptualisation of the first equation partially shifted to become 
operational again. Viewing the “y(ME,t) 274” as a iterate comparing process 
between two numbers and the “gineprasino(ME,t)” as the outcome of this 
comparison, the students integrated the “gineprasino(ME,t)” varying quantity into 
their second equation treating it as an algebraic object. This aspect suggests the co-
existence of both a structural and an operational conception of the MoPiX equations. 

CONCLUSION
Our purpose in this paper was to illustrate the students’ development of a structural 
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When the Y is something less than 400, it’s green!

Having conceptualized the effect they would like their new equation to have, the 
students decided about two distinct elements regarding the equation under 
construction: its content (i.e. the symbols to be used) and its structure (i.e. the signs 
between the symbols). However, as there was no in-built MoPiX symbol to express 
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the time. Adding a “less than” sign in between, the equation eventually developed 
was the “gineprasino(ME,t)=y(ME,t) 274”.
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(change its colour), the students decided to construct another equation. A Library 
equation which explains what happens to a ball’s velocity when it hits on one of the 
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ones. In the process of constructing their first equation, the students invented a new –
meaningful to them– symbol to which they attributed the properties of a varying over 
time quantity, used and manipulated in-built MoPiX symbols and inserted an 
inequality operator to specify the relation between their symbols. Translating their 
own ideas into algebraic equations, defining both their content (i.e. the symbols) and 
structure (i.e. the relation among the symbols) indicates that students have 
conceptualised the MoPiX equations as a “fully-fledged mathematical objects” 
(Sfard, 1991 pp.12). 
A structural conception of the MoPiX equations is also advocated by the students’ 
series of actions in the process of constructing the second equation. Striving to 
transform their idea into a MoPiX equation, the students indentified a mapping 
between an existing Library equation and the one they attempted to create. 
Subtracting the Library equation’s structure and eliminating its content, the students 
formed a template whose fields they completed using terms relevant to the behaviour 
they wished to attribute to their object. This is a clear indication that the students 
were able to recognise the existence of structures external to the symbols themselves 
and to use them as landmarks to navigate their equations’ construction process. 
It is noticeable, however, that in the process of constructing the second equation, the 
students’ conceptualisation of the first equation partially shifted to become 
operational again. Viewing the “y(ME,t) 274” as a iterate comparing process 
between two numbers and the “gineprasino(ME,t)” as the outcome of this 
comparison, the students integrated the “gineprasino(ME,t)” varying quantity into 
their second equation treating it as an algebraic object. This aspect suggests the co-
existence of both a structural and an operational conception of the MoPiX equations. 
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conception of the notion of equations in the context of constructing and controlling 
animated models. Editing ready-made algebraic-like equations and constructing new 
ones so as to assign behaviours to their objects, the students reached different degrees
of structuralization (Sfard, 1991) (i.e. interiorisation, condensation, reification) 
shifting gradually their view of equations from process-oriented into object-oriented, 
without, however, those two approaches being mutually exclusive. 
Concluding, under the constructionist theoretical perspective, in the present study 
reifying an equation was not a one-way process of understanding hierarchically-
structured mathematical concepts but a dynamic process of meaning-making, webbed 
by the available representational infrastructure and the ways by which students drew 
upon and reconstructed it to make mathematical sense. 

NOTES 
1. The research took place in the frame of the project “ReMath” (Representing Mathematics 

with Digital Media), European Community, 6th Framework Programme, Information 
Society Technologies, IST-4-26751-STP, 2005-2008 (http://remath.cti.gr).

2. “MoPiX” was developed at London Knowledge Lab (LKL) by K. Kahn, N. Winters, D. 
Nikolic, C. Morgan and J. Alshwaikh. 
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This study presents a content analysis of the new Iranian grade 9 mathematics 
textbook, examining the extent to which it includes aspects of mathematical literacy. 
Two chapters were analysed for the extent of use of real world contexts, and the 
extent of emphasis on the mathematical modelling processes of formulation and 
interpretation. The new textbook used real world contexts in about a third of items. 
About 5% of items required complex formulation and/or interpretation of the 
mathematical result in real world terms. Most formulation was strongly supported by 
the text. This textbook has moved towards mathematical literacy, but more 
development is required before students will see mathematics as a human activity.

INTRODUCTION
Iran is a country with a very strong record of achievement in the International 
Mathematics Olympiad, so it was both unexpected and of great concern when it was 
found that Iranian students’ performance in TIMSS in 1995,1999, 2003, 2007 was 
well below the international average. This leads to the hypothesis that the education 
system, with its emphasis on abstract mathematics, does well for the best students but 
is not meeting the needs of most students for their schooling or for their future lives. 
Many countries have participated in the international survey PISA because they value 
its assessment of ‘mathematical literacy’, which is concerned with how learning 
mathematics prepares students for their future. We consider mathematics literacy as 
defined by the OECD and cited by de Lange (2003):

"Mathematical literacy is an individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded judgments, and to engage in 
mathematics in ways that meet the needs of that individual’s current and future life as a 
constructive, concerned and reflective citizen." (p. 76) 

Iran has not participated in PISA, so there is no assessment of Iranian students’ 
mathematical literacy. This paper begins to address this question, by looking for 
evidence of whether Iranian textbooks build mathematical literacy. 
The education system in the Islamic Republic of Iran is centralized and mathematics 
education goals are set at the national level. The Ministry of Education develops the 
syllabi and textbooks (Kiamanesh, 2005). There is a general expectation that teachers 
will follow textbooks and official documents closely. An investigation into textbooks, 
as in this article, is therefore more significant in a centralized educational system, 
such as Iran, than in some other countries.
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In Iran, all students use the same textbook for mathematics at Grade 9. After more 
than 15 years of using one textbook, a new version of the grade 9 book was 
introduced in the school year 2008/2009. The new version was based on the previous 
version and has similar chapters, although their order is changed. Importantly, some 
methods of introducing topics are different. In this new version, there are some new 
features of mathematics education such as recognising the relation between 
mathematics and the real world. There is some evidence from the preface of the new 
textbook that mathematical literacy is becoming a goal of math education in Iran.  
In this article we report an initial content analysis of the new grade 9 Iranian 
mathematics textbook in terms of a theoretical framework based on the PISA concept 
of mathematical literacy. This study is part of a larger study that is investigating all 
aspects of mathematical problem solving in Iran and comparing it with some other 
countries, with a view to establishing a new curriculum framework for mathematical 
problem solving in Iran. The aim of this article is to establish to what extent the new 
Iranian grade 9 textbook presents mathematical literacy to students. 

LITERATURE REVIEW
Several studies address research questions by investigating textbooks. One early 
study is by Howson (1996). He investigated grade 8 textbooks in 8 countries as part 
of the TIMSS study. He found that some students could respond correctly to some 
probability TIMSS items by using their common sense, whereas using school-taught 
procedures was error-prone. Gooya and Rafiepour (2004) observed this phenomenon 
in Iranian students' mathematics performance in TIMSS 1995. Some students in 
grade 7 had a better mathematical performance on some items than students in grade 
8. Having learned mathematics without relation to real world considerations appeared 
to cause them to apply mathematics procedures without common sense.
Several studies show that there are links between the general nature of school 
curricula (in some countries represented well by textbooks) and results on 
international tests. For example, Kendal and Stacey (2004) gave examples of how 
different national emphases can be reflected in different performance in international 
comparative studies. One example they cited analysed different performances on 2 
items in the algebra section of TIMMS-R (1999). Russian and Australian students 
had similar performance overall, but very different performances in these two items, 
one of which focussed on expressing generality and pattern and the other on 
understanding symbolic notation. These differences aligned with national curriculum 
orientation. Wu (2007) aimed to quantify such effects by measuring what she called 
“content advantage” to show how countries’ national performance on international 
tests is affected by the alignment of its curriculum with the assessment. These studies 
reinforce the view that if mathematical literacy is regarded as a valuable outcome of 
schooling, then it should be well represented in school curriculum and textbooks.  
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METHODOLOGY 
This study is a content analysis of the new grade 9 textbook. We selected grade 9 
because these students are about 15 years old, the age of the students tested in PISA. 
Additionally grade 9 is the final grade that all Iranian students have the same math 
curriculum and textbook. The first author and a colleague choose 2 of the 9 chapters 
of this textbook by considering three factors. First, each should be a good subject for 
supporting mathematical literacy. As de Lange (2003) noted, some mathematics 
topics are more suitable than others for supporting mathematical literacy. The second 
factor is that the topics should be introduced for the first time in Grade 9, so that they 
are treated fully. Vincent & Stacey (2008) noted that topics introduced in earlier 
years are often given abbreviated treatment in subsequent textbooks. The third factor 
is that the topics would also be suitable for later international comparisons at Grade 9 
level. One chapter was on linear and first degree equations, and it contained 
subsections on equations and equation solving, equations of straight lines including 
gradients, perpendicular lines and distance between two points in the plane. The other 
chapter was on trigonometry relations, containing sections on trigonometric ratios 
and relationships between them, gradients, angles of lines etc. 
Every chapter in the Iranian Grade 9 mathematics consists of 5 labelled sections: 
explanation, worked examples, activities, exercises in the classroom, and problems. 
The explanation section introduces new information and reasons. Worked examples 
give model problems and solutions for students to follow. “Exercises in the class” 
gives questions for students to practise the methods introduced in the worked 
examples. Sometimes this section also provides some opportunity for reflection and 
for linking different mathematics topics. The activities section is an innovation which 
did not appear in the previous textbook. In this section, we find some further 
explanation, guided reflection, and activities to build relations and connections within 
and outside mathematics. Activities in this new textbook are a rich source for 
mathematics education and strength of the new book. They give opportunities to 
students for doing mathematics, comparing different results and conjecturing. The 
final part is a problems section which reviews all work in the chapter or sub-chapter 
and includes routine exercises and real world problems. A few illustrations of the 
material from these sections are given in Figure 1.
In this study we consider all sections except the explanations, which are more 
complex to investigate. The units of analysis (referred to below as ‘items’) are either 
individual problems (e.g. Items 1 and 2 in Fig. 1) or sequences of instructions and 
problems grouped as one in the textbook (e.g. Items 3 and 4 in Fig 1). In total there 
were 78 items in the 2 chapters. Each item is rated separately on 6 criteria to make a 
mathematical literacy framework, as described below.  It was intended that the rating 
would be done independently by the first author and a Farsi-speaking colleague, so 
that the rating reliability could be reported. This has not yet been possible, so only 
one set of ratings is reported. The other ratings will be completed before the 
conference paper is presented. 
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METHODOLOGY 
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because these students are about 15 years old, the age of the students tested in PISA. 
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curriculum and textbook. The first author and a colleague choose 2 of the 9 chapters 
of this textbook by considering three factors. First, each should be a good subject for 
supporting mathematical literacy. As de Lange (2003) noted, some mathematics 
topics are more suitable than others for supporting mathematical literacy. The second 
factor is that the topics should be introduced for the first time in Grade 9, so that they 
are treated fully. Vincent & Stacey (2008) noted that topics introduced in earlier 
years are often given abbreviated treatment in subsequent textbooks. The third factor 
is that the topics would also be suitable for later international comparisons at Grade 9 
level. One chapter was on linear and first degree equations, and it contained 
subsections on equations and equation solving, equations of straight lines including 
gradients, perpendicular lines and distance between two points in the plane. The other 
chapter was on trigonometry relations, containing sections on trigonometric ratios 
and relationships between them, gradients, angles of lines etc. 
Every chapter in the Iranian Grade 9 mathematics consists of 5 labelled sections: 
explanation, worked examples, activities, exercises in the classroom, and problems. 
The explanation section introduces new information and reasons. Worked examples 
give model problems and solutions for students to follow. “Exercises in the class” 
gives questions for students to practise the methods introduced in the worked 
examples. Sometimes this section also provides some opportunity for reflection and 
for linking different mathematics topics. The activities section is an innovation which 
did not appear in the previous textbook. In this section, we find some further 
explanation, guided reflection, and activities to build relations and connections within 
and outside mathematics. Activities in this new textbook are a rich source for 
mathematics education and strength of the new book. They give opportunities to 
students for doing mathematics, comparing different results and conjecturing. The 
final part is a problems section which reviews all work in the chapter or sub-chapter 
and includes routine exercises and real world problems. A few illustrations of the 
material from these sections are given in Figure 1.
In this study we consider all sections except the explanations, which are more 
complex to investigate. The units of analysis (referred to below as ‘items’) are either 
individual problems (e.g. Items 1 and 2 in Fig. 1) or sequences of instructions and 
problems grouped as one in the textbook (e.g. Items 3 and 4 in Fig 1). In total there 
were 78 items in the 2 chapters. Each item is rated separately on 6 criteria to make a 
mathematical literacy framework, as described below.  It was intended that the rating 
would be done independently by the first author and a Farsi-speaking colleague, so 
that the rating reliability could be reported. This has not yet been possible, so only 
one set of ratings is reported. The other ratings will be completed before the 
conference paper is presented. 
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Item 1 (Problem): A lizard lays 30 to 50 eggs in spring. Eggs take 90 days to hatch. 
The length of a new born lizard is about 30 cm, and increases by 22.5 cm per year 
on average. At what age does a lizard reach 80 cm in length? 
Item 2 (Problem): A person 1.70 metres high wants to raise a 3 metre bar to an 
angle of inclination of 60o. At first she is standing with one end of the bar on the 
floor and against a wall, holding the other end exactly up to her height. Then she 
walked toward the wall raising the bar until the angle of inclination became 60o.
How many metres did she walk to the wall? (A diagram was supplied with this 
problem) 
Item 3 (Exercise in the classroom): Solve the equation 3(2x-7) =81 and check the 
correctness of each operation giving the reasons. Solve the above equation in 
another way and explain the correctness of your work in every step. 
Item 4 (Activity): Sara and Maryam are two sisters. When Maryam was born, Sara 
was 4 years old. When Sara is 7 years old, how old will Maryam be? When Maryam 
is 20 years old, how old will Sara be? Let the age of Maryam be x and the age of 
Sara be y. Write an equation that shows this relation. If Maryam becomes 5 years 
older what will happen to Sara’s age? If Maryam becomes 8 years older what will 
happen to Sara’s age? Complete the table (table given with blanks to complete) 
comparing Sara’s age and Maryam’s age. Putting Maryam’s age on the x-axis and 
Sara’s age on the y-axis, draw a graph by using the table.

Figure 1. Four illustrations of items from textbook (translated and abbreviated)  
Theoretical framework   
“Mathematics literacy” is the central concept of PISA mathematics (de Lange, 2003), 
and the processes of mathematical modelling (called mathematisation by de Lange, 
2006) are all key components of mathematical literacy.  These processes relate to 
formulating real world problems in mathematical terms (called vertical 
mathematisation by Freudenthal, 1991), so that they can be solved as mathematical 
problems, and then the mathematical solution can be interpreted to provide an answer 
to the real world problem. In the formulation stage, the problem solver faces a 
problem situated in a real context, and then gradually trims away aspects of reality, 
recognizing underlying mathematical relations, and describes the stripped down 
problem in mathematical terms.  In the interpretation stage, the problem solver 
considers the mathematical result(s), and uncovers their meaning in terms of the real 
context.
In this paper we report on 6 criteria for mathematical literacy, which focus on the 
formulation and interpretation processes. The first component records whether there 
is any real world context for the problem, the next three components focus on aspects 
of formulation and the final two relate to interpretation. Table 1 gives examples of 
the classifications for the 4 items in Fig. 1.
Criterion 1. Does this item contain any reference to a real world context? (If there is 
no real context, the formulation/ interpretation criteria below are not applicable).  
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Criterion 2. Is the required formulation complex? Factors making formulation 
complex include having extra data present (e.g. Item 1), a shortage of data so that 
gaps have to be filled by the problem solver, multiple steps of formulation (e.g. Item 
2), etc.
Criteria 3 and 4. Is formulation supported by the textbook or left to the student alone? 
In some cases formulation is completed by the textbook or supported (e.g. by 
specifying variable names and axes in Item 4). These criteria apply whether the 
formulation is simple or complex.    
Criterion 5. Is the problem question open or closed? An open question will have more 
than one acceptable solution. None of the illustrations are open questions. A problem 
that has two routine methods for solution (e.g. Item 3) is not an open question. 
Criterion 6. Does the solution require interpretation? After solving the mathematical 
problem, does the meaning of this strictly mathematical solution in the real world 
setting require consideration? Item 2 is classified as requiring interpretation because 
two mathematical results have to be linked together. 
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Item 2 yes yes no yes no yes 
Item 3 no no no no no no 

Item 4 yes no yes no no no 

Table 1.  Illustrating the classification system with items from Fig. 1  

RESULTS
In the 2 chapters, there were a total of 78 items to be analysed according to the 6 
criteria. Table 2 shows the percentage of items in each textbook section meeting each 
criterion.
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Item 1 (Problem): A lizard lays 30 to 50 eggs in spring. Eggs take 90 days to hatch. 
The length of a new born lizard is about 30 cm, and increases by 22.5 cm per year 
on average. At what age does a lizard reach 80 cm in length? 
Item 2 (Problem): A person 1.70 metres high wants to raise a 3 metre bar to an 
angle of inclination of 60o. At first she is standing with one end of the bar on the 
floor and against a wall, holding the other end exactly up to her height. Then she 
walked toward the wall raising the bar until the angle of inclination became 60o.
How many metres did she walk to the wall? (A diagram was supplied with this 
problem) 
Item 3 (Exercise in the classroom): Solve the equation 3(2x-7) =81 and check the 
correctness of each operation giving the reasons. Solve the above equation in 
another way and explain the correctness of your work in every step. 
Item 4 (Activity): Sara and Maryam are two sisters. When Maryam was born, Sara 
was 4 years old. When Sara is 7 years old, how old will Maryam be? When Maryam 
is 20 years old, how old will Sara be? Let the age of Maryam be x and the age of 
Sara be y. Write an equation that shows this relation. If Maryam becomes 5 years 
older what will happen to Sara’s age? If Maryam becomes 8 years older what will 
happen to Sara’s age? Complete the table (table given with blanks to complete) 
comparing Sara’s age and Maryam’s age. Putting Maryam’s age on the x-axis and 
Sara’s age on the y-axis, draw a graph by using the table.

Figure 1. Four illustrations of items from textbook (translated and abbreviated)  
Theoretical framework   
“Mathematics literacy” is the central concept of PISA mathematics (de Lange, 2003), 
and the processes of mathematical modelling (called mathematisation by de Lange, 
2006) are all key components of mathematical literacy.  These processes relate to 
formulating real world problems in mathematical terms (called vertical 
mathematisation by Freudenthal, 1991), so that they can be solved as mathematical 
problems, and then the mathematical solution can be interpreted to provide an answer 
to the real world problem. In the formulation stage, the problem solver faces a 
problem situated in a real context, and then gradually trims away aspects of reality, 
recognizing underlying mathematical relations, and describes the stripped down 
problem in mathematical terms.  In the interpretation stage, the problem solver 
considers the mathematical result(s), and uncovers their meaning in terms of the real 
context.
In this paper we report on 6 criteria for mathematical literacy, which focus on the 
formulation and interpretation processes. The first component records whether there 
is any real world context for the problem, the next three components focus on aspects 
of formulation and the final two relate to interpretation. Table 1 gives examples of 
the classifications for the 4 items in Fig. 1.
Criterion 1. Does this item contain any reference to a real world context? (If there is 
no real context, the formulation/ interpretation criteria below are not applicable).  
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Criterion 2. Is the required formulation complex? Factors making formulation 
complex include having extra data present (e.g. Item 1), a shortage of data so that 
gaps have to be filled by the problem solver, multiple steps of formulation (e.g. Item 
2), etc.
Criteria 3 and 4. Is formulation supported by the textbook or left to the student alone? 
In some cases formulation is completed by the textbook or supported (e.g. by 
specifying variable names and axes in Item 4). These criteria apply whether the 
formulation is simple or complex.    
Criterion 5. Is the problem question open or closed? An open question will have more 
than one acceptable solution. None of the illustrations are open questions. A problem 
that has two routine methods for solution (e.g. Item 3) is not an open question. 
Criterion 6. Does the solution require interpretation? After solving the mathematical 
problem, does the meaning of this strictly mathematical solution in the real world 
setting require consideration? Item 2 is classified as requiring interpretation because 
two mathematical results have to be linked together. 
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Item 1 yes yes no yes no yes 
Item 2 yes yes no yes no yes 
Item 3 no no no no no no 

Item 4 yes no yes no no no 

Table 1.  Illustrating the classification system with items from Fig. 1  

RESULTS
In the 2 chapters, there were a total of 78 items to be analysed according to the 6 
criteria. Table 2 shows the percentage of items in each textbook section meeting each 
criterion.
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Exercises in the 
classroom

(N=13)

38.5 0.0 23.1 15.4 0.0 0.0 

Activities
(N=19)

36.8 0.0 31.6 0.0 0.0 5.3 

Problems(N=30) 40.0 16.7 16.7 16.7 0.0 13.3 
Total (N=78) 34.6 6.4 20.5 8.9 0.0 6.4 

Table 2:  Percentage of all items meeting framework criteria by textbook section.
Table 2 shows that about one third of the items in these two chapters use a real world 
context. Further analysis (not reported in the table) showed that the real world 
contexts were varied, and it was not the case that a few standard contexts (e.g. the 
ladder against a wall in Item 2) were used repeatedly. Given that these chapters were 
selected because they had strong real world applications, it is likely that other 
chapters would have fewer items involving real world contexts. However, this 
already appears to be a major departure from the previous textbook, where topics 
were mostly treated abstractly.
Only a few items (5 problems, including Items 1 and 2) required complex 
formulation. Many more items would have required complex mathematical 
procedures for their solution, but here the complexity refers only to the formulation 
(vertical mathematisation) stage.  
There were 23 items which required formulation to translate the problem into 
mathematical terms. Columns 4 and 5 of Table 2 show that in most items, the 
textbook provided strong support for this step, leaving students to carry it out alone in 
only 7 items (9%). In keeping with their instructional purpose, the worked example 
and activity sections always provided support for formulation. 
With the interpretation criteria, none of the questions were classified as open 
questions. In 5% of items (1 activity and 3 problems), the mathematical results 
needed some interpretation. However, this interpretation is generally very shallow. 
For example, Item 2 was rated as requiring interpretation of results because the 
answer is found by comparing the distance from the wall at two times, both distances 
having to be calculated using trigonometry.

DISCUSSION & CONCLUSION  
As noted earlier, the grade 9 Iranian textbook has now been revised after more that 15 
years. In general this new book has made a substantial effort towards reform. The 
results above show that the application of mathematics has some presence in this 
textbook whereas the previous version introduced subjects mostly in the pure 
mathematics form. However the results of this study show a gap between it and the 
concept of mathematics literacy introduced by PISA. In particular, the results in 
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Table 2 show that very few items require interpretation. The interpretations required 
are very simple and straightforward, whereas items that properly represent 
mathematical literacy need significant interpretation of mathematical results in terms 
of the real problem situation. Some authors (for example, Stillman, 2008) make a 
distinction between applications of mathematics (where students learn how to apply 
mathematical procedures routinely to real situations) and mathematical modelling. 
The new textbook has, in these terms, moved towards applications of mathematics, 
but needs to include more mathematical modelling. In almost all units, the textbook 
presents the relevant mathematics component to students, without leaving space for 
students work on this phase of modeling. The role of interpretation and checking and 
looking back in these units is very colorless. 
The new activities section of the textbook provides some rich materials for enhancing 
mathematics education for Iranian pupils. However, there is room to improve these 
activities. There could be more items requiring interpretation and checking a strictly 
mathematical answer against a real world situation. Almost all activities are 
introduced in a simplified situation and the relevant mathematics is identified by the 
textbook while really real world problems are often messy with too much or too little 
data. Therefore the activity sections could be improved by encouraging students to 
discover the mathematical concepts that exist in the real world situation by 
themselves and giving them some opportunity for interpretation, and to deal with the 
type of multi-dimensional ill-defined problems (such as choosing a route by public 
transport) that occur in real life.
The previous textbooks appear to have been based on a widespread myth that a 
person has learned mathematics well will be able to apply it in a real world situation. 
However, we agree with de Lange (2003) that although pure mathematics is essential 
for doing mathematics in the real world, it is not enough.  
There are many different points of view from which the new textbook should be 
studied, and we recognise that this is only a partial analysis from the point of view of 
mathematical literacy. However, even this preliminary analysis of the new textbook 
shows that the effort at improvement is good, but not sufficient. There are too few 
opportunities for students for interpretation and to refine again and again a 
mathematical model. We have a long journey to reach the desirable point and at this 
time we stand at the beginning of this path. We need further textbook development, 
to be written in a new paradigm. The new paradigm should take “basic mathematics 
literacy” for all students as a fundamental principle. In this type of textbook, students 
may find mathematics as a human activity. 
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Exercises in the 
classroom

(N=13)

38.5 0.0 23.1 15.4 0.0 0.0 

Activities
(N=19)

36.8 0.0 31.6 0.0 0.0 5.3 

Problems(N=30) 40.0 16.7 16.7 16.7 0.0 13.3 
Total (N=78) 34.6 6.4 20.5 8.9 0.0 6.4 

Table 2:  Percentage of all items meeting framework criteria by textbook section.
Table 2 shows that about one third of the items in these two chapters use a real world 
context. Further analysis (not reported in the table) showed that the real world 
contexts were varied, and it was not the case that a few standard contexts (e.g. the 
ladder against a wall in Item 2) were used repeatedly. Given that these chapters were 
selected because they had strong real world applications, it is likely that other 
chapters would have fewer items involving real world contexts. However, this 
already appears to be a major departure from the previous textbook, where topics 
were mostly treated abstractly.
Only a few items (5 problems, including Items 1 and 2) required complex 
formulation. Many more items would have required complex mathematical 
procedures for their solution, but here the complexity refers only to the formulation 
(vertical mathematisation) stage.  
There were 23 items which required formulation to translate the problem into 
mathematical terms. Columns 4 and 5 of Table 2 show that in most items, the 
textbook provided strong support for this step, leaving students to carry it out alone in 
only 7 items (9%). In keeping with their instructional purpose, the worked example 
and activity sections always provided support for formulation. 
With the interpretation criteria, none of the questions were classified as open 
questions. In 5% of items (1 activity and 3 problems), the mathematical results 
needed some interpretation. However, this interpretation is generally very shallow. 
For example, Item 2 was rated as requiring interpretation of results because the 
answer is found by comparing the distance from the wall at two times, both distances 
having to be calculated using trigonometry.

DISCUSSION & CONCLUSION  
As noted earlier, the grade 9 Iranian textbook has now been revised after more that 15 
years. In general this new book has made a substantial effort towards reform. The 
results above show that the application of mathematics has some presence in this 
textbook whereas the previous version introduced subjects mostly in the pure 
mathematics form. However the results of this study show a gap between it and the 
concept of mathematics literacy introduced by PISA. In particular, the results in 
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Table 2 show that very few items require interpretation. The interpretations required 
are very simple and straightforward, whereas items that properly represent 
mathematical literacy need significant interpretation of mathematical results in terms 
of the real problem situation. Some authors (for example, Stillman, 2008) make a 
distinction between applications of mathematics (where students learn how to apply 
mathematical procedures routinely to real situations) and mathematical modelling. 
The new textbook has, in these terms, moved towards applications of mathematics, 
but needs to include more mathematical modelling. In almost all units, the textbook 
presents the relevant mathematics component to students, without leaving space for 
students work on this phase of modeling. The role of interpretation and checking and 
looking back in these units is very colorless. 
The new activities section of the textbook provides some rich materials for enhancing 
mathematics education for Iranian pupils. However, there is room to improve these 
activities. There could be more items requiring interpretation and checking a strictly 
mathematical answer against a real world situation. Almost all activities are 
introduced in a simplified situation and the relevant mathematics is identified by the 
textbook while really real world problems are often messy with too much or too little 
data. Therefore the activity sections could be improved by encouraging students to 
discover the mathematical concepts that exist in the real world situation by 
themselves and giving them some opportunity for interpretation, and to deal with the 
type of multi-dimensional ill-defined problems (such as choosing a route by public 
transport) that occur in real life.
The previous textbooks appear to have been based on a widespread myth that a 
person has learned mathematics well will be able to apply it in a real world situation. 
However, we agree with de Lange (2003) that although pure mathematics is essential 
for doing mathematics in the real world, it is not enough.  
There are many different points of view from which the new textbook should be 
studied, and we recognise that this is only a partial analysis from the point of view of 
mathematical literacy. However, even this preliminary analysis of the new textbook 
shows that the effort at improvement is good, but not sufficient. There are too few 
opportunities for students for interpretation and to refine again and again a 
mathematical model. We have a long journey to reach the desirable point and at this 
time we stand at the beginning of this path. We need further textbook development, 
to be written in a new paradigm. The new paradigm should take “basic mathematics 
literacy” for all students as a fundamental principle. In this type of textbook, students 
may find mathematics as a human activity. 
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HIGH SCHOOL MATHEMATICS TEACHERS’ DIDACTICAL 
BELIEFS ABOUT ERRORS IN CLASSROOM 

Michal Rahat, Pessia Tsamir
School of Education, Tel-Aviv University  

Math educators frequently point to the teacher’s central role in establishing the 
mathematical quality of the classroom environment. As people act in the light of their 
beliefs, this quality depends on the teacher’s own didactical beliefs and, in 
particular, their beliefs about ways to address errors in their classroom. In this study 
we examine this issue while distinguishing between teachers’ error-related beliefs in 
optimal class-situations, and their related, declared, decisions in realistic settings. 

THEORETICAL SETUP 
It widely documented that individuals’, and particularly mathematics teachers’ 
behaviours are strongly affected by their beliefs (e.g. Clark & Peterson, 1986; 
Thompson, 1992). In our study we adopt Green’s commonly held definition that 
beliefs are psychological propositions held by an individual to be true (Green, 1971), 
as expressed, for instance in the statement: "students must be given much 
homework". 
When investigating mathematics teachers’ beliefs, some researchers refer to their 
beliefs in general (e.g. Hoffmann, 2003), while others focus on specific issues such as 
teachers’ interpretations and beliefs of educational reform recommendations (Nathan 
& Knuth, 2003), or teachers’ beliefs about technology adoption (Suger et al., 2004). 
Since errors are an inevitable and potentially stimulating part of teaching-learning 
situations, we find it important to investigate teachers’ beliefs regarding the use of 
errors in mathematics classrooms. 
Teachers’ beliefs to the use of errors in mathematics classrooms 
In this section we report on research into the beliefs of teachers regarding the use of 
errors in mathematical classrooms. For example, Gasatsis and Kyriakides (2000) 
examined elementary school teachers’ attitudes towards their pupils’ mathematical 
errors. The interpretations of 254 school teachers of their pupils’ errors, showed that 
the teachers saw the pupil factor (pupils’ abilities, attitudes and psychological 
situation) as the most important source of errors, and the knowledge factor (special 
characteristic of concepts involved in the task) as the next most important source of 
errors. However, this research did not refer to teachers’ attitudes to possible ways of 
using their pupils’ errors in class.
Tsamir and Tirosh (2003) found that out of 14 elementary school teachers, a small 
majority thought that error-triggering tasks should be presented; as to whether 
teachers should initiate the presentation of error-based activities, opinions were 
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evenly divided. We found it important to investigate high school teachers’ related 
didactical beliefs.
Furthermore, teachers in Tsamir and Tirosh (2003) mentioned the relevance of the 
students’ ability-level concerning whether or not students’ errors should be discussed 
in the classroom, and this issue also arises in Groose and Renkel (2004). In our 
experience, mathematics teachers often revealed in casual conversation that the issue 
of student ability-levels is a weighty factor in their attitudes regarding the use of 
errors in the classroom. Therefore, in our research we address the issue of varying 
student mathematical-(matriculation exam)-levels.
In this paper we investigate high school teachers’ beliefs and didactical decisions 
about the use of errors in their mathematics classroom. We have posed the following 
questions: (a) what are teachers’ beliefs regarding the use of errors in their 
mathematics classroom in optimal circumstances, and do they differ for students of 
different math-levels?  (b) Is there a difference between the teachers’ beliefs in 
optimal conditions and their related didactic decisions in their classroom?

METHOD
Eighty-five high school mathematics teachers answered in writing a two-part 
questionnaire regarding: (1) their beliefs about the use of errors in the mathematics 
classroom in optimal circumstances; and (2) their related, declared didactical-
decisions in their actual mathematics classroom .  
First, the teachers were asked to imagine a situation in which they had no constraints 
preventing them from teaching optimally, and to express their justified views on the 
following four teaching approaches to mathematics exercises: (1) Presenting only the 
teachers’ correct solution; (2) Presenting students’ correct solutions; (3) Presenting 
students’ correct and incorrect solutions; and (4) Presenting incorrect solutions that 
didn’t arise in the class. The teachers could express their attitude to each approach 
(they were not limited to choosing just one) by marking in what frequency they 
would use this approach: always, frequently, rarely and never. In order to simplify the 
results, we put together the percentage of "always" and "frequently" under the 
heading "often", and the percentage of "rarely" and "never" under the heading 
"rarely".
In the second part, the teachers were presented again with the four approaches 
mentioned above, but this time asking in which ways they actually act in their class, 
and why. In both parts, the teachers were asked to differentiate between classes of 
three math-exam-levels. We would like to note that only about 20 teachers provided 
the requested explanations for their answers. 

DATA ANALYSIS 
In our analysis of the data, we used Cramer’s V to measure the relationship between 
teachers’ support-level of a certain approach ("often" or "rarely") and students’ exam-

Rahat, Tsamir 

PME 33 - 2009 1- 3 

level ("low", "medium" or "high"), as these are two categorical variables, and a 2-by-
3 contingency.  
We present the results as answers to the two research questions.
How would the teachers treat errors – optimally? 

Table 1: percentage# of teachers declaring with what frequency (often or rarely) they 
would optimally use each approach, in the three exam-level classes 

Approach 1
presenting
teacher’s

correct ideas 
only

2
discussing
students’

correct ideas 

3
Discussing
students’

correct and 
incorrect ideas

4
discussing
incorrect

solutions that 
didn’t arise in 

class
 Often Rarely Often Rarely Often Rarely Often Rarely

Exam   level 
Low 80 17 45 50 46 47 23 64

Medium 72 23 77 19 76 16 50 40 
High 59 34 81 12 81 11 60 29 

Cramer’s V rc= 0.184* rc= 0.385** rc= 0.386** rc= 0.345** 
# The total does not add up to 100%, some teachers did not answer each question. 
*p < .05 **p < .01 

Table 1 Indicates that 80% of the teachers expressed support of approach 1 
(presenting only the teacher’s correct solution) for students in low exam-level 
classes. This support decreases as the students’ level rises. As for approach 2 
(discussing students’ correct ideas) the support is inverted: teachers declare that it 
should optimally be used more frequently in the better classes and less frequently in 
the weak classes. Approach 3 (presenting students’ correct and incorrect responses),
similarly to approach 2, was poorly supported (45%) for lower-exam students, and 
highly supported (81%) for the higher exam-level students. Only a minority of the 
teachers stated that they would optimally use approach 4 (presenting errors that had 
not necessarily arisen in class). The percentage of support increased (to a maximum 
of 60%) as the exam- level increased. This increase in support, for approaches 2, 3 
and 4, as the students’ exam-level in Mathematics goes up, was found significant by 
Cramer’s V.
Explanations to the above expressed varied opinions. Teachers supporting approach 
1, (presenting teacher’s correct ideas only), explained that "it is important to show 
the students the steps and stages we go through, so that they, later, can solve the 
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evenly divided. We found it important to investigate high school teachers’ related 
didactical beliefs.
Furthermore, teachers in Tsamir and Tirosh (2003) mentioned the relevance of the 
students’ ability-level concerning whether or not students’ errors should be discussed 
in the classroom, and this issue also arises in Groose and Renkel (2004). In our 
experience, mathematics teachers often revealed in casual conversation that the issue 
of student ability-levels is a weighty factor in their attitudes regarding the use of 
errors in the classroom. Therefore, in our research we address the issue of varying 
student mathematical-(matriculation exam)-levels.
In this paper we investigate high school teachers’ beliefs and didactical decisions 
about the use of errors in their mathematics classroom. We have posed the following 
questions: (a) what are teachers’ beliefs regarding the use of errors in their 
mathematics classroom in optimal circumstances, and do they differ for students of 
different math-levels?  (b) Is there a difference between the teachers’ beliefs in 
optimal conditions and their related didactic decisions in their classroom?

METHOD
Eighty-five high school mathematics teachers answered in writing a two-part 
questionnaire regarding: (1) their beliefs about the use of errors in the mathematics 
classroom in optimal circumstances; and (2) their related, declared didactical-
decisions in their actual mathematics classroom .  
First, the teachers were asked to imagine a situation in which they had no constraints 
preventing them from teaching optimally, and to express their justified views on the 
following four teaching approaches to mathematics exercises: (1) Presenting only the 
teachers’ correct solution; (2) Presenting students’ correct solutions; (3) Presenting 
students’ correct and incorrect solutions; and (4) Presenting incorrect solutions that 
didn’t arise in the class. The teachers could express their attitude to each approach 
(they were not limited to choosing just one) by marking in what frequency they 
would use this approach: always, frequently, rarely and never. In order to simplify the 
results, we put together the percentage of "always" and "frequently" under the 
heading "often", and the percentage of "rarely" and "never" under the heading 
"rarely".
In the second part, the teachers were presented again with the four approaches 
mentioned above, but this time asking in which ways they actually act in their class, 
and why. In both parts, the teachers were asked to differentiate between classes of 
three math-exam-levels. We would like to note that only about 20 teachers provided 
the requested explanations for their answers. 

DATA ANALYSIS 
In our analysis of the data, we used Cramer’s V to measure the relationship between 
teachers’ support-level of a certain approach ("often" or "rarely") and students’ exam-
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level ("low", "medium" or "high"), as these are two categorical variables, and a 2-by-
3 contingency.  
We present the results as answers to the two research questions.
How would the teachers treat errors – optimally? 

Table 1: percentage# of teachers declaring with what frequency (often or rarely) they 
would optimally use each approach, in the three exam-level classes 

Approach 1
presenting
teacher’s

correct ideas 
only

2
discussing
students’

correct ideas 

3
Discussing
students’

correct and 
incorrect ideas

4
discussing
incorrect

solutions that 
didn’t arise in 

class
 Often Rarely Often Rarely Often Rarely Often Rarely

Exam   level 
Low 80 17 45 50 46 47 23 64

Medium 72 23 77 19 76 16 50 40 
High 59 34 81 12 81 11 60 29 

Cramer’s V rc= 0.184* rc= 0.385** rc= 0.386** rc= 0.345** 
# The total does not add up to 100%, some teachers did not answer each question. 
*p < .05 **p < .01 

Table 1 Indicates that 80% of the teachers expressed support of approach 1 
(presenting only the teacher’s correct solution) for students in low exam-level 
classes. This support decreases as the students’ level rises. As for approach 2 
(discussing students’ correct ideas) the support is inverted: teachers declare that it 
should optimally be used more frequently in the better classes and less frequently in 
the weak classes. Approach 3 (presenting students’ correct and incorrect responses),
similarly to approach 2, was poorly supported (45%) for lower-exam students, and 
highly supported (81%) for the higher exam-level students. Only a minority of the 
teachers stated that they would optimally use approach 4 (presenting errors that had 
not necessarily arisen in class). The percentage of support increased (to a maximum 
of 60%) as the exam- level increased. This increase in support, for approaches 2, 3 
and 4, as the students’ exam-level in Mathematics goes up, was found significant by 
Cramer’s V.
Explanations to the above expressed varied opinions. Teachers supporting approach 
1, (presenting teacher’s correct ideas only), explained that "it is important to show 
the students the steps and stages we go through, so that they, later, can solve the 

PME 33 - 2009 4 - 443

 Volume 04 COMPLETE 290509.indb   443 6/4/09   2:26:21 PM



Rahat, Tsamir 

1- 4 PME 33 - 2009 

problems independently". As opposed to that, others explained that it is not healthy to 
give the impression that the teacher’s method is the only one: “There isn’t just one 
correct and effective way …” Furthermore, students should be given opportunities to 
deal with mathematical problems on their own, rather than being "spoon-fed". One 
teacher noted: “You don’t learn much from just watching – you learn from doing.” 
Some explained their conditional support for this approach; they said it is appropriate 
only for low level exam students, whose mathematical creativity is under-developed.   
Teachers supporting approach 2, (discussing students’ correct ideas), explained that 
one must take into account students’ ideas "So as to understand the student’s ways of 
thinking and to be able to progress accordingly." Another was so as to "open up new 
ways of thinking."  A third was affective – "it motivates them…"   Some of the 
teachers who opposed to approach 2 to low-exam level students, explained: "For the 
students with difficulties, this approach can make them frustrated at not having a 
solution to the problem". Other teachers expressed the feeling that this approach 
didn’t go far enough: "I agree with the idea of asking for students’ solutions, but I 
don’t agree with only relating to the correct answers – part of the teaching process 
lies in relating to mistaken answers, so that students can analyze their mistakes and 
develop their critical faculty". Of the teachers who gave conditional support for 
approach 2, some teachers said that this approach should optimally be used more 
often with higher exam-level students, and less with lower-exam level students, 
because "Wrong solutions sometimes become embedded in the minds of weaker 
students, and then it is hard to correct them."
Teachers supporting approach 3, (using students’ correct and incorrect responses in
class), explained that "This way I will get most of the students involved, and we shall 
learn from the mistakes", that this approach is "stimulating". One of the teachers was 
more pragmatic: "So that students know where they were mistaken and how they can 
avoid it for the next time." Teachers opposing approach 3 wrote: "When we teach 
new material, I think it’s difficult to begin with confusing the students (strong ones 
too) with complicated ideas. Weak pupils can’t always absorb the information, and 
remember what is correct and what is incorrect; in the long term, I’m worried my 
pupils will remember precisely the mistakes”. Explanations of conditional support of 
this approach were, for example, “I will refer to everything, but with lower level 
students I would relate to the errors personally; with stronger students, it would be 
interesting to discuss everything."  There are also teachers who fear that the openness 
demanded by this approach will lead to unforeseen directions in the lesson, and the 
weaker students will "loose track, there will be noise and loss of discipline." 
The few teachers supporting approach 4 (discussing incorrect solutions that didn’t 
arise in class), explained that "Through the error you can understand the logic of the 
material." Teachers who opposed to this approach were concerned lest their students 
acquire mistaken concepts. "In principle I don’t like the approach of analyzing 
erroneous solutions; it shifts the thought from the right to the wrong, and may firmly 
fix mistakes and confusion." A large number of teachers expressing conditional 
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support for this approach supported it for good students only: "Among weak pupils, 
I’m fearful of the fact that they didn’t err may confuse them, and they might think 
this is the correct answer. This fear exists less with students taking the higher level 
exam, they have a higher sense of control". Other, affective reasons for this opinion 
were: “The good students would like this, it would encourage them and give them 
self confidence, but the medium and weak students may get bored and not like it.” 
While teachers may agree that a certain method of teaching is desirable, this does 
not mean that they carry it out. 
What are the differences between optimal and actual use of errors in class? 
In Table 2, we present a comparison of teachers’ responses to all four approaches. In 
this table we show the percentage of teachers who declared they would (optimally) or 
do (actually) use each approach often. We also bring the mean of all answers to each 
approach for the optimal and actual situations, and the T value of the t-test we used to 
compare them.  

Table 2: Percentages of teachers who declare they would, optimally, or do, actually 
use each approach often.

Approach 1
teachers’

correct ideas 
only

2
students’

correct ideas 

3
students’

correct and 
incorrect ideas 

4
incorrect

solutions - 
didn’t arise in 

class

Optimal Actual Optimal Actual Optimal Actual Optimal Actual 

Exam   level 
Low 80 80 45 42 46 34 23 7

Medium 72 75 77 64 76 60 50 31 
High 59 54 81 67 81 71 60 39 

Mean# 3.00 3.07 2.92 2.76 2.97 2.69 2.44 2.08

T -.806 2.224* 4.132** 4.477**

*Sig<0.05, **Sig<0.01 
#1: Never; 2: Rarely; 3: Frequently; 4: Always. 

Approach 1 (presenting teacher’s correct ideas only): 
The respondents reported similar results for their optimal and actual behaviour in 
class. In fact, far from being constrained to use this approach less than they would 
like, it seems that for the medium level students, teachers actually use this method 
slightly more than they believe it should optimally be used. This is contrary to the 
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problems independently". As opposed to that, others explained that it is not healthy to 
give the impression that the teacher’s method is the only one: “There isn’t just one 
correct and effective way …” Furthermore, students should be given opportunities to 
deal with mathematical problems on their own, rather than being "spoon-fed". One 
teacher noted: “You don’t learn much from just watching – you learn from doing.” 
Some explained their conditional support for this approach; they said it is appropriate 
only for low level exam students, whose mathematical creativity is under-developed.   
Teachers supporting approach 2, (discussing students’ correct ideas), explained that 
one must take into account students’ ideas "So as to understand the student’s ways of 
thinking and to be able to progress accordingly." Another was so as to "open up new 
ways of thinking."  A third was affective – "it motivates them…"   Some of the 
teachers who opposed to approach 2 to low-exam level students, explained: "For the 
students with difficulties, this approach can make them frustrated at not having a 
solution to the problem". Other teachers expressed the feeling that this approach 
didn’t go far enough: "I agree with the idea of asking for students’ solutions, but I 
don’t agree with only relating to the correct answers – part of the teaching process 
lies in relating to mistaken answers, so that students can analyze their mistakes and 
develop their critical faculty". Of the teachers who gave conditional support for 
approach 2, some teachers said that this approach should optimally be used more 
often with higher exam-level students, and less with lower-exam level students, 
because "Wrong solutions sometimes become embedded in the minds of weaker 
students, and then it is hard to correct them."
Teachers supporting approach 3, (using students’ correct and incorrect responses in
class), explained that "This way I will get most of the students involved, and we shall 
learn from the mistakes", that this approach is "stimulating". One of the teachers was 
more pragmatic: "So that students know where they were mistaken and how they can 
avoid it for the next time." Teachers opposing approach 3 wrote: "When we teach 
new material, I think it’s difficult to begin with confusing the students (strong ones 
too) with complicated ideas. Weak pupils can’t always absorb the information, and 
remember what is correct and what is incorrect; in the long term, I’m worried my 
pupils will remember precisely the mistakes”. Explanations of conditional support of 
this approach were, for example, “I will refer to everything, but with lower level 
students I would relate to the errors personally; with stronger students, it would be 
interesting to discuss everything."  There are also teachers who fear that the openness 
demanded by this approach will lead to unforeseen directions in the lesson, and the 
weaker students will "loose track, there will be noise and loss of discipline." 
The few teachers supporting approach 4 (discussing incorrect solutions that didn’t 
arise in class), explained that "Through the error you can understand the logic of the 
material." Teachers who opposed to this approach were concerned lest their students 
acquire mistaken concepts. "In principle I don’t like the approach of analyzing 
erroneous solutions; it shifts the thought from the right to the wrong, and may firmly 
fix mistakes and confusion." A large number of teachers expressing conditional 
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support for this approach supported it for good students only: "Among weak pupils, 
I’m fearful of the fact that they didn’t err may confuse them, and they might think 
this is the correct answer. This fear exists less with students taking the higher level 
exam, they have a higher sense of control". Other, affective reasons for this opinion 
were: “The good students would like this, it would encourage them and give them 
self confidence, but the medium and weak students may get bored and not like it.” 
While teachers may agree that a certain method of teaching is desirable, this does 
not mean that they carry it out. 
What are the differences between optimal and actual use of errors in class? 
In Table 2, we present a comparison of teachers’ responses to all four approaches. In 
this table we show the percentage of teachers who declared they would (optimally) or 
do (actually) use each approach often. We also bring the mean of all answers to each 
approach for the optimal and actual situations, and the T value of the t-test we used to 
compare them.  

Table 2: Percentages of teachers who declare they would, optimally, or do, actually 
use each approach often.

Approach 1
teachers’

correct ideas 
only

2
students’

correct ideas 

3
students’

correct and 
incorrect ideas 

4
incorrect

solutions - 
didn’t arise in 

class

Optimal Actual Optimal Actual Optimal Actual Optimal Actual 

Exam   level 
Low 80 80 45 42 46 34 23 7

Medium 72 75 77 64 76 60 50 31 
High 59 54 81 67 81 71 60 39 

Mean# 3.00 3.07 2.92 2.76 2.97 2.69 2.44 2.08

T -.806 2.224* 4.132** 4.477**

*Sig<0.05, **Sig<0.01 
#1: Never; 2: Rarely; 3: Frequently; 4: Always. 

Approach 1 (presenting teacher’s correct ideas only): 
The respondents reported similar results for their optimal and actual behaviour in 
class. In fact, far from being constrained to use this approach less than they would 
like, it seems that for the medium level students, teachers actually use this method 
slightly more than they believe it should optimally be used. This is contrary to the 
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other three approaches, which the teachers used less in practice than they believed 
they should ideally.   
Approach 2 (discussing students’ correct ideas):
There is a significant difference between optimal and actual use of this approach in 
class. Teachers believe they should ask the students for ideas as to how to solve 
exercises and take up the correct suggestions, significantly more often than they 
actually do. 
Approach 3 (discussing students’ correct and incorrect ideas):
In this approach too, there is a highly significant difference between teachers’ ideas 
of what should be done in class in the optimal situation, and what they actually do. 
Again, they thought that this approach should be used much more than they actually 
use it. 
Approach 4 (discussing incorrect solutions that didn’t arise in class):
In this case the difference between what teachers would do in optimal situations, and 
what they actually do in class, is the largest. While 23% of the teachers declared they 
would give students with difficulties ’Find the mistake’ tasks, only 7% say that they 
actually do so. This difference is found regarding all levels of students, and it is 
statistically highly significant.  

DISCUSSION 
Various beneficial error-based experiences in the mathematics classroom are 
mentioned in the literature (e.g., Bainbridge, 1981; Borasi, 1996; Groose & Renkel, 
2004; Melis, 2005); and many advantages are listed for using students’ errors in 
practice, including: promoting students’ motivation, promoting students’ knowledge 
of concepts, promoting students’ understanding of the nature of mathematics, and 
promoting students’ reflection and inquiry performances (e.g., Borasi, 1996; Melis 
2005).  However, in order that teachers implement error-based class discussions, they 
should believe that this is "the right thing to do", and that "doing it" is feasible. 
Research examining the issues of mathematics teachers’ error-related beliefs is scarce 
and publications address elementary school teachers, with no differentiation between 
"optimal" and "practical" circumstances. The contribution of our study is in 
examining mathematics teachers’ error-related beliefs, in addressing secondary
school mathematics teachers, and in refining our research tools to differentiate 
between the examination of teachers’ beliefs about "what error-related approaches 
should be used in their class in optimal conditions", and "what realistic conditions 
allow them to implement". 
Our findings indicate the following teachers’ beliefs about error-related issues in 
optimal classroom conditions: (1) presenting the teacher’s correct solution is 
beneficial for all students; (2) error-based activities are beneficial for high level 
students (e.g., Groose and Renkel, 2004); (3) usually, errors should be discussed 
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when they were made by students in class; and (4) weak students should only be 
presented with correct solutions, because errors may confuse them and cause them 
frustration (e.g., Tsamir & Tirosh, 2003).  
As mentioned before, our questionnaire allowed the teachers to distinguish between 
their beliefs in optimal settings, as opposed to the actions they actually take, giving 
them the opportunity to explain the discrepancy and to express their frustration at not 
being able to achieve the aims they had set themselves. Indeed, the gap found 
between "optimal" and "actual" error-based activities, in all items of the 
questionnaire, showed that there was a significant statistical difference between 
teachers’ beliefs in optimal conditions and their declared didactic decisions taken in 
the practice. This outcome is concordant with studies that show discrepancies 
between teacher beliefs and teacher behaviours and decisions (e.g. Thompson, 1992). 
The innovation in this study is that the participants themselves were aware of this 
gap, and gave their own reasons for it.
Most teachers declared that they actually teach, most of the time, by traditional 
methods. They present correct solutions to mathematical problems, without taking 
into account students’ various correct solutions and students’ incorrect ideas. This is 
especially true for weak students. As the level of the students rises, teachers stated 
that they tend to engage their students in posing and discussing solutions, and of 
addressing students’ correct and incorrect ideas during class discussions. As for 
initiating activities based on errors that did not arise in the class being taught, as 
recommended by some mathematics educators (e.g. Avital, 1981; Smobol & 
Applebaum, 2003), a small number of teachers declared that they actually use this 
method, and, in accordance with their attitudes, this percentage is smallest when 
teaching the low level math groups.   
One may wonder, what is the best way to address students’ errors in the Mathematics 
classroom? Is some teachers’ belief, that presenting mistakes may confuse the weak 
students, proven in research? It has been shown that working with incorrect solutions 
can lead to enhanced learning outcomes for students with a strong mathematical 
background (Groose and Renkel, 2004), and "junior school children did not appear to 
suffer from being systematically exposed to their own mistakes" (Bainbridge, 1981, 
p.12). So, if it can contribute to stronger students, and doesn’t harm the others, should 
this method be used in class? Is it worth precious teaching time it consumes? We see 
this as a fertile ground for further research about teachers’ beliefs, their didactical 
decisions and classroom experiences and about students’ knowledge and feelings.
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Avital, S. (1981) What can be done with student’s mistakes? Shvavim – Math Teachers 

Journal 15 1-5. (In Hebrew). 
Bainbridge, R. (1981). To err is human: Towards a more positive approach to young 

children’s mistakes in arithmetic. Mathematics in School 10 (5), 12-13. 

4 - 446 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   446 6/4/09   2:26:22 PM



Rahat, Tsamir 

1- 6 PME 33 - 2009 

other three approaches, which the teachers used less in practice than they believed 
they should ideally.   
Approach 2 (discussing students’ correct ideas):
There is a significant difference between optimal and actual use of this approach in 
class. Teachers believe they should ask the students for ideas as to how to solve 
exercises and take up the correct suggestions, significantly more often than they 
actually do. 
Approach 3 (discussing students’ correct and incorrect ideas):
In this approach too, there is a highly significant difference between teachers’ ideas 
of what should be done in class in the optimal situation, and what they actually do. 
Again, they thought that this approach should be used much more than they actually 
use it. 
Approach 4 (discussing incorrect solutions that didn’t arise in class):
In this case the difference between what teachers would do in optimal situations, and 
what they actually do in class, is the largest. While 23% of the teachers declared they 
would give students with difficulties ’Find the mistake’ tasks, only 7% say that they 
actually do so. This difference is found regarding all levels of students, and it is 
statistically highly significant.  

DISCUSSION 
Various beneficial error-based experiences in the mathematics classroom are 
mentioned in the literature (e.g., Bainbridge, 1981; Borasi, 1996; Groose & Renkel, 
2004; Melis, 2005); and many advantages are listed for using students’ errors in 
practice, including: promoting students’ motivation, promoting students’ knowledge 
of concepts, promoting students’ understanding of the nature of mathematics, and 
promoting students’ reflection and inquiry performances (e.g., Borasi, 1996; Melis 
2005).  However, in order that teachers implement error-based class discussions, they 
should believe that this is "the right thing to do", and that "doing it" is feasible. 
Research examining the issues of mathematics teachers’ error-related beliefs is scarce 
and publications address elementary school teachers, with no differentiation between 
"optimal" and "practical" circumstances. The contribution of our study is in 
examining mathematics teachers’ error-related beliefs, in addressing secondary
school mathematics teachers, and in refining our research tools to differentiate 
between the examination of teachers’ beliefs about "what error-related approaches 
should be used in their class in optimal conditions", and "what realistic conditions 
allow them to implement". 
Our findings indicate the following teachers’ beliefs about error-related issues in 
optimal classroom conditions: (1) presenting the teacher’s correct solution is 
beneficial for all students; (2) error-based activities are beneficial for high level 
students (e.g., Groose and Renkel, 2004); (3) usually, errors should be discussed 
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when they were made by students in class; and (4) weak students should only be 
presented with correct solutions, because errors may confuse them and cause them 
frustration (e.g., Tsamir & Tirosh, 2003).  
As mentioned before, our questionnaire allowed the teachers to distinguish between 
their beliefs in optimal settings, as opposed to the actions they actually take, giving 
them the opportunity to explain the discrepancy and to express their frustration at not 
being able to achieve the aims they had set themselves. Indeed, the gap found 
between "optimal" and "actual" error-based activities, in all items of the 
questionnaire, showed that there was a significant statistical difference between 
teachers’ beliefs in optimal conditions and their declared didactic decisions taken in 
the practice. This outcome is concordant with studies that show discrepancies 
between teacher beliefs and teacher behaviours and decisions (e.g. Thompson, 1992). 
The innovation in this study is that the participants themselves were aware of this 
gap, and gave their own reasons for it.
Most teachers declared that they actually teach, most of the time, by traditional 
methods. They present correct solutions to mathematical problems, without taking 
into account students’ various correct solutions and students’ incorrect ideas. This is 
especially true for weak students. As the level of the students rises, teachers stated 
that they tend to engage their students in posing and discussing solutions, and of 
addressing students’ correct and incorrect ideas during class discussions. As for 
initiating activities based on errors that did not arise in the class being taught, as 
recommended by some mathematics educators (e.g. Avital, 1981; Smobol & 
Applebaum, 2003), a small number of teachers declared that they actually use this 
method, and, in accordance with their attitudes, this percentage is smallest when 
teaching the low level math groups.   
One may wonder, what is the best way to address students’ errors in the Mathematics 
classroom? Is some teachers’ belief, that presenting mistakes may confuse the weak 
students, proven in research? It has been shown that working with incorrect solutions 
can lead to enhanced learning outcomes for students with a strong mathematical 
background (Groose and Renkel, 2004), and "junior school children did not appear to 
suffer from being systematically exposed to their own mistakes" (Bainbridge, 1981, 
p.12). So, if it can contribute to stronger students, and doesn’t harm the others, should 
this method be used in class? Is it worth precious teaching time it consumes? We see 
this as a fertile ground for further research about teachers’ beliefs, their didactical 
decisions and classroom experiences and about students’ knowledge and feelings.
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REVERSIBLE REASONING IN RATIO SITUATIONS: PROBLEM 
CONCEPTUALIZATION, STRATEGIES, AND CONSTRAINTS 

Ajay Ramful & John Olive
The University of Georgia

The primary aim of this study is to identify the strategies and constraints that middle-
school students encounter in reversing their thought process in ratio situations. 
Using Vergnaud’s (1988) construct of theorems-in-action and Thompson’s (1994) 
notion of quantitative reasoning as analytical lenses, we analyse the concepts and 
operations that the six participants in grades 6, 7 and 8 deployed when asked to solve 
a set of specifically chosen multiplicative comparison problems, algebraically 
equivalent to 21)( qqxba  and 21)( qqxba .  Our case study illustrates how the 
same problem can be conceptualized differently by different students, cueing different 
cognitive resources and solution paths. Difficulties in conceptualizing the problem 
quantitatively led to observable constraints on students’ reversible reasoning.  

BACKGROUND, CONTEXT AND OBJECTIVES 
The concept of ratio is a key constituent of school mathematics and aims at 
consolidating and extending students’ multiplicative reasoning (Hoffer & Hoffer, 
1992). While it has a more numerical aspect at the elementary level, at the middle 
grades, students are required to analyse the functional aspect (in terms of tables, 
graphs, verbal rules, and equations) of a ratio to understand how two quantities vary 
in relation to each other. A ratio can be interpreted in different ways. From a 
mathematical perspective, Freudenthal (1983) considered a ratio as “an equivalence 
relation in the set of ordered pairs of numbers (or magnitude values)” (p. 180). A ratio 
( ba : ) can also be understood from the perspective of a fraction (a/b) and as a 
quotient (a divided by b). In terms of units-coordination, a ratio can be interpreted as 
requiring the coordination of two number sequences. From the point of view of 
quantities, a ratio can be regarded as a multiplicative comparison between two 
extensive quantities (Schwartz, 1988) in the same measure space. From a cognitive 
perspective, Thompson (1994) considers a ratio as “the result of comparing two 
quantities multiplicatively” (p. 190) and extends the concept of ratio to that of rate 
which is defined as a ‘reflectively abstracted ratio’. Kaput & West (1994) used the 
notion of quantities to analyse students’ building-up pattern of reasoning with ratios. 
Clark, Berenson, & Cavey (2003) distinguish between two conceptions of ratio: 
descriptive ratios and functional ratios. Examples like comparing the number of boys 
and girls in a class constitute a descriptive ratio as they are concerned with static 
counts of objects in two sets. On the other hand, functional ratios deal with consistent 
linear relationships between two variables.

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 449-456. Thessaloniki, Greece: PME.
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Reversibility of thought 
Piaget differentiated between two forms of reversibility of thought: (i) negation 
which refers to the idea that every direct operation has an inverse which cancels or 
negates it (e.g., multiplication is cancelled by division) and (ii) reciprocity which 
refers to the idea that a relation can be interpreted bi-directionally (e.g., combining 
two quantities to form a new quantity and decomposing a given quantity in terms of 
its constituents). As can be inferred from Inhelder & Piaget (1958), the second form 
of reversibility, i.e., reciprocity gets its essence whenever a relation is defined.  
Ratios are constitutively statements of relations, more specifically multiplicative 
comparison relations. However, despite being a central component of mathematical 
reasoning, reversibility of thought has not been given much attention in mathematics 
education research, partly because of its implicit nature. As pointed out by Lamon 
(2007): “researchers know very little about reversibility or about multiplicative operations 
and inverses, and these could be subjects for a valuable microanalysis research agenda” (p. 
661). Further, our review of literature leads us to conclude that not much attention 
has been given to the analysis of ratio situations from a reversibility perspective. In 
the present study, we analyse the strategies and constraints that students encounter as 
they were required to solve a set of reversibility situations in the domain of ratio. We 
also illustrate how the same problems were conceptualized differently by the 
participants, cueing different resources and leading to different solution paths. 

THEORETICAL FRAMEWORK 
In this study, we use Thompson’s (1994) notion of quantities and quantitative 
relationship and Vergnaud’s (1988) concept of theorems-in-action to understand how 
reversibility operates in ratio situations. Thompson (1994) asserts that characterizing 
students’ reasoning in terms of quantities allows us to capture important structural 
characteristics of their reasoning when they are asked to deal with complex 
situations. Thompson (1990) defines a quantitative relationship as “the conception of 
three quantities, two of which determine the third by a quantitative operation” (p.13) and a 
quantitative operation is regarded as “the conception of two quantities being taken to 
produce a new quantity” (p.11). For instance, a multiplicative comparison like “Paul is 
twice as old as his brother” is an example of a quantitative relation. It involves 
reasoning with two quantities (Paul’s age and his brother’s age) without using their 
numerical values but rather using the relationship between the quantities. In other 
words, one can reason about two (or more) related quantities without knowing the 
actual numerical values.  The quantitative relation may assume different forms like 
additive and multiplicative comparison, additive and multiplicative combination, as 
well as composition of quantities and generalization of relations (Thompson, 1990). 
In this study, we are particularly interested in investigating quantities that are in 
multiplicative relationship and where some of the values of the quantities in the 
relationship are unknown. Reversibility involves working with known and unknown 
quantities and consequently requires reasoning about relationships among quantities. 
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One of the aims of the present study is to identify the ways in which students use 
quantitative reasoning as a basis for reversing their thought process, in contrast to 
using numerical reasoning.
Theorems-in-action 
Vergnaud (1988) defines Theorems-in-action as the “mathematical relationships that are 
taken into account by students when they choose an operation or a sequence of operations to 
solve a problem” (p. 144). They are “held to be true propositions” (Vergnaud, 1997, p. 
14) for a certain range of situations and may even be flawed. As clearly defined by 
Hiebert & Behr (1988), Theorems-in-action may also be viewed as an action 
(physical or mental) on the part of the cognizing subject “that provides behavioral 
evidence of implicit knowledge of a more formal property or method or ‘theorem’ of 
mathematics” (p. 11). In addition, these relationships may not be expressed verbally 
by the students. In other words, Theorems-in-action are the implicit mathematical 
operations that students use in solving mathematical problems. In one sense, they can 
be regarded as the mental counterpart of the symbolic operations, relations or 
transformations. 

METHOD
Data for the present report come from a larger study about the strategies and 
constraints that students encounter in reversing their thought process in multiplicative 
situations. We used task-based interviews (Goldin, 2000) to collect data from three 
pairs of above-average students in grades 6, 7 and 8 in an urban middle school. The 
six participants in the study are: Ted and Cole (the pair of sixth-graders), Aileen and 
Brian (the pair of seventh-graders), and Jeff and Eric1 (the pair of eighth-graders).  
The first author interviewed the students on a range of tasks involving multiplicative 
comparison situations for a period of two weeks in May 2008. We used two cameras 
to record the interviews so as to produce a restored view (Hall, 2000). The first 
camera focused on students’ movements, gestures and facial expressions, besides 
recording their spoken words and interjections, while the second camera focused on 
their writings, drawings and actions (e.g. pointing movements with their fingers) with 
external materials. We also kept a record of what students wrote or drew on the 
worksheets that were provided to them.  

DATA AND ANALYSIS
The two situations under study are algebraically equivalent to 21)( qqxba (Type
I) and 21)( qqxba  (Type II). Due to page constraints, we present the findings for 
only one representative problem in each category.

                                          
1 All names are pseudonyms.  

4 - 450 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   450 6/4/09   2:26:23 PM



Ramful, Olive 

1- 2 PME 33 - 2009 

Reversibility of thought 
Piaget differentiated between two forms of reversibility of thought: (i) negation 
which refers to the idea that every direct operation has an inverse which cancels or 
negates it (e.g., multiplication is cancelled by division) and (ii) reciprocity which 
refers to the idea that a relation can be interpreted bi-directionally (e.g., combining 
two quantities to form a new quantity and decomposing a given quantity in terms of 
its constituents). As can be inferred from Inhelder & Piaget (1958), the second form 
of reversibility, i.e., reciprocity gets its essence whenever a relation is defined.  
Ratios are constitutively statements of relations, more specifically multiplicative 
comparison relations. However, despite being a central component of mathematical 
reasoning, reversibility of thought has not been given much attention in mathematics 
education research, partly because of its implicit nature. As pointed out by Lamon 
(2007): “researchers know very little about reversibility or about multiplicative operations 
and inverses, and these could be subjects for a valuable microanalysis research agenda” (p. 
661). Further, our review of literature leads us to conclude that not much attention 
has been given to the analysis of ratio situations from a reversibility perspective. In 
the present study, we analyse the strategies and constraints that students encounter as 
they were required to solve a set of reversibility situations in the domain of ratio. We 
also illustrate how the same problems were conceptualized differently by the 
participants, cueing different resources and leading to different solution paths. 

THEORETICAL FRAMEWORK 
In this study, we use Thompson’s (1994) notion of quantities and quantitative 
relationship and Vergnaud’s (1988) concept of theorems-in-action to understand how 
reversibility operates in ratio situations. Thompson (1994) asserts that characterizing 
students’ reasoning in terms of quantities allows us to capture important structural 
characteristics of their reasoning when they are asked to deal with complex 
situations. Thompson (1990) defines a quantitative relationship as “the conception of 
three quantities, two of which determine the third by a quantitative operation” (p.13) and a 
quantitative operation is regarded as “the conception of two quantities being taken to 
produce a new quantity” (p.11). For instance, a multiplicative comparison like “Paul is 
twice as old as his brother” is an example of a quantitative relation. It involves 
reasoning with two quantities (Paul’s age and his brother’s age) without using their 
numerical values but rather using the relationship between the quantities. In other 
words, one can reason about two (or more) related quantities without knowing the 
actual numerical values.  The quantitative relation may assume different forms like 
additive and multiplicative comparison, additive and multiplicative combination, as 
well as composition of quantities and generalization of relations (Thompson, 1990). 
In this study, we are particularly interested in investigating quantities that are in 
multiplicative relationship and where some of the values of the quantities in the 
relationship are unknown. Reversibility involves working with known and unknown 
quantities and consequently requires reasoning about relationships among quantities. 
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One of the aims of the present study is to identify the ways in which students use 
quantitative reasoning as a basis for reversing their thought process, in contrast to 
using numerical reasoning.
Theorems-in-action 
Vergnaud (1988) defines Theorems-in-action as the “mathematical relationships that are 
taken into account by students when they choose an operation or a sequence of operations to 
solve a problem” (p. 144). They are “held to be true propositions” (Vergnaud, 1997, p. 
14) for a certain range of situations and may even be flawed. As clearly defined by 
Hiebert & Behr (1988), Theorems-in-action may also be viewed as an action 
(physical or mental) on the part of the cognizing subject “that provides behavioral 
evidence of implicit knowledge of a more formal property or method or ‘theorem’ of 
mathematics” (p. 11). In addition, these relationships may not be expressed verbally 
by the students. In other words, Theorems-in-action are the implicit mathematical 
operations that students use in solving mathematical problems. In one sense, they can 
be regarded as the mental counterpart of the symbolic operations, relations or 
transformations. 

METHOD
Data for the present report come from a larger study about the strategies and 
constraints that students encounter in reversing their thought process in multiplicative 
situations. We used task-based interviews (Goldin, 2000) to collect data from three 
pairs of above-average students in grades 6, 7 and 8 in an urban middle school. The 
six participants in the study are: Ted and Cole (the pair of sixth-graders), Aileen and 
Brian (the pair of seventh-graders), and Jeff and Eric1 (the pair of eighth-graders).  
The first author interviewed the students on a range of tasks involving multiplicative 
comparison situations for a period of two weeks in May 2008. We used two cameras 
to record the interviews so as to produce a restored view (Hall, 2000). The first 
camera focused on students’ movements, gestures and facial expressions, besides 
recording their spoken words and interjections, while the second camera focused on 
their writings, drawings and actions (e.g. pointing movements with their fingers) with 
external materials. We also kept a record of what students wrote or drew on the 
worksheets that were provided to them.  

DATA AND ANALYSIS
The two situations under study are algebraically equivalent to 21)( qqxba (Type
I) and 21)( qqxba  (Type II). Due to page constraints, we present the findings for 
only one representative problem in each category.
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PROBLEM 1. Joe had some marbles. Then his friend gave him 5 times as many 
marbles as he had initially. Now Joe has 42 marbles. How many marbles did Joe have 
initially? (algebraically equivalent to 42)51( x )

Ted and Cole: The pair of six-graders
Their very first move was to divide 42 by 5 rather than six. The students did not take 
into account that Joe also had a share. In this problem, Joe’s marbles are both the 
referent and the compared quantity and this may be one reason why they divided by 5 
instead of 6. Here, the referent quantity (Joe’s initial amount) has an implicit nature. 
It was the mixed number quotient (8 5

2 ) resulting from their division of 42 by 5 that 
cued the students to realize that their solution could not be correct (Joe could not 
have 5

2  of a marble). They did not conceptualize the problem context as a ratio 
situation (1:5) between two unknown quantities (initial and added marbles) and this 
hindered them from coordinating the known and unknown quantities in both the 
additive and multiplicative relations that constituted the quantitative structure.
Aileen and Brian: The pair of seventh-graders 

Brian:           He has 7. Because if you have, uh, five times as much, so you still have to 
have that one that you have originally. So you would have 6 of how many 
sets whatever. So 42 divided by 6 that's 7 because 6 times 7 equals 42. 

Aileen:        Because I started plugging numbers like, I knew it couldn’t be 1 through 
like 3 because that would only give you 15 and if you added that to the 
original then you wouldn't have 42. So I went up higher, and started up at 
5 and 5 times 5 is 25 plus 5 is 30 and I was getting close to it. I went to 6 
and 6 times 5 is 30 and plus 6 is 36. Then I went up to 7. Seven times 5 is 
35 plus 7 is 42. 

Brian could conceptualize the problem explicitly from a ratio perspective. In 
addition, he could interpret the end result 42 as being constituted as 6 ‘sets’ of 
unknown numerosity when he said “6 of how many sets whatever” to decompose 42 
as a partitive division situation, which indicates reasoning reversibly. In contrast, 
rather than decomposing the end quantity to find the two constituting quantities, 
Aileen’s strategy was to work forward by systematically plugging-in numbers until 
she reached the end result of 42 – a building-up strategy. 
Jeff and Eric: The pair of eighth-graders 
Both Jeff and Eric started by dividing 42 by 5 to get 8.4. The decimal part (0.4) led 
them to observe that their answer was not correct and prompted them to look at the 
problem from another angle. Their responses are highlighted below: 

Jeff:              Uh, I got that initially he would have 7 marbles because it says that he had 
some marbles then his friend gave him 5 times as many. So that would be 
the same as, uh, well what I came out [with] was 425xx . So I just 
added the x’s together and divided 42 by 6 and got 7. 
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Eric:            Uh, not really. I just started out trying, you know. I just divided 5 into 42 
and I kind of knew that I get a decimal. So, and then I was getting 
restarted you know, figuring out another way to get it because I know 8.4 
probably is not the correct solution because you can't have a fourth of a 
marble.

Like Ted and Cole, the eighth graders started with the division of 42 by 5 and it was 
the decimal result that cued them to choose an alternative solution path. By defining 
the unknown quantity as x (the number of marbles that Joe had initially), Jeff could 
articulate the additive and multiplicative quantitative relations within the quantitative 
structure of the problem. Constructing the quantitative structure explicitly as an 
algebraic expression lowers the cognitive load required in thinking about an unknown 
quantity in a quantitative relationship and allows one to solve the problem directly 
rather than reasoning reversibly. On the other hand, Eric tried to plug-in numbers 
after observing that 42 divided by 5 did not result in a whole number solution. Note 
also his confusion between decimal and fractional notation (.4 as one fourth). 
PROBLEM 2. A sum of money was divided between Alan and Bill. For every $5 that 
Alan received, Bill received $3. Given that Alan received (i) $10 more and (ii) $7 
more than Bill, calculate how much Bill received? (algebraically equivalent to 

10)35( x  and 7)35( x ). For the sake of brevity, we report only the result for case 
(ii) for the sixth graders and for case (i) for the other participants.
Ted and Cole: The pair of six-graders
They generated members of the equivalence class 5:3 by making a table of values 
with rows: 5, 3; 10, 6; 15, 9 and so forth thus working in a forward direction, starting 
from the given ratio.  Ted deduced that the answer should be between the pair (15, 9) 
and (20, 12) since 7 lies in between the differences of 15 and 9 (i.e. 6), and 20 and 12 
(i.e. 8). This is one of the instances where they were directly confronted with a 
reversibility situation in that knowing the difference (i.e., 7) of the components of a 
ratio of two quantities, they had to find a ratio that satisfies it. In their first 
approximation, they added half to 15 and 9 respectively to obtain 2

115  and 2
19 . Then 

Cole observed that there is a difference of 3 between 9 and 12 and half of this interval 
would be 2

11  which led him to obtain $ 2
110  for Bill. However, he added the same 

amount ( 2
11 ) to 15 to obtain 2

116 . After observing that his solution ( 2
116  and 2

110 ) did 
not produce the required difference of 7, he re-evaluated his calculation and figured 
that the middle value of the interval 15 to 20 is 2

117 . In other words, Cole used linear 
interpolation as his theorem-in-action to find the components of the 5:3 ratio that 
corresponds to a difference of 7 units. While Cole’s approach is very creative, it 
avoided reasoning reversibly. Our intention in using an odd number for the total 
difference in this problem was to make it difficult to use a forward process of 
generating successive values for the ratio until the desired difference was obtained, 
thus possibly encouraging an approach that could involve reversible reasoning. We 
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sets whatever. So 42 divided by 6 that's 7 because 6 times 7 equals 42. 

Aileen:        Because I started plugging numbers like, I knew it couldn’t be 1 through 
like 3 because that would only give you 15 and if you added that to the 
original then you wouldn't have 42. So I went up higher, and started up at 
5 and 5 times 5 is 25 plus 5 is 30 and I was getting close to it. I went to 6 
and 6 times 5 is 30 and plus 6 is 36. Then I went up to 7. Seven times 5 is 
35 plus 7 is 42. 

Brian could conceptualize the problem explicitly from a ratio perspective. In 
addition, he could interpret the end result 42 as being constituted as 6 ‘sets’ of 
unknown numerosity when he said “6 of how many sets whatever” to decompose 42 
as a partitive division situation, which indicates reasoning reversibly. In contrast, 
rather than decomposing the end quantity to find the two constituting quantities, 
Aileen’s strategy was to work forward by systematically plugging-in numbers until 
she reached the end result of 42 – a building-up strategy. 
Jeff and Eric: The pair of eighth-graders 
Both Jeff and Eric started by dividing 42 by 5 to get 8.4. The decimal part (0.4) led 
them to observe that their answer was not correct and prompted them to look at the 
problem from another angle. Their responses are highlighted below: 

Jeff:              Uh, I got that initially he would have 7 marbles because it says that he had 
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Eric:            Uh, not really. I just started out trying, you know. I just divided 5 into 42 
and I kind of knew that I get a decimal. So, and then I was getting 
restarted you know, figuring out another way to get it because I know 8.4 
probably is not the correct solution because you can't have a fourth of a 
marble.

Like Ted and Cole, the eighth graders started with the division of 42 by 5 and it was 
the decimal result that cued them to choose an alternative solution path. By defining 
the unknown quantity as x (the number of marbles that Joe had initially), Jeff could 
articulate the additive and multiplicative quantitative relations within the quantitative 
structure of the problem. Constructing the quantitative structure explicitly as an 
algebraic expression lowers the cognitive load required in thinking about an unknown 
quantity in a quantitative relationship and allows one to solve the problem directly 
rather than reasoning reversibly. On the other hand, Eric tried to plug-in numbers 
after observing that 42 divided by 5 did not result in a whole number solution. Note 
also his confusion between decimal and fractional notation (.4 as one fourth). 
PROBLEM 2. A sum of money was divided between Alan and Bill. For every $5 that 
Alan received, Bill received $3. Given that Alan received (i) $10 more and (ii) $7 
more than Bill, calculate how much Bill received? (algebraically equivalent to 

10)35( x  and 7)35( x ). For the sake of brevity, we report only the result for case 
(ii) for the sixth graders and for case (i) for the other participants.
Ted and Cole: The pair of six-graders
They generated members of the equivalence class 5:3 by making a table of values 
with rows: 5, 3; 10, 6; 15, 9 and so forth thus working in a forward direction, starting 
from the given ratio.  Ted deduced that the answer should be between the pair (15, 9) 
and (20, 12) since 7 lies in between the differences of 15 and 9 (i.e. 6), and 20 and 12 
(i.e. 8). This is one of the instances where they were directly confronted with a 
reversibility situation in that knowing the difference (i.e., 7) of the components of a 
ratio of two quantities, they had to find a ratio that satisfies it. In their first 
approximation, they added half to 15 and 9 respectively to obtain 2

115  and 2
19 . Then 

Cole observed that there is a difference of 3 between 9 and 12 and half of this interval 
would be 2

11  which led him to obtain $ 2
110  for Bill. However, he added the same 

amount ( 2
11 ) to 15 to obtain 2

116 . After observing that his solution ( 2
116  and 2

110 ) did 
not produce the required difference of 7, he re-evaluated his calculation and figured 
that the middle value of the interval 15 to 20 is 2

117 . In other words, Cole used linear 
interpolation as his theorem-in-action to find the components of the 5:3 ratio that 
corresponds to a difference of 7 units. While Cole’s approach is very creative, it 
avoided reasoning reversibly. Our intention in using an odd number for the total 
difference in this problem was to make it difficult to use a forward process of 
generating successive values for the ratio until the desired difference was obtained, 
thus possibly encouraging an approach that could involve reversible reasoning. We 
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were unsuccessful in provoking reversible reasoning but the problem did provoke a 
creative solution on Cole’s part involving linear interpolation. 
Aileen and Brian: The pair of seventh-graders 
Aileen’s strategy for solving problem 2(i) was similar to Ted’s and Cole’s. She scaled 
up the ratio in increments of one unit until she reached a difference of 10. On the 
other hand, by relating the difference in the components of the ratio (5 – 3 = 2) to the 
difference in amount ($10), Brian could observe that the multiplier for calculating the 
total difference is 5 as evidenced by the following interview quotes:  

Brian:         Fifteen [his answer for how much Bill received]. Because, if there is $10 
more, then 5 is two more than 3, and 2 times 5 is 10. Five times 3 is 15. 

Aileen:         I knew that it had to get to $10 more. So I did 5 times 2 and 3 times 2 and 
that gave me 10 over 6. And I did 5 times 3 and 3 times 3 and that gives 
me 15 over 9. And then I did 5 times 4 and 3 times 4 and that was 20 and 
12. And then I got to 5, and 5 times 5 and 3 times 5 is 25 to 15. 

Compared to Aileen’s numerical scaling-up method, Brian’s reasoning can be 
considered to be more quantitative in nature and involves reversibility. He posited 
that the money was shared out in increments of $5 and $3, thus each time Alan 
received $2 more than Bill. All he had to do was to find how many shares they each 
received, and to do this he divided the final difference, $10, by $2 to get 5 shares.

Jeff and Eric: The pair of eighth-graders
Like Brian, Jeff compared the difference between the components of the ratio (2) and 
the total difference of $10 to deduce that each share should be multiplied by 5, and  
from this result he could compute Bill’s money (3 times 5). On the other hand, Eric’s 
strategy was to plug in numbers like Aileen, constructing the ratios 15:9, 20:12, and 
25:15, i.e., by incrementing the scale factor by one until the required difference 
between the two quantities was $10. 

CONCLUSION
From a conceptual perspective, decomposing a given quantity (say 21 qqq ) in 
terms of the components of a given ratio ba :  requires reversible reasoning as one has 
to interpret the sum of the components (a + b) as one entity and determine the number 
of times that this entity is contained in the initial quantity q (a statement of division 
algebraically equivalent to 21)( qqxba ) – Type I problems. Simplistic as it 
appears from a numerical/algorithmic perspective, such a conceptualization 
essentially requires quantitative reasoning as one has to coordinate the relations 
among the quantities rather than the numerical values of the quantities. Additionally, 
one has to posit an unknown scale factor between ba  and the given q. Difficulty in 
conceptualizing such a quantitative structure led 4 of the 6 students to work in a 
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forward direction, by incrementing the ratio ba :  using the building-up strategy or 
other guess-and-check procedures until the required sum was obtained.  
Type II problems ( 21)( qqxba ) proved to be even more demanding as they require 
the coordination of a multiplicative comparison and a difference in a network of 
relations (Thompson, 1990) but no particular values of the quantities are stated. One 
needs to coordinate these two quantitative relations to figure out the specific 
quantities. Further, this problem involves positing an unknown as a quantity in a 
multiplicative relationship. The propensity of the more primitive building-up strategy 
among the participants shows that most of them could not readily conceptualize Type 
II situations from a quantitative perspective. For instance, in problem 2(ii), 
( 7)35( x ), where the final difference between the quantities was not even, the 
building-up strategy based on integer increments proved to be insufficient and hence 
the students were constrained to seek alternative approaches. The prevalence of the 
building-up strategy shows that students worked in a forward direction reasoning 
numerically using a guess-and-check strategy (with the exceptions of Brian and Jeff). 
Such numerical reasoning as a fallback strategy is consistent with the results of Kaput 
& West (1994) and can be explained by students’ difficulty in conceptualizing the 
problems in reverse by analysing these situations from the perspective of the 
quantitative relations. Thus we conjecture that constructing the network of relations 
within a quantitative structure is an important resource for reasoning reversibly in 
ratio contexts. This is the main conclusion of this particular study. 
The different ways in which the participants solved the same problem led us to focus 
our attention on the important issue of problem conceptualization. The way that a 
mathematical situation is conceptualized depends both on problem features as well as 
the cognitive resources available to the problem solver. The problem solver may 
possess specific resources but may not be able to deploy them at specific instances. In 
our attempt to identify the factors that influence the cueing of cognitive resources 
during problem solving situations, our data lead us to posit the following elements: 
semantic and syntactic structure of the problem, numerical characteristics of the data, 
students’ failure and success at intermediate stages of the problem solving process 
and problem-solver conceptualization – factors that are currently under study.  
References 
Clark, M. R., Berenson, S. B., & Cavey, L. O. (2003). A comparison of ratios and fractions 

and their roles as tools in proportional reasoning. The Journal of Mathematical Behavior, 
22(3), 297-317. 

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht:
D. Reidel Publishing Company. 

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in 
mathematics education research. In A. E. Kelly & A. R. Lesh (Eds.), Handbook of 
research design in mathematics and science education (pp. 517-545). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

4 - 454 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   454 6/4/09   2:26:24 PM



Ramful, Olive 

1- 6 PME 33 - 2009 

were unsuccessful in provoking reversible reasoning but the problem did provoke a 
creative solution on Cole’s part involving linear interpolation. 
Aileen and Brian: The pair of seventh-graders 
Aileen’s strategy for solving problem 2(i) was similar to Ted’s and Cole’s. She scaled 
up the ratio in increments of one unit until she reached a difference of 10. On the 
other hand, by relating the difference in the components of the ratio (5 – 3 = 2) to the 
difference in amount ($10), Brian could observe that the multiplier for calculating the 
total difference is 5 as evidenced by the following interview quotes:  

Brian:         Fifteen [his answer for how much Bill received]. Because, if there is $10 
more, then 5 is two more than 3, and 2 times 5 is 10. Five times 3 is 15. 

Aileen:         I knew that it had to get to $10 more. So I did 5 times 2 and 3 times 2 and 
that gave me 10 over 6. And I did 5 times 3 and 3 times 3 and that gives 
me 15 over 9. And then I did 5 times 4 and 3 times 4 and that was 20 and 
12. And then I got to 5, and 5 times 5 and 3 times 5 is 25 to 15. 

Compared to Aileen’s numerical scaling-up method, Brian’s reasoning can be 
considered to be more quantitative in nature and involves reversibility. He posited 
that the money was shared out in increments of $5 and $3, thus each time Alan 
received $2 more than Bill. All he had to do was to find how many shares they each 
received, and to do this he divided the final difference, $10, by $2 to get 5 shares.

Jeff and Eric: The pair of eighth-graders
Like Brian, Jeff compared the difference between the components of the ratio (2) and 
the total difference of $10 to deduce that each share should be multiplied by 5, and  
from this result he could compute Bill’s money (3 times 5). On the other hand, Eric’s 
strategy was to plug in numbers like Aileen, constructing the ratios 15:9, 20:12, and 
25:15, i.e., by incrementing the scale factor by one until the required difference 
between the two quantities was $10. 

CONCLUSION
From a conceptual perspective, decomposing a given quantity (say 21 qqq ) in 
terms of the components of a given ratio ba :  requires reversible reasoning as one has 
to interpret the sum of the components (a + b) as one entity and determine the number 
of times that this entity is contained in the initial quantity q (a statement of division 
algebraically equivalent to 21)( qqxba ) – Type I problems. Simplistic as it 
appears from a numerical/algorithmic perspective, such a conceptualization 
essentially requires quantitative reasoning as one has to coordinate the relations 
among the quantities rather than the numerical values of the quantities. Additionally, 
one has to posit an unknown scale factor between ba  and the given q. Difficulty in 
conceptualizing such a quantitative structure led 4 of the 6 students to work in a 
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forward direction, by incrementing the ratio ba :  using the building-up strategy or 
other guess-and-check procedures until the required sum was obtained.  
Type II problems ( 21)( qqxba ) proved to be even more demanding as they require 
the coordination of a multiplicative comparison and a difference in a network of 
relations (Thompson, 1990) but no particular values of the quantities are stated. One 
needs to coordinate these two quantitative relations to figure out the specific 
quantities. Further, this problem involves positing an unknown as a quantity in a 
multiplicative relationship. The propensity of the more primitive building-up strategy 
among the participants shows that most of them could not readily conceptualize Type 
II situations from a quantitative perspective. For instance, in problem 2(ii), 
( 7)35( x ), where the final difference between the quantities was not even, the 
building-up strategy based on integer increments proved to be insufficient and hence 
the students were constrained to seek alternative approaches. The prevalence of the 
building-up strategy shows that students worked in a forward direction reasoning 
numerically using a guess-and-check strategy (with the exceptions of Brian and Jeff). 
Such numerical reasoning as a fallback strategy is consistent with the results of Kaput 
& West (1994) and can be explained by students’ difficulty in conceptualizing the 
problems in reverse by analysing these situations from the perspective of the 
quantitative relations. Thus we conjecture that constructing the network of relations 
within a quantitative structure is an important resource for reasoning reversibly in 
ratio contexts. This is the main conclusion of this particular study. 
The different ways in which the participants solved the same problem led us to focus 
our attention on the important issue of problem conceptualization. The way that a 
mathematical situation is conceptualized depends both on problem features as well as 
the cognitive resources available to the problem solver. The problem solver may 
possess specific resources but may not be able to deploy them at specific instances. In 
our attempt to identify the factors that influence the cueing of cognitive resources 
during problem solving situations, our data lead us to posit the following elements: 
semantic and syntactic structure of the problem, numerical characteristics of the data, 
students’ failure and success at intermediate stages of the problem solving process 
and problem-solver conceptualization – factors that are currently under study.  
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Mathematics teacher developers are an important and diverse group of professionals 
who prepare teachers, yet there is limited research on their professional 
development. In this study we use learning theory constructs to examine mathematics 
teacher developers’ experiences during a summer institute that focused on 
mathematical knowledge for teaching. We found that participants’ analysis of their 
observations of a mathematics class varied according to the extent that their 
observations conflicted with their existing understanding of teaching.
Mathematics teachers participate in a variety of professional development 
experiences with the intent of improving their practice, but such participation will not 
ensure their learning; a more fundamental change is required. “Professional 
development experiences must challenge teachers’ current assumptions about what 
mathematics is, who can do mathematics, and what it means to be successful in 
mathematics classrooms” (Smith, 2001, p. 44). The underlying assumption is that 
teachers may learn when they experience disequilibrium or a dynamic state of 
cognitive imbalance, and, consequently, change their teaching practices. Though a 
change in practice is a possible response to disequilibrium, it is also important to 
recognize that disequilibrium may cause teachers to reject ideas as well. Studying 
teachers’ disequilibrium during professional development experiences provides 
insight into how they might make sense of their experience (Ledford, 2006) and 
ultimately contributes to understanding more about professional development.
The majority of the literature regarding professional development specifically 
addresses the needs and challenges of teaching K-12 mathematics, yet those who 
teach teachers, who we refer to as mathematics teacher developers (MTD), also have 
a vital role in mathematics education. The limited research focused on MTDs, in 
combination with the significance of disequilibrium during professional 
development, provides a strong rationale for this study. The focus of this paper is to 
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examine the disequilibrium that MTDs experience while observing, analyzing, and 
discussing a mathematics content class for preservice teachers.  

THEORETICAL FRAMEWORK 
Mathematics teacher developers who teach courses or organize workshops are a 
diverse group who range in job titles. For example, mathematics teacher developers 
include university mathematicians who teach content courses for prospective teachers 
as well as school district leaders who offer workshops for teachers. The common 
thread among members in this professional group is that they all work with 
mathematics teachers. Consequently, mathematical knowledge for teaching (MKT) 
(Ball & Bass, 2003) is a significant area of work that permeates all mathematics 
teacher developers’ work (Sztajn, Ball, McMahon, 2006). While MKT is a common 
area of MTDs’ work, it is also important to note that some MTDs may not have 
considered how learning MKT is different than learning mathematics.
Mewborn (2003) stated, “the design of effective professional development 
opportunities should be grounded in sound theories about learning” (p. 49). We have 
extended this idea by using a learning theory-based framework to study professional 
development. Teachers are learners; therefore models of learning provide a lens for 
examining MTDs’ experiences while observing, analyzing, and discussing a 
mathematics class. The constructivist ideas of assimilation, perturbation, and 
accommodation (Piaget, 1970) can be used to discuss professional development 
experiences that create disequilibrium for teachers, providing a framework for 
studying professional development that is based on learning theories (Ledford, 2006).
Much of the literature on assimilation, perturbations, and accommodations examines 
students’ mathematics learning (e.g., Steffe & Olive, 2002), but Ledford (2006) 
studied teachers’ learning in the context of a professional development experience. In 
particular, she studied teachers’ experiences in a mathematics course that indirectly 
addressed issues of student learning and pedagogy. She found constructivist ideas 
useful in analyzing and characterizing teachers’ learning experiences.
When learners face a new challenge, they experience disequilibrium and may need to 
make adjustments to their current understanding. Assimilation is a process in which a 
learner incorporates new learning into his existing knowledge through small 
adjustments made to his or her current understanding (Goldsmith & Schifter, 1997).
When it is not sufficient to incorporate new information into existing knowledge, a 
perturbation arises. A perturbation is a mental agitation that occurs when the learner’s 
assimilation response to disequilibrium fails; new knowledge cannot be assimilated 
into existing representations (Piaget, 1970). In this instance, “new experiences or 
challenges are so different from individuals’ current knowledge and skill that they 
have few resources for operating on these experiences in a cognitively productive 
manner” (Goldsmith & Schifter, 1997, p. 41). Learners have a natural inclination to 
maintain equilibrium between their cognitive structure and their environment, and 
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consequently they will seek to eliminate or resolve the perturbation. Accommodation 
occurs when the learner reorganizes her thinking to reconcile a perturbation by 
making a modification to her existing cognitive structure.  

METHODOLOGY 
During the summer of 2004, the Center for Proficiency in Teaching Mathematics 
hosted an eight-day residential institute for MTDs entitled “Developing Teachers’ 
Mathematical Knowledge for Teaching.” The central feature of the summer institute 
was a university-credit mathematics content course taught by Deborah Ball at the 
University of Michigan entitled Mathematical Content and Applications for the 
Teaching of Elementary School Mathematics. Sixteen prospective elementary 
teachers attended daily sessions of the course, referred to as the laboratory class by
institute organizers and attendees. According to its syllabus, the focus was “meaning 
and representations of fractions” with special attention paid to the mathematical 
practices of explanation, representation, recording, and language. As “a shared 
specimen for observation and manipulation” (Sztajn, Ball, and McMahon, 2006, p. 
156), this class enabled the attendees to develop hypotheses and look for confirming 
or disconfirming evidence. Prior to each laboratory class session, the attendees met 
with institute organizers to review the plan for that day’s lesson, explore the tasks to 
be used, and provide critical feedback. At the conclusion of each class session, the 
attendees convened again, first in smaller groups and then as a whole group, to 
discuss and analyze what they observed.
The 65 institute attendees were MTDs selected from a pool of 140 applicants. The 
goal of assembling a diverse group of MTDs with respect to current work and prior 
experiences guided the selection process (Sztajn, Ball, & McMahon, 2006). Institute 
attendees included graduate students, privately practicing professional developers, 
school district mathematics curriculum administrators, and community college and 
university faculty from both departments of mathematics and mathematics education. 
In this study, we analyzed 16 of these 65 MTDs. Institute organizers selected these 16 
participants, who mirrored the diversity of the institute attendees, for additional data 
collection.
Primary data consisted of participant notebooks, ranging from 40 to 187 pages, and 
field notes detailing participant discussions during sessions. At the onset of the 
institute, all attendees received a notebook in which they could record and reflect 
upon their institute experiences. Notebook entries referring to the laboratory class and 
all sets of small group field notes were coded. The notebooks gave insights into 
attendees’ thoughts and reactions to the laboratory class, but they did not necessarily 
capture everything the attendees were thinking or noticing. Furthermore, attendees 
used the notebooks in various ways. Some attendees gave detailed descriptions of 
their observations while others analyzed or reflected on their observations.  
Secondary data included field notes from discussions of the entire large group of 
institute attendees, participants’ pre-surveys, video recordings of the lab class, and 
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examine the disequilibrium that MTDs experience while observing, analyzing, and 
discussing a mathematics content class for preservice teachers.  

THEORETICAL FRAMEWORK 
Mathematics teacher developers who teach courses or organize workshops are a 
diverse group who range in job titles. For example, mathematics teacher developers 
include university mathematicians who teach content courses for prospective teachers 
as well as school district leaders who offer workshops for teachers. The common 
thread among members in this professional group is that they all work with 
mathematics teachers. Consequently, mathematical knowledge for teaching (MKT) 
(Ball & Bass, 2003) is a significant area of work that permeates all mathematics 
teacher developers’ work (Sztajn, Ball, McMahon, 2006). While MKT is a common 
area of MTDs’ work, it is also important to note that some MTDs may not have 
considered how learning MKT is different than learning mathematics.
Mewborn (2003) stated, “the design of effective professional development 
opportunities should be grounded in sound theories about learning” (p. 49). We have 
extended this idea by using a learning theory-based framework to study professional 
development. Teachers are learners; therefore models of learning provide a lens for 
examining MTDs’ experiences while observing, analyzing, and discussing a 
mathematics class. The constructivist ideas of assimilation, perturbation, and 
accommodation (Piaget, 1970) can be used to discuss professional development 
experiences that create disequilibrium for teachers, providing a framework for 
studying professional development that is based on learning theories (Ledford, 2006).
Much of the literature on assimilation, perturbations, and accommodations examines 
students’ mathematics learning (e.g., Steffe & Olive, 2002), but Ledford (2006) 
studied teachers’ learning in the context of a professional development experience. In 
particular, she studied teachers’ experiences in a mathematics course that indirectly 
addressed issues of student learning and pedagogy. She found constructivist ideas 
useful in analyzing and characterizing teachers’ learning experiences.
When learners face a new challenge, they experience disequilibrium and may need to 
make adjustments to their current understanding. Assimilation is a process in which a 
learner incorporates new learning into his existing knowledge through small 
adjustments made to his or her current understanding (Goldsmith & Schifter, 1997).
When it is not sufficient to incorporate new information into existing knowledge, a 
perturbation arises. A perturbation is a mental agitation that occurs when the learner’s 
assimilation response to disequilibrium fails; new knowledge cannot be assimilated 
into existing representations (Piaget, 1970). In this instance, “new experiences or 
challenges are so different from individuals’ current knowledge and skill that they 
have few resources for operating on these experiences in a cognitively productive 
manner” (Goldsmith & Schifter, 1997, p. 41). Learners have a natural inclination to 
maintain equilibrium between their cognitive structure and their environment, and 
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consequently they will seek to eliminate or resolve the perturbation. Accommodation 
occurs when the learner reorganizes her thinking to reconcile a perturbation by 
making a modification to her existing cognitive structure.  

METHODOLOGY 
During the summer of 2004, the Center for Proficiency in Teaching Mathematics 
hosted an eight-day residential institute for MTDs entitled “Developing Teachers’ 
Mathematical Knowledge for Teaching.” The central feature of the summer institute 
was a university-credit mathematics content course taught by Deborah Ball at the 
University of Michigan entitled Mathematical Content and Applications for the 
Teaching of Elementary School Mathematics. Sixteen prospective elementary 
teachers attended daily sessions of the course, referred to as the laboratory class by
institute organizers and attendees. According to its syllabus, the focus was “meaning 
and representations of fractions” with special attention paid to the mathematical 
practices of explanation, representation, recording, and language. As “a shared 
specimen for observation and manipulation” (Sztajn, Ball, and McMahon, 2006, p. 
156), this class enabled the attendees to develop hypotheses and look for confirming 
or disconfirming evidence. Prior to each laboratory class session, the attendees met 
with institute organizers to review the plan for that day’s lesson, explore the tasks to 
be used, and provide critical feedback. At the conclusion of each class session, the 
attendees convened again, first in smaller groups and then as a whole group, to 
discuss and analyze what they observed.
The 65 institute attendees were MTDs selected from a pool of 140 applicants. The 
goal of assembling a diverse group of MTDs with respect to current work and prior 
experiences guided the selection process (Sztajn, Ball, & McMahon, 2006). Institute 
attendees included graduate students, privately practicing professional developers, 
school district mathematics curriculum administrators, and community college and 
university faculty from both departments of mathematics and mathematics education. 
In this study, we analyzed 16 of these 65 MTDs. Institute organizers selected these 16 
participants, who mirrored the diversity of the institute attendees, for additional data 
collection.
Primary data consisted of participant notebooks, ranging from 40 to 187 pages, and 
field notes detailing participant discussions during sessions. At the onset of the 
institute, all attendees received a notebook in which they could record and reflect 
upon their institute experiences. Notebook entries referring to the laboratory class and 
all sets of small group field notes were coded. The notebooks gave insights into 
attendees’ thoughts and reactions to the laboratory class, but they did not necessarily 
capture everything the attendees were thinking or noticing. Furthermore, attendees 
used the notebooks in various ways. Some attendees gave detailed descriptions of 
their observations while others analyzed or reflected on their observations.  
Secondary data included field notes from discussions of the entire large group of 
institute attendees, participants’ pre-surveys, video recordings of the lab class, and 
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focus group interviews with a subset of attendees two and a half years after the 
institute. The secondary data was not coded and was only used to confirm or 
disconfirm findings from the primary sources.  
The first level of analysis involved coding the data. The data were coded according to 
their function and content. The function codes were based on the four professional 
noticing skills identified by Jacobs et al. (2007), (a) identifying noteworthy aspects, 
(b) objectively describing them, (c) interpreting them by providing links to relevant 
knowledge, and (d) responding to them with respect to the goals for observation. 
Content codes aligned with the corners of the instructional triangle (Kilpatrick, 
Swafford, & Findell, 2001): the mathematics, the teacher, and the students (the 
preservice teachers). We further classified the content codes (e.g., student 
understanding of tasks, student mathematical claims, teacher content knowledge) as 
needed. The coding scheme was the product of an interpretative process and evolved 
over the course of this level of the analysis; as more data was coded, new codes were 
added and the coding scheme was refined. After the notebooks were coded 
individually, each pair of researchers compared codes, discussed inconsistencies, and 
produced one final coded notebook file for each participant. 
The second layer of analysis included input from the four members of our research 
team to determine recurring themes across participants. Once themes were identified, 
we re-examined each participant’s primary and secondary data to find confirming and 
disconfirming examples of those themes. Using these examples, we then composed 
an overall summary for each participant and a detailed explanation of the major 
themes as they related to that participant.
This paper examines one such major theme: the state of disequilibrium that surfaced 
among some of the participants. Because this phenomenon was inferred from what 
participants said in discussions and wrote in their notebooks, our conclusions may be 
limited. However, triangulation of data provided multiple sources of evidence to 
make claims about participants’ experiences. 

RESULTS
Our findings will be illustrated through a discussion of participants’ responses to the 
Cookie Jar Problem (CJP). Though selected for the productive discussions it 
generated throughout the week, instances of cognitive imbalance were not limited to 
the CJP. 
The Cookie Jar Problem 
The CJP was presented to attendees prior to their observation of its introduction to 
students during the second day of the laboratory class. The problem was stated as 
follows:

There was a jar of cookies on the table. Kira was hungry because she hadn’t had 
breakfast, so she ate half the cookies. Then Steve came along and noticed the cookies. He 
thought they looked good, so he ate a third of what was left in the jar. Niki came by and 
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decided to take a fourth of the remaining cookies with her to her next class. Then Kayla 
came dashing up and took a cookie to munch on. When Pam looked at the cookie jar, she 
saw that there were two cookies left. “How many cookies were in the jar to begin with?” 
she asked Kira. (Ball, lab class lesson plans)

Though four student solutions were presented in the laboratory class during the two-
day development of this problem, we focus on one algebraic solution that was salient 
for many attendees, providing the context for discussion, reflection, and, for some 
participants, perturbations. For some participants, algebra had an elevated status, and 
yet, others considered algebra too sophisticated, inhibiting meaningful conceptual 
understanding of unit fractions. Participants took note of students’ discussion of an 
algebraic solution, and experienced disequilibrium when some of the laboratory class 
activities conflicted with their beliefs about presentation of content and the 
mathematics that should be valued. This was often evident in their notebooks or field 
notes when participants questioned or were critical of some aspects of their 
observations (coded as question/wonder), drew comparisons between observations 
and their own teaching practice (connect to practice), or suggested alternatives to 
their observations (respond). We classified the participants’ responses by the degree 
of imbalance experienced and how it was accounted for: awareness or noticing, 
experiencing disequilibrium and resolution by assimilation, and experiencing 
perturbations. In the following sections, we present three participants who illustrated 
these reactions. 
Kay, Val, and Jon (Pseudonyms) 
Kay exemplified the participants who were aware of issues surrounding the algebraic 
representation and wrote detailed notes about the student solutions, yet did not 
experience disequilibrium. Kay’s notebook included several student quotes 
concerning the algebraic solution; she noted one student’s lack of confidence, “we 
can’t figure out the algebra to prove what we’re thinking” (p. 25). She also 
commented in the laboratory class session that the students may have viewed the 
algebraic solution as the “grown up way” to solve the problem and expressed concern 
that students didn’t want to share their geometric solutions because of the perceived 
lack of sophistication. Based on this evidence, Kay noticed students’ struggles with 
the algebraic solution, but noticing alone does not suggest a state of disequilibrium. 
Kay’s notebook and discussion contributions showed no evidence of her experiencing 
disequilibrium or perturbations related to the algebraic solution during the institute.
The students themselves gave a high priority to the algebraic solution, viewing it as a 
means to verify the other solution methods. Like the students, several participants 
attributed more value to the algebraic solution, considering it a means of justification. 
We use Val as an example of a participant holding this perspective and as a 
participant who experienced disequilibrium and assimilated the new information into 
existing cognitive structures. To Val, a solid foundation in the correct use of 
algebraic properties and rules was essential to study higher-level mathematics. While 
difficulties with algebra encountered by students in the laboratory class were 
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focus group interviews with a subset of attendees two and a half years after the 
institute. The secondary data was not coded and was only used to confirm or 
disconfirm findings from the primary sources.  
The first level of analysis involved coding the data. The data were coded according to 
their function and content. The function codes were based on the four professional 
noticing skills identified by Jacobs et al. (2007), (a) identifying noteworthy aspects, 
(b) objectively describing them, (c) interpreting them by providing links to relevant 
knowledge, and (d) responding to them with respect to the goals for observation. 
Content codes aligned with the corners of the instructional triangle (Kilpatrick, 
Swafford, & Findell, 2001): the mathematics, the teacher, and the students (the 
preservice teachers). We further classified the content codes (e.g., student 
understanding of tasks, student mathematical claims, teacher content knowledge) as 
needed. The coding scheme was the product of an interpretative process and evolved 
over the course of this level of the analysis; as more data was coded, new codes were 
added and the coding scheme was refined. After the notebooks were coded 
individually, each pair of researchers compared codes, discussed inconsistencies, and 
produced one final coded notebook file for each participant. 
The second layer of analysis included input from the four members of our research 
team to determine recurring themes across participants. Once themes were identified, 
we re-examined each participant’s primary and secondary data to find confirming and 
disconfirming examples of those themes. Using these examples, we then composed 
an overall summary for each participant and a detailed explanation of the major 
themes as they related to that participant.
This paper examines one such major theme: the state of disequilibrium that surfaced 
among some of the participants. Because this phenomenon was inferred from what 
participants said in discussions and wrote in their notebooks, our conclusions may be 
limited. However, triangulation of data provided multiple sources of evidence to 
make claims about participants’ experiences. 

RESULTS
Our findings will be illustrated through a discussion of participants’ responses to the 
Cookie Jar Problem (CJP). Though selected for the productive discussions it 
generated throughout the week, instances of cognitive imbalance were not limited to 
the CJP. 
The Cookie Jar Problem 
The CJP was presented to attendees prior to their observation of its introduction to 
students during the second day of the laboratory class. The problem was stated as 
follows:

There was a jar of cookies on the table. Kira was hungry because she hadn’t had 
breakfast, so she ate half the cookies. Then Steve came along and noticed the cookies. He 
thought they looked good, so he ate a third of what was left in the jar. Niki came by and 

Rhodes, Hallman, Medina-Rusch, Schultz 

PME 33 - 2009 1- 5 

decided to take a fourth of the remaining cookies with her to her next class. Then Kayla 
came dashing up and took a cookie to munch on. When Pam looked at the cookie jar, she 
saw that there were two cookies left. “How many cookies were in the jar to begin with?” 
she asked Kira. (Ball, lab class lesson plans)

Though four student solutions were presented in the laboratory class during the two-
day development of this problem, we focus on one algebraic solution that was salient 
for many attendees, providing the context for discussion, reflection, and, for some 
participants, perturbations. For some participants, algebra had an elevated status, and 
yet, others considered algebra too sophisticated, inhibiting meaningful conceptual 
understanding of unit fractions. Participants took note of students’ discussion of an 
algebraic solution, and experienced disequilibrium when some of the laboratory class 
activities conflicted with their beliefs about presentation of content and the 
mathematics that should be valued. This was often evident in their notebooks or field 
notes when participants questioned or were critical of some aspects of their 
observations (coded as question/wonder), drew comparisons between observations 
and their own teaching practice (connect to practice), or suggested alternatives to 
their observations (respond). We classified the participants’ responses by the degree 
of imbalance experienced and how it was accounted for: awareness or noticing, 
experiencing disequilibrium and resolution by assimilation, and experiencing 
perturbations. In the following sections, we present three participants who illustrated 
these reactions. 
Kay, Val, and Jon (Pseudonyms) 
Kay exemplified the participants who were aware of issues surrounding the algebraic 
representation and wrote detailed notes about the student solutions, yet did not 
experience disequilibrium. Kay’s notebook included several student quotes 
concerning the algebraic solution; she noted one student’s lack of confidence, “we 
can’t figure out the algebra to prove what we’re thinking” (p. 25). She also 
commented in the laboratory class session that the students may have viewed the 
algebraic solution as the “grown up way” to solve the problem and expressed concern 
that students didn’t want to share their geometric solutions because of the perceived 
lack of sophistication. Based on this evidence, Kay noticed students’ struggles with 
the algebraic solution, but noticing alone does not suggest a state of disequilibrium. 
Kay’s notebook and discussion contributions showed no evidence of her experiencing 
disequilibrium or perturbations related to the algebraic solution during the institute.
The students themselves gave a high priority to the algebraic solution, viewing it as a 
means to verify the other solution methods. Like the students, several participants 
attributed more value to the algebraic solution, considering it a means of justification. 
We use Val as an example of a participant holding this perspective and as a 
participant who experienced disequilibrium and assimilated the new information into 
existing cognitive structures. To Val, a solid foundation in the correct use of 
algebraic properties and rules was essential to study higher-level mathematics. While 
difficulties with algebra encountered by students in the laboratory class were 
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reminiscent of her students, the teacher’s moves to address student misconceptions 
were dissimilar to her practice. Val experienced a state of disequilibrium; her critical 
questioning stance was clear in her notebook. She wrote: 

Will it be possible to think and communicate if the support structure is weak? Three such 
cases from Spring 2004 stand clearly in my mind. Conversations with them... showed 
problems with algebra and knowing what rules were inappropriate. [The] importance of 
algebraic rules was absolutely unclear to them.... [and] not communicated to them as 
being important since it was not thought of as important. Why?” (p. 65). 

Val viewed exploration not as a way to develop a given rule or procedure, but as a 
way to justify a given rule. Though this view contrasted sharply with the 
development of these ideas in the laboratory class, it did not lead to a restructuring of 
her thinking. Instead, her institute experiences confirmed her beliefs about the 
importance of algebra instruction, contributing to her existing ways of thinking. In 
concluding remarks to organizers she stated, “connections between all representations 
was not clearly discussed. One of them being the algebraic solution… and the 
arithmetic solution” (Val’s notebook, p. 88).   
Val’s consistent references to this problem throughout the week provide evidence 
that her professional understanding of teaching was challenged, but not so strongly 
that she needed to significantly change her thinking to account for it. The 
disequilibrium she experienced about the algebraic representation and the teacher’s 
management of instructional time during the CJP was resolved by assimilation. These 
new experiences were incorporated into her existing thinking, providing her 
additional evidence for the need to focus on algebraic rules and properties. 
Whereas Val assimilated institute experiences, perturbations arose for Jon that 
resulted in substantial changes to his ways of thinking. Unlike Val, Jon feared that the 
focus on algebraic representations hindered students’ development of a conceptual 
understanding of the problem. He expressed this idea saying, “By going into the 
algebra so deeply, it hindered the mathematical thinking of the problem. It distracted 
them from a deeper understanding of fractions” (field notes, June 7, 2004). This issue 
remained with him throughout the week, reaching aspects of the institute not directly 
connected to the CJP. Though initially doubtful of the mathematical rigor offered by 
the CJP and the laboratory class in general, his attention to the algebra allowed him to 
analyze the complexity of its mathematics. He wrestled with the mathematics of the 
CJP and how those ideas were reflected in other problems. This concern about the 
mathematical rigor led him to consider pedagogical decisions about when and how to 
introduce fractional unit, explicitly, or through student discovery. In field notes, 
institute researchers described Jon’s struggle to understand how tasks were chosen 
and implemented, “He really struggled ...to articulate and understand his own 
thinking about the difficulty of tasks and how to draw out the nuances of a problem” 
(field notes, June 8, 2004).   
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In discussing the problem that follows the CJP, Jon questioned, “What are the 
characteristics of a problem that prompt such discussion?” (field notes, June 8, 2004). 
Jon becomes intensely interested in the interplay between the teaching and the 
mathematics, wondering if some problems are inherently good, or if any problem can 
be good because of the teacher’s pedagogical decisions regarding the development of 
the mathematics. He returned to the CJP at the week’s end by offering an extension, 
“turn the cookie problem around and take the fractional parts away in the reverse 
order from the original problem. The result is exactly the same as before. Why?” 
(field notes, June 11, 2004). At the institute’s conclusion, he intended to encourage 
his fellow mathematics faculty colleagues to “think about how deep mathematics is 
disguised as mathematics for elementary teachers” (field notes, June 11, 2004). His 
inability to immediately resolve his struggles indicates a perturbation and his deeper 
understanding of rigor in elementary mathematics suggest he was in the process of 
making an accommodation. Yet, we have no evidence that this transition was 
complete at the end of the institute.   

CONCLUSION
Of the 16 participants, eight did not show evidence of experiencing disequilibrium 
during the institute. This may be due to limitations of our data sources. Though some 
of these participants used the notebooks to only transcribe events rather than 
document their analytical thoughts, others wrote very little. Three of these eight 
participants attended every session, followed instructions from institute organizers, 
and actively participated in discussions. They viewed the laboratory class as a model 
class taking detailed notes with the intent of emulating observed teaching strategies. 
We believe that viewing the laboratory class as a model class made it difficult for 
these participants to experience disequilibrium.  
Eight participants experienced disequilibrium and perturbations to varying degrees on 
possibly multiple issues, with seven participants’ concerns related to MKT and one’s 
related to classroom social dynamics. The prevalent issues that participants were 
conflicted about were: 1) acceptable mathematical explanations, 2) rigor in content 
for elementary preservice teachers, 3) the role of definitions in teaching, and 4) 
reasons for differences in student participation. There were participants who left the 
institute without achieving resolution to their perturbations and we hypothesize that 
they continued to consider these issues in relation to their work with teachers (e.g., 
Jon).
There are two potential catalysts for achieving disequilibrium in professional 
development settings. First, the content of the professional development experience 
should be accessible to all participants and relevant to their work. At the institute, 
MKT allowed the MTDs opportunities to explore multiple issues related to their own 
teaching. Second, diverse views of participants provided opportunities for them to 
experience disequilibrium. The differences in MTDs ideas about mathematics and 
teaching mathematics at the outset of the institute surfaced throughout the week and 
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understanding of the problem. He expressed this idea saying, “By going into the 
algebra so deeply, it hindered the mathematical thinking of the problem. It distracted 
them from a deeper understanding of fractions” (field notes, June 7, 2004). This issue 
remained with him throughout the week, reaching aspects of the institute not directly 
connected to the CJP. Though initially doubtful of the mathematical rigor offered by 
the CJP and the laboratory class in general, his attention to the algebra allowed him to 
analyze the complexity of its mathematics. He wrestled with the mathematics of the 
CJP and how those ideas were reflected in other problems. This concern about the 
mathematical rigor led him to consider pedagogical decisions about when and how to 
introduce fractional unit, explicitly, or through student discovery. In field notes, 
institute researchers described Jon’s struggle to understand how tasks were chosen 
and implemented, “He really struggled ...to articulate and understand his own 
thinking about the difficulty of tasks and how to draw out the nuances of a problem” 
(field notes, June 8, 2004).   
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understanding of rigor in elementary mathematics suggest he was in the process of 
making an accommodation. Yet, we have no evidence that this transition was 
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during the institute. This may be due to limitations of our data sources. Though some 
of these participants used the notebooks to only transcribe events rather than 
document their analytical thoughts, others wrote very little. Three of these eight 
participants attended every session, followed instructions from institute organizers, 
and actively participated in discussions. They viewed the laboratory class as a model 
class taking detailed notes with the intent of emulating observed teaching strategies. 
We believe that viewing the laboratory class as a model class made it difficult for 
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reasons for differences in student participation. There were participants who left the 
institute without achieving resolution to their perturbations and we hypothesize that 
they continued to consider these issues in relation to their work with teachers (e.g., 
Jon).
There are two potential catalysts for achieving disequilibrium in professional 
development settings. First, the content of the professional development experience 
should be accessible to all participants and relevant to their work. At the institute, 
MKT allowed the MTDs opportunities to explore multiple issues related to their own 
teaching. Second, diverse views of participants provided opportunities for them to 
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initiated important, even intense, discussions. Professional development leaders need 
to develop strategies that encourage diverse views of participants to surface as well as 
be carefully considered. One participant reflected on his institute experience:  

During my personal time [at the institute]—I got the most out of tense conversations 
where there’s some kind of opposition or polemic going on… Those are the things that I 
remember and they cause me to think past the conversations. (focus group, January, 
2007)

Analysing MTDs’ disequilibrium while observing and discussing a laboratory class 
provided insights into the complexity of learning about teaching. In our study, the 
participants who had perturbations showed evidence that they were being analytical 
in their thoughts and were struggling to merge their own teaching experiences with 
their observations of the laboratory class. We are not suggesting that participants who 
didn’t experience perturbations didn’t have a meaningful experience. However, 
participants who experienced disequilibrium during the institute examined their 
beliefs about teaching, students, and mathematics. 
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The paper characterizes some of the patterns of rationality –Cartesian, rhetorical, 
operating, by habituation and by motives- that arise in primary school mathematics 
classes and which objective is to convince participants of the mathematical results 
and facts. The patterns described were identified in the didactic practices of a grade 
6 teacher, who was observed during a year-long longitudinal study.  A change of 
heading takes place in the research, going from the search for reasons to 
investigating what is ‘reasonable’ (Cfr. Bourdieu, 1977). 
Context and presentation of objectives 
For the community of mathematicians, certainty and convincingness appear as an 
unavoidable process in constructing the discipline, particularly in the processes of 
proofing and certifying results. René Thom, for instance, sustains that: “Any 
demonstration capable of causing a state of mind in a sufficiently instructed and 
prepared reader that leads him/her to show agreement is rigorous” (1980, p. 122); 
Thomas Tymoczko feels that what characterizes a mathematical proof is that “… it be 
convincing, able to be examined (manually or step by step) and able to be 
formalized” (1986, p. 247) and Hersh asserts that “a proof is just a convincing 
argument, as judged by competent judges” (1993, p. 389). 
Convincingness is thus an indispensable component in the practice of experts. Does a 
similar phenomenon occur in the teaching and learning of mathematics within the 
school classroom context?  
Hersh sustains that: 

The role of proof in the classroom is different from its role in research. In research its 
role is to convince. In the classroom, convincing is no problem. Students are all too easily 
convinced. … In a first course in abstract algebra, proof of the fundamental theorem of 
algebra is often omitted…. Nevertheless, the students believe the unproved theorems. 
(Ibid., p. 396) 

Whereas De Villiers concludes from an experiment undertaken with secondary 
school students “that pupils displayed a need for an explanation (deeper 
understanding) for a result which was independent of their need for conviction” 
(1991, p. 26). 
The general objective of the research –which includes the partial results reported in 
this paper- consists of examining several phenomena related to the roles played by 
convincingness in the educational processes that take place in primary school 
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classrooms. The emphasis has been put on the teaching process because the study 
focuses on the figure of the teacher. This is an issue that is practically unexplored and 
with reference to which there is scarce agreement among the experts as can be 
deduced from the foregoing quotes.   
In order to examine the above-mentioned phenomenon, it is necessary to identify, 
describe and characterize, inter alia, some of the arguments, proofs or justifications 
presented by members of the class for the purpose of convincing participants of 
mathematical results and facts. And this is the objective of this paper, which 
specifically consists of proposing a language and classification for some of the 
adherence mechanisms promoted by primary school teachers –with the participation 
of their students- in their mathematics classes.    
The analysis will be carried out following the steps of Klein “whose objective is not 
to investigate what rational or correct argumentation consists of, rather to examine 
just how men argue…” (cit. in Habermas, 2001, p. 50), hence attempting to avoid 
reducing a research paper on justification in primary school mathematics classes to a 
treaty on proofs as was suggested by Krummheuer (Cfr, 1995).
The majority of experts who undertake research on mathematical justifications in the 
classroom setting or on proofs in general intend to explore the rationalis of the 
subjects presenting the argumentation. Unlike those works, the intention of the 
research partially presented here is not limited to the purely rational processes of 
justification; although mathematical reasons and intentional justification processes 
are of course taken into account, the work is oriented toward an exploration of what, 
at a given point in time, seems ‘reasonable’ to a classroom community. As such the 
research takes on a change of direction that shifts from a search for reasons to 
investigating the practical reasons that make sense for a given group (Cfr. Bourdieu y 
Passeron, 1977). 
Method and collection of empirical data 
The empirical evidence that substantiates the research is derived from a longitudinal 
case study which received follow-up for a period of one year. The study focuses on a 
grade 6 primary school teacher –Ms Ale- who has taught class in a public school in 
Mexico City for 25 years. She has distinguished herself due to the high grades usually 
obtained by her students in official evaluations. Since the research aimed to 
understand the phenomena of teaching and learning mathematics in the manner in 
which they take place in an ordinary school context, no experimentation of didactic 
engineering was undertaken and observation was favored as the ethnographic and 
ethnological method of collecting empirical data. Of the classes observed, those that 
involved proportional reasoning (nine lessons lasting approximately one hour each) 
were video-taped and transcribed.
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Justification in primary level arithmetic classes 
For purposes of this paper, references to proofs, reasonings, arguments and 
argumentations, application of formulae and algorithms or analysis of particular cases 
will be made by way of the term ‘justification’, taking the latter in its generic sense.  
The idea of justification is confined to classroom practices that –generally- have a 
dual purpose: an epistemological end that consists of implicitly or explicitly 
sustaining the truth of an assertion with mathematical content; and a psychological 
end that consists of obtaining –intentionally or unintentionally- the understanding of 
the listener and a degree of adherence to that truth.
The justifications usually offered in primary school mathematics classrooms are not 
explicit. They also have vague or blurry limits since they do not generally have 
clearly delimited beginnings and ends, and since they are part of verbal 
communication they are reiterative and cumulative. They are similar to those that 
Duval calls ‘argumentations’, those that “…are added to one another, complement 
each other and sometimes overlap” (1999, p. 215), circumstances from which 
emerges their linear structure.  
The justifications examined herein lay within the context of solving the mathematics 
exercises (non routine for the students) raised in class. This is due to the fact that Ms 
Ale organizes her didactic activities based on the official textbook, which didactic 
and pedagogical proposals are articulated based on the solution of this type of 
exercises.
Justification patterns
In a classroom the likes of Ms Ale’s, justification and convincingness practices are 
structured in line with different patterns of rationality. In this portion of the paper, we 
classify the patterns used in the classes observed to explain and sustain the truths 
bearing mathematical content, as well as to promote convincingness, conviction and 
persuasion. Some of these patterns are illustrated with an extract of the class 
observed.
Cartesian Rationality. The justifications that falls under the Cartesian pattern of 
rationality are underpinned by sufficient mathematical reasons from which the 
necessary truths are derived. They bring to mind more geometric, Euclidean 
demonstrations, yet they also include all types of proofs that meet the strict cannons 
of logical and mathematical thoroughness. In primary level classrooms, one almost 
never finds argumentative pieces that meet the above cited formalism. Nonetheless, 
(implicitly) deductive reasonings arise fairly frequently, from which the necessary 
results emerge and, albeit tacitly, present traits and tendencies of this type of 
rationality pattern. In the class observed, we detected a large number of justifications 
that respond to that Cartesian pattern, especially with respect to instantiations of 
general formulae or to verification of hypothesis (Cfr. Reid, 2002). We have not 
illustrated this with examples since they are so frequently reported on in the 
literature.
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ethnological method of collecting empirical data. Of the classes observed, those that 
involved proportional reasoning (nine lessons lasting approximately one hour each) 
were video-taped and transcribed.
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(implicitly) deductive reasonings arise fairly frequently, from which the necessary 
results emerge and, albeit tacitly, present traits and tendencies of this type of 
rationality pattern. In the class observed, we detected a large number of justifications 
that respond to that Cartesian pattern, especially with respect to instantiations of 
general formulae or to verification of hypothesis (Cfr. Reid, 2002). We have not 
illustrated this with examples since they are so frequently reported on in the 
literature.
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Rhetorical Rationality. The pattern of rhetorical rationality includes justifications that 
are based on mathematical reasons, but from which one can only extract plausible 
truths. Qualitative-type argumentations fall into this pattern, as do the proofs that 
Balacheff (in 2000) classifies within naive empiricism and the crucial experiment. 
Also included in this pattern are reasons-based arguments incompletely presented in 
the classroom, but unlike Cartesian arguments the group is not able to re-construct or 
complete them due to their referential framework. This pattern evokes the rhetoric 
vindicated by Aristotle (in his Rhetoric) and later by Perelman (among others) (Cfr. 
Perelman and Olbrechts- Tyteca, 1989), for whom the competence of reason is not 
limited to the field of logic-mathematics. Concrete, practical, situated reasons, with 
their categories of things verisimilar, plausible or reasonable are for them also the 
object of understanding.  
Operating Rationality. The justifications that meet the pattern of operating rationality 
are supported by the confidence of the person applying them in the algorithm or 
procedure used. In this paper, we sustain that usage of any given algorithm –and 
especially systematic usage- is always accompanied by a justification or explanation 
from the person applying it. Said justification may be sufficient and abide by 
mathematical reasons, but it may also be tacit or even unconscious and respond to a 
‘faith’ or conviction of the validity of general mathematical formulae, in which case 
the justification is consolidated by extra-mathematical reasons that are not directly 
related to the logos of the argument.
Rationality by Habituation. When an idea or an interpretation of an event is 
systematically reiterated within a given cultural or social context, the partisans 
involved usually end up believing in it. Under such circumstances, custom most 
likely supports the credibility or adherence, with which as of the habitus (Cfr. 
Bourdieu and Passeron, Ibid.) and processes of practical familiarization that do not go 
through the conscious mind, they become ‘familiar’ or ‘normal’ to the community. 
Believing in or sustaining the veracity of a mathematical fact or the validity of a 
formula based on habituation is very common in mathematics classes. Frequently 
after mechanizing an algorithm, for example, and after persistently encountering it in 
class or in the textbook or hearing it often from the teacher, the students end up 
believing in it and taking it as valid simply because it has become natural and known 
to them. If they are additionally made to repeat the algorithm out loud as a group, the 
confidence in and certainty of the results of applying it will be boosted because 
repetition in unison stimulates socialization and the feeling of belonging to a group 
(Cfr. López Eire, 2001), while also aiding the memorization process.  
In traditional schools it was quite common to find teachers who considered 
habituation to be a mnemonic technique for learning and, perhaps unconsciously, for 
validation activities as well. The case study selected in this research is interesting 
because, among many other reasons, it shows that the practices for constructing the 
convictions and securities of mathematical results, based on verbal reiteration, have 
not yet been unearthed from today’s schools. And this is not just the case of schools 
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located in Arab countries, as stated by Kilpatrick (2007), but also in the schools of 
Mexico, as seen in Ms Ale’s classroom. 
Rationality by motives. In mathematics class there is undoubtedly a rationalist éthos
that orients students and teachers in their justification practices of mathematical 
formulations. There are however also diverse ‘motives’ that are derived from supra-
rational sources and that have a bearing on said practices, as is confirmed by the 
empirical data obtained in the study. ‘Motive’ is understood to be:  

… all that which induces a person to act in a certain manner in order to achieve an end. 
…Motives include conscious purposes (the ‘practical reasons’), as well as more general 
and deeper motivations (irrational forces, desires and drives) that urge the obtainment of 
satisfactory states.” (Villoro, 2002, p. 103) 

For instance, when Ms Ale resorts to inflections of speech, her silences, body 
language and illocutory acts to express her personal experiences of convincingness or 
conviction, she is conveying (inducing or imposing) those epistemic states (very 
possibly in an involuntary manner), supported by her authority, that of the textbook 
or of mathematics itself. In this case, she is justifying based on a logic of motives, 
which transcends the sphere of things rational and mathematical contents.
Extract of class: Illustration of rationality patterns 
The rationality patterns alluded to above were discovered and classified as a result of 
coming from and going to the theoretical orientations of the paper and an analysis of 
the results that arose from the longitudinal case study undertaken in Ms Ale’s 
classroom. Indeed, they are called ‘patterns of rationality’ in the study because they 
correspond to the justification and adherence mechanisms that were systematically 
and regularly found throughout the classes observed.   
Below is an extract of said classes (Lesson 80, episode 3), which was not only chosen 
because it exemplifies the rationality patterns cited, but also given that it provides 
evidence that mechanisms complying with different rationality patterns are brought 
into play in non routine mathematics exercise solution activities undertaken in class.

239. G: [In unison reading from the textbook]: The following table contains the 
cumulative times it takes Dario to swim five sections of his swim. 

 250 m. 500 m. 750 m. 1 000 m. 1 250 m. 1 500 m. 
6 min. 12 min. 19 min. 26 min. 32 min. 40 min. 

Table from the textbook 
Which section did he swim the fastest? 

257. T: Let’s see (suggesting) … we can do it like Diego was saying [divide the 
distance by time]. … For example, in the first section of two hundred and 
fifty meters, how many meters did Dario swim in one minute?  

258. S: Forty one point sixty-six 
261. T: Meters, right? 
262-
324

 [Under the teacher’s direction and with her help the group applies the d/t 
quotient to calculate the speed per minute swum by the swimmer in each of 
the sections that appear in the textbook table]. 
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Rhetorical Rationality. The pattern of rhetorical rationality includes justifications that 
are based on mathematical reasons, but from which one can only extract plausible 
truths. Qualitative-type argumentations fall into this pattern, as do the proofs that 
Balacheff (in 2000) classifies within naive empiricism and the crucial experiment. 
Also included in this pattern are reasons-based arguments incompletely presented in 
the classroom, but unlike Cartesian arguments the group is not able to re-construct or 
complete them due to their referential framework. This pattern evokes the rhetoric 
vindicated by Aristotle (in his Rhetoric) and later by Perelman (among others) (Cfr. 
Perelman and Olbrechts- Tyteca, 1989), for whom the competence of reason is not 
limited to the field of logic-mathematics. Concrete, practical, situated reasons, with 
their categories of things verisimilar, plausible or reasonable are for them also the 
object of understanding.  
Operating Rationality. The justifications that meet the pattern of operating rationality 
are supported by the confidence of the person applying them in the algorithm or 
procedure used. In this paper, we sustain that usage of any given algorithm –and 
especially systematic usage- is always accompanied by a justification or explanation 
from the person applying it. Said justification may be sufficient and abide by 
mathematical reasons, but it may also be tacit or even unconscious and respond to a 
‘faith’ or conviction of the validity of general mathematical formulae, in which case 
the justification is consolidated by extra-mathematical reasons that are not directly 
related to the logos of the argument.
Rationality by Habituation. When an idea or an interpretation of an event is 
systematically reiterated within a given cultural or social context, the partisans 
involved usually end up believing in it. Under such circumstances, custom most 
likely supports the credibility or adherence, with which as of the habitus (Cfr. 
Bourdieu and Passeron, Ibid.) and processes of practical familiarization that do not go 
through the conscious mind, they become ‘familiar’ or ‘normal’ to the community. 
Believing in or sustaining the veracity of a mathematical fact or the validity of a 
formula based on habituation is very common in mathematics classes. Frequently 
after mechanizing an algorithm, for example, and after persistently encountering it in 
class or in the textbook or hearing it often from the teacher, the students end up 
believing in it and taking it as valid simply because it has become natural and known 
to them. If they are additionally made to repeat the algorithm out loud as a group, the 
confidence in and certainty of the results of applying it will be boosted because 
repetition in unison stimulates socialization and the feeling of belonging to a group 
(Cfr. López Eire, 2001), while also aiding the memorization process.  
In traditional schools it was quite common to find teachers who considered 
habituation to be a mnemonic technique for learning and, perhaps unconsciously, for 
validation activities as well. The case study selected in this research is interesting 
because, among many other reasons, it shows that the practices for constructing the 
convictions and securities of mathematical results, based on verbal reiteration, have 
not yet been unearthed from today’s schools. And this is not just the case of schools 
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located in Arab countries, as stated by Kilpatrick (2007), but also in the schools of 
Mexico, as seen in Ms Ale’s classroom. 
Rationality by motives. In mathematics class there is undoubtedly a rationalist éthos
that orients students and teachers in their justification practices of mathematical 
formulations. There are however also diverse ‘motives’ that are derived from supra-
rational sources and that have a bearing on said practices, as is confirmed by the 
empirical data obtained in the study. ‘Motive’ is understood to be:  

… all that which induces a person to act in a certain manner in order to achieve an end. 
…Motives include conscious purposes (the ‘practical reasons’), as well as more general 
and deeper motivations (irrational forces, desires and drives) that urge the obtainment of 
satisfactory states.” (Villoro, 2002, p. 103) 

For instance, when Ms Ale resorts to inflections of speech, her silences, body 
language and illocutory acts to express her personal experiences of convincingness or 
conviction, she is conveying (inducing or imposing) those epistemic states (very 
possibly in an involuntary manner), supported by her authority, that of the textbook 
or of mathematics itself. In this case, she is justifying based on a logic of motives, 
which transcends the sphere of things rational and mathematical contents.
Extract of class: Illustration of rationality patterns 
The rationality patterns alluded to above were discovered and classified as a result of 
coming from and going to the theoretical orientations of the paper and an analysis of 
the results that arose from the longitudinal case study undertaken in Ms Ale’s 
classroom. Indeed, they are called ‘patterns of rationality’ in the study because they 
correspond to the justification and adherence mechanisms that were systematically 
and regularly found throughout the classes observed.   
Below is an extract of said classes (Lesson 80, episode 3), which was not only chosen 
because it exemplifies the rationality patterns cited, but also given that it provides 
evidence that mechanisms complying with different rationality patterns are brought 
into play in non routine mathematics exercise solution activities undertaken in class.

239. G: [In unison reading from the textbook]: The following table contains the 
cumulative times it takes Dario to swim five sections of his swim. 

 250 m. 500 m. 750 m. 1 000 m. 1 250 m. 1 500 m. 
6 min. 12 min. 19 min. 26 min. 32 min. 40 min. 

Table from the textbook 
Which section did he swim the fastest? 

257. T: Let’s see (suggesting) … we can do it like Diego was saying [divide the 
distance by time]. … For example, in the first section of two hundred and 
fifty meters, how many meters did Dario swim in one minute?  

258. S: Forty one point sixty-six 
261. T: Meters, right? 
262-
324

 [Under the teacher’s direction and with her help the group applies the d/t 
quotient to calculate the speed per minute swum by the swimmer in each of 
the sections that appear in the textbook table]. 
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325. T: … now we have these quantities [showing satisfaction]. First question, 
reading out loud!

326. G: Which section did he swim the fastest? [reading from the textbook]
329. G: [Several answers are given] In the second,… In the fifteen hundred section 
330. T: In the first section how many meters did he swim per minute? In one minute 

he swam? 
331. G: Forty-one... 
332. T: Forty-one point sixty-six. And in the second section?  
333-
341

 [The group repeats the results calculated in 258-324]  

342. T: Which section did he swim the fastest? (directive act, awaiting the correct 
answer).

343. G: [Different answers are provided] 
344. T: What do you mean? 
345. S: In the fifteen hundred section 
348. T: In the fifteen hundred section, which one is the …? Ah! He did thirty-seven 

meters (confirming, without emphasis) 
349. S: Ms Ale, it was in the two hundred and fifty meter section. 
350. T: That’s right (without much confidence) 

G: group; T: teacher; S: student.  

The teacher’s insistence on the use of the (d/t) quotient (in this exercise as well as in 
another) generates the impression that she possesses a vectorial idea of velocity and 
speed. Yet in her interventions one can see that she (and her students) have 
difficulties signifying mixed magnitudes and promoting that vectorial idea (amongst 
other things, because for all practical purposes they ignore those magnitudes 
throughout the entire solution process).  It is perhaps due to such conceptual 
problems that the teacher leaves one of the most significant and complex parts of the 
solution to the students –which consists of comparing the mixed magnitudes, the 
interpretation of the results of that comparison in terms of the speed, and the 
conversion processes needed into order to go from the physical arithmetic domain to 
the table register.  
The solution falls within rhetorical rationality because although it complies with a 
deductive structure of specification, neither the students nor their teacher possess the 
conceptual elements needed to provide a well-founded explanation of the truth, from 
the mathematical point of view, of the results derived from the formula. It is rhetoric; 
not because the justification is incomplete, but because it fails to include sufficient or 
conclusive reasons in keeping with the rationality of the group.
By the same token, the justification also complies with an operating rationality. In the 
solution presented, one can see how the results that arise in class are shored up by the 
confidence and ‘quasi faith’ that Ms Ale has in the symbolic formulae of 
mathematics, a confidence and faith that may very possibly be shared by her students 
too. It is there that one can see the credibility that the teacher attaches from the onset 
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to the formula; she trusts the velocity quotient without even seeking to give it some 
form of plausibility with the conceptual elements that the group has at hand. 
The solution is further supported by a rationality by habituation. Although it is very 
possible that the teacher does not intentionally or consciously do so, her interest 
clearly lays in having the children memorize and become familiar with the formula 
and the results it provides. She very patiently applies the quotient twice (from 257 to 
325 and from 330 to 350), with the participation in unison of the students, proposing 
each of the answers. 
The solution is likewise underpinned by a logic that complies with the teacher’s 
motives and interests. At 257, for instance, she subtly imposes application of the d/t 
formula in order to calculate the speed, supported by her authority and that of 
mathematics proper. At 325 and 342, she conveys (or attempts to impose) confidence 
in the results obtained for the purpose of having the group propose the correct 
answer.
Consequently Ms Ale’s students may at the end of the day have begun to memorize 
the velocity quotient formula and identify the resulting magnitudes. Although they 
may not have experienced a convincingness based on diaphanous reasons, they may 
have acquired a feeling of security based on the confidence that the teacher and group 
usually have in mathematical formulae. That confidence would have been shored up 
by the familiarity they acquired in using the formula and mixed magnitudes, resulting 
from repeated use, and also backed by the authority proper of the teacher who is 
directing the solution process with all of the security and confidence that she 
generally conveys in her teaching practices. 
Final Remarks 
The results presented here represent the first stage of the findings encountered in a 
broader research study, in which the objective is to analyze the mechanisms that 
enable a teacher (or student) to convince the members of his/her mathematics class of 
a mathematical result. The backbone of the research is the concept of a ‘culture of 
class rationality’, which includes the idea of an ‘epistemic state’ –convincingness, 
conviction and persuasion- because they provide a systemic view of complex aspects 
of the phenomenon being studied1. As of this comprehensive and holistic perspective, 
the results reported here were discovered. In particular we were able to identify 
processes of rational validation in the class observed, as well as other ‘types of 
discursive persuasion’ (Habermas, Ibid., p. 45) that are both local and specific to that 
class, and very possibly also present in other classrooms. Foremost among those 
results are the manners of convincing that are neither explicit nor specific, that even 
go well beyond the sphere of things voluntary and conscious, based on very subtle 
adherence techniques that are rationed out throughout the course/term, as well as 

1 We are not including those concepts in this presentation in view of space limitations, but this paper will serve as a 
reference point for presentation of the terms, as well as the complement of the work in future contributions. In fact, 
preliminary data regarding the study appears in the Memoirs of PME 32, in Rigo, Rojano & Pluvinage.  

4 - 470 PME 33 - 2009

 Volume 04 COMPLETE 290509.indb   470 6/4/09   2:26:29 PM



Rigo, Rojano, Pluvinage 

1- 6 PME 33 - 2009 

325. T: … now we have these quantities [showing satisfaction]. First question, 
reading out loud!

326. G: Which section did he swim the fastest? [reading from the textbook]
329. G: [Several answers are given] In the second,… In the fifteen hundred section 
330. T: In the first section how many meters did he swim per minute? In one minute 

he swam? 
331. G: Forty-one... 
332. T: Forty-one point sixty-six. And in the second section?  
333-
341

 [The group repeats the results calculated in 258-324]  

342. T: Which section did he swim the fastest? (directive act, awaiting the correct 
answer).

343. G: [Different answers are provided] 
344. T: What do you mean? 
345. S: In the fifteen hundred section 
348. T: In the fifteen hundred section, which one is the …? Ah! He did thirty-seven 

meters (confirming, without emphasis) 
349. S: Ms Ale, it was in the two hundred and fifty meter section. 
350. T: That’s right (without much confidence) 

G: group; T: teacher; S: student.  

The teacher’s insistence on the use of the (d/t) quotient (in this exercise as well as in 
another) generates the impression that she possesses a vectorial idea of velocity and 
speed. Yet in her interventions one can see that she (and her students) have 
difficulties signifying mixed magnitudes and promoting that vectorial idea (amongst 
other things, because for all practical purposes they ignore those magnitudes 
throughout the entire solution process).  It is perhaps due to such conceptual 
problems that the teacher leaves one of the most significant and complex parts of the 
solution to the students –which consists of comparing the mixed magnitudes, the 
interpretation of the results of that comparison in terms of the speed, and the 
conversion processes needed into order to go from the physical arithmetic domain to 
the table register.  
The solution falls within rhetorical rationality because although it complies with a 
deductive structure of specification, neither the students nor their teacher possess the 
conceptual elements needed to provide a well-founded explanation of the truth, from 
the mathematical point of view, of the results derived from the formula. It is rhetoric; 
not because the justification is incomplete, but because it fails to include sufficient or 
conclusive reasons in keeping with the rationality of the group.
By the same token, the justification also complies with an operating rationality. In the 
solution presented, one can see how the results that arise in class are shored up by the 
confidence and ‘quasi faith’ that Ms Ale has in the symbolic formulae of 
mathematics, a confidence and faith that may very possibly be shared by her students 
too. It is there that one can see the credibility that the teacher attaches from the onset 
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to the formula; she trusts the velocity quotient without even seeking to give it some 
form of plausibility with the conceptual elements that the group has at hand. 
The solution is further supported by a rationality by habituation. Although it is very 
possible that the teacher does not intentionally or consciously do so, her interest 
clearly lays in having the children memorize and become familiar with the formula 
and the results it provides. She very patiently applies the quotient twice (from 257 to 
325 and from 330 to 350), with the participation in unison of the students, proposing 
each of the answers. 
The solution is likewise underpinned by a logic that complies with the teacher’s 
motives and interests. At 257, for instance, she subtly imposes application of the d/t 
formula in order to calculate the speed, supported by her authority and that of 
mathematics proper. At 325 and 342, she conveys (or attempts to impose) confidence 
in the results obtained for the purpose of having the group propose the correct 
answer.
Consequently Ms Ale’s students may at the end of the day have begun to memorize 
the velocity quotient formula and identify the resulting magnitudes. Although they 
may not have experienced a convincingness based on diaphanous reasons, they may 
have acquired a feeling of security based on the confidence that the teacher and group 
usually have in mathematical formulae. That confidence would have been shored up 
by the familiarity they acquired in using the formula and mixed magnitudes, resulting 
from repeated use, and also backed by the authority proper of the teacher who is 
directing the solution process with all of the security and confidence that she 
generally conveys in her teaching practices. 
Final Remarks 
The results presented here represent the first stage of the findings encountered in a 
broader research study, in which the objective is to analyze the mechanisms that 
enable a teacher (or student) to convince the members of his/her mathematics class of 
a mathematical result. The backbone of the research is the concept of a ‘culture of 
class rationality’, which includes the idea of an ‘epistemic state’ –convincingness, 
conviction and persuasion- because they provide a systemic view of complex aspects 
of the phenomenon being studied1. As of this comprehensive and holistic perspective, 
the results reported here were discovered. In particular we were able to identify 
processes of rational validation in the class observed, as well as other ‘types of 
discursive persuasion’ (Habermas, Ibid., p. 45) that are both local and specific to that 
class, and very possibly also present in other classrooms. Foremost among those 
results are the manners of convincing that are neither explicit nor specific, that even 
go well beyond the sphere of things voluntary and conscious, based on very subtle 
adherence techniques that are rationed out throughout the course/term, as well as 

1 We are not including those concepts in this presentation in view of space limitations, but this paper will serve as a 
reference point for presentation of the terms, as well as the complement of the work in future contributions. In fact, 
preliminary data regarding the study appears in the Memoirs of PME 32, in Rigo, Rojano & Pluvinage.  
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those supported by operating rationality and rationality by habituation.  The 
foregoing shows that in the mathematics classroom, as in other everyday settings, the 
natural law of the land depends on what the community deems to be reasonable. It is 
not a matter of being irrational, rather simply that decisions and interactions fall into 
logic that does not always coincide with a formal or purely rational logic.  (Cfr. 
Bourdieu y Passeron, Ibid.). 
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VISUAL TEMPLATES IN PATTERN GENERALIZATION*

F. D. Rivera and Joanne Rossi Becker 
San Jose State University, USA 

Eleven 7th- and 8th-graders obtained pattern generalizations on three unfamiliar 
tasks months after a teaching experiment on linear patterning. The study explores 
additive, multiplicative, and pragmatic visual templates in patterning activity.
INTRODUCTION AND RESEARCH QUESTIONS 
Well-defined patterns such as the ones shown in Figures 1 and 2 are structured 
sequences of objects. The primary task for learners is to coordinate their perceptual 
and symbolic inferences so that they are able to establish and justify a structure that 
could be conveyed in the form of a direct formula. The term pattern generalization is 
used throughout the report and refers to both mathematical practices of construction 
and justification of direct formulas for a given pattern. Further, we assume that 
pattern generalization is a subjective process as a result of the interpretive nature of 
structure discernment and construction in patterning activity.    

Stage 1              Stage 2                   Stage 3 Stage 1  Stage 2      Stage 3          Stage 4

          Fig. 1 Square Frog Pattern  Fig. 2 Square Array Pattern 

We address the following research questions: (1) How do seventh- and eighth-grade 
students (ages 12 and 13) develop a structure and perform pattern generalization for 
figural patterns such as the ones shown in Figs. 1, 2, and 3? In particular, what 
strategies do they have at their disposal and within their developmental capacities for 
perceptual and symbolic inference? (2) Considering the fact that this age-level group 
does not have extensive experiences in structure formation and development, how do 
they impose a structure and pattern generalize on well-defined patterns such as the 
ones shown in Figs. 1 and 2?
CONCEPTUAL FRAMEWORK 
We use Giaquinto’s (2007) notion of visual templates in developing provisional 
answers to the above research questions. But our appropriation of the term aligns 
with the characteristics identified by Neisser (1976) who explored the
On the right are the first two stages in a growing pattern of squares.  
1. Continue the pattern until stage 5.
2. Find a direct formula in two different ways. Justify each formula.
3. If none of your formulas above involve taking into account overlaps, find a    Stage 1

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 4, pp. 473-480. Thessaloniki, Greece: PME.
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direct formula that takes into account overlaps. Justify your formula. 
4. How do you know for sure that your pattern will continue that way and not 
some other way? 
5. Find a different way of continuing the pattern and obtain a direct formula 
for this pattern.

   Stage 2

Fig. 3 An Ambiguous Patterning Task 

idea of template matching in the context of pattern recognition of everday objects. 
Giaquinto’s (2007) appropriation is derived from Resnik (1997) who describes a 
template as a “concrete device for representing how things are shaped, structured, or 
designed” (Resnik, 1997, p. 227). When we manipulate a template much like how we 
use blueprints, somehow the concrete experience should provide either a structurally 
isomorphic or structurally contained context that enable us to make sense of the 
corresponding abstract patterns and their properties. For example, when second-grade 
children begin to group concrete objects in a particular way, then the concrete 
understanding that comes with the grouping experience should somehow foreshadow 
what eventually would be known as the general structure of place value notation or 
counting systems. There is, thus, an expectation of a percept-to-concept projection 
process that is involved with the visual component assisting in constructing or 
contextualizing the abstract elements involved. In Neisser’s (1976) case, children use 
prototypes or canonical forms as a standard or basic model that help them either learn 
a characteristic of a new object or compare the new with an existing object. Thus, 
visual templates provide a skeletal structuring tool that learners use to systematically 
capture and organize an intended content. Learners use them to compare and/or to 
assist in generalizing tasks. They also act as a heuristic, that is, they work in some 
situations or may fail in others.
In this report, we discuss visual templates in relation to the work of a group of 7th and 
8th grade students (ages 12 and 13) in an urban school who obtained pattern 
generalizations for the patterns in Figs. 1 through 3. We focus on three template-
types, as follows: additive, multiplicative, and pragmatic. Students who use an 
additive template express grouping relationships in additive form, while those who 
use a multiplicative template express those relationships multiplicatively. The initial 
conceptualization of grouping is rooted in students’ acquired understanding of the 
concept of multiplication of two integers, that is, a x b = b + b + b + … + b (a times) 
or a groups of b objects. Students who use a pragmatic template implement a 
combined numerical-visual strategy, which could also be interpreted as a task-
induced coping mechanism in order to make sense of an emerging pattern 
generalization. These characterizations are explained in greater detail in the Findings 
section.
METHOD
Participants. Eight 8th Graders from Cohort 1 and three 7th Graders (4 males and 7 
females) were members in an Algebra 1 class that participated in a month-long 

Rivera, Becker 

PME 33 - 2009 1- 3 

teaching experiment on linear pattern generalization in December 2007. Then, they 
each participated in a 55-minute clinical interview that took place in May 2008. No 
patterning activity was conducted between January and April. Two methodological 
issues were dealt with in relation to establishing a case for the existence of visual 
templates. First was the necessity of a prolonged period of time in which no 
patterning activity was pursued on purpose. In our study, while the clinical interviews 
immediately after the teaching experiment gave some indications that such templates 
existed, however, we were interested in establishing their durability and stability over 
time. Second, we saw to it that none of the tasks were familiar to the students since 
we wanted them to articulate their visual templates when they were confronted with 
unfamiliar patterns.  
Task and Task Protocol. The first author conducted all the clinical interviews with 
the 11 students. Each participant worked on the patterns shown in Figs. 1 through 3 
one at a time in the following order: 3, 1, and 2. The complete task protocol for Figs. 
1 and 2 are shown in Figs. 4 and 5. Each student was asked to think aloud. Square 
blocks were provided in the case of the Fig. 3 task, while a centimeter graphing paper 
was available in the case of the Fig. 2 pattern.
1. What does Stage 4 look like? Either describe it or draw it on a graphing paper. 
2. Find a direct formula for the total number of gray square tiles at any stage. Explain your 
formula.
3. How many gray square tiles are there in stage 11? How do you know? 
4. Which stage number contains a total of 56 gray square tiles? Explain.
Fig. 4. Task Associated with the Fig. 1 Pattern 

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify 
your formula. 
B. Find a direct formula for the total number of points at any stage in the pattern. Justify 
your formula. 
Fig. 5. Task Associated with the Fig. 2 Pattern 

Data Analysis Process. The data analysis process took shape following the steps 
described in Healy and Hoyles (1999). Individual case studies that consist of 
transcripts, written work, and analysis of relevant interview segments were initially 
developed, followed by individual cognitive maps with the aim of schematically 
capturing the trajectory of their generalizing processes. The summative evidence was 
then compared, analyzed, and categorized using grounded theory that led to the three 
labels corresponding to the three template types. Several iterated reading-and-
analysis processes of the interview data were done to ensure a correct categorization 
of student work and also to obtain a sufficient characterization of the template-types. 
FINDINGS 

Table 1 is a summary of the students’ direct formulas on the three pattern tasks 
and categorized by template type. We use Diana’s visual process as an exemplar of a 
student who pattern generalizes using a multiplicative template. Her template had her 
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direct formula that takes into account overlaps. Justify your formula. 
4. How do you know for sure that your pattern will continue that way and not 
some other way? 
5. Find a different way of continuing the pattern and obtain a direct formula 
for this pattern.

   Stage 2

Fig. 3 An Ambiguous Patterning Task 

idea of template matching in the context of pattern recognition of everday objects. 
Giaquinto’s (2007) appropriation is derived from Resnik (1997) who describes a 
template as a “concrete device for representing how things are shaped, structured, or 
designed” (Resnik, 1997, p. 227). When we manipulate a template much like how we 
use blueprints, somehow the concrete experience should provide either a structurally 
isomorphic or structurally contained context that enable us to make sense of the 
corresponding abstract patterns and their properties. For example, when second-grade 
children begin to group concrete objects in a particular way, then the concrete 
understanding that comes with the grouping experience should somehow foreshadow 
what eventually would be known as the general structure of place value notation or 
counting systems. There is, thus, an expectation of a percept-to-concept projection 
process that is involved with the visual component assisting in constructing or 
contextualizing the abstract elements involved. In Neisser’s (1976) case, children use 
prototypes or canonical forms as a standard or basic model that help them either learn 
a characteristic of a new object or compare the new with an existing object. Thus, 
visual templates provide a skeletal structuring tool that learners use to systematically 
capture and organize an intended content. Learners use them to compare and/or to 
assist in generalizing tasks. They also act as a heuristic, that is, they work in some 
situations or may fail in others.
In this report, we discuss visual templates in relation to the work of a group of 7th and 
8th grade students (ages 12 and 13) in an urban school who obtained pattern 
generalizations for the patterns in Figs. 1 through 3. We focus on three template-
types, as follows: additive, multiplicative, and pragmatic. Students who use an 
additive template express grouping relationships in additive form, while those who 
use a multiplicative template express those relationships multiplicatively. The initial 
conceptualization of grouping is rooted in students’ acquired understanding of the 
concept of multiplication of two integers, that is, a x b = b + b + b + … + b (a times) 
or a groups of b objects. Students who use a pragmatic template implement a 
combined numerical-visual strategy, which could also be interpreted as a task-
induced coping mechanism in order to make sense of an emerging pattern 
generalization. These characterizations are explained in greater detail in the Findings 
section.
METHOD
Participants. Eight 8th Graders from Cohort 1 and three 7th Graders (4 males and 7 
females) were members in an Algebra 1 class that participated in a month-long 
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teaching experiment on linear pattern generalization in December 2007. Then, they 
each participated in a 55-minute clinical interview that took place in May 2008. No 
patterning activity was conducted between January and April. Two methodological 
issues were dealt with in relation to establishing a case for the existence of visual 
templates. First was the necessity of a prolonged period of time in which no 
patterning activity was pursued on purpose. In our study, while the clinical interviews 
immediately after the teaching experiment gave some indications that such templates 
existed, however, we were interested in establishing their durability and stability over 
time. Second, we saw to it that none of the tasks were familiar to the students since 
we wanted them to articulate their visual templates when they were confronted with 
unfamiliar patterns.  
Task and Task Protocol. The first author conducted all the clinical interviews with 
the 11 students. Each participant worked on the patterns shown in Figs. 1 through 3 
one at a time in the following order: 3, 1, and 2. The complete task protocol for Figs. 
1 and 2 are shown in Figs. 4 and 5. Each student was asked to think aloud. Square 
blocks were provided in the case of the Fig. 3 task, while a centimeter graphing paper 
was available in the case of the Fig. 2 pattern.
1. What does Stage 4 look like? Either describe it or draw it on a graphing paper. 
2. Find a direct formula for the total number of gray square tiles at any stage. Explain your 
formula.
3. How many gray square tiles are there in stage 11? How do you know? 
4. Which stage number contains a total of 56 gray square tiles? Explain.
Fig. 4. Task Associated with the Fig. 1 Pattern 

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify 
your formula. 
B. Find a direct formula for the total number of points at any stage in the pattern. Justify 
your formula. 
Fig. 5. Task Associated with the Fig. 2 Pattern 

Data Analysis Process. The data analysis process took shape following the steps 
described in Healy and Hoyles (1999). Individual case studies that consist of 
transcripts, written work, and analysis of relevant interview segments were initially 
developed, followed by individual cognitive maps with the aim of schematically 
capturing the trajectory of their generalizing processes. The summative evidence was 
then compared, analyzed, and categorized using grounded theory that led to the three 
labels corresponding to the three template types. Several iterated reading-and-
analysis processes of the interview data were done to ensure a correct categorization 
of student work and also to obtain a sufficient characterization of the template-types. 
FINDINGS 

Table 1 is a summary of the students’ direct formulas on the three pattern tasks 
and categorized by template type. We use Diana’s visual process as an exemplar of a 
student who pattern generalizes using a multiplicative template. Her template had her 
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seeking out for groups of parts that had the same count and then connecting the count 
with the appropriate stage number. In the case of the pattern in Fig. 1, Diana initially 
obtained the formula n = x(x + 1) +4(2x + 1) which she later simplified to n = x2 + 
9x + 4. She explained her pattern generalization in the following transcript below. 
Task Additive Template Multiplicative Template Pragmatic Template 

Fig. 3 Dung: s = n + n–1 
Emma: s = n+1;
s = n + (n – 1) 
Karen:
x = n–1 + n–1 + 1 

Dexter: B = 2s – 1 
Diana: n = 2x – 1;
n = x2 – (x – 1)2

Dung: s = 2n – 1 
Earl: 2(s –1) + 1 = n;
2s – 1 = n 
Karen: x = 2n–1 

Anna: n = 2s – 1,
n = 2s – 2 + 1 
Chloe: s = 2n – 1;
x = 8n – 4 
Frank: S = 2x – 1;
S = 2(x–1) + 1 
Shaina: s = nx2 – 1 
Tamara: x = 2p – 1 

Fig. 1 Emma: S = n(n+1) + 
4(2n+1)

Anna: g = 8s + 4 + s(s+1) 
Chloe: x = (n2+n) + 4(2n+1) 
Dexter: B = 4(2s+1) + s(s+1) 
Diana: x(x+1) + 4(2x+1) = n 
Dung: g = n2 + n + 4n+4n+4 
Earl: s(s+1) + 4(2s+1) = n 
Frank: n(n+1) + 4(2x + 1) = S 
Karen: x = n(n+1)+[(n+1)+n]4 
Tamara: x = n2 +(nx8) + (4+n)

Shaina: s = g + 8 
(incorrect; counted just 
the four legs) 

Fig. 2  Anna: n = s(s+1) + s(s+1) 
Chloe: x = n(n+1)2 
Diana: 4x + 2(x–1)x = s 
Dung: s = n[4n–(n-1)] – (n-1)n 
Earl: 4s + [s(s-1)]2 = n 
Frank: s = x(x+1)2 
Tamara: (p+1)p + (p+1)p = x 

Dexter: P = 4s 
(incorrect; just counted 
the perimeter sides) 
Emma: s = n(2n + 2) 
Karen: x =4n+n(2n-2) 
Shaina: s = n x 8 – 4

Table 1. Summary of Students’ Direct Formulas Categorized by Template Type
Diana: Well, basically you always, like, to this number here, to this part her 

[referring to stage 2], you added 1 and on this side you add 1 to make it longer 
[referring to the growing legs on every corner.] You always add 1 to everything to 
make the legs longer. Instead of like 2 x 2, you make it 3 x 3. And for this one, too 
[the middle rectangle], instead of 1 by 2, you make it 2 x 3. [She then finds a direct 
formula and obtains x (x + 1) + (2x + 1) = n].

FDR:  Okay, so tell me what's happening there? Where did this come from, x (x + 1)? 
Diana: This, the little square, x times x + 1.
FDR: So where's the x times x + 1 here [referring to stage 3]?
Diana: Like 3 x 3, or 3 x 4. 
FDR:  So where's the 2x + 1 coming from? 
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Diana: This. I mean I can look at it like 2 times (x + 1) minus 1 but I just made it, 
like, 3, 3, and 1, so 2x + 1. [She initially saw that each leg had two overlapping 
sides that shared a common square.]

FDR:  But this 2x + 1 is just for this side [referring to one leg], right? 
Diana: For all of the legs, oh, [then adds a coefficient of 4 to her formula: x (x + 1) + 

4(2x + 1) = n].
FDR:  Okay, so are you happy with your formula? 
Diana: I think I could simplify it. I'd like to see what happens if I simplify it. [She

then simplifies her formula to x2 + 9x + 4 = n.]. 4 would be these [the corner middle 
squares] I'm pretty sure. 9x would be, 8, oh, yes, I see it. I see how it works. There's 
an x squared here [referring to the rectangle which she saw as the union of an n by 
n square and a column side of length n] if you see one square here and the 9x would 
be these legs [referring to the (n + 1)th column of the rectangle of length n and the 
eight row and column legs minus the corner middle squares]. Plus 4 would be the 
center of each leg. 

The consistent manner in which Diana used a multiplicative template became 
especially useful when she established and justified a direct formula for the Fig. 2 
pattern. Initially, she obtained a formula for the number of sticks on the perimeter of 
each square, 4x. Next, she counted the interior sticks as follows: (1) “[in stage 2] 2 
minus 1 would be 1 so there would be 1 row going down and another row so that 
would be rows of 2 sticks;” (2) “in stage 3, there’s 2 rows of 3 sticks;” (3) “[in stage 
4 there’s] three, okay, it's two sets of three rows of 4.” She then wrote 4x + 2(x – 1)x
= s which she simplified to 2x + 2x2 = s.
Karen’s work on the Fig. 3 task exemplifies the use of an additive template. Her 
pattern of five stages is shown in Fig. 6. In justifying her direct formula, s = n – 1 + n
– 1 + 1, she visualized it in groups, as follows: “You group these [the row and 
column squares excluding the common square] and add 1 [the corner square].”

Fig. 6. Karen’s Constructed Pattern in Relation to the Fig. 3 Task 

Emma used an additive template in dealing with the Fig. 3 task. She produced 
the same pattern in Fig. 6, constructed S = n + (n – 1), and reasoned as follows:
FDR: What helped you in transitioning from these visual squares to a direct formula? 
Emma: Grouping it, I guess. This is stage 1 [referring to the one square]. This is 

stage 2 [the column of two squares]. This is stage 3 [the column of three squares]
and this is stage 4 [the column of four squares]. And then so ahm when I figured 
that, I try to see what's left. So if it's 1 [the remaining square on the row of stage 2], 
if you subtract the stage number from 1, you get 1. If you subtract 1 from the stage 
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seeking out for groups of parts that had the same count and then connecting the count 
with the appropriate stage number. In the case of the pattern in Fig. 1, Diana initially 
obtained the formula n = x(x + 1) +4(2x + 1) which she later simplified to n = x2 + 
9x + 4. She explained her pattern generalization in the following transcript below. 
Task Additive Template Multiplicative Template Pragmatic Template 

Fig. 3 Dung: s = n + n–1 
Emma: s = n+1;
s = n + (n – 1) 
Karen:
x = n–1 + n–1 + 1 

Dexter: B = 2s – 1 
Diana: n = 2x – 1;
n = x2 – (x – 1)2

Dung: s = 2n – 1 
Earl: 2(s –1) + 1 = n;
2s – 1 = n 
Karen: x = 2n–1 

Anna: n = 2s – 1,
n = 2s – 2 + 1 
Chloe: s = 2n – 1;
x = 8n – 4 
Frank: S = 2x – 1;
S = 2(x–1) + 1 
Shaina: s = nx2 – 1 
Tamara: x = 2p – 1 

Fig. 1 Emma: S = n(n+1) + 
4(2n+1)

Anna: g = 8s + 4 + s(s+1) 
Chloe: x = (n2+n) + 4(2n+1) 
Dexter: B = 4(2s+1) + s(s+1) 
Diana: x(x+1) + 4(2x+1) = n 
Dung: g = n2 + n + 4n+4n+4 
Earl: s(s+1) + 4(2s+1) = n 
Frank: n(n+1) + 4(2x + 1) = S 
Karen: x = n(n+1)+[(n+1)+n]4 
Tamara: x = n2 +(nx8) + (4+n)

Shaina: s = g + 8 
(incorrect; counted just 
the four legs) 

Fig. 2  Anna: n = s(s+1) + s(s+1) 
Chloe: x = n(n+1)2 
Diana: 4x + 2(x–1)x = s 
Dung: s = n[4n–(n-1)] – (n-1)n 
Earl: 4s + [s(s-1)]2 = n 
Frank: s = x(x+1)2 
Tamara: (p+1)p + (p+1)p = x 

Dexter: P = 4s 
(incorrect; just counted 
the perimeter sides) 
Emma: s = n(2n + 2) 
Karen: x =4n+n(2n-2) 
Shaina: s = n x 8 – 4

Table 1. Summary of Students’ Direct Formulas Categorized by Template Type
Diana: Well, basically you always, like, to this number here, to this part her 

[referring to stage 2], you added 1 and on this side you add 1 to make it longer 
[referring to the growing legs on every corner.] You always add 1 to everything to 
make the legs longer. Instead of like 2 x 2, you make it 3 x 3. And for this one, too 
[the middle rectangle], instead of 1 by 2, you make it 2 x 3. [She then finds a direct 
formula and obtains x (x + 1) + (2x + 1) = n].

FDR:  Okay, so tell me what's happening there? Where did this come from, x (x + 1)? 
Diana: This, the little square, x times x + 1.
FDR: So where's the x times x + 1 here [referring to stage 3]?
Diana: Like 3 x 3, or 3 x 4. 
FDR:  So where's the 2x + 1 coming from? 
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Diana: This. I mean I can look at it like 2 times (x + 1) minus 1 but I just made it, 
like, 3, 3, and 1, so 2x + 1. [She initially saw that each leg had two overlapping 
sides that shared a common square.]

FDR:  But this 2x + 1 is just for this side [referring to one leg], right? 
Diana: For all of the legs, oh, [then adds a coefficient of 4 to her formula: x (x + 1) + 

4(2x + 1) = n].
FDR:  Okay, so are you happy with your formula? 
Diana: I think I could simplify it. I'd like to see what happens if I simplify it. [She

then simplifies her formula to x2 + 9x + 4 = n.]. 4 would be these [the corner middle 
squares] I'm pretty sure. 9x would be, 8, oh, yes, I see it. I see how it works. There's 
an x squared here [referring to the rectangle which she saw as the union of an n by 
n square and a column side of length n] if you see one square here and the 9x would 
be these legs [referring to the (n + 1)th column of the rectangle of length n and the 
eight row and column legs minus the corner middle squares]. Plus 4 would be the 
center of each leg. 

The consistent manner in which Diana used a multiplicative template became 
especially useful when she established and justified a direct formula for the Fig. 2 
pattern. Initially, she obtained a formula for the number of sticks on the perimeter of 
each square, 4x. Next, she counted the interior sticks as follows: (1) “[in stage 2] 2 
minus 1 would be 1 so there would be 1 row going down and another row so that 
would be rows of 2 sticks;” (2) “in stage 3, there’s 2 rows of 3 sticks;” (3) “[in stage 
4 there’s] three, okay, it's two sets of three rows of 4.” She then wrote 4x + 2(x – 1)x
= s which she simplified to 2x + 2x2 = s.
Karen’s work on the Fig. 3 task exemplifies the use of an additive template. Her 
pattern of five stages is shown in Fig. 6. In justifying her direct formula, s = n – 1 + n
– 1 + 1, she visualized it in groups, as follows: “You group these [the row and 
column squares excluding the common square] and add 1 [the corner square].”

Fig. 6. Karen’s Constructed Pattern in Relation to the Fig. 3 Task 

Emma used an additive template in dealing with the Fig. 3 task. She produced 
the same pattern in Fig. 6, constructed S = n + (n – 1), and reasoned as follows:
FDR: What helped you in transitioning from these visual squares to a direct formula? 
Emma: Grouping it, I guess. This is stage 1 [referring to the one square]. This is 

stage 2 [the column of two squares]. This is stage 3 [the column of three squares]
and this is stage 4 [the column of four squares]. And then so ahm when I figured 
that, I try to see what's left. So if it's 1 [the remaining square on the row of stage 2], 
if you subtract the stage number from 1, you get 1. If you subtract 1 from the stage 
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number [stage 3] you get 2 [the two remaining squares on the row of stage 3]. If 
you subtract 1 from this stage number [stage 4], you get 3 [the three remaining 
squares on the row of stage 4]. 

Emma’s thinking in relation to the Fig. 2 pattern exemplifies the use of a 
pragmatic template. When Emma was presented with the Fig. 5 task, she initially 
inspected a part or parts in each cue that reflected a particular stage number. She then 
tried to use an additive template but failed. She then counted once again and observed 
that stage 1 had 4 sticks, that is, “four of stage 1.” In stage 2, she counted the total 
number of sticks (12) but then saw it as “[stage 2]  6.” She then verified it in stages 
3 and 4. She noticed that since stage 3 had 24 sticks, it was equal to “[stage 3] 8.” In 
stage 4, she claimed that 40 was “[stage 4]  10.” Next, she concluded that her direct 
formula for the total number of sticks was s = n  (2n + 2). In explaining her formula, 
she said that n referred to the stage number and that the numbers 4, 6, 8, and 10 were 
“even numbers and that to get to 10, I multiply it by 2 and add 2, so 2n + 2.” But 
when she was asked to explain how the formula might make sense in the given 
stages, she said, “I don’t know, I don’t see it in the picture.” 

Karen’s work on the Fig. 2 pattern also demonstrates the use of a pragmatic 
template. Initially, she saw that the total number of sticks on the perimeter of each 
square was 4n (“there are four sides and four groups of the stage number”). Then, she 
noticed that the interior sticks had the following relationship which she organized in a 
table: stage 1 had 0 sets of horizontal and vertical sticks; stage 2 had 2 sets of 2 
sticks; stage 3 had 4 sets of 3 sticks; stage 4 had 6 sets of 4 sticks; …; stage n had (2n 
– 2) sticks. In obtaining the expression 2n – 2, she employed the same numerical 
strategy that Emma used above. Thus, a pragmatic template was used in cases when 
students tried to construct a direct formula first using a numerical method that they 
would then try to justify visually. 
DISCUSSION  
Where the fundamental difference lies between multiplicative and pragmatic 
templates and, thus, a weakness in the latter, is at the stage of justification. Those 
who used a multiplicative template saw formula construction and justification to be 
two complementary processes, which illustrates the powerful view in which 
“representat-ion is explanation” (Leyton, 2002). In this view, representation emerges 
as an observer tries to describe a target stimulus “as a state (or sets of states) in a 
history that causally explains the stimulus” to him or her (p. 157). For example, 
Chloe saw that each cue in the Fig. 2 pattern consisted of several rows and columns 
of sticks. She then counted as follows: “[in stage 2,] there’s 2, 2, 2, 2, 2, and 2; [in 
stage 3,] there’s 3, 3, 3, 3, 3, 3,3, and 3; so there’s two groups of 3 twice [and] there's 
two 4 groups of 3 [and] two five groups of 4. So x = 2 times n + 1 times n.” In 
Dung’s case, he first specialized using stage 4. He initially saw 4 disjoint rows of 
squares and counted the total number of sticks per row. In counting the number of 
sticks per row, he saw 4 disjoint squares for a total of 16 sticks and then subtracted 
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the overlapping vertical sticks, 4 – 1 = 3. Since there were 4 rows, the total number of 
sticks was 4 x [(4 x 4) – (4 – 1)]. But he was aware that when the four disjoint rows 
of squares were combined to form stage 4, the interior horizontal sticks have been 
counted twice. In counting the total number of such non-overlapping interior 
horizontal sticks, he saw that there were (4 – 1) groups of 4 = 12 overlapping
horizontal sticks. Hence, his formula was s = [4n – (n –1)] x n – (n –1) x n. Those 
who employed a pragmatic template, on the other hand, established correct direct 
formulas but either were unable to justify them or produced inconsistent 
explanations. There was, it seems to be the case, an apparent disconnect between 
formula construction and justification. For example, while Emma was able to 
establish her formula, s = n(2n + 2), pragmatically for the Fig. 2 pattern, she, 
however, could not justify it.   
CONCLUSION
In this report, we provide evidence of visual-template use in the development of 
structure and pattern generalization. Both additive and multiplicative templates are 
endowed with conceptual content; they provide powerful building-block models that 
are oftentimes accompanied by imagistic reasoning in which stages in a pattern are 
seen as conveying some kind of mathematical relationship among their parts within 
an interpreted structure. In patterning activity, they enable a mapping between 
familiar (i.e., something already known) and unfamiliar patterns within an interpreted 
relational structure that lead to an algebraic generalization. The relation-mapping 
nature of such templates explains why, among the students, patterns with ambiguous 
stages such as Fig. 3 become well-defined and well-defined patterns such as Figs. 1 
and 2 are generalized accordingly with relative ease.
Healy and Hoyles (1999) have offered a construction approach framework in which 
they categorized the content of children’s generalizations on linear patterns to be 
falling under two approaches. A primary dilemma we had with their categorization 
was how to justify the conceptual divide between symbolic and iconic approaches. As 
data in this article show, the students’ visual templates reflect a synergistic 
relationship between the symbolic and the iconic that early research studies have 
oftentimes assumed to be two opposing approaches. On the basis of our findings, we 
propose a shift away from such binary practices in favor of visual templates that 
model a dynamic relationship between “phenomenological modes of production” and 
a system that is “mobilized for producing [the relevant] representations” (Duval, 
2006, p. 105). For example, the phenomenological use of visual templates in 
patterning activity has mobilized the use of the concept of multiplication and relevant 
analogical processes as reflected in the students’ imagistic reasoning across pattern 
tasks.
In this report, we may have given the impression that the generalizing route to figural 
patterns is bound to take shape inevitably when a visual template is tapped. 
Unfortunately, we do not have full access to all types of figural patterns. This means 
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number [stage 3] you get 2 [the two remaining squares on the row of stage 3]. If 
you subtract 1 from this stage number [stage 4], you get 3 [the three remaining 
squares on the row of stage 4]. 

Emma’s thinking in relation to the Fig. 2 pattern exemplifies the use of a 
pragmatic template. When Emma was presented with the Fig. 5 task, she initially 
inspected a part or parts in each cue that reflected a particular stage number. She then 
tried to use an additive template but failed. She then counted once again and observed 
that stage 1 had 4 sticks, that is, “four of stage 1.” In stage 2, she counted the total 
number of sticks (12) but then saw it as “[stage 2]  6.” She then verified it in stages 
3 and 4. She noticed that since stage 3 had 24 sticks, it was equal to “[stage 3] 8.” In 
stage 4, she claimed that 40 was “[stage 4]  10.” Next, she concluded that her direct 
formula for the total number of sticks was s = n  (2n + 2). In explaining her formula, 
she said that n referred to the stage number and that the numbers 4, 6, 8, and 10 were 
“even numbers and that to get to 10, I multiply it by 2 and add 2, so 2n + 2.” But 
when she was asked to explain how the formula might make sense in the given 
stages, she said, “I don’t know, I don’t see it in the picture.” 

Karen’s work on the Fig. 2 pattern also demonstrates the use of a pragmatic 
template. Initially, she saw that the total number of sticks on the perimeter of each 
square was 4n (“there are four sides and four groups of the stage number”). Then, she 
noticed that the interior sticks had the following relationship which she organized in a 
table: stage 1 had 0 sets of horizontal and vertical sticks; stage 2 had 2 sets of 2 
sticks; stage 3 had 4 sets of 3 sticks; stage 4 had 6 sets of 4 sticks; …; stage n had (2n 
– 2) sticks. In obtaining the expression 2n – 2, she employed the same numerical 
strategy that Emma used above. Thus, a pragmatic template was used in cases when 
students tried to construct a direct formula first using a numerical method that they 
would then try to justify visually. 
DISCUSSION  
Where the fundamental difference lies between multiplicative and pragmatic 
templates and, thus, a weakness in the latter, is at the stage of justification. Those 
who used a multiplicative template saw formula construction and justification to be 
two complementary processes, which illustrates the powerful view in which 
“representat-ion is explanation” (Leyton, 2002). In this view, representation emerges 
as an observer tries to describe a target stimulus “as a state (or sets of states) in a 
history that causally explains the stimulus” to him or her (p. 157). For example, 
Chloe saw that each cue in the Fig. 2 pattern consisted of several rows and columns 
of sticks. She then counted as follows: “[in stage 2,] there’s 2, 2, 2, 2, 2, and 2; [in 
stage 3,] there’s 3, 3, 3, 3, 3, 3,3, and 3; so there’s two groups of 3 twice [and] there's 
two 4 groups of 3 [and] two five groups of 4. So x = 2 times n + 1 times n.” In 
Dung’s case, he first specialized using stage 4. He initially saw 4 disjoint rows of 
squares and counted the total number of sticks per row. In counting the number of 
sticks per row, he saw 4 disjoint squares for a total of 16 sticks and then subtracted 
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the overlapping vertical sticks, 4 – 1 = 3. Since there were 4 rows, the total number of 
sticks was 4 x [(4 x 4) – (4 – 1)]. But he was aware that when the four disjoint rows 
of squares were combined to form stage 4, the interior horizontal sticks have been 
counted twice. In counting the total number of such non-overlapping interior 
horizontal sticks, he saw that there were (4 – 1) groups of 4 = 12 overlapping
horizontal sticks. Hence, his formula was s = [4n – (n –1)] x n – (n –1) x n. Those 
who employed a pragmatic template, on the other hand, established correct direct 
formulas but either were unable to justify them or produced inconsistent 
explanations. There was, it seems to be the case, an apparent disconnect between 
formula construction and justification. For example, while Emma was able to 
establish her formula, s = n(2n + 2), pragmatically for the Fig. 2 pattern, she, 
however, could not justify it.   
CONCLUSION
In this report, we provide evidence of visual-template use in the development of 
structure and pattern generalization. Both additive and multiplicative templates are 
endowed with conceptual content; they provide powerful building-block models that 
are oftentimes accompanied by imagistic reasoning in which stages in a pattern are 
seen as conveying some kind of mathematical relationship among their parts within 
an interpreted structure. In patterning activity, they enable a mapping between 
familiar (i.e., something already known) and unfamiliar patterns within an interpreted 
relational structure that lead to an algebraic generalization. The relation-mapping 
nature of such templates explains why, among the students, patterns with ambiguous 
stages such as Fig. 3 become well-defined and well-defined patterns such as Figs. 1 
and 2 are generalized accordingly with relative ease.
Healy and Hoyles (1999) have offered a construction approach framework in which 
they categorized the content of children’s generalizations on linear patterns to be 
falling under two approaches. A primary dilemma we had with their categorization 
was how to justify the conceptual divide between symbolic and iconic approaches. As 
data in this article show, the students’ visual templates reflect a synergistic 
relationship between the symbolic and the iconic that early research studies have 
oftentimes assumed to be two opposing approaches. On the basis of our findings, we 
propose a shift away from such binary practices in favor of visual templates that 
model a dynamic relationship between “phenomenological modes of production” and 
a system that is “mobilized for producing [the relevant] representations” (Duval, 
2006, p. 105). For example, the phenomenological use of visual templates in 
patterning activity has mobilized the use of the concept of multiplication and relevant 
analogical processes as reflected in the students’ imagistic reasoning across pattern 
tasks.
In this report, we may have given the impression that the generalizing route to figural 
patterns is bound to take shape inevitably when a visual template is tapped. 
Unfortunately, we do not have full access to all types of figural patterns. This means 
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to say that, while a visual template can assist in generalizing, it may be limited to 
patterns of a particular type.
Another unresolved issue is that we have no empirical knowledge of factors (say, 
visual attention) that contribute to choosing one template over another. Also, due to 
the small number of students who employed an additive template in this study, we 
could not establish the possibility of continued template preference, especially with 
more learning. For example, if Emma were exposed to more activities that explicitly 
encouraged her to use a multiplicative template, would her preference for an additive 
template diminish over time? There is also the question of asymmetrical (versus 
mutual) translatability in template use, that is, while most students with a 
multiplicative template could easily transition to an additive template, we observe the 
considerable difficulty of, say, Emma, in transitioning from an additive to a 
multiplicative template.    
Also, research is needed in assessing the existence, nature, and content of visual 
templates among children and adult learners (especially teachers) who deal with 
patterns in their mathematical experiences. If both groups use them in obtaining a 
generalization for a given pattern, it is interesting to compare such templates within 
and across grade levels or age groups by way of, say, constraints in both 
developmental and non-developmental senses. Also, it is possible that other types of 
visual templates exist on the basis of personal theories and/or other learning 
experiences or contexts that influence the content of their relevant pattern 
generalization strategies. In this report, for example, the cognitive content of the 
students’ visual templates could be traced to their classroom experiences on 
patterning. Younger children and older adults may derive the sources of their visual 
templates in some other way. 
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This paper reports preliminary findings of a research study which aims to explore 
how students’ preparation for the examinations conducted by different examination 
systems, in Pakistan, influences their construction for non-routine questions. The 
study uses the students’ construction in problem solving as a window on the 
enculturation processes of teaching and learning through the curriculum as written 
and tested. This paper presents analyses of the parts of the curricula in relation to the 
one of the non-routine questions, and responses of the students to that question. 

INTRODUCTION
This paper reports some findings from a study which entailed clinical interviews with 
students who had completed their secondary school education in one of the three 
different examination systems, in Pakistan. The study is an attempt to understand 
students’ preparedness for higher secondary education where students from all 
systems come together to study the same course.The study aims to find out about 
students’ reasoning* in non-routine questions; identify similarities and differences in 
reasoning within and across the students from different examination backgrounds; 
and infer the influence of secondary school curricula on students’ reasoning. Ten 
pairs of students who were recently qualified from each secondary examination 
system and had just started higher secondary course in a college participated in the 
study. In the same setting, each pair comprised of students from the same 
examination system was asked to solve four non-routine questions designed for the 
study. This paper will present analyses of the parts of the exam curricula which relate 
to the one of these non-routine questions and responses of students from to that 
question.  This paper is concerned with only two of the three examination systems 
which portray distinctly contrasting images of mathematics. 

THEORETICAL FRAMEWORK 
The basic assumption of this study is that the shared activity of teaching and learning 
in a school is mediated through tools or artefacts available in the cultural and 
historical context within or outside the school (Vygotsky, 1978). In a classroom, the 
objects of both activities, i.e. learning and teaching, are the concepts of mathematics. 
Both the actors (teacher and student) mediate mathematical concepts through 
curriculum material. Here ‘curriculum’ refers to any written text that teacher and 
students use during the course of teaching and learning respectively. In real 
classroom situation, the two activities are not disjointed. In a successful situation, 
teaching shapes learning and learning informs teaching. Within sociocultural 
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perspective, teaching and learning are conceptualized as socially shared activities in 
the construction of knowledge (John- Steiner & Mahn, 1996, Voigt, 1996).  
Like many countries where teachers derive their teaching approaches mainly from 
textbooks ( Fan & Kaeley, 2000), in Pakistan, too and to a greater extent, teaching 
and learning revolve around the written curriculum, mostly textbooks and past exam 
papers, from which teachers and students derive sign, symbols, and language of 
representations (Riaz, 2008, Fakir, 2004). Bernstein’s (1977) notion of 
“classification” and “frame” across three message systems i.e. pedagogy, curriculum, 
and evaluation, in realization of formal educational knowledge, can be used in 
conceptualising how construction of concepts of mathematics occurs. In Pakistani 
classrooms, strong “classification” and “frame” (p. 206) reduce the power of students 
and teacher over what to learn and what to teach respectively. In this situation, it is 
not unrealistic to think that the students’ formal mathematical knowledge is the 
product of interactions between teacher and student mediated through curriculum 
material in order to meet the external demand of the examinations. 
In this study participating students came from the schools where they experienced 
mathematics learning in different cultural and historical contexts due to the different 
dominant images and approaches in curricula. Therefore, the assumption was they 
had different ways of learning mathematics. This study will explore how their way of 
learning mathematics helped them construct, extend, or modify their mathematical 
concepts in order to fulfil the demand of non-routine questions they encountered in 
setting of this study.  

NON-ROUTINE QUESTION 
The term non-routine refers in this study to questions which students cannot solve by 
rehearsed procedures; rather they need to construct novel methods to find solutions. 
Detailed curriculum analysis and pilot testing helped me consider the questions as 
non-routine from students’ perspective. One of the non-routine questions used in the 
study is given below. 

After analysing curricula, textbooks and examination questions of the past ten years, I 
designed the question for this study with the assumption that the prerequisite 
knowledge for the chosen question, i.e. the concept of the circle and the related terms, 
postulates, theorems, and geometrical constructions, was available to all the students. 
The proof of the theorem about the perpendicular bisector of chords, along with the 
other theorems on angle properties of a circle, is presumably underlying the 
mathematical concepts of the chosen question. These properties have been 
predominant in the syllabi, textbooks and examination papers of all the systems.  

 “Suppose there is a big circle on your school ground.
   You need to locate its centre. What will do?” 
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Despite having familiarity with the underlying mathematical concepts, most of the 
students would not find any ready-made solution for the question, rather they would 
synthesise their idiosyncratic and novel solution strategy by trying out different ideas 
they had worked out through studying mathematics in schools.  
Though the chosen question would not limit students to using any particular method, 
(it could be solved using variety of informal and formal reasoning), the question was 
intentionally set to investigate the influence of students’ curricular experiences on 
their reasoning or change of reasoning during working on the question. That is why I 
will describe briefly the analysis of each curriculum in relation to the chosen question 
to hypothesise how curriculum experience could supposedly influence students’ 
reasoning for the question. Then this hypothesis will be checked in the light of 
empirical data from the students’ working on the problem.  
Analysis of curricula 
The curriculum of one of the examinations, International Cambridge Examination 
(ICE) lays emphasis on the use of mathematical content, i.e. angle properties of a 
circle in a specific activity such as calculating angles in a variety of figures drawn on 
paper. In doing this activity, the mathematical content serves as a set of tools.  
In the standard textbook, though they present formal proof to justify the properties, 
their focus is on solved examples and exercises giving students practice in calculating 
angles using the properties. The exercise questions vary in their complexity. There 
are questions which can be solved by producing one argument linking directly the 
given attribute to the required attribute, and also questions which require a chain or 
chains of arguments linking given attribute to the several intermediate stages and then 
finally to the required attribute. ‘Calculating angle’ questions have appeared in exam 
papers for last ten years but there are no questions on proofs and proving. This shows 
that ICE curriculum has a clear inclination towards viewing mathematics as a tool for 
calculating unknown attributes of a figure and this follows uniformly through the 
curriculum , textbooks and finally to exam questions.   
There is a separate chapter on locus and constructions. They introduce major 
categories of loci by providing instructions to carry out practical activities. Proving is 
one of those activities. Further there are some worked examples followed by 
exercises on how to locate the position of a point by tracing intersecting loci. These 
types of questions have also quite frequently appeared in the exam papers. 
I conclude the analysis of the specific content of the textbooks used in preparation of 
ICE by noting that their overall approach differs from the deductive structure of 
mathematics. It does not even fit Van Hieles’s (1986) levels of understanding, which 
suggest that the student might apply certain new rules unconsciously until at a certain 
moment he becomes conscious about them. Rather the text intends to make students 
conscious about the rule from the very beginning. 
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perspective, teaching and learning are conceptualized as socially shared activities in 
the construction of knowledge (John- Steiner & Mahn, 1996, Voigt, 1996).  
Like many countries where teachers derive their teaching approaches mainly from 
textbooks ( Fan & Kaeley, 2000), in Pakistan, too and to a greater extent, teaching 
and learning revolve around the written curriculum, mostly textbooks and past exam 
papers, from which teachers and students derive sign, symbols, and language of 
representations (Riaz, 2008, Fakir, 2004). Bernstein’s (1977) notion of 
“classification” and “frame” across three message systems i.e. pedagogy, curriculum, 
and evaluation, in realization of formal educational knowledge, can be used in 
conceptualising how construction of concepts of mathematics occurs. In Pakistani 
classrooms, strong “classification” and “frame” (p. 206) reduce the power of students 
and teacher over what to learn and what to teach respectively. In this situation, it is 
not unrealistic to think that the students’ formal mathematical knowledge is the 
product of interactions between teacher and student mediated through curriculum 
material in order to meet the external demand of the examinations. 
In this study participating students came from the schools where they experienced 
mathematics learning in different cultural and historical contexts due to the different 
dominant images and approaches in curricula. Therefore, the assumption was they 
had different ways of learning mathematics. This study will explore how their way of 
learning mathematics helped them construct, extend, or modify their mathematical 
concepts in order to fulfil the demand of non-routine questions they encountered in 
setting of this study.  

NON-ROUTINE QUESTION 
The term non-routine refers in this study to questions which students cannot solve by 
rehearsed procedures; rather they need to construct novel methods to find solutions. 
Detailed curriculum analysis and pilot testing helped me consider the questions as 
non-routine from students’ perspective. One of the non-routine questions used in the 
study is given below. 

After analysing curricula, textbooks and examination questions of the past ten years, I 
designed the question for this study with the assumption that the prerequisite 
knowledge for the chosen question, i.e. the concept of the circle and the related terms, 
postulates, theorems, and geometrical constructions, was available to all the students. 
The proof of the theorem about the perpendicular bisector of chords, along with the 
other theorems on angle properties of a circle, is presumably underlying the 
mathematical concepts of the chosen question. These properties have been 
predominant in the syllabi, textbooks and examination papers of all the systems.  

 “Suppose there is a big circle on your school ground.
   You need to locate its centre. What will do?” 
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Despite having familiarity with the underlying mathematical concepts, most of the 
students would not find any ready-made solution for the question, rather they would 
synthesise their idiosyncratic and novel solution strategy by trying out different ideas 
they had worked out through studying mathematics in schools.  
Though the chosen question would not limit students to using any particular method, 
(it could be solved using variety of informal and formal reasoning), the question was 
intentionally set to investigate the influence of students’ curricular experiences on 
their reasoning or change of reasoning during working on the question. That is why I 
will describe briefly the analysis of each curriculum in relation to the chosen question 
to hypothesise how curriculum experience could supposedly influence students’ 
reasoning for the question. Then this hypothesis will be checked in the light of 
empirical data from the students’ working on the problem.  
Analysis of curricula 
The curriculum of one of the examinations, International Cambridge Examination 
(ICE) lays emphasis on the use of mathematical content, i.e. angle properties of a 
circle in a specific activity such as calculating angles in a variety of figures drawn on 
paper. In doing this activity, the mathematical content serves as a set of tools.  
In the standard textbook, though they present formal proof to justify the properties, 
their focus is on solved examples and exercises giving students practice in calculating 
angles using the properties. The exercise questions vary in their complexity. There 
are questions which can be solved by producing one argument linking directly the 
given attribute to the required attribute, and also questions which require a chain or 
chains of arguments linking given attribute to the several intermediate stages and then 
finally to the required attribute. ‘Calculating angle’ questions have appeared in exam 
papers for last ten years but there are no questions on proofs and proving. This shows 
that ICE curriculum has a clear inclination towards viewing mathematics as a tool for 
calculating unknown attributes of a figure and this follows uniformly through the 
curriculum , textbooks and finally to exam questions.   
There is a separate chapter on locus and constructions. They introduce major 
categories of loci by providing instructions to carry out practical activities. Proving is 
one of those activities. Further there are some worked examples followed by 
exercises on how to locate the position of a point by tracing intersecting loci. These 
types of questions have also quite frequently appeared in the exam papers. 
I conclude the analysis of the specific content of the textbooks used in preparation of 
ICE by noting that their overall approach differs from the deductive structure of 
mathematics. It does not even fit Van Hieles’s (1986) levels of understanding, which 
suggest that the student might apply certain new rules unconsciously until at a certain 
moment he becomes conscious about them. Rather the text intends to make students 
conscious about the rule from the very beginning. 
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Contrary to its counterpart, the emphasis of the curriculum of Public Examination 
System (PES) is on the mathematical content per se, i.e. theorems on circle, and it 
suggests formal proofs and proving as means to explore the content. The curriculum 
seems to portray the absolutist perspective that mathematics is a set of truths, 
discovered by purely deductive reasoning proceeding from accepted axioms to 
established truths. The breadth of the curriculum is almost the same to that of ICE, as 
it covers theorems on the same angle properties which are covered in ICE curriculum.  
The standard textbook for PES presents definitions of the related key terms with 
some discussion about them. Then it presents two-column statement and reason 
proofs of each theorem mentioned in the curriculum. Finally, it presents some 
exercise questions on the related concepts.
In the exercise, there are mainly factual questions where students need to recall exact 
definitions or draw geometrical objects by recalling their definitions or images. There 
are two questions on proving and construction, which expect students to use the given 
information in establishing new facts. These questions match the definition of non-
routine question used in this study. These questions are as follows. 
“Prove that a rectangle is a cyclic quadrilateral.” and “Take any three non-collinear 
points. Draw a circle passing through the points.” (Q6 & Q13. p.240) 
As these questions come in the text just after introducing the standard method and 
layout (two column-statement and reason format) of proving the theorems, it provides 
students with a context in which they can use their experience of learning through 
proving theorems. Nevertheless, the exam papers do not have this type of questions, 
rather they only ask students to prove traditional theorems using standard format, so 
the two textbooks’ non-routine questions seem to be merely a cosmetic phenomenon.  
Another chapter on practical geometry provides stepwise geometrical construction of
the circumcircle, incircle, and escribed circle of a triangle. At the end, there are some 
exercises for providing practice in drawing these geometrical objects with different 
measurements and with slight variations in the conditions.
The two chapters appear in the textbook entirely isolated from each other. There is no 
attempt to mention the connections between the ideas presented, through proofs and 
proving the theorems in one chapter and the instructions for drawing geometrical 
objects in another chapter. For example, Chapter 11 (p 235) provides a sequence of 
arguments to prove that if a diameter of a circle is perpendicular to a chord, it bisects 
the chord and if a diameter of circle bisects a chord, it will be perpendicular to the 
chord, whereas Chapter 12 (p. 249) provides stepwise instructions for the 
construction of circumcircle of a triangle, where they demonstrate that right bisectors 
of the sides of a triangle meet at one point and that point will serve as a centre for the 
required circle. I reiterate that for many teachers the textbooks are the only resources 
and their “lessons are confined solely to the textbooks” (Riaz, 2004, p. 146). So, it is 
likely that the teachers do not encourage students make connections between the 
ideas present in these two chapters, rather they engage students in, as Swan (2006) 
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mentioned, “practising skills and notation without having any substantial 
understanding of underlying concepts” ( p. 16). I conclude on the basis of curriculum 
analysis and the understanding we have about the general trend of teaching and 
learning in Pakistani schools that the chosen question for this study will indeed be 
non-routine for many students. Though one cannot disregard the role of individual 
teachers, the expectations of the curriculum and examination suggest that students 
would have had minimal experience in going beyond the periphery of the curriculum. 
However they would be familiar with several mathematical concepts which they 
could integrate and employ in the question. I decided that a clinical interview, where 
they would work with an ‘expert” and a peer, would provide them with an 
opportunity to put their mathematical ideas into perspective and demonstrate quality 
of their learning. Through this activity the research aims to generate evidence about 
their “zone of development”.  

ANALYSIS OF STUDENTS’ WORK 
The following broad categories of students’ ways of approaching to the question were 
identified through juxtaposing the data collected through the interviews, written work 
and field notes. The numbers in the brackets with each response show the frequency 
of responses among students of particular examination systems.  
Using visual perception 
This is the category of responses where students did not use mathematical knowledge 
explicitly. For example, one student from PES argued that “the centre of circle is the 
point where vertical and horizontal straight lines [drawn across the centre] meet”(Fig 
1). Another example from the same system is shown in Fig 2. They drew a “square” 
around a circle, joined the opposite “corners” of the “square” by drawing lines 
[diagonals] and described that the centre would be the point where these lines met. 

     Fig 1:  (PES: 3)          Fig 2 (PES: 2) 

            
Informal use of factual knowledge 
Here students used strategies based on trial and error methods using mathematical 
knowledge explicitly. For example, the way they used to find the longest chord of the 
circle shown in Fig 3. Some students suggested drawing an equilateral triangle, by 
trial and error method, on the circle. They mentioned that the centre of the triangle 
would be the centre of circle, though they were not sure how to find that centre. 
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Contrary to its counterpart, the emphasis of the curriculum of Public Examination 
System (PES) is on the mathematical content per se, i.e. theorems on circle, and it 
suggests formal proofs and proving as means to explore the content. The curriculum 
seems to portray the absolutist perspective that mathematics is a set of truths, 
discovered by purely deductive reasoning proceeding from accepted axioms to 
established truths. The breadth of the curriculum is almost the same to that of ICE, as 
it covers theorems on the same angle properties which are covered in ICE curriculum.  
The standard textbook for PES presents definitions of the related key terms with 
some discussion about them. Then it presents two-column statement and reason 
proofs of each theorem mentioned in the curriculum. Finally, it presents some 
exercise questions on the related concepts.
In the exercise, there are mainly factual questions where students need to recall exact 
definitions or draw geometrical objects by recalling their definitions or images. There 
are two questions on proving and construction, which expect students to use the given 
information in establishing new facts. These questions match the definition of non-
routine question used in this study. These questions are as follows. 
“Prove that a rectangle is a cyclic quadrilateral.” and “Take any three non-collinear 
points. Draw a circle passing through the points.” (Q6 & Q13. p.240) 
As these questions come in the text just after introducing the standard method and 
layout (two column-statement and reason format) of proving the theorems, it provides 
students with a context in which they can use their experience of learning through 
proving theorems. Nevertheless, the exam papers do not have this type of questions, 
rather they only ask students to prove traditional theorems using standard format, so 
the two textbooks’ non-routine questions seem to be merely a cosmetic phenomenon.  
Another chapter on practical geometry provides stepwise geometrical construction of
the circumcircle, incircle, and escribed circle of a triangle. At the end, there are some 
exercises for providing practice in drawing these geometrical objects with different 
measurements and with slight variations in the conditions.
The two chapters appear in the textbook entirely isolated from each other. There is no 
attempt to mention the connections between the ideas presented, through proofs and 
proving the theorems in one chapter and the instructions for drawing geometrical 
objects in another chapter. For example, Chapter 11 (p 235) provides a sequence of 
arguments to prove that if a diameter of a circle is perpendicular to a chord, it bisects 
the chord and if a diameter of circle bisects a chord, it will be perpendicular to the 
chord, whereas Chapter 12 (p. 249) provides stepwise instructions for the 
construction of circumcircle of a triangle, where they demonstrate that right bisectors 
of the sides of a triangle meet at one point and that point will serve as a centre for the 
required circle. I reiterate that for many teachers the textbooks are the only resources 
and their “lessons are confined solely to the textbooks” (Riaz, 2004, p. 146). So, it is 
likely that the teachers do not encourage students make connections between the 
ideas present in these two chapters, rather they engage students in, as Swan (2006) 
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mentioned, “practising skills and notation without having any substantial 
understanding of underlying concepts” ( p. 16). I conclude on the basis of curriculum 
analysis and the understanding we have about the general trend of teaching and 
learning in Pakistani schools that the chosen question for this study will indeed be 
non-routine for many students. Though one cannot disregard the role of individual 
teachers, the expectations of the curriculum and examination suggest that students 
would have had minimal experience in going beyond the periphery of the curriculum. 
However they would be familiar with several mathematical concepts which they 
could integrate and employ in the question. I decided that a clinical interview, where 
they would work with an ‘expert” and a peer, would provide them with an 
opportunity to put their mathematical ideas into perspective and demonstrate quality 
of their learning. Through this activity the research aims to generate evidence about 
their “zone of development”.  

ANALYSIS OF STUDENTS’ WORK 
The following broad categories of students’ ways of approaching to the question were 
identified through juxtaposing the data collected through the interviews, written work 
and field notes. The numbers in the brackets with each response show the frequency 
of responses among students of particular examination systems.  
Using visual perception 
This is the category of responses where students did not use mathematical knowledge 
explicitly. For example, one student from PES argued that “the centre of circle is the 
point where vertical and horizontal straight lines [drawn across the centre] meet”(Fig 
1). Another example from the same system is shown in Fig 2. They drew a “square” 
around a circle, joined the opposite “corners” of the “square” by drawing lines 
[diagonals] and described that the centre would be the point where these lines met. 

     Fig 1:  (PES: 3)          Fig 2 (PES: 2) 

            
Informal use of factual knowledge 
Here students used strategies based on trial and error methods using mathematical 
knowledge explicitly. For example, the way they used to find the longest chord of the 
circle shown in Fig 3. Some students suggested drawing an equilateral triangle, by 
trial and error method, on the circle. They mentioned that the centre of the triangle 
would be the centre of circle, though they were not sure how to find that centre. 
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             Fig 3:  (PES: 6, ICE: 4)   Fig 4:  (PES: 1, ICE: 2). 

Using hands-on activity (PES: 5, ICE: 3) 
The students suggested making a tool with three sticks joining to make an angle of 
120 degree with each other) and placing it uniformly on the circle. They thought that 
the point where all three sticks met would be the centre of circle. Some students used 
a string to put it around a circle to find circumference of a circle. 
By using formula (PES: 5, ICE: 2)
After finding the circumference by hands-on activity, they suggested using the 
formula c= 2  r to find the radius of the circle. 
Formal use factual knowledge (ICE: 7). 
They used methods based on angle properties of a circle. The example below shows 
one of the responses which falls in this category 
“Draw a chord and then bisect it [perpendicularly]. Let the bisector touch the two 
points on the circle. Find the mid point of the bisector. That will be the centre of the 
circle.” (A response of a student from ICE)  
DISCUSSION 
Analysis of the responses of students from PES shows that they mostly used methods 
based on visual perception. The most common and immediate response was their 
effort to divide the circle into four equal parts by drawing two lines across it. Some of 
them used trial- &-error by applying particular mathematical facts explicitly like ‘the 
largest chord of a circle will pass through its centre’, or they marked some points as 
centres at random and then measured the distances between each of those points and 
the points on the circle to check which marked point fulfilled the condition of being 
centre by having equal distances from different points on the circle. Their use of 
mathematical terms like “straight line”, “vertical line”, or “line touching to the 
centre” was also not mathematically precise. They preferred to use freehand drawing 
although geometrical instruments were available to them. There was no evidence that 
the students’ experiences of learning the theorems on circle or geometrical 
construction could help them design strategies for this question. At the end of the 
session, on request, they successfully recalled the theorems they had learnt to prove 
or the geometrical objects they had learnt to draw in their last year of schooling, but 
even retrospectively they could not identify the links between the question and their 
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experience of learning geometry in the past year. The main issue was that the students 
faced difficulties in perceiving the type of the problem.  The following quote from 
one of the students exemplifies their perception about the nature of the question. 
“In a theorem question, there are always some things given and some things we have 
to prove but in this question no information are given and nothing is there to prove...I 
think it is like a practical question”. Another student from the same system argued, 
“Usually we are given radius and we are asked to draw a circle, but in the question 
the circle is given and its radius is not.” 
Many students from the ICE background also started with trial-&-error but they soon 
realized they need to have a formal concise method. After that, most of them did 
successful and unsuccessful attempts to recall and apply angle properties of a circle 
like “we should draw chords because their [perpendicular, as it appears from their 
drawings] bisectors will pass through the centre of circle.” However their use of those 
properties indicates that they used them as factual knowledge and produced only 
empirical evidence rather than reasoning, when asked for justification of the facts. 
This phenomenon seems to be a representation of their experience of learning the 
rules of the discourse during their previous year of schooling.  

CONCLUSION
From this analysis of one question and the relevant parts of curricula, it looks as if the 
systems indeed do prepare students differently. As evidenced by their distinctly 
different responses to the same prompts, it seems that the students who learned the 
proofs in a “context free” environment could not use them in representing a new 
situation. And the students who learnt to use the proofs to solve problems seem to 
have difficulty in representing their understanding in the form of deductive 
arguments. While difference is not in itself a surprise, the nature of the difference is 
of concern when students from different backgrounds are compared to each other.  
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the point where all three sticks met would be the centre of circle. Some students used 
a string to put it around a circle to find circumference of a circle. 
By using formula (PES: 5, ICE: 2)
After finding the circumference by hands-on activity, they suggested using the 
formula c= 2  r to find the radius of the circle. 
Formal use factual knowledge (ICE: 7). 
They used methods based on angle properties of a circle. The example below shows 
one of the responses which falls in this category 
“Draw a chord and then bisect it [perpendicularly]. Let the bisector touch the two 
points on the circle. Find the mid point of the bisector. That will be the centre of the 
circle.” (A response of a student from ICE)  
DISCUSSION 
Analysis of the responses of students from PES shows that they mostly used methods 
based on visual perception. The most common and immediate response was their 
effort to divide the circle into four equal parts by drawing two lines across it. Some of 
them used trial- &-error by applying particular mathematical facts explicitly like ‘the 
largest chord of a circle will pass through its centre’, or they marked some points as 
centres at random and then measured the distances between each of those points and 
the points on the circle to check which marked point fulfilled the condition of being 
centre by having equal distances from different points on the circle. Their use of 
mathematical terms like “straight line”, “vertical line”, or “line touching to the 
centre” was also not mathematically precise. They preferred to use freehand drawing 
although geometrical instruments were available to them. There was no evidence that 
the students’ experiences of learning the theorems on circle or geometrical 
construction could help them design strategies for this question. At the end of the 
session, on request, they successfully recalled the theorems they had learnt to prove 
or the geometrical objects they had learnt to draw in their last year of schooling, but 
even retrospectively they could not identify the links between the question and their 
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experience of learning geometry in the past year. The main issue was that the students 
faced difficulties in perceiving the type of the problem.  The following quote from 
one of the students exemplifies their perception about the nature of the question. 
“In a theorem question, there are always some things given and some things we have 
to prove but in this question no information are given and nothing is there to prove...I 
think it is like a practical question”. Another student from the same system argued, 
“Usually we are given radius and we are asked to draw a circle, but in the question 
the circle is given and its radius is not.” 
Many students from the ICE background also started with trial-&-error but they soon 
realized they need to have a formal concise method. After that, most of them did 
successful and unsuccessful attempts to recall and apply angle properties of a circle 
like “we should draw chords because their [perpendicular, as it appears from their 
drawings] bisectors will pass through the centre of circle.” However their use of those 
properties indicates that they used them as factual knowledge and produced only 
empirical evidence rather than reasoning, when asked for justification of the facts. 
This phenomenon seems to be a representation of their experience of learning the 
rules of the discourse during their previous year of schooling.  

CONCLUSION
From this analysis of one question and the relevant parts of curricula, it looks as if the 
systems indeed do prepare students differently. As evidenced by their distinctly 
different responses to the same prompts, it seems that the students who learned the 
proofs in a “context free” environment could not use them in representing a new 
situation. And the students who learnt to use the proofs to solve problems seem to 
have difficulty in representing their understanding in the form of deductive 
arguments. While difference is not in itself a surprise, the nature of the difference is 
of concern when students from different backgrounds are compared to each other.  
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reasoning by analogy; exploring specific cases; generalizing; inductive reasoning 
(based on observation); deductive reasoning (based on  pre-established premises).  
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A TALE OF TWO LESSONS DURING LESSON STUDY PROCESS 
Naomi Robinson (1,2), Roza Leikin (1)

 (1) University of Haifa, (2) Weizmann Institute of Science,  Israel 
Improving quality of mathematics lessons is a well known purpose of teacher 
education. Lesson Study is considered as a process that leads teachers to a better 
understanding of student thinking in order to develop lessons that advance student 
learning of mathematics. In this paper we will focus on two lessons which were 
planned, conducted and reflected on during one Lesson Study cycle with one team of 
elementary mathematics teachers. We consider these lessons as personal stories of 
one teacher's development. For each of the two lessons we analyse two levels: 
macro-level analysis for the structure of the lessons and micro-level analysis that 
zooms in on students’ learning.

BACKGROUND
The problem of how to improve teaching and learning of mathematics has been 
talked about by policymakers, researchers, teacher educators, teachers, parents and 
the public all over the world for some decades. Stigler and Hiebert (1999) wrote:

Lesson study is a process of improvement that is expected to produce small, incremental 
improvements in teaching over long periods of time (p. 121).

During Lesson Study (LS), groups of teachers meet regularly to work on design, 
implementation and improvement of one or several lessons. Members of the team 
plan the lesson, and one member of the team teaches the lesson while fellow teachers 
observe and collect data on students' learning. After the lesson, the team discusses the 
lesson. Data from the discussion session are used to refine the lesson for a repeated 
teaching of the lesson in a second class. Then the teaching, observation and 
discussion session repeat. At the end of this cycle (see Figure 1) new ideas about 
teaching and learning based upon a better understanding of student thinking, is 
constructed within the team of teachers (Wang-Iverson & Yoshida, 2005). 

Figure 1: The LS Cycle 
The LS process has some unique characteristics. LS keeps students’ thinking and 
learning as the focus of the teachers' attention. LS provides teachers with opportunity 
to carefully examine student learning and understanding, and to reflect on and for a 
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lesson, and thus encourages teachers' developing understanding as a basis for their 
life-long learning (Hiebert, Morris, & Glass, 2003; Jaworski & Gellert, 2003). During 
LS teachers reflect on a particular lesson in which all the team is involved, observe 
and collect data on students' learning. And, the collaboration of teachers during LS, 
can support teachers' life-long learning, and have a long term influence on students’ 
learning of mathematics (Lewis & Tsuchida, 1998; Wang-Iverson & Yoshida, 2005). 
In this paper we will focus on two lessons which were planned, conducted and 
reflected on during one LS cycle with one team of teachers. We analyse the effect of 
this process on the quality of the mathematics lesson as reflected in the differences 
between the first and the second lessons in the cycle.

THE SETTING AND DATA COLLECTION 
The data presented in this paper is a part of a wider study with two teams of 
elementary school teachers, teaching mathematics in grades 3-6. While the larger 
study explores for each team three learning cycles with two mathematics lessons, in 
this paper we analyse data collected during one (second) cycle of LS with one team 
of five teachers.  We use the following data: (1) lesson planning team session; (2) 
lesson taught by one teacher and observed by the other members of the team; (3) 
reflective discussion of the lesson aimed at planning an improved version of the 
lesson; (4) teaching an improved lesson by the same teacher and observation of the 
lesson by the same team members; and (5) final reflective discussion.
All the data was video-recorded and the artefacts (e.g., lesson plans, lesson 
observations recorded by the teachers and written protocols) were collected. 
Videotaped meetings, lessons and interviews were transcribed.  

DATA ANALYSIS 
Similarly to Leikin & Rota (2006) we perform a comparison between the lessons 
based on two types of analysis. Macro analysis focuses on the lesson structure as 
consisting of: (1) opening, (2) students’ mathematical activity independent of the 
teacher, and (3) summarising discussion. Micro analysis zooms in on:  
(a) the nature of mathematics tasks, their suitability to a particular classroom, and (b) 
teacher's attentiveness to student responses, and managing a lesson according to these 
responses.
Since personal stories have been acknowledged as means of presenting meaningful 
processes of teaching and learning to teach (Krainer, 2001; Zaslavsky & Leikin, 
2004), we choose to present here the story of the lessons as the story of teacher's 
development through LS. Our story is about the teacher (Leah) who taught the two 
lessons. The topic of the lesson chosen by the teachers for grade five was "perimeters 
and areas". Leah volunteered to teach the lessons.  
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THE FIRST LESSON 
Planning Lesson 1 
Before the lesson, during the planning session the team discussed the purpose of the 
lesson. Ronnie, one of the fellow teachers, proposed to present the students with a 
“complex” (in her words) figure, for which they would find the perimeter and the 
area. She claimed that this is the best way of raising and coping  with the mistake of 
confusing the ways of finding the area of the “complex” figure (addition of the areas 
of the sub figures) with finding the perimeter the same (addition of the perimeters of 
the sub figures).

Ronnie: I think they need to know how to find a perimeter and areas of a 
“complex” figure, for instance, figure of “house” with rectangle, 
triangle…

Tali: But it will be difficult for them to find the perimeter…
Ronnie: This is the point. I know it will be difficult but I want them to face this 

difficulty. This is the best way of raising and coping with the mistake of 
confusing the ways of finding the area of the “complex” figure by 
addition of the areas of the sub figures, with finding the perimeter by 
addition of the perimeters of the sub figures.

Leah: O.K. So the purpose of the lesson is that each student should find the area 
and the perimeter of a figure which composed of a triangle, a square and a 
rectangle.

Performing Lesson 1 
During the opening of the lesson (that lasted twenty minutes) Leah repeated 
important concepts for the lesson, such as: What is the perimeter of a figure? What is 
the area of a figure? How to find the area or the perimeter of a square? Of a 
rectangle? Of a triangle?  

Leah:  What is a perimeter of a figure? 
Student:  The whole thing that is outside the figure. 
Leah:  Do you mean that this is the perimeter?  [draws a rectangle on the board 

and colours the area outside it]. 
Student:  No. I mean the sides of the figure. 
Leah:  O.K. Now, I want to ask you how we can find the area of a triangle.

When the introduction part was finished Leah asked students to find the perimeter 
and area of the figure (Figure 2). Students worked on the task independently of the 
teacher, sitting in six heterogeneous groups. 
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lesson taught by one teacher and observed by the other members of the team; (3) 
reflective discussion of the lesson aimed at planning an improved version of the 
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Since personal stories have been acknowledged as means of presenting meaningful 
processes of teaching and learning to teach (Krainer, 2001; Zaslavsky & Leikin, 
2004), we choose to present here the story of the lessons as the story of teacher's 
development through LS. Our story is about the teacher (Leah) who taught the two 
lessons. The topic of the lesson chosen by the teachers for grade five was "perimeters 
and areas". Leah volunteered to teach the lessons.  
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THE FIRST LESSON 
Planning Lesson 1 
Before the lesson, during the planning session the team discussed the purpose of the 
lesson. Ronnie, one of the fellow teachers, proposed to present the students with a 
“complex” (in her words) figure, for which they would find the perimeter and the 
area. She claimed that this is the best way of raising and coping  with the mistake of 
confusing the ways of finding the area of the “complex” figure (addition of the areas 
of the sub figures) with finding the perimeter the same (addition of the perimeters of 
the sub figures).

Ronnie: I think they need to know how to find a perimeter and areas of a 
“complex” figure, for instance, figure of “house” with rectangle, 
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Tali: But it will be difficult for them to find the perimeter…
Ronnie: This is the point. I know it will be difficult but I want them to face this 
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confusing the ways of finding the area of the “complex” figure by 
addition of the areas of the sub figures, with finding the perimeter by 
addition of the perimeters of the sub figures.

Leah: O.K. So the purpose of the lesson is that each student should find the area 
and the perimeter of a figure which composed of a triangle, a square and a 
rectangle.

Performing Lesson 1 
During the opening of the lesson (that lasted twenty minutes) Leah repeated 
important concepts for the lesson, such as: What is the perimeter of a figure? What is 
the area of a figure? How to find the area or the perimeter of a square? Of a 
rectangle? Of a triangle?  

Leah:  What is a perimeter of a figure? 
Student:  The whole thing that is outside the figure. 
Leah:  Do you mean that this is the perimeter?  [draws a rectangle on the board 

and colours the area outside it]. 
Student:  No. I mean the sides of the figure. 
Leah:  O.K. Now, I want to ask you how we can find the area of a triangle.

When the introduction part was finished Leah asked students to find the perimeter 
and area of the figure (Figure 2). Students worked on the task independently of the 
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Figure 2: The figure presented to students during the first lesson 
While the students worked on the task, Leah realised that for some students the task 
was too difficult and for the others it was not challenging enough. Some of them 
finished the work fast, whereas some others could not cope with it and needed the 
teacher's help. After fifteen minutes of work in small groups, Leah stopped this part 
of the lesson.
The summarising discussion that Leah managed in the classroom was first based on 
her observation of the students' work in small groups. Leah saw that students finished 
with two different results for the perimeter of the figure. She recognized that many 
students made the mistake of finding the perimeter of the figure by adding the 
perimeters of the sub-figures. Thus she asked: 

Leah:  I want to hear now how each group found the perimeter of the figure? 
 Gal:  Each side of the square is of 8 cm, and the rectangle has two sides of 8 cm 

and two (sides) of 2 cm, and the triangle has two sides of 5 cm and one 8 
cm, so we added it all and got 70 cm. 

Leah:  Did anybody get a different result? 
Yuval:  We got 38 cm. We didn’t count the interior sides of the figure. 
Leah:  Why? 
Yuval:  It is a perimeter of the figure. We need to add the sides that surround the 

figure and not the sides inside the figure.    

During the summarising discussion, the teacher asked all the students two questions: 
Can you draw another figure with a perimeter of 38 cm? Can you draw another figure 
with the area of 92 cm 2  (as the given figure)? This time, misunderstanding of the 
connection between perimeter and area of the same figure came up. Leah handled it 
in a very adequate way, by giving a counter example.

Adi:  I think the perimeter always less than the area. 
Leah:  Why? Do you think that the perimeter of every figure needs to be smaller 

than the area? 
Adi:  Yes 
Leah:  Who wants to comment on this statement? 
No one responds during 2 minutes 
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Leah:  What is the perimeter and the area of this square? [draws a square 3x3 on 
the board]. 

Ron:  The area is 9 cm 2 .
Dan: The perimeter is 12 cm. 
Adi: I understand now.   

Finally Leah summarized the main points of the lesson (e.g. how to find perimeter 
and area of a ”complex” figure? What is important in computing the perimeter – not 
to add the inside sides).

THE SECOND LESSON 
Planning Lesson 2 
Before the second lesson the team of teachers participated in the meeting devoted to 
the reflection on the first lesson with the purpose to refine the lesson plan and 
"improve the lesson".  The teachers discussed the changes that needed to be done in 
the structure of the lesson in order to adapt it to a heterogeneous classroom: 

Leah:  I felt during the students’ work that some of them couldn’t approach the 
task. The figure was too complex for them. … 

Nili:  I think we have to divide the class into homogeneous groups and let each 
group work on a different figure according to the students’ ability. 

Ronnie:  I agree. When students are able to cope with the task they can take an 
active part in the lesson. 

Leah: This will let us challenge the better students. It is a good idea. 

As the results of the discussion the task was transformed. The teachers prepared 
three different tasks (see Figure 3) that varied in level of complexity for students of 
different levels. 

Figure 3: The three figures presented to students during the second lesson 
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Figure 2: The figure presented to students during the first lesson 
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Leah:  What is the perimeter and the area of this square? [draws a square 3x3 on 
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Leah: This will let us challenge the better students. It is a good idea. 

As the results of the discussion the task was transformed. The teachers prepared 
three different tasks (see Figure 3) that varied in level of complexity for students of 
different levels. 
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Performing Lesson 2 (in a different class) 
When opening the lesson Leah presented the concepts of perimeter and area of a 
figure (e.g. square, rectangle, triangle, and parallelogram). As planned at the 
reflection session, she prepared a power-point presentation to enable an efficient 
presentation of the main concepts and ways of finding areas and perimeters of some 
geometric figures. Students answered Leah's questions and it was obvious from their 
reactions that they enjoyed this part of the lesson very much. 
The opening part lasted seven minutes. Then Leah divided the students into six 
homogeneous small groups and gave each group one of the figures (depicted in 
Figure 3) so that each figure was given to two small groups.  The students in all the 
groups were asked to find perimeter and area of the figure. After computing the area 
and the perimeter of the figure, each group was asked to find another figure with the 
same perimeter (as their figure) or another figure with the same area. 
During the small group work Leah saw that this time, the lesson developed 
“smoothly”: All students were involved in the activity.  The teacher let students work 
collaboratively for twenty-five minutes as she felt they were succeeding with the 
tasks.
Leah was surprised that the students repeated the mistake from the first lesson. 
However, based on her previous experience, she asked the students about the 
difference between finding the area and the perimeter of a “complex” figures, and led 
students to the conclusion that to find the area of a figure one need to sum areas of 
(disjoint) parts, whereas one cannot use sum of the perimeters of to find the perimeter 
of the whole figure. During the following episode Leah asked students to focus on the 
“boat” task (Figure 3III) 

Tomer:  I see a trapezoid. 
Bar:  I see two triangles and a rectangle instead of a trapezoid. 
Leah:  Is it the same area if you find the area of the trapezoid or the area of the two 

triangles and rectangle? 
Students: Yes, yes it is. 
Leah:  What about the perimeter? 
Daniel:  If we want to find the perimeter we need to add only the sides of the 

trapezoid. We need to remember not to add the inside sides. 

In the summary discussion, each group sent a representative to draw on the 
blackboard a figure that had an area and perimeter equal to the figure they had 
investigated. There were some interesting suggestions: 

Leah:  I want suggestions of figures with the same area as the “house”  
(Figure 3II). 

Ori:  A rectangle of 10x6 and another rectangle of 4x8 connected to it.
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SUMMARY (OR CONCLUDING REMARKS) 
In this paper we introduced two lessons that were part of a LS process with the 
mathematics teachers in the elementary school.
Table 1 demonstrates distribution of the time among three main parts of the lesson.  

Table 1: Time distribution (in minutes) 
Lesson

Part of the lesson 
1 2 

1. Opening 20  7  
2. Small group activity 15  25 
3. Summarizing discussion 20  13 

From table 1 we see differences in lesson structure. In comparison with Lesson 1, 
Lesson 2 had a clearer and shorter opening and the students were provided with more 
time for the whole group activity. Shortening of the summarising discussion was due 
to the inclusion of the mathematical task of designing a new figure of a given area or 
perimeter into the group work.  Along with previous studies (Leikin & Rota, 2006; 
Stigler & Hiebert, 1999) these changes in the structure of the lesson are considered as 
one of the indicators of teachers' proficiency in teaching. 
There was a clear distinction between the mathematical tasks presented to the 
students. The teachers made these changes based on their observation of students' 
difficulties that occurred during Lesson 1. Based on these observations the teachers 
were aware that there was a need for task adaptation to the different levels of students 
in the classroom.  Additionally the students were asked "to design a new figure" in 
small groups instead of doing this during the discussion. This allowed students to 
provide richer examples during the discussion. 
It must be noted that Leah conducted her lesson respecting students' replies during 
the two lessons. However during the second lesson students' mistakes were less 
surprising for her and she was "better equipped" to scaffold the learning process 
when needed.   
Our analysis demonstrated that there were two main components that supported the 
changes in the lesson quality and structure: (1) Noticing and awareness of students’ 
ways of learning, their difficulties and success based on teachers' lesson observations 
became resources for changing (Leikin & Zazkis, 2007; Mason, 2002), (2) 
Collaborative reflections – on and for – lessons, that teachers performed during the 
LS cycle served as springboards for the changes performed (Artzt, 1999; Jaworski, 
1998; Mason, 2002).
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time for the whole group activity. Shortening of the summarising discussion was due 
to the inclusion of the mathematical task of designing a new figure of a given area or 
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Stigler & Hiebert, 1999) these changes in the structure of the lesson are considered as 
one of the indicators of teachers' proficiency in teaching. 
There was a clear distinction between the mathematical tasks presented to the 
students. The teachers made these changes based on their observation of students' 
difficulties that occurred during Lesson 1. Based on these observations the teachers 
were aware that there was a need for task adaptation to the different levels of students 
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when needed.   
Our analysis demonstrated that there were two main components that supported the 
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