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INTRODUCTION 

Tommy Dreyfus and Eddie Gray 

Since there is no universally accepted research paradigm in mathematics education, 
theories and terminology tend to multiply. It is therefore one of the tasks of the 
research community to critically compare theories that deal with closely related issues 
and have similar aims. The setting of a research forum at PME conferences is one of 
the few opportunities where attempts at such comparison can be undertaken in public 
by a large group of researchers. 

Several theories for processes describing the emergence of mathematical knowledge 
structures (abstraction) have been put forward recently. While these theories differ in 
many respects, they have a common goal: they aim to provide a means for the 
description of processes during which new mathematical knowledge structures 
emerge. Thus, they have the potential to provide insight into one of the central aspects 
of learning mathematics and inform instructional practice. 

Three theories of abstraction have been selected for discussion in the Research Forum 
on the basis of their similar aims but different approaches. The selection was made so 
as to achieve, within the limited space and time available, a wide variety with respect 
to the theoretical underpinnings of the approaches, the formal or informal nature of the 
emergent knowledge, the role of context in the process of abstraction, the importance 
the theories attribute to contextual factors, and the degree to which they are anchored 
in instructional design. While a main aim of each of the three theories is to describe 
processes (rather than outcomes) of the emergence of knowledge during learning 
activities and a secondary aim is to contribute to the design of learning, the 
assumptions of the three theories differ considerably. For example, the theory by Tall 
& Gray is predominantly cognitive (with links to neuro-physiology), while context is 
accorded a limited role; on the other hand, the theory by Gravemeijer is predominantly 
contextual. Similarly, instructional design interacts with the theories in very different 
ways: For Tall & Gray, instructional design is a result of the research undertaking, for 
Schwarz, Hershkowitz & Dreyfus, it is the location of the research undertaking (in the 
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sense that the research takes place in an environment designed for instruction), and for 
Gravemeijer instructional design is at the origin of the research undertaking. 

A theory cannot possibly be presented appropriately in the limited space allotted to 
each group of contributors within this written presentation of the Research Forum. 
Therefore, the following contributions by the three presenting groups only give a 
summary overview over each of the theories, and provide the reader with ample 
references for further reading. Many of these references are accessible from the 
conference website. They are also available from the authors. The papers included 
hereafter have been written following a set of fairly detailed guidelines. The aim of 
these guidelines was to define a number of dimensions for comparison of the theories. 
Specifically, each paper 
(i) Gives a description of what their theory is about, 
(ii) Identifies the assumptions being made by the theory, 
(iii) States the theses of the theory (what does the theory say?), including a detailed 

discussion of the meaning of the terms that are used, 
(iv) Discusses the aim(s) and applications of the theory, 
(v) Gives evidence concerning the validation of the theory (for example empirical 

research). 

Authors have been asked to be specific about the meaning of their terminology to 
enable the identification of cases where either the same term is used with different 
meanings or where different terms are used to describe closely related phenomena. 
First and foremost, the term 'abstraction' is likely to mean different things to different 
people; similarly, the term 'context' may be given a rather narrow or a very wide 
interpretation. In addition, each theory uses its own idiosyncratic terms. 

The two papers by the reactors stress commonalties and differences between the three 
theories, for example with respect to the underlying definitions of abstraction, the 
domains of applicability of the theories, the empirical evidence validating the theory, 
and the role which context plays in the process of abstraction. 

Whilst our theme examines from a contemporary perspective theoretical issues that 
have been of interest to PME members over the past quarter of a century, two broader 
issues are also relevant to our discussions. 

First, there is an issue associated with "having abstracted". Though we are examining 
theoretical perspectives of the role of abstraction, its contribution and influence on 
different modes of thinking displayed by mathematics students leads us to ask to three 
general questions, which can and should be expected to arise for discussion out of the 
reaction papers are: 
• When do we know students have abstracted and what student behavior attests to 

this? 
• What happens if students do not abstract? 
• How do we encourage abstraction? 
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Secondly, there is an issue associated with coherence and unification. In the opinion of 
the presenters and the reactors, the domain of theoretical physics has no exclusive 
right to yearn for a unified theory. Even though mathematics education as a scientific 
discipline is a few centuries younger than physics, we believe that this is the time to 
start the work of combining, merging and fusing our theories, and thus to make them 
more widely known, applicable and applied. One milestone on this road will be the 
use of different theories to analyze the same data set and thus to directly confront the 
theories. We hope that the discussions of the research forum will give rise to such 
undertakings, as well as to some speculation on a possible unification of the theories 
into a larger framework. It is this hope for progress in the direction of fewer, more 
widely known, more widely agreed, and more widely applied theories that has 
motivated this research forum. 

ABSTRACTION AS A NATURAL PROCESS OF MENTAL COMPRESSION 

Eddie Gray & David Tall 

Introduction 

The term 'abstract' has its origins in the Latin ab (from) trahere (to drag) as: 

• a verb: to abstract, (a process), 
• an adjective: to be abstract, (a property), 
• and a noun: an abstract, for instance, an image in painting (a concept). 

The corresponding word 'abstraction' is dually a process of' drawing from' a situation 
and also the concept (the abstraction) output by that process. It has a multi-modal 
meaning as process, property or concept. Piaget distinguished between construction of 
meaning through empirical abstraction (focusing on objects and their properties) and 
pseudo-empirical abstraction (focusing on actions on objects and the properties of the 
actions). Later reflective abstraction occurs through mental actions on mental 
concepts in which the mental operations themselves become new objects of thought 
(Piaget, 1972, p. 70). In Tall et al, 2000, we reviewed ideas in the literature and 
concluded that elementary mathematical thinking uses reflective abstraction both by 
focusing on objects (for instance, in geometry) and on operations on objects 
represented as symbols (in arithmetic, algebra, etc). In the latter case we see symbols 
used dually as process and concept and have formulated this in terms of the notion of 
procept (Gray & Tall, 1994, see also below). At a later stage, in advanced 
mathematical thinking, the focus changes to properties (of objects and operations) 
formulated as fundamental axioms for mathematical theories. 

Our hypothesis is that different forms of abstraction lead to different type of cognitive 
development and in tum, to differing cognitive problems. Empirical and reflective 
abstraction in shape and space lead to a van Biele type development that we see as the 
growing dominance of verbal description over visual perception, as language refines 
our imagery and leads to increasingly sophisticated forms of mathematical structure 
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and proof. Pseudo-empirical and reflective abstraction in arithmetic, algebra and 
calculus naturally focus on our notion of procept. Increasing focus on properties and 
deduction lead to a property-based axiomatic theory where the process of proof leads 
to the concept of theorem which may then be used as steps in building up a systematic 
formal theory. 

We have a great empathy for the notion of different modes of operation as proposed by 
Bruner (1966) and, more particularly, in the SOLO taxonomy of Biggs and Collis. 
(1982). For instance, it is possible to build a holistic embodied mode that relates to the 
enactive/iconic modes of Bruner or the sensori-motor/ikonic modes of Biggs and 
Collis, before gaining an insight in proceptual (concrete-symbolic) terms; or, at a later 
stage in advanced mathematical thinking, in formal-deductive terms. Tall (1999) 
considers the distinct forms of proof available in these various modes as the child 
develops cognitively into a mathematical expert. Tall (2002) reviews calculus in terms 
of an enactive-iconic approach manipulating graphs, symbolic-proceptual 
representations (manipulating formulae) and formal proof(in analysis). 

In this short paper we do not have space to attend to our full theoretical perspective. 
We focus only on the abstractive processes occurring in constructing procepts in 
arithmetic, algebra and symbolic calculus and how differing types of symbol (whole 
numbers, fractions, algebraic expressions, (infinite) decimals, limits) give rise to 
distinct problems of concept construction and re-construction. 

Five Aspects 

The research forum is designed to focus on five aspects, given in (a)-(e) below. 

a. What is the theory about? 

Our theory grows as a result of our quest to understand not only what students do in 
constructing symbolic mathematics, but how they do it. We believe that abstraction is a 
natural consequence of human brain function. At any given time human thinking 
occurs dynamically as a process, whereby items evoked in the focus of attention are 
manipulated mentally as concepts. It is the duality of symbols in arithmetic, algebra, 
etc as both process and concept that is the basis of our theory. 

b. What assumptions are being made? 

We assume that abstraction is a natural product of human mental activity, in which a 
complex parallel-processing organ solves the problem of complexity by focusing on 
essential structures that enable decisions to be made. Sometimes this process of 
abstraction is a conscious reflective act, but much of it does, and must, occur 
unconsciously to enable the brain to focus only on essential elements. There is 
physical evidence that over time routinising tasks uses less brain capacity: 

As a task to be learned is practiced, its performance becomes more and more automatic; as 
this occurs, it fades from consciousness, the number of brain regions involved in the task 
becomes smaller. (Edelman & Tononi, 2000, p.51) 

I - 116 PME26 2002 



There is also a compression in the nature of the symbolism being used: 

I should also mention one other property of a symbolic system - its compactibility - a 
property that permits condensations of the order F = MA or S = ½ gt2, ... in each case the 
grammar being quite ordinary, though the semantic squeeze is quite enormous. 

(Bruner, 1966, p. 12.) 

We do not have the data to link mathematical activity in a one-one mapping to 
neurophysical phenomena, steps in this direction ( eg Dehaene, 1997) are still in their 
early stages. However, the underlying biological basis of mathematical thinking in a 
brain ill-built for numerical computation and formal logic, is a vital underpinning for 
our own reflections on how mathematical thinking develops. 

c. What does the theory claim? What terms are used and what do they mean? 

The notion ofprocept (as given in Gray & Tall, 1994) is seminal in what follows. 

An elementary procept is the amalgam of three components: a process which produces a 
mathematical object, and a symbol which is used to represent either process or object. 
... A procept consists of a collection of elementary procepts which have the same object. (Gray & 

We follow Davis (1983, p. 257) in defining a procedure as an explicit step-by-step 
algorithm for implementing a process and see a spectrum of increasing power through 
the usage of procedure, process and procept. We do not agree with Sfard or Dubinsky 
that the development invariably proceeds in a sequence we describe as 
procedure-process-procept. In particular, as students become more sophisticated, they 
may sense an intuitive holistic grasp of the overall ideas in, say, an embodied mode 
before concerning themselves with the specific procedures that may be seen to occupy 
a particular role within a symbolic or formal mode of operation. 

We do not have a theory that tells us how all individuals can be helped to move 
through all of these modes. (Indeed, no-one has such a theory at this moment in time.) 
Instead, in the growth of symbols, we find a bifurcation between those who 
concentrate more on the procedures associated with symbols, who have a greater 
cognitive strain to overcome, and those who develop a proceptual system switching 
flexibly between process and concept to construct a more powerful generative mental 
structure. This does not mean that students necessarily remain in a fixed part of the 
spectrum. However, we do have considerable evidence that there is a bifurcation in 
performance between those who remain entrenched in procedures and those who 
develop more flexible proceptual thinking, so that progress to greater sophistication is 
more difficult for some and easier for others. 

d. What are the aims of the theory and what are its applications? 

The initial aim of our theory of the proceptual growth of symbols is to try to explain 
why some students are so highly successful with symbols, whilst others are procedural 
at best and could, at worst, be overwhelmed by the complexity of mathematics. To 
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move towards this overall goal we focus on the different ways that procepts arise in 
cognitive development. These include 

(1) arithmetic procepts, 5+4, 3x4, ½ +½, 1 ·54-c-2•3, all have built-in algorithms to 
obtain an answer. They are computational, both as processes and even as 
concepts. Fractional procepts behave differently because the focus moves from 
sharing procedures (eg divide into 4 equal parts and take 2) to equivalent 
fractions, which from our viewpoint are seen as processes that have the same 
effect ( divide into 4 equal parts and take 2, has the same effect as divide into 6 
equal parts and take 3). 

(2) algebraic procepts, e.g. 2+3x, can only be evaluated if the value ofx is known 
and so involves only a potential process ( of numerical substitution) and yet the 
algebraic expressions themselves represent manipulable concepts (manipulated 
using algebraic rules of equivalence). 

(3) implicit procepts, such as the powers 0, x0 or x-1 , for which the original 
meaning of x" no longer applies but the properties need to be deduced using the 
power law xm xx"= xm+n ( which also no longer has its original meaning!) 

3 3 ro 1 
( 4) limit procepts, lim x - a or I 2 etc, have potentially infinite processes 

x➔a x- a n:::1 n 

'getting close' to a limit value that may not be computable in a finite number of 
steps. 

d(x 2ex) • 
(5) calculus procepts, such as --- or f sinmxcosnx dx focus again on finite 

dx Jo 
operational algorithms of computation (the rules for differentiation and 
integration). 

This reveals that each of new form of procept has its own peculiar difficulties that 
makes abstraction qualitatively different in each case. We believe that knowledge of 
these specific difficulties is essential to help a wider spectrum of students to succeed in 
the longer-term process of successive abstractions. 

e. How has the theory been validated? 

Our data (summarized in Tall, Gray, et al, 2001) reveals both general themes and 
specific information on cases (1 )-(5) above. The general themes illustrate diverging 
approaches from procedural to proceptual in a spectrum of students from elementary 
arithmetic (Gray & Tall, 1994), through algebra (DeMarois, 1998; McGowen, 1998; 
Crowley, 1999), symbolic calculus (Ali, 1996), and on to formal mathematical theory 
(Pinto, 1998). In addition, qualitative differences in imagery emerge from different 
forms of abstraction (Pitta, 1998; Gray & Pitta 1999), leading to differing levels of 
success in the longer term, depending on whether children continue to focus on 
real-world situations and imagery, or move on to a more flexible proceptual hierarchy 
(Gray et al, 1999). The data from the above-mentioned studies reveal how differing 
contexts pose significantly different kinds of cognitive problems in both the nature of 
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the procepts concerned and the procedure-process-procept spectrum of student 
activity. We believe that these difficulties are best handled by the learner supported by 
a mentor who is aware not only of the mathematics but of the underlying cognitive 
structures. 

This aspect oflearning is complementary to the desire of Schwarz et al (this forum) to 
theorize about a general strategy for encouraging abstraction in context. We suggest 
that it is a laudable aim to have a general theory of construction, but we observe that 
specifics often overwhelm the broad sweep of such a theory. From the learner's point 
of view, different obstacles occur in different contexts. The acquisition of 
mathematical knowledge from early years to undergraduate level involves a variety of 
reconstructions. Each new reconstruction refines that which was established earlier so 
that effective reconstructions contribute to the organic nature of growth in the 
embodied and proceptual modes of operation and on to a close harmony between 
wider aspects of concept image and concept definition in advanced mathematical 
thinking. Our central concern is not just how we can encourage students to make 
abstractions, but also to find why some students succeed so effortlessly and others can 
fail so badly at making the necessary reconstructions. Our empirical evidence provides 
an insight into a possible answer-inappropriate abstraction from mathematical 
activity. 
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ABSTRACTION IN CONTEXT: CONSTRUCTION AND 
CONSOLIDATION OF KNOWLEDGE STRUCTURES 

Baruch Schwarz, Rina Hershkowitz and Tommy Dreyfus 

The construction of abstract knowledge structures is central in human learning, 
including mathematics education. As practitioners who are informed about recent 
theoretical research, we have been deeply involved in curriculum design, 
development, and implementation. Our approach to abstraction is thus a product of our 
interest both in theory concerning abstraction and in experimental observations of 
activities in schools in which we judged that a process of abstraction has been 
evidenced. 

Many researchers have taken a predominantly theoretical stance and have described 
abstraction as some type of decontextualization. For example, Piaget has proposed that 
abstraction consist in focusing on some distinguished properties and relationships of a 
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set of objects rather than on the objects themselves. Abstraction is thus a process of 
decontextualisation. According to Davydov (1972/1990), on the other hand, 
abstraction starts from an initial, undeveloped form of knowledge and ends with a 
consistent and elaborate knowledge structure. 

A Definition for Abstraction, the Nested RBC Model, and Consolidation 

Leaning on ideas of Davydov and other researchers, and in view of our experience in 
classrooms and our need for an operational definition, we translated our theoretical 
principles into the following more applicable definition: 

Abstraction is an activity of vertically reorganizing previously constructed 
mathematics into a new mathematical structure. 

The term activity in our definition is directly borrowed from Activity Theory 
(Leont'ev, 1981) and emphasizes that abstraction is an activity, a chain of actions 
undertaken by an individual or a group, and driven by a motive, which occurs in a 
specific context. Context is a personal and social construct, which includes the 
student's social and personal history, conceptions, artifacts, and social interaction. The 
term previously constructed mathematics refers to two points: One, that outcomes of 
previous processes of abstraction may be used during the present abstraction activity; 
and two that a process of abstraction leads from initial, unrefined abstract entities to a 
novel structure, as posited by Davydov. These two points show the recursive nature of 
abstraction. The phrase reorganizing into a new structure implies the establishment of 
connections, such as inventing a mathematical generalization, proof, or a new strategy 
of solving a problem. The novel structure comes about through reorganization and the 
establishment of new internal and external links within and between the initial entities. 
We very intentionally used the word new to express that, as a result of abstraction, 
participants in the activity perceive something that was previously inaccessible to 
them. Finally, we borrowed the term vertical from the Dutch culture of Realistic 
Mathematics Education, in which researchers relate to vertical mathematization as to 
an activity in which mathematical elements are put together, structured, organized, 
developed etc. into other elements, often in more abstract or formal form than the 
originals. It is mainly this integration that comes about by the establishment of new 
connections during processes of abstraction, which we wanted to express by means of 
the term vertical. 

According to this definition, abstraction is not an objective, universal process but 
depends strongly on context, on the history of the participants in the activity of 
abstraction and on artefacts available to the participants. In this sense structure is 
internal, "personalized". 

The study of abstraction raises a methodological challenge. Whichever its definition 
is, abstraction implies mental activity, which is not observable. Since we want to 
empirically investigate processes of abstraction, we need to devise a way to make them 
observable. Put otherwise, we need to use (theoretical) spectacles, which let us see 
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processes of abstraction, as they occur during students' activities. And it is precisely 
this view of abstraction as activity, which provides us with the desired spectacles: 
Activities are composed of actions - and actions are frequently observable. The 
question, which actions are relevant for abstraction, we answer with reference to 
Pontecorvo & Girardet (1993): Epistemic actions are mental actions by means of 
which knowledge is used or constructed. Epistemic actions are often revealed in 
suitable settings. Therefore, settings with rich social interactions are good frameworks 
for observing epistemic actions. Coming back to our experimental research we were 
able to identify three particular epistemic actions, which are constituent of abstraction, 
and provide a strong indication that a process of abstraction is happening: 
Recognizing, Building-With and Constructing, or RBC. In summary, we consider 
these epistemic actions because they characterize abstraction and because they are 
observable. In other words, they provide us with an operational description of 
processes of abstraction. 

Constructing is the central action of abstraction. It consists of assembling knowledge 
artefacts to produce a new knowledge structure to which the participants become 
acquainted. Recognizing a familiar mathematical structure occurs when a student 
realizes that the structure is inherent in a given mathematical situation. Building-With 
consists of combining existing artefacts in order to satisfy a goal such as solving a 
problem or justifying a statement. The same task may thus lead to building-with by one 
student but to constructing by another, depending on the student's personal history, 
and more specifically on whether or not the required artefacts are at the student's 
disposal. 

The three epistemic actions are the elements of a model, called the dynamically nested 
RBC model of abstraction. According to this model, constructing incorporates the 
other two epistemic actions in such a way that building-with actions are nested in 
constructing actions and recognizing actions are nested in building-with actions and in 
constructing actions. Moreover, constructing actions may themselves be nested in 
further constructing actions. 

On the basis of observations reported below and elsewhere, we postulated that the 
genesis of an abstraction passes through (a) a need for a new structure; (b) the 
construction of a new abstract entity; ( c) the consolidation of the abstract entity 
through repeated recognition of the new structure, building-with it in further activities 
with increasing propensity, and using it in further constructions. 

Stage ( c ), the consolidation of the newly knowledge structure, seems a priori to be 
linked to the following behaviors: (i) the reconstruction of the new structure or its 
actualization by recognizing it in different contexts, (ii) its use with increasing facility 
for building-with in different contexts, (iii) its use in the construction of further 
structures for which it is a necessary prerequisite, (iv) its verbal articulation, possibly 
during or after an activity of reflection such as reporting or summary discussion in 
class. Thus the term consolidation denotes a progressive familiarization and further 
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use observable through recognizing and building-with actions in these four types of 
situations. 

The validation of the theory through empirical research 

We characterized abstraction as a process taking place in a complex context that 
incorporates tasks, tools and other artifacts, historical background of the participants, 
as well as the social and physical setting. Abstraction processes are then context 
dependent. However, we claim that the ways in which these processes are taking place 
and become operational have a universal structure. This structure was elaborated and 
partially confirmed in Hershkowitz, Schwarz and Dreyfus (HSD, 2001). Further 
studies were partially designed for confirmation of the model and partially designed 
for extending it. 

In HSD we showed that the dynamically nested RBC model fits the genesis of abstract 
scientific concepts acquired in activities designed for the purpose of learning. A first 
validation of stage (a) and (b) of the genesis of abstraction according to the model was 
obtained in a case study with a single ninth grade student who was interviewed while 
solving a problem, a suitable computer program being at her disposal. 

We showed that the model describes the mechanism of processes of abstraction. As 
such it contains the main invariant features of abstracting as a thinking process. 
Moreover, the model is apt to take context into account. 

HSD also revealed a methodological problem: the occurrence of processes of 
abstraction cannot be ensured; rather, students can only be presented with 
opportunities for abstraction. The creation of such opportunities presents a 
challenging design problem since it depends on the contextual factors mentioned 
above. We tried to elicit strong motives such as the need to justify a just discovered 
claim, the need for solving a problem as well as conflict situations in order to augment 
the opportunities for abstraction. This corresponds to stage (a) of the genesis of 
abstraction according to the model. 

Dreyfus, Hershkowitz and Schwarz (2001 a; 2001 b ), tested stages (a) and (b) of the 
model in a richer context, in which two peers interacted to construct new knowledge. 
The study focused on the social dimension of the process of abstraction. Two parallel 
analyses were carried out on the same protocols: the analysis of epistemic actions 
according to the model of abstraction as well as an analysis of the interaction. The 
study showed far-reaching parallels between the two analyses. In other words, we 
enhanced the RBC model of abstraction so as to describe processes of abstraction by 
interacting pairs of students and patterns of distribution of abstraction between 
collaborating peers. The parallel analyses led to the identification of types of social 
interaction that support processes of abstraction. 

While research concerning stages (a) and (b) can be done within one activity, 
investigation of consolidation processes requires at least a medium term research, 
where one can analyze processes occur among successive activities. Such an analysis 
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demands the elaboration of powerful methodologies with the help of which individual 
history of individuals evolving in changing learning environments should be traced. A 
small number of studies in this direction have already been undertaken (Dreyfus & 
Tsamir, 2001; Tabach, Hershkowitz & Schwarz, 2001; Tabach & Hershkowitz, 2002). 
A first attempt at an empirically based theory for consolidation emerged from a 
sequence of interviews about the comparison of infinite sets with a single talented 
student. It showed that consolidation may occur both as a result of problem solving 
activities and as a result of reflective activities, and that it can be identified by means 
of the psychological and cognitive characteristics of immediacy, self-evidence, 
confidence, flexibility and awareness. 

The significance of our theory of abstraction concerns theoretical, psychological and 
educational issues: Since our research is empirical, it has the potential to yield insights 
on processes of abstraction and consolidation as they develop, and to confront these 
empirical insights with the theoretical constructs of the model. Abstraction and 
consolidation as the central components of construction of knowledge are investigated 
in relation to the history of the participants, and to series of activities in a social 
context. On the basis of the theory, we also expect to articulate educational design 
principles for sequences of activities that are intended to lead to abstractions and their 
consolidation. 
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BUILDING NEW MATHEMATICAL REALITY, OR HOW EMERGENT 
MODELING MAY FOSTER ABSTRACTION 

Koeno Gravemeijer 

Abstract 

In general, mathematics is thought of as abstract,formal knowledge. Within this view, 
the key problem for mathematics educators is to shape mathematics instruction that 
helps students in bridging the gap between informal, situated knowledge at one hand, 
and abstract, formal mathematical knowledge at the other hand. A rather common 
view is that students have to abstract from their informal knowledge; they have to 
decontextualize, or to cut the bonds with reality. In this paper, an alternative view is 
presented that does not take its point of departure in the metaphor of a gap between 
abstract, formal knowledge and informal knowledge, but in an emergent approach, 
within which formal mathematics grows out of the mathematical activity of the 
students. The latter view is part of work in the area of instructional design. 

Abstraction as the Creation of New Mathematical Reality 

The deliberations on the issue of abstraction that will be presented here grew out of an 
effort to further explicate and elaborate the domain-specific instruction theory for 
realistic mathematics education (RME) (Treffers, 1987). As part of this effort, this 
domain-specific instruction theory has been recast in terms of instructional design 
heuristics (Gravemeijer, 1994) .. The elaboration of one of those design 
heuristics----conceming emergent models, or emergent modeling----created the need to 
further investigate the underlying, implicit, notions of abstraction (Gravemeijer, 
1999). The emergent-modeling heuristic assigns a role to models that differs from the 
classical role of models in mathematics education: instead of trying to concretize 
abstract mathematical knowledge, we try to help students model their own informal 
mathematical activity. In doing so, we attempt to foster a process, within which a 
model of their own informal mathematical activity gradually develops into a model for 
more formal mathematical reasoning for them. In contrast with the gap metaphor, 
formal mathematics is not seen as something separate, existing independent of a 
knowing agent. Instead, formal mathematics is seen as emerging alongside with the 
model-of /model-for transition. 

When speaking of formal mathematics,. we hasten to say that in RME, formal 
mathematics is not seen as something "out there". Instead, formal mathematics is seen 
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as something that grows out of the students' activity. For us, the notion of 
"abstraction" is tied to a progression from informal to more formal mathematical 
reasoning, which in tum is tied to the creation of new mathematical reality. So instead 
of "cutting bonds with (everyday-life) reality", we want to stress "construction". 
Informal, situated knowledge is the basis upon which more formal, abstract 
mathematical knowledge is build. 

Our claim is that the emergent-modeling design heuristic helps instructional designers 
in developing topic-specific instruction theories and corresponding instructional 
activities that support learning processes in which students construe new mathematical 
reality. In order to clarify the emergent modeling heuristic, we will briefly describe an 
exemplary instructional sequence. 

This exemplary sequence, which concerns linear measurement and flexible arithmetic, 
was developed in connection with a teaching experiment carried out at Vanderbilt 
University (Cobb, Stephan, McClain, and Gravemeijer, in press; Stephan, 1998). The 
underlying idea is that measuring by iterating measurement units can give rise to the 
construal of a ruler and that the ruler can subsequently support arithmetical reasoning 
about problems concerning incrementing, decrementing and comparing measures. 

After a series of preparatory activities, the students start measuring with stacks of ten 
unifix cubes. They first iterate units often, then adjust by adding or subtracting ones. 
In this manner, measuring with tens and ones helps the students in structuring the 
number sequence up to 100. Next, the students create their own paper strip that is ten 
uni fix cubes long. With that, a basis is being laid for the construction of a measurement 
strip that comprises ten units of ten; each subdivided into ten units of one cube. The 
idea is that, thanks to the history, measuring with the measurement strip is grounded in 
the imagery of measuring with units of ten and one. Thus, for the students, measuring 
with the strip signifies iterating a unit often cubes and a unit of one cube. Next, a shift 
is made from actually measuring items to reasoning about lengths when solving tasks 
around incrementing, decrementing and comparing lengths of objects that are not 
physically present (i.e. comparing the measures of the heights of sunflowers in the 
context of a sunflower contest). These tasks offer opportunities for developing 
solution methods based on curtailed counting-using the decimal structure as a 
framework of reference. Numbers close to a decuple, for instance, can be identified by 
using that decuple as a referent, e.g. 64 = 60 + 4; 40 = 35+5. These relations can be 
exploited when analyzing patterns that correspond with jumps of 10. An empty 
number line is introduced as a means for symbolizing measurement strip-specific, 
arithmetical solution methods that are grounded in reasoning with "tens & ones" (see 
fig. 1 ). A jump on the number line describes a move on the measurement strip that in 
tum can be seen as corresponding with iterating unifix cubes or smurfbars. 
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Figure 1. 35-29 on the empty number line. 

Finally a generalization is made from magnitudes to numerical quantities in general; 
the students are asked to solve various addition and subtraction context problems, 
while using the empty number line as a means to record and support their thinking. 

Emergent Models 

We will use this example to explicate the emergent modeling heuristic. We may start 
by noting that the label "model" is used in a metaphorical sense. There is an 
overarching model that takes on various manifestations. We may characterize the 
series of symbolizations within which the model manifests itself as a 
chain-of-signification (Stephan, 1998). In the exemplary sequence the ruler is 
conceived as the overarching model. The idea is that the ruler emerges as a model of 
iterating a measurement unit (or measurement units). In this sense, the ruler is 
grounded in the activity of measuring. Gradually, however, the ruler changes 
character, as the attention shifts from measuring to reasoning about the results of 
measuring. Finally a schematized ruler becomes a model for reasoning about 
arithmetical relations between numbers up to one hundred. 

Key for us is that the shift towards more formal mathematical reasoning is connected 
with the creation of a new mathematical reality. In the example sequence, we may 
conceive this new reality as constituted by numbers up to 100 as entities in a 
framework of number relations. What is expected is, that in the course of the sequence, 
a shift is taking place in which the student's view of numbers transitions from referents 
of distances to numbers as mathematical entities. This shift involves a transition from 
viewing numbers as tied to identifiable objects or units (i. e. numbers as constituents of 
magnitudes; "37 feet") to viewing numbers as entities on their own ("37"). For the 
student, a number viewed as a mathematical entity still has quantitative meaning, but 
this meaning is no longer dependent upon its connection with identifiable distances, or 
with specified countable objects. In the student's experienced world, numbers viewed 
as mathematical entities derive their meaning from their place in a network of number 
relations (see also Van Hiele, 1973). Such a network may include relations such as 
37=30+7, 37=3x10+7, 37=20+17, 37=40-3. The critical aspect of this network is that 
the students' understanding of these relations transcends individual cases. That is, 
when students form notions of mathematical entities, or mathematical objects, they 
come to view relations like the above as holding for any quantity of 37 objects 
(including a magnitude of37 units). We would denote this conception of numbers as 
mathematical objects that derive their meaning from a framework of number relations 
as new mathematical reality. 
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As an aside, we want to remark that we prefer to limit the use of the 
model-of/model-for terminology to those more encompassing shifts where one can 
speak of the creation of new mathematical reality. We may further note that this 
creation of new reality is reflexively related to the model ofto model/or transition. On 
the one hand, the students' actions with "the model" foster the constitution of new 
mathematical reality (in our example, a framework of number relations). On the other 
hand, through the students' development of this new mathematical reality, "the model" 
can take its role as a model for mathematical reasoning. 

Aims and Applications 

The emergent modeling heuristic may guide instructional designers by asking them to 
think through the endpoints of a given instructional sequence in terms of new 
mathematical reality; to describe what mathematical objects the students are expected 
to construe, and how these relate to some framework of mathematical relations. They 
are further advised to think through the model-of/model-for transition, which for 
instance means, to indicate what informal situated activity is being modeled, and what 
a potential chain-of-signification might look like. In connection with the above, the 
heuristic suggests points of attention for the enactment of the instructional sequence. It 
highlights that formalizing is not equal to, and cannot be forced by, the use of formal 
notations. Instead formalizing grows out of a shift of attention towards mathematical 
relations. The aforementioned considerations will indicate what those relations are, 
what the mathematical issues are that are to become topics of discussion, and what role 
the various tools/symbolizations may play. 

The emergent modeling heuristic implicitly or explicitly plays a role in various RME 
designs ( e.g. Streefland, 1990). The role of emergent models is older that the explicit 
characterization presented here. However, more recently this heuristic has explicitly 
guided design and analysis in a number of developmental research ( or design research) 
projects. In this respect, we can claim that this heuristic is validated in a number of 
teaching experiments. Next to experiments at the primary-school level, like the 
aforementioned numberline experiment, we want to mention research in data analysis 
(Cobb, in press), and research on differential equations (Rasmussen, 1999). 
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REACTION 

Anna Sierpinska 

This "reaction" will be about my rather unsuccessful attempts at understanding the 
three proposed theories. Words were familiar, all right. But they were put together in 
strange juxtapositions and concatenations. I could recognize the words or parts of 
them - activity, perception, abstraction, procedure, process, concept, proCEPT, 
PROcept, object, structure ... - but I couldn't build-with them, never mind construct 
anything remotely resembling a structure with them. 

I was taught in school that "meaning belongs first of all to the world of 
objective-historical phenomena" (Leont'ev, 1959, p. 223), and that the content of an 
individual mind is a result of "an assimilation of the experience of the previous 
generations of people" (ibid.), but here I was, confronted with the meanders of 
individual consciousnesses of several "Robinson[s], making [their] own independent 
discoveries on a desert island" (Leont'ev, 1959). 

Take, for example, ABSTRACTION. I am used to thinking of abstraction as a dual 
mental activity whereby some aspects of the object of thought are ignored while other 
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are highlighted. For example, if the object ofmy thought are integers and I decide to 
ignore multiples of 2, then all that is highlighted are the remainders, 0 or 1, and I end 
up with the even/odd distinction ( or the concept of even and odd numbers, if you will). 
Ifl now highlight the mental process which led me to the construction of the even/odd 
numbers construction, and disregard the fact that I was ignoring multiples of 2, and 
decide to now remove from the field of my attention multiples of 3, 4, or any number n, 
for that matter, then I end up with the concepts of Euclidean division, and congruence 
modulo n. I can further ignore the specific nature of particular integers, look at the 
whole arithmetic of integers from afar, highlight only its ring structure and ask myself 
if I could not do something similar with other rings as well. I may fancy taking R[ x] 
and decide to ignore multiples of x2 + 1. Then what is highlighted forms a structure 
strikingly similar to the field of complex numbers. This chain of ignoring and 
highlighting is usually called generalization: a process of abstractions which starts 
from some object of thought 0 1 and arrives at an object of thought 0 2 such that 0 1 is a 
special case of 0 2• If abstraction is understood this way, as an act of 
ignoring/highlighting, then it appears as an "elementary particle" in the process of 
mathematical thinking. One would hardly want to call the whole process of theory 
building in mathematics "abstraction". Even the processes of single concept 
construction involve more than a few acts of abstraction. This concept of abstraction is 
too elementary to capture what happens in processes of mathematical thinking. It is 
also not specific to mathematics nor any scientific knowledge for that matter. 
Abstraction is an elementary operation in any kind of thinking. For example, we 
engage in abstraction when we move from saying that our neighbors seem to be a 
happy couple to thinking about happiness in general. Therefore, in speaking about 
mathematical thinking, we need more specific concepts such as generalization and 
concretization, formalization and de-formalization, algebraization and 
geometrization, axiomatization and modeling, etc. 

The above socio-cultural notion of abstraction appeared not to satisfy the authors of 
the RBC theory presented in this forum. SHD (here and in the sequel, G, GT, and SHD 
will indicate the three groups of authors, according to the initials of the family names 
of their authors) were inspired by Davydov's definition of abstraction, which they 
interpreted as, "abstraction starts from an initial, undeveloped form of knowledge and 
ends with a consistent and elaborate form. It proceeds from the idealization of the 
basic aspect of practical activity involving objects to cognitive experimentation 
characterized by the fact that one (a) mentally transforms objects during the activity 
and (b) forms a system of connections between these objects". I didn't quite see how 
this description would exclude mental activities such as fantasizing. Imagine a poor 
man sitting there in his boat with a fishing rod and idealizing the basic aspect of his 
activity as dreaming about a big catch. Cognitively experimenting with his vision of a 
big catch, and dreaming about how this would impress his wife upon his return home, 
his vision was suddenly transformed into a half-fish/half woman. This way, the notion 
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of mermaid has been proved to be a socio-cultural consequence of the division oflabor 
in the poor man's household, and fantasizing - a special case of abstraction. 

SHD ' own definition of abstraction was as follows: "Abstraction is an activity of 
vertically reorganizing previously constructed mathematics into a new mathematical 
structure". Now, this was very confusing because the statement was at the same time 
very restrictive (restricted to mathematical abstraction) and very general. It was 
general because it seemed to identify all construction of mathematical knowledge with 
mathematical abstraction. It was confusing also because it was circular. The 
circularity was, in particular, in the definition of the genesis of abstraction as "passing 
through (a) a need for new structure; (b) the construction ofa new abstract entity; (c) 
the consolidation of the abstract entity ... ". Thus the product of abstraction should be 
an "abstract entity", but I was not informed what the authors understood by "abstract 
entity". 

While SHD stressed that, for them, abstraction was a mental activity, GT assumed that 
it is was a product of mental activity, "in which a complex parallel processing organ 
solves the problem of complexity by focusing on essential structures that enable 
decisions to be made". GT's notion of abstraction had the properties of the notion I was 
used to, namely those of ignoring some aspects while focusing on some other aspects, 
and I felt quite comfortable with it. I was less at ease with the rest of the theory and 
especially with the interpretations of the students' mathematical behavior that this 
theory afforded. The focus was entirely on the biology of cognition, in abstraction 
from the social and institutional situation, in which the learning of mathematics 
normally takes place. For GT, "essential structures" of the problems they presented to 
the students were always certain mathematical structures, those structures they were 
themselves most familiar with. In the experiment with children being shown five red 
cubes and asked what would be worth remembering about them, children who chose to 
remember that there were 5 cubes happened to belong to the group of high achievers; 
those who chose to remember the color, the pattern or configuration were from the low 
achievers group. But who decided that remembering the number of the cubes was the 
right thing to do? Isn't this a matter of didactic contract? In a mathematics class, 
numbers are important. In communication or arts class, color and arrangement could 
have tremendous importance. Aren't some children failing because they have not 
figured out what is the didactic contract in each particular class? Because they have 
not figured out how school works and what one is rewarded for? It is extremely 
dangerous to explain success and failure in mathematics at school by cognitive factors 
alone. We must take the didactic system as a whole and the student as a "perfinking" 
person (perceiving, feeling and thinking, David Krech cited in Bruner, 1987) in it as a 
whole. "Success in mathematics" is an institutional measure, not a measure of 
cognitive progress or capacity. 

The examples of the contrasting behavior between high and low achievers in the area 
of algebra again suggest that low achievers are those who are bad at noticing what are 
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the rules of the game; in this case - what are the formal conventions of writing 
algebraic expressions, and when two functions are to be considered the same. They 
are strangers in the school mathematics culture. They would rather use a different 
syntax to express things, and how you get a result is important for them. How you get 
a result is important in programming computers; a(u + v) and au+ av, where u and v 
are vectors and a is a scalar are different functions in a CAS. The first involves n 
additions and n multiplications; the second - 2n multiplications and n additions. How 
do you know that in this particular algebra class this does not matter? How do you 
know what is important and what is not in a particular culture? This is not mathematics 
thinking; this is socio-cultural thinking and some people are better than others in 
assimilating into a foreign culture. Some keep their terrrribel forrreyn akzent for ever. 

G, representing RME (realistic mathematics education) defines abstraction as an 
activity, which is comprised in the processes ofmathematizing and seen as a two-way 
process: from less formal to more formal and the other way round. As in GT, 
abstraction is not an important concept in RME. More important is the assumption 
that, for the purposes of mathematics education, mathematics should be seen as a 
human activity and not as a library of accomplished and polished theories. RME is a 
project of curriculum development, not a theory, although the developers have started 
formulating their epistemological assumptions and principles in view of building 
techniques (heuristics), technologies and theories of mathematical instruction. SHD 
claim that their theory is also an outcome of curriculum development activities but 
their focus in the papers is on a theory of learning. RME researchers focus on the 
design of tasks embedded in long term curriculum activities. They describe the 
activities and try to justify the design. Little is said about the classroom 
experimentations and the notion of "success" of an experiment is not defined. 

What are the criteria of success? What have been the proofs of success? Results on 
TIMSS? G claims that in RME the developmental research is "evolutionary in the 
sense that theory development is gradual, iterative and cumulative. There is no theory 
with which to start. The initial, global theory is elaborated, refined and explicated 
during the process of designing and testing" (G, 1998, p. 282). This suggests the hope 
that the law of the "survival of the fittest" will guarantee progress in the long run. 
However, the law of the survival of the fittest does not imply that the best curricula and 
best conditions for learning mathematics are eventually going to be achieved. What is 
"the fittest" is often governed by the law of least resistance or the tendency of the 
educational system to short-circuit all scholarly activities that are costly in managerial 
effort and time and are not directly related to the preparation of students for passing 
the final examinations. 
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ABSTRACTION: WHAT THEORY DO WE NEED IN MATHEMATICS 
EDUCATION? 

Paolo Boero 

I will divide my reaction into two parts. In the first part I will follow the grid ("what is 
the theory about", etc.). In the second part I will discuss the need for a theory of 
abstraction in mathematics education, and the requirements that, in my opinion, such a 
theory should meet, then I will reconsider the three theories from this personal point of 
view. In the sequel, G, GT, SHD will indicate the three theories (according to the 
initials of the family names of their authors). 

According to the Grid ... 

Most of suggested reading criteria (What is the theory about? What assumptions are 
being made? What does the theory claim? What terms are used and what do they 
mean? How has the theory been validated?) are related to minimal, necessary 
requirements that each theory (as a "scientific theory") must meet in human sciences 
(psychology, anthropology, sociology, etc.). The second part of the last reading 
criterion (What are the aims of the theory and what are its applications?) refers to a 
specific challenge for theorists in mathematics education. 

More or less explicitly each presented theory satisfies the first and the third 
requirement. Here it seems to me that theories G and SHD deal with subjects that are 
rather close to each other ( a common title might be "abstraction in context", yet with a 
different meaning of the word "context" - see later), while in the case of GT the theory 
deals with mathematical content and related individual learning processes. 

Different ways of satisfying the second requirement are followed within the above 
presentations of the three theories. In the case of GT, "assumptions" are intended as 
general assumptions derived from other theories in order to create an environment 
where the theory can develop and be better understood; in the case of G and SHD, 
general assumptions are internal to the theory and constitutive of the core of the theory 
itself. We can observe how G aims at self-sufficiency in the presentation of the theory, 
while SHD refers to existing general theories ( especially "activity theory"). The 
second criterion poses some problems: in the case of G, what meanings may be 
attached to crucial terms in a self-sufficiency perspective? (See later). In the case of 
GT and SHD, what relationships to establish with related theories? 

Concerning the latter problem, we can identify different attitudes in mathematics 
education research as well as in the GT and SHD presentations. In the GT case, an 
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autonomous elaboration (the procept theory) is linked to existing general theories in 
the field of psychology (Piaget's "Pseudo-empirical and reflective abstraction in 
arithmetic, algebra and calculus naturally focus on our notion of procept. ") and used 
to reinterpret some other theories in the field of mathematics education: "We do not 
agree with Sfard or Dubinsky that the development invariably proceeds in a sequence 
we describe as procedure-process-procept ". In my opinion the legitimacy of these 
links and re-interpretations should be carefully discussed. As concerns the specific 
section "What assumptions are being made?" in the GT presentation, in my opinion 
the need for this kind of discussion becomes ever stronger: for instance, beyond 
heuristic hints, what are the precise relationships between the "semantic squeeze" in 
Bruner' s quotation, the "reduction in brain area involved", considered in 
neurophysiology studies, and the construction and functioning of procepts? In the 
SHD case, activity theory is taken as a fundamental reference. In my opinion, the 
adoption of an activity theory reference paradigm needs to consider the teachers' role 
as constitutive of the "learning" process (in our case, of the "abstraction" process). 
Indeed in Vygotsky's seminal work it is well known that a crucial, recurring term is 
"obucenie ", that means "teaching and learning". Yet I see (in the article as well as in 
the SHD forum presentation) that this "joint activity" aspect is not sufficiently 
developed. 

Let us come now to the most critical criterion: What terms are used and what do they 
mean? It is clear that the danger for a person like me, who was educated as a 
mathematician, did research in mathematics for some years and still teaches 
mathematics at the University level, is to apply such criterion in the strict way he 
generally uses when dealing with his students' mathematical performance. It is true 
that in the human sciences domain it is very difficult to give "definitions" in the same, 
strict sense. In most cases, definitions are reduced to some evocative words that 
suggest a meaning, and then the context provides the full meaning. But I think that 
within the same theoretical construction (a theory), or the presentation of a theory, a 
crucial term must have a rather precise meaning (in order to establish whether or not an 
object or a situation falls within its semantic domain) and keep it. From this point of 
view, I find that in G and SHD the meaning of some crucial terms is not sufficiently 
clear, while the meaning of other terms seems to change during the presentation of the 
theory. In particular, I refer to the following terms: 

"Formal mathematics" (in G): "formal" according to a high level of formalisation? 
And/or according to a social (or academic) consensus about ways of presenting 
relevant concepts, validating statements, etc.? 

"Mathematical reality" (in G): what is its psychological and epistemological status? A 
subjective construction ( or re-construction)? A historically shared and inheritable 
production, rooted in mankind's needs and experiences? A set of shared conventions? 
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"Structure" (in SHD): one part of the axiomatic organisation of mathematical 
knowledge ( e.g. "the structure of group")? And/or the overall organisation of 
mathematical knowledge? And/or the organisation of mathematical thought? 

"Context" (in SHD): in mathematics education, like in psycholinguistics, the word 
"context" takes different meanings: 
• that of "situation context": those factors affecting the mathematical performance 

that are related to the situatedness of the students' activity (including social 
relationships in the classroom, environmental factors, etc.); 

• that of "task context": the task evokes specific "realities" and constraints; as a 
consequence, behaviours, schemes, etc. related to those "realities" are activated; 

• that of "inner context": in this case the attention is focused on the (internal) 
representation of the subject's past and present experience. 

These different meanings of the word "context" suggest different perspectives under 
which teaching and learning mathematics in the classroom can be considered. For 
instance, in the case of abstraction the second perspective suggests to choose peculiar 
tasks suitable for it, while the first perspective suggests to take into account the social 
interactions that the teacher must "orchestrate" in the classroom. 

Concerning the aims and the applications of the three theories, they are very different. 
Here again there are strong analogies between G and SHD (the theories are intended to 
provide useful tools to plan and/or improve teaching projects, and better interpret what 
happens in the classrooms where planned teaching is implemented). In the case of GT, 
the focus is on interpretative aims and in particular on explaining "why some students 
are so highly successful with symbols, whilst others are procedural at best" (etc.). In 
my opinion, in mathematics education we need both types of theories, bearing in mind 
that a theory of the second type can develop in (or support) a theory of the first type, 
and that a theory of the first type can provide interesting research questions for 
theories of the second type. 

Concerning validation of theories, it seems to me that (in relationship with their 
specific aims) each theory meets this requirement. However I must say that it is met 
not so much in the above papers as in the articles included in the references: this is an 
unavoidable, necessary consequence of the space limitations of presentations. 

Do we Need a General Theory of Abstraction in Mathematics Education? What 
Kind of Theory? 

Let us consider the following examples: 
a right-angled triangle is drawn on the blackboard; students draw right-angled 
triangles on their copybooks; the teacher illustrates Euclid's theorem; 
the teacher writes on the blackboard: (uv) '=u 'v+uv ', then Jxsinxdx=, then 
illustrates and justifies the well known method of integration of the xsinx function 
based on the law of derivation of products of functions; 
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the teacher draws a square on the blackboard, then one diagonal, then he proves (by 
the usual "reductio ad absurdum" proof) that the diagonal and the side of a square 
are incommensurable: .... ri=2s2, (dls/=2, etc. 
the teacher establishes a 1-1 correspondence between the set of even numbers and 
the set of all natural numbers, then defines "infinite sets" as those sets which are 
equivalent to a proper subset. 

In each of these cases mathematicians recognise some specific aspects of 
"abstraction". Mathematics educators have tried to deal with these aspects in different 
ways. For instance, C. Laborde and B. Capponi define a (geometric) figure as the set of 
couples (O,di), where O is the geometric object ( e.g. the right-angled triangle) and di is 
one of the drawings that constitute the 'material representation' of the geometric 
object. Therefore the figure "is the product of the abstraction process performed by 
the subject when, starting from a drawing (signifier) he or she thinks about the 
represented geometric object". This definition of figure is useful to deal with some 
difficulties that students meet when they approach geometrical reasoning (for 
instance, the reference to the peculiarities of a drawn right-angled triangle, or the 
stereotyped representation of the height of a triangle). These considerations are 
specific to the kind of abstraction inherent in the first situation. For the second 
situation an entirely different theoretical approach to abstraction is needed. Indeed, the 
'material representation' is related to the represented mathematical object in a 
completely different manner: on one side the 'material representation' is much more 
distant from the mathematical object, on the other it becomes the starting point for a 
chain of transformations performed on the written expressions according to general 
syntactic rules. The third example shows some partial similarities both to the first 
example and to the second. Let us consider the fourth example: the idea of 
"epistemological obstacle" was elaborated in order to cope with students' difficulties 
inherent in "accepting" some cultural, "abstract" constructions like the "equivalence" 
between a set and a proper subset, which contradict our usual experiences about the 
sets of objects that we can describe extensively (i.e. by listing all their elements). 

I add, as explicitly quoted in GT and in SHD, that general theories of abstraction 
already do exist in psychology. 

A recurrent question for me, when reading the contributions for this panel, was: do we 
need a general theory of mathematical abstraction in mathematics education, i.e. a 
general theory suitable for describing and interpreting many typical phenomena of 
"abstraction" that intervene in teaching and learning mathematics and, possibly, 
controlling them (i.e. planning teaching in order to get the best results) by selecting 
pertinent variables and coming to predict the effects of actions on them? 

In my opinion, a general theory of mathematical abstraction that would be of interest 
for mathematics education purposes should: 
- cover most forms of abstraction currently met in teaching and learning mathematics 

at different school levels; 

I - 136 PME26 2002 



interpret difficulties met by students in tackling abstraction in their approach to 
mathematical knowledge; 
point out relevant variables accessible to educational intervention; 
take into account relevant research in the field of epistemology of mathematics ( as 
concerns reflection on abstraction) and cognitive sciences (as concerns general 
theories about abstraction, or specific theories about mathematical abstraction). 

According to the first three requirements that I propose, each of the three theories 
offers some relevant contributions but also shows important weaknesses. G shows 
(through the example sketched in the PME contribution and other evoked examples) 
how some processes of abstraction can work, helping both the designers of teaching 
projects and teachers to plan and manage suitable classroom situations. But it seems to 
me that G does not cover processes of abstraction that are needed when a "break" is 
unavoidable in the transition from mathematical experience in real contexts to "formal 
mathematics". Moreover, the role of mediation played by the teacher, which is 
particularly crucial in this case, is not explicitly dealt with. GT is suitable to cover 
many "abstract" mathematical objects, but it seems to me that in my first example it 
does not provide much help in dealing with students' difficulties in managing the 
"abstract" notion ofright-angled triangle ( e.g. in the case of stereotyped images). And 
(being mainly a theory about mathematical objects in their relationships with 
generating processes) I see it might have some difficulties in dealing with the 
"abstraction" inherent in the activities (e.g. students' mathematical argumentation). 
SHD is a very general theory and it surely covers abstraction in a wide sense, but its 
current generality implies that some peculiarities are lost in specific cases. Perhaps in 
the future this theory will become suitable to deal in a productive way with all the 
examples provided at the beginning of this Section, but then the subject's individual 
processes should be better investigated in relation with the "situation context", the 
"task context" and the teacher's mediational strategies. 

As concerns the fourth requirement that I propose, it seems to me that the three 
theories do not take sufficiently into account important, new streams of research in 
epistemology of mathematics, psychology and neurophysiology that are developing in 
different research communities. Recent joint studies in the fields of epistemology and 
neurophysiology (for an example the project "Geometry and cognition" at the ENS, in 
Paris) show the possibility of a convergence on the idea that even at the highest level 
of "abstraction" productive reasoning relies upon very "concrete", body related 
intuitions. This approach puts again into question, but within a new perspective 
(neurophysiology investigation), the idea of a purely conventional character of axioms 
and axiomatic theories; the anti-logicist positions have opposed this idea during the 
whole XX century under different perspectives (mainly philosophical or ideological or 
based on introspection). This approach also draws an almost entirely new picture of 
how high level professional mathematical activities are performed. It seems very 
interesting and promising that this stream of research goes in the same directions of 
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some other streams of research in different disciplines (in particular, "embodied 
cognition", in psycholinguistics and psychology). 

If it is true that "thinking abstract objects as if they were concrete" is possible, but 
"thinking in an abstract way" is impossible (as far as productive thinking is 
considered), then a theory of abstraction suitable for educational purposes should take 
charge of the whole complexity of the relationships between mathematical objects, the 
thinking processes concerning these objects, their "situatedness" in the classroom 
environment (the mediational role of the teacher being a crucial issue), and the most 
suitable "task contexts" for meaningful mathematical abstraction (both as concerns the 
mathematical content involved and the body-rooted processes). From this wide and 
very demanding point of view I think that the presented theories offer some important 
contributions, but we are still far from a comprehensive theoretical answer to the 
challenge of mathematical abstraction in mathematics education. 
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