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EXPLORING PERSPECTIVES ON MATHEMATICAL 

MODELLING: A LITERATURE SURVEY 

Armando Paulino Preciado Babb1, Armando Solares Rojas2, Fredy Peña2, Andrea 

Ortiz3, Marisol Sandoval Rosas3, Remedios Soriano Velasco3, Vicente Carrión 

Vázquez3, and Mauricio Farrugia Fuentes4 

1University of Calgary, Canada; 2Center for Research and Advanced Studies, Mexico; 
3National Pedagogical University, Mexico; 
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Mathematical modelling has a long tradition in mathematics education and has been 

gaining international attention, not only in research and practice, but also in official 

perspectives reflected explicitly in programs of studies around the world. Despite 

extensive publications on diverse aspects of mathematical modelling, systematic 

literature surveys on this topic are scarce. We highlight some qualitative results from a 

systematic survey of 452 publications related to different perspectives on mathematical 

modelling, extending and complementing previous reviews of the state of the art. In 

particular, we elaborate on the notion of ‘authenticity’ and the purposes of 

mathematical modelling in education. Finally, we identify two trends in Latin 

American countries. 

NEED FOR A SURVEY 

The roots of mathematical modelling, as per Niss, Blum and Galbright (2007), date 

from the late 1950s when mathematical modelling advocates attempted to restore focus 

on the utility and applications of mathematics in schools and universities. By the 

1970s, several countries incorporated mathematical modelling their curriculum. A key 

moment for the international move toward mathematical modelling in education was 

the inauguration of the biennial Conference on the Teaching of Mathematical 

Modelling and Applications in 1983, organized by the International Community of 

Teachers of Mathematical Modelling and Applications (ICTMA). Another key event 

was the publication of the 14th International Commission on Mathematical Instruction 

(ICMI) study (Blum, Galbraith, Henn, & Niss, 2007). Since then, international 

research has increased significantly, and research methods and focuses have extended 

beyond traditional approaches (Stillman, Blum, & Kaiser, 2017). Current international 

focuses on science, technology, engineering and mathematics (STEM) education have 

also stressed the importance of mathematical modeling (English, 2015). Despite the 

large number of publications on mathematical modelling in education, systematic 

reviews in the literature are scarce. 

Different perspectives have influenced the integration of mathematical modelling in 

educational contexts. In particular, Kaiser & Sriraman (2006) proposed a classification 
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consisting of six perspectives, as described in this paragraph. The realistic perspective 

aims to solve real-life problems beyond mathematics: authentic problems from 

industry and science are particularly relevant here. In contrast, the epistemological 

perspective focuses on the development of mathematical theories, and includes 

intra-mathematical models that are used to advance theory in mathematics. The 

educational perspective, based on an integrative approach (Blum & Niss, 1991), 

considers different aims for modelling that serve scientific, mathematical and 

pragmatic purposes harmoniously. The contextual perspective, also called the 

model-eliciting approach, focuses on problem solving activities constructed using 

specific instructional design principles. According to Kaiser and Sriraman, with this 

approach, “students make sense of meaningful situations, and invent, extend, and 

refine their own mathematical constructs” (p. 306). The socio-critical perspective 

emphasises the need to develop a critical stance towards the role and nature of mathe-

matical models, as well as their impact on social issues. The cognitive perspective on 

modelling is transversal to the previous five and focuses on cognitive aspects of the 

mathematical modelling process.  

Due to this diversity of perspectives, it is difficult to provide a single definition for 

mathematical modelling. In this paper, we highlight two common elements of a 

mathematical model consistent across diverse perspectives, namely: a situation or 

phenomena of interest, commonly but not exclusively, from the world beyond mathe-

matics; and a collection of mathematical entities and relationships that correspond to 

certain aspects of the situation or phenomena of interest. The collection of entities and 

relationships is often represented visually and can be manipulated and studied with 

mathematical tools to make predictions or inferences about the situation or phenomena 

of interest. Modelling can therefore be understood as the creation or the application of 

a model to solve a problem, make predictions or estimations, study certain phenomena, 

inform decisions, or even create policy (Blum & Niss, 1991). 

Because there are diverse perspectives and purposes related to mathematical 

modelling, it is important for researchers, teachers, administrators and policy makers to 

understand and be explicit about the differences among such perspectives. In this 

paper, we synthetize some results from a literature survey that includes key publicca-

tions in journals and books. We focus on aspects that complement some of the key 

reviews of the state of the art in this field, including Latin American trends.  

SURVEYING THE LITERATURE 

This survey is the result of a seminar consisting of graduate and undergraduate students 

and educators from the National Pedagogical University and the Mathematics 

Education Department of the Center for Research and Advanced Studies in Mexico, 

and the University of Calgary in Canada. We identified multiple perspectives on 

modelling and found the literature on this topic to be vast. We also noticed that 

systematic reviews, such as the one conducted by Frejd (2013), were scarce; this 

influenced our decision to conduct our own review. This paper presents insights from 
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an exploration in the literature focused on the different perspectives on mathematical 

modeling. Kaiser and Sriraman’s (2006) widely cited classification served as a point of 

contrast to identify salient themes in this exploration. 

We initiated our survey by searching peer-reviewed articles with ‘modeling’ or 

‘modelling’ in the title through the SpringerLink database. Then, we refined the search 

using ‘Education’ as discipline and ‘Mathematics Education’ as subdiscipline for each 

of the two words. Book reviews and other articles that did not relate to mathematical 

modelling were excluded, resulting in a list with 73 articles. This list can be considered 

as representative of the literature because: (a) Springer publishes many of the most 

influential journals in mathematics education identified by Toerner and Arzarello 

(2012), and (b) searching the key words in the titles suggests that mathematical 

modelling is a main focus for the selected articles. The list served as a starting point for 

the survey, and the initial analysis not only helped to clarify and refine the categories 

that guided the review, but also allowed for the identification of key publications in 

books and articles in special journal issues.  

In a second stage of the survey, we included: (a) articles from the special issues on 

mathematical modelling, and articles published in 2017 not included previously; (b) 

articles from the Journal for Research in Mathematics Education (JRME); (c) five 

books related to ICTMA and the 14th ICMI Study (Blum, Galbraith, Henn, & Niss, 

2007); (d) articles from journals on mathematics education published in Spanish; and 

(e) a recent Latin-American book addressing research on mathematical modelling 

(Arrieta Vera & Díaz Moreno, 2016).  

We chose JRME because it is at the top of the list of journals identified by Toerner and 

Arzarello (2012). The same title criterion as in the first stage was followed to search 

articles in this journal. The five books related to ICTMA, extracted from its biannual 

conference, correspond to the series International Perspectives on the Teaching and 

Learning of Mathematical Modelling published by Springer. We included the Spanish 

journals and the Latin-American book to extend the scope of the review beyond 

publications in English. The selected journals were Revista Educación Matemática and 

Revista Latinoamericana de Investigación en Matemática Educativa, because they are 

specialized in mathematics education and are the most relevant among the Spanish 

journals. Similar to our search of the journals in English, we searched for articles with 

words in the title related to modelling.  

A total of 452 documents were included for this paper: 111 journal articles, and 341 

book chapters. Here, we report results from a thematic analysis on the perspectives on 

mathematical modelling as presented in these documents. 

EMERGENT THEMES AND PERSPECTIVES ON MODELLING 

We identified two themes with strong connection to the perspectives on mathematical 

modelling: authenticity and purpose. We also identified two common trends in 

mathematical modelling from Latin American countries from the Spanish literature. 
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Within the recent literature, there is clearly a debate on the notions of ‘authenticity’ and 

‘real world,’ commonly invoked by several authors from different perspectives on 

modelling. In one sense or another, most (and perhaps all) perspectives allude to 

something ‘authentic.’ Regarding the realistic perspective, Kaiser and Sriraman (2006) 

claimed that “modelling processes are carried out as a whole and not as partial 

processes, like applied mathematicians would do in practice” (p. 305). Something 

similar could be said for mathematicians and scientists who have developed mathe-

matical theories based on phenomena from other fields, such as financing, chemistry, 

astronomy or biology. Such theories are often extended to models that are applied to 

subjects beyond mathematics. In this sense, the process of theory generation can be 

considered as authentic to the work of mathematical modelling.  

With respect to this debate, Jablonka (2007) suggested that authentic mathematical 

modelling in the classroom can take place “when students and teachers are bona fide 

engaging in a modelling or application activity about an issue relevant to them or to 

their community” (p. 196). This framing could be related to any of the perspectives in 

Kaiser and Sriraman’s (2006) classification. 

A proposal in this debate is to consider elements of authentic modelling within a task. 

Vos (2011) suggested a definition for authenticity in which components of a task, 

instead of the task itself, include objects that are “clearly not created for educational 

purposes” (p. 721). In this sense, many tasks within different perspectives have 

authentic elements of mathematical modelling. Indeed, many reports in the consulted 

literature do not include the whole modelling cycle or process due to limitations in 

implementation. In other cases, the instructional approach does not include the whole 

process of modelling, or does not start from the ‘real world.’ For instance, Silva Soares 

(2015) suggested model analysis as a teaching approach in which students analyse an 

already existing model instead of creating a model from real data.  

Most recently, Carreira and Baioa (2017) addressed the concept of ‘credibility’ rather 

than ‘authenticity’ in mathematical tasks. While authors have argued that real life 

situations have the potential to make the learning experience more attractive, this focus 

on credibility places the relevance at a personal level for students. 

Finally, many publications focused on simulations using computer systems. Simula-

tions are used as a part of the modelling cycle involving real data (e.g. Niss, 2015). 

However, simulations are also used as models to teach specific content within and 

beyond mathematics (e.g. Gomes Neves, Carvalho Silva, & Duarte Teodoro, 2011). 

While students may not engage with real data when using a simulator, they can experi-

ment within the model and learn both mathematical and extra-mathematical content. 

Regarding the purposes for mathematical modelling, we identified a list, summarized 

in Table 1, that extends the purposes considered in Kaiser and Sriraman (2006). Many 

of these might be included in one or more of the perspectives in this classification. In 

particular, awareness of social and global issues, participatory attitude, and culture of 

innovation could be considered purposes within both the realistic and the socio-critical 
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approaches, if we extend their description. For the realistic approach, for instance, the 

purpose can involve an “ultimate goal,” as suggested by Carreira and Baioa (2017).  

Purposes 

To:  

Examples 

Learn mathematics content Algebra, Geometry, Calculus, Statistics 

Apply mathematics Problem solving 

Learn other disciplines Chemistry, Biology, Finances, Heath Care 

Conduct research Research on learning in virtual environments 

Design learning 

environments 

Design simulators and virtual environments for 

learning purposes 

Develop modelling 

competencies 

Elements of modelling; criteria for quality in 

mathematical modelling 

Develop learning skills Generalize the solution of a problem to other similar 

problems 

Generate mathematical 

theory 

Conceptual understanding; mathematical proof 

Develop critical thinking Judge models used in daily life; question purpose 

and assumptions of different models 

Understand mathematics as a 

discipline 

Historical, social and political aspects of 

mathematics as a discipline 

Develop awareness of social 

and global issues 

Create and critique models used to predict: 

economic growth; global warming; tax revenue 

Promote a participatory 

attitude 

Engage in addressing real problems and 

decision-making within the community 

Promote a culture of 

innovation 

Create something for a customer; program software 

for an audience 

Engage in emancipation 

strategies 

Decolonization; cultural practices in mathematics 

and mathematical modelling 

Table 1: Purposes for mathematical modelling in education, with examples. 

While developing mathematical modelling competencies is a common purpose within 

the literature, other aspects of modelling are barely considered, such as the quality 

criteria proposed by Perrenet, Zwaneveld, Overveld and Borghuis (2017), comprising: 

genericity, scalability, specialization, audience, convincingness, distinctiveness, 

surprise, and impact. In fact, most of the modelling tasks do not include constructing or 

experimenting with physical objects, creating something for a customer, writing 

computer code, or making a decision that will affect the local community. Niss (2015) 
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proposed the term prescriptive modelling that involves designing, prescribing, 

organizing or structuring certain aspects of the real world. Papers that included these 

activities could be considered as promoters of a culture of innovation and a parti-

cipatory attitude. For example, Orey and Rosa (2017) reported a task addressing the 

issue of tariffs in public transportation. 

Finally, a few papers addressed mathematical modelling for research or for developing 

learning environments, which are not considered as purposes in Kaiser and Sriraman’s 

(2006) classification. Campbell (2011), for example, addressed the use of virtual 

reality, which requires mathematical modelling to create virtual spaces and objects. In 

contrast to the other purposes for modelling, students may not engage in elements of 

modelling in the corresponding learning, or research, environments. 

Latin American trends 

As we reviewed articles written in Spanish, we identified two main trends on 

mathematical modeling for Latin America, namely: the number of publications, and 

the innovative aspects in their approaches. These contributions strongly emphasise the 

social and cultural influences of modelling education. 

Mathematical modelling research from Spanish speaking countries produced a modest 

number of papers in the publications from Springer. However, the review revealed 

activity in mathematical modelling in Latin America since the 1990s, and in the case of 

Brazil, since the 1970s (Salett Biembengut, 2016). This brings into contention Blum 

and Niss’s (1991) claims that mathematical modelling was initially developed in 

regions such as Germany and the UK.  

While the number of publications from Spanish speaking countries has increased 

modestly in the last few years, publications from Brazil are conspicuous in documents 

published by Springer. Particularly, the 16 ICTMA Conference, held in Brazil in 2013, 

resulted in an increased number of authors from the host country.  

Regarding innovative aspects in Latin American approaches, Stillman, Blum, & 

Biembengut (2015) identified elements of “a unique Latin American perspective to 

modelling” in the work of Brazilian author, Ubiratan D’Ambrosio, who discusses 

knowledge generation (cognition), its individual and social organization (episte-

mology) and the way it is confiscated, institutionalised and given back to the people 

who generated it (politics). His perspective on mathematical modeling extends the 

socio-critical perspective and is a strategy for building up systems of knowledge in 

different cultural environments. 

Another Latin American modelling trend corresponds to research reported as 

socio-epistemological (see for instance Arrieta Vera and Díaz Moreno, 2016; Quiroz 

Rivera & Rodríguez Gallegos, 2015). This approach understands mathematical 

modelling in terms of social practices, both in school and in formal mathematics. 
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FINAL REMARKS 

This report complements other reviews of the state of the art regarding the debate on 

authenticity, the purposes of modelling, and Latin American trends. The discussion on 

authenticity and the identification of purposes for mathematical modelling problema-

tize Kaiser and Sriraman’s (2006) classification of perspectives on mathematical 

modelling. Perhaps, while this classification has been useful in the past, it may be 

appropriate to pay closer attention to the purposes of mathematical modelling on an 

individual basis, and consider the elements of authenticity in tasks, as suggested by 

Vos (2011). These elements of authenticity may vary based on the mathematical con-

tent addressed in each task. For instance, modelling with statistics may involve ele-

ments of authenticity (e.g. using real data) that differ from the elements of authenticity 

for modelling with calculus (e.g. using simulations).  
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ARE TEACHERS’ LANGUAGE VIEWS CONNECTED TO THEIR 

DIAGNOSTIC JUDGMENTS ON STUDENTS’ EXPLANATIONS? 

Susanne Prediger, Dilan Şahin-Gür, and Carina Zindel 

TU Dortmund University, Germany  

 

When teachers analyze students’ explanations in a language-responsive mathematics 

classroom, they explicitly and implicitly activate various categories and hold different 

views on language and mathematics learning. This study investigates how typical 

views on language in mathematics classrooms are related to what teachers consider 

relevant in their diagnostic judgments, in this case on students’ explanations of the 

slope formula for linear functions. Seventy-eight teachers’ personal constructs were 

elicited using a diagnostic activity and related to their self-reported views on language 

and mathematics learning. The group of language reducers can be shown to focus 

significantly more on the surface level of language whereas the language pushers 

group focuses more on the discourse level. In contrast, worries about language 

responsiveness being time consuming do not seem to influence diagnostic judgments.  

Due to the increasing language diversity in mathematics classrooms, fostering lan-

guage learners’ mathematics learning has become a major task for mathematical tea-

chers all over the world. Although the teachers’ crucial role in language-responsive 

classrooms has often been acknowledged in classroom research, research surveys 

show that few studies have been conducted on teachers’ resources and the obstacles 

they face in developing language-responsive mathematics classrooms (Radford & Bar-

well, 2017; Barwell et al., 2016)  

In this paper, mathematics teachers’ resources and their obstacles when developing 

their language-responsive classrooms are conceptualized by typical views (on lang-

uage and mathematics learning) and mathematics- and language-related categories 

they apply when noticing students’ products (following Sherin, Jacobs, & Philipps, 

2001). We report on an inquiry with mathematics teachers (n = 78) that investigates 

their personal categories elicited in comparative diagnostic judgments which pursues 

the following research questions:  

Which categories do teachers activate when conducting diagnostic judgments on stu-

dents’ written explanations of slope?  

How are these categories connected to the teachers’ views on language?  

THEORETICAL BACKGROUND: TEACHERS’ PERSONAL VIEWS  

AND CATEGORIES IN LANGUAGE-RESPONSIVE CLASSROOMS 

As Sherin et al. (2001) have argued, teachers’ classroom practices rely heavily on what 

they notice in classroom complexity. Noticing in language-responsive mathematics 
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classrooms starts with diagnostic judgments on students’ utterances and products, 

especially on students’ written explanations of mathematical concepts, because 

explaining mathematics concepts is the most important discourse practice, especially 

for language learners (Moschkovich, 2010).  

Personal views and personal categories in teachers’ diagnostic judgments 

Sherin et al. (2011) describe noticing as a complex process “through which teachers 

manage the blooming, buzzing confusion of sensory data with which they are faced” 

(p. 5). Hence, noticing selected aspects involves filters of perception and consists of 

two processes: “attending to particular events in an instructional setting” and “making 

sense of events in an instructional setting” (ibid., p. 5). For the second process of 

making sense, they hint at the relevance of categories: Interpreting means “relating 

observed events to abstract categories” and characterizing what they see in terms of 

familiar phenomena (ibid., p. 5). As Prediger and Zindel (2017) have shown that extra-

polating the personal categories in teachers’ diagnostic judgments can be an interesting 

research approach for unpacking their thinking and noticing. As the personal catego-

ries that teachers activate in diagnostic judgments can be widespread and very indivi-

dual, they cannot be captured by predefined items but should be elicited with open- 

ended diagnostic activities.  

Beyond the specific categories, teachers’ diagnostic judgments can be influenced by 

their general views on the topic in view, in our case views on the role of language in 

mathematics classrooms and the individual interpretation of what language-respon-

siveness might mean (Short, 2017).  

Categories and language views relevant in language-responsive classrooms 

Although Moschkovich (2010, p. 160) recommended investigation of teachers’ 

judgements in language-responsive classrooms, little so far is known on teachers’ 

personal views and categories about language and mathematics learning. This can be 

partly explained by the fact that most research studies on language are conducted as 

classroom observation studies (Radford & Barwell, 2016).  

Although teachers’ diagnostic judgments have not been investigated directly, these 

classroom observations provide important hints on potentially crucial categories and 

views. As the research on language in classroom observation studies has shown, the 

role of language in mathematics classrooms cannot be adequately grasped on the word 

level alone, as it is tightly connected to the sentence level and especially the discourse 

level: Classroom studies in linguistics and mathematics education research have shown 

that the epistemic function of language (i.e., the role of language for higher order 

thinking practices) is mainly reflected by participation in classroom discourse practi-

ces: Language learners in their early stages of language proficiency can have difficul-

ties participating in classroom practices such as explaining meanings or describing 

general patterns, whereas they can participate in reporting procedures or describing by 

examples (Moschkovich, 2010). Thus, categories on the discourse level are crucial for 

focusing relevant phenomena, as they allow for integrating language and mathematics 
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learning in much deeper way than simple categories on the language surface level 

(such as orthography) or the word level (such as identifying relevant technical terms).  

A typical view that might hinder language learning concerns the interpretation of lan-

guage-responsiveness as language simplification: In order not to exclude language 

learners from mathematics learning, many teachers tend to reduce the language de-

mands by simplifying all texts and reducing the production expectations to keywords 

and half sentences. In contrast, language education research has emphasized the re-

quirement of comprehensible but demanding language input and pushing much lang-

uage output in order to enhance language learners’ learning opportunities (e.g., Short, 

2017). Pushing language in the zone of proximal development thus seems to be an 

important overall view on language in classrooms.  

In general, each classroom innovation can be hindered by teachers’ view that this inno-

vation is too time consuming. Understanding the backgrounds of time worries might 

therefore help to overcome them and increase the chance that teachers adopt 

approaches of language responsiveness. Existing case studies have led to the hypo-

thesis that fewer time worries may be held by teachers who see how language and 

mathematics are deeply connected, which means that they are already addressing the 

discourse level on which content- and language-integration mainly occurs. 

In order to investigate how categories and views are connected, the following two 

hypotheses are tested in this study:  

H1 Those teachers who worry that language responsiveness is time consuming focus 

less on the discourse level and more on surface levels than those who do not worry.  

H2 Those teachers who try to reduce language in their classroom focus less on the 

discourse level and more on the surface levels than those who push language.  

METHODS  

Methods of data gathering 

Sample. The sample consisted of German middle and high school mathematics 

teachers (n = 78) in their first session of a volunteer professional development series on 

language-responsive mathematics classrooms. The teachers had 2-30 years of experi-

ence in math teaching (with a median of 6-10 years) and between 0 hours and several 

days of previous encounters with ideas of language-responsive classrooms (with a 

median of 6-8 hours). 

Questionnaire for general views on language in math classrooms. General views 

were captured using e.g. the following items:  

• Language reducer vs. language pusher: “For language learners, I try to re-

duce the language.”  

• Time worrier vs non-worrier: “Language responsiveness is an additional task 

for math classrooms which steal us much time from mathematics learning.” 
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Teachers’ views captured on the six-point Likert-type scales allowed the formation of 

sub-samples of language reducer vs. pusher and time worrier vs. non-worrier, con-

taining those teachers who selected strongly disagree/quite disagree or quite agree/ 

strongly agree, without those who chose partially dis-/agree.  

Diagnostic activity. Eliciting the teachers’ implicit personal categories on language 

and mathematics followed the variation principle: Diagnostic judgments were reques-

ted for three contrasting students’ explanations (Fig. 1). Teachers were asked to name 

their criteria, evaluate the three texts according to them, and justify their evaluation.  

  

Fig. 1: Diagnostic activity for teachers (translated from German with errors preserved) 

The slope of a linear function provides a mathematically rich exemplary topic for stu-

dents’ explanations. This topic demands not only procedural knowledge when eva-

luating the slope formula  for specific values but also conceptual knowledge explaining 

its meaning as a whole (the slope captures how much a function grows) as well as the 

components of the quotient: The ratio of two distances is an interpretation that requires 

conceptual understanding of different arithmetic models (Usiskin, 2008). Four dis-

course practices can be distinguished here, reporting procedures, explaining meanings, 

general phrasings, and concrete phrasings (Suleika explains meanings in a general 

way, whereas Ali reports procedures concretely). The three students’ texts were chosen 

to show a wide spectrum of language features on the surface level (e.g., orthography), 

word level (technical terms), sentence level (grammatical structures), and discourse 

level (with the four discourse practices mentioned).  

Data analysis procedures 

The manifold personal criteria that teachers stated for the diagnostic activity in Fig. 1 

were analyzed by a specifically developed categorial scheme. The first version of the 

categorial scheme was derived from the current state of research and then adapted to 

the data in order to capture all personal criteria. As the teachers used the same words 
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for criteria with different individual meanings, the verbatim criteria, their assessment 

scores for each student text and their justifications also had to be taken into account for 

the categorization. Table 1 shows examples for the categorizations, and Table 2 shows 

the complete categorial scheme. Within the categorized data, frequencies of category 

use were determined for the whole sample and compared for the sub-samples. In order 

to test Hypotheses H1 and H2 in terms of the differences of the sub-samples, t-tests 

were administered. 

RESULTS 

Insights into two cases 

The cases in Table 1 show that the diagnostic activity can elicit very different personal 

criteria, as intended: The two teachers (here called Peter Tremnitz and Anne Schäfers) 

assess the students’ explanations differently (the bold numbers indicate the evaluations 

they assigned to Ali, Suleika, and Tom), these assessments scores are based on dif-

ferent personal constructs underlying their diagnostic judgments. Some teachers’ cri-

teria are categorized under more than one category, mostly because their justification 

address several aspects. These personal criteria vary between very vague aspects such 

as mode of expression and core categories on discourse level. It is typical that criteria 

on discourse level (general/concrete phrasing, explaining meanings/reporting proce-

dures) appear sometimes as mathematical criteria, sometimes as language criteria. 

 

Table 1: Examples of evaluations and elicited criteria with justification of two teachers 

(in bold- faced type: assessment scores for Ali, Suleika, Tom; in italics: categories 

assigned by researcher) 

Peter has a strong focus on the connection between language and mathematics in three 

of his four criteria. When he mentions technical terms, they serve as indicators for dee-

per aspects on the discourse level, as his main distinctions concern the different dis-
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course practices. In contrast, Anne presents disconnected criteria without addressing 

the discourse level at all. Interestingly, these findings correspond to their views ex-

pressed in the self-report scale in the hypothesized ways: Peter favors views as lang-

uage pusher and does not really worry about time, whereas Anne is a language reducer 

and tends to partially worry about language responsiveness being time consuming.  

In the accompanying group discussion, the connection became also apparent: As 

language for her is only located on the surface level and not really connected to mathe-

matics, it is rational in her view to reduce language demands. In contrast, for Peter, the 

mathematics and language criteria are tightly connected, so language is to be pushed to 

foster mathematics learning. Also for other aspects, the insights provided by the 

questionnaire resonate with richer qualitative video data from group discussions with 

these two teachers.  

However, even if these two cases resonate with the hypotheses, the hypotheses must be 

tested for a larger sample.  

Quantitative results of typical categories and connections 

Table 2 presents the frequencies of categories built from the elicited personal criteria as 

exemplified in Table 1.  

 

 Table 2: Frequencies of different categories: Comparison of sub-samples 

In the whole sample, 65% of the teachers address only very vague or surface criteria 

for language, and 42% adopt the often criticized focus on isolated technical terms. In-
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terestingly, 39% of the teachers address categories on the discourse level, distingui-

shing in some ways between general and concrete phrasing and/or reporting proce-

dures and explaining meanings. Interestingly, half of these teachers mention discourse 

practices as a mathematical instead of a language criterion.  

The comparison of sub-samples shows that the pattern exemplified by the two cases 

only partly re-appear: For the sub-samples of time worriers and non-worriers, the fre-

quencies of categories are similar without any significant differences (with a maximal 

difference of 19% for explaining meanings) and all have small effect sizes (d < 0.47 for 

all categories). Thus, Hypothesis H1 must be rejected: Worries about language respon-

siveness being time consuming does not seem to be systematically connected to the 

personal constructs applied for diagnostic judgments. 

In contrast, the language reducers and language pushers have significantly different 

priorities in their diagnostic judgments: Whereas the language reducers often address 

the very general category of mathematical correctness, the language pushers differen-

tiate more thoroughly between procedural and conceptual knowledge. 80% of the lang-

uage reducers focus exclusively on surface levels (including orthography or technical 

terms), whereas only 53% of the language pushers do. In contrast, 60% of the language 

pushers focus on the discourse level while only 38% of the language reducers do; the 

difference is specifically significant for the most important discourse practice of ex-

plaining meanings. So, Hypothesis H2 can be confirmed, with the corresponding null 

hypothesis being rejected.  

DISCUSSION  

This study followed Moschkovich’s (2010, p. 160) recommendation to investigate 

teachers’ judgements in language-responsive classrooms, in this study, the diagnostic 

judgments on explanations of a mathematical concept. Similar to other investigations 

of teachers’ diagnostic judgments (Prediger & Zindel, 2017), the thorough exploration 

of individual categories turned out to provide insightful windows into teachers’ thin-

king. 

The empirical identification of teachers’ personal categories revealed the problem of 

surface level categories being dominant for 65% of the teachers. For these teachers, the 

recommended shift of focus to the discourse level should be a crucial part of professio-

nal development programs (Moschkovich, 2010; Short, 2017). This is specifically 

important as the general view of language responsiveness as language reduction turns 

out to be significantly connected to the missing focus on the discourse level. As long as 

professional development programs fail to address the discourse level (as criticized by 

Moschkovich, 2010), this study provides indications that a crucial precondition for an 

adequate view on language-responsiveness is missing.  

While 39% of the teachers in the study already paid some attention to the discourse 

level, half of these teachers mention discourse practices as a mathematical instead of a 

language criterion. So this focus of attention reveals an important resource on which 
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professional development programs must build upon in order to shift teachers’ lan-

guage focus to the discourse level. 

Teachers’ attitudes have often been described as quite stable orientations that have an 

impact on teachers’ noticing and practices. In this paper, the relation may be turned 

around: For a new challenge, such as language-responsive mathematics classrooms, 

the presented findings provide indications that the scope of teachers’ categories may 

also influence their personal views on the role of language in mathematics classrooms. 

However, this seems to apply more for language reducers (Hypothesis H2 was confir-

med) than for those who worry about language responsiveness being time consuming 

(Hypothesis H1 had to be rejected).  

In order to overcome limitations of the study, future research will increase the (so far 

limited) sample size and study also the development of teachers’ views and personal 

categories during a PD program, with the survey and also qualitative means. 
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PROBLEM SOLVING: HOW PRESERVICE TEACHERS 

UNDERSTAND IT DURING THEIR PRESERVICE LEARNING 

Jamie S. Pyper and Stephen MacGregor 

Queen’s University 

 

Teaching mathematics requires writing, finding, and modifying mathematics problems 

relevant and appropriate for the students in the course. The preservice program sets 

the stage for teachers’ conceptualizations, appreciations, and understandings of what 

teaching and learning mathematics means. This mixed methods study explores 44 

secondary school preservice mathematics teachers’ beliefs about problem solving as 

they progress through a preservice mathematics education course. Ontologically, 

problem solving begins closely bound to textbook examples and irrelevant ‘real-world’ 

contexts and then shifts to socially relevant experiences. Epistemologically, a gradual 

release of responsibility reduces structural rigidity in teaching and increases pur-

poseful critical thinking.  

INTRODUCTION 

Problem solving is ubiquitous with mathematics. There is problem solving in other 

areas, such as the arts, the humanities, and the sciences, but often, when school 

learning of mathematics is discussed, problem solving appears to become a synonym 

for mathematics. The often perceived domain for learning problem solving is the 

school mathematics course; in fact there might even be an expectation that successful 

completion of mathematics courses makes successful problem solvers. For the sake of 

improved learning of mathematics, and functioning as a problem solver in general, 

perhaps the preservice mathematics teacher learning to employ problem solving is a 

necessary focus. 

Pólya is likely the most familiar person associated with describing the steps of problem 

solving. In mathematics curricula, for example, the various National Council of 

Teachers of Mathematics (NCTM) principles and standards publications, and the 

Ontario Ministry of Education curriculum (OME, 2005), problem solving is described 

as a mathematics process or performance skill, a way of ‘doing’ some (but not all) 

mathematics, where “[i]t is considered an essential process through which students are 

able to achieve the expectations in mathematics” (OME, 2005, p. 12). 

Problem solving is more than just a set of steps to successfully find a solution to a 

mathematics problem; it is also how one thinks as a problem solver. Some have ex-

plored ways one can be a problem solver, and explain what knowing mathematics is all 

about, for example, “knowing-to” from Mason and Spence (1999), the Harvard verbs 

of mathematical inquiry (Harvard, 1995), and Cuoco, Goldenberg, and Mark’s (1996) 

mathematical habits of mind.  
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It appears problem solving has two meanings, a) a noun: the way some mathematics is 

done, and b) a verb: the thinking and reasoning mathematically through a problem to 

come to a successful conclusion or solution. People who are proficient at mathematics 

may be unaware of how problem solving can exist as a noun and as a verb, and that this 

distinction can make a difference in their thinking and actions, for example, preservice 

teachers who are teaching others to learn mathematics and mathematics problem 

solving. If preservice teachers are not crystal clear that teaching mathematics as 

problem solving is different from teaching mathematics through problem-solving, 

what learning success can we expect from students? 

Wrapped up in all of this is the understanding of the nature of problems themselves, as 

well as teachers’ beliefs. Teaching mathematics requires writing, finding, and modi-

fying mathematics problems relevant and appropriate for the students in the course. 

Designing quality problems requires understanding the purpose and intent of the 

problem. Teachers’ beliefs about mathematics, teaching, and learning, also have an 

influence on what they see as important, what mathematics needs to be emphasised, 

and how mathematics should be taught. The preservice program sets the stage for 

teachers’ conceptualizations, appreciations, and understandings of what teaching and 

learning mathematics means. Thus, the purpose of this mixed methods study was to 

explore secondary school preservice mathematics teachers’ beliefs about problem 

solving as they progress through a preservice mathematics education course in an 

Eastern Ontario faculty of education. An overarching research question guided this 

study: What are the ontological and epistemological beliefs about problem solving 

held by secondary school preservice mathematics teachers? 

THEORETICAL FRAMEWORK AND LITERATURE 

Three areas of literature support this study, the nature of problems, problem solving, 

and teachers’ beliefs. The nature of problems begins with understanding the charac-

teristics of problems that preservice teachers might consider when creating mathe-

matics problems and assigning problems as a part of their students’ learning and 

course-work. The perspective of problem solving taken in this study includes both the 

way mathematics can be performed, and a strategy for thinking and reasoning to come 

to a solution or conclusion for complex multi-step problems. The perspective on 

teachers’ beliefs for this study focuses on those beliefs preservice teachers have about 

mathematics problem solving. 

The nature of problems 

There are two key characteristics of problems, routines and structure. These charac-

teristics do not exist as static points of definition, but rather as two continua. The 

characteristic of routine can be understood as a continuum of routine to non-routine 

(Mayer & Wittrock, 2006), and the characteristic of structure can be understood as a 

continuum of well-defined to ill-defined (Hollingworth and McLoughlin, 2005). 

Routine problems are familiar and require a well-established procedure that can be 

followed from start to end. Non-routine problems are not necessarily unfamiliar, but 
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they have a complexity to them which precludes using a recent procedure. Creative 

thought and critical thinking are required to figure out what can be done to solve the 

problem. 

Well-defined problems have a structure that is readily laid out and easily identifiable. 

The data for the problem is complete and available, there are few rules and procedures 

to use, a possible solution is anticipated, and the decisions one can make in prob-

lem-solving thinking clearly converges to an answer. Conversely, for ill-defined 

problems, the data is not complete or readily available, any procedures or steps could 

be taken, a solution or answer is not necessarily evident that it even exists, and the 

decisions one makes in the problem-solving thinking may not converge towards a 

solution.  

The intent of the problem given to a learner will determine what place on each of these 

continua of problem characteristics the problem sits. For example, routine and 

well-defined: becoming familiar with a particular set of facts or relationships necessary 

to develop speed and facility with numerical calculation (e.g., multiplication tables) or 

algebraic manipulation (factoring trinomials), or routine and ill-defined: solving 

trigonometric identities. Problem design must be completed carefully to consider the 

many aspects of the intent of the course, the problem, and the abilities of the students.  

Problem Solving  

Problem solving as a way mathematics is done is employing appropriate strategies to 

arrive at an acceptable solution, given an initial, unclear problem state (Metallidou, 

2009). Mathematics problems start with a question that is to be answered, some data, 

and some resources and tools. Considering and selecting appropriate tools such as a 

particular piece of technology, or a particular concept or algorithm move the work of 

problem solving towards the final state of a complete solution and/or an answer. 

Problem solving can also be a strategy for thinking and reasoning with a mathematics 

problem to come to a successful conclusion or solution. Mayer and Wittrock (2006) 

suggest four aspects for a problem solving framework: problem-solving is a cognitive 

experience within a problem space in the students’ mind, there is an iterative process of 

mental representation and knowledge manipulation, there is observable directed be-

haviour, and the qualities of the student’s mathematics knowledge and skillset influ-

ence the outcome of problem solving. The teacher has the responsibility to create a 

problem solving learning environment or situation and arranging the context in which 

meaningful problem-solving experiences increase students’ understanding of the 

mathematics (Hiebert & Wearne, 2003).  

Teachers’ beliefs 

Teachers, being a vital contributor to the creation of the environment for quality pro-

blem solving are influenced by their beliefs. Beliefs are “psychologically held under-

standings, premises, or propositions about the world that are felt to be true” (Rich-

ardson, 2003, p. 2). Preservice teachers’ beliefs about the nature of what mathematics 
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is, their ontological beliefs, and the nature of how mathematics is to be learned, their 

epistemological beliefs, are critical influences to the pedagogical approach employed. 

Teaching and learning beliefs influence pedagogical decisions (Philipp, 2007).  

Methodology and Methods 

This study employed a mixed method design, one that provided opportunities for 

quantitative data for confirmation and identification of important points, qualitative 

data for explanation and description, and mixing quantitative and qualitative results to 

unpack the tricky aspects of preservice teachers’ ontological and epistemological be-

liefs as they were learning in a preservice program. Clearly a pragmatic approach 

(Morgan 2007) was warranted, and in particular a sequential (data collected and ana-

lysed in successive phases) and convergent (mixing of results to make conclusions) 

design (Creswell, 2014) was implemented. 

There were a total of seven phases of data collection and analysis: three phases to data 

collection, and four interspersed phases of data analysis. For phase one and two, the 

Beliefs about Mathematical Problem Solving (BMPS) (Kloosterman & Stage, 1992) 

questionnaire and seven interviews were completed, and the quantitative data from the 

BMPS was analysed. These two phases were performed at the beginning of the pre-

service mathematics course, and then repeated (a) when the preservice teachers re-

turned from their first teaching practicum at the beginning of December, and (b) when 

they returned after their second teaching practicum for their last month of the pre-

service course. The sixth phase involved separately analysing all three sets of qualita-

tive data from the interviews, and the seventh phase involved mixing of all quantitative 

and qualitative results for inferences and conclusions.  

Forty-four secondary school preservice mathematics teachers participated in the study, 

34 female, and 10 male, of which 28 had a science as a second teaching subject, and 16 

had a non-science subject as a second teaching subject. Seven of those preservice 

teachers also agreed to be interviewed. All participants were from the same secondary 

school preservice mathematics education course in the same teacher preparation pro-

gram in an Eastern Ontario mid-sized university. 

The BMPS questionnaire measured beliefs on six scales: difficult problems, steps, 

understanding, word problems, effort, and usefulness with a total of 36 Likert items 

using a 5-point scale. The overarching beliefs for each scale are, difficult problems: I 

can solve time-consuming mathematics problems; steps: There are word problems that 

cannot be solved with simple, step-by-step procedures; understanding: Understanding 

concepts is important; word problems: Word problems are important in mathematics; 

effort: Effort can increase mathematical ability; and usefulness: Mathematics is useful 

in daily life. The BMPS took approximately 20 minutes of class time to complete. The 

interview protocol incorporated the Teacher Beliefs Interview from Luft and Roehrig 

(2007), and also included questions pertaining to each the BMPS scales. Each inter-

view lasted approximately 30 to 45 minutes. 
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For the quantitative data, reliability for the BMPS was first confirmed with Cronbach’s 

alpha. A process of item removal and participant case removal improved the reliability 

for the difficult problems, understanding, effort, and usefulness scales. The steps and 

word problems scales did not reach the reliability threshold of .7; these two scales were 

not used in subsequent statistical analysis.  

Exploratory factor analysis (EFA) was then performed to determine the factor structure 

that emerged for this data set. Since the scales were related (all measuring beliefs about 

mathematical problem solving), to allow for correlation amongst the scales a direct 

oblimin rotation method was decided upon prior to conducting the EFA. Three factors 

were retained in the phase one data set: effort, understanding, and difficult problems. 

Four factors were retained on the phase two data set: effort, difficult problems, use-

fulness, and understanding. Three factors were retained in the phase three data set: 

understanding, effort, and usefulness. 

A two-way mixed ANOVA was conducted for each of the four retained scales to 

examine the interaction of time in the preservice program against gender, and against 

second teaching subject. Table 1 shows results across phases 1 and 2, and for phase 3. 

Scale 

Significant 

Two-Way Interac-

tions 

(Phase 1 to Phase 2) 

Significant  

Simple Main  

Effects 

(Phase 1 to Phase 2) 

Significant 

Two-Way In-

teractions 

(Phase 3 only) 

Difficult Prob-

lems 

Time in program  

and gender  

(p = .017, η2 = .138) 

Males’ scale scores 

were greater in phase 2 

compared to phase 1 

(p = .004, d = 0.486) 

 

Usefulness  

 

Teachers with science 

teaching subjects 

possessed greater scale 

scores than teachers 

with non-science 

teaching subjects 

(p = .004, d = 0.984) 

Time in program1 

(p = 0.05) 

Understanding None None 

Time in program1 

(p = 0.037) 

 

Effort None None None 

1 Simple main effects were not possible to find because of attrition in phase 3 

Table 1. Summary of Significant Findings from Two-Way ANOVAs 
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The qualitative data was analysed inductively in a three-step process of text segments, 

to categories, to themes (Thomas, 2006). The data was separated into two sub-sets, 

data relating to ontological questions, and data relating to epistemological questions. 

The ontological and epistemological themes that emerged are presented in Table 2. 

The themes are aligned numerically for those that are related across phases.  

 

 Phase One Phase Two Phase Three 

Ontological 

Themes 

 

(What is mathe-

matics problem 

solving?) 

 

1) Problem solving is 

a collaborative 

thinking process for 

solving real-world 

problems 

2) Problem solving is 

bounded by mathe-

matics education 

 

1) Problem solving 

is a challenging and 

collaborative think-

ing process for 

solving real-world 

problems 

2) Problem solving 

is a process for 

solving academic 

mathematics prob-

lems. 

1) Problem solving 

is a purposeful cre-

ative and critical 

thinking. 

2) Problem solving 

is collective inter-

action with the 

world using 

mathematics. 

3) Problem solving 

in schools is ap-

plying strategies to 

different problem 

types. 

Epistemological 

Themes 

 

(How is mathe-

matics prob-

lem-solving ac-

quired?) 

 

 

1) Establishing a 

problem-solving 

learning environment 

2) Balanced prob-

lem-solving instruc-

tion and assessment 

1) Exploring prob-

lem solving and 

communicating 

thinking 

2) Demonstrating 

problem-solving 

techniques and as-

sessing students’ 

ability with those 

techniques 

1) Collegial build-

ing of pro-

cess-oriented 

thinking. 

2) Developing stu-

dents’ knowledge 

of problem, solving 

strategies and re-

sources. 

3) Epistemological 

conflict: thinking 

critically about 

problem solving, 

and perceived ten-

sions 

Table 2. Ontological and epistemological themes for the three phases. 
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Mixing of results 

Quantitative and qualitative results were then mixed in a process similar to Li, Mar-

quart & Zercher’s (2000) cross-over track analysis. Inferences were formed, shaped, 

and revised in a fluid drifting over all the results finding connections and relationships 

amongst particular aspects of qualitative and quantitative data. Two important themes 

related to changing ontological beliefs and two important themes related to changing 

epistemological beliefs emerged. 

Results of themes and discussion 

Ontologically, there is a contextual attempt, and a sense of boundedness to problem 

solving. The contextual attempt concerns the initial traditional use of ‘real-world’ 

examples where problem solving can be observed. This is really a real world façade as 

these contexts are often not relevant or pertinent to the everyday lived experiences of 

the students in the classroom, that is, these contexts are unconnected to students’ ad-

olescent lives. Such a lack of connectedness emphasises an apparent primary role of 

problem solving for academic (curriculum) purposes and reduces student motivation 

and engagement to work on the mathematics problems. Gradually though, preservice 

teachers begin to understand what it means to engage students as people and agents in 

their own learning, and problem-solving contexts become a vehicle for engaging with 

and interacting with the world. Often a social justice flavour begins to appear as 

problem-solving contexts focus on students’ interests and concerns.  

Boundedness is about the level of control and ownership preservice teachers feel is 

important in their classroom practice. Problem solving changes from being confined to 

the textbook and examples from curriculum documents, to a service aspect—using 

some concepts to learn other concepts, and finally to contexts that provide an experi-

ence of problem solving in meaningful ways.  

Epistemologically, how students work as learners and what needs to be taught are im-

portant aspects to teaching problem solving. Initially preservice teachers believe stu-

dents must work individually as they are taught all the steps, strategies, and thinking of 

problem solving. But then preservice teachers find students working collaboratively 

amongst themselves can be beneficial; students begin to be more imaginative and 

creative with thinking about various problem-solving strategies and need less structure 

and control over their problem solving. Teacher-centred problem solving lessons be-

come collaborative student activities, and then collegial problem-solving experiences. 

Simultaneously, preservice teachers begin by teaching everything they know about 

problem solving for every problem, and gradually shift to differentiating between 

overarching problem-solving approaches (such as Pólya’s steps) and particular prob-

lem-solving skills for the purposeful critical thinking unique to specific problems. 
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Advanced Innovation Center for Future Education, Beijing Normal University, China  

 

This study examined how middle school students in China constructed written proofs 

for six elementary number theory (ENT) statements. The participants were 80 junior 

middle school students (year 9). It finds that students seemed not to have a good 

awareness of what mode of justification was needed to verify or refute a particular 

statement. The common problems in students’ algebraic proofs include  the lack of 

necessary steps of reasoning  and incorrect explanations. 

INTRODUCTION 

Mathematics proof is at the heart of mathematics competencies and thereby an 

essential part of mathematics education (Zaslavsky, 2012). The teaching and learning 

of proof is challenging because the process of proving involves a sophisticated set of 

mathematics competencies, such as the identification of assumptions, the isolation of 

given properties, and the organization of logical arguments (Healy & Hoyles, 2000). 

The previous studies found that it was difficult for students to construct mathematics 

proofs and some students were reported to be unaware of the need to provide a proof to 

verify a general mathematics statement (Carpenter et al. 2003; Chazan 1993; Harel and 

Sowder 1998; Healy and Hoyles, 2000). Due to its difficulty, proof and proving are 

hardly covered in most Western nations’ school mathematics curriculum until senior 

secondary level (Healy and Hoyles, 2000). And most of the previous studies 

mentioned above were also undertaken in senior secondary level. The case in mainland 

China is different from that in most of the Western nations. Mathematics curriculum 

for junior middle school in mainland China places a significant emphasis on 

mathematics proof, especially in geometric proof (Ministry of Education, 2001). Most 

of the previous studies regarding Chinese teaching and learning of mathematics proofs 

concerned mainly the geometric proofs. For example, Ding and Jones (2007) analysed 

Chinese teachers’ teaching of geometric proofs in Grade 8 in Shanghai and found the 

typical teaching model of geometric proofs is “new theorem - simple problems - 

complicated problems”(P.9). Huang (2005) compared the teaching of Pythagoras’ 

Theorem in Shanghai and Hong Kong, arguing that the teachers in both cities 

emphasized on developing students’ conceptions of geometric proofs. However, very 

few studies have been done to examine the teaching and learning of proofs in Algebra 

in mainland China. As a matter of fact, students’ development in the conception of 

algebraic proofs is very significant because it is connected to students’ conceptions of 

algebra and its usefulness in solving mathematics problems (Healy& Hoyles, 2000). 

Therefore, this study aims to analyse Chinese students’ knowledge and conceptions 
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regarding algebraic proofs. This study intends to answer two research questions: (1) 

how Chinese junior middle school students make justifications to support their claims 

in algebra; (2) what difficulties do Chinese junior middle school students have when 

constructing algebraic proofs.  

METHODOLOGY 

Participants and instrument 

Participants were 80 middle school students (all in the year 9, the last year of junior 

middle school) from an urban middle school in the city of Hengshui, Hebei Province in 

mainland China. The Hengshui city is a middle-size city in northern part of China and 

it is about 300 miles south to Beijing, the capital of China. The overall student 

academic achievements in the selected urban middle school have been above the 

average in the city of Hengshui. The instrument consists of six elementary number 

theory statements (shown in Table 1). The students were asked to judge whether these 

statements were true or not and then give their justifications. These statements were 

adapted from the study of Tsamir, Tirosh, Dreyfus, Barkai and Tabach (2009). Half 

statements (S1, S4, S5) are true while the other half (S2, S3, S6) are false.  

Quantifier 

Predicate 

Always true Sometimes true Never true 

Universal S1. The sum of any five 

consecutive natural 

numbers is divisible by 5. 

S2. The sum of any 

three consecutive 

natural numbers is 

divisible by 6. 

S3. The sum of any 

four consecutive 

natural numbers is 

divisible by 4. 

Existential S4. There exists a sum of 

five consecutive natural 

numbers that is divisible 

by 5. 

S5. There exists a sum 

of three consecutive 

natural numbers that 

is divisible by 6. 

S6. There exists a sum 

of four consecutive 

natural numbers that 

is divisible by 4.  

Table 1: The six elementary number theory statements Adapted from Tsamir, Tirosh, 

Dreyfus, Barkai and Tabach (2009) 

The six statements were developed by Tirosh and his colleagues to examine how 

mathematics teachers to verify a valid mathematics statement and refute an invalid 

mathematics statement. But as pointed out by these researchers, these statements could 

be also presented to middle school students in order to investigate what possible 

justifications could be provided by the middle school students. Therefore, these 

statements were adopted in this study to examine how middle school students in China 

verify a valid mathematics statement and refute an invalid mathematics statement. In 

addition to the above consideration, there are other two reasons why these six 

statements were chosen in this study. Firstly, these six statements are not covered in 

mathematics curriculum and textbooks in China. Compared to those common proof 

tasks in algebra and geometry (e.g., tasks about congruence and similarity), these six 
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statements are non- routine tasks to most of the Chinese students who don’t have 

immediately apparent strategies in mind. Secondly, the year nine students could make 

sense of the expression of these six statements. Compared to some mathematical tasks 

which require students to spend a lot of time on reading and understanding the 

descriptions of tasks, these six statements are all very short and easily accessible to 

most of the year 9 students in China. The students could easily come up with some 

ideas on how to prove or refute these six statements by making use of their 

mathematics knowledge. The statements were translated into Chinese collaboratively 

by the researcher and some middle school mathematics teachers. In the process of 

translation the expressions of these statements were adjusted so that the Chinese 

translations look more naturally to Chinese students and thus make sense to the 

students more easily. For example, the fourth statement “There exists a sum of five 

consecutive natural numbers that is divisible by 5” was translated into two short 

sentences in Chinese which literally mean “There exists five consecutive natural 

numbers. The sum of them is divisible by 5. ” The translated statements were presented 

in a worksheet in the order from statement S1 to S6. The participating students were 

given 30 minutes to respond to the six ENT statements.  

Data analysis 

In this study, the students were asked to make a judgement on the validity of each 

statement and then provide a justification for the judgement. In other words, the 

students’ responses to each of the six statements include two parts: the first part is a 

judgement whether the statement is true or false, and the second part is the justification 

constructed to support the judgement. The first part was coded as correct judgement, 

incorrect judgement and null (i.e., the case in which no judgement was made).  Please 

refer to Table 2 for the nature of each statement. 

Universal statements  Existential statements 

S1 S2 S3  S4 S5 S6 

True False False  True True False 

Table 2: Nature of the statements 

The second part was coded as correct mode of justification, incorrect mode of 

justification and null (i.e., the case in which no justification was made). Here my focus 

is whether the students were able to provide the right way to justify their judgements, 

regardless of the correctness of their judgements. More details can be found in Table 3. 

For example, if a student wanted to verify the validity of a universal statement, the 

right way of the corresponding justification would be constructing a proof rather than 

providing an positive example or counter-example. By contrast, if the student wanted 

to refute the validity of a universal statement, the right way of the corresponding 

justification might be either constructing a proof or providing a counter-example. 

Similarly, if a student wanted to verify the validity of an existential statement, then 

both constructing a proof and providing a positive example could be accepted as the 
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right way of making justifications. While if the student wanted to refute the validity of 

an existential statement, the right way of making justification would be constructing a 

proof. 

  Correct modes of justification Incorrect modes of justification 

 

 

Universal 

statements 

 

 

 

S1 

 

S2 

 

S3 

1. Claiming it is true by 

constructing a proof; 

2. Claiming it is false by giving 

one or more counter examples; 

3. Claiming it is false by 

constructing a proof. 

1. Claiming it is true by giving one 

or more examples; 

2. Claiming it is false by giving 

one or more positive example; 

3. Others. 

 

Existential 

statements 

 

S4 

 

S5 

 

S6 

1. Claiming it is true by giving 

one or more positive examples; 

2. Claiming it is true by 

constructing a proof; 

3. Claiming it is false by 

constructing a proof. 

1. Claiming it is false by giving 

one or more examples; 

2. Claiming it is true by giving one 

or more counter examples; 

3. Others. 

Table 3: Correct modes of verifying or refuting the statements 

FINDINGS 

Overview of students’ judgements  

As was introduced above, a total number of 80 year 9 students participated in this study. 

Figure 1 provides an overview of all the students’ judgements on each of the six 

statements.  

 

Figure 1: Overview of students’ judgements on the six statements 

It can be seen that a majority of the participating students provided correct judgements 

on the six statements. Almost all the participating students made judgements on the 

first three statements S1-S3, whereas about 5 students left blank for the last three 

statements S4-S6. Around 70 students made correct judgements on the six statements 
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except S5, on which fewer than 60 students made correct judgements. The possible 

reason why fewer students failed to make correct judgements on the fifth statements is 

partial proof and counter examples were provided similar to S2.  

Do the students know what is required to justify their judgements? 

This section reports whether students were aware of what was required to justify their 

judgements, regardless of the correctness of their judgements.  

 

Figure 2: Modes of justifications in the six statements 

Figure 2 outlines the students’ performances in each of the six statements. Those 

students who made judgements but did not give justifications were not counted and 

presented in the Figure 2. Take the statement S1 for example, more than 70(the left 

column corresponding to S1) out of the 80 participating students made the claim that 

S1 was true, whereas the remaining students (the right column corresponding to S1) 

claimed that S1 was false. About 60% of those who made the correct claim (i.e., S1 is 

true) employed the aligned justifications, which means these students constructed a 

proof to verify that S1 is true. By contrast, 40% of those who made the correct claim 

(i.e., S1 is true) provided one or more positive examples to verify that S1 is true. For 

those (the right column corresponding to S1) who made the claim that S1 is false, the 

majority was able to employ the aligned justifications. That is, the majority were 

attempts to provide one or more counter-examples or constructed proof to refute the 

statement S1. For each statement, most of the students were documented to be able to 

make the correct claim. The lowest record is documented in the case of S5, for which 

57 students (out of 80 in total) made the correct claim. For the statements S2-S5, the 

majority of those who made correct claims could find the aligned way to justify their 

claims, for both providing examples and constructing proofs are available for these 

four statements. By contrast, for the statements S1 and S6, almost half of the students 

who made correct claims failed to provide aligned justifications. In summary, the 

majority of the participating year 9 students did not experience significant difficulties 

in responding to the statements S3 and S4, but more students failed to give aligned 
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justifications for their claims in S2 and S5. While nearly half of the students indeed 

have difficulties in giving responses to the statements S1 and S6.  

Here lists one example (see Figure 3) in which the student failed to realize what are 

required to his judgements on statements S1. From this student’s written responses, it 

can be seen that this student wanted to justify the statement S1 is true. A general proof 

is required to make the justification but this student simply gave two examples to 

support his judgement. In this case, the student was not clear about what was needed to 

verify the validity of a universal statement.  

 

Statement 1. The sum of any five consecutive  

  natural numbers is divisible by 5. 

Judgement:   √  .  

Justification:  

An example, 1, 2, 3, 4, 5 

1+2+3+4+5=15 

15÷5=3 

Another example, 3, 4, 5, 6, 7 

3+4+5+6+7=25 

25÷5=5 

∴“The sum of any five consecutive natural 

numbers is divisible by 5” is true. 

Figure 3: One student’s responses in S1 

Do the students construct complete and correct justifications? 

This section focuses on the students who made correct judgements and also 

successfully demonstrated the awareness of what were required to justify their 

judgements. The quality of these students’ construction of justifications is shown in 

Figure 4. Here those students who made correct judgements but did not provide 

justifications were excluded. A total number of 80 students participated in this study. 

For each of the six statements, the number of students who made correct judgements 

and also successfully demonstrated the awareness of what were required to justify their 

judgements is respectively 43, 62, 75, 65, 54, and 36.  

 

Figure 4: Quality of students’ justifications  
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It can be seen that, for each statement, if the students made correct judgements and also 

successfully demonstrated the awareness of what were required to justify their 

judgements, most of them could successfully provide valid or partially valid 

justifications. Some students (about 7 or less in each case) constructed invalid 

justifications.  But it is noteworthy a substantial number of students constructed 

partially valid justifications. Two examples are presented here to show the partially 

valid justifications constructed by the participating students.  

 

Statement 2: The sum of any three consecutive        

  natural numbers is divisible by 6. 

Judgement:   √  .  

Justification:  

Denote x, x+1, x+2 

(x+x+1+x+2)÷6 

=(3x+3)÷6 

=
2

1
x

2

1
+  

Figure 5: One student’s responses in S2 

In Figure 5, it can be seen that this student successfully wrote down the algebraic 

expression but did not provide any explanations. This student seemed to know the 

necessary procedures to make the justifications. But there is still a reasoning gap 

between the final result (
2

1
x

2

1
+ ) and the conclusion that S2 is correct. In Figure 6, it 

can be seen that this student gave an explanation of his final result (
2

3
+a ). But this 

explanation is incorrect. Because a is a whole number, the final result (
2

3
+a ) cannot be 

a whole number. The student seemed to be unable to distinguish “cannot be” from “not 

necessarily be” in an expression.  

 

Statement 3: The sum of any four consecutive  

  natural numbers is divisible by 4. 

Judgement:   ×    

Justification:  

Let’s denote the four natural numbers are a, a+1, 

a+2, a+3 

2

3
+a=

4

6+4a
=

4

3+a+2+a+1+a+a
 

      ∵
2

3
+a  is not necessarily a whole number, 

      ∴ (The statement) is false. 

Figure 6: One student’s responses in S3 
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CONCLUSION 

This study shows the majority of participated students could make correct judgements 

for the given statements. But it identifies two major difficulties Chinese students 

experienced in making justifications to support their claims of ENT statements. Firstly, 

Chinese students tended to have difficulties in identifying the correct mode of 

justification to verify or refute a universal statement. For a large proportion of students 

attempted to provide positive examples to verify the validity of a universal statement 

(S1), and give counter examples to refute the validity of a existential statement (S6). 

Secondly, a lack of necessary reasoning steps was found in the algebraic proofs 

constructed by the students. It is quite common that students were able to construct 

proofs with algebraic representations successfully, while they went to conclusions 

without necessary reasoning or even gave incorrect explanations to the results. 
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With a focus on teachers’ perception about the area formula for a rectangle, we dis-

cuss components of the knowledge mobilized by prospective secondary teachers’ when 

answering a particular task aimed at accessing and developing their interpretative 

knowledge. In particular, we investigate the relationships between the focus of the 

prospective teachers’ content knowledge and their ability to expand their own space of 

solutions. Our findings reveal that the prospective secondary teachers seem to un-

derstand area as a surface measurement, but struggle to give meaning to the area 

formula of a rectangle when the reasoning involved differs from their own. 

INTRODUCTION 

There is a growing interest among international scholars to better understand mathe-

matics teachers’ professional knowledge and how such knowledge can be developed in 

teacher education. One often-used approach is to conceptualize and implement tasks 

that are carefully designed for the development of such knowledge in teacher educa-

tion.  The context of the tasks is practice-based, aimed at developing prospective 

teachers’ mathematical ideas, their understanding, and awareness when considering 

students’ productions—whether correct, incorrect, or non-standard (Ribeiro, Mellone, 

& Jakobsen, 2016).  

When considering the specialized nature of teachers’ knowledge and the particularities 

of knowledge involved in giving meaning to productions and comments (as part of a 

solution process) given by others, a new kind of teacher knowledge and awareness has 

been identified (Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013). We have 

named this particular and specialized knowledge interpretative knowledge (Jakobsen, 

Ribeiro, & Mellone, 2014); it corresponds to the knowledge involved in interpreting 

and giving meaning to students’ productions and comments as part of their work on 

mathematical problems. Interpretive knowledge includes the ability to expand one’s 

own space of solutions, looking at situations from a wide range of different points of 

view—as an outsider (Jakobsen et al., 2014).  

In order to explore, understand, and develop interpretative knowledge, the nature, 

aims, and focus of tasks included in teachers’ education are crucial. Obviously, a 

mathematical task should be initiated from a mathematically fruitful activity (Mason & 

Johnston-Wilder, 2006). We also argue that in order to develop teachers’ professional 

knowledge, it is more efficient and meaningful to work through practice-based situa-
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tions (Smith, 2001). One must take into consideration that teachers’ mathematical 

knowledge (and beliefs) influence their practice. All these arguments influenced our 

own development of tasks within teacher education (e.g., Ribeiro, Mellone, & Jak-

obsen, 2016).  

In previous works, we have addressed the interpretative knowledge grounded on the 

analysis of productions and comments of prospective primary teachers in arithmetical 

contexts (Jakobsen et al., 2014) and prospective secondary teachers working on a 

problem related to the powers of ten (Jakobsen, Mellone, Ribeiro, & Tortora, 2016). 

The implemented tasks addressed topics that prospective teachers would have to teach 

in their future practice. In this paper, we shift the foci of attention to include prospec-

tive secondary teachers’ (PSTs) interpretative knowledge and revealed beliefs when 

solving and giving meaning to students’ answers to a question involving the use of the 

measurement area unit (dm2). The question involves a topic the PSTs do not neces-

sarily have to teach but will be used in class. In particular, we address the question: 

What mathematical knowledge is revealed by PSTs when they are asked to interpret 

students’ productions to a problem to use and make sense of the area formula of a 

rectangle.  

THEORETICAL FRAMEWORK  

Teachers’ practices are molded by their knowledge and beliefs. Teachers’ beliefs are 

organized in systems (Liljedahl & Oesterle, 2014) that include, among others, beliefs 

about mathematics and the teaching of mathematics, beliefs related to the learning of 

mathematics, and beliefs about the students’ and teachers’ roles. Such beliefs are 

rooted in teachers’ previous experiences, both as students and as teachers. Moreover, 

these beliefs affect teachers’ attitudes and actions and have a direct and crucial link to 

their mathematical knowledge, hence having an impact on the mathematics education 

process(es) (pedagogical dimensions). 

Students’ reasoning when solving mathematical problems, even when the solution is 

wrong, can provide precious and meaningful learning opportunities if suitably used by 

the teacher; in this perspective, interpretative knowledge is perceived as a core element 

of teachers’ knowledge. Having students’ productions, argumentations, and associated 

reasoning as a starting point for engaging students in the process of doing mathematics 

(instead of teaching the procedures), demands a shift from what one has (probably) 

experienced previously—aligned with the experiences that shaped teachers’ belief 

systems. For such a shift to be effective, the interpretative knowledge needs to be 

developed, which research indicates does not happen merely over time with practice 

(Jakobsen et al., 2014). Thus, in order to allow such development to occur—creating 

the genesis of interpretative practices—one approach that can be used in teacher ed-

ucation is to engage (prospective) teachers in tasks focusing on contingency moments 

of real school practice (Rowland, Huckstep, & Thwaites, 2005) for example, to inter-

pret students’ solutions to a particular mathematical activity.   
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With the aim at deepening our understanding of the nature and content of interpretative 

knowledge and beliefs, we built on some aspects of the Mathematics Teachers’ Spe-

cialized Knowledge (MTSK) conceptualization (Carrillo et al., 2013). This conceptu-

alization assumes that teachers’ knowledge consists of six subdomains (three are part 

of the subject matter knowledge and three are part of the pedagogical content 

knowledge). Teachers’ beliefs are at the core of the MTSK representation in order to 

enhance the fact that beliefs influence and are influenced by teachers’ knowledge. Due 

to the focus of our work here, we address only two of those subdomains—Knowledge 

of Topics and Knowledge of the Mathematical Structure.  

In this paper, we deal with the formula for the area of a rectangle. Knowledge of Topics 

(KoT) includes teachers’ knowledge of: definitions (what is area), properties of the 

mathematical content, phenomenology (the measurement process), applications, 

meanings (e.g., the meaning of the superscript 2 in the area measurement unit) and 

examples, different forms of representation, as well as procedures. In particular, 

teachers are required to be in possession of knowledge on the different key concepts 

that underlie measuring (e.g., Clements & Stephan, 2004) which demands, for exam-

ple, considering whether the unit of measurement is of the same nature as the “ele-

ment” to be measured. Indeed, the case of measuring the area of a rectangle demands 

defining the unit of measurement of the area (two dimensions) and subsequently de-

termining the number of times such unit of area is needed to cover the rectangle.  

We can recognize the above measurement process in the rectangle area formula by 

interpreting one of the factors representing the number of units of measure of the 

surface to cover the length (or the width)—a stripe—and the other factor as the number 

of times in which the stripe has to be repeated. The formula of area of a rectangle is 

commonly interpreted in many textbooks as Area = length x width, which can be seen 

as a sort of mathematical packing of the previous measurement process. In the MTSK 

perspective, teachers should be able to unpack and explain the rationale behind the 

formula.  

Knowledge of the Structure of Mathematics (KSM) concerns teachers’ knowledge of 

an integrated system of connections (allowing them to understand and develop ad-

vanced concepts from an elemental standpoint), and elemental concepts from an ad-

vanced mathematical standpoint. Examples of the content of such teachers’ knowledge 

domain concerns the connections on the reasons grounding the possibility for doing, 

and meaning attributed to dm x dm in the context of dimensional analysis problems, 

and on the different meaning given to dm as a unit of length measurement and dm2 as a 

unit of area measurement. Area as a magnitude to be measured can be seen as the sum 

of equal quantities (the amount of area units considered) that can be represented in the 

form of product—in a more elemental standpoint—or as the value of an integral, in 

Riemann perspective—from a more advanced mathematical standpoint. Although, 

teachers do not necessarily need to be able to provide a mathematical justification for 

how to determine the area of a certain surface using the integral. Teachers need to 

possess the knowledge that allows them to connect the notion of area with the rea-
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soning of “how to determine” such area—explicating the rationale behind the proce-

dure.  

Thus, teachers who allow their students to understand what they are doing and why 

they are doing it open the door to future learning. They need to be in possession of 

knowledge on attributing meaning (in the school context) to the area unit (dm2) as 

something different from the product of the units of two lengths. Nevertheless, it is 

important to underline that in other contexts (e.g., Physics), we can perform the cal-

culation of dm x dm, obtaining dm2. Moreover, the International System of Units (SI) 

has only a standard unit for metrology and not for the surface, assuming in this way the 

unit of the surface as directly obtainable from the one of length.  

Hence, in the context of the rectangle area formula, what at first glance can appear 

trivial and elementary, actually offers rich and powerful issues that, if suitably ex-

ploited, can develop into teachers’ new awareness and beliefs about mathematics. 

THE CONTEXT OF THE STUDY  

In this study, we focus on PSTs who were supposed to have strong knowledge of 

mathematics. Indeed, the PSTs of our sample were in their last year of education (fifth 

year), and the majority of them already had some teaching experience. Data were 

collected during their last course in mathematics education (one out of a total of five 

mathematics courses) in Brazil, and the 12 PSTs answered a task developed by the 

authors. The course was audio and video recorded. 

The task consisted of three parts. The first and second parts were solved individually 

by the PSTs, while they worked in pairs in the third part. In part one, the participants 

were asked to answer two similar mathematical problems and to provide a mathe-

matical argument that would justify the correctness of the provided answer. Both 

problems involved finding the area of a rectangle, first with sides measuring 3 and 4 

units of length, and then sides measuring 3 cm and 4 cm. In the second part, the PSTs 

were asked to imagine how second-grade pupils would answer the first problem, and 

fourth-grade pupils would answer the second problem. One of the aims of the task is to 

discuss the meaning of the area formula for the rectangle, not only as a product of two 

units of length. This was done by mobilizing PSTs’ knowledge on the notion of area in 

a practice-based context where they cannot use the interpretation of the area formula as 

a direct reading of length x width, as students in grade 2 do not know this formula. 

In part three, the participants were given four fifth-grade pupils’ productions to the 

second problem—presented in Figure 1. The PSTs were asked to make sense of these 

four students’ solutions and provide a constructive feedback to each student in order to 

support their mathematical learning (Ribeiro, Mellone, & Jakobsen, 2013).  

Caio:  Multiplying the length by the width, we get 4 cm x 3 cm=12 cm2. 

Douglas:  The area is a surface measurement and thus it has two dimensions (length and 

width) so we need to put the 2 in the exponent and we get 3 x 4=12 cm2. 
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Camila:    We just need to count the number of square centimeters needed to cover the 

square, and thus we get 3 cm2 x 4 cm2=12 cm2 or, similarly, 4 cm2 x 3 cm2=12 

cm2.  

Fernanda:  I think the area is 12 cm2 as we have to do 4 x 3 cm2=12 cm2 or 3 x 4 cm2=12 

cm2.   

Figure 1: Students productions to be interpreted  

Although all the students provided a correct answer to the area of the rectangle (12 

cm2), their reasoning and argumentation differ and are associated with different in-

terpretations of area, area units, and the meaning associated with the formula 

(A=length x width). Thus, all of the students’ productions included in part three are 

aimed at discussing different interpretations when giving meaning to the area and how 

to determine it.  

Caio’s answer is the most commonly given answer. She reads the formula linearly, 

considering the area measurement unit (cm2) as a result of the product of two variables 

(a x a = a2, for any a). Although Douglas in the first part expresses the notion of area as 

a surface measurement (two-dimensions), and the main final mathematical argumen-

tation follows Caio’s idea, he writes the numbers without reference to its meaning and 

at the end he “adds” the 2 associated to the second power because “area has two di-

mensions.” Camila’s production is grounded in the notion of area as the number of 

square units needed to cover the surface (number of cm2), but she does not attribute a 

meaning to the product. Fernanda perceives area as a measurement surface and she is 

counting (repeated addition) the number of area units (cm2) required to cover the rec-

tangle – repeating the considered stripe. 

RESULTS  

When answering part one of the task, all the PSTs provided a final numerically correct 

answer to both of the problems. Independently of the problems, different arguments 

were provided as to how to find the area of the rectangles. The three following answers 

represent the categories of answers that emerged: (i) counting squares; (ii) calculating 

squares using the product; (iii) area as the product of two lengths; (iv) the argumenta-

tion in which one of the factors representing the number of units of measure of the 

surface to cover the length (or the width)—a stripe—the other factor as the number of 

times in which the stripe has to be repeated.  We have to note that only (iii) did not 

appear in part two of the task, imagining grade 2 pupils’ answers. Below are some 

examples of the PSTs’ answers to part two of the task:  

PST1:   We divide the side of the rectangle into 3 and 4 parts and we get 12 small 

squares with side 1cm. Each square has, by definition, 1cm2 of area. As we 

have 12 squares (4 columns and 3 rows), the area is 12cm2. [All the squares 

were numbered.] 
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PST2: One square of side 1cm has 1cm2 of area. We have 12 squares (3x4) so we 

can use the formula length x width and we get 3x4=12cm2. [Also, the an-

swer 3cmx4cm was provided here.] 

PST3:   We have 3x4 squares. Each square of side 1 has 1cm2 of area. We have 12 

squares so the area of the rectangle is 12x1cm2=12cm2.  

Concerning part three (interpret students’ productions and provide meaningful feed-

back), we will separately present the PST pairs’ answers to the four students’ produc-

tions included in the task. Caio’s solution was considered adequate by all pairs:  

Pair1: Congratulations, your application was perfect, so you understood the for-

mula. 

Pair2:  Caio correctly used the area measurement unit through the multiplication of 

cm x cm = cm2.   

Pair3: Caio’s solution is correct as he correctly applied the formula for deter-

mining the area of a rectangle (measure of length x measure of height). He 

did the same thing as I did. 

These comments reflect the PSTs’ own answer and approach to the posed situation. 

The fact that Pair3 mentioned that Caio’s answer is correct as it coincided with his own 

answer is consistent with results from previous work when participants’ space of so-

lutions consisted of only one element, their own (Jakobsen et al., 2014). 

All pairs considered Douglas’s answer as correct. One provided comment was:     

Pair1:  Your answer is correct. You carefully mention that the exponent goes to the 

unit, leading to the cm2 in the answer.  

The provided interpretation focused on the final part of the answer (the 2 in the ex-

ponent) or on showing the PT’s “correct way” for using the formula of the area of the 

rectangle.  

When commenting on Camila’s production:  

Pair1:  The answer is correct but the calculation is incorrect; has cm2xcm2=cm4, 

and thus, the correct calculation would be 3cmx4cm=12cm2. 

Pair4:  Your result is correct but your operation is incorrect. You made 3 cm2 x 4 

cm2 and the result should be 12 cm4. The formula for determining the rec-

tangle area (size of the basis times size of the height) says that the area is 4 

cm x 3 cm = 12 cm2. Your mistake was that you assumed the measurement 

of the basis and height, respectively, 4 cm2 and 3 cm2, which is not true has 

cm2 is not a length measurement unit but of area (the basis and height are 

lengths).     

In these comments given to Camila’s solution, from one side, we can appreciate the 

dimensional check of the terms of the multiplication and the consistency of the di-

mension of the result. From the other side, we can see that the PSTs are not able to go 

“out of the box” and see the opportunity to use Camila’s solution to interpret the two 

factors of the product as different things:  one representing the stripe (number of units 
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of measure of the surface to cover the length or the width) and the other factor corre-

sponding to the number of times in which the stripe has to be repeated. In other words, 

when confronted with a different reasoning from what they expected, the PTS were 

unable to go out of their own space of solution and provide feedback explaining the 

student’s mistake. For Fernanda’s production, we provide one comment:  

Pair4:  Although the numerical result for the area is correct (12 cm2), using the area 

formula, when you write 4 x 3 cm2 you are considering that the measure-

ment of the basis is 4 (without dimensional unit) and the height is 3cm2 

(with two-dimensional unit). You should note that both measures are 

uni-dimensional. Thus, the basis and the height have, respectively, 4 cm 

and 3 cm of length, and the area is 4 cm x 3 cm=12 cm2 or 3 cm x 4 cm=12 

cm2. 

Pair 4, even if they were able to express explicitly that the unit of measurement of area 

is different from the unit of measurement of length (when mentioning they need units 

after the quantities), they do not transition between their own reasoning in two dif-

ferent contexts. Such difficulties in amplifying their space of solutions is grounded on 

their own previous experiences and knowledge, and on the beliefs associated with the 

way they use the formula of the area of a rectangle to be “the correct one as we always 

have used it at school and we use it in some Calculus courses at the university.” 

DISCUSSION AND FINAL COMMENTS 

All the PSTs seem to know what area is (as a surface measurement). However, when 

asked to provide a mathematical argument to their answers, different levels of justi-

fications were provided. When asked to solve the problem as someone who does not 

“know the formula of the area of a rectangle,” they are aware, at least intuitively, that 

one of the key concepts that underlie measuring is comparing (Clements & Stephan, 

2004), and thus they determine the quantity of area units (here a square) needed to 

cover the rectangle. They were not able to mobilize such knowledge when giving 

meaning to that same process when associated with the use of the formula (in students’ 

productions). Broadening their own space of solution (Jakobsen et al., 2014) demands 

they “move out of the box,” which requires a possession and mobilization of 

knowledge on the connections (KSM) sustaining the mathematical validity to be kept 

between and within school levels, topics, and contexts.  

PST’s answers to both parts of the task (specialized and interpretative knowledge) are 

grounded in a “linear interpretation” of the formula. This fact is also intertwined with 

their beliefs of the role of formulas in mathematics and related to the nature of their 

previous experiences both as students and in teacher education. This reinforces the fact 

that when teachers’ beliefs about mathematics (Liljedahl & Oesterle, 2014) are ex-

clusively linked with a procedural/instrumental approach of mathematics, such beliefs 

implicitly shape the content of their knowledge and of the interpretations they deem to 

perform. Hence, as the mathematical knowledge and beliefs teachers elaborate and 

develop are grounded in their own experiences in “doing” mathematics, it highlights 
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the need for teacher education to expose prospective teachers’ experiences that gen-

erate “questioning momentums” on the validity of their knowledge and their inter-

pretations of students’ productions.  
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GEOMETRY IN KINDERGARTEN: FIRST STEPS 

TOWARDS THE DEFINITION OF CIRCUMFERENCE 

Elisabetta Robotti 

Università di Torino 

 

This paper deal with a teaching experiment concerning geometry in kindergarten for 

children aged 4-5. Through a classroom-based intervention, designed according to the 

Semiotic Mediation theoretical framework and developed on a multimodal approach, 

children produce a “pseudo-definition of circumference”, which still refers to per-

ceptual elements linked to the shape, but where it is possible identifying the dynamic 

nature of the curve as a trace generated by the movement of a point. The analysis of the 

teaching experiment highlights the specific roles of the teacher and of artifacts in 

supporting the process of semiotic mediation through which the children and teacher 

transform the signs linked to artifacts into mathematical signs. 

INTRODUCTION  

The concepts of space and systems of spatial reference are very important for the 

children's psychological and cultural development. Bartolini Bussi (2008) considers 

different kinds of experiences referring to space (the space of body, the external spaces 

and abstract space), which are related to different cognitive activities and different 

abilities in specific contexts. To move from the space of the body to representative 

spaces, where objects are represented as shape, up to the space of the geometry, where 

geometrical figures are identified through their geometrical characteristics, is one of 

the central ideas of teaching and learning geometry. This doesn’t refer to a hierarchical 

geometrical learning model. As matter of fact, recent researches are developed against 

the Piaget and Van Heile’s views that geometrical thinking can be described through a 

hierarchical model formed by levels where abstract space is placed at the end of the 

child's evolutionary process (Owens, 2015). Even if the definition of geometrical fig-

ure do not appear explicitly in curricula until primary school (in Italy in 4th grade), 

recent research is showing how geometry has an intuitive experiential basis well before 

school (Bryant 2008). Moreover, reviewing some literature available in the field and 

addressed to children education, we identify different research concerning geometrical 

teaching experiences in kindergarten (Sinclair & Moss, 2012, Bartolini Bussi & Bac-

caglini-Frank, 2015). According to theses researches, in children’s development of 

geometrical and spatial competences, the ability to orient itself is one of the first crucial 

nodes in space conceptualization. Moreover, body and instrument experiences act as a 

bridge between the physical modeling of space and the conceptualization of a geo-

metric space. With these premises in mind, I argue it makes sense that geometry could 

be explored much earlier and more robustly than it is at the moment (at least in Italy), 

already during the kindergarten years. To this aim, I will present an education sequence 
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concerning a teaching experiment where children in kindergarten experienced circle 

close, but not completely isomorph, to the definition of circumference. From a meth-

odological point of view, my aim is showing that a multimodal approach in kinder-

garten activities can promote the exploration of figures in geometrical sense in order to 

approach a “pseudo-definition” of circumference. 

THEORETICAL PERSPECTIVES  

The theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 2008), developed to 

design and analyze educational activities, is the theoretical framework of reference in 

this research. It provides a powerful way for teachers and researchers to study the 

process by which activity with artifacts can be turned into mathematical activity. 

Moreover, in present research, the teaching-learning process is considered as multi-

modal activity where, exploiting perceptual-motor components, the body becomes 

essential in the learning processes (Nemirovsky, 2003). Thus, Multimodality (Gallese 

& Lakoff, 2005), involving in particular drawing, gesture, manipulation of physical 

artifacts and various kinds of bodily motion, is regarded as a driving force for the 

formation of geometrical understanding.  

Summarizing the main elements of the Theory of Semiotic Mediation (TSM) (for more 

details, see Bartolini Bussi & Mariotti 2008), the teacher takes in charge two main 

processes: the design of activities and the functioning of activities. In the former the 

teacher makes appropriate choices about the artifacts to be used, the tasks to be pro-

posed and the mathematics knowledge at stake. In the latter, the teacher monitors and 

manages the students’ observable processes (semiotic traces), to decide how to interact 

with the students in order to transform signs linked to the use of artifact in math signs. 

The students are in charge of the resolution of the task through the use of the artifact 

proposed by the teacher. Making this, they produce signs (objects, drawings, words, 

gestures, bodily movements, and so on), which are linked to the artifact but that aren’t 

yet explicitly math signs. The teacher collects all these signs, in order to analyze them 

and to organize a path for their evolution towards mathematical signs that can be put in 

relationship with the chosen mathematical knowledge. The TSM identifies three main 

categories of signs: artifact signs, which refer to the context of the use of the artifact, 

mathematical signs, which refer to mathematics context, and pivot signs, which act as 

bridges between the artifact signs and the mathematical signs. Moreover, according to 

Gallese and Lakoff (2005) mathematics teaching-learning processes are multimodal 

activities. Nemirovsky (2003) states that, understanding and thinking, included 

mathematical thinking, are perceptuo-motor activities, which become more or less 

active depending of the context. This means that, exploiting perceptual-motor com-

ponents, the body becomes essential in the learning processes. In this perspective, the 

term multimodality is used here to underline the importance and mutual coexistence of 

a variety of cognitive, material and perceptive modalities or resources in teach-

ing-learning processes and, more generally, in constructing of mathematical meanings 
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(Radford, Edwards & Arzarello, 2009) and of "abstract thought" (Lakoff & Nùñez, 

2000).  

METHODOLOGY: THE TEACHING EXPERIMENT 

The class is composed by 21 children aged 4–5. Three teachers were involved during 

the classroom activities. Several sessions (13) were carried out during the school year, 

for 5 weeks (more or less twice or three times a week) either in the classroom or in the 

gym or outdoor, with a careful alternation of whole-class (with adult’s guidance) and 

some individual activity. Each session was carefully observed by one of the teacher 

involved, with the collection of photos, graphical productions, videos and transcripts. 

The teachers and a researcher (the author) designed the educational activities. Due to 

space constraints it is not possible to report in this paper on all the activities, so I’ll 

focus on certain sessions in which the production of signs was been particularly 

meaningful and rich. 

First sessions: why the choice of the “circumference” 

In these sessions, teachers work on the spatial orientation, on different viewpoints and 

on topological notions of "inside" and "outside". The children physically constructed 

(in the gym) a path with different materials: circles in plastic, wood blocks, and nine-

pins. Then, they are asked to drawing on a sheet of paper the path from different 

viewpoints. Starting from this, some drawings aren't accepted from all the children 

because of the circle drawing. Thus, the teacher asked: “what is a circle?”. First of all, 

children categorized drawings. As expected, children’s attention was focused on the 

narrative aspects such as the possible similarities/differences among shapes: the 

drawings look like eggs, strawberries and so on. Then, they generalized by distin-

guishing circles as closed curves and  “not circles” as opened curves. Then, in order to 

support the notion of position in the space and spatial reference system, as well as 

topological notions, children are asked to put themself inside a plastic circle located on 

the gym floor or outside it, inside a carton box or outside it, inside a circle of children 

or outside of it. This support also the categorization of "closed" and "opened" curves. 

We observe that different kinds of space where children have to work, affects the 

children's cognitive activities during exploration: in micro-space, where they draw 

circle and they have a global vision from a single viewpoint, the exploration is possible 

through the sight; instead in macro-space, being each child included in space, the ex-

ploration is possible moving in it, taking different viewpoints. In the exploration of 

these spaces, the reference system is egocentric and, at this point, children identify a 

circle as a "closed round". 

Session 3: construction of a circle 

In this session, the teachers choose wood blocks as artifact. Children are asked to build 

circles by wood blocks (Fig 1a); then, teachers asked to produce a circle of children 

holding hands (Fig. 1b). In this last case, the artifact is the class of children themselves. 
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a) b) 

Figure 1: a) circles of wood blocks; b) circle of children holding hands. 

Teachers set these tasks in order to consolidate the characterization of "closed round 

shape" through different viewpoints. In this activity, some children make a rotation of 

their index finger to show their schoolmates how they have to place in order to have a 

circle of children holding hands. Once the circle of children is realized, spontaneously 

a child takes the central position inside the circle saying: "I'm the center of the circle". 

Various signs were produced in verbal and gestural forms: the rotation of the index 

finger is a gesture linked to the concept of “trace”. This simulates the trace of the 

circumference (a “closed round shape”) and, for this, is an iconic gesture. The circle 

has still purely meaning of shape in static sense, as a set of points (children or wood 

blocks). The word “center” refers here to a privileged position inside the circle, ap-

proximately at the middle of it. It is a verbal sign that denotes a “special position” 

inside the circle, whose children don’t refer in term of "point" and "measure" (length). 

This word plays the role of pivot sign that teacher will have to transform in geometrical 

sign ("center of a circumference”). In this two tasks, a change of viewpoint can be 

observed: using the wood blocks to construct a circle, children take an external 

viewpoint with respect to the circle and they have a global view of it; instead, taking 

his/her own place in the circle of children holding hands, each child takes an internal 

viewpoint and, from this position, he/she can't describes circle through a global view.  

This is true for all children except for Viola who are asked to describe circle of children 

from an external position (out of the circle). Since it is not possible to take a single 

viewpoint for the exploration, she takes a self-centered point of view always moving 

inside and outside of the circle, but when she tries to read the regularity of the form in 

terms of distance of the children from the center, the reference becomes allocentric and 

she considers the center as privileged point. She says: "Pietro is in the middle of the 

circle". This confirms that the chose of the viewpoint isn’t linked to the child's cogni-

tive development, as considered for a long time according to Piaget's theory, rather to 

the tasks he/she has to do. 

Sessions 10 and 11: pivot signs “sticks” and “center” 

The teachers’ aim was to transform the pivot sign "center", linked to the meaning of 

"privileged point", into math sign linked to the meaning of "center of a circumference". 

Teachers ask children: “how we can be sure that this point is really at the center?". 

Children have at disposal different artifacts: wooden sticks of the same length and 

different length, skittles, paint, brushes, rope. Below we show an excerpt from an 

important exchange between a child, V, and the teacher, T, from which stemmed a 
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pivot sign (“stick”) that was eventually embraced by the class and that would eventu-

ally be related to the radius considered and named as the “equal distance from the 

center”. We observe that, in previous sessions, V introduced the term "center" as Pivot 

sign linked to the meaning of "privileged point". 

V:   we have to measure with the feet that is to say, we have to put a foot con-
secutively to the other [She tries but the shape of circle isn't satisfactory 
because schoolmates were always moving and they were changing their 
position in the circle]. 

V. proposes to use wood blocks and children construct the distance between center and 

their own position placing consecutively wood blocks. But, since the blocks have 

different lengths, the distances from the center aren't equal, as V. wanted. The children 

realized it; someone makes a sign with his finger to show that the shape of the circle is 

not regular, that is, not "round" even if it is closed. 

V:   we can try by the sticks! [Each child takes a stick and they put each stick 
from the center to edge.]  

T:   ok guys, what you have obtained? 

V:   a circle, and we all are distant equal! [Fig. 2a] 

In this excerpt, a combination of movement of body (to get the equal distance from the 

center by feet), gestures (with fingers to show the round and closed shape), words 

(“center”, “equal distance”) and drawings appear. The word “sticks" associated to 

meaning of "equal distance” plays the role of pivot sign. We observe that it is the 

embryonic definition of “radius” through which, together with the pivot sign “center”, 

children will construct the circumference. The class embraces the pivot sign “sticks” 

when teacher asks children to represent, on a round sheet, what they have obtained  

(Fig 2b)  

 

a) b) 

Figure 2: a) sticks from center to children; b) figural representation of the circle of 

children handing hands 

Obviously, this isn’t a construction in geometrical sense, but we can recognize an 

embryonic geometrical construction of circumference because of the invariants taken 

into consideration (center point and sticks). Moreover, we observe that the represen-

tation obtained (Fig. 2a and b) still has the meaning of a curve in a static sense, as a set 

of points generated by the positioning in sequence of points or, if you want, a repetition 

of action (a child for each stick). As result, some children correctly put into relation the 

sticks and the extreme points to the center (10 children, Fig 3a), but others don't (3 
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children, Fig. 3b). Some children consider only the circle and the center (as preferred 

position) without put them into relation by sticks. (8 children, Fig. 3c) 

 

a) b) c) 

Figure 3: a) correct relation among center, sticks and extreme points; b) wrong rela-

tionship; c) circle and the center as preferred position 

Sessions 12 

Teachers ask children “what is a circle” in order to make explicit the geometrical re-

lations among center (central position), radius (sticks), and points on the circumference 

(children)  

T: if you were to explain to other children what a circle is, what would you say? 

R:  we take a point, the center, and we put down the sticks, all equal sticks, 
starting from the center. We take the same measure, the same distance, 
starting from the center 

T:  so, what is a circle? 

F:  it's a “round thing” and there are equal lines from the point, the center. 

We observe that children, in order to identify “equal length” from the center, embrace 

the pivot sign “sticks”. Moreover, to answer the teacher's request  “what is a circle”, R 

describes the circle construction procedure. The action of construction as element 

identifying and characterizing a shape (not yet a geometrical figure) in perceptual 

terms (round thing), is still dominating with respect to the generalization. Nevertheless, 

we observe that some of the words used by children to describe the construction pro-

cedure have changed during these last sessions: from words closely related to material 

experience and perception (sticks, equal sticks, point in the middle) into words related 

more, but not still completely, to geometry (equal line, measure, distance, center). 

However, we can observe that the pivot sign “sticks” is now explicitly related not only 

to “equal length” but also to the “distance from the center”, which relays to the 

meaning of radius. The pivot sign “sticks” and the associated math sign “radius” are 

put into relation through “measure”. We still detect words referring to perception 

("round thing") to identify the trace of the circumference. This shows that the trace is 

not yet identified as a curve generated by the movement of a point, dependent on a 

fixed point (center). 

Session 13: the pseudo-definition of circumference 

Teachers ask children to draw a circle on the floor and they provide them with different 

materials: a cone, a rope, a brush, a stick and some paint. The action of greatest im-

portance for the group seems to be measuring equal distances starting from the center. 
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To this aim, children use different units of measure, more or less effective: the can of 

paint, the stick, the brush and the rope. The latter seems to be the most effective if 

anchored to the cone placed at the privileged position assumed as the center of the 

circumference. To define the trace of the curve, the children fixed the brush to the other 

end of the rope and then, dipping brush in the paint and twisting around the cone 

(center), they traced a set of points on the floor (trace of the circumference). These 

points, together, define the curve (Fig. 4a, b). Here, the curve is conceived in dynamic 

sense as a movement of the point around a center. The characterization of circumfer-

ence produced by children at the end of the teaching experiment is the following: A 

circle is a "round" made of many joined dots that have the same distance (the same 

measure) from the center point. I label this sentence as "pseudo-geometric definition" 

because it still refers to perceptual elements linked to the shape (“round”) even if it is 

possible to identify the dynamic nature of the curve as a trace generated by the 

movement of a point (the tip of the brush) that maintains the same distance from the 

center. The choice of artifacts and tasks seems to have helped teacher to transform 

artifact signs (dots on the floor, children in the circle of children holding hands...) into 

math signs (trajectory, understood as "the set of successive positions assumed by a 

moving point"). 

 

a) b) 

Figure 4: a) set of points on the floor; b) curve  

 

DISCUSSION AND CONCLUSION 

Different artifacts, different signs related to these artifacts and the transformation of 

them into mathematical signs through the teacher's mediation, allowed children to 

concept the pseudo-definition of circumference. In order to reach this aim, some cog-

nitive and educational aspects seem to play a key role in this teaching experiment: 

perception and bodily experiences (construction and description of circle of woods 

blocks, or circle of children being inside or outside it…) are fundamental for the de-

velopment of conceptualization, for this, the math activities were contextualized into 

different kinds of spatiality (internal and external space). In particular, children work 

into Macro-space and Micro-space and, in order to explore and describe them, they 

need of different systems of reference and different viewpoints. Moving from ego-

centric to allocentric references seems to allow children to identify the invariants of the 

geometrical figure (center and distance from the center). What favor this transition 
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seems to be both the variety of artifacts (blocks, drawings, children) and the possibility 

to discuss about the signs produced (gestures, words, body movements, drawings...). 

Even if no experience has been developed in geometric model of space, children seem 

to be able to visually treat information (Bishop, 1988) by moving from figural lan-

guage ("round", "closed round", "sticks"...) to a "pseudo-abstract" language (points 

having equal distance from center, equal length, measure, distance from center), what 

Radford names contextual generalization. For this, we named the reached definition a 

"pseudo-definition" of circumference. 

 

References 

Bartolini Bussi, M. G., & Baccaglini-Frank, A. (2015) Geometry in early years: sowing seeds 

for a mathematical definition of squares and rectangles. ZDM Mathematics Education, 

47(3) (this issue). doi:10.1007/s11858-014-0636-5. 

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics 

classroom: artefacts and signs after a Vygotskian perspective. In: L. English, M. Bartolini 

Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in 

mathematics education (pp. 720–749, 2nd éd.). Mahwah: Erlbaum. 

Bartolini Bussi, M. (2008). Matematica. I numeri e lo spazio. Azzano San Paolo: Junior. 

Bryant, P. (2008). Paper 5: understanding spaces and its representation in mathematics. In: T. 

Nunez, P. Bryant, & A. Watson. 

Bishop, A. J. (1988), Mathematical eculturation: a cultural perspective on mathematics 

education, Dordrecht, Kluwer Academic Publishers. 

Gallese, V. & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system 

in conceptual knowledge. Cognitive Neuropsychology 22, 455-479.  

Lakoff, G. & Nùñez, R. (2000). Where Mathematics Comes From: How the Embodied Mind 

Brings Mathematics into Being. New York: Basic Books. 

Nemirovsky, R. (2003). Three Conjectures Concerning the Relationship between body ac-

tivity and Understanding Mathematics. Proceedings of PME 27, Hawaii (US), Vol. 4, 

pp.113-120. 

Owens, K. (2015). Visuospatial reasoning: An ecocultural perspective for space, geometry 

and measurement education. New York: Springer. 

Radford, L., Edwards, L. & Arzarello, F. (2009). Beyond words. Educational Studies in 

Mathematics, 70(3), 91 - 95. 

Sinclair, N., & Moss, J. (2012). The more it changes, the more it becomes the same: the de-

velopment of the routine of shape identification in dynamic geometry environments. In-

ternational Journal of Education Research, 51–52, 28–44. 

 



 

 

 4 – 51  
2018. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the 

International Group for the Psychology of Mathematics Education (Vol. 4, pp. 51-58). Umeå, Sweden: PME. 

USING CRITICAL EVENTS IN PRE-SERVICE TRAINING: 

EXAMINING THE COHERENCE LEVEL 

BETWEEN INTERPRETATIONS OF 

STUDENTS’ MATHEMATICAL THINKING AND 

INTERPRETATIONS OF TEACHER’S RESPONSES 

Sigal Rotem and Michal Ayalon  

University of Haifa, Israel 

 

The participants of this study were asked to report on critical events that hold the 

opportunity for teachers’ decision-making to build on students’ mathematical thinking. 

The goal of this study is to analyze the coherence between pre-service mathematics 

teachers' interpretations of students’ contributions and their interpretation of tea-

chers’ responses in these critical events. An analysis of 37 reports indicates that while 

PTs show the ability to identify critical events and to interpret students’ thinking within 

the event, there is low coherence between their interpretations and their analyses of 

the teacher’s responses. One possible implication is that teacher educators and expert 

teachers who train pre-service teachers should be more explicit when discussing the 

reasoning behind teachers’ responses to students’ mathematical thinking. 

INTRODUCTION 

Classrooms are a complex environment in which many things often happen simulta-

neously, and the teacher is required to exercise constant decision-making. Some mo-

ments may be more critical than others in terms of the opportunity they provide for 

teachers to build on students’ mathematical thinking (Stockero & Van Zoest, 2013). 

Considering those critical moments’ potential to foster students’ learning, Stockero 

and Van Zoest (2013) suggested that training for pre-service mathematics teachers 

(PTs) should focus on both identifying critical moments and thinking about how the 

teacher might best respond in order to optimize students’ learning. To date, researchers 

have examined each of these goals separately, and there is limited research regarding 

how PTs construct a coherent view of teaching practice (e.g., Barnhart & van Es, 

2015).  In this study we asked PTs to identify critical events they witnessed during their 

clinical training observations and to use a structured critical event report (1) to interpret 

the mathematical thinking of the students (2) to interpret teachers' actions and (3) to 

offer an alternative response as if they were the teacher responding to the critical event. 

The work described in this paper is a part of a longitude research project that examines 

the use of critical events in teacher training over the course of three years, from 

teaching certificate clinical training to the second year of in-service teaching. This 

paper focuses on the first stage of PTs’ training. We examine the level of coherence in 
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PTs identifying, interpreting, and responding to student mathematical thinking as re-

flected in their critical events reports. 

Literature review 

The proposal to use Pedagogy of Cases was raised in 1986 by Shulman (L. Shulman, 

1986), who referred to a case as a description of an event that represents a broad 

pedagogical phenomenon or a dilemma with theoretical aspects. In PTs’ training, cases 

serve as a focus for teachers’ guided discussions, offering an opportunity for reflection 

on teaching and connecting teaching practice with teaching theories (Putnam & Borko, 

2000). Unexpected moments often exhibit valuable opportunities for students’ 

mathematical learning (Rowland & Zazkis, 2013). Stockero and Van Zoest (2013) 

define these moments of opportunity for the teacher to build on students’ mathematical 

thinking as pivotal teaching moments (PTMs). They underline the importance of 

teachers’ training programs promoting awareness toward those PTMs, as "this prepa-

ration would improve beginning teachers’ abilities to act in ways that would increase 

their students’ mathematical understanding" (p. 125). In these moments teachers' 

ability to "build capital" depends on their knowledge for teaching and awareness of the 

mathematical potential for learning (Rowland & Zazkis, 2013). In the words of Mason: 

“It is almost too obvious to say that what you do not notice, you cannot act upon” (p. 

7). Mason defines noticing as being awake to possibilities, being sensitive to the situ-

ation, and responding appropriately. More recent researchers refer to professional no-

ticing as (1) attending to student thinking within student-teacher interactions, (2) in-

terpreting student understanding based on these interactions, and (3) offering a re-

sponse based on this analysis (e.g., Jacobs, Lamb, & Philipp, 2010). The premise of 

teacher noticing is that the power of teachers to regularly elicit, and build their in-

struction on, children's thinking is linked to their ability to interpret children's math-

ematical thinking. Based on these noticing skills teachers formulate their immediate 

responses in the classroom; for example, deciding to ask students for more clarification 

or to follow up on a student’s comment. Connecting instructional methods to the 

mathematics and to student mathematical thinking is considered a part of the Mathe-

matical Knowledge for Teaching (MKT: Loewenberg Ball, Thames, & Phelps, 2008). 

So far, researchers have investigated PTs' different noticing-related skills - attending, 

analysis and response - separately. Some researchers focused on PTs' ability to attend 

to student thinking in a lesson; others focused on PTs' abilities to articulate learning 

goals. There is limited research regarding how one skill relates to the others (e.g., 

Barnhart & van Es, 2015). Barnhart and van Es (2015) characterized the relationships 

science PTs drew between attending to student thinking, analysing it and responding. 

They indicated that being attentive to students’ thinking does not promise in-depth 

analysis or response. In the current research, PTs were asked not only to analyze stu-

dents’ thinking but also to analyze the observed teacher’s responses, in order for us to 

investigate the extent to which PTs have students’ mathematical thinking in mind 

when interpreting teachers’ responses. Our research question is: what is the level of 

coherence between pre-service mathematics teachers’ interpretations of students’ 
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mathematical thinking and their interpretations of teachers’ responses, when describ-

ing a critical event they witnessed during clinical training? 

Research context: ACLIM-5 clinical training program  

The study took place in the context of ACLIM-5, a large university’s clinical training 

program for unique 5-unit mathematics teaching (high track mathematics program in 

secondary school). ACLIM-5 is a three-year training program designed to support the 

development of high track mathematics teachers through the use of critical events. Due 

to the limited space of this paper, and that the program is not at the focus of this re-

search, we will not elaborate regarding the program details. For clarifications reasons 

we will note that this study focused on the first year of the program, while PTs study 

for their teaching certificate. PTs participated in critical events course in which they 

were required to submit reports, based on lessons’ observations. The reports consist of 

three main parts: (a) prompts for describing the critical event, the mathematical con-

text, and the student-teacher interaction. (b) prompts for interpreting the students’ 

contributions. E.g., “offer interpretations for the student utterances: ‘what was going 

through his mind?’ on what is it grounded?”, (c) prompts for interpreting the teacher’s 

responses “offer interpretations for the teacher’s actions: ‘what was going through his 

mind?’ on what is it grounded?”, “offer different ways of responding, other than the 

teacher’s response. explain.”. These reports served as the data source for this study. 

DATA COLLECTION 

This data for this paper was taken from reports submitted in the first year of the first 

ACLIM- 5 course. Course participants were one male and 12 females. Five studied 

toward a dual degree in Mathematics and Education, and eight graduated with a B.Sc. 

from the university’s department of Mathematics. The data consist of 37 critical events 

reports describing real-life classroom events from PTs’ observations, submitted in 

three cycles during the academic year.  

DATA ANALYSIS 

Data analysis was conducted in two phases. First, we categorized the critical events 

chosen by the PTs by using Stockero and Van Zoest's (2013) framework for PTMs, 

while being open to the possibility of new categories coming up. The framework de-

scribes four types of critical events: (a) when students ask a question or make a 

comment beyond the mathematics the teacher plans to discuss; (b) when students try 

making sense of the mathematics in the lesson or express mathematical confusion; (c) 

when students make a mistake; and (d) when a mathematical contradiction occurs. A 

new category emerged in our bottom-up analysis: (e) when a student suggests an 

original solution.  

 In the second phase of analysis, we examined the PTs’ interpretations of (a) the stu-

dents’ contributions in the event and (b) the teachers’ responses, and (c) their sugges-

tions for possible alternative responses. The analysis was adapted from Barnhart and 

van Es’ (2015) category scheme, with some modifications made to allow us to focus on 
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the coherence between interpretations of students’ expressions and interpretations of 

teachers’ responses (table 1 describes the three-level coding scheme). "High coher-

ence" means that the PT interprets the students’ contributions while taking onto ac-

count the students’ mathematical thinking and the mathematical context of the critical 

event as described in the report. While interpreting teacher’s responses, "high coher-

ence" indicates that the PT kept the student's mathematical thinking in mind when 

interpreting the teacher’s statements and response. “Medium coherence” level indi-

cates that in the interpretation of the teacher’s response the PT attended to the student’s 

thinking in a general way, without considering the particular mathematical thinking. 

“Low coherence” level indicates that the PT did not attend to the student’s thinking 

when interpreting the teacher’s statements and response.  

Table 1: Three-level coding scheme for interpreting student’s statements, teacher’s 

statements and responses to the critical event. 

 Low coherence Medium coherence High coherence 

Interpreting 

student’s 

contributions 

Highlights classroom 

events, teacher ped-

agogy, student be-

haviour and/or class-

room climate. 

Highlights student’s 

thinking without re-

spect to the mathe-

matics of the critical 

events. 

Highlights student’s 

thinking with respect 

to the mathematics of 

the critical events. 

Interpreting 

teacher’s 

responses 

Highlights teacher’s 

pedagogy, student 

behaviour, and/or 

classroom climate. 

No attention to stu-

dent thinking. 

Makes sense of 

teacher’s statements 

while relating to 

student’s thinking 

with no respect to the 

particular mathe-

matics of the event. 

Consistently makes 

sense of teacher’s 

statements while 

keeping student’s 

thinking in mind, with 

respect to the mathe-

matics of the specific 

situation. 

Responding 

as the teach-

er in the 

critical event 

Offers vague general 

ideas of what to do 

differently next time. 

The idea does not 

build on a specific 

student idea. 

Offers a general idea 

of what to do dif-

ferently next time. 

The idea does not 

build on the stu-

dent’s mathematical 

thinking and relates 

to general mathe-

matics instruction. 

Offers a specific idea 

of what to do differ-

ently next time. The 

idea is built on the 

student’s mathematical 

thinking and takes the 

mathematics of the 

critical events into 

account. 
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PRELIMINARY FINDINGS 

PTs’ interpretation and response 

The first phase of data analysis indicated that all PTs were able to identify PTMs 

during which teachers had an opportunity to build on students' mathematical thinking 

and promote learning. PTs were more attentive to moments when a student suggested 

an original solution to a given problem (41%) and when trying to make sense of the 

mathematics in the described critical event (30%). The results of the second phase are 

noted in table 2. 

 Low coherence Medium coherence High coherence No evidence 

Interpreting 

student’s con-

tributions 

14% 41% 43% 3% 

Interpreting 

teacher’s re-

sponses 

62% 30% 0% 8% 

Alternative 

responses  

62% 14% 3% 22% 

Table 2: Results of the three-level coding scheme: interpreting student’s statements; 

interpreting teacher’s statements; and responding as the teacher in the critical event. 

As shown in table 2, the majority of PTs' interpretations of students’ statements were 

of medium coherence (41%) or high coherence (43%). While interpreting teachers’ 

statements, the level of coherence was low (62%) or medium (32%). When asked to 

respond in lieu of the teacher during the critical event, the majority of PTs gave a re-

sponse with low coherence (62%) or did not offer any alternative (22%). Meaning that 

when PTs interpreted students’ statements they usually considered student thinking 

with respect to the mathematics of the critical event, but when interpreting teachers’ 

statements or offering alternative responses, PTs focused on the teacher’s general 

pedagogy, student behaviour, and/or the classroom climate without attention to student 

thinking.  

Adel’s example 

We will demonstrate PTs’ common interpretation of student's contributions and 

teacher’s response using Adel’s critical event report. Further examples will be pre-

sented at this paper’s presentation. Adel described a critical event when 'Mr. Jones’ 

plot' problem was presented in a 10th grade calculus class (figure 1). Adel’s critical 

event revolved around one student’s original solution. The student stated that: “when 

the width and the length are equal, meaning when it’s a square, the width is 350m and 

the length is 350m.” In her report, she described the critical event:  

At the beginning the teacher didn’t say anything. Then, when the student repeated his 

answer, more than once, the teacher told him to wait a few minutes and that they will 
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discuss it later. After the teacher solved the problem the way he wanted, meaning after 

explaining about building a target function, finding extremum and determining their type, 

the teacher went back to the student’s answer. Together they analyzed why his answer was 

correct. The teacher asked a couple of questions: “Why does the square give us the 

maximum area?” The student said: “it is always true, because 25 times 25 is bigger than 24 

times 26.” The teacher asked the students: “a×b, why is it maximum when a=b?”. After 

posing questions, the teacher summed up: “a and b are variables but their sum is constant 

so b =c-a → a(c-a) and therefore a×b is maximum when a(c-a) is maximum. And how do 

we know when it is maximum?” 

 

 

 

Figure 1: ‘Mr. Jones’ plot’ problem 

Adel interpreted the student’s statements as follows:  

The student thought immediately… according to his previous knowledge (you can tell by 

the example he gave, he had those numbers in his mind…). I think that he looked diffe-

rently on this problem, he said: “length times width, so when is it maximum? When it is the 

average of both numbers (width and length)” … He disconnected from the possibility that 

the question is linked with “derivatives, extremum points and so on.”  

Adel’s interpretation reflects the student strategy as relying on previous knowledge. 

Although she was not explicit regarding the specific previous knowledge, it can be 

implied from her saying: “you can tell by the example he gave, he had those numbers in 

his mind”. This can be assumed to refer to the student's example 25×25 > 24×26, which 

is a commonly used numeric example in middle school. By writing “when it is the 

average of both numbers (width and length)” she also implicitly addresses a2 > 

(a-1)(a+1). Her last sentence offers a possible reasoning for how this path of thought 

happened: “he disconnected from the possibility that the question is linked with…” 

Therefore, Adel’s interpretation highlights the student-thinking process with respect to 

particular mathematics, so her interpretation level is high coherence with respect to the 

mathematics of the critical event.  

In her interpretation of the teacher's response to the student's answer, Adel wrote:  

That was the first lesson on extremum problems, and this (‘Mr. Jones’ plot’ problem) was 

the first question in class. So, in the beginning, the teacher had to explain to them how this 

topic relates to the previous topic (derivatives)… So, he solved it in the way he should 

teach, and then addressed the student’s answer so he will understand the method he used… 

Most of Adel’s interpretation highlights the teacher’s general pedagogy. She inter-

preted the teacher actions as pursuing his lesson’s plan, teaching extremum problems 

using the previous topic, derivatives. By the end of her interpretation she relates to 

student, but she does not relate to the student’s thinking but to the teacher’s answer. 

Adel suggested that the teacher was trying to gain better understanding but she did not 

articulate the understanding the teacher was trying to achieve. Was the teacher trying 

Mr. Jones has a rectangle shaped plot, its length is 400m and width is 300m. Mrs. Jones wants to 

shorten its length by x meters and to lengthen its width by x meters, in order to maximize its area. 

Find x. 
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to understand the student? Or was he figuring out whether the student understood his 

own answer? Therefore, Adel’s teacher’s interpretation level was of low coherence 

with the student mathematical thinking. One might perceive the teacher’s question 

“why does the square…?” as a bridge between the student’s utterance and the teacher’s 

lesson goal, teaching extremum problems using derivatives. Exploring the potential 

benefits of ‘Mr. Jones’ plot’ problem - simple numbers and known properties of the 

area of a rectangle and a square - may cast the teacher’s response in a different light. 

The teacher might have wanted to approach extremum problems using simple prob-

lems, so that the students would not have to deal, cognitively, with complicated cal-

culations. In addition, the teacher may have wanted the students to draw a connection 

between the maximum area of a rectangle and the area of a square, leading to a general 

discussion later on regarding the use of derivatives as a general method to prove the 

maximum area of any type of polygons.  

When offering a response as if she were the teacher, Adel also presented a low level of 

coherence with the student’s mathematical thinking: 

…There is a need to tell the student that his answer is correct but we need to think in a 

different way, to draw connection on previous topics (derivatives)… To show them the 

correctness of things in general through proof.  

Adel’s response is vague and relates to the correctness of the student’s answer, not to 

his thinking. Adel offered to “show them the correctness of things in general through 

proof” but she did not elicit what kind of generality she referred. Did she mean a more 

general proof for the fact that, while limiting convex polygon’s perimeter, it’s maxi-

mum area is when the polygon is an equilateral? Or did she refer to the teacher’s proof?  

In conclusion, Adel identified an original solution proposed by a student as a critical 

event in the lesson, but it was hard for her to address its potential as a starting point for 

the teacher to build students’ mathematical thinking.  

DISCUSSION 

The PTs’ critical event reports in this study reflect their ability to identify moments 

with valuable opportunities for student mathematical learning (stockero & Van Zoest, 

2013) as well as to provide interpretations for students' statements that are anchored 

within the students’ mathematical thinking. However, a low level of coherence was 

found between those and their interpretations of the teachers' responses. Leatham, 

Peterson, Stockero, and Van Zoest (2015) indicate that while skilled teachers may 

notice when critical events occur during a lesson, novice teachers fail to notice or fail 

to act upon opportunities to use students’ thinking to further mathematical understan-

ding. Our analysis partly challenges Leatham and et al. (2015) finding in that the PTs 

were able to identify critical moments and to interpret students’ mathematical thinking. 

However, in accordance with Leatham et al., (2015) the PTs encountered difficulty 

“acting upon” the students’ thinking when interpreting teacher’s strategies. The find-

ings indicate a ‘disconnect’ from the meaning given to the student’s contribution when 

analysing the teacher’s response. Instead, the interpretations of the teacher’s response 
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focused on general teaching strategies or other aspects of classroom management, 

without taking into account the particular student’s mathematical thinking - thinking 

that they had highlighted just minutes earlier. A possible explanation could be PTs’ 

lack of MKT; that is, not connecting students’ thinking with teachers’ decision-making 

and instruction (Morris, Hiebert & Spitzer, 2009). We argue that teacher educators and 

expert teachers who work with PTs in clinical training programs should be more ex-

plicit regarding how particular mathematics together with student mathematical 

thinking may shape instruction, and how teachers’ actions may be built on student 

mathematical thinking to promote learning. The next step within our project is to de-

vise possible strategies to support this goal.  
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CREATIVITY OR IMAGINATION:  

CHALLENGES WITH MEASURING CREATIVITY 

Benjamin Rott Peter Liljedahl 

University of Cologne, Germany Simon Fraser University 

 

In this article, we look closely at the relationship between creativity and imagination. 

Using a combination of theoretical and empirical analysis, we call into question the 

validity of measuring creativity by examining products and coding them for flexibility. 

The framework of imagination proves to be a useful lens for analysing the data. 

INTRODUCTION 

Since Guilford’s (1967) conceptualization and Torrance’s (1974) development of 

according tests, the factors of originality, fluency, and flexibility have been used by 

many researchers to measure creativity. At PME 41 we looked closely at the charac-

teristic of originality as a metric for measuring creativity and concluded that “the 

originality of a solution is not a reliable indicator of the creativity of a solution” 

(Liljedahl & Rott, 2017) and that one needs to be careful about using products as 

proxies for processes when measuring creativity. In this paper, we look closely at 

flexibility and the feasibility of using it as a proxy for measuring creativity. 

CREATIVITY 

Sternberg and Sternberg (2011, p. 479) broadly define creativity as “the process of 

producing something that is both original and worthwhile”; while Torrance (1966) 

described creativity as  

a process of becoming sensitive to problems, deficiencies, gaps in knowledge, missing 

elements, disharmonies, and so on; identifying the difficulty; searching for solutions, 

making guesses, or formulating hypotheses about the deficiencies: testing and retesting 

these hypotheses and possibly modifying and retesting them; and finally communicating 

the results. (Torrance, 1966, p. 6) 

Nearly all definitions have in common that being creative is regarded as a process and 

that a creative idea or product is something new, unique, or original. Many approaches 

to conceptualize (and measure) creativity can be traced back to the ideas of Guilford 

who differentiated between convergent and divergent thinking. With convergent 

thinking, he describes logical deductions and using analogies as well as relying on 

previous knowledge and finding the answers to routine tasks. On the other hand, di-

vergent thinking is described as generating many ideas in a ‘non-linear’ manner, 

combining ideas, drawing unexpected conclusions, and, thereby, coming up with 

original ideas (cf. Guilford, 1967). 
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Measuring Creativity 

Because of its importance (e.g., for problem solving) and it being part of intelligence 

models, there have been several attempts at measuring creativity. Besides trying to 

measure it by using problem solving and/or problem posing tasks, the construction of 

creativity tests mainly goes back to Guilford and – building on his groundwork – Tor-

rance. In the 1940s and 50s, Guilford had identified four factors of divergent thinking, 

namely fluency, flexibility, originality, and elaboration. The basic idea of the tests by 

Guilford and Torrance is to code test subjects’ solutions, assigning points for those 

four factors, and use the points to generate a total test score. This basic idea is still used 

in current tests and will be illustrated by the example of the Multiple Solutions Task 

(MST) test for mathematical creativity by Leikin and Lev (2013). 

The participants are asked to find as many solutions as possible to a given problem 

(MST). For each solution, it is decided whether it is appropriate (measuring elabo-

ration). To identify the score for fluency, i.e. having many ideas, the number n of ap-

propriate solutions is counted. The score for flexibility, i.e. having different ideas, is 

determined by addressing 0.1, 1, or 10 points to each appropriate solution (see below 

for details). And, finally, the score for originality, i.e. having unusual or unique ideas, 

is similarly determined by rating each appropriate solution with 0.1, 1, or 10 points; 

this rating is done by comparing the solutions to those within a reference group (it 

cannot be checked whether a solution is new for the participant). 

To evaluate flexibility (the focus of this paper), a solution space is established by 

grouping experts’ solutions to the MST: solutions belong to separate groups if different 

strategies, representations, and/or properties are used to obtain them. The participants’ 

solutions – in the order in which they were found – are sorted into those groups. If a 

solution stems from a group that has not been used before, it gets 10 points. A solution 

gets 1 point, if its group is not unique but it is clearly distinct from previous solutions. 

If a solution is almost identical to a previous solution, it gets 0.1 point. 

The creativity score is calculated by multiplying the flexibility and originality scores 

for each solution and summing them up. A solution that gets 10 points for each origina-

lity and flexibility gets 10 ∙ 10 =100 points. This results in a “decimal” scoring system; 

for example, a total score of 231 suggests two solutions that were recognized as highly 

flexible and original. Overall, flexibility has a big influence on the total sum. 

As can be seen, this scoring system for creativity focuses on the number of different so-

lutions without being able to ensure that those solutions are original sensu Sternberg or 

Torrance (see above). Therefore, we look into the framework of imagination. 

IMAGINATION 

Imagination is the ability to see things other than as they are (Greene, 2000) – as rea-

ching out from where you are (Greene, 2000) along lines of conceivable trajectories as 

determined by your own experiences (Dewey, 1933; Whitehead, 1959). It is the ca-

pacity to transcend the actual and to construct the possible, and the impossible.  
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To understand the imagination we need to experience the imagination. Thus, we begin 

with a thought experiment. Imagine, for an instant, an animal that lives on a distant 

planet – a planet with an atmosphere, a day and a night, water, and vegetation (Egan, 

1992). What does it look like? Is it unique? Is it unusual? Is it conceivable? Most 

likely, the creature of your imagination is rooted in some experience you’ve had (a real 

animal or a movie creature) along with some standard modifications (fangs, extra 

limbs, etc.). Perhaps it is a giant winged lizard with horns and colorful stripes or a 

horse-like creature with a lion's mane and three tails. Regardless of your animal, 

however, some things are likely true. Although it may be unique and unusual, it will 

likely have some even number of limbs, or wings, or both. It will propel itself by 

walking or flying or swimming. In essence, it will be recognizable as an animal. You 

cannot avoid it. This is because when we imagine we reach out from where we are, not 

blindly or randomly, but along conceivable trajectories. That is, we build our animal 

from a repertoire of features and characteristics of things that are animal-like. The 

combinations and permutations of such features allow for endless possibilities of 

animals that we can conceive, but they will all be animal-like. Thus, while our imag-

ination may be limitless, it is not unbounded; it is constrained by the conceivable. 

This is not to say that the imagination can be reduced to a variation on a theme – a 

twisting of some recalled experience. What is explored above is meant to be a de-

scription of the imagination in action not a prescription for action. When we imagine 

we are constrained by what we can conceive. This constraint is real and undeniable. It 

limits and guides our imagination, but the imagination is still free to seek out unique 

and unusual possibilities within these bounds. To reduce this process to a prescription 

of intentionally making a slight variation to an old idea – a blue cow, a stripped giraffe, 

etc. – is an oversimplification of the imagination, at best, and a perversion of the im-

agination, at worst. The imagination is constrained by the conceivable, not controlled 

by it. To be otherwise, reduces the imagination to the mundane and the predictable. 

Although there are constraints and intentionality exercised over it, the imagination still 

possesses a quality of autonomy to it.  

CREATIVITY OR IMAGINATION 

Both the imagination and creativity lay outside of the logical forms – they are ex-

tra-logical processes (Dewey, 1938) capable of producing ideas and solutions that lie 

beyond what could normally be produced by reason alone. Creativity and imagination 

leap ahead of reason, the slow moving and ponderous master, to scope out possible 

new realities (Kasner & Newman, 1940). This has already been discussed in regards to 

the imagination’s ability to generate unique, yet conceivable, ideas. Unlike the imag-

ination, however, creativity is not constrained by the conceivable. It is capable of 

producing ideas and solutions that go beyond, not only reason, but also the conceiva-

ble. Through creativity, ideas can be generated that are qualitatively different and not 

linearly attributable to any one prior notion. So, whereas the imagination will produce 

a horse-like creature with a lion’s mane and three tails, creativity can produce a crea-
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ture that resembles nothing we have seen before, perhaps in a gaseous form existing in 

time rather than moving through time.  

The imagination is not to be viewed as the poor second cousin to creativity, however. 

The imagination is the source of creativity. It is from the limits of the imagination that 

creativity takes off; leaping over boundaries of conceivability to explore what lies 

beyond. Once there, however, the imagination is once again free to explore the bounds 

of the newly constructed possibility. It is as if creativity carries the imagination across 

these boundaries, these barriers of conceivability. This is why a creative experience is 

often referred to as a leap of the imagination (Greene, 2000). 

Given the close relationship between imagination and creativity in general, and the 

distinction between the conceivable the inconceivable in particular, we wonder what 

the lens of imagination might help us see in creativity data. In particular, we wonder if 

the imagination may not be a better descriptor of data previously coded as flexibility. 

This is our research intention. 

METHODOLOGY 

The data for this study was originally collected and analyzed in a German project on 

mathematical giftedness in upper secondary school (MBF2, led by Maike Schindler 

and Benjamin Rott). Twenty students from grades 11 and 12 (age 16 – 18) participated 

voluntarily in this project, coming to the university every second week (cf. Schindler, 

Joklitschke, & Rott, in press). In this project, among other activities, mathematical 

creativity was measured using the previously explained rating scheme by Leikin and 

Lev (2013). Two of the used MSTs are presented in Figure 1.  

For the results presented in this report, the authors consensually discussed and 

re-analysed selected solutions using the framework of imagination in general and the 

notion of the conceivable in particular (see above). 

Solve the following problem. Can you find different ways to 

solve the problem? Find as many ways as possible. 

This figure is an equilateral hexagon. How big is the angle ε? 

Remember, in an equilateral hexagon, all sides have the 

same length and all angles have the same size, which is 120°. 

 

Solve the following problem. Can you find different ways to 

solve the problem? Find as many ways as possible. 

This figure is a triangle ABC. The points P, Q resp. R, S 

divide sides AB resp. AC each in three equal parts.  

What is the area of the quadrangle in comparison to the area 

of the triangle? 
 

Figure 1: The hexagon problem (source: D. Brockmann-Behnsen) and the triangle 

problem (source: Novotná, 2017) 

 

ε 
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RESULTS AND ANALYSIS 

In what follows, we look at four cases from this analysis, focusing on the flexibility 

scores and the re-interpretations using the framework of imagination. 

Case 1: Thomas – hexagon problem 

Thomas found n = 6 different ways to solve the hexagon problem, four of which are 

given in Fig. 2 (left). (1) His first approach was to measure the angle ε, which was not 

recognized as an appropriate solution. (2) His second approach was to subtract a right 

angle from the 120° degree interior angle, what leads to ε = 30°. (3) After that, he drew 

a right-angled triangle and calculated ε by using the sum of the angles of a triangle 

(180° – 90° = 30°). (4) He used an isosceles triangle to calculate 2ε = 180° – 120°. 

Analysis: Thomas’ second and third approach were so different that they each gained 

10 points for the flexibility score in the creativity measurement (the fourth approach 

gained only 1 point for flexibility as it uses mostly the same idea as the third approach). 

Using the framework of imagination, however, reveals that all approaches are rather 

imaginative than creative. Each of his solutions is a conceivable extension of some-

thing he has experienced before as there is no doubt that in his school career, Thomas 

had previously divided geometric figures into smaller figures (like triangles) by 

drawing auxiliary lines. For example, the formula for calculating the sum of the inte-

rior angles of polygons is derived by dividing a polygon into triangles. 

This is not to say that all instances of drawing auxiliary lines are conceivable exten-

sions of past experiences. But in the case of a hexagon, there are only two interior 

auxiliary lines that can be drawn and neither requires a great leap to conceive of. 

Case 2: Christa – hexagon problem 

Christa solved the hexagon MST with n = 5 approaches, all of which were assessed as 

appropriate. Four of her approaches are shown in Fig. 2 (right) and two of those ap-

proaches are presented here. (1) In her first approach, she halved the 120° interior 

angle of the hexagon by drawing a diagonal to the opposite vertex; she then argued that 

the given diagonal halves the remaining angle, resulting in ε = 120°:4 [the second step 

could be argued more rigorously, though]. In her second and third approaches, Christa 

mostly used the same argument of dividing the given angles. (4) Her fourth approach 

was similar to the third approach by Thomas (right-angled triangle). 

Analysis: Like Thomas, Christa had two solutions that each scored 10 points for 

flexibility. However, both her first and fourth approach were not creative in the sense 

that something subjectively new had been discovered. Like Thomas, Christa experi-

enced division of figures and symmetry arguments in the context of arguing for angle 

sizes in her school education; therefore, here ideas are conceivable extensions of pre-

vious experiences – they are a product of her imagination. 
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Figure 2: Excerpt of the solutions by Thomas and Christa to the hexagon problem 

Case 3: Thomas – triangle problem 

Thomas completed n = 2 approaches to the triangle MST (see Fig. 3), all of which were 

assessed as appropriate. (1) In his first approach, he divided the triangle into three 

congruent parallelograms and three small triangles with the area of the triangles being 

half the area of the parallelograms. By stating that each parallelogram has an area of 1 

and each small triangle has an area of 0.5, he was able to show that the ratio of the 

white and grey areas is 3 : 1.5; or, differently, that the grey area makes up one third of 

the area of the given triangle. (2) In his second approach, Thomas used a point reflec-

tion to complete the given triangle to a parallelogram in which the grey area can easily 

be identified as one third of its total area. 

Analysis: Both of these approaches were sorted into different groups of the solution 

space and, therefore, each scored 10 points for the flexibility score. With the lens of 

imagination, both approaches do not look creative as they are easily conceivable for 

him. In his school education, Thomas had previously divided geometric figures into 

squares or rectangles to estimate their areas. For example, deriving the area formula of 

a rectangle by dividing it into squares is mandatory content in German mathematics 

curricula. The same is true for combining figures (e.g., two right-angled triangles to 

form a rectangle or two trapezoids to form a parallelogram) which is also mandatory in 

Germany and, therefore, also known to and conceivable for Thomas. 

Case 4: Christa – triangle problem 

Christa solved the triangle MST with n = 3 approaches (all assessed as appropriate). 

(1) Like Thomas, via point reflection, she completed the triangle to a parallelogram. 

(2) Her second approach (see Fig. 3) was comparable to the first approach by Thomas, 

she divided the given triangle into nine smaller (congruent) triangles and numbered 

them. Three of those triangles are grey and six are white, therefore, the grey area is 3/9 

or one third of the given triangle. (3) Her third approach was similar to her second 

approach, she divided the given triangle into parallelograms and smaller triangles. 
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Analysis. Christa’s first and second approach each gained her 10 points for flexibility 

(her third was quite similar to the second and scored only 1 point). Again, with the 

framework of imagination, her approaches are not interpreted as creative, but as im-

aginative as the idea of diving a polygon is easily conceivable for her. 

The implications of the re-interpretations are discussed in the next section. 

 

Figure 3: Excerpt of the solutions by Thomas and Christa to the triangle problem 

DISCUSSION 

In this article, we used the differentiation between imagination and creativity to attack 

the problem of measuring creativity from a different angle. From a theoretical per-

spective, imagination helps us to grasp the conceivable, whereas creativity helps us to 

reach the inconceivable. To make this clear, this differentiation is not the same as the 

interplay of convergent and divergent thinking in the terms of Guilford (1967). Both 

imagination and creativity are extra-logical processes that are capable of producing 

ideas beyond standard situations (cf. Dewey, 1938). Therefore, both belong to the 

category of divergent thinking. 

In addition to the theoretical consideration, we used an empirical case study to support 

our argument. The case study has shown that imagination is a useful lens for analysing 

data from creativity tests. For example, the case of Thomas (hexagon problem) shows 

that all of his solutions were variations on problem solving techniques he had expe-

rienced before. More generally, approaches that scored maximum points for fluency 

were identified as imaginative, instead of creative. 

Nonetheless, the implication of this is not insignificant, because – at their core – im-

agination and creativity are very different (cf. Greene, 2000). Therefore, this is a 

question of validity. If data that has been used to indicate creativity is clearly an ex-

ample of imagination, this calls into question the utility of flexibility as a metric for 

measuring creativity. We do not say that flexibility cannot be used to identify crea-

tivity; we only say that the identification of flexibility does not imply creativity.  

Why do we need an additional theory, one might wonder. “If all you have is a hammer, 

everything looks like a nail.” A different theoretical approach might help us to focus on 

important aspects of creativity without being distracted by aspects that might not be of 

particular relevance. Taken together, the results of the research presented here argue 
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that flexibility is not a good indicator of creative products. In a more general view, it is, 

however, a good indicator of divergent thinking (in the sense of Guilford, 1967), if 

imagination is included in it. 
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TENSIONS IN IMPLEMENTING MATHEMATICS JOURNALING   

Annette Rouleau 

Simon Fraser University 

 

Research suggests there is a strong connection between mathematical writing and 

mathematical learning. As a result, many educators are implementing journaling in 

their mathematics classroom, which can be a challenging process. This paper identi-

fies the tensions faced by an individual teacher implementing journal writing for the 

first time and interprets those tensions through the lens of activity theory. The results 

suggest that pinpointing the areas of tension within an activity system may provide a 

means of mitigating the challenges. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

It is easy to understand why teachers are interested in implementing journaling in their 

mathematics classrooms. One of the primary benefits is its strong connection to 

mathematical learning (Morgan, 1998). There is the suggestion that the act of writing 

can help students synthesize new ideas and make meaning between old and new 

concepts (Hamdan, 2005), and that it can also foster positive mathematical beliefs 

(Sanders, 2009). For teachers, the written reflections can assist in assessing students’ 

mathematical understanding and “give the teacher insights into areas of confusion or 

misunderstanding” (Sanders, p. 437).  

However, there are challenges in journaling. The biggest one relates to students’ initial 

responses to journal writing, which is typically a new type of assignment for them. 

They tend to perceive it as being something outside the norm, declaring that journal 

writing “should not be part of mathematics class” (Williams & Wynne, 2000, p. 134). 

Additionally, it can be difficult for students to express mathematical ideas in writing, 

as Morgan (1998) suggests, “it has largely been assumed that students will learn to 

write through experience and that they will develop appropriate forms of language 

‘naturally’” (p. 2).  

Tension may result as teachers attempt to maximize the benefits while minimizing the 

challenges. Endemic to the teaching profession, tension encompasses the inner turmoil 

teachers experience when faced with contradictory alternatives for which there are no 

clear answers (Berry, 2007). At any given moment, a teacher may experience tension 

with students, with the task, with content, with assessment—tension that ebbs and 

flows throughout the course of a lesson, a day, or a lifetime of practice. This leads to 

the possibility of viewing tension as a web or series of interconnections. For example, a 

teacher says she is experiencing tension with assessing mathematical understanding. Is 

the tension ‘what’ to assess? How to assess? Is it because parents prefer summative 

assessment? Is it because students have test anxiety? Is it a combination of these? All 

of these? If these tensions are thought of as an alarm panel, which are the sections that 
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light up and demand attention? Which sections are unlit? Cole and Engeström’s (1993) 

activity theory offers a way of understanding these tensions as interactions in, and on, a 

dynamic, active system. Using activity theory, I can localize the tensions within an 

activity while considering their global effect on the activity itself. My goal then is to 

identify the tensions experienced by a teacher as he implements journal writing in his 

secondary mathematics classroom. 

Activity Theory 

Activity theory is built on the assumption that, at the level of the individual, all inten-

tional human actions are goal-directed and tool mediated (Venkat & Adler, 2008). To 

expand from individual mediated action to the level of collective activity, Cole and 

Engeström (1993) introduced activity systems, which they define as communities 

engaged in activities which share common goals. They suggest these systems exist 

within socio-cultural settings like a classroom or school and can be seen as “natural 

units of analysis for the study of human behaviour” (p. 9). 

As illustrated in Figure 1, an activity 

system comprises six elements. The 

subject is the person, or group of people 

whose perspective is the focus of the 

analysis and the object is the overall goal 

of the system. Tools include anything 

used to mediate the activity, while rules 

are the explicit and implicit norms that 

guide and restrict the activity. The 

community is the person, or people, who 

comprise the social context in which the 

subject belongs, and division of labour 

regards the roles within.  

Gedera (2015) notes that these six elements in an activity system “act as mediators and 

the relationships between these elements are constantly mediated” (p. 55). This sug-

gests activity systems are dynamic and changeable. Cole and Engeström (1993) add 

that “activity systems are best viewed as complex formations in which equilibrium is 

an exception and tensions, disturbances, and local innovation are the rule and the en-

gine of change” (p. 9). This means that the interconnections between the elements, and 

ways in which they influence and are being influenced, are key areas for exploration in 

that they “draw attention to those points where contradictions or tensions exists” 

(Jaworski & Goodchild, 2006, p. 55). These tensions can occur within an element of 

the activity system, between elements of the activity system or between connected 

activity systems, and are considered essential for understanding the motivation for 

particular actions and the overall evolution of a system more generally (Cole & 

Engeström, 1993).  

Tensions also prove useful as a way for teachers to describe their own experiences of 

 

Figure 1: Activity system (Cole & 

Engeström, 1993) 
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practice (Berry, 2007). To develop their classroom practice, it may be helpful for 

teachers to recognize and define these tensions (Lampert, 1985). “In the process of 

renaming what they know through their experience, the teachers critically reflect 

on—and thus begin to renegotiate—their ideas about teaching and learning” (Freeman, 

1993, p. 488). To achieve this, the tensions first need to be identified at both the global 

level of the activity and at the local level of its constituent elements. This leads to my 

research question: What are the tensions the teacher experienced in the journaling 

implementation and where are they located within his activity system?  

METHODOLOGICAL CONSIDERATIONS 

Studies on tensions often rely on semi-structured interviews and self-studies as the 

primary means for subjects to identify and reflect on the tensions they experience (e.g., 

Sparrow & Frid, 2001; Berry, 2007). Inherent in revealing and understanding tensions 

then, is the element of reflection that originates from the subject. This study therefore, 

utilizes data from the subject's reflection of the activity rather than on the researcher’s 

direct observation of the activity itself. The rationale for this methodological decision 

is that it is necessary for tensions to stem from the subject’s reflections rather than their 

observable actions, and furthermore, to make use of the tension, the subject must come 

to recognize and name their own tensions. It is in reflecting on the activity that the 

subject moves closer to understanding the tensions they experience within their activ-

ity system. 

This paper in particular is a small-scale qualitative study that seeks to prove the ex-

istence of a phenomenon rather than its prevalence. It involves one participant, Dan, a 

secondary mathematics teacher. One of many teachers interviewed as part of a larger 

study regarding tensions in teaching, Dan was chosen for this study because of a spe-

cific experience he shared regarding implementing journal writing. Data used for 

analysis was obtained during a one-hour semi-structured interview that was recorded 

and transcribed in its entirety, along with written responses to follow-up questions. 

Using activity theory as both the theoretical lens and the analytical tool, the data was 

used in two ways. First, it was used to create a descriptive narrative of the subject, Dan, 

as he portrays himself as a teacher. This narrative was shared with Dan, to validate its 

accuracy, and subsequently used to outline his activity system. Secondly, the data was 

scrutinized to identify tensions. This was done by first searching the transcript for 

evidence of tensions, that is, for utterances with negative emotional components such 

as “I was most disappointed with…” or utterances that conveyed doubt such as “I 

didn’t know what to do.” The list of identified tensions was then narrowed to include 

only those that stemmed from, or were related to, Dan’s implementation of journal 

writing. Dan’s own activity system, developed from the descriptive narrative, was then 

used as the frame for locating which specific elements contributed to, or were impacted 

by, the tensions he experienced. 

Context of the Study 

The next section contains two parts. First is a narrative describing Dan, which will be 
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later used to outline his activity system. This is followed by a short description of the 

journaling Dan implemented in his mathematics classroom. Note that, from here on, all 

italicized words contained within quotation marks are Dan’s. 

Dan always planned to teach high school mathematics. He trained as an elementary 

generalist however, as he found it difficult to fulfill the senior mathematics require-

ments for secondary concentration. His plan was to use his elementary generalist de-

gree as a stepping stone, thinking “if I go in this way, maybe I can kind of go in the 

backdoor and get into secondary math”. And, after two years of temporary contracts 

and substitute teaching, Dan was employed as a secondary mathematics teacher. He 

found this was a dubious success. Quite bluntly he states, “I hated it. I hated secondary 

teaching; I did not fit in that culture”. Calling himself “philosophically misaligned”, 

he spent his first few years figuring out where he fitted in as a teacher. He credits a 

strong bond with a teacher-mentor and his elementary generalist training with helping 

him establish his teacher identity. Despite initially viewing his entry into the elemen-

tary generalist program as a means to an end, he said that the elementary style of 

teaching and learning actually appealed to him. Sharing the adage that “elementary 

teachers teach kids, secondary teachers teach content”, his belief is that “I can't do 

anything if I don’t have a relationship”.  

Dan describes himself as “kind of an outlier, typically out in front of things”. He holds 

a Master’s in secondary mathematics education. He also served as president for his 

province’s mathematics teachers’ association. His first role with his current district 

was the district’s math consultant, a position he held for five years before going back to 

teaching secondary mathematics four years ago. Upon returning to the classroom, Dan 

noted a lack of engagement in his students: Lack of engagement with himself, and lack 

of engagement with mathematics. He wanted to create a culture in his classroom where 

his students were thinking mathematically, not simply repeating back words and steps 

he had provided. To that end, Dan began implementing changes in his practice. He 

began giving students opportunities to work collaboratively on problem solving at 

alternative working spaces. He began offering retests and flexible assessments. He also 

began working on alternative assessment practices that better described qualitatively 

what his students knew and could do.  

Overall, Dan experienced varying success with the changes he implemented. What 

piqued my interest was his mention of the tensions he experienced regarding one 

change in particular—his requirement that his students write journals about their 

problem-solving experiences. Dan had started off the current school year convinced 

that mathematical writing would be a beneficial experience for the students, helping 

them create personal connections to their mathematical learning. Instead he found the 

opposite; the change he wanted to implement was damaging his relationship with his 

students and their relationship with mathematics. 

The journal writing Dan introduced was a weekly activity that his two classes of grade 

10 students were expected to complete as homework. The students were to write up 

their problem-solving processes for a task they had completed collaboratively in class. 
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In both his classes, the students’ reaction to journaling was immediate and over-

whelmingly negative. Noting that he had not anticipated the anxiety they would ex-

perience, Dan discontinued journal writing after three entries. 

ANALYSIS AND DISCUSSION 

In the following analysis, activity theory is used to outline the five elements (object, 

tools, rules, community, division of labour) in Dan’s activity system, in which he has 

the role of subject. His own activity system is then used as a frame for identifying and 

interpreting the tensions he experienced. In all, six tensions were identified (see Figure 

2), but due to space limitations, only three will be presented for analysis, each of which 

highlight a different arrow in the activity system. 

Dan’s Activity System 

Essential to Dan’s activity system are his dual desires to develop meaningful relation-

ships with his students, and for his students to develop meaningful relationships with 

mathematics. His object, then, is in establishing what he called an “ethic of care” with 

his students, while figuring out how to “push them forward mathematically”, in this 

instance, through writing to learn. The tools Dan uses are pedagogical in nature. His 

approach to teaching combines tools of whole group, small group, partner, and in-

dividual. He attempts to engage students’ mathematical thinking through tools such as 

journaling and collaborative problem solving. He also uses homework and note-taking, 

and offers flexible assessments. There are certain rules within which Dan’s practice 

occurs. The content he teaches is guided by a provincial curriculum and there are 

school-wide assessment practices such as final exams. There are also well-established 

school-wide norms that dictate expectations for teachers, students, and classrooms. 

The community contained within Dan’s immediate activity system comprise his stu-

dents, parents, teachers, and administration. Lying farther out are the wider educa-

tional, professional, and social communities which Dan inhabits. The division of la-

bour for each establishes expectations of the roles for the community, essentially who 

is to do what. For example, as the teacher, Dan has the authority to choose and assign 

homework; his students are expected to do the homework and hand it in. 

Tensions between subject and tool. 

Dan felt journaling would be an effective way of getting students “to write for the 

learning of mathematics, to explain their thinking in written form”. Initially stating 

that he likes the idea of journaling, he quickly amended his statement, “No, that’s not 

true. I don’t like the idea of it. I think it’s absolutely essential and critical.” His ten-

sions with the tool lay in how to implement it effectively, not its efficacy. He believes 

he may have rushed the students into the process of journaling too quickly, not al-

lowing them the necessary time or space to adjust and accommodate to this new tool. 

His students strongly resisted, to the point where he says, “I was losing relationships 

with kids over this.” Dan reflects, “I should have started in a more traditional way and 

eased into it.” This response is in keeping with Winograd (1996), who suggests that 
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people deal with tensions regarding a tool in two ways; they either find ways to “work 

around” the tensions or they blame themselves. Dan, it seems, falls in the latter cate-

gory. He places the blame for the tool failure on his own perceived shortcomings. 

Indeed, Dan never mentioned questioning the tool itself. His desire to have students 

writing to learn in mathematics led him to introduce a standard journaling technique of 

having the students write to him about their problem-solving processes. Noting that 

writing in mathematics is “best accomplished in contexts where there is an authentic 

need to communicate” (p. 15), Phillips and Crespo (1996) suggest that most mathe-

matics writing activities are contrived and have the teacher as the intended audience. 

This can have a detrimental effect on the writing. It is possible that changing the style 

of writing and/or changing the intended audience may have managed the tension Dan 

experienced. 

However, for now, this is an ongoing tension that Dan is still facing. Despite having 

discontinued journaling this year, he continues to reflect on the experience as he wants 

to try again next year, with a different group of students. “I’m committed to it”, he 

says, “it’s really, really important.” 

Tensions between rules and community. 

Dan noted that journaling broke the rules regarding what his students believe about 

mathematics saying, “I’ve been challenged by kids around their expectations of what 

math is and what math class is.” His students adhere very strictly to traditional notions 

of mathematics classrooms, reinforced by the community in which Dan works. He 

suggested that his students have figured out a way to “survive math class, which is, 

you’re going to give notes, you’re going to give me homework, I’m going to study, get a 

tutor or whatever.” Dan said they were looking for “give me the ten questions I need to 

know and I’ll practice doing them”, and instead, he was asking them to write. Morgan 

(1998) suggests disengagement may occur if the students interpret journaling as an 

incidental extra activity unrelated to the learning of mathematics as they have come to 

expect. 

This is an ongoing source of tension for Dan, who is trying to change how students 

“see and do” mathematics. He’s frustrated by the limited notion of math that leads to 

students questioning “when are we going to do some math here?” whenever he tries 

anything ‘untraditional’, such as journaling. He goes on to say, “I can’t engage for 

them so I need them to buy-in to this.” 

Tensions between subject and object. 

Perhaps one of the most significant tensions Dan faced was maintaining his relation-

ship with his students while trying to engage them in thinking mathematically. Noting 

that his students were resistant to being pushed to write mathematically, he worried 

that he was going “too far outside their comfort level”. He acknowledges the im-

portance of fostering mathematical thinking and conceptual understanding yet reco-

gnizing, “at the same time I can't be successful unless I have their trust. I can't be 
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successful unless I have them with me and they see me as an advocate for them and not 

a barrier for them.”  

In discontinuing the journaling activity, Dan was able to decrease the tension he was 

experiencing with his students, but it was at the expense of his corresponding object of 

engaging his students’ mathematical thinking. This suggests that, although Dan con-

tends that both are equally desirable, his true object is maintaining his teacher-student 

relationship. It is possible that this activity caused Dan to rearrange the priority of his 

goals: he may continue to value mathematical thinking but, in this instance, he gave 

higher priority to maintaining relationships. The strong emotional response from his 

students and himself, according to Leont’ev (2009), is necessary for establishing this 

hierarchy of objects, or what he calls motives. A change in the object hierarchy ne-

cessitates changes in the rest of the activity system, and the result may be a different 

outcome. In this way, tensions fuel the evolution of Dan’s activity system. 

Although discontinuing journaling managed the immediate tension surrounding rela-

tionships with his students, it remains an enduring tension of which Dan is keenly 

aware, “and so I have to manage the tension between moving in a pedagogical direc-

tion that I think is best for their learning but at the same time that won't cost me the 

relationships I have with them or then I've lost them entirely.”  

CONCLUSION 

Imagine Dan’s activity system as an 

alarm panel, with the connections be-

tween its components only lighting up 

between when tensions are experien-

ced—his would have been a flashing 

array of warning signs (see Figure 2). 

He experienced tensions in six aspects 

of his activity system and the ultimate 

outcome was that he quit journaling. 

This was unexpected and disappointing 

for Dan. In reflecting on the experi-

ence, he said: 

“When I think back on this, it didn’t occur to me... it wasn’t a possibility that this wasn’t 

going to work. So when it started to go sideways, I didn’t know what to do. I didn’t realize, 

so I continued to push forward with it. And then the pushback happened with the kids.” 

Initially, Dan spoke globally of tension in the activity of journaling. However, by fo-

cusing on the individual elements it is possible to see where the tensions impacted 

locally. And, as Dan is determined to try journaling again, identifying the local ten-

sions that arise throughout his activity system could offer a means of reflection as he 

thinks through his next implementation. This fits with Lampert’s (1985) view of a 

teacher as a “dilemma manager who accepts conflict as endemic and even useful to her 

work rather than seeing it as a burden that needs to be eliminated” (p. 192).  

 

Figure 2: Dan’s Activity System. 
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FROM “HOW GOOD I AM!” TO “FORGIVE ME…PLEASE 

TRUST ME”- MICROAGGRESSIONS AND ANGLES 

Ulrika Ryan 

Malmö University 

 

The endeavour of this report is to provide findings on how the normative appreciation 

of preciseness in mathematical concepts evoke micro-aggressions when students in a 

linguistically and socially diverse classroom reason about angles in a group activity. 

Results show that Samir, an emergent Swedish speaker, becomes deprived of reliability 

and hence loses his chances to make claims of knowledge partly due to the rigidity of 

(Western) mathematics. The analysed interaction begins with Samir confidently saying 

“How good I am” when solving a task with his peer Darko. However, it ends with 

Samir´s ways of talking about himself being completely changed from confidence to 

insecurity and subordinance, begging Darko to rely on his mathematical knowledge 

saying “Forgive me…please trust me.”.    

MATHEMATICAL CONCEPTS AND MICROAGRESSIONS – MAKING 

THE CONNECTIONS 

Mathematical concepts used in formal mathematics are rigid, based on axiomatic 

conceptions. Their use elicits the normative preciseness of mathematics, an aspect of 

the Romance of (Western) mathematics (Lakoff & Núñez, 2000) also present in school 

mathematics. Preciseness and rigidity excludes plastic conceptions of mathematics 

evoking ideas about mathematics, which often play out as a matter of being right or 

wrong. Putting forward mathematical claims of knowledge is hence risky business 

while the chance of being “precisely wrong” is at stake. Being wrong exposes the 

claimer to potential micro-aggressions from which individuals might become trauma-

tized and eventually stop perceiving themselves as members of mathematical com-

munities (Gutiérrez, 2017). Micro-aggressions are “the everyday verbal, nonverbal, 

and environmental slights, snubs, or insults, whether intentional or unintentional, that 

communicate hostile, derogatory, or negative messages to target persons based solely 

upon their marginalized group membership” (Sue, 2010, p. 3). Marginalized group 

membership is multiple for an emergent second language speaker while s/he might not 

be a full member of the linguistic, cultural or/and mathematical community of practice 

situated in the particular mathematics classroom. 

Micro-aggressions operate as micro-assaults, micro-insults or as micro-invalidations 

enacted as exclusion, nullification or disregarding of a person’s beliefs, statements or 

experiences (Sue, 2010). When participating in reasoning activities together with 

peers, perpetrations of all three types of micro-aggressions may occur. However, I 

argue that the preciseness of mathematics in particular may elicit micro-invalidations 
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while a person´s statements risk being disregarded and nullified if it cannot be justified 

in a mathematically precise way. Such micro-invalidations might lead to negative talk 

and feelings about oneself. Drawing on Wittgenstein’s ideas on language games to 

explore students´ reasoning about angles and talk about themselves, I-language games 

and the game of giving and asking for reasons are theoretically accounted for below. 

I-LANGUAGE GAMES AND THE LANGUAGE GAME OF GIVING AND 

ASKING FOR REASONS 

The notion of I-language games does not raise questions about what “I” am nor what it 

is to be “me”, rather they depart from the question “how do I talk about me?”, pre-

supposing that my talk about me “is not one and is not universal for it does not refer to 

any metaphysical or ontological essentiality. Thus, the discourses about myself are 

countless because they change constantly. Therefore, the language games in which I 

use the word ‘I’ or in which I talk about myself are latticed, interwoven in order to form 

a whole structure” (Beristain, 2011, p. 107). Based on Wittgenstein´s rejection of ref-

erence as the fundamental principle for word meaning, the idea of I-language games 

dissolves the referential outer(object)-inner(subject) dichotomization of “I” while they 

are not concerned with what “I” refers to. In fact, Wittgenstein claims that the word “I” 

do not refer to a person or anything at all. I-language games are not connected to any 

“metaphysical, internal, private, self-conscious or any psychological mental state” 

(Beristain, 2011, p. 114). Instead, the use of the word “I” should be understood due to 

the way we learn to draw attention to ourselves in various language games. The many 

language games in which the word “I” is explicitly or implicitly used allow for us in 

understandable ways to share talk which states something about ourselves. It is the 

function of the use of “I” in different contexts that should be stressed, not what it refers 

to. The function of I-language games “enables a sharable language of our men-

tal/psychological states, experiences, feelings, thoughts” (Beristain, 2011, p. 108). 

Hence, the study of I-language games allows for drawing attention to students´ ways of 

sharing experiences and feelings when participating in reasoning activities. Moreover, 

I-language games show students´ ways of sharing feelings and thoughts about them-

selves for instance in response to micro-aggressions such as micro-invalidations. 

Feelings and thoughts, which might lead to stigmatization and eventually perceived 

marginalized membership in mathematical communities (Guitérrez, 2017). 

When students reason in mathematics class their I-language games are latticed with 

other language games for instance, the game of giving and asking for reasons 

(GoGAR). The GoGAR is at heart of the philosophical theory inferentialism (Bran-

dom, 1994, 2000). Following Wittgenstein´s ideas, concepts are not conferred with 

meaning due to reference but by their inferential roles in reasoning. The inferential 

relations of concepts are mostly implicit in concept use, but when unpacking concep-

tual meaning in the GoGAR they are made explicit. Premises, consequences and in-

compatibilities that follows from using a concept when making claims form the im-

plicit conceptual relations. For instance, from claiming an angle to be 140° follows 

implicitly that it is an obtuse angle, that it cannot be for instance 40° and so forth. The 
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GoGAR is built around to two normative statuses; commitments and entitlements, 

which emerge in a socially articulated structure of authority and responsibility. When 

claiming that things are such and such what one does is making a judgement which one 

undertakes a commitment to and can be held responsible for. One makes a normative 

stand in putting forward a normative belief. Such a commitment entails not only what 

is explicitly said but also what follows implicitly form it, i.e. by making a claim one 

also commits oneself to other normative stands or beliefs, which follow from the 

original claim. For claims to have normative status they must be normatively appro-

priate in the social practice they are caught up in. This involves assessment of claims, 

hence “there must be in play also a notion of entitlement to one’s commitments: the 

sort of entitlement that is in question when we ask whether someone has good reasons 

for her commitments” (Brandom, 2000, p. 43). An entitlement is a social status that a 

performance or a commitment has within a community, e.g. a mathematical commu-

nity and/or a classroom community. Normative assessment of conceptual use implies 

normative appropriateness as well as normative inappropriateness. From the Romance 

of mathematics follows a normative appreciation of preciseness, which shape the as-

sessment of mathematical claims.   Inappropriate conceptual claims violate the norms, 

which guide the use of the concept. Such violation (i.e. lack of entitlement to a claim) 

calls for some kind of sanction which “need not consist in external sanctions” (Bran-

dom, 1994, p. 179-180) suggesting that sanctions can be internal as well as external. 

External sanctions like exclusion, nullification or disregarding of a person’s beliefs or 

statements are micro-invalidations, i.e. as a kind of micro-aggression (Sue, 2010). 

Furthermore, the sanctions might lead to disqualification from counting as eligible to 

undertake commitments (Brandom, 1994). Hence, a student who fails to give reasons 

for a claim involving e.g. a mathematical concept which her/his interlocutors asses as 

inappropriate risks being exposed to external sanction in the form of mi-

cro-invalidation due to the failure. Internal sanctions caused by micro-invalidations 

brought forward by interlocutors, affecting the student´s feeling and emotions about 

him/herself, can be made explicit in the student´s use of I-language games. 

METHODOLOGY 

The empirical material used for analysis in the present paper consists in a transcript 

from a 44-min recorded interaction part of a regular mathematics lesson in a linguis-

tically, socially and culturally diverse grade 5 Swedish-speaking-only classroom lo-

cated at a suburban school in the south of Sweden. The interaction, which involves four 

students (Darko (D), Samir (S), Greta (G), Eva (E)), and occasionally their teacher, 

was recorded when the author of this paper acted as a participant observer in the 

classroom. However, the author did not engage with the group referred to in this report, 

but had simply left a recording device at their table. The students were engaging in a 

pair task drawing angles that the other pair of students were to either measure using a 

protractor or to judge (not measure) as right angled, obtuse or pointy. In interviews 

made prior to the interaction Darko, born in Sweden by immigrant parents, claims to 

speak both Serbian and Swedish at home. Samir, who shared that he arrived from the 
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Palestine 2.5 years ago is an emergent Swedish speaker who speaks Arabic and He-

brew on daily bases at home. In interviews, Samir says that he is good at mathematics 

and that he knows more mathematics than his peers. His teacher refers to him as an 

above average achiever in mathematics. Greta and Eva claim to speak only Swedish at 

home. Greta is the one in the group who uses most formal school talk. The study fol-

lows Swedish ethical guidelines for studies in the social sciences (Vetenskapsrådet, 

2002). All students´ names are pseudonyms.  

The full excerpt analysed in this paper begins with Samir saying “How good I am!” 

when engaging with the task on angles. It ends 310 turns later with him saying “For-

give me…please trust me”, begging Darko to rely on his mathematical knowledge.  

The analysis is done by firstly forming initial analytical tools to view the empirical 

material through, and then allow the emerging results to influence the initial theoriza-

tion about the looming intertwining of I-language games and sanctions in the GoGARs 

played in the analysed material iteratively. The analysis is conducted in two steps. Step 

1 aims at locating critical points where Samir´s I-language games turn form mainly 

positive talk about himself to talk that is more of a negative kind. To do so turns that 

function as I-positive language games such as self-praising, task responsibility dis-

tribution, initiative taking actions, instruction giving and making claims of knowledge 

were assigned a +. Turns that function as I-negative language games such as 

self-criticism, task responsibility renouncing, initiative obeying actions and making 

claims of lacking knowledge were assigned with a -. Of course, some of the above 

given as example of I-negative language games could in fact under different circum-

stances function as I-positive language games. For instance, to obey someone´s initi-

ative can be an act of solidarity and as such viewed as an I-positive language game.   

Moreover, refraining from making utterances could be considered a kind of silent 

I-negative functioning language game.  The step 1 analysis quantifies Samir´s turns as 

either 0 (neither positive nor negative or not part of an I-language game), + or -. The 

analysis does not aim at providing a particular number of turns assigned 0, + or -, rather 

it is performed to unveil critical points where positive I-language games characterised 

by for example “How good I am!”, changes for negative ones. To do so Samir´s turns 

where divided into sections of 10 turns each. (In the excerpts below only Samir´s turns 

are numbered.) The relationship between + and – marked turns in each section where 

calculated in percentages out of the total number of + and – marked turns. The 0 

marked turns where not taken into account while they do not provide information about 

the relation or change between + and – I-language games. Should the foci for instance 

had been the distribution of I-talk also the 0-turns would have to be taken into account. 

In Step 2 of the analysis, based on the GoGARs foregoing and/or being part of the 

critical points unveiled in the step 1-analysis, aims at exploring committing and 

(un)entitling moves in the GoGAR that appears to evoke Samir´s changed I-language 

games. The questions used in the step 2 analysis are; a) What commitment(s) are Samir 

attributed?, b) Does he get/lose entitlement to his claims? How? and c) What kind of 

in(ex)ternal sanctions do Samir´s lost entitlement evoke? 
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RESULTS  

Analysis step 1 

As shown in chart 1 below Samir´s I-language games are usually positive. Out of the 

14 sections, including 10 of Samir´s turns each, most of them show an emphasis on 

positive I-language games. The result coincides with interviews made with both Samir 

and his teacher also showing that Samir usually talks positively about himself when 

engaging in mathematics. 

 

Chart 1: Chart showing the relation between Samir´s positive and negative I-language 

games. There are 10 of his turns in each bar. 

However, at three points in the analysed interaction, turns 51-16, 81-100 and 121-143 

Samir´s positive talk about himself is clearly changed, indicating critical events af-

fecting his I-language games.  

Analysis step 2 

The interaction forgoing the first negative change (in Samir´s turns 51-60) concerns 

how angles are denoted when using a protractor. Samir taking the lead, he and Darko 

measured the angles drawn by Greta and Eva and wrote the magnitude on a piece of 

paper which they handed over to the girls. However, not being fully aware of how to 

use the scales on a protractor nor finding it normatively inappropriate to denote an 

angle as 80/100° and another one as 40°/140° (two numbers placed above each other 

on a protractor scale) that is what they wrote. Greta asks them to give reasons for 

claiming that the angle is 80/100° and later on also for claiming that the other angle is 

40°/140°.  

  G: Yes, but no. It cannot be both [80° AND 100°] 

43 S:  Yes, because they are above each other 

 G:  Yes, but they…it does not mean that it is the same…it [THE ANGLE] is 
not 100 slash 80. It must be one of them. 

44   S: Yes, yes…I get it, I made a mistake…where is the protractor… 



Ryan 

  

4 – 80 PME 42 – 2018 

Samir then uses the protractor to re-measure the angle. He suggests that it is 100° and 

Darko that it is 80°. Following Darko´s suggestion, Samir writes 80° on the piece of 

paper. A similar interaction takes place on the behalf of the 40°/140° angle leading to 

Greta thoroughly giving reasons for claiming that angles are denoted using only one 

number and explaining how the scales of the protractor works. Though both Samir and 

Drako initially are committed to claiming the double denunciation, when failing to 

give normatively appropriate reasons for the claim and thus realizing that they are not 

entitled to such a claim, Darko tells Samir “Why didn´t you say so.”, hence holding 

Samir responsible for the loss of entitlement to their initial claims. The normative 

appreciation of mathematical preciseness makes Greta questions the boys´ double 

denunciation making their entitlement loss explicit and hence exposing them to a mi-

cro-invalidation. To avoid in(ex)ternal sanctions Darko places the loss on Samir who 

alone becomes the victim of the micro-aggression which, in the following turns, 

changes his I-language games into more negative ones.      

In the interaction forgoing and being part of the second negative change in Samir´s 

I-language games (turns 81-100) the four students are occupied with in pairs drawing 

one right, one obtuse and one pointy angle that the other pair of students are to judge 

which is which. Samir takes the lead in deciding on whether he or Darko should draw 

the right angle ending up with him drawing it. Right after he has finished drawing 

Greta urges Eva to use the protractor to check that their right angle is exactly 90°. The 

excerpt below consists in the turns that follow Greta asking Eva to measure their right 

angle.  

 D: Well done…What degrees is it [THE RIGHT ANGLE THAT SAMIR 
DREW] 

83 S:  It is…eh eh I am good at forgetting. 

 D:  Mmm…yes you are good at forgetting. 

84   S: Yes, that is why my name is Forgetty.  

Probably inspired by Greta urging Eva to measure their right angle, Darko wants Samir 

to do the same thing, i.e. he wants Samir to undertake a claim of their angle being 

exactly 90°. In turn 83 Samir is just about to do that by starting to say “It is…” but 

appears to change his mind and claims instead to be “good at forgetting”. It seems as 

though Samir tries to avoid being held responsible for a claim about the angle being 

precisely right which might (like in the first negative change) cause him losing enti-

tlements to that claim and thus expose him to micro-invalidations. To avoid such ex-

posure and its potential following sanctions, he appears to start playing negative 

I-language games. Hence, Samir rather plays negative I-language games than expose 

himself to potential micro-invalidations. This I find to be an example of the power that 

micro-invalidations caused by the normative appreciation of mathematical preciseness 

holds over students’ feelings and thoughts about themselves when engaging in 

mathematics.  
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The negative change in Samir´s turns 121-134 occurs when the students are measuring 

and denoting each other’s right, obtuse and pointy angles though that was not the 

teacher’s intention. The boys are faced with using the protractor and measuring angles 

and again Greta challenges their claims about the magnitude of the measured angles. 

Playing the GoGAR with Greta on whether to denote an angle as 145° or 155° Samir 

claims it being 155°, a claim which Darko supports in the first turn. The excerpt below 

shows the last parts of the interaction. 

 D: Wait [TO GRETA]…look it is 155.  

 G:  Not 55. 55 is there [SHOWING ON THE PROTRACTOR]…this is 45. 

132 S:  I thought it was… 

   D: I am not going to trust you anymore. 

133 S: I thought it was so… 

 D: You cannot just think so. 

134 S: May I… 

 D:  I asked you specifically and you just said yes. 

135 S: Forgive me…please trust me.    

Initially Darko undertakes Samir´s claim of denoting the angle 155° and uses it when 

trying to convince Greta to undertake the same claim. However, she finds it norma-

tively inappropriate and hence challenge it, justifying her own claim by showing Samir 

and Darko where on the scale of the protractor 145° and 155° respectively are located. 

Samir appears to undertake Selma´s claim and simultaneously states that his initial 

claim was based on that he “thought it was” a normatively appropriate claim of 

knowledge. To avoid being exposed to sanctions due to a possible lack of entitlement 

for claiming the angle to be 155° Darko (who also undertook that claim) dismisses 

Samir´s claim and seems to argue that “think so” is not enough to justify a claim, hence 

challenging Samir´s reliability. In Samir´s 134th turn, he asks Darko´s permission for 

something but he does not complete his saying. In the last turn Samir appears to think 

that his reliability and thus possibility of making claims that will earn entitlements is 

lost and he begs Darko to forgive him and to reassign him reliability. As shown in chart 

1 above Samir´s last turns of the interaction include the least amount of positive 

I-language games. This indicates that the micro-aggressions caused by the normative 

appreciation of preciseness in mathematics which he has been exposed to has caused 

changes in the way he uses I-language games to share his “mental/psychological states, 

experiences, feelings, thoughts” (Beristain, 2011, p. 108) that significantly differs from 

his usual way of thinking and feeling about himself when engaging in mathematics. 

CONCLUDING REMARKS 

This report shows how the normative appreciation of mathematical preciseness in-

herent in conceptions of angles and the artefacts used to measure and denote them 

impact the students´ reasoning evoking micro-aggressions directed towards Samir, an 

emergent speaker of Swedish. Not only does the exposure to micro-aggressions but 
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also such potential exposure, change Samir´s usually positive ways of talking, thinking 

and feeling about himself when engaging with mathematics, for negative ones. The 

students in this report do not to explore alternative ways of denoting angles nor do they 

explore each other’s conceptions of and ways of talking about angles, rather they are in 

the pursuit of preciseness. A normative space of mathematical reasons that appreciate 

preciseness, does not allow Samir or the other students to give imprecise and/or in-

appropriate reasons that they can elaborate on when playing the GoGAR. Rather, it is 

hindering their engagement in GoGARs that would allow for more plastic conceptions 

and ways of talking about angles and their denotations. The normative space of 

mathematical reasons elicits epistemological invalidations and hence epistemological 

micro-aggressions, causing Samir´s talk and feelings of being a forgetter, a wrong-doer 

and a person without reliability. For an emergent speaker of a second language to 

engage in mathematical reasoning activities in a Swedish-only classroom where pre-

ciseness guides the interlocutors´ reasoning appears to be particularly risky business 

while her/his resources underpinning giving reasons for claims are diminished by 

mono-lingual, mono-cultural and mono-mathematical normativity. When inviting 

students to group activities involving reasoning, educators need to be sensitive to the 

exposed situation of emergent second language speakers and provide student aware-

ness on potential micro-aggressions evoked by the normative appreciation of mathe-

matical preciseness. At stake are the replacement of positive feelings about oneself 

when doing mathematics in exchange for feelings and thoughts of sub-ordinance and 

marginalized membership of mathematical communities.   
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SOME CHANGES OF MATH ANXIETY GROUPS  

BASED ON TWO MEASUREMENTS, MASS & EEG 

Byeongguk Ryoo and Sang Sook Choi-Koh  

Dankook University  

 

This article investigated how mathematics anxiety (MA) of Korean middle school 

students could be reduced by comparing analytically their cognitive neuroscience and 

questionnaire results. We developed a three-hour Complex Treatment Program (CTP) 

on quadratic functions for the study. In the summer of 2016, we collected data of the 

pre and post MA questionnaires by Mathematics Anxiety Scale for Students (MASS), 

the percent of correct answers (PCA) & reaction time (RT) by E-prime program, and 

also brain-imaging data of the event related potentials (ERP) by Electroencephalo-

graph (EEG) using computer-based functional F-G model. The result indicated the 

CTP to be effective with the group with higher math anxiety and the group with higher 

achievement respectively. The MASS result was verified with the better performance of 

PCA on type G, which was measured by E-prime program. Some interesting patterns 

were revealed on brain-imaging data by EEG, indicating more mental activities with 

the MA groups. 

INTRODUCTION 

Looking back at the Programme for International Student Assessment (PISA) from 

1995 to 2012, Korean students ranked in the highest level of achievement in 

mathematics but consistently marked a very low score in affective domains like 

self-efficacy and interest (Ko & Yi, 2012). This leads us to conclude that students who 

are high-performers in mathematics could potentially have low achievement levels in 

the affective domains of mathematical learning, resulting in mathematics anxiety 

(MA) which is displayed as the uneasy feeling about the subject of mathematics. While 

many previous studies about MA were centered on the development of questionnaires 

to diagnose students’ MA, recent studies have been focused on devising a treatment to 

abate it. For example, researchers applied the Note-taking Model like Divided-page 

Method (Tobias, 1987; Eun & Lee, 1994), and the Mathematics-friendly Program 

(Yoon & Jeon, 2010) to students who were feeling mathematics anxiety. However, 

these studies focused mainly on problem solving or simple algorithms and not on a 

specific domain of mathematics, e.g. function. In order to reduce MA in the students' 

functional understanding of mathematics, we developed a complex treatment program 

that combined a mathematical treatment and a psychological treatment, once used by 

Yoon et al. (2010). Moreover, we collected data to grasp the effects of the program 

more closely by measuring the students' brain waves which is the difference of this 

study from previous ones. 
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The purpose of this study was to investigate how to reduce the MA of eighth-grade 

students after they completed the complex treatment program (CTP), which was a mix-

ture of psychological and mathematical treatments to help students psychologically 

and mathematically. The research questions were set up as follows: 

1. How did the student groups respond to the MASS before and after the complex 

treatment program? 

2. What were the differences of the groups in the percent of correct answers (PCA) 

and reaction time (RT) gained by E-prime program while getting the brain 

imaging data through ERP? 

3. What were the differences in the brain imaging data of the groups on the 

functional tasks through ERP? 

THEORETICAL BACKGROUND 

Mathematics Anxiety (MA) 

In the previous research, various researchers developed differing definitions of MA(e.g. 

Fennema & Sherman, 1976). Since Byrd's (1983) comprehensive definition, several 

researchers have defined MA differently and mostly used the definition formerly 

described in the literature. Various definitions, however, were similar in the context of 

mathematical learning. In this study, we defined MA as "anxiety felt by individuals 

when they solve mathematical problems". 

Brain Research on Students’ Understanding of Functions 

Akkoc and Tall (2002) suggested the complexity of the function concept arises from its 

many representations, e.g. graphs, equations, and tables. In our study, we decided to 

focus on the translation between graph and equation representations—a particularly 

important concept in understanding functions (Williams, 1998). As such, our study 

resembles two previous neuroscience studies on students’ understanding of functions 

(Thomas Wilson, Corballis, Lim, & Yoon, 2010; Waisman, Leiken, Shaul, & Leiken, 

2014) though neither of them considered the effects of MA. 

Thomas et al. (2010) classified function tasks into four formats: graph-to-graph, 

equation-to-equation, graph-to-equation and equation-to-graph. They used these 

formats for both linear and quadratic functions, generating a total of eight kinds of 

tasks for the ten students in their study—ten college students in New Zealand. In 

addition to measuring RT and PCA, they measured neural activity within the neocortex 

of the brain through use of functional magnetic resonance imaging (fMRI). Essentially, 

fMRI measures neural activity by way of blood flow to areas within the brain. 



Ryoo & Choi-Koh 

 

PME 42 – 2018 4 – 85 

METHOD 

Participants  

25 students in the 8th grade from middle school in Yongin-city, Korea participated in 

this study. The students had never participated in a program for the purpose of reducing 

MA. 

Procedure 

The data was collected in July, 2016 in which the subjects were available right before 

the summer vacation started in Korea. In this study, the pre and post-questionnaires by 

MASS were used to measure students' MA. In the same way as Sheffield & Hunt 

(2006), the participants were classified as high MA (HAX) group or low MA (LAX) 

group based on the result of the pre-questionnaire. Also, according to the result of the 

recent final exam of their school, they were grouped into either the higher achievement 

(HAC) group or lower achievement (LAC) group. The treatment program of the 

three-lesson units was applied to these students. The students reviewed the problems 

on their own, while working with the experimenter. To find the effectiveness of the 

treatment program, we investigated the degree of MA using the same questionnaire as 

the pre-questionnaire and measured the students' brain waves to see how they reacted 

to stimuli of functional tasks while they solved them on the monitor provided. 

Instruments 

Questionnaire for MA. The Mathematics Anxiety Scale for Students (MASS) revised 

by Ko & Yi (2012) was used to measure students' MA. This test scale was chosen 

because it was more appropriate to the middle school students since their MASS was 

developed for the secondary school students including middle school students with 65 

question items which resulted in the internal consistency reliability, the Cronbach's 

= .976 as reported in table 3. Each question was answered on one of 1 to 5 point Likert 

scale. 

Complex Treatment Program (CTP).  The complex treatment program in three units 

consisted of the mixture of a mathematical treatment and a psychological treatment. 

The mathematical treatment that was composed of four kinds of problems provided 

students a chance to reflect the nature of quadratic function. Firstly, the diagnosis 

problem was constructed as the basic concepts learned in the previous lesson. Secondly, 

a lower level (basic) problem was constructed with a basic concept of the quadratic 

function. Thirdly, the treatment was constructed to help students to understand the type 

G. Lastly, a higher level (challenging) problem was constructed to challenge advanced 

level students with a higher level of difficulty. Also, four to six mathematical-hint 

cards reflecting Vygotsky's scaffolding theory in which they could be assisted by peers 

or a teacher whenever needed were prepared for each problem.  

The psychological treatment which was the other part of CTP was constructed by 

revising the brain integration in education (BIE) program used by Kim (2010) to 

reduce the students' anxiety factors shown in the pre-questionnaire. Kim (2010) 
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developed the brain integration in education (BIE) program consisting of three stages: 

understanding of brain, integration of brain, and application of brain, to improve 

self-directed learning ability of middle school students. 

F-G Model of Functional Translation.  Thomas et al. (2010) presented the functional 

tasks in relation to graphs and equations as stimuli and observed 10 students’ brain 

waves. By actively using it, the tasks developed in this study were composed of 10 

kinds of basic quadratic functions with , ,  in a 

algebraic formula, . In other words, the subject was able to grasp the 

elements such as shape, intercept, vertex, etc. of a quadratic function.  

Two hundred items were developed which asked students to decide whether graphs 

and equations matched. E-prime program randomly decided an item and presented it 

the subject. Two types of cross-format functional tasks were translating from equa-

tion-to-graph (type F) and translating from graph-to-equation (type G) using the ten 

quadratics functions. The students solved 20 problems as presented randomly for each 

type.  

Brain-Imaging Technique. For this study, Electroencephalograph (EEG) was 

selected. This decision was based on budget, mobility, accessibility, safety, 

functionality, and practicality. In detail, we selected Event Related Potential (ERP) 

among the EEG’s techniques. ERP is a method of averaging EEG activity from time 

domain analysis and multiple-stimulation in an EEG. It usually appears within 

50-500ms after stimulation: P50, & N100 which reflect the stimulus detection, and 

cognitive-related factors, P300, & N400 which appear later and mainly indicate 

stimulation. 

RESULTS 

Pre and Post Questionnaires 

The mean value of the pretest for 25 students was 2.63. The students who were higher 

or lower than 2.63, were classified as either HAX (High Mathematics Anxiety) or LAX 

(Low Mathematics Anxiety) respectively. Also, students who were higher or lower 

than the final exams’ mean value, were grouped as either HAC (High Mathematical 

Achievement) or LAC (Low Mathematical Achievement) according to the recent final 

exam administered by their school, to see relationship between cognitive and affective 

aspects in detail.  

The following Table 1 compares the results of the pre-questionnaire by groups with the 

results of the post-questionnaire after the program was implemented. This comparison 

in two dependent sample t-tests was to see the effect of the complex treatment 

program. 

 

 



Ryoo & Choi-Koh 

 

PME 42 – 2018 4 – 87 

Group Mean SD N t value 

HAX 
pre 3.41 0.68 11 

2.41* 
post 2.94 1.01 11 

LAX 
pre 2.02 0.52 14 

1.21 
post 1.82 0.75 14 

HAC 
pre 2.23 0.72 15 

2.57* 
post 1.88 0.72 15 

LAC 
pre 3.23 0.86 10 

1.08 
post 2.96 1.11 10 

All 
pre 2.63 0.91 25 

2.51* 
post 2.31 1.03 25 

*p < .05 

Table 1: Two dependent samples t-test results for the effect of the CTP in groups 

The Percent of Correct Answer (PCA) and Reaction Time (RT) 

In order to measure the responses of the students who participated in the research, we 

developed the functional types for the E-prime program along with EEG measurement, 

which provided us the percent of correct answers (PCA), the reaction time (RT) of the 

subjects. Before solving the F-G Model, the students solved arithmetical tasks (type A) 

consisting of simple addition problems to help activate their brain. This is called the 

dual-task composition in which the students worked on two phases: first, the phase for 

arithmetical tasks; second, the phase of functional tasks to capture more proper 

activation of brain. However, the result of type A was not included in this paper. PCAs 

and RTs of four groups for each type of tasks are as follows. 

Group 
Type F Type G 

PCA RT PCA RT 

HAX 72.7% 2.05 sec 86.4% 1.8 sec 

LAX 83.6% 1.78 sec 84.2% 1.41 sec 

HAC 88.5% 1.62 sec 89.7% 1.26 sec 

LAC 66.7% 2.25 sec 79.5% 1.98 sec 

Table 2: PCA and RT by group for the type F and G 
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EEG  

In this study, we analyzed P300 wave in Event-Related Potential (ERP) to measure 

brain waves, in addition to PCAs & RTs by E-prime program. The P300 wave is a 

positive wave that reaches the apex about 300 ms after stimulus presentation starts in 

ERP. The results of measuring brain waves while solving types F and G through EEG 

are shown in Fig. 1 which compares the groups for the types. In this paper, we just 

displayed the imaging data for groups because of spatial constraint. In the conference 

site, we will display all data we gained. 

 

  

G(Red)&F(Blue) of HAX G(Red)&F(Blue) of LAX 

  

G(Red)&F(Blue) of HAC G(Red)&F(Blue) of LAC 

Figure 1: EEG by a task for the group 
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CONCLUSIONS 

First, the test results by MASS showed that our program overall was effective for the 

students to reduce MA. In detail, MA of group HAX and group HAC had significantly 

been lowered. In fact, because our program was composed of two important parts that 

help students with psychological and mathematical aspects, this outcome on Tab. 1 

made sense to us. 

Second, after completing our program, all the groups of students solved type G more 

accurately and quickly than type F. That is, the CTP we had developed to help the 

students not only to reduce MA, but also to get over the difficulty on type G for better 

functional understanding played an important role in achieving the purpose of the 

study. Interestingly, the result by E-prime that HAX and HAC exceeded the 

counterpart on type G in Table 2 seemed to verify the result we got by MASS 

outcomes. 

Third, to examine the precise effect of the program, we observed closely at the brain 

waves by EEG while the students were solving the F-G Model. As mentioned above, 

although the students solved type G more quickly and accurately, compared to type F, 

we noticed that the students had more brain wave activity with type G in brain (see Fig. 

3). Also, the MA groups presented a bigger gap between two types, which meant more 

activities on type G in brain. If we had not measured EEG in addition to the 

questionnaire of MA, we might not have found this kind of difference of type G on 

which students were asked to decode the graph image first, and then to match it to a 

corresponding equation of function. Therefore, the MA aspect influences more on 

students’ performance. 

Today, the advent of cutting edge-handy devices for measuring brain waves makes it 

possible to apply them for educational purposes like reducing MA. The importance of 

mathematics is increasing day by day, but there are many students, who have a sense of 

discomfort with mathematics. For the sake of national core competence, we should 

solve the MA issue and develop new methodologies in mathematics education. 
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TRANSFORMATION OF A GEOMETRIC DIAGRAM TO 

PRODUCE A CONJECTURE AND ITS PROOF 

Adalira Sáenz-Ludlow Anna Athanasopoulou  

University of North Carolina at Charlotte 

 

Given a set of geometric conditions student-teachers were asked to construct a geo-

metric diagram, explore it, observe it, make a conjecture, and prove the conjecture. 

The focus of this paper is to analyze one of two proofs, for the same task, offered by a 

student-teacher to validate his conjecture. This student participated in a constructivist 

classroom teaching-experiment on the teaching-learning of geometry using the Ge-

ometer’s Sketch Pad (GSP). The analysis uses Stjernfelt’s model for diagrammatic 

reasoning, rooted in the semiotics of Charles Sanders Peirce, which considers the 

transformation of diagrams to unveil valid relations among their parts. In the case of 

geometry, such relations enable the construction of geometric arguments to prove 

geometric propositions. 

THEORETICAL RATIONALE 

For centuries it has been recognized that sense perception is an essential element of 

cognition. Kant (1781/2007) asserts that perception without conception is simply blind 

and that conception without perception is merely empty. Arheim's book on Visual 

thinking (1969) gives specific emphasis to visual perception by rephrasing Kant’s idea: 

“vision without abstraction is blind and abstraction without vision is empty” (p. 188). 

This is to say that the perceptual elements in thought and the thought elements in 

perception are complementary and their synergy makes human cognition a unitary 

process that leads the way from the elementary acquisition of sensory information to 

the most abstract and general ideas. Bishop (1989) emphasizes visualization as a 

process that translates abstract relations and non-figural information into visual terms 

(i.e., visual processing); this process allows students to construct geometric diagrams 

from verbal descriptions of geometric relations. Dörfler (1991) proposes the notion of 

image schemata as the individual’s mental construction that connects and integrates 

related concept images which have been subjectively constructed by the individual. 

This notion is an open invitation to consider the subjective and evolving interpretations 

of learners. This notion of interpretation is unfolded as a synergistic process between 

intra-interpretation and inter-interpretation by Sáenz-Ludlow and Zellweger (2016).  

All the above notions interweave the individuals’ sense perceptions and thoughts ex-

perimented either alone, with the influence of others, or with the influence of technical 

devices. Such interweaving enables learners to perform transformations on geometric 

diagrams and to perceptually and conceptually “see” them under a new light with more 

abstract and general meanings.  



Sáenz-Ludlow & Athanasopoulou 

 

4 – 92  PME 42 – 2018 

Such a thinking process is not new, in fact, it is historical. Netz (2014) presents insights 

into the evolutionary and revolutionary nature of the Greek mathematical thinking in 

which geometric diagrams played a very significant role. These diagrams were con-

sidered the metonymy of the proposition and their transformations shaped deductive 

mathematical reasoning to unveil the mathematical Objects that the diagrams purport 

to represent. Furthermore, the letters inserted in a diagram were considered indices that 

only indicate clearly certain elements or parts of it but not symbols with deeper 

meanings. In addition, Netz argues the writing of a proof was preceded by oral re-

hearsal to refine the geometric argument. Euclidean geometry is a classic example of 

visual-spatial perception accompanied by thought-experimentation and intellectual 

manipulation performed on geometric diagrams. As Peirce says, “Euclid first an-

nounces, in general terms, the proposition he intends to prove, and then proceeds to 

draw a diagram, usually a figure, to exhibit the antecedent condition thereof” (1976, p. 

317).  

Nowadays, given the dragging mode of dynamic geometry environments like the GSP, 

the manipulation of geometric diagrams is expedited and, with it, the perceptual and 

conceptual transformation of the relations among the parts of the diagram, as well as 

the possible observation of learners’ intentional or unintentional manipulations and 

their planned or unplanned experimentation. Such manipulation and experimentation 

guide the observation of variant and invariant relations among the elements of geo-

metric diagrams and facilitate the formation of conjectures and their proofs. That is, the 

GSP mediates perception and reasoning through the transformations of diagrams. This 

type of reasoning mediated by diagrams was called by Peirce diagrammatic reasoning.  

What is Exactly Diagrammatic Reasoning and What is Its Role in Deduction? 

The role of diagrams in deductive reasoning has been argued by Peirce as follows: 

By diagrammatic reasoning, I mean reasoning which constructs a diagram according to a 

precept expressed in general terms, performs experiments upon this diagram, notes their 

results, assures itself that similar experiments performed upon any diagram constructed 

according to the same precept would have the same results, and expresses it in a general 

form (CP 2.96, italics added) 

Deduction is that mode of reasoning which examines the state of things asserted in the 

premises, forms a diagram of that state of things, perceives in the parts of the diagram 

relations not explicitly mentioned in the premises, satisfies itself by mental experiments 

upon the diagram that these relations will always subsist, or at least would do so in a 

certain proportion of cases, and concludes the necessary, or probable truth (Peirce CP 1.66, 

italics added) 

Peirce argues that the similarity and analogy between the skeleton structure of a dia-

gram and the abstract structure of its Object bring into being a process of inference of 

inductive, abductive, and deductive nature. Such a process not only allows perceptual 

observation of structural relations among the parts of the diagram (the ob-

ject-as-it-is-perceived) but it also enables thought-experimentation to infer the hidden 

structural relations among the structural parts of the Object (the object-as-it-is) by 
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means of inferential reasoning. This is for Peirce the essence of diagrammatic rea-

soning.  

For Peirce, a diagram is a sign-vehicle that facilitates possible relations. But what is the 

function of a sign-vehicle besides representing its Object? It is natural to Peirce to give 

comprehensive definitions.  

• “A sign-vehicle is anything which, being determined by an Object, deter-

mines an interpretation to determination, through it, by the same Object” 

(1906, p. 495, italics added). 

• “A sign [sign-vehicle] is anything which determines something else, its in-

terpretant, to refer to an Object to which itself refers in the same way…” (CP 

2.303, italics added). 

• “a sign [sign-vehicle] is not a sign [sign-vehicle] unless it translates into an-

other sign [sign-vehicle]” (CP 5.594). 

Peirce (1906) goes even further to say that the relation between a sign-vehicle and its 

Object could be of iconic, indexical, or symbolic nature. These three types of relations 

are not independent from each other and they, in some way, depend on the learn-

er/Interpreter of the sign-vehicle. Sign-vehicles are symbolic when they allow ways of 

thinking about thoughts that we could not otherwise think of them, and when they 

enable us to create abstractions, which are the genuine means of discoveries. Symbols, 

he argues, rest exclusively on already well preformed habits of thinking and therefore 

they do not furnish any observation of themselves and do not enable the addition of 

further knowledge. On the other hand, he argues that indices only provide positive 

assurance of the reality and nearness of their Objects and that such assurance does not 

give any insight into the nature of such Objects. In contrast, he argues that icons par-

take in the covert character of their Objects and therefore they do not stand unequiv-

ocally for this or that existing thing; nonetheless, icons afford a skeleton displacement, 

before the mind’s eyes, of possible logical relations among the parts of the Object. He 

classifies icons into images, metaphors, and diagrams. Images represent the Object 

through simple qualities; metaphors represent the Object through a similarity found in 

something else; and diagrams represent the Object through skeleton structural simi-

larities that, by analogy, reflect the actual abstract structure of the Object itself. 

Stjernfelt’s Model of Diagrammatic Reasoning 

Stjernfelt (2007) captures the essence of Peirce’s diagrammatic reasoning (Figure 1). 

This process is rooted in perceptual and conceptual activity that produces chains of 

inductive, abductive, and deductive inferences. His figure is a diagram itself; it syn-

thesizes a manifold of relations which amalgamates a sequence of progressive acts of 

interpretation (intra-inter) on the part of the individual, namely, the construction of a 

diagram, the sequential observation of structural relations among its parts, and the 

physical and mental manipulation to produce a chain of inferences to attain a conclu-

sion.  
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Stjernfelt describes diagrammatic reasoning as the transformation of a diagram caused 

by the individual’s evolving interpretants (i.e., the product of the intra-inter inter-

preting acts of the individual). In this transformation, the implicit deep structural as-

pects of the Object-as-it-is, which the diagram purports to represent, can be unveiled 

by analogy with the structural relations among the parts of the diagram, which repre-

sents the Object-as-it-is-perceived.  

 

 

Figure 1: Diagrammatic reasoning process (Stjernfelt model, 2007, p. 104). 

That is, the individual/Interpreter mentally refurbishes the initially constructed inter-

pretants triggered but the initial diagram (transformand diagram) into more mean-

ingful interpretants triggered by the new diagram (transformate diagram). In this 

process, the individual/Interpreter transforms a diagram-token into a diagram-icon and 

the latter into a diagram-symbol. It can be said that each time the relations among the 

parts of the new transformate diagram reveals more and deeper structural relations 

among the parts of the Object; relations that hinge on mental operations and inferential 

reasoning product of the acts of intra- and inter-interpretation of the individual. It is in 

this sense that iconic sign-vehicles are transformed, in the mind of the individu-

al/Interpreter, into symbolic sign-vehicles. It is then not a surprise that Stjernfelt de-

scribes the diagrammatic reasoning process as a sequence of emergent interpretants (a, 

b, c, d, e, f, g) growing in structural symbolic meanings:  

a. Symbol (1): Diagram-symbol, the transformand diagram or symbol-diagram in the 
mind of the proposer. The diagram the Interpreter has to deal with. 

b. Immediate Iconic Interpretant (b < a): Produces a diagram-token in the Interpret-
er’s mind; a rule-bound diagram; an initial interpretation of the diagram-symbol a. 

c. Initial interpretant (b+c < a): Produces a diagram-icon, a skeleton schema of the 
relations among the parts of the diagram-symbol a; a transformate diagram with 
possibilities of new relations. 

d. Middle Interpretant ((b+c) + d < a): Produces a diagram with sources, a, b, and c; 
an emergent diagram-icon with possibilities of further conceptual relations and 
transformations. 

e. Eventual, Rational Interpretant: Produces a new emergent and more advanced 
transformate diagram-symbol (closer in meanings to diagram-symbol a) with more 
general and abstract meanings.  

f. Symbol (2): Concluding transformate diagram-symbol, in the Interpreter’s mind, 
carrying an advanced schema of the relations among the parts of the dia-
gram-symbol a. 
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g. Post-Diagrammatical Interpretant: Produces a more advanced interpretation of the 
diagram-symbol a (Symbol (1)); this interpretant of a is different from b and more 
advanced than b. 

It can be said that transformate diagrams are somewhat embedded in the transformand 

diagram with features in a process of potential refinement. That is, diagrammatic 

reasoning is the mental process of the Interpreter who intentionally endeavors both in 

the observation and in the manipulation of an initial diagram (transformand dia-

gram/symbol (1)), which he only “sees” as a token. This first interpretation is a dia-

gram-token and then, progressively, the Interpreter enriches and transforms it into a 

diagram-icon and later into a diagram-symbol (transformate diagram/symbol (2)). 

This means that the Interpreter finally unveils, as best as he can, the structural relation 

of the Object that the transformand diagram (symbol (1)) purports to represent.  

METHODOLOGY 

Nine pre-service and in-service mathematics student-teachers participated in one-aca-

demic-semester classroom teaching-experiment on the teaching-learning of Euclidean 

geometry using the GSP. The main goal was to improve student-teachers’ ability to 

conjecture and to validate or reject them. An inquiry approach was used in which tasks 

were posed by giving a set of geometric conditions; students were asked to construct a 

diagram, to explore it, to make a conjecture and to prove it. Students solved 19 sets of 

tasks (as homework assignments), each set had from 5 to 10 geometric situations 

concentrated on certain concepts: angles, triangles and classifications, properties of 

triangles, quadrilaterals and classifications, properties of quadrilaterals. Stu-

dent-teachers were free to talk about their exploration of diagrams and about their 

conjectures and reasoning; however, the written proof was to be done individually. 

Here we analyse one proof, out of two, that a student-teacher produced for task#3 in 

homework #7.  

DATA ANALYSIS 

Task#3 

a) Construct a triangle ΔABC. 

b) Extend side AB from the point B and take a line segment BE = AB. 

c) Extend side AC from the point C and take a line segment CF = AC. 

d) Construct the line BC. 

e) Construct the perpendicular line segments EH and FG from points E and F to the 

line BC. (Points H and G lie on the extensions of side BC) 

f) Measure the line segments EH and FG and tabulate your measurements drag-

ging any vertex of triangle ΔABC. 

g) Write your conjecture about EH and FG. 

h) Prove your conjecture. 
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Proof 1. When the student-teacher explains his proof, he shows on the computer 

screen the sequence of diagrams in Figure 2. This sequence unveils a sequence of in-

terpretants, in the mind of the student/Interpreter, allowing transformations of the 

initial diagram, constructed under the given conditions (transformand diagram), into 

more sophisticated diagrams (transformate diagrams) mediating the inference of a 

conjecture and the construction of an argument for its proof.  

He constructs the triangle ΔABC and extends sides AB and AC from points B and C, 

respectively, creating BE=AB and CF=AC. He then drops lines EH and FG perpen-

dicular to line BC (transformand diagram 2a). Then he tabulates the measurements of 

EH and FG by dragging a vertex of triangle ΔABC and conjectures that EH=FG 

(transformate diagram 2b). On his own, he introduces altitude AD on the side BC 

(transformate diagram 2c) as auxiliary line. Soon after he visualizes two pairs of right 

triangles as being congruent and which implications allows him to prove the conjec-

ture.  

G
H

F
E

B

A

C

   

m HE m GF

2.06 cm 2.06 cm

1.96 cm 1.96 cm

2.27 cm 2.27 cm

m GF = 2.27 cm

m HE = 2.27 cm

G
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F
E

C

A

B

  

D

G
H

F
E

B

A

C

 
(a)    (b)     (c) 
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GH

FE

CB

A

 

D

GH

FE

CB

A

  

Conjecture: EH = FG

Proof: First, prove ABD = EBH
             AB = BE (by construction)
            <HBE = <DBA (vertical)
            <BHE = <BDA = 90 (by construction)
            ABD = EBH (SAA)
            So AD = EH (CPCTC)
    Then, ACD = FCG by the same proof
    So AD = FG (CPCTC)
    By transitive, EH = FG.  

(d)      (e)    (f) 

Figure 2: (a) initial construction; (b) exploration-conjecture; (c) altitude; (d) 

ΔADB≅ΔEHB; (e) ΔADC≅ΔFEC; (f) written proof. 

Below is the description of the sequence of interpretants generated by the student: 

• Inmmediate iconic interpretant: Visual perception of the given information in 

the task: triangle ΔABC; points B and C seen as midpoints of segments AE 

and AF; right triangles ΔBHE and ΔCGF. (transformand diagram, 2a) 

• Initial Interpretant: Tabulation of measurements of EH and FG and emer-

gence of the conjecture EH=FG. Selection and use of collateral knowledge to 

construct altitude AD and right triangles ADB and ADC. (transformate dia-

grams, 2b & 2c) 

• Middle Interpretant: Triangles ADB and BHE have: vertical angles ∠ABD ≅ 

∠EBH, right angles ∠ADB ≅∠EHB; and AB=BE given condition. (trans-

formate diagram, 2d) 
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• Rational interpretant: ΔADB≅ΔBHE are congruent by SAA. Likewise, 

ΔADC≅ΔFGC are congruent by SAA. Then AD=EH and AD=FG are im-

plications of congruent triangles. (transformate diagram, 2d & 2e) 

• Eventual rational interpretant: Using the transitive property: EH=AD and 

AD=FG, then EH=FG. 

• Post-diagrammatical interpretant: Coordination and integration of interpre-

tants: synthesis of geometric argument and writing of proof (2f). AB=BE (by 

construction) 

∠ABD ≅ ∠EBH vertical angles 

∠ADB ≅ ∠EHB right angles (by construction) 

Therefore, ΔADB ≅ ΔBHE by SAA and AD=EH (CPCTC) 

Similarly, ΔADC ≅ ΔFGC by SAA and AD=FG (CPCTC) 

Therefore, by transitive EH=FG, proving that the conjecture was right 

The student constructs the geometric diagram under the given conditions and then 

performs visual and conceptual experiments on the initial diagram. He observes that 

regardless of the changes produced in the diagram by dragging the vertices of ΔABC, 

there is a constancy in the length segments HE and FG. This invariance is the con-

jecture that he makes after a few trials. This conjecture was an act of inter- interpreta-

tion of inductive nature aided by the GSP. He then selects and uses altitude AD on side 

BC, as auxiliary line, to produce two right triangles. The student-teacher’s decision to 

use altitude AD indicates a creative act intra-interpretation of abductive nature. This 

altitude introduces two new right triangles ABD and ACD that he visually perceives as 

being congruent with the right triangles HBE and GCF, respectively. He then validates 

the congruence of these two pairs of triangles by the SAA criterion. Using this con-

gruence, he infers that the length segments HE and FG is the same as the length of 

altitude AD. Using the transitive property for equality, he deduces the equality of 

segments HE and FG. 

CONCLUSION 

In the process of intra-inter-interpretation, the perceptive elements in thought and the 

thought elements in perception played out synergistically to enable the emergence of 

interpretants in the student’s mind. These interpretants mediated the transformation of 

the initial diagram into diagrams richer in geometric relations. 

The analysis indicates that the student’s transformation of the initial diagram (trans-

fromand diagram), constructed under the given conditions, was possible because of his 

own acts of inferential interpretation of inductive, abductive, and deductive nature. The 

conjecture of the student was an act of inductive inference mediated and enabled by the 

dragging modality of the GSP. His introduction of the altitude as an auxiliary line to 

introduce right triangles was a creative act of intra-interpretation; in other words, this 

was an act of abduction. Once, new triangles were introduced, his acts of interpretation 

were deductive in nature and produced by intra-interpretation and inter-interpretation 
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mediated by the GSP as a device to interact with. The writing of the proof, once the 

student constructed the geometric relations among the parts of the diagram, was an act 

of intra-interpretation of deductive nature. 

The analysis brings to the front a thinking strategy that emerged, in part, due to the 

inquiry method used during the teaching-experiment, namely, the role of the students’ 

engagement on their own sequential exploration and transformation of an initially 

constructed diagram to generate a conjecture and to prove it. The exploration and 

observation of each new diagram (transformate diagram) allowed the student to ‘see’, 

perceptually and conceptually, new relations among their parts. Such relations, in turn, 

triggered a coherent geometric argument that was linearly and deductively encapsu-

lated in the writing of his proof. What is novel in the analysis of the data is not the 

actual proof of the conjecture but the process through which the proof emerged and the 

student’s own acts of inferential interpretation of inductive, abductive, and deductive 

nature. Here the student is not re-producing a proof, he is producing a proof on his own. 
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“GROWTH GOES DOWN, BUT OF WHAT?” A CASE STUDY  

ON LANGUAGE DEMANDS IN QUALITATIVE CALCULUS  

Dilan Şahin-Gür and Susanne Prediger 

TU Dortmund University, Germany  

 

The instructional approach of qualitative calculus aims at developing conceptual 

understanding for the relationship between amount and change, e.g., by connecting 

multiple representations of complex context phenomena. This article presents a design 

experiment with two Grade 11 students’ pathways towards the mathematical concepts 

of amount, change, and change of change. Qualitative analysis is used to show how 

deeply concept and language development are intertwined and to unpack the language 

demands occurring on the students’ conceptual pathways. 

THEORETICAL BACKGROUND: LANGUAGE DEMANDS IN 

QUALITATIVE CALCULUS: AMOUNT AND CHANGE OF CHANGE 

Amount and change as core concepts in qualitative calculus 

Calculus has often been shown to be conceptually challenging for many students. That 

is why approaches of qualitative calculus have been suggested in order to promote con-

ceptual understanding of the relationship between quantities of amount and change 

(Thompson & Thompson, 1994) long before change is mathematized as average and 

instantaneous rate of change and the derivatives and their procedural rules (see Stroup, 

2002, for steps even before the rate of change). “Understanding qualitative calculus is 

cognitively significant and ‘structural’ in its own right” (Stroup, 2002, p. 170). The 

“own right” is justified, e.g., by the relevance of qualitative concepts for out-of-school 

contexts such as newspaper headlines:  

“Fewer child births. In recent years, the population growth has decreased.” 

Empirical evidence has been provided that many students and adults misinterpret this 

statement as reporting about declining populations. But it is the population growth 

function f’ that decreases, not the population amount function f, and f can still grow 

even if f’ decreases, then the growth becomes just slower. As Hahn and Prediger 

(2008) have shown, this misunderstanding occurs especially in a phenomenon they 

called two-directional covariation, i.e., when the covariation of f and f’ have different 

directions: One increases and the other one decreases. They explained the specific 

difficulties in understanding two-directional covariation phenomena using their level 

model (see Fig. 1 from Hahn & Prediger, 2008). It builds upon Confrey’s and Smith’s 

(1994) distinction of two approaches for functions, the correspondence approach 

(asking what the value of f at x1 and x2 is) and the covariation approach (asking how f 

changes with x).  
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Fig. 1: Complex relationships of amount and change: Shifts of approaches  

and levels for the example of the headline “population growth decreased” 

When shifting the levels (see Fig. 1), the covariation approach for f turns into a cor-

respondence approach for f’, and on the next level, the covariation approach for f’ turns 

into a correspondence for f”. In contrast, statements about covariation of f’ must not be 

identified with statements about covariation of f, as they can have opposite directions. 

Research focus on specifying language demands in conceptual development  

In general, developing conceptual understanding has been shown to depend much 

more on language than procedural knowledge, which can be traced back to the episte-

mic function of language (Moschkovich, 2010; Schleppegrell, 2007): Constructing 

meanings of abstract mathematical concepts requires the use of concise and powerful 

language as a thinking tool for disentangling complex thoughts. For these purposes, 

everyday language must be enriched by the school academic language register, as its 

language features are optimized for expressing reified and abstract relationships in 

concise and explicit ways (Schleppegrell, 2007; for functions, Prediger & Zindel, 2017). 

Although the general affordances and challenges of school academic language have 

been profoundly analyzed (Moschkovich, 2001; Schleppegrell, 2007), this general 

knowledge is not yet concrete enough to support language learners in their mathema-

tics learning. Thus, more topic-specific research is required to specify the concrete lan-

guage demands for specific mathematical topics (Prediger & Zindel, 2017). This paper 

intends to contribute to this research agenda by unpacking two students’ learning 

pathways in a design experiment towards the distinctions of amount, change, and 

change of change with the following research questions:  

(RQ1)  Which language demands occur when students engage in productive struggle  

with the qualitative concepts of amount, change, and change of change?  

(RQ2)  How can students’ learning be supported? 
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Design of the investigated teaching learning arrangement  

Following Duval (2006) and many other mathematics education researchers, deve-

loping conceptual understanding can be fostered by the design principle of connecting 

multiple representations. This design principle has also proved to be powerful for 

language learning, as relating different registers and representations of the multiple 

semiotic system supports the language learners’ construction of meanings (e.g., Pre-

diger & Zindel, 2017). Furthermore, a key language challenge in mathematics teaching 

“is to help students move from everyday, informal ways of construing knowledge into 

the technical and academic ways that are necessary for disciplinary learning [and 

connect with subject-specific] ways of using language to construct knowledge” 

(Schleppegrell, 2007, p. 140). In this quotation, the sequencing for language registers 

is directly combined with the sequencing of epistemic practices; hence it calls for 

integrating conceptual and language-related learning opportunities.  

For sequencing learning opportunities along a concept- and language-related continu-

um, a good starting point is students’ intuitive distinctions of amount and change as 

documented by Stroup (2002): “Learners are observed to be able to move between rate 

and amount renderings — most often in graphical forms” (p. 170). Thompson and 

Thompson (1994) have shown in a case study that “computational language” is not 

enough to construct meanings that allow for distinguishing amount and change, but 

they leave open how “conceptual language” should look.  

The design is already a first answer to RQ2: With activities as printed in Fig. 2, the 

learning arrangement combines all three design principles: (1) relating representations  

 

Fig. 2: Activity for connecting multiple representations of two-directional covariation 
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and registers, (2) eliciting students’ intuitive conceptual and language-related resour-

ces in order to construct meanings, and (3) providing challenges for productive strug-

gle in order to elaborate students’ concepts and language integratively in more concise 

and formal ways. Thereby, the phenomenon of two-directional covariation is in the 

core and worked through by relating representations and contrasting similar texts, 

graphs and formal conditions. Task 1 of the activity was treated in a similar form in the 

beginning of calculus (as suggested by Stroup, 2002). In order to ensure a pertinent 

conceptual focus during all of the teaching units of calculus rather than only in the 

beginning, the activity sequence in Fig. 2 was given after introducing the formalization 

for the derivative and the second derivative in order to reconstruct meanings for it. 

METHODOLOGY OF THE DESIGN RESEARCH STUDY 

Design Research as methodological framework. The overarching Design Research 

project in which the presented case study is embedded has the dual aim of designing 

language- and mathematics-integrated arrangements (in this case, the construction of 

meanings of the function-derivative relationship using the presented design principles) 

and developing an empirically grounded local theory of students’ learning processes 

and the occurring language demands. For empirically specifying language demands, 

the methodological framework of Design Research with a focus on learning processes 

has proven valuable (e.g., in Prediger & Zindel, 2017). 

Design experiments for data collection. Design experiments are the major method of 

data gathering in design research studies (Gravemeijer & Cobb, 2006). In the 

overarching project, four design experiment cycles were conducted with 16 pairs of 

students in Grades 10 and 11 (14-16 years old). This paper uses data from Cycle 3 in 

which design experiments were conducted in laboratory settings with nine pairs of 11th 

graders. Two sessions of 45-60 minutes each were completely video-recorded for each 

pair of students (in total about 1000 minutes of video material). In this paper, the 

analysis focuses on a case study of two girls, Emily and Layla, and the first author as 

design experiment leader (in the following referred to as “tutor”). 

Methods for qualitative data analysis. The qualitative analysis of the transcripts was 

conducted with the aim of qualitatively tracing the students’ conceptual learning 

pathway by locating the intermediate steps in the level model from Fig. 1. In a second 

step, the students’ language resources and obstacles were extrapolated in the lexical, 

syntactical, and discursive dimension, following Schleppegrell (2007).  

EMPIRICAL INSIGHTS INTO THE CASE OF EMILY AND LAYLA 

Rediscovery of two-directional covariation and language resources 

Emily and Layla had worked on similar headlines some weeks before. Meanwhile, 

they had learned to formalize the derivative and calculate it procedurally. So they had  

to rediscover the phenomenon of two-directional covariation: When Emily and Layla 

start to work on Task 1 (from Fig. 2), Emily falsely matches the headline with Graph 2: 
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65 Emily Yes and here [hints to the headline “Less child births” and to the 
decreasing Graph 2] the population growth just decreases, that 
means it was so much [hints to the beginning of Graph 2] […] and 
then it is less and less, well that means probably, how many people 
live at which time, and then there live simply less people. 

66/7 Tutor/Layla Mhm. 

68 Emily [hints to the headline again] I just remember, when we say, the growth becomes 
less, we had last time, that this can however become more, but not as much as 
before?  

In Turn #65, Emily confounds population growth f’ with the function f, which captures 

the population amount (“how many people live at which time”) and transfers the 

increase to the wrong level. But in #68 she reminds herself that both levels can have 

different directions, even if she cannot yet express it. When the tutor invites her to be 

more precise about the axis labels, she formulates it more concisely:  

76 Emily There are fewer people born, and, therefore, the population grows not that fast 
anymore. 

On this base, the students decide to choose Graph 3, but take much longer to discuss 

the axes’ labels. They finally reject population growth and decide on population:  

250 Emily  Ok, the number of people increases, but there are not so many 
additionally; thus, not so many in a year are added 

251 Tutor  Mhm 

252 Emily After all, the growth becomes less, as it does not increase so 
steeply [hints to the end of Graph 3] 

254 Layla  Thus, though, the population, however, increases, but simply not that much. And 
for this, the growth decreases, yes.  

After a long discussion, the students have unpacked what decreasing growth means (in 

#68, 76, and 250); for this, they shift the level f’ back to level f (see Fig. 1). During that 

period, they speak about processes of change in covariation approaches without con-

densing them into nouns. Then, the labelling of axes is requested, and as this requires 

nouns, this request serves as a scaffold to conduct a condensation by nominalization. It 

is only in #254 that Layla has condensed all information in the covariation phrases “f 

increases, even if f’ decreases” on two levels without going back to correspondence 

approaches (see Fig. 1).  

With respect to occurring language demands, this analysis shows that the students have 

many lexical language resources to express processes of change, e.g., “decrease/in-

crease” (#65), “get/become less/more” (#68, 252), “not so many are added” (#250). 

The greater challenge is, however, to apply them with successive conciseness. This 

challenge is related to syntactical and discursive demands on making explicit the 

levels to which the change processes refer and to express their mutual relationships. As 

linguistically explained by Schleppegrell (2007), making something explicit requires 

sentences with explicit references (instead of unspecific “this” and “it”), which 

requires a condensation of processes into nouns, which function as lexical markers for 

objectified concepts: The long sentence “How many people live at which time, and 
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then there are simply fewer people living” is later condensed into the nominalization 

that allows combination with a verb “population increases/decreases” (#254). 

Language demands while constructing meanings for the second derivative 

During their pathway, Emily and Layla quickly succeed in assigning the formal 

conditions about f and f’ to the graphs and headlines as requested in Task 2 from Fig. 2. 

Their struggle begins again with Task 3, which requests matching f”(x) > 0 or f”(x) < 0. 

320 Emily Oh, God [second derivative]. I know only that you can, eh, the turning points […] 
eh, always zero, something […] 

355 Tutor The second derivate stands for the growth of the increase. [[the German word for 
slope has two meanings, “slope” and “increase”; “increase” is preferred in this 
case as it is the more common everyday usage]] 

360 Emily The growth of the increase? 

361 Layla Yes perhaps, how much that grows again? 

366 Emily The growth, the growth of what? The function? 

368 Emily […] Well, we have a function and the derivative says always, what is the 
increase. 

372 Emily If it increases quickly or something like that? 

With f”, Emily and Layla only associate procedural aspects of calculating turning 

points by using f”(x) = 0 in #320-354. When the tutor informs them about the standard 

interpretation as “growth of increase” (#355), they cannot make sense of it as they do 

not know how to refer the growth to something else (“the growth of what,” #366). So 

far, they have not referred growth to any increase other than the increase of one level 

(amount, change, or change of change) they pointed out; they cannot cope with the 

double nominalization. In #368, Emily unpacks the nominalizations, which prepares 

her tentative interpretation of f” as “increases quickly” in #372. As this idea from #372 

gets lost again, the tutor comes back to it: 

390 Tutor Ela, you just said that this is perhaps a statement 
about how strongly the increase increases. Look 
at Graphs 3 and 4. What are the commonalities of 
the increase?  

391 Layla It is positive. 

402 Emily Aha, because this here [hints to Graph 4] increases then, well, that goes more  
That, well, here is [hints to Graph 3], it grows but then it gets less […] 

406 Emily [And for Graph 4] it looks more as if this grows still steeper and not [like in 
Graph 3] the increase goes in direction 0, thus gets less.  

414 Emily Ok, both increase. But here [hints to Graph 3] The increa— well, that increases 
though, OK, that is what we assigned, because this gets less, thus, does not grow 
so steeply. 

415 Tutor What gets less?  

416 Emily The increase 

418 Emily Ok, it increases here [hints to beginning of Graph 3] more steeply, that means, 
within the time, it becomes more. And here [hints to middle of Graph 3], in this 
section, less is added, even if the time interval is equal [gestures a slope triangle]. 
And, eh, here [hints to the end of Graph 3] the increase gets always less.  
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Again, the main language demands are not on the lexical level, but on the syntactical 

and discursive level: In these turns, all references to what increases or decreases (the 

subjects for the predicates) are marked in bold. The high amount of underdetermined 

deictic expressions (”it,” “this,” and “that”) for the addressed level shows the big need 

to become more explicit, because every underdetermined expression causes a risk to 

confound the levels f,  f’, and f”. Explicit navigation through the levels of Fig. 1 is only 

possible with explicitly articulated references to the levels. The tutors’ prompts in #390 

and 415 are intended try to support the students to make the references explicit. And, 

indeed, Emily can work with these prompts in #418 when she refers to different parts 

of the graph: at first underdetermined in language, then very precise (“the increase in 

this time interval,” #418). However, they have still not cracked the meaning of the 

formal condition f”(x) < 0, with reference to what f and f’ mean. 

457 Tutor OK, what can this mean for the second derivative. There is the option that f”(x) < 
0 or f”(x) > 0. What can this mean, now? 

458 Emily Perhaps, this [hints to Graph 3] is bigger than zero, 
because it gets less, than … and then it becomes 
zero? I mean, that it is first more and then it gets 
less. And here [hints to Graph 4] it is first less and 
then it is more. That is perhaps, anyway, that this is 
less than zero, and when it is less than zero, that 
means that the increase becomes less? 

459 Layla Perhaps, the second [derivative] describes the growth of the increase and here 
[hints to Graph 4], this increases and there [hints to Graph 3] it decreases. 

478 Emily [...] OK, we have said that when the increase is zero and then increases [as in 
Graph 4], then it [she means the second derivative] is bigger than zero, and when 
it [she means f”] is less than zero, than it decreases [she means increase f’ of f].  

It takes 20 more turns for Emily to correct the misinterpretation in #458 and assign the 

formal condition appropriately. #458 and 459 shows that shifting to the level of f” 

(change of change) again requires other language means in which the increase must be 

treated as object and therefore be nominalized. In #478, Emily finally succeeds in 

making sense of the second derivative by reaching the level of f” (see Fig. 1), even if 

still with many underdetermined references and a restriction to positive f”.  

Summing up, language demands already visible in the easier Task 1 become crucial 

obstacles in dealing with formal conditions for the second derivative in Task 3. Lexical 

means are not missing (all students in our data had sufficient lexical resources), 

instead, the main challenge is their concise use in sentences without underdetermined 

references. In the process of making the relationships explicit, nominalizations and the 

necessary objectifications go hand in hand (Schleppegrell, 2007). 

DISCUSSION AND OUTLOOK 

What does it mean to talk about amount and change conceptually? The case study of 

Emily and Layla has provided insights into students’ pathways through productive 

struggle with the concepts of qualitative calculus: amount, change, and change of 

change. Requesting the connection of multiple representations is a main answer to 
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RQ2, and it is shown to help students to successively refine their thinking about the 

relationship of amount and change and express the phenomenon of two-directional 

covariation in successively concise ways. The major finding on RQ1 is that language 

demands in Grade 11 do not occur on the lexical level but on the discursive and syntac-

tical level for establishing clear references and nominalizations for objectifications. 

This can give important hints for the further design of this and other teaching learning 

arrangements: Teachers’ prompts for making references explicit are crucial for develo-

ping conciseness of language (another major answer to RQ2). 

Future research is planned so that the methodological limits of the case study can be 

overcome by (1) increasing the sample, (2) varying the tasks and activity settings, and 

(3) transferring the research framework to other mathematical topics. As almost no 

research has investigated higher grades, the differences from research results in earlier 

grades found here motivate a further focus on the upper secondary level.  
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(Mathematics learning under conditions of language diversity) in Dortmund, whose 

main funding comes from the German Ministry of Education and Research 
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The objective of this study was to characterize how a learning trajectory, relating to 

length magnitude and its measurement, could be used by pre-service kindergarten 

teachers to develop their professional competence of noticing the mathematical 

thinking of children.  That is, how a learning trajectory could be used as a conceptual 

instrument, by means of two instrumented action schemes: by using the trajectory’s 

learning progression model and tasks to interpret children's responses, and by sug-

gesting new tasks that supported progress in comprehension. A total of 47 pre-service 

kindergarten teachers took part in the study. Results showed that the learning trajec-

tory helped pre-service teachers to interpret children’s mathematical thinking, and to 

make appropriate decisions in support of their students’ progress. 

THEORETICAL FRAMEWORK 

Research on the acquisition of professional noticing of students' mathematical thinking 

has shown that the competence to interpret children’s mathematical thinking can be 

acquired during initial teacher training programs, using tasks that allow to differentiate 

between degrees of understanding of a concept (Magiera, Van den Kieboom & Moyer, 

2013; Schack, Fisher, Thomas, Eisenhardt, Tassell & Yoder, 2013; Son, 2013). 

However, the ability to make suitable decisions as to what actions to take is not an easy 

skill to develop. This led us to reflect on the need for a framework of reference that 

would help pre-service kindergarten teachers to structure their attention towards stu-

dents’ mathematical thinking. In this sense, a hypothetical learning trajectory of a 

mathematical topic would help pre-service teachers to identify their students’ learning 

objectives, anticipate and interpret their mathematical thinking and contribute, with 

appropriate instructional decisions, to their progression in learning (Edgington, Wilson, 

Sztajn & Webb, 2016; Sztajn, Confrey, Wilson & Edgington, 2012). 

A hypothetical learning trajectory can be understood as a conceptual instrument (Lli-

nares, 2004) that adapts the theoretical framework of instrumental genesis (Drijvers, 

Kieran and Mariotti, 2010). In this theory, artifacts, defined as the tools themselves, are 

distinguished from instruments, which correspond to artifact that have come to em-

body a significant relationship between the user and the task to be performed. The use 

of an artifact introduces a cognitive activity of construction or evolution of utilization 

schemes in the subject; hence, students can approach an artifact differently and de-

velop different instrumented action schemes (Rabardel, 1995). These instrumented 
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action schemes are typical of the instrumentation process, and are directly related to 

the use of the artifact with a view to carrying out an action or a task; that is, these 

schemes allow the student to understand the potentialities and restrictions of the arti-

fact itself: they progressively constitute techniques enabling to effectively respond to 

mathematical activities. 

In our research, a hypothetical learning trajectory is understood as an artifact that turns 

into an instrument when pre-service teachers make it their own, allowing them to solve 

the proposed tasks. Therefore, a pre-service teacher’s instrumentation of a learning 

trajectory, takes place over two successive phases. The first is the development of a 

first instrumented action scheme: the learning progression model, facilitated as a hy-

pothetical trajectory of learning, is used to interpret the characteristics of the student's 

understanding, based on the identified mathematical elements. In the second phase, a 

second instrumented action scheme is developed:  the types of tasks facilitated in the 

trajectory and the learning progression model are used together to propose new tasks 

directed towards advancing all children’s understanding, based on the interpretation 

made in the previous scheme. 

For this research, we presented pre-service teachers with a learning trajectory of length 

magnitude and its measurement in childhood education adapted from Sarama and 

Clements (2009). In this trajectory, mathematical elements that define progression in 

learning about length magnitude are: recognising length, conservation and transitivity; 

those defining the measure of length are: unit of measurement-unicity, iteration, ac-

cumulation, relationship between the number and measurement unit, and universality 

of the measurement unit. Progression is organized into five inclusive levels that go 

from recognising length as a magnitude, to the construction of the concept of length 

measurement and initiation to the estimation of lengths (Callejo, Perez, Moreno, 

Sánchez-Matamoros, & Valls, 2017). 

Our objective was to characterize the use, as a conceptual instrument, that pre-service 

kindergarten teachers make of a learning trajectory relating to length magnitude and its 

measurement, and how it facilitated the development of the teaching competence 

consisting in professionally noticing children’s mathematical thinking. This use is 

characterized by changes in the development of the instrumented action schemes 

throughout the teaching module.  

METHOD 

Participants and context 

The participants of this study were 47 students in the Kindergarten Schoolteacher 

Degree at the University of Alicante (Spain), who attended the subject "Learning 

Geometry" in the sixth semester. The training programme for this subject included a 10 

hour long module on length magnitude and its measurement (5 face-to-face sessions) 

during which students had to solve a professional task (a teaching-learning situation 

providing three issues to reflect on the professional skills of identifying, interpreting 
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and making instructional decisions). In order to solve the module’s tasks, they dis-

posed of the learning trajectory of length magnitude and its measurement for children 

aged 3 to 6 years (Sarama & Clements, 2009). 

Data collection instrument 

The data collection instrument consisted of the three professional tasks corresponding 

to the initial, intermediate and final sessions. These tasks were composed of teach-

ing-learning situations (Table 1) and three professional questions: 

Question 1. Justify the characteristics of children’s understanding of each point, in-

dicating the implicit mathematical elements. 

Question 2. According to the characteristics of the children's understanding identified 

in Question 1, what level of understanding would you place them at? Justify your 

answer. 

Question 3. Assuming that you are their teacher, define a learning objective and pro-

pose a task for these children to continue advancing in the understanding of length 

magnitude and its measurement. 

 

Situation Description of the teaching-learning situation  Mathematical 

elements 

Initial Four illustrations extracted from a video are pro-

vided. The teacher suggests that the children cut 

out a strip of paper as big as themselves (Illustra-

tion 1). The children try several times to get the 

strip at exactly their own height (standing, on the 

floor, standing against a cupboard ...) (Illustration 

2). Then they decorate them. With the help of the 

teacher they compare the strip lengths two by two 

and the teacher puts them in order (Illustrations 3 

and 4). (Adapted from van den Heuvel-Panhuizen 

& Buys, 2005) 

Recognition 

(Illustration 1) 

Conservation 

(Illustration 2) 

Intermediate Four illustrations of a park outing are shown 

during which two teams measure the outline of a 

different tree selected by each team, using the 

piece of rope provided. Team A selects a tree with 

a thin trunk and measures it using the rope (Il-

lustration 1). Meanwhile, the tree chosen by team 

B cannot be measured with the rope because it is 

thicker (Illustration 2). In response, children in 

both teams decided to surround each tree with 

their arms (team A: one girl, team B: four boys) 

(Illustrations 3 and 4, respectively). The teacher 

Recognition 

(Illustration 1 

and 2)  

Unicity (Illus-

tration 4) 

Iteration (Illus-

tration 4) 

Accumulation 

(Illustration 4) 
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asks what would happen if two of the four chil-

dren were replaced by another two. (Adapted 

from Alsina, 2011) 

Final A teacher can be seen talking to some children. 

The teacher proposes making necklaces using 

strings of different lengths and shapes (rolled up, 

stretched and folded), and different beads of dif-

ferent kinds and sizes (macaroni, stars, etc.). 

Children choose different strings to make the 

necklace: Mario uses different sized beads 

(non-Unicity); Almudena chooses beads of the 

same size (Unicity) and inserts them leaving gaps 

between them (No Iteration); Elena and Luis use 

beads of the same size inserting them without 

leaving gaps (Unicity and Iteration). When the 

necklaces are made, a dialogue takes place be-

tween the teacher and the children. (Conservation 

and Accumulation) (Callejo et al., 2017) 

Conservation 

Unicity 

Iteration 

Accumulation 

Table 1: Description of the three teaching-learning situations and its mathematical 

elements 

Data analysis 

The data in this research consists in the answers of pre-service teachers to the three 

professional tasks, object of study. An inductive qualitative analysis was carried out 

(Strauss & Corbin, 1994) where a group of five researchers first analysed a small 

sample, then discussed codifications and their relationships with the evidence, leading 

to the creation of several categories. Once the categories were agreed upon, the rest of 

the data was added to review the initial system of categories and verify its validity. 

We carried out this process of analysis in two phases. The first phase consisted in two 

steps: first, professional questions 1 and 2 were analysed together to characterize how 

the pre-service teachers had developed the first instrumented action scheme. Next, 

professional question 3 was analysed to characterize how pre-service teachers had 

developed the second instrumented action scheme. 

In the second phase of analysis, changes in the use of the trajectory experienced by 

each of the pre-service teachers were identified along the three tasks: initial (of mag-

nitude), intermediate (of measurement) and final (of magnitude and measurement), 

through the development of instrumented action schemes. 

RESULTS 

Results revealed that the learning trajectory helped students to master the interpretation 

of children’s mathematical thinking; however, only a few were able to make appro-
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priate decisions to support student progression. Moreover, pre-service kindergarten 

teachers used the learning trajectory as a conceptual instrument throughout the module 

in different ways. These different ways accounted for the five changes experienced in 

the use of the learning trajectory in relation to the development of instrumented action 

schemes (Figure 1). 

In three of the five changes (changes 1, 2 and 3), the pre-service teacher did not use the 

trajectory as a conceptual instrument for either tasks, nor for the magnitude task (initial 

task) nor for the measurement task (intermediate task). They only gave general and 

rhetorical descriptions such as in the case of pre-service teacher Rosa: 

Rosa: "Illustration 2: They use the transitive property for indirect comparisons (in the first, 

the child stands up next to the strip and in the second, the child lies on top of the 

strip, with his feet on top of the strip and makes a sign with his head) . 

However, in the magnitude and measurement task (final task), pre-service teachers 

used the trajectory in three different ways (changes 1, 2 and 3). Change 1 characterizes 

pre-service teachers who only use the progression model to interpret the understanding 

of some or all of the children, using elements of magnitude and/or measurement (first 

instrumented activity scheme). This was the case of Rosa, who developed the first 

instrumented action scheme for measurement: 

Rosa: Mario is at level 4, he knows how many macaroni he has used to make the necklace 

-property of accumulation-, iterates well because he leaves no gaps, no overlays ... 

Almudena is at level 3-4, she does not iterate correctly when leaving gaps, but does 

recognize the property of accumulation. Luis and Elena are at level 4, they iterate 

correctly and the accumulation property, "mine has 12 macaroni" 

Change 2 characterizes pre-service students who partially developed both instru-

mented action schemes when interpreting the understanding of only some children, 

regarding only magnitude or measure, and only proposed tasks to facilitate children’s 

learning progression. Finally, change 3 characterized pre-service teachers who 

achieved the instrumentation of the learning trajectory by interpreting the compre-

hension of all children, in relation to magnitude and length, and proposed tasks to 

advance children’s learning progression, as in the case of Catalina: 

Catalina: Mario is at level 1. He recognizes the length magnitude, but does not compare 

the two strings [his and Luis']. Elena is at level 4, she chooses the longest string, 

correctly iterates the stars without leaving gaps or overlays. New task for Mario: 

Objective: Compare by displacement [conservation]. Task: Choose the smallest 

string [string C] and the largest string [string A], put them side by side and compare 

them. New task for Elena: Objective: Start acquiring the universality of the 

measurement unit. Task: Almudena and you have used the same string and the 

same material to make the necklace, which of the two necklaces is longer, that of 

Almudena or yours? Why? 

Change 4 corresponds to those who initiate the module relating the characteristics of 

understanding with the mathematical elements identified (first instrumented action 

scheme), and they finish it, partially developing both instrumented action schemes. 
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Change 5 corresponds to pre-service teachers who initiated the module at the same 

stage students of change 2 finished at (partial development of both instrumented action 

schemes) and ended up developing both instrumented action schemes, that is, instru-

mentation of the learning trajectory. 

 

Figure 1: Changes identified in the use of the learning trajectory as a conceptual in-

strument 

DISCUSSION 

All pre-service teachers showed some progress throughout the module. The progress of 

pre-service teachers who first considered the learning trajectory as an artifact but were 

then able to initiate their first instrumented action scheme (change 1), could be ex-

plained by the fact that they considered the understanding of some mathematical el-

ements (of magnitude and/or measurement, involved in the teaching-learning situa-

tions raised) as a conceptual advance. This fact is corroborated by previous research 

that has showed how recognising the understanding of mathematical elements, for 

specific concepts, could be considered as points of reference in teachers or pre-service 

teachers, when they learn about the mathematical thinking of children/students (Lli-

nares, Fernández, & Sánchez-Matamoros, 2016). The impossibility of developing the 

second scheme of instrumented activity could be due to the fact that pre-service 

teachers tended to focus their actions on general teaching procedures rather than on 

students' conceptual progress, a fact already highlighted in previous studies such as 

that by Gupta, Soto, Dick, Broderick, & Appelgate, (2018).   

Moreover, the progress of those who started at different stages (change 2 and change 4) 

but reached the same point, that is, initiated the development of both instrumented 

action schemes, could be justified by the following: they recognized the understanding 

of some mathematical elements of magnitude or measurement as a conceptual advance 

(Simon, 2006), and recognized that any proposed new tasks should advance the un-

derstanding of the concept. Finally, some pre-service teachers progressed from using 

the learning trajectory as an artifact to its instrumentation (change 3). Others pro-
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gressed from the partial development of both instrumented action schemes to their 

instrumentation (change 5). These two progressions may be explained by the fact that 

these pre-service teachers understood the learning trajectory as a whole, allowing them 

to take into account the progressive construction of the concept, attaching importance 

to both magnitude and its measurement, thus adopting the most appropriate instruc-

tional decisions to help children advance in their understanding. 

The use of the learning trajectory as a conceptual instrument is very positive since all 

pre-service teachers were able to initiate the development of the first instrumented 

action scheme. This means they learned to interpret characteristics of children’s pro-

gression in understanding; they started to notice the understanding of a concept in a 

more structured and systematic way, attaching importance to the mathematical ele-

ments involved in different teaching-learning situations. Decision-making, however, 

still remains a challenge: it was shown that for the majority of pre-service teachers, 

disposing of tools was insufficient to make adequate decisions.  
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Eye-Tracking (ET) is a promising tool for mathematics education research. Interest is 

fueled by recent theoretical and technical developments, and the potential to identify 

strategies students use in mathematical tasks. This makes ET interesting for studying 

students with mathematical difficulties (MD), also with a view on inclusive settings. 

We present a systematic analysis of the opportunities ET may hold for understanding 

strategies of students with MD. Based on an empirical study with 20 fifth graders (10 

with MD), we illustrate that and why ET offers opportunities especially for students 

with MD and describe main advantages. We also identify limitations of think aloud 

protocols, using ET as validation method, and present characteristics of students’ 

strategies in tasks on quantity recognition in structured whole number representations. 

INRODUCTION 

Eye-tracking (ET) promises to allow for online recording of cognitive processes (Chen 

& Yang, 2014). Its potential as a tool for mathematics education as well as important 

theoretical and technical developments have led to an increased interest in ET in the 

PME community, which the number of methodological papers and a strongly increased 

occurrence of ET-related key phrases in recent PME proceedings hint at. 

The potential that ET may hold has been illustrated in many studies (e.g., Lindmeier & 

Heinze, 2016; Obersteiner & Tumpek, 2015). Some studies isolated differences bet-

ween certain groups when solving the same math problems, e.g., differences between 

strong and weak students in mathematics (Rottmann & Schipper, 2002). Such research 

responds to the significance to understand mathematical difficulties. Not least since 

inclusive education has gained significance, research on students with mathematics 

difficulties (MD) has attracted more and more attention; with the aim to understand 

knowledge and learning in a fine-grained way and to foster students individually and 

adequately (e.g., Moser-Opitz et al., 2016; Scherer et al., 2016). Even though ET is 

partially already used with students with MD, research has—to the best of our 

knowledge—not yet systematically analyzed what opportunities ET holds especially 

for understanding strategies and thoughts of students with MD. 

Thus, the aim of our study is to investigate opportunities ET may hold especially for 

students with MD. Based on an empirical study with 20 fifth graders (whereof 10 with 

MD), we investigated the potential benefit of ET in tasks addressing quantity recog-

nition in structured whole number representations. We investigated the benefit of ET 

as compared to think aloud protocols (TA) and also compared the opportunities of ET 
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for students with and without MD. The results of our data analysis indicate that ET is 

especially advantageous for students with MD, whose strategies appear to be more 

diverse and, for several reasons, more difficult to explain. Our paper contributes to 

mathematics education research in three major ways: We illustrate that and why ET 

offers opportunities especially for students with MD and describe its main advantages. 

We identify limitations of TA for students with MD using ET as validation method. 

And, finally, we present strategies of students with and without MD in tasks on quan-

tity recognition in structured whole number representations. 

THEORETICAL BACKGROUND 

Eye-Tracking (ET) and its use in mathematics education research  

ET devices aim to identify gaze points by capturing eye movements and projecting 

from the fovea onto the surrounding scene. Video-based systems currently dominate 

the market; either in the form of head-mounted devices (ET glasses) or remote devices 

attached to a computer screen that displays visual stimuli (Holmqvist et al., 2011). ET 

devices promise to allow for online recording of cognitive processes (Chen & Yang, 

2014). However, ET only provides a flickering view on “shadows” cast by brain 

processes in the form of eye movements. Accordingly, interpretation of ET data is non-

trivial. It typically rests on the “eye-mind” hypothesis, which, as expressed by (Just & 

Carpenter, 1976) in the reductionist spirit of a brain-computer metaphor, posits that 

“the eye fixates the referent of the symbol currently being processed if the referent is in 

view. That is, the fixation may reflect what is at the ‘top of the stack’” (p. 441). Data 

interpretation is challenging since the eye-mind hypothesis does not always hold 

(Holmqvist et al., 2011). Not all cognitive processes are tightly linked to visual stimuli. 

Also, foveal vision is not always required, e.g. when peripheral vision is sufficient.  

Despite the challenges mentioned, ET is a potent tool for mathematics education re-

search (MER). Powerful inferences are possible especially in specific, controlled set-

tings—e.g., in “visually presented cognitive tasks” (Obersteiner & Tumpek, 2015, p. 

257), and by using domain-specific interpretation—i.e. considering known semantics 

of fixated visual entities (Schindler & Lilienthal, 2017). The improved theoretical and 

computational means for interpretation as well as the advent of commercial, less in-

trusive, portable and increasingly affordable ET devices (Holmqvist et al., 2011) led to 

considerable interest in this technology; not least in the PME community. When ana-

lyzing the last five PME conferences, we found 25 ET-related papers, mostly ET 

studies and a smaller but increasing number of methodological papers dedicated to ET 

and the interpretation of eye movement data. We also carried out a full text analysis of 

the proceedings of the last five PME conferences and found a clear trend: While the 

wordings “eye tracking” and “eye movement” occurred only 20 times at PME37, this 

number increased to 208 at PME41. 

In addition to improving ET devices and better means of interpretation, interest in ET 

in MER is fueled by its potential “as a method for identifying strategy use in mathe-

matical tasks” (Beitlich & Obersteiner, 2015). This paper contributes to identify op-
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portunities (and limitations) of ET for identifying strategy use in mathematical tasks. 

This is particularly important in comparison to methodological alternatives for the 

same purpose, including TA methods and response time tests.  

Mathematics difficulties (MD) and their identification 

Learning difficulties in mathematics are an important topic in practice and research 

and have attracted increased interest not least since inclusive education has gained 

significance. However, to date there is no consensus on a definition or term charac-

terizing the group of students having difficulties in mathematics (Scherer et al., 2016). 

Certain researchers speak of mathematical learning disabilities, others of (severe) 

mathematical difficulties, depending on different national educational contexts and 

research traditions (see ibid.; Moser-Opitz et al., 2016). In this paper, we follow 

Moser-Opitz et al. (2016) who talk about students with mathematics difficulties (MD) 

and summarize their potential difficulties, comprising (see also Scherer et al., 2016): 

verbal counting (e.g., counting by groups and counting principles), grouping, de-

grouping, the base-10 number system and understanding the place value, under-

standing the meaning of operations, solving word problems; as well as factual 

knowledge, fact retrieval and (deficits in) working memory. To support students with 

MD in their mathematical learning, researchers and teachers aim to identify students’ 

individual assets, difficulties, and strategies. Mathematics education, special educa-

tion, and psychology use different methods for diagnosing: They consider, e.g., written 

products or tests, observations, or processing times of students when working on math 

problems. These methods have demonstrated their potential but are also limited be-

cause they consider an “outside” view on mental processes or use end results, which 

can make it difficult to distinguish between different processes leading to the same 

products. TA and ET, however, observe manifestations of internal processes and have 

great potential to identify strategy use. Despite its advantages and popularity, TA has 

drawbacks, especially when working with children with MD and other learning dif-

ficulties. In Concurrent TA (CTA) where participants are asked to verbalize their 

thoughts while performing a task, the additional cognitive load can be overwhelming 

(Ericsson & Simon, 1980), especially for students with MD for whom the task itself 

and verbalization can constitute a major cognitive effort. Instead, in Retrospective TA 

(RTA) verbalization occurs after completion of the task. Still, aspects that may affect 

verbalizations of students with MD in RTA may be, e.g., anxiety, difficulties with 

memory retrieval, introspection, or meta-cognitive reflection, or verbalization issues. 

We see that ET has two potential major advantages over TA: It can identify uncon-

scious processes and there is no verbalization step that could absorb cognitive re-

sources and potentially influence students’ strategies. To the best of our knowledge, 

the potential of ET for better understanding strategies of students with MD has not yet 

been empirically investigated. We ask the following research questions: What oppor-

tunities may ET offer for understanding strategies of students with MD? We approach 

this question through an empirical study with students in an inclusive education set-

ting. We use ET—in combination with TA and without—also address the questions 
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100-bead abacus  

 
100-dot square 

Figure 1: Number representations used in 

this study 

What opportunities does ET offer compared to TA? and May the benefit of ET for 

understanding students’ strategies be bigger for students with MD than for students 

without MD? 

METHOD 

Students. For answering the research questions, we use data from a research project 

with 20 fifth-grade students, ages between 9;11 and 11;11, in a German comprehensive 

school (“Gesamtschule”). The participating school was in a town of 80,000 inhabit-

ants, situated on the edge of a German urban area. The study took place in the first 

weeks of fifth grade, after the students had finished the German primary school after 

grade 4. Students with mathematical difficulties (MD) were identified through quali-

tative diagnostic interviews addressing MD (following Schulz & Wartha, 2012) in-

vestigating, e.g., students’ number sense and understanding of number and operations 

(see Moser-Opitz et al, 2016). Among the 10 students with MD, there were four with 

special educational needs (in learning, social and emotional development, and physical 

development). 

Tasks. The students worked on tasks to 

determine the number of beads/dots on 

a 100-bead abacus and on a 100-dot 

square (Fig. 1). We first let the students 

determine the total number of beads in 

a 100-bead abacus (number of dots in 

the 100-dot square) and asked them to 

think aloud after they had given their 

answers (immediately after each task). Further, the students determined numbers (e.g., 

7, 76, and 92) on the 100-bead abacus (the 100-dot square) without TA. In this set of 

tasks, we wanted to analyze students’ strategies without potential interference of TA. 

Although structured number representations on the 100-dot square and abacus are 

addressed in second grade in Germany, we used this kind of tasks in grade 5, following 

Moser-Opitz et al. (2016) who point out, “some research (…) shows that low achievers 

in mathematics in the higher grades lack very basic competencies, such as counting in 

groups or understanding the base-10 system, even with small numbers” (p. 1f.). In 

previous studies, ET has proven to be useful to analyze students’ strategies working 

with such structured representations. This is due to the fact that the representations 

comprise visually presented information and ET can help to understand how students 

capture such information. Lindmeier and Heinze (2016) analyzed students’ strategies 

to determine numbers of dots/beads and found significant differences between first 

graders and adults, in particular different strategy use (e.g., counting, subitizing, or 

using structures). They conclude that their “study shows that eye-tracking data can be 

used to access different strategies when solving number tasks in structured represen-

tations” (p. 7). Rottmann and Schipper (2002) compared high and low achievers’ use 

of the 100-dot square in addition and subtraction tasks using ET. Analyzing scanpaths, 

they found, e.g.: “Low achievers (…) use (…) [the material] in a way which turns out 
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not to be helpful at all for them: their activities are either inappropriate or are unilat-

erally subordinated to the counting-all strategy” (p. 51).  

Eye-Tracker. We used the ET glasses Tobii Pro Glasses 2 with a framerate of 50 Hz. 

They weigh 45 grams, are relatively unobtrusive, allow for reliable tracking, and are 

robust to students touching them. Even though tasks were presented on a computer 

screen, we decided not to use a remote eye-tracker to be able to capture students’ eye 

movements when looking away from the screen, and also gestures, e.g. pointing. 

Data analysis. We focus on the gaze-overlaid videos (videos taped by the ET glasses 

including the eye gazes as dot wandering around in the video; similar to Schindler & 

Lilienthal, 2017). The data analysis followed Mayring’s (2014) qualitative content 

analysis in an inductive manner. The first three steps were (1) description of the stu-

dent’s eye movements in the video, (2) paraphrasing the content-bearing semantic 

elements in the description relevant for identifying student strategies and transposing 

them to a uniform stylistic level, and (3) category development, i.e. inductively as-

signing categories to the data with according descriptions/definitions. After having 

categorized all data, we went through the data once more in a category revision step; 

which included partially re-categorization. In a final subsumption step, we collected all 

instances matching every category. We also compared the informative content of ET 

and TA. For this purpose, we analyzed the TA for every student. We transcribed ut-

terances and gestures (e.g., pointing) and then used the same steps as outlined above. 

RESULTS 

Comparing ET and TA 

In the tasks to determine the number of beads (dots) on a 100-bead abacus (100-dot 

square), the students were asked to think aloud how they found out the number. When 

comparing eye movements and verbal descriptions of the students, three scenarios 

appeared (Tab. 1). 11 students’ data (6 with MD, 5 without) were analyzed (the others 

were excluded, e.g., due to data loss or interference of the interviewer). Most cases 

matched scenario A, where ET provided more information about students’ strategies.  

 ET 

 more informative 

ET/TA  

equally informative 

TA  

more informative 

Scenario A B C 

Number of cases 6(5) 4(1) 1(0) 

Table 1: Scenarios of informative content of ET vs. TA (numbers of students with MD 

in brackets) 

Scenario A. Johanna, a student with MD and special needs in social and emotional 

development, in particular with anxieties, participated in this study (she herself was 

eager to take part). When determining the number of dots in the 100-dot square, her 

eyes glissaded over the first 5 dots in the first row and then over the second five in the 
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first row, indicating that she grasped the number of dots in the first row. Then, she 

looked at the left edge of every row one after the other (beginning at the top) indicating 

that she was counting rows. She then said “100”. When being asked “How did you do 

this?” by the interviewer, she answered “I don’t know”. When asked once more, she 

answered “5, 10, 15”, which is hardly conclusive. In this case, ET appears to be more 

informative than TA for understanding the student’s strategy. Johanna might have been 

anxious to explain her strategy (e.g., in order to avoid failure) or not used to explain her 

thoughts. In other cases, we experienced that the students had difficulties to express 

their thoughts (e.g., due to poor language skills or shyness). In yet another case, Jas-

mine did not mention a strategy that, as the ET revealed, she had used (counting 5s). 

When being asked about it, she said: “No, I first counted the 25s”. Maybe she forgot 

about the strategy she used initially; or intentionally denied the strategy—possibly 

because she perceived that counting is not an expected strategy. ET as compared to TA 

was not only beneficial when students did not answer or denied a strategy. It fur-

thermore often provided a greater level of detail and reflected processes that the TA 

only hinted at; for instance how (where and in which order) the students really counted 

or how they perceived ones. Besides, TA required the interviewer to ask follow-up 

questions which may guide students’ strategies and implicitly transport certain norms 

with an impact on the students’ behavior.  

Scenario B. In four cases, ET and TA were equally informative. In Samuel’s case, ET 

indicated that he first grasped the number of beads in the first row of the abacus 

(saccade over the 10 beads) and then counted the number of rows (subsequent fixations 

on the middles of the rows one after the other). Verbally, he described: “It is 10 beads 

per rod. And then I simply, like 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (pointing to the 

rows one after the other in the middles)”. His description contained the same infor-

mation as the ET. Daniel and Elena also used pointing and speech explaining their 

strategies. It appears that pointing has the potential to compensate for flaws in ver-

balization (e.g., about the order of counted elements, the exact focus, etc.).  

Scenario C. In one case, Simon’s (a student without MD), eye movements were very 

brief (several saccades over the dot field) and thus partially ambiguous for the data 

analysis. In TA, he was able to express himself well and used additional pointing. In 

this case, TA and ET did not contradict each other, but—given the briefness of Si-

mon’s eye movements—TA provided less ambiguous information on his strategy. 

Using ET videos only 

Students’ use of structures and strategy use. ET gave indications on whether students 

used, e.g., the structure of 10, 5, or 50. We found that less than half of the students in 

the MD group but nearly all in the control group used the 50-structure in the abacus 

(for quantities such as 54 or 68). Besides, in the MD group, there were three students 

that only used the structures of 5 (Nidal and Jasmine) or the structure of 10 (Ava) in the 

100-dot square. Except for a few instances where ET data were ambiguous, we could 

assign strategies to eye movements. Strategies included, e.g., counting in structures 

(e.g. rows) and then determining the ones through, e.g., subitizing; or subtraction 
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strategies (e.g. for 92: recognizing the 8 remaining beads and inferring 92). We found 

that 14 out of 20 students used (at least once) more than one strategy working on single 

problems, whereas the students in TA always only explained one single strategy 

(possibly due to certain norms in the math classroom).  

Explanation of processing times. The ET data analysis gave hints why students’ pro-

cessing times (partially measured as reaction times) may be prolonged. Reasons for 

longer processing times include: use of different strategies (e.g., ensuring, or realizing 

that another strategy is advantageous), repeating the same strategies (e.g., re-counting, 

sometimes in different orders), use of time-consuming strategies (e.g., counting 5s or 

counting ones one by one), or slow execution of strategies (e.g., when counting). Be-

sides, we noticed students looking around on non-meaningful entities, which may be 

caused, e.g., by stress (e.g., because students realize an issue). 

Explanation of student mistakes. The students made several mistakes when deter-

mining the numbers of beads and dots. Analyzing ET videos helped us to understand 

why students made such mistakes and that the same wrong answers may have different 

reasons. For instance, the result “99” instead of 89 may appear because students 

wrongly grasp the number of rows, or because they make an error in a subtraction 

strategy. Even though ET cannot always entirely clarify students’ inferences, ET ap-

pears to be a helpful tool to understand where mistakes originate.  

DISCUSSION 

The power of ET was already shown in several studies in MER. However, the potential 

it holds especially for students with MD was not systematically analyzed yet. For this 

reason, we conducted an empirical study with 20 students (10 with MD) with the aim 

to investigate the opportunities ET may hold especially for students with MD. We 

investigated the benefit of ET as compared to TA and found that in most cases, ET 

provided more detailed information, and appeared to be especially beneficial for ana-

lyzing strategies of students with MD. TA was in some cases equally informative as 

ET. In these cases, gestures and pointing typically helped the students to express their 

strategies. This hints at the significance of students’ ability to express themselves for 

valid TA; which appears to be a generally important factor for analyzing strategies of 

students with, e.g., a different mother tongue and migration background. Our results 

suggest that students should be trained and explicitly asked to use pointing in TA to 

increase the informative content, when ET cannot be used. In the tasks without TA, ET 

revealed that many students used more than one strategy to solve the tasks, which they 

never reported in the TA condition. This indicates that students’ verbal reports in TA 

may not reflect the variety of strategies students would have used without TA. We also 

compared opportunities of ET for students with and without MD. We found that for 

most students with MD (5 out of 6), ET provided more (detailed) information than TA, 

whereas this was only the case for a minority of the students without MD. Possible 

reasons are that students with MD used multiple and more diverse strategies more 

often, which increases the difficulty to verbalize. We assume that explanation diffi-
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culty but also anxieties (due to disadvantageous prior experiences) and normative as-

pects (e.g., hesitance to explain counting strategies because it may not be appreciated) 

may have an influence in this respect. However, our study is only a small scale study 

with only one kind of tasks. Its results cannot and should not easily be generalized. 

However, it hints at an important fact: That ET may be especially valuable for students 

with MD, where TA is particularly difficult. We believe our research to be a spring-

board for further research on this topic. 
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A TEACHER’S REFLECTIVE PROCESS IN A VIDEO-BASED 

PROFESSIONAL DEVELOPMENT PROGRAM  

Gil Schwarts and Ronnie Karsenty 

Weizmann Institute of Science 

 

The purpose of the study reported herein was to closely observe the reflective process 

of one teacher who participated in a video-based professional development course for 

secondary school mathematics teachers. This process was initiated in a session where 

a group of teachers watched and analysed a Japanese TIMSS lesson, and continued 

with the teacher’s decision to teach this lesson in her class. We analyse the teacher’s 

reflective process in terms of Ricks’ (2011) "process reflection" framework, and ex-

plore the factors that affected it. The results demonstrate the impact that facilitated 

peer discussion around a videotaped foreign lesson may have on teachers' reflection.  

BACKGROUND AND RATIONALE OF THE STUDY 

VIDEO-LM (Viewing, Investigating and Discussing Environments of Learning Ma-

thematics) is a project that offers video-based professional development (PD) courses 

for secondary mathematics teachers in Israel since 2012. In this section, we briefly 

review the merits of using video for teachers’ professional growth, and describe how 

the project utilizes this resource to achieve its goals. Then we focus on a specific 

videotaped lesson that served as a catalyst for the reflective case described further on. 

Video-based professional development for mathematics teachers 

The use of video for professional development of mathematics teachers has become 

prevalent during this era's technological advances. Sherin (2004) reviewed the benefits 

of using video: it provides detailed documentation of what happens in class, without 

the need to rely on memory; when watching a recorded lesson, one can move back and 

forth in time, freeze a picture and focus on it, and see certain sections again - perhaps 

from different points of reference. Consequently, video serves as a tool for increasing 

teachers' awareness of their teaching practices (Santagata, Gallimore & Stigler, 2005) 

and for developing their mathematical knowledge for teaching (MKT; Ball, Thames & 

Phelps, 2008). The main objectives for using video in professional development (PD) 

courses nowadays are: (1) dissemination of new curricula; (2) assessment and im-

provement of teaching skills; (3) advancement of teachers' proficiency to notice stu-

dents’ mathematical thinking; and (4) providing teachers with tools and language for 

reflection on their practice (Karsenty & Arcavi, 2017). The study reported herein is 

part of the VIDEO-LM project, which aims at the fourth objective.  

The VIDEO-LM project 

VIDEO-LM aims to develop reflective skills among mathematics teachers through 
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deep, facilitated discussions about authentic videotaped lessons. During a PD session, 

teachers watch videos of lessons and discuss them using a special framework devel-

oped for this purpose, originating from Schoenfeld’s “Teaching in context” theory 

(2010). Schoenfeld proclaimed that teachers’ resources, orientations and goals can 

explain their real-time decision-making. Arcavi & Schoenfeld (2008) derived from 

these constructs some analytical tools, that serve to enhance mathematics teachers’ 

reflection when observing videotaped lessons. These tools were modified by the 

VIDEO-LM project team into six components which comprise the “six-lens frame-

work” (henceforth SLF), allowing the PD participants to share the same language 

when analysing lessons. The lenses are: mathematical and meta-mathematical ideas; 

goals; tasks and their enactment; classroom interactions; dilemmas and decision- 

making processes; beliefs about mathematics, its learning and its teaching (for a more 

detailed account of these lenses, see Karsenty & Arcavi, 2017). SLF differs in several 

significant aspects from other frameworks used in video-based programs: it focuses 

mainly on teachers’ actions; the lessons presented in the courses are not necessarily 

considered as reflecting “best-practice”, yet they must be rich enough to stimulate deep 

conversations; and the mathematical content of the lesson, rather than generic features 

of teaching, is at the centre of attention. VIDEO-LM discussions also endorse norms 

that decentre judgment and encourage reasoning about the filmed teacher's decisions. 

The Japanese lesson 

In VIDEO-LM sessions, PD participants usually watch teachers who are unfamiliar to 

them, sometimes even teachers from other countries. The lesson that instigated the 

reflective process to be discussed herein was a Japanese TIMSS lesson known as 

“Changing Shape without Changing Area” (http://www.timssvideo.com/67). 

This lesson, filmed in 1995 as part of the TIMSS video project, is a geometry lesson for 

8th grade. The lesson began with a brief reminder of the theorem that was learnt in the 

previous lesson: “triangles with equal bases and between two parallel lines have equal 

areas”. Then, the teacher introduced task #1 (see Figure 1) on the board and gave the 

students 3 minutes to work on it on their own. When 3 minutes had passed, the teacher 

instructed the students to walk around the class, discuss the task with their peers, use 

hint cards if needed and consult with him and with an assistant teacher. This activity 

lasted for 15 minutes, and then some students presented their work on the board. 

Similar instructions were given for task #2. This lesson was chosen for VIDEO-LM 

courses because it contains many rich topics for discussions, such as the teacher’s 

pedagogy, the intriguing tasks and the way the teacher facilitates them. In addition, 

 

Figure 1: The problems introduced in the Japanese lesson 

1st task:  

Change the bent borderline be-

tween Bando's land and Chiba's land 

into a straight borderline, without 

changing the area of land that each 

of them owns.  

 

Bando's land Chiba's land 

2nd task:  

Change the given 

quadrilateral into 

a triangle without 

changing its area. 

http://www.timssvideo.com/67
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task #1 is situated in everyday life, and both tasks are easy to understand but not easy to 

solve, requiring a non-trivial application of a geometric feature.  

Rationale and research questions 

The case study reported here was part of a larger study in which the discussions around 

the Japanese lesson were meticulously characterized (Karsenty & Schwarts, 2016). 

Here, we report in detail on a profound reflective process experienced by one teacher, 

Joelle, who participated in the project's pilot group. Joelle's story, which will unfold 

below, originally led to the hypothesis that viewing, analysing, and discussing such a 

lesson may affect teachers' reflectivity and practice. The purpose of this case study was 

therefore to follow more closely the emergence of a reflective process and its stages. 

As a result, the research question we relate to in this report is: 

What characterizes a teacher’s reflective process following a PD session around a 

Japanese lesson? What are the factors that influence this process?  

METHOD 

Data collection and analysis  

The reflective process was investigated using a qualitative method. Joelle is a sec-

ondary mathematics teacher in a public high school in Israel. When the study began, 

she had been teaching for 11 years. She participated in a VIDEO-LM PD course in 

2012-13, and facilitated a VIDEO-LM course in 2013-14. Data were collected from 

several stations across Joelle's professional trajectory, and consist of: video recordings 

of all PD sessions in which she participated in 2012-13; audio recordings of all PD 

sessions that she facilitated in 2013–14; two semi-structured interviews with her, the 

first conducted at the end of the 2012-13 PD and the second several months later; and 

reflective essays submitted by participants of the 2013-14 PD course facilitated by her. 

For the purpose of this study, episodes were selected from the data according to Jo-

elle’s references to the Japanese lesson. This material was transcribed. Data analysis 

included identifying in this body of data common themes that correlate with the four 

stages of the process reflection framework (see below), a framework that "integrates 

the myriad uses of reflection into a more applicable construct" (Ricks, 2011, p. 252). 

Framework for data analysis: The process reflection framework 

Dewey (1910) suggested that reflective thought is a process that begins with a sur-

prising or problematic event. Schön (1983) combined Dewey's concepts with the idea 

of knowing-in-action, claiming that practitioners' knowledge of their practice is usu-

ally hidden within patterns of action. Ricks (2011) referred to their ideas in the context 

of mathematics education, arguing that reflection is essential to teachers' professional 

growth because it produces knowledge anchored in practice. Based on the ideas of 

Dewey and Schön, Ricks introduced a conceptual framework that classifies teacher 

reflections into two categories: (a) incident reflection, which includes specific events 

that are not related to future activity; and (b) process reflection, in which separate 

reflective events are combined into a coherent continuum that has purpose, direction 
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and content. The process reflection is modelled in four stages, which constitute the 

process reflection framework: (1) experiential event – an event that leaves the practi-

tioner surprised, confused or curious, and might therefore initiate a reflective cycle, 

since the beliefs or premises held were not sufficient to forecast the bewildering oc-

currence; (2) idea suspension and problem creation – this stage can develop only if the 

practitioner rejects an instant solution, and instead takes the time to recognize prob-

lematic characterizations of the event; (3) idea formation: ramify and refine – once the 

challenges have been defined, possible solutions can arise, and one of them is chosen 

in a justified manner; and (4) testing action with observation – the meaningful action 

that was chosen is executed and observed by the teacher, sometimes opening another 

reflective cycle.  

FINDINGS: JOELLE'S IDENTIFIED STAGES OF PROCESS REFLECTION  

In this section, we describe episodes from Joelle's practice using the reflective process 

framework, and explain why her utterances and actions constitute a particular reflec-

tive stage. 

Stage 1: Experimental event 

The story begins at the first PD session that Joelle attended. This session was part of a 

pilot course for 10 experienced teachers whose role was, besides regular participation, 

to act as an advisory forum and comment on the chosen videos and on SLF as a tool for 

video observation and analysis. The session was co-facilitated by the two researchers 

who designed the project. They screened a few minutes of the Japanese lesson, and 

asked the teachers to solve task #1 (Figure 1). Then, they focused the discussion 

around the lenses of tasks and goals. The participants were surprised by the task and 

the Japanese teacher’s pedagogy, and remarked that the lesson is very different from 

their common practice. Moreover, a few teachers failed to solve the task. These oc-

currences, which we identify as the experimental event, led to strong reactions on the 

part of teachers, either enthusiastic or reluctant ones. Joelle was a prominent opponent 

to using the lesson in future PD sessions, as expressed in her following words:  

First, well, Japan, that's ok, Japan... when I imagined, how in my class, and I have an ex-

cellent class, I would present such a task, there would be much more noise... much more of 

"what do you want, and what…" even in the beginning, when I am only presenting the 

task. "Teacher, what do you want and where did it come from?"… and afterwards, I don’t 

know how it will be here [in the Japanese lesson to be further screened], but in my class 3 

or 4 students would try it, and the others, even good and strong students, would do nothing, 

because they are not used to such things at all... 

Joelle further explained that in her opinion a lesson from another culture might alienate 

teachers, perhaps due to the gaps between Israeli students’ learning habits and those of 

Japanese students. One of the VIDEO-LM team members, Ana, who was present at the 

session, tried to convince Joelle to reconsider her opinion:  

Ana: This is a very good comment, but the discussion we want to raise is about what 

beliefs we bring and can convey to our students… 
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Joelle: I think, that you want to change the world too much. And I think that our world is     

not that bad, there is no need for revolutions here. 

Joelle did not accept Ana's perspective, and highlighted her stance that the project team 

members “want to change the world too much”. She also claimed that there is no need 

to watch lessons from other countries, implying that ordinary Israeli lessons can pro-

vide good enough artefacts that more teachers would find relevant. This time, another 

teacher responded to Joelle's arguments:  

Beth: On the one hand, I agree with you, but on the other hand I think that sometimes it's 

easier for us to look at something else entirely, because if I look at a teacher from 

here... I'll say, "Wow, I'll never be able to do that". But if I look at another culture, 

it's less threatening... it's less embarrassing even. It's also very thought-provoking, 

because it's really an interesting culture. And then the art of the discussion is to talk 

about what I can still take from this, in our culture, I do not have to take it as is. 

Joelle: That's what was interesting for me, right. 

Stage 2: Idea suspension and problem creation 

As shown above, Joelle's reluctant response to the team member's comment has shifted 

towards a more affirmative reaction when responding to Beth’s comment. Joelle ex-

plained this shift in her view, in retrospective, during the first interview:  

"What helped me is teachers who teach, in the field, not people from academia… It cer-

tainly influenced me, that people who teach at schools and deal with teaching and teachers 

said that this lesson is good." 

At this stage, the second phase of the reflection process was initiated: it seems that 

Joelle suspended her strong beliefs against the lesson and started thinking about its 

possible affordances. 

Stage 3: Idea formation: ramify and refine  

A few weeks after the PD session described above, the project team asked Joelle to 

videotape a few lessons in her classroom, to enlarge the project's repertoire of lessons. 

Joelle agreed, offering to film lessons she planned to teach on the topics of probability 

and calculus, but most surprisingly, she also suggested to reconstruct the Japanese 

lesson in her class and film it. A possible interpretation of this suggestion is that Joelle 

had decided on an action that would help her clarify her beliefs. She referred to this 

decision in the first interview:  

Joelle: At first, the Japanese class seemed mysterious to me because it is not like what we 

are doing, and then I said in the session, it is not applicable and it's not suitable for 

our curriculum, that was the problem... so precisely because it was so strange to 

me, I thought, "Who says you are right? Go and check it out, it's something worth 

checking". 

Interviewer: But was there something... that influenced you? 

Joelle: Yes, definitely. The fact that people were in favour of the lesson... and said, "It can 

be a good thing, it can be useful, and it is not so bad that there is a gap between our 
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students’ knowledge and what we expect from them". It certainly strengthened it... 

and once people justified their opinion then I was even more interested in checking 

it. It is not only the Japanese teacher who thinks this kind of lesson is profitable, 

teachers here believe it as well.  

It seems that Joelle's motivation to teach the Japanese lesson in her class developed as a 

result of her peers’ enthusiasm. This decision can be identified as the stage at which 

Joelle's incident reflections were collected into a cohesive process; she decided on an 

action that would assist her in examining her orientations. She used her experience, 

insights from peers and her agency in the classroom to revise beliefs through practice. 

Stage 4: Testing action with observation 

After conspicuously opposing the Japanese lesson, stating that "it does not suit Israeli 

teachers and students", and then rethinking its potential, Joelle finally taught it in a 7th 

grade advanced track classroom. In the next VIDEO-LM PD session, she recounted 

this experience:  

I tried to teach the Japanese lesson... I had many concerns, I was sure they [students] would 

not understand, nor would they connect, and I was very surprised... the kids were all very 

interested, I think they were more active than the Japanese [students], they had such a 

passion to solve it... some students came up with the solution pretty quickly on their own, 

but they did not stop, they said "So what? We want to find another solution!" Some parents 

later told me that their children came home and showed them... This was a very big sur-

prise [that resulted] from this lesson. 

Joelle's words indicate that her beliefs about the lesson were changed dramatically 

following her reconsideration of the lesson and the implementation in her classroom. 

Another cycle? 

In the second interview conducted with Joelle, several months after the first interview, 

she elaborated her reflection on the lesson that she had taught: 

The experience of the lesson was very positive... I thought they would tell me "What do 

you want from us? What is this thing?" but it was not like that at all. I would like to have a 

full program like this, with deep questions that will slowly bring us to something, but 

because I had only two interesting questions, I don’t believe that there was much left. Yet, 

I don’t think that it was pointless...  

This excerpt reflects a complex position. It seems that the teacher is pleased with her 

own mental flexibility and daring, and thinks that the lesson was a positive experience 

that motivated students to participate in class. On the other hand, with the perspective 

of several months, it troubles her that such a lesson is not part of a teaching continuum 

rich in inquiry tasks related to the material being studied. However, the reflective cycle 

did not stop there. Joelle became a keen advocate of VIDEO-LM and of the Japanese 

lesson, and in the following year she facilitated a PD course in her hometown. Not only 

did Joelle present the Japanese lesson to the PD participants, but she also showed the 

reconstructed lesson that she had taught in her class. At the next meeting, more than 

half of the participants reported that they had taught it in their own classes. One of 
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those teachers wrote about this experience in the course’s final assignment, referring to 

Joelle’s lesson: 

It was surprising to discover that when this lesson was given in an Israeli classroom, the 

students were as interested as the Japanese students, and that they were also eager to delve 

into the solution with great curiosity. Watching this lesson when it was “transferred” to 

Israel gave me confidence as a teacher to incorporate this type of teaching [in my class]. 

Joelle's concern that teachers would feel antagonism towards the Japanese lesson was 

refuted. Moreover, the "local" implementation of the lesson was compelling for many 

teachers, as evident from the quote above.  

SUMMARY 

The aim of this case study was to characterize one teacher's reflective process and to 

point to possible factors that might have influenced it. We argue that Joelle’s reflective 

process was ignited by the disagreement among peers during the discussion in the PD 

session devoted to the Japanese lesson. This disagreement led to a productive peer 

discussion, in which different approaches and alternative beliefs were legitimized. 

According to Joelle's self-evidence, the various opinions triggered her to reconsider 

her strong orientation. This is a salient finding: the reflective process was initiated by 

other teachers' enthusiasm regarding the video, not by the agenda of the PD facilitators. 

Joelle decided on an action aimed at revisiting her beliefs, and taught the lesson in her 

class. After the lesson, which she considered to be successful, she still had some res-

ervations, but these were based on a new experience and on a deeper examination. The 

reflective process Joelle went through led to a "chain reaction": not only that she 

presumably motivated reflective processes among the teachers in the PD course that 

she facilitated, but also these reflections were potentially reinforced by observing both 

the Japanese lesson and Joelle’s local experience in her class. 

Another factor that apparently influenced Joelle’s reflective process was the substan-

tial difference between the Japanese and the Israeli teaching cultures. This finding 

aligns with existing literature on cultural differences as a possible catalyst for teachers' 

learning. For example, Stigler and Hiebert (1999) state in their book The Teaching Gap 

(which also refers to the TIMSS Japanese lesson discussed here) that “teaching is a 

cultural activity... we are largely unaware of some of the most widespread attributes of 

teaching in our own culture” (p. 11). Regarding the experience of watching lessons 

from different countries, Stigler and Hiebert note that “looking across cultures is one of 

the best ways to see beyond the blinders and sharpen our view of ourselves” (p.13). 

Clarke and Hollingsworth (2000) claim that when teachers watch a lesson from a 

culture very different than their own, their assumptions about what is expected and 

accepted are no longer relevant, and they are more likely to contemplate their teaching. 

The case study reported in this paper illustrates how such contemplation takes place 

and how it can enhance reflective processes. In Joelle's case, the factors identified as 

triggers for a meaningful reflection were the act of watching a lesson from a different 

culture; the focus on the lenses of goals and tasks to analyse the filmed teacher's ac-
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tions; and the power of a peer discussion that brings up different approaches. The 

combination of these elements led Joelle to a profound reflection process that affected 

not only her own practice, but also practices of other teachers, in a manner that reminds 

the effect of rings formation by a stone thrown in water.   
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MIDDLE SCHOOL STUDENTS’ REASONING  

ABOUT VOLUME AND SURFACE AREA 

Rebecca Seah and Marj Horne  

RMIT University 

 

This study investigates students’ reasoning skills in practical application of mathe-

matics. Students were asked to explain the volume and surface area of a shoe box after 

enlargement. The data from two groups of students were collected and analysed. The 

first administration of the tasks was given to 253 Year 4-10 students to validate the 

usability of the items and marking rubric. The second administration involved 273 

Year 8-10 students of a different cohort. The results show that students use a combi-

nation of linguistic, symbolic, and diagrammatic tools demonstrating different level of 

reasoning.  

INTRODUCTION 

Area and volume measurement provide a rich context for real-world applications of 

number processes and the development of spatial skills. In particular, spatial reasoning 

is seen as a crucial skill for functioning successfully in the built environment we live in 

and in ensuring future success. Despite being taught in primary and secondary levels, 

evidence shows that many students and prospective teachers alike have superficial 

understanding of both concepts such as: not understanding partitioning in terms of 

array and grid structure, conservation of area and volume, and confusing area with 

perimeter, volume with surface area, and volume with capacity (Owen & Outhred, 

2006; Tan Sisman & Aksu, 2016). A lack of effective teaching instructions, an em-

phasis on formula memorisation and routine application of rules, combined with a lack 

of spatial visualisation and an inadequate integration of geometric knowledge con-

tributed to students’ inability to engage in mathematical reasoning in measurement 

situations. Research in the area of learning progressions has demonstrated that a 

framework describing student development of mathematical reasoning can lead to 

improvements in teaching and learning (Siemon et al., 2017).  

THEORETICAL FRAMEWORK 

Just as analysing students’ errors and misconceptions allows one to comprehend how 

students internalise concepts and skills (Tan Sisman & Aksu, 2016), analysing how 

students explain the mathematics in practical situations allows one to determine factors 

that influence their thinking and reasoning abilities. When engaging in a task, five 

components are at work in an individual’s working memory: networks of propositions 

(conceptual knowledge of mathematical concepts), skills (procedural knowledge 

needed to carry out the task), imagery (concrete objects, diagram or images associated 

with the event), episodes (events associated with the situation) and attitudes 
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(Clements, 2014; Gagné & White, 1978). How well a student reasons is influenced by 

the relationships between and among these components, as well as individuals’ beliefs 

about their own mathematical ability to complete the task.  

Mathematics can be seen as a deductive theory grounded in notions and axioms. Every 

concept can be defined minimally and sufficiently to specify that concept. Every 

concept mentioned triggers our memory to produce an ‘image’ - the collective mental 

pictures, actions, the corresponding properties and processes that are associated with 

the concept, together form a concept image (Vinner, 1991). Students’ use of diagram 

allows ones to see their thought processes. Diagrammatic thinking then, relates to the 

actions of objectification, with diagrams as semiotic means of objectifying an abstract 

idea (Radford, 2008). Misconceptions occur when there is a disjuncture between 

personal concept image and definitions derived from experience and formal geometric 

knowledge deriving from axioms, definitions, theorems and proofs. For example, a 

child’s first encounter of the word ‘volume’ may relate to the degree of loudness but 

conceptually in geometry, volume may mean: (1) the amount of matter that is con-

tained within the boundary surfaces, (2) the amount of space occupied by an object in 

relation to other objects, and (3) the space caused by water displacement (Sáiz & 

Figueras, 2009). If rules are taught without understanding dimensionality, students are 

likely to assume that volume means ‘length by width by height’ of an object and that 

area means ‘length by width’ (which is procedural rather than conceptual thinking) and 

apply them indiscriminately (Owen & Outhred, 2006).  

Teaching formula without understanding dimensionality is meaningless and can lead 

to computational errors caused by confusing the difference between ‘directionality’ 

and ‘dimensionality’ (Fernández & De Bock, 2013). The former refers to the different 

directions (orientation) a geometrical figure has whereas dimension refers to the 

magnitude of attributes or sometimes just the number of attributes. When asked to 

calculate the volume of a rectangular prism, Tan Sisman and Aksu (2016) found that 

only 29% of their 6th grade Turkish students gave the correct answer. Many failed to 

understand dimensionality and computed as ‘length + width + height’ (directionality), 

‘3 x length + width + height’ or multiply the dimensions of two measurement only. 

Similarly, when asked to calculate the surface area of a rectangular prism, only 6.3% 

could produce a correct response, the remaining cohort either added the length, width 

and height together or added all the dimensions and multiplied the product by six.  

Inability to visualise three-dimensional (3D) objects can affect students’ ability to 

reason. In a lesson study, teachers realised that teaching the concept of surface area is 

not about developing a formula (Lieberman, 2009). Rather, it is about getting their 

students to learn to visualise the 3D lateral surface area in two dimensions (2D) and 

make connections between height in 3D and width in 2D. Visualisation is a cognitive 

process in which objects are interpreted within the person’s existing network of beliefs, 

experiences, and understanding (Phillips, Norris, & Macnab, 2010). In mathematics, 

diagrams are used schematically (ibid). Analysing how students reason about math-

ematical situations, their use of diagrams, language and symbols, can assist in deter-
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mining individuals’ networks of propositions, and attitudes towards mathematics. This 

will significantly contribute to our effort in determining a learning progression that 

promotes reasoning. 

Research has shown that few students could engage in relational-inferential proper-

ty-based reasoning, for example, students assumed that two bodies with equal surface 

area have the same volume, or that enlarging n times the linear magnitudes of a body 

enlarges n times its volume (Sáiz & Figueras, 2009). In this study, we attempt to un-

ravel the range of students’ reasoning abilities when considering changes in volume 

and surface area caused by enlargement. We adapted Wattanawaha’s DIPT classifi-

cation framework (Clements, 2014) by analysing students’ reasoning based on the 

Dimensions of thinking, whether students use 1D, 2D or 3D thought in their response, 

the degree of Internalisation of visual images, the manner in which the student Pre-

sents the argument (the use of examples, linguistic, symbolic/algebraic, diagrammatic 

tools), and the Thought processes required to justifying their reasoning. Our aim is to 

categories the nature of students’ geometric measurement reasoning to show the 

growth in networks of propositions, with specific focus on how a change in lengths 

affects volume and surface area.  

METHOD 

This study is part of a larger study, Reframing Mathematical Futures II (FMFII), where 

we have been developing a learning assessment framework to assist teachers to teach 

reasoning in geometric measurement. It is based on the premise that an evidence-based 

validated set of an assessment tools and learning tasks can be sued to nurture students 

mathematical reasoning ability (Siemon et al., 2017). The two items (Figure 1) were 

designed to assess students’ ability to reason about the volume (GSZLV) and surface 

area (GSZLSA) of a geometric figure after enlargement Rubrics for scoring items were 

validated through both expert review and item analysis of student data. Figure 2 show 

how the DIPT was adapted in the analysis.  

 

[GSZLV] Matt said that if you double the length of the edges of a shoe box, it will double 

in volume. Do you agree? Explain your answer (You may use diagrams if you wish). 

Score Description 

0 No response or irrelevant response 

1 Agrees with Matt with little/no explanation 

2 Agrees with Matt giving reasons that only enlarge one or two dimensions 

3 Disagrees with Matt with little/no reasoning, may say that it is quadrupled 

4 Disagrees with Matt reasoning based on doubling all side lengths 
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Figure 1: Reasoning items on the volume and surface area of geometric figures after 

enlargement.  

D – The scores 1, 2, 3 represent the evidence of dimensionality used in argument. For sur-

face area, a 3 is given if students include all 6 faces in their argument 

I – Static diagram use (additive thinking) scored 1, dynamic use to show change scored 2  

P – Argument based mainly on words scored 1, symbolic scored 2 and diagrammatically 3 

T – Argument with specific examples 1, general argument without examples 2. 

Figure 2: Adapted DIPT framework for analysing students’ reasoning. 

The participants were middle-years students from across Australian States and Terri-

tories. Two groups of cohorts were involved. The first set of data – the trial data, was 

taken from 253 Year 4-10 students from two primary and four high schools across 

social strata and States to allow for a wider spread of data being collected. The teachers 

were asked to administer the assessment tasks and return the student work. The trial 

results were marked by two markers and validated by a team of researchers to ascertain 

the usefulness of the scoring rubric and the accuracy of the data entry. The second set 

of data – the project data, was taken from 273 Year 8-10 students from six high schools 

situated in lower socioeconomic regions with diverse populations. The project school 

teachers were asked to mark and return the raw scores instead of individual forms to 

the researchers. The project school teachers received two 3 days face-to-face profes-

sional learning sessions on spatial and geometric reasoning prior to the implementation 

of the assessment tasks. They also had access to a bank of teaching resources and four 

on-site visits to support their teaching effort.  

FINDINGS 

Tables 1 and 2 show the percentage breakdown of student responses for GSZLV and 

GSZLSA respectively in each year level. It is clear that more than 50% of the students 

are unable to coordinate more than two dimensions in the tasks. A large number of 

students in the trial schools either did not attempt the task or produced irrelevant re-

sponses. While this figure is much lower for the project schools, this could easily be 

explained by the professional learning the teachers in those schools have undertaken. 

[GSZLSA] Matt then says that if you double the lengths of the edges of a shoe box, its 

surface area will double. Do you agree? Explain your answer (You may use diagrams if 

you wish). 

Score Description 

0 No response or irrelevant response 

1 Agrees with Matt with little/no explanation 

2 Agrees with Matt giving reasons that only enlarge one or two dimensions 

3 Disagrees with Matt with little/no reasoning, may think increase is larger 

because of the 6 faces 

4 Disagrees with Matt reasoning recognising that each face will increase area 

by 4 times so overall increase is quadrupled 
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Overall in Years 8-10, 6% and 14.7% of trial and project school students respectively 

were able to reason fully about the volume task. For the surface area task, the figures 

were 4.2% and 8.4% respectively.  

 Trial Data Project Data  

Score Yr 4 Yr 5 Yr 8 Yr 9 Yr 10 Overall Yr 8 Yr 9 Yr 10 Overall 

0 54.8 38.9 43 42.1 50 45.1 19.5 12.9 20.4 17.6 

1 35.5 29.6 33.3 10.5 10 22.1 27.6 25.8 24.7 26 

2 9.7 20.4 11.8 35 21.7 21 20.7 29 19.4 23.1 

3 0 11 9.8 5.3 10 7.9 21.8 23.7 10.8 18.7 

4 0 0 2 7 8.3 4 10.3 8.6 24.7 14.7 

Table 1: Results for GSZLV 

 Trial Data Project Data  

Score Yr 4 Yr 5 Yr 8 Yr 9 Yr 10 Overall Yr 8 Yr 9 Yr 10 Overall 

0 71 55.6 56.9 47.4 56.7 55.7 23 19.4 28 23.4 

1 22.6 18.5 27.5 14 15 19.3 32.2 31.2 22.6 28.6 

2 6.5 20.4 11.8 17.5 13.3 14.6 24.1 31.2 19.4 24.9 

3 0 5.6 2 17.5 8.3 7.5 17.2 12.9 14 14.7 

4 0 0 2 3.5 6.7 2.8 3.5 5.4 16.1 8.4 

Table 2: Results for GSZLSA 

The main interest here though, is not so much the number of students who were able to 

reason fully, but rather the nature of their reasoning. Using the adapted DIPT frame-

work to analyse the trial school data (Wattanawaha reported in Clements, 2014), Table 

3 and 4 shows a section of the DIPT analysis against the rubric scores for the assess-

ment items where n is the number of students who achieved that rubric score. 

Score n DIPT Analysis 

4 10 D - All students argued with 3D; I - 9 used diagram dynamically; P – All used 

symbolic argument; T - 9 used specific examples; 1 used general case 2L x 2W 

x 2H = 8LWH 

3 20 D – 8 students argued with 3D, 5 with 2D, 5 with 1D; I - 9 used static diagram, 4 

used a dynamic diagram; P - 8 argued linguistically, 9 attempted to argue sym-

bolically, 3 diagrammatically; T – 9 used an example  

2 53 D – 14 argued with 3D, 9 with 2D, 27 with 1D; I – 30 used a static diagram, no 

one used dynamic diagram; P –  28 argued linguistically, 19 symbolically, 6 dia-

grammatically; T – 22 attempted to use an example 

1 57 D – 3 with 3D, 3 with 2D, 43 with 1D; I – 13 used diagram statically, 1 used dia-

gram dynamically; P – 41 argued linguistically, 4 symbolically, 3 diagramma-

tically; T – 3 used an example 

Table 3: DIPT Analysis for the volume task GSZLV. 
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Score n DIPT Analysis 

4 7 D - 4 students argued with 3D; 2 with 2D; I - 6 students used diagram dynami-

cally; P – 3 students argued linguistically, 4 used symbolic argument; T - 6 

students used specific examples; 1 student used general argument.   

3 27 D – 5 students argued with 3D, 6 with 2D, 8 with 1D; I - 10 used static diagram, 

4 used a dynamic diagram; P - 11 argued linguistically, 8 attempted to argue 

symbolically, 1 diagrammatically; T – 10 used an example  

2 53 D – 2 argued with 3D, 12 with 2D, 37 with 1D; I – 18 used a static diagram, 3 

used dynamic diagram; P – 43 argued linguistically, 5 symbolically, 4 dia-

grammatically; T – 22 attempted to use an example 

1 44 D – no one used 3D, 2 argued with 2D, 26 with 1D; I – 10 used diagram statical-

ly, 1 used diagram dynamically; P – 22 argued linguistically, no one symboli-

cally, 6 diagrammatically; T – 1 used an example 

Table 4: DIPT Analysis for the volume task GSZLSA. 

Students who scored more highly on the rubrics tended to be those who engaged in 

symbolic argument, used diagrams dynamically and provided examples to clearly 

show 3D thinking. There is a tendency for those in the upper year levels to score more 

highly although some Year 5 students did demonstrate 3 dimensional thinking. Note 

that when a student showed 2D thinking, it does not necessarily mean they did not have 

3D thinking. Rather, they did not give evidence of it.  

 

 

GSZLV rubric score = 1 (Yr 5) 

D = 1 (1D thinking) 

I = 1 (additive thinking) 

P = 3 (diagrammatic argument) 

T = 2 (general argument) 

 
(The diagram here show adding of additional boxes) 

GSZLV rubric score = 3 (Yr 9) 

D = 2 (2D thinking) 

I = 1 (additive thinking) 

P = 1 (linguistic argument) 

T = 2 (general argument) 

 

GSZLSA rubric score = 4 (Yr 10) 

D = 3 (recognition of 6 faces) 

I = 2 (showed enlargement) 

P = 2 (symbolic argument) 

T = 1 (specific example) 

Figure 3: Examples of DIPT analysis. 

The language students used demonstrated across year levels a lack of understanding of 

the concept of volume:  
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Yes because the shoe box weighs the same amount (Yr 10) 

If you double the edge of a shoe box there is no differences unless you double the perimeter 

(Yr 8) 

Yes only if there is nothing inside the box or the same amount of something (Yr 4) 

and surface area: 

No because Matt is only extending the length, he is not adding any new edges (Yr 9) 

No you would have to double the length and width to make the surface area double (Yr 9) 

If the formula doesn’t work for area or volume then it wouldn’t work on a 2D or 3D shape 

(Yr 8) 

Diagrams also indicated different levels of understanding as did the used of examples 

and related calculation. This suggest that more emphasis on visualising and working 

with 3D objects in measurement is needed to develop conceptual knowledge. 

DISCUSSION 

The DIPT analysis enabled students’ geometric measurement reasoning to be analysed 

and categorized. The results show progression in thinking is not based solely on year 

level. Dimensional thinking is analysed based on the type of diagram, language or 

examples students used. Good students are skilled in providing an example with 

measurements, using diagrams to show perspective effectively and explaining their 

reasoning symbolically and linguistically. Poor students tended not to use these tools 

skilfully. They used diagrams statically, such as 2D shapes, nets, arrays, and divided 

rectangles, reflecting a lack of knowledge of the concepts. Note that the use of dia-

grams was not prevalent in younger grades, suggesting that this may be a skill that is 

learned at school. The number of students who did not attempt the tasks or made very 

cursory attempts is a reflection of their attitudes towards mathematical reasoning. 

When engaging in a problem solving task students need to retrieve appropriate in-

formation from their network of knowledge, have the skills to organise that knowledge 

and to present it in a coherent argument. This does have ramifications for classroom 

practice.  

Success in mathematical reasoning relies on how individuals connect their web of 

knowledge and its relationships and use taken-as-shared mathematical language and 

representations to communicate and justify their thinking. This analysis has enable us 

to see students’ current levels of mathematical reasoning about a measurement situa-

tion and the use of tools such as language, diagrams and example in argument. How-

ever, it has not explained how to move student from emerging use of these tools to 

become fluent in using them to engage in inferential property based analytical rea-

soning. Further research is needed in this area.  
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Videotaping is widely accepted as a useful tool for the professional development (PD) 

of teachers because it enhances their ability to perform an in-depth reflection on 

classroom events. Thus, a video-based discourse has the potential to increase teach-

ers’ awareness of their own teaching processes. The present study was conducted as 

part of a program that emphasizes a specially designed Video-Based Didactics (VBD) 

discourse. The study focuses on the professional development of two mathematics 

teachers who also serve as district instructors of mathematics teachers. We will de-

scribe how the VBD discourse contributes to the development of the two instructors in 

terms of the turning points between their different levels of awareness with regard to 

their classroom teaching and their teachers’ instruction.  

THEORETICAL BACKGROUND 

Using video for the professional development of teachers 

Over the last decades, videotaping has been widely accepted to be a useful tool for 

teachers’ PD; however, the choices of what to focus on and what methods to use has 

changed over the years (Sherin, 2004; Santagata and Guarino 2011; Blomberg, Sherin, 

Renkl, Glogger & Seidel, 2014). Developing the ability to thoroughly reflect on 

classroom events is one of the main goals of the teacher training process, which is 

thought to be fostered by video-based observation (Borko et al., 2008; Sherin & Van 

Es, 2009). Teachers are commonly encouraged to observe either their own teaching 

videos or those of others (Borko, et al., 2008; Sherin & Han, 2004; Rosaen, Schram, & 

Herbel-Eisenmann, 2002). It was found that, compared with analyzing other teachers' 

videos, teachers who analyzed their own teaching experienced higher activation, 

manifested by higher immersion, resonance, and motivation. In addition, they became 

more aware of relevant components of teaching and learning. However, they were less 

self-reflective with regard to articulating critical incidents (Seidel et al., 2011). 

Moreover, use of video encouraged changes in their teaching habits because it helped 

teachers to focus on their analysis, view their teaching from a new perspective, trust the 

feedback they received, feel free to change their practice, remember to implement 

changes, and see their progress (Tripp & Rich, 2012).  

Educational reformers have long advocated for increasing teachers’ engagement in 

peer observation, feedback, and support (Vescio, Ross, & Adams, 2008), since such 
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collaboration has been linked to greater student achievements, an innovative climate, 

as well as an improved reform implementation and sustainability (Coburn, Mata, & 

Choi, 2013; Frank, Zhao, & Borman, 2004).  

Leaders of teachers' video-based PD programs should be aware that "Video alone does 

not define a lesson, it must be embedded within an instructional approach in order to 

foster teacher learning" (Blomberg et al., 2014, p. 458). In addition, video-based dis-

course can foster teacher's awareness of the teaching processes in a classroom environ-

ment (Consuegra et al., 2016). 

Theoretical framework 

Teachers’ professional growth involves climbing from lower to higher levels of 

awareness with regard to teaching. Here we adopted Mason’s framework (1998) for 

such levels, developed for mathematics teachers, in our study of the PD of the two 

instructors of mathematics teachers:  

1. Awareness in action: Awareness of the ability to choose, distinguish, differ-

entiate, identify similarities, identify generalizations, see something as an ex-

ample of something else, connect, adapt, visualize and more. 

2. Awareness in discipline (knowledge of awareness in action): Awareness of the 

ability to examine how the teacher performs the actions mentioned at the pre-

vious level, while addressing discipline. For example, examining how teachers 

foster mathematical/physical thinking habits by formulating inquiry questions 

that encourage thinking or determining what methods they use for solving 

problems. Mastering this level indicates that the teachers know the importance 

of being aware of their actions in the classroom, and their consequences. 

3. Awareness in counsel (knowledge of awareness in a discipline): At this level, 

self-awareness should be sensitive to the needs of others in order to build their 

own awareness in action and awareness in a discipline.  Mastering this level may 

indicate professionality on behalf of the teachers as trainers of other teachers in 

their own discipline. (Mason, J., 1998) 

THE VBD DISCOURSE APPROACH: PRINCIPLES AND PRACTICE 

The widely agreed potential of using video analysis in teachers’ PD has ushered in the 

development of a special video-based didactics for teachers' training. This led us to 

develop a program whose aim is to provide math (and physics) teachers with profes-

sional development by using video analysis effectively, both at pre-service and 

in-service levels as well as at the level of teachers-trainers’ PD. The program utilizes 

an approach that emphasizes a specially designed Video-Based Didactic discourse 

(abbreviated hereafter as VBD discourse) generated purely for the teachers’ PD and 

not for their administrative evaluation. This approach is based on the assumption that 

teachers' privacy and independence are highly important factors in teaching as a pro-

fession. It also takes into account the fact that although video analysis offers a great 
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opportunity for achieving teachers’ professional development, not all of them are 

comfortable in opening themselves up to such scrutiny (Sherin & Han, 2004). 

Here we will describe a research study that aimed at revealing how using our VBD 

program changed the focus of attention and the levels of awareness of two mathematics 

teachers’ district instructors.  

PRINCIPLES OF THE VBD DISCOURSE 

Our VBD discourse is based on the following rules:  

A. Use of evidence – The VBD discourse is based on evidence from the teacher’s 

class, especially excerpts of video recordings of the lessons. Regarding teachers’ in-

structors, evidence is taken from their recorded discourses with the teachers. Both the 

trainer and the trainee are encouraged to use observations in order to formulate ques-

tions about their actual actions: the teacher as a trainee, about the teaching, and the 

trainer about the discourse conducted with the trainee. Similar to the constructivist 

approach for teaching (Honebein, 1996), discovery plays a central role in the VBD 

discourse and trainees who inspect their own teaching learn how to analyze, concep-

tualize, and evaluate it. The trainers follow a similar process regarding their guidance. 

B. Ownership – The teachers use their own devices (commonly, their own phone) to 

record their teaching. The video thus recorded belongs to them and is for their own 

personal use. C. Autonomy – The teachers choose the episode (we advise them to 

choose no more than 5-7 minute–long episodes from a whole lesson) on which the 

VBD conversation will be based. D. Clear role – In every VBD discourse the teacher 

who introduces the video evidence is the trainee and his partner is the trainer. Thus, 

even if the VBD conversation is held between colleagues of the same level of profes-

sionalism, the role played by each of them is clearly defined. They may switch roles 

from one session to another, but in each session their roles are clearly defined.  

E. Shared professionality – The subject matter and professional expertise should be 

shared by the trainer and the trainee, in order to enable a thorough content-related 

discourse. Thus, they both should have experience in teaching the same subject matter 

– either math or physics. F. Mutual development – The trainer and the trainee develop 

together their observation analysis tools. The development process is mutual even if 

the trainer brings to it a richer set of such tools. G. Introspection – Introspection is a 

basic condition for learning from self-viewing. The requirement to choose an episode 

from the whole lesson and provide it with a header initiates an introspection process. 

The introspection process addresses both the cognitive and the affective dimensions. 

H. An inquiry focus – The viewer of a video, being the trainee or assuming the 

trainer’s role, is encouraged to adopt a curious eye rather than a judgmental one when 

looking at the segment for topics to be discussed during the discourse. The discourse 

itself is carried out as a common conversation between the trainer’s and the trainee’s 

interpretations of the video evidence at hand. 
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THE VBD TRAINING PROGRAM 

The main goal of our program is to train teachers in both mathematics and physics in 

employing the principles described above (mainly F to H), when conducting a guid-

ance discourse as trainers (according to principle D) with other colleague teachers. The 

steps of the program are as follows: (a) One teacher (the trainee) videotapes his or own 

lesson, chooses a short episode from that lesson (5-7 minutes), and provides it with a 

title. (b) The other teacher (the trainer) prepares the didactic discourse, based on this 

video segment, by watching it (usually more than once) with a critical, non-judgmental 

eye, and prepares inquiring questions that arose from his observation. We encourage 

the participants to look for instances that could be related to students’ possible diffi-

culties in understanding the math at hand. (c) The trainer and the trainee then meet 

(face to face or online) and discuss the inquiries that arose. The meeting is recorded 

and is a common property of the trainer and the trainee. Whenever needed during the 

discourse, both of them can refer back to selected parts from the classroom video. In 

this way, the mutual inquiry-based discourse focuses (1) on interesting teaching events 

that might have been overlooked during class, (2) on students’ misconceptions ex-

pressed in the video, or (3) on the teacher’s explanations and responses. This practice 

can be a one-time meeting or a continuous process and is designed to benefit teachers 

serving in both roles: as the subject of the inquiry and as the trainer.   

RESEARCH METHOD  

The purpose of our research was to study how the VBD discourse affected the pro-

fessional development of two district instructors of mathematics teachers. The research 

method focuses on two case studies. 

Research Population 

Two district mathematics instructors, who were appointed by the Ministry of Educa-

tion to be responsible for the PD of 10 mathematics school instructors (a school 

mathematics instructor is in charge of mathematics teachers' training from several 

schools and he works in coordination with his district instructor). Both of them par-

ticipated during the last summer in our VBD discourse-training program for mathe-

matics instructors and they are currently implementing the VBD discourse approach 

for training their group of school mathematics' instructors. Here we will discuss how 

the VBD discourse approach contributed to the PD of these two mathematics district 

instructors  

Research Questions 

In order to evaluate the effectiveness of the VBD discourse regarding the PD of the two 

mathematics' instructors, we initiated research that investigated the following ques-

tions: What support is provided by the VBD discourse to the mathematics teachers' 

instructors in their PD? What characterizes an effective VBD discourse? 

In order to address these questions, we adopted Chapman’s definition of an effective 

video-based discourse as one that generates new insights of new teaching ideas, 
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strengthens one’s awareness regarding the teaching-learning process, and creates 

critical incidents and significant turning points (Chapman, 2017). 

Research Instruments 

Our documentation covers the following five resources, from which the first two are 

part of the program and the others were used for our research:  

Recording of: (1) Short video segments from the two teachers’ instructors’ mathe-

matics lessons in their own classrooms. (2) A VBD discourse with each of two district 

instructors guided by one member of the project team. (3) A VBD discourse with one 

of the project team members guided by each of the two supervisors. (4) Interviews with 

the two instructors after the VBD sessions. In addition, the instructors also responded 

to a questionnaire. 

DATA ANALYSIS 

Each member of our research team independently analyzed each of the instructor’s 

interviews and recorded discourses in which they played both the role of the trainer and 

the role of the trainee. The analysis focused on identifying the levels of awareness and 

the turning points between those levels. The results of the analysis of the members of 

the research team were then compared in order to evaluate their mutual agreement 

FINDINGS AND THE FIRST INTERPRETATION 

We will present here partial findings based on the above-mentioned resources.  

The following is a short description of the part of an episode chosen by Nella (pseu-

donym) and part of the VBD discourse that took place based on that episode. 

Episode 1: The diagonal. (From a lesson on the proof of: "The median length to 

hypotenuse in a right triangle is equal to half the hypotenuse". 

Nella asked her students to think about another idea re-

garding how to prove the theorem. One of the students 

suggested adding an auxiliary construction of segments 

parallel to [each] leg, which meet at point E; then we get 

a rectangle and then we can draw the second diagonal 

(AE) passing through the midpoint of the permit (D). 

Nella drew the student's attention to the fact that his 

proposal included an impossible construction because he 

proposed constructing an auxiliary that has two properties: to construct AC||BE, 

AB||CE and the segment AE will pass through the point D, the middle of BC. She 

emphasized that auxiliary construction in geometry can only have one feature, and 

sketched on the board an illustration of the case in which the two conditions do not 

exist (Figure 1). After continuing a brief dialogue with the student, she suggested that 

an auxiliary construction be built differently, and led the students step-by-step to the 

theorem proof. 

Figure 1:  The diagonal 
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Part of the VBD discourse between Nella and one of the program's staff (follow-

ing episode 1): 

The first part of the VBD discourse focused on Nella’s general pedagogy, manifested 

by the pleasant and relaxed atmosphere in her class and her didactical choice to con-

duct dialogues with her students about the different possibilities of proving the theo-

rem. In addition, following Nella’s remarks, the discussion dealt with the students’ 

difficulties in using auxiliary constructions in geometry in general, and especially in 

the current exercise. Toward the end of the discourse, the following dialogue devel-

oped within the VBD discourse: 

Trainer: There was something interesting in the dialogue with one student. He 

suggested drawing the parallel to the leg perpendicular and drawing the 

second diagonal so that it passes through point D.  You told him that it is 

not a correct construction, because it has two characteristics: is this con-

struction impossible?  

Nella: He suggested building an auxiliary construction that has two properties, 

and I explained to him that it is impossible. Students have difficulties in 

understanding the roles of auxiliary construction. 

Trainer: Let us think for a moment; as soon as we construct a parallel side to each of 

the triangle's perpendicular legs, what kind of square do you get? 

Nella: A rectangle; in the classroom we understood that it was a rectangle. 

Trainer: True, this is actually a rectangle where BC is a diagonal and D is the 

midpoint of BC. So I wonder whether the illustration you have shown on 

the board (Figure 1) is possible. 

Nella: Ahh ... right ... so basically, the second diagonal BE must pass through 

point D. So ... the drawing I showed on the board (Figure 1) is not possi-

ble... Wow, I'm shocked; how did I miss noticing that it's impossible?  

Trainer: I think this situation can happen to any teacher, especially when the student 

did not present the necessary reasons. 

Nella: You're right ... I could actually continue with the idea of  the student, and 

develop his direction in analyzing the proof, and only then introduce my 

idea of building an auxiliary construction ....how did I not see it, .....Wow 

it's amazing what happening here, .... It is not expected, this tool (VBD 

discourse) is powerful, I would not have thought about it, without this video 

and our discussion. 

The VBD discourse led Nella to a turning point (Chapman, 2017), as expressed in the 

VBD discourse. This turning point aroused Nella's awareness both as a mathematics 

teacher and as a mathematics instructor, on several levels (Leaning on Mason, 1998). 

Here we present some of them:  

Awareness in action as a mathematics teacher: Awareness of the importance of 

presenting a task solution in different ways, awareness of a variety of auxiliary con-

structions that can be integrated into a given task, awareness of students' difficulties in 
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building auxiliary constructions in geometry, awareness of the properties of correctly 

built auxiliaries, and awareness of students’ ideas. 

Awareness in action as a mathematics instructor: Awareness of her action as a 

mathematics instructor: "I think about the processes I underwent in instructing math 

teachers, and I understand that this is not enough". Awareness of the power of 

re-observation in a mentoring process based on video by comparing observation 

without documentation: "Now after I've experienced the VBD discourse, I am aware of 

the power of this tool for me as an instructor… In my opinion, by observing the 

classroom while teaching without documentation, one cannot reach such deep in-

sights". Awareness of the potential to develop points of view through VBD discourse, 

which helps math instructors to see something as an example of something else in the 

process of instructing teachers: "The situation that took place in my classroom is ac-

tually an example of a more general students' difficulty, which mathematics instructors 

should be aware of". 

Awareness in discipline as a mathematics teacher: Awareness of why she chose to 

present the second proof based on a different auxiliary construction, and did not ex-

plore the student's suggestion of an auxiliary construction. Awareness of the im-

portance of listening better to students' suggestions and of going through a proof tra-

jectory different than her own.  

Awareness in discipline as a mathematics instructor: Acknowledgement of the 

contribution of the VBD discourse to the development of mathematical and didactic 

teachers' knowledge: "The VBD discourse may be useful for professional development 

of mathematics teachers and mathematics teachers’ instructors, because they can 

discuss mathematics and pedagogy ideas they have seen in the video…" 

Awareness in counsel as a mathematics instructor: Acknowledgement of using 

VBD discourse as a training tool for enhancing the professional development of the 

teachers and instructors through knowledge of their awareness in action, and aware-

ness in a discipline.  "I learned from the VBD discourse to ask teachers, and instructors 

the following question: Did what happened in class (collaborative dialogue, flow with 

student ideas ...) characterize your lessons?"   

CONCLUSION 

In the present study, we presented some evidence for the professional development of 

two mathematics teachers’ instructors during an effective VBD discourse. Participat-

ing in our VBD discourse-training program increased their awareness, both as teachers 

and as teachers' instructors. The findings of this study indicate that VBD discourse is a 

significant tool that contribute to the professional development of mathematics 

teachers and mathematics instructors. 
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We present a case study investigating the Pedagogical Content Knowledge (PCK) of 

an elementary mathematics master teacher who implements a learner-centered ap-

proach to teaching fractions. Our data include two semi-structured interviews, various 

artifacts, and six videotaped lessons. In this study we identify ten elements of the par-

ticipant’s PCK and illustrate how these elements are enacted in the classroom through 

select lesson transcripts. 

INTRODUCTION 

Extending Shulman’s (1986) Pedagogical Content Knowledge (PCK), mathematical 

knowledge for teaching (MKT) refers to the kind of special knowledge needed for the 

mathematics teacher to carry out teaching (Ball, Thames, & Phelps, 2008). Subject 

matter knowledge (SMK) as a subcategory of MKT was particularly useful as a theory 

to justify policy efforts in measuring the knowledge scientifically and identify effec-

tive mathematics teachers. While some researchers were critical of categorizing the 

knowledge of teaching and measuring each domain to quantify teacher competency, 

the complex nature of teaching and learning warrants research efforts to develop a 

framework for describing the kind of professional teacher competency that represents 

the practical application of knowledge, skills, and passion for facilitating meaningful 

learning for students. This study aims to (1) analyse the PCK of an elementary 

mathematics master teacher through the lenses of learner-centered instruction and (2) 

identify the way PCK is enacted during instruction. Two research questions guided this 

study: (1) What is the nature of the teacher’s PCK? (2) To what extent is her PCK 

enacted in the classroom? 

THEORETICAL BACKGROUND  

Evolving Concept of PCK. The essence of the concept of PCK is that professional 

teaching requires something beyond mathematical content knowledge. Shulman 

(1986) explained it as a specific form of knowledge for teaching. Magnusson, Krajcik, 

and Borko (1999) argued that PCK is the combination of content knowledge and any 

other knowledge adapted for instructional situations. Longhran, Milroy, Berry, Cun-

stone, and Nulhall (2001) framed PCK as the teacher knowledge necessary to provide 

students with meaningful educational experiences and help achieve learning objec-

tives. Niess (2005) explained that PCK is a way to connect the content and pedagogy. 

With PCK as a basis for the academic discourse on the kind and nature of teacher 

knowledge, some critical alternative views of mathematics teacher knowledge have 
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emerged. Ball, Thames, & Phelps (2008) attended to the knowledge of teaching prac-

tice rather than teaching as a theoretical discipline. Additionally, they proposed an 

alternative construct (MKT) and emphasized the growth of teaching knowledge 

through experience and reflection. However, not only is MKT unclear about educa-

tional theories or the principles of teaching on which the framework is built, there are 

few instruments that can quantify MKT—especially when the knowledge evolves and 

grows over time.  

Learner-centered Instruction. In the traditional paradigm of mathematics teaching, 

students are often on the receiving end while the teacher plays a central role, with the 

primary goal of delivering knowledge to students. In this framework, learning is es-

sentially about acquiring knowledge from the teacher’s predetermined paths and 

structures of knowledge, and effective teaching is recognized by the degrees of in-

structional time and coverage of curricular materials relative to the amount of disci-

plinary knowledge in school curriculum. In a reaction to the traditional paradigm, 

constructivist approaches mean to provide students with active learning opportunities 

to construct knowledge from meaningful contexts, socialization, and participation in 

the classroom community. Over time, the teacher as a facilitator of learning has chal-

lenged the traditional conception of teachers as the sage or authority. Active learning, 

discovery learning, or student-centered approaches to teaching have also shifted the 

focus of instruction, from teaching to deliver encapsulated knowledge to students to 

providing learning opportunities through which students can shape new views and 

learn from peers. In learner-centered instruction, students participate by sharing ideas, 

problem-solving, and/or group work. Therefore, teacher knowledge and skills that 

relate to asking questions, engaging students to explain their thinking, teaching re-

flection, motivating students to take interest in their learning, and synthesizing student 

views emerge as key teacher competencies. Given this, teacher knowledge of students 

becomes much more than anticipating student mistakes and responding. It involves 

understanding student thinking on certain math concepts at the individual level and 

designing lessons with multiple learning goals reflecting individual students and their 

areas of need. 

This Study. An interest in the unique quality of teacher competency to facilitate stu-

dent learning in the context of learner-centered approaches is what drives our inquiry 

into the unknown areas of practical teacher knowledge. In reaction to the work of 

theorizing the knowledge for teaching mathematics through psychometric methods, 

this study investigated the practice-based knowledge for teaching mathematics in the 

learner-centered classroom as an alternative view of constructing the mathematics 

teacher knowledge for teaching. 

METHODOGY 

This is an intrinsic case study (Stake, 1995) with the elementary mathematics master 

teacher’s PCK as the primary interest. Through the analysis of teaching and student 

learning, the participant’s interview data, videotaped lessons, and artifacts related to 
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PCK, this study aims to provide a deep understanding of (and insight into) the nature of 

a teacher’s PCK and the way it is enacted in the classroom. To recruit a participant, a 

pool of interview candidates was created. Our selection criteria included the location of 

the school, documented teaching effectiveness, and consent to videotape lessons. We 

first contacted Mrs. Choi, who had the most teaching experience as master teacher, and 

upon her agreement to participate in our Fall 2016 study the observations and inter-

views took place in her classroom. 

Data Collection 

Interview. We conducted a semi-structured, audiotaped interview to access the 

teacher’s beliefs about teaching mathematics. We began the first interview by asking 

what good teaching is and then asked follow-up questions. After reviewing the first 

interview data we prepared the next round of questions by seeking examples, evidence, 

and scenarios to clarify claims and unclear statements. Both interview sessions were 

untimed to capture as many participant comments as possible.  

Artifacts. The participant provided (1) a teacher journal including lesson plans and 

student work samples and (2) her lecture materials. The journal data included 10 units 

of written notes on curriculum, sequences, and assessment data on student under-

standing, reflections, and action items for improvement. The lecture materials were 

originally created by the participant for her presentations at local professional devel-

opment sessions and included 3 units of written documents on research-based in-

structional strategies—aligned with student needs and progress of learning—along 

with a detailed account of her teaching practice. 

Videotaped lessons. The data included 6 sessions of teaching on fractions: two lessons 

were repeated three times for different groups of students. The first lesson taught 

fraction as a part-whole concept; the second lesson discussed fractions as division. We 

transcribed and analysed all six lessons, since the participants facilitated the same 

lesson plan differently in response to student needs and the analysis of the differences 

also served as data on teacher practice (Ronfeldt, 2011). Two cameras were used – one 

captured the teacher’s teaching in the back and another captured student learning in the 

front—and the participant used a microphone for recording. 

Data Analysis 

Initially, the researcher (first author) reviewed the literature on MKT and attempted to 

characterize the participant’s PCK (i.e., KCS and KCT) in the MKT framework. 

However, our initial coding adapted from the MKT instrument (Hill, 2008) did not 

work well with our interview data and artifacts. As a result, we used the participant’s 

own categorization of her teaching practice instead of our initial codes, which included 

new codes such as “student motivation,” “student misconception,” “presenting tasks 

guided by specific math concepts,” “assigning homework in specific order,” “use of 

teaching materials,” and “questioning.” We then confirmed these six elements of PCK 

from the interview data and double-checked whether these elements could be corrob-

orated by artifacts. Additionally, we sought to identify different elements not specified 
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during interviews but evident in both the teacher’s journal and lecture materials. As a 

result, we found a total of 12 elements of the participant’s PCK. However, some of 

these elements were not mutually exclusive. For instance, the participant’s strategies to 

encourage students to ask questions and prepare appropriate teaching materials inter-

sected with her strategy to increase student interest in the lesson. Another example is 

that respecting students and getting to know students were too alike to separate, be-

cause the effort to get to know a person can be understood as respecting a person. 

Through consensus seeking among researchers, however, we combined some of these 

elements into one category. For example, “teacher’s listening,” “students’ listening,” 

and “believing in students’ ideas” were merged into a single element, dubbed “lis-

tening to students.” “Respecting students” had too many examples which were not 

associated with a unique element, so it was kept as a valid code. Due to the redundant 

nature of elements of PCK held by the participant we did not investigate the frequency 

of each element in the data; rather, we sought to confirm an element was evident in all 

three data sources – interviews, artifacts, and videos. 

RESULTS AND DISCUSSION 

Ten Elements of the Participant’s PCK 

The 10 elements include “listening to students,” “preparing teaching materials,” 

“leveraging student questions,” “sequencing the lesson,” “respecting students,” “un-

derstanding about students,” “improving student motivation,” “creating low-risk and 

positive learning environments,” “teacher questioning,” and “building databases of 

students’ mathematics.” The following table provides representative evidence from 

interviews and artifacts that supports the elements as the participant’s PCK.  

Elements of PCK Representative Evidence 

1. Listening to students Artifacts: I need to explain [to the class] why it is important 

to listen to each other’s ideas and encourage them to con-

firm or challenge math ideas. [Teacher journal] 

2. Preparing teaching 

materials 

Interview: “I prepared a lot. Look at the stack of materials 

for tomorrow’s lesson. Students need tasks to work on and 

need multiple contexts to apply their thinking. I also need 

to do some tasks myself before the lesson so that I can 

prepare good questions in advance.” 

3. Leveraging student 

questions 

Artifacts: Some students’ questions are not relevant to the 

concept I am teaching, but it is important to address the 

questions because my lesson somehow prompted a student 

to ask the question, and we never know whether the ques-

tion is worthwhile in the end. [Teacher journal] 

Table 1: Elements of PCK and anchored evidence from interview data and artifacts. 

(The data for the next seven elements are omitted due to the page limit.)   
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The Enactment of the Participant’s PCK in Lessons  

Next, we discuss each element and describe how the element is enacted in the class-

room where appropriate. 

Listening to students. Mrs. Choi stated that listening to students helped her better 

understand student thinking. She categorized valuable student comments and questions 

as (1) the statements made by nervous or unsure students, (2) mathematically correct 

yet unclear statements, and (3) mathematically incorrect statement. Mrs. Choi used her 

listening skills to better understand students, build trusting relationships, and ulti-

mately create an intellectually safe classroom environment where students actively 

communicate mathematical ideas with little fear for embarrassment or belittling. Mrs. 

Choi often used phrases such as “Let’s take a listen again,” or “Can you run that by me 

one more time please?” or “Speaking of the great idea, can we listen to [Eunsoo’s] idea 

again?”  

Preparing teaching materials. Mrs. Choi prepared teaching materials but remained 

open for differentiation during and after each lesson in response to student under-

standing. Also noticeable was her attention to student ideas as a form of teaching 

material. In this way Mrs. Choi’s lesson used a variety of materials that were prepared 

in advance or randomly selected, as well as suggested by students. For example, Mrs. 

Choi prepared a piece of a cookie (pre-cut in half) to demonstrate the whole and a half. 

Due to some students mistaking the half piece as a piece of the whole cookie, Mrs. 

Choi stopped using the cookie and used a random rectangular post-it as an alternative 

representation. Sticking it on the board she asked students, “If this post-it paper is 1, 

then how do we make 2 on the board? “How about one half?” Although the lesson plan 

had clear teaching procedures, Mrs. Choi tapped into student ideas to engage students 

in discussions about the meaning of 1 and fractions in the form 1/n.  

Leveraging student questions. Mrs. Choi stated that learning begins with student 

questions and that the teacher should facilitate learning in response to student‐gene-

rated questions. Mrs. Choi actively used student questions as key teaching materials 

during lessons, and her PCK relative to student questions included (1) promoting the 

classroom culture to ask questions during lesson, (2) avoiding judging student ques-

tions, (3) providing contexts or materials to nurture student curiosity, (4) taking all 

questions seriously, and (5) thoughtfully addressing every question.  

Sequencing the lesson. Mrs. Choi suggested that the teaching sequence in the text-

book is not necessarily the best way to master a concept. Although she demonstrated 

knowledge of content, Mrs. Choi noted that teaching procedures should change in 

response to student progress as assessed through questions or other evidence. The 

following excerpt illustrates this as Mrs. Choi juggles student questions and sets the 

appropriate sequence of her lessons:  

Interviewer: So, do mean you don’t teach as the book prescribes or do you design a 

lesson based on student questions?  
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Mrs. Choi: I believe textbook authors took student questions into writing the lesson 

anyway. So, my lesson should be very similar to theirs. So, I am not saying 

student questions are all there is to know. Any lesson just doesn’t play out 

as the textbook’s teaching procedures. So, I am not entirely relying on the 

book. But I like to use the exercise problems in the book. 

Interviewer: I am not sure if you’re saying student questions are in line with the teaching 

sequence of the book. Or are you saying you gather student questions and 

rewrite the lesson? 

Mrs. Choi:  Well, children want to learn what they are curious about. So, I tell them I 

will teach what they are curious, but we need to learn a new concept before 

we work on what they want to do. In this way, my lesson has a slightly 

different sequence from the book but it also reflects the traditional curric-

ulum to a certain extent.  

Respecting students. Mrs. Choi made efforts to ensure that her students knew she 

cared about their ideas. She regularly spoke phrases such as “precious idea,” “your idea 

counts,” and “I am confident you know something -- I just need to try harder to un-

derstand [your] ideas.” She also suggested that her primary job is not evaluating stu-

dents’ ideas, but helping them make sense on their own or make connections in whole 

group conversations. As Mrs. Choi valued student ideas, the class was observed to be 

frank about their mistakes and comfortable expressing their opinions. 

Understanding about students. Mrs. Choi regularly used open-ended tasks and im-

plemented formative assessment by asking questions and encouraged student-student 

interactions. In the following excerpt, Mrs. Choi facilitates a mathematical conversa-

tion on fraction as division. She poses a question to complete a sentence “12 divided by 

___ equals ___: 

1 T: How many do you want to divide 12 by?  

2 S1: Hmm… four.  

3 T: Let’s divide 12 by 4 then. Go ahead. I am curious how you are going to 
show dividing 12 by 4.  

4 S1:  (Drawing 12 cookies with three groups of 4)  

5 T:  Okay. Do you agree with the way he drew the number 12 is divided by 4? 

6 Ss: Yes, that is correct. 

7 T: Correct? Okay, I see. Let’s think about it. Wait a second. I have a question. 
“How many cookies are in each group?”  

8 S1: (…) Four? 

9 T: It is four. Let’s talk about it together. So, what I hear is when you divide 12 
in 4 groups, each has 4 cookies. Did I translate [S1’s] thinking correctly? 

10 Ss: I think it is 16, isn’t it? / There should be four groups, but there are three 
groups only. / I think it is four too. / It is confusing. 

11 S2: It is ¼ so we should have four chunks. 

12 T: Hold on. Let’s listen to S2 again.  
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13 S2: The whole thing is ¼, so it should be 4 chunks. But it is 3 now. That doesn’t 
make sense. 

14 T: Anyone understands S2? Not sure? [S2,] can you explain it one more time? 

15 S2: One fourth should be one group out of four, but there are three groups only. 

16 T: Did you all follow what [S2] is telling us? He said four groups, right? Look 
what [S1] did. [S1] has fixed his drawing already? (laughter) That was 
quick. How many groups do you see now? 

17 Ss: Four groups. 

18 T: What does 1/4th mean then? 

19 Ss: It is one out of 4. 

20 T: If [S1] eats one group of his cookies, how many cookies would he eat?  

21 Ss: Three.   

In the excerpt, S1 mistakes dividing by a number as grouping with the number of ob-

jects in each group. Instead of correcting S1, Mrs. Choi asks the class to evaluate S1’s 

idea and finds the class struggling to do so. Mrs. Choi then extends S2’s idea on the ¼ 

as a group out of four groups and engages the class in developing the idea that 12 di-

vided by 4 can be represented by grouping 12 into 4 groups. This excerpt illustrates 

Mrs. Choi’s PCK, listening to student comments during lessons and co-constructing 

mathematical meaning of division as fraction through the iterations of questioning, 

listening, and responding. 

Improving student motivation. Mrs. Choi expressed her belief that meaningful stu-

dent-student interactions help students motivate themselves to learn. To this end, 

students get to reason with their classmates to develop new understanding.   

Creating low-risk and positive learning environments. Mrs. Choi believed that all 

students had various levels of understanding and interest. This belief led her to accept 

student misconceptions and errors in the lesson as natural and significant steps in 

learning and developing new knowledge. In her lesson, she implemented wait-time 

consistently and responded to student misunderstandings by saying, “Can we try again 

together?” Other responses were “Let’s keep thinking about it,” or “I’d love to hear 

about it when you get it.” 

Teacher questioning. Mrs. Choi used her questions to view student thinking and 

create opportunities to reflect on other people’s thinking, making connections in whole 

group discussions. She frequently checked for student comprehension and asked stu-

dents to explain or contribute new ideas. She asked on a regular basis, “When I come 

up with an idea, I would be curious about other ideas and compare it to mine,” and 

“This is a new idea, it is time to investigate different ideas and compare all.”  

Building databases of students’ mathematics. Mrs. Choi recorded student ideas and 

reviewed the data to deepen the understanding of her students’ thinking. She stated, 

“When you consider everybody’s idea -- right or wrong, the lesson will get very messy. 

But you should be committed to listening to all students’ ideas. There is no other way 

around it.” In particular, Mrs. Choi showed interest in student errors and stated she 
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could better support students by anticipating and responding to student misconcep-

tions. During her lesson Mrs. Choi went to great lengths to record student comments, 

writings, and diagrams “as is” along with her own interpretations. She also made at-

tempts to validate those interpretations by asking students, “This is how I understand 

your thinking, is this correct?”  

CONCLUSIONS  

We recommend future studies to dwell on the interconnected nature of PCK in practice 

and clarify the relationship in various elements of a teacher’s PCK, rather than cate-

gorizing the teacher’s practical knowledge in distinctive domains. Although we found 

10 elements in the study representing Mrs. Choi’s PCK, a few elements were closely 

related. For example, when Mrs. Choi was listening to students there were other ele-

ments in play, such as understanding students or creating low-risk and positive learn-

ing environments.  

Although it was clear from the data that Mrs. Choi’s PCK is still evolving, this study 

did not investigate exactly how Mrs. Choi developed her PCK. Our guess is that her 

reflective dispositions and commitment to professional practice played a significant 

role. For example, she has reviewed students’ course evaluations and used the data to 

improve her instruction. With that said, it is important to continue to explore various 

elements of PCK through case studies, investigate the pattern of developing PCK, and 

use this information to support our teachers.   
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EXAMINING TEACHERS' DISCOURSE ON STUDENTS' 

STRUGGLE THROUGH FIGURED WORLDS 

Galit Shabtay and Einat Heyd-Metzuyanim 

Technion – Israel Institute of Technology 

 

We apply the lens of figured worlds on teachers' pedagogic discourse to understand 

their identity and practice in relation to offering students opportunities to struggle. The 

study involved 12 elementary mathematics teachers who were interviewed based on 

teaching vignettes - short stories exemplifying teaching that is high/low in students' 

opportunities for struggle. Two distinct figured worlds were identified: the world of 

"acquisition" and the world of "exploration". Teachers belonging to each of these 

worlds differed in their interpretations of identical vignettes depicting students' 

struggle, and their identities as teachers cohered with these interpretations. 

Implications of these results on attempts to reform teachers' practice towards 

explorative instruction are discussed. 

BACKROUND  

Figured world is defined as “a socially and culturally constructed realm of 

interpretation in which particular characters and actors are recognized, significance is 

assigned to certain acts, and particular outcomes are valued over others” (Holland, 

Lachicotte, Skinner, & Cain, 1998, p. 52). Artefacts and signs are attributed meaning 

that might differ from how those outsides of the figured world interpret them. People, 

actors in the figured world, have expectations for how events unfold and how others 

will behave in these events (Ma & Singer-Gabella, 2011). Identities are created and 

crystallized or consolidated in the process of participation in organized activity by the 

figured world. Within the figured world, people give distinct meaning to actions, 

results, objects, and events. They value certain actions and outcomes, while devaluing 

others. They position themselves in relation to these valued actions and outcomes 

thereby constructing an identity within this figured world. 

Relying on the definition of identity as a collection of narratives (Sfard & Prusak, 

2005), the theory of figured worlds makes it clear that such narratives are not created in 

a vacuum. They stem from social and cultural contexts that can be explicated through 

the examination of the figured world to which they belong.  

Mathematics teachers' identity has received increasing interest in the past years (e.g. 

Beauchamp & Thomas, 2009). Though most of this literature has looked at the process 

of becoming a teacher, the lens of teachers' identity is also useful for examining change 

in teachers' practice. In particular, the tracing of teachers' identity narratives to 

particular figured worlds can be a powerful tool for understanding the challenges of 

change required by demand to "reform" instruction.  
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Boaler and Greeno (2000) were the first to point out that "reform" and "traditional" 

teaching belong, in fact, to different figured worlds. They connected traditional 

teaching with the figured world of "received knowledge", characterized by 

procedure-oriented, teacher-centred instruction and the figured world of "connected 

knowledge" with discussions oriented, problem-solving instruction. Ma and 

Singer-Gabella (2011) have continued this line, showing that pre-service teachers 

indeed sway between the "traditional" and "reform" figured world as they go through 

their teacher-training program. 

Over the years, accumulating evidence has shown that the "connected knowledge" 

figured world is more productive for mathematics learning (Schoenfeld, 2014). In 

particular, Hiebert and Grouws (2007) pointed to the importance of two aspects in such 

teaching: Explicit Attention to Concepts (EAC), and Students’ Opportunity to Struggle 

(SOS). Based on Hiebert and Grouws’ (2007) work, Stein and her colleagues (2017) 

presented a framework that classified teaching into relatively simple “types”. A simple 

2x2 matrix of high and low levels of SOS and EAC produces four quadrants: Q1 (High 

EAC, high SOS), Q2 (high EAC, low SOS), Q3 (low EAC, high SOS) and Q4 (low 

EAC, low SOS). In our own work (Shabtay & Heyd-Metzuyanim, 2017), we have 

shown that contrary to the naive expectation that teachers would generally aspire 

towards Q1 teaching, some teachers have strong objections to it, and in particular, 

resist offering opportunities for students' struggle. This finding has urged us to look 

more closely at the reasons for this resistance.  In particular, we were interested to see 

how teachers' identities, as elicited from asking them to identify with a particular 

quadrant, draw upon the figured world of mathematics instruction.  

METHOD  

The "teaching vignettes" interview: Our method relies on a procedure we have 

tested in previously (Shabtay & Heyd-Metzuyanim, 2017), where we interview 

teachers on the basis of Stein et al.'s (2017) "teaching vignettes". These vignettes 

describe a typical lesson of each of the four quadrants. The Q1 teacher (High SOS, 

High EAC) gives her students a cognitively demanding task, walks around the 

classroom while students work on it in groups and asks questions to advance their 

thinking. She concludes with a discussion that points to the equivalence of different 

representations of rational numbers. The Q2 vignette (Low SOS and High EAC) 

describes a teacher that uses the same cognitively demanding task, but divides it into 

small steps and leads her students through them with leading questions. She attends to 

the concept through pointing out to the equivalence of fractions, decimals and 

percentages in the problem, but the students do not take a significant role in this 

explication.  The Q3 (High SOS and Low EAC) vignette starts with the same task. The 

teacher lets students struggle but does not mediate the task in any way. Though two 

students present their solutions at the end of the lesson, fractions, decimals and 

percentages are not connected explicitly. The Q4 (Low SOS, Low EAC) vignette 

describes a teacher who provides a calculational task that is supposed to offer 

opportunities to practice converting between fractions, decimals and percentages.  
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Procedure and analysis 

We conducted the "teaching vignettes" interviews with 12 teachers. To the questions 

about the vignettes, we added questions about their identity as teachers and learners of 

mathematics, their common practices in the classroom and their beliefs about good 

instruction. Each interview took about 55-80 minutes and was audio-recorded with the 

teacher's approval. The recordings were fully transcribed and analysed.  

Analysis started by highlighting narratives where teachers talked about themselves and 

their practices and about the teachers depicted in the vignettes. The second stage 

included marking and tabulating the different dimensions of the figured world. 

According to the definition of figured world described above, these included 

statements regarding valued and non-valued actions, valued and non-valued outcomes, 

and non-valued outcomes. We also examined the teacher and students' roles as they 

were described in teachers' discourse. Finally, we collected similar statements 

regarding valued actions, outcomes and roles into tables that depict the different 

figured worlds identified in the interviews. These enabled us to map the teachers into 

those belonging to one figured world or the other. Most teachers could be mapped into 

one of the figured worlds quite neatly, while a few were categorized as "in between". 

These decisions will be further explained in the findings.  

FINDINGS  

We start by presenting two contrasting figured worlds, extracted from the interviews of 

two teachers, Orit and Hani. These contrasting figured worlds were seen both in the 

teachers' interpretations of the vignettes, as well as in their descriptions of valued and 

non-valued actions and outcomes.  

Orit, a teacher with 18 years of experience, chose "Orna", the teacher exemplifying Q2 

teaching vignette, as the teacher who resembles her best. She explained her choice as 

follows: 

"Because I felt like she (Orna-Q2) was doing it in a very structured way, she did not let 

them (the students) directly explore, (something) which would sound very nice 

pedagogically (as in) 'explore and get it out of the child'. But when I look at (my) whole 

class, and I know I have several groups of students and several levels, if I do this (let them 

explore) it will only resonate with the strong group. And all those below, I will lose them 

completely. Those in the middle, I'll lose them too ... "(Line 53). 

We see in Orit's identification with Orna (Q2) not just explanations for why Orna's 

practice is better, but also for why the alternative practice is wrong. This is made even 

clearer in the ways in which Orit relates to Daphna (depicted in the Q3 vignette): 

"Daphna (Q3) simply ... Believe me, I don't understand. What is she doing? Telling them to 

'think again'? Will that really help? If they don't know, she just frustrates them. They will 

continue to not know. Or they will copy from the good students. That's why I don't like all 

these explorative tasks ... Only the best students answer, and the rest of the students are left 

behind." (Line 65). 
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Looking at these two descriptions of the teachers through the lens of figured world, we 

see that valued actions include "doing things in a structured way", while non-valued 

actions include "letting students just explore", which only result in "frustrating 

students" and "losing the middle/weak students completely".    

The ways Orit describes her identity, and the role she takes in the classroom, is very 

much aligned with this figured world. In the example below, pronouns indicating the 

role of her as a teacher and the role of her students are marked in bold: 

"First of all I go for something we already learned, that we finished and checked that it 

'sits well' (in the students) before the new content will be learned.... and I make the 

connections ... and then, I explain, I don't... I don't usually ask the children to explore; 

I don't (just) give them the task. Before I give the task, I first do the instilment 

(Acquisition), and ... (I) check that they understand, and (I) don't go straight to an 

explorative task, 'come and explore'. I start from the lowest level "( Line 42). 

As indicated by the bolded pronouns and verbs, Orit is mostly concerned with what she 

does. She is the one that "explains", "makes the connections" and "starts from the 

lowest level". Though there is some talk about making sure students "understand", this 

is only mentioned as a part of a gradual step-by-step process that is designed to make 

sure students are not just "left to explore". An important word figuring in Orit's 

pedagogical discourse is "instilment" (in Hebrew: 'Haknaya'). 'Haknaya' in Hebrew 

comes from the stem "to buy" or acquire. It denotes the period of the lesson where a 

teacher explains or demonstrates. Interestingly, it goes very well with the metaphor of 

learning as "Acquiring" knowledge and the teacher as "deliverer" of this knowledge 

(Sfard, 1998). With the lack of a good English translation for this word, we chose to 

name the figured world exemplified in Orit's talk as the figured world of Acquisition.   

A very different figured world could be seen in the discourse of Hani. Hani debated 

whether she identifies with the Q1 or Q3 teacher, saying that she tends towards the Q3 

teaching in classrooms that "let her do that", but clearly opting for the vignettes that 

described high students' struggle. She explained her sympathy with the Q3 vignette:   

(First)… I like that they (the students in the story) struggle alone. Second, there are 

different options for a solution. The fraction is presented in several representations. I don't 

like drill and practice, like teacher Sharon (Q4) does. (Int: Why?) Because I think it's 

technical and if there's no understanding, I'm not sure they'll remember the calculation. If 

it's up to me, I'd rather they do it the longer way, but with understanding. If there's 

understanding along the way, the calculation will be OK. (Line 45).  

When asked why she did not like Orna's (Q2) type of teaching, Hani answered:  

She's just very structured. I prefer to give more freedom. She gives them too many 

scaffolds, where I think she could have trusted them more. (Line 49). 

In Hani's discourse we find that valued actions include offering tasks with "different 

options for solutions", "giving students freedom", and "trusting" students.  Non-valued 

actions include "technical calculations" and giving "too many scaffolds". Valued 

outcomes include students "understanding the calculations". However, Hani does not 
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talk about "understanding the concepts" or "making connections". Thus her figured 

world seems to be more concerned with letting students struggle than with explicating 

mathematical concepts. 

Similar to Orit, Hani also referred to students' level as determining her practice:  

"In classrooms where there are more difficulties, I act more like Nitsa (Q1). And in 

stronger classrooms, I'm more like Daphna (Q3), and if there's frustration, then I become 

more Nitsa. There are classes that are more open, and then I throw them more to the water, 

like Daphna does". (Line 43)  

However, her choice was between Q1 and Q3 (both high SOS), thus she took it for 

granted that her students would be given opportunities to struggle. Also, she did not 

mention the difference between Q1 and Q3 as being related to the explication of 

mathematical concepts (as intended by the authors of these vignettes) showing, again, 

that the main focus in her figured world was on students' struggle. 

Orit and Hani thus exemplify two quite contrasting figured worlds: one of Acquisition 

and one, which we termed Exploration. The later naming was based on the prominence 

of the world Exploration (Hebrew: Heker) in this discourse. As expected by the 

definition of figured worlds as "realms of interpretation", teachers' whose discourse 

belonged to the different figured worlds displayed different interpretations of the 

identical vignettes. While Orit was exasperated by the Q3 teacher who "just asked the 

students to 'think again'" and saw this as "only frustrating" students, Hani liked that this 

teacher "lets her students struggle". Notably, the emotional words used for describing 

students' reactions (such as "frustration") were nowhere described in the vignettes. 

Thus the teachers' "filled in" information about the depicted situation according to their 

figured world. 

In our sample of 12 teachers:  5 teachers identified with Q2 and valued actions and 

outcomes according to the Acquisition figured world, and 4 teachers identified with Q3 

or Q1, talking in ways that accord with the Exploration figured world. We found no 

relation between teachers' experience or the school in which they taught and their 

figured worlds. Also, most teachers were found to be coherent in their figured worlds 

meaning that their valued actions (e.g. practicing calculations) cohered with their 

valued outcomes (being able to follow procedures) and their role as a teacher 

(demonstrating the procedure and easing its enactment by students). However, a small 

group (of 3 teachers) were found to be "mixed". One such teacher was Sofi. On the one 

hand, Sofi declared her teaching mostly resembles the vignette depicting Q2 teaching. 

She justified this with "It's easier to teach a new subject step by step. Not all at once".  

However, Sofi also declared that:  

 "But in elementary school it's not good if the teacher explains all the time. So I came to the 

conclusion, in elementary school for sure, that it's better to do Acquisition of 10 or 7 

minutes and then give a task. A task that has many questions. But that's when we really 

really have a new subject. And then with the worksheets, let the children think, let the 

children talk."(Line 60).      
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Sofi's words reveal that she has some conflicts regarding the value of struggle. On the 

one hand, she values students thinking and talking. On the other hand, she declares that 

in her classroom, she first explains and does "Haknaya" (Acquisition) and only later 

lets the students work alone. In addition, although she declares she has realized that in 

elementary school students need to work alone, she structures her worksheets with 

incremental step-by-step tasks to avoid too much struggle.  

Following is how Sofi relates to Daphna (Q3 teaching style): 

"I thought about my students, what would have happened if I gave them this task. And then 

I said (to myself) that I would have loved giving them this task without support. But 

unfortunately, I have such students that need mediation, instruction and so I understood 

that I don't really act like Daphna" (Line 62).  

Notable in the discourse of Sofi about Q3 teaching are the conflicts between the two 

worlds. She talks somewhat regretfully ("unfortunately") about her students that "need 

mediation" and her words "so I understood that I don't really act like Daphna" indicate 

that she may have wanted to identify herself with teachers affording high-struggle, but 

had to admit she is not like them.  Interestingly, like most of the other teachers in our 

sample, Sofi lays the responsibility for her teaching style on her students. She would 

have wanted to act like a Q3 teacher, had it not been for her students who "need 

instruction". This was a common theme in those teachers who chose not to identify 

with Q1 or Q3 teaching. The underlying message was that affording high struggle was 

"a nice pedagogical idea" (as phrased by Orit), but not suitable for "their" students. 

To conclude, the overall analysis of the 12 teachers' discourse revealed the following 

blue-print for the two figured worlds of Acquisition and Exploration. As Table 1 

reveals, offering students opportunities to struggle is interpreted differently through 

the two figured worlds. Valued actions connected with the word "struggle" in this 

world are letting students solve tasks without first explaining the steps and offering 

them freedom. Valued outcomes include students' "understanding" and "discovering 

on their own". In contrast, within the Acquisition world, letting students explore on 

their own is interpreted as "frustrating" and favouring only the strong students. In 

accordance with these valued actions and outcomes, teachers' roles and the ways they 

identified themselves differ significantly in the two worlds.  

Teachers belonging to the Acquisition world talked mostly about what they do, 

focusing the responsibility of the teaching-learning interaction solely on their own 

shoulders. Teachers belonging to the Exploration world talked more about what 

students do. In their talk, the results of the teaching-learning interaction were divided 

more equally between them and their students. 
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 Explanations, 

Working 

gradually, 

Structured 

lessons 

Students 

following 

procedures 

successfully 

Teacher is the 

main actor. 

Students' roles 

are to listen and 

acquire  

Q3 teaching is a  nice 

"pedagogical idea" 

that is disconnected 

from the realities of 

classroom life 

E
x

p
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o
n

 Students 

struggle and 

discover by 

themselves. 

Students have 

freedom 

Students 

understand 

the meaning 

behind 

calculations.   

Both teacher and 

students share 

the 

responsibility for 

the learning 

process 

 

Q2 teaching is    too 

"structured",   too 

"scaffolded" and too 

"technical"  

Table 1: Comparison between Acquisition and Exploration Figured worlds  

DISCUSSION 

In this study, we applied the lens of figured worlds to better understand teachers' 

reported practices which afford students' opportunities to struggle with cognitively 

demanding tasks. Using the vignettes interview has proved successful for eliciting 

from teachers both narratives about their identity as teachers, and narratives about the 

depicted lessons of high/low student struggle. Our method of analysis, where we 

categorize teachers' discourse according to valued and non-valued actions, outcomes 

and roles proved beneficial for operationalizing the concept of figured worlds and 

enabling its application on transcripts of teachers' interviews.  

Similarly to Boaler and Greeno (2000) and Ma & Singer-Gabella, (2011) we identified 

two distinct figured worlds in the discourse of our teachers. These are the Acquisition 

world and the Exploration world, which roughly can be connected to "traditional" and 

"reform" worlds identified in these previous studies. The fact that the Acquisition and 

Exploration figured worlds could be found in an Israeli sample, where the politics of 

reform in mathematics instruction are quite different than those found in the US, shows 

that this division is indeed a powerful one. Yet we have also found teachers whose 

figured worlds were not coherent and contained conflicts between valued actions 

belonging to the two worlds. 

Another contribution of this study is the application of the theoretical lens of teachers' 

identity to the issue of reforming teachers' practice in the classroom, issues that have so 

far mostly been dealt with by examining teachers' beliefs (e.g. Stein,et al., 2017). We 

contend that examining the issues of reform or explorative practices through the lens of 

teachers' identity can offer insights into the reasons that such teaching practices are 

often found to be very resistant to change (Spillane & Zeuli, 1999). This, since not just 
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particular beliefs need to be changed for teachers to change their practice. Their whole 

identity and the figured world on which it draws upon need to change too. Arguably, 

such a change is a deep and all-encompassing process, including both how teachers 

narrate themselves and how they interpret the teaching-learning world in which they 

engage.   
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GROUP THINKING STYLES AND THEIR MODELLING 

PROCESS WHILE ENGAGING IN MODELLING ACTIVITIES 

Juhaina Awawdeh Shahbari and Rania Salameh 

Al-Qasemi Academy 

 

The current study investigated the relationship between students’ thinking style and 

their modelling process and routes. Thirty-five eighth-grade students were examined. 

For the first stage, the students solved a word problem, and according to their solu-

tions, they were assigned to one of two groups: a visual thinking style group and an 

analytic thinking style group. The two groups engaged in three modelling activities. 

Findings indicating differences in the groups’ modelling processes in performing the 

three activities. The primary differences in the modelling processes were manifested in 

simplifying, mathematizing, and eliciting a mathematical model. In addition, the an-

alytic thinking group skipped the real-model phase in the three activities, while the 

visual group built a real model for each activity. 

INTRODUCTION 

Thinking style and cognitive methods strongly affect student performance in many 

areas, largely determining significant differences in their performance, as demon-

strated in empirical cognitive psychology studies (e.g., Cakan, 2000). Therefore, stu-

dents’ different thinking styles should be taken into account upon determining appro-

priate educational interventions (Sternberg & Zhang, 2005). Thus, teacher awareness 

of differential thinking styles is particularly important when students are exposed to 

modelling activities that offer them the opportunity to meet everyday challenges and 

demands and provide them with the abilities and competencies to deal with complex 

systems and real-word situations (Lesh & Doerr, 2003). Mathematical modelling is the 

process of translating between the real world and mathematics (Blum & Borromeo 

Ferri, 2009). Knowledge about students’ modelling processes can ameliorate their 

teachers’ interventions (Blum & Leiß, 2005). Given their potential, modelling pro-

cesses have been studied widely (e.g., Blum & Borromeo Ferri, 2009). However, only 

a few scholars (e.g., Borromeo Ferri, 2010) have examined the modelling process of 

individuals having different thinking styles. Furthermore, almost no studies have fo-

cused on the modelling process with respect to thinking styles characterizing groups, 

where all modellers in each group have the same thinking style. This study aims to 

shed light on the influence of group thinking style on their modelling process and 

modelling route while engaged in modelling activities.  
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FRAMEWORK 

Mathematical thinking Style  

A style is a way of thinking; it is not an ability, but rather a preferred way of using one's 

abilities (Sternberg, 1997). Thus, mathematical thinking styles denote how individuals 

prefer to learn mathematics, not how their mathematical understanding is assessed. In 

addition, it also is indicative of how the individual prefers to proceed with the math-

ematical task (Sternberg, 1997). Klein (cited in Borromeo Ferri & Kaiser, 2003) sug-

gested three different thinking styles: the philosopher, who constructs on the basis of 

concepts; the analyst, who operates within a formula; and the geometer, who has a 

visual starting point. Similarly, Borromeo Ferri and Kaiser (2003), in their empirical 

study, suggested three thinking styles: the analytic, the visual, and the integrated. In the 

current study, we will follow the latter classification, focusing on the visual and the 

analytic thinking styles. The visual thinking style has been defined as thinking based 

on the shapes, drawings, and images presented in real situations and relationships 

(Campbell, Collis, & Watson, 1995). Students with a visual thinking style are char-

acterized by a strongly image-oriented way of thinking when solving mathematical 

problems; this facilitates their obtaining, representing, interpreting, perceiving, and 

memorizing information, as well as expressing it (Borromeo Ferri & Kaiser, 2003).  

The analytic thinking style has been identified as thinking symbolically and formalis-

tically, involving sorting and teasing out elements from their context. This style re-

flects a tendency to focus on the properties of objects and elements for classification 

into categories, preferring to use rules about categories and predicting behavior 

(Monga & John, 2007).  

Modelling 

Mathematical modelling means solving complex, realistic, and open problems with the 

help of mathematics, with the process that students develop and use in solving such 

problems termed modelling process. The modelling process is a cyclic, in which 

translating between the real world and mathematics transpires in both directions (Blum 

& Borromeo Ferri, 2009). The modelling processes from a cognitive perspective 

identified phases and transitions (Blum & Leiß, 2005). The phases comprise a situation 

model, a real model, and a mathematical model, mathematical results and real results. 

The transitions include several actions: understanding the problem and simplifying a 

situation model; presenting a real model; mathematizing, which leads to constructing a 

mathematical model; applying mathematical procedures; interpreting the mathemati-

cal results; and validating, in which mathematical results are validated in a real-life 

task. Various visual descriptions of the cyclic process-modelling cycle have been re-

ported in the literature. The current research is based on Blum and Leiß’s (2005) 

modelling cycle. Delineating the modelling process in detail, incorporating the various 

phases of the modelling cycle on an internal and external level, is referred to as the 

modelling route (Borromeo Ferri, 2007).  
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RESEARCH AIM AND QUESTION 

Do and how groups of students with different thinking styles (visual or analytic) differ 

in their modelling process and their modelling routes while working on a sequence of 

modelling activities? 

METHOD 

Research participants and procedure 

For the first stage of the study, a questionnaire for identifying participants’ thinking 

style was administered to  35 students in an eighth-grade class. Based on the styles 

reflected in solving the questionnaire’s tasks, students were then classified into three 

thinking style groups: analytic (14 students), visual (11 students), and integrated (10 

students) thinking style groups. As the focus in the current study was the analytic and 

visual thinking style, we divided the students into two groups, based on their shared 

thinking styles. For each group, we selected five students (totalling 10 participants) 

with the assistance of their mathematics teacher in order to maximize matching vari-

ables (e.g., gender, mathematics abilities, socioeconomic status). Both groups (analytic 

and visual) were assigned three modelling activities in the course of three weeks, one 

activity per week. The modelling activities were adapted from the literature (e.g., Blum 

& Borromeo Ferri, 2009).  

Data sources and analysis 

The data collected from two sources: Questionnaire and video recordings. Question-

naire: The study questionnaire comprised eight tasks for classifying students according 

to their thinking style. Some of these tasks were adapted from other studies (e.g., 

Lowrie & Clements, 2009), and some were designed by the researchers. The selected 

tasks were characterized by a variety of topic areas and a variety of possible solution 

strategies. An example the tasks is the Turf Problem (Lowrie & Clements, 2001. P. 

86): A husband and wife wanted to turf their backyard (put grass squares down). Be-

fore purchasing the turf, they had a ground pool put in their backyard. The pool was 

3m wide and 5m long. Sensibly, they also paved an area 1m wide around the pool. If 

turf costs $10 per square meter, how much would it have cost to turf the backyard (150 

m² in total) once the pool and the paving were finished. 

Video recordings: Video recording were made of the two groups working on the three 

modelling activities and were transcribed. 

Questionnaire analysis: We used the constant comparative method (Glaser & Strauss, 

1967) to analyze the problem-solving processes for each task in the questionnaire for 

each student. We adopted the categories described by Borromeo Ferri and Kaiser 

(2003): When illustrating and solving the mathematical problems, the visual thinking 

group was characterized by sketches, drawings, or graphs, while the analytical thinking 

style was expressed in a formula-oriented way that means that information from the 

text of a given problem, is expressed by means of equations. An example of students’ 

answers classification for the Turf Problem can be seen in Figure 1: 
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Figure 1. Samples of students’ solutions of the Turf Problem 

Video recording analysis: We used the constant comparative method (Glaser & 

Strauss, 1967) to analyze the students modelling processes in three activities, taking 

into account the cognitive aspect of modellers’ modelling cycle (Blum & Leiß, 2005).  

FINDINGS 

Modelling process between analytic and visual groups 

The findings indicate that the analytic and visual groups demonstrated similar features 

in working on the three modelling activities, but differed in their modelling processes. 

Table 1 presents the general findings regarding the two groups’ modelling processes.  
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First activity 

Modelling cycle 

1 - - √ √ √ √ - - - √ √ √ √ √ √ - - - 

2 - - √ √ √ √ √ √ √ - √ √ √ √ √ √ √ √ 

3 - - √ √ √ √ √ √ √ - - - - - - - - - 

Second activity 

Modelling cycle 

1 - - - - √ √ √ √ - √ √ √ √ √ √ √ √ √ 

2 - - - √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

3 - - - √ √ √ √ √ √ - - - - - - - - - 

Third activity 

Modelling cycle 

1 - - √ - √ √ - - √ √ √ √ √ √ √ - - √ 

2 - - √ √ - - - - - √ √ √ √ √ √ √ √ √ 

3 - - √ √ √ √ √ √ √ - - - - - - - - - 

Table 1: Modelling processes of the Analytic and Visual Groups in the Three activities 

Analytic 

style: 

3+2=5m; 5+2=7m            7 

7*5=35;                   5   

150-35= 115m2;  

115*10= 1150$ 

 

Visual style: 

 

           

5*7=35m2 

150-35=115m2 

115*10=1150$      
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The analysis of the modelling processes of the two groups in the three activities re-

vealed that the major differences between them were in the real model, simplifying, 

mathematizing, and mathematical model. Table 2 presents the differences between the 

two groups, illustrated by sample statements from the students’ discussions while 

working on the problem.  

Table 2: Differences in Modelling Process Between Analytic and Visual Groups 

Modelling cycles and routes in the analytic and visual groups 

Analysis of the modelling processes of the two groups in the three modelling activities 

indicated that the analytic group went through more modelling cycles than did the 

visual group in each activity to obtain the final model, as presented in Table 1. In ad-

dition, the analysis indicated that the analytic group engaged in more skipping during 

the modelling phases than did the visual group. The groups’ modelling processes are 

presented for the giant’s shoes activity (Blum & Borromeo Ferri, 2009) only, due to 

space limitations. The modelling process of the analytic group can be split into three 

modelling cycles: the first cycle (C1.1, C1.2, C1.3, C1.4), the second cycle (C2.1, 

C2.B), and the third cycle (C3.1, C3.B, C3.3, C3.C, C3.4, C3.D, C3.5). Table 3 pre-

sents the modelling process and Figure 2 illustrates the modelling route of the analytic 

group. 

 

Modelling 

process  

Visual group Analytic group 

Simpli- 

fying  

 

 

Students seek to illustrate the in-

formation in the situations by 

drawing and illustration. E.g.,  

[5] Student 1: I can explain the 

situation; we have information 

about... [they drew illustration of 

shoes and body].  

[ 6] Student 1: We can find the 

relation between us and the giants 

Students simplified the situations by 

mathematizing, with skipping real 

model for the situations. E.g. 

[5] Student 2: We can calculate by ra-

tio between width and length. 

[32] Student 3: The ratio between the 

length of the shoes and height of a 

person. 

Mathe- 

matization 

Students mathematize the situation 

by working in tables and lists. E.g.,  

[10] Student 3: Make a table 

[16] Student 3: Your shoes 26 cm, 

here I write 26 cm [in the column 

of the shoes’ length] your height is 

160. 

Students mathematize the situation by 

searching about formulas. E.g., 

[9] Student 4: The ratio between the 

length and the width … length 32 and 

width 12 [length and width of their 

shoes]. 

[11] Student 2: We should simplify the 

ratio … 32:12. 

Mathe-

matical 

model 

The mathematical model illustrated 

by tables and lists 

The mathematical model presented by 

formula 
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Model- 

ling cycle 

Process Explanation 

The first 

cycle 

C1.1 Understanding the situation, simplifying through mathematizing by 

think about the relation between the width and the length of shoes 5.29: 

2.37 

C1.2 Working mathematically: Find the ratio between the width and the 

length of one students; 32:12 

 C1.3 Mathematical result: The ratio 8:3 

  C1.4 Validating: Not helpful in solving the situation 

The  

second 

cycle 

C2.1 Return to the situation, simplifying through mathematizing: Find the 

ratio between the length of student’s shoes and her height. 

C2.B Mathematical model: The height of person is four times the length of 

their shoes. 

The  

second 

cycle 

C3.1 Return to the situation, simplifying through mathematizing: Find the 

ratio between the average of their length of their shoes. 

C3.B Mathematical model: The length of person is five times the length of 

shoes 

C3.3 Applying the models: 5.29*5  

C3.C Mathematical results, the height of the giants is 26.45. 

C3.4 Interpreting to reality, it is almost 27 m  

C3.D Realistic results 27 m 

C3.5 Validating the results in the situation, 27 m  

Table 3: Modelling Process of the Analytic Group in The Giant’s Shoes activity 

 
 

 

Figure 2: Modelling routes of the analytic group in the Giant’s Shoes Activity 

The visual group engaged in two modelling cycles: The group began with simplifying 

the situation through the use of drawing;  they tried to draw a figure of shoes through 

their simplification to yield a real model )A( and thought about the numerical rela-

tionship between the giant’s height and the length of his shoes, and this relation would 

be equivalent for ordinary people (C1.1); they began mathematizing by ordering their 



Shahbari & Salameh 

 

PME 42 – 2018 4 – 169 

own shoe length and individuals’ height measures,  and the ratio between these 

measurements were recorded on a table they constructed (C1.2); they then elicited a 

mathematical model, indicating that the ratio between the length of the shoes and the 

height resembles the ratio of their own measures (C1.B), applied the results (C1.3), and 

each student received mathematical results resembling his\her ratio, they received 

different results because each had a different ratio (C1.C); thus, these results didn’t 

resolve the problem (C1.4). The second cycle began with a mathematical model, 

comprising the average of the group’s ratio calculations (C2.B), they applied it (C2.3) 

and received numerical results 32 (C2.C); this result was then transformed to a realistic 

result, indicating the giant’s height as 32m (C2.D); they accepted this result (C2.5). 

Figure 3 illustrates the modelling route of the visual group. 

 

Figure 3: Modelling cycle of the visual group in the Giant’s Shoes activity 

DISCUSSION 

The current study examined the modelling process and routes of two groups of 

eighth-grade students, an analytic thinking style group and a visual thinking style 

group. The findings revealed major differences in the two groups’ modelling pro-

cesses. The analytic group tried to simplify the three activities by mathematizing them, 

while the visual group tried to simplify the activities by drawing and illustrating. In 

addition, the findings revealed differences in the mathematizing process and in the 

illustration of the mathematical model. Upon examining the features of the process 

characterizing the analytic group when engaging in modelling activities, they were 

found to be similar to features activated in solving routine word problems as Klein 

(cited in Borromeo Ferri & Kaiser, 2003) reported that students having an analytic 

thinking style were more likely to search for structures, patterns, or formulas and their 

application, or briefly operate with formulas. According to the modelling cycle we 

identified that analytic group engaged in more skipping of modelling phases: In the 

three activities, they skipped the real model, while the visual group addressed this 

phase. These findings supported Borromeo Ferri’s (2012) findings, she indicated that 

when analytic thinkers deal with modelling tasks, they preferred to change the re-

al-world situation to a mathematical model and operated in a formalistic manner, while 
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visual thinkers thought more in terms of the real world rather than of formal solutions, 

thus tending to present their thinking by means of pictures and drawings.  

Finally, teachers’ awareness of students’ thinking styles can have an important role in 

designing effective interventions. We suggest expanding our work by examining more 

than a single group from each style in order to collect more information about model-

ling processes and routes of students with different thinking styles. 
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A DUAL EYE-TRACKING STUDY OF OBJECTIFICATION AS 

STUDENT–TUTOR JOINT ACTIVITY APPROPRIATION 

Anna Shvarts 

Lomonosov Moscow State University 

 

The study develops late-Vygotsky’s approach of the learning process as a progressive 

appropriation of an irreducibly collaborative student-tutor joint activity. Combining 

videography with dual eye-tracking data, we demonstrate how objectification begins 

with recurrent dialogue between a student and a tutor and continues with the student’s 

egocentric speech that maintains the structure of the collective behavior, allowing the 

student to regulate her emerging mathematical ideas. The multimodal flow of con-

versation is conjoined and structured within the student-tutor dyad’s joint visual at-

tention that later transforms into mental joint attention, ready to be restored back to 

visual joint attention in case of difficulty or misunderstanding. 

INTRODUCTION  

Following the development of semiotic studies in mathematics education, we observe 

the shift from the consideration of mathematics education as an acquisition of rules and 

semantics of different ready-made semiotic registers, and the study of translations 

between them (Duval, 2006), towards an analysis of teaching-learning processes as an 

in vivo student-teacher activity that involves embodied interaction and the initial 

formation of signs for a student (Roth & Jornet, 2017). This shift towards processes of 

sign formation provokes us to draw some connections with the research on early 

childhood speech genesis. According to Bruner (1975), who was inspired by Vygot-

sky’s ideas (Luria, 1986), a child’s speech develops during joint activity with an adult 

and consequently the topic/comment structure of sentences repeat the structure of the 

speaker’s attention within their activity. Joint attention was introduced by Bruner as an 

important mechanism of speech genesis. Claiming that the development of mathe-

matical semiotic means is similar to speech development, we analyze joint attention 

between a tutor and a student through the use of dual eye-tracking. In this article, we 

pay attention to the ways joint attention is sustained during emerging mathematical 

meaning within dialogue and to the transition from joint visual attention to joint mental 

attention and back again.   

THEORETICAL FRAMEWORK  

The description of mathematical knowledge and discourse as multimodal is one of the 

most reliable and certain achievements of mathematics education research. It has been 

shown that visual inscriptions (Radford, 2010), gestures (Shvarts, in press) and 

movements (Abrahamson, Lee, Negrete & Gutiérrez, 2014) may appear to be am-

biguous, and students need to be educated to perceive them in an adequate way. Once 
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considered an integration of different semiotic systems and a system of translations 

between them (Duval, 2006), multimodality is now believed to precede the objectifi-

cation of mathematical signs (Jornet & Roth, 2015; Shvarts, in press).  

How does a student become able to structure and then to objectify multimodal flow in a 

cultural way? On the one hand, the student needs to be involved into the social practice 

(Radford, 2010). On the other hand, active constitution of the meaning is required by 

the student (Roth, 2008). Joint activity between a student and a teacher is neither lim-

ited to involvement in ready-made social practices nor to the active objectification of 

mathematics by the student herself. Teaching-learning processes involve mutual 

transformation (Roth & Radford, 2010), wherein each participant is an agent in the 

joint activity. Analyzing student-tutor interactions in embodied activity, Flood and 

Abrahamson (2015) demonstrated how the tutor repeats either the gesture or verbal 

entity of the student while developing another part of the semiotic node, verbal ex-

pression or gesture. Thus the irreducible character of joint activity to individual en-

deavors was demonstrated.  

Following late-Vygotsky’s ideas, Roth and Jornet noticed that the mediation between a 

teacher and a student by semiotic means is inappropriate in the theorization of learning, 

since there are no means to support this transfer: the prospective semiotic vehicles are 

in the process of constitution during learning (Roth & Jornet, 2017). The student and 

the teacher fall into a co-constitutive process of teaching-learning, where intersubjec-

tivity supersedes individual minds. Introducing a novel (for his time) idea in speech 

development investigations, Bruner (1975) claimed that the structure of speech acts is 

determined by the structure of attention and activity. He proposed joint attention as a 

situation in which a child’s and an adult’s attentions are coordinated and the adult 

slowly develops the child’s ability to understand speech through persistent interpreta-

tions of the child’s intentions and their focus of attention. Following enactivist and 

phenomenological approaches to joint attention (e.g. Hutto, 2011), we suggest that 

these 'interpretations' by an adult should not be considered as a voluntary conscious 

conclusion concerning the child's activity, but rather the natural involvement in a joint 

action with the child. It is in multimodal embodied collaboration with others that 

cultural meanings and their semiotic vehicles emerge and then function within indi-

vidual minds, thus being appropriated from joint activity into intraindividual func-

tions. We deliberately avoid the term internalization as it has become associated with 

the idea of individual constructions rather than the progressive transformation of social 

activity from interindividual spaces to an intraindividual space (Roth & Jornet, 2017). 

Thus transforming from external speech between people through egocentric speech of 

a student with her own to inner speech, semiotic means keep their intersubjective na-

ture and structure of joint attention. The first research question of this paper concerns 

the communicative elements that help the tutor-student dyad to sustain joint attention 

within a teaching-learning activity, allowing them to share cultural meaning as a co-

ordination of multimodal resources in semiotic nodes. The second research question 
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explores the progression from joint visual attention to joint mental attention during the 

collaboration.   

METHOD AND LEARNING MATERIAL 

Dual eye-tracking technology 

Novel dual eye-tracking technology that allows synchronous recording of two partic-

ipants’ eye movements opens new horizons in the analysis of joint visual attention in 

co-actions. We used Pupil-Labs head-mounted eye-trackers to provide ecological set-

tings where two people share a common space and can gesture and discuss manipula-

tions on a shared monitor (see Figure 1a). The original software was elaborated for our 

analysis such that the video from the screen could be overlaid with two gaze paths, thus 

providing innovation compared to the static images under the gaze paths in previous 

studies (Shvarts, in press; Lilienthal & Schindler, 2017; Schneider et al., 2016). This 

technical solution allows a combination of qualitative frame-by-frame analysis of gaze 

paths with videography of gestures and verbal expressions.  

All data were analyzed following the principles of the Vygotskian semiotic approach 

(Radford & Sabena, 2015) in search of meaningful patterns of interindividual regula-

tion across student/tutor gaze paths and the dyad’s multimodal utterance. Thus, the unit 

of our analysis was the intersubjective system of a tutor and a student in a teach-

ing-learning activity rather than their individual teaching and learning processes. 

 

 

 

 

 

 

 

Figure 1a, 1b: Dual eye-tracking experimental setting (a), and (b) Stage 2 of the in-

teractive learning material. Vertex C is manipulated by the student. Markers X and Y 

run along the axes. The triangle ABC is green when CB=CA. All blue inscriptions are 

given for clarity aims and are not represented for a student. 

Learning material 

We elaborated a computer-based interactive activity following the principals of ac-

tion-based design (Abrahamson, 2014). The activity involves disclosing a parabola as 

a locus of points which are equidistant from a straight line (directrix) and a separate 

point (focus). This topic has been proven as an insightful source for the development of 

mathematical conceptualization from an embodied activity investigation (Brown, 

Heywood, Solomon, & Zagorianakos, 2013). There is a triangle on a screen (see Figure 

1b), formed by Vertex A which is fixed to a point, Vertex B which runs along a hor-
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izontal line, and Vertex C which the participant can manipulate. While doing so, the 

student receives feedback from an interactive system via the changing color of a tri-

angle: the triangle turns green when Vertex C is equidistant from the other two vertices 

(thus, the triangle is isosceles). Consistent with the idea that semiotic symbols need to 

be removed from an initial embodied activity (Abrahamson, 2014), there is only tri-

angle at Stage 1 of the task and the students are required to “move the triangle in a way 

that it always will be green” and then to reflect on the rule that determines its color. 

Having objectified the triangle as isosceles, the student is forwarded to Stage 2 that 

introduces some mathematical symbolization. There are axes of the Cartesian plain, 

Vertex B of the triangle is marked X, and the projection of the manipulated Vertex C 

on the ordinate axis is marked Y. These symbols run along the axes while the triangle 

is manipulated. The students must find the formula of the curve that would be drawn by 

the manipulated vertex of the green triangle, thus expressing Y in terms of X. For this 

purpose they need to solve an equation that expresses the distance AY in two ways: 

using the right triangle AYC with the sides equal to Y, X and using the constant dis-

tance from the point (0,0) to Vertex A. All gestures are made with a thin pointer. 

Four student-tutor pairs took part in the research, with each tutor passing through the 

corresponding learning prior to the study. The analysis of Stage 1 showed high tem-

poral and spatial coordination of the tutors’ perception with the students’ actions, that 

allowed sustained joint visual attention during the students’ manipulations of the tri-

angle. Below we provide the analysis of one pair’s interaction during Stage 2.  

RESULTS AND DISCUSSION  

The entire Stage 2 took 10 minutes and 18 seconds; in the first 3 minutes and 27 sec-

onds there was a dialogue between the student and the tutor featuring an exchange of 

phrases and gestures. Then the tutor realized that the student needed broader support 

and switched to the mode of explanation. During the rest of the activity there are al-

ternating episodes of the tutor’s explanations and the student’s thinking aloud. Below 

we provide parts of the transcription of these consequential episodes. The numbers in 

brackets are pauses, measured in seconds.  

Let us focus on the analysis of the audio communication. There is a repeated pattern of 

the verbal utterances: one partner makes a statement and as soon as it is finished the 

other participant confirms it with a positive interjection such as “Yes” or “Ugu” (these 

confirmations are marked by bold in the transcriptions). This pattern is present almost 

during the whole activity and we could distinguish 39 positive interjections in about 7 

minutes and 30 seconds of activity.  

The analysis of the pauses between phrases shows that these confirmations follow the 

statement in a regular way (M = 613 ms, SD = 341 ms after excluding three outlying 

cases beyond two standard deviations), and a qualitative analysis reveals their essential 

communicative role. The long pause prior to the confirmation (3.2 seconds, Turn 18) 

inform the partner that there is a lack of understanding and the tutor prepares an addi-

tional explanation (Turn 19). 
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09 T: (0.3) And consequently we can 
say that all these distances, all 
these distances are [equal to] Y.  

10 S: (1.2) Which distances, once 
more?  

11 T: (0.4) This one is (0.2) Y  
((Figure 2a))  

12 S: (0.4) Yes = 

13 T: = and this one is also Y 

14 S: (0.9) Oh, yes.  

15 T: (1.0) Thus we know this side 
((Figure 2b)) 

16 S: (0.6) Ugu  

17 T: (0.3) We know (0.8) the con-
stant. (1.4) And <now> we can 
try somehow express <a a a> 
(1.2) this one  

18 S: (3.2) ((the tutor looks at the 
eyes of the student)) Ugu  

19 T: (0.3) using (0.8) right triangle  

20 S: (0.6) <A a a>!  using right   
triangle 

Figure 2a, 2b: Visual joint attention to 

the sides of the triangle while the tutor 

moves the pointer along them. Here 

and further the student’s gaze path is 

yellow, the tutor’s gaze paths is red 

and the white arrow is directed along 

the pointer 

 

It is not a deliberate signal about a mistake since there was no question from the tutor 

and no interpretation or answer by the student. It is rather a change in the regular pat-

tern of the activity, namely the absence of an expected confirmatory reaction that di-

rects the tutor towards preparation of an additional guidance. These confirmatory in-

terjections signify that the two participants keep joint attention during the entire dia-

logue as they refer in the dialogue to the same entities, while eye-tracking data reveal 

that the dialogue is accompanied by joint visual attention (see Figures 2a and 2b) as it 

joins the gesture, the verbal utterance and the visual inscription. Concordant with our 

previous findings (Shvarts, in press), the coincidence of different presentations appears 

as an active coordination between modalities. For example, Figure 2a shows that eye 

movements do not follow but rather anticipate the gesture along the side of the triangle 

thus joining visual and gestural expressions in anticipative perception. 
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The second piece of the transcription reveals the 
spontaneous thinking aloud of the student. 

 

25 S: (0.6) A sum of cathetuses (0.4) <is 
equal> to a square of hypotenuses (0.6) 
So it appears X-squared <is equal> (1.1) 
No (0.5) A moment (0.4) It appears 
Y-squared (0.5) equal X-squared plus 
unknown-squared ((Figure 3))  

26 T: (0.2) Ugu  

27 S: (0.6) So unknown-squared equal the 
root…   >May I also have a pointer?< 
((the tutor gives the pointer to the stu-
dent))  

28 T: (0.8) Surely (0.9) 

29 S: ((root)) of this one, so we are looking for 
this one side ((Figure 4a)) 

30 T: (0.4) Ugu  

31 S: (0.3) So it appears this [side] is equal 
(0.8) a square root from (0.6) the square 
of this one [side] ((Figure 4b)) minus, I 
mean (0.15) square of X minus square of 
(1.0) Y. ((during second part of the 
sentence the student gives the pointer to 
the tutor and the tutor takes it))  

32 S: (0.9) No.  

33 S: (0.6) Yes. (0.6) Square of Y  

34 T: (0.4) Aah… ((intensive breath in)) 

35 S: (.) minus square of X  

36 T: (0.1) Yes! Yes! (0.5) You may write it 
down. 

 

Figure 3: The absence of joint vis-

ual attention 

 

Figure 4a, 4b: Joint visual attention 

is restored when the student uses 

the pointer 

This time it is the tutor who confirms each of the student’s statements with an inter-

jection. The pauses prior to the interjections are very short (0.2 to 0.4 seconds; see 

Turns 26 and 30), and again the absence of the next confirmation (Turn 32, the con-

firmation did not appear in 0.9 seconds) may signify for the student that there is a 

mistake or miscommunication. The statement–confirmation cycle is broken and the 

student herself immediately restores it (Turn 32). She, rather than the teacher, answers 

“No”, as if there was a question. Thus the dialogue continues with almost the same 

regularity (and the student continues it further in Turn 33 with her “Yes”), but within 

the student herself. The tutor is actively present waiting for the student’s final utter-

ance, and expressively confirms it as soon as it is obtained (Turn 36 appears 0.1 sec-

onds after the previous turn).  
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Thus the structure of the dialogue is kept during both presented episodes, while the 

relative participation of the student and the tutor is changing. At first the tutor provides 

the statements while the student confirms them, later the statements are provided by 

the student and confirmed by the tutor, and at the end the student may take on both 

roles appropriating the structure of joint activity.  

The joint attention undergoes a serious change during the second episode. While con-

tinuation of the statement–confirmation cycles suggests that participants maintain 

attentional focus on the same entities, the video and eye-tracking data demonstrate that 

the student does not use the pointer and there is no longer any synchrony in relevant 

areas attendance (Turns 26 and 27; see Figure 4). Thus joint visual attention is trans-

formed to joint mental attention. However, as soon as the student encounters a diffi-

culty (Turn 29) she requests the pointer and restores joint visual attention with the tutor 

by using gestures (Turns 29 to 31). At the end of Turn 29 the student gives the pointer 

back to the tutor and at the very same moment produces an inadequate verbalization. 

Apparently, she do not only wants the tutor to follow her, but also needs the pointer for 

her own attentional regulation. We suggest that these two intentions are actually the 

same: by requiring the tutor’s attention, she also organizes her own attention towards 

the visual inscription thus progressing from interindividual activity to intraindividual. 

CONCLUSIONS 

The analysis of multimodal flow reveals high temporal and spatial coordination of the 

tutor and the student as they are involved in a teaching-learning joint activity. The 

statement–confirmation cycles help them to sustain joint attention and a break in the 

cycles allows restoring the joint attention in case of misunderstanding. We claim that 

their ability to anticipate their partner’s gestures and verbal utterances and to direct the 

partner by minimal changes in activity (such as longer pauses) confirm the irreducible 

character of joint activity. While the verbal dialogue is supported by joint visual at-

tention and necessary involves both participants at the beginning, later the student may 

appropriate the dialogic functions and regulate her visual attention on her own. Ob-

jectification is still in process, but the two participants may acquire partial independ-

ence: joint mental attention may supersede joint visual attention thus freeing the visual 

system for other tasks and serving future independence of the tutor’s and the student’s 

activity. However, in case of difficulty or misunderstanding, intensive embodied co-

ordination is restored and joint visual attention again guarantees the co-constitution of 

mathematical meaning.  
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During the last two decades research on the development of adaptive expertise has 

gained growing research interest. While a number of studies investigated the effects of 

different instructional approaches, the state of knowledge regarding the impact of 

learning resources in this field is quite limited. This study provides new insights into 

the relations of textbook quality and students’ adaptive use of strategies in multi-digit 

addition and subtraction. By reanalysing longitudinal data of 1404 students from 

grade 1–3, we found quality discrepancies in the textbooks’ opportunities to learn as 

well as substantial effects of these on the students’ actual strategy use. Thus, 

mathematics textbooks can be regarded as meaningful classroom factor predicting the 

development of students’ adaptive expertise. 

THEORETICAL BACKGROUND AND EMPIRICAL FINDINGS 

In the last two decades, a vigorous research interest in the genesis of individual 

adaptive expertise developed in mathematics education and psychology. Although 

valuable progress has been made, especially by the implementation of reform-based 

instructional approaches, little is known yet about the role of learning resources in this 

domain. According to Mullis and colleagues (2012), textbooks can be considered as 

the most important teaching materials used by primary school mathematics teachers. 

However, relational or even causal research on textbooks is limited (Fan, 2013), and 

the findings about effects on students’ achievements are inconsistent (van Steenbrugge 

et al., 2013; Törnroos, 2005).  

Adaptive expertise in multi-digit addition and subtraction 

Since end of the 1990’s, there has been a development towards a broad consensus 

about the importance of an adaptive or flexible use of strategies in arithmetic 

computation as a learning goal in primary school mathematics. A comprehensive 

definition of adaptivity is given by Selter (2009, p. 624):  

Adaptivity is the ability to creatively develop or to flexibly select and use an appropriate 

solution strategy in a (un)conscious way on a given mathematical item or problem, for a 

given individual, in a given sociocultural context. 

In the context of multi-digit addition and subtraction up to 1000 we distinguish 

between mental calculation, written algorithms and informal strategies (e.g., Heinze et 

al., 2009). Here, informal strategies cannot unambiguously be assigned to mental or 

written methods due to a fluent transition (Fuson et al., 1997). An overview of the most 

common solution strategies is given in Table 1 (Selter, 2001). Adaptive expertise in 



Sievert, van den Ham, Niedermeyer, & Heinze 

  

4 – 180 PME 42 – 2018 

this context is indicated by an adaptive use of strategies to find efficient solutions to 

given arithmetic problems. 

 

Stepwise Split Compensation Simplifying 
Indirect  

Addition 

123 + 456 = 579 

123 + 400 = 523 

523 + 50   = 573 

573 + 6     = 579 

123 + 456 = 579 

100 + 400 = 500 

20 +  50    = 70 

3  +   6      = 9 

527 + 398 = 925 

527 + 400 = 927 

927 –    2  = 925 

527 + 398 = 925 

525 + 400 = 925 

701-698 = 3 

698+3 = 701 

 

Table 1: Most common types of strategies for addition and subtraction (the table shows 

examples for addition; there are corresponding versions for subtraction for all 

strategies but indirect addition). 

First longitudinal studies revealed that adaptive expertise is accompanied with a 

broader conceptual knowledge or a deeper understanding of base-ten number 

conceptions (e.g., Fuson et al., 1997). In a row of reform-based teaching experiments, 

the development of students’ strategy use was examined, yielding first insights, like 

positive effects of an early emphasis on the flexible use of strategies in lessons and of 

comparing and contrasting the efficiency of different strategies (e.g., Klein, Beishuizen 

& Treffers, 1998; Rittle-Johnson & Star, 2007). A theoretical framework for the 

genesis of adaptive expertise was developed by Siegler and his associates (cf. Siegler 

& Lemaire, 1997). The framework distinguishes four dimensions, for which are shown 

that changes in any of them can improve speed and accuracy of strategy choice overall. 

The four dimensions are: strategy repertoire, the knowledge of different types of 

strategies; strategy distribution, the knowledge of relative frequencies these strategies 

are used; strategy efficiency, the ability to perform strategies quickly and accurately; 

and strategy selection, the ability to flexibly select a strategy on a given problem. 

Nevertheless, empirical studies repeatedly reported a lack of adaptivity in students’ 

actual strategy use (e.g., Selter, 2001; Heinze et al., 2009; Torbeyns & Verschaffel, 

2016). Although a shift towards the weight of informal strategies is perceptible in 

mathematics education, like the adoption in curricula and standards, students still tend 

to favour one strategy per operation, which is applied to almost each type of problem. 

One reason for the missing success might be a lack of learning opportunities or at least 

a lack of quality of learning opportunities in the mathematics classroom.  

Textbooks as learning resources 

For the evolution of adaptive expertise, learning resources like textbooks could play an 

important role. As mediator between the official and the implemented curriculum, 

textbooks translate the abstract curriculum into concrete operations for teachers and 

students to carry out (Valverde et al., 2001). Thus, as the adaptive use of strategies was 
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adopted in many curricula and standards, textbooks should offer opportunities to learn 

for this domain. In turn, the textbook content influences the teachers’ instruction, as 

they’re the most important learning resource for primary school mathematics teachers 

(Mullis et al., 2012). In the Trends in International Mathematics and Science Study 

(TIMSS) 2011 86 % of the German and 75 % of all primary school mathematics 

teachers declare to use the textbook as a basis of instruction (Mullis et al., 2012). 

Moreover Krammer (1985) found differences in the implemented teaching practices of 

teachers using distinct textbooks. Schmidt et al. (2001) found a relationship between 

the space a topic covers in a textbook and the instructional time teachers dedicate to 

this topic in the mathematics classroom. Those topics which are not included in the 

textbooks used are unlikely to appear in classroom (Schmidt et al. 1997). Furthermore, 

there are some indications that textbooks have an effect on student achievement. 

Schmidt et al. (2001) found a direct relation between the amount of space allocated to 

covering a topic and the size of achievement gain on that topic for the eighth grade 

TIMSS data of the United States. In line with that, Törnroos (2005) showed an effect of 

the number of opportunities to learn in mathematics textbooks for the TIMSS test on 

the students’ achievement in TIMSS. Using the sample of our study presented below, 

Niedermeyer et al. (2016) found substantial differences of four different textbooks on 

students’ arithmetic achievement from the end of the first grade till the end of the 

second grade. On the other hand van Steenbrugge et al. (2013) did not find any 

differences in the performances of elementary school students using distinct 

mathematics textbooks. All in all, there are some indications that characteristics of 

mathematics textbooks affect the student achievement. In the special field of adaptive 

expertise, some studies suggest such an effect on the students’ strategy choice (cf. 

Fagginger Auer et al., 2016; Heinze et al., 2009). While Fagginger Auer and 

colleagues showed the relation of the textbook used and the student’s strategy profile 

in a multilevel latent class analysis, Heinze et al. found a relation between the 

adaptivity of student’s strategy use and their textbook’s instructional approach to teach 

adaptive use of strategies.  

According to Fan (2013), there is still a lack of evidence-based relational and causal 

research on the effect of mathematics textbooks. Although the studies reported may 

give valuable indications, their scope remains cross-sectional (except for Niedermeyer 

et al., 2016). However, for the investigation of a prolonged process like the 

development of adaptive expertise, there’s a need for longitudinal data. Also, previous 

research on textbooks is mainly small-scale and often includes textbooks representing 

different curricula, with the result that the effects of curricula and textbooks are 

confounded. Furthermore, to our knowledge, there are neither any qualitative textbook 

analyzes developing a scale to classify textbook quality, nor any studies examining the 

effects of textbook quality on student achievement (Fan, 2013). Most existing studies 

of textbooks’ contents refer to comparisons between books, often between those of 

different countries (Fan, 2013). 
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RESEARCH QUESTIONS AND METHODS 

The present study aims at contributing to the mentioned research gaps. In contrast to 

most former investigations on textbooks effects, we use longitudinal data (grade 1-3) 

of a large sample. By comparing textbook series following the same curriculum, we 

can circumvent the problem that curricula and textbooks are confounded. Another 

research desideratum we address is the development of a textbook quality scale and the 

examination of the effects of textbook quality on student achievement. Since a global 

measure for textbook quality seems barely feasible and adaptive expertise is an 

important learning goal, this study focuses on the subdomain of adaptive expertise. 

Consequently, we address the following research questions: (1) Do textbook series 

differ with respect to the quality of their opportunities to learn for adaptive expertise? 

(2) Which effect does the textbooks’ quality concerning adaptive expertise have on 

students’ adaptive expertise at the end of grade 3? 

Research context 

The basis for our analysis is an existing data set from a large three-year longitudinal 

study with primary school students from one federal state in Northern Germany. The 

overall sample consists of 2330 students from 127 classes. It comprises student data 

from the beginning of grade 1 (at the age of 6 years) to the end of grade 3. The original 

aim of the study is to address students’ development in arithmetic. Of this sample, 

about 1700 students from 82 classes use one of the four most common mathematics 

textbooks: “Denken und Rechnen”, “Einstern”, “Flex und Flo” and “Welt der Zahl”. 

The distribution of the classes over the textbooks is relatively even. Our analysis is 

based on the subsample of 1404 students from the 82 classes, who use one of the four 

textbooks and worked on the tasks examining adaptive expertise at the end of grade 3.  

Instruments, data collection and analysis 

For the purpose of a quality-based scale of the four textbook series we derived 

categories from the previously mentioned dimensions of adaptive expertise by Siegler 

and Lemaire (1997). Since strategies for multi-digit addition and subtraction are taught 

in grade 2 (number domain up to 100) and grade 3 (number domain up to 1000), we 

analyzed both books of each series by three independent and trained persons on the 

basis of the categories derived. A uniform scoring was reached by consensus method. 

In each category, we set up a ranking and compiled a relative overall scale of the 

books’ quality for both grades by weighting each category equally. The following four 

categories were derived and scored: (1) Strategy repertoire: 0 points if a strategy was 

not treated, 1 point for incidentally introduced strategies (e.g., as a “trick”), 2 points for 

explicitly introduced strategies, and 3 points if explicitly introduced strategies were 

additionally illustrated in different representations; (2) Strategy distribution: 0 points 

for strategies not introduced or introduced only once (as this is included in the 

preceding category), 1 point for strategies introduced and additionally presented by 

means of another task or problem, and 2 points for strategies introduced and 

additionally presented more than once by means of other tasks or problems; (3) 
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Strategy efficiency: Since strategy efficiency evolves and enhances by growing 

experience and practice, our analysis criterion would have been practicing problems 

and task, to foster this ability. As we didn’t find any variance between the textbooks 

regarding their amount of exercises, we did not include strategy efficiency as a 

category to our analysis; (4) Strategy selection: Former research has shown that an 

explicit comparison of solution strategies is conducive for an adaptive use of strategies 

(cf. Rittle-Johnson & Star, 2007). Therefore, we assessed dichotomously whether 

exercises explicitly demand a strategy comparison as a systematic component (i.e., a 

recurring content) of the books, or not. 

Student and teacher data were collected by different tests and questionnaires. Data for 

controlling the learning prerequisites of the students (basic numerical skills, basic 

language skills, general cognitive abilities) were measured with approved standardized 

instruments at the beginning of grade 1. Data for the individual learning progress were 

collected at the end of grade 1 and 3 with grade-specific arithmetic tests. The 

arithmetic test at the end of grade 1 was scaled using Item Response Theory. The 

arithmetic test at the end of grade 3 included four problems (482+218, 473+398, 

381-99, 702-698) each suggesting the use of specific strategies as efficient solutions 

(e.g., indirect addition for 702-698). For each problem, the written calculations or 

notes of the students were coded by trained research assistants with partial credit 

scoring for inefficient (0 points), partly efficient (1 point), or efficient (2 points) 

strategy use. Purely mentally computed solutions without notes were considered as the 

use of an (internalized) efficient strategy. About 22 % of the solutions with notes were 

double-coded, providing solid Cohen’s κ’s of .83–.90. The resulting scale for students’ 

adaptive expertise (0–8 points) shows an acceptable reliability (Cronbach’s α = .71). 

We conducted multilevel analyses which take into account the nested structure of the 

sample (students in classes). We included the variables for learning prerequisites at 

school entrance on the individual level and cognitive ability also as aggregated value 

on the class level (as an indicator of group composition). To account for the arithmetic 

development we included the grade 1 arithmetic test scores on individual level. 

Teachers beliefs (whether they’re rather constructivist or not), a scale combining 

teacher experience and qualification, as well as the previously described textbooks 

quality for grade 2 and 3 were included on class level. Missing data on independent 

variables were handled by the Full Information Maximum Likelihood method (FIML). 

Due to sample selection we had no missing data for the adaptive expertise score. 

RESULTS 

The analysis of textbook quality yielded scores from 10 to 24 points per book 

regarding the dimension repertoire, 4 to 10 points per book regarding distribution and 

0 to 1 point per book regarding comparison. While the books of the series “Welt der 

Zahl” are ranked first in all categories but one, those of “Einstern” are ranked last with 

only one exception. The relative overall scales of the books’ quality were derived by an 

equally weighting and averaging of the three category rankings. The final mean ranks 



Sievert, van den Ham, Niedermeyer, & Heinze 

  

4 – 184 PME 42 – 2018 

range from 1.00 (“Welt der Zahl”) to 2.33 (“Einstern”) in grade 2 and from 1.33 (“Welt 

der Zahl”, “Flex und Flo”) to 3.33 (“Einstern”) in grade 3. In relation to each other, the 

opportunities to learn for adaptive expertise of the “Welt der Zahl” series are of the 

highest quality on this scale, those of “Einstern” of the lowest, the other two are in 

between. With respect to research question 1 we have found substantial differences in 

the textbooks’ qualities. 

The outcomes of the multilevel analysis with students’ adaptive expertise as dependent 

variable are shown in Table 2. In model 1 a substantial effect of arithmetic prior 

knowledge on individual and a small significant effect of the class composition 

regarding basic cognitive abilities on class level can be seen. The model 2 also includes 

the teacher variables which have no significant effects. The largest significant effect 

appears by including the textbook quality scales of grade 2 and 3 in model 3. The effect 

of the textbook quality in grade 2 is substantial, whereas the textbook quality in grade 3 

has no additional effect. The inclusion of the textbook quality led to a substantial 

increase of the explained variance from model 2 to model 3 (ΔR² = 11.4).  

 

 Model 1 Model 2 Model 3 

Level 1 (students)    

 Basic cognitive abilities .01 (.01) .01 (.01) .01 (.01) 

 Linguistic preconditions -.01 (.02) -.01 (.02) .01 (.01) 

 Mathematical preconditions -.02 (.01) -.02 (.01) -.02 (.01) 

 Arithmetic prior knowledge  .48** (.06) .48** (.06) .48** (.06) 

Level 2 (class)    

 Basic cog. abilities (aggregated) .14** (.04) .13** (.04) .12** (.04) 

 Arithmetic prior knowl. (aggr.) -.30 (.18) -.25 (.18) -.30 (.19) 

 Teacher qualification  -.32 (.17) -.25 (.15) 

 Teacher beliefs  .04 (.26) -.01 (.20) 

 Textbook quality (grade 2)   -.50** (.19) 

 Textbook quality (grade 3)   -.09 (.16) 

Intercept -1.60 (1.11) -1.10 (1.24) -1.89 (1.23) 

Explained within class variance 11.1 % 11.1 % 11.1 % 

Explained between class variance 24.4 % 31.2 % 42.6 % 

* p <.05, ** p <.01, 

Table 2: Multilevel regression for individual and classroom covariates and textbook 

quality on students’ adaptive expertise at the end of grade 3 

DISCUSSION 

While the results presented are plausible according to the assumption that arithmetic 

prior knowledge and the quality of opportunities to learn are predictors for students’ 

adaptive expertise, they provide new insights regarding the role of textbooks as 

learning resources in this field. We have not only shown effects of the textbooks on 
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students’ adaptive expertise, but also, that these effects can be explained by the quality 

of the textbooks’ opportunities to learn. The results reveal that a fine-grained and 

theory-based content analysis of mathematics textbooks is a fruitful approach to 

understand the impact and effects of textbooks as learning resources. Our findings 

supplement the results of Schmidt et al. (2001) and Törnroos (2005). Following this 

approach the outcomes may be replicated for other mathematics domains.  

Our results have important implications. The present study shows that students using a 

certain textbook could be disadvantaged in comparison to students using another 

textbook. Therefore a textbook permission, based on theory based quality indicators, 

could lead to an improvement of textbook quality and avoid a disadvantage of students 

caused by a specific textbook. Furthermore, teachers should be trained how to use 

textbooks, so they are able to reflect on the quality of textbooks’ learning opportunities 

and, if necessary, compensate inadequate representations of the curriculum. 

There are several limitations of our study. Since we reanalysed an existing data set we 

were not able to administer specific instruments for our research. In particular, the 

questionnaires do not provide fine-grained data on the implementation of the teaching 

content or the teacher knowledge. Despite of these limitations the data set has the 

advantage that it covers a large sample taught by the same curriculum and allows 

multilevel analysis with an adequate explanatory power. Furthermore we were able to 

assess and examine the effects of textbook quality on student achievement for a 

specific domain. Accordingly, we were able to supplement and further develop 

existing research on the effects of textbooks on students’ learning. 
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We analyze the nationally approved high school mathematics textbooks in Brazil from 

a perspective of governmentality and subjectivity, important notions in recent 

socio-cultural-political studies of mathematics education. A Foucauldian discourse 

analysis on how financial mathematics and interdisciplinarity are displayed in the 

books was carried out. We show how the mathematics is entangled with ideas of the 

utility of mathematics and moral directions of behavior on how to become a good 

capitalist, consuming and caring citizen. This points to how the mathematics teaching 

and learning suggested in the textbooks go beyond the mathematical contents, but 

simultaneously normalize the students’ conducts and form their subjectivity. 

INTRODUCTION 

Mathematics textbook analysis has recently boomed as an area of research given the 

significance of the textbook as an element to mediate the curriculum and guide 

teaching and learning (Fan et al., 2013). In socio-cultural-political studies of 

mathematics education (Planas & Valero, 2016), the textbook has been a way of 

studying not only the images of mathematics (Dowling, 1998), but also how different 

types of students are positioned, thus making available different images for student’s 

identity (Doğan & Haser, 2014). From a perspective on the cultural politics of 

mathematics education (Valero, 2017), textbooks are conceived as important 

technologies of power, through which ideals of the desired mathematically competent 

student are put forward. In these ideals, characteristics of mathematics as a school 

subject as well as of the child as a mathematics learner are articulated. Textbooks as a 

key element of the curriculum offer strong cultural theses about who the child is 

expected to become, “making legible and administrable the child as future citizen” 

(Popkewitz, 2004, p. 5). These theses unfold in the meeting of the student with 

pedagogical practices, conducting the conduct of students towards becoming particular 

types of subjects. The question that emerges when analyzing textbooks from this 

perspective is which are the images put forward about what constitutes the good 

mathematical learner. 

We present some of the results in the Brazilian project “Discursive Networks in 

Brazilian High School Mathematics Textbooks” (Silva, 2016), which aims at 

analyzing the constitution of the student through the discursive network in 

mathematics textbooks. Textbook analysis helps us to understand the mechanisms that 

operate in the materiality of the textbooks and how they contribute to the fabrication of 
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specific kinds of subjectivities in mathematics classrooms. In this paper, we examine 

the notions of mathematically competent student that emerge in textbooks when two 

quite current educational ideas are made part of textbooks: the idea that learning 

financial mathematics is important for developing a sense of finances and economy; 

and the idea that interdisciplinarity is a key strategy to bring mathematics into context 

as a strategy to promote meaning for students. Even though these are two different 

ideas that the curriculum should use and contribute to, the analysis of textbooks allows 

to show their connection in the making of cultural theses for the mathematics learner in 

Brazil. 

A FOUCAULDIAN TOOLBOX FOR TEXTBOOK ANALYSIS 

One of Foucault’s interest was “to create a history of the different modes by which, in 

our culture, human beings are made subjects” (Foucault, 1982, p. 208). He wanted to 

understand how discourses produce specific kinds of subjects and how forms of 

knowledge (including mathematics) influence ways of living in the world. 

Technologies of power guide our understanding of ourselves and normalize collective 

practices, leading to the articulation of very specific forms of being ‘man’ (Walshaw, 

2016). In mathematics education, this research approach has contributed to what 

Planas and Valero (2016) called the socio-cultural-political axis that has emerged in 

the last 10 years of research in PME. Stinson and Walshaw (2017, p. 1412) emphasized 

the importance of such type of approach in mathematics education, because “such a 

perspective refutes closure and keeps the possibilities for mathematics teaching and 

learning open to multiple and uncertain interpretations and analyses”. In this sense, 

these studies provide insights that complement our understanding of mathematics 

learning processes focused on the contents of mathematics and on learning. 

Foucault’s toolbox allows to articulate theory and methodology in a way that leaves to 

the researcher the possibility of building analytical forms of working with empirical 

materials. For the analysis of textbooks, the theoretical/methodological strategy that 

we have articulated based on Foucault traces the elements of textbooks that, when 

repeated systematically, articulate descriptions and narratives about financial 

mathematics and interdisciplinarity as part of mathematics education. Furthermore, the 

textbooks offer narratives about how these elements are to be incorporated in 

children’s actions and forms of being a student in mathematics classes. These are to be 

found in discourse. 

Foucault’s notion of discourse (Foucault, 1972, pp. 48-49) “is not a slender surface of 

contact, or confrontation, between a reality and a language (langue), the intrication of a 

lexicon and an experience”. Rather, it is “a group of rules proper to discursive practice. 

These rules define not the dumb existence of a reality, nor the canonical use of a 

vocabulary, but the ordering of objects”. Therefore, analyzing discourse is about 

recognizing “practices that systematically form the objects of which they speak”. To 

make visible the discourse that emerges in mathematics textbooks, we use the concept 

of statement, which is “a seed that appears on the surface of a tissue of which it is the 
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constituent element. The atom of discourse” (Foucault, 1972, p. 80). Statements have 

four characteristics: A referent, a subject, an associated field, and a specific materiality 

for dealing with things actually expressed. These are repeated and reproduced, and are 

activated through techniques, practices and social relations (Fischer, 2001, p. 202). 

In the next section, we will enter into the context of Brazilian high school mathematics 

textbooks as a way to explore the practices and positioning of them in relation to the 

government and the curriculum; and then will proceed with the analysis of the 

statements that navigate in the textbooks concerning financial mathematics and 

interdisciplinarity, in order to identify the cultural theses of children that they build. 

TEXTBOOKS IN BRAZIL 

The corpus of the analysis is the six textbook collections approved by the Brazilian 

National Textbook Program (BNTP). Each collection contains three textbooks, each 

one for a high school year. Each collection has different authors and publishers. 

Eighteen books in all have been analyzed. The BNTP makes a call for the production 

of textbooks. Proposals from different authors in publishing houses are examined and 

evaluated according to criteria for quality textbooks in each subject. Since in Brazil 

there is no national curricular guidelines, these criteria define many elements of the 

factual mathematics curriculum. High school textbooks assessments occur every three 

years. If a proposal is approved, the Federal government guarantees the distribution of 

the textbooks to all Brazilian public schools. Teachers receive a books summary 

(Brazil, 2014) so that they can choose which collection they want to use in their 

classes. All the students in the country receive the collection chosen by their teacher. 

There is a large public investment in textbooks. In 2015, approximately 7.5 million 

high school books were bought and distributed by the government (Brazil, 2017). This 

is a lucrative business; therefore, it is important to produce high quality textbooks. 

Publishers and authors make a big effort to have their textbooks approved. This 

involves at least two things: (i) writing textbooks that fall within the criteria of the 

BNTP, and (ii) producing textbooks with a language that is attractive to the teachers, so 

that teachers choose a given collection. 

Given this context, analyzing the mathematics textbooks is equivalent to analyze the 

current, common or most accepted discourse about mathematics education, since these 

are the materials that guide classroom practices in the country. In other words, these 

textbooks represent the “order of discourse” for the current mathematics teaching and 

learning in Brazil. In what follows we will focus on how the notions of learners appear 

entangled in notions of financial mathematics and interdisciplinarity. We build on the 

analysis of financial mathematics in the master’s thesis of Camila Coradetti (2017), 

and the analysis of interdisciplinarity in the master’s thesis of Ludiane Berto (2017). 

These two theses were associated to the project “Discursive Networks in Brazilian 

High School Mathematics Textbooks”. We thank them for their work and contribution 

to our understanding of the overall problem of the research project. 
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THE CAPITALIST CONSUMING LEARNER 

In the 6 textbook collections, there appears a specific chapter called “Financial 

Mathematics”. The emergence of this particular element within the discursive network 

of the textbooks is related to the criterion of the BNTP to offer contextualization for 

mathematics that connects to everyday practices and social phenomena of relevance 

for the population (Brazil, 2014). 

Figure 1 introduces financial mathematics with a situation of buying a Smartphone that 

costs R$ 1299,00, to be purchased in 1 or 12 equal payments. The buyer thinks that she 

already has saved R$ 200,00. The book announces that “the knowledge of simple 

financial operations such as loans, financing, discounts, interest rates and investment 

income are of great importance for a full citizenship”. Some of the elements in this 

presentation —costs, savings, credit, consumption and citizenship— are found in 

many exercises in the books. 

 

  

Figure 1: Leonardo (2013, p. 8). Figure 2: Souza (2013, p. 83, v. 2). 

 

Figure 2 shows an exercise that starts with an explanation about savings provided in 

terms of possibilities for future consumption. The idea that consumption and expenses 

should not surpass income appears repetitively. The situation of credit is presented: 

“The issue is not between buying or not buying, but between getting the merchandise 

paying for credit and interests, or buying with a discount in the future”. The problem 

continues with a situation of buying a LED TV with different forms of credit. 

“Financial planning” is a concept found in an activity that proposes the elaboration of a 

spreadsheet for the control of a family’s finances. Finances are compared to health: 

Taking care of finances is like taking care of health and being happy. “It may seem 

simple, but it requires planning and caution” (Leonardo, 2013, p. 23). The activity asks 

children in groups to make a budget of income and expenses for a family. 
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Figure 3: Leonardo (2013, p. 23). 

The overall analysis showed that many activities had two options for the student to 

make the best choice, without a discussion about the need to carry out such 

consumption. Even when there was guidance on the importance of saving money, the 

goal of accumulating funds was almost always to buy something in the future. For 

instance: “saving is delaying consumption at the present time in order to consume more 

in the future” (Souza, 2013, p. 83) and “buying a car, owning the house or carrying out 

the dream trip are achievements that usually require a lot of work and investment time” 

(Souza, 2013, p. 58). The action of consuming is part of becoming a citizen. This is 

present in explicit formulations about responsibility and the justification for the 

importance of paying taxes and the existence of tax systems. In addition, there are 

explanations about the national financial system and the importance of consuming 

products to activate the economy, generate jobs, and contributing to the country’s 

economic growth. Information in these texts is presented numerically, and students are 

asked to calculate with those numbers and to use certain procedures in the calculations. 

In the textbooks, there is an articulation of tasks in which mathematical concepts are 

presented and procedures are to be performed, images that appeal to consumption of 

electronic devices and other products of importance to the consumer and to a modern 

society, and moral rules about being a caring, responsible and happy citizen 

individually and in the family. There are three statements that circulate in the textbooks 

concerning financial mathematics: (i) it is necessary to instruct for good 

decision-making, (ii) investment and savings are practices for capital accumulation, 

(iii) and citizenship is linked to consumer training. 

THE CARING LEARNER 

In the evaluation guidelines of the BNTP a criterion is interdisciplinarity. Therefore, 

this element appears explicitly in almost each section and topic in textbooks. In some 

problems, there is the mention to the disciplines within which mathematics is applied. 

Justifications about the importance of interdisciplinarity are explicitly connected to 

citizenship. Mathematics as a tool to solve problems and make models in the situations 

of the problems are strongly connected to moral rules about what is good and desirable 

as both a mathematical behavior and the behavior of the person. 
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There are interdisciplinary activities with geography, 

biology, chemistry and other disciplines in the 

curriculum. In this one, the sustainable use of water is 

the focus (Figure 4). Information about the use of water 

is presented in volume of water or use of volume of 

water per unit of time. “Not to leave the faucet leaking 

avoids a water waste of approximately 50 lt. of water 

per day”. The following images not only indicate 

amounts of water use but also bring recommendations 

of behavior such as “avoid long showers”, “using a 

bucket” for washing the car instead of a hose. 

In other types of activities topics such as obesity appear 

a similar entanglement between explanations of the 

subject —how fat tissues are built in the body—, with 

mathematical models and calculations —calculation of 

corporal mass index and the understanding of “normal 

weight, under-weight and overweight—, and moral 

instruction on keeping a healthy weight through the 

regulation of consumption and burning of fat. 

Figure 4: Souza (2013, p. 62, v.1). 

In other types of exercises with chemistry, the composition of gasoline in Brazil is 

discussed (Figure 5). Gasoline quality control and how consumers should pay attention 

to the gasoline they use in their vehicles is the focus: “be a good consumer and do not 

be fooled” is part of the explanation of the importance of mathematics and chemistry in 

conducting a test to determine the amount of ethanol in gasoline. Body care activities 

have also been found as orientations for food education, associated to incentives for the 

practice of physical exercises, through explanations that value the importance of 

certain habits to build a healthier life. Information is presented numerically, and the 

problems prompt students to use certain procedures on the information to answer to the 

questions posed in the context of the problems. In other words, it became evident the 

articulation of mathematics to morals about the good life of citizens. 

 

Figure 5: Context section “gasoline and ethanol” (Souza, 2013, p.121, v.3). 
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Two main statements that circulate in the textbooks concerning interdisciplinarity and 

students are: (i) interdisciplinarity contributes to the formation of conscious and 

politically correct citizen-consumers, and (ii) interdisciplinarity is fundamental to for 

being able to take care of the self, of the other and of the environment. 

CONCLUDING REMARKS 

So, what have we found in the textbooks? We have found a lot of activities that 

constitute a kind of manual for citizenship and morality. Among other things, there is a 

set of rules that constitute a condition of existence that standardizes and normalizes 

ways of life. School mathematics is a tool through which the child can acquire 

concepts, and do calculations while becoming also better citizens. The analyses have 

showed that there are many characteristics and that the teaching proposed by textbooks 

goes beyond mathematics, normalizing conducting the conduct of the students. 

The students have to be good capitalist consumers to be good citizens and they are 

supposed to understand the importance of caring form themselves and for others. In 

this sense, the mathematics curriculum is a powerful instrument to govern people, so 

the instructions in textbooks operate a process of subjectivation in line with what the 

government has already explored to regulate actions to maintain order and progress. 

The mathematics curriculum and mathematics learning, as shown in these textbooks, is 

not only about mathematics; it is about politics, culture, and power. 
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DESIGNING FOR GUIDED REINVENTION  

OF MATHEMATICAL CONCEPTS 

Martin A. Simon 
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In this theoretical paper, I discuss two ways of promoting guided reinvention for 

mathematical concepts. I begin by discussing our elaboration of the rationale for 

Freudenthal’s construct of guided reinvention. I then use two constructivist constructs, 

generalizing assimilation and reflective abstraction, to distinguish two types of con-

ceptual development. Finally, I explain and exemplify our approaches for designing 

instruction to promote guided reinvention through generalizing assimilation and 

through reflective abstraction. These approaches are potentially complementary to 

approaches grounded in problem solving. 

Guided reinvention is a construct deriving from the work of Freudenthal (1973) that is 

central to the Realistic Mathematics Education (RME) research and development 

program (Gravemeijer, 1994). In this article, I review Freudenthal’s definition and 

rationale for guided reinvention. I then extend that rationale, and discuss theoretical 

approaches to designing for guided reinvention developed by our Learning Through 

Activity research program (Simon, Kara, Placa, & Avitzur, in press). These design 

approaches build on two constructivist constructs, one of which LTA researchers 

elaborated in prior work, and provide instructional approaches that are different than, 

but complementary to, problem-solving instruction in general, and an RME approach 

in particular. Thus, inspired by the notion of guided reinvention, LTA has generated 

instructional design approaches that differ considerably from what is typical of RME. 

WHAT IS GUIDED REINVENTION AND WHY IS IT IMPORTANT? 

Freudenthal’s construct and rationale  

Freudenthal proposed the idea of guided reinvention to indicate his hypothesis that 

under the proper conditions (represented by the term “guided”), students could come to 

mathematical ideas through their mathematical work (“reinvention”) as opposed 

having the ideas “imposed” (Freudenthal, 1991, p. 47). In guided reinvention, math-

ematics educators carefully plan instructional situations designed to engage students in 

mathematical activity that is likely to result in them arriving at the intended under-

standings.  

Freudenthal (1991) argued that guided reinvention is more motivating and enjoyable 

than traditional school mathematics, that it results in more lasting learning, and that it 

gives students the experience of “mathematics as a human activity” (p. 47).  
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LTA elaboration of the rationale for guided reinvention 

In addition to the rationale given by Freudenthal, LTA researchers promote guided 

reinvention for the following reasons.  

First, students build new ideas on the basis of their prior knowledge. Every individual’s 

prior knowledge is somewhat idiosyncratic, even though there may be significant 

overlap. As a result, the mental process that can build the new concept from a some-

what idiosyncratic conceptual foundation varies from individual to individual. It is 

virtually impossible to specify the exact parameters of the needed mental activity for 

even one student, let alone thirty students in a classroom. One solution to this dilemma 

(guided reinvention) involves creating instructional situations that promote the foun-

dational activity hypothesized to lead to the intended learning, but which allow stu-

dents some variation in mental process and rate of learning based on their prior 

knowledge. The LTA approach to guided reinvention engages students in experiences 

that foster their development, while allowing their learning processes to govern what 

they focus on, what they wrestle with, and when they make particular abstractions. 

Note that although the focus here is on adaptation to the idiosyncratic nature of stu-

dents’ prior knowledge, we assume significant overlap in both the prior knowledge and 

the developmental processes of individuals in a class. 

A second reason for utilizing guided reinvention is that the development of a new 

mathematical concept involves the making of an abstraction, that is, construction of a 

more advanced concept through coordination of available concepts. (more on this 

below in the discussion of reflective abstraction.) “Giving” students the idea associated 

with the concept, what Freudenthal called “imposing,” can interfere with their op-

portunity to make the abstraction. In such situations, students may use the idea (e.g., a 

procedure for solving certain types of tasks) without understanding the logical neces-

sity of that idea. For example, Steffe (2003) described a student, Jason, developing a 

scheme for commensurate fractions. Jason was asked to find a way to partition a unit 

bar such that he could pull out either 1/2 or 1/3. Had someone told Jason to multiply the 

denominators to find the number of parts involved in a solution, he could have solved 

many such tasks, but it is not clear he would have come to the understanding involved. 

Even giving him an articulate justification for the strategy would likely not remedy the 

missed opportunity to allow him to abstract the concept involved.  

A third reason for utilizing guided reinvention is that student engagement in guided 

reinvention is useful from the standpoint of ongoing formative assessment in both a 

research setting and classroom instruction. Students who make the abstraction in 

question have reached a point in the development of their ideas to do so. Students who 

do not may still need more of the experiences provided or need different experiences to 

be ready to make the abstraction. It is the researchers’ or teacher’s job to figure out 

what further experiences are needed. In the LTA research program, we accept the 

challenge of fostering guided reinvention of target concepts. If students do not make 

abstractions compatible with our instructional goals (successfully reinvent), we take it 

as an indication that our instructional design is still not adequate. 
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TWO TYPES OF MATHEMATICS CONCEPT LEARNING 

The LTA approach to guided reinvention is framed by two constructivist constructs 

that account for conceptual learning, generalizing assimilation and reflective abstrac-

tion. 

Generalizing assimilation 

Assimilation (Piaget, 1952) is the process by which learners’ existing knowledge 

structures their experiences. Perception, recognition, interpretation, and understanding 

are all a function of learners’ assimilatory structures. For the purpose of this discus-

sion, I focus particularly on the recognition and understanding aspects of assimilation. 

In discussing generalizing assimilation, let us start with a non-mathematical example. 

A child has a concept of apple based on a range of experiences with red apples. Each 

time she sees a red apple, albeit different varieties, she recognizes it as an apple. That 

is, she assimilates it to her concept of apple. One day, she is given a yellow fruit that 

otherwise looks and tastes like an apple. She assimilates it to her concept of apple. In 

this case, she assimilated an instance of the concept that was somewhat beyond the 

extant concept. The result of doing so is a more general and more useful concept. By 

“more useful,” I mean able to assimilate a broader range of relevant experiences. This 

process of extending a concept through assimilation, is generalizing assimilation.  

When generalizing assimilation is applied to mathematical concepts, the assimilation 

of new experiences can lead to modification of the existing concept resulting in a 

change in the learner’s understanding. Thus, generalizing assimilation results in 

modification of what is recognized as an example of the concept and, in doing so, 

modifies the concept itself. 

An important point about generalizing assimilation is that it applies to conceptual 

learning that is available through extension of an existing concept. But what if such a 

concept does not exist? What if a new concept must be constructed? This leads to the 

discussion of reflective abstraction. 

Reflective Abstraction 

The construct of reflective abstraction provides a framework for understanding the 

construction of new (to the learner) mathematical concepts using prior concepts as the 

raw material for that construction. Piaget (1980), who proposed the construct, wrote, 

“[Reflective abstraction] alone supports and animates the immense edifice of logi-

co-mathematical construction” (p. 92). According to Piaget, such construction is based 

on reflection on one’s own (mental and/or physical) activity. He described reflective 

abstraction as a coordination of actions.  

LTA researchers saw an opportunity to elaborate reflective abstraction as a basis for 

instructional design in mathematics. This elaboration was grounded in LTA’s research 

on fraction learning (Simon, Placa, & Avitzur, 2016). I highlight some of the features 

of that elaboration. This emerging elaboration of reflective abstraction is discussed and 

warranted in detail elsewhere (e.g., Simon, Kara, Placa, & Avitzur, in press). 
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• Reflective abstraction derives from an activity called on by the learner to 

(successfully) meet her goal. 

• An activity is set of (goal-directed) actions already available to the learner that 

are called on sequentially.  

• Reflective abstraction involves a coordination of actions.  

• A coordination of actions produces a single, higher-level action that can be 

used in place of the sequence of actions that made up the original activity.  

PROMOTING GUIDED REINVENTION 

I now discuss the LTA approach to promoting guided reinvention through generalizing 

assimilation and through reflective abstraction. Readers might be familiar with the 

approach to the former, as it is compatible with other approaches. I include it for 

completeness and to emphasize the differences between the two. The LTA approach to 

the latter is novel. 

Promoting guided reinvention through generalizing assimilation 

A decision to promote generalizing assimilation is based on the hypothesis that the 

instructional goal can be met through modification of an existing concept. The in-

structional strategy is consistent with variation theory (Ling & Marton, 2011). The 

researcher begins by posing a task which is beyond the current range of examples on 

which the student’s concept is based, but which is close enough to potentially be as-

similated to that concept. Often, the instructional goal cannot me achieved through a 

single generalizing assimilation, so a sequence of tasks is used to provoke a progres-

sion of small changes in the assimilatory structure. We offer an example from Simon, 

Kara, Norton, and Placa (in press) of an attempt to achieve an instructional goal 

through generalizing assimilation. The example, which shows an intervention that was 

only partially successful, is instructive, because it illustrates not only the approach, but 

the limitation of the approach as well. 

The research was focused on promoting a concept of multiplication that is useful for 

conceptualizing both whole-number and fraction multiplication. In developing a 

concept of whole-number multiplication, US students predominantly develop a multi-

ple-groups concept. Because they conceive of multiplication as involving multiple 

groups of a certain size, it is difficult for students to make sense of multiplication by a 

fraction. Our instructional goal was to foster a concept of multiplication in which the 

multiplier specifies the number of composite (or fractional) units in the quantity. Our 

conjecture was that students who have a multiple-groups concept of whole-number 

multiplication, through generalizing assimilation, could expand their concept of mul-

tiplication to include multiplying by a mixed number and then expand the resulting 

concept to include multiplication by a fraction.  

We began with a task Here is a unit [referring to a bar on the screen in Java Bars1]; 

make a bar that is 4 units long. Now make a bar that is two times as long as the bar you 

just made. Kylie (10 years old) iterated the unit 4 times and then iterated the resulting 

bar twice. She had assimilated the activity into her whole-number multiplication 
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concept. The researcher then took the first step in promoting generalizing assimilation. 

Here is a bar that is 6 units long. Can you make me a bar that is 6 times 3 1/2?2 Kylie 

iterated the bar three times, partitioned the original bar in half, and attached half of the 

original bar to the end of the bar she had created. The researcher gave her five more 

tasks with mixed-number multipliers. She solved them in similar fashion. Kylie had 

assimilated multiplication by a mixed number to her prior concept of multiplication 

(generalizing assimilation). 

Our conjecture was that because Kylie was representing appropriately the result of the 

fractional part of the multiplier, she would have no difficulty assimilating a task in 

which the multiplier was a fraction. This conjecture proved to be wrong. When given a 

task in which the multiplicand was multiplied by 1/5. She expressed that she had no 

idea what to do with the bar on the screen. Our interpretation of the data was that, 

multiplication for Kylie was an operation of making multiple copies. She had ex-

panded her conception to include making multiple copies that included a partial copy. 

However, a fraction multiplier did not fit with her conception of making multiple 

copies. We seemed to have found a limit to what we could accomplish with Kylie 

through our attempts to promote generalizing assimilation. We reasoned, therefore, 

that we needed to promote the goal concept, that is through reflective abstraction.3 

Promoting guided reinvention through reflective abstraction 

To promote guided reinvention through reflective abstraction, LTA researchers build 

on the LTA elaboration of reflective abstraction previously discussed.4 Central to the 

LTA approach is specification of an activity that students currently have available that 

can be the basis for the abstraction specified in the learning goal. The activity is ex-

pected to afford a particular coordination of actions (coordination of concepts). Once 

this activity has been identified, we design a task sequence to both elicit the intended 

student activity and lead to the eventual coordination of actions on the part of the 

students. In an LTA task sequence, how to solve the tasks is not what is being learned. 

Ideally, the task sequence allows the students to solve each task correctly using an 

activity available to them. Rather, it is through successful engagement in the task se-

quence that coordination of actions occurs resulting in the new concept. Following is 

an example. 

One aspect of the LTA study of fraction learning focused on what is often referred to as 

“fraction of a set.” More accurately the focus was on developing anticipation of how to 

find the fraction, a/b, of a whole number quantity, n (where b divides n). I describe a 

task sequence developed in the context of work with Kylie, once again using Java Bars. 

Pre-assessment demonstrated that Kylie was unable to solve a task such as 3/5 of 10. 

The first task was: [Given an unmarked bar] The bar on the screen is 10 units long. 

Make a new bar that is 3/5 of the original bar. How long is the new bar? Based on prior 

work, students were expected to partition the bar into 5 parts, pull out one part, and 

iterate it three times. They then would use whole number division to determine that 

each of the 5 parts is 2 units long. Using multiplication, they determine that the 
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three-part (3/5) bar is 6 units long. The activity which involves creating a 3/5 bar 

(partitioning, pulling out, and iterating) and using whole number multiplication and 

division to evaluate the bar produced was selected, because the activity was assumed to 

be available to the student, and a coordination of its component actions could lead to 

the goal concept. Data bore out these conjectures. 

Kylie solved the initial task as expected. She made a bar, partitioned it into 5 parts, 

pulled out 1 part, and iterated it 3 times. She looked at the bars and announced the 

answer as 6 units. She explained how she evaluated the size of the bar produced. She 

continued this strategy for another couple tasks. The researcher then gave her the tasks, 

“5/6 of 12” and “5/4 of 12,” which she was able to do mentally.  

We explained Kylie’s learning as follows (Simon, Kara, Placa, & Avitzur, in press). 

Through progressive coordination of the actions that made up her activity, Kylie began 

to determine the size of a part while partitioning and the size of the new bar while 

iterating. We exemplify this hypothesis with the task 3/8 of 32. As she created her 8/8 

bar, she would have been thinking of each eighth as 32 divided by 8 or 4 units, and 

while she was iterating the 1/8 three times, she would have been thinking of it as 3x4 or 

12 units. Finally, she reached a point in which her actions were coordinated; she no 

longer needed to carry out the original activity. She knew (anticipated) that taking 5/6 

of a number meant taking a sixth of the number and multiplying the result by 5. 

CONCLUSIONS 

The LTA approach to promoting guided reinvention differs from the approach envi-

sioned by Freudenthal. Whereas the latter was more focused on problem solving and 

“mathematics as a human activity,” the former provides a complementary approach 

that may prove particularly useful for fostering difficult concepts and working with 

struggling students. Here I emphasize two aspects of the preceding discussion. 

Promoting reflective abstraction versus generalizing assimilation 

Variation theory has become a popular basis for instruction in the mathematics edu-

cation community. However, an implication of the work discussed here is that varia-

tion theory, while valuable, may not be sufficient for promoting a full range of con-

ceptual goals. Further, it suggests that the distinction between generalizing assi-

milation and reflective abstraction may offer a useful theoretical lens for anticipating 

when a variation-based approach will be successful and when it will not. 

Engineering conditions for reflective abstraction 

An assumption underlying reflective abstraction is that it is a learning process through 

which the individual learner goes. Instructional interventions cannot make reflective 

abstraction happen. Rather, reflective abstraction happens through the learner’s activ-

ity and only when the learner is ready to make the abstraction. The LTA approach is 

based on research into this inherent ability and is an attempt to engineer task sequences 

that increase the likelihood that students engage in activities through which they can 

make important abstractions. When this engineering is successful, the students’ elic-
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ited goal-directed activity provides both the raw material for making the abstraction 

(coordination of actions) and the tendency to attend to relevant features of the situa-

tion. The LTA approach to engineering for promoting reflective abstraction contrasts 

with those constructivist-based instructional approaches that focus on provoking per-

turbations. 

Notes 

1 We used JavaBars (Biddlecomb & Olive, 2000), a computer application in which students 

can partition a bar, pull out a part, and iterate a bar or a part of a bar. 

2 There was prior agreement that the first number in the product a x b is the multiplicand and 

the second number is the multiplier. 

3 In the next section, we do not continue the example discussed in this section. It is too com-

plex to be discussed in an eight-page paper. We refer the reader to the cited research report. 

4 The LTA approach to promoting guided reinvention through reflective abstraction is dis-

cussed in full in Simon, Kara, Placa, & Avitzur (in press) and Simon, Placa, and Avitzur 

(2016). 
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This paper is based on a study that compares how student groups from three different 

cultural contexts solve the same mathematical problem. In this paper, the focus is on 

the methodology. More specifically, we describe the use of flowcharts and intention 

analysis to reveal important qualities in student discussions. The aim is to show how 

these tools may support the analyses of students’ mathematical discussion. We also 

emphasise the shortcomings of the tools in the light of our experiences from the study. 

We show that in order to better understand why certain interaction happens, it is im-

portant to extend the analysis to contextual factors.  

BACKGROUND 

Problem solving together with peers is strongly advocated as a working manner by the 

new Finnish National Core Curriculum (FNBE, 2015) implemented during the last 

academic year 2016-2017. However, we know little about how students of different 

ages manage to work productively in small-group situations. We also assume that there 

are differences in classroom cultures and socio-mathematical norms that influence the 

ways in which students are fostered to work together with peers.  

The paper is a part of the VIDEOMAT-project that aims to examine what kind of 

knowledge about similarities and differences between different classroom cultures 

researchers and teachers can gain from discussing and comparing videotaped class-

room activities together (Kilhamn & Röj-Lindberg, 2013). The material that the pre-

sent paper draws on consists of three videotaped problem-solving sessions where 

students between the age of 12 and 13 years solve three different mathematical prob-

lems together with peers in small groups. The groups represent classrooms in three 

cultural contexts: the Swedish speaking part of Finland, Sweden and the US (see 

Smedlund, 2016). 

It is extremely important to develop proper tools in order to analyse the character of 

small-group discussions that reveal both how productive the discussions are mathe-

matically and how the different students participate and contribute to the solution. 

Furthermore, it is important to know if, and in that case what, students learn from these 

sessions. There are also social factors that are important to focus on in group work, for 

example how students experience the cooperation and how they treat each other in 

these situations. Consequently, a great deal of effort has been made on developing 



Smedlund, Hemmi, & Röj-Lindberg 

  

4 – 204 PME 42 – 2018 

proper analytical tools for small-group discussions in the field of mathematics educa-

tion. 

Sfard and Kieran (Kieran, 2001; Sfard, 2001; Sfard & Kieran, 2001) developed an 

interactive flowchart to map the discussions of students. Ryve (2006) suggested adding 

an analytical construct of contextualisation as well as analysing different types of 

mathematical discourses, further improving the interactive flowcharts. He states that 

this is beneficial in at least two ways, namely by offering “the researcher an oppor-

tunity to scrutinise his or her own arguments for the interpretations of the students’ 

immediate intentions”, and “opportunities to form an opinion of the presented inter-

pretations and the underlying argumentation supporting these interpretations”. (Ryve, 

2006, p. 203).  

In the data analyses of the three groups in our study, tools developed by Sfard and 

Kieran (Kieran, 2001; Sfard, 2001; Sfard & Kieran, 2001) and Ryve (2006) were used. 

The focus of this paper is on the work of analysis, not on the results. More specifically, 

the aim of this paper is to investigate and report the strengths and shortcoming of these 

tools when analysing students’ mathematical discussions in groups that represent dif-

ferent cultural-educational contexts. We also present our implemented improvements 

to the interactive flowcharts when analysing our data. These improvements even fur-

ther assist the transparency and understanding of the method and thereby contribute to 

the field of mathematics education. 

FLOWCHARTS AND INTENTION ANALYSIS 

Sfard and Kieran (2001, p. 58) make use of interactivity flowcharts in the hope of 

evaluating the interlocutors’ interest in creating dialogue with their partners. The in-

formation gained from these flowcharts allowed the researchers to make conjectures 

about the discourse that preoccupies their interlocutors. An interlocutor is defined as a 

person taking part in a conversation or discussion. Addressing and/or reacting to 

somebody’s former utterances with any particular action is defined as communication. 

Audible and public, or silent and private utterances are produced for the sake of 

communication and are never stand-alone as isolated events (Sfard & Kieran, 2001). 

Sfard and Kieran start their analysis by categorising utterances as reactive: a reaction 

to a previous contribution of a partner, or proactive: a wish to evoke a response in 

another interlocutor. A systematic construction of the flowchart using arrows (see 

Figure 1 & 2) allows consecutive utterances to be related to utterances that have al-

ready happened or utterances that are yet to come. The arrows, a metaphor for a 

speaker’s intentions communicated indirectly, make the speaker’s intentions for in-

teraction visible. Sfard and Kieran aim to avoid the pitfalls usually associated with the 

notion of intention. Intention is born within the act of communication and therefore 

there are intentions within utterances. These intentions can be regulated before, during 

and after the act of communication (Sfard & Kieran, 2001).  
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Ryve (2004, p. 173) noted that the methodological tool as developed by Sfard and 

Kieran was not sufficient and needed further development. Ryve stated that there was a 

need for distinguishing between different types of mathematical content in different 

utterances. In addition, there was a need for a methodological device for constructing 

the interactive flowcharts. Ryve (2006) assumes that all human behavior is intentional 

and suggests contextualisation for making the interpretations of students’ immediate 

intentions more explicitly constructs of the analyst. The researcher should, hence, 

argue for a contextualisation of a task and reflect with questions such as “Could other 

utterances supporting this hypothesis be found? Could utterances serving as evidence 

against this interpretation be found?” By testing the interpretation in relation to the 

cognitive, situational and cultural contexts, the researcher aims to make his/her inter-

pretations explicit to both himself/herself and to the reader. 

The tools described above which were developed by Sfard and Kieran and comple-

mented by Ryve, hereby referred to as the SKR-tool, served as a starting point for our 

analysis. 

METHODOLOGY 

The context of the study 

During the VIDEOMAT-project, students took part of four algebra lessons and a fifth 

problem-solving lesson. The instructions from the researchers in the VIDEOMAT-pro-

ject to the teachers was that the fifth lesson would consist of working with the three 

mathematical problems without further instructions on how the groups should be 

formed or how the pupils should work with solving the problems (Kilhamn & 

Röj-Lindberg, 2013). The instructions from the teachers to the students were similar in 

all three countries and included working together solving the problems and coopera-

ting. Every student should be able to understand the solutions that their groups had 

worked out. Only the third problem, called the matchstick problem, was analysed and 

in this paper examples from the Swedish-speaking group from Finland are used 

(Smedlund, 2016). The matchstick problem is as follows: “Four squares in a row con-

sist of 13 matchsticks, how many squares can be built this way using 73 matchsticks?” 

The data processing  

The selection of the groups was based on the visibility of each participant in the group 

and also on the audio quality. After selecting one Swedish, Finnish and American 

group according to these criteria, the video recording was observed by the first author 

at 0.5x speed to be able to transcribe everything clearly. If something was unclear, the 

observation was repeated as many times as needed to be able to transcribe each ut-

terance. A three-step situated discourse analysis (similar to Radford, 2000) of tran-

scripts was used as follows: 1. Valuing each utterance as equally important 2. Con-

textualising utterances 3. Including pauses and hesitations. Pauses and hesitations in 

our transcripts are handled as consecutive utterances from the same person and thus 

split into separate utterances, for example: 47a “Yeah because, look when you’ve made 
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52 one only has to put three matchsticks to make a square.” 47b “Do you understand?” 

47c “Look, now you’ve made 53”. This approach was chosen because these different 

utterances have separate intentions, which would be difficult to distinguish if they were 

counted as a single utterance (see Figure 2). 

After the transcripts were completed, the video recording was observed at normal 

speed to identify possible body language and actions that took place. These actions 

were noted in a protocol to further grasp the problem-solving situation that had un-

folded. This in turn offered parts of the information needed to interpret the context of 

the situation, based on cognitive, situational and cultural aspects for the students (cf. 

Ryve, 2006). The descriptions of the context, described individually for each student, 

were based on the communication between students and instructions from the teacher. 

We added a complement to the contextualisation using an analysis of the level of co-

operation, which is further discussed in a later section.  

When there was a clear understanding of the individual contexts, the process of inter-

preting each individual utterance in relation to the context started. This was achieved 

with the interaction flowchart tool and each utterance was described as either proactive 

(arrow forward in the discussion), reactive (arrow backwards in the discussion) or pro- 

and reactive (arrow both forward and backwards in the discussion). Furthermore, ut-

terances were categorised as on-task (lines) or off-task (dotted lines). 

 

Figure 1: Revised figure from Sfard & Kieran (2001) 

We also categorised different suggestions for solving the problem (cf. Ryve, 2006). 

During the data analysing process, we noticed several shortcomings and added tools 

for example for the contextualisation and structuring of the flowcharts described in a 

later section. Also the revision of the figure above is explained below. 

THE AFFORDANCES OF THE TOOL  

The SKR-tool is used to present classroom activities and discourses in text format. Our 

experience is that the SKR-tool described above is very useful in the analysis for the 

reasons outlined below. The flowcharts give both the analyst and reader an explicit 
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view of the discourse. This enables the analyst to highlight and present significant 

moments to the reader, in our case moments where solution methods are suggested to 

and received by the group. Using contextualisation to strengthen the intention analysis 

is effective and enables the analyst to describe his or her interpretations more clearly. 

The SKR-tool is very time-consuming, especially as it requires constantly comparing 

each utterance with the context. However, in our experience, it is worth building such 

an explicit interpretation of a situation where the analyst has a chance to display his/her 

point of view to the reader. It strengthens the transparency and the interpretations of the 

immediate intentions. 

In our study, we focused on the students’ suggestions of methods for solving the 

matchstick problem. For example, a student notices a structure in the problem, a re-

occurrence of adding three matchsticks to make a new box and this, in turn, leads the 

student to finding and then sharing a divisive method of solving the problem with the 

group. How the group meets this suggestion or insight is mapped with help of the in-

teractive flowchart. These suggestions/insights are either accepted or rejected and this 

results in further discussions, further explanations or attempts to receive the group’s 

attention. By studying the occurrences, using the contextualisation for each group 

member and categorisation of different problem-solving methods, it was possible to 

follow other successful solutions and less successful solutions.  

THE CONSTRAINTS AND IMPROVEMENTS OF THE TOOL 

Next, we describe the constraints of the SKR-tool and the improvements we imple-

mented during our study. 

First, as shown in Figure 1 (see above), the flowchart developed by Sfard and Kieran 

(2001) has been improved by adding “pro- and reactive arrows” because experiences 

from our study show that utterances can both reflect on something said earlier and seek 

further reactions from other interlocutors.  

Second, one characteristic that hindered following the flowcharts in Sfard and Kieran’s 

(2001) and Ryve’s (2006) papers was that the transcriptions were often presented apart 

from each other, which made it necessary to go back and forth through the paper to 

understand the situation. This is a problem considering that the aim of this tool to fa-

cilitate a construction of a clear view of a specific situation. Therefore, in our study, the 

flowcharts were joined with the transcripts so that the reader can follow the situation 

more clearly (see Figure 2). Colour coding the arrows in the flowchart according to the 

type of problem-solving method that the students were working with further enhances 

the clarity of the described situation. In Figure 2, orange utterances relate to a divisive 

method of solving the problem and green utterances relate to drawing matchsticks to 

attain a solution of the problem. This simplifies the process of analysing how the dif-

ferent suggestions are handled in the group. Students are communicating, but they are 

working with different methods of solving the problem. Bodil is not interested in 

Casper’s suggestions something that is clearly visible in Figure 2. 
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Third, the contextualisation can be further enhanced by evaluating every member’s 

individual motivation to cooperate and by analysing the cooperation level of the group 

as a whole. Questions such as “Do they want to work together or not?” and “How does 

their willingness to cooperate impact the suggested solutions?” are important to pose to 

deepen the conceptualisation. The level of cooperation in each group was, in our study, 

therefore analysed by using Sahlberg and Berry’s (2003) matrix of cooperation. 

Adding a description of the level of cooperation enhances the contextualisation and is 

useful, for both the analyst and the reader.  

An example of this is the group work in the Finnish-Swedish group, where cooperation 

did not work out. Bodil (B) was not at all interested in Casper’s (C) method. We can 

assume it is because Bodil was content with finding one solution to the problem, and 

another method seemed unnecessary to her. But just as likely it might be that Bodil and 

Casper just could not work together due to personal reasons. Understanding the stu-

dents’ motivation for working together and whether the situation is beneficial for co-

operation is crucial for the kind of research questions where one wants to understand 

aspects of problem solving in groups. 

 

Figure 2: Flowchart from the Swedish-speaking group in Finland (Smedlund, 2016) 
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DISCUSSION 

The SKR-tool was a starting point for charting different suggested solution methods 

and their reception in our study. To improve the tool, we first added the possibility of 

marking “pro- and reactive arrows” as an utterance could have both proactive and 

reactive intentions. Having to remember utterances and compare them to the interac-

tivity flowcharts in the SKR-tool was a weakness that we amended by adding the 

transcripts next to the interactivity flowchart. This addition enables the reader to follow 

the unfolding situation with more ease. We used colours to highlight different solution 

methods that students were discussing in the utterances to further clarify the mathe-

matical productiveness in the discussions. Using video to complement the text format 

could further strengthen the analyst’s presentation of his/her findings, as well as give 

the reader/viewer even further insight into the described situation. Finally, assessing 

the level of cooperation (Sahlberg & Berry, 2003) of the groups was useful for un-

derstanding and more explicitly making the interpretations of intentions a construct of 

the analyst.  

This tool still has restrictions. This is a very time consuming methodological tool. It is 

important to remember that the episodes that we analysed only lasted about 10 minutes 

each, yet the hours spent observing, transcribing and interpreting them resulted in 

small segments of the discourse being presented. Moreover analysing a short vid-

eo-recorded segment demands that the analyst stays true to his/her contextualisation. 

Knowing each student might make the interpretation of their intentions more complete. 

However, then one might over-interpret and assume intentions of utterances based on 

the student’s usual behaviour outside this situation. The SKR-tool is useful for making 

the interpretations explicit. Ryve’s addition of contextualisation for checking each 

interpreted intention makes it easier to have an explicit representation of the analyst’s 

interpretations. It also makes the analysis more coherent. However, to be certain the 

contextualisation is “good enough”, one should maybe ask different researchers to 

check the contextualisation before going into intention analysis. Furthermore, espe-

cially in cross-cultural studies it is extremely important to gain insight into the cul-

tural-educational context and how it relates to the socio-mathematical norms of the 

classroom which students are used to working in. Hence, various mathematical aspects 

and different social aspects can be revealed with the tool. While questions like “how 

are the suggested methods of solving the problem received?” are possible, questions 

like “why did the students solve the problem using this method?” are impossible to 

answer without further background information not suited for this tool. 

The methodological improvements and further considerations of the SKR-tool streng-

thens the possibilities of applying and further improving it in future studies. The fin-

dings from these kind of analyses can be used to improve both researchers’ and tea-

chers’ understanding of essential aspects of mathematical problem solving in groups. 
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SCHOOLS’ STRATEGIES FOR PROMOTING  

GIRLS’ PARTICIPATION IN MATHEMATICS 

Cathy Smith and Jennie Golding  

Open University, UK and UCL Institute of Education, UK 

 

Fewer girls than boys in England participate in post-compulsory mathematics. 

Previous studies have shown the significance to girls of their mathematics lessons and 

teachers, of cultural constructions of gender and mathematics, of career perceptions 

and family ‘science capital’. A multiple case-study project investigated institutions 

with unusually high participation by girls in mathematics. Focus groups and lesson 

observations were used to explore school pedagogy and culture. Common factors 

were: early preparation for demanding mathematics, a departmental ethos which 

encouraged student-teacher interactions in and out of lessons, teachers who explicitly 

and repeatedly confirmed that girls would succeed at mathematics A-level, 

appreciation of mathematics as opening doors to many careers.  

INTRODUCTION 

There is a considerable body of research showing concern for the social, economic and 

institutional injustices that result from women’s unequal participation in mathematics 

(Ceci & Williams, 2010; Forgasz & Mittelberg, 2007; Hyde & Mertz, 2009). Many 

such papers also argue that their nation’s economic advantage relies on increasing the 

proportion of the population with science, technology, engineering and mathematics 

(STEM) skills. From these perspectives, girls who do not follow advanced 

mathematics courses are a potential source for recruiting more STEM-skilled workers, 

and hence their participation deserves scrutiny. Within this research, we particularly 

note studies that investigate the disinclination of some girls’ (and boys’) to study 

mathematics at a higher level (Archer et al., 2012; e.g. Mendick, 2005; Mujtaba & 

Reiss, 2016). This work has established a range of inter-related factors that influence 

individual students’ study and career intentions, intersecting with gender in ways that 

lead to unequal participation. Our study builds on this prior research to consider girls’ 

participation in mathematics starting from the different viewpoints of the culture and 

practice in schools with high participation. 

Using a multiple case-study approach in the English policy context, where 

participation within the academic track can be measured by the choice of “A-level” 

subjects at age 16, we found little evidence of specific initiatives to attract girls to study 

mathematics. Instead, a common feature of these successful schools was a strong 

culture of encouraging all students to aspire to study mathematics, operationalised 

through a co-ordination of informal careers guidance, teacher relationships and 
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pedagogic strategies. The findings suggest that schools can encourage girls by focusing 

on stable teacher relationships and early, supported classroom challenge. 

THEORETICAL FRAMEWORK 

We base our work on the understanding that choices and preferences made by 

individual students are constructed within the discourses of classrooms, schools and 

wider society (Smith, 2010). Attitudinal surveys show that students’ beliefs about the 

gender stereotyping of mathematics vary between countries (Hyde & Mertz, 2009) and 

within  different cultures in one country (Forgasz & Mittelberg, 2007). Thus, we see 

the knowledge produced about individual factors associated with participation in 

mathematics as indicating a range of psychological and sociological constructs that can 

be mobilised into gendered patterns both by local cultural practices and by wider 

discourses of mathematics, society and adolescent identity.   

In the English context, mathematics is compulsory until the “GCSE” examination at 

age 16; thereafter students on the academic track choose three or four “A-level” 

subjects.  In 2017, 24% percent of A-level students chose Mathematics and 4% chose 

Further Mathematics, however this reduced to 18% and 2% for girls, who are 54% of 

the cohort. Research suggests a range of factors that affect students’ intentions to study 

mathematics at A-level and could be influenced by school practices. Participation is 

most strongly associated with high prior- and high relative- attainment in mathematics: 

the latter particularly affecting girls, who tend to perform well over their eight (or 

more) GCSE subjects (Noyes & Adkins, 2016). Contributory attitudinal factors for all 

students include enjoyment of lessons, perceived teacher-competence, perceived 

self-competence, intrinsic interest in mathematics and awareness of the utility of 

mathematics for supporting access to other areas; successive surveys find that girls 

score these lower and that they affect girls’ choices more markedly (Brown, Brown, & 

Bibby, 2008; Mujtaba & Reiss, 2016). This suggests an important cultural influence 

resulting from schools’ pedagogic practices and career guidance.  Mujtaba and Reiss 

also found that fewer girls than boys, aged 13 and 15, report receiving advice and 

encouragement to study mathematics (and physics) and that such advice is influential 

for them, particularly when it is received from a trusted family- or teacher- source. 

Archer, DeWitt and Wong (2014) review school-level strategies for recruiting girls 

into STEM subjects, such as school science projects led by universities and visits from 

female role-models, and note that where their impact has been evaluated, they appear 

more successful in sustaining an early STEM interest than in changing minds. These 

authors call for less emphasis on elite aspirations in STEM interventions, arguing that 

explicit diversity in the messages promoted to girls makes their participation easier to 

negotiate. Our appreciation of the complexity of girls’ choices but also of the 

possibility of supporting them underpins our research interest in school structures and 

relationships. We asked:   
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• In schools which are successful in recruiting girls into mathematics, are there 

any intentional strategies addressing girls’ participation? How are these 

conceived, operationalised and evaluated by teachers? 

• What messages are current in the school culture about who does 

mathematics? 

• Are there aspects of mathematics pedagogy, of careers or teacher guidance 

that support girls’ participation in studying mathematics? How is this support 

conceived and operationalised? 

THE STUDY 

A multiple-case study methodology was chosen in order to explore “hypothesised 

variations” (Yin, Clarke, Cotner, & Lee, 2006, p. 114) of school type and size, and to 

produce detailed, contextual information about the practices of mathematics teaching 

and recruitment in each school and the beliefs of teachers and students. Five sites were 

identified as having girls’ participation in mathematics, using a combination of criteria:  

• relatively high proportions of girls entered for both Mathematics and Further 

Mathematics A-levels according to Department for Education 2012-13 data; 

• ensuring some diversity in region and school type, including one school 

where classes are single-sex to 16 (as girls’ participation is higher in 

single–sex schools) and one 16-18 year college; 

• preferring schools with a non-selective intake (for greater generalisability); 

• willingness to participate. 

Data was collected in two phases, spaced a year apart. In the initial phase, at each site 

one of the authors conducted: one 50-minute focus group of 3-5 mathematics teachers 

exploring the strategies considered significant for retaining girls in mathematics; one 

focus group with year 12 or 13 female A-level mathematics students exploring their 

experiences of mathematics classrooms, their perceptions of mathematics as a 

gendered subject and their reasons for choosing whether or not to continue; (if 

possible) a focus group with year 11 girls likely to study mathematics; observation of 

one or two A-level or GCSE mathematics lessons focussed on features considered 

important by teachers and students. Second-phase visits comprised an interview with 

each lead teacher investigating the stability of the cultural practices identified in the 

analysis, collecting data related to transition between year 12 and 13, and gathering 

evidence of any new initiatives or further reflection on girls’ participation. 

Teachers’ and students’ accounts were emphasised in our design, since we 

acknowledge that teaching (for teachers) and choosing subjects (for students) are 

highly reflexive practices, for which reasons are sought and articulated to oneself and 

others. Nevertheless, this approach runs the risk of foregrounding explanations that are 

dominant by being popularly or powerfully accepted. Focus group discussions were 

thus chosen to gain several perspectives on the same feature and to gain insights into 

emerging shared meanings. Other explanations were explicitly sought in the teacher 

focus groups, and coherence tested through triangulation with lessons observations, 
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student records and respondent validation. Data was collected in the form of field 

notes, transcriptions, and quantitative data on mathematics class size, module choices 

and mathematics GCSE and A-level grade profiles by gender.  

During analysis, each case was summarised to identify what the participants reported 

as local strategies affecting girls’ participation, and where there was agreement or not 

between teachers and students about practices and the effect of those. Case data was 

coded by how accounts of these practices matched factors derived from the literature. 

Both authors then worked across the cases to consider strategies that had elements in 

common. This established three thematic strategies common to the schools, although 

operationalised in different ways. Further case reports were written using these themes 

and sent to the school (teacher) contacts for validation.  

The case study sites are outlined in Table 1, showing their type and size and their decile 

for girls’ participation from the year preceding the study. To meet all criteria we chose 

sites that (initially) performed in the top three deciles of all schools and in the top two 

deciles of state schools. 

Table 1 

FINDINGS AND DISCUSSION 

We found no mathematics initiatives aimed specifically at girls in the case study sites. 

Teachers were aware that, nationally and internationally, girls were under-represented 

in advanced mathematics but had not examined their school data by gender or noticed 

its relative success. This meant that in focus groups they were often thinking through 

what they had done to raise achievement and interest, and recalling past conversations 

about aims and effects on different groups of students. A common feature of all sites 

was that teachers gave accounts of collectively-agreed intentions and strategies to 

recruit both girls and boys to mathematics A-level and these extended beyond the most 

able students. All schools set by prior attainment and it was explicitly considered part 

of the role of higher-set teachers to develop relationships with their classes that would 

encourage transition to A-level. Our analysis showed these strategies were based on 

three themes: pathway career thinking, robust emotional encouragement, and flexible 

 Area Gender Size of 

A-level 

cohort 

Decile for % of Girls 

completing Maths A-level 

(state sector only), years -1 

to +1. 

School A  Town Mixed 100-150 10(10) 8 (9) 9 (9) 

School B Inner city Girls to 16  Under 100 9 (10) 7 (8) 8 (9) 

School C  Conurbation Mixed Over 300 8 (9) 8 (9) 8 (9) 

School D Outer city Mixed 100-150 10(10) 10(10) 10(10) 

College E  City Mixed 100-150 8 (9) 8 (9) 4 (4) 
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cognitive support for working with challenge. Each of these school strategies can be 

traced as contributing to factors identified in the literature as supporting girls’ 

participation. In the focus groups, girls reported a sense of progression to mathematics 

A-level, rather than specifically gender-based encouragement, typified by: “We’re 

good at it, we enjoy doing it, why wouldn’t we?” 

Encouraging pathways thinking before year 11 

Teachers in the case studies promoted mathematics as a subject that has wide 

applicability and contributed to a range of career pathways, thus emphasising diversity. 

For instance, year 12 girls reported that teachers “kept on saying it would open up 

opportunities. It's an all-round subject. Goes with everything”. Some mathematics 

teachers had influential sixth-form pastoral roles which they used to promote 

mathematics, emphasising the value of statistics, in particular, for its connections to 

social and life sciences. Students considering joining College E to study science or 

technology were guided in preliminary individual interviews to take mathematics as a 

companion subject, thereby making mathematics more attractive to a wide range of 

students. In addition, school teachers made explicit connections with A-level content 

in their lessons with 14-16 year olds beyond the top sets. This was reported by students 

as teachers aiming to inspire interest and “show everyone can do it” (year 13 student).  

Awareness of the utility of mathematics is associated in the literature with participation 

but as an extrinsic motivation. In these schools, the appeal to utility was expressed 

through a message of wide and multiple applicability rather than access to specific or 

elite courses. Choosing mathematics was thus presented by (and to) students as a way 

of honouring the scope of their own current and future interests. In this culture it 

became also an intrinsic motivation. This approach of inclusivity, that maintains a 

close relation to girls’ existing aspirations, contrasts with the messages promoting a 

narrow mathematics ‘pipeline’ warned against in Archer et al. (2014). 

Although an unintended variation, we noted that all the case study schools drew from 

catchments with large minority ethnic communities. In several focus groups, girls or 

teachers referred to the high value such families placed on mathematics and sustained 

hard work within a career-focussed pathway, a value that was reflected in the approach 

of the mathematics department. Staff and students also pointed to the presence of 

well-respected and dynamic female teachers among those teaching top-set GCSE and 

A-level classes. These close-at-hand connections between mathematics, family and 

social relationships were reported as giving it a broad appeal. We suggest that they also 

strengthened access to the informal ‘grapevine’ knowledge about careers and pathways 

that comprises what Archer et al. (2014) call invaluable ‘family capital’ in science or 

mathematics. 

Specific, repeated, evidence-based, personal and collective encouragement  

Across the settings, girls reported that as individuals and as a friendship group they felt 

actively and repeatedly encouraged to take A-level mathematics, and that their teacher 

was overtly confident they would succeed. Students ascribed this to perceiving that 
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teachers knew the students’ feelings and ways of working, and could thus offer 

personal guidance based on evidence not just of prior attainment but of student identity. 

In some schools, a departmental policy of teacher continuity explicitly aimed to create 

this relationship of trust. There was a close match between the teachers’ and students’ 

accounts of the relationship, and this was described in terms of teachers knowing 

individual students (girls and boys) well:    

Teacher A: that’s why it’s important I’ve taught them for so long; they know I care about 

them, and they care when they do badly, that they upset me, and stuff.  

Year 11: Teacher A is like that – she really wants to know what you enjoy doing and what 

affects you and the things that matter to you. 

Some students questioned whether recruitment for A-level was intentional and 

suggested it rose as a natural consequence of a valued pedagogic relationship: for 

example “I just think the way that she teaches, it does encourage you. Like without her 

deliberately trying” (year 11 student). In contrast, teachers described an ongoing, 

specific, in-and-beyond-the-classroom emphasis on “building up confidence” for girls 

to take A-level. The same student’s teacher reported: “I am spending a lot of time, a lot 

of lunch times, just talking to the girls. And they have got the ‘can I do A-level’ attitude. 

‘Am I capable of it?’” The evidence from these cases suggests, first, that the teachers 

do work at relationships that seem natural and, second, that such approaches are 

successful because they permeate teachers’ actions in and out of class. 

The notion of ‘building confidence’ was a common feature of teacher talk in all these 

schools, associated with their caring role and girls’ classroom behaviour. Our analysis 

suggested that girls presented themselves as cautious in their choices, rather than 

unconfident: they used the combination of teachers’ opinions and their own experience 

as evidence for themselves and others to decide whether their preferred approaches to 

mathematics would lead to success at A-level. This adds a nuance to previous findings 

(e.g. Brown et al., 2008) that girls’ experience and enjoyment of mathematics lessons 

are important in determining their choices. In these schools, we could not identify any 

common features of classroom time or management. Instead, the experience these girls 

described as enjoyable (and that we observed) was the opportunity to build 

class-teacher and pupil-pupil relationships. These relationship were personal and 

trusted, explained through examples of how teachers had already helped them to 

develop strategies to overcome mathematical difficulties, and would continue to do so. 

They allowed them to imagine future participation within familiar ways of working 

and practices of self. Girls and teachers contrasted this with boys’ risk-taking choice 

behaviour, choosing subjects without determining the probability of success. 

In the four schools visited, the departmental scheme for 14-16-year-olds included 

unusual depth of mathematics and/or additional mathematics qualifications offered to 

higher sets. Girls and teachers cited this extended curriculum as giving credible 

evidence that girls had succeeded at demanding mathematics and should continue. The 
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certification was important, but the most important effect appeared to be the 

experiences of struggle, support and success.  

Flexible opportunities for students to build and check understanding 

The third feature identified from our case studies is related to the previous two. As well 

as the inclusive pathways approach to A-level choice and the attention to personal 

evidence-based encouragement, classroom teaching offered multiple and flexible 

opportunities to meet mathematical difficulties and it gave messages that students 

should expect to develop deep and satisfying understanding over repeated encounters.  

There has been much discussion of girls’ (and boys’) unease in a mathematics culture 

when it is possible to succeed without understanding (Boaler, Altendorff, & Kent, 

2011; Solomon, 2007). In these schools the dominant message was to challenge that 

culture: all students should experience mathematics problems where they have to think 

for themselves in order to succeed. This was sometimes explicitly stated as a strategy 

to build mathematical resilience (Lee & Wilder-Johnston, 2017). The only intentional 

gender-related strategy reported in the mixed schools was to select quieter students to 

answer whole class questions, because teachers recognised that classroom talk was 

often sustained by boys. The girls also reported this strategy, but ascribed it low impact 

in encouraging participation. They valued more highly when teachers managed lessons 

so as to facilitate low-key teacher-student and student-student conversations in which 

girls could check their personal understanding. Several girls identified teachers who 

were good at explaining ideas in a variety of ways, rather than just repeating the same 

explanation, showing the value they placed on teachers who could combine their 

knowledge of students with good pedagogic knowledge of mathematics. Girls talked 

about experience of challenge, of pace and of competition, but not about feeling 

pressured to go faster than they could understand. 

CONCLUSION  

The three themes we introduce above were common across the case studies though 

implemented differently in each local context. Our study suggests three broad but 

achievable recommendations for schools. Firstly, teachers throughout the school 

should be familiar with A-level syllabuses and content so that they can perform their 

leading role in overtly orienting students towards participation. Secondly, teachers 

should have a repertoire of mathematics activities and strategies that allow students to 

experience challenges and seek help without a whole-class audience. Finally, it is 

important that mathematics teachers, parents and teachers of other subjects give overt 

messages to individuals and friendship groups that they expect girls (and boys) to 

succeed in mathematics, but that this will sometimes require persistence and hard 

work, as well as short-term failures. 
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EFFECTS OF SOCIOECONOMIC STATUS ON MIDDLE SCHOOL 

STUDENTS’ MATHEMATICS ACHIEVEMENT IN CHINA 

Shuang Song   Kan Guo   Yiming Cao 

Capital Normal University   Beijing Normal University   Beijing Normal University 

 

Socioeconomic status (SES) plays an important role in influencing students’ academic 

achievement. This paper presents a large-scale quantitative study to explore the di-

verse effects of SES on Chinese middle school students’ mathematics achievement. 

According to the data analyses on over 25,000 middle school students in one province, 

it showed that parents’ educational level, occupation and household resources sig-

nificantly influence students’ mathematics achievement. The results of interaction 

analysis suggested that the impact patterns of SES depend on region and gender. 

Compared with girls, boys’ mathematics achievements were more heavily influenced 

by their SES. 

INTRODUCTION 

Family usual is learning and living localities for children while providing the most 

important environmental influence on children's early development. Moreover, the 

family will continue to be a strong factor of academic achievements after they entering 

school. Chapin (1928) defined SES as “the position that an individual or family oc-

cupies with reference to the prevailing average standards of cultural possessions and 

participation into group activities”. In a meta-analysis reviewing nearly 200 studies, 

White (1982) summarized that three components of SES were focused on traditional 

researches, namely occupation, education, and income. Independent influences of the 

three components were also proposed by some empirical studies. However, most 

studies only measure elements like home resources and mother’s educational level 

rather than parents’ occupation or father’s educational level. Level of home resources 

was recommended by Sirin (2005) as the fourth core factor of SES, which reflects a 

student’s learning condition that the family can provide. Similarly, indicators of re-

sources at home were also included in PISA’ index of economic, social and cultural 

status (ESCS) together with occupation and education level of parents. 

Conger and Donnellan (2007) reviewed two important theoretical approaches that 

illustrate the social caution of socioeconomic influence, which can be used to explain 

the impact of SES on academic achievement. The first paradigm named the family 

stress model (FSM) proposes the negative influences of family economic hardship. 

The stress on lower-SES family will lead to parents’ emotional and behavioural 

problems as well as more frequent conflicts, which in turn result in students’ learning 

difficulties. The second perspective titled family investment model (FIM) draws at-

tention to the positive impact on students’ academic achievement in higher-SES fam-
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ily. It is suggested that students in high-SES family receive abundant learning ma-

terials, living resources, and parental motivation, which promote their mathematics 

achievement. 

Although the impact of SES on academic has already been confirmed theoretically and 

practically, the strength may vary widely among different cultures (OECD, 2012) or in 

different samples. In other words, some demographic features like gender, grade, na-

tionality, and regions may moderate the impact size. The aforesaid two theoretical 

approaches reveal the fact that the pathway from SES to academic achievements is 

complex and indirect. According to the diversity of circumstances in different school 

regions and students’ personalities, exploring the effect of SES can help to deeply 

understand the environmental factors of students’ developing. 

METHOD 

Participants 

The participants in the present study were sampled from a large-scale quantitative 

study from Collaborative Innovation Center of Assessment toward Basic Education 

Quality in China. All the students were from 11 cities and 90 districts, covering all the 

administrative divisions of Zhejiang. 25,029 students (52.6% boys and 47.4% girls) in 

this study were randomly selected from 501 schools in grade 8, which were highly 

representative to the middle school students in the province in southeastern China. 

Measures 

Parent questionnaire. Occupational and educational level of each parent and indica-

tors of cultural and educational resources at home were investigated using parent 

questionnaire. Parents’ educational level was measured with a 7-point scale: 1 = never 

entering school, 2 = primary school, 3 = middle school, 4 = high school, 5 = junior 

college, 6 = university, 7 = postgraduate. Parents’ occupational level was evaluated 

with a 5-point scale: 1 = agricultural workers, laborers and other elementary oc-

cupations, 2 = clerical support workers and self-employed entrepreneurs, 3 = business 

managers and administration managers, 4 = government associate professionals, 5 = 

teaching professionals, health professionals, and science professionals. After inves-

tigating parents’ educational level and occupational level separately, the largest value 

of two parents was used as the final variable coding. 

Indicators of family resources were calculated by students’ household items and cul-

tural/educational possessions including the numbers (or none) of bedrooms, rooms 

with a bath or shower, computers can be used for school work, study rooms as quiet 

place to study, times of family trip in the past year, books to help with school work and 

technical reference books. 

Some demographic variables of these students were additionally required as control-

ling variables or moderate variables, including gender, number of children at home (1 

= only one child, 2 = more than one child), number of parents at home (1 = single 
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parent family, 2 = normal family), and school region (in city, in town, or in country). 

The school region information was recoded into two dummy variables for data analy-

ses. 

Mathematics achievements test. Mathematics achievements were measured by using a 

sub-test from the Mathematics Competencies Test Bank (Guo, Cao, Yang, & Liu, 

2015) in Grade 8. The sub-test measured students’ capacity in four contents including 

Function, Equations & Inequalities, Geometry, and Statistics & Probability. The four 

content categories play an important role in Chinese mathematics curriculum. Students 

were given 100 minutes to finish the test.  

Statistical procedure 

Item response theory. The item response theory (IRT) analysis was used to achieve 

students’ Rasch-scaled achievements estimates and level of family resources with the 

one-parameter model and implemented by ConQuest software (Wu, Adams, & Wilson, 

1997). The estimates of mathematics achievement were then transformed into a scale 

with average value as 500 and SD as 100. 

Correlation analyses and hierarchical regression analyses. The association of the 

estimated mathematics achievements of each student and the SES variables were tested 

using correlation analyses and hierarchical regression. For the hierarchical regression 

analyses, all the demographic variables were included in the first step and the three 

SES variables were involved in the second step. Variables within each step were chose 

following stepwise rule. 

Interaction analyses. To examine potential dissimilarity of the relationships between 

each SES variables and students’ mathematics achievements, interaction effects were 

tested using general linear modeling. Each interaction was checked one by one sepa-

rately and the statistical significance was defined based on F test.  

RESULTS 

Correlation and regression 

The correlations among estimated mathematics achievement and three SES variables 

were showed in Table 1. Students’ mathematics achievement significantly correlated 

with their parents’ educational level and occupational level (r = 0.297 and 0.259, re-

spectively). The mathematics achievement also correlated with their family resources 

significantly (r = 0.297). The relationship between mathematics achievement and pa-

rents’ occupational level seem to be weaker compared with the other two components. 

Furthermore, three SES variables highly correlated with each other, especially for the 

association between parents’ educational level and occupational level (r = 0.610). 
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Mathematics 

achievement 

Parents’ educa-

tional level 

Parents’ occupa-

tional level 

1. Mathematics achievement - 
  

2. Parents’ educational level 0.297** - 
 

3. Parents’ occupational level 0.259** 0.610** - 

4. Level of family resources 0.297** 0.488** 0.475** 

Note. **, p < .01. 

Table 1: Correlations among mathematics achievements and SES variables. 

Following the stepwise rule, all variables were remained in the final model. The re-

gression analysis showed that controlling for gender, region, and other demographic 

variables, the three SES variables can significantly influence students’ mathematics 

achievement (see Table 2). Involved in the model in the second step, SES variables 

totally explain additional 5.8% of the variance. When changing the order of the two 

steps, SES variables entirely explained 12.1% of the variance and ΔR2 of demographic 

variables was only 0.019. Consistent with the correlation analyses, the independent 

effect of parents’ occupational level was smaller than the effects of the other two 

variables. 

 

 
Variables 

Unstandardized 

coefficients 

Standardized 

coefficients (β) 
ΔR2 

Step 1 Gender 5.891*** 0.036***  

 Number of parents 14.819*** 0.044***  

 
Number of children -9.870*** -0.060***  

 Region1 (city = 1) 4.875** 0.024**  

 Region2 (country = 1) -18.968*** -0.114*** 0.082*** 

Step 2 Parents’ educational level 9.994*** 0.135***  

 
Parents’ occupational level 3.629*** 0.047***  

 
Level of family resources 15.699*** 0.145*** 0.058*** 

   R2 = 0.140 

Note. **, p < .01; ***, p < .001. 

Table 2: Hierarchical regression models using demographic variables and SES varia-

bles to predict students’ mathematics achievement. 
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Interaction analyses 

Among the three tested models (see Table 3), only the interaction between school 

region and parents’ educational level was statistically significant (F = 2.236, p = 

0.008). The results suggested that the relationship between the parents’ education and 

students’ mathematics achievement differed from students studied in different school 

regions.  

 
Main effect  Interaction effect F value p value 

Model 1 
gender, number of parents, 

number of children, school 

region, EDU, OCC, FR 

Region*EDU 2.236 0.008 

Model 2 Region*OCC 0.673 0.716 

Model 3 Region*FR 0.906 0.404 

Note. EDU = Parents’ educational level, OCC = Parents’ occupational level,  

FR = Level of family resources. 

Table 3: The interaction effect between school region and SES variables on mathe-

matics achievement. 

The detailed patterns were performed in Figure 1. It is obvious that students’ average 

mathematics performance increased parallel with their parents’ educational levels ex-

cept for postgraduate degree. Students in cites who have postgraduate degree parents 

acted equally with students whose parents only receive university degrees. However, 

both in towns and countries, postgraduate parents’ children performed worse than so-

me other groups. Postgraduate parents’ children at most achieved counterparts with pa-

rents who completed primary school or middle school learning especially in countries. 

 

Figure 1: Effect of parents’ educational level for students in different school regions. 
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After testing the models involved interaction between gender and SES variables (see 

Table 4), the interactions between gender and parents’ educational level, and that 

between gender and occupational level were both statistically significant (p = 0.001 for 

gender*EDU, p < 0.001 for gender*OCC). 

 

 
Main effect Interaction effect F value p value 

Model 1 
gender, number of parents, 

number of children, school 

region, EDU, OCC, FR 

Gender *EDU 3.604 0.001 

Model 2 Gender *OCC 5.458 <0.001 

Model 3 Gender *FR 1.091 0.296 

Note. EDU = Parents’ educational level, OCC = Parents’ occupational level,  

FR = Level of family resources. 

Table 4: The interaction effect between gender and SES variables on mathematics 

achievement. 

The detailed patterns were visually displayed in Figure 2. Referred to the interrelation 

between students’ mathematics performance and their parents’ occupational level, 

boys were more sensitive to the variation of parents’ job-related characteristics. The 

gender’s moderate effect on parents’ educational level was similar with the moderate 

effect of school region. Postgraduate parents’ male children performed worse than 

counterparts with parents who completed university studies and female children’s 

mathematics performance keep rising aligned with parents’ educational level growing. 

 

 

Figure 2: Students’ gender moderated the effects of parents’ occupational level (in the 

left) and educational level (in the right). 
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DISCUSSION & CONLUSION 

Our results indeed showed that Chinese middle school students’ family environmental 

factors including parents’ education, occupation, and home resources significantly 

influence their mathematics achievement, and the correlation values were consistent 

with previous studies (Sirin, 2005; Van Ewijk & Sleegers, 2010). The interaction 

analyses have suggested the different impact of SES variables relied on school regions 

and students’ gender. Moreover, the effect strength of parents’ occupational level tends 

to be weaker when compared with the other two factors. It is compatible with previous 

researches on Chinese students, which showed that parents’ educational level and 

family income are strongest factors (Wang, Li, & Li, 2014). The students' family 

background can explain 12% of the variation in their academic achievement and is 

essential influencer. Some studies also confirmed the long-term effect of early family 

socioeconomic status (Crane, 1996; Wang, et al., 2015). Consequently, researchers 

should not ever ignore the impact of SES variables.  

Although the increasing of parents' educational background has a positive impact on 

urban students, the postgraduate degree of parents in rural areas has a negative impact. 

In countries and towns, children with parents having postgraduate degree performed 

worse than those parents completed undergraduate education (in countries) or middle 

school education (in towns). This kind of contrast can be supported by family stress 

model. With the acceleration of developing in big cities like Beijing and Shanghai, 

people with high degree are willing to find a job in big cities rather than stay in coun-

tries. Therefore, parents with high degree who stay in rural areas bear stronger pres-

sure, which transforms into a negative impact on their children’s development. 

In addition to school region, students’ gender also regulated the effect of SES vari-

ables. Understanding students’ gender characteristics can help educators to provide 

efficient tutoring to boys and girls. Our results suggested that male students were more 

sensitive to the variation of parents’ educational level and occupational level. This 

consequence may be due to parents’ dissimilar expectations for boys and girls. Chui 

and Wong (2017) have found that parents in China are stricter towards male children 

and they tend to be happier when female students overachieve in academic examina-

tions. As a result, boys are easily affected by parents’ attitude, pressure, and invest-

ment. 

In conclusion, we should understand the influence of family socioeconomic status 

correctly. Educational researchers and the whole society need to guide parents to avoid 

biased expectation of their children, and provide suggestions about reasonable in-

vestment in education. 
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WICKED PROBLEMS IN SCHOOL MATHEMATICS 

Lisa Steffensen, Rune Herheim, and Toril Eskeland Rangnes  

Western Norway University of Applied Sciences 

 

The paper concerns climate change controversies and teachers’ facilitation of pupils’ 

critical mathematics perspectives through wicked problems. The data was collected in 

a research partnership with three teachers and their tenth grade pupils. A particular 

focus is directed towards how controversies can influence teachers to make different 

versions of a quiz, and this is discussed in relation to the teachers’ value perspectives. 

The teachers´ choices of questions, numbers, and graphs are connected to their facil-

itation of action or critical thinking. In the dialogues, the teachers challenged each 

other’s choices, and the controversies and value aspects were made explicit. 

INTRODUCTION 

During the last decade, a socio-political turn in mathematics education has received a 

growing interest among researchers and practitioners (Gutiérrez, 2013). This turn links 

mathematics and mathematics education with complex, socio-political questions and is 

a core aspect of Critical Mathematics Education (CME). Barwell (2013) argued that 

socio-political issues like climate change deserve attention by mathematics education, 

because mathematics is used to describe, predict, and communicate climate change. 

Climate change is sometimes referred to as a wicked problem, characterised by vague 

problem-formulations, multiple solutions difficult to define as right or wrong, no 

central authority, use of multiple time spans, and disagreement on who should bear the 

costs (Levin, Cashore, Bernstein, & Auld, 2012). Wicked problems often involve 

controversies that spark disagreement, and for climate change, typical examples are: 

Does (anthropogenic) climate change exist? If yes, what causes climate change? 

In political debates about climate change, biased use of mathematics happen. Some 

interest-organisations and blogs, for example wattsupwiththat.com, selectively use 

graphs and mathematical representations to support their arguments. Citizens who 

regard mathematics as neutral and value-free may then be exposed to a political 

standpoint without being aware of it. Several researchers (e.g. Atweh, 2012; Ernest, 

2009; Mellin-Olsen, 1987; Skovsmose, 1994) challenge the view on mathematics as 

objective, value-free, and non-political. Skovsmose (2014, p. 116) problematized this 

view on mathematics and mathematics education by underlining how important it is 

“to address critically mathematics in all its forms and application”. Therefore, mathe-

matics education plays an important role in educating citizens to become able to rec-

ognize political use of mathematics, and discussing climate change can serve as a 

powerful topic to achieve this. In Norway, the Education Act (1998) underlined that 

“pupils and apprentices shall learn to think critically and act ethically and with envi-

ronmental awareness”. This is a broader environmental perspective, but it is further 
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specified in the political guidelines (Ministry of Education and Research, 2016) that 

pupils should be enabled to critically reflect on climate change, to understand and to 

believe in, and to acknowledge the responsibility to take actions. The focus on critical 

reflections and understanding is a common task in schools, while to believe in and take 

actions represent a more activist perspective. This raises interesting questions in re-

spect to the normative aspect of climate change. For example, can critical reflection 

conflict with more normative and activist perspective in the curricula? Ho and Seow 

(2015) explored this conflict, and found that scholars in social studies disagree whether 

the purpose of teaching climate issues is to develop independent and critical thinking, 

or to advocate for certain values and environmental change. If mathematics teachers 

implement climate change in the classroom, then this conflict is an important aspect to 

consider. Abtahi, Gøtze, Steffensen, Hauge, and Barwell (2017) found in a research 

survey that mathematics teachers expressed concerns about political and conflicting 

perspectives in climate change, and how this could affect their neutrality as teachers.  

So, there is a profound emphasis in CME on mathematics as political and subjective 

and not neutral or value-free, and climate change is set forward as a potent topic for 

giving attention to these aspects in mathematics teaching. Yet, little research has fo-

cused on climate change in the mathematics classroom (Barwell, 2013). The focus of 

this paper is therefore on how controversies and teachers’ value perspectives (can) 

influence teachers’ facilitation of pupils´ critical mathematics perspectives. 

CONCEPTUAL FRAMWORK – CONTROVERSIES AND VALUES 

The field of CME is characterised by addressing social justice, the role of mathematics 

in society, and the importance of addressing how mathematics is used critically 

(Skovsmose, 1994). Nicol, Bragg, Radzimki, He, and Yaro (2017) explored different 

contexts for social justice and mathematics, including environmental ones, and found 

dialogue as a useful tool to engage with the discomfort and the potential controversies 

that can take place using such contexts. Atweh (2012) urged mathematics educators 

and researchers to include controversial topics in the classrooms. A controversial po-

litical issue is defined by Hess (2009, p. 37) as “questions of public policy that spark 

significant disagreement”, and as open questions with many different and legitimate 

answers. In climate change, there are multiple controversies: Is there climate change? 

If yes, what are the causes (natural or anthropogenic factors)? What are the effects (on 

oceans, ice, weather, food, health)? What should be done about it (avoid emission or to 

cope with the impacts)? Who should bear the burden (rich vs poor country/people, 

polluter vs polluted)? To some of these questions there is a broad consensus by scien-

tists, but in the public sphere and in politics they can be regarded as controversies. 

Including climate change in their teaching can therefore be challenging for teachers 

due to for example personal values or parents’ opinions. Social context plays a role 

when deciding if a topic is controversial or not. In Norway, young people express 

positive attitudes towards reducing oil production. However, as a nation largely de-

pended on the income from oil and gas extraction, this causes much debate and con-

troversies among citizens and politicians. Yasukawa (2007, p. 10) claimed that CME 
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has the “potential to provide people with the skills and inclination to question how 

mathematical information and methods are created, presented and used to construct the 

social and cultural world in which we live”. To enable pupils to do this, they must do 

more than “pure mathematics”. A critical mathematics perspective can be connected to 

mathematical literacy, defined as “the capacity to identify and understand the role that 

mathematics plays in the world, make well-founded judgments, and use and engage 

with mathematics in ways that meet the needs of one’s life as a constructive, concerned 

and reflective citizen” (OECD, 2003, p. 24). These competences go beyond calculation 

and formal methods, and can connect mathematics with topics like climate change. 

According to Gray and Bryce (2006), many science teachers avoid political interests 

and values when teaching certain topics. In mathematics education research, several 

have argued for a more ethical and value-based teaching (e.g. Atweh, 2012). Values 

can have a range of perspectives in climate change, such as cultural preference for 

equitable division of resources, individual interests vs collective ones, and level of 

altruism. People that hold specific values interpret information accordingly, as shown 

in beliefs about climate change by democrats and republicans in USA (Corner, Mar-

kowitz, & Pidgeon, 2014). Ernest (2009) argued that human values play a significant 

role in mathematics education, which problems and concepts we include for example, 

and that any choice is an act of valuation. He elaborated on the values of absolutist 

mathematics and of the values of social constructivist mathematics, and claimed that a 

social responsibility of mathematics is needed. In this paper, we see values as a 

foundation for the perceptions of how we should behave in society, and values can be 

guidelines for how people view controversies such as climate change. The concept of 

reflective knowing is relevant when dealing with values and controversies. Skovsmose 

defined this as “the competence needed to be able to take a justified stand” (1994, pp. 

100-101). This competence goes beyond mathematical literacy as defined by OECD, 

and includes an ethical dimension with norms and values. Reflective knowing can 

involve evaluation and discussion of potential social consequences of climate change 

from a mathematical perspective. Skovsmose emphasised, in addition to the ability to 

evaluate mathematical facts and scientific information, the ability to “receive outputs” 

and to “provide inputs” to the system (1994, p. 101). 

METHOD – A RESEARCH PARTNERSHIP 

The data for the overall project was collected through a one-year research partnership 

with a researcher from teacher education and three mathematics and natural science 

teachers from lower-secondary school. The research partnership was inspired by action 

research and a collaborative research agreement based on equity, respect, and dialogue 

was established. The teachers were invited based on the researcher’s knowledge about 

their engagement with climate change issues, a strategical sampling. The data material 

consists of video recordings of seven partnership meetings and 42 classroom interac-

tions, audio recordings of interviews with the teachers and the pupils, the pupils’ and 

the teachers’ written materials, and observation and field notes. 
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The teachers explored different ways to facilitate pupil’s critical mathematics per-

spective in iterative loops. They let the pupils collaborate on real-life data from their 

own excursions and from local community issues, work with specific tasks in the 

classroom (e.g. calculating average), discuss graphs, make posters, and attend a cli-

mate change exhibition. The principal made the exhibition mandatory for the teachers 

and their pupils. The teachers made a quiz for the pupils to hand out to by-passers on 

the exhibition, but they chose to make different versions of two of the quiz-questions. 

This stood out as an opportunity for investigating the teachers’ reflections on what 

seemed as potential controversies and different value perspectives.  

The data was transcribed, coded, and categorised, patterns were identified and ana-

lysed, all by using NVIVO. The authors analysed emerging findings as a group and 

controversies and values were singled out. The teachers’ quotes were checked with the 

coded material for consistency of perspectives. In the analysis, the focus is on two of 

the quiz-questions, on the multiple-choice answers the teachers made (in particular on 

the use of numbers and graphs), and on the teacher´s utterances in a succeeding dis-

cussion about the quiz and CME.  

RESULTS AND DISCUSSION 

The teachers expressed concerns on the mandatory exhibition, one being to engage 

pupils in an activity just before their final exams. They therefore chose to make a quiz 

themselves, and participate with a group of five volunteers from each class. According 

to the teachers, the intention with the quiz was to get the by-passers on the exhibition to 

reflect on climate change issues with fact-based questions. The quizzes had five 

questions, each with four possible answers, one correct and three distractors. Kim 

made five questions. Max then used three of the same questions but chose to replace 

two of them. The following two questions are one of Max’s own questions and one of 

Kim’s questions that Max chose not to use, both with the correct answers marked: 

Max: How much sea ice was it in the Arctic in 2016 compared to a normal level? 

a) □ + 10% b) □ equal c) □ -10% d)  -36% 

Kim: How much has the Earth's average temperature increased since 1998? 

a)  Almost nothing b) □ approx. 1°C c) □ approx. 2°C d) □ approx. 4°C  

Both questions concern key topics in climate change: Max’s question concerns sea-ice 

levels in Arctic, and the four alternatives, +10 %, 0 %, -10 % and -36 %, suggest both 

an increase and a decrease of sea ice. The correct answer, -36 %, is the most extreme 

choice. Kim’s question concerns the global temperature, and the correct answer and the 

three distractors all suggest a small increase in the average temperature change. The 

correct answer, almost nothing, is at one end of the scale. Kim had included a graph on 

the backside of the quiz to justify the correct answer (Figure 1, graph on the left).  
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Figure 1: Two graphs showing global temperature. The graph on the left with a 

1997-2017 time span, and the graph on the right with 1850-2016 time span.  

Controversial aspects and value perspectives: the case of Max  

The correct answer stands out from the three alternatives because it is not a round 

number, a multiple of ten, and by the difference between the alternatives (10 versus 

26). Max elaborates on the intention of the question and the alternatives by saying: “so 

it is a bit to illustrate that it has changed … a lot.” By the choice of numbers and by the 

way the correct answer stands out from the others, Max implicitly brings forward that 

the temperature has changed a lot. Location can be essential when discussing ice 

melting, while Artic experience an alarming ice melting, Antarctic is more status quo. 

When Max and Kim reflect on the sea ice question, the following dialogue takes place: 

Max: … so, maybe it is deliberately cheating when leaving out Antarctic, I admit that … 

Kim: Did you try to influence? 

Max: Yes, I did. 

In the dialogue, Max refers to excluding Antarctic in the question as “cheating”, fol-

lowed by “I admit that”. The wording reflects a confession, as if Max has distorted the 

facts. The utterance can reflect mixed feelings for the choices Max did, and Kim 

pursue this when asking if Max tried to influence. In the subsequent conversation, Max 

said that it would be crucial to include ice melting in other areas in a classroom in-

teraction with pupils in order to give a more nuanced picture. The dialogue between the 

teachers clarifies the value aspect of Max’ choice of question, and Max expresses that 

discussing the topic with others is enriching for own understanding and teaching. The 

value perspective, the wish to influence, occurs also in other statements by Max: “They 

should reflect, that is one aspect, but another thing I would like is that they should act 

… it is important that they make conscious choices about consumption.” Max con-

siders mere reflection as insufficient, pupils “should act” as well. This can be inter-

preted as a teacher’s facilitation of action. Max’s perspective relates to Skovsmose’s 

reflective knowing and output-perspective in which reflective knowing is something 

more than just reflection. This perspective is also in accordance with how political 

guidelines promote a normative view by emphasising that pupils should believe in and 

take actions towards a sustainable development. When asked if and how climate 

change controversies can affect teaching, Max says: “I think it is important that ... in a 
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way, they also face this in school … that there are different views on things.” 

Controversial aspects and value perspectives: the case of Kim 

Kim’s argument for choosing the distractors for global average temperature, 1°C, 2°C, 

and 4°C, was to use common figures from media. Like Max, Kim chose to place the 

correct answer, “almost nothing”, at one end of the scale. Although the distractors are 

commonly used, projections from the Intergovernmental Panel on Climate Change 

estimate a temperature increase in a range from 0.1°C to 0.3°C per decade (IPCC, 

2007). Another reason Kim gave was: “I have tried to make questions that … where 

they get answers that they do not think is right, in a way. To get them to … oh, that was 

not what I expected.” Exaggerated estimates of temperature change is a typical mis-

conception in climate change (Gowda, Fox, & Magelky, 1997). The emphasis on 

making questions with unexpected answers to trigger pupils’ reflection can be inter-

preted as Kim’s aim to challenge the temperature misconception. Climate change is 

defined by a change that lasts for an extended period of time, and most scientist do not 

consider temperature increase as a controversial issue. What may lead to controversies 

is when someone deliberately uses short or very long time spans (thousands of years), 

to justify arguments claiming no temperature increase. When the teachers discuss the 

graph, Max comments Kim’s reason for choosing the specific time span, 1998-2017: 

Max: But it was a reason why you chose 1989 and not 1889. 

Kim: Yes, yes, this is the last 20 years. 

By saying that “it was a reason” why Kim chose 1989 and not 1889, Max challenges 

Kim’s choice, and asking for a reason could uncover Kim’s motive for choosing that 

particular time span. It can be questioned, as Max did, why the graph shows these 

years, and why Kim chose to use this graph. Giving attention to an overestimated 

temperature rise can indicate something about Kim’s values. This is strengthen by the 

choice of words used for the correct answer: “almost nothing.” Highlighting that the 

temperature rise is close to nothing can be understood as an attempt to reveal mis-

conceptions and trigger pupils’ critical reflection. However, the time span choice can 

also be understood as an argument against climate change. Kim later presented a graph 

with a longer time span (Figure 1, graph on the right). Using different graphs indicates 

that Kim is aware of the potential value-laden perspective of short time spans.  

Kim highlighted controversies as important: “I emphasise all the controversies … I try 

to get the pupils to think. Let them form their opinion. And, I think climate change is an 

excellent opportunity to do this.” Kim takes the position as a facilitator of discussions 

by getting “the pupils to think” and to “let them form their opinion”. This can be in-

terpreted as an emphasis on taking a neutral stand, to not reveal own opinion, and act 

more like a facilitator of critical thinking. Kim emphasises that the pupils should take a 

stop and reflect on the perceived reality, because the reality may not necessarily be 

correct. Furthermore, Kim emphasised pupils’ ability to be critical with comments 

such as “they should be critical. A critical mathematics perspective, I hope they learn 

this. A lot of it”. 
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CONCLUDING COMMENTS 

In line with Ernest’s (2009) argumentation for human values’ influence on mathe-

matics, we find that values and controversies in climate change can influence teachers’ 

facilitation of CME. Max and Kim chose different questions to emphasise particular 

issues in climate change. While Max highlighted the extensive ice melting, Kim em-

phasised how small the temperature change was, and both used mathematics to do this. 

Their different questions and reflections reveal controversies and value aspects. Con-

troversies is perceived as a challenge when teachers consider using climate change in 

mathematics education. Political guidelines and curricula can put teachers in a chal-

lenging and risky situation. Mathematics has traditionally been regarded as a neutral 

subject with little controversy. This can make it extra challenging to include wicked 

problems like climate changes in mathematics lessons. The tension between facilitat-

ing action versus critical thinking is revealed in the teachers’ practise and dialogues. 

Max emphasises to enable pupils to understand causal relationships that empower 

reflected choices, by which they can act and create a better future. Kim emphasises to 

help pupils find their own answers and critically engage in how mathematics is used in 

argumentation. The teachers see themselves as agents with an important message. 

Facilitating action can be questioned if it promotes a political agenda with a desire to 

influence pupils' political standpoints. Facilitating the pupils' critical independent de-

cisions, without revealing own viewpoint, may disclose that choosing certain graphs 

and numbers is not always neutral. We find that the teachers’ question to each other 

made the controversies and value aspects more explicit. In our opinion, climate change 

is a major challenge that should be included in mathematics education, both in research 

and practice. Exploring how teachers find opportunities in the tension between facili-

tating action and facilitating critical thinking is crucial to address. We consider it as an 

opportunity, as well as a challenge, to engage pupils in wicked problem within the 

frames of the school context. 
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OBJECTIFING TINGA: A CASE OF CHILDREN INVENTING 

THEIR OWN DISCOURSE ON FRACTIONAL QUANTITIES 

Aya Steiner  

The University of Haifa 

 

Much has been written about differences between ontogenetic and the historical de-

velopment of mathematics. In this paper, I present a case of learning that may inform 

our vision of what have happened when people began thinking in terms of fractional 

quantities for the first time. The case is taken from a large research project, in which I 

follow the development of the discourse of rational numbers. The study provided in-

sights into both historical and ontogenetic development of that discourse. 

Much has been written about differences between ontogenetic and the historical de-

velopment of mathematics. Such differences are clearly visible in the “commognitive” 

models of these two developments (Sfard, 2015) that were corroborated in empirical 

research on early numerical thinking (Lavie & Sfard, 2016). There are exceptions, 

however. In this paper, I present a special case of learning that may be interpreted as 

quite close in its trajectory to historical development. The case is taken from a large 

research project, whose aim is to map the development of the discourse of rational 

numbers (the project has been conducted with Anna Sfard). It is the story of a sec-

ond-grader named Amir, who lacked formal knowledge of fractions and created a new 

mathematical object while grappling with the task of fair sharing. Amir continued 

building this object also after he began learning about fractions in school. Two years 

have passed until his idiosyncratic discourse coalesced with the canonical discourse of 

rational number. In this paper, after presenting the framework that guides me in my 

research, I follow that process from its beginning. 

THEORETICAL BACKGROUND 

Among all the topics in school curriculum, rational numbers hold the dubious distinc-

tion of the most difficult to teach, the most mathematically complex and the most 

cognitively challenging for students in many countries (OECD, 2014). Its learning has 

been vigorously studied by mathematics education researcher for at least thirty years 

now. It was agreed that rational numbers should be characterized as a set of related but 

distinct constructs rather than as a homogenous single one (Behr, Lesh, Post, & Silver, 

1983). In spite of the popularity of this model, its critics sustained that the division into 

different interpretations of the rational number is insufficient for describing children's 

construction of the concept (Olive & Lobato, 2008). Indeed, only few of the many 

studies, if any, offered a satisfactory panoramic picture of the learning of rational 

numbers (Lamon, 2007). 
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In the hope to overcome these weaknesses, I adopt theoretical perspective known as 

commognitive (Sfard, 2008), according to which mathematics is a form of communi- 

cation – a discourse. The discourse of rational numbers is identifiable by four char-

acteristics: its special words and their use, its visual mediators and their use, the nar-

ratives that are endorsed by the discourse community, and discursive routines, which 

are patterns of discursive actions a person tends to perform. Terms such as three 

quarters, or symbols, such as 3/4 are used as signifiers of mathematical objects. This 

last term refers to the signifier itself together with its multiple interconnected realiza-

tions, that is, other entities (terms, or visual mediators) that in some contexts may be 

considered as its equivalents. For example, in the activity of baking a cake, the signi-

fier: “¾” is realized by a cup with an appropriate amount of sugar, whereas in activities 

with number line it is realized as a specific point on this line. Artefacts are ex-

changeable in their roles as the principal signifiers and realizations. When one tries to 

bake a double-size cake, ¾ turns into a realization of the aforementioned cup of sugar, 

and it may now be doubled (2 x ¾) before any operation on the cup and the sugar is 

performed. The object one creates for a given signifier depends on this person’s ex-

periences and understandings. 

According to the commognitive model of the historical development, mathematical 

discourses originated in practical activities that these discourses came to refine and 

extend. The discourse on rational numbers might well have its roots in early human 

attempts to implement comparisons or equal sharing of continuous quantities – length, 

area, etc. It might have began with an introduction of a new signifier to be used as a 

noun that, given a certain whole, enabled constructing the the required part. The dis-

course that evolved around this new signifier brought about an improvement of the 

activities. Subsequently, the signifier underwent objectification, that is, became a name 

of a mathematical object. The process involved several discursive moves, among them 

(1) saming, the act of associating one signifier with many realizations and (2) reifica-

tion, turning narratives about processes into ones about objects. 

Today, it is through the process of learning that children gradually become participants 

of historically established discourses. The way it happens is bound to deviate from the 

historical trajectory because the formal discourse is introduced to children readymade 

and the learner is not required to invent new signifiers or to decide how to use them in 

discourse. Rather than an act of an independent construction, learning rational numbers 

is the activity of individualizing the historically established discourse of rational 

numbers. It begins with the learner's exposure to new words and symbols appearing in 

such everyday expressions as “half an hour” or “quarter to six”, and proceeds with the 

introduction of the formal discourse of rational numbers in school. One of the teachers' 

most challenging tasks is to help the child to associate this discourse with daily activ-

ities. As has been shown in research, many students graduate without succeeding in 

seeing connections between rational numbers and real-life tasks. As I will argue below, 

these connections may be there from the very beginning if fractions appear in learning 
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the way they entered history: as a by-product of attempts to implement a familiar 

practical activity. 

# Code  Task additional questions 

1 1-to-4 Name numbers between one and four Are there more such num-

bers? 

2 Story Tell me a story using the word half  Repeat with quarter and 

third 

3 sharing 

marbles 

Danny has four packs of 12 marbles. 

He wants to divide them equally 

between his three friends. How many 

marbles would each friend get? 

 

4  4-pizzas- 

for-3 

Three children shared 4 pizza equal-

ly. How much pizza each child got? 

If a number of slice is stat-

ed: What is the size of a 

slice? 

5 5-bisquits-

for-3 

How would you divide equally five 

biscuits among three kids? 

 

Table 1: Examples of tasks 

STUDY DESIGN 

The longitudinal research project from which this case study is taken aims at mapping 

the learning of rational numbers over a period that begins prior to their introduction in 

school and ends when the student may be expected to be already a competent partic-

ipant of the discourse. To this end, I have been repeatedly interviewing 12 pairs of 

children from grades 1st to 6th (in Israeli school, fractions are introduced in the third 

trimester of the 3rd grade or in the beginning of the 4th). During the interviews, I have 

been engaging the students in activities that occasion the use of rational numbers, but 

can also be successfully executed without these artefacts. For these activities, a battery 

of 25 tasks was designed. Some of the items are presented in Tab. 1. For two years, the 

participants had to cope with all 25 tasks every four month. The interviews, held in 

Hebrew, have been recorded and transcribed. For this report, some episodes have been 

translated into English. 

THE CASE OF AMIR 

Amir and his interview partner Noa joined the study as second-graders, when they did 

not have any formal acquaintance with fractions. In interview 1, Amir was already 

familiar with the words half and quarter and seemed to use these words properly in a 

sentence (this became clear when he coped with Task 3). He could also relate to half 

and quarter as quotients (as in the case of 2 or 4 children sharing one snack) and as an 

operator (“I won half of Dan's marbles”). He did not recognize half and quarter on the 
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number line. Amir was also familiar with the word third, but he identified this word (as 

did other participants of our study) with three quarters. Amir, in the absence of a word 

suitable to describe the part resulting from dividing a whole into three equal parts, 

invented the word tinga that corresponded in its later use to third. The initial event and 

the subsequent process of objectification will now be presented as a series of four 

discursive developments: (1) naming, (2) saming, (3) reifying and (4) coalescing of 

tinga with the third. The developments will be shown with the help of the six episodes 

involving tasks from Tab.1 and taken from consecutive interviews. 

Naming. Task 4 raises the need to talk about one part obtained from an equal division 

of continuous quantity into three parts. In interview 1, which took place when Amir 

was in the 2nd grade, he coped with Task 4 as follow: (1) he gave each child one pizza; 

(2) divided the remaining pizza into quarters, (3) gave each child a quarter, (4) divided 

the remaining quarter into three “small parts” and gave each child one of them. Amir’s 

answer was "Each child got one pizza and quarter of a pizza and this small part". Four 

month later, in his second encounter with the task during interview 2, Amir, still the 

second-grader, handed out a whole pizza to each diner as before. Then the following 

discussion took place: 

1. Amir: How do you call that thing… I don’t really know how to describe it.  

   Do you happen to have an erasable board? [talks to the interviewer] 

2. Noa: Draw it in your paper. 

3. Amir:  There is that thing, I do not remember what it is called?  

   But it is a little more than a quarter. [draws a circle] 

4. Noa: Third? 

5. Amir: No, not third, not half. 

6. Noa: Eighth? 

7. Amir: Lets' say this is a circle and it has three halves and this adds to this.  

   How do you call it? [divides the circle into quarters and "add" to one of  

   the quarters, shades it and points at it] 

8. Intr: Lets' say we call it John. How did you get this part? 

9. Amir: Oh! Tinga! So we will give a tinga to every child. 

Amir realized that there might be a name for what he called before the “small part”, but 

he did not know that name. He dismissed Noa’s suggestion of the third, because for 

him, this meant three quarters.  

The invented word tinga, which Amir eventually used as a name of the part, reap-

peared in the same interview as a name of an action rather than object. In response to 

Task 5 (see Tab. 1), Noa put one biscuit in each of the three plates, and then, after 

splitting the remaining two biscuits into quarters, added two quarters to each plate. 

Amir was watching her and eventually asked: "What will you do with the last one 

(quarter)?" While Noa’ answer was slow to come, Amir walked away and said quietly 

to himself "Now you will do tinga". The verbal clause do tinga indicates that Amir was 
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using tinga for both the activity and the physical product (not quantity) of fair sharing 

into three parts.  

Saming. The task involving 3 pizzas and 4 children returned in interview 3. Once 

again, Amir began by allotting half a pizza to each child, but then he had hard time 

trying to divide the circle representing the remaining pizza into three equal parts. In-

spired by his partner Noa, who chose to represent pizzas as rectangles, he started again 

with pizzas of that shape. Using the rectangular model he divided the remaining pizza 

into three parts and stated "Each will get one and tinga". Amir's use of the word tinga, 

therefore, went beyond the specific case of the circular pizza. As could be seen from 

what happened when Amir was presented with Task 3, this use was even broader: 

1. Amir: How many marbles exactly? or with halves?  

   [Draws four circles, divides them into two] 

2. Amir:  Oh wait a minuet! I'm on to something! Do you remember the tinga? 

     [Draws another four circles] 

3. Intr:  Yes. 

4. Amir: Signe… I don’t know how to draw tinga here … 

      [Tries to divide the first circle into three equal parts] 

5. Intr:  Why are you using tinga here? 

6. Amir:  Because, he has three friends, right? 

7. Intr:  Yes 

8. Amir: So each friend will get tinga, tinga, tinga, tinga  

   [marks each circle when saying "tinga"] 

Amir was using the signifier tinga while sharing three pizza among four people and 

also while dividing four bags of 12 marbles among three children! He thus associated 

the signifier tinga with two quite distinct – discrete and continuous - realizations:  

(1) the portion of pizza that each person got; (2) The set of marbles that each child got. 

This was a clear case of a rather extensive saming.  

Reifying. During the first three interviews, when Amir and Noa were asked to name 

numbers between one and four (Task 1), they answered "two and three", and to the 

researcher question "Are there any other numbers?", they responded with the unani-

mous ‘no’. In interview 4 that took place when the children were in the third grade, 

their response changed. 

1. Intr: Do you know any other numbers between one and four? 

2. Noa: Two and a quarter, two and a half, two and three quarters 

3. Amir:  Two and tinga 

Here, Amir offered two-and-tinga as an optional number between one and four. This 

was the first time Amir was using tinga without associating it with either concrete 

objects or activity. 
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Another step towards the reification of the signifier tinga was observed in interview 5. 

Still the third-graders, Amir and Noa opened that interview with an announcement: 

"We changed the name! Tinga is now a thirdth" (I am using this distorted English 

version of the word for 1/3 to signal the non-standard use of its Hebrew counterpart, 

shlish; the use was modelled on the Hebrew regular names for the other parts). While 

asked for his reasons for the change, Amir said: 

Amir: Tinga is when you can divide a circle into three parts. You call a circle that 
is divided to eight parts [draws a circle and divides it into eight parts; 
points to one of the obtained parts] eighth. So I just said thirdth… all are 
ending with th. 

The children decided to name the obtained part according to the number of the re-

sulting parts of the activity. At this point, the signifier was also disassociated from the 

activity. From now on, Amir referred to the activity as "dividing into three equal parts", 

and to the obtained portion as "thirdth".  

Coalescing of tinga with the third. Interview 6 was conducted in November, three 

weeks after Amir and Noa, now the fourth-graders, started learning fraction in school. 

In the very beginning of the interview Amir announced: "Tinga is a third". 

DISCUSSION 

We have already noted earlier in this article that one cannot infer from the ontogenetic 

development to the historical development of the discourse of fractions (or vice versa). 

Historical development of discourses involves acts of creation, the results of which are 

later individualized in the process of learning. The case of Amir gave us a rare glimpse 

into learning involving acts of creation not unlike those that might have taken place 

during the historical development of the discourse on fractions. Here, like in history, an 

idea for something like a fraction emerged out of the necessity for a discourse that 

would mediate and refine activities of equal sharing. Of course, there were differences. 

Unlike our ancestors who invented fraction, Amir already knew words for certain 

parts, half and quarter, and was familiar with some of their everyday uses. Still, for 

these two words to inspire the idea of tinga he had first to become aware of several 

facts. First, he needed to realize that underlying the words half and quarter there was 

the action of splitting into a constant number of equal parts (at this point, “equal”, 

rather than implying identical quantities, referred to congruent shapes). Second, he had 

to know that the name of the part resulting from an equal splitting should depend on the 

number into which the whole was split and on nothing else, not even on the question 

whether the whole was a discrete set or a continuous object. The replacement of tinga 

with thirdth came with yet another insight, according to which it would be useful to 

coin the name of the part so that it hints at the number into which the whole had to be 

split. All these realizations constitute critical steps on the way toward fractions. They 

were all made by Amir and Noa on their own, with no significant help from the inter-

viewer.  
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There is much to admire in this special case of learners arriving at the more-or-less 

canonical version of a historically established discourse on their own. Because of the 

contingency of acts of invention, however, and in the light of time constraints imposed 

by school timeframes, it would be a mistake to ask teachers to reproduce this success. 

The main value of our study is in the insights it offers about both historical and onto-

genetic development of the discourse on fractions. 
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While a few longitudinal studies have provided empirical data on the relationship 

between students’ mathematics self-efficacy expectations (SEE) and mastery experi-

ences (ME) at the macro-level (across months or years), there is little empirical evi-

dence for the theoretically proposed process of SEE change at the micro-level (across 

lessons or learning events). We aimed to address this research gap using a mi-

cro-analytic design with repeated measures across mathematics lessons involving 

grade 6 (n=81) and grade 10 (n=100) students. Path models with cross-lagged effects 

illuminated the relationship between SEE and ME: the dominant direction was from 

SEE to ME, but the effects from ME to SEE were also substantial. Implications for both 

theory and practice are discussed. 

INTRODUCTION 

Self-efficacy expectations (SEE) are important because they are related to a number of 

positive learning behaviours and outcomes in mathematics, such as learning strategies, 

perseverance, and choice of career paths (Zimmerman, 2000). Understanding how 

mathematics SEE change and develop during classroom settings is important both to 

further our understanding of the construct and to inform classroom practice. Mastery 

experiences (ME) are established as the dominant source of SEE through both theory 

and empirical studies (Usher & Pajares, 2009). According to social cognitive theory 

(Bandura, 1997) students develop their SEE iteratively on the basis of appraisals of 

their ME, which highlights the importance of students’ ME during lessons in mathe-

matics.  

While some longitudinal studies have provided empirical support for a reciprocal re-

lationship between SEE and mathematics performance (see Talsma, Schüz, Schwarzer, 

and Norris, 2018), these studies have generally included long gaps between meas-

urement occasions, e.g. months or years. While informative, such longitudinal designs 

do not facilitate investigation into the theoretically proposed process of SEE change, 

including cycles of ME and SEE appraisals across hours or days. We found only one 

previous study employing a micro-analytic approach to investigating mathematics 

SEE and performance, however this was in the context of an automated algebra tutor 

rather than a natural classroom setting (Bernacki, Nokes-Malach, & Aleven, 2015). 

Furthermore, while social cognitive theory posits levels of perceived task difficulty 

might influence students’ SEE, investigations on mathematics SEE rarely focus on this 
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(see Street et al., 2017). As such, we do not know whether or how task difficulty may 

influence the process of SEE change during classroom learning. In order to address the 

above gaps in the research we designed a study including multiple measurement oc-

casions across lessons in mathematics, using multidimensional, item-by-item matched 

measures of SEE and ME. We investigated the following research question: What is 

the relationship between self-efficacy expectations and mastery experiences across a 

sequence of regular lessons in mathematics? 

THEORETICAL FRAMEWORK 

According to social cognitive theory (Bandura, 1997) SEE are individuals’ confidence 

regarding their capability to perform on future tasks or events. Self-efficacy is some-

times referred to as beliefs and sometimes as expectations – we have chosen the term 

expectations in order to bring attention to the focus on future attainment. There are four 

theoretically proposed sources of SEE (Usher & Pajares, 2009), where the dominant 

source is ME. Students’ previous experiences of success or failure in mathematics 

form a basis for the formation of subsequent mathematics SEE. Importantly, ME are 

students’ interpretations of experiences, not their objective performance. According to 

Bandura (1997), ME are appraised in regard to the perceived difficulty of the task – 

while optimal challenges are important in order to facilitate experiences of success, 

succeeding on hard tasks is likely to boost students’ SEE to a larger degree than suc-

ceeding on easy tasks.  

According to Bandura (1997) it is beneficial to hold somewhat optimistic SEE. This 

leads to positive learning behaviours, which are in turn related to positive performance 

or learning outcomes. The reciprocal relationship between mathematics SEE and ME 

is central to the theoretically proposed process of self-efficacy change, yet has been 

investigated empirically in only few longitudinal studies we are aware of. A recent 

meta-analysis on the reciprocal effects between academic SEE and performance 

(Talsma, Schüz, Schwarzer, and Norris, 2018) found the effect from performance on 

SEE was three times stronger  = .21) than the effect from SE on performance ( = 

.07). Out of 347 studies identified the authors found only 2 including children’s 

mathematics SEE and performance measures, highlighting the need for more such 

studies.  

In two studies Hannula and colleagues investigated Finnish school students’ mathe-

matics SEE and performance across several years. Hannula, Maijala, & Pehkonen 

(2004) found a main effect from students’ SEE on their performance, while reciprocal 

effects were supported in a subsample of the data. In contrast to the 2004 study, 

Hannula, Bofah, Tuohilampi, and Metsämuuronen (2014) found the effect from ME on 

SEE was stronger than the effect in the opposite direction. The difference in magnitude 

was reduced in the subsequent time lag, when students were older. In contrast to the 

long time lags commonly used, Bernacki et al. (2015) applied a micro-analytic design 

to investigate how learners’ SEE related to their performance in algebra, using an in-

telligent tutoring system. Sequential prompts elicited SEE every 5 minutes on average, 
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after students received automated feedback on their performance. In a path model 

Bernacki et al. (2015) found that previous performances predicted SEE, but not the 

other way around. Correlational analyses indicated relationships between SEE and 

subsequent performance indicators.  

While the above studies all included direct measures of performance, Phan (2012) 

investigated the relationship between students’ ME and the growth of their SEE across 

one year. In contrast with both theory and empirical studies, Phan found a negative 

relationship between these constructs ( = -.26). Phan questioned whether grade 3 and 

4 students had enough personal learning experiences in mathematics to formulate their 

SEE. An alternative explanation is a faulty conceptualisation of the ME measure, 

which had failed to achieve construct validity in previous studies (see Usher & Pajares, 

2009).  

METHODOLOGY 

We employed a micro-analytic design, including measures of students’ SEE and ME 

for each of a sequence of 3-4 lessons when they were introduced to a new topic in 

mathematics, as students’ SEE are most likely to change as they engage with new 

tasks. Furthermore, this design was chosen as previous studies have found that longer 

time lags are associated with weaker cross-lagged effects (Talsma et al., 2018). Partici-

pants were students in four Norwegian grade 6 classes (n=81) and five grade 10 

(n=100) classes (mean age 11 and 15, respectively). This was a subsample from a lar-

ger study (see Sørlie & Söderlund, 2015), where schools were strategically selected in 

order to be representative of the Norwegian population of state school students. Talsma 

et al. (2018) reported the effect from SEE on performance was not supported in the 

case of children. Including school age students in our study enabled investigations into 

this theoretically proposed relationship operationalised at a micro-analytic level. 93% 

of students consented to take part after receiving written information.  

Measures 

Our study included three measures. The Self-Efficacy Gradations of Difficulty (SEGD) 

is a multidimensional measure that we developed in an earlier study (Street et al., 

2017) and adapted in two versions for the present study. The SEGD long version is 

focused on mathematics as a subject, while the short version focuses on lessons in 

mathematics. Prior to the first lesson, the students filled out the long version of the 

SEGD (15 items; Cronbach’s alpha .92), while at the beginning of every lesson they 

filled out the short version of the SEGD. This included 9 items on students’ SEE for 

learning (example item I can learn something new, if I get lots of help from the 

teacher), problem solving (example item I can solve all the medium difficulty tasks), 

and self-regulation (example item I can persevere when faced with very hard tasks) in 

mathematics, where students respond on a scale from 0 to 10 (Cronbach’s alpha from 

.92 to .94). The Mastery Experiences Gradations of Difficulty (MEGD) is a multidi-

mensional measure developed for the present study, to measure students’ ME of 

learning, problem solving, and self-regulation in mathematics. The MEGD is modelled 
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on the short version of the SEGD, and each of the 9 ME items are matched with a SEE 

item (example item I did not give up when faced with very hard tasks), in regard to both 

facet-specificity and difficulty (Cronbach’s alpha from .93 to .96). Previously, larger 

effects between SEE and ME have been found in studies where measurements are 

aligned with theoretical tenets (Talsma et al., 2018). In our study the measures of SEE 

and ME are all in congruence with the main conceptualisations of the constructs. 

Furthermore, we include students’ self-reports of ME rather than objective perfor-

mance measures which may differ from their perceptions of success, a limitation from 

previous studies (Talsma et al., 2018). 

Analyses 

We used SPSS for data management and MPlus for structural equation modelling. We 

inspected the correlation matrices and considered autoregressive models for each 

construct separately, before specifying models including cross-lagged paths. We used 

the following parameter estimates to determine model fit: The chi square (χ2/df <3 

acceptable), the Root Mean Square Error of Approximation (RMSEA <.08 accepta-

ble), the Comparative Fit Index (CFI) and the Tucker-Lewis index (TLI) (CFI/TLI > 

.90 acceptable), the Standardized Root Mean Square Residual (SRMR<.10 acceptable) 

(Schermelleh-Engel, Moosbrugger, and Müller, 2003). In addition we screened whe-

ther parameter estimates were meaningful and within bounds, e.g., standard errors and 

residual variances. For further model comparisons we applied RMSEA (.015), CFI 

(-.010), and SRMR (.030) (Chen, 2007) as cut-offs. For tests of invariance, we con-

sidered in addition the χ2. 

RESULTS 

The factor structure of our measures 

For all three measures, we specified a series of six alternative empirical models on the 

basis of theory and previous studies (Street et al., 2017), with the main aim to inspect 

whether models including latent facets (i.e., learning, problem solving, and 

self-regulation) or latent levels (i.e., easy, medium difficulty, and hard tasks) fit best. 

For both SEE and ME a Latent Levels Model, including three levels of difficulty and 

correlated uniquenesses for facet-specificity, was chosen as the best-fitting measure-

ment model, consistent with previous findings (Street et al., 2017).  

In order to investigate measurement invariance for each of our repeated measures, we 

specified three models, one for each level of difficulty, which each included a parcel 

based on the measurement model described above (SEE / ME for easy, medium diffi-

culty, and hard tasks). All models were either strongly or partially strongly invariant, 

indicating it is reasonable to use these to investigate changes over time. 
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The relationship between students’ Self-Efficacy Expectations and Mastery Ex-

periences across lessons in mathematics 

In order to investigate our research question we specified three cross-lagged path 

models, one for each of the levels of difficulty. These models included autoregressive 

paths for SEE and ME, and cross-lagged paths representing the effect of SEE at the 

beginning of a lesson on ME at the end of the same lesson, and the effect from ME at 

the end of a lesson on SEE at the beginning of the subsequent lesson (see Figure 1). 

Furthermore, we included grade level and students’ mathematics SEE prior to the first 

lesson as covariates. We first tested models specifying simplex change processes for 

both SEE and ME, however these did not result in “acceptable” fit indices. As modi-

fication indices suggested adding an additional path, we specified models with a path 

for students’ ME from lesson 2 to lesson 4.  

For each of the levels of difficulty, we compared reciprocal effects models (including 

cross-lagged paths in both directions) with unidirectional models (paths from SEE to 

ME only, or vice versa). Consistently, the reciprocal effects models fit best. Finally, we 

included in the best fitting models (see Figure 1) equality constraints on autoregressive 

and cross-lagged paths, in order to investigate relative construct stability over time, as 

well as the dominant direction of the cross-lagged effects. Figure 1 displays the model 

structure and unstandardised parameter estimates for the hard level SEE and ME 

constructs, as an illustrative example. Some tendencies, displayed in this model, were 

common across all three levels of difficulty.  

 

First, for all three level constructs students’ mathematics SEE predicted their lesson 1 

SEE and ME (positive relationship), and grade level predicted their lesson 1 SEE (ne-

gative relationship). Furthermore, students’ SEE and ME were significantly stable over 
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time, and stability paths did not differ significantly between the lessons. Restraining 

the stability paths for each construct as equal, we could compare their relative stability: 

In the case of all level constructs, students’ SEE (path a) were significantly more stable 

than their ME (path b). For each level of difficulty, we tested also whether the mag-

nitude of the cross-lagged effects differed across time, and the dominant direction of 

these effects. In case of the easy level construct, there were no differences across time 

for either of the cross-lagged effects, while in the case of the medium and the hard level 

constructs the path from lesson 4 SEE to ME differed significantly from the previous 3 

lessons (path c). Comparing the magnitudes, we found the effect from SEE on ME 

(path c) was stronger than the effect from ME on SEE (path d), for all three level 

constructs. 

DISCUSSION 

Our study indicates students’ mathematics SEE are more stable than their ME. It 

makes sense theoretically that students’ self-perceptions are more stable than their 

interpretations of success at the lesson-level of specificity and in relation to novel 

tasks, given that ME are reliant to a large degree on the type and difficulty of the task, 

and effects of ME on SEE are moderated also by cognitive appraisal. Future studies 

should investigate the stability of SEE and ME at different levels of specificity, e.g. 

task versus lesson versus subject. An important finding of our study was that the effects 

from students’ SEE to their ME (easy= .48, medium= .60, hard= .43) were significantly 

stronger than the effects in the opposite direction (easy= .26, medium= .31, hard= .26). In 

contrast, Talsma et al. (2018) concluded that the overall effect of performance on SEE 

was significantly larger than the opposite effect, and that the effect of SEE on per-

formance was non-significant in the case of school age children. Importantly, our study 

includes student self-reported ME, more apt for investigating the theoretically pro-

posed process of SEE and ME changes, which may partially explain these differences. 

Previous studies have indicated time lag as a moderator of the cross-lagged effects 

between SEE and ME. We cannot conclude whether the shorter time lag from SEE to 

ME (generally 45-60 minutes) than the lag from ME to SEE (generally several hours or 

days) contributed toward the difference in magnitude. Future studies including similar 

time lags for both cross-lagged effects could further illuminate this relationship.  

If students’ ME are more readily influenced than their SEE, and the effect from SEE to 

ME is stronger than the reverse effect, a practical implication is that interventions 

might do well to start by facilitating positive ME (e.g. by ensuring students work on 

appropriately challenging tasks with appropriate levels of scaffolding), and then, im-

portantly, support students’ appraisals of these experiences, in order that their ME may 

exert larger influence on their SEE. While previous recommendation for practice often 

highlight the dichotomy of whether interventions should target SEE or ME, we thus 

suggest focusing on ways to strengthen the effect of ME on SEE, for instance through 

specific, task-focused feedback highlighting student progress. This approach may be 
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particularly salient at a time when students are engaging with new mathematical topics, 

and their self-perceptions are more amenable to input. 

Our study is unique as it illuminates the relationship between SEE and ME across a 

series of lessons in mathematics, while previous longitudinal studies have generally 

included time-lags of weeks or months, and used objective performance measures 

rather than students’ ME. The functional properties of the relationship between SEE 

and ME might differ in a micro-analytic as opposed to a macro-analytic time frame. In 

our study construct stability was higher in association with hard tasks, while 

cross-lagged effects were stronger in association with medium difficulty tasks (in 

absolute terms). This indicates task difficulty is important to SEE change, and that 

engaging with moderately difficult tasks in school might facilitate such changes. Fu-

ture studies should investigate also how teachers may influence the relationship be-

tween mathematical tasks and changes in SEE through classroom quality. 
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MATHEMATICS IN DISGUISE: EFFECTS OF THE EXTERNAL 

CONTEXT OF MATHEMATICAL WORD PROBLEMS  

Anselm R. Strohmaier and Kristina M. Reiss 

Technical University of Munich 

 

Both the content and the context of a mathematical word problem (WP) influence its 

solution process. We focus on the external context beyond the problem text, e.g. the 

classroom and the cover sheet of the WP. The few studies analysing influences of the 

external context commonly focus on the mathematical solution. In contrast, we report 

two experiments analysing processes beyond solutions. First, we found that a 

mathematical external context increases physiological arousal indicated by 

electrodermal activity, but not self-reported state anxiety. In contrast, eye movements 

during WP reading did not differ between a mathematical and a problem-solving 

external context. This indicates that the external context can initiate a variety of 

processes and emphasizes its relevance for mathematical WP. 

INTRODUCTION 

When solving mathematical tasks, it is not only the content, but also the context that 

matters. Students might be capable of performing a mathematical operation, but they 

are not necessarily able to apply it in a real-life context (Greer, Verschaffel, & 

Mukhopadhyay, 2007; Carraher, Carraher, & Schlieman, 1985). In many educational 

systems, the focus of national curricula shifted towards putting mathematics into 

context during the last two decades (e.g. CCSSI, 2017). Consequently, modeling tasks 

and word problems (WP) have gained importance in mathematics education, since they 

allow educators to integrate a mathematical operation into a real-life context. 

Efforts to implement mathematics into a real-life context are also reflected in 

large-scale studies like the Program for International Student Assessment (PISA; 

OECD, 2016) or the Trends in International Mathematics and Science Study (TIMSS; 

IEA 2013). For example, the definition of mathematical literacy in PISA refers to “an 

individual’s capacity to formulate, employ, and interpret mathematics in a variety of 

contexts [and] assists individuals to recognize the role that mathematics plays in the 

world […]” (OECD, 2016, p.67). Accordingly, PISA uses mathematical WP that 

employ contexts referring to students’ everyday life. They include a brief narrative 

introduction about a real-life topic (e.g. Climbing Mount Fuji). Students are then asked 

to solve a realistic problem, for example “Using Toshi’s estimated speeds, what is the 

latest time he can begin his walk so that he can return by 8 pm?”. Notably, the 

contextualization only takes place on the level of the WP, i.e. in the form of text and 

illustrations. We will refer to this as the internal context of a mathematical WP. In 

contrast, we refer to the external context of a mathematical WP as the situation in 
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which it is presented. This includes the classroom setting, the cover sheet of a test, or 

the emotional and motivational framing of the assessment, e.g. if it is timed or graded. 

External context effects 

One of the most popular studies addressing the external context was conducted by 

Carraher, Carraher, and Schlieman (1985). The researchers asked children working at a 

market how much a number of items would cost, requiring a multiplication. Later, the 

researchers presented them with the same multiplication at home, in the form of a WP 

describing a market situation, and in a formal mathematical task. Children solved 97% 

of the tasks correctly at the market. At home, the same children only solved 70% of the 

WP and 37% of the formal mathematical tasks, even though the problems were 

structurally equivalent. In our terms, Carraher et al. (1985) first changed the external 

context by assessing the items at home and then adapted the internal context by 

removing the market scenario. Still, they did not present children with the exact same 

mathematical problem in both external contexts. Similarly, most research on context 

effects focuses on internal context variation or the variation of both contexts at the 

same time (Fleischer, Wirth, & Leutner, 2014, Johns, Schmader, & Martens, 2005). In 

contrast, studies are rare that systematically manipulate the external context (see 

Dewolf, Van Dooren, & Verschaffel, 2011, for an overview).  

Furthermore, research commonly focuses on effects on mathematical achievement but 

does not analyze in detail how the solution process is affected. The few exceptions 

focus on the solution process from a mathematical perspective, for example what 

mathematical models are constructed or how reasoning refers to mathematical 

arguments (Dewolf et al., 2011). For example, Dewolf et al. (2011) presented 151 

children (10 to 12 years old) with a mathematical WP either during a mathematics class 

or a religion class. Students followed different approaches to solve the problem. In the 

mathematics class, they preferred calculations and offered numerical answers, whereas 

in a religion class, students favored verbal descriptions and non-mathematical 

arguments. Dewolf et al. (2011) conclude that students resort to socio-mathematical 

norms about WP solving when a mathematical context is induced. 

Following a different approach, Fleischer et al. (2014) took into account possible in-

fluences of mathematical self-concept and mathematical anxiety (MA) on external 

context effects. In their study, 515 ninth-graders solved items from PISA. To vary the 

external context, the researchers presented the same items to two groups of students, 

but in different booklets. One booklet introduced the test as a mathematical test, the 

other as a problem-solving test. The context presented to the students had a significant 

effect on achievement in favor of the problem-solving context. Most interestingly, this 

effect was moderated by students’ self-concept and MA. Students reporting a lower 

mathematical self-concept or higher MA showed higher deficits in the mathematical 

context compared to the problem-solving context. Fleischer et al. (2014) conclude that 

context effects prevent some students from using their full cognitive potential for 

solving the tasks, and that self-concept and MA might regulate this effect. 
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The study by Fleischer et al. (2014) indicates that there are several processes that might 

be activated through a variation of the external context. The activation of 

socio-mathematical norms affecting the mathematical solution process might be only 

one of these processes. To some extent, the external context seems to initiate affective 

and motivational processes related to MA and beliefs about the self.  

The present study 

In the present study, we conducted two experiments to analyze two possible processes 

of external context effects beyond mathematical solution strategies. Fleischer et al. 

(2014) found that MA moderates external context effects. MA can influence mathe-

matical achievement through a number of cognitive and physiological processes 

(Dowker, Sarkar, & Looi, 2016). Students with high MA generally report higher levels 

of state anxiety in tests or classes, which can in turn impact achievement (Ashcraft & 

Moore, 2009; Goetz, Bieg, Lüdtke, Pekrun, & Hall, 2013, Dowker et al., 2016). To 

assess whether state anxiety is higher during a mathematical context, we assessed 

physiological arousal, measured through electrodermal activity (EDA) and 

self-reported state anxiety during a mathematical and a problem-solving context. EDA 

are fluctuations in skin conductance caused by sweat gland activity, which in turn is 

caused by an activation of the sympathetic nervous system (Boucsein, 2012). Its 

assessment can supplement common self-reports of state anxiety (Strohmaier, 

Schiepe-Tiska, & Reiss, 2017c). We expected that the mathematical context would 

lead to an increase in self-reported anxiety and EDA (Hypothesis 1a and 1b).  

Furthermore, Fleischer et al. (2014) identified self-concept as a moderator of context 

effects. Moreover, they proposed that the external context could influence cognitive 

information processing. Naturally, WP contain a certain amount of text. Therefore, 

reading is a key process during the solution process of mathematical WP (Daroczy, 

Wolska, Meurers, & Nuerk, 2015). Recently, we proposed to adopt parameters of eye 

movements used in research on reading to characterize cognitive processes during 

complex WP solving (Strohmaier, Lehner, Beitlich, & Reiss, 2017a). Research on eye 

movements commonly distinguishes two types of eye movements. During fixations, 

the eyes rest on a certain position and retrieve information. Between fixations, the eyes 

move rapidly and vision ins suppressed. This is called a saccade. More difficult WP 

are read slower, fixations last longer, readers show more saccades and re-read text 

passages more often (Strohmaier et al., 2017a). These parameters are also related to 

mathematical self-concept (Strohmaier, Schiepe-Tiska, Müller, & Reiss, 2017b). 

Accordingly, we expected that a mathematical context would lead to an increase in 

fixation times, number of saccades, and ratio of regressions per saccade and a decrease 

in reading speed (Hypothesis 2). 

EXPERIMENT 1 

Method 

Participants were 86 undergraduate students (age M = 23,2, SD = 4.1; 62% female). 

The experiment consisted of three phases in a within-subject design. The first phase 
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consisted of a 6-minute relaxation exercise as a baseline measure. For the second and 

third phase, participants were asked to solve two 10-minute tests. Both tests consisted 

of six WP from TIMSS and PISA and were either introduced and labeled as a mathe-

matical test or a problem-solving test. Items were chosen to be challenging, which was 

confirmed by a mean solution rate of 42%. The order and the assignment of the 

external context to the two tests alternated between participants. Self-reported state 

anxiety was assessed immediately after each phase with one item according to Goetz et 

al., (2013) (“I feel anxious”, rated on a 4-point Likert scale). EDA was assessed during 

the three phases with an Empatica E4 wristband (for a detailed description of the EDA 

data processing, see Strohmaier et al., 2017c). As a measure for EDA, we counted 

spontaneous fluctuations in skin conductance per minute (NS.SCR.freq, Boucsein 

2012). As an implementation check, students were asked after the tests how much they 

felt both tests had to do with mathematics on a 7-point Likert scale. An ANOVA for 

repeated measures and paired t-tests were conducted for analyses. 

Results 

In table 1, descriptive results are displayed. Self-reports of state anxiety differed sig-

nificantly between the three phases (F(2,170) = 6.97, p < .05, 2 = .08), but no pairwise 

difference between the mathematical and problem-solving context emerged (t(85) = 

-0.54, p = .59). EDA differed significantly between the three phases (F(2,170) = 14.62, 

p < .001, 2 = .15). Furthermore, EDA was significantly higher in the mathematical 

context than in the problem-solving context (t(85) = 2.24, p < .05). Reports about how 

much the test had to do with mathematics were significantly higher in the mathematics 

condition (t(85) = 6.85, p < .001). The mean solution rate did not differ significantly 

between the tests (t(85) = -1,13 p = .26). 

Table 1: Self-reported anxiety, physiological arousal, solution rate, and reported 

relation to math during a mathematical test in a problem-solving and a mathematical 

external context 

 Phase 

 Relaxation  

exercise 

Problem-solving 

context 

Mathematical 

context 

Self-reported anxiety 1.36 (0.58) 1.64 (0.75) 1.61 (0.76) 

EDA 15.4 (12.7) 19.3 (15.9) 20.8 (16.0) 

Solution rate (%)  43.4 (26.0) 40.3 (22.3) 

Relation to math   4.55 (1.47) 5.84 (1.28) 

Note. Standard deviations are given in parentheses. n = 86. 
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EXPERIMENT 2 

Method 

Participants were 118 undergraduate students (age M = 24.4, SD = 3.8; 63% female). 

They solved nine WP from PISA on a SMI RED500 remote eye tracker. The mean 

solution rate of the items was 75%, which indicates that the WP were easier than in ex-

periment 1, but still offered an acceptable challenge. The items were randomly as-

signed to two blocks, one of which was introduced as a mathematical test, the other one 

as a problem-solving test. There was no time limit on the tests. Eye movements were 

recorded and analyzed according to Strohmaier et al. (2017a). Four measures of eye 

movements that characterize the reading process of WP were used: Mean fixation 

duration, saccades per word, ratio of regressions per saccade and reading speed. Paired 

t-tests were conducted for analyses. 

Results 

None of the reading parameters differed significantly between the two contexts (p 

between .09 and .82). Descriptive results indicate a marginal trend towards fewer 

saccades and a faster reading pace in the mathematical context (t(117) = -1.68, p = .10; 

t(117) = 1.73, p = .09). Solution rate did not differ significantly between the two 

contexts (t(117) = -0.29, p = .78). 

 Context 

 Problem-solving context Mathematical context 

Mean fixation duration (ms) 235 (25) 236 (25) 

Saccades per word   2.24 (0.76)   2.13 (0.70) 

Regressions per saccade   .326 (.060)   .327 (.061) 

Reading speed (words/minute) 160 (53) 170 (50) 

Solution rate (%)   74.4 (20.2)   73.8 (19.5) 

Note. Standard deviations are given in parentheses. n = 118. 

Table 2: Eye movement parameters during reading and solution rate of mathematical 

word problems in a problem-solving and a mathematical external context 

DISCUSSION 

External context effects 

Contrary to hypothesis 1a, self-reports of state anxiety did not differ significantly 

between a mathematical and a problem-solving context. Nevertheless, hypothesis 1b 

was confirmed. The mathematical context caused a higher physiological arousal then 

the problem-solving context. This indicates that the external context influences arousal 

and state anxiety during WP solving. An explanation for the absence of an effect on 

self-reports might be that they refer stronger to long term beliefs about mathematics 
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(Goetz et al., 2013; Strohmaier et al., 2017c). Alternatively, physiological arousal 

might not solely be caused by MA, but could also be a result of increased effort or 

motivation. Anyway, the physiological reaction could in turn influence the solution 

process of the test. For example, physiological arousal interacts with working memory 

capacity (Ashcraft & Moore, 2009).  

Considering hypothesis 2, we found no influence of the external context on eye 

movements during WP reading. It is possible that the variation of the external context 

was not as strongly induced as in the other experiments, since the eye tracker only allo-

wed an introductory slide, but no cover sheet. Furthermore, items were solved orally 

and the tests were not timed, which might counteract a mathematical context. Possibly, 

the mathematical context was not induced as strongly as necessary. Moreover, external 

context effects could be stronger for more challenging problems like in experiment 1, 

since they require more strategies and cognitive resources that might be affected by 

context effects. Another assumption is that the process of reading is independent of the 

external context. Although the reading process of WP is related to mathematical 

thinking, it might depend mostly on the mathematical content or internal context of the 

problem. 

Our study included two experiments investigating if the external context of a mathe-

matical WP influences the solution process of mathematical WP beyond differences in 

the mathematical solution. Our findings supplement prior research (e.g. Dewolf et al., 

2014), because it illustrates that the external context not only influences the mathe-

matical solution. Rather, physiological arousal was identified to be higher in a mathe-

matical context, possibly affecting cognitive resources.  

Application 

Regarding efforts to put mathematics into a real-life context, we propose several impli-

cations. WP and modelling tasks are commonly used to embed mathematical opera-

tions into a real-life context. This only addresses the internal context, while the exter-

nal context has not received much attention in educational practice. For example, 

cross-curricular activities could break up the strict separation of contexts, in which ma-

thematical problems are only solved during mathematics classes. This could have two 

positive effects. First, students that are strongly affected by the external mathematical 

context, for example because of MA, might be more successful when the external 

context is changed. Second, continuous context variation should break up the lines 

between subjects and reduce social norms and preconceptions about mathematical 

problems, which could decrease external context effects on the long run. A different 

remedy is provided by Johns et al. (2005). They found that educating girls about 

negative effects of the external context decreased gender differences in mathematics 

test. Transferring these findings by telling students about possible effects of arousal 

during mathematics tasks could help to decrease its influence. 

In standardized tests, the external context can often not be controlled for practical 

reasons. Still, there are ways to consider possible effects of the external context. For 
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example, Fleischer et al. (2014) illustrate that students’ characteristics like MA or 

mathematical self-concept moderate these effects. When interpreting results, differen-

ces between these characteristics should be regarded to check for possible underlying 

context effects. Secondly, including a questionnaire testing for students’ perception of 

the external context can give an indication if external context effects were present. If 

no information about the external context of the test is available, possible effects 

should be discussed. 

Limitations 

Our experiments considered two specific processes, while a variety of processes could 

be activated by the external context. We took into account effects on state anxiety and 

reading patterns based on previous research, but these effects can only be generalized 

to a limited account. Furthermore, we used WP from PISA and TIMSS that reflect a 

recent understanding of mathematical abilities and tested undergraduate students. 

Further research should take into account situations in the classroom, for example 

using WP from textbooks and testing during regular classes.  

Conclusion 

Summing up, this study provides innovative approaches that take into account effects 

of the external context on WP solving. We focused on two processes that go beyond 

the mathematical solution of the WP. This adds to a small number of research that has 

investigated effects of context variation on achievement and mathematical solutions. 

We hope that this impulse will initiate future efforts to understand and consider 

external context effects in mathematics education. 
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TASK DESIGN TO PROMPT MAKING SENSE OF 

PRE-CALCULUS CONCEPTS USING  

DYNAMIC TECHNOLOGICAL TOOLS 

Osama Swidan 

Ben-Gurion University of the Negev 

 

This study aims at exploring how learning tasks designed according to the Method of 

Varied Inquiry approach may enable students to discern between mathematical objects 

inherent in simulation of a real-world phenomenon and to become aware of the 

mathematical concepts within the tasks. The Method of Varied Inquiry approach is a 

combination of two theoretical perspectives: the logic of inquiry and the variation 

theory. A learning experiment was conducted with 15-year-old students in a high 

school in Turin, Italy. Findings shows that the tasks enable the students to discern 

between critical aspects of a real-world phenomenon and the mathematical 

relationships inherent to it. Insights for improving task design and role of the teachers 

were made.  

INTRODUCTION  

Calculus is considered to be one of the most important topics in mathematics and is in-

cluded in several curricula worldwide. Calculus ideas are inherent in many other topics 

and real-life situations. Nurturing calculus thinking can result in the productive in-

tegration of citizens into modern society (NGSS, 2013). This type of thinking is es-

sential for dealing with the challenges that citizens face in the 21st century (Artigue & 

Blomhøj, 2013). Furthermore, encouraging students to model mathematically real-life 

situations may help them integrate into society as citizens who are able to make 

intellectual decisions (Blum, 2002).  

Often, as seen at least in Italy and in Israel, calculus is taught in senior high schools in 

a formal way as a set of rules and strategies for investigating functions and computing 

areas bound between functions. This kind of teaching-learning activity concentrates 

essentially on the formal world of mathematics, which poses a barrier for the sense of 

mathematical statements (Arzarello, 2016). Several scholars have criticized this kind 

of teaching, claiming that it cannot guarantee boosting the understanding of calculus 

concepts, and even found it to be a barrier for understanding calculus when it is learned 

at a university level (Thompson, Byerley, & Hatfield, 2013). In addition, official 

Italian and Israeli curricula stress the necessity for presenting examples where 

mathematical models of different phenomena are emphasized.  

To overcome the barrier existing between the formal world and a real-life situation, 

Arzarello (2016) suggested a ‘virtuous cycle’ model (Fig. 1). The model consists of 

four formal and informal intertwined aspects: (1) aspects of the real-life situation 
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represented in the formal system; (2) treatment within a formal system/conversions 

between systems; (3) interpretation of the results of the formal system in the real-life 

situation; and (4) interpretation/theorization of the real-life situation through the theo-

retical lens. Since the formal and informal aspects are closely intertwined in mathe-

matical reasoning, Arzarello (ibid.) argued that a major teaching goal should be to ope-

rationalize this virtuous cycle in classroom practices. 

The main question remains as to how to apply the virtuous 

cycle in classroom practices, ensuring a deep understan-

ding of mathematical concepts. This question should guide 

the discussion of this study, as inspired by the logic of 

inquiry approach (Hintikka, 1999), which generally vie-

wed scientific inquiry and knowledge construction as a 

question-answer process, and the variation theory (Marton, 

Runesson, & Tsui, 2004), which defines learning as a 

change in the way something is seen, experienced or 

understood. We designed a set of tasks to be applied by the Method of Varied Inquiry 

method– a learning-teaching approach developed by Arzarello (2016) – which may 

facilitate the conceptual learning of pre-calculus concepts and engage students in 

scientific inquiry. The aim of this study is to explore how design principles may enable 

students to become aware of mathematical concepts inherent in a task.  

THEORETICAL FRAMEWORK  

This study is guided by the Method of Varied Inquiry (MVI) approach, which is a com-

bination of two theoretical perspectives: the logic of inquiry (Hintikka, 1999) and the 

variation theory (Marton et al., 2004).  

The main idea behind the logic of inquiry approach involves seeking rational know-

ledge by questioning (Hintikka, 1999). Hintikka conceived the process of seeking new 

knowledge as an interrogative process between two players. The first player (the inqui-

rer) has the role of asking questions, and the second player has the role of answering 

and is called the verifier (or oracle). The former is the seeker of knowledge who tries to 

prove a conclusion to be reached from prior experiences or even from theoretical 

premises. The latter is considered the source of knowledge.  

In order to design educational situations that may promote inquiry processes, Arzarello 

(2016) referred to the variation theory. The variation theory (Marton et al., 2004) de-

fines learning as a change in the way something is discerned, i.e., seen, experienced or 

understood. According to this theory, meanings emerge as the learner focuses his 

awareness on the object of learning. In this case, some aspects of the object appear at 

the forefront of his attention. Yet, not all aspects are discerned at the same time or in 

the same way. In order to understand an object of learning in a certain way, various 

specific critical aspects must be discerned by the learner. To facilitate the discerned 

object of learning, Marton et al. (2004) proposed four interrelated functions (or 

patterns) of variation to be taken into account when designing educational tasks: (a) 
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Contrast: “…in order to experience something, a person must experience something 

else to compare it with”; (b) Generalization: “…in order to fully understand what 

‘three’ is, we must also experience varying appearances of ‘three’…”; (c) Separation: 

“In order to experience a certain aspect of something, and in order to separate this 

aspect from other aspects, it must vary while other aspects remain invariant”; and (d) 

Fusion: “If there are several critical aspects that the learner has to take into conside-

ration at the same time, they must all be experienced simultaneously” (Marton et al. 

2004, p. 16). 

In the MVI approach, Arzarello (2016) proposes that drawing students’ attention to cri-

tical aspects, asking to vary them, and observing their effects on the phenomena may 

foster students’ inquiry processes. The main idea of the MVI is creating challenging 

situations by varying some aspects of the phenomena (real-world or mathematical) 

while keeping the others invariant. Exploring various aspects of the same phenomena 

may lead the students to grasp the intended object of learning. 

DESIGN PRINCIPLES OF THE TASKS  

The design principles of the tasks were motivated by the virtuous cycle and the MVI 

approach. Each task contains a simulation of real-world phenomenon and mathemati-

cal representations of the dynamic aspects of the phenomenon. The main idea of the 

design is creating different situations by varying some aspects of the phenomenon 

while keeping the others invariant. For example, the first task may request students to 

explore the mathematical model of the stretch of a spring (as in the well-known 

Hooke’s Law). In this situation, the mass and length of the spring vary, and the 

elasticity of the spring is invariant. The second task requests students to explore the 

same situation as in task 1, but this time with a new representation added. In accor-

dance with the virtuous cycle, we assumed that adding a new mathematical representa-

tion to the previous one may draw the students’ attention to a new representation and 

prompt connections between “A formal system” with “The formal system.” In the 

second layer of the exploration, the elasticity of the spring is varied, and the students 

explore how this new situation affects the mathematical model. Exploring various 

aspects of the same phenomenon may lead the students to grasp the intended object of 

learning, namely, linear function and its properties. 

Task Mathematics VC Critical aspects 

1 Propositional relationship (1) Mass-length relationship 

2 Linear function based on the first 

differences 

(1), (2), (3)  Delta length, straight line, 

mass-length relationship  

3 Similarities and differences 

between the family of linear 

functions 

(2), (3), (4) Delta length, straight line, 

family of linear function 

graphs 

Table 1: Mathematical ideas, the virtuous cycle and critical aspects of the phenomenon 
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Task Contr- Separa- Generalization Fusion Variant Invariant 

1 X Mass X X Mass-length Delta length 

2 X Mass X X Mass-length Straight line 

Delta length 

3 X X Different 

situations of 

elasticity 

Mass and 

elasticity 

Mass, length, 

elasticity, slope 

Linear line 

Table 2: The task’s analysis according to varying functions 

 

Task 1

Your task is to explore how the change of the 

mass affects the extension of the spring. 

A. Can you make a conjecture about how the 

change of the mass should affect the 

extension of the spring? 

B. Open the Hook’s Law 1 applet (Fig. 3). 

Change the mass to verify or refute the 

conjectures you raised in (A). Did your 

conjecture change? If yes, why? If not, 

justify your conjecture. 

Task 2

Your task is to explore how the differences 

between the y values of the points on the graph 

change when varying the mass. 

A. Can you make a conjecture about how the the 

differences between the y values of the points 

on the graph change when varying the mass? 

Is your conjecture always true? Why?

B. Can you find an equation that represents the 

sketch of the spring? Why or why not? Justify 

your answer. 

Task 3

Your task is to explore how the change of the spring elasticity affects its  

extension. 

A. Hypothesize how the elastic of the spring affects its extension. 

B. Open the Hook’s Law 3 applet (Fig. 5). Vary the elasticity of the spring, 

and change the mass. Verify or refute the hypotheses you raised in (A). 

justify your hypotheses.

C. Why the function graph change as the elasticity of the spring varies? 

Discuss with your classmates which aspects changed and which aspects 

remained invariant.   

Hooke’s Law Activity 

Figure 3. Two representations of Hooke’s Law Figure 4. Three representations of Hooke’s law

Figure 3. Two representations of Hooke’s Law Figure 4. Three representations of Hooke’s law

Figure 2. Hooke’s Law written tasks

Figure 5. Two variables are varying simultaneously
 

STUDY DESIGN  

To study how the design principles reflected in the students’ learning, a learning ex-

periment was held in a high school in Turin (Italy) in which two senior teachers applied 

the task in their classrooms. Each classroom comprised 18 15-year-old students. We 
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followed four lessons of the teachers as they taught each lesson for 1.5 hours. The 

students were required to work in small groups, sharing the task worksheet and a single 

computer. The students and their actions on the computers were video recorded. 

Regarding data analysis, segments of the recorded clips of the students’ actions using 

the computers were identified. Finally, the effects of the task design, and the transition 

between the representations and the real phenomena were considered.  

RESULTS 

Observing the mathematical relationship between a spring’s length and its mass 

This excerpt illustrates how varying the mass drew the students’ attention to the 

relationship between mass values and spring length.  

9 Patricia We start from 2 and it's 6 cm. Now let's double it; for 4...it's 9... 

10 Anna So, this means that.... 

11 Patricia This is not directly proportional, because we double one, the 
other should double too! 

12 Carlota Try to set 1... 

13 Patricia First, we put 2, and it was 6 cm, then we put 4, which is double, 
and it should have been 12 cm if it were proportional! Instead it 
was just 9... 

14 Dina So, it stretches 1.5 every kilo! 

15 Carlota It's not directly proportional... 

The students conjectured that the relationship between mass and length is directly 

proportional. In line [9], Patricia set two values for mass and examined the relationship 

between length values. This action suggests that the students connected the real-world 

phenomenon with the numeric representation of mass-length. After refuting the 

conjecture, Carlota changed the mass value and set it at 1. She concentrated on the 

length of the spring that corresponded to mass=1. Although in line [14], Dina noticed 

that the rate of change of length values is constant, Anna and Carlota continued to 

maintain that the relationship is not directly proportional.  

Observing the increment of a linear function graph 

Adding a graphical representation to the numerical and real-world phenomenon drew 

the students’ attention to the invariant aspect of the function graph. In the following 

excerpts, the students tried to come up with a conjecture as to why and how the straight 

line increased. Doing so, they shifted alternatively between the three representations 

while focusing on how the variant parameters – mass versus length – reflected on the 

invariant parameters – linear function graph and delta length. 

48 Patricia Why do the y-values change? Because the y-values stand for the 
length of the spring... if the mass increases, the length increases, 
so that's why they increase! 

49 Anna So, why does the length change? 
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50 Carlota Increasing the mass values by dragging the slider.  

51 Patricia  It increases because... Observe how the y-values change on the 
points... why do they change? 

52 Anna Because it's a proportional relationship [points to the table of 
values]. If one increases, the other does too! 

53 Patricia  Yes, because the y-value depends on the x-value… So, if you 
increase the x, which is the mass, consequently you increase the 
y, which is the length! But in which way does it change?  

In line [48], Patricia focused on the linear line on the screen. In an attempt to answer 

her question regarding the change in y-values, she named the x-axis and y-axis by re-

ferring to the real-world phenomenon. These actions suggest that Patricia focused first 

on the graphic representations and then on the real-world phenomenon. Changing the 

mass values using the slider drew Patricia’s attention to the point that moves along the 

straight line. In an attempt to answer Patricia’s question [51], Anna [52] referred to the 

table of values to describe the relationship between mass and length values. Patricia in 

line [53] summed up the insight obtained at this stage, and progressed one step further 

by asking the question “in which way does it change”?  

Observing the delta length 

To answer Patricia’s question, Anna referred to the delta length   columns in which its 

values were constant. Once she points to the delta length column, she explained why 

the values are constants. 

55  Anna It's always 1.5 because by adding 1 kilo every time… the 

stretching is 1.5! If we had added half a kilo, it would be 0.75! 

56  Carlota I know, but how can we explain this? 

57  Anna Let's write this, saying that if we add half a kilo 

58  Carlota Eh, but the difference is always 1.5, why? 

59  Anna Because we always add 1 kilo! If we add half a kilo, the 

difference would be different! 

Anna’s words “it’s always 1.5” suggests that she paid attention to invariant values in 

the delta length column. She justified the invariance of the delta length values referring 

to the constant variation of the mass. Her statements in [55] suggest that she explained 

the rate of change of the spring length by referring to the real-world phenomenon. Her 

statement “If we had added half a kilo, it would be 0.75” suggests that Anna continued 

to focus on how changing the value of the variant parameter – the mass – affect the 

values of the invariant parameter – delta length. Furthermore, this shift in her focus 

suggests that she started becoming aware of the rate of change of the linear function.  

Observing the invariant when several parameters vary 

The third task was designed to help the students become aware of the inclination in the 

linear function, and allow them to distinguish between different situations of linear 

function that differ in terms of their slope. Initially, the students set the value of ela-
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sticity at 5, thereafter, they varied the mass values using the slider. In the Cartesian 

system, a straight line was displayed. Next, they set the elasticity at 10, thereafter 15, 

and repeated the same action by dragging the slider. Finally, three straight lines were 

displayed on the screen.  

    101 Anna When the elasticity was 5, it increased by half, half, half, half. All 

the values change in the same way. Here [points to the table of 

values] one, one, one.  

   102 Carlota As the elasticity increases, the length increases.  

   103 Anna As we increase the elasticity by five, the length will increase by 

0.5.  

   104 Patricia  The change in length, not the length itself.   

   105 Anna  For every value of elasticity, the differences between length 

values are constant. And here [points to the Cartesian system], we 

get linear functions.  

After varying mass values and elasticity of the spring, Anna focused her attention on 

the table of values. She noticed that the differences in spring length were constant. She 

also noticed that the differences were not always congruent as in the previous tasks. In 

this task, the differences in spring length were constant and congruent for a certain 

value of elasticity. In line [102], Carlota focused her attention on the real-world 

phenomenon. She stated the relationship between elasticity of the spring and its length. 

While Anna and Carlota focused on the entire length of the spring, Patricia focused on 

the differences in spring length. Anna’s statement in line [105] suggested that she 

connected between the whole representations. She started from the representation of 

the real-world phenomenon and continued to the table of values. In this connection, she 

had explained the differences by mathematical means – the effect of elasticity of the 

spring on the spring stretch. Thereafter, she connected the numeric representation with 

the graphical one. Her statement “the differences between length values are constant. 

And here, we get linear functions” suggests that she characterized linear function 

according to a constant difference.  

CONCLUDING REMARKS  

This study aims at exploring how learning tasks that were designed according to the 

MVI approach may enable students to discern between mathematical objects inherent 

in a real-world phenomenon and to become aware of the real-world phenomenon and 

its mathematical representations. The results of the study suggest that the design prin-

ciple has the potential of supporting the educational aims set for the study. As shown in 

the results, the design of the activities allows the students to discern between the cri-

tical aspect of the phenomenon and the mathematical relationships. However, discer-

ning between the learning objects was not sufficient enough to enable them to become 

aware of them and to endow the mathematical ideas with their cultural meanings, as 

was intended by the designer. Our results showed that the students discern between the 
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learning objects and endow them with personal rather that cultural meaning (Mariotti, 

2009), as is expected by the designer. For example, discerning that the mass-length 

relationship is not directly proportional did not comply with the designer’s intention, 

which aimed at helping the students discern and become aware of the linear 

proportionality between mass and length.  

To derive benefits from the design principle proposed in this study, teachers should 

play an essential role in mediating the personal meanings of the students with the cultu-

ral meaning intended by the activity designer (Bussi & Mariotti, 2008). In this context, 

the findings of this study should help teachers become aware of the personal meanings 

students may have. Knowing these personal meanings in advance may help teachers to 

plan their lessons in a way that bridges students’ personal meanings to the cultural 

meaning, without preventing the inquiry processes of the students. 
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MAKING SENSE OF THE TEACHING OF CALCULUS FROM 

A COMMOGNITIVE PERSPECTIVE  

Innocent Tasara 

School of Education, University of Leeds  

 

Examining the discourse through the lens of commognition theory allowed an investi-

gation of how teachers of mathematics teach elementary calculus. Analysing the tea-

chers’ word use and narratives provided insights into the specialisation of the mathe-

matical language used in the discourse. Analysing the visual mediators, routines and 

meta-rules used in the classroom discourse, but more importantly, how and when they 

were used, explained the modes of mediation used in teaching elementary calculus.  

INTRODUCTION  

This paper reports on a discursive analysis of mathematical discourse on elementary 

calculus through the lens of the commognitive framework (Sfard, 2008). Given the 

microscopic nature of commognitive analyses and the word count limitations, one case 

out of nine was selected for this paper. Thus, this case study is part of a more extensive 

(doctoral) study, which seeks to research how teachers of mathematics teach ele-

mentary calculus in England. Elementary calculus is part of school (post-16) or college 

mathematics curriculum in the United Kingdom (UK) and many other countries. The 

object of enquiry is how mathematics teachers teach the derivative. The unit of 

analysis is the discourse of the teacher, primarily, though the classroom discourse is 

also considered in as far as it provides the social context of the teacher’s discourse. It is 

a discursive analysis, therefore, a qualitative study. In the following sections, a brief 

introduction to the commognitive framework is outlined, followed by the methodology 

explaining the discursive approach to data analysis. This is then followed by a 

discussion of selected findings, and finally, a summary of conclusions and 

implications.  

THE COMMOGNITIVE FRAMEWORK  

Sfard (2008) presents the commognitive framework for the study of (mathematical) 

thinking. Commognition is a term founded by Sfard, which conceptualises thinking as 

a ‘form of communication’ with oneself. Thus, cognition plus communication consti-

tute commognition (p.570). Thinking is construed as individualisation of interpersonal 

communication. Thus, thinking processes and interpersonal communication are facets 

of the same phenomena. Discourse is the core unit of analysis. Discourse can either be 

non-specialised discourses – ‘colloquial discourse’ or ‘literate discourses’ (Sfard, 

2008, p.299) which are artefact-mediated mainly by symbolic tools designed spe-

cifically for communication. Mathematics is regarded as a form of discourse, which is 
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characterised by four commognitive constructs: word use; visual mediators; endorsed 

narratives; and routines.  

Word use refers merely to the kinds of words used in the discourse. Narratives are ut-

terances in the discourse, thus, made up of words, any written or spoken text used to 

construct or endorse other narratives. In literate mathematical discourse, endorsed 

narratives include processes such as defining, estimating, abstracting, conjecturing, 

proving and generalising (Sfard, 2007, 2008). Visual mediators are visible objects, 

including symbolic artefacts such as formulae, graphs, drawings and diagrams that are 

created and used to enhance mathematical communication. According to Sfard (2007), 

visual mediators are the means through “which participants of a discourse identify the 

object of their talk and coordinate their communication” (p. 571). Noticing and 

categorising visual mediators is important in commognitive analyses. Routines are the 

“well defined repetitive patterns” (Sfard, 2007, p.572) in teachers’ actions in classroom 

discourse. Didactical and mathematical routines can be noticed in the use of 

mathematical words, visual mediators and narratives, i.e., can be observed in the 

processes of “creating and substantiating narratives” (p.572) about say, differentiation. 

Routines are the meta-rules that govern when and how these visual mediators and 

narratives are used. Meta-rules, if formulated, take the form of meta-level narratives – 

“propositions about the discourse rather than its objects” (Sfard, 2007, p.573).  

The commognitive framework allows for the study of the discursive developments of 

individual students and the discursive practices of the teacher.  

METHODOLOGY  

Data collection and participants  

Nine teachers of mathematics (and their classes) took part in the study. However, this 

paper reports on data sets from one of the participant teachers. Peter is a male teacher 

of mathematics in a college who had been teaching post-16 mathematics for more than 

three decades. He has a first-class honours degree in mathematics and a Post-Graduate 

Certificate in Education (PGCE), both from the UK. It was mainly because of his long 

teaching experience why Peter was chosen for this study. 

Data sets for the case study include two audio-recorded interviews with the teacher and 

one video-recorded lesson observation in which the teacher discussed tangents, 

gradients and differentiation. The teacher was interviewed first, prior to teaching the 

observed lesson on calculus and secondly, after teaching the lesson. The lesson obser-

vation video data and the interviews audio data were transcribed with respect to the 

participants’ utterances and actions. The primary focus of the study is the teacher’s 

utterances and actions.  

Method of analysis  

The analysis uses a priori characterisation of discourse comprising the four main 

commognitive constructs of word use, narratives, visual mediators and endorsed 

routines (Sfard, 2008). For the analysis of word use, the extent to which the teacher 
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uses specialised mathematical terminology in his mathematical discourse is examined. 

This focuses on the teachers’ literate and colloquial word use in differential calculus. 

The analysis explores the visual mediators incorporated in the discourse and examines 

how the discourse makes use of the multiple mathematical, visual mediators. A key 

focus is an analysis of the transitions between different visual mediators, signified by 

the presence of both, verbal and visual realisations - words or symbols that ‘function as 

nouns’ (Sfard, 2008, p.155). For the investigation of routines, the analysis focuses on 

the meta-rules with respect to analyses of word use, visual mediators, and endorsed 

narratives in terms of how and when they are used (Sfard, 2008). For the analysis of 

narratives, attention is given to both written and spoken text about definitions, proofs, 

and facts related to differentiation. The focus is on the meta-level narratives that were 

particularly pertinent to the teacher’s word use, visual mediators, and routines within 

the mathematical discourse. The meta-rules are important in the analyses of narratives 

as they regulate practices when the participants generate and substantiate mathematical 

meaning (Güçler, 2013). 

FINDINGS AND DISCUSSION  

In the analysis below, I discuss three findings of the study: the teacher’s approach to 

introducing the ‘derivative’; inconsistency in the teacher’s use of calculus words; and 

ambiguity with calculus symbolism. The excerpts and the numbering of the utterances, 

as presented in the discussion, are all extracted from the original transcripts of the data 

sets. 

How do teachers introduce the idea of differentiation?  

In the pre-lesson interview with the teacher, Peter explains the necessity and importan-

ce for promoting conceptual and ‘relational’ understanding, i.e., “knowing both what 

to do and why” (Skemp, 1976, p.20, italics mine) of differentiation. Talking about his 

approach to introducing differentiation, Peter said: [interview transcript]: 

46 Teacher: I want them to have at least a feel of what we are trying to do, what diffe-

rentiation means rather than just state that, right, when you start with  

you get . Right, they will get it, but what does it mean? I just want them 

to have a feel of what it actually means. 

48 Teacher: I don't see how you can start saying, right, , ... you know... 

I certainly won't be using the . I don't think… I certainly ... I mean I can’t 

believe I will be using that notation today. If I do, I haven't planned to 

anyway. 

The word ‘certainly’ is used twice in [48]. The teacher’s view, as expressed here, is 

that it would be inappropriate to use the  notation in the first lesson on 

differentiation. Notice the teacher’s didactical objective in [46], what it 

(differentiation) means is repeated at least three times in [46] alone. The word ‘what’ is 

repeated four times and the word ‘mean’ three times.  
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Fig.1: The graph of   

Orton’s studies (Orton 1983a and 1983b) found that students had ‘instrumental’ 

knowledge’ (Skemp, 1976) of differentiation; they could carry out the standard 

calculations/rules in differentiation very well, but they did not have adequate 

knowledge of where the standard rules come from. They lacked the relational under-

standing of how and why the methods or rules work. Peter explains the need for the 

substantiation of the narrative: If , then  rather than starting with the 

standard rules for differentiation. This belief may explain his approach to introducing 

differentiation in the lessons that followed the interview.  

The teacher gave out the graph of  with the following instructions [lesson tran-

script]: 

26 Teacher: Now I want you to locate the point on the graph where x equals one. Can 
you locate the point ? y will also be one as well, and I want you to 

draw with a ruler the tangent. I want the tangent to be as long as you like, a 
straight line. You’re doing this by eye, by no other way, by eye.  

30 Teacher: I want you to imagine you’re traveling around this curve…  is about 
there, isn’t it? Make your line long and bold. Now I want you to measure 
the gradient of that line. 

The mathematical object of the discourse is differentiation. The teacher’s approach is 

to construct the definition of derivative by exemplar (Viirman, 2013), using the visual 

mediators [Fig.1 & Fig.2] of the graph of  Substantiation of differentiation is 

done through estimating the derivative using tangents [Fig.2], rather than starting with 

the standard rules for differentiation.  

Inconsistency in word use  

I look at two phrases that Peter used repeatedly in his discourse: ‘gradient of a curve’ 

and ‘tangent’. 

The gradient of a curve: Routines are the meta-rules governing the repetitive discur-

sive actions of participants of the discourse (Sfard, 2008). To identify any well-defined 

didactical practices or repetitive patterns in the teacher’s actions, i.e., routines, it is 

important to identify the object of the discourse (Nardi et al., 2014, p.185), the 

‘discursive objects’ (Sfard, 2008, p.166). Here is Peter introducing the mathematical 

object of his lesson, [lesson transcript]: 

Fig.2: Drawing tangents 
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4 Teacher: And I want to pose a problem to you, and the 
problem is this… [Teacher writing on the 
white board – “The gradient of a curve”]. 

5 Teacher: What do we mean by that? That's my first 
question to you. Now we all know, I hope 

what is meant by the gradient of a line.  

7 Teacher: How do you measure the gradient of a line 
then? How do you measure the gradient? 

9 Teacher: Right, so my question to you is what do we mean by the gradient of a 
curve?  

The teacher’s narrative ‘gradient of a curve’, which is signified both verbally [4] and 

visually [Fig.3], is inconsistent with literate mathematical discourse. An endorsed 

narrative describes ‘the gradient of a curve at a point’. The teacher’s narrative ‘the 

gradient of a curve’ is, therefore, colloquial discourse. But what is this discursive 

object here framed as ‘the gradient of a curve’? Notice, the teacher begins by asking 

the ‘what’ gradient question and he did not get a satisfactory answer from the students; 

he changed the question to the ‘how’ to measure the gradient of a line, and then asked 

about the ‘what’ gradient of a curve. The questioning suggests that by knowing ‘how 

to’ measure the gradient of a line (operational), that would lead the students to knowing 

‘what is’ the ‘gradient (object) of a curve’; it doesn’t say ‘at a point’. What the teacher 

refers to, in the discourse, as ‘gradient of a curve’, is indeed, the gradient function or 

derived function. 

Tangent: To understand the routine for constructing the object of the derivative, it is 

important to observe and analyse the processes of creating and substantiating narrati-

ves (Sfard, 2007). Together with the use of visual mediators, the analysis of narratives 

would enable us to identify the types and characteristics of the routine procedures. 

Using the graph of the function , the teacher talks about the tangent: 

20 Teacher: Is there anywhere on that curve where you 
definitely, already know its gradient?  

21 Student:  

22 Teacher: Good, would you all accept that the x-axis is a 
tangent to the curve? What is the gradient of the 

?  

23 Student: Zero 

24 Teacher: Zero. A tangent, you did this in mechanics, is 
sort of the direction in which you are 
instantaneously traveling. 

25 Teacher: The direction in which you're going there 
[Teacher pointing at the graph on the board] is 
the instantaneous direction, the tangent of the curve.  

In [20] - [25] the teacher constructs a definition of the tangent by exemplar (Viirman, 

2013) by illustrating its key properties with a specific example of the visual mediator, 

Fig.3: The title of the 

lesson 

Fig.4: Teacher’s sketch 

diagrams 
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the graph of the function , and such routines are characteristic of, and prevalent 

in mathematical discourse. However, notice that the teacher describes ‘instantaneous 

direction’ as ‘the tangent of the curve’ [25]. Although objectified, treating the 

mathematical concept of direction as a mathematical object, the narrative is 

inconsistent with literate mathematical discourse. An endorsed narrative describes 

direction as the slope or gradient of the tangent. Thus, the narrative ‘the tangent of the 

curve’ here should be substantiated to mean ‘the gradient of the tangent’. 

Ambiguity with calculus symbolism 

In calculus discourse, symbolic artefacts, such as the  , are integral to the thinking 

and communication process (Sfard, 2007). Apparent in the teacher’s discourse are 

visual mediators: written words, graphs [Fig.1 & Fig.2], deictic language [25] and 

gesturing [Fig.4] and symbolism. However, there is some ambiguity in the teacher’s 

use of calculus symbolism. Here is one of the teacher-student dialogue from the lesson 

[lesson transcript]: 

85 Teacher: So, let's make a note of this, [writing on the board] If  is , it means 
 is . 

86 Student: What is that dash mean?  

87 Teacher: It means the derivative, the gradient function. That's the notation I have 
used here.  

88 Student: What does the derivative mean?  

89 Teacher: It means the gradient function, the gradient of the curve is , of . It's not 
a constant, is it?  

90 Student: No 

91 Teacher: The gradient, a constant? 

92 Student: No 

93 Teacher: It's a function of x 

95 Teacher: We call it a gradient function. We call it the derivative. There are other 
names as well, is that ok? 

The use of symbolic signifier  ‘f-dash’ in [86 - 87] by the teacher, poses some 

challenges for the students. The question in [86] suggests that the student is having 

some difficulties with symbolic realisations, which seems to be exacerbated by the 

teacher’s response with specialised calculus vocabulary [88]. In substantiating the 

narrative, the teacher switches between visual and vocal signifiers, from symbols [85] 

to specialised words – derivative, gradient function [87]. However, these specialised 

calculus words added to the student’s difficulty with calculus – the meaning of the 

derivative [88]. The teacher reiterates his earlier narrative [87] in [95], linking the 

words ‘derivative’ and ‘gradient function’. Notice that the teacher’s routine is to 

construct a definition of derivative by exemplar (Viirman, 2013). Thus, by illustrating 

the properties [89 – 94] of the object of the discourse with a specific example. 

However, note the inconsistency in word use of gradient in [91-93], the teacher’s 
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utterances in [91] and [93] are in fact contradictory; the gradient is indeed a constant! 

The word derivative could refer to the derivative function (a function) or the derivative 

at a point (a constant). This dualism was not substantiated in the lesson; it was not 

made explicit for the student. A commognitive study with calculus students by Park 

(2013), found that ‘most students did not appreciate the derivative at a point as a 

number and the derivative function as a function’ (p.624). In calculus discourse, such 

ambiguity is compounded by calculus symbolism.  

The teacher’s use of visual signifier  draws upon historically established 

mathematical discourse in calculus symbolism (Sfard, 2008). Symbolic mediators such 

as  or  have a dual role. On the one hand,  can be an objectified narrative 

for ‘the derivative of ’, and an operational narrative for ‘the process of 

differentiation’ on the other. Such a symbolic signifier is what Gray & Tall (1991) 

described as ‘procept’ (Tall, 1992b, p.4). In the mind of a literate mathematician, a 

procept can evoke either a process or a concept, and it all happens subconsciously 

(Tall, 1992b). The term procept refers to “the amalgam of process and concept in 

which process and product are represented by the same symbolism” (Tall, 1992b, p.4). 

The “duality (as process or concept), flexibility (using whichever is appropriate at the 

time) and ambiguity (not always making it explicit which we are using)” (p.4) in the 

use of calculus procepts presents challenges for many students. Calculus symbolism 

and vocabulary has been found to present challenges for both students and teachers 

(Tall, 1992a). Given the flexibility and the duality of use of such procepts, it is 

essential that teachers make it explicit enough for students to develop the necessary 

flexible thinking and understanding to be able to deal with the possible ambiguity of 

use (Tall, 1992b). 

CONCLUSION AND IMPLICATIONS 

Mathematical discourse on calculus involves specialised mathematical language and 

visual mediators. In calculus, symbolic realisations are an important aspect of visual 

mediation, so are graphical representations. For example, notice that the graph [in 

20-23] is used, not as a mere auxiliary means for conveying a pre-existing thought, but 

as a way of communicating. Thus, visual mediators are integral to commognition, i.e., 

the thinking and communication process in the discourse, contrary to the common 

understanding of tool use. 

The classroom discourse involves multiple visual mediators, but more importantly, the 

didactical routines show evidence of constant shifts between different signifiers or 

modes of mediation. We see shifts between symbolic signifiers (e.g. ) and specialised 

mathematical words (derivative); shifts between verbal mediation (e.g. use of deictic 

language) and visual mediation (e.g. the graph, the teacher gesturing), in [25] for 

instance. For the teaching of calculus, Tall (1992a) argues for the need for versatile 

transitions between representations, graphics, numerics and symbolics (p.9). Such re-

presentations resemble Sfard’s ‘realisations’ (p.154) of the signifiers which could be 
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spoken words or written words or visual symbols. Nardi et al. (2014) explain the im-

portance of symbolic realisations in mathematical discourse, that symbolic mediation 

brings ‘generative power’ (Sfard, 2008, p.159) and ‘powerful manipulative ability’ 

(Tall. 1992a, p.9) of the discourse.  

There is also evidence of some inconsistency in the teacher’s use of calculus words, 

and some ambiguity in the use of calculus symbolism in the classroom discourse. This 

suggests that difficulties with calculus persist, both for students and teachers alike. 

Therefore, mathematics teachers and educators should always pay particular attention 

to the specialised vocabulary and symbolism in the calculus discourse.  
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KINDERGARTEN TEACHERS’ KNOWLEDGE OF STUDENTS: 

THE CASE OF REPEATING PATTERNS  

Dina Tirosh, Pessia Tsamir, Esther Levenson, and Ruthi Barkai 

Tel Aviv University 

 

Knowledge of students’ conceptions and competencies is an important element of 

teachers’ knowledge for teaching mathematics. This study reports on kindergarten 

teachers’ knowledge of children’s abilities to complete two repeating pattern tasks: 

extending repeating patterns and comparing two repeating patterns. These tasks had 

previously been implemented with children. Results indicated that on the extension 

task, teachers tended to underestimate children’s ability to complete the task, but on 

the comparison task, they tended to overestimate children’s abilities.  

INTRODUCTION 

Knowledge of students - their conceptions, misconceptions, and ways of thinking - is 

an essential element of knowledge needed for teaching mathematics. Shulman (1986), 

for example, suggested that pedagogical content knowledge (PCK) includes knowing 

“the conceptions and preconceptions that students of different ages and backgrounds 

bring with them to the learning of those most frequently taught topics and lessons…” 

(p. 9-10). Others (e.g., Ball, Thames, & Phelps, 2008) described the relevance of being 

able to anticipate and predict what examples students might find confusing or difficult 

and what tasks students might find interesting or motivating. Knowledge of students’ 

conceptions and processes can impact on teachers' decision-making, allow teachers to 

attend to individual students, and influence students' learning outcomes (Carpenter, 

Fennema & Franke, 1996). This study investigates kindergarten teachers’ knowledge 

of children ages 4-6 years, within the context of repeating patterns.  

Repeating patterns are patterns with a cyclical repetition of an identifiable 'unit of re-

peat' (Zazkis & Liljedahl, 2002). For example, the pattern ABBABBABB… has the 

minimal unit of repeat ABB. Exploring repeating patterns may promote children’s 

appreciation of underlying structures (Starkey, Klein, & Wakeley, 2004). Specifically, 

recognition and analysis of patterns, such as when comparing two patterns, may pro-

mote development of algebraic thinking (Clements & Sarama, 2007), providing chil-

dren the opportunity to observe and verbalize generalizations. Engaging in extension 

tasks, where children predict what comes next in a pattern, can promote deductive 

reasoning skills (Greenes, Ginsburg, & Balfanz, 2004). Studies found, however, that 

teachers do not always provide worthwhile patterning opportunities for children, and 

when children engage spontaneously in patterning, teachers may fail to capitalize on 

the child’s interest, missing out on an opportunity to extend children’s interest and 
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knowledge in patterning (Waters, 2004). Perhaps teachers could be more aware of chil-

dren’s abilities to engage with repeating pattern activities.  

This study is part of a larger study which investigated kindergarten teachers’ know-

ledge for teaching repeating patterns. Previously, we found that teachers are able to 

complete various pattern tasks, such as defining repeating patterns, extending 

repeating patterns, and comparing repeating patterns (Tirosh, Tsamir, Levenson, & 

Barkai, in press). The current study investigates two questions related to teachers’ 

knowledge of children: What are kindergarten teachers’ estimates of children’s abili-

ties to complete an extension task and a comparison task? Are teachers’ estimates in 

line with children’s competencies? 

BACKGROUND 

One of the most frequent activities implemented with children is to extend a given 

repeating pattern. Papic et al. (2011) reported that many children succeed at these tasks 

without necessarily recognizing the unit of repeat. Instead, they use the “matching one 

item at a time” strategy, also known as the “alternation strategy,” especially successful 

with simple ABAB patterns. Rittle-Johnson, et al. (2013) found that some children 

reverted to producing an ABAB pattern while others could not produce more than one 

unit of repeat correctly when extending an ABB pattern. Similarly, Swoboda (2010) 

found that for some four-year old children, continuing a pattern means duplicating the 

unit of repeat once, and no more. In other words, both the complexity of the unit of 

repeat, and the number of times the unit is repeated, may contribute to task complexity.   

Comparing two patterns is a task often thought of as more abstract (Rittle-Johnson et 

al., 2013). Papic et al. (2011) describe an incident where a child spontaneously claimed 

that a blocks pattern he created was similar to a flower pattern because one is "blue, 

yellow, yellow, blue, yellow, yellow" and the other is "curved, spiky, spiky, curved, 

spiky, spiky." When asked to elaborate on their similarity, the child responded that, 

“There is one curved and one blue, and then there’s two spiky and two yellow, that’s 

the same pattern” (p. 255). Papic et al. took this claim as evidence of the child’s 

emergent recognition of an ABB pattern and the child’s readiness to consider structure. 

In another study, Waters (2004) observed a young girl who created a necklace out of 

game materials and described her necklace as “diamond, funny shape, diamond, funny 

shape” (p. 326). When asked if she could describe her necklace using numbers, she 

replied “1, 1, 1, 1” and would not accept the teacher’s suggestion of describing the 

pattern numerically as “1, 2, 1, 2.” Waters concluded that the child was unable to 

describe her pattern using a numerical representation, perhaps because of her young 

age. It could also be that the child was attempting to describe that each material was 

used once and then exchanged with another material, also used once. 

Directly related to the current study is Tsamir et al.’s (2017) study of kindergarten chil-

dren’s interactions with two repeating pattern tasks. The first task consisted of pre-

senting children with two pictorial linear patterns, along with possible ways of conti-

nuing each pattern, and then asking them to choose which of the continuations was 
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appropriate. Both patterns had an ABB structure, however Pattern One (see Figure 1) 

consisted of three complete repetitions of the unit of repeat (ABBABBABB), and 

Pattern Two (see Figure 2) included three instances of the repeating unit and in ad-

dition the first two elements of the unit of repeat (ABBABBABBAB). In general, re-

sults indicated that between 60-80% of children chose continuations based on the mini-

mal unit of repeat (MUR). Choosing MUR continuations for Pattern Two was more 

difficult than for Pattern One. In addition, it was sometimes difficult for children to 

accept a continuation that did not end the pattern with a complete unit of repeat  

The second task in Tsamir et al.’s (2017) study consisted of showing children pairs of 

patterns and asking them in what ways the patterns were the same and how they were 

different. The first pair of patterns consisted of two strands of colored beads, each 

made up of the same colored beads, but the first strand had an ABB structure, and the 

second an AB structure (see Figure 3a). The second pair consisted of two strands, each 

with different colored beads, but both strands had the same ABB structure (see Figure 

3b). Qualitative analysis of children’s responses led to three levels of structural 

knowledge. Children who made no mention at all or did not refer at all to the unit of 

repeat, were assigned Level 0; children who used a "matching one item at a time" 

strategy were assigned Level 1; children who were able to abstract the unit of repeat, 

were assigned Level 2. Results of that study indicated that approximately 20% of 

children performed at Level 2 on both tasks. However, 38% of children showed some 

structural awareness (Level 1) when engaging with the first pair of strands, and only 

23% showed this same level when comparing the second pair of strands. 

METHODOLOGY  

Participants in this study were a group of 36 kindergarten teachers who participated in 

the study related to kindergarten teachers’ knowledge for teaching patterns (Tirosh et 

al., in press) and were currently participating in a professional development program 

devoted to patterning concepts. All teachers had a first degree in education and were 

teaching in public kindergartens. Informal interviews with some of the teachers 

revealed that most of the patterning activities taking place in their kindergartens con-

sisted of children drawing borders or frames for pictures, albeit borders which were 

made up of repeating patterns.  

Before the program began, teachers were presented with the same two tasks implemen-

ted in Tsamir et al.’s study (2017) described above (see Figures 1 and 2). For each 

pattern, teachers were presented with continuations based on the minimal unit of repeat 

(MUR) and other continuations, and were asked to choose ways for continuing the 

pattern. In our previous study with teachers (Tirosh et al., in press) it was found that 

most teachers chose extensions based on the MUR, although less teachers chose an 

extension when it ended the pattern in an incomplete unit of repeat. Teachers were then 

asked: What part of the kindergarten class will choose continuations based on the 

MUR – (1) almost none / (2) a few / (3) about half / (4) many / (5) almost all of the 

children?  
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1a: MUR          1b: MUR           1c: Other 

Figure 1: Pattern one ending with a complete unit of repeat and possible continuations  

 

 

 

2a: Other          2b: MUR           2c: Other             2d: MUR 

Figure 2: Pattern two ending with a partial unit of repeat and possible continuations  

For the second task, teachers were presented with two pictures, each a picture of the 

two strands of beads shown to children (see Figures 3a and 3b). First, teachers were 

asked to write down for each pair what was the same and what was different. Results 

from our previous study (Tirosh et al., in press) found that nearly all teachers referred 

in some way to the fixed structure of the core unit. Teachers were then asked: Do you 

think kindergarten children will be able to tell what is different and what is the same for 

each pair of strands in relation to the structure of the pattern?  

 

 

 

Figure 3a: same colors, different structure   Figure 3b: different colors, same structure 

Data analysis 

Teachers’ assessment of children, were compared to the results of Tsamir et al.’s 

(2017) study of kindergarten children. For the extension task, children’s successes 

were configured in terms of the percentage of children (0%-100%) who succeeded. 

Teachers’ assessment, however, was given on a 1-5 scale (see above). The 1-5 scale 

used by teachers was reconfigured to reflect the 0%-100% scale in the following way. 

The lowest score on both scales was 1 and 0% respectively and the highest score was 5 

and 100% respectively. We transformed the 1-5 scale by using the linear equation: 

y=25(x-1) where x represents the scale used for teachers and y the scaled used for 

children. This method of reconfiguration was also used in a previous study which 

compared teachers’ knowledge of students’ number conceptions to children’s actual 

conceptions (Tsamir et al., 2014). We then compared teachers’ estimates of how many 

children would succeed at a task, with results of children’s actual performances.  

For the second task, most teachers responded with a simple ‘yes’, children can tell 

what is similar and what is different, or ‘no’, they cannot complete this task. Some 
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were less decisive and responded with: ‘some’, ‘a few’, ‘most’, ‘a bit difficult’, ‘may-

be’, and ‘doubtful’. Responses were arranged in decreasing order of agreement as 

follows: ‘yes’, ‘most’, ‘some’, ‘a few’, ‘maybe’, and ‘no’. The arrangement was sug-

gested by one author and validated with two other authors who agreed 100% with the 

scale. That being said, we acknowledge that the terminology is subjective and thus 

refrain from quantifying the degree to which teachers agreed or disagreed with the 

statement of children’s ability. After this, we noted how many teachers wrote the same 

estimate for both pairs of strands. That is, did teachers think that both pairs of strands 

presented the same degree of complexity or did teachers think that it would be more 

difficult for children to notice and tell about the pattern structure in one of the pairs? 

For example, a teacher that wrote ‘yes’ for one pair of strands, and ‘most’ for the 

second pair was categorized as believing that it would be easier for children to relate to 

pattern structure in the first pair than in the second pair. Finally, teachers’ responses 

were compared to the actual results of children’s performances (as reported in the 

Background).  

RESULTS 

Regarding the extension task, teachers believed that little more than half of kinder-

garten children would be able to choose MUR extensions for each pattern (see Table 

1). When comparing teachers’ estimates of MUR extensions (P1 extensions a and b, P2 

extensions b and d) to other extensions (P1 extension c, P2 extension a and c), it seems 

that teachers believed it would be more difficult for children to know when an 

extension was not in line with the MUR than when it was.  

Pattern Extension Teachers’ 

estimates based on 

a 1-5 scale 

Teachers’ 

estimates translated 

to percent 

Percent of 

children who 

succeeded 

  M SD   

1 a (MUR) 2.97 1.16 49.25 65 

 b (MUR)  3.17 1.18 54.25 79 

 c (other) 2.82 1.11 45.5 76 

2 a (other) 2.55 .90 38.75 69 

 b (MUR) 2.61 .90 40.25 59 

 c (other) 2.52 .83 35.5 57 

 d (MUR) 2.62 .89 40.5 61 

Table 1: Comparing teachers’ estimates with children’s performance.  

When comparing teachers’ estimations to the findings of Tsamir et al.’s (2017) study 

(see last column of Table 1), we see that teachers consistently underestimated 

children’s ability to choose MUR extensions. However, teachers did correctly assess 
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that children would have greater success extending Pattern One than Pattern Two. In 

other words, teachers knew that extending the pattern which ended in a partial unit 

would be more difficult than extending the pattern that ended in a complete unit. 

Regarding the comparison task, for the first pair of strands (same colors, different 

structures), 54% of the teaches wrote ‘yes, children would be able to complete this 

task’, and for the second pair (different colors, same structures), 67% wrote ‘yes’. This 

is in line with actual results, which, as described in the background, showed that less 

than a quarter of the children were able to abstract the structure of the patterns. On the 

other hand, for each pair of strands, only 10% of the teachers wrote a direct ‘no’. In 

other words, teachers believed that at least some of the children would be able to relate 

to structure when comparing patterns. This suggests an overall positive view of 

children’s ability to complete this task. This view may be a bit more positive than 

actual results, which showed that only about half of the children exhibited some 

structural awareness when comparing the strands of beads.  

A closer look at teachers’ views of the different strands of beads may be seen in Table 

2, which presents how many teachers believed children would perform the same for 

both pairs of strands, and how many thought pointing out similarities and differences 

would be more difficult in one pair over the other. As can be seen, most teachers 

believed that both strands of beads presented the same level of difficulty. Amongst 

teachers who thought there was a difference, more teachers believed that the first pair 

of strands would be more difficult for children to compare than the second. However, 

looking back at the children’s study, we found that children showed more awareness of 

pattern structure when comparing the first pair of strands (same colors, different 

structures) than when comparing the second pair of strands (different colors, same 

structure). In other words, noticing and mentioning the pattern structure was more 

likely to occur when the patterns had different structures than when they had the same 

structure, opposite of what teachers’ estimated. 

Pattern pairs 

have… 

the same degree of difficulty different degrees of difficulty 

Children… can 

complete 

the task 

cannot 

complete 

the task 

Some can 

complete 

the task 

The first 

pattern pair is 

more difficult 

The second 

pattern pair is 

more difficult 

Frequency 19 (49) 3 (8) 3 (8) 12 (30) 2 (5) 

Table 2: Teachers’ estimates of the degree of difficulty when comparing patterns 

Summary  

In general, teachers tended to believe that children would perform better on the compa-

rison task than on the extension task. In comparison to children’s actual competencies, 

teachers underestimated children’s ability to choose appropriate ways of continuing a 

pattern. However, they did recognize which pattern would present less confusion to 

children when asked to extend the pattern. Teachers did not recognize that one pair of 
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patterns would be more difficult to compare than the other, and they might have 

overestimated children’s ability to abstract the structure of patterns when asked to 

compare two patterns. 

DISCUSSION 

Teachers’ estimations of children’s abilities varied according to the task given (exten-

sion versus comparison tasks), as well as the way a pattern was presented (e.g., presen-

ting two patterns with the same structure, but one ending with a complete unit of repeat 

while the other ends part way). These findings indicate that teachers are well aware that 

even within the same mathematical content, different tasks, as well as different 

examples, may present different challenges for children. This is an important and 

positive aspect of teachers’ PCK (Ball et al., 2008). 

Knowing that different tasks present different challenges is a first step. The next step is 

to know which examples and tasks are more difficult to contend with and why. We 

offer a few possible reasons for this gap in teachers’ knowledge of children. First, in 

our previous study with children (Tsamir et al., 2017), we investigated children atten-

ding various kindergartens, and not necessarily these teachers’ classes. Thus, it might 

be that if teachers were to assess children in their own classes, their assessments would 

be more accurate. Another reason might be due to the teachers’ lack of experience with 

a variety of repeating patterns. In our previous study (Tirosh et al., in press), when 

teachers were asked to draw repeating patterns, nearly all teachers drew ABC patterns 

that ended in a complete unit of repeat, hinting at little experience with patterns that do 

not end with a complete unit of repeat. When asked to compare two patterns, there 

were no differences in the way teachers compared patterns with the same structure and 

the way they compared patterns with different structures. Thus, it might be that 

teachers’ estimations of children’s abilities stemmed from their own experiences and 

ways of engaging with repeating patterns. Finally, recall that teachers’ reports of 

repeating pattern activities in their classrooms consisted only of children drawing 

borders made up of repeating patterns; it seems that these teachers had little experience 

observing children engaged with various pattern activities. 

All of the above possibilities point to a need for professional development that widens 

teachers’ example space of repeating patterns, as well as promotes their knowledge of 

children. In the same manner that students’ mathematics knowledge is a starting point 

for teachers to build upon (Shulman, 1986), so too, we need studies of teachers’ 

knowledge, including their knowledge of students, in order to plan for meaningful 

professional development. This study contributes toward this goal. 
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We report on the design and use of ‘nonstandard’ problems in an ordinary differential 

equations (ODEs) course for engineering students. The focus of the paper is on the 

analysis of the development of students’ mathematical discourse and conceptual un-

derstanding of Existence and Uniqueness Theorems (EUTs) from a commognitive 

theory perspective. Our analysis so far shows how students use familiar mathematical 

routines in new situations furthering their knowledge and understanding. Nonstandard 

problems have been a useful tool to gain insights into students’ learning of mathe-

matics. 

INTRODUCTION AND BACKGROUND 

The importance of ODEs in undergraduate (UG) mathematics education is widely ack-

nowledged (Rasmussen & Wawro, 2017). However, fewer than two dozen empirical 

studies were published in top journals since 2004 which is “somewhat surprising given 

the centrality of differential equations (DEs) in the undergraduate curriculum” (ibid., p. 

555). It is known that students experience difficulties with ODEs and even with the 

understanding of the very notions of a differential equation and its solutions (Arslan, 

2010; Raychaudhuri, 2008). EUTs are among very few theoretical results included in 

standard ODEs courses for engineering students. Roberts (1976) emphasised that 

teaching EUTs makes engineering students aware of situations where solutions to 

initial value problems (IVPs) may not be unique or may not even exist.  

Even though students experience difficulties with conceptual understanding of EUTs 

and their correct application (Raychaudhuri, 2007), “traditional content of DEs courses 

can be improved by including more activities aimed at enhancing the student’s un-

derstanding of basic concepts such as DE, solution to a DE and existence and unique-

ness theorem” (Arslan, 2010, p. 887). Recently, Klymchuk (2015) pointed out that 

students may form a habit of applying formulas or rules without checking condi-

tions/constraints because assessment questions are often formulated so that these are 

automatically met. “But in real life problems not all functions and equations behave so 

nicely and ignoring conditions and constraints might lead to significant and costly 

errors” (ibid., p. 63). We use nonstandard problems to help students understand and 

correctly apply EUTs for DEs viewing such problems as tasks “for which students had 

no algorithm, well-rehearsed procedure or previously demonstrated process to follow” 

(Breen, O’Shea & Pfeiffer, 2013, p. 2318). Our intention is to provide challenging 

experiences for students studying towards mathematics-intensive degrees.  
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RESEARCH SETTING AND METHODOLOGY  

The research took place in an ODEs course for engineering students in their fourth year 

of study. The activity formed an assessed piece in the final part of the course when 

students acquired sufficient theoretical knowledge and good computational skills. 

Participation in the research was voluntary. Tutorials were attended by 50-65% of the 

total number of students enrolled. The lecturer of the course, one of the authors of this 

paper, devised a set of six problems to challenge students’ conceptual understanding of 

the EUTs. Students were requested to work on the problems individually first (in the 

tutorial and at home) before discussing their solutions in small groups. In addition, 

each group presented their solution to one of the problems to the class. Students’ 

written solutions (referred to as “scripts”) were collected and photocopied. Group 

discussions were audio-recorded and transcribed. Students' scripts and group discus-

sions of two groups, G1 and G2, (out of five recorded) form the basis of analysis for 

this paper. The code S12 is used to identify the student #2 in G1, etc. 

We situate ourselves in an interpretative framework for data analysis using qualitative 

methods such as coding, interpreting and categorising (Cohen, Manion, & Morrison, 

2008) to characterise students’ discourse and how discourse develops. To aid and make 

meaningful our analysis we consider the theoretical constructs of narrative and routine 

of commognitive theory (Sfard, 2008). A scholarly mathematical discourse such as a 

definition or theorem is a narrative endorsed by the community of mathematicians. The 

EUTs formally introduced by the lecturer to her students represent such a mathematical 

narrative. Narratives are endorsed (or rejected) with the help of routines, repetitive 

patterns produced in creating or substantiating a narrative. Sfard distinguished three 

types by their aim. (1) The aim of explorations is to produce or substantiate a narrative 

and thus further a mathematical discourse. Explorations are further divided into con-

struction, substantiation and recall. (2) Deeds are actions aimed at a physical change in 

objects. (3) Participation in rituals has the aim of creating or sustaining social bonds. 

Sfard also distinguishes the ‘how’ of a routine (the process or course of action) from 

the ‘when’ (the circumstances that evoke a person’s actions and those that signal its 

completion), the applicability and closure conditions of a routine.  

In this paper we pose the following research questions: How do students engage with 

nonstandard problems related to EUTs? In what ways do such problems further stu-

dents’ understanding of new mathematical concepts? 

THE TASKS 

We present the analysis of the first two problems, P1 and P2, of the assessment. All 

problems required the correct application of the EUTs. The theorem required for 

solving P1 and P2 states that if coefficients of a linear DE are continuous on a given 

interval, there exists a unique solution of the initial-value problem on this interval.  

Students encountered ‘how to verify’ techniques for particular solutions to a DE but 

the requirement of P1(a) is for the general solution. This is an unusual problem for 

engineering students who are, to our knowledge and experience, almost never asked 
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that. We make this claim by referring to standard UG engineering textbooks. It is easy 

to verify that the given function is a solution to the given DE (and students were able to 

do this) but to show that it is the general solution one has to explain the role of the 

arbitrary constant (method M1). To avoid this discussion, it is also possible to derive 

the general solution using an integrating factor or variation of constants (method M2). 

These are the two possible correct solutions for this problem with M1 being the method 

that the lecturer anticipated her students to use.  

 

Figure 1: Formulation of Problem 1. 

In P1(b) one may erroneously believe that two different initial conditions (ICs) give 

rise to the same solution . However, since the coefficients  and 

 are not defined at  and are continuous on (-∞, 0) and (0, + ∞), but not 

on any interval including zero, there are two disjoint intervals of existence of solutions, 

each containing one of the initial points. The formulation of P1(b) is nonstandard for 

engineering students and the problem was intentionally stated in this form to create a 

conflict or consternation. If students go ahead and show that a given function formally 

satisfies the DE without paying attention to discontinuity of coefficients and the 

function itself at zero, they may miss the point altogether. It is for this reason the lec-

turer explicitly asked, “Does it violate the EUT?” and “Explain your answer”.  

In P2(a) students were asked to verify that a given function is the general solution of a 

second order linear DE. Again, there are two correct methods. The first is to substitute 

the function and its derivatives into the DE and discuss the representation for the ge-

neral solution as a linear combination of two linearly independent solutions (method 

M3), and the second method is to integrate the DE using the substitution and reducing 

the order (method M4). This is an unusual problem as one cannot be sure that the given 

function is the general solution by merely substituting it into the DE. Usually, second 

order linear DEs with variable coefficients are not discussed in detail in ODE courses 

for engineering students but in this case the EUT can be successfully applied.  

P2(b) required students to verify that the ICs cannot be satisfied. Most students did this 

correctly. In P2(c) it was necessary to notice that the ICs were defined at  which 

is the point of discontinuity of the coefficients of the DE. Hence, the existence and 

uniqueness of solutions cannot be guaranteed even though a solution may still exist and 
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Figure 2: Formulation of Problem 2. 

be unique if the conditions of the EUT are not satisfied. There are at least two ways to 

modify the ICs: (i) to change the initial point from  to any other value and use the 

EUT, or (ii) to modify the ICs at zero and show by direct inspection that the solution 

exists. In the latter case one also has to prove that the solution is unique.  

ANALYSIS OF PROBLEM 1 

Our analysis of P1(a) shows that students were able to demonstrate that a given func-

tion satisfies the DE as the extracts from the group discussion provided below show. 

However, all nine students (four in G1 and five in G2) failed to explain in their dis-

cussions and in written solutions that were submitted (with the exception of one stu-

dent), why this solution was the general solution.  

S12:  Since we got the solution, I just took the derivative of that and put it into the 

original equation, to see that two equals two, and … that was my verifica-

tion. 

S13 and S14 confirmed having done the same as S12 while S11 responded, 

S11:  So I was the only one who actually did any work, [laughter] so I actually 

integrated the whole thing, and ended up with the right expression, so I 

think your way of doing it is a lot easier.  

S13 answered “A bit more efficient at least” and all moved on to P1(b). Thus three 

students only showed that a given function satisfies the DE. One student integrated the 

DE obtaining the general solution which is a correct method (M2). However, the in-

complete solution is accepted as correct (and complete) without further discussion. The 

discussion in G2 followed a slightly different pattern with S22 stating that it was 

“obvious” to differentiate the function, “put it into the DE and see if it’s correct as 

usual.” Three students (S23, S24 and S25) integrated the DE, for example, 

S25:  I did the same as you did, using the integrating factor, multiplying and then 

I just solved the equation because it’s solvable ….  
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S24:  I also solved the equation by the integrating factor, but I think it’s more 

easy just to derivate it once and put it into the original equation and see if 

it’s correct. 

We see S24 echoing the same sentiment as S11 that method M1 is easier. However, 

one student intercepted to say, 

S25:  But there could be more solutions, they are not general solutions. 

S24 answered “Yes, maybe” and all moved on to P1(b). Thus, three students reported 

on obtaining the general solution by integration and one of them stated that the veri-

fying-by-substitution method was easier. Remarkably, S25 seemed to be aware that 

there may be a problem with it. The written (handed-in) solution of this student did 

contain a discussion of the constant and was the only correct solution using M1 sub-

mitted for final assessment to the lecturer. However, in the group discussion this point 

was not elaborated, and students agreed on the two approaches being equivalent – 

when they are not. 

Analyses of students' scripts showed how students changed their solutions following 

the discussions with peers and the presentation. From a correct solution using inte-

gration (M2) to obtain the general solution - and thus proving what had been asked - to 

a verifying-by-substitution method (M1) omitting the discussion of the constant (and 

hence incomplete). From the analysis of the dialogue we deduce that this change oc-

curred because students thought that M1 was easier and more efficient and not because 

students (with the exception of S25) realised that they were moving into a new dis-

course that had the aim of extending their conceptual understanding of the difference 

between the notions of a particular and the general solution of a DE.  

P1(b) had a clear reference to the theorem to be used. The correct solution involved 

verification that both solutions for two different ICs were given by the same formula 

but these solutions were defined and continuous on two different intervals. G1 dis-

cussed P1(b) - considered “the hard part” by S11 - as follows.  

S12:  Undefined at zero, so we get two different curves and both solutions work. 

We do not have a continuous curve which happens to intersect at these two 

points, it’s two curves that will be correct in this small area. 

One student in G2 explained correctly the effect of the discontinuity. 

S25.  Yes, but there is a discontinuity at , so it [the theorem] only guaran-

tees that for  and . 

Other students in G2 provided explanations such as “So you have to have two unique 

solutions, one on each interval” (S24), “for two different initial conditions” (S22), and 

“one for the left part and one for the right part of 0” (S24). S21 appeared to struggle 

saying, “There could happen the chance maybe that they are the same perhaps.” This 

indicates that the student did not understand that by the definition any solution to a DE 

should be at least a continuous function. P1(b) probed students’ understanding of what 
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violation implies. Four students agreed and stated explicitly that it did not violate the 

EUT. S21 stated, “It violates at ” which prompted the reply, 

S22.  Well, but that’s not the question. The question is that if you have two 

identical particular solutions, does that violate the theorem. And it doesn’t. 

When S21 repeated the question, S22 gave a fuller explanation that convinced S21.  

Analysing students’ scripts of P1(b) we found that ten students provided complete and 

correct solutions. This number increased to fourteen after students had the opportunity 

to discuss their solutions in small groups. We tend to believe that students had time to 

reflect on the conditions of the EUTs and benefited from the discussion.  

ANALYSIS OF PROBLEM 2 

The formulation of P2(a) is similar to that of P1(a) but the nature of the problem is dif-

ferent due to the higher order of the DE. Most students in G1 and G2 verified by sub-

stituting the function and its derivatives in the DE that it is a solution, but failed to 

show that it is the general solution, not completing M3. S11 described obtaining the 

general solution by integration (M4) with “It’s only me that’s stupid, obviously, cos I 

derived the entire expression” while S13 concluded it to be “inefficient.” Students 

agreed that “there are different ways of showing the same thing” (S11) but considered 

the (incomplete) method M3 as “more efficient” (S11) or “better” (S13). The oppor-

tunity to expand their discourse was cut short at that point. In G2, S24 explained that he 

solved the problem by substituting the given function into the DE, and S21, S22 and 

S23 agreed. S25 argued that the Wronskian should be used for showing linear inde-

pendence of two solutions,  and , thus verifying that the given function is the 

general solution. However, S25 hesitated about the validity of this approach noticing 

that the Wronskian vanishes at and not realising that the DE is not defined at this 

point. This important detail was pointed out by S24. 

S25:  Yes. This is what I arrive at, but I think it’s strange, that it’s a general so-

lution when it’s still not valid. I am not too confident in this. 

S24:  But the original equation , it isn't defined for .  

Not all students were able to follow this argument as can be seen in students’ scripts. 

The exception was S25 who correctly used the Wronskian (M4) in his solution.  

To explain why no particular solution can be found for the given ICs in P2(b) both 

groups provided similar arguments. Most students (S11, S12, S23, S24) used the ICs, 

obtained  and a contradiction for the constant  ). S22 reflected on 

the general solution considering a parabola which has an extremum at  where the 

derivative should always vanish, leading to the contradiction. S11 was expanding his 

discourse by looking for a reason “why it was this way”, leading him to explore: 

S11:  I did the same thing as well but I tried thinking why is it this way, and my 

sort of conclusion was that it’s in the bottom of a parabola, where the de-

rivative always is 0.  
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In the final scripts three students applied ICs, obtained inconsistent system of linear 

equations and correctly used the EUT to explain this, while nine students only 

acknowledged the contradiction and provided no explanation. Two students employed 

a geometric argument to show that the ICs cannot be satisfied.  

P2(c) provided an opportunity for students to practice the new mathematical discourse 

of EUTs. Students in both groups offered solutions saying they “just guessed” (S11, 

S12) or “made them up” (S23, S24). S11 reflected on the properties of parabolas to 

obtain ICs that worked. Reflecting on the multiple ways of formulating ICs students 

agreed that it suffices to shift the initial point to . S25 drew on the EUT to round 

off the discussion in G2, “I used the existence and uniqueness theorem because of 

discontinuity at , so no guarantee there, but for all other  there is a solution 

guaranteed”, with S22 and S24 voicing agreement. 

DISCUSSION 

Nonstandard problems stimulated lively mathematical discussions in which students 

gave accounts of their solutions and collectively explored different approaches. For 

P1(a) students discussed two different ways they believed should verify that the given 

expression was the general solution. While one of the two approaches was correct, the 

other could have resulted in a correct explanation if students had recalled the definition 

of the general solution. Students experienced certain difficulties with the correct 

mathematical meaning of particular and general solutions - confirming previous re-

search (Arslan, 2010; Raychaudhuri, 2007). We conclude that P1(a) has to be modified 

to call students’ attention to the details of the definitions and theorems.  

In P1(b), in addition to correctly produced solutions, students unexpectedly worked out 

collectively what does violation of the conditions of EUTs mean. They developed new 

understandings in this context (not foreseen by the lecturer at the stage of the task 

design). 

P2(a) echoed some of the difficulties that students had in P1(a) with the meaning of the 

general solution. For P2(b) several students approached the solution via graphical 

representation which had not been discussed in this context in the course. While some 

students used linear algebra reasoning to arrive at the contradiction, others explained it 

using geometric argument. For P2(c) students correctly used the EUT to shift the ICs 

from . 

In summary, we observed students’ difficulties with the definitions of the particular 

and general solution, something the lecturer had not anticipated. We have also percei-

ved successful use of visual mediators by students to explain why the solution to the 

given problem could not exist. 

CONCLUSION AND FURTHER WORK 

In this study we analyse students’ mathematical understanding as a result of engage-

ment with nonstandard problems, from individual scripts that show students’ initial un-
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derstanding to more advanced discussions in small groups and improved final solu-

tions handed in for assessment. Students used a number of different recall routines. 

They employed integration of DE to obtain the general solution in P1(a) and P2(a). 

After group discussions most students switched to the recall routines of differentiation 

and substitution (appropriate for particular solutions). Thus, contrary to our expec-

tations, students used familiar recall routines in a context where further modifications 

were needed. We are, therefore, going to consider how to modify formulations of P1(a) 

and P2(a), in particular the routine prompts used in these problems. 

Our task design reflected a new, unfamiliar to students, narrative around EUTs. The 

lecturer used familiar words in an unusual context and described tasks differently. In 

our ongoing analyses we will focus on the theoretical constructs of narratives and 

routines including the applicability and closure conditions of routines to further our un-

derstanding of the teaching and learning process. More detailed analyses will be in-

cluded in the conference presentation.  
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This paper investigates the enactment of inquiry-based mathematics teaching (IBMT) 

and inquiry-based mathematics learning (IBML). The focus is on how two teachers 

enacted the same task into their classrooms and on how this enactment framed 

students’ mathematical activity concerning the notion of statistical estimation. 

Through the use of the sociodidactical tetrachedron, our study shows that IBMT and 

IBML are framed by different factors such as the selection and use of artefacts, the 

newly established and existing classroom norms and the meanings that teachers and 

students attribute to statistical estimation and to inquiry-based teaching and learning. 

INTRODUCTION  

Inquiry in mathematics – described through terms IBML and IBMT - can be defined 

loosely “as a way of teaching in which students are invited to work in ways similar to 

how mathematicians and scientists work” (Artigue & Blomhøj, 2013, p. 797). As 

regards its classroom implementation, inquiry is considered an opposing approach to 

teacher-centred ones integrating a combination of at least two of the following three 

characteristics: opportunities for students to generate several options and solutions; 

discuss together; and make justified decisions (Chan, 2006). Existing empirical studies 

indicate the benefits of inquiry in the teaching and learning of mathematics and science 

in terms of students’ outcomes and teaching quality at all educational levels and 

systems (Bruder & Pescott, 2013). However, integrating inquiry in the real classrooms 

is a rather complicated task bringing to the fore a number of issues such as the nature of 

the designed tasks, the provided resources, the teaching management and the students’ 

learning (Artigue & Blomjoi, 2013). Thus, teachers aiming to enact inquiry in their 

teaching face a number of concerns at the level of design and implementation and 

according to their decisions and actions inquiry is likely to take different forms with 

respect to the surrounding (e.g., institutional) conditions. To address this issue, we 

adopt a sociocultural perspective to study the teaching activity of mathematics teachers 

in relation to students’ activity while enacting inquiry in their classroom. The teachers 

in our study worked collaboratively on an open-ended task engaging students in 

developing strategies to count the number of people in a demonstration based on an air 

photograph. We focus on the notion of statistical estimation that appeared to be central 

in the classroom activity. We address the following research question: How are IBMT 

and IBML enacted into the mathematics classroom?  
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THEORETICAL FRAMEWORK  

Elaborating on the conceptualization of IBML and IBMT, Artigue and Blomjoi (2013) 

indicated a number of concerns that need to be addressed as a basis for integrating 

inquiry in classroom teaching. These include: the ‘authenticity’ of tasks and students’ 

activity in terms of connection with real life activities; the epistemological relevance of 

the tasks from a mathematical point of view; the modelling dimension of the inquiry 

process and the extra-mathematical sources of rationality; the experimental dimension 

of mathematics; the students’ autonomy and responsibility for producing and 

validating answers; the guiding role of the teacher and teacher–student(s) com-

munication in the classroom. In our attempt to study IBMT focusing on the teacher’s 

decisions and actions and IBML focusing on students’ actions and behaviours, we use 

the sociodidactical tetrahedron (SDT) (Rezat & Strässer, 2012).  

SDT allows us to focus on the classroom 

interaction and explain how IBMT and 

IBML are enacted in the classroom by 

taking into account the sociocultural 

setting. Rezat and Strässer (2012) used 

the Engeström’s triangle and distingui-

shed two activity systems: (a) the teach-

ing of mathematics taking as subject the 

teacher and (b) the learning of mathema-

tics taking as subject the students. So, 

they extended the classical didactical 

triangle (teacher – student – mathema-

tics), first to the didactical tetrahedron 

(teacher – student – mathematics – arte-

facts), and finally based on EMT to the 

Sociodidactical Tetrahedron (SDT) (Fig. 

1). The community of teachers is made up of teachers and mathematics educators, the 

noosphere that has created certain images about what is mathematics teaching and 

learning. The community of students belongs to peers, family and possibly tutors. In 

the base of the STD, the two vertices represent conventions and norms about being a 

student and about learning and conventions and norms about being a teacher and 

about teaching while in the third vertex the role of mathematics in relation to the 

division of labour in the society and the public image of it (public image of 

mathematics) are considered. The communities include both teachers’ and students’ 

communities as well as the institution that is represented as another point in the STD. 

In our study, we focus on the relations between the teacher and the students with the 

mathematics content (the statistical estimation), the artefacts (the materials provided 

by the teacher and those used by the students), the public image of mathematics in the 

society (the authentic workplace setting), the noosphere (the meaning of IBML and 

IBMT as they are discussed in the community of mathematics education researchers 

 

Fig. 1: The sociodidactical tetrahedron. 
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and teachers), the classroom norms and conventions (how teachers and students con-

ceive mathematics teaching and learning in the classroom with regard to different ap-

proaches to teaching and learning) and the institution (curriculum, school schedule, 

school rules).  

The notion of statistical estimation in our study refers to the informal inferential rea-

soning process in which students make arguments to support inferences about un-

known populations based on observed samples (Zieffler et al., 2008). A statistical infe-

rence is formed by (a) a statement of generalization “beyond the data,” (b) use of data 

as evidence to support this generalization, and (c) probabilistic (non-deterministic) 

language that expresses some uncertainty about the generalization (Makar & Rubin, 

2009). Here, we explore IBMT and IBML when the main mathematical idea is the 

statistical estimation. 

METHODOLOGY 

The reported study took place in the Mascil context (www.mascil-project.eu) that 

targeted mathematics and science teachers’ professional development through the inte-

gration of inquiry-based learning and workplace into their teaching. To this end, pro-

fessional development (PD) groups of in-service mathematics and science secondary 

teachers have been established. Each group, supported by a teacher educator, par-

ticipated in cycles of designing, implementing and reflecting during a period of a 

school year. Before and after each implementation of the designed lessons professional 

development (PD) meetings took place. In this paper we focus on two mathematics 

teachers (Vangelis and Eirini) who worked in lower secondary schools in Athens and 

were members of the same PD group. The teachers collaborated in the transformation 

and implementation of the mascil task Counting People that was proposed to the group 

by the teacher educator in the 3rd PD meeting. Both implemented the task after 

adapting it to the Greek context in their 9th Grade classes (14 years old) for two tea-

ching hours each. In both cases, the students were separated into groups (4-5 students) 

and all groups worked collaboratively for the solution of the problem. We chose to 

focus on the cases of Vangelis and Eirini because they expressed different perspectives 

in relation to IBMT and this allowed us to address issues related to our research 

question.  

The Counting People task, as was transformed by Vangelis and Eirini, engages 

students to devise their own plan for counting the number of people in a particular 

antiracist demonstration that took place in Athens in front of the Parliament House. In 

the beginning of the two lessons both teachers provided the students with one photo 

(see Fig. 2) showing people demonstrating in three streets in front of the Parliament 

House (the Vas. Georgiou str., Vas. Amalias str., and Othonos str.) where the crowd 

density varies. Students are asked to adopt the role of a journalist and to provide in-

formation about the number of demonstrators in the photo. Key steps for a possible 

solution can be: (i) relating the counting of people with calculating the area of the 

specific streets; (ii) devising a plan to estimate the area of the three streets (the teachers 

http://www.mascil-project.eu/
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did not provide a scale); (iii) estimating the total number of demonstrators in the three 

streets. From the above, it seems that statistical estimation becomes a central inquiry 

issue in this task.  

The data consists of (a) the 

audio recordings of three 

2- hour PD meetings (one 

for designing teaching 

(3rdmeeting) and two (4th 

and 5th meeting) for re-

flecting)); (b) a 

video-taped lesson for 

each teacher; (c) audio ta-

ped students’ group di-

scussions in each classroom; (d) teachers’ reflective interviews. Concerning the data 

analysis, first from the transcribed lessons and the group discussions we identified key 

actions that each teacher and the students had undertaken in relation to IBMT and 

IBML and the statistical estimation. Then through the analysis of the PD meetings and 

the reflection interviews we looked for the teachers’ perspectives of IBMT and IBML 

and statistical estimation. At the next stage of analysis, we focused on the interaction 

between the teacher’s and students’ actions in relation to the elements of the STD. 

Finally, the two cases were contrasting to identify key differences on how IBMT and 

IBML were enacted in their classes. 

RESULTS 

Teachers’ perspectives  

In the 3rd PD meeting the teacher educator introduced the Counting People task. 

Vangelis (V) realized at once that statistical estimation was a central mathematical 

notion in this task: “You can approach it through statistics [...] estimating the number 

of a group of animals for example ... you take a sample and consider how many they 

are in areas of high or low density respectively.” Vangelis had a strong background in 

statistics something that helped him to connect the task directly with central statistical 

methods and concepts such as statistical estimation and sample representativeness. 

Eirini acknowledged statistical estimation as a central learning objective but she 

related it with the idea of approximation “It is reasonable to have great deviation in 

the results since everything is a matter of approximation” (5th PD meeting).  

Both teachers realized the task’s potential to promote inquiry. However, the two tea-

chers seem to have different approaches of what inquiry-based teaching is about. Eirini 

characterizes her teaching as ‘guided inquiry’ and she adds “I leave my students to 

negotiate up to a point, when I realise that they go beyond the problem, Ι intervene. I 

always hear them trying to understand their difficulties and then I try to guide them in 

finding the solution” (Eirini’s interview). Vangelis, on the other hand, characterizes his 

teaching as ‘open inquiry’ by arguing that he minimizes his interventions and allows 

  

Fig. 2: The photo. Fig. 3: The map of the area. 
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students to develop their own strategies. In the 4rth reflective PD meeting, Vangelis 

explained why he chose to leave students work without strict guidance: “I chose not to 

guide them because every student has his own pace, others work quicker and others 

slower”. 

Setting up the task 

Eirini and Vangelis set up the task in different ways in relation the selected artefacts. 

Eirini gave students only printed materials, a photo of the demonstration (Fig. 2) and a 

printed Google map of the area under investigation (Fig. 3). Vangelis provided the 

students only the photo (Fig. 2) and he said to them “You can search in the internet for 

the appropriate resources to handle the task”. All groups in Vangelis’ class tried to 

locate the area under consideration in the Google earth maps. 

Teachers’ and students’ enactment  

Below we compare teachers’ and students’ enactment in the two classrooms in relation 

to two main mathematical ideas related to statistical estimation: The scale selection 

and the density anticipation. 

The scale selection was one of the main students’ objectives in both classrooms 

implementations. Students in Vangelis’ class developed various strategies to address 

the given problem (e.g., they developed a plan to find the scale in a map representation 

of the area by using the length of a car as a unit measurement or used the scale that 

appeared automatically in the bottom of the screen in a specific map representation in 

Google maps). This scale showed the length in meters of a particular length in the map. 

In a subsequent PD meeting, Vangelis mentioned “I could not manage to hide this 

representation” expressing this way his intention to make the activity more 

exploratory for his students. In Eirini’s class all groups developed the same plan for the 

scale selection. Eirini observed very closely her students’ group work. The following is 

a typical example of the discussion between Eirini and her students while they were 

trying to define a unit measurement and estimating the scale in the printed map shown 

in Fig. 2. 

1.  E:  What mathematical notion is relevant to this activity? 

2.  St1:  Find the area of the road […] the scale. 

3. E:  How do we find the scale? 

4. St1:  I need to have a real object. 

5. E:  Can you identify a real object in the map representation [Fig. 2]? 

6. St2:  Let's see … The length of a car or a bus. 

7. E:  Better a car, not a bus. 

8. St2:  We have to know the dimensions of a real car and the dimensions of it in 
the photo ... But which car? … It could be a Volvo or a Smart; it could be 3 
meters long or 4 meters long. 

9. E:  Discuss it with your group and decide on that.  
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As we can see in the above extract, Eirini guides her students to the desired mathemati-

cal object (line 1) and she provides hints to facilitate the process (lines 3, 5, 7). At the 

same time, we see the emergence of some informal indications of statistical inference 

in St2’ attempts to identify an appropriate object for modelling the situation (line 8). 

The expressions of uncertainty highlight St2’s encounter with the early steps of this 

statistical notion.  

The density anticipation of demonstrators per one square meter is another central issue 

that it came up in students’ discussions in both classrooms. Vangelis interfered very 

little in students’ discussions while his students exploited many statistical ideas even 

though in an informal way. We present the following extract as a typical one showing 

students’ collaboration in Vangelis’ classroom and how Vangelis handled this 

discussion.  

10. St3:  If we take the half [area of the three streets] with 5 persons per square and 
the other half with 6 persons per square so we will be more close to… 

11. V:  Why? 

12. St3:  Because some people may be fatter and other thinner… (laughs!) 

13. St2:  Why don’t we estimate how many people can fit in a square meter [he 
means to actually define a square meter and see how many fit]? 

14. St5:  Why don’t you try first with 5 and then with 6 so we consider something in 
between. 

15. St4:  We don’t care so much for who [could be the representing sample]. We can 
say that all persons are like St3. We just want an approximation.  

  [The group stops for a little to talk and observes another group of students 
who simulated the problem by forming 1 square meter with a measuring 
tape on the floor, standing inside to find out the number of people that fit in 
this area. This group estimated 6 persons per 1 square meter. Then Vangelis 
asked] 

16. V:  Every square meter in the photo can have 6 persons? 

17. St3:  No, there are some empty spaces [spaces with no demonstrators in Fig. 2].  

As we can see in the above extract, the students negotiated a lot about their choice for 

the number of people in a square meter (lines 12-15). After Vangelis inquiry question 

(line 16) students located spaces of low density. Statistical ideas that came up in stu-

dents’ discussions where the features of the persons (fat/thin) implying the represen-

tativeness of a sample or suggestions to take elsewhere 5 and elsewhere 6, implying a 

mean value of a high and a low density.  

The extract below comes from one of Eirini’s group of students who were asked to 

describe what they did while estimating the number of demonstrators in Fig. 2: “E: 

How did you estimate the population? St: We first found the area in the streets where 

there were demonstrators. Then we agreed that two persons fit well in a square meter. 

[...] This is our sense, without [doing] measurements.” Eirini asked her students to 

report on how they calculated the density anticipation without involving them in a 

systematic exploration of the problem as in the case of Vangelis class. As we can see in 
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the above extract the students in Eirini’s class made their estimation based on intuitive 

approximations. 

Tetrahedron Vangelis’ implementation Eirini’s implementation 

Institution Statistical estimation is not included in the official curriculum; authentic 

realistic tasks are not usually part of the Greek curriculum and textbooks. 

Teachers and 

mathematics  

Strong background in statistics; related 

statistical estimation with selection of 

the best sample representativeness; 

appreciation of the multiple approa-

ches in a statistical investigation. 

Related statistical estimation with 

the idea of approximations; ap-

preciation the multiple approaches 

in a statistical investigation. 

Teachers and 

noosphere  

Encouragement of the students to fol-

low their own paths; limited interven-

tion. 

Guiding instruction on the basis of 

students’ responses. 

Teachers and 

artefacts 

On line resources (photo, maps). Printed resources (photo, map). 

Teachers and 

conventions  

Students explore and share their ideas; 

students have their own learning pace; 

emphasis is given on the mathematical 

processes.  

Students express their ideas; em-

phasis is given on the mathemati-

cal concepts and properties. 

Teachers, 

mathematics 

and society 

Encouraging students to link their 

strategies with methods used by pro-

fessionals. 

Encouraging students to link the 

task question to other professions. 

Students and 

mathematics 

Extended use of probabilistic langua-

ge; development of early steps of sto-

chastic thinking through systematic 

experimentation; enactment of simula-

tions. 

Limited use of probabilistic lan-

guage; informal indications of 

statistical inference in an intuitive 

way; use of data-request processes 

in a deterministic context. 

Students and 

artefacts 

Selecting artefacts beyond those pro-

posed by the teacher.  

Using the artefacts proposed by 

the teacher. 

Students and 

conventions 

A mathematical problem has one correct answer; the teacher verifies the 

correctness of a solution. 

Table 1: The analysis of the two implementations through SDT. 

In the end of the task implementation both teachers asked the groups to present their 

results. Eirini addressed the question: “Why do we have different answers?” and then 

she referred to the particularity of situations with estimations. Vangelis did the same 

and even though students insisted on asking him “What is the correct answer?” Van-

gelis refused to answer which value was close to the actual situation. Later on, Eirini 

asked her students to discuss which professions may have to deal with the problem of 

estimating a population. Vangelis encouraged his students to inquire further the esti-

mations given by news sites and suggested them to explore the methods used by the 

journalists and comparing to their own.  
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Table 1 summarizes the results from the analysis of the two different implementations 

by using the SDT. 

CONCLUSION  

In this paper we studied how IBMT and IBML were enacted in two classrooms. We see 

similarities between the two implementations such as the use of an open-ended task 

and the existence of norms allowing students to generate their solutions. The above 

characteristics are crucial as reported by Chan (2006). However, our analysis based on 

SDT brought to the fore differences in the two classrooms concerning the teachers’ 

perspectives and actions and the students’ mathematical activity. In particular, the 

different meanings teachers attributed to IBMT (open or guided inquiry) or to sta-

tistical estimation (e.g., connected to sample representativeness or the idea of appro-

ximation) and the selection of different artefacts (printed or on-line) promoted diverse 

possibilities for students’ mathematical exploration. For example, Vangelis’ students 

selected artefacts beyond those proposed by him and developed early steps of 

stochastic way of thinking while Eirini’s students developed indications of statistical 

inferences but in a fragmental way and they were working mostly in a more determi-

nistic context. Additionally, in both classrooms a number of concerns about the nature 

of mathematical solutions and the role of extra-mathematical sources of rationality are 

raised (Artigue & Blomhøj, 2013). 
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AND CONTINUOUS FEEDBACK WITH MATHEMATICS 

STUDENTS’ LEARNING ORIENTATIONS 

Laura Tuohilampi, Juuso Henrik Nieminen, Jokke Häsä, and Johanna Rämö 

University of Helsinki 

 

Many researches have suggested that making assessment criteria visible supports 

learning. On the other hand, others have claimed that too much clarity in assessment 

criteria and feedback could lead to instrumentalism: superficial observance of criteria 

without deeper thinking. Due to this ambiguous body of knowledge, we wanted to in-

vestigate what type of mathematics learning occurs during a course which provides 

clear assessment criteria and continuous feedback, combined with a technology en-

hanced learning environment based on self-assessment and reflection of learning. 

BACKGROUND 

In the fall semester 2017, one of the authors of this article was giving a course of the 

didactic of mathematics for pre-service teachers in Helsinki. In the didactic course, 

students were provided continuous and informative feedback and clear assessment 

criteria, i.e. detailed descriptions of what type of activities were to be connected to 

which grade. The students got to choose which grade they were willing to work for. At 

the beginning of the course, the students and the teacher discussed the criteria and how 

they were connected to the course’s learning goals. According to e.g. Hattie & 

Timperley (2007), Stefani, Clarke & Littlejohn (2000), Roberts, Park, Brown & Cook 

(2011) such pedagogy clearly supports learning in a positive way, as it strengthens 

reflection skills, learner ownership and autonomy. During the course, the students 

strived for the highest grades and they reached the goals of the course well. They re-

ported that the assessment system was very motivating, clear and fair, and that it 

pushed them to work harder. 

However, some literature (e.g. Hume & Coll, 2009) suggest that students should not be 

provided with exact information about what to do to gain a specific grade. This idea is 

further elaborated by Torrance (2007, 2012), who claims that too much transparency, 

by which he means clarity on learning objectives, could lead to instrumentalism. In that 

case, the students might just superficially follow the criteria, and use any feedback they 

receive to mechanically correct their performance instead of really going deeper in 

their thinking. Morrison & Joan (2002) claim that instrumentalism leads to “teaching 

the test” perspective. Bloxham & West (2004) describe how over-specification of 

assessment criteria may narrow down students understanding of learning goals. On the 

other hand, leaving the assessment criteria unclear doesn’t help students (nor the 
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teacher) to see how the criteria are ought to be met. This way the teacher’s power over 

students may increase, and the student’s role becomes again reliant. 

This kind of a situation can be avoided by combining the socio-constructivist view of 

feedback with the cognitive view (Evans, 2013). In her article, Evans made a thematic 

analysis of assessment feedback in higher education. She embraces the tensions of 

beneficial and not so beneficial assessment feedback practices, but provides also an 

extensive list of the attributes that have been proved to make continuous feedback 

useful. In her list, effective assessment feedback a) is ongoing and an integral part of 

assessment, b) is explicitly guided, c) emphasises feed-forward instead of feedback, d) 

engages students in and with the process, e) attends to support learning, not personal 

attributes, and f) involves training in assessment feedback as an integral part. 

Despite the claimed benefits of feedback, there might be challenges in pedagogies that 

allow students to set their grade goals in advance, expect teachers to define the criteria 

to each grade and finally wait students to perform certain tasks to achieve the criteria. 

This might weaken students’ ability to set useful learning tasks themselves and to 

identify the depth and connections of the tasks (Torrance, 2011, 2007; Hume & Coll, 

2009; Evans, 2013), leading to instrumentalism. In Torrance’s (2007, p. 282) words: 

“transparency of objectives coupled with extensive use of coaching and practice to 

help learners meet them is in danger of removing the challenge of learning and re-

ducing the quality and validity of outcomes achieved.” 

How to measure whether learning has occurred ‘deeply’ or through some kind of in-

strumentalism? In this article we conceptualize different learning styles with the 

concept of learning approaches. They have been broadly divided into ‘deep’ and 

‘surface’ learning approaches by, for example, Biggs (1987, 2012) and Entwistle 

(1991). As deep approach refers to an intention to truly understand the topic to be 

learned with an intrinsic motivation (Diseth, 2003), surface approach is linked with the 

intention to complete the task and not so much with the intention to grow as a learner 

(Biggs, 1987). These two approaches model the diversity of different learner orienta-

tions in our course context. 

To avoid instrumentalism, we should know what is in the other end of the continuum. 

Are deep learning approach and instrumentalism opposites? Can learning turn deep, if 

it is guided by specific instructions, constructed mainly by someone else? 

THE DIGITAL SELF-ASSESSMENT PROJECT 

In the Department of Mathematics and Statistics in the University of Helsinki, teachers 

in first-year courses have started to emphasise clarity in assessment criteria combined 

with continuous feedback and extensive student autonomy. By these means, they wish 

to elicit deeper and more complex thinking. The Digital Self-Assessment (DISA) 

model aims to create a digital assessment model for large university level courses, 

based on self-assessment. The model seeks to encourage students to constantly reflect 

on their own learning and take more responsibility for it. 
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In the DISA model, students receive extensive feedback from teachers, peers, them-

selves and a software designed specifically for the course model. The assessment cri-

teria are made visible and transparent through a learning objectives matrix. The aim of 

the model is to support student autonomy, motivation and depth of learning, as well as 

their self-regulation and reflection skills. The model can be used in teaching large 

courses, and it has been piloted in two mathematics courses (Linear algebra and ma-

trices, two instances, 130 and 400 participants, respectively). 

Each week, students were given a set of problems to solve. For digital tasks, instant 

automatic feedback was offered. Others were manual tasks completed with pen and 

paper. For a subset of the manual coursework, the students received written comments 

from the teachers or peers. For solving the problems, students were offered guidance 

by peer tutors in drop-in sessions. 

Instead of a final exam, the students set their grades themselves at the end of the course 

via a simple questionnaire, based on the learning objectives matrix. The students as-

sessed their mastering of each topic and awarded themselves a grade for the course. 

The students were also asked to write down why they chose that specific final grade. 

Before the final self-assessment, a similar self-assessment was practised twice during 

the course. 

RESEARCH TASK AND RESEARCH QUESTIONS 

Our earlier results concerning the DISA model imply that the model supports students 

in using deep learning approach, and study for themselves, not for an exam (Nieminen, 

Rämö, Häsä, & Tuohilampi, 2017). Bearing in mind Torrance’s (2007, 2012) critique, 

we became interested in investigating how the assessment criteria and continuous 

feedback interact with students’ learning. The exact research questions of this study 

are: 

1. How do deep learning and surface learning orientations distribute across the 

students taught with the DISA model? 

2. How did the students perceive the transparent assessment criteria and extensive 

feedback in the DISA model? 

METHOD 

After a large first year linear algebra course in the fall 2017 with a little over 400 par-

ticipants, a digital survey was conducted. The course was part of a comparative DISA 

research project, so the participants were divided into two groups: approximately 200 

hundred students participated in a regular course exam while 183 students set their own 

course grade with a digital self-assessment sheet. The data used in this paper consists 

of the survey data for those in the self-assessment group who answered the survey and 

gave their permission to use the data in research (n = 155). 

The survey consisted of qualitative and quantitative questions. Deep and surface 

learning approaches were tested with a validated questionnaire from the HowULearn 
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project (Parpala, Lindblom-Ylänne, Komulainen, & Entwistle, 2013), both consisting 

of four items (α = .76 and α = .75) on a 5-Likert scale. The open ended questions 

concerned the student perceptions on the assessment methods in the DISA model; the 

questions were based on the interview questions by Mumm and colleagues (2015). 

To create student profiles based on the reported levels of deep and surface learning 

approaches, a cluster analysis was conducted. Based on our previous study (Nieminen 

et al., 2017) we used a solution of clusters as a base for k-means-analysis with an Eu-

clidean distance. Ward’s algorithm was chosen for clustering algorithm to decrease the 

differences among the clusters, and the scores of the variables were standardized to 

Z-points before the analysis. 

To describe how instrumentalism and deep learning were perceived by the students, a 

qualitative content analysis (QCA) was conducted, based on the model of Schreier 

(2012). First, a coding frame was created so that only the answers concerning the 

perceptions on transparent assessment criteria and extensive feedback were selected. 

This resulted into 166 analysis units consisting of single answers. These open answers 

were then divided into three categories; those concerning some kind of an ‘instru-

mentalism’ of learning and those concerning ‘deep learning’, and those concerning 

both of these. This phase was heavily influenced by the researcher’s earlier knowledge 

about these concepts. Finally, a data-driven QCA was conducted to all these three 

categories. 

RESULTS 

How do deep learning and surface learning orientations distribute across the 

students taught with the DISA model? 

Deep learning approach (M = 3.83, SD = .72) was reported to be higher than surface 

learning approach (M = 2.22, SD = .81) after the course (t (153) = 27,83, p = .000). 

The results of the cluster analysis are shown in Table 1. 

  Deep learning approach Surface learning approach 

Cluster N Mean Std. Dev. Mean Std. Dev. 

1 24 3.05 .48 1.71 .45 

2 15 2.80 .58 3.60 0.67 

3 51 3.84 .45 2.76 .40 

4 64 4.36 .41 1.66 .40 

Total 154 3.83 .72 2.22 .81 

Table 1: Mean values of surface learning and deep learning in four clusters. 

The four clusters were named according to their features: 1) Little surface oriented and 

little deep oriented learning (disoriented), 2) A lot of surface oriented and little deep 

oriented learning (surface approach orientation), 3) A lot of deep oriented as well as 
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surface oriented learning (mixed orientation), 4) A lot of deep oriented and little sur-

face oriented learning (deep approach orientation). 

How did the students perceive the transparent assessment criteria and extensive 

feedback in the DISA model? 

The data analysis with QCA resulted in three different categories: 1) instrumentalism, 

2) deep learning and 3) mixed perceptions. Here we present each category with cita-

tions from the data; all the citations are marked with brackets showing the learning 

approach cluster in which the respondent belongs to. This is done to further describe 

the cluster formation. 

The answers of the students that reflected some sort of instrumentalism also reflected 

untrained reflection skills. These kinds of answers dealt primarily with extensive 

feedback and not that much with transparent learning objectives. Although 

self-assessment as a method was used precisely to enhance reflection (see Nieminen et 

al., 2017), the extensive feedback supporting it was sometimes seen as something that 

guides but that does not encourage to deepen the understanding on your own learning. 

Some students felt that the feedback only ‘pointed out your own mistakes’ as these 

examples show: 

They [assessment methods] did not particularly support learning but perhaps gave a better 

idea of what to practice more. (cluster 2) 

Self-assessment is also useful, since the objective assessment of yourself is hard, but it’s 

useful, so that you know how to put your energy into learning the right things. (cluster 4) 

In our data, hurry was seen as a cause of instrumentalism. Hurry was also seen as 

something that reduced the power of our learning environment designed to enhance 

reflection. The next quote from the data is an example of this: 

Now, however, I was worried about how I could show my excellent skills in the course 

without doing a lot of tasks. When there was a huge amount of other courses and submis-

sions alongside, there was no time left for the tasks. . . The exam would have been much 

easier and it would have been a lot less work for me. (cluster 4) 

On the other hand, some of the answers were coded as representing some kind of a 

deep approach to learning. In these answers formative, extensive assessment methods 

were seen as something that enabled a deeper approach to learning. Feedback received 

from various sources was linked to building an image of yourself as a learner. Two of 

the respondents described their learning as follows: 

Self-assessment helped me to reflect on myself as a learner of mathematics. (cluster 4) 

I also liked that the teaching assistant did not directly say the answer, but asked auxiliary 

questions or said remarks, so that I could realise how to solve a task and learn this way. 

(cluster 4) 

Students sought for objectivity as they gained feedback on their own learning; this was 

clearly seen in the answers that reflected a deep learning approach. Transparent 
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learning matrix helped the students to form their own personal goals, as is seen in the 

answer of one of the respondents: 

Being in the self-assessment group motivated to be more aware of your own goals and the 

work you had done than before. (cluster 4) 

Self-assessment makes it possible and maybe even forces you to consider your own skills. 

Then you have to face your level of expertise and take a stand on it. When you know what 

you are capable of and should be capable of, you can set your own goals and strive for them 

effectively. (cluster 4) 

The answers that were coded to represent both instrumentalism and deeper learning 

shed more light on the issue. Some of the students described reflective and deep 

learning in their answers, yet the same answers showed elements of instrumentalism 

too. This data is not deep enough to examine the level of reflection behind these 

comments; that would require, for example, student interviews. It does, however, cast 

some light on cluster number 3 of our analysis, that represents the students that make 

use of both deep and surface learning approach. The complicated connection of in-

strumentalist learning and the motivation to truly understand the content of the course 

is seen in the comment below: 

Thanks to self-assessment, I have had a very strong motivation to make as many tasks as 

possible and to understand things as well as possible. In addition, self-assessments have 

made it clear what needs to be learned during the course and what needs improvement. On 

the other hand, self-assessing the grade for the course has created some pressure on taking 

the course. (cluster 3) 

CONCLUSIONS 

Four clusters with different learning orientations were found in the student group 

studying according to the DISA model. There were two groups with ambiguous ori-

entations (disoriented and mixed orientations), one with lots of surface orientation and 

one with lots of deep learning. The latter one was clearly the one having the greatest 

number of students. All in all, deep learning orientation was remarkably more present 

in students’ answers than surface orientation. 

These results imply that students do not perceive surface learning and deep learning as 

mutually exclusive. The students also seem to focus on the what question of learning 

(knowledge) instead of a more holistic picture, even though still having deep learning 

orientation. Thus, clarity in assessment criteria might not be evidently good or bad. 

Our results support its use with careful consideration, allowing students to be active in 

the construction of knowledge (see Hume & Coll, 2009). Students should not become 

reliant of the teacher’s specifications, while teachers should not turn their attention to 

provide evidence for meeting the criteria, instead, a combination of the so-

cio-constructivist and the cognitive view of feedback should be used (Evans, 2013).  

According to our qualitative data, the students in the first year mathematics course 

have trouble with “knowing what they know”. This might imply that clear assessment 
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criteria are especially useful in forming deeper kind of learning in this context; uni-

versity mathematics is a new kind of a context for most of the students in this first year 

course. Also, personalized and formative feedback was perceived as an important form 

of support, as was the case, with, for example, Roberts, Park, Brown & Cook (2011). 

These results show ‘instrumentalism’ in a different light, since it can be seen as 

something that is required for deeper understanding of university mathematics to form. 

Before the course, we tried to ensure that all the feedback was to support and guide 

learning during the class, but this was not always the case. Some students felt that 

extensive feedback was represented the ‘true’ level of learning. We intended that this 

feedback was supposed to be used as a base for further reflection. However, whether it 

is formative, extensive assessment that leads to this kind of possible assessment as 

learning, as Torrance (2007) suggests, is questionable, since the same formative as-

sessment is also seen as crucial for deep learning to strive in our data. We could iden-

tify mechanisms of deep learning basing on performing the tasks following carefully 

described learning goals. Further, definitions of feedback often include or even require 

the idea of bridging the gap between desired and actual performance (Evans, 2013). 

This definition entails the desired performance exactly defined. 

Torrance (2007) suggested that the core of instrumentalism is establishing transparent 

criteria for a course and then providing information about how the students can meet 

these criteria. In the DISA model, student autonomy is supported by letting the stu-

dents to do the assessment by themselves, with support of extensive feedback. Is this 

autonomy the key to transform instrumental learning into deeper kind of understand-

ing? In our model, student reflection is promoted, so that students would not just take 

the learning criteria as given but rather explore them with a critical view. Students in 

the model are expected to take more responsibility on their own learning. However, as 

the clustered learning orientations imply, an idea of learning as ‘an act of social and 

intellectual development’ (Torrance, 2007, p. 293) is not always reached in our model. 

Further analysis is needed to investigate the mechanisms connecting deep learning and 

instrumentalism in the field of learning mathematics. One has to ask how useful is the 

idea of setting instrumentalism and deep learning on the same continuum? 
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VARIATION OF STUDENT ENGAGEMENT  

BETWEEN DIFFERENT ALGEBRA TASKS  
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In this study, we analyse how 7th grade students’ engagement during small group work 

differed in two consecutive algebra lessons: in the first lesson students solved equa-

tions and in the second lesson they created equations for other small groups to solve. 

Data was collected by videorecording the work of two groups in both lessons. Through 

directed content analysis, categories indicating student engagement were formed 

based on previous research and refined during analysis. The analysis revealed a 

change from individual engagement to collaborative engagement between lessons and 

an increase in many passive students’ engagement. Task characteristics which may 

affect the type and amount of engagement are discussed. 

INTRODUCTION  

Transition from arithmetic to algebra is a difficult point in school mathematics (e.g. 

Kieran, 1992) often resulting in a decline in student engagement. Therefore, it is im-

portant to find ways to engage students when transitioning to algebra. Nyman and 

Kilhamn (2015) found that a group of Swedish teachers tried to engage students in 

algebra mostly through contextual or organisational methods. They concluded that it is 

important to find ways to engage through the content itself and to study which char-

acteristics of algebra tasks are related to engagement.  

Open problems have been reported to be potentially engaging tasks (e.g. Sullivan, 

Mousley, & Zevenbergen, 2006). In this study, we are comparing a typical equation 

solving lesson and a lesson in which students create equations. The latter open problem 

solving activity is called Reversed Equation Solving. The research question is what 

kind of differences in cognitive engagement and peer-to-peer interaction emerge be-

tween these lessons for two small groups. We also discuss how characteristics of the 

tasks may relate to differences in engagement and interaction. 

ENGAGEMENT 

The quality or level of engagement has generally been found to have a profound effect 

on learning outcomes (see review by Fredricks, Blumenfeld, & Paris, 2004). En-

gagement is a hot topic in the scientific discussion which shows from a broad range of 

recent studies related to engagement: questionnaire development and defining the 

construct of engagement and it’s dimensions (see overview of a recent special issue by 

Fredricks, Filsecker, & Lawson, 2016), teachers’ and students’ views of engagement 
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(Nyman & Kilhamn, 2015), general factors related to continuation and decline of en-

gagement (Henningsen & Stein, 1997).  

Shortly, engagement can be defined as the extent to which a student is actively in-

volved with the content of a learning activity (Helme & Clarke, 2001). A common 

conceptualization is that engagement comprises three distinct, but interrelated dimen-

sions: behavioral, emotional and cognitive engagement (Fredricks et al. 2004). In this 

paper, we mostly concentrate on cognitive engagement although observation of 

peer-to-peer interaction is also related to the behavioral dimension. Fredricks et al. 

(2004) define cognitive engagement as student's level of investment in learning. Ac-

cording to them, it includes being thoughtful, strategic, and willing to exert the nec-

essary effort to learn and overcome challenges.  

Engagement is often analysed from questionnaire or self-report data.  Several studies 

have concluded that an important next step would be to study engagement by ob-

serving students over a sequence of lessons (Fredricks et al., 2004; Helme & Clarke, 

2001). We are trying to tackle that challenge by developing further methods to capture 

indicators of cognitive engagement through video-study.  

Fredricks, Wang, et al. (2016) studied indicators of cognitive engagement described by 

students and teachers in interviews. They reported thinking hard, connecting ideas, 

trying to understand ideas, persisting and self-monitoring as indicators of cognitive 

engagement. Helme and Clarke (2001) studied engagement from mathematics lesson 

videos. They used a framework where indicators of cognitive engagement specific to 

mathematics include questioning, completing peer utterances, exchanging ideas, giv-

ing explanations, justifying and gestures. The indicators of engagement used by Helme 

and Clarke (2001) have similarities with categories used in studying student interac-

tion. For example, Asterhan and Schwarz (2009) used categories for dialogical moves 

which overlap with the categories by Helme and Clarke. Also differences exist as 

Asterhan and Schawrz’s categorisation is more detailed and includes, for example, 

challenging as a separate category. Nevertheless, when students participate in collab-

orative activities, visible indicators of cognitive engagement are related to students’ 

interactional moves. 

METHODS  

Context and data 

The reported study is a part of the Finnish national Flexible Equation Solving pro-

gramme (2014–2019). Two consecutive lessons of different nature from the 9-lesson 

pilot study for 7th graders in 2015 were selected for further analysis:   

Lesson 4: Equation Solving (ES)  

Lesson 5: Reversed Equation Solving (RES) 

In the lessons, students were seated in groups and were asked to work on the assign-

ments together (teacher facilitation was mostly absent in these small groups). During 

ES (lesson 4) students solved equations in groups whereas in RES (lesson 5) students 
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created equations in groups, shared them on the blackboard with their names, solved 

each other's equations and compared their work. The equations were created by 

choosing a starting point (e.g. 5 = t) and operating on both sides (more about Reversed 

Equation Solving in Tuomela, 2016).  

In this study, we focus on two small groups of four students who worked actively 

during both lessons. The both groups consisted of one mathematically strong, one 

weak and two average students. Data was collected by video recording the work of the 

two groups using two video cameras. The time for group work was 18 minutes in 

lesson 4 and 15 minutes in lesson 5. 

Data analysis 

The research strategy was to 1) create categories describing students’ engagement 

during interaction, 2) form engagement profiles for each student and group and 3) 

interpret the differences between lessons. In line with directed content analysis (Hsieh 

& Shannon, 2005), indicators of cognitive engagement were defined based on previous 

research (Helme & Clarke, 2001; Fredricks, Wang, et al., 2016; Asterhan & Schwarz, 

2009). Definitions, examples and coding rules for the categories were collected in a 

coding agenda which is summarized in Table 1.  

Category Description 

Ask Asking a task or working strategy related question. 

Help Helping a peer. Typically stating an answer or showing a notebook. 

Idea Sharing ideas, suggesting next steps or reflecting on mathematics. 

Conc Concentrating. Mumbling calculations aloud or resisting distractions. 

Resp Task related short response like yes, no, nodding or a simple opinion. 

Chal Challenging. Showing signs of disagreeing or asking for explanations. 

Just Justifying an idea or statement. 

Table 1: Indicators of cognitive engagement. Short descriptions of categories. 

The coding agenda was refined during the analysis. Formative checks of reliability and 

coding iterations were done. Throughout the process, definitions and coding rules for 

the categories were discussed between researchers. 

RESULTS  

We found two different working modes in small group work: students concentrating on 

their individual work and students working collaboratively thinking together. First, we 

elaborate on the two working modes using example episodes. Then, we examine how 

the amount of indicators of cognitive engagement changed from lesson 4 (ES) to lesson 

5 (RES). 
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Individual and collaborative working modes 

The first episode illustrates individual working mode. In the episode, students in group 

A were solving equations during lesson 4 (ES).  

1 Anna:  I don’t get it.. [unintelligible]  

2 Eve:  Poor you… [indifferent tone] 

3 Eve:  I like these a lot, these where we need to calculate  

4 Anna:  How can the first one be solved? (Ask) 

5 Eve:  I don’t know. I jumped to this block, because here I can multiply all 
numbers by two. [pause] 

6 Eve:  That would be also... [unintelligible] [pause] (Conc) 

7 Eve:  [mumbling by herself] 6a... [pause] (Conc) 

8 Eve:  [mumble] Add both sides... [mutters calculations aloud] (Conc) 

9 Anna:  Don’t do it so fast...  

10 Eve:  Oh, sorry… [grinning indifferently] [long silence] 

11 Eve:  [mumbles calculations] ...Yes! (Conc) 

12 Eve:  What, did you drop off the sled somewhere? [sly grin] (Ask) 

13 Anna:  May I look at it…? (Ask) 

14 Eve:  Sure, feel free... [still grinning] (Help) 

15 Anna:  Well, here was the mistake… (Idea) 

This example shows that although the students were working in a group, they were 

engaged mostly to their own work (turns 5, 6-8, 11). When they were talking, authority 

was clearly present because they asked for help (4, 13) and provided help (14) in a 

simple copying manner instead of sharing their thinking, reflecting on mistakes or 

making decisions together on the same level. 

The second episode illustrates collaborative working mode. In the episode, students in 

group B were creating an equation during lesson 5 (RES). 

1 Anni:  Let’s take turns to pick one [transformation]. (Idea)  

2 Anni: Let’s do four of em’. (Idea)  

3 Anni: So I will… multiply by seven.  (Idea) 

4 Lassi:  Add… No… Leo’s turn. (Idea) 

5 Lassi: What shall we do? (Ask) 

6 Leo:  Multiply… (Idea) 

7 Anni:  No… No but… (Resp)  

8 Anni: You shouldn’t multiply anymore… (Chal)  

9 Anni: It just becomes the same kind of. (Just) [12 utterances skipped] 

10 Anni:  So 7x + 6 = 21 + 6 [erases right side] so 27 [writes 7x + 6 = 27] (Idea) 

11 Anni:  [Anni and Suvi compares their work] Like this. (Help) 
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12 Suvi:  What…? Aaaa!!! [notices a mistake: 7x + 6 became 13x] (Resp) 

13 Anni:  Because they cannot be comb… (Just) 

14 Suvi:  Why don’t they put those separately? [points right side of equation] (Ask) 

15 Anni:  Because here it doesn’t have either... [points left side] (Just)  

16 Lassi: So is it…?  [simultaneously with Suvi] (Ask) 

17 Suvi:  How about that one?  [simultaneously with Lassi] (Ask)  

18 Anni:  There isn’t. (Help)  

19 Anni: You cannot combine them because there is x. (Just) 

20 Suvi:  Oh, that’s true! [hitting her palm to her forehead and laughing] (Resp) 

21 Anni:  I made the same mistake earlier!! Really! [laughing] (Idea) 

22 Lassi:  Right then, this is… Is this now a good equation? (Ask) 

23 Anni:  No, still 2 (transformations) (Resp) 

24 Suvi:  I haven’t decided yet…  

25 Anni:  And Lassi neither.  

26 Anni:  Right. Substract, multiply, divide, add… (Help)  

27 Anni: Let’s not add… (Idea)  

28 Anni: Let’s agree you cannot use the same transformation twice in a row. (Idea) 

Throughout this episode students frequently shared their ideas (1-4, 6, 10, 27-28), 

justified (9, 13, 19) and asked questions (5, 14, 16-17, 22) in a productive way that built 

their understanding or moved forward the assignment. While doing this, they often 

used the words “Let’s” and “we” showing how they were working on it together (1-2, 

5, 27-28). They also made sure that everyone in the group became involved in the 

process (1, 4, 24, 25).  

The chosen episodes also illustrate the different nature of the two small groups. The 

most active person in group B (Anni) was an empathic leader who involved others (1) 

as well as regulated group actions and atmosphere (2, 8, 21, 23, 25, 26-28). In contrast, 

the most active person in group A (Eve) was not so sensitive towards other group 

members (2-3, 10, 12) and concentrated mostly to her own work. 

Changes in indicators of cognitive engagement 

The amount of indicators of cognitive engagement for students in group A as well as 

for groups A and B are presented in Table 2. To save space, the individual student data 

from group B was omitted. According to table 2, lesson 5 (RES) contained more in-

teractions related to collaboration (Ask, Help, Idea, Resp) and less muttering calcula-

tions aloud (Conc) than lesson 4 (ES). This implies a change from individual working 

mode towards collaboration. In other words, type of engagement changed as the groups 

were more engaged to collaborative work in lesson 5 (RES) than in lesson 4 (ES). This 

happened regardless of the previous amount of collaboration and the different climate 

in the groups.  
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Ask Help Idea Conc Resp Chal Just Total Engagement 

E
v

e 

ES 7 14 6 30 2 2 3 64 

RES 13 13 13 3 17 2 0 61 

RES-ES 6 -1 7 -27 15 0 -3 -3 

K
im

 ES 5 1 2 9 1 0 0 18 

RES 21 3 5 5 13 0 0 47 

RES-ES 16 2 3 -4 12 0 0 29 

A
n
n

a ES 11 0 3 4 3 0 0 21 

RES 10 3 6 1 5 1 0 26 

RES-ES -1 3 3 -3 2 1 0 5 

T
u

o
m

as
 

ES 0 0 0 0 0 0 0 0 

RES 4 5 9 1 3 0 0 22 

RES-ES 4 5 9 1 3 0 0 22 

G
ro

u
p

 A
 

ES 23 15 11 43 6 2 3 103 

RES 48 24 33 10 38 3 0 156 

RES-ES 25 9 22 -33 32 1 -3 53 

G
ro

u
p

 B
 

ES 46 14 46 46 36 8 5 201 

RES 45 21 81 42 63 10 10 272 

RES-ES -1 7 25 -4 27 2 5 71 

Table 2: Amount of indicators of cognitive engagement in each category.  

During ES, two students showed no indicators of cognitive engagement and three 

students showed about 20. These five students are considered passive. Three of them 

showed 20-50 indicators of engagement more during RES. It should also be noted that 

the increased engagement for groups is mostly due to the awakening of these passive 

students. Table 2 indicates the changes for the passive students of group A (Kim, Anna 

and Tuomas). Both groups had also students whose total engagement did not increase 

much (Anna and Eve for group A), although the type of engagement changed. 

DISCUSSION 

Two clear differences in students’ engagement were found when observing two small 

groups during two different kind of algebra tasks. Firstly, students’ type of engagement 

changed from individual to collaborative. They started sharing ideas, opinions, and 

questions during RES (lesson 5) when compared to ES (lesson 4). Secondly, three 

passive students during ES became clearly more engaged during RES.  

Considering the type of engagement, as suggested in this study, is important because 

previous studies have found that in effective small groups students use talk in which 

they share emerging ideas, explore each other’s ideas and challenge ideas (Mercer & 

Howe, 2012). This means that effective small groups engage in collaboration. Thus, 
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the distinction between individual and collaborative engagement helps to make sure 

that students are not only engaged but engaged in collaboration. Furthermore, inter-

ventions like Reversed Equation Solving combined to discussion about individual and 

collaborative type of engagement could be used to raise teachers’ awareness of dif-

ferent types of student engagement and of engagement-supportive practices as called 

for by Skilling, Bobis, Martin, Anderson and Way (2016).  

The results imply that only the task (without much teacher facilitation) can dramati-

cally change the nature of peer-to-peer interactions from individual working mode into 

collaboration and awaken passive students. Several characteristics of Reversed Equa-

tion Solving may account for this. Firstly, the assignment requires the students to 

create something of their own and allows use of creativity. Secondly, it requires the 

students to make decisions together and to agree on next steps. Thirdly, students pub-

lish their work to the whole classroom and get feedback of their work from other 

students. Fourthly, when students create their own tasks, the difficulty level is ad-

justable, while on the other hand whole-class publishing encourages the students to try 

something novel or tricky. Also previous studies suggest that engagement is related to 

novelty of task (Helme & Clarke, 2001) and supporting student autonomy (Skilling et 

al., 2016). Henningsen and Stein (1997) emphasize that it is important to use de-

manding tasks and to maintain engagement in them instead of using easier tasks. RES 

is a good example of this in the context of algebra. Thus, this study contributes to the 

conquest of finding out how to engage through content and discovering characteristics 

of algebra tasks related to engagement (Nyman & Kilhamn, 2015).   

Video analysis methods allow studying engagement in detail both in group and indi-

vidual level. The results reveal the importance of looking at individual changes. If only 

changes in group level had been observed, then it would have gone unnoticed that it is 

actually due to only three students becoming more engaged and the rest not becoming 

more engaged (although type of engagement changed). Thus, this study points to the 

importance of considering the complexity of individual and social processed under-

lying engagement as called for by Järvelä, Järvenoja, Malmberg, Isohätälä and Sobo-

cinski (2016). Video study of engagement has also challenges. Regarding passive 

students it could be asked if the change was actually increase in engagement or just 

engagement becoming visible. This kind of analysis did not reveal any information 

about those students’ level of engagement who were silent.    
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INTERPLAY IN STUDENTS’ THINKING MODES AND 

REPRESENTATION TYPES OF LINEAR ALGEBRA IN A DGS 

Melih Turgut 

Eskisehir Osmangazi University 

 

This paper reports the interplay of students’ thinking modes and representation types 

of linear algebra when they interact with a dynamic geometry system (DGS). The 

participants of the case study are two undergraduate linear algebra students and the 

data obtained from task-based interviews in the context of linear combination, linear 

independency-dependency, and basis and dimension has been analysed according to a 

theoretical lens of students’ thinking modes and representation types of linear algebra. 

According to the findings, students often switch between thinking modes in a DGS, and 

the most common thinking modes and representation types are synthetic-geometric 

mode and geometric representation, while the least common are analytic-structural 

thinking modes and abstract representation. 

BACKGROUND 

Linear algebra is offered as a main course in addition to calculus courses in many 

teaching programs in the fields of mathematics, science and engineering. Due to the 

nature of linear algebra, it is predominantly axiomatic and proof-based. However, as 

linear algebra instructors, we exploit geometry, which is a powerful tool used to vis-

ualize the process in the teaching of linear algebra. However, geometry should be used 

carefully in a balanced way, otherwise students’ perceptions of linear algebra concepts 

may be limited to geometrical concepts (i.e. geometric vectors) (Gueudet-Chartier, 

2004); that is, they cannot make generalizations regarding abstract vector spaces, 

where students tend to think practically. For instance, for the core concepts of linear 

algebra, such as basis, similarity and linear transformation, students prefer to use the 

elementary algebra of geometric vectors and other related computations that the lec-

turer uses rather than using mathematical definitions of the concepts (Montiel, 

Wilhelmi, Vidakovic, & Elstak, 2012). 

Recently, in order to construct certain (geometric) key notions and prepare an infra-

structure for the theory of vector spaces in linear algebra researchers have referred to 

the use of dynamic geometry systems (DGSs) (Donevska-Todorova, 2015, 2016; 

Turgut, 2015, 2017). For instance, a careful (semiotic) potential analysis of a number 

of tools and functions of a DGS substantially evoked construction of the mathematical 

meaning of linear transformation (Turgut, 2017), but it also contributed to students 

moving from practical thinking to theoretical thinking on the notion of parameter 

(Turgut & Drijvers, 2016). However, a DGS only provides a geometric context and, to 

date, it is not yet established how a DGS could be used as an assessment tool for stu-
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dents’ existing knowledge, and whether a DGS context could be a barrier for students 

to discuss the theory of vector spaces. In other words, the focus is on how students 

transfer and discuss their knowledge of linear algebra while using a DGS and, con-

sequently, the following research question is considered: what are the thinking modes 

and representation types of linear algebra used by students in a DGS regarding the 

concepts of linear combination, linear dependency/ independency, basis and dimen-

sion? 

THEORETICAL FRAMEWORK 

In order to answer the research question above, two interrelated theoretical insights are 

referred to; students’ thinking modes of linear algebra (Sierpinska, 2000), and the 

representation types they use in learning (Hillel, 2000). According to the episte-

mological analyses that she implemented, Sierpinska (2000) concludes that students 

tend to think practically rather than theoretically by highlighting the difficulties they 

face during the process and she defines two processes accordingly; (i) practical 

thinking and (ii) theoretical thinking. Practical thinking refers to a sort of ‘in-action’ 

thinking (Sierpinska, 2000). On the other hand, theoretical thinking occurs when stu-

dents start to think ‘about-the-action’ itself and make reasoning about semiotic 

meanings regarding the object.  

Sierpinska (2000) identifies three thinking modes that correspond to these two pro-

cesses; (i) synthetic-geometric thinking (SGT), (ii) analytic-arithmetic thinking 

(AAT), and (iii) analytic-structural thinking (AST). SGT is based on practical obser-

vations concerning the geometric characteristics and properties of the action. However, 

this does not deal with how they are formed as a mathematical notion or as an object. 

AAT is a process corresponding to numeric and algebraic calculations and com-

putations regarding the action, while AST deals with the dialectics between an episte-

mological and a visual viewpoint for the construction of an object. Consequently, AST 

is a conceptualization process of the object as a mathematical object. In conclusion, 

synthetic thinking relates to individuals’ visual comprehension abilities, while ana-

lytical thinking modes relate to generalization and de-contextualization of one or more 

interrelated processes through reasoning (Turgut & Drijvers, 2016). The following 

example can be given for the thinking modes summarized above. If one student only 

thinks visually about vectors then, through visualization, this process refers to the SGT 

mode. If the student finds their addition and multiplication with scalars and uses matrix 

representations or algebraic features of elementary operations of vectors, it concerns 

AAT. Finally, if the student considers the given vectors as an element of the related 

vector space, it refers to AST (Dogan-Dunlap, 2010). What should be noted here is that 

different thinking modes are not independent of each other. For example, students can 

make use of SGT while applying AST. 
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METHODOLOGY 

Within the scope of the study, 74 undergraduate linear algebra students were asked to 

solve six open-ended problems. Later, the researcher identified seven of these students 

as participants of the study using a purposeful sampling method based on observations 

focusing on (i) their mathematical knowledge and skills, (ii) their communication 

skills, and (iii) their different ways of thinking, describing and expressing. However, 

only four of them volunteered for the study, and for brevity, the case of two students is 

presented: these are S1 and S2, both twenty-year-old females, who were sophomore 

students enrolled in a department of mathematics education at a government univer-

sity, located in western Turkey. The interviews were conducted with S1 and S2 using a 

laptop with GeoGebra software installed. The students, who participated in task-based 

interviews, had an average level of knowledge regarding linear algebra concepts. The 

interviews were conducted after certain topics were covered in regular class lectures; 

linear equations systems, vector spaces, sub spaces, linear combination, span, linear 

dependency-independency, basis, dimension and determinants. Data was collected 

through task-based interviews using a single task designed in such a way as to reveal 

the students’ thinking modes regarding linear combination, linear independency de-

pendency, basis and dimension concepts. GeoGebra software was used as a DGS 

context. Field notes were taken during the interviews and the processes were vid-

eo-recorded. In addition, screen recording software was used to provide information 

concerning their reasoning processes. 

The Task and Data Analysis 

The aim of the task is to encourage the students to speak about the bridge regarding the 

following situations: (i) three vectors on the same plane; (ii) the plane formed by the 

end points of vectors; and (iii) the vectors not on the same plane. It also aims to explore 

the relationships between the formation of these ideas and concepts, such as linear 

combination, linear dependency-independency, and basis and dimension. Following 

this aim, specific tools and functions of a DGS were used as follows. First, two sliders, 

a and b, were constructed and, using these parameters, three points, A=(–1, 3, a), B=(3, 

–4, 3) and C=(b, 2, –1) were constructed. Through these points and through the origin, 

three vectors u=(–1, 3, a), v=(3, –4, 3), w=(b, 2, –1) were sketched and a plane gen-

erated by these vectors. Associated matrix generated by u, v and w (as appears 

‘matris1’ in Figure 1) were also computed. The sliders here change the positions of the 

vectors and they lie out of the plane for certain values while they are within the same 

plane for other values. Activating Algebra, Graphics and 3D Graphics windows, the 

task was delivered to the students as shown in Figure 1, and the task was proposed: 

Explain what is happening in the Algebra, Graphics, and 3D Graphics Windows syn-

chronically from the perspective of linear combination, linear dependency-indepen-

dency, and basis and dimension concepts using sliders and 3D rotate tools. 
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Figure 1: GeoGebra interface regarding the task 

The discourse obtained from clinical interviews was transcribed and all the elements 

attached to the discourse, such as drawing, dragging, and students’ productions were 

analysed synchronically. In the study, initially, students’ thinking modes of linear 

algebra (Sierpinska, 2000) were coded one by one, and later extra data obtained from 

other data types, such as photographs, gestures, and explanations written on paper were 

also coded according to the framework of the representation types (Hillel, 2000). The 

findings section presents analyses regarding the coding process and other extra ele-

ments, such as video capture of the analyses, screen shots, drawings and so on. For 

sake of page limitation, mathematically rich discussions have been selected and are 

presented. 

FINDINGS 

To begin with, the students began following the instructions for the task and described 

what was happening in the DGS interface and to talk about changes due to the use of 

the dragging tool and the objects built on the screen, rather than mathematical justifi-

cations. S2 requested more detailed information regarding the steps to follow by asking 

questions about the roles of the sliders and the 3D rotate tools and asking which to use 

first. Later, using the 3D rotate tool, S2 started to explore the view the image of the 

given figure in different positions. Table 1 displays the discourse used while the par-

ticipants dealt with the task. 

In this part of the discussion, in terms of S1’s exploration with the 3D rotate tool, she 

realized that the given three vectors are on the same plane (#36). The geometric rep-

resentation she used can be considered as a sign of an SGT process. Later, her 

mathematical explanation (#43) as to why three vectors were on the same plane and her 

explanation of the parallelogram rule (#45) are signs of S2’s transition to an AAT 

mode and use of an algebraic representation type. The explanation given by S2 is 

(again) a repetition of S1’s explanation. 
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# Utterer Discourse 

36 S1 
… [after exploring the different positions of the given figure] Here it is, 

only a 2 dimensional plane… 
... ... ... 

43 S1 Well, it is possible to define one in terms of the others 

44 R Why? ... 

45 S1 
It seems a vector added to another… [gesturing]. I remember we have the 

parallelogram rule for addition… 
... ... ... 

47 S2 
Because they are on the same plane, each can be obtained by the others’ 

linear combination… 

48 R Therefore… 

49 S1 Dependent. 

50 R Try different positions by dragging the sliders. 
... ... ... 

60 S1 It seems the point O went up like this [gesturing, see Figure 2a]. 

61 R ... What is its difference from the first one? 
... ... ... 

64 S2 They have become linear independent; they are not on the same plane… 
... ... ... 

67 S1 
For example, it is like … I changed this and became like that while it was 

like that [showing with pencils, see Figure 2b]  

68 R So, what can you tell by the space spanned by these three vectors? 

69 S1 
... Now it is three-dimensional. At first, we did not think like that. We saw 

when we changed the sliders.  

Table 1: Initial discussion regarding the task 

For instance, it is repetition of S1’s utterance (#43) using a mathematical language. S2 

can be said to have an AAT mode and use of algebraic representation (#47). As the 

discussion continued, S1 was observed to be aware of the fact that the vectors are linear 

dependent (#49). Using a gesture, she showed that the position of point ‘O’ changed as 

she tried different values; in other words, point ‘O’ goes out of the plane (#60, Figure 

2a). At this point it can be seen that S1 has an SGT mode and use of geometric rep-

resentation (#67, Figure 2b).  

         

(a)               (b) 

Figure 2: (a) S1’s description regarding the O, (b) S1’s description of the process 
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However, S2 explains the mathematical situation due to the changing position of point 

‘O’ by stating that it is because the set of given vectors is linear dependent, which can 

be considered an AST mode and an abstract representation. In the last part of the 

discussion, S1 explains that the spanned space due to the vectors being independent in 

R3 and, in the previous case, it was R2 due to the position of the given vectors. Even 

though stating that R2 is not mathematically correct, the explanations given are traces 

of an AST mode and abstract representation. In the later part of the discussion, the 

researcher asks an extra question by pointing to the algebra window in order to reveal 

how the concepts expressed by the participants would be shaped when they leave the 

DGS context. In other words, the aim of asking this question is to obtain more detailed 

information about what kind of meaning the participants give to linear dependency and 

linear independency concepts. Table 2 shows the second part of the discussion re-

garding the task. 

# Utterer Discourse 

72 R 
If I don’t have the images of the given vectors, how can I examine whether 

they are linear independent and linear dependent?  

73 S2 We try to write them in terms of the others. 
... ... ... 

76 S1 We calculate its determinant of the given vectors. 

77 R What about its definition ... is determinant the practical one?  

78 S2 … The use of definition takes a lot of time.  

79 R … What will the result of the determinant show me? 

80 S2 
If its determinant is 0, I call that linear dependent, but not here [pointing to 

the 3D Graphics window]… 

81 R ... So in the first case? 

82 S1 Zero. 

83 S2 ... Since it gives the volume. 

Table 2: The second part of the discussion regarding the task 

Initially, S2 answers the question asked by the researcher by stating #73 and using an 

AAT mode and algebraic representation. On the other hand, S1 is in SGT mode and 

prefers to use geometric representation (#76). Although the researcher repeats the 

definition, S2 states that using the definition takes a long time (#78) and she thinks that 

she can characterize the set of given vectors as linear dependent or independent using 

determinant notion. These explanations can be considered as proof of the fact that she 

is not in an AST or an AAT process. S2 states a relationship between the determinant 

value and volume and, by preferring this representation type, implies that she is in an 

SGT mode and using geometric representation. 

CONCLUSIONS AND DISCUSSION 

The present study aims to answer the following research question: what are the stu-

dents’ thinking modes and representation types of linear algebra in a dynamic geome-

try environment regarding concepts such as linear combination, linear dependency and 

independency, basis and dimension? According to to the data from the task-based 
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interviews conducted with two linear algebra students, the students have different 

thinking modes and are able to make rapid (quicker than expected) transitions among 

these thinking modes. In addition, within this study, the close relationship between 

their thinking modes of linear algebra and the representations used (Donev-

ska-Todorova, 2014) are experimentally replicated. The findings reveal that the most 

commonly-used thinking mode is SGT and that the most commonly-used represent-

tation type is geometrical representation, while the least commonly-used thinking 

mode is AST and, accordingly, the least commonly-used representation type is abstract 

representation. The students are unable make generalizations and their failure gener-

ally is de-contextualization of proposed concepts from the DGS. In fact, they often 

prefer practical thinking to theoretical thinking. The reason why students often prefer 

practical thinking might be the fact that the dynamic geometric environment provides 

the characteristics of R2 and R3. For instance, since students could not be provided 

with contexts regarding abstract vector spaces during the interviews, it may be thought 

that the dynamic geometry environment might be an obstacle for students to adopt 

theoretical thinking processes, which is similarly discussed in another context (Kuzle, 

2017). 

Dogan-Dunlap (2010), focuses on students’ thinking modes through a dynamic mod-

ule, and finds that the SGT thinking mode and geometrical representations are also 

prominent (see Table 3, p. 2148) compared to others. Moreover, Dogan-Dunlap (2010) 

notes that the graphical tools used do not change the AAT modes and that students are 

able to apply different thinking modes in the same context. Similar findings are also 

evident in the present study. For instance, generally, while the student participants 

explain linear combination in the DGS by way of an AAT mode and algebraic repre-

sentation, they explain the notion of span through an SGT mode and geometrical 

representation. However, it can also be seen that they use SGT and geometrical rep-

resentation for linear dependency and independency, and use determinant rather than 

definition to explore whether a vector set is linear independent or not. Finally, they use 

different thinking modes and representations while expressing basis and dimension 

concepts. 
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SAME UNIT COORDINATION: A CONCEPTUAL 

SCREENER FOR MIXED UNIT COORDINATION 

AND BASE-10, PLACE VALUE REASONING 

Ron Tzur, Bingqian Wei, Amy Smith, Andy Norton, 

Alan Davis, and Heather L. Johnson 

University of Colorado Denver 

This quantitative study corroborates a conceptual linkage implied by Tzur et al.’s 

(2013) model of progression in schemes for multiplicative reasoning. We demonstrate 

that the Same Unit Coordination (SUC) scheme serves as a conceptual screener for the 

Mixed Unit Coordination (MUC) scheme—and hence for base-10, place value 

(PV-B10) reasoning. Solutions to written word problems designed to indicate each 

scheme, given to 200 fourth and 351 fifth graders, largely supported our hypothesis 

that the SUC scheme is a necessary but insufficient requisite—for the MUC scheme. 

We discuss implications of these findings for teaching and learning PV-B10. 

Teaching and learning place value and base ten (PV-B10) is challenging for teachers 

and students (Verschaffel, Greer, & DeCorte, 2007). We posit that investigating stu-

dents’ multiplicative schemes can help understand this challenge. Specifically, we test 

the hypothesis that the Same Unit Coordination (SUC) scheme, found in the multi-

plicative reasoning progression postulated by Tzur et al. (Tzur et al., 2013), might 

serve as a conceptual screener for the Mixed Unit Coordination (MUC), which underli-

es PV-B10 reasoning. Yet, this linkage had to be corroborated statistically (Kilpatrick, 

2001). In this study we examine how students’ current ability to use a particular sche-

me (MUC), including the related ability for PV-B10 reasoning, depends on their cur-

rent ability to use a more rudimentary scheme (SUC) in the progression.  

Studying how students’ MUC scheme may depend on their SUC scheme can help ex-

plain challenges in learning PV-B10. Key to such understanding is one’s ability to ope-

rate not only on units of 1 but also on different composite units: 1s, 10s, 100s, etc. 

(Ulrich, 2015, 2016). For example, to find the difference between 25 and 78, one 

would have to keep track of accrual of 10s and of 1s: 35-is-1-ten, 45-is-2, … 75-is-5; 

and three more 1s will be 78—so the difference is five 10s and three 1s, or fifty-three 

1s (e.g., Klein, Beishuizen, & Treffers, 1998). This differs from a much simpler pro-

blem, of finding the difference between 20 and 70. To solve this simpler problem, one 

could keep track of the accrual of 10s between those two numbers: 30-is-1-ten, 40-is-2, 

… 70-is-5, so the difference is five 10s or fifty 1s. These two problems illustrate, re-

spectively, the operations on a mix of units (10s and 1s) versus operations on a single 

type of composite unit (10s only). Research has repeatedly demonstrated the dif-

ficulties involved in learning to operate at 3 levels (Ulrich, 2015, 2016). 

CONCEPTUAL FRAMEWORK 

We use a constructivist lens for explaining additive and multiplicative reasoning as 
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levels of units coordination (Hackenberg, 2007; Steffe, 1992), clearly distinguishing 

operating on units of one (1s) and on composite units. It draws on Piaget’s (1985) 

contention that a child’s schemes for assimilating and recognizing a problem afford 

and constrain her solution (i.e., reasoning ≠ observable performance). In additive rea-

soning, a child can mentally coordinate the same type of unit (e.g., two 10s + three 10s 

= five 10s), while operating on two levels of units (1s and composite). However, 

multiplicative reasoning requires coordinating 3 different levels of units: number of 

composite units in a compilation, items in each composite unit (1s per unit), and a total 

number of 1s (Ulrich, 2015).  For example, consider the problem: “Box A has 5 towers, 

4 cubes each; Box B has 12 cubes. If Dan puts all 12 cubes into towers of 4 and returns 

the towers to Box B, how many towers in all would be in both boxes?” Reasoning 

multiplicatively at 3 levels of units, a child can set a goal to find how many composite 

units would be in a compilation consisting of so many towers (5) and the additional 1s. 

She would accomplish her sub-goal, of figuring out how many composite units (towers 

of 4 cubes each) are produced by twelve 1s (cubes), by decomposing 12 into 3 units 

(towers) of four 1s (cubes) each. This would allow her to add those 3 composite units 

(4s) with the given 5 composite units (4s) to obtain 8 composite units (towers of 4). 

The example above illustrates the first four schemes in the multiplicative reasoning 

progression (Tzur et al., 2013). The first, multiplicative double counting (mDC), un-

derlies the coordination of 1s (e.g., 12 cubes) with composite units of 4 (e.g., 4 cubes 

per towers) into a compilation of 3 composite units (e.g., towers of 4). The second, 

same unit coordination (SUC), underlies additive operations on composite units (e.g., 

add 3+5 towers). While operating additively, the child conceives of those being com-

posite units (e.g., towers made of 4 cubes), not simply units of 1. The third scheme (not 

a focus of this study), is unit differentiation and selection (UDS). In our example, this 

scheme underlies the child’s setting of the sub-goal, as she had to differentiate the 12 

(cubes) from the 5 (towers) and/or the unit rate of 4 (cubes-per-tower), select the 12 as 

input for her operation, and select 4 as the ‘factor’ by which to operate on (decompose) 

12. The fourth scheme, mixed unit coordination (MUC), underlies the solution to the 

example above in its entirety, by coordinating the operations on 1s and composite units 

to produce the looked for compilation of composite units.  

From this depiction of MUC, the claim that SUC is a conceptual screener seems ap-

parent: A child needs to anticipate that adding the same units (e.g., towers of 4) requi-

res converting the given 1s. It is also apparent why SUC is but a screener, as UDS 

would have to be coordinated with SUC into a single, multi-step activity regulated by 

the global goal (find total of composite units) and the sub-goal it triggers (find the num-

ber of composite units made of the given 1s). Importantly, this depiction helps to ex-

plain reasoning in PV-B10. For example, consider a child who solves the problem: “A 

school bought 2 boxes (100 apples each), 4 bags (10 apples each), and 19 single apples; 

how many apples does the school have in all?” A child reasoning with MUC can 

convert the number of apples in two boxes by anticipating 100 would be 10 units of 10 

units of 1, and take two such units (hence, 200); similarly anticipating 4 bags as four 
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units of 10 units of 1 apple (hence, 40 apples), and add all 1s (including 19) to arrive at 

259 apples. A child withot MUC may add 1s and 10s (e.g., 20+40+19=79), or add all 

given units as if they were 1s (e.g., 19+4+2=25)—two common, erroneous solutions.  

METHODS 

This study is part of a larger project to promote and study the impact of elementary tea-

chers’ shift toward a student-adaptive pedagogy (AdPed) on student outcomes. We 

developed and validated two written assessments—one for the mDC scheme (Hod-

kowski  et al., 2016) and one for the MUC scheme (forthcoming). The latter, used in 

the present study, contains six word problems designed to suit students learning Eng-

lish as an additional language, including one SUC screener and 4 MUC problems. 

In the SUC screener Problem (#2), we intended for students to bring forth a strategy by 

which to find the difference (#2a) or sum (#2b) of given numbers of composite units in 

two separate compilations (4 towers of 3 cubes, 9 towers of 3 cubes). We assigned “1” 

to the student if both responses were correct (5 towers and 13 towers, respectively), 

and “0” otherwise. Students then proceeded through the 4 MUC word problems.  

In Problem #3 (5 towers of 4 cubes each + 12 cubes), we intended for students to use 

MUC with small numbers (scored “1” if answering 8 towers). In Problem #4, we in-

tended for students to do the same (9 bags of 6 candies each + 48 candies) with larger 

numbers (scored “1” if answering 17 bags). In Problem #5, we intended for students to 

operate, in a ‘missing addend’ task, on the difference in 1s between two given com-

pilations of composite units (6 lines of 7 desks each, which a teacher needed to extend 

into 11 lines of 7 desks each). We asked them to determine the correctness of a hy-

pothetical student’s statement that 30 extra desks are enough to get to 11 lines (scored 

“1” if answering 35 extra desks were needed). In Problem #6, we intended for students 

to bring forth their MUC scheme in solving a PV-B10 problem with 100s (boxes of 

apples), 10s (bags of apples), and 1s (single apples). Given that School A has 2 boxes + 

4 bags + 19 apples and School B has 1 box + 16 bags + 11 apples, students had to find 

which school had more apples and how many (scored “1” if answering School B has 12 

more apples). To assess students’ comprehension of problem statements, in each MUC 

word problem (#3-6) we included sub-questions that required students to fill in blanks 

with given information. For example, in Problem #5, students had to fill a given in the 

blank: “Each line has ___ desks.” Chrobach’s- (0.84) for all MUC items indicated 

good internal consistency. 

Setting and Participants 

Participants were 4th graders (N=200) and 5th graders (N=351) from four different 

elementary schools in two public school districts, located in the metropolitan area of a 

large US city (ages ~9-11 years). About 85% of the students in our study identified as 

students of color, and ~70% were learning English as an additional language. 

Data Collection and Analysis 

We report results from three administrations of the written MUC assessment: Spring 
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2016, Fall 2016, and Spring 2017. Each assessment took place during one class period 

of a regular school day (~40-50 minutes). A graduate research assistant (GRA) read out 

loud each problem and sub-questions, one page at a time, while students followed 

silently. The GRA monitored students solved only problems on a page at issue. Once 

completing all questions on that page, the GRA told them to flip to the next page, 

monitoring they do not flip back to problems in previous pages. Table 1 disaggregates 

the assessment totals by student grade and administration date. We analysed data from 

all 551 available assessments, which include students who have been assessed twice or 

three times, because they reflect their ability (or lack thereof) to bring forth SUC and 

MUC schemes in far-apart administrations. This larger number allowed us to further 

test hypotheses about linkages between the SUC and MUC schemes. 

Grade Spring 16 Fall 16 Spring 17 Total 

4 54 90 56 200 

5 80 168 103 351 

Total 134 258 159 492 

Table 1: Numbers of students taking the MUC assessment by grade and date.   

To increase reliability, six GRAs entered the student responses into a spreadsheet in 

pairs, one reading the responses out loud and the other entering those as is (no scoring, 

yet). The first GRA monitored and verified that responses were entered correctly for 

every student. Using that raw-data spreadsheet, scoring of responses was calculated in 

a different spreadsheet set to do so automatically (with scores as noted above). 

Our analysis tested three main hypotheses pertaining to (a) each distinct MUC problem 

and (b) the total of correct responses a student gave to all 4 MUC problems. Table 2 

recaps the hypotheses and the statistics used to test each (“Yes SUC” refers to students 

who could solve both SUC problems, “No SUC” otherwise; “>” implies outperform). 

Hypothesis SUC Each MUC Problem All MUC Problems 

“Yes SUC” > “No 

SUC” 

 Mann-Whitney (np) 

Chi-square 

ANOVA (total: 0-4) 

Cramer’s V (number cor-

rect) 

5th graders > 4th graders Chi-square Mann-Whitney (np) ANOVA (total: 0-4) 

Table 2: Study hypotheses and statistics to test them.   

RESULTS 

We analyse data to support the claim that the SUC scheme serves as a conceptual 

screener for the MUC scheme. First, we note that, of all participating students 

(N=551), more than half (54%) did not yet construct the SUC scheme. Chi-square 

analysis (2=5.8, p=0.16) confirms our hypothesis that significantly higher percentage 

of 4th graders (61%, N=200), versus 5th graders (50%, N=351), would lack the SUC 

scheme. With this in mind, we turn to findings linking SUC and MUC. 

Table 3 provides data for all students, for 4th, and for 5th graders. For each group, we 

begin with a line showing the average number of students who correctly solved each 



Tzur, Wei, Smith, Norton, Davis, & Johnson 

 

PME 42 – 2018 4 – 327 

MUC problem (#3-6) and the average of their total score for all MUC problems. Below 

that line, in two additional lines, we distinguish data of “Yes SUC” and “No SUC.” 

All students 

Line ‘All-a’ shows a low percentage (25%) of success on the 4 MUC problems (#3-6), 

that is, one MUC problem on average—which indicates absence of that scheme. Data 

for distinct problems show a decrease in successful solutions, ranging from 40% in 

Problem 3 to the mere 9% in Problem 6. A chi-square test shows this decreese is sta-

tistically significant: #3 vs. #4 (2=105.6, p<.0005), #4 vs. #5 (2=63.0, p<.0005), and 

#5 vs. #6 (2=70.4, p<.0005). The remarkably low success on problem #6 is alarming, 

as this problem requires using the MUC scheme to solve a PV-B10 task.  

Line MUC Problems → 3 4 5 6 Total 

All-a All Total 40% 29% 20% 9% 25% 

All-b All No SUC 23% 16% 11% 7% 14% 

All-c All Yes SUC 61% 44% 30% 12% 37% 

4-a 4th Total (N=200) 27% 23% 12% 5% 17% 

4-b 4th No SUC 15% 12% 2% 4% 9% 

4-c 4th Yes SUC 44% 38% 27% 5% 29% 

5-a 5th Total (N=351) 48% 33% 25% 12% 30% 

5-b 5th No SUC 28% 19% 18% 9% 19% 

5-c 5th Yes SUC 69% 47% 31% 15% 41% 

Table 3: Percentages of students solving MUC problems correctly. 

Lines ‘All-b’ and ‘All-c’ confirm our main hypothesis about MUC: “Yes SUC” stu-

dents outperformed “No SUC” students. The Mann-Whitney statistic shows this for 

distinct MUC problems: 23% of “No SUC” vs. 61% of “Yes SUC” in Problem 3 

(Z=9.18, p<.0005), 16% vs. 44% in Problem #4 (Z=7.23, p<.0005), 11% vs. 30% 

(Z=5.36, p<.0005) in Problem #5, and meagre 7% vs. 12%” for Problem #6 (Z=1.88, 

p=.06). ANOVA for all 4 MUC problems further confirms this: “No SUC” merely 

solved 14% of MUC problems vs. 37% for “Yes SUC” (F1,550=94.7, p<.0005). 

Grade-4 students 

Results for 4th graders echo those for all participating students (albeit lower averages). 

Line ‘4-a’ shows a very low percentage (17%) of successful solutions to the 4 MUC 

problems: on average, 4th graders could not solve even one MUC problem—indicating 

absence of that scheme. Distinct MUC problems show a decrease from 27% in Prob-

lem 3 to the meagre 5% in Problem 6. A chi-square test shows this is statistically sig-

nificant for #3 vs. #4 (2=33.5, p<.0005), #4 vs. #5 (2=43.1, p<.0005), and for #5 vs. 

#6 (2=2.7, p<.0005). The remarkably low success on problem #6, which indicates use 

of the MUC scheme to solve a PV-B10 task, is alarming particularly because those 

students have been taught PV-B10 for 4-5 years. Notably, our findings help explain 

this difficulty: to adequately reason in a PV-B10 number system students need to 

construct the MUC scheme, which seems dependent on the SUC scheme. 
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Lines ‘4-b’ and ‘4-c’ confirm our main hypothesis for 4th graders: “Yes SUC” students 

outperformed “No SUC” students. The Mann-Whitney statistic shows this for distinct 

MUC problems #3-5: 15% of “No SUC” vs. 44% of “Yes SUC” in Problem 3 (Z=4.6, 

p<.0005), 12% vs. 38% in Problem #4 (Z=4.22, p<.0005), and 2% vs. 27% (Z=5.12, 

p<.0005) in Problem #5. ANOVA for all 4 MUC problems further confirms this: Mere 

9% of “No SUC” vs. (still alarming) 29% of “Yes SUC” (F1,199=35.1, p<.0005). 

Grade-5 students 

Results for 5th graders further echo those discussed above. Line ‘5-a’ shows a very low 

percentage (30%) of correct solutions to the 4 MUC problems: on average, 5th graders 

merely solved one MUC problem—indicating absence of that scheme. Distinct MUC 

problems show a decrease from 48% in Problem 3 to the rather low 12% in Problem 6. 

A chi-sqaure test shows this is statistically significant: #3 vs. #4 (2=66.1, p<.0005), #4 

vs. #5 (2=26.7, p<.0005), and #5 vs. #6 (2=40.8, p<.0005). The low success on 

problem #6 seems even more alarming than in 4th grade, as 5th graders have been taught 

PV-B10 for 5-6 years. Yet, barely 1-in-10 5th graders could solve the PV-B10 problem. 

As noted for grade-4, these findings help explain this difficulty: Both SUC and MUC 

schemes are needed to adequately reason and solve PV-B10 word problems. 

Lines ‘5-b’ and ‘5-c’ confirm our main hypothesis for 5th graders: “Yes SUC” students 

outperformed “No SUC” students. The Mann-Whitney statistic shows this for distinct 

MUC problems #3-5: 28% of “No SUC” vs. 69% of “Yes SUC” in Problem 3 (Z=7.63, 

p<.0005), 19% vs. 47% in Problem #4 (Z=5.63, p<.0005), and 18% vs. 31% (Z=2.94, 

p=.003) in Problem #5. ANOVA for all 4 MUC problems further confirms this: Mere 

19% of “No SUC” vs. (more sensible) 41% of “Yes SUC” (F1,350=54.0, p<.0005). 

Between-grade comparison 

It seems plausible that SUC is a screener at one grade-level, but later it diminishes. 

Demonstrating it serves a similar role in 4th and 5th grades lends support to the claim it 

is a conceptual screener. We found that although 5th graders are more likely than 4th 

graders to have constructed the SUC and MUC schemes—the difference between “No 

SUC” and “Yes SUC” remains, albeit “shifted upward.” Here, for the results shown in 

Table 3, we provide analysis of significance, using the Mann-Whitney statistics for 

distinct problems and ANOVA for the total of all 4 MUC problems. 

All 4th vs. All 5th:  #3 (Z=2.62, p=.009), #4 (Z=3.53, p<.0005), #5 (Z=5.04, p<.0005), 

and #6 (Z=2.91, p=.004); Total (F1,550=27.0, p<.0005). 

“No SUC” 4th vs. 5th: #3 (Z=2.65, p=.008), #4 (non-significant), #5 (Z=4.03, 

p<.0005), and #6 (non-significant); Total (F1,550=12.9, p<.0005). 

“Yes SUC” 4th vs. 5th #3 (Z=3.70, p<.0005), #4 (non-significant), #5 

(non-significant), and #6 (Z=2.22, p=.026); Total (F1,550=F=8.96, p=.003). 

Taken together, these results support our claim that SUC is a necessary but insufficient 

precursor for MUC. Whereas 5th graders outperformed 4th graders on SUC and MUC, 

at each grade-level the gap between the “No SUC” and “Yes SUC” is sizeable. In fact, 
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the gap seems even more pronounced in 5th grade. These results, including the ex-

tremely low figures for Problem #6 (PV-B10), amount to our main claim: reasoning 

with the MUC scheme seems dependent on the availability of the SUC scheme. 

Number of successfully solved MUC problems 

To provide further evidence of the screening role of SUC, we compare the “No SUC” 

to the “Yes SUC” group on the total number of problems students could solve correctly 

(Table 4). Using crosstabs analysis with the Cramer’s-V statistics shows the difference 

between “No SUC” and “Yes SUC” is significant (Cramer’s V = 0.41, p<.0005). 

Conceptually, a crucial difference lies between students who solved at most 1 problem 

(indicating no MUC scheme), and those who solved at least 2 problems (indicating 

evolving or available MUC scheme). Nearly 85% of students without SUC could solve 

at most 1 MUC problem (with 66.2% unable to solve any MUC problem). In contrast, 

nearly half (48.2%) of “Yes SUC” students solved at least 2 MUC problems. 

MUC Correct Problems 0  1 2 3 4 Total 

No SUC 196 

66.2% 

54 

18.2% 

27 

9.1% 

14 

4.7% 

5 

1.7% 

296 

100.0% 

Yes SUC 70 

27.5% 

62 

24.3% 

71 

27.8% 

37 

14.5% 

15 

5.9% 

255 

100.0% 

Table 4: Number of MUC problems solved correctly, “No SUC” vs. “Yes SUC.” 

DISCUSSION 

In this study, we corroborated a claim about conceptual linkages, found in previous, 

qualitative research that ‘mapped’ conceptual progressions in students’ schemes for 

multiplicative reasoning (Steffe, 1992; Tzur et al., 2013). We demonstrated that the 

second Same Unit Coordination (SUC) scheme serves as a conceptual screener for the 

fourth scheme—Mixed Unit Coordination (MUC). We explained this linkage in that 

MUC is postulated to arise through coordinating SUC and the third scheme in the 

progression, UDS (developing a written, large-scale assessment for UDS is forth-

coming). Three, interrelated findings supported our claim that SUC is a conceptual 

screener for MUC: (a) ~50% of students in our population were yet to construct the 

SUC scheme, (b) “Yes SUC” students outperformed “No SUC” students on each dis-

tinct and on all 4 MUC problems, and (c) nearly 85% of “No SUC” students lacked the 

MUC scheme—solving at most 1 MUC problem (66% solved none).  

Along with the important contribution of corroborating that SUC is a conceptual 

screener for the MUC scheme, this study provided a step toward explaining the diffi-

culties many students (and teachers) seem to face when reasoning and solving place 

value, base-ten (PV-B10) problems. As we explained in the Conceptual Framework, 

adequate reasoning in a PV-B10 number system requires the MUC scheme, including a 

3-level units coordination (Ulrich, 2015, 2016). The non-routine Problem #6 we used 

in our assessment could help reveal conceptual ‘blocks’ indicative of the lack of MUC 

scheme as manifested in the other 3 MUC problems. To solve Problem #6, a student 
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would have to clearly distinguish between 1s, 10s, and 100s, convert units to obtain a 

total of 1s for two different quantities (271 and 259), and find the difference between 

those quantities (12=10+2). Using the SUC scheme is needed to add/ subtract com-

posite units of 10, of 100, and so on. Accordingly, our findings highlight the futility of 

teaching PV-B10 to students who are yet to construct the SUC scheme, and thus likely 

also the MUC scheme. This implies the need to provide elementary teachers with 

professional development that enables them to (a) distinguish multiplicative schemes 

(SUC, MUC) based on students’ problem solving and (b) adapt goals and activities for 

students’ learning to construct those schemes – instead of following a scripted curric-

ulum based on grade-level standards. Simply put, teachers need to tailor PV-B10 cur-

riculum to where students are conceptually (with SUC and MUC schemes as con-

ceptual requisites) – not ‘tailor students to the curriculum’. 
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FACILITATING CONCEPTUAL ENGAGEMENT WITH 

FRACTIONS THROUGH SUSPENDING THE USE OF 

MATHEMATICAL TERMINOLOGY 

Pamela Vale and Mellony Graven 

Rhodes University 

 

In this study we sought to establish whether an instructional sequence focused on 

fractions as measures was effective in supporting a group of South African Grade 3 

students’ understanding of fractions. The sequence is centred on a story that utilises 

‘nonsense’ words to describe fractions. The students in this study had already been 

introduced to fraction terminology and symbols, but struggled in the initial lessons of 

this sequence and in the pre-test to use these with understanding. This paper focuses on 

how this sequence’s suspension of the use of the mathematical terminology in favour of 

these ‘nonsense’ words helped to facilitate students’ deep engagement with the 

concept of fractions during these lessons.  

In this paper we describe the results of a study investigating the effectiveness of an 

instructional sequence with the aim of facilitating students’ understanding of the 

inverse order relation of unit fractions. This sequence of four lessons, designed by 

Cortina, Višňovská and Zúñiga (2012), proposes an alternative starting point to 

teaching fractions: using fractions as measures rather than equipartition as the context 

in which the concept of fractions is introduced. 

The lesson sequence is centred on a story about the origins of standardised 

measurement. A particularly notable feature of the lesson sequence is the use of 

‘nonsense’ words, words with no established meaning, to describe fractions rather than 

the accurate mathematical terminology. For students who have not previously been 

exposed to the mathematical names for fractions, this sequence delays the use of the 

mathematical vocabulary. For the students in this study, it represented a suspension of 

the use of the terminology they had already encountered in the vocabulary and symbols 

of fractions at school. The focus of this paper is on the influence that this choice to 

suspend the use of accepted mathematical terminology had on the engagement of the 

students in the lesson activities and we propose that this played an important role in the 

progress students demonstrated in reasoning about the relative sizes of fractions. 

In order to show this, we reflect on moments of interaction with the students as they 

worked through the activities in the lesson sequence. We focus in particular on several 

moments in which students grappled with the use of the mathematical terminology 

related to fractions (e.g. ‘half’ and ‘quarter’) and argue that in these moments the effort 

to encourage accurate use of the words detracted from the desired focus of the task at 

hand. We contrast this with the work of the students after the ‘nonsense’ terminology 
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was introduced through the story. In addition, we report on the results of the pre- and 

post-tests to show how students progressed in understanding of the relative sizes of 

unit fractions. Significantly, this improvement was based on an assessment that utilised 

the mathematical vocabulary and symbols and not the ‘nonsense’ words and created 

symbols used in the story and the activities. 

USING MEASUREMENT AS A CONTEXT FOR TEACHING FRACTIONS 

Cortina, Višňovská and Zúñiga (2014) argue that equipartition can be a didactical 

obstacle to teaching fractions. They explain that equipartition has been incorrectly 

considered by many to be “either the only or the most advantageous way to introduce 

students to the topic” (Cortina, et al., 2014). Specifically, they identify three fixed 

images of fractions that an equipartition approach develops: “fraction as a result of 

acting on an object (fraction as fracture); fractions as ‘so many out of so many’; [and] 

fraction included in a whole (pp. 4-5). This approach is limited when students need to 

“find meaning in uses of fractions that are inconsistent with these images” (p. 7). 

In order to support students in reasoning about the relative size of fractions, Cortina 

and Višňovská and Zúñiga (2012) have proposed an alternative starting point to 

teaching fractions: using ‘comparing’ instead of ‘fracturing’. Their resulting 

instructional design, which uses length measurement activities as the vehicle for 

fraction learning, was the focus of this research. There is ongoing research into the 

effectiveness of this design that points to the value of taking such an approach (see 

Cortina & Visnovska, 2016). 

As Lamon (2012) explains, when students start working with natural numbers, 

measurement takes its simplest form in the counting of separable objects. When they 

begin to encounter fractions, the measurement of continuous quantities becomes 

possible (Lamon, 2012). This is done by segmenting the quantity to form whole units, 

then subdividing the whole units and iterating the resulting part units in order to 

measure. In subdividing the unit into fractional pieces, the degree of precision of the 

resulting measurement is increased (Lamon, 2012). Measurement contexts can thus 

provide particularly fertile ground for developing the concept of fractions. It is on this 

activity of subdivision of whole units into fractional part units that Cortina et al.’s 

(2012) instructional design rests. 

THE ROLE OF WORDS IN CONCEPT FORMATION  

Vygotsky (1987) writes “direct instruction in concepts is impossible [and leads to] 

mindless learning of words” (p. 170). Concept formation, he explains, involves all 

basic intellectual functions and is impossible without the use of words as signs or 

“functional tools” (Vygotsky, 1986, p. 107) that drive the formation of concepts. 

Development of the physiologically based intellectual processes, e.g. memory or 

perception, does not lead to higher forms of intellectual ability. It is verbal thinking 

that is necessary for the qualitatively “radical change” (p. 109) that makes thinking in 

concepts, such as fractions, possible.  
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He distinguishes between phases that lead to thinking in real concepts and argues that 

transition from one stage to the next is reliant on a child’s verbal interaction with adults 

(Vygotsky, 1986). In the first phase, syncretic heap, a child groups objects randomly 

and words do not hold stable meanings (Vygotsky, 1986). This can be seen in the 

students’ seemingly random use of the words ‘half’ and ‘quarter’ to describe any part 

of a whole during the first lesson. As Berger (2006) explains, children use words that 

they initially do not fully comprehend, but as they use it in communicating with adults, 

the meaning of the word and its associated concept evolves. In other words, the 

concept “undergoes substantial development for the child as [they] use the word or 

sign in communication with more socialised others” (Berger, 2005, p. 155). In 

mathematics, Berger (2005) argues, the individual is required to construct the concept 

such that its meaning agrees with how it is used in the mathematics community.  

Berger (2006) advocates for activities that allow for idiosyncratic uses of mathematical 

words and symbols in the early stages of concept formation. She explains (p. 17): 

…[it] is not how (emphasis in original) the student uses the signs but rather that (emphasis 

in original) [they] use the signs. Through this use, the student gains access to the ‘new’ 

mathematical object and is able to communicate (to better or worse effect) about it. 

And…it is this communication with more knowledgeable others which enables the 

development of a personally meaningful concept whose use is congruent with its use by the 

wider mathematical community 

Berger therefore seemingly argues that it is necessary that the mathematically accepted 

terminology must be used to allow students to come to a whole understanding of the 

concept of fractions. Vygotsky’s notion of ‘signs’, however, can be understood to be 

broader than one specific word per concept. He writes that signs can be understood as 

an “auxiliary means of solving a given psychological problem” (1978, p. 52). For 

example, a word can be used to aid someone in remembering something and in this 

way the “sign acts as an instrument of psychological activity” (p. 52). It should hold 

therefore that if the mathematical vocabulary becomes a stumbling block to students’ 

conceptual engagement in a task, the introduction of a new ‘sign’ such as, in the case of 

our study, a nonsense word that can serve the same psychological purpose as the 

original word could allow this to be overcome. Once the concept itself is therefore 

better formed, the original word can be substituted back, but with more conceptual 

clarity. We propose that this could facilitate conceptual development supporting more 

accurate use of the accepted terminology.  

METHODOLOGY  

The broader study, of which this paper represents a part, took a design research 

approach, as developed by Gravemeijer and Cobb (2013). Our goal was to explore the 

“innovative learning ecology” (p. 75) proposed by Cortina et al. (2014) in their 

instructional sequence. Accordingly, our retrospective analysis presented here, focuses 

of the use of vocabulary in the classroom in order to offer a proposal as to how the 

sequence works to support students’ learning (Gravemeijer & Cobb, 2013). 
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Three South African Grade 3 classes, of 36 students each, participated in the 

instructional sequence, which was facilitated by the first author, with the second author 

in attendance for two of the lessons. The four lessons were run during the normal 

school day, one on each of four consecutive days. The lessons were video recorded for 

later analysis and the first author maintained a journal of field notes to record 

additional observations. 

Critical incident analysis (Flanagan, 1954; Butterfield, Borgen, Amundsen & Maglio, 

2005) was used to identify excerpts of the video recordings that were relevant to the 

research focus. These were transcribed in rich detail for further analysis. In this study 

we selected the moments in which fraction terminology and nonsense terminology 

were used by the students. In addition, students completed a pre-test and post-test 

assessing their understanding of the inverse size order relation of fractions. Their 

responses were summarised and analysed for recurring patterns in the type of errors 

made. Each item was analysed for patterns in responses, and each student’s work was 

analysed for shifts in performance from pre-test to post-test. There were 83 students 

who completed both the pre-test and the post-test. 

We recognise that in having chosen to position the first author as facilitator of the 

sequence, the credibility of the findings could be questioned. To offset this risk, a rich 

audit trail is available for scrutiny that includes the lesson videos as well as the 

students’ test scripts. The design research approach itself also enhances the credibility 

in that it necessitates a strictly scripted lesson delivery. This removes much of the 

subjectivity in decision-making within the lesson. Furthermore, the students’ test 

responses were analysed in addition to the lesson transcripts as a form of triangulation. 

THE LESSON SEQUENCE  

The overarching goal of the lesson sequence is that students come to make sense of the 

inverse order relation of unit fractions. Each lesson in the sequence works towards 

achieving this. In the first two lessons, students explore measuring length using their 

bodies and are prompted to think about how this differs when using small or large 

units. By the end of the first lesson, they should be aware of the challenge in 

communicating measurements when using body parts of different sizes to carry out the 

measurements. This leads to the second lesson, in which students come to recognise 

that it is more suitable to measure with a standardised unit. Students are provided with 

sticks of identical lengths with which to measure. Through the activities, students 

usually become aware that there is a remaining space not covered by a whole unit, and 

experience the challenge of finding a way to accurately communicate the length of this 

remainder. 

During these two lessons, students attempted to use fraction names to describe the 

remainders. This was expected as the students were familiar with fraction names, but 

their use of these, and their assumption as to the accuracy of their descriptions, limited 

the realisation of the lesson aims. As an example, when asked to measure the length of 

their (identical) desks with the stick, the students needed to make the observation that 
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the number of whole units measured was the same for all groups, but that the stick did 

not allow for an accurate answer as to how long the remainder was. What transpired 

was that students were convinced that they were communicating the length with 

precision by using a fraction name to label the remainder part (many said half, when a 

quarter was the closest unit fraction describing the remainder as a fraction of the stick). 

The lesson momentarily took a turn towards assisting the students in naming the 

remainder appropriately in terms of the fraction name. 

As an example, one group of students entered into the following exchange with the 

second author: 

MG: And, how long is your desk? 

Student 1: Four and a half. 

MG: Is it a full half? 

Student 1: Yes. 

MG: How much is a half? [holds stick out to student and student touches the 

stick at approximately half of its length] Yes! Was it that much? 

Together: [as they re-measure the desk together] One…two…three…four… 

MG: [pointing to the remaining length of the desk] So, is it a full half? 

Student 1: No. 

This exchange was similarly repeated with other students and groups of students. This 

was not, however the aim of the sequence, nor a part of its design, so the focus was 

quickly turned to simply acknowledging that there was much disagreement and no 

accurate way of finding and describing the remainder. In this way the desired 

consensus was reached that a better system than a single stick was needed  

It is in the second lesson that students are told a traditional story in which an ancient 

potter experiences difficulty in measuring to make her pots accurately and visualises 

using a standard stick to measure rather than body parts. In the third lesson, the story 

continues with the character finding a solution to the problem of measuring the 

remainder by carefully constructing subunits of the stick to be used to measure the 

remaining lengths. In the story, these subunits are given special names – what we refer 

to as ‘nonsense’ words. The sub-units are called ‘obele’, or ‘smalls’, each with special 

characteristics. An ‘otibele’, translated as ‘a small of two’, is a length that fits exactly 

twice into the length of the stick. This is a ‘half’ but it is never referred to as such. A list 

of nonsense words with the translations was given to each student (from a small of two 

to a small of ten representing all unit fractions from 1/2 to 1/10). 

The students adopted this terminology with delight and excitement as indicated by 

their repeatedly saying the words aloud and smiling as they read them. Their confused 

use of the fraction names entirely disappeared for the remaining lessons. It is at this 

point that the students became engaged in particularly rich conceptual work with 

fractions. They constructed units that fit exactly x times into the unit. For example, they 
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constructed a single unit that would fit exactly twice into the length of the stick. 

Students were given straws so they could easily through trial and error cut them to the 

needed length. The straws were shorter than the length of the stick unit, so that students 

could not simply fold them in half to judge the length of a small of two. They repeated 

this process until they had a set of 9 subunits of decreasing size. The students were 

continually prompted to realise that the more times a unit fits into the whole, the 

smaller it is.  

In the fourth lesson, students used their unit sticks and this set of smaller subunits to 

measure objects and realised that this solved the problem of measuring remainder 

lengths and communicating the lengths. Until this point, the word ‘fraction’ was not 

mentioned. Students took joy in naming the lengths using the nonsense words and did 

so in a conceptually accurate manner. They indicated understanding that a ‘small of 

ten’ was smaller than a ‘small of nine’.  

At the conclusion of the lesson sequence students’ attention was drawn to the fact that 

they had been working with fractions, and that these subunits could also be named 

using the accepted mathematical fraction names. This was merely mentioned, and was 

not explored further. However, as is shown in the following section, the students made 

great gains in their standard test performance despite all conceptual work having been 

done using nonsense terminology. 

ASSESSMENT RESULTS  

Students showed impressive gains in their understanding of the inverse order relation 

of unit fractions when their pre- and post-test responses were compared. 

One item asked the following: “Thembi gets half (1/2) a candy bar and Angi gets 

one-fifth (1/5) of a candy bar. Colour in how much candy they each get.” This item was 

accompanied by two identical rectangles representing these candy bars for the students 

to colour in. A response was considered correct if the portion coloured in was within 

one-tenth of the accurate amount. In the pre-test, 32 students drew the half and fifth 

correctly.  

There were 17 students who coloured in a fraction that was more than one-tenth too 

large or too small, although these students correctly indicated that the half was larger 

than the fifth. Twenty students reversed the size order relation, indicating that a fifth 

was larger than a half. In the post-test, of the 17 students who were inaccurate in their 

drawings, only 4 students over- or underestimated by more than one-tenth. Most 

notable were the twelve students who reversed the size order relation in the pre-test, 

but who drew the fractions correctly in the post-test.  

This item was followed by a question asking which child received more, Thembi or 

Angi. There were many students who did not answer this question (only 27 answered 

this in the pre-test, and 59 in the post-test), however of those who answered, an 

interesting observation was made that pointed to some of the confusion the students 

had regarding the inverse order relation. Half of the students in the pre-test provided 
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answers that were incongruent with their drawings. That is, if their drawing showed 

that Angi received more, they indicated on this question that Thembi received more. 

This was the case for 4 students. Interestingly, eleven of the students who drew the 

fractions correctly named Angi as the child receiving more. In the post-test, only 3 of 

these students persisted in this error. 

The final item on the test asked students to circle the fraction which was larger of a set 

of four pairs of fractions: 1/2 or 1/4 ; 
1/5 or 

1/3 ; 
1/4 or 1/8; and 3/4 or 3/3. The figure below 

shows the number of students, in the pre-test and the post-test, answering correctly. A 

dramatic increase is evident, and there were only 15 of the 83 students who persisted in 

making the same errors in both tests. 

Figure 1: Number of students answering correctly. 

This increase provides clear evidence of the students having improved in their 

understanding of the inverse order relation of unit fractions.  

CONCLUSION 

During the first two lessons, prior to the introduction of the nonsense words, it was 

clear from the students’ use of the mathematically accepted fraction names, that their 

understanding of the concepts underlying the words was still developing. Their use of 

the words revealed their syncretic heap thinking (Vygotsky, 1986) and while this is a 

part of the development of the concept, it detracted from the work of this specific 

lesson sequence.  

The design called for the students to suspend their use of the mathematically accepted 

terminology for the duration of the conceptually-driven activities of the third and 

fourth lesson. It was significant to observe, therefore, that the students improved, not 

only in their understanding of the inverse order relation of unit fractions, as was the 

goal, but that they were also able to demonstrate this understanding on an assessment 

that used the standard terminology and symbols.  

This suggests that there was value in suspending the use of standard terminology, and 

temporarily replacing it with words that were not linked to any emerging conceptual 

knowledge, to allow students to engage in deep conceptual work independent of their 
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grappling with the definitions of the technical terminology. The fraction concept itself 

became better formed for the students such that the original words could be substituted 

back and, as the students’ assessment responses indicated, with increased conceptual 

clarity.  

The use of this nonsense terminology can therefore be understood to be a feature of this 

lesson sequence that contributed to facilitating conceptual development that supported 

more accurate use of the accepted terminology. 

 

References 

Berger, M. (2005). Vygotsky’s theory of concept formation and mathematics education. In 

H.L. Chick & J.L. Vincent (Eds.), Proc. 29th Conf. of the Int. Group for the Psychology of 

Mathematics Education (pp. 153-160). Melbourne, Australia: PME. 

Berger, M. (2006). Making mathematical meaning: From preconcepts to pseudoconcepts to 

concepts. Pythagoras, 63, 14-21. 

Butterfield, L.D., Borgen, W.D., Amundsen, N.E. & Maglio, A.T. (2005). Fifty years of the 

critical incident technique: 1954-2004 and beyond. Qualitative Research, 5(4), 475-497. 

Cortina, J.L., Višňovská, J. & Zúñiga, C. (2012). Alternative starting point for teaching 

fractions. In J. Dindyal, L.P. Cheng & S.F. Ng (Eds.), Proc. 35th Conference of the 

Mathematics Education Research Group of Australasia (pp. 210-217). Singapore: 

MERGA. 

Cortina, J.L., Višňovská, J. & Zúñiga, C. (2014). Equipartition as a didactical obstacle in 

fraction instruction. Acta Didactica Universitatis Comenianae Mathematics, 14, 1-18. 

Cortina, J.L. & Višňovská, J. (2016). Reciprocal relations of relative size in the instructional 

context of fractions as measures. In C. Csikos, A. Rausch & J. Szitanyi (Eds.), Proc. 40th 

Conf. of the Int. Group for the Psychology of Mathematics Education (pp. 179-186). 

Szeged, Hungary: PME. 

Flanagan, J.C. (1954). The Critical Incident Technique. Psychological Bulletin, 51(4), 

327-358. 

Gravemeijer, K. & Cobb, P. (2013). Design research from the learning design perspective. In 

Plomp, T. & Nieveen, N. (Eds.), Educational Design Research (pp. 72-113). Enschede: 

Netherlands Institute for Curriculum Development. 

Lamon, S.J. (2012). Teaching fractions and ratios for understanding: Essential content 

knowledge and instructional strategies for teachers (2nd ed.). London: Lawrence Erlbaum 

Associates. 

Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes. 

Cambridge, MA. Harvard University Press. 

Vygotsky, L. (1926/1986). Thought and Language. Cambridge, MA: The MIT Press. 

Vygotsky, L. (1987). The development of scientific concepts in childhood. In R.W. Rieber 

(Ed.), The collected works of L.S. Vygotsky: Volume 1, Problems of General Psychology 

(pp. 167-242). New York: Plenum Press. 



 

 

 4 – 339  
2018. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the 

International Group for the Psychology of Mathematics Education (Vol. 4, pp. 339-346). Umeå, Sweden: PME. 

INVESTIGATING LEARNERS’ FRACTION UNDERSTANDING:  

A LONGITUDINAL STUDY IN UPPER ELEMENTARY SCHOOL 

Jo Van Hoof*, Tine Degrande*, Eva Ceulemans**, and Lieven Verschaffel* 

* Centre for Instructional Psychology and Technology, University of Leuven 

** Research Group of Quantitative Psychology and Individual Differences,  

University of Leuven  

 

We longitudinally followed 201 upper elementary school learners in the crucial years 

of acquiring rational number understanding. Using latent transition analysis we in-

vestigated their conceptual change from an initial natural number based concept of a 

rational number towards a mathematically more correct one by characterizing the 

various intermediate states learners go through. Results showed that learners first 

develop an understanding of decimal numbers before they have an increased under-

standing of fractions. We also found that a first step in learners’ rational number un-

derstanding is an increased understanding of the numerical size of rational numbers.  

INTRODUCTION 

There is broad agreement in the literature that a good understanding of the rational 

number domain is highly predictive for the learning of more advanced mathematics 

(e.g., Siegler, Thompson, & Schneider, 2011). It is therefore worrying that many el-

ementary and secondary school learners and even (prospective) teachers face serious 

difficulties understanding rational numbers. An often reported source for the struggle 

with understanding rational numbers is the natural number bias, i.e., the tendency to 

(inappropriately) apply properties of natural numbers in rational numbers tasks (e.g., 

Christou & Vosniadou, 2009; Gomez, Jiménez, Bobadilla, Reyes, & Dartnell, 2014; 

Obersteiner et al., 2014; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013; 

Vosniadou, 2013).  

The literature reports at least three aspects of the natural number bias. The first aspect 

involves the numerical size of numbers. Learners often consider a fraction as two inde-

pendent numbers, instead of a ratio between the numerator and denominator. This in-

correct interpretation of a fraction can lead to the idea that the numerical value of a 

fraction increases when the numerator, denominator, or both increase, just like it is the 

case with natural numbers. For example, 1/8 can be judged larger than 1/6, just like 8 is 

larger than 6. Similarly, in the case of decimal numbers, some learners have been found 

to wrongly assume that, just like it is the case with natural numbers, longer decimals 

are larger, while shorter decimals are smaller. For example, these learners judge 0.12 

larger than 0.8, just like 12 is larger than 8 (e.g., Vosniadou, 2013). 

The second aspect concerns the effect of arithmetic operations. After learners did 

arithmetic with mostly natural numbers only in their first years of schooling, some 
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learners have been found to apply the rules that hold for natural numbers also to ra-

tional numbers, also in cases where this is inappropriate. These learners assume for 

example that addition and multiplication will lead to a larger result, while subtraction 

and division will lead to a smaller result. For example, they think that 5 * 0.32 will 

result in an outcome larger than 5 (e.g., Christou, 2015).  

The third aspect is density. Contrary to natural numbers that have a discrete structure 

(each natural number has a successor number; after 5 comes 6, after 6 comes 7, …), 

rational numbers are densely ordered (between any two rational numbers are always 

infinitely many other numbers). This difference in structure of both types of numbers 

leads to frequently found mistakes such as thinking that there are no numbers between 

two pseudo-successive numbers (e.g., between 6.2 and 6.3 or between 2/4 and 3/4 

(e.g., Merenluoto & Lehtinen, 2004). 

A lot of research on learners’ transition from natural to rational numbers has been 

described from a conceptual change perspective. This perspective argues that since 

children encounter natural numbers much more frequently than rational numbers in 

daily life and in the first years of instruction, they form an idea of what numbers are 

and how they should behave based on these first experiences with and knowledge of 

natural numbers. So, to overcome the natural number bias, a conceptual change revi-

sing these initial natural number based understandings is required. Conceptual change 

is considered to be not an all or nothing issue but a gradual and time-consuming pro-

cess, with qualitatively different intermediate states between the initial and the correct 

understanding (e.g., Vosniadou, 2013). 

While the natural number bias has generated a lot of research, empirical evidence on 

the development of learners’ understanding, i.e. their conceptual change from a natu-

ral-number-based towards a mathematically more correct concept of a rational num-

ber, is scarce. Nonetheless, it is important to investigate in detail how this development 

occurs. If general patterns can be found, a learner’s profile at a certain measurement 

point can predict its further development. From an educational perspective, such pro-

files can help teachers to provide effective instruction that is adapted to the specific 

knowledge and needs of their learners (Schneider & Hardy, 2013). 

THE PRESENT STUDY 

In the present study, we longitudinally followed the development of rational number 

understanding of upper elementary school learners in the crucial years of acquiring 

rational number understanding. The aim of this study is to make a theoretical contri-

bution to the research field by characterizing in detail the intermediate states of 

learners’ conceptual change from an initial natural number based concept of rational 

numbers towards a mathematically more correct one and by investigating whether 

these intermediate states have a consistent character across students or not. 
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METHOD  

Participants were recruited from four elementary schools and 11 classrooms in Flan-

ders, Belgium. In total 201 learners from fourth (n = 113) and fifth grade (n = 88) 

participated in this study and 50.2% of the participants were boys. Data were collected 

following the ethical guidelines of the university.  

Learners’ rational number knowledge was measured three times over the course of two 

school years, spanning a total time of 15 months: at the beginning (= Time 1, learners 

were in 4th and 5th grade), and end of Spring of the first school year (= Time 2, learners 

were in 4th and 5th grade) and at the end of Spring in the second school year (= Time 3, 

learners were by that time in 5th and 6th grade). According to the Flemish curriculum, 

learners should have acquired all knowledge about rational numbers that is measured 

in our test instrument at the end of the 6th grade.   

To measure learners’ rational number understanding, we used the Rational Number 

Knowledge Test (RNKT). This test was already used and validated in previous re-

search investigating the relation between learners’ spontaneous focusing on quantita-

tive relations and their rational number understanding (Van Hoof, Degrande, et al., 

2016). Table 1 displays examples of items for all three aspects.   

Density Size Operations 

How many numbers are there 

between 0.74 and 0.75? 

 

 

What is the smallest possible 

fraction? 

Which is the larger number? 

0.36 or 0.5 

 

Order the following numbers 

from small to large 

4/7  2/6  5/10 

Is 21 : 0.7 bigger or 

smaller than 21? 

 

2/6 + 1/3 = … 

Table 1: Examples of both fraction and decimal test items from the Rational Number 

Knowledge Test per aspect. 

ANALYSIS 

Data were analyzed using latent transition analysis (LTA). LTA is a longitudinal data 

analysis technique designed to detect unknown groups of participants and to model 

change in group membership over time through transition probabilities (Nylund, 

2007). In our study, the groups can be interpreted as developmental states in learners’ 

conceptual change, characterized by a specific answer pattern. Our LTA analyses were 

conducted in the statistical software Mplus version 7.2. We estimated the model pa-

rameters using the maximum likelihood estimation with robust standard errors. We 

restricted the number and nature of the states to be the same over the three measure-

ment points, reducing the number of parameters to be estimated and making it possible 

to compare the results across measurement points (Schneider & Hardy, 2012). There 

were no missing data. 
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RESULTS 

We opted for the six-state solution, based on the lowest AIC and BIC values and be-

cause it is the simplest model that still allows to differentiate between (un)successful 

conceptual change in all three aspects of rational number understanding.  

 

 Figure 1: Accuracy levels (in %) on all aspects of the RNKT per state. 

The mean accuracy scores on all subtests of the RNKT per state (see Figure 1) show, 

first, that learners in the ‘Initial’ state are characterized by an initial natural number 

based understanding of rational numbers. They have a very low accuracy on all sub-

tests, with a maximum subtest score of only 30.7% on decimal operation tasks. Second, 

learners in the ‘Emerging size’ state have low accuracy scores on almost all subtests. 

Contrary to the ‘Initial’ state, they already have some understanding of the size of 

fractions (mean accuracy = 52.2%) and of decimals (mean accuracy = 66.7%). On all 

other subtests, they score below 50% accuracy. Third, learners in the ‘Size decimals’ 

state are characterized by having a good understanding of the size of decimal numbers, 

performing almost perfectly on these items. Their mean scores on all other subtests are 

below 50%. Fourth, learners in the ‘Emerging operations’ state have developed a good 

understanding of the aspect of operations. Moreover, they developed a good under-

standing of the size of fractions, but still have a natural number based idea of the 

structure of rational numbers. This is shown by their accuracy scores on decimal den-

sity tasks (mean accuracy = 20.4%), but especially on fraction density tasks (mean 

accuracy = 2.8%). Fifth, learners in the ‘Emerging density’ state also have a good 

understanding of the size and operations aspect, but moreover developed already some 

understanding of the dense structure of rational numbers (mean accuracy decimal 

density tasks = 48.4% and mean accuracy fraction density tasks = 28.3%). Sixth, 

learners in the ‘Mathematically more correct’ state show a good understanding on all 

subtests, with a minimum subtest score of 68.1% on fraction operation tasks. 
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Interestingly, in every profile (except in the ‘Initial’ profile on size tasks) and in all 

three aspects of the natural number bias, learners score remarkably higher on the 

decimal than on the fraction tasks, indicating that understanding the size of decimals, 

operations with decimals, and decimals’ density is easier to achieve than understanding 

these three aspects for the fraction counterpart.  

As shown in Table 2, the number of learners in each state change over time. Both from 

Time 1 to Time 2 and from Time 2 to Time 3, a clear shift towards a better under-

standing of rational numbers is found: While half of the learners had an ‘Initial’ or 

‘Emerging size’ state on Time 1, this dropped to only 13% at Time 3.   

  Begin Spring Year 1 End Spring Year 1 End Spring Year 2 

 Grade4  Grade5 Total Grade4 Grade5 Total Grade5 Grade6 Total 

Initial 42 4 46 16 2 18 7 2 9 

Emerging 

size  

40 12 52 26 13 39 13 4 17 

Size 

decimals  

22 21 43 55 23 78 9 3 12 

Emerging 

operations  

3 27 30 5 32 37 65 59 124 

Emerging 

density 

6 19 25 9 9 18 12 6 18 

Mathema-

tically 

more 

correct  

0 5 5 2 9 11 7 14 21 

Table 2: Number of learners in each state over time  

As a second step in our LTA, we further characterized the general trend from the initial 

natural number based idea of a rational number (‘Initial’ state) to the mathematically 

more correct one (‘Mathematically more correct’ state). Therefore we had a look at the 

Latent Transition Probabilities (LTP) (see Table 3). Overall, the states stayed more 

stable from Time 1 to Time 2 compared to the stability over Time 2 to Time 3. This is 

not surprising given that there was less time between Time 1 and 2 than between Time 

2 and 3. Further, the ‘Emerging operations’ state stands out as being the most stable 

state. Learners who are in this group at Time 1 have 89% chance of staying in this 

group at Time 2. In the same line, learners who have the ‘Emerging operations’ state at 

Time 2 have 94% chance of having the same state at Time 3. This suggests that once 

learners at the end of elementary education have developed a good understanding of 

the operations and size with rational numbers, they most often do not develop further 

and hence do not yet have a good understanding of the dense structure of rational 

numbers. If we take a look at the highest latent transition probabilities, as they indicate 
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the transitions that occur most frequently, we see that from Time 1 to Time 2 learners 

from both the ‘Initial’ state and the ‘Emerging size’ state at Time 1 have a high chance 

of ending up in the ‘Size decimals’ at Time 2. This suggests that learners with an initial 

natural number based understanding of rational numbers at Time 1 first have an in-

creased understanding of the size of decimal rational numbers. In the transition from 

Time 2 to Time 3, learners from both the ‘Emerging size’ and the ‘Size decimals’ state 

have a very high chance of ending up in the ‘Emerging operations’ state. This shows 

that learners who have an initial natural number based understanding of rational 

numbers, except for the size of decimal numbers, are very likely to develop an in-

creased understanding of operations with rational numbers (both decimals and frac-

tions) and the size of fractions in a next step, while they still have an initial natural 

number based understanding of the dense structure of rational numbers. 

                T2 

T1 

Ini-

tial 

Emerg-

ing size 

Size 

deci-

mals 

Emerging 

opera-

tions 

Emerging 

density 

Mathemat-

ically more 

correct 

Initial 0.33 0.12 0.37 0.00 0.18 0.00 

Emerging size 0.06 0.29 0.53 0.00 0.10 0.02 

Size decimals 0.00 0.16 0.70 0.13 0.01 0.00 

Emerging operations 0.00 0.00 0.00 0.89 0.04 0.07 

Emerging density 0.00 0.12 0.06 0.17 0.45 0.20 

Mathematically more 

correct 

0.00 0.00 0.00 0.20 0.20 0.60 

                T3 

T2 

Ini-

tial 

Emerg-

ing size 

Size 

deci-

mals 

Emerging 

opera-

tions 

Emerging 

density 

Mathemat-

ically more 

correct 

Initial 0.33 0.22 0.16 0.28 0.00 0.00 

Emerging size 0.05 0.13 0.12 0.70 0.00 0.00 

Size decimals 0.01 0.00 0.10 0.72 0.13 0.04 

Emerging operations 0.00 0.00 0.00 0.94 0.00 0.06 

Emerging density 0.00 0.00 0.00 0.10 0.37 0.53 

Mathematically more 

correct 

0.00 0.00 0.00 0.29 0.00 0.71 

Table 3: Latent transition probabilities from Time 1 to Time 2 and from Time 2 to 

Time 3. 

While a large group of learners who have a good understanding of operations first go 

through the early states of a good understanding of size, no such developmental path is 

found in the transition probabilities in the group of learners with (good) understanding 
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of density. Very few learners of these qualitatively different group go through previous 

states. This suggests that the two states ‘Emerging density’ and ‘Mathematically more 

correct’ describe qualitatively different learners who understand density as opposed to 

the rest of the learners who do not see the dense structure of rational numbers. 

CONCLUSION AND DISCUSSION 

Our results add to our current theoretical understanding of the several different in-

termediate states going from learners’ initial natural number based concept of rational 

numbers towards a mathematically more correct one. The finding that six different 

profiles can be distinguished in learners’ rational number understanding shows that 

although all learners in our sample received similar rational number instruction, sub-

stantial individual differences could be found at every time point in learners’ con-

ceptual understanding of fractions and decimal numbers. It should be noted however 

that although we found several rational number understanding profiles and differences 

in learners’ learning trajectories, we also found that the number of rational number 

profiles (n = 6) and transition paths (n = 56, of which only 11 were frequent) was much 

smaller than the number of participants in this study (n = 201). This indicates that 

learners’ conceptual change from an initial to a more correct concept of rational 

numbers is constrained along certain patterns, and general developmental paths can be 

described. Based on the trends that we observed, we can characterize the development 

from the initial natural number based to the mathematically more correct idea of ra-

tional number as follows: First, learners develop a good understanding of the size of 

decimal numbers, followed by a good understanding of the size of fractions. Once 

learners have a good understanding of the size of rational numbers, they develop an 

understanding of operations with rational numbers (first decimals, then fractions). A 

qualitatively different group of learners also develops its understanding of the dense 

structure of rational numbers (first with decimals, then with fractions), without nec-

essarily going through the profiles of good understanding of size and operations. These 

findings are consistent with the integrated theory of numerical development (Siegler, et 

al., 2011), which states that understanding the numerical sizes of fractions forms a 

crucial step in the understanding of fractions. 

We continue with an important educational implication. From the theoretical back-

ground, we know that the process of conceptual change is gradual, time-consuming, 

and far from easy. Still, while instruction aimed at conceptual change in mathematics 

needs a lot of effort, research has shown that it can be successful under appropriate 

conditions. For example, curriculum designers should focus on a deep exploration and 

understanding of a few concepts instead of superficially covering a great amount of 

material (Vosniadou, 2013). The results of the present study show that a first step in 

learners’ rational number understanding is a good understanding of the size of rational 

numbers. Therefore, we would suggest that instruction in the beginning explicitly 

focuses on the numerical size of rational numbers before introducing the more ad-

vanced content, such as operations with rational numbers.  
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Important to note is, finally, that the notion of natural number bias should not only be 

associated with its adverse effect of learners’ prior knowledge on their further learning 

(Vamvakoussi, 2015). Using natural number knowledge acts as a facilitator too, 

namely in contexts that are compatible (congruent) with natural number knowledge. 

However, there is a need for a stronger awareness of the possible negative conse-

quences of introducing rational numbers without an explicit attention for both the 

similarities and differences with natural numbers.  
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More and more research suggests that proportional reasoning emerges already at a 

very early age in childhood. The present study aimed to investigate these abilities in 

four- to five-year-old children. A five-item proportional reasoning task involving 

discrete quantities was administered in 389 children. On average children could solve 

about one item correctly. An error analysis allowed to identify five answer profiles, 

showing that four- to five-year olds already systematically and meaningfully attempt to 

make sense of one-to-many and many-to-many correspondences. Our findings 

advocate for the presence of precursors of the one-to-many correspondence notion in 

most four- to five-year-old children. 

INTRODUCTION 

The development of proportional reasoning has been widely studied. Lesh, Post and 

Behr (1988) view proportional reasoning as a pivotal concept of children’s elementary 

school arithmetic and all that is to follow. Proportional reasoning is not only essential 

in the learning of numerous advanced mathematical topics such as algebra, geometry, 

statistics, or probability, people also encounter it in numerous daily life situations (e.g., 

if you need two cups of sugar in a recipe for four people, you’ll need four cups of sugar 

in a recipe for eight people). The concept of proportion is traditionally thought to be 

hard to apprehend for children. Resnick and Singer (1993, p.107) even said it is “one of 

the stumbling blocks of the middle school curriculum”.  

Development of proportional reasoning 

From a traditional Piagetian perspective the development of proportional reasoning is a 

rather late achievement. Piaget and Inhelder (1975) state that children cannot reason 

proportionally until the age of 11, because proportions are relations between quantities 

and, consequently, involve second-order reasoning or understanding the “relation 

between relations”. They argue that children have to achieve a formal-operational level 

of cognitive functioning to be able to think about proportional relations (Inhelder & 

Piaget, 1958). Many studies support this theory about the development of proportional 

reasoning (e.g., Schwartz & Moore, 1998; Noelting, 1980). Along this line of 

reasoning, Piaget and colleagues consider additive reasoning as prior to multiplicative 

reasoning (Inhelder & Piaget, 1958). This claim is supported by several studies 

revealing that children misuse additive strategies to solve multiplicative problems, 

especially when they have not yet received thorough instruction on multiplicative 

reasoning (e.g., Kaput & West, 1994; Karplus et al., 1983; Noelting, 1980). However, 
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other studies documented the inverse mistake, namely that of older children 

erroneously using multiplicative reasoning in additive problems or over-using both 

methods (Van Dooren et al., 2005, 2010). These latter studies imply that proportional 

reasoning may develop differently than suggested by Piaget and associates.  

Other empirical findings also support the idea that some proportional reasoning 

abilities may already be present at a much earlier age than assumed in the Piagetian 

view, even though the full concept of proportional reasoning may only be acquired 

later.  

Kouba (1989) presented six- to eight-year-old children with proportional reasoning 

problems such as “six cups and five marshmallows in each cup; how many 

marshmallows are there?”. Children paired objects and counted, creating one-to-many 

correspondences (e.g., to find the total number of marshmallows they pointed five 

times to each cup while counting). Other children used dealing or sharing strategies. 

Both strategies aim to establish a one-to-many correspondence. Kouba reported that 

43% of the children used appropriate strategies This level of success is modest, 

possibly due to the use of difficult ratios (e.g., 7:1, 8:1 and 9:1) (Kouba, 1989). Becker 

(1993) and Carpenter et al. (1993) used easier ratios (e.g., 4:1, 3:1 and 2:1) and indeed 

obtained considerably higher success rates in five-year olds, respectively 81% and 

71%.  

Nunes and Bryant (2010) point out that many children already use the schema of 

one-to-many correspondence even before being taught about multiplication and 

division in school. Indeed, Frydman and Bryant (1988) revealed that some children 

already at the age of five can use one-to-many correspondences to create equivalent 

sets. In their task the children were asked to give equivalent sets (of sweets) to the 

recipients (dolls) but the units in the sets were of a different value. One doll liked her 

sweets in single units, whereas another doll liked her sweets in double units. The 

children had to construct equivalent sets by giving two single sweets to the first doll 

and one double sweet to the second doll. The researchers observed that children 

between five and seven years became progressively more competent in dealing with 

one-to-many correspondences.  

Boyer et al. (2008; Boyer & Levine, 2012) presented six- to nine-year-old children 

with a proportional equivalence task. Children were asked to match a given mixture of 

juice and water presented in continuous quantities with a target mixture. Results 

indicated that they can match equal proportional mixtures The accuracy decreased as 

the scaling magnitude between the equivalent proportions increased (e.g., 1/4 and 2/8 

is easier than 1/4 and 3/12).  

Finally, Resnick and Singer (1993) also found that young children are able to reason 

about proportions. In one of their tasks five- to seven-year-old children had to feed fish 

of different lengths. Five- to six-year-old children (the earliest ages tested) could 

successfully perform proportional reasoning for discrete food (beads) and six- to 

seven-year-old children for continuous food (strips of ribbon). More specifically, they 
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tended to give proportionally larger amounts of food to larger fishes.  

The present study  

The major goal of the present study was to investigate the proportional reasoning 

ability of four- to five-year-old Flemish children who were in their third year of 

kindergarten. We were especially interested in the presence of early traces of 

proportional reasoning and in the nature of their reasoning in case it is incorrect. The 

study fits in a larger research project in which we longitudinally follow a large sample 

of children through kindergarten and the first years of primary school, in order to map 

the development of their proportional reasoning as well as several other key early 

mathematical competencies.  

METHOD 

Participants 

Seventeen schools (31 classrooms) were selected to represent the range of 

socio-economic backgrounds in Flanders. Parents of 410 four- to five-year-old 

children gave an informed consent to participate in the study. Data of 21 children 

(5,12%) are missing due to children moving away and changing schools, ultimately 

leading to a final group of 389 participants (200 boys, 189 girls) with complete data. At 

the moment of testing, their average age was five years, three months (range four years, 

two months to five years, eleven months).  

Design and materials  

Children were individually tested during three sessions of 30 minutes in the Autumn of 

2017, when they were in the first semester of their third kindergarten year. Children 

completed a large number of tasks addressing a variety of core mathematical 

competencies that were targeted in the longitudinal project. In this paper, we focus on 

the assessment of children’s proportional reasoning ability, and more specifically on 

the tasks involving two discrete quantities, which were administered in one session that 

took approximately 10 minutes. The results for the two other tasks addressing 

proportional reasoning – involving continuous quantities or a mixture of discrete and 

continuous quantities – are not included in this paper due to length restrictions.  

Our task was designed to measure children’s ability in reasoning about the 

proportional relation between two discrete quantities. An example item is shown in 

Figure 1. Mathematically speaking, in each item, children had to construct a set B 

equivalent to a comparison set A by putting the elements in set B in the same ratio as 

the elements in set A. In other words, the ratio on the left side of the expression has to 

be equivalent to the ratio on the right side in order to express the same, proportional 

functional relationship. Frydman and Bryant (1988), Kouba (1989) and Resnick and 

Singer (1993) used similar tasks in their studies. The two discrete quantities we used 

were puppets (wooden figures) and grapes (wooden green ovals). For example, in one 

of our items we asked the child: If one puppet got 2 grapes (set A: 1 puppet/2grapes) 
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how many grapes would you have to give to these 4 puppets (set B: 4 puppets/number 

of grapes unknown) for it to be fair?  

 

 

 

  

 

Three item features were taken into account in order to design the set of items for this 

task: the unknown quantity (puppets or grapes), the presence of a one-to-many 

correspondence or a many-to-many correspondence, and an increase or decrease of the 

involved numbers when going from A to B. Systematically varying these three features 

generated eight items (Figure 2). Ratios 1:2, 1:3 and 1:4 were used across the items.  

Because of the shorter attention spans in young children and limited available test time, 

we only administered the five - presumably - easiest items. The three more difficult 

items will be administered in the next test waves of our longitudinal study. Item order 

was determined by presumed increasing difficulty based on a rational task analysis 

(Figure 2). 

 
Figure 2: Items created for the proportional reasoning task with discrete quantities (p = 

puppets, g = grapes). The first 5 items (white boxes) were assessed in this study.  

RESULTS 

Not surprisingly, the task as a whole was difficult for most children at this age. On 

average children solved 1.07 (sd = 0.868) out of five items correctly. Two children 

(0.5%) got a maximum score of five, four children a score of four (1.0%), 13 children 

(3.3%) a score of three, 77 children a score of two (19.8%) and 196 children (50.4%) a 

score of one, leaving a substantial number of children (97, 24.9%) who solved none of 

the items correctly. 

Item 1, a one-to-many correspondence situation with an increase and the number of 

grapes unknown, was the easiest one. Most children (276, 71.0%) gave the correct 

answer. Item 3, a one-to-many correspondence with an increase and the number of 

Figure 1: Instruction and material of item 1.  

 

Instruction: “All puppets are equally hungry. If I give 

two grapes to this puppet, how many grapes do you have 

to give to these puppets for it to be fair? You can give 

the grapes to the puppets so that it’s fair.” 
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children unknown, turned out to be the second easiest item with 82 children (21.3%) 

answering it correctly. The other three items (item 2, 4 and 5) were far more difficult, 

with only 3% to 6% correct answers (Figure 3). Item 2, a one-to-many correspondence 

with a decrease and the number of grapes unknown, was a lot more difficult than item 1 

and even more difficult than item 3. A decrease in the involved numbers apparently 

made it more difficult to reason correctly than anticipated in our rational task analysis. 

 
Figure 3: Percentage correct per item. 

Answer categories  

Given that we wanted to show the early traces of proportional reasoning in children, 

and that we particularly wanted to qualify the nature of these traces, we did not simply 

count the number of correct answers, but also carried out a systematic error analysis 

per item. Based on this systematic analysis, we came to the following major answer 

categories: 

• “Correct answer”: the correct number of grapes (or puppets) is put in set B.  

• “One-to-one correspondence error”: a child gives one grape to each puppet in 

set B.  

• “Many-to-one correspondence error”: the wrong application of the 

one-to-many correspondence. A child takes the number of the questioned 

variable in set A and gives that number to every entity in set B (e.g., 2 puppets 

in set A altogether have 4 grapes so I give 4 grapes to each puppet in set B).  

•  “Left-right correspondence error”: a child gives the same number of the 

questioned variable in set A to the puppets in set B (e.g., altogether, in set A 2 

puppets have 4 grapes, so I give 4 grapes to the group of puppets in set B too). 

• “Additive error”: children apply the difference between puppets and grapes in 

set A to set B (e.g., in set A two puppets have four grapes, so the difference 

between puppets and grapes is two. I have to give eight grapes to the puppets 

in set B to create the same difference). This error is frequently described in the 

proportional reasoning literature (e.g., Inhelder & Piaget, 1958).  

In Table 1, these five answer categories are exemplified by means of Item 4. This table 

also shows how often each of them occurred.  
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Item 4  Frequency Percentage 

 

Correct answer: 12 grapes 25 6.4% 

One-to-one correspondence error: 6 

grapes 

49 12.6% 

Many-to-one correspondence error: 24 

grapes 

157 40.4% 

Left-right correspondence error: 4 

grapes 

28 7.2% 

Additive error:  8 grapes 4 1.0% 

Table 1: Examples of answer categories (for item 4) and number of occurrences.   

Answer profiles 

Based on this error analysis, answer profiles for the task as a whole were made. 

Children were assigned to a profile if they made the same type of answer on at least 

three of the five items.  

Following this procedure, five profiles could be distinguished (Table 2). One hundred 

and twenty-nine (33.2%) children belong to the many-to-one correspondence answer 

profile, which makes it the most common profile. The one-to-one correspondence 

answer profile got assigned to 32 (8.2%) children. About five percent of the children 

belonged to the left-right correspondence answer profile and the correct answer profile. 

None of the children had an additive answer profile.    

Answer profiles Frequency Percentage 

Correct answer profile 19 4.9% 

One-to-one correspondence answer profile 32 8.2% 

Many-to-one correspondence answer profile 129 33.2% 

Left-right correspondence answer profile 20 5.1% 

Additive answer profile  0 0% 

Table 2: Occurrence of the answer profiles.  

CONCLUSION AND DISCUSSION  

This study focused on finding early traces of the development of proportional 

reasoning, both in terms of children’s correct answers and in terms of the nature of 

their errors. Four- to five-year-old children were asked to solve five items on 

proportional reasoning with discrete quantities, long before they had received any 

instruction on proportional reasoning. Because of children’s young age and lack of 

instruction, the low average of about one item correct out of five items was not 

surprising. 

A first remarkable result was that almost three-quarters of the children solved item 1 
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correctly. This item consists of a one-to-many correspondence being given, and an 

increase of children whose number of grapes is unknown. The high accuracy on this 

item suggests that many children at this early age do already have a notion of 

one-to-many correspondence, confirming the results of studies of Frydman and Bryant 

(1988) and Kouba (1989).  

Despite the high accuracy on item 1 and the insight in one-to-many correspondence 

that many children showed, few children were able to solve one or more of the other 

items correctly. Several item characteristics such as the presence of a many-to-many 

correspondence (instead of one-to-many), or a decrease (instead of increase) of 

quantities apparently made it more difficult to reason correctly. Even the contextual 

variation (which has no mathematical implications as such) that the number of puppets 

(instead of grapes) is unknown, made the item considerably more difficult.  

Because we also wanted to get a better view on the nature of the children’s emergent 

proportional reasoning, a systematic analysis of their answers and answer profiles was 

conducted. This systematic exploration of wrong answers led to surprising results. 

Although Piaget and colleagues consider additive reasoning as emerging earlier than 

multiplicative reasoning (Inhelder & Piaget, 1958), we could not categorize any four- 

to five-year-old child in the additive answer profile. At the same time, we did find three 

other notable profiles, the most important of which was the many-to-one 

correspondence answer profile (in about one-third of the children). These children 

already have a notion of one-to-many correspondence but apply it incorrectly. This 

strategy can be seen as a meaningful initial attempt to make sense of the one-to-many 

and many-to-many correspondences.  

In sum, the findings stated above advocate for the emergence of a notion of 

one-to-many correspondence in most four- to five-year-old children, which seems an 

important early step in the development of proportional reasoning.  We were also able 

to show that many children exhibited specific types of reasoning that are erroneous, but 

that nevertheless can be considered as meaningful initial attempts to make sense of the 

one-to-many or many-to-many correspondence. These types of reasoning can be 

valuable starting points for instruction in the early years of primary education, where 

proportional reasoning may already be addressed in playful and meaningful contexts. 
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This paper reports the long-term results of an intervention study with 134 six-year-old 

students from seven preschool-classes in northern Sweden to evaluate whether the 

Think, Reason and Count in Preschool-class programme (TRC) could prevent at-risk 

students from becoming low-performing students in mathematics. Whereas the pre-test 

score revealed that the intervention and the control group preformed equally, scores 

on the delayed follow-up-test in Grade 3 showed that the intervention group performed 

better than the control group and that at-risk students had closed the performance gap 

between themselves and their not-at-risk peers. 

INTRODUCTION  

Because mathematics performance prior to starting primary school has correlation to 

later mathematics performance (Duncan et al., 2007), low-performers in early math-

ematics education tend to remain low-performers if they do not receive appropriate 

support (Geary, 2013; Morgan, Farkas & Wu, 2009; 2011). Sayers, Andrews & Björ-

klund Boistrup (2016) highlights evidence of that correlation and underscore that 

certain basic mathematics skills can predict later arithmetical competence and that 

these factors indicates a cross-culturally common phenomenon. In response, efforts to 

prevent future low performance in mathematics among low-performing students 

should be made before the students begin their formal education (Morgan et al, 2011). 

On a broader scale, to improve students’ overall performance in mathematics in edu-

cational systems, the most effective way is to reduce the number of low-performing 

students in general (OECD, 2016).  

In Sweden, the continued increase of low-performing students in mathematics de-

mands for methods preventing at-risk students from developing into low-preforming 

students (OECD, 2016). In general, the Swedish school-system is obliged to support 

students at risk of not achieving the national education goals. As researchers have 

suggested, if key components in mathematics could be addressed early in education, 

then low-performing students might remedy or at least not fall further behind (Gersten, 

Jordan & Flojo, 2005). The most successful method of preventing further 

low-performance has been early interventions before students begin their formal ed-

ucation (McIntosh, 2008; Duncan et al., 2007; Nunes, Bryant, Sylva & Barros, 2011). 

Furthermore, a critical point in mathematical development is the transition from in-

formal (i.e. preschool) to formal mathematical education (McIntosh, 2008). In the 
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Swedish school-system this transition occurs in preschool-class (age 6). Studies have 

shown that using the Think, Reason and Count in preschool-class (TRC) programme, 

developed by Sterner, Helenius and Wallby (2014), can improve students’ perfor-

mance in mathematics (Sterner, 2015). As an added benefit, teachers who use the TRC 

programme become more aware of their students’ mathematical development which 

helps them to identify at-risk students (Vennberg, 2015). In response to those findings, 

the purpose of our study was to examine whether the TRC programme affects students’ 

long-term performance in mathematics? 

BACKGROUND 

Low-performing student and at-risk students 

Swedish students’ mathematics performance in the Programme for International Stu-

dent Assessment (PISA) has gradually declined and Sweden’s proportion of 

low-performing students has the highest increase in comparison to all other countries 

that participated in PISA 2003-2012 (OECD, 2016). PISA scores show that 28% of 

Swedish students score below Level 2–the baseline level of proficiency in mathemat-

ics–and are thus considered to be at great risk of being or becoming low-performers. 

Van Luit & Van de Rijt’s (2005) standardised Early Numeracy Test, ENT is often used 

to identify students at risk of becoming low-performing students. ENT scores are 

grouped at five levels (i.e. Levels A-E), of which Levels D and E represent the first 

quartile of the lowest-performing students. Fuchs & Fuchs (2005) have suggested that 

students that perform in that quartile on standardised tests are at risk of experiencing 

difficulties with mathematics. In Sweden, attempts have been made to understand the 

declining scores in international evaluations (e.g., PISA and Trends in International 

Mathematics and Science Study) and why nearly 10% of students fail the Swedish 

national tests in mathematics administrated in Grade 3, 6, 9 or earn failing grades in 

mathematics, if not both (Swedish National Agency for Education, 2016). Because 

students can encounter obstacles in their mathematics development during the transi-

tion from informal to formal mathematical learning (McIntosh, 2008), it is imperative 

to focus on Swedish preschool-class, at the threshold of that transition. 

The Swedish context 

All children in the Sweden are required to begin attending compulsory school from the 

year they turn 7 and continue attending for 9 years. Preschool-class was introduced as a 

separate, optional form of schooling in the Swedish school system in 1998 (Swedish 

National Agency for Education, 2001) to bridge informal learning in preschool and the 

formal learning in compulsory school and to link these school forms differences in 

pedagogic, tradition and culture. Beginning in the Fall 2018, preschool-class, in its 

unique form, will be compulsory in Sweden and added as a separate form of schooling 

within the school-system (Prop. 2017/18:9). At the time of the study reported here, the 

preschool-class did not yet have a syllabus for mathematics. Nonetheless, the core 

content of the TRC programme aligns with the mathematics content of the syllabus in 
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the Swedish National Curriculum that currently regulate and control the pre-

school-class assignment (Swedish National Agency for Education, 2016a).  

Early interventions 

Research in international settings has shown that early intervention in students’ 

mathematics education can benefit their development in mathematics (McIntosh, 

2008; Duncan et al 2007; Nunes et al, 2011). A review of early numeracy interventions 

(Mononen, Aunio, Koponen & Aro, 2014) has shown that many interventions can aid 

at-risk students, although clear evidence of capacity to close the performance gap to 

their not-at-risk peers remains lacking. Nevertheless, it is suggested that the longer the 

effect of the intervention, the greater the odds that it can prevent students’ difficulties 

in mathematics. In this study reported here, we used the TRC programme (Sterner et 

al., 2014) as an intervention. The TRC programme aims at bringing forth the mathe-

matical abilities that are necessary to learn and perform mathematics (e.g. Kilpatrick, 

Swafford & Findell, 2001; NCTM, 2001). The TRC programme is evidence based and 

builds upon structured activities in mathematics in which students, both individually 

and in groups, meet, use, develop and reason about different representations of num-

bers. The activities are to be implemented with a specific teaching model. The TRC 

programme draws upon research that has been proven to be effective for stu-

dents-at-risk but is designed for regular teaching in all preschool-classes. Three design 

principles were combined to support teaching: structured activities with specific con-

tent, a modified circular teaching–learning structure based on the model of con-

crete–representational–abstract sequence of instruction and reasoning about the stu-

dents’ own documented work (Sterner & Helenius, 2015). 

AIM  

Studies from various countries have concluded that early interventions are crucial to 

prevent at-risk students from developing into low-performing students. However, re-

sults on whether such interventions have any positive long-term effects remain in-

conclusive. Therefore, we aim to investigate eventual longitudinal effects on students’ 

mathematical performance in Grade 3 (i.e. at 9 years old) after an extensive 

whole-class intervention in preschool-class (i.e. at 6 years old). We sought to answer 

three questions. RQ1: Does implementing the TRC programme have any effect de-

tectable in difference between pre- and post-test score? RQ2: To what extent does the 

TRC programme affect students’ long-term performance as measured by the Swedish 

national tests in mathematics in Grade 3? RQ3: How does pre-test performance levels 

(A-E) in mathematics prior to formal schooling influence the mathematics scores on 

such national test in Grade 3? 

METHOD 

Participants and Procedures 

The research design comprised a pre-test, an intervention, a post-test and a delayed 

follow up-test. The sample comprised 149 students from seven preschool-classes in 
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four schools in a midsize town in northern Sweden. Fifteen students who did not par-

ticipate in all three tests were excluded from the analyses. Hence, the data analyses 

included 134 students. The schools were chosen with the help of the municipality 

administration in order to achieve an equivalent selection based on socio-economic 

backgrounds factors. The classes were divided into an intervention group of four 

classes (n=79) and a control group of three classes (n=55). The mathematics teaching 

and content in the intervention group shifted into that of the TRC programme only, and 

the teachers attended a teaching development programme focused on the underlying 

mathematical theories and ideas of the TRC programme.  

Measures 

We assessed the students’ mathematical performance at three time points: prior to the 

intervention in November in preschool-class (pre-test, T1), immediately after the in-

tervention in June in preschool-class, (post-test, T2) and 3 years after the intervention 

in March, when the students were in Grade 3 (delayed follow-up-test, T3). The stu-

dents’ performance was assessed T1 and T2 by using the ENT (Van Luit et al., 2005) 

which is used in many countries to identify at-risk students and in studies comparing 

different countries (Aunio & Niemivirta, 2010). The ENT consists of two comparable 

parts, called A and B; ENT A was used as a pre-test (T1) and ENT B as a post-test (T2). 

The criterion to identify students at risk of becoming low-performers was a score in the 

25th percentile (i.e. Levels D and E) at T1. To determine whether the intervention 

helped to increase the students’ performance in mathematics in the long-term, we 

compered scores at T1 and T2 to scores on the Swedish national tests in mathematics in 

Grade 3 (T3). The Swedish national test in mathematics is compulsory for students in 

Grade 3, and its purposes are several. It is not only to support an equal assessment of 

students’ knowledge but also to provide a basis for analysing the extent to which 

knowledge requirements are met among schools across the nation. Although the test 

does not give a complete picture of students’ knowledge in mathematics, because not 

all areas in the syllabus are tested, the design is based on the curriculum, the syllabus in 

mathematics and the related knowledge requirements that describe the lowest ac-

ceptable level (PRIM-gruppen, 2016; Swedish National Agency for Education, 

2016b).  

Method of analysis 

An initial control analysis revealed that the exclusion of students that did not complete 

all three tests did not affect the comparability of the two groups. To determine whether 

the intervention had any detectable effect, a difference score was calculated as the 

progression between the pre- and post-test (T1 and T2). An independent t-test was 

conducted to measure whether any significant difference emerged in the progress of 

the two groups. An additional t-test was conducted to control for any difference in 

national test scores (T3) between the groups. Next, the groups were divided into four 

sub-groups according to the levels of their performance in mathematics at T1; 

sub-group Low comprised all at-risk students (i.e. Levels D and E). A graph showing 

the average progress across the tests for each subgroup was constructed, which allowed 
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us to investigate the group of at-risk students in greater depth. Because the number of 

at-risk students were small (n=10 and n=18) the difference was analysed by a 

non-parametric test, the Wilcoxon signed-rank test, which is considered to be robust 

with small sample sizes and eventual differences in variance. All statistical analyses 

were performed with the Statistical Package for the Social Sciences version 24.0. 

RESULTS  

Result of the initial t-test revealed a significant difference in progression between T1 

and T2 in favour of the intervention group (t = -2.098, df = 132, p = .038, g = .368). 

Results of the subsequent t-test indicate a significant difference between the two 

groups on the national test score as well (t = -2.113, df = 88.141, p = .037, g = .397), as 

shown in Figure 1a. 

a b 

  

Figure 1. (a) Mean scores for the national tests, T3. (b) Progress in scores on the three 

tests for each sub-group. Note. ILow=Intervention group, low-performers; 

CLow=Control group, low-performers; etc. 

We more closely investigated the difference in T3 by dividing the two groups into 

sub-groups based on the performance levels used to classify at-risk students in T1. A 

closer look at these sub-groups shows that the main difference between the groups in 

T3 is related to the at-risk students (Figure 1b). Results of a non-parametric test 

showed that the only significant difference in T3 scores occurred between the 

sub-groups with at-risk students–that is, ILow and CLow (Z = -2.376, p = .016). An-

other compelling result is that the at-risk students in the intervention group caught up 

to their not-at-risk peers and partly closed the performance gap, whereas the distance 

between the lowest quartile and the second-lowest quartile was constant over time in 

the control group. Those results indicate that the TRC programme works as intended 

and seems to have a lasting effect on the students’ performance in mathematics, as 

measured by scores on the national test in Grade 3. Clearly, such improvement among 

at-risk students does not negatively affect students who perform at higher levels. In 
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fact, some indications (Figure 1b) suggest that even students at the higher performance 

levels might benefit from the intervention as well as their at-risk peers.  

DISCUSSION 

We examined whether the early and extensive TRC programme, Think, Reason, and 

Count in preschool-class, exerted any detectable long-term effect on Swedish stu-

dents’ performance in mathematics as measured by the Swedish national test 3 years 

after the intervention. As in a previous study (Sterner, 2015), the intervention affected 

students’ performance and short-term progress, and the progress indicated by the dif-

ference in pre- and post-test scores was greater in the intervention group. That result 

could have stemmed from the fact that at-risk students were identified earlier 

(Vennberg, 2015) and that additional support was provided at a critical transitional 

point in the development of their mathematical thinking (McIntosh, 2008). Attention 

given to mathematical reasoning, which is a part of the TRC programme, could also 

have exerted an effect. Indeed, the ability to reason mathematically is one of the core 

competences of mathematics (Kilpatrick et al., 2001; NCTM, 2001), and practicing 

that ability can be the key component essential for mathematical progression (Gersten 

et al., 2005; Norqvist, 2016). This could be a key component in mathematics that could 

be addressed early so that low-performing students might remedy or at least not fall 

further behind their not-at-risk peers. The intervention group also performed better 

than the control group from the long-term perspective, as measured by scores on the 

national test in Grade 3. That result could derive from a factor other than the inter-

vention; however, a close look at the data did not indicate any distinct decline or in-

crease in individual class performance, which could signify an extraordinary poor or 

excellent learning environment. The preschool-classes were also chosen to ensure a 

similar representation of socio-economic background factors in the two groups, factors 

which did not change during the 3 years between T2 and T3. Although countless other 

factors could have influenced the students, but there is an indication that the TRC 

programme seems to have had a long-term effect on the participating students’ national 

test scores. Furthermore, the data suggest that the TRC programme affected at-risk 

students in the long-term. In the intervention group, such students had caught up with 

their not-at-risk peers, while such progress had not occurred in the control group. 

At-risk students in the control group remained low-performers in Grade 3, which 

confirms Duncan’s (2007) and Sayers’s (2016) conclusion that the mathemat-

ics-related knowledge students bring to school determines their later performance and 

grades in mathematics. Regarding practice, our findings imply that teachers and prin-

cipals need to dedicate time to implement the TRC programme in whole-class 

mathematics work in preschool-class. Such action could be the successful prevention 

before formal education to prevent future low-performing students as suggested by the 

results of several earlier studies (e.g., Duncan et al., 2007; McIntosh, 2008; Morgan et 

al, 2011; Nunes, et al., 2011). Additionally, since the longer the effect of the inter-

vention lasts the greater the odds that it prevents students from facing difficulties in 

mathematics, the TRC programme could improve the overall performance in mathe-
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matics in educational systems, because the most effective way to do that is to reduce 

the number of low-performing students (OECD, 2016).  

CONCLUSION  

Our findings indicate that consciously, systematically application of the TRC pro-

gramme in preschool-class can improve students’ long-term performance in mathe-

matics. In particular, participation in the TRC programme improved the possibilities 

for at-risk students to perform at the same level as their not-at-risk peers and such 

progress seems to have lasted. More detailed analyses of the scores of at-risk students 

on Sweden’s national test in mathematics can elaborate the differences in performance 

between and within the groups of at-risk and not-at-risk students, as well as identify 

factors that help at-risk students to avoid becoming low-performers later in their 

mathematics development.  
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The project we report from in this paper explores whether and how, biology students’ 

competence and confidence in – as well as appreciation for – mathematics in their 

discipline can be improved through greater integration of mathematics and biology in 

their study programme. Here, we examine biology students’ mathematical discourse as 

they engage with a biology-related Mathematical Modelling (MM) activity, the 

Digoxin task. We report commognitive analyses of data collected during sessions in 

which biology-related MM activities were introduced to undergraduate biology 

students (four sessions with 12 first-semester students). We focus on the interplay 

between students’ ritualised and exploratory engagement with the activity, 

particularly concerning graphing routines, and consider pedagogical implications.  

Much of university mathematics teaching is taking place in the context of study 

programmes not aimed primarily at mathematics students, but rather at students in 

other fields of study such as engineering or the natural sciences. Still, although 

research into the mathematical needs of students in such programmes has been 

conducted for quite some time (e.g., Kent & Noss, 2003), in much university 

mathematics education research the specialisms of participating students is little more 

than the backdrop of the studies (Nardi, 2016; Biza, Giraldo, Hochmuth, Khakbaz & 

Rasmussen, 2016). The present paper belongs to a small but growing number of studies 

investigating the mathematical education of non-mathematics specialists, and is 

concerned particularly with mathematical modelling (MM) for biology students. 

The increased importance of mathematical methods in biology is placing new demands 

on biology education, causing some researchers to suggest a greater integration of 

mathematics and biology in the curriculum (Brewer & Smith, 2010; Steen, 2005). 

Research on the use of MM in university biology education (e.g., Chiel, McManus & 

Shaw, 2010) indicates that engagement with MM activities can contribute to more 

positive attitudes towards, and self-perceived competence in, both biology and 

mathematics. In this paper, we report parts of a collaborative project between two 

Norwegian national Centres for Excellence in Higher Education in which we 

investigate patterns in Biology students’ MM activity, known in the language of the 

discursive perspective we espouse in our analysis – the theory of commognition (Sfard, 

2008) – as ritualized or exploratory routines.  
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Specifically, our aim in this paper is to investigate the interplay of ritualized and 

exploratory participation in the students’ MM activity in the context of a particular 

task, the Digoxin task. First, we introduce the theoretical underpinnings of our study. 

THE RITUAL-EXPLORATION DYAD IN COMMOGNITIVE THEORY 

According to the commognitive perspective ‘it is by reproducing familiar 

communicational moves in appropriate new situations that we become skillful 

discursants and develop a sense of meaningfulness of our actions’ (Sfard, 2008, p. 

195). Communication through written or spoken language, and manipulation of 

physical objects and artefacts, are the main means to the discursive ends of teaching 

and learning. Consequently, what distinguishes a discourse is a community’s word use, 

visual mediators, endorsed narratives and routines (ibid., p. 133–135). Specifically, 

routines are repetitive patterns in the discourse. Sfard defines three types of routines: 

explorations, deeds and rituals. A routine is called an exploration if its aim is the 

“production of an endorsed narrative” (p. 298). Deeds are routines that involve 

practical action, resulting in change in objects, either primary or discursive (p. 241). 

Additionally, there are routines that “begin their life as neither deeds nor explorations 

but as rituals, that is, as sequences of discursive actions whose primary goal […] is 

neither the production of an endorsed narrative nor a change in objects, but creating 

and sustaining a bond with other people” (p. 241). For Sfard, rituals are a “natural, 

mostly inevitable, stage in routine development” (p. 245). Hence, to some extent, 

rituals function as predecessors of explorations. Heyd-Metzuyanim, Tabach and 

Nachlieli (2015), have provided further means of distinguishing ritual and exploration. 

They write, for instance, that where “ritual participation is often focused on 

manipulation of mathematical symbols […] explorative participation talks about 

mathematical symbols in an objectified way” (ibid, p. 548), and where ritual 

participation emphasizes human action, “explorative participation concentrates more 

on mathematical objects and narratives (or truths) as existing in the world, alienated 

from any human action” (p. 549). 

METHODOLOGY 

Context and participants of the study 

The research design of the larger project comprises cycles of developmental activity 

(planning, implementation, reflection, feedback) which are theoretically informed, 

contribute to the emergence of theory and take place in a partnership between teachers 

(in this case, a university mathematician) and mathematics education researchers 

(Goodchild, Fuglestad & Jaworski, 2013).  The project, which is ongoing, is conducted 

at a well-regarded Norwegian university where biology students take a compulsory 

mathematics course in the first semester of their university studies. This is a generalist 

course catering to students from about twenty different natural science programmes, 

providing few opportunities for focusing on issues specific to biology. 
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The main part of the first cycle of the project, from which we report here, consisted of 

four three-hour sessions with a group of 12 volunteering students, concurrent with their 

mandatory first-semester mathematics course. The research team comprised three 

mathematics education researchers and one mathematician. All sessions were taught 

by a research mathematician with extensive experience of MM and consisted of brief 

lectures introducing various aspects of MM, followed by group work on MM tasks set 

in a biological context. The teaching was conducted in English, but most student group 

work and student contributions to group discussions were in Norwegian. There was 

little intervention from the research team in the students’ work on the tasks.  

Data collection and analysis 

All whole-group and small-group activity during the sessions was video and audio 

recorded, and then transcribed. In addition, much of the written material produced by 

the students was also collected. The first author, who was present at all four sessions, 

then produced condensed descriptive accounts of these since working with such 

condensed accounts makes potential patterns in the activity of the discursants more 

easily discernible. Both authors then examined these accounts, cataloguing episodes 

where one or more students focused on one particular routine, for instance, graph 

construction. We also looked for signs of ritual or exploratory engagement, making use 

of the general characterizations given by Sfard (2008), as well as the distinctions 

provided by Heyd-Metzuyanim, Tabach and Nachlieli (2016). For instance, we looked 

for signs of objectified discourse: whether the students talked about mathematics as 

performing operations on symbols, or in terms of properties of mathematical objects. 

We also tried to discern the aims of the routine use: could we, for example, see signs in 

the students’ discourse of engaging with the routine out of a sense of its relevance for 

solving the problem, or was it performed mainly because the students were expected to 

do so (out of obligation to the research team)? Further signs of ritualized routine use 

could be, for instance, a strong reliance on external sources for substantiation, rigid 

rule following and mimicking previously encountered routines without regard for 

relevance to the problem at hand. We also identified broader themes around which to 

organize the analysis. Next, the first author returned to the raw data in order to produce 

preliminary analytical accounts of the sessions. These accounts included data excerpts 

of all episodes relevant to the chosen themes, together with a preliminary analysis, 

including, for instance, the previously produced classification of ritualized and 

exploratory routine use. Finally, we selected a smaller number of episodes 

representative of the themes. In this paper, we will focus on one episode that illustrates 

the interplay of students’ ritualized and exploratory routine use, and how ritualized 

mathematical routine use can stand in the way of a more exploratory engagement with 

the larger MM task. To this end, we draw on data from the first part of the third session, 

where the students were working on a task concerned with modelling the decay in the 

body of Digoxin, a drug used to treat heart disease.  
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The Digoxin task 

The Digoxin task consisted of three parts: “(a) For an initial dosage of 0.5mg in the 

bloodstream, [a table given to the students] shows the amount of digoxin an remaining 

in the bloodstream of a particular patient after n days, together with the change Δan 

each day. Plot Δan versus an and explore the graph. Suggest a simple model based on a 

difference equation of the form Δan=k3an, where k3 is a positive constant. What is your 

choice of k3? (b) Now our objective is to consider the decay of digoxin in the blood 

stream to prescribe a dosage that keeps the concentration between acceptable levels so 

that it is both safe and effective. Design a simple linear model describing the following 

scenario: we prescribe a daily drug dosage of 0.1mg and know that half the digoxin 

remains in the system in the end of each dosage period. (c) Consider three different 

options where the initial one-time dose of medicine received by the patient is a0 = 

0.1mg, 0.2mg or 0.3mg. What are your conclusions? What would you recommend if 

you were this patient’s doctor?”  

For more detail on how this task fits within the broader set of activities in the sessions, 

and an analysis of the development of the mathematical discourse of one of the groups 

(the group labelled B in this paper) see (Viirman & Nardi, 2017). In what follows, we 

will look more closely at the work of two of the groups (labelled B and C) as they 

engage with part (a) of the task. In this part, after plotting the data, the students were 

expected to identify a linear relationship between the change and the amount of 

digoxin remaining, and then use the graph to estimate the proportionality constant. We 

note that there is a misprint in the task formulation: the constant k3 will be negative, not 

positive, a fact that was highly confusing for the students, as we will see. 

EPISODES FROM THE DIGOXIN DATA: GRAPHING ROUTINES 

The Digoxin task was intended as a continuation of a task from the previous session, 

concerning the growth of yeast in a petri dish. As reported in (Viirman & Nardi, 2017) 

Group B (all three groups, in fact) experienced great difficulty with that task due to 

ritualized engagement with a previously established graphing routine, using time as the 

independent variable. Hence, in the Digoxin task, it was clearly stated that the students 

should plot change against amount, and both groups B and C acknowledged this when 

beginning work on the task. Still, there was profound disagreement in both groups 

concerning how to construct the graphs, and in what follows, we will trace how they 

handled this disagreement, and how different forms of ritualized and exploratory 

routine use influenced their success with the task. 

Having agreed that the graph should plot Δan against an, the students in Group B all set 

out drawing their own graphs. Soon, however, the established graphing routine starts 

getting in the way: 

B2: Should n go on the x- or y-axis? (…) 

B4: But you don’t have to. It’s just Δan against an. Not n. 

B2: Isn’t it good to include it? 
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B4: You can’t have three. 

You can’t have that and 

that [indicating Δan and 

an]. 

B3: You could plot them in 

the same.  It will just be 

two different lines. Then 

we will see them against 

one another. 

B2: Yes, compare them. (…) 

B3: Since one is only plus 

and the other only minus. 

 

Figure 1: Graph by student B2. 

After more arguing, B2 and B3 decide to do a plot with time on the x-axis, and both Δan 

and an on the y-axis (see Figure 1). B1 is unconvinced, however: “Isn’t Δan just a 

function of an?” B3, continuing to argue her point, says that an and Δan will not interact, 

since one is positive and the other negative, meaning that they will end up in different 

parts of the coordinate system.  

Here, we can see how the established graphing routine hinders a more exploratory 

engagement with the task. At the same time, the students are not just blindly 

mimicking what they are used to doing. Instead, they make a serious attempt to fit what 

is being asked of them within their established routine. This leads to reasoning that is 

creative but mathematically unsound. Still, their engagement with the graphing routine 

suggests a limited grasp of the connection between the graph and the model, and the 

question of how to estimate the value of k3 from this type of graph is never raised. 

Instead, they again engage in an inventive but mathematically unsound routine, doing 

pointwise estimates directly from the table of data by dividing Δan by an for each 

consecutive value of n. Since the data displays an almost perfectly linear pattern, this in 

fact gives a good estimate of the value of k3. They do not appear particularly confident 

in their work, however. When realizing that the task asks for a positive constant, they 

do not attempt to justify their method, not even when B1, who had been working 

independently, building on her observation that Δan was a function of an, presents her 

graph, which shows a linear relationship between Δan and an with the corresponding 

slope. Rather, they try to come up with a way of adjusting the calculations so as to 

make the result positive, and when this fails they just opt for dropping the minus sign, 

in order to align their answer with what they see as expected. 

In their work, Group 3 display a similar disagreement regarding an acceptable way of 

constructing the graph. However, where B1 makes no attempt at convincing her fellow 

group members of her method, students C1 and C2 argue their respective positions 

strongly. (Two more students, C3 and C4, were also present, but much less active.) C2 

quickly abandons the idea of involving time in the graph, whereas C1 persistently 

argues for including it:  
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C2: But it says plot difference in an versus an. To plot those two against each 

other. 

C1: Yes, but why have they given us n, then? 

C2: I don’t know! (…) There have been some trick questions included before. 

C1: I think that we’re supposed to use it. 

However, C1 also states that “you should plot an against Δan”, suggesting that she is 

facing similar difficulties to B2, B3 and B4 with fitting this notion to her established 

graphing routine. Slightly later, she does indeed suggest the same type of graph as the 

one they constructed, with time on the x-axis, and both an and Δan on the y-axis.  

Having drawn their respective graphs, the students turn to estimating the constant k3. 

Like Group B, they do not consider using the graph for this purpose. Instead, C1 

suggests using the model they have been provided and solving for k3, again similarly to 

Group B. In doing so, they make an algebraic error, meaning that the values they 

calculate are in fact reciprocals of k3. When realizing that the task prescribes that the 

constant should be positive, at least C2 reacts quite differently to Group B: 

C2: No. It can’t be, because that [the amount of Digoxin] is supposed to 

decrease, and it cannot be negative. 

C4: Yes, but the graph can’t look like this, because here [pointing at the graph] 

is the amount, the amount in the blood after this time? 

C2: Yes, this [points at the x-axis] is the amount. And this [points at the graph] 

is the difference in amount. There’s less and less difference in amount. 

C4: But where is the time? 

C2: It’s not time. It’s milligrams. This [points at the x-axis] is milligrams, and 

this [points at the y-axis] is difference in milligrams. 

C1: I think you should have n on the x-axis. 

C4: But the difference in milligrams changes drastically, so there shouldn’t be a 

linear graph here. It should go like this almost [indicating with his hand a 

curve decreasing slowly at first and then more and more rapidly]. 

C2: No. This just shows that it decreases, in a way. I think. 

C4: But it doesn’t! 

C2: Yes, it does! I have plotted it! I have plotted it here, it’s all there. (…)  

[points at the formula], [the change] will always be negative because it 

always decreases. And then that [the amount] must be negative to get a 

positive number. So, for k3 to be positive, he would have to have negative 

milligrams in the blood. And that is impossible, so the answer must be 

negative. 

Here, C2 engages with the task in an exploratory manner. Notably, when authority (the 

task formulation) is in disagreement with his conclusions (the constant is negative), he 

resorts to substantiations both from the real-world (“negative milligram in the blood”), 
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and from the mathematical characteristics of the model (the graph, the formula), to 

argue the validity of his point. At the same time, he apparently does not consider the 

graph as anything more than an illustration of the data: “This just shows that it 

decreases, in a way.” He does not attempt to use it to estimate the value of the constant, 

or to judge whether the calculated value is reasonable. We also note how C1 and C4 

persist in arguing for using time as the independent variable. 

In the whole-class follow-up, the discrepancy between how the lecturer and the 

students viewed the graph as a discursive tool becomes apparent. Upon noticing the 

graph that C3 drew, the lecturer asks him to explain how they intended to use it. C3 

responds that they could see that there was a process of decay. The lecturer asks him to 

elaborate further: “What else? The shape of the graph, say?” C3 responds that it was 

linear, and the lecturer then asks about the slope. From this exchange, we can detect a 

difference in the way the lecturer and C3 engage with the graph. For the lecturer it is a 

tool that is key to engaging with the task; C3 sees it simply as an illustration.  

TOWARDS A PEDAGOGY OF HIGHLIGHTING CONNECTIONS 

In this paper, we have examined a particular episode of two groups of biology students 

engaging with a MM task, showing how different forms of engagement influenced 

their success in solving the task. The difficulties resulting from a ritualized 

engagement with graphing routines (Viirman & Nardi, 2017) were present also here, 

but we could also see development, with some students (B1 and C2 in particular) being 

able to engage with the already established routines in an exploratory manner, adapting 

them to the task at hand. In the case of Group B, this led to the group being able to at 

least partially solve the task (see also Viirman & Nardi, 2017), whereas Group C were 

not able to resolve the conflict between ritualized and exploratory routine use. At the 

same time, when faced with results seemingly at odds with the formulation of the task, 

Group B were unable to justify their routine use, whereas student C2 engaged with 

substantiation in an exploratory manner. Moreover, he did this using both 

real-world/biological and purely mathematical narratives, suggesting an ability to 

navigate between the two discourses. 

There were further indications of exploratory engagement with the task. Even those 

students who insisted on using time as the independent variable in their graphs did so 

without simply mimicking the established routine. Rather, they engaged creatively 

with it, inventing a new routine, which at the same time fit their expectations of what a 

graphing routine should look like, and the requirements of the task. Unfortunately, this 

new routine proved mathematically unviable. Similarly, lacking the mathematical 

tools to utilise the graphs for the estimation of the constant, both groups invented a 

numerical method for doing this. In the case of the Digoxin task, this method turned out 

to produce acceptable results. Later in the same session, however, they applied it on a 

much messier data set in the context of another task, and the results were highly 

unsatisfactory. The perceived need for developing such a graph-use routine also points 

to the important role of the teacher when engaging inexperienced students in MM 
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activities. For the lecturer, an experienced mathematician, it was obvious that the 

graph, properly constructed, is a carrier of information that can substantially support 

solving the task. For the students, however, it seemed to be merely a data illustration. 

They saw no connection between the request to plot and explore the graph, and the 

estimation of the constant k3. Were it not for this connection deficit, the students might 

as well have done pretty well on the Digoxin task. If our commognitive analyses are 

anything to go by, a pedagogy that steers attention to such connections is much needed. 
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From the very beginning of their history, mathematical objects have been developed in 

close relationship with the symbols they use. Starting from an epistemico-historical 

analysis of the development of algebraic notation, this article proposes a theoretical 

reflection on the interdependence between objectification and symbolisation that is 

specific to the mathematical thinking. Based on recent Radford’s recent definitions of 

learning and mathematical objects, it aims to develop the importance of symbolisation 

activities organised into chains of significations and of social interactions in 

mathematics learning conceived as a social process of objectification. It finally 

proposes an example of a classroom activity illustrating the theoretical principles.  

INTRODUCTION 

Right from the start, mathematics has developed in close relation to the symbols it 

uses. From the first markings denoting quantities on stone tablets to formal 

representations of imaginary numbers, the process of creating symbols has been 

inseparable from the emergence of mathematical objects and their development. From 

a learning perspective, ever since the dissemination of Vygotsky’s work in 

mathematical education, sociocultural approaches have considered mathematics 

discourse and its objects to be mutually constitutive (Font, Godina & Gallardo, 2013). 

Hence symbols, defined as any formal or informal written marking used to 

communicate mathematical reasoning, are elements in mathematics discourse; they are 

the mediating tools for communication, i.e. signs in the sense used by Vygotsky. For 

Vygotsky, it is indeed the appropriation of these signs that essentially marks the 

transition from elementary to more advanced activities. In the classroom, research 

literature has for many years highlighted the difficulties students face in using 

mathematical symbols such as letters, the equals sign, or the minus sign (Kieran, 1992; 

Vlassis, 2004). These difficulties are at least partially connected with teaching 

practices in which symbols are always presented in their definitive form and with the 

underlying implicit idea that they must be considered independently from the concepts 

they represent. This viewpoint often leads students to regard mathematics as the 

manipulation of meaningless symbols. 

The aim of this article is to present a reflection on the interdependence of mathematical 

objects and their symbolisation starting from an epistemico-historical analysis of the 

development of algebraic notation. This reflection is largely based on recent work by 
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Radford and by Font et al., which offer new approaches in terms of mathematical 

objects and learning. The originality of this article lies in the links that are established 

between these works on the one hand and the semiotic and activity theories on the 

other, leading to the structuring of activities into chains of signification rooted in 

specific classroom practices. It will make these principles more concrete by presenting 

a generalisation activity in the field of elementary algebra that is planned on the basis 

of this structure; this will also highlight the importance of social interactions and the 

teacher’s interventions during the activity to encourage the emergence of mathematics.   

THE HISTORY OF ALGEBRA: A CONCEPTUAL (R)EVOLUTION 

RESULTING FROM A MAJOR SYMBOLIC DISCOVERY 

The history of algebraic notation in the West is an illuminating example of the 

interdependence of symbolisation and conceptualisation in the development of 

mathematics. We will take a quick look at the history of algebra in order to understand 

the emergence of mathematical objects over the course of history. According to several 

authors (Harper, 1987; Kieran, 1992; Ifrah, 1994) the development of algebraic 

notation occurred in three main phases. The first phase was that of rhetorical language, 

in which natural language alone was used to solve problems which were very often 

related to agriculture, economic transactions or some other concrete situation. The 

second phase saw the development of a syncopated language. Diophantus’ major 

innovation was the idea of arithme: an indeterminate quantity of units. The conceptual 

change introduced by Diophantus with the arithme is that this unknown quantity is to 

be taken into account in calculations. His symbolic innovations consisted of 

abbreviated words. They proved necessary due to the limitations of writing at the time, 

as effective techniques for copying mathematical manuscripts more quickly. 

Diophantus’ advances took place in the context of solving problems related to the 

grouping of numbers (cubes, squares, etc.). This period saw increasingly extensive use 

of mathematical symbolism, which allowed ever more sophisticated operations to be 

developed that would have been impossible to carry out in words. Finally, in the third 

phase, symbolic language brought a radical change through the work of François Viète 

(late 16th century), with letters also starting to be used as parameters, i.e. as given 

quantities. Thanks to this symbolic language, it became possible to express general 

solutions and to use algebra as a tool to demonstrate the rules governing numerical 

relations. Ifrah points out that this is what made possible the emergence of other 

mathematical concepts, such as that of functions – a discipline which today constitutes 

one of the foundations of applied mathematics – as well as the algebraisation of 

analysis and the rise of analytical geometry. 

THE IMPORTANCE OF SYMBOLISATION IN THE LEARNING OF 

MATHEMATICAL OBJECTS  

The preceding analysis shows how mathematics is a human and social construct which 

undergoes constant change, and in which symbolism has played a key role in the 

emergence of more and more sophisticated mathematical concepts, making it possible 
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to solve increasingly complex problems set in a given socio-cultural context. While our 

purpose here is certainly not to assimilate the ontogenesis of mathematical objects with 

a kind of phylogenesis, we will follow Radford (1997) in postulating that a certain 

parallelism exists between the two; however, this has more to do with the order of the 

process rather than the knowledge of the facts in themselves – a process in which 

symbolisation and conceptualisation interact in order to solve a specific problem in a 

given socio-cultural context. This section first presents a redefinition of the learning 

process on the basis of a definition of mathematical objects proposed by Radford 

(2008) and then explores the importance for learning, of symbolisation activities and, 

more broadly, of signs and chains of signification in the emergence of mathematical 

objects. 

Mathematical objects and learning 

According to Radford (2008, p.223), ‘learning is not about constructing or 

re-constructing a piece of knowledge, but rather about actively and imaginatively 

endowing the conceptual objects that the students find in his/her culture with 

meaning’. This is what he calls a process of objectification, that is to say a social 

process of progressive awareness of a cultural object, for example a figure, shape or 

number, the general characteristics of which we gradually perceive at the same time as 

we give it meaning. This definition involves clarifying the nature of mathematical 

objects. According to Radford (2008, p.222), ‘mathematical objects are fixed patterns 

of reflexive activity incrusted in the ever changing world of social practice mediated by 

artefacts’. This understanding of mathematical objects is in fact quite close to 

Vygotsky’s definition of concepts (1997) according to which ‘from the psychological 

angle, a concept is at any stage of its development an act of generalisation’. Both 

Radford and Vygotsky put an emphasis on action (‘activity’ in Radford / ‘act’ in 

Vygotsky) as well as on generalisation (‘pattern’ in Radford / ‘generalisation’ in 

Vygotsky). Moreover, both seem to suggest that a concept/object is not monolithic, but 

may be composed of several levels of development: Radford (2008, p.226) adds that 

‘the conceptual object is an object made up of layers of generality’. In the context of 

this article, we will consider mathematical concepts and objects in a very similar way. 

Radford also speaks of ‘conceptual objects’ and does not make a clear distinction 

between the two ideas.  

Another important point here is that Radford places special emphasis on the idea that 

objects are ‘incrusted’ in mediated social practices. He argues that access to 

mathematical objects is only possible via the social and mediated activity that requires 

them. In other words, social interactions and the mediating tools of communication, 

such as symbols, are consubstantial with learning. Similarly, Font et al. (2013) note 

that mathematics is a human activity and that the entities involved in this activity (i.e. 

objects) emerge from the actions and discourse through which they are expressed and 

communicated. The authors use the term ‘emergence’ intentionally in this context to 

emphasise the fact that these objects emerge from the practices of individuals. They 

must not be regarded as independent of people, of the language used to describe them 
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or of their representations. This is why, in the view of Radford (2011), it is incorrect to 

say, as several authors have done (for example, Duval, 2000; Sfard, 2000), that access 

to objects is only possible via their representations. Access to these objects, according 

to Radford (2011), is not just a question of representation: rather, such access is only 

possible through the social and mediated activity that requires it.  

Symbols, signs and mathematics classroom activity 

From the point of view of symbols and signs, this emphasis on the mediating tools of 

an activity leads us to turn to semiotic theory in order to refine our understanding. Like 

Radford (2013), we would draw attention to the fact that the idea here is not to produce 

a mere amalgam between semiotics on the one hand and socio-cultural approaches on 

the other, but to use the foundations of the former to express (or even transform) the 

presuppositions of the latter. Thus, on the basis of semiotics, in this section we offer a 

definition of a sign and a reflection on the development of the chains of signification 

that flow from this definition. In the work of semioticians (Lacan/Saussure, cited by 

Gravemeijer, 2002), a sign is generally taken to consist of a ‘signifier’ and a 

‘signified’. This definition of a sign is modelled by the circle representing these two 

inseparable dimensions of a sign as shown in Figure 1 below.  

 

Figure 1: Proposed definition of a sign including the idea of activity. 

However, taking into account the importance of activity as explained in the previous 

point, this conception of a sign cannot be considered adequate. It should be 

remembered that for Radford (2008), it is mediated social activity that allows access to 

mathematical objects, while for Font et al. (2013), objects emerge from individuals’ 

practices. In sociocultural approaches, a sign is never an entity in itself: it exists and 

makes sense in the context of a specific activity, and is produced in order to achieve a 

given objective (Radford, 1998). In this article, we will retain the basic definition of an 

activity put forward by Radford (1998). He claims that an activity has two important 

characteristics: 1) it is mediated by signs and therefore embedded in a culture, and 2) it 

is focused on a goal. Thus, from our point of view, a sign is defined by a signifier and a 

signified in close relation to each other, mediating a given activity focused on a goal. 

This is why we propose to add to the representation of a sign proposed by semiotics by 

setting it in the midst of the activity in which it is produced (see Figure 1). 

Signs and chains of signification  

In the context of learning activities, Gravemeijer and Stephan (2002) have defined 

different stages of symbolisation constituting a chain of signification (see also 

Presmeg, 2006) in which the basic component is the sign. The development of signs in 



Vlassis & Demonty 

 

PME 42 – 2018 4 – 375 

a chain of signification implies that the new signified encompasses the original sign, 

while the signification of the original sign changes in a progressive process of 

mathematisation that is increasingly abstract. This development of the sign is made 

necessary by activities of increasing complexity, as in the history of mathematics 

where symbolisations developed in step with the problems that were addressed and 

inversely. These chains of signification constitute a framework which we believe to be 

suitable for structuring a mathematical activity a priori by defining beforehand a 

structured learning trajectory on the basis of symbolisations of increasing complexity 

which permit different levels of generality of the mathematical objects. The advantage 

of this process, according to Presmeg (2006), is that at every point in the chain there is 

the possibility for students to go back, including to the very first actions. It should be 

noted that Gravemeijer and Stephan (2002) emphasis the idea that the development of 

signs emerges with the development of activities in the classroom. Surprisingly, 

however, their initial schematic presentation of a chain of signification fails to take this 

dimension into account. This is why we have adapted it to our definition of a sign, 

including signs in the context of evolving activities. In the next point we offer an 

example of a chain of signification that we have adapted to this context and which 

creates a structure for a learning environment on generalisation (see Figure 3).  

AN EXAMPLE OF A CLASSROOM ACTIVITY  

On the subject of ‘activity’, Radford (2016) makes a distinction between the activity as 

planned and the activity as it unfolds. He believes that an activity cannot be reduced to 

a description on paper, just as a symphony cannot be reduced to its score. For Radford, 

the score, as the activity described on paper, is something ‘general’ which presents 

‘potential’. But mathematical objects will only become objects of consciousness, 

feeling and thought when this general aspect is deployed and transformed into 

something ‘sensible’. The ‘singular’ is the appearance of the ‘general’ through the 

mediation of human activity. Thus, starting from the same ‘general’ entity (i.e. the 

written description of an activity), the activity that takes place in the classroom can 

lead to very different results depending on how the students and teachers engage in the 

discussions, how agreements and disagreements are managed, etc. and ultimately 

depending on the richness of the interactions that take place within the classroom. 

Description of the activity 

In our experiment we used a generalisation activity called ‘Antoine makes some 

mosaics’ based on the ‘manufacturer problem’ (Bednarz, 2005), in two classes in early 

secondary education (grades 7 and 8). This type of environment is considered 

potentially rich for developing algebraic thinking. The main mathematical objects 

involved in this activity were the formula and the variable. The situation was presented 

using pictorial representations: a mosaic composed of coloured squares inside and a 

border of white squares. Figure 2 below shows two mosaics given as examples to the 

students. 
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Figure 2: Two models shown to students in ‘Antoine makes some mosaics’. 

The questions which accompanied this activity involved asking students to find a way 

to determine the number of white border squares for any number of coloured squares 

along one side (n). The situation implied a progression along a chain of signification 

starting with concrete material (small cubes) used to work out the number of white 

border squares (n = 5) (question 1). Students were then asked to produce a calculation, 

initially for a small number of squares (n = 7) (question 2) and then for a larger quantity 

(n = 33) (question 3). Finally, students had to find a general solution, which must be 

expressed first in everyday language (question 4) and then in mathematical language 

(question 5). Several ‘formulas’ could emerge, reflecting different visual 

presentations. Thus the activity was structured according to a chain of signification 

presented in Figure 3 below:  

 

Figure 3: Chain of signification for the activity ‘Antoine makes some mosaics’. 

The social interactions at the heart of the dialectic between objectification and 

symbolisation 

It is obviously impossible to discuss all the results of these experiments in this article. 

Figure 4 below presents two formulas very frequently produced by students in 

response to question 5. These formulas corresponded to the visual presentation of the 

border of white squares in terms of 2 (n + 2) + 2n, i.e. two long sides (2 x (n + 2)) and 

two short sides (2 x n).   
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 Formulas produced by students for question 5 

1  
2 

 
Figure 4: Examples of formulas produced by students for question 5. 

In example 1, the formula, although still contextual, correctly identifies the variable as 

‘indeterminate’ (Radford, 2014), and the status of the formula as an act of 

generalisation. In example 2, by contrast, students are not yet fully aware of the 

variable: they express the two different lengths using different letters. In the classroom, 

this process of awareness did not occur spontaneously in the groups: it was only 

achieved later on, thanks to the teacher’s input, followed by discussions within these 

groups, the checking and refining of hypotheses using cultural artefacts (returning to 

actions with the material, and to the meaning of the operations produced in questions 2 

and 3), etc. Radford (2008) emphasises in this regard that ‘the investigation of the 

students’ and teachers’ interactions and use of semiotic means of objectification is 

indeed a methodological strategy to account for the processes of learning in the 

classroom. It provides a broad, but sufficiently specific, frame with which to track 

students’ progressive acquisition of cultural forms of mathematical being and thinking’ 

(p. 227). 

FINAL CONSIDERATIONS 

These observations which have just been briefly described highlight the value of 

developing activities which, both in the way they are structured beforehand and in their 

occurrence in the classroom will encourage the simultaneous emergence of 

symbolisation and mathematical objects in a social process of progressive awareness. 

Note that authors such as Warren and Copper (2009) speak more of a teaching-learning 

trajectory than of a purely learning trajectory, in order to bring out the idea that the act 

of teaching is as important as the learning trajectory that has been planned beforehand. 

Thus, these activities designed according to the principles discussed in this article will 

allow students to assign meaning to mathematical objects, but also to broaden their 

understanding in a variety of usage contexts, thus encouraging levels of generality that 

are increasingly abstract and detached from the initial settings. In no case is there any 

question of confining students to their informal attempts and symbolisations. On the 

contrary, the aim is to use these as a lever in a social and gradual process of 

objectification-symbolisation in close interaction, similar to that which has occurred 

naturally in the history of mathematics.  
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Following literacy frameworks, one aim of educational policy is to prepare students 

for their professional lives. Vocational training for industrial clerks, which relies on 

mathematical competence, is of high interest for mathematics education. One specific 

question is which role school-acquired mathematical competence plays in vocational 

training. It is suggested that mathematical competences connected to vocation-related 

mathematics may be a link between demands of general and vocational education. We 

designed problems that mirror these different demands and conducted an interview 

study with trainees as industrial clerks. The results show that the trainees’ knowledge 

application differed for the different types of demands so that the approach enabled us 

to reveal qualitative differences between general and vocation-related mathematics. 

THEORETICAL BACKGROUND 

Following common literacy frameworks, one specific goal of general education is to 

prepare students for their professional lives. However, problems of transition from 

general to vocational education are known in many countries irrespective of the 

specific educational system (cf. OECD, 2000). In Germany, for example, there are 

growing difficulties of matching training place supply with training place demand 

across almost all vocational fields and there is a high dropout rate (25%) in vocational 

training with approximately one third of the dropouts during the first year (BIBB, 

2017). Accordingly, it is important to gain more insight into the demands of vocational 

training and into the conditions for vocational preparation that are set within general 

school education.  

Empirical investigations that address the transition from school to vocational training 

from a subject-specific perspective would help to understand the specific challenges 

trainees experience when transitioning to vocational education. However, educational 

frameworks for school education and vocational education are mostly not strictly 

commensurable. From the view of mathematics education, a starting point to investi-

gate the transition problems is to focus on vocational training programs in which 

mathematical competences are of central importance. Vocational education standards 

show that particularly merchants and specifically industrial clerks face rich mathema-

tical demands in professional training (e.g., KMK, 2002 for the German situation). 

These professions are, therefore, at the center of our attention.  
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Due to the major structural differences of the systems of school and vocational edu-

cation we focus the individual level of students and trainees. We ask in which way the 

differences of the two systems in terms of mathematical demands can be seen as a 

continuity or discontinuity from the perspective of the individual learner. In particular, 

we ask what kind of mathematical knowledge do trainees as industrial clerks apply 

when dealing with parallel mathematical problems in a vocational and a 

non-vocational context, so that possible discontinuities can be elicited.  

Characterizing the educational context of this study 

The German education system allows different ways to gain access to vocational 

training. After at least nine years of compulsory education in primary and secondary 

school, the students should possess the necessary competences to start a vocational 

training. However, for specific occupational fields, 10 or 12 years of schooling are 

required as access to vocational training. Vocational education in Germany is orga-

nized in the so-called dual system combining theory (vocational school) and practical 

work (individual training with a training supervisor at the workplace). 

Approximately 60% of the training contracts each year fall within the commercial 

field. The dual vocational training for industrial clerks, which we focus in our study, is 

constantly over years among the most important training tracks in the commercial field 

(BIBB, 2017). The vocational training standards require a substantive part of the 

3-year training time to be used for economics and mathematics contents (KMK, 2002). 

These contents fall into the economical categories of cost accounting, performance 

calculation, depreciation, and financing/investment. From an inner-mathematical point 

of view, they can be seen as applications of the rule of three and percentage calculation, 

which are contents belonging to lower secondary mathematics education. The 

difference between both implementations of the same mathematics is that in vocational 

education, the contexts are specific for industrial clerks, what is reflected amongst 

other in a specific terminology such as break-even point.  

Although, the context where we investigate this transition from school to vocational 

training is coined by a specific national education system, this research is of wider 

interest from two perspectives: First, it specifically focuses on the (non-)compatibility 

of educational frameworks that built on ideas of literacy vs. frameworks that are 

oriented more narrowly on vocational demands, what is pertinent to many educational 

systems. Second, from a broader perspective, the approach can serve as a model how 

mathematics education can address questions with relevance for educational policy 

decisions related to incommensurable conceptions of (mathematics) education by 

refocusing from the system to the individual level. 

To sum up, if general mathematics instruction should prepare for vocational training, 

the commercial field in general, and in particular industrial clerks, can be seen as 

especially important to provide a good starting point for research in transition 

conditions. Overlooking a successful transition to vocational training, it can lead to a 
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better understanding of goals of general education against the mathematical require-

ments that are given through the specific demands of vocational trainings. 

From general mathematical competences to vocational competences 

Educational contexts of general and vocational education differ in many aspects, 

resulting in fundamentally different task requirements in general education and 

vocational training. Nickolaus et al. (2013) tried to characterize the transition from 

general education into vocational training in Germany by contrasting and synthesizing 

the models of competence from a domain-specific point of view. On the one hand, 

future trainees leave school with “general mathematical competences” (in the sense of 

literacy-conceptions) according to the educational standards for mathematics as a 

subject. On the other hand, vocational training aims at “vocational competences” (in 

the sense of action competence) defined by specific demands that are necessary for the 

pursuit of a profession (e.g., Winther & Achtenhagen, 2009).  

According to literacy-conceptions, however, future trainees should already acquire 

mathematical competences at secondary school that prepare for the successful parti-

cipation in vocational training. The theory of cognitive flexibility supports the practice 

of integrating differing contexts into mathematical education in order to support the 

acquisition of rich, applicable, and flexible (mathematical) knowledge and compe-

tences (Spiro et al., 1988). Hence, students are expected to possess initial “voca-

tion-related mathematical competences” so that it is an aim of general education that 

basic tasks related to vocational contexts can be solved (Nickolaus et al., 2013). 

From a theoretical point of view, the “vocation-related mathematical” competences are 

seen as overlapping the other competence areas: They can be understood as being part 

of the general mathematical competences, subject to general education. Equally, they 

should serve as the base of the vocational competences that will be developed during 

vocational training. From a theoretical perspective, such “vocation-related mathe-

matical competences” should facilitate transition processes as they function as link 

between competence acquisition in school and in vocational training. From an empi-

rical perspective, it is unclear if this theoretical differentiation is relevant in the sense 

that “vocation-related mathematical competences” can actually be delineated as a 

being to a certain extent self-contained and not necessarily part of general mathema-

tical competences.  

RESEARCH QUESTIONS 

Among others, literacy frameworks for mathematics secondary education aim for the 

preparation for professional life, especially vocational education. Thereby, the vocatio-

nal field of industrial clerks offers a high proportion of mathematical contents and is 

predestined to investigate conditions of transition from secondary education into vo-

cational training. Furthermore, vocation-related mathematical competences were seen 

as being a potential mediator between general mathematical competences acquired in 

school and vocational competences to be acquired in vocational training. A first 
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quantitative study from Siebert and Heinze (2014) points to an empirical separability 

of general mathematical and vocation-related mathematical competences for trainees. 

What remains unexplained so far is whether this separability can indeed be attributed 

to the application of different competences that were acquired in general and 

vocational educational contexts. Hence, we aim at addressing this possible explanation 

through the following research question: 

• What knowledge do trainees as industrial clerks apply when dealing with 

mathematics-related problems in a vocational context? 

METHOD 

We implemented a three-stage research procedure aiming at the applied knowledge of 

trainees as industrial clerks in different (vocational and non-vocational) demands. At 

first, we developed three pairs of contextualized mathematical problems. Each pair 

comprises one problem with a vocational context of industrial clerks and one problem 

with an isomorphic mathematical structure and the same mathematical content in a 

non-vocational context. Both problems can be solved by applying general 

mathematical competence acquired in secondary school. Second, these problems were 

solved by N = 42 trainees as industrial clerks. The results of the testing informed the 

selection of a subgroup of trainees with high differences in test scores between the two 

types of problems and a control group with low differences. Third, these trainees 

participated in a subsequent guided stimulated recall interview study with the aim of 

investigating whether the differences in testing results can be explained by difference 

in the kind of knowledge applied.  

Problems used in the assessment 

As the starting point, we picked three complex problems of the collection for the final 

examination for trainees as industrial clerks from the German Chamber of Industry and 

Commerce. There was one problem consisting of three and two problems consisting of 

two subtasks. These problems contained mathematical and technical contents 

appearing during the first two years of vocational training for industrial clerks and, 

therefore, focused on vocation-related mathematical competences. We modified the 

tasks to receive parallel problems with different outer-mathematical contexts but kept 

the inner-mathematical content and structure.  

For example, problems 3 and 6 deal with different tasks for the application of 

percentage calculation. Problem 3 looks at selling computer tables from the 

perspective of an industrial clerk. Price calculation, production costs and profit 

deviation are key terms for solving that problem. In contrast, problem 6 asks for the 

same calculations while regarding and comparing numbers of unemployment in two 

different districts from an external perspective. Thereby, the applied commercial terms 

are replaced by questions about, for example, the deviation of unemployment numbers 

so that other contexts of general interest, that are not located in the specific vocational 

field, were realized. 
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To check whether the designed problems are – as intended – parallel, the complexity 

and the demanded competences for the problems were classified using the framework 

of the German national educational standards. The classification of all six problems 

was realized with a multi-step classification process by experienced raters including 

the co-authors of this research report and led to an almost complete accordance 

between each of the three problems with vocational context and their parallel problems 

with non-vocational context. Thus, despite minimal deviation regarding the 

requirements of one pair of problems the parallelism of the problems in respect to 

mathematical demands can be assumed.  

Test administration 

The six problems were administered to a group of N = 42 trainees as industrial clerks 

from second (N1=18) and third (N2=24) year in a German vocational training track. 

Further, we applied a dichotomous 0-1-scoring to each subtask. Since we wanted to 

compare the three problem types, we standardized the score for each problem due to 

the different number of subtasks. Table 1 shows the descriptive results of the 

standardized test scores. The scores for the pairs of parallel problems (pairwise and in 

total) indicate that the vocational (problems 1-3) and non-vocational (problems 4-6) 

context has an influence on the solution rates and therefore offer a solid basis for the 

stimulated recall interview study. 

M 

(SD) 

Problems with vocational 

context 

Problems with non-vocational 

context 

Problems 1 & 4 .71 (.24) .58 (.30) 

Problems 2 & 5 .42 (.25) .51 (.37) 

Problems 3 & 6 .60 (.35) .62 (.36) 

Total (N=42) .56 (.17) .56 (.25) 

Table 1: Mean (standard deviation) for the standardized scoring of trainees as 

industrial clerks (N=42). 

In preparation for the interview study, we selected nine trainees from second and nine 

from third year of vocational training. These trainees either reached a significant better 

or a significant worse scoring on the three problems with vocational context (six 

trainees each). In addition, we selected a control group of six trainees showing only 

small differences. This theoretical sampling led to a heterogeneous group of test 

persons for the interviews. 

Guided interviews and qualitative content analysis 

For the implementation of stimulated recall interviews focusing on the applied know-

ledge of the trainees as industrial clerks, we developed a partially standardized ques-

tionnaire. In addition to questions about the solution process and noticed difficulties, 

we asked which knowledge they used to solve the problem and where they learned that 

knowledge (e.g., secondary school, vocational school, training supervisor). Due to 

time limitations, we restricted the questions related to the individual solution process to 
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the three problems with vocational context. Additionally, the interviews included 

questions about the perceived differences and similarities between the parallel 

problems in order to investigate if the differences (or parallelities) are relevant for the 

individual trainees.  

According to the qualitative method of content text analysis (Schreier, 2012), we set up 

two main categories of classification for the evaluation of the interviews. The category 

solution process deals with the self-reported knowledge the trainees applied while 

solving the problems. This category aims at analyzing the applied knowledge in-

directly. Concurrently, the category knowledge acquisition relates to the source of the 

applied knowledge directly. Both categories could occur either as a vocation-related or 

a general education specification. Furthermore, we set a third specification (unknown) 

for answers not falling into one of the two other specifications. 

For nine interviews (50%), the coding was conducted by two trained raters indepen-

dently. High values of interrater reliability (percentage agreement: p0 = .91, Cohen’s 

Kappa: κ = .89) indicate a high level of objectivity of the coding.  

RESULTS 

The qualitative content text analysis reveals insights into the applied knowledge of the 

trainees when working on the problems. Some of the answers showed a solution 

process with a vocation-related specification indicated by specific terms from the 

vocational field of industrial clerks: 

Interviewer: How did you proceed? 

P7: Well, then … I tried to … calculate the break-even-point, where the 

proceeds are equal to the costs. 

Here, the vocation-related specification is directly marked by using the specific 

commercial terms (break-even-point, proceeds, costs) that are not part of secondary 

education. In a similar way, the vocation-related specification can appear while 

answering the questions referring to the question of knowledge acquisition: 

Interviewer: OK, what knowledge did you use to solve the problem? 

P10: Well, you need to know, from what, how you calculate the profit, that it is 

sales minus costs. 

Here, the linking to vocational school as the place of knowledge acquisition happens 

indirectly just with background information about the structure of vocational training 

standards for industrial clerks. Elsewhere, test persons give the link to vocational 

school as knowledge acquisition as an answer to the same question directly through 

naming the relevant field of instruction (business processes and accounting): 

P4: Um, that what we had in instruction right now. … I don’t know. Business 

processes and accounting. 

Otherwise, P8 gives the link to secondary education (Gymnasium) as the place of 

knowledge acquisition: 
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P8: And, well, um, the remaining … that has been more math. … Standard 

math … Standard calculation.  So rather from Gymnasium. 

If the stated solution process of a test person for a problem or the stated knowledge 

acquisition falls into the category of vocation-related specification such as the 

examples P7, P10 and P4 above, we consider the applied knowledge for that person 

and problem as vocation-related. For the three problems (seven subtasks) with a 

vocational context, 67% of the solutions of the 18 trainees rely on vocation-related 

knowledge. Two of these seven subtasks were hardly solved so that noticeably lower 

proportions of vocation-related knowledge was identified (since no knowledge was 

available at all). By excluding these outliers, the value for vocation-related knowledge 

rises to 76%. 

In addition, for each pair of parallel problems we asked for perceived differences and 

similarities. In 65% of the cases, the trainees detected the implemented similarities 

regarding the mathematical structure and differences regarding the contexts. Never-

theless, half of the trainees showed clear differences in the solution rates between the 

three problems with vocational contexts and the three problems with non-vocational 

contexts. The interview could hence substantiate that the differences did not result 

from a lack of insight into the structure of the problems. It indicates that these problems 

rather pose different demands for the trainees what leads to the different solution rates. 

Thus, a distinction between general mathematical competences and vocation-related 

mathematical competences is substantiated by the findings. 

DISCUSSION 

Our study addresses questions that stem from the immensurability of educational po-

licy frameworks at the transition from general to vocational education. Voca-

tion-related mathematical competence – as competences acquired in general education, 

but with connection to vocational demands – were suggested from a theoretical 

perspective as a potential link on the individual level. The study hence aimed at 

investigating whether they can be seen as a relevant construct also from an empirical 

point of view. Therefore it was investigated what kind of knowledge trainees as indu-

strial clerks apply when they solve parallel problems with vocational and 

non-vocational contexts. 

The vocational training standards include a high amount of mathematical contents, 

which can inner-mathematically be classified as content of lower secondary education. 

However, in vocational education, the contexts differentiate from general education 

contexts (while maintaining mathematics) and are specific for industrial clerks. 

Further, theory of situated cognition suggests the inseparability of knowing and action 

(Brown, Collins, & Duguid, 1989). As a consequence, it is not unlikely that such 

identified differences between the implementations of the same mathematics leads to 

the acquisition of separate areas of competences that ground in contextuallized 

knowledge.  
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The results based on a qualitative content text analysis indicate that the differentiation 

between general and vocation-related mathematical competences is relevant for trai-

nees. In accordance with the theory of situated cognition, we could observe that they 

applied a specific body of knowledge when working on the mathematical problems in a 

vocational context that do not require, from an objective perspective, specific know-

ledge beyond what is subject to instruction in general education. It, thus, sets ground to 

further characterize transitions from general to vocational education with a focus on 

domain-specific competence development, which is considered a highly fragile and 

complex transition from the individual, but also institutional point of view.  
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STUDENTS’ READINESS TO APPROPRIATE THE DERIVATIVE - 

META-KNOWLEDGE AS SUPPORT FOR THE ZPD 

Pauline Vos* and Gerrit Roorda# 
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To what extent are students ready to appropriate a mathematical concept when this is 

introduced? We studied the Zone of Proximal Development (ZPD) of ten students in 

grade 10 before being taught the derivative. We used task-based interviews to study 

their pre-derivative knowing (e.g. functions, slope), and how they handled problem 

situations that required the derivative. Most were able to apply numerical or graphical 

approximations. Some students saw commonalities among the tasks, and felt a need for 

a more precise tool. By describing goals of a new tool, they showed to have 

meta-knowledge without knowing the concept itself. This meta-knowledge assisted 

them to appropriate the derivative as a tool they could use flexibly and confidently in 

non-routine situations. Other students’ appropriation took more than a year. 

INTRODUCTION 

The derivative is an important mathematical concept in advanced strands of secondary 

schools (NCTM, 2000), but also one students typically struggle with (e.g., Zandieh, 

1997). The derivative was developed by Isaac Newton and Wilhelm Leibniz; the latter 

introduced the notation dy/dx that we still use today. The concept builds on everyday 

experiences (increase, growth, speed) and is a tool to describe change of quantities. It is 

a flexible concept, as it can be represented symbolically, graphically, numerically and 

verbally. In non-mathematical areas, it is useful to model phenomena. Astro-

nomer/physicist Newton described the derivative as a tool, “… whereby I can calculate 

curves and determine maxima, minima, and centers of gravity” (Boyer, 1959, p. 207). 

The derivative is a cultural artifact developed and refined by mankind. Being based on 

human thoughts and ideas, we indicate this artifact as a concept, similar to concepts 

such as ‘energy’ in physics, or ‘democracy’ in society. Mathematical concepts, such as 

the derivative or logarithms, are typically learnt in schools, whereby students are 

taught cohort-wise. In this paper we describe a study of this cohort-wise treatment and 

we focus on student’s readiness to learn about a concept when it is taught. 

Our study was carried out in The Netherlands, where the derivative is introduced in 

grade 11 to students in the pre-university science stream. In the prior year, a number of 

related procedures are taught in mathematics and physics classes. Students learn to find 

the rate of change for linear equations and relate this to the slope of the graph. In 

physics classes, students learn about distance, velocity and acceleration. There, 

students are taught a graphical procedure to calculate instantaneous velocity for 

non-linear situations by drawing a tangent line to the graph, and determine the rate of 
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change to this line (known as the tangent method). In grade 10, the derivative is neither 

mentioned in textbooks nor in classrooms.  

THEORETICAL FRAME 

There are different frameworks to study how students learn mathematical concepts. 

Within PME, there are many voices using terms such as abstraction, conceptual 

understanding, encapsulation, interiorization, internalization, objectification, 

reification, and so forth. The present paper is too small to do justice to ontological and 

epistemological underpinnings of these authors. Inspired by Moschkovich (2004) and 

others, we use the neo-Vygotskian term appropriation. Appropriation expresses a 

person’s process of gaining ownership over something external, and making it one’s 

own. Radford (2001) says: “we do not mean that students’ knowledge appropriation is 

achieved through a kind of crude transfer of information coming from the teacher. As 

we see it, knowledge appropriation is achieved through the tension between the 

students’ subjectivity and the social means of semiotic objectification” (p.241). In this 

paper, we follow Vygotsky (1978) by taking appropriation as a dynamic meeting of 

culture, social environment and cognition. Aspects that play a role are: a person’s 

subjective experiences, socially mediated processes, and cultural concepts and tools. 

The process of appropriation is hard to capture by a researcher, but the result of a 

successful appropriation can be observed: it is when a student has ownership over a 

concept as a personalized cultural tool, when (s)he can use it flexibly, confidently and 

strategically in a variety of non-routine situations, without being prompted. We 

emphasize the use-value of the concept, which is based on the duality of the derivative 

being both a concept and a tool. A successful appropriation implies that a student 

knows what the concept is (factual knowledge), how it can be used (procedures, 

algorithms), can make connections among its representations and with other concepts 

(conceptual knowledge), and has meta-knowledge of it (background knowledge of its 

aims, limitations, when/where/for what purpose it can be used).  

The appropriation of mathematical concepts is socially and culturally embedded and 

mediated. It happens in the Zone of Proximal Development (ZPD), which is “… the 

distance between the actual developmental level as determined by independent 

problem solving and the level of potential development as determined through 

problem-solving under adult guidance or in collaboration with a more capable peer” 

(Vygotsky, 1978, p. 86). According to Lerman (2001, p. 103), “the zpd would be better 

conceptualized not as a physical space, in the sense of the individual’s equipment 

(either cognitive or communicative), but as a symbolic space involving individuals, 

their practices and the circumstances of their activity.” 

A social environment of the ZPD is the classrooms, where there are rules, norms, a 

qualified person responsible for students’ learning, and learning goals set by 

institutions (a ministry, a school board). Students are supposed to listen to explanations 

from others (from a teacher live in class, from a video, etc.), to read texts (written by 

others), to do tasks. The drawback of this institutionalized environment is that much 
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mathematics learning occurs in situations that are far from ideal: teachers rush to finish 

the curriculum, they teach the way they were being taught themselves, and/or they 

teach to the test, and so forth (Nolan, 2013). Additionally, there are strange 

mathematical conventions (e.g. x, f’), there is Latinized jargon (derivative, secant), and 

in too many mathematics classrooms there are myths that mathematics is only for 

‘brainy’ kids, or for boys (Boaler, 2015). It may occur that the ZPD will not comprise 

appropriation of a concept, but rather panic or alienation (Williams, 2016). 

Each student has a ZPD. Numerous researchers have studied it by observing students 

during their learning process (e.g., Moschkovich, 2004; Radford, 2001; Williams, 

2016). We contend that direct observing students ‘while in the zone’ does not capture 

all. For example, such studies may miss (1) earlier learning, (2) differences between 

surface and deep learning, and (3) students’ tendency to forget some of their learning. 

Therefore, we studied the ZPD longitudinally, by researching students’ readiness (the 

zone before the ZPD) and their knowing after they were taught a mathematical 

concept. We included the study of retention (until a year after being taught), which 

enabled us to retrospectively deduct to what extent the appropriation of the concept 

indeed happened, and thus, had been in the ZPD. The research question was: what are 

critical aspects of students’ readiness that assist them in appropriating the derivative?  

METHODS 

We opted for a qualitative description and analysis of students’ work before and after 

they were taught the derivative. We had a sample of convenience of ten pre-university 

students (6 boys, 4 girls) who took mathematics at advanced level. Their pseudonyms 

are: Andy, Bob, Casper, Dorien, Elly, Karin, Maaike, Nico, Otto, and Piet. Among 

them, weaker students were underrepresented because we looked for students who 

most likely would move up from grade 10 to grade 12 without delay.  

We studied students’ textbooks, their notebooks, their work on classroom tests, and on 

three occasions, we administered a task-based interview. The April interview took 

place when the students were still in grade 10. After the summer holiday, the students 

were taught the derivative at the beginning of grade 11. We followed up with the 

November interview. A year later when the students were in grade 12, we administered 

another November interview. In this paper, we focus on the April interview and 

students’ readiness for the derivative. The two November interviews enable us to study 

the resulting students’ long-term appropriation of the derivative. 

The April interview was designed to provide in-depth information about students’ 

readiness to appropriate the derivatives. The students were given tasks unfamiliar to 

them, which could be solved using the derivative, but also without. The tasks were 

situated, so, the variables had a situated meaning (e.g. time, price). The tasks offered 

different mathematical representations (graphs, symbols, tables), whilst the 

mathematical terms derivative, slope or differentiation and the symbols f’ and dy/dx 

were absent to avoid directing the students (in case they had heard of the derivative). 

The interview protocol prescribed that a student, after having completed a task, was 
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repeatedly asked to check the answer through other methods. In this way, we were 

assured to observe a range of activities. Both subsequent November interviews 

contained the same tasks, with a few adaptations to reduce inter-interview effects. In 

this paper we will focus on the two tasks that are summarized here: 

Barrel: A barrel contains a liquid that runs out through a hole at the bottom. The 

volume of the liquid in the barrel decreases over time, expressed as V = 10(2 – 1/60t )2 

with V in m3 and t in min. Additionally a table and the V-t-graph is given. Students are 

asked to calculate the out-flow velocity at t=40. 

Monopoly: For a company the revenue function is R(q) = – 0.5q2 + 12q and the cost 

function is TC(q) = 0.03q3 – 0.5q2 + 4q + 15 with q the amount of sold products. 

Additionally, the graphs of the functions are given. Students are asked to find at what 

production level the costs and the revenue will increase at the same rate. 

The interviews were transcribed and both authors analysed the transcripts. From the 

April interview, we coded methods used when solving the tasks, identifying graphical, 

numerical and symbolic methods; we used a simple scale to describe the quality of 

usage (method is accurate, inaccurate, or only mentioned). Also, we coded whether 

students (1) mentioned commonalities among tasks, (2) expressed limitations in their 

repertoire, (3) recognized a need for a new tool, and (4) made connections among 

aspects of the derivative (rates of change, slope, velocity). From both November 

interviews, we coded frequency and quality of the use of the derivative.  

RESULTS 

Below we report on five students, Otto, Piet, Dorien, Elly and Andy, whom we selected 

because of their illuminating differences. We first report on their approaches to the 

tasks in the April interview, when they weren’t able yet to use the derivative. We add a 

summary of their subsequent development, as reflected in their answers to the two 

November interviews, when they were in grades 11 and 12 respectively.  

Otto’s reasoning before and after being introduced to the derivative 

When given the Barrel task, Otto calculated the value V(40) by inserting t=40 into the 

formula, and found 17.7778. According to him, this matched with the coordinates in 

the graph. When prompted for a way to check his calculation, he replied that he could 

solve the equation 17.7778 =10(2−1/60t)2 , which should then yield t=40. So, he mistook 

the volume of the liquid for the outflow velocity (as if V(40) = V’(40) ). 

For the Monopoly task, to find where the two formulas increase at the same rate, Otto 

equated them. Then he said: “Equal… that is not the same as equal increase.” To 

solve this task in another way, he looked globally at the graphs searching for a spot 

where the graphs ran approximately parallel. We coded this as graphical 

approximation. On another instance in this interview, he used an interval to 

approximate the increase at one point, and mentioned (without carrying it out) that he 

could use the slope of a secant. In this interview, he did not solve one task accurately. 

His approaches were disjointed; he didn’t see commonalities among the tasks. 
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In the November interview when in grade 11, again Otto did not accurately solve any 

of the tasks. He named a few methods, including the derivative. When trying the 

derivative, he was insecure and repeatedly said: “the derivative gives the formula for 

the tangent” as a mantra, without relating this concept to instantaneous change or 

velocity in one point. A year later when in grade 12, he related the derivative again 

primarily to graphical aspects (tangents and slopes), but now additionally, he related it 

to Δy/Δx. This helped him to use the derivative to solve a few tasks.  

We deduct that before the derivative was introduced, Otto struggled to see differences 

between a function’s value and its increase, and how a slope in a graph is related to 

change of values. As a result, Otto’s appropriation of the derivative took more than a 

year. At the moment it was introduced, Otto’s ZPD allowed him to learn the derivative 

at a surface level, as expressed in his mantra. Fortunately, in the ensuing year, he 

managed to further appropriate the derivative, but his knowing remained fragmented. 

Piet’s reasoning before and after being introduced to the derivative 

When given the Barrel task, Piet calculated the average outflow velocity over the 

interval [40, 120]. He explained that his calculation is for a linear relation, and that the 

described outflow went gradually slower and wasn’t linear. When prompted for 

another method to check the first, he calculated the average outflow over [0, 40], which 

was another interval method. Also for the Monopoly task, he used an interval. 

Frequently in this interview, he talked in graphical terms: “here, the graph goes 

steeper and here less steep” or “here they go the same” while gesturing. 

In the November interview when in grade 11, Piet again used the interval method and 

twice he used the derivative. A year later he had developed a strong preference for the 

symbolic representation and he solved all tasks using the derivative. In his 

explanations, he talked in graphical terms (secant, slope, steepness).  

We deduct that before the derivative was introduced, Piet was aware of differences 

between a function’s value and its increase, of linear and non-linear equations, and that 

his interval method was inaccurate. As a result, Piet was able to appropriate the 

derivative when it was introduced. Piet’s ZPD embraced the derivative, although he 

did not yet use it in all instances. A year later, he used it flexibly and confidently. 

  

 

Figure 1: Dorien’s graphs showing that two functions have equal increase (in Dutch: 

gelijke toename) between their intersection points 
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Dorien’s reasoning before and after being introduced to the derivative 

When given the Barrel task, Dorien started by reading the value 17.5 in the graph at 

t=40. She reasoned that during 40 min, 22.5 l must have flown out. She said: “This is, I 

think, not the velocity at this point” and she said that what she calculated was an 

average velocity: “I can calculate average velocity. But at this one point it is different. 

I don’t know how to calculate the velocity at one moment”. For the Monopoly task, she 

used graphs and reasoned correctly that the intersection points yield an interval (drawn 

on the x-axis), on which the average increase of both functions is equal, see Figure 1. 

In all tasks, Dorien used graphs, tables and functions, mostly accurately. At several 

instances, she mentioned the difference between average velocity and velocity at one 

point. Seeing the final task in the interview, she exclaimed: “Oh no! Not yet another 

one! There we go again! That you must know the velocity in one point and not the 

average velocity.” Apparently, she recognized a commonality in the tasks, and 

limitations in her knowing, and formulated a goal of a tool that she needed. 

In the November interview when in grade 11, Dorien used the derivative for all but one 

task (where she applied a physics formula). She clearly was able to use the derivative 

as a tool for solving situated tasks. However, she hadn’t been taught the chain rule yet, 

and therefore some of her answers were inaccurate. A year later, the derivative had 

become a tool that she used flexibly and confidently. We deduct that the appropriation 

of the derivative was in her ZPD when she was in grade 10. 

Elly’s reasoning before and after being introduced to the derivative 

Both in the April and the first November interview, Elly showed little understanding of 

functions, neither of slopes nor of rates of change; she solved not one task at least to 

some degree. After being introduced to the derivative, her knowing was at a surface 

level: “if you have a formula like f(x) = x2+3x+20, then you take down the powers and 

subtract one, so 2x + 3 and 20 is cancelled”. This, she used when prompted for a 

derivative of a given function, but for her the concept remained unrelated to tangents, 

change or velocities, etc. In the final interview, when Elly was in grade 12, she said “If 

you put the derivative equal to zero, you get the rate of change, isn’t it?” showing 

insecurity and (erroneous) surface knowledge. She had not appropriated the derivative. 

Andy’s reasoning before and after being introduced to the derivative 

The second student who didn’t appropriate the derivative was Andy. Contrary to Elly, 

in the April interview, he showed a very rich repertoire of numerical and graphical 

methods to solve the tasks. He used his graphic calculator (GC) to calculate average 

rates of change on small intervals such as [39, 40] and [40, 41], relating these to the 

slope of a tangent becoming the slope of a secant. He used the expression dy/dx 

confidently (a notation in the GC-screen). To find where costs and revenue increased at 

the same rate, he moved the cursor over the graphs, and read off where dy/dx was the 

same in both graphs. In no way, he was short of tools. In the subsequent November 

interviews, Andy again used the GC, plotting graphs, reducing intervals to [40, 
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40.001]. He had discovered a new option in the GC, the Calc-dy/dx-option and used 

that frequently. Although his notebook showed that he practiced many tasks on 

derivatives, in the interviews he stuck to his GC-repertoire. His ZPD was GC-focused.  

Synthesis of the ten cases 

In Table 1 we ordered the students according to the frequency of accurately using the 

derivative in the first November interview. The students form three groups.  

 Interview April Grade 10 (8 tasks)  Subsequent Derivative Use 

 Interval 

method 

Secant 

method 

Small 

inter-

val 

Tan-

gent 

method 

Other  Interview Nov. 

Grade 11 (6 

tasks) 

Interview. Nov. 

Grd 12 (6 tasks) 

Dorien  - - - -    

Casper  - - - -    

Nico   - - -    

Piet  - - - -    

Otto   - -     

Maaike  - - - - -    

Bob  - - -  -    

Karin  - - - -    

Andy     -   -  

Elly  - - - - -   - - 

Legend:   accurately used    inaccurately used    mentioned, not used   - not mentioned 

Table 1: Methods used before being taught the derivative, and subsequent use of it. 

The group at the bottom consisted of Elly (see above) and Andy (see above), who did 

not appropriate the derivative in the period covered by our study. 

The middle group consisted of Otto (see before), Maaike, Bob, and Karin. After being 

taught the derivative, they used the derivative inaccurately for some tasks. They lacked 

confidence, made few connections (e.g. between slopes and Δy/Δx), and talked in 

mantras (see the case of Otto). At the moment of being introduced to the derivative, it 

was not in their ZPD. However, a year later, they could use it mostly accurately.  

The third group consisted of Dorien (see before), Casper, Nico, and Piet (see before). 

In the first November interview, they used the derivative for several tasks mostly 

accurately. This meant that at the moment the derivative was introduced in class, they 

were ready for it: their ZPD comprised the appropriation of it.  

CONCLUSION, DISCUSSION, RECOMMENDATIONS 

In this study, we searched for critical aspects of students’ readiness that assist them in 

appropriating the derivative. We argued that a successful appropriation can be 

observed longitudinally studying students using the derivative flexibly and confidently 

as a tool without being prompted. Our research design has weaknesses (possible 

inter-student communication between interviews, students remembering tasks from 
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earlier interviews), so our results need some caution. In our study, we could identify a 

few students (Dorien, Casper, Nico, Piet), whose appropriation of the derivative was in 

their ZPD when it was introduced in class. Some other students (Otto, Maaike, Bob, 

Karin) did not appropriate it when it was introduced, but in the ensuing year they did. 

Finally, there were students (Elly, Andy), who didn’t appropriate the derivative. This 

diversity points at critical aspects of readiness. First, the ZPD is different between 

students and a cohort-wise introduction of a concept creates inequities; then 

appropriation and alienation can occur within one classroom (Williams, 2016). 

Second, when comparing between the students in our study, the students who 

appropriated the derivative quickly had in common that they mastered cognitive 

foundations of the derivative (slope of a line, different representations, difference 

between value and increase). Third, a critical aspect of these four students’ readiness 

was that they had meta-knowledge of the derivative without knowing the concept 

itself: they saw commonalities among tasks, they described limitations in their 

methods, and expressed the need for a more precise tool. Our study shows that students 

can “know about”, in which a yet unknown concept begets a tool-based meaning, and 

that students’ meta-knowledge of a mathematical concept preceded their ZPD.  

We confirm Lerman’s (2001) conceptualization of the ZPD as a symbolic space, which 

involves persons, their social environment, and practices. Practices to support the ZPD 

can include activities aiming at meta-knowledge; for example activities for which the 

students yet lack a tool. Such activities can create a need for a new tool, and give 

meaning to a new concept. Such activities are based on the concept-tool duality. 
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This paper reports a case study research aiming to connect the teaching and learning 

of mathematics in upper secondary education with the workplace. Four 10th grade 

students engaged in authentic tasks from the merchant navy context concerning the 

navigation of a ship through the use of original tools (e.g., the nautical map). We use 

the notions of activity system and boundary crossing to study students’ construction of 

meanings for geometrical concepts. Results indicate that the students took a new look 

at the school taught geometry, by adopting the workplace perspective (perspective 

taking) and addressing authentic workplace problems through the lens of school 

mathematics (perspective making).  

INTRODUCTION 

Students’ preparation for their professional life constitutes one of the aims of mathe-

matics education (FitzSimons, 2014). However, the relationship between mathematics 

and workplace is complex and has been studied in many research studies over the last 

30 years. Almost all these studies converge to the conclusion that mathematics used by 

professionals has some unique characteristics emerging from the cultural nature of the 

workplace which puts an indelible mark on the mathematical ideas developed in it 

(Millroy, 1992). These unique elements make workplace mathematics different from 

those in typical education enabling them to be identified as a distinct genre within the 

workplace discourse practice (Williams & Wake, 2007). Besides, several studies in the 

workplace reveal that apprentices or novices face a lot of difficulties in understanding 

the mathematical practices involved in authentic work situations. These difficulties 

indicate the limitations of school and academic knowledge as well as the complexity of 

linking this knowledge and workplace (skill gap) (Fitzsimons, 2014). Even though, 

studies have revealed how professionals engaged in mathematics when handling 

breakdown situations (e.g., Pozzi, Noss and Hoyles, 1998) we do not know if these 

situations could provide a context for students’ mathematics meaning making at 

schools. While the teaching exploitation of the workplace in vocational education has 

received considerable attention over the past years (Bakker et al., 2014), only recently 

has the connection between general education and workplace been an area of research 

focus (e.g., Psyharis & Potari, 2017). The reported study aims to contribute in this 

direction by connecting the merchant navy context (ship navigation) and the teaching 

and learning of mathematics in upper secondary education. It was carried out through 
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the close collaboration between a mathematics teacher (who acted also as a researcher) 

and a ship captain. 

THEORETICAL FRAMEWORK 

By perceiving the sociocultural nature of learning process, we have adopted the third 

generation of Activity Theory, as the theoretical framework for our study, considering 

two interacting activity systems (Fig. 1) as unit of analysis (Engeström et al., 1995). In 

the present research, we study the interaction 

between teaching and learning mathematics in 

school (students, teacher) and merchant navy 

workplace (captain, ship navigation). We 

acknowledge Activity Theory an appropriate 

theoretical background as it treats the learning 

process ingrained in a system of object-oriented, 

tool-mediated and rule-defined actions without 

neglecting its individual and communal dimension. The latter elements are also high-

lighted by the subject; the community and the division of labor which include the 

structural elements of the activity systems (see Fig. 1). The categories of objects, goals, 

tools/artifacts and rules are shaping mathematics within workplace activity into a 

recognizable kind of mathematic practice, in direct connection with the workplace 

context. Among two distinct activity systems emerge sociocultural differences as 

subjects engage in new practices unfamiliar to them. From this perspective, difficulties 

in using the typical school knowledge in realistic workplace situations can be consid-

ered as an example of discontinuity (Bakker & Akkerman, 2014). 

The aforementioned discontinuities are defined by Bakker and Akkerman (2014) as 

boundaries. These authors use the term boundary crossing to refer to the interactions 

between the subjects in order to establish or restore communication among the activity 

systems. Within the bidirectional boundary crossing the tools/artifacts utilized by the 

subjects to bridge the two activity systems are defined by Star και Griesemer (1989) as 

boundary objects, i.e. objects that both inhabit several intersecting words and satisfy 

the informational requirements of each of them. Bakker and Akkerman (2014) con-

sider boundary crossing as a cognitive process that can be described through the pos-

sible activation of four learning mechanisms:  identification of the intersecting prac-

tices; coordination of practices by developing tools/objects to establish effective 

communication between them; reflection while subjects become aware of their own 

perspectives by redefining them in relation to the perspectives of others (perspective 

making) as well as by taking a new look to their own perspectives through the eyes of 

others (perspective taking); and transformation leading to changes in the existing 

practices, even the emerging of a new hybrid practice. We recognize boundary 

crossing perspective to be a fruitful alternative to understanding knowledge transfer 

between contexts, as we consider reasonable the assumption that students’ engagement 

into workplace situations can highlight the discontinuities between typical mathe-

matical knowledge and its use in work (Wake & Williams, 2001).  

 

Fig. 1: Interacting activity systems. 
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In the present study, we consider two activity systems: teaching and learning of 

mathematics in upper secondary schools (geometry) and merchant navy (ship naviga-

tion). We focus on the interaction of the two systems and the students’ learning as they 

engage in authentic workplace activities. Boundary crossing offers us the tools to de-

scribe learning as meaning generation in terms of the students’ bidirectional moves 

from one system to the other. Our research questions are: “How do students construct 

meanings for mathematical concepts when working on authentic ship navigation 

tasks?” “What is role of the workplace context - including authentic tools, rules and 

practices - in this process?”  

METHODOLOGY  

The research constitutes the pilot study of the first author’s PhD aiming to explore the 

potential of authentic workplace situations as a context for mathematics learning in 

upper secondary schools [1]. It took the form of a case study with four 10th grade 

students and took place in a secondary school in Athens where the first author (who is 

also a teacher) works. A professional captain was invited to participate in all phases of 

the study. Τhe practitioner contributed to the familiarization of teacher and students 

with the workplace, being bearer of nautical knowledge. He judged the correctness and 

compatibility of the activities with the workplace (designing phase) and also the solu-

tions proposed by students in terms of the professional practice (implementation 

phase). The teacher acted as an agent of mathematical knowledge bringing back to the 

forefront the typical mathematics, supporting students’ inquiry of mathematical con-

cepts, encouraging them to express their ideas and strategies, and asking for refinement 

and revision when appropriate.  

The implementation part of the research was divided into three phases. The students 

have been engaged in authentic activities from the workplace of the Merchant Navy 

(ship captain). In the first introductory phase, after the captain presented the main 

features of the workplace (e.g., nautical map, professional’s tools); the students were 

asked to design the ship’s course on the map so as to get familiar with the workplace 

context. In the second phase, the professional familiarized the students with the 

measures and tools he uses to find the position of the ship on the map. In particular, he 

showed them how to take bearing (a straight line of sight connecting the ship and 

visual prominent landmark on the shore), range (distance from the ship to an object 

represented as a point through radar) and horizontal angle (angle which has vertex the 

ship and sides two straight lines linking the ship with two landmarks) with the use of 

ruler, divider, protractor and parallel rulers (i.e. two rulers moving in parallel lines). 

Thus, the aforementioned measures correspond to the geometrical notions of straight 

line, circle, knowing radius, and inscribed angle, respectively. Then, the students were 

engaged in solving a series of realistic problems (e.g., Avoid Obstacle, Safe Passage). 

In the third phase, the captain gave to the students, six measures (two bearings, two 

ranges and two horizontal angles) and asked them to find the ship’s position on the 

nautical map using as many as possible ways. In the results section, we present how the 
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students propose a solution to the task Safe Passage concerning the navigation of a 

boat through a hazardous area.   

Safe Passage, that constitutes a typical duty/process in 

the navy context, was given to the students as an open 

geometrical problem. Starting from a point X the ship 

must pass through a dangerous (hatched) area with 

underwater obstacles (that are not visible).  On the map 

the captain had marked landmarks A and B as refer-

ence points (Fig. 2). The students were asked, to use 

landmarks A and B and the aforementioned measures 

(bearing, range and horizontal angle) and tools in order 

to find a way to keep track of the ship’s course to en-

sure its safe passage. This is a kind of problem not 

typical of those that students encounter in school. However, the students could make 

sense of it in the context of school mathematics.  

The collected data consisted of: transcriptions of videos recording the main phase of 

task implementation; teachers’ personal notes; teachers’ resources and materials 

(lesson plan, worksheets, ppts, digital files); outcomes of the students’ activities on the 

nautical map. The analysis was carried out in two levels. After carefully watching the 

videos and examining the corresponding transcripts, critical episodes were selected 

and coded under a grounded theory approach (Charmaz, 2006). The episodes were 

related to the construction of meanings that arose as students tried to “decode” work-

place practices, understand and use the captain’s tools, or respond to the activities 

modelling the realistic problems faced by the professional during the course of the 

ship. In the second level, the analysis focused on the boundary crossing of students 

between the two activity systems (teaching and learning of school mathematics and 

merchant navy) in relation to the meaning generation identified at the first level. In this 

paper, the levels of analysis described above concern the notion of inscribed angles 

that appeared to be central during the students’ activity in the implementation of Safe 

Passage. The analysed episode falls into the learning mechanism of reflection.   

RESULTS 

Initial solution 

The task was given to the students by the professional. He marked points X, A and B 

on the map and asked the students to find a method to keep track of the ship’s course 

through the hazardous area. Students started solving the problem by drawing the 

segment AB. After that, they drew a line from point X parallel to segment AB as a safe 

route of the ship (Fig. 3). One student proposed to measure the distance between the 

lines drawn from X and the segment AB so as to keep track of ship’s course. This was 

a correct solution from a mathematical point of view. 

 

Fig. 2: The problem. 
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However, since AB in reality is an imaginary 

straight line (without visible landmarks), the stu-

dents realized that it was not possible in the work-

place context to measure the distance between the 

ship and AB with the use of the available 

measures/tools (i.e. from the ship). Student S2 

communicated plainly his concern on this issue by 

wondering in which way he could be sure that the 

ship follows a safe course. Student S1 recognised 

that it was not possible to use straight lines (bear-

ings) and distances (ranges) to keep track of the 

ship’s course as there were no visible landmarks in 

the hazardous area. He proposed, for first time, to use inscribed (horizontal) angles. 

1  S3: Let’s move like this. [He draws a straight line from X parallel to the seg-
ment ΑΒ] 

2 S2:  How shall I know if I am far or near the hazardous area?  

3 S3:  You are right. I have no landmarks to take measures. [Dangerous area is not 
visible] 

4       S1:        [to S2] We must use horizontal angles… Bearings or ranges won’t work.  

The students’ realization that they could not use their school taught geometrical 

knowledge to address the problem indicates a discontinuity between school mathe-

matics and workplace. The constraints posed by the professional’s measures/tools and 

the workplace rules (ship’s safety) led the students to abandon their initial (mathe-

matically accepted) solution discovering that it was ineffective in the new context. The 

fact that the students used terms from the professional’s language during their explo-

ration (lines 3 and 4) indicates that they had become familiar with the workplace tools. 

Find a safe point 

Later on, the teacher’s intervention (“How can I determine 

the dangerous waters?”) was crucial for the students to 

overcome their difficulties in finding a strategy to exploit 

the concept of inscribed angle they had recognised as 

relevant. He gave them the hint to mark a safe point on the 

chart and the students marked the point E (Fig. 4). That 

was not only a safe point between the two dangerous ar-

eas, but also a point on the line they drew in their initial 

solution. They still used as reference points A and B, 

though this time student S3 suggested to draw a circle 

passing through the points A, E and B and to measure the 

corresponding inscribed/horizontal angle (Fig. 4). The part of the dangerous area near 

the shore (area 1, see Fig. 4) was somehow contained in the designed circle. In that way 

students had come up with the idea to keep track of the ship’s course through the use of 

 

Fig. 3: Initial solution. 

 

Fig. 4: Inscribed angle. 
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an inscribed/horizontal angle. However, at this phase the students were experimenting 

with distinct safe points (e.g., E) without having formed a comprehensive strategy. 

5  T: Ok, why don’t you mark on the chart a safe point for the ship?   

6 S1:  [He marks point E] Wait, the circle should pass through all three points. 
[He refers to points A, E, B] 

7 T:  So, how can I determine the dangerous waters? [Students had designed the 
circle and the inscribed angle AEB] 

8       S4:        As the area surrounded by the arc of a circle. [He refers to arc AEB] 

Through the design of the circle passing through points A, B and E the students 

achieved to orient accurately the dangerous area. Taking the role of a professional 

helped students to cross the boundaries between the two activity systems, using au-

thentic tools (horizontal angle) as boundary objects, satisfying workplace rules (safety) 

and trying to fulfil a workplace demand (safe passage). Their choices were influenced 

jointly by the perspectives of both the school (accuracy in defining the dangerous area 

through a circle) and the workplace (tools, constraints, norms). Teacher’s intervention 

helped them to connect the value of an inscribed/horizontal angle with the cyclical 

sector that defines the dangerous area.  

Final solution 

In the final phase of their 

exploration, the students 

were engaged in finding a 

measure indicating that the 

ship sails in a safe area. For 

this they had the idea to de-

sign the point C (the ending 

point of the dangerous area 

near the shore, area 1, Fig. 

5), the circle passing through 

A, C, and B and the in-

scribed/horizontal angle 

ACB. Their strategy was to 

use the value of the inscribed/horizontal angle (45o) to define the dangerous area ori-

ented by the designed circle. With the intention to provoke students’ mathematical 

reasoning, the teacher asked if the value of the inscribed/horizontal angle had to be 

bigger or smaller than the angle ACB to ensure the ship’s safe passage. Student S1 

suggested using the point D (the beginning point of the dangerous area away from the 

shore, area 2, Fig. 5) as they used the point C before. Thus, the students designed a new 

circle passing through the points A, D and B and the inscribed/horizontal angle ADB 

so as to have a visual representation of the ‘safe’ area for the ship’s course. Measuring 

the inscribed/ horizontal angles (from the points C and D) and observing the difference 

in their values (45o and 35o respectively), the students accepted that as the radius of the 

circles (passing through A and B) increases the corresponding inscribed angle de-

 

Fig. 5: Final solution. 
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creases (Fig. 5). In this way, they developed a strategy to check whether the ship is 

following a safe course or not based on the value of the inscribed/horizontal angle 

having as vertex the position of the ship and sides defined by the lines connecting the 

vertex with the points A and B respectively.  

 9   T: Fine, the horizontal angle is 45o.  To be safe, you need a wider or a narrower 
angle? 

10  S3:  Wider. [Wrong answer] 

11  S4:  No, for bigger radius, the angle becomes narrower. [After students make 
the second circle and measure the angle at D]       

12      S1:       The second angle is 35o. It is narrower. 

13      S2:       We must keep track of the horizontal angle.  

14      S2:       The limits are from 35o to 45o for a safe passage. 

Taking a global view of the above incidents, the students achieved to find a solution to 

the need to keep track of the ship’s course based on the measure of inscribed/horizontal 

angles. In the end, the captain recognized that the students’ final solution was identical 

to the one used in the workplace. To achieve this, the students reinvented the notion of 

the inscribed angle and constructed meaning for the alteration of it, a geometrical re-

lationship that it was not taught at school. Thus, not only they used their existing 

knowledge in the new context but also they developed meanings for new geometrical 

concepts. Acting like professionals and through the teacher’s and the captain’s help, 

the students took a new look at the school taught geometry, by adopting the workplace 

perspective (perspective taking) and addressing authentic workplace problems through 

the lens of school mathematics (perspective making).  

CONCLUSIONS 

In the current study we adopted the perspective that the integration of authentic 

workplace situations into mathematical teaching can enrich students’ mathematical 

knowledge. Our analysis focused on how the merchant navy context motivated stu-

dents to cross the boundaries between school mathematics and professional space. The 

realistic context (original workplace problem), the practitioner’s tools (measures) and 

the workplace constraints (rules) acting as boundary objects revealed the insufficiency 

of school taught knowledge, highlighting a discontinuity between formal mathematics 

and the genre of mathematics developed in the workplace. Throughout their explora-

tion for solving an authentic task the students were influenced by the school perspec-

tive (parallel lines), they moved to an intermediate model which jointed the school and 

the workplace perspective (horizontal/inscribed angle) and they gave the final solution 

taking the workplace perspective (official professional’s practise). Through a reflec-

tion process they reinvented geometrical notions (inscribed angle), while they gave 

meaning to new geometrical relationships (alteration of inscribed angles). The pro-

fessional acted as an agent of the workplace knowledge by bringing to the forefront the 

workplace context. The analysis indicates also the teacher’s critical role in provoking 



Vroutsis, Psycharis, & Triantafillou  

  

4 – 402 PME 42 – 2018 

students’ mathematical reasoning and helping them overcome difficulties through 

inquiry-based questions and crucial interventions. 

Notes 

[1]. The study is inspired by the European project Mascil (http://www.Mascil-project.eu) that 

aims to promote the integration of inquiry-based learning and workplace in the teaching and 

learning of mathematics and science. 
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DOES THE COGNITIVE DEMAND OF A PROBLEM 

 INCREASE WHEN THE ANSWER IS AN INEQUALITY? 

Ilana Waisman, Mark Leikin, and Roza Leikin 

RANGE Center, University of Haifa, Israel 

 

This study is inspired by the observation that in school mathematics inequalities rarely 

appear as a problem-solving outcome. We call such problems inequality-tasks, while 

problems in which an answer is attained in the form of an equality we call equa-

lity-tasks. We hypothesised that inequality-tasks require higher cognitive demand as 

compared to equality-tasks. We examined this hypothesis using short geometry verifi-

cation problems with students who differed in their levels of general giftedness and ex-

pertise in school mathematics. We employed Event Related Potential methodology to 

confirm the hypothesis. Analysis of neuro-cognitive measure leaded to new research 

questions and hypothesis about insight-related moment of answer verification and 

activation of working memory associated with high cognitive demand.  

BACKGROUND 

Obstacles related to equalities and inequalities  

The importance of the concepts of equalities and inequalities has been addressed by 

mathematics education researchers (Dreyfus & Eisenberg, 1985) as well as by 

cognitive psychologists (Lyons & Beilock, 2011). The topic of numbers comparisons 

has also fascinated the neurocognitive community (De Smedt, Noël, Gilmore & 

Ansari, 2013).  

Cognitive studies have related to the understanding that the development of mathe-

matical competence includes the basic ability to represent the relations ‘‘greater than’’ 

or ‘‘less than’’ between distinct numerosities (Lyons, & Beilock, 2011). However, the 

results obtained in these studies revealed a dependence on the number format used (De 

Smedt et al., 2013).  

According to the collection of papers presented at PME research Forum (Bazzini & 

Tsamir; 2004), equalities constitute a cognitive obstacle to understanding inequality. 

Difficulties related to manipulating and interpreting inequalities are connected to 

students’ previous experiences, which are mainly focused on the equation and on equa-

lity constructs. For example, students treat the inequalities in the same algorithmic 

manner as equations in spite of the distinctions between symmetrical (for equalities 

and equations) and asymmetrical (for inequalities and inequations) relationships.  

In secondary school, inequalities are mainly taught as a (compartmentalized) topic in 

algebra classes and ignored as problem-solving tools in other fields of mathematics 

(Bazzini & Tsamir, 2004). While geometry in school mathematics is considered an 
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important resource for the development of students' visual and logical reasoning, 

argumentation and proof skills (Hanna & De Villers, 2012), inequalities are extremely 

rare both in proof and computational tasks. The exception can be seen in the topic of 

the triangle inequality, which receives sporadic attention in the geometry curriculum. 

Our analysis of school geometry textbooks revealed that less than 0.1% of problems 

include inequalities.  

Neurocognitive research in mathematics education  

Neuro-imaging research focuses on the underlying brain structures (the magnitude of 

brain activation as well as the brain topographies) associated with different types of 

mental activities, including mathematical processing. The following findings are only 

short examples that illustrate this observation: 

Through focus on the magnitude of brain activation, the neural efficiency hypothesis 

affirmed that brighter individuals and experts in a field display lower (i.e., more 

efficient) brain activation while performing cognitive tasks (Neubauer & Fink, 2009). 

However, this effect is task-difficulty dependent. Focus on the localisation of brain 

activation associated with mathematical processing demonstrates that parietal brain 

parts have an important role in mathematical cognition and that fact retrieval is more 

associated with the left hemisphere while number comparison or approximation is of a 

more bilateral nature (Dehaene, Piazza, Pinel, & Cohen, 2003). The prefrontal and 

parietal cortex are recruited in advanced topics like algebra, geometry, or calculus 

(Anderson, Betts, Ferris & Fincham, 2011) and the posterior cortex is thought to be 

involved in the mental representations of objects (Zacks, 2008). Research on 

mathematical insight (Jung-Beeman et al., 2004; Leikin, Waisman & Leikin, 2016) 

demonstrated that increased activation in the PO8 (PO8-PO4) electrode site is 

associated with the moment of insight. Furthermore (and importantly for our study) 

Event-Related Brain Potential (ERPs) studies identified three main positive parietal 

components associated with mathematical processing: P100, P200 and P300. The P100 

and P200 components are usually interpreted as corresponding to early visual 

processing (Dunn, Dunn, Languis, & Andrews, 1998) while P300 is assumed to be 

connected to working-memory updating (Kok, 2001).  

THE STUDY 

Hypothesis and research questions 

Our review of school textbooks indicates that, inequalities very rarely appear in school 

geometry. Thus, tasks that include inequalities can be considered unconventional and 

thus are of high cognitive demand. We employ ERP methodology to examine this 

hypothesis.  

Our study explores differences in mathematical processing associated with short 

geometry verification problems in which the answer is presented in the form of an 

equality (“equality-tasks”) vs. in the form of an inequality (“inequality-tasks”). We ask 

how mathematical processing differs between solving equality-tasks as compared to 
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inequality-tasks. We examine (1) behavioural measures: Accuracy of responses (Acc) 

and reaction time (RT) and (2) electrophysiological measures: ERP amplitudes, P100, 

P200 latencies and amplitudes, and late potentials scalp topographies amplitudes. We 

also ask (3) how these differences depend on the level of problem-solving expertise 

and the level of general giftedness of the study participants. 

Participants  

Seventy Hebrew-speaking, right-handed male high school students (16-17 years old) 

from the northern region of Israel participated in this study voluntarily. All the students 

passed a sampling procedure in the framework of a larger study (for details see Leikin 

et al., 2016). This procedure was directed at the identification of levels of (a) general 

giftedness (G – generally gifted; NG – non generally gifted), and (b) expertise in 

school mathematics (EM – experts; NEM – non-experts). The students belonged to 

four major research groups: G-EM (N=19); G-NEM (N= 20); NG-EM (N=15); 

NG-NEM (N=16). The study received the approval of the Helsinki Committee, the 

Israel Ministry of Education, and the Ethics Committee of the University of Haifa. 

Materials and Data collection 

  
S1 – Introducing a situation; S2 – Question presentation;  

+ – Fixation cross; ISI – Inter Stimulus Interval  

Figure 1: The sequence of events and 

task examples. 

Figure 2: The selected electrode sites 

used for the analysis. 

A computerized test (Alpha-Chronbach = .760) was designed with 60 tasks using 

E-Prime software (Schneider, Eschman & Zuccolotto, 2002). Each task was presented 

in two windows with different stimuli (S1 – Task condition; and S2 – Suggested 

answer) that appeared consecutively (see Leikin et al., 2016). In the S1 window, par-

ticipants received a geometric figure with angle values marked by the Greek letters α 

and β. The connection between α and β was determined by a geometrical theorem. At 

S2, the participants had to determine the correctness of a statement about α, β or the 

relationship between α and β as an inference of the given properties in the S1 drawing 

(Figure 1). The participants were required to press the appropriate button on the 

keyboard according to their decision about the correctness of the S2 statement. 36 of 60 

tasks included an equality and 24 of 60 included an inequality to be verified. 

Scalp voltages were continuously recorded using a 64-channel BioSemi ActiveTwo 

system (BioSemi, Amsterdam, The Netherlands) and ActiveView recording software. 
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Two flat electrodes were placed on the sides of the eyes in order to monitor horizontal 

eye movement. A third flat electrode was placed underneath the left eye to monitor 

vertical eye movement. During the session electrode offset was kept below 50 µV.  

DATA ANALYSIS AND STATISTICS 

Behavioural measures  

Accuracy (Acc) was determined according to the percentage of correct responses on 

equalities and inequalities separately. Reaction time (RT) was calculated as the mean 

time for answer verification. Repeated measures ANOVA was used to examine diffe-

rences in Acc and RT associated with the type of the task as a within subject factor. 

Additionally, effects of G and EM characteristics were examined as between-subject 

factors. 

Electrophysiological measures  

ERP waveforms were analysed offline using the Brain Vision Analyzer software 

(Brain-products) and were time-locked to the onset of S2 (see Leikin et al., 2016). For 

statistical analyses, the ERPs were topographically aggregated (by using the mean 

absolute values) to obtain nine electrode sites (Figure 2). 

Early components: P100 and P200 were analyzed over posterior electrode sites where 

they reached their maximum. Peak latencies (ms) and amplitudes (V) of P100 

(92-195 ms) and P200 (200-280 ms) were analyzed using repeated measures ANOVA, 

taking type of the task (equality and inequality) and laterality (left, middle and right) as 

within-subject factors, whereas effects of EM and G characteristics were examined as 

between subject factors. 

Late potentials: The mean absolute ERP amplitude of late potentials in the 280-330 ms 

and 330-700 ms, which are considered as P300-like components, were examined in the 

nine electrode sites. Additionally, we performed special examination of the mean 

absolute ERP amplitudes in the PO4-PO8 and PO3-PO7 electrodes.  

The effect of task type and caudality (anterior, central and posterior) and laterality (left, 

middle and right) were examined as within-subject factors (and the factor of the time 

(280-330 ms and 330-700 ms) for PO electrodes), whereas effects of EM and G were 

examined as between subject factors. We performed pairwise comparisons when 

significant interaction was found. We applied Greenhouse–Geisser correction for 

sphericity deviation and Bonferroni correction for pairwise comparisons when 

appropriate. With respect to the study hypothesis and research questions we report 

findings on caudality, laterality EM and G factors as associated with task type.  

FINDINGS AND DISCUSSION 

Differences in behavioural measures 

Examination of the behavioural measures confirmed the research hypothesis. The 

higher cognitive demand of the inequality-task is indicated by significantly lower 
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accuracy and longer reaction times. This is in line with studies in mathematical 

education indicating that students in general encounter difficulties when coping with 

inequalities (e.g. Bazzini & Tsamir, 2004). Table 1 summarises the examination of 

behavioural measures in the study. 

Measure 
Equality-tasks 

Mean (SD) 

Inequality-tasks 

Mean (SD) 
F (1,66) 

Acc (%) 86.4 (7.9) 79.5 (10.8) 47.930***, 2

p  = .421 

RT (ms) 1547.7 (406.6) 1788.9 (423.6) 92.940***, 2

p  = .585 

*** p<.0001;  Acc – Accuracy, RT – Reaction time 

Table 1: Behavioural results for the task type. 

Electrophysiological data 

Analysis of earlier potentials (see Figure 3) demonstrated that P100 amplitudes were 

significantly higher when solving inequality-tasks than when solving equality-tasks 

[7.7(SD = 3.2) V vs. 8.0(SD = 3.4) V; F (1, 66) =5.636, p < .05, 2

p  = .078]. At the 

same time for P200 we found a reversed effect: amplitude of P200 was significantly 

lower when verifying inequalities than when verifying equalities [4.9(SD = 2.7) V vs. 

5.4(SD = 2.7) V, respectively; F (1, 66) =5.757, p < .05, 2

p  = .080]. 

 

Inequalities in 280-330 ms 

 

Inequalities in 330-700 ms 

 

 Figure 3: Example of graph of the 

mean absolute amplitude in PL. 

Figure 4: Scalp topographies for inequalities in 

the 280-330 ns and 330-700 ms. 

Note here that P100 is thought to be modulated by attention such as early visual 

selection, whereas P200 may be connected to selective attention and feature detection 

processes as well as early sensory stages of item encoding (Dunn, Dunn, Languis, & 

Andrews, 1998). Accordingly, we suggest that the larger amplitudes of P100 for the 

inequality-tasks may be due to the “unexpected” form of the statement, which lead to 

reduced automatic early processing in comparison to the equalities. The inverse 

differences in P200 amplitudes may point to the differences in encoding processes of 

equalities and inequalities. For an explanation of such differences in P200 more 

focused investigation is necessary. 

Late potentials in the 330-700 ms (in the nine electrode sites) 
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In the 330-700 ms effect of task type [F (1, 66) = 5.313, p < .05, 2

p  = .075]: Similarly, 

to the amplitude of P200, the mean absolute amplitudes were lower in the 

inequality-tasks vs the equality-tasks. 

Obtained late potentials in the 330-700 ms seem to be compared with P300 like 

component that may be embedded in the 280-700 ms (Dunn et al., 1998). Interestingly 

significant interaction of the task type with the G and EM factors was found [F (1, 66) 

= 4.211, p < .05, 2

p  = .060].  When EM students verified correctness of both equalities 

and inequalities, the mean absolute amplitudes of G [3.8(SD=1.5) V and 3.3(SD=1.4) 

V for equalities and inequalities, respectively] students were lower than of NG 

[4.3(SD=1.5) V and 4.1(SD=1.4) V for equalities and inequalities, respectively] 

students. In contrast, when NEM students verified correctness of equalities the mean 

absolute amplitudes of G and NG students were similar [3.8(SD=1.5) V and 

3.7(SD=1.5) V, respectively], whereas when NEM students verified correctness of 

inequalities, the mean absolute amplitudes of G  students were higher than those of NG 

students [4.0(SD=1.4) V and 3.3(SD=1.4) V, respectively]. 

The significant differences in the electrical activity between equalities and inequalities 

was achieved only in G-EM [p = .018, 95% CI [.082, .834]: 3.8(SD=1.5) V) group.  

  

Figure 5: The mean absolute ERP amplitude in the 330-700 ms  

associated with solving equality and inequality-tasks. 

Separate ANOVAs were performed for each type of task (see Figure 5). The analysis 

showed significant interaction of the G and EM factors when solving inequality-tasks 

[F (1, 66) = 4.580, p < .05, 2

p  = .065] with effects similar to those described above.  

These interactions confirm the research hypothesis about the higher cognitive demand 

of the inequality-tasks. Consistently with our previous finding and suggestions (Leikin 

et al., 2016), we assume that these effects and differences in mean absolute amplitudes 

can be connected to neuro efficiency in the G-EM group of participants. The lower 

ERPs in NG-NEM tasks reflect reduced attempts when coping with cognitively 

demanding tasks in this group of students.  The higher ERPs in G-NEM and in NG-EM 
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students may demonstrate that these groups of students “do not give up” when solving 

cognitively demanding tasks.   

The examination of electrical activity in PO electrodes. As mentioned earlier, based on 

our previous observation of the insight-related activations of PO8-PO4 electrodes 

(Leikin et al., 2016) we performed a separate examination of PO electrode sites (PO-3, 

4, 7, 8: see Figure 4). During 280-700 ms we found significant interactions of task type 

with G and EM factors [F (1, 66) = 6.964, p < .01, 2

p  = .095], which was similar to the 

interaction described early for the overall activity on nine electrode sites. Additionally 

significant differences in mean absolute ERP amplitudes associated with verifying 

equalities and inequalities were seen in the G-EM [p = .002, 95% CI [.369, 1.550]) and 

NG-NEM [p = .006, 95% CI [.280, 1.567]) groups with higher activation associated 

with verifying equalities. 

Additionally we found significant interaction of the time factor with the type of the 

task and laterality [F (1, 66) = 5.438, p < .05, 2

p  = .076]. During 280-330 ms the 

significant differences [p = .000, 95% CI [.415, .1.367]) between mean absolute 

amplitudes evoked by solving equality-tasks and inequality-tasks were achieved in 

PO4-PO8 electrodes with higher activation related to equalities. In contrast, during 

330-700 ms the similar significant differences [p = .008, 95% CI [.122, .793]) were 

found in PO3-PO7 electrodes.  

Following Jung-Beeman et al., (2004), Leikin et al. (2016) argued that activation of 

PO4 and PO8 electrodes is associated with the insight moments of mathematical 

processing. Thus, we hypothesise that during 280-330 ms verification of both 

equalities and inequalities involves insight-related moment, which is replaced by 

analytical activity with shift to PO3-PO7.   

CONCLUSION 

The behavioural measures strongly confirmed our hypothesis that inequality-tasks 

embed higher cognitive demand than equality-tasks. We were intrigued by the findings 

that verifying inequalities evoke lower ERPs than verifying equalities, since we could 

predict that higher cognitive demand will be reflected in higher ERPs. However, the 

findings appear to be consistent with Kok (2001) who stated that working-memory 

updating caused by evaluation of complex stimuli and the intensity of cognitive 

processing affected by task difficulty is reflected in a decrease in P300 amplitude. Thus 

the lower electrical potentials during 280-700 ms (P300-like component) associated 

with verification of inequalities can indicate higher cognitive demand of 

inequality-tasks.  
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A CONCEPT ANALYSIS OF THE NOTION CONCEPT: 

CONTRIBUTIONS OF AN ANALYSING TOOL  

Lotta Wedman 

University of Gothenburg 

 

The word ‘concept’ is used with several meanings in mathematics education. In order 

to obtain a coherent theoretical framework, a concept analysis of the notion concept is 

performed for some current frameworks in the field. The taken approach includes 

creating a tool for analysing views on concept, based on a literature review in 

philosophy. This tool uses three distinctions of views on concept: mental versus 

abstract, subjective versus intersubjective, and molecular versus holistic. Examples 

from texts in mathematics education are given, where the three distinctions are 

present. Further, the taken approach offers a perspective on concept that simplifies 

comparisons between frameworks. 

INTRODUCTION 

It is not unusual that a word has different meanings in different contexts. In order to get 

a coherent theoretical framework, one might study the meanings of words, both in ex-

plications and within textual contexts. Concept analysis could be used as an integrated 

part of a research process, maybe not even mentioned, or it could be a study in itself. 

The purpose of such studies might be to solve conceptual problems, to create new 

concepts or to contribute to theory development (Nuopponen, 2010a, p. 6).  

There are few methodological texts concerning concept analyses in mathematics edu-

cation, and such analyses are not always explicitly described. One common approach 

is to, from a certain goal and delimitation, start with a literature review and then make 

a text analysis, where different views on a concept are interpreted, compared and 

categorised (Nuopponen, 2010b, p. 6). Yoon (2006) describes this process as: 

I began by collecting a large number of excerpts from the […] literature in which any of the 

three terms were used, which I then sorted into categories of distinct usages. This process 

gave me 11 distinct categories of term usage. I then created definitions to describe each of 

these categories (Yoon, 2006, p. 32) 

Since the overall project in my research is to develop a framework for analysing 

concepts in mathematical problem solving, the object for my concept analysis is the 

notion concept itself. It would be an overly wide project trying to find all usages of 

concept within the field of mathematics education. Instead, the focus is on some 

current frameworks for conceptual understanding, found through a literature review 

that will not be described here. A possible approach for the concept analysis would 

then have been that of Yoon (2006). However, in an early phase of the study it became 

clear that such an approach did not offer sufficiently understanding for comparing 
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views on concept in different frameworks, it was hard to relate different views to each 

other. Based on that insight, I realised that some kind of pre-understanding was 

needed. Now, since views on concept are frequently discussed within philosophy and 

cognitive science, a literature review was conducted within these fields, resulting in a 

tool for analysing views on concept. From the characteristics in this tool, keywords 

were developed that might be seen in certain formulations. The procedure for finding 

views on concept in the educational texts consisted primarily in searching for these 

formulations. The purpose in this paper is to exemplify how the analysing tool may 

contribute to the concept analysis. The question is if the analysing tool can facilitate 

comparisons between views on concept in different frameworks. In the paper, some 

preliminary results from the study are chosen with the aim of showing the usage of the 

analysing tool.  

THREE DISTINCTIONS 

The analysing tool is the result of a configurative literature review, searching for key 

references and the broad lines within the discussion of concept in philosophy and 

cognitive science. The selection of references is based on how clear the description of 

concept is and if they contribute with new perspectives. The tool makes three 

distinctions, represented in the matrix in Figure 1. The first distinction is between 

concepts seen as mental and concepts seen as abstract in a Platonic sense, the second is 

between concepts seen as subjective and concepts seen as intersubjective, and the third 

is between concepts seen as molecular and concepts seen as holistic. These three 

distinctions are described further below. 

 

Figure 1: The three distinctions in the analysing tool, represented as a 3D matrix. 

In analysing views through the usage of words in texts, the method is to search for 

keywords and formulations indicating the different views. These keywords together 

with the matrix in Figure 1 constitute the analysing tool for the concept analysis.  

Concepts seen as mental or as abstract 

Mental views on concept are common in contemporary empiricism (Jenkins, 2008, p. 

120), and cognitive science (Murphy, 2004, p. 1; Carey, 2009, p. 4). In an educational 
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context, Piaget, e.g., explicates concept as a mental representation (Furth, 1969, p. 53). 

Keywords for a mental view are terms like ‘conceptual representation’ and 

‘constructing concepts’, and also expressions indicating a Piagetian view, like 

‘acquiring concepts’. Abstract views on concept, on the other hand, are common 

within philosophies of language (Katz, 1972/1999, p. 133; Zalta, 2001, p. 345), where 

concepts might be senses (independent of the mind) that form the meanings of words. 

In educational contexts, such a view might appear in a social theory of learning. The 

word ‘abstract’ is the antonym to ‘concrete’, and in educational contexts, mental 

objects are often seen as abstract. Here, however, ‘abstract’ is used only in the meaning 

of non-mental, as, e.g., in a Platonic sense. Keywords for an abstract view are terms 

indicating that concepts are meanings of words and also formulations claiming that 

concepts are building blocks in formal mathematics. Further, expressions like ‘talk 

about a concept’ indicate an abstract view, since in a mental view we are using 

concepts in our thinking, we do not think about them.  

Concepts seen as subjective or as intersubjective 

Regardless of whether concepts are seen as mental or abstract, there is also a distinc-

tion between a subjective concept (or ‘individual concept’) and an intersubjective 

concept. A subjective concept might be a personal representation (Carey, 2009, p. 

354), or the abstract content of a representation (Zalta, 2001, pp. 344-345). The diffe-

rence between these two views do not have practical consequences for education; in 

both cases, the child develops his or her own concepts. Keywords for a subjective view 

are seen in formulations like ‘our own way of constructing concepts’ and ‘the students’ 

concepts’. An intersubjective concept, on the other hand, might either be abstract and 

something that several people share through the usage of language (Katz 1972/1999, p. 

133), or a mental representation partly integrated in a collective understanding (Potter 

& Edwards, 1999, p. 448). In both cases, our personal understanding could be 

evaluated against the intersubjective concept. Keywords for an intersubjective view 

are seen in formulations indicating that concepts are developed in a culture of, e.g., 

mathematicians or teachers, like ‘the concept vector in the curriculum’, and 

expressions like ‘the concept rational number’ (indicating that there is just one such 

concept). 

Concepts seen as molecular or as holistic 

Two different views on conceptual structures are used in the tool. First, the molecular 

view claims that concepts are hierarchically structured, that some concepts are more 

basic than others, and that complex concepts could be defined from basic ones. The 

assumption that definitions are central for conceptual understanding is embraced by 

empiricists (Jenkins, 2008, p. 127) and some philosophers of language (Katz, 

1972/1999, pp. 127-128). In mathematics education, van Hiele (1957/2004, pp. 64-65), 

e.g., claims the importance of developing the capacity of using definitions in formal 

reasoning and proofs. Keywords for a molecular view are seen in formulations like 

‘every concept is a basic concept or well-defined by means of other basic or 

well-defined concepts’ and in formulations about hierarchical structures. Second, the 
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holistic view claims that concepts interrelate with each other in a web-like structure, in 

which no concept is more basic than another. This model is based on Wittgenstein’s 

(1953, p. 32) idea that the cognitive structure forms a complicated network of 

similarities and that concepts relate to each other in many different ways. In 

mathematics education, Vergnaud (1988/2004, p. 85), e.g., claims that we must study 

conceptual fields instead of single concepts. Keywords for a holistic view are found in 

formulations like ‘concepts are parts of various heterogeneous systems and form 

intricate webs’ and in criticism of a molecular view. 

A comment to the distinctions 

Note that the views in the above distinctions should not be considered incommen-

surable. Jackendoff (1989/1999, pp. 305-306) argues that it is possible to have a dual 

view, including both a view considering concepts as abstract and a view considering 

them as mental. Also, this argumentation holds for the distinction between a subjective 

and an intersubjective view. One way of handling such a combined view is to 

distinguish between the student’s individual concept and a given mathematical 

concept. Murphy (2004, p. 488), in turn, advocates a combination of a molecular and a 

holistic view, based on results in psychological research. As stated before, the matrix 

in Figure 1 together with the keywords constitute the analysing tool for my concept 

analysis. In the next section it is shown how this tool is used in some examples taken 

from various texts. The selection of examples is meant to highlight different aspects of 

the tool.  

EXAMPLES OF ANALYSES  

The following three examples aim at showing how the different views in the distinc-

tions appear in mathematics education, and at showing the width of the analysing tool.  

Example 1: A molecular view on concept  

In Kobiela and Lehrer (2015) a molecular view on concept is present, as seen in the 

following quote: 

Defining also appears to support students’ description of objects, moving them away from 

holistic descriptions toward more mathematical descriptions that focus on relevant parts 

and properties (Kobiela & Lehrer, 2015, p. 427) 

An intersubjective view appears in formulations like “concepts developed by the class” 

(Kobiela & Lehrer, 2015, p. 431). There is neither a clear abstract nor mental view on 

concept in the text, as depicted in the left matrix in Figure 2 below.  

Example 2: A holistic view on concept 

Schacht and Hußmann (2014) explicitly use the inferential theoretical perspective, 

based on Wittgenstein’s holistic view, and state that “[s]ince our concepts are always 

inferentially related by the commitments we acknowledge, this implies a holistic 

perspective on concepts […]” (Schacht & Hußmann, 2014, p. 99). In this text, there are 

both a subjective view on concept, sometimes addressed by the term ‘individual con-
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cept’, and an intersubjective view, when several students are introduced to the concept 

of variable (Schacht & Hußmann, 2014, p. 100). These two views are presented in the 

right matrix in Figure 2. 

 

Figure 2: One molecular and one holistic view on concept. 

Example 3: The framework of Three worlds of mathematics  

In Tall (2013), concepts are sometimes seen as mental and sometimes as abstract. In 

the following quote, the word ‘concept’ refers to a mental representation (via the usage 

of ‘schema’ in a Piagetian meaning): “the duality between concept and schema is based 

on the same fundamental idea in which a named concept has rich internal links that 

reveal it to be a schema” (Tall, 2013, p. 80). Occasionally, terms like ‘mental number 

concept’ Tall (2013, pp. 6, 15) are used to address such a view. An abstract view 

appears in formulations like ‘we think about […] the concept of number’ (Tall, 2013, 

p. 13) and ‘concepts in the calculus’ (Tall, 2013, p. 7). Hence, ‘mental concept’ in the 

text refers to a mental representation, but concept seems, dually, to be sometimes 

mental and sometimes abstract.  

Further, there are both an intersubjective and a subjective view on concept in the text. 

While the intersubjective view appears in formulations like “children are introduced to 

counting physical objects to develop the concept of number” (Tall, 2013, p. 7), the 

subjective view is present in formulations like ‘[o]ur biological brains evoke thinkable 

concepts by a selective binding of neural structures’ (Tall, 2013, p. 24).  

To summarise some results from the analysis, there are three different views on 

concept in Tall (2013), presented in Figure 3. While the first view sees concepts as 

abstract and intersubjective, the second view sees them as mental and intersubjective, 

and the third view sees them as mental and subjective. No signs indicating a subjective 

and abstract view have been found. Further, there is not a clear description either of a 

molecular view or of a holistic view in the text. 
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Figure 3: Views on concept in the framework of Three worlds of mathematics.   

A summary of the concept analysis so far 

These examples show that the three distinctions in the analysing tool is present in ma-

thematics education, even if they are not present in all frameworks; one, two or three 

distinctions might be used in the analyses. Another conclusion is that while some 

frameworks have one single view on concept, other frameworks have several views 

(more or less explicit in the texts). Further, an overall conclusion and an answer to the 

question in the introduction is that the analysing tool can be used for comparisons 

between views on concept in different frameworks. 

DISCUSSION AND CONCLUSIONS 

The purpose of this paper has been to exemplify how an analysing tool may contribute 

to a concept analysis. From the examples shown above, the three distinctions are 

relevant for mathematics education and one might analyse views on concept in the 

field, with the help of this tool. However, it seems as if the three distinctions might 

have different roles. Concepts seen as mental and concepts seen as abstract may 

generally appear on two different arenas. The first one is a cognitive arena where 

concepts are considered mental representations. The other one is an abstract arena 

where concepts appear in a linguistic or mathematical context. Research in 

mathematics education have different purposes. Sometimes it might be to explain a 

psychological development of the individual, sometimes it might be to explain 

communication and a social context, and sometimes it is to understand the nature of 

mathematics. The reason for why there are several views on concept in Tall (2013), 

e.g., might be that the framework combines approaches from several theories of 

learning. Further, subjective and intersubjective views are found in the relation 

between the individual and the community, or between the student and the curriculum. 

The student develops his or her own subjective concept, which is evaluated against a 

curricular concept. The last discussion between a molecular view and a holistic view, I 

should say, is not about different views on what concepts are. Rather, they describe 

different aspects of the conceptual structure. From the limited selection of examples in 

this paper, a molecular view seems to be more common in geometric studies, while a 
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holistic view seems to be more common in arithmetic studies. However, this is an 

assumption that needs further evaluation.  

Also, the three dimensions of the tool might vary in importance, depending on the con-

text. In some texts the difference, e.g., between mental and abstract becomes impor-

tant, while in others this distinction may be less relevant. The same holds for the other 

dimensions. Hence, the tool should be used with care. Ideally, a clear theoretical 

framework should have only one view on concept. That would imply one cell in the 

matrix in Figure 1. Schacht and Hußmann (2014), however, have a dual view and Tall 

(2013) have three different views. There might be good reasons for using several views 

on concept. As one example, it might be appropriate to have both a subjective view and 

an intersubjective view. However, if different views are implicitly combined, it could 

be difficult to interpret what the framework actually describes, making it problematic 

to use as a theoretical base for educational research. It is my position that such a 

combined view has to be explicit and clear. One way might be to use different terms, 

like ‘individual concept’ and ‘concept’, when different views are addressed. This 

might, however, cause problems of ontological character. 

Another question concerns what a methodology including an analysing tool, developed 

from views on concept in other fields, could offer. Here it might perhaps be interesting 

to make a comparison with the concept analysis in Yoon (2006), which includes an 

analysis of the notion conceptual system in the Models and Modeling literature. One 

result from that study is that there are three views on the notion in the texts (Yoon, 

2006, pp. 32-36). One difference is that while Yoon (2006) analyses several notions in 

one single framework, and relates them to each other, I, on the other hand, analyses the 

single notion concept in several frameworks. The analysing tool seems to facilitate 

such a comparison between frameworks.  

The analysing tool is delimited to the notion concept and perhaps some related notions. 

Also, it is developed from the perspective that it should be used for educational 

purposes. There are philosophical views that have not been included in the tool, since I 

judged that they were not relevant. Further, the tool is designed to be used for text 

analysis. In order to be used in other kinds of studies, there might be other aspects that 

have to be considered. What has yet to be done in my study is to use the analysing tool 

in a more systematic literature review. One result from that work will be a view on 

concept that builds a ground for a new framework for analysing concepts in 

mathematical problem solving. Another result will be an insight in how frameworks 

could be compared and combined.   
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THE DEVELOPMENT OF THE CONCEPT OF LIMIT –  

ASPECTS AND BASIC MENTAL MODELS 

Hans-Georg Weigand 

University of Wuerzburg, Germany 

 

The concept of limit is one of, if not the basic concept of analysis. During the 20 th 

century, various alternatives for teaching this concept, initially in a collegiate envi-

ronment, were developed which considerably influenced analysis teaching at schools. 

Currently, it is dominated by the so-called propaedeutic or intuitive concept of limit, in 

which analysis teaching immediately dives into working with real functions; a formal 

definition of the limit is waived in favour of an intuitive approach. In the context of 

teaching based on understanding, this approach needs carefully developed basic 

mental models, if the understanding of the concept is to surpass the intuitive level and 

is to be advanced into a mathematically accurate understanding. In order to achieve 

this – and this is the central hypothesis of this article – the concept of sequences is an 

essential resource to develop the concepts of limit and infinity.  

First we will shortly describe the main features of the propaedeutic concept of limit. 

This concept must be viewed in the context of the historic development of the concept 

of limit and its interdependence with the concepts of infinity and sequences. Moreover, 

it is now indisputable that the development of adequate perceptions – or mental models 

– of a mathematical concept, based on various representations and illustrations, is 

essential and important to teaching rooted in understanding. In terms of the develop-

ment of the concept of limit, this article suggests (re-)integrating sequences and dis-

crete ways of thinking more heavily into analysis teaching.  

THE PROPAEDEUTIC CONCEPT OF LIMIT  

In contemporary analysis teaching – in Germany as well as worldwide – the so-called 

“propaedeutic concept of limit” is the prevalent approach to the concept of limit (cf. 

Törner et.al. 2014). In this, analysis teaching waives a formal definition of limit in 

favour of an intuitive approach. This is accompanied by phrases like “x (or f(x)) ap-

proaches a value arbitrarily closely” or “x (or f(x)) differs from … arbitrarily little”.  

Behaviour towards infinity and near singularities 

In the context of the propaedeutic concept of limit, today’s students typically begin 

their analysis studies by analysing the behaviour of, for example, a rational function f 

with f(x) =  ,  for “big x-values“ or “towards infinity”. Then, the be-

haviour of rational functions is analysed in the neighbourhood of singularities, where 

the dynamic process of approaching a singularity xo is described with above-men-

tioned dictions “x tends towards xo” or “x approaches xo arbitrarily closely”. 
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Access to the concept of derivation 

This propaedeutic concept of limit is then transferred to determining the slope of a 

graph of a function at a point P. Coming from a function with e.g. , 

the slope  of two points P(x, f(x)) and Q(x+h, f(x+h)) of the graph with any point P 

on the graph and “a small number h with ” is determined as follows: 

 

If h tends towards 0, then  tends towards 2x. The slope of the graph with 

 at point P(x,y) is then defined or determined as 2x. 

This concept dates back to the two (famous) mathematicians Emil Artin’s (1957) and 

Serge Lang’s (1964) analysis lectures; they wanted to reduce formal work in their 

university classes and therefore returned the concept of limit to an intuitive basis. Thus, 

Lang establishes the concept of limit on the grounds of intuitive understanding in his 

definitions of continuity and differentiability of real functions; a supplemental epsi-

lon-delta-definition of this concept is located merely in the appendix of his book. 

These considerations crucially influenced the development of school analysis in the 

context of the “intuitive limit concept” (cf. Weigand 2014).  

The concept of limit in its historical development 

To understand the background of this development and also to better classify problems 

and difficulties discovered of nowadays students it is necessary to follow the mathe-

matical-historical developments as well as their transfer to collegiate courses and 

mathematics classes. Because of space reasons, we have to skip these historical con-

siderations. We will only mention that the development of the concept of limit is to be 

viewed – from the beginning in its ancient times – in close relation to the concepts of 

infinity and sequences, and it shows how static and dynamic, intuitive and formal per-

ceptions occur in continual interaction (cf. Greefrath et al. 2016). Moreover, there are 

some considerations and empirical investigations concerning the understanding of the 

limit concept, e.g. Monaghan 1991, Davis & Vinner 1986,  Cottrill et al. 1996, Keene et 

al. 2014, which influenced this study. 

ASPECTS ON THE CONCEPT OF LIMIT 

Insightful learning and teaching of mathematical concepts requires establishing per-

ceptions of a concept, knowing representations and properties, integrating the concept 

into a mind map of concepts and the ability to apply the concepts in various inner- and 

extra-mathematical fields. Today, the development of Aspects and Basic Mental 

Models of a mathematical concept is seen as an essential requirement for under-

standing the concept (cf. Weigand et al. 2017 and vom Hofe et al. 2005). Basic Mental 

Models are based on Aspects of a concept. 

An Aspect of a mathematical concept is a subdomain of the concept that can be used to 

characterize it on the basis of mathematical content. 
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The historic development of the concept of limit shows two aspects: The dynamic 

aspect on the possibility of an “and so forth” or a potentially infinite process, based on 

the (mental) successive run through the start of the natural number sequence or the 

gradual implementation of an act on the enactive, iconic or symbolic level, create the 

intuitive basis for the concept of infinity and the concept of limit.  

When viewing the concept of limit from the static aspect, however, it is necessary to 

“reverse” the argumentation in terms of sequences and “stop” the dynamic aspect. 

Based on a fixed value, the search begins for a sequence element after which all further 

elements are located in a predetermined neighbourhood of the fixed value. This “in-

version” of the line of thought is the basis for formal definitions of the limit. 

BASIC MENTAL MODELS ON THE CONCEPT OF LIMIT 

Basic Mental Models (or – in German – Grundvorstellung) give meaning to an Aspect 

of a concept. 

A Basic Mental Model (BMM) of a mathematical concept is a conceptual interpretation 

that gives meaning to it. 

Interpretations with regards to content are understood inner-mathematically through 

various representations and illustrations, and extra-mathematically through adequate 

situations for application which give meaning to the concept. BMMs capture mathe-

matical Aspects of a mathematical concept and attach sense and meaning to it. The 

relation “Aspect – BMM” of a given mathematical concept is not one-to-one. An As-

pect of a mathematical concept can provide a basis for several BMMs. Vice versa, a 

specific BMM can be developed with respect to several Aspects and give them mean-

ing. Aspects and BMMs can be considered as a specification of Tall’s and Vinner’s 

theoretical framework of “Concept Image – Concept Definition” (cf. Weigand et al. 

2017). 

Based on the dynamic and static perceptions of the limit, the following will differen-

tiate between three basic mental models, namely the notion of approximation, the no-

tion of neighbourhoods and the notion of objects. 

The BMM of approximation 

The intuitive idea of the BMM of approximation is based on the tending of sequence 

elements towards infinity or their approach of a fixed value. The idea of an – in prin-

cipal – unlimited continuation provides the basis of the BMM of an infinite process. In 

mathematics teaching, the development of this BMM can be started by analysing 

convergent, explicitly given sequences, and continued with iteration sequences, it is 

then specified by the method of nested intervals or by recognizing (defining) a tangent 

as a limit of a family of secants. Students should develop the following knowledge and 

abilities or competencies in the frame of this BMM: They 

• recognize the – generally – arbitrary continuation of the natural number series 

as the basis of a dynamic “process of infinity”, 
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• recognize the possibility of nearing the “limit”, e.g. numbers or geometrical 

objects (and maybe even reach it) in the unbounded continuation of “infinite 

processes”, 

• can name examples for “infinite processes” and respective “limit objects” on 

the symbolic, iconic and enactive level, 

• connect graphical and numerical notions with the process of “tending to-

wards” and “approximate arbitrarily closely”, 

• can – later on and at an advanced level – explain the development of the 

concepts of derivate and integral through the help of methods of approxima-

tion. 
 

The BBM of neighbourhood 

The dynamic process of continually running through a sequence is “stopped” by the 

“reversion” of the line of thought: starting from a fixed value – the limit – and a pre-

determined arbitrarily small neighbourhood, such that a sequence element can be 

found or named, after which all following sequence values are located in this neigh-

bourhood. Ultimately, “only” a number must be found whose respective sequence 

value upholds a certain condition. In these terms, this notion is based on the static 

aspect of the limit. The BMM of neighbourhood is based on the idea that for any arbi-

trarily small neighbourhood around the limit, all further elements after a certain se-

quence element are located in this neighbourhood. The students 

• connect graphical and numerical perceptions and representations with the 

“neighbourhood” of a number or a graphic object and relate it to sequence 

values, 

• can describe limit behaviour on the verbal, numeric, graphic and ultimately on 

the formal level, 

• can describe limits of recursively defined sequences numerically and graph-

ically, and they know criteria for convergent behaviour in linear iteration 

sequences, 

• can describe nested intervals and iterative methods for e.g. solving equations 

as a process of limit. 
 

The BMM of objects 

A limit can be a number, like a number sequence or with the determination of a circle 

area, it can be a geometric object like a point, a distance, or a tangent as limit of se-

cants, a matrix with stochastic processes, or a function, as a limit of a family of func-

tions. In the context of the BMM of objects, limits are viewed as mathematical objects – 

namely (fixed) values, matrices, or geometric objects – which are constructed or de-

fined through a sequence of numbers, of matrices or of geometric objects. The BMM of 

objects focuses on the symbolic or formal aspect of the concept of limit. Students 

• view null sequences as prototypes for convergent sequences, 
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• recognize the behaviour of sequence and function values for the “behaviour 

towards infinity” and near singularities by considering term representations – 

particularly with rational sequence- and function terms, 

• can classify sequences and functions by considering their limit behaviour, 

• can calculate limits of sequences and functions from a given term represen-

tation, 

• know the constraints of calculating limits, e.g. of trigonometric or exponential 

sequences and functions. 

The two Aspects and three BMMs are summarized in Figure 1, including the relations 

between the different Aspects and BMMs. The connecting lines indicate that the Aspect 

is a basis of the related BMM and that the BMM gives meaning to the Aspect.  

 

Figure 1: Aspects and BMMs of the concept of limit. 

A CONCEPT FOR A DISCRETE APPROACH TO THE CONCEPT OF LIMIT 

The concept of the propaedeutic limit has proven its worth to analysis teaching with the 

early access to the concept of derivative and thus its early integration of applications 

and modelling problems. However, the concept must be recognized as problematic in 

the context of building an adequate understanding of basic concepts of analysis, if the 

goal is beyond an intuitive understand and beyond training technical skills. Developing 

and emphasizing BMMs of the concept of limit in mathematics learning is one point of 

view if a deeper understanding of the main concepts of calculus is aspired.  

A return to the formal concept of the 1960s and its extensive treatment of the concept of 

sequences at the beginning of the calculus class is not possible due to the current or-

ganizational constraints of mathematics teaching as well as the extent of assigned topics 

(e.g. stochastics, computer science, modelling). Nevertheless, there is an important dif-

ference between today’s math education and that of the 1960s and 70s: The use of digital 

technologies opens new possibilities for the calculation and representation of mathe-

matical concepts. In particular, this applies to the treatment of discrete functions and 

sequences: 

• It becomes easy to numerically or graphically display sequences “at the press 

of a button” from a given assignment rule;  

• Limit processes can be visualized in more details by using the “zoom-tool”;  
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• The interactive interdependency of different representations of sequences can 

be analysed on the symbolic, graphic, and numerical level at the same time;  

• Limit considerations with recursively defined sequences can be simplified at 

least on the representational level since those sequences can be numerically 

and graphically displayed “at the press of a button”.  

But, if calculations are transferred or outsourced to digital technologies and simplified 

for the user, BMMs will become even more important in learning and teaching, con-

cerning developing understanding, for working mathematically with concepts and for 

anticipating solutions of problems. The following outline – in a very short form – gives 

the idea of a step-wise or levelled concept of a discrete approach to the concept of 

limit, based on the concept of sequences and the BMMs of the concept of limit. 

Level 1: Approaches on the numerical and graphical level  

In lower secondary classes students get experiences with limit processes in various 

ways under the dynamic aspect and the BMM of approximation. Examples are decimal 

fractions like  =  0,33333… =  0. , the development of the concept of irrational 

numbers which leads to the Heron method of nesting irrational numbers like , or the 

calculation of a circle area which leads to the iterative calculation of , following 

Archimedes. Geometry, in particular, provides the opportunity of visually representing 

limit processes, e.g. the construction of a square inside a given square (Figures with 

graphical representations had to be skipped because of space reasons).  

Level 2: Critical considerations on the (intuitive) understanding of limits 

Harmonic series are the prototype of series whose divergent behaviour cannot be de-

veloped intuitively. In his book “The Paradoxes of the Infinite” (1851), Bolzano names 

many examples which all show that it is an essential task of mathematics to clarify 

“which concept we really link to the infinite” (p. 1). These show especially the con-

straints of naïve or intuitive perceptions in the context of the concept of limit and they 

also show the limits of Aspects and BMMs and the interrelationship between these 

concepts. 

Level 3: Explicitly defined sequences 

Working with sequences in the acquisition of the concept of limit as opposed to 

working with (generally real) functions provides the advantage that domain and 

co-domain are discrete sets. Thus, (some) properties like monotonicity, boundedness 

and convergent behaviour can be well-visualized and more easily justified at least 

pre-formally in an argumentative manner than when working with continuous do-

mains. Examples are sequences (ak)N with  ak =   or  , k  .  

Level 4: Recursively defined sequences – the notion of iteration 

Digital technologies gain importance particularly when working with recursively de-

fined sequences since they take over the successive calculations and representations. 
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Determining the limit is generally more difficult due to the lack of an explicit term 

representation. Yet, this is volitional and used explicitly to focus more strongly on 

working experimentally and heuristically. An example is the sequence (ak)N with  

, ao = 1, k  . Recursively defined sequences are 

well-displayed in spider web diagrams”. To work with recursively defined sequences 

more generally, e.g. with ak+1 = A ak, or ak+1 = A ak+B, a more in-depth understanding 

of limits is necessary (cf. Weigand 2004).  

Level 5: An approach to the formal definition of limit 

It is essential to acquire the way of thinking and the mental model of the “epsi-

lon-delta-definition” or “epsilon-no-definition”. It is based on the BMM of neigh-

bourhood for the concept of limit. A methodological resource for understanding the 

dynamic-static-interdependency in the development of the concept of limit is a dia-

logue between a “proponent”, trying to defend a claim or assumption, and an “oppo-

nent” who tries to refute them. Digital technologies are well-suited for visualizing this 

idea of “dialogical reasoning”. This “dialogue play” specifies the phrases “tends to-

wards” or “approaches arbitrarily closely”. 

  

Figure 2: The first 50 elements of the 

sequence with  = 0.1. 

Figure 3: The first 200 elements of the 

sequence with  = 0.1. 

FINAL REMARK 

The concept of the propaedeutic limit currently prevalent in analysis teaching should 

be enriched or complemented with mental models which build a stable base for a 

representation of limits coined by content and ultimately also by formality. The con-

cept of sequences provides a helpful resource and digital technologies are important 

tools for calculations, for representing sequences and consequently for the developing 

of Aspects and BMM of limits. The possible extent or the level of such a development 

in calculus teaching depends on many conditions; mainly, however, it depends on the 

goal that students must reach at the end of the class (cf. Rasmussen et al. 2014). In 

teaching oriented towards understanding, there should and must be enough time 

available for a thorough development of the basic concepts of calculus.  
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At the moment a lesson study is developed and it will be tested the next months in 

calculus classes in Germany.  
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EXAMINING EXPLORATIVE INSTRUCTION ACCORDING  

TO THE REALIZATION TREE ASSESSMENT TOOL 

Merav Weingarden and Einat Heyd-Metzuyanim  

Technion – Israel Institute of Technology 

 

In this paper we present a comparison of 10 lessons based on the same task – the 

Hexagon task. We used the RTA (Realization Tree Assessment) tool in order to com-

pare the implementation of this task by 10 middle school teachers undergoing profes-

sional development intended to enhance explorative instruction. We focused on three 

aspects in our comparison: the number of realizations, the links between the realiza-

tions, and the narratives of 'saming' algebraic expressions. Results show a wide var-

iance between lessons in number of realizations and in the extent to which links were 

made between them. The quantification of these aspects enabled us to rank the lessons 

according to RTA "robustness" to provide a measure of explorative instruction and 

link it with grade level and track. 

INTRODUCTION 

Focusing on mathematical concepts during the lesson has been found by several major 

studies to be one of the most effective means for student' learning (Hiebert & Grouws, 

2007). Recent years have been marked by increasing efforts to emphasize the con-

ceptual aspects of mathematics together with an emphasis on students' agency and 

authority (National Council of Teachers of Mathematics, 2000). Professional devel-

opment efforts have focused on helping teachers afford students opportunities to en-

gage with cognitively demanding tasks, while clarifying important mathematical 

concepts and ideas (e.g. Boston & Smith, 2009). Yet this effort has been constrained by 

lack of sufficient tools for examining the extent to which instruction indeed affords 

explicit attention to concepts. In this paper, we suggest examining the conceptual as-

pects of mathematics instruction through the Realization Tree Assessment (RTA) tool 

(Weingarden, Heyd-Metzuyanim, & Nachlieli, 2017). Using the RTA, we inquire into 

the catalysts of explorative instruction.   

THEORETICAL BACKGROUND 

We define explorative mathematics instruction as instruction that supports explorative 

participation in mathematical learning. Explorative participation (Sfard & Lavie, 

2005) is participation for the sake of producing mathematical narratives to solve 

problems or to describe the world. Such participation is contrasted to ritual partici-

pation, which main goal is pleasing others and which is characterized by rigid rule 

following and endorsement of results as “correct” according to external authority. 

Explorative participation is linked more broadly to the view of mathematical learning 

as the process by which students gradually become able to communicate about ma-



Weingarden & Heyd-Metzuyanim 

  

4 – 428 PME 42 – 2018 

thematical objects (Sfard, 2008). These discursive objects are produced by discourse 

(or communication), and are made up of different “realizations” (ibid, p. 165). For 

example, the signifier ½, the process of dividing a pizza into two pieces, and the pro-

cess of shading 3 circles out of 6, are all samed into the object “one half”. Children 

often learn each of these realizations separately and only later come to relate to them all 

to one object. This is the heart of a process Sfard calls “objectification”. Objectifica-

tion, or talking about mathematical signifiers as “standing for” mathematical objects 

that “exist” in the world, is a major and necessary accomplishment for advancing in the 

mathematical discourse. A mathematical object can be visualized as a “realization 

tree” where complex objects are made of simpler ones. For example: a half is made of 

different realizations (1/2, 0.5, 50%, 3/6 etc.) but the whole numbers making up these 

realizations also have endless realizations (3 apples, 3 fingers, etc.).  

Recent years have seen increasing efforts to train teachers to teach towards explorative 

instructional practices, but the change in teachers’ practices has been found to be a 

complex process (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016; Spillane & Zeuli, 

1999). In particular, constructing tools for the detection of change in teachers' practices 

that would fit the ideas of a professional development for explorative instruction, is not 

a simple matter. 

The Realization Tree Assessment (RTA) tool (Weingarden et al., 2017) was built in 

order to examine explorative instruction by assessing the extent to which students are 

exposed to different realizations of the mathematical object during the lesson. In our 

former work, we have used it mostly to visualize qualitatively differences between 

lessons based on an identical task. The usefulness of the tool to compare and rank the 

level of explorative instruction has not yet been explored. Such ranking can enable the 

examination of the relation between explorative instruction and other variables such as 

grade level or track. 

In the present study we enhanced the RTA tool to provide a numerical view of explo-

rative instruction. With this tool, we asked: how are realizations that are exposed in the 

classroom connected to opportunities to form narratives about mathematical objects? 

And how are these opportunities connected to grade level and track? 

METHOD 

The study reported here was performed in the context of the TEAMS (Teaching Ex-

ploratively for All Mathematics Students) project for training Israeli teachers to im-

plement explorative instructional practices in middle school mathematics classrooms, 

using the “Five Practices for Orchestrating Productive Mathematics Discussions” 

(Smith & Stein, 2011) and "Accountable Talk®" (Resnick, Michales, & O’connor, 

2010). As part of the PD, the teachers were asked to implement a task they encountered 

and experienced as learners in the PD session. This task is called 'the Hexagon Task' 

and it asks students to describe the perimeter of a general “train” in a pattern of hex-

agon “trains” (See Figure 1): 



Weingarden & Heyd-Metzuyanim 

 

PME 42 – 2018 4 – 429 

 

Figure 1: The Hexagons Pattern. 

The task was chosen since it had previously been shown to be cognitively demanding 

for students, as well as productive for teachers' initial attempts to implement discus-

sion-based instruction (Heyd-Metzuyanim et al., 2016). The Hexagon task's richness 

lies in its affordance to connect different algebraic expressions to a single visual me-

diator (the Hexagons), as there are various different algebraic expressions that express 

the desired perimeter. Therefore, the task also provides opportunities for "saming" the 

different realizations of the perimeter and opportunities for students' engagement with 

the mathematical concept of identical algebraic expressions. 

27 teachers participated in the PD, and 23 of them implemented the Hexagon task. 

However, 10 lessons were excluded from the current study based on their language 

(Arabic) and another 3 lessons were not included due to technical reasons. Thus the 

analysis was performed on 10 lessons. Analysis of the RTA is preformed based on 

watching only the whole-classroom discussion part of the lesson. Usually, several 

views are required for completing a tree. However, we were able to code a video in 

around a ratio of 1:3 time of coding per time of video. This is much less work than 

preforming the analysis based on transcripts. 

The RTA depicts the different realizations of a mathematical object as nodes in a “tree” 

(see Figures 2 and 3). We code the tree according to two criteria: (1) Coloring the 

realizations that were exposed to students during the lessons based on who articulated 

the realization (dark color = student; light color = teacher.) (2) Arches between the 

realizations are drawn where links between realizations were made during the discus-

sion (continuous line = link made by students; dashed line = link made by the teacher). 

We quantify the data as follows (see Table 1): (1) Number of realizations: the total 

number of realizations that were colored. (2) Ratio of students' realizations: the 

number of dark realizations out of the total number of colored realizations. (3) Num-

ber of horizontal links: the total number of links that were made between algebraic 

expressions' and the visual mediators of the hexagons pattern. (4) Number of vertical 

links: the total number of links that were made between any other two realizations. (5) 

Ratio of students' horizontal links: the number of horizontal links that were made by 

students (continuous line) out of the total number of horizontal links. (6) Students' 

vertical links: the number of vertical links that were made by students (continuous 

line) out of the total number of vertical links. (7) Narratives about the 'saming' of 

the algebraic expressions branch: this criterion received a "1" if a narrative about the 

'saming' of the mathematical branch of algebraic expressions appeared anywhere in the 

discussion and was offered by students and "0" if it was not. Such narratives were for 

example: "all those formulas are the same". We did not count under this criterion 

narratives of 'saming' not offered by students since practically all lessons included such 
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a narrative authored by the teachers. In addition, for each lesson, we specify the grade 

level of the class and the track in the form of: track / total tracked groups in the grade.  

To be able to compare RTAs one to another, we ranked each lesson on the basis of the 

following formula: No. of realizations/maximum realizations in the sample + ratio of 

students' realizations + no. of horizontal links/max horizontal links + ratio of students' 

horizontal links + no. of vertical links/max horizontal links + ratio of students' vertical 

links + saming expression. All the above were divided by 7 (number of criteria) to 

arrive at a ratio of 0 to 1. Thus 1 indicates the most "robust" RTA in the sample (max 

realizations, max links) and 0 indicates an "empty" tree (no realizations and no links).   

FINDINGS 

We start by describing the RTA of two lessons. This will be done both to exemplify the 

method and to display contrasting implementations of the task. The first lesson took 

place in 8th grade and was directed by Yarden. Yarden's class was the highest of 3 

tracks in that grade (therefore, coded 1/3 in track column, see Table 1, line 3). In 

Yarden's lesson, the students were exposed to 5 different realizations, 4 of which were 

explained by students (see Figure 2).  

Figure 2: Yarden's RTA.                                      Figure 3: Tamar's RTA. 

For example, one of Yarden's students, who presented the 2*5+4(x-2) realization, 

wrote this algebraic expression while relating to each one of the terms in the expres-

sion: "the 5 represents the 5 sides in each sequence (points to the 5 'external' sides in the 

rightmost hexagon). The 2 is to multiple it for the other side (points to the 5 'external' 

sides in the leftmost hexagon)". The (x-2) term and the multiplication by 4 were ex-
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plained by pointing to the internal (connecting) sides of the hexagons. Although there 

was a substantial number of students' horizontal links (3/4), there were no vertical links 

at all. This means that although the students were exposed to different realizations and 

to the links to the visual mediator of each realization, there was no public 'saming' of 

those different realizations. The discussion thus had a "show and tell" feeling, where 

each student presented his or her solution but links between solutions were not made. 

Not surprisingly, 'saming' narratives were not found during Yarden's whole classroom 

discussion. 

In contrast to Yarden's lesson, Tamar's students (see Figure 3, and line no. 9 in Table 1) 

were exposed to a greater number of realizations (7) and they explained most of the 

realizations (6/7) themselves. Horizontal links between algebraic expressions' and the 

visual mediator of the hexagon pattern were made consistently and always by the 

students (6/6). In addition, three vertical links between realizations were made during 

the discussion. In particular, the students linked between two algebraic expressions: (1) 

2x+2x+2 and 4x+2, (2) 3x*2-2(x-1) and 6x-2(x-1), and the teacher linked between the 

4x+2 and the 'plus 4' realizations (explaining that each hexagon added to the train 

contributes 4 sides to the general perimeter).  

Some of the vertical links were not declared explicitly but rather implicitly. For ex-

ample: after one student explained the 4x+2 realization, another student presented the 

2x+2x+2 realization. The student started explaining this expression but another student 

stopped her and said, while laughing: "It's cheating, 2x + 2x is like 4x… I also have one 

[laughs] 4x + 1 + 1". Those implicit links mark the final part of the 'saming' process, 

where students have already 'samed' the realizations and have come to talk about them 

as being equivalent. In Tamar's lesson, where there were multiple vertical links, stu-

dents also authored narratives about the saming of the general "branch" of algebraic 

expressions. For example, students concluded that "all expressions lead to 4x + 2". 

Such narratives were not observed in Yarden's lesson.  

As a whole, the RTAs of Tamar's lesson thus show a deeper engagement with the 

concept of equivalent expressions as compared to Yarden's lesson. This, although at 

surface level, Tamar's lesson included quite a few realizations authored by students. 

Yet the main difference between the lessons could be seen in the number of links 

between realizations, and especially the vertical links, which signal the "saming" of 

different algebraic expressions. These differences led to the robustness of Tamar's 

lesson, which was quantified as 0.87, compared to 0.42 in Yarden's lesson. 

A similar analysis preformed on the other 8 lessons elicited several points of compa-

rison as will be elaborated next (see Table 1). 

Relation between realizations, links and 'saming' narratives: as a general trend, the 

greater the number of realizations presented during the whole classroom discussion, 

the more links (horizontal and vertical) can be seen in the tree. Though this may seem 

self-evident, this relation does not always exist. Some lessons (such as Yarden's) do 

include multiple realizations, yet links (horizontal or vertical) do not appear in them. 
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Thus, the presence of realizations in the classroom public sphere is not a sufficient 

condition for the opportunities to objectify. However, our small sample does hint that 

such presence is a necessary condition. Thus we see that in lessons where only few 

realizations were presented, hardly any links were made (though they could have been 

made even between few realizations) and even less narratives were formed about the 

"sameness" of the algebraic expressions branch. We conclude from this that the 

number of realizations that students are exposed to during the lesson is one essential 

catalyst for creating links and objectification. 

Lesson 

no. 

Grade Track Ratio of 

students' 

reali-

zations 

Ratio of 

Students' 

horizontal 

links 

Ratio of 

Students' 

vertical 

links 

Saming 

ex-

pressions  

RTA 

Robust-

ness 

1 9 4/6 1/4 0/2 0/2 0 0.22 

2 8 3/3 0/6 0/5 0/3 0 0.33 

3 8 1/3 4/5 3/4 0/0 0 0.42 

4 9 3/3 4/7 3/3 0/5 0 0.58 

5 7 1/2 2/7 1/2 2/5 1 0.65 

6 7 1/4 4/5 2/3 3/3 1 0.75 

7 8 No 

track 

4/4 3/3 4/4 1 0.84 

8 8 No 

track 

5/5 1/1 5/5 1 0.84 

9 9 1/4 6/7 6/6 2/3 1 0.87 

10 9 1/2 7/7 6/6 2/2 1 0.91 

Table 1: Results of the RTA's coding of the 10 lessons. 

Relation of grade level and robustness of the RTA: One would expect an increase in 

the robustness of the tree as the grade of the classroom advances. This, since students 

in the 9th grade are expected to be more familiar with mathematical ideas related to the 

equivalence of algebraic expressions. However, as Table 1 shows, the connection 

between grade level and robustness of the RTA was weak, if existing at all. Thus, there 

were lessons in 9th grade which were low in robustness (e.g. lines 1 & 4) and there were 

7th grade lessons which were relatively high in it (e.g. lines 5, 6). 

Track: Unlike grade level, the track of the classroom seems to have a closer connec-

tion with the robustness of the RTA. Low tracks (e.g. track 3 out of 3) figure promi-

nently at the bottom part of the table (ranks 1, 2 & 4) while the upper part contains only 

high tracks (track no. 1 out of 2 or 4) or classrooms that were not tracked. We interpret 

this finding as indicating that students sitting in low-achieving tracks had less oppor-
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tunities for objectification than their peers in high-achieving tracks. Of course, 

low-track students also authored less realizations, forming a vicious cycle that may 

perpetuate ritual participation in these tracks. 

Types of lessons: We interpret the table as consisting of three types of lessons. The 

first are those that have sparse RTAs, and hardly any links. These lessons (such as 1 

and 2 in our table) are characterized by low attention to concepts and low student au-

thority as can be seen in the small number of realizations present, and the fact that any 

links, if made, are authored by the teacher. The second type of lessons are the mid-

dle-scoring RTAs. These (lessons ranked 3-6 in out table) often have multiple reali-

zations presented and even multiple links. However, the relatively low ratio of links 

made by students shows that the teacher was "pulling" the classroom towards new 

realizations and new links. This may show that the classroom is learning something 

new and that the teacher is trying to insert new ideas. The final type are lessons that are 

characterized by high attention to concepts and high students' authority (ranking 7-10 

in our table). These lessons have very consistent and high ratios of realizations and 

links, and students author almost all of them. These lessons may be very productive 

and show high levels of exploration. RTA robustness may also indicate that the stu-

dents have become quite familiar with the mathematical object and that 'saming' had 

already previously occurred in that classroom. 

CONCLUSION AND DISCUSSION 

Our main goal in this paper was to examine the opportunities for students' explorative 

participation during lessons. These opportunities include exposure to different reali-

zations, encouraging students to create links ("saming") between realizations, and 

improving students' mathematical learning through the creation of narratives about the 

mathematical objects. The analysis of the 10 hexagon lessons using RTA afforded us 

the opportunity to better understand what catalyses explorative instruction: the expo-

sure of students to broad numbers of realizations and to links between realizations. 

This exposure seems to be most productive when narratives and links are made by the 

students, not solely by the teacher. 

Our findings indicate that students' grade and their level of familiarity with algebraic 

content has no relation to their explorative participation. Robust RTAs from 7th grades 

show that even when students are not yet very familiar with algebraic expressions, they 

can offer multiple realizations and form links between them. The situation is less en-

couraging in low-level tracks, where we see much less student authority, less realiza-

tions and less links between them. Our worry is that students in such tracks receive less 

exposure to different mathematical objects, even when explorative tasks are offered to 

them. This findings continues previous studies showing the negative effects of tracking 

on students' explorative participation (Boaler & Staples, 2008). Particular illuminating, 

in this respect, are the two heterogeneous classrooms in our sample, figuring high in 

RTA robustness. These show that it is possible, and perhaps even more fruitful, to 

implement explorative tasks in such classrooms. 
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The use of the RTA tool in this study continues our previous research (Weingarden et 

al., 2017) where we used it to qualitatively examine and visually represent different 

levels of explorative instruction. Here, we have shown its utility to compare numeri-

cally between a relatively big numbers of identical lessons. Of course, the possibility to 

examine lessons based on an identical task is quite rare. We intend to pursue the use-

fulness of the RTA to compare between lessons that are based on different tasks in 

future studies.  
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This study is aimed at characterization of action strategies in spatial geometry prob-

lem solving supported by Dynamic Geometry Software (DGS), by means of a measure 

allowing dynamic monitoring of visual difficulty during problem-solving moves. 

Twenty-one high-school students were engaged in DGS-supported solving of spatial 

geometry cube-related problems, in individual work-sessions. Data analysis consisted 

of identification of changes in the visual difficulty of the sketches undertaken by the 

students on the computer screen and characterization of their problem-solving moves. 

The results suggest that the students used DGS to reduce visual difficulty in a non-

linear process, influenced by their spatial abilities, the initial visual difficulty of the 

problems and the solution-stage at which the DGS is employed.  

THEORETICAL FRAMEWORK 

Mathematics curricula tend to emphasize the importance of studying spatial geometry 

as a means of developing spatial aptitude. Yet, spatial geometry presents a serious 

challenge for high school teachers and students (Bakó, 2003). Past research has shown 

that the challenge stems, at least partially, from the need to visualize 3-D objects from 

their 2-D representations: many learners find it difficult to “see in space” and are often 

unaware of the loss of information in transit between a 3-D object and its 2-D sketch 

(Parzysz, 1988). Additionally, the learners tend to rely on visual aspects and ignore 

theoretical inferences (Bakó, 2003). Thus, the well-known in planar geometry conflict 

between figural and conceptual aspects of sketches, involves in 3-D geometry also a 

conflict with visual perception (Ferrara & Mammana, 2014). 

While many studies indicate the effectiveness of DGS in teaching geometry, 

DGS-assisted learning processes are different in spatial and planar geometries. Some 

of these differences appear to be related to individual spatial ability (Dan & Reiner, 

2014). Widder and Gorsky (2012) observed that students characterized by low levels 

of spatial abilities tend to compensate for their difficulty "to see in space" by extensive 

use of DGS when it is available. These learners perform many measurements and 

fewer rotations. In contrast, students endowed with high-level spatial abilities use the 

software relatively less, and perform mainly rotations. High spatial ability students 

seem apt to rotate 3-D objects in their minds and tend to use DGS mainly for 

self-validation and for abbreviation of mental processes. Widder and Gorsky (2012) 

attempted to explain these findings by means of conceptual tools offered by the Theory 

of Cognitive Load (Sweller, 1988). However, these explanations must be considered as 



Widder, Berman, & Koichu 

  

4 – 436 PME 42 – 2018 

not particularly comprehensive. This is for two reasons: first, methods for measuring 

cognitive load are still not readily available, and second, cognitive load can account 

only for part of possible mechanisms behind individual differences in students' strat-

egies of using DGS.  

Other researchers explored students' strategies in using DGS by attempting to link the 

types of actions performed by means of DGS with their cognitive outcomes. Arzarello 

et al. (2002), and later Olivero and Robutti (2007), drew upon the concession that 

geometric sketches play a dual role in geometry problem solving. On the one hand, 

they are related to theoretical geometric objects, and on the other hand they visualize 

graphical spatial properties meant to stimulate perceptual activities. Accordingly, 

learning with DGS can be described as an interaction between bottom-up cognitive 

processes (from the sketch to the theory) involved in conjecturing geometric regulari-

ties in the sketch, and top-down cognitive processes (from the theory to the sketch), 

involved in verification or refutation of the conjectures. By suggesting a hierarchical 

classification of dragging and measuring modalities in DGS, according to the different 

approaches and goals of learners, these studies established a theoretical framework for 

investigating learners' actions when solving planar geometry problems with DGS. Or 

(2008) expanded this framework to include the "glass-ball" perspective dragging 

modality in 3-D DGS. Leung (2008) suggested an additional approach, by relating the 

changes that occur on the computer screen to the Theory of Variations (Marton & 

Booth, 1997). This theory postulates that, to reach profound understanding of a phe-

nomenon, learners must be simultaneously aware of its many aspects. DGS provides a 

sort of virtual reality in which changes can be viewed. Leung (2008) suggested a 

classification of DGS dragging and measuring modalities, based on the learners' in-

tentions to create variation that leads to a simultaneous distinction between the various 

object properties, and thereby to understanding and learning.  

Either way, although providing useful theoretical tools for describing the learning 

processes with DGS, these classifications of the dragging and measuring modalities do 

not address the issue of explaining the differences between the action strategies un-

dertaken by learners with different spatial abilities in DGS-supported 3-D geometry 

problem solving. Moreover, previous studies do not provide comprehensive explana-

tions of how exactly DGS helps students to overcome visual difficulties.  

In our study, we sought to gain a deeper understanding of the variety of strategies that 

students endowed with different spatial abilities employ in DGS-supported 3-D ge-

ometry problem solving. The study relies on the premise that spatial perception relates 

both to the visual discernment of geometrical features in the sketches, and to the ability 

to manipulate mental images of 3-D objects depicted by these sketches (Ferrara & 

Mammana, 2014). Accordingly, we hypothesized that learners work with DGS to al-

leviate the visual difficulty embedded in the sketches, and that differences in the 

strategies that they employ when using DGS can be related to the differences in their 

spatial abilities. The goal of this study was to examine this hypothesis and to answer 

two questions:  
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(1) Do learners work with DGS to alleviate the visual difficulty embedded in 2-D 

sketches depicting 3-D geometry objects? 

(2) What characterizes the action strategies employed by students endowed with dif-

ferent spatial ability (SA), when solving spatial geometry problems of different visual 

difficulty levels with the help of DGS? 

METHODOLOGY 

To answer the research questions, we have constructed and validated a visual difficulty 

measure (VDM) of 2-D sketches depicting cubes with auxiliary constructions (Widder, 

Berman & Koichu, 2014). VDM is based on calculating the ratio between two types of 

information embedded in the sketch: Potentially Helpful Information (PHI) that may 

elicit visualization and support deductive reasoning, and Potentially Misleading In-

formation, that may hinder perception. Visual difficulty is higher as the sketch contains 

more PMI and less PHI, i.e. as VDM is lower (see examples in Figure 1).  

 

 

 

 

 

Figure 1: Different visual difficulty levels of cube-related sketches (VDM). 

The study included twenty-one 12th grade students (17 years old), studying mathe-

matics at the highest stream-level: seven of low, seven of medium and seven of high 

SA. SA was determined using the standard test PSVT-ROT (Guay, 1976). All partic-

ipants engaged in DGS-supported solving of seven cube-related problems of different 

visual difficulty levels, as determined a-priori by VDM, during semi-structured inter-

views. Figure 2 exemplifies a high visual difficulty problem presented during the in-

terviews. Students were given free choice regarding whether and when to use the Cabri 

3D software. Interviews were recorded, transcribed and summarized, with the purpose 

of allowing reflective interpretation of data. 

 

 

  

 

 

Figure 2: An example of a high visual difficulty problem. 
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Data analysis included: 

(1) monitoring of changes occurring in visual difficulty of sketches on the computer 

screen by calculating VDM for sketches at critical screens, defined as screens where 

students performed measurements of segments or angles, or stopped their rotation 

activity with DGS for at least two seconds. The VDM values of the sketches at critical 

screens were used for constructing strategy-graphs, for each student and for each 

problem, describing the type of actions performed (rotations and measurements) (see 

Figure 3). By using these graphs, we sought to examine the hypothesis that learners are 

working with DGS to alleviate visual difficulty; 

(2) counting the total number of types of actions (rotation and measurement at critical 

screens) performed by students with different SA, to solve problems of different visual 

difficulty with DGS. We hoped this counting reveal characteristics of the strategies 

employed by learners. 

RESULTS 

A close look at the strategy-graphs (see examples in Figure 3) confirmed our hypoth-

esis that learners operate with DGS to alleviate visual difficulty. However, the allevi-

ation processes were non-linear as a rule, and differed for students endowed with dif-

ferent spatial abilities. We illustrate this finding by presenting cases of three students 

(Pseudonyms: Sarah, Rachel and Ben).  

 

Figure 3: Strategy-graphs for solving the question in Figure 2. 

The case of Sarah (low SA) 

Sarah began using the software at the outset for testing the hypothesis that trapezoid 

ABFE was not equilateral, but right angled (see Figure 3(a)). By performing two ro-

tations, Sarah created a sketch where the trapezoid looked right-angled. Still not en-

tirely sure, Sarah performed a third rotation, which completely changed her mind, 

because the trapezoid on the screen suddenly looked equilateral. Apparently being 

heavily reliant on visual aspects, and less on theoretical reasoning, Sarah corrected her 

answer accordingly. She was indecisive even when she tried to think theoretically: 

"…a trapezoid cannot be both equilateral and right-angled, right? ...". Finally, Sarah 

reached the correct answer performing a series of measurements on the screen, thus 
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adding to the potentially helpful information in the sketch and facilitating visual dif-

ficulty (see Figure 3(a)). When asked how she arrived at her correct initial guess, she 

said, "... this is something I learned at school - always refer to the angles around the 

vertex of the cube as right ...". Thus, it seems that Sarah succeeded in answering the 

question correctly, without reaching a deep understanding of the spatial geometric 

situation. 

The case of Rachel (medium SA) 

Rachel began solving the problem in Figure 2 without using the computer. It was ev-

ident that she was using theoretical reasoning: 

"... ABFE is not an equilateral trapezoid because A'C' is a diagonal of the base of the cube, 

whereas B'C' is a cube's edge…the diagonal is bigger than the cube's edge... hence the 

AA'E and BB'F triangles do not overlap, and AE cannot be equal to BF ...I think it could be 

right-angled… "   

Rachel began using the software only after she had made an initial conjecture, because 

it was difficult for her to decide whether ABF was the right angle. To resolve this 

doubt, she began rotating the model (see Figure 3(b)): "... I have no idea about the right 

angle, but the trapezoid seems to me equilateral ...".  Contradicted by what she saw on 

the screen, Rachel felt confused and found it hard to accept her own reasoning as proof. 

Finally, she decided to measure AE and BF. As the two segments were unequal, she 

decided to measure angle ABF. Additional PHI received by measuring, lowered the 

visual difficulty in the sketch, and helped Rachel confirm her initial conjecture. Rachel 

succeeded in solving the problem, but claimed that she had been confused by the visual 

details on the screen. 

The case of Ben (high SA) 

Ben started solving the problem in Figure 2 without DGS, articulating theoretical ex-

planations for most of the geometrical aspects of the problem. Ben then used the 

software to validate his theoretical arguments: ''…I use the software because it is 

available...not because I cannot think by myself...it's just nice to get instant feedback 

and it helps seeing things on the screen instead of just imagining them...''. Ben per-

formed several rotations (see Figure 3(c)). Observing the changing screens, Ben dis-

covered geometrical features for angles he was not asked about in the problem for-

mulation. Although very confident, Ben was surprised when asked why the ABFE was 

a trapezoid. He tried to answer a more general question: "... are two lines on parallel 

planes necessarily parallel? ...". To our understanding, Ben's preoccupation with a 

self-imposed general question indicates a deep understanding that is beyond the given 

geometric situation. Unable to find an answer on his own, he measured angles ABF 

and EFB, and asserted that the angles complemented each other to . Thus, he 

empirically showed that EF and AB were parallel. Immediately afterwards, Ben 

managed to prove his empirical finding using the midline theorem for triangle A'B'C'. 

Observing the changes in visual difficulty during Ben's activity with DGS, can be 
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interpreted as using DGS not only for solving the problem, but for creating a space of 

variations for the search of additional properties.  

Counting rotation and measurement actions  

The counting of rotation and measurement actions at critical screens shows that as SA 

increases, students tend to perform fewer actions with DGS (see Figure 4), and to use 

more rotation and less measurements, compared to low and medium SA learners (see 

Figure 5). These findings are in line with the findings of Widder and Gorsky (2012). 

Furthermore, as seen in Figure 4, students with medium to high SA, performed an 

increasing number of actions as the problems' visual difficulty increased. However, for 

learners of medium SA, the significant increase in the average number of actions was 

in the transition from easy to medium problems, whereas among learners of high SA, 

the significant increase was in the transition from medium to hard problems. This may 

indicate that learners of medium SA significantly increase their efforts when solving 

medium visual difficulty spatial problems, while learners of high SA significantly 

increase efforts only to solve high visual difficulty spatial problems. Interestingly, for 

learners of low SA, the change in visual difficulty did not result in a significant change 

in the average number of actions, nor in the relative number of rotations and meas-

urements (see Figure 4). This finding may indicate that learners with low SA are 

"blind" to spatial geometrical situations, i.e. do not distinguish between different visual 

difficulty levels of spatial problems and use the same strategy to solve all problems. 

 

Figure 4: Average number of performed actions. 

Surprisingly, for the hard questions, the average number of actions performed by 

students with different spatial abilities did not significantly differ (see Figure 4 above), 

although the types of actions performed were distinct: as their spatial ability increased, 

students performed more rotations and fewer measurements (see Figure 5). This is in 

line with the findings of Chase and Simon (1973) on performance differences between 

novices and expert chess players, who performed similarly when presented with un-

familiar chessboards, but used different thinking strategies. These findings indicate 

that less familiar geometric spatial situations, of high visual difficulty, may be equally 
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challenging for all learners. However, learners endowed with different SA use dif-

ferent heuristic strategies for solving spatial geometry problems with DGS. 

 

Figure 5: Percentage of performed types of actions for hard questions. 

DISCUSSION 

Previous studies have struggled to understand the process of learning with DGS, of-

fering descriptive classifications of DGS dragging and measuring modalities, and 

possible theoretical explanations for spatial problem-solving processes through DGS. 

In this study, the use of VDM enabled us to empirically test a hypothesis about the use 

of DGS for alleviating visual difficulty of 2-D sketches depicting 3-D objects on the 

computer screen, while attending to individual differences in SA. 

As exemplified by the three strategy-graphs of Sarah, Rachel and Ben, findings indi-

cate that learners do work with DGS to alleviate visual difficulty, and the patterns of 

visual difficulty change are closely related to the patterns of actions undertaken to 

solve problems in spatial geometry with DGS. The process of lowering visual diffi-

culty is a nonlinear process, influenced by the learners' individual SA, as well as by the 

initial visual difficulty of the problem and the solution-stage at which DGS is em-

ployed. All three students started their exploration with DGS after making a conjec-

ture, but differed in the ways of employing DGS in relation to the conjecture. Ben 

integrated the software only for testing his solution, while Sarah and Rachel began to 

use the software during the early stages of solving. Both Sarah and Rachel were caught 

up in visual confusions on the computer screen and assumed incorrect assumptions at 

different stages of problem solving. These findings are consistent with our expecta-

tions that the visual information on the computer screen will guide students' strategies 

in solving geometric spatial problems with DGS. 

Interestingly, strategy-graphs and findings concerning the number and type of per-

formed actions partially support explanations in terms of cognitive load (Sweller, 

1988), but also in terms of variation (Leung, 2008), and in terms of moves between the 

graphical field of the sketch and the theoretical field (Arzarello, et. al., 2002; Olivero & 

Robutti, 2007). For example, similar cognitive load levels could explain why low SA 

learners employ similar strategies for different visual difficulty levels of spatial prob-

lems, and why the effort of students with different spatial abilities did not significantly 

differ when approaching hard questions. However, the use of DGS for verification and 

testing, by high SA learners like Ben, can be better explained as a search for variation, 

while fluctuations between the sketch and the theory can describe Sarah's and Rachel's 
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interaction with DGS. Therefore, we conclude that alleviating visual difficulty with 

DGS is not an isolated factor in characterizing action strategies of learners endowed 

with different SA. Further research is needed for establishing the roles played by visual 

difficulty, cognitive load, the need to connect visual stimuli to theory, and the search 

for variation. 
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Besides pure intelligence and subject-specific skills, there are other determinants 

which substantially affect learning outcomes in mathematics. Working memory 

capacity is one of the key determinants and as recent studies show that it can be 

trained, it´s highly relevant for improving mathematical learning processes. In this 

study, we investigate the relationship between mathematics achievement, and three 

dimensions of working memory as well as attention and inhibition control. We used 

data from highly standardized computer-based tests from more than 500 first grade 

students. As a second perspective we also considered teacher ratings for the same 

students. Our findings confirm a strong and highly significant correlation between 

math achievement and different working memory and attention subtests. 

INTRODUCTION 

Not just pure intelligence and subject-related skills, but also other cognitive skills and 

executive functions substantially affect important individual life outcomes such as 

health, educational attainment, life satisfaction, and labor market outcomes. One key 

determinant for various skills and thus for life outcomes is working memory (WM) 

capacity—the ability to mentally store and process information (Baddeley & Hitch 

1974).  

First, WM capacity is highly correlated with analytical problem solving and general 

fluid intelligence (Engel de Abreu et al. 2010). Second, WM capacity has been found 

to be related to children’s performance in math and language tasks (Raghubar et al. 

2010, Menon 2010). Third, WM capacity has been found to be strongly related to 

self-control (Schmeichel et al. 2008). This view has been supported by evidence from 

neuroscience based on neuroimaging methods indicating an overlap of the brain 

regions that are involved in working memory tasks and time-discounting or self-con-

trol tasks (Wesley & Bickel 2014). Another strand of literature report WM capacity to 

be correlated with attention control (Unsworth & Spillers 2010), which is often 

considered as relevant for all school subjects. In turn, there is evidence that children 

with ADHD often have WM impairments (Alderson et al. 2010). Finally, there is a 

growing body of literature from different fields indicating that WM can be trained: In 

neuroimaging studies, WM training generally led to increase in brain activity in WM 

relevant areas of the brain (Dahlin et al. 2008, Olesen et al. 2004). What makes 



Winkel, Mueller, & Schunk 

  

4 – 444 PME 42 – 2018 

working memory so relevant for mathematics education is the fact that it is strongly 

related to mathematical achievement on the one hand and trainable on the other hand. 

There are several recent studies which confirm these findings for different contexts 

(see further down). But as Raghubar et al. note in their conclusions: “Also missing from 

the literature is a discussion of the overlap between attention and working memory in 

relation to mathematics.” (2010, p. 119) 

The aim of this paper is to examine this open question from the literature for the case of 

primary school students. To do so, we use data from a large-scale study (Schunk et al. 

2017) that has measured the three components WM, attention and mathematics 

together with a series of control variables. 

THEORETICAL BACKGROUND 

Working Memory Capacity and Related Constructs 

Working Memory Capacity (WMC), as defined by Alan Baddeley, is a brain system 

that “provides temporary storage and manipulation of the information necessary for 

such complex cognitive tasks as language comprehension, learning, and reasoning” 

(Baddeley 1992, p. 556). The large general interest in research on WMC is based on 

the finding that WMC is central to a wide range of cognitive abilities as well as life out-

comes, attention, self-control, and even the regulation of emotions (Moffitt et al. 

2011). 

Reasoning Ability: WMC is highly correlated to analytical problem solving and gene-

ral fluid intelligence (Süß et al. 2002). Also for children, WMC can predict general 

fluid intelligence (while short-term memory does not do that, see Engel de Abreu et al. 

2010). 

Maths and Reading Abilities: WMC is related to educational outcomes like math and 

language abilities (Gathercole & Pickering 2000). Studies for different age groups as 

well as for participants with and without learning difficulties reveal a strong 

relationship between WMC and abilities in arithmetic (Raghubar et al. 2010; Du-

montheil & Klingberg 2011). Remarkably, WMC might be a stronger predictor of 

academic success than IQ (Alloway & Alloway 2010). Low WMC seems to constrain 

the acquisition of skills in reading and mathematics (Gathercole et al. 2006) and WM 

training is included successfully in interventions for underperforming students (e. g. 

Yates & Lockwood 2014). 

Attention and Concentration: There is also a strong link between WMC and atten-

tion or attentional control (Unsworth & Spillers 2010). Ignoring distracting informa-

tion or inhibiting unwanted responses to distracting stimuli was found to be improved 

for individuals with higher WMC (Colflesh and Conway 2007). Overall, working 

memory capacity seems to be closely linked to performance in attention tasks, espe-

cially when distracting stimuli have to be ignored or automatic reactions have to be 

suppressed. 
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To sum up, there is evidence for working memory capacity being linked to various fac-

tors relevant for learning. Particularly, WMC seems to be crucial for (i) general rea-

soning abilities, (ii) academic achievements –e.g., in math – and (iii) concentration abi-

lities such as attentional control and inhibition of unwanted responses. 

Measurement Issues 

WMC is not a single, easy-to-measure construct. According to Baddeley’s definition 

(see above), WMC involves aspects of storage and processing (or manipulation) of 

information.  

The storage component is usually identified with short-term memory, which describes 

an amount of information that is temporarily in a very accessible state (Cowan 2017). 

This memory has proven to be further separable into a verbal and a visuo-spatial 

component (confirming Baddeley and Hitch’s (1974) model of the “phonological 

loop” and the “visuo-spatial sketchpad”). Thus, WMC might be best described as (i) 

the ability to hold or manipulate task-relevant information in STM and (ii) the general 

ability to control attention (Cowan 2017). 

Therefore, measurements of WMC should account for this rather complex structure of 

the construct and should employ multiple tasks (cf. Shipstead, Redick, and Engle 2012, 

p. 6). Short-term memory is usually measured using so-called simple span tasks, while 

WMC is best reflected in complex span tasks (Engle et al. 1999). Simple span tasks 

consist of recalling sequences of information and rely solely on storage. Complex span 

tasks involve some component of both storage and (parallel) processing of 

information. For our case of mathematics achievement in primary schools all types of 

tasks are of interest. 

RESEARCH DESIGN  

Participants and Data Collection 

In our study, we concentrate on first grade primary school children (6-7 years of age). 

We conduct our study with more than 500 students from 31 classes in 12 public 

primary schools of a German city. While the goal of the main study was an intervention 

study, the present paper only focuses on data from the first evaluation wave which was 

conducted before the start of any intervention. All data was collected by a professional 

data collection service provider that was hired by us. 

Students completed highly standardized computer-based tests including tasks in 

working memory (phonological and visuo-spatial), maths performance, attention and 

inhibition control and IQ. All the tasks were computer-based, using touchscreen, and 

headphones. Furthermore, teachers completed an online questionnaire on student´s 

skills as well as on some background characteristics of teachers, classes and individual 

students.  
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Main Variables 

Mathematics performance (Outcome variable): Basic numeracy was assessed by 

three different subtests. In the first subtest, the children were asked to simultaneously 

detect the number of balls on a two by ten grid. The other two subtests were about 

addition and subtraction, one about mental arithmetic with orally presented problems 

and one with written problems. 

For geometry, we used a test in which children had to guess how many triangles or 

rectangles fit into a larger geometrical shape. In all math tests, children entered their 

answer by using a calculator-like grid with the digits 0 through 9 which appeared on 

the touch screen. 

In addition to the test measures for maths performance we asked the teachers to rate 

each student on a scale from 1 to 7. The question which corresponds to the measure of 

the three arithmetic subtests was: “How good is the child in adding and subtracting 

numbers?”. 

Working Memory: To account for the complex structure of WMC, we adopted three 

different tasks to measure WMC. Hence, we conducted a simple span task (Digit Span) 

in the area of verbal short-term memory, and a complex span task in each area of 

visuo-spatial (Location Span) and verbal (Object Span) WMC. 

The Digit Span task (variable “WM: Digit Span”) was a simple forward span short 

term memory test. In this test, the child listened to different sequences of one-digit 

numbers in the range from 1–9. After each sequence, the child was asked to indicate 

the numbers heard in the correct order. 

The Location Span task (variable “WM: Location Span”) was a complex span task 

measuring visuo-spatial WMC. For every item in this test, the child had to detect the 

“odd” shape out of three shapes. After the entire sequence of items, the positions of the 

identified shapes had to be recalled in the correct order.  

In the Object Span task (variable “WM: Object Span”), the child listened to a sequence 

of words he / she had to remember. Since this was a complex span task, after each word 

the child had to decide whether it represented an animal or not by pushing a button 

“Animal” or “No animal”. 

Attention control: To measure concentration and inhibition abilities we employed a 

GoNoGo task (adapted from Gawrilow & Gollwitzer 2008). The child has to push a red 

button on the touch screen every time one of four different animals appeared on the 

screen. However, when a fifth animal appeared, they must not push the red button. We 

used the sum of commission errors (pushed, although “NoGo”-item) as a measure for 

inhibition control (variable “Attention: Inhibition Errors”) and the sum of omission 

errors (not pushed, although “Go”-item) as a proxy for attentional control (variable 

“Attention: Attention Errors”).  

As a third proxy for attention abilities (variable “Attention: bp-Test Errors”) we choose 

the “bp task” (drawn from Esser et al. 2008). In this test, the child was presented 
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several pages full of similar looking letters and the child was asked to tap each ”b” and 

”p” without marking any other letters. 

Methods 

In order to examine the overlap between attention and working memory in relation to 

mathematics, we use the above-mentioned three outcome variables: the performance in 

the geometry test, the mean performance in the arithmetic subtests and additionally the 

teacher ratings for arithmetic. We regress each of these outcome variables on our three 

measures for WMC as well as our three measures for attention. As there is a high 

correlation between IQ and WMC as well as between IQ and math achievement, we 

also control for children’s IQ based on a subset of Raven’s Matrices IQ test (Bulheller 

& Häcker 2002) that has been conducted in our sample. Importantly, all these variables 

are z-standardized with a mean of 0 and a standard deviation of 1. Moreover, we added 

gender and age to the regression as further standard control variables. Finally, we 

added school fixed effects to our regression to control for unobserved differences 

between the schools.  

PRELIMINARY RESULTS 

First results of the fixed effects regression model are shown in the following table.  

 Test Performance 

in Geometry 

Test performance 

in Arithmetic 

Teacher Rating  

for Arithmetic 

 Coef. (SE) p Coef. (SE) p Coef. (SE) p 

WM: Digit Span 

WM: Location Span 

WM: Object Span 

.11 (.05) 

.16 (.04) 

.13 (.04) 

.010 

.000 

.004 

.24 (.04) 

.23 (.04) 

.09 (.04) 

.000 

.000 

.036 

.39 (.07) 

.27 (.06) 

.06 (.08) 

.000 

.000 

.442 

Attention: bp-Test Errors 

Attention: Inhibition Errors 

Attention: Attention Errors 

.03 (.04) 

.01 (.04) 

.04 (.04) 

.422 

.757 

.328 

-.14 (.04) 

-.10 (.03) 

-.05 (.03) 

.000 

.003 

.089 

-.21 (.07) 

-.01 (.07) 

.01 (.05) 

.003 

.851 

.872 

IQ (control measure) .33 (.04) .000 .16 (.04) .000 .29 (.07) .000 

(further control measures including gender, age and school fixed effects are not listed here) 

 n = 556 

R² = .32 

 n = 544 

R² = .44 

 n = 540 

R² = .35 

 

 

Table 1: Results from Linear regression of WMC and Attention on Mathematics 

achievement (M=0, SD=1), robust standard errors. 

Working Memory 

Although we control for IQ, the different WMC measures all are significantly related 

both to the arithmetic as well as the geometry test outcomes. The effect sizes are be-

tween 0.09 and 0.24. The strongest association exists between the digit span and the lo-

cation span measures with arithmetic test performance. For arithmetic these effect 
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sizes are even higher than the effect size of intelligence. Although smaller in magni-

tude, even the object span measure has a significantly positive effect on arithmetic test 

performance. This is remarkable, because this measure has no obvious relationship to 

mathematics like numbers or positions. Focusing on the teacher´s perception of 

student´s arithmetic skills, the standard errors are a bit larger but the effect sizes for 

digit and location span as well. For object span we do not find any association to the 

teacher ratings. Importantly, the teacher was blind to the testing results and was just 

asked to rate the student´s abilities to add or substract numbers. Hence, it seems that the 

teacher´s assessment of student´s arithmetic ability highly correlates with the ability 

needed for the digit span and the location span task but not the verbal object span task. 

Attention 

Two of our three measures for attention also significantly predict the children´s test 

performance in arithmetic. The more errors in the bp-test and the more errors with 

pushing the button at “NoGo”-items, the lower is childs performance in arithmetic. 

Apparently, despite the inclusion of three working memory measures and one 

IQ-measures – which both also implicitly capture children´s attention – our specific 

attention measures still have considerable explanatory power and are important deter-

minants of arithmetic performance. In contrast, for the teacher ratings for arithmetic we 

only find an association with the bp-task and for the geometry test, we do not find any 

association with attention. As there are less measures related to the teacher ratings of 

arithmetics. 

SUMMARY AND OUTLOOK 

With the regressions of the data from more than 500 first graders and their teachers, we 

found promising results concerning our question about the overlap between attention 

and working memory in relation to math abilities. In line with the cited literature we 

find that all three dimensions of working memory and two of three measures for at-

tention are significantly linked to arithmetic test achievement, although we control for 

children´s IQ. The effect seems stronger for working memory capacity than for our 

attention measures and it is more clear on arithmetic than on geometry. Despite these 

obvious effects the teacher seems to take only a part of the underlying skills of these 

not-easy-to-measure constructs into account when he/she rates the student´s arithmetic 

skills based on his/her holistic observations from every day lessons. It appears that 

WMC and attentional capacities are differentially related to different mathematical 

skills – arithmetic and geometry – as well as teacher´s assessment of student´s skills.  

Our regression we also checked for similar variables and got similar results. 

Nevertheless we still have to do further robustness checks and a more detailed look at 

moderation and mediation effects of WMC and attention to get a more precise answer 

to our question. This is planned for the time before our presentation of the results on 

the Conference in July. A more detailed look on the overlap between WMC and 

attention will also allow us to provide a more concise link to the current literature as 

well as to school practice. 
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As a limitation we know that although our measures have been collected with highly 

standardized procedures they of course suffer from the usual measurement error. 

Moreover, since we have neither exogenously manipulated working memory capacity 

nor attention our regression results cannot be interpreted causally, but they rather shed 

light on the link between working memory, attention and mathematics. 
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Tables are widely used for supporting functional thinking in the early grades. This 

research explored whether diagrams might also be adequate for this endeavour. 322 

students in late elementary and early secondary grades resolved a multiple-choice test 

that required the identification of unknown instances of a dependent variable. Items of 

varying difficulty were presented in tabular and diagrammatic formats. Diagrams 

facilitated better performances in easy and difficult items amongst students in ele-

mentary grades and in the lowest secondary grade – who had little or no formal al-

gebraic instruction – but not in the highest secondary grade. Responses denoting 

non-functional thinking were in general selected at chance-levels. The potential of 

diagrams for supporting the early development of functional thinking is discussed. 

INTRODUCTION 

There is much interest for supporting the development of algebraic thinking in the 

early grades. A key approach to early algebraization consists of introducing ideas such 

as variable, covariation, generalization, and symbolism, with tasks designed under the 

framework of the function. Functional thinking (FT) is an umbrella term coined to 

describe the body of knowledge and abilities required for making sense of these tasks 

and ideas. The usage of multiple representations is thought to play an important role in 

the development of FT, since the construction and generalization of patterns and rela-

tionships require mastering diverse linguistic and representation tools (Blanton and 

Kaput, 2011). According to Smith (2008), FT is a form of representational thinking 

that focuses on the relationship between two or more varying quantities, progressing 

from specific relationships involving individual instances to the generalization of that 

relationship across instances.  

There are various ways in which functional relationships can be represented, including 

for example coordinate graphs, natural language, idiosyncratic symbols and drawings, 

formal algebraic notation, figural patterns, tables, real-life scenarios, “function ma-

chines”, etc. And yet, most studies addressing FT tend to rely on tables. This seems 

adequate considering the properties of this representation. Tables are thought to make 

functional relationships transparent, thereby facilitating the process of generalization. 

It has been suggested that tables can help to spread the cognitive load in a way that 

allows students in second grade and beyond to focus on more complex tasks such as 

symbolizing (Blanton & Kaput, 2011). Tables are also helpful to identify functional 
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relationships independently of the situation that originates them. For example, second 

grades can recontextualize variables (number of tables and number of people) from the 

physical context of a chair assignation problem, to the mathematical context of tables, 

in order to analyze their underlying functional relation (Cañadas, Brizuela, & Blanton, 

2016). 

Although tables are powerful tools for supporting FT, there are reasons to believe that 

it would be worth finding representations to complement their use. Functional ideas are 

relevant in situations that can be represented in ways other than tables. Moreover, 

research addressing diverse representations might result in the enrichment of the tool-

box employed by teachers to deliver algebraic ideas in the classroom. 

Here we present an exploratory study, the objective of which was to assess the poten-

tial that physics diagrams might have for facilitating FT. We compared the perfor-

mance displayed by Mexican students in later elementary education and early seconda-

ry education whilst resolving a task requiring the identification of a missing instance of 

the dependent variable, presented analogously in tables and shadow-cast diagrams. 

The research questions were: RQ1: How do diagrams compare to tables for facilitating 

the solution of tasks involving functional relationships? RQ2: Do children address 

functional relationship differently in diagrams and tables? 

REPRESENTING FUNCTIONAL RELATIONSHIPS WITH DIAGRAMS 

There is much potential in exploring diverse representations for supporting FT. The co-

ordination of diverse representations of functional situations can help learners to de-

velop the capacity to analyze, describe, and symbolize different types of patterns and 

relationships. Representations might have distinctive properties that can be used for 

supporting FT. For example, natural language possess familiarity, pictorial represen-

tations of patterns can bridge the gap between natural language and symbols, and 

graphs can help to link FT with geometrical ideas. Below we outline some ways in 

which the properties of physics diagrams might support the understanding of functio-

nal relationships. 

The potential of diagrams for supporting the learning of algebra in secondary and 

higher education is well documented. For example, diagrams can successfully aid the 

solution of complex equations amongst students in pre-algebra courses (Chu, 

Rittle‐Johnson, & Fyfe, 2017). And yet, diagrams have been seldom studied in the 

early algebra literature (Smith, 2008). However, there are reasons to argue in favour of 

its usage for supporting FT. First, children are likely to be familiar with diagrams. Dia-

grams representing a range of phenomena are pervasive in schools. In fact, diagrams 

are commonly used for introducing children to a range of physical phenomena, in-

cluding complex topics such as general relativity (Pitts, Venville, Blair, & Zadnik, 

2014). Although there might be different levels of sophistication for interpreting dia-

grams, children become familiar with reading diagrams from early grades. Second, 

diagrams can display visually the qualities of the relationship between quantities. For 

example, in the case of shadow-cast diagrams like the ones used in this study (Figure 
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1), the qualities of the covariation between the magnitudes involved are visually re-

presented. The length of a shadow is visually linked to the height of its corresponding 

object, in relation to the light source. This sort of visual representation of the relation-

ship between quantities is missing in function tables. Third, diagrams can represent 

continuity. This is relevant considering that functions often involve continuous data 

that needs to be discretised in order to be represented in a table. Fourth, the contextual 

cues offered by diagrams might elicit learners’ useful intuitions and informal know-

ledge. One example relevant to the current study, is that even 5-year-olds take into 

account the relationship between object size and light-object distance for estimating 

shadow lengths (Ebersbach & Resing, 2007). This suggests an intuitive tendency to 

establish relationships between variables in order to produce an output. Perhaps this 

kind of intuition might support the identification of functional relationships. 

METHOD 

Participants 

A total of 332 children in five grades across elementary and secondary school, from 

Mexico, took part in the study. In Mexico the elementary and secondary systems are 

composed by 6 and 3 grades respectively. Therefore, our sample is useful for compa-

ring across years and across educational stages. The most important aspect of compa-

ring educational stages is that the Mexican elementary curriculum does not address 

algebraic concepts, whereas formal algebra instruction begins in secondary school. 

Consequently we were able to begin to explore the possible effects of formal algebraic 

instruction on FT across representations. 

The study sample was taken from one elementary school and one secondary school, 

both were government-funded schools located in a mid-size city in south-central 

Mexico. These schools are adjacent to each other, so share a socioeconomic context, 

with a medium-level of marginalization according to national statistics (SEP, 2017). 

The mathematics performance of the elementary school is around the national average, 

whilst the secondary school has a slight overrepresentation of students in the lower 

level of performance, but is nevertheless still close to the national average.  After re-

moving 10 individuals who returned more than 75% of missing responses, the final 

sample was taken from elementary grades 4 (n = 59), 5 (n = 45), and 6 (n = 73) and 

from secondary grades 1 (n = 68) and 2 (n = 77), and was drawn from two classes in 

each grade. 

Questionnaire 

We administered a questionnaire designed to compare the effects of tables and dia-

grams over children’s functional thinking. The items in the questionnaire required the 

identification of an unknown instance of the dependent variable. We consider this to be 

an indicator of functional thinking because in order to find an unknown value of y 

given a particular value of x, an individual needs to resolve and generalize the rule 

governing the relationship between the numbers involved in the two variables. 
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The tabular format presented pairs of numbers ordered in two adjacent columns. The 

diagrammatic format also presented pairs of numbers, but these were contextualized in 

a figure designed to represent the relationship between the height of a pole and the 

length of its shadow. Diagrams were designed to accurately represent different shadow 

cast situations. Examples are shown in Figure 1. The questionnaire contained one 

section for tables and one section for diagrams, each of 12 items, six of which were 

‘easy’ and six ‘difficult’. In the easier items the functional rule involved either an ad-

dition or a subtraction, whereas in the difficult items the rule involved either a multi-

plication or the combination of a multiplication with an addition or a subtraction. 

Children were asked to respond each item by choosing one of four options. One option 

was congruent with functional thinking. Another two options were congruent with two 

ways of responding to similar exercises with function tables that we identified in a 

large dataset (Xolocotzin & Rojano, 2015) and the literature (e.g., Tanışlı, 2011), 

namely recursive and local. The recursive thinking option implied that the subject 

resolved the unknown number by looking at a pattern formed by the numbers in the 

dependent variable, neglecting the relationship with the independent variable. Local 

thinking consisted of relating the unknown with its corresponding pair in the in-

dependent variable, in a way that does not apply to the rest of the pairs. The fourth 

option was a distractor, which consisted of a number that was ostensibly unrelated to 

the presented data. For example, if the to-be-identified unknown was smaller than its 

pair in the independent variable, the distractor option was a number larger than its 

corresponding pair in the independent variable. 

  

Figure 1. Examples of difficult tabular (left) and diagrammatic (right) items.  

Respectively, the options congruent with functional thinking are (d),  

resulting from b = 2a+1 and (c) resulting from b = 2a +5. Options (b) and  

(b) are consistent with recursive thinking. Options (c) and (d) are  

local thinking, and options (a) and (a) are distractors. 

Procedure 

Individuals were tested at the start of the academic year. The representation order was 

counterbalanced within grades, and items were presented in two different randomized 

orders. Questionnaires were administered in groups in one-hour sessions, allocating 

approximately 15 minutes for each format. Subjects were invited to participate in 
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voluntary basis, with clarification about the confidentiality of their responses and after 

obtaining permission from school authorities and parents. 

RESULTS 

Functional thinking responses 

The first analysis assessed functional thinking. The number of responses consistent 

with functional thinking was the dependent variable in a mixed ANOVA including the 

within-participants factors Representation (table/diagram), and Difficulty (easy/dif-

ficult), and the between-participants factor Grade (E4/E5/E6/S1/S2).  The results re-

vealed significant main effects for all the factors. These were mediated by significant 

two-way interactions, which sources were identified with post-hoc Bonferroni com-

parisons. The interaction representation x grade [F (4, 317) = 3.199, p = .013,  = 

.039] indicated that children performed better in the diagrammatic format in grades E4 

to S1, but not in S2. The interaction difficulty x grade [F (4, 317) = 6.375, p < .001,  

= .074] indicated that children across grades performed significantly better in the easy 

items than in difficult items across grades, but this effect was significantly smaller in 

S2. These results are illustrated in Figure 2. 

1	

2	

3	

4	

5	

E4	 E5	 E6	 S1	 S2	

Sc
o
re
	

Grade	

Representa on	by	Grade	

Tables	

Diagrams	

 

1	

2	

3	

4	

5	

E4	 E5	 E6	 S1	 S2	

Sc
o
re
	

Grade	

Difficulty	by	Grade	

Easy	

Difficult	

 

Figure 2. Plots showing marginal means of performance by grade for each represen-

tation type (left) and each operation type (right).  

Error bars show 1 SE of the mean. 

The interaction representation x difficulty [F (1, 317) = 21.425, p < .001,  = .063] 

indicated better performances in the diagrams in both easy and difficult items, but this 

effect was significantly larger in the easy items. The interaction representation x dif-

ficulty x grade was not significant. These results are shown in Figure 3. 

Responses denoting non-functional thinking 

A second analysis addressed the rates of responses denoting non-functional thinking, 

with a breakdown by grade, representation and difficulty. The number of responses 

consistent with recursive and local ways of thinking, as well as the number of distractor 

selections and missing responses, were all below the expected by chance (1.5). The 
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lowest selection rate was observed in the distractor responses of S2 children to the 

difficult diagram items (M= .155, SD = .365), whereas the highest selection rate was 

observed in the local thinking responses of S1 children to difficult diagram items 

(M=1.44, SD = 1.29). Given the low rates of these response types, no further analyses 

were carried out. 
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Figure 3. A plot showing the marginal means of performance for each representation 

by problem difficulty, collapsed across grades. Error bars show 1 SE of the mean. 

DISCUSSION  

The current study is an initial step to explore the potential that diagrams might have for 

complementing other representations, such as tables, in the development of FT. Below 

we discuss the way in which the results responded to the research questions.   

How do diagrams compare to tables for facilitating the solution of tasks involving 

functional relationships? 

Students in all elementary grades and in the lower secondary grade performed better in 

the diagrams. In contrast, students in the higher secondary grade tested (S2) showed 

similar performance in tables and diagrams. We think that this interaction between 

representation and grade is interesting considering the differences in algebraic in-

struction received across grades.  

The Mexican elementary curriculum does not include algebraic content, and consi-

dering that participants were tested at the start of the academic year, we can say that 

students in grade S1 had an incipient algebraic formation when they responded to the 

questionnaire. What this suggests is that diagrams might have certain properties that 

facilitate the identification and generalization of functional relationships amongst 

children without formal algebraic knowledge. Such properties might become less im-

portant after receiving algebraic instruction. 

The information offered by diagrams is richer in quantity and quality than the informa-

tion offered by tables. Tables showed only numeric data, whereas the diagrams used in 

this study presented both numeric and schematic data. As in the case of tables, the 

diagrams showed numeric representations of the quantities involved. However, dia-



Xolocotzin, Inglis, & Medrano 

 

PME 42 – 2018 4 – 457 

grams also showed, albeit in a largely abstract manner, the natural mechanisms that 

linked the variables. Children had more information available to make conjectures 

directed to identify the unknown. For example, the diagrams presented the position of 

the light source, and also presented analogue visual and numeric data regarding the 

height of the pole and the length of the shadow. Larger or smaller numbers accompa-

nied larger or smaller icons of poles and shadows. Students might have used this in-

formation to make sense of the qualities of the covariation between the pole height and 

the shadow length. For example, to notice when the numbers in the dependent variable 

were larger or smaller than the numbers in the independent variable and apply the 

corresponding additive, subtractive or multiplicative operations to figure out the un-

known. 

The properties of diagrams outlined above might have become irrelevant for students 

in S2. Perhaps they devaluated non-numerical information in the analysis of the mathe-

matical situation presented, and concentrated on figuring out the relationship between 

variables by purely numerical reasoning, which is a kind of reasoning prompted by 

tables (Cañadas et al., 2016). Moreover, this result may reflect that the Mexican sec-

ondary curriculum overemphasises the operation of "formal" symbolic representations 

in the algebraic domain, which is thought to hamper the understanding of functional 

relationships. 

Finally, it is worth mentioning that across grades, difficult items were harder than easy 

ones, and although diagrams facilitated better performances than tables in both kinds 

of items, this effect was larger in easy ones. These results suggest that the benefits of 

diagrams are mediated by arithmetic proficiency. Even if the qualities of the co-

variation between quantities portrayed by diagrams facilitates conjectures about their 

functional relationship, arithmetic proficiency is still required to figure out the specific 

rule governing such relationship, which is required to find the unknown. 

Do children address functional relationship differently in diagrams and tables? 

One explanation for the low rates of non-functional responses could be that children 

applied the same sort of knowledge to resolve tables and diagrams. The properties of 

diagrams mentioned above do not seem to prompt non-functional strategies to a diffe-

rent measurable extent than tables do. Based on this, we argue the higher performances 

observed in the diagrams are due to its specific properties mentioned above. 

Concluding remarks 

To summarize, these data make it possible to argue that diagrams can be an option for 

complementing tables to support FT in the early grades. Future studies will be made for 

understanding the cognitive mechanisms that underlie the interpretation of functional 

relationships represented in diagrams. This will be useful to develop instructional ap-

proaches directed to provide teachers with more tools for introducing algebraic ideas in 

the early grades. 
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In this article, we explore three theoretical perspectives that inform the development of 

high-quality, research-based, digital instructional materials. In our team’s efforts to 

develop a game-based learning applet for an existing inquiry-oriented curriculum, we 

have sought to theoretically frame our approach so that we can draw on the corpus of 

researcher knowledge from multiple disciplines. Accordingly, we will discuss three 

bodies of literature – realistic mathematics education’s approach to curriculum de-

velopment, inquiry-oriented instruction and inquiry-based learning, and game-based 

learning – and draw on parallels across the three in order to form a coherent ap-

proach to developing digital games that draws on expertise in each field. 

INTRODUCTION 

Researchers in undergraduate mathematics education have developed curricula that 

draw on the curriculum design principles of Realistic Mathematics Education (RME) 

and are intended to be implemented using inquiry-oriented (IO) methods (e.g., Larson, 

Johnson, & Bartlo, 2013 (abstract algebra); Rasmussen & Kwon, 2007 (differential 

equations); Wawro et al., 2013 (linear algebra)). IO curricula fall within the broader 

spectrum of Inquiry-Based Learning (IBL) approaches that focus on student centered 

learning through exploration and engagement (Ernst, Hodge, & Yoshinobu, 2017) 

facilitated by an instructor’s interest in and use of student thinking (Rasmussen, 

Marrongelle, Kwon, & Hodge, in press). In this paper we give examples from one IO 

curriculum, but also use quotes and references from the more general IBL literature. 

In our current project we are exploring the extent to which technology can help ma-

thematics educators extend inquiry-oriented (IO) curricula into learning contexts that 

are less conducive to inquiry-oriented approaches. Game Based Learning (GBL) pro-

vides a reasonable approach to addressing the constraints that large class sizes or 

non-co-located learning place on instructors’ implementation of IO curricula. GBL 

studies show a clear relation between games and learning as games provide a meaning-

ful platform for large numbers of students to engage, participate, and guide their lear-

ning with proper and timely feedback (e.g., Barab, Gresalfi, & Ingram-Goble, 2010; 

Juul, 2009). Despite advances in technology and policy initiatives that support deve-

lopment of active learning, few digital games exist at the undergraduate level that ex-

plicitly incorporate a research-based curriculum. In this paper, we explore the three 

theoretical perspectives of RME, IO/IBL instruction, and GBL in order to identify the 

ways in which the three perspectives align and might contribute to the development of 

digital media that incorporate knowledge and practices gained from each perspective.  
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We begin with a brief discussion of each of the three theoretical framings illustrated 

with specific examples. For the first two framings we describe a task sequence and 

strategies for implementing that task sequence that come out of the Inquiry Oriented 

Linear Algebra (IOLA) curriculum. For the third framing, we provide a brief outline of 

a mathematics game, Rolly’s Adventure, developed by the third author, who drew on 

GBL principles in her game design. We then draw on each of these examples to de-

monstrate how aspects of RME, IO/IBL instruction and GBL align with each other and 

to point out a few ways that RME and IO/IBL might be used to inform design of future 

games, especially as we, the authors, move towards the development of a new digital 

game rooted in the existing IOLA curricular materials. 

RME and IOLA 

RME is a curriculum design theory rooted in the perspective that mathematics is a 

human activity. RME-based curricula focus on engaging students in activity that lends 

itself to the development of more formal mathematics. Researchers rely on several 

design heuristics to guide the development of RME-based curricula (Gravemeijer, 

1999; Zandieh & Rasmussen, 2010). In this paper, we focus on Gravemeijer’s (1999) 

four levels of activity to show how curricula might reflect the design theory. Si-

tuational activity involves students’ work on mathematical goals in experientially real 

settings. Referential activity involves models-of that refer to physical and mental ac-

tivity in the original setting. General activity involves models-for that facilitate a focus 

on interpretations and solutions independent of the original task setting. Formal ac-

tivity involves students reasoning in ways that reflect the emergence of a new mathe-

matical reality and no longer require prior models-for activity. 

The IOLA curriculum (http://iola.math.vt.edu) draws on RME instructional design 

heuristics to leverage students’ informal, intuitive knowledge into more general and 

formal mathematics (Wawro, Rasmussen, Zandieh, & Larson, 2013). The first unit of 

the curriculum, referred to as the Magic Carpet Ride (MCR) sequence, serves as our 

example of RME instructional design (Wawro et al., 2013). The first task of the MCR 

sequence is situational activity in that it asks students to investigate whether it is pos-

sible to reach a specific location with two modes of transportation: a magic carpet that, 

when ridden forward for a single hour, results in a displacement of 1 mile East and 2 

miles North of its starting location (along the vector <1, 2>) and a hoverboard, defined 

similarly along the vector <3, 1>. As students work through this task and share solu-

tions with classmates, they develop notation for linear combinations of vectors and 

connections between vector equations and systems of equations, providing support for 

representing the notion of linear combinations geometrically and algebraically.  

The second task in the sequence supports referential activity. In this task, students are 

asked to determine whether there is any location where Old Man Gauss can hide from 

them if they were to use the same two modes of transportation from the first problem. 

As students work on this task, they begin to conceptualize movement in the plane using 

combinations of vectors and also reason about the consequences of travel without 
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actually calculating the results of linear combinations. This allows students to form 

conceptions of how vectors interact in linear combination without having to know the 

specific values. The goal of the problem is to help students develop the notion of span 

in a two-dimensional setting before formalizing the concept with a definition. As with 

the first task, students are able to build arguments about the span of the given vectors 

and rely on both algebraic and geometric representations to support their arguments.  

As students transition from the second task of MCR, they have experience reasoning 

about linear combinations of vectors and systems of equations in terms of modes of 

transportation in two dimensions. In the third problem, students are asked to determine 

if, using three given vectors that represent transportation modes in a three-dimensional 

world, they can take a journey that starts and ends at home (i.e., the origin). They are 

also given the restriction that the modes of transportation could each only be used once 

for a fixed amount of time (represented by scalars c1, c2, and c3). The purpose of the 

problem is for students to develop geometric imagery for linear dependence and linear 

independence that can be leveraged through students’ continued referential activity 

toward the development of the formal definitions of these concepts. 

In the fourth task, students have the opportunity to engage in general activity. In this 

task, students are asked to create their own sets of vectors for ten different conditions – 

two sets (one linearly independent and one linearly dependent) meeting each of the five 

criteria: two vectors in ℝ2, three vectors in ℝ2, two vectors in ℝ3, three vectors in ℝ3, and 

four vectors in ℝ3. Students also create conjectures about properties of sets of vectors 

with respect to linear independence and linear dependence. Students work with vectors 

without referring back explicitly to the MCR scenario as they explore properties of the 

linear in/dependence of sets of vectors in ℝ2 and ℝ3; furthermore, students often extend 

their conjectures to ℝn. Finally, students engage in formal activity as they use the 

definitions of span and linear independence in service of other arguments without 

having to re-unpack the definitions’ meanings. This does not tend to occur during the 

MCR sequence but rather during the remainder of the semester as students work on 

tasks unrelated to the MCR sequence.  

Effectiveness and Challenges of Inquiry-Oriented Instruction 

Effectively implemented inquiry-oriented instructional approaches have been related 

to improved levels of conceptual understanding and equivalent levels of computational 

performance in areas ranging from K-12 mathematics, to undergraduate mathematics, 

physics, and chemistry (e.g., Kwon, Rasmussen, & Allen, 2005). To enact an RME 

curriculum, a classroom must engage students in inquiry into the mathematics of the 

problems posed. These classrooms are problem-based and student-centered, charac-

teristics that overlap with other Inquiry Based Learning (IBL) and active learning 

classrooms (Laursen, Hassi, Kogan, & Weston, 2014). Consistent with others in the 

field (e.g., Kuster et al, 2017), in this work, we consider inquiry-oriented instruction to 

fall under the broader category of inquiry-based instruction. Research has shown that 

students who engage in cognitively demanding mathematical tasks have shown greater 
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learning gains than those who do not (Stein & Lane, 1996). Furthermore, Stein and 

Lane (1996) found that those gains were greater in classrooms where students were 

encouraged to use multiple representations, multiple solution paths, and where multi-

ple explanations were considered. 

Implementation of the MCR task sequence described above is dependent on an in-

quiry-oriented classroom environment. Rasmussen and Kwon (2007) describe inquiry 

both as student inquiry into the mathematics through engagement in novel and chal-

lenging problems and instructor inquiry into students’ mathematics to provide feed-

back to advance the mathematical agenda of the classroom. The MCR sequence is 

comprised of tasks that allow for multiple strategies and representations. Since the 

tasks are non-trivial, students are challenged with debating their answers and ex-

plaining their arguments. In addition, Tasks 2 and 3 each allow students to engage in 

mathematical activity that can be leveraged by the instructor to introduce formal def-

initions (span in Task 2, linear independence in Task 3). In both cases the instructor 

serves the role of broker between the classroom community and the mathematical 

community (Rasmussen, Zandieh & Wawro, 2009; Wenger, 1998) by taking student 

ideas and connecting them with the formal mathematical definitions. This brokering 

move of “interpreting between communities facilitates the students’ sense of owner-

ship of ideas and belief that mathematics is something that can be reinvented and fig-

ured out” (Zandieh, Wawro, & Rasmussen, 2017). 

Game-Based Learning 

Game Based Learning (GBL) is the use of digital games with educational objectives to 

significantly improve learning outcomes. Games are designed to be enjoyable and fun 

where students overcome challenges and goals (including educational goals) by gai-

ning mastery of the rules within a constrained environment (Dickey, 2005). Research 

in game-based learning has emphasized the importance of incorporating thoughtful 

learning theories into the design of games (e.g., Williams-Pierce, 2016; Gresalfi, 

2015), particularly by engaging students in activities in a problem-solving scenario so 

that students have opportunities to build on their understanding through reflective 

abstraction on their prior activity towards more advanced ways of thinking. We illus-

trate GBL with examples from Rolly’s Adventure (RA), a videogame developed by the 

second author to support student learning about fractions.  

RA begins with Rolly in the top left of the screen (see Figure 1). Rolly needs to roll 

past the obstacle (the gap) in the middle of the screen. The player’s avatar is below 

Rolly in the purple hat. The player can choose from three options to press at the bottom 

of the screen. If the player chooses incorrectly the area explodes in fire and the golden 

bricks in the center show the result of the choice (see Figure 1c.) In Figure 1, the player 

chose the single black circle and this did not change the size or shape of the golden 

brick. They then received feedback that their answer was incorrect (the fire that sends 

their avatar back to start over), and what the direct result of their action was (one black 

circle results in a single golden brick). Such instantaneous feedback and failure are 
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considered crucial aspects of supporting learning during gameplay (e.g., Juul, 2009). If 

the player chooses the two black circles, the size of the initial brick doubles to fill the 

space and Rolly (and thus the player) is able to move past the obstacle, thus receiving 

positive feedback as to the accuracy of their choice.  

  

Figure 1: (a) The player (shown here in a purple helmet) enters the puzzle; (b) the 

player activates the first button; (c) the puzzle catches on fire. 

As the player progresses through the challenges the brick or bricks in the obstacle will 

change in relationship to the space, and the way that the choices are indicated will also 

change. For example, the golden brick in Figure 1 represents one-half of the hole (the 

obstacle), and the next puzzle (not shown) has a block that represents one-fourth of the 

hole, following recommendations that halving a half is a natural next step in the 

learning of fractions (e.g., Smith, 2002). RA was designed specifically to begin with 

simpler puzzles and become more complex as players move through the trajectory, 

such that as players develop generalizations about the game, new puzzles emerge that 

continue to challenge and nuance these generalizations. Mathematical notation be-

comes introduced that supports the player in being more precise and accurate just as 

they begin to struggle, as a way of developing a sense of “intellectual need” (Harel, 

2013) so that players find the notation immediately useful. The game also becomes 

more complex by, for example, presenting bricks that are not an integer multiple of the 

size of the hole or are larger than the hole. 

RA was designed specifically with GBL principles to support players in mathe-

matizing their own gaming experience, and engaging in mathematical play (Willi-

ams-Pierce, 2016, 2017). In this fashion, RA serves as a proxy for the role of the in-

structor in the brokering process (Rasmussen, Zandieh & Wawro, 2009; Wenger, 

1998), in that the game requires players to act as producers (Gee, 2003) in reinventing 

the mathematics underlying RA. In other words, an intentionally designed mathe-

matics game can serve as a responsive digital context that mediates interactions be-

tween the player, the game, and the mathematical community.  

CONNECTING GBL, RME, AND IO INSTRUCTION  

The game design principles outlined above and illustrated with Rolly’s Adventure align 

well with the nature of inquiry-oriented instruction using an RME-based curriculum. In 

Figure 2, we draw heavily on Gee’s (2003) notion that good game design is good 

learning design to show parallels between principles of game design, RME curriculum 

design, and inquiry instruction and learning. Statements in the boxes of Figure 2 are all 

quotes or close paraphrases of various authors as indicated.  
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Figure 2: Aligning three areas of our team’s expertise that inform game design. 
1Gee, 2003; 2Laursen et al, 2014; 3Rasmussen & Kwon, 2007; 4Gravemeijer, 1999 

Looking across the rows in Figure 2 we see that both digital games and RME curricula 

place importance on the structure of the task sequence. The sequence should start with 

an activity in which students can immediately engage, but that has the potential to be 

generalized to a more sophisticated understanding that will help in solving more com-

plex problems. We see this both in the increasing complexity of the tasks in Rolly’s 

Adventure (RA) and in the magic carpet ride (MCR) tasks.  

In considering the nature of the tasks we see that GBL, RME and IO/IBL all place 

emphasis on tasks that are novel and ill-structured allowing for a challenging but 

do-able problem-solving experience. The RA game (Williams-Pierce, 2017) and the 

MCR tasks (Wawro et al., 2013) have both been shown to be challenging, but manage-

able. A digital game based on MCR would share this novel approach.  

The teacher’s role in inquiry classrooms is particularly important (Rasmussen & 

Kwon, 2007; Rasmussen et al., in press). Games can take on some of these roles. A 

well-designed game can intervene at desired junctures and provide real-time guidance 

or feedback based on the situation that the player is facing. A game can take on the role 

of the broker between the player (student) and the larger mathematics community by 

game play being mathematically consistent and by students being gradually introduced 

to accepted mathematical notation and terminology.  

Ultimately the first three categories are aimed at creating an optimal environment for 

student learning. The students’ roles include producing ideas and explanations that 

allow for their guided reinvention of the mathematics. In RA players create increasing-

ly nuanced generalizations as more complex situations are presented. Student creation 
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of generalizations also occurs in the MCR sequence (Rasmussen, Wawro, & Zandieh, 

2015). Our goals as we work toward creating a digital game based on the MCR se-

quence will be for players of this game to construct, analyze and critique mathematical 

arguments in the game scenario. For this to happen students need to both (1) experi-

ence the mathematical principles/structures through the feedback from gameplay and 

(2) reflect on their experiences and codify them in some way. In addition to having 

aspects of the game serve in the teacher role, the game may also need to have aspects 

that serve in the role of other students in the classroom with whom a student would 

collaborate in an IO or IBL setting (Ernst et al., 2017). 

In conclusion, we believe that these overlapping aspects of GBL, RME and IO/IBL 

provide a solid starting point for creating a digital game based on the existing IOLA 

curriculum. As development progresses we will be able to explore affordances and 

constraints of the digital environment in comparison with the in-person IO classroom. 

 

References 

Barab, S., Gresalfi, M., & Ingram-Goble, A. (2010). Transformational Play: Using Games to 

Position Person, Content, and Context. Educational Researcher, 39(7), 525–536. 

Dickey, M. D. (2005). Engaging by design: How engagement strategies in popular computer 

and video games can inform instructional design. Educational Technology Research and 

Development, 53(2), 67–83. 

Ernst, D. C., Hodge, A., & Yoshinobu, S. (2017). Inquiry-based learning. Notices of the AMS, 

64(6). 

Gee, J.P. (2003). What video games have to teach us about learning and literacy. New York: 

Palgrave MacMillan. 

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathe-

matics. Mathematical thinking and learning, 1(2), 155–177. 

Gresalfi, M. S. (2015). Designing to support critical engagement with statistics. ZDM, 47(6), 

933–946. 

Harel, G. (2013). Intellectual need. In K. R. Leatham (Ed.), Vital Directions for Mathematics 

Education Research (pp. 119–151). New York, NY: Springer. 

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). 

Challenging games help students learn: An empirical study on engagement, flow and im-

mersion in game-based learning. Computers in Human Behavior, 54, 170–179. 

 Juul, J. (2009). Fear of failing? the many meanings of difficulty in video games. The video 

game theory reader, 2, 237-252. 

Kuster, G., Johnson, E., Keene, K., & Andrews-Larson, C. (in press). Inquiry-oriented in-

struction: A conceptualization of the instructional components and practices. PRIMUS. 

Kwon, O. N., Rasmussen, C., & Allen, K. (2005). Students’ retention of mathematical 

knowledge and skills in differential equations. School Science and Mathematics, 105(5), 

227–239. 



Zandieh, Williams-Pierce, Plaxco, & Amresh 

  

4 – 466 PME 42 – 2018 

Larsen, S., Johnson, E., & Bartlo, J. (2013). Designing and scaling up an innovation in ab-

stract algebra. The Journal of Mathematical Behavior, 32(4), 693–711. 

Laursen, S. L., Hassi, M. L., Kogan, M., & Weston, T. J. (2014). Benefits for women and men 

of inquiry- based learning in college mathematics: A multi-institution study. Journal for 

Research in Mathematics Education, 45(4), 406–418. 

Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate ma-

thematics. The Journal of Mathematical Behavior, 26(3), 189–194. 

Rasmussen, C., Marrongelle, K., Kwon, O.N., & Hodge, A. (in press). Four goals for in-

structors using inquiry-based learning. Notices of the American Mathematical Society. 

Rasmussen, C., Wawro, M. & Zandieh, M. (2015). Examining individual and collective level 

mathematical progress. Education Studies in Mathematics, 88(2), 259–281. 

Rasmussen, C., Zandieh, M., & Wawro, M. (2009). How do you know which way the arrows 

go? The emergence and brokering of a classroom mathematics practice. In Roth, W-M. 

(Ed.), Mathematical Representations at the Interface of the Body and Culture (pp. 

171–218). Charlotte, North Carolina: Information Age Publishing. 

 Rosenheck, L., Gordon-Messer, S., Clarke-Midura, J., & Klopfer, E. (2016). Design and 

Implementation of an MMO: approaches to support inquiry learning with games. In Hand-

book of Research on Gaming Trends in P-12 Education (pp. 33–54). IGI Global. 

Smith, J.P. (2002). The development of students’ knowledge of fractions and ratios. In B. Lit-

willer & G. Bright (Eds.), Making sense of fractions, ratios, and proportions (p. 3–17). Re-

ston, VA: National Council of Teachers of Mathematics. 

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity 

to think and reason: An analysis of the relationship between teaching and learning in a re-

form mathematics project. Educational Research and Evaluation, 2, 50–80. 

Wawro, M., Rasmussen, C., Zandieh, M., & Larson, C. (2013). Design research within under-

graduate mathematics education: An example from introductory linear algebra. Edu-

cational design research—Part B: Illustrative cases, 905–925. 

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge 

university press. 

Williams-Pierce, C. (2016). Rolly’s Adventure: Designing a fractions game. In M. Wood, E. 

Turner, M. Civil, & J. Eli (Eds.), Proceedings of the Psychology of Mathematics Education 

– North American chapter conference (pp. 1690–1697). Tucson, AZ. 

Williams-Pierce, C. (2017).  Fractions, mental operations, and a unique digital context. In E. 

Galindo & J. Newton (Eds.), Proceedings of the Psychology of Mathematics Education – 

North American chapter conference (pp. 1349–1352). Indianapolis, IN. 

Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear algebra: 

The roles of symbolizing and brokering, PRIMUS: Problems, Resources, and Issues in 

Mathematics Undergraduate Studies, 27:1, 96–124. 

Zandieh, M., & Rasmussen, C. (2010). Defining as a mathematical activity: A framework for 

characterizing progress from informal to more formal ways of reasoning. The Journal of 

Mathematical Behavior, 29, 57–75. 



 

 

 4 – 467  
2018. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the 

International Group for the Psychology of Mathematics Education (Vol. 4, pp. 467-474). Umeå, Sweden: PME. 

UNFOLDING AND COMPACTING WHEN 

CONNECTING REPRESENTATIONS OF FUNCTIONS  

Carina Zindel 

TU Dortmund University 

 

Connecting representations of functions is both, means for developing a deeper un-

derstanding of functions and an activity students need to learn. Hence, it is necessary 

to specify in a more detailed way what learners need to do for adequately connecting 

representations of functions. This paper empirically identifies two important sub-pro-

cesses of connecting representations: unfolding and compacting of comprehension 

elements of functions. 

THEORETICAL BACKGROUND 

Connecting representations as an important activity when dealing with functions 

Connecting representations is an important instrument for learners to develop con-

ceptual understanding (Duval, 2006). This fact applies especially for the function 

concept (Leinhardt, Zaslavsky, & Stein, 1990). However, many learners struggle with 

this activity (Niss, 2014). Niss explains this phenomenon by pointing to the common 

core remaining implicit: 

"One important issue that arises in this context is the fact that functions can be given se-

veral different representations (e.g., verbal, formal, symbolic (including algebraic), dia-

grammatic, graphic, tabular), each of which captures certain, but usually not all, aspects of 

the concept. This may obscure the underlying commonality – the core – of the concept 

across its different representations, especially as translating from one representation to 

another may imply loss of information. If, as often happens in teaching, learners equate the 

concept of function with just one or two of its representations (e.g., a graph or a formula), 

they miss fundamental features of the concept itself." (Niss, 2014, p. 240) 

Hence, adequately connecting a function’s representations requires conceptual under-

standing of the function concept, especially of the common “core” of the function 

concept in different representations. However, it needs further research to specify these 

conceptual demands in more detail. This paper focuses on the research question: 

Which sub-processes are necessary when connecting representations of functions? 

Before dealing with this research question empirically, it is necessary to identify rele-

vant comprehension elements that are crucial for learners when connecting represen-

tations. Such a specification of the common “core” of a function allows identifying and 

describing necessary sub-processes of connecting representations in more detail.  

Cognitive psychological background: the idea of a “comprehension model” 

In order to specify the “core” of the function concept, this paper draws upon the cog-
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nitive psychological approach of “comprehension elements” (Drollinger-Vetter, 

2011). According to Drollinger-Vetter (2011), a whole “comprehension model” has 

three levels: (1) the level of the concept including its connections to other concepts, (2) 

the level of representations and their connection, and (3) the level of “comprehension 

elements” that are the various aspects of the notion one needs to know in order to 

understand the whole notion itself. This approach has been applied to the notion of 

function (cf. Prediger & Zindel, 2017): Based on the conceptualization of under-

standing a concept as being part of a mental network of concepts (Hiebert & Carpenter, 

1992), level (1) contains the notion of function and the relation to other notions as 

formulas, variables or magnitudes for example. Level (2) contains the representations 

of functions (verbal, numeric, graphic, and symbolic, e.g. Niss, 2014; Leinhardt, 

Zaslavsky, & Stein, 1990) and their connections (Niss, 2014; Duval, 2006). The most 

important level for this paper is level (3). In order to explain learners’ difficulties, 

“researchers have introduced a number of terms and distinctions” (Niss, 2014, p. 239). 

Hence, identifying “comprehension elements” on level (3) depends on how one con-

ceptualizes understanding the function concept. This paper conceptualizes under-

standing as adequately addressing the “core” of the function concept when connecting 

representations.  

Specifying necessary comprehension elements for connecting representations of 

functions 

Therefore, the following comprehension elements were specified as relevant in the first 

cycles of the overarching project (Figure 1 left; cf. Prediger & Zindel, 2017). 

 

 

Figure 1: (Left) Comprehension elements of the core of the function concept  

(Right) FlatWatch1.0 task (Zindel, in preparation) 

The following example (FlatWatch1.0; Figure 1 right) illustrates the relevance of the 

different comprehension elements. In order to solve the task it is necessary to identify 

the (two) involved quantities, here “number of films bought” and “price in one month”. 

FlatWatch1.0 

The Streaming-provider FlatWatch1.0 offers 

renting an unlimited number of films for a 

fixed-price per month. Additionally, you can buy 

films permanently. By the functional equation  

f(x) = 4.5 x + 9.99, the price in one month is 

assigned to each number of films bought. 

a) How many films did Sina buy when she has to 

pay 45.99 Euro? 

b) What does Sina pay in one month when she 

has bought 5 films? 
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Identifying the ||quantity I|| and ||quantity II|| (these signs ||…|| mark comprehension 

elements from the model) is a potential obstacle in learners’ solving processes. Addi-

tionally, one needs to know that these quantities can vary (Janvier, 1998). This com-

prehension element is necessary for understanding that there is a relationship between 

the two involved quantities and that both quantities can have different values. Solving 

the FlatWatch1.0 task requires identifying ||x|| and ||f(x)|| in the symbolic representa-

tion and ||number of films bought|| and ||price in one month|| in the verbal representa-

tion not only as ||involved quantities||, but also as ||varying quantity I|| and ||varying 

quantity II||. This realization allows evaluating values in the function equation. How-

ever, in order to be able to find the right place for evaluating the given value, one needs 

to identify the ||direction of dependency||. In FlatWatch1.0, the price in one month 

depends on the number of films bought. Learners need to interpret this information 

with regard to the roles of the variables as ||independent variable|| and ||dependent 

variable||: here the number of films bought appears in the role as ||independent varia-

ble|| and the price in one month as ||dependent variable||. Connecting this information 

with the symbolic representation allows solving the first part of the word problem by 

evaluating the given price of 45.99 Euro for f(x) and calculating x representing the 

number of films bought. However, learners have often difficulties to identify these 

roles (Moschkovich, 1998).  

Within this model, students are called to have acquired conceptual understanding when 

they are able to address comprehension elements of the core of the function concept in 

a flexible way. Adequately connecting representations requires adequately addressing 

the same comprehension elements in both representations as well as their adequate 

connection. This specification of comprehension elements for connecting re-

presentations of functions allows the researchers to provide in-depth descriptions of 

learners’ processes when connecting representations and thereby to identify empiri-

cally relevant sub-processes. 

METHODOLOGICAL BACKGROUND 

The methodological background of the overarching project (see Zindel, in preparation) 

is the research programme of Design Research with a focus on learning processes 

(Prediger, Gravemeijer, & Confrey, 2015) that intertwines the research activities of 

specifying the demands of dealing with functional relationships, designing and refin-

ing a teaching-learning arrangement and deepening the empirical insights into stu-

dents’ learning processes. In total, 16 design experiments in laboratory setting (with 

pairs of two learners) and 3 design experiments in classroom settings were conducted 

and videotaped. Thereby, approximately 1890 minutes of video material was collected. 

For the research question of this paper, learning processes of eight students were 

qualitatively analysed with regard to learners’ theorems- and concepts-in-action (cf. 

Vergnaud, 1996). A theorem-in-action (marked with <…> in the following text) is a 

“proposition that is held to be true by the individual subject for a certain range of sit-

uation variables” (ibid., p. 225). Concepts-in-action (marked with ||…||) are “categories 

(objects, properties, relationships, transformations, processes, etc.) that enable the 
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subject to cut the real world into distinct elements and aspects […] according to the 

situation and scheme involved” (ibid., p. 225). Here, the underlying concepts-in-action 

can be comprehension elements of the model or individual comprehension elements. 

EMPIRICAL INSIGHTS 

Due to limitations in length, this paper presents only a short insight in one of the case 

studies: the case of Fynn and Svenja (both 15 years old). This case illustrates which 

sub-processes learners need when connecting verbal and symbolic representations of 

functions and how learners deepen their conceptual understanding within these 

sub-processes. Therefore, this paper identifies the underlying theorems- and con-

cepts-in-action und analyses their development by comparing a scene at the beginning 

and a scene in the middle of the design experiment. 

Crucial point in learning processes: sufficiently unfolding and compacting com-

prehension elements of the core of the function concept 

At the beginning of the design experiment, Fynn and Svenja do not unfold the given 

function sufficiently when working on the FlatWatch1.0 task (cf. Figure 2 for Fynn’s 

and Svenja’s first notations literally translated from German).  

 

Figure 2: (left) Fynn’s and (right) Svenja’s notations on the task “FlatWatch1.0” 

The transcript starts when Fynn and Svenja begin to explain their notations. 

Fynn I’ve simply written down the main things.  

Svenja Well, I’ve written down the functional equation and the task that I – I’ve 

also written down for example here the number [points to the word 

“number” in her notes] and the price [points to the word “price” in her 

notes] of the films. So that I know what is what. Then maybe how one 

could calculate (…) – here [points to the “9.99” in the functional equation 

in her notes] that is the price of the films, I think, and the number [points to 

the first summand in the functional equation in her notes]. 

Fynn’s utterance is presumably based on a theorem-in-action such as <In order to solve 

a function word problem, one needs to write down the main information>. This 

strategy is not wrong in general, but he cannot adopt this strategy adequately for the 

concrete case, which becomes visible in his notation. Fynn identifies the information 

||monthly basic price|| and ||buy films permanently|| as the “main things” (Figure 2). 

However, it would have been necessary to identify the ||number of films bought|| as 

||independent variable|| and the ||price in one month|| as ||dependent variable|| in order to 



Zindel 

 

PME 42 – 2018 4 – 471 

be able to solve the task. To conclude, Fynn does not unfold the verbal and symbolic 

representations sufficiently here. 

Svenja’s utterance could be based on a theorem-in-action such as <In order to solve a 

function word problem, one needs to identify the meaning of both summands>. This 

theorem-in-action unfolds the functional relationship regarding the two summands. 

Therefore, Svenja unfolds the verbal representation with regard to two quantities, 

||number of films|| and ||price of the films||. Besides, she unfolds the symbolic repre-

sentation in ||summand 1|| and ||summand 2||, by writing down the meaning of both 

summands in her notation without separating the variable x and the constant in front of 

x. With the ||number of films|| she addresses one of the ||involved quantities||. However, 

she is not able to connect this information adequately with the symbolic representation 

because she does not distinguish between the variable x and the constant in front of x. 

With the ||price of the films||, she addresses one of the constants instead of the variable 

f(x). Indeed, this connection is adequate. Nevertheless, Svenja does not address the 

meaning of the variables in both representations adequately. Although Svenja unfolds 

the given representations of the function more than Fynn, she does not unfold them 

sufficient to be able to connect the representations adequately. 

This case study illustrates a general problem of many learners. Not only Fynn and 

Svenja, but also many other learners did not unfold the given representations of the 

function sufficiently in order to solve the FlatWatch1.0 task. 

Supporting learning processes: eliciting processes of unfolding and compacting 

comprehension elements of the function concept 

Hence, a teaching learning arrangement has been developed to elicit such processes of 

unfolding. One task in the teaching learning arrangement is to explain the congruence 

and incongruence of varied verbal representations (Prediger & Zindel, 2017). In this 

second part of the design experiment learners set up function equations to streaming 

offers. Afterwards, they argue the match or non-match of varied descriptions (verbal 

representations) to their function equations (Figure 3). In the following, Svenja’s 

learning process illustrates that this task can support a more far-reaching process of 

unfolding the representations. 

At first, Svenja argues that phrase D (“With the equation, I can – in dependency of the 

number of bought films – calculate the price in one month”) does not fit to the 

DreamStream offer: 

Svenja The first one does not fit at all [points to phrase D] because one does not 

pay any films extra. You can rent as many films as you like and you only 

pay this 19.99 Euro plus this registration fee.  

In her explanation, she addresses the ||number of films bought|| as quantity that is not 

one of the ||involved quantities|| in the function equation of the DreamStream offer. 

The underlying theorem-in-action is presumably <Verbal and symbolic representa-

tions are incongruent when the ||involved quantities|| differ>. Thereby, she unfolds 

both, the verbal and the symbolic representation, with regard to the ||involved quanti-
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ties||. By this step of unfolding, she is able to explain the incongruence of the represen-

tations adequately. 

 

Figure 3: Excerpt from the teaching-learning-arrangement (Descriptions A-D literally 

translated from German) (similar in Prediger & Zindel, 2017). 

Next, Fynn and Svenja argue that phrase C (“The equation indicates the number of 

months in dependency of the total price”) does not fit to the DreamStream offer either. 

Fynn [3 sec] Erm – it deals with the months. 

Svenja Yes, here it deals with the number of months and there [points to the 

DreamStream offer] we want to calculate the price. 

Fynn’s utterance is presumably based on a theorem-in-action like <Verbal and sym-

bolic representations are incongruent when the ||direction of dependency|| differs>. 

Admittedly, he only addresses the ||number of months|| as one of the quantities. 

However, due to the context he presumably addresses this comprehension element in 

the role as ||dependent variable||. Svenja agrees and states more precisely the differing 

||dependent variable||. By this unfolding with regard to the ||direction of dependency||, 

they are able to explain the incongruence of the representations adequately. 

Later in this session, Svenja states that phrase B (“With the equation, I can – in de-

pendency of the number of months – calculate the total price”) fits to the DreamStream 

offer. The following utterance is her first attempt to reason a congruence of repre-

sentations. 

Svenja Erm – in dependency of the months here [points to phrase B]. So that this 

[points to the function equation of DreamStream] – let’s say [points to 

phrase B] dependency are five months […] that one can calculate the price 

at all – the total price one has to pay after five months [points to the func-

tion equation of DreamStream] 
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Svenja uses an example and explains the congruence by referring to the way of calcula-

tion. Her utterance is presumably based on a theorem-in-action such as <Verbal and 

symbolic representations are congruent when one can calculate the same quantity by 

the same other quantity>. Thereby, she addresses implicitly the meaning of the varia-

bles. Explaining an exemplary way of calculation offers her to compact the compre-

hension elements and describe the functional relationship in a compacted way.  

In contrast to the scene at the beginning, Fynn and Svenja unfold sufficiently here: 

Both learners are able to unfold verbal representations with regard to the involved 

quantities and the direction of dependency. This sub-process of unfolding allows them 

to explain the incongruence of verbal and symbolic representations adequately. Fur-

thermore, in contrast to many other learners in the overarching project, Svenja found a 

way to describe the function in a compacted way for explaining the congruence of 

representations, thus her process ends with a sub-process of compacting. This devel-

opment is summarized and visualized by the model (Figure 4). 

 

Figure 4: Svenja’s activated comprehension elements (unfolding for explaining in-

congruence (left) and compacting for explaining congruence (right)). 

CONCLUSION 

Connecting representations is both, a learning medium for deepening conceptual un-

derstanding of functions (e.g. Duval, 2006) and a learning content (e.g. Niss, 2014). 

This paper has identified two important sub-processes learners need to fulfill for suc-

cessfully connecting representations: unfolding and compacting of comprehension 

elements of the core of the function concept. 

The first part of Fynn and Svenja’s case study illustrates that appropriately unfolding 

comprehension elements of the core is crucial for dealing with function word pro-

blems. They were not able to solve the task because they could not connect the given 

verbal and symbolic representation regarding the meaning of the ||independent varia-

ble|| and the ||dependent variable||. The second part of Fynn and Svenja’s case of il-

lustrates how task design can elicit processes of unfolding and compacting and thereby 

deepen conceptual understanding. Explaining incongruence of representations can 

elicit processes of unfolding with regard to the incongruent elements like the ||involved 

quantities|| or the ||direction of dependency||. Explaining congruence of representations 
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can elicit processes of (re-) compacting of comprehension elements to the denser 

comprehension element ||functional dependency||. These phenomena appeared in other 

learning processes, too. In the overarching project, the design element of dealing with 

varied verbal representations supports learners’ processes of connecting representa-

tions by eliciting processes of unfolding and compacting (Prediger & Zindel, 2017; 

Zindel, in preparation). 

Drawing the conclusion, this paper has shown that unfolding and compacting of 

comprehension elements of the core of the function can be important activities for 

successfully connecting representations. Managing these activities is a demand that 

students need to learn. How these processes can deepen learners’ conceptual under-

standing by raising their awareness for the comprehension elements of the core of 

functions long-term needs further research and a larger sample. 
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STUDENTS’ MATHEMATICAL MISCONCEPTIONS 

Sotirios Zoitsakos*, Theodosios Zachariades*, and Charalampos Sakonidis** 

* National and Kapodistrian University of Athens, ** Democritus University of Thrace 

 

Mathematics Knowledge for Teaching (MKT) remains a research challenge as far as 

its content, structure and role in teaching the subject matter are concerned. The paper 

examines the recognition and interpretations of 106 secondary mathematics teachers 

of hypothetical students’ misconceptions related to the dual decimal representation of 

a rational number. The analysis of these interpretations aims to provide an insight into 

the role of Horizon Content Knowledge, one of the components of the MKT which has 

attracted less the interest of the researchers so far.  

INTRODUCTION 

Teachers’ knowledge of the subject matter has attracted considerable attention in the 

recent years. This attention, strengthened by educational evidence suggesting that tea-

chers’ intellectual resources affect students’ learning (e.g., Ball, Thames & Phelps, 

2008), was fuelled by Shulman’s work in the 1980s, who distinguished three catego-

ries of teachers’ content knowledge: (a) Subject Matter Content Knowledge (SMK), 

(b) Pedagogical Content Knowledge (PCK) and (c) curricular knowledge. Since then, 

models of studying and developing Mathematical Knowledge for/in Teaching (MKT) 

have been suggested and explored based on data obtained primarily from primary 

education (e.g. Ball, et al., 2008; Rowland, Huckstep & Thwaites, 2005). 

One of the central questions of the relevant research concerns the nature and the con-

tent of MKT leading unavoidably to examining the mathematical demands of class-

room teaching. Fundamental mathematical ideas, like function, real number, limit, are 

taught informally at school, even at the upper high school, appealing mainly to intui-

tive knowledge rather than to formal definitions and theoretical foundations. This is 

often seen as a ‘transitional’ stage of accessing powerful mathematical ideas like those 

identified in their historical development, where cornerstone mathematical concepts 

and symbols were initially used loosely, before defined rigorously. For the 

above-mentioned ideas, MKT is the knowledge related to the special requirements of 

this ‘transitional’ stage for mathematically legitimate knowledge to be built. 

In this article, we focus on a such a case, studying secondary school teachers’ know-

ledge related to the teaching of periodic decimal numbers with infinite decimals of 

period 9 via their interpretations of students related misconceptions.  
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THEORETICAL BACKGROUND 

Many researchers have attempted to identify a typology of SMK adopting a variety of 

approaches. Ball, Thames and Phelps (2008) subdivided Subject Matter Knowledge 

(SMK) into: (a) Common Content Knowledge (CCK), (“the mathematical knowledge 

and skill used in settings other than teaching”), (b) Specialized Content Knowledge 

(SCK) (“the mathematical knowledge and skill unique to teaching”) and (c) Horizon 

Content Knowledge (HCK) (“an awareness of the mathematical topics that are related 

over the span of mathematics included in the curriculum”). They also distinguished 

Pedagogical Content Knowledge (PCK) into: (a) Knowledge of Content and Students 

(KCS), (“knowledge that combines knowing about students and knowing about 

mathematics”), (b) Knowledge of Content and Teaching (KCT) and (c) Knowledge of 

Content and Curriculum (KCC) (“combines knowing about teaching and knowing 

about mathematics”) (Ball et al., 2008, p. 309 - 403).  

At a later stage Ball and Bass (2009, p.6) described HCK as having constitutive ele-

ments: (i) a sense of the mathematical environment surrounding the current “location” 

in instruction; (ii) major disciplinary ideas and structures, (iii) key mathematical prac-

tices and (iv) core mathematical values and sensibilities. They described HCK as “a 

kind of mathematical ‘peripheral vision’, a view of the mathematical landscape, that 

teaching requires” (p. 1), while Jakobsen, Thames and Ribeiro (2013) argue that “HCK 

is neither common nor specialized, and it is not about curriculum progression, but more 

about having a sense of the larger mathematical environment of the being taught” (p. 

3128). 

HCK is often associated with Advanced Mathematical Knowledge. Ball and Bass 

(2009) describe HCK as “a kind of elementary perspective on advanced knowledge 

that equips teachers with a broader and also more particular vision and orientation for 

their work” (p. 10). However, Zazkis and Mamolo (2011) “consider application of 

advanced mathematical knowledge (AMK) in a teaching situation as an instantiation of 

teachers’ knowledge at mathematical horizon” (p. 9).  

Although Ball et al. (2008) link HCK with KCC, Jakobsen et al. (2013) think that HCK 

“... it is not about a curriculum progression ...” (p. 3128). During their teaching, 

teachers are invited to respond to mathematical problems, which are primarily 

meaningful within the school environment. That is, to establish a framework of 

accepted propositions or approaches that can be used by the students to prove a 

proposition adopting alternative approaches or excluding those containing elements of 

the proposition to be proven. Elements of this knowledge, which are not included in the 

curriculum, also constitute part of HCK as a special kind of knowledge necessary for 

teaching mathematics. 

Summarizing, HCK is mathematical knowledge for the needs of teaching which refers 

to issues of the wider environment of the mathematical issues under negotiation in the 

teaching context, unlike the SCK which is directly associated with the issues being 

taught. It contributes to the development of students’ broader mathematical concerns 
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but also to the understanding of the causes of their possible misconceptions. It relates 

to deeper and broader knowledge of the mathematical ideas being taught, playing a 

specific and distinct role in didactic approaches at every level of education. It includes 

knowledge that does not necessarily belong to the curriculum, but it is associated with 

ideas that are part of the curriculum. 

Mathematical knowledge for teaching: the case of decimal numbers. 

Tall and Scwarzenberger (1978) found that first year university mathematics students 

tended to believe that the representation 0.999… was a number less than 1. Li and Tall 

(1993) found students who agreed that 1/9 = 0.1+0.01+..., yet they did not accept the 

equation written in reverse order as 0.1+0.01+... =1/9. Identifying epistemological pro-

jections into students’ understanding of notations like the above, Vinner and Kidron 

(1985) argued that the infinite decimal is perceived as one of its finite approximations, 

or as a dynamic creature which is in an unending process. Fischbein, Tirosh and Hess 

(1979) referred to a student who argued that 1+1/2+1/4+1/8+... is 2−1/¥, indicating 

that s/he viewed the limit object as having the same properties as the objects tending to 

the limit. Based on this interpretation, Tall (1986) argued that students who consider 

that 0.999... is less than 1 believe that, since any of the terms of the sequence 0.9, 0.99, 

0.999, ... is less than 1, so is also its limit. He called such a limit “generic”, that is, 

conceived as having the properties that are common to all the terms in the sequence. 

Dubinsky, Weller, Mc Donald and Brown (2005b) offer two explanations for this 

issue. The first one is that the confusion was due to some students who perceive 

0.999... as a process while 1 as an object. Particularly, they note: 

The difference between the two conceptions is that a process is conceived by the individual 

as something one does, while an object is conceived as something that is and on which one 

acts. (p.12) 

The second explanation is that students “actually conceive of 0.999... as consisting of a 

string of 9s that is finite but of indeterminate length”. So, they accept that conceptions 

such as the difference from 0.999... to 1 exists and is infinitely small. 

The above suggest that the understanding of the representation of decimal numbers 

with infinite digits is closely relate to epistemological issues.  This is line with the hi-

storical development of the relevant concepts and notations, indicating that the diffi-

culties encountered by students are not due to lack of knowledge but have deeper 

causes. Zoitsakos, Zachariades and Sakonidis (2013) found that even mathematics 

teachers conceptualize the decimal numbers with infinite digits mainly as processes. In 

this paper, we focus on the role of HCK in teachers’ conceptualizations of this 

representation. 

METHODOLOGY 

Adopting the idea that teacher knowledge is potentially better explored and developed 

in situation-specific contexts (e.g., Biza, Nardi & Zachariades, 2007), secondary ma-

thematics teachers were invited to recognize and interpret four fictional students’ re-
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sponses reflecting subtle misconceptions related to the representation 0.3999… as 

follows: 

A final year secondary school teacher gave the following question to his students: “What is 

the meaning of the representation 0.3999... (infinite number of 9)”? Four students gave the 

following answers:  

Student A: The representation 0.3999... means a process that tends to 0.4,  

Student B: 0.3999... is a number that tends to 0.4,  

Student C: 0.3999... is the number just before 0.4, and 

Student D: The representation 0.3999... is the sum of 0.3+0.09+0.009+... but, as it 

continuously increases, it cannot be equal to a number.  

(a) What could be the teacher's goal in asking this question? (b) Comment on each student's 

answer according to the thought process articulated, the positive and the negative points 

imprinted in his/her view and his possible misconceptions (if there are any), and (c) If you 

were a teacher in this class, how would you help these students overcome the mis-

conceptions you identified? 

Fictional students’ answers are based on the findings of the relevant research: students 

A and B statements focus on the difficulty of discriminating between number 0.3999 ... 

(a different representation of number 0.4) and the sequence 0.3, 0.39, 0399, ... (a 

sequence with limit 0.4); student C’s statement seeks to shed light on how teachers will 

deal with the property of density; and with student’s D statement we aim to explore 

how teachers negotiate an infinite sum which comes up as the expansion of a periodic 

decimal number with infinite digits.  

The questions raised in the scenario were answered by 106 practicing secondary school 

mathematics teachers in writing (36 males and 70 females, with teaching experience 

ranging from 0 to 20 years). The answers were provided in the context of an entry 

examination paper for a Mathematics Education postgraduate program. Teachers were 

invited to think about the scenario questions within a rather complex environment of 

issues related to concepts, such as the dual nature of mathematical objects, as processes 

and as concepts (Sfard, 1991; Gray, & Tall, 1994) and the dual nature of infinity, as 

actual and potential (Dubinsky et al., 2005a). Moreover, important mathematical 

practices such as the proof of the equivalence of different representations ensuring the 

accuracy and consistency in mathematical language and symbolism are enacted. These 

are features that, as mentioned before, constitute the HCK in relation to the 

mathematical idea at hand. In this study, which is part of a larger project examining 

HCK’s role in teaching mathematics, we focus on this role in teachers’ identification 

and interpretations of students’ misconceptions. 

To analyse the data, we read carefully each response and initially categorized them in 

terms of their mathematical correctness. We then analysed the responses in each re-

sulted category, trying to identify features of HCK in the justifications employed in 

teachers’ interpretations of students’ errors.  
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ANALYSIS AND FINDINGS 

Our analysis suggested that in trying to recognize and interpret students’ misconcep-

tions, teachers’ statements draw on a wide range of ideas and employ arguments that 

might be mathematically right, wrong or even vague. The quantitative distribution of 

this range of teachers’ answers is reflected on the categories presented in the table 

below, followed by the results of a qualitative analysis (content analysis) of the respon-

ses in each category. a) Correct recognition & interpretation (CR&I), b) Correct 

recognition and wrong interpretation (CR&WI), c) Correct recognition and vague in-

terpretation (CR&VI), d) No evidenced recognition (NER), e) Wrong recognition in 

agreement with the student (WRAS), f) Ambiguity about recognizing (AR). 

 CR&I CR&WI CR&VI NER WRAS AR 

St. A 19 13 15 29 14 16 

St. B 21 18 9 27 14 17 

St. C 25 17 25 18 3 18 

St. D 27 8 20 20 18 13 

Table 1: Teachers’ recognitions and interpretations of students’ misconceptions. 

From table 1 we can see that 19% to 25% of the teachers recognize and interpret cor-

rectly the misconception in students’ statements. The picture is not very different for 

the teachers whose response offers no evidence of recognition of students’ miscon-

ceptions, whereas the teachers agreeing with one of the fictional students’ statements 

are overall a little less (not exceeding 18%). Teachers tend to agree more with student 

D (18%) and less with student C (3%). Other teachers’ responses either recognize 

misconceptions but based on mistaken interpretation (never exceeding 18%) or re-

cognize misconceptions, offering, however, vague interpretation (up to 25%). 

The first column concerns mathematically correct responses (right recognition of 

misconception and interpretation with no mathematical contradictions). Students’ A 

and B misconceptions appear to have provoked slightly less mathematically correct in-

terpretations than those of students’ C and D. 

For example, (teacher) T39’s response below is ambiguous concerning the recognition 

of student A’s misconception, but acknowledges rightly the misconceptions in the 

remaining students’ statements and thus is included in the first column for students B, 

C, D but not for student A. 

Student A uses the meaning of function and limit in his reply. But it is not clear if, when 

asked, he can show why he tends to 0.4. [...] Student B has not understood that a number is 

something fixed and cannot tend to somewhere else. [... Student C] confuses that there is a 

next number and a previous one as in natural numbers. [... Student D] makes a big mistake 

since he reports that the number keeps increasing to finally say that it is not equal to 0.4.  
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The quote indicates that T39, while having a satisfactory understanding of the proper-

ties and nature of numbers, he does not consider 0.3999… as a number. He might think 

that the three dots at the end of the representation signify something special which he 

relates to the sequence αn = 0.39…9 (n times 9), n = 1, 2, ….     

Sometimes, the recognition of a student’s misconception by a teacher is not accompa-

nied by a mathematically correct justification (second column in table 1).  This appears 

a little more often for student’s D statement. For example, teacher T21 recognizes a 

misconception in student C, but provides a wrong interpretation. In particular, he 

reports: 

For learner C the misconceptions are several. [...] This number is continuously approa-

ching 0.4, it is not just its previous one. It is a periodic number that will continually 

approach 0.4.  

T21, knowing that 0.3999…is a number, he interprets the three dots as indicating a 

continuously changing number.  

The third column in table 1 concerns the teachers who recognize the existence of a mis-

conception in a student’s statement, but provide unclear interpetation. This appears to 

be the case least often for student’s B answer. For example, T92 reports: 

Student A made the mistake that number 0.3999 ... can constantly increase in the same 

way, but it will never become number 0.4, because the number changes very little, it is just 

that its decimal digits increase.  

The fourth column of table 1 reports on the teachers who do not express their opinion 

as to whether the respective student’s statement has some misconception, this being the 

case a little less frequently for students’ C and D statements.  

The fifth column represents the teachers who agree with the opinion of the respective 

student, appearing rarely when commenting on student’s C answer. An example is 

T48’s statement: “Correctly the number is tending to (approaching) 0.4, although the 

limit is not displayed. I believe that student B thought about this way. I think his 

answer is right”.  

The sixth column refers to the teachers whose statements are unclear about whether a 

misconception is recognized or not for a student, although they sometimes might know 

the correct answer. For example, teacher T16, who gives a proof of the equality 0.3999 

... = 0.4, states: “Students A and B have obviously learned the meaning of limit, (like 

the other two students) and they have seen it in an intuitive manner”. 

Overall, only 31 out of the 106 referred to the equality 0.3999… = 0.4 and 22 of them 

gave at least a proof for this. Nevertheless, many of these 31 teachers did not recognize 

satisfactorily at least one of the students’ misconceptions (e.g. T16). Only the respon-

ses of 19 teachers were mathematically correct (that is, they recognized all students’ 

misconceptions and interpreted them correctly). However, there is a small number 

among these teachers who recognized students’ misconceptions without mentioning 

the corresponding equality.  
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DISCUSSION AND CONCLUSIONS 

Ball et. al. (2008) argued that simply recognizing a wrong answer is classified as CCK, 

but “sizing up the nature of an error, especially an unfamiliar error, typically requires 

nimbleness in thinking about meaning in ways that are distinctive of specialized 

content knowledge (SCK)” (p. 402). 

The findings of this study indicate that HCK is also crucial for the recognition and 

insightful interpretation of students’ misconceptions, especially when the teaching 

object is related to advanced mathematical issues such as the double representation of 

the rational numbers with period 9. To recognize and make sense of students’ mis-

conceptions about decimal representation 0.3999…, a teacher appears to tend to draw 

on ideas such as limit of sequence, infinite series and the density of rational numbers 

that are part of the wider mathematical environment of the topic being taught, that is, to 

HCK. However, these attempted associations are not always correct. For example, 

some teachers tend to believe that the symbol 0.3999… does not signify a specific 

number but an infinite process, confusing the representation 0.3999…, which is the 

limit of the sequence αn = 0,39…9 (n times 9), n = 1,2,… with the sequence itself. This 

confusion gives rise to problems in teachers recognizing and interpreting students’ 

misconceptions. 

Thus, it seems that for the recognition and the interpretation of some misconceptions of 

students concern issues associated with advanced mathematics related not only to SCK 

but also to HCK and the correct connection between them are crucial. 
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