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On some magic squares

Figure 1

A 3×3 magic square is an array as in Figure 1, in
which the sum of the consecutive natural numbers
in every row, column and (main) diagonal is the
same, in this case 15. If we allow the numbers to be
rational (or even real) and if we do not constrain
them to be different, we can also have Ômagic
squaresÕ like the following.

Figure 2

We have used the following problem with students
(also as an activity to practice the arithmetic of
negative numbers) and teachers who know very little
about magic squares.

a) Complete the empty cells to obtain a Ômagic
squareÕ with sum 9. 
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a sort of algebra
Maxim Bruckheimer and Abraham Arcavi

b) Complete the empty cells to obtain a Ômagic
squareÕ with sum 6. 

Depending on the class, we give one or two more
simple magic squares, before the following, for
which the requested sum is 8. 

Because all previous examples worked out easily,
this last one, which does not, is surprising. Usually
a first move by students is to re-check the arithmetic
or to try again a few times using different ÔroutesÕ,
until there is growing conviction that the mission is
impossible. And then, of course the question, Ôhow
come the others worked out and this one doesnÕt?Õ 

In Arcavi (1995) we describe reactions to this
problem in more detail, and we discuss student (or
teacher) predisposition to call on algebra to solve the
problem. We suggested there that, after raising
conjectures and testing them, those who are profi-
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cient in algebraic symbol manipulation and its
power to reveal the structure of certain numerical
phenomena, will resort to the use of symbols to
uncover (or prove) the relevant properties.

The point we were trying to make there is that profi-
ciency with the syntactic rules of algebraic symbols
does not necessarily imply Ôsymbol senseÕ. The
aspect of symbol sense which we suggested may be
missing for some students, is to know when to
invoke symbols to generalise and justify, even when
the problem does not explicitly suggest that we do
so. Using symbols in this case means attempting to
fill the square, for example, as shown in Figure 3
where a, b, and c are the given numbers, and S is
the given sum. 

Figure 3

In order to complete cell 4, using the column sum
we must write a + b Ð c. But, the middle row must
add up to S. It follows easily that S = 3b is both a
necessary and sufficient condition to obtain a magic
square.

Figure 4

This property is very simple. One can create (and
check) problems of the form: Ôfill in the blanks (in
Figure 4) in order to obtain a magic square of sum
SÕ. As long as we take care of S = 3b, a and c can be
any two numbers. It is this simplicity and the fact
that the magic works independently of the values we
choose to place as a and c, that makes the property
surprising and elegant.

On the need for symbols Ñ part I

Although we did not say it explicitly, the discussion
on symbol use and symbol sense in Arcavi (1994),
seemed to imply that the only way to discover the
property and to prove its universal validity is to
resort to symbols. Somewhat later we were led to
challenge that implication.
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In other words we set out to prove without conven-
tional algebraic symbolism, that any 3 × 3 arrange-
ment (as above) is a magic square if and only if the
number in the centre square is one third of the row,
column, and diagonal sum.

The following describes such an alternative argu-
ment. Instead of symbols, we use cubes and a large
(red) disc. The cubes represent the numbers in the
cells, and the disc the sum. Even though the cubes
may look identical, we can imagine that there are
numbers written on them, but we are not interested
in what specific numbers. First, in a blank 3 × 3
square, we place cubes to complete the constant
sum in the rows, columns and diagonals which
contain the centre square, one step at a time as
shown in Figure 5, using the discs to keep record of
the number of sums we complete.

Altogether we have completed four sums (as shown
by the discs), and the sum of all the numbers
(cubes) in the magic square is thus equal to four
constant sums (discs). We now remove sequentially
three rows and reduce the number of discs appro-
priately, so that the sum of the ÔnumbersÕ left in the
magic square is equal, at all stages, to the sum of
the discs remaining on the right. Figure 6 illustrates
the process (at each stage we note what has been
removed). 

All we are left with is three times the number in the
centre, and one (disc) sum. Hence the central
number must be one third of the sum.

What we have proved is that a necessary condition
for a 3 × 3 magic square is that the constant sum be
three times the number in the centre square. It
remains to prove sufficiency, namely that if we elect
the sum to be three times the number in the centre
cell, then we can complete the other cells so that all
the columns, rows and diagonals add up to that
same sum. In order to do that we introduce one new
ÔvariableÕ: the small (grey) disc to represent the
number in the centre square. (We keep the consis-
tent convention that for us discs represent given,
known, numbers, and cubes unknown numbers.)
Thus we know that three small (grey) discs are equal
to one big (red) disc. If all we are given is that the
number in the centre is one third of the proposed
sum, then we can complete the magic square triv-
ially by placing small discs in all positions (namely
identical numbers). But this trivial magic square is
hardly interesting. More reasonably, if, in addition,
we are given any two numbers in, say, the two upper
corners (as in Figure 7a), and the given sum as three
times the centre element (namely, three small discs
are equal to one big disc), then what we would like
to show is that we can complete the magic square
determined by the data.



Figure 7a                              Figure 7b

Our starting position is then as Figure 7a. We now
complete one diagonal so that the sum of its
numbers is the given sum (i.e., three small discs).
What do we know about the two cubes in this diag-
onal? Since they are unknowns, we know nothing
about them individually, but we do know that their
sum must be two small (grey) discs. In order not to
forget this we place two small discs outside the
magic square as in Figure 8a, and then continue to
complete the other diagonal (Figure 8b).

Figure 8aÐb

We now complete the top and bottom rows with
cubes so that their sum is also 3 small (grey) discs
or one large (red) disc, and record the fact by placing
large discs outside the square, on the right of these
rows (Figure 9).

Figure 9
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But now there is a problem. By completing the top
and bottom rows, we have also completed the middle
column, and how do we know that the sum of the
two (unknown) cubes and the (known) small disc in
this column is also a large disc?

As in the previous proof, we can complete the argu-
ment by removing appropriate cubes from the
figure. What we have to do here is to remove the
cubes from the four corner squares; we know their
sum, because the sum of each pair of diagonally
placed cubes is two small discs. So we remove a
total of four small discs from the top and bottom
rows; i.e., from two large discs (= six small discs).
The result is clearly two small discs (see Figure 10).

Figure 10

Similarly we can complete the two remaining empty
squares in Figure 9, by completing the first and
third column, and the middle row sum will be
correct.

On the need for symbols Ñ part II

From the strictly mathematical point of view one
may argue that the cubes and discs are nothing but
place holders for variables. And thus our avoidance
of symbols is more apparent than real.

However, using algebraic symbols as we did in the
first section of this paper, required more symbols to
represent three unknowns explicitly, since, even if
we are not interested in their possible values, we
cannot represent possibly different numbers by the
same letter. Cubes can have numbers on them, and
two cubes do not have to show the same number. So
our ÔphysicalÕ proof is not only not ÔisomorphicÕ to,
but it is also much simpler than the conventional
algebraic proof (at least the ÔnecessaryÕ part). 

Furthermore, one can handle cubes, move the
ÔunknownsÕ about by placing and removing cubes
and discs, which helps to keep meaning in front of
your eyes. With symbols, one cannot easily Ôpick upÕ
an x. Thus cubes have the advantage of physical
manipulation as opposed to syntactic manipulation
of symbols, which may be more error prone and less
ÔtransparentÕ. 

The immediate temptation is to believe that this
manipulative proof is appropriate for pre-algebra
students, young and old. Some of the anecdotal
evidence we collected would seem to support this.

When we showed this to teachers, at in-service
workshops, their enthusiasm was evident, One
teacher, for instance, had been playing magic
squares with her 7 year-old, only to be dismayed to
find that she was unable to respond to the childÕs
request for an explanation why the Ôthree-timesÕ
condition worked. She was delighted that she could
now go home and explain. On a number of occasions
Ñ once even with the cutlery at dinner, with knives
and forks as cubes and spoons as discs Ñ we have
explained the proof to mature adults whose mathe-
matics was confined to elementary arithmetic.

Again an ÔaverageÕ fifth grader playing with her
mother (a math curriculum developer in our depart-
ment) had some difficulties with the arithmetic of
the magic squares, and was helped by her mother to
discover the property of the sum. When her mother
asked whether she was interested in knowing why
this is the case, she seemed to get interested. Her
mother reported that she not only understood the
proof (the necessary condition) but was delighted
and decided to play teacher and show it to her class-
mates. Apparently, she succeeded. 

Finally, in another case, a group of pre-service
teachers who had been shown the proof with the
discs and cubes, spontaneously applied the idea
successfully to discover properties of 4 × 4 magic
squares.

The attraction of the manipulative proof seems to lie
in its playfulness and its immediacy. Cubes and
discs are concrete and familiar and would seem not
to require the abstraction needed to fully under-
stand and manipulate a symbolic representation.
Bypassing symbols seems to make the essence of
the proof and its meaning more accessible. When a
proof is mediated by symbols, these may divert
mental energy and become the focus of attention,
and thus the proof is viewed as symbolic wizardry,
rather than as an explanation of why. 

Nevertheless, we would not like to claim more than
that this idea is just another one in the assorted
repertoire we should bring to the classroom, like
those beautiful occasional flashes of proofs without
words, which can enrich and entertain.
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