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THE INTERPLAY OF AUTHORITATIVE AND DIALOGIC 

INTERACTIONS 

Mohammed Abdul Hussain, John Threlfall and John Monaghan 

Ministry of Education, Bahrain; University of Leeds, UK 

This paper introduces an approach to mathematics teaching and learning which we 

feel transcends the usual teacher-centred versus student-centred dichotomy by 

integrating two kinds of mathematics classroom discourse, the authoritative and the 

dialogic. It is proposed that mathematics teaching and learning should engage 

students in dialogic communicative approaches to empower them to articulate their 

ideas and to take more responsibility, but that in order to enable students to build 

mathematics competences effectively it is also proposed that the teacher should at 

times involve periods of authoritative discourse on topics prompted by the dialogic 

discourse.  

INTRODUCTION 

In recent years, the issue of teaching and learning has often been cast in the context 

of classroom discourse, which is considered a key element in mathematics education 

reform (Lee, 2006; Mortimer and Scott, 2003; Nystrand, 1997; Potari and Jaworski, 

2002; Wood, 1994). For example, Potari and Jaworski (2002, p. 355) say that 

classroom discourse is the “essence of teaching/learning processes”. Nystrand (1997, 

p. 29) too makes an explicit link between discourse in teaching and the nature of 

students’ learning:  

Specific modes or genres of discourse engender particular epistemic roles for the 

conversant, and these roles, in turn, engender, constrain, and empower their thinking. The 

bottom line for instruction is that the quality of student learning is closely linked to the 

quality of classroom talk.  

Lee (2006, p. 91-99) considers discourse a ‘learning tool’ that can transform a 

mathematics classroom into what Sherin (2002) calls a ‘discourse community’, by 

changing the roles of both the teacher and students. In Lee’s view, the teacher should 

empower students to take ‘ownership’ of mathematical ideas through participating in 

the discourse and articulating their views. Lee insists that this kind of empowerment 

can advance students’ metacognition and improve the quality of their understanding. 

In mathematics classroom discourse, and hence in the teaching and learning of 

mathematics, a central question concerns the location of power and authority, and the 

extent to which it is necessary or desirable for the teacher to retain control in order to 

promote the prescribed curriculum, or preferable to pass control to students (Fennema 

and Nelson, 1997; Smith, 1996). In reform agendas, it is common to suggest a move 

from one extreme to the opposite extreme, such as the slogans promoting a shift from 

teacher-centred to student-centred mathematics. However, some studies have sought 

a reconciliation between them (Sherin, 2002). In this article, we explore this 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 1-8. Ankara, Turkey: PME.
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particular issue in the context of a teaching intervention in Bahrain, and describe an 

approach to teaching mathematics that seems to locate power and authority in the 

unfolding action, rather than in one or other kind of participant, finding the locus of 

power in how mathematics meaning is made by students, and transcending the 

teacher-centred versus student-centred dichotomy.  

Mortimer and Scott (2003) conceptualize the role of power and authority by 

characterizing the classroom discourse of the teacher and students in terms of 

whether student’ views are taken into consideration during the progression of the 

lesson. Accordingly, the authors identify an authoritative–dialogic dimension of 

discourse. In authoritative discourse, the teacher aims to bring students’ complete 

attention to specific meanings within mathematics as a curriculum subject. This is not 

to say that students do not or cannot express their own ideas, but that the teacher does 

not make room for exploring and working on them unless they are compatible with 

“school math” (Richards, 1991). In contrast, classroom discourse is said to be 

dialogic when it becomes “open to different points of view” (Scott et al., 2006, p. 

610). In a dialogic discourse the teacher always makes room for exploring students’ 

ideas explicitly, even when they do not conform to ideas in the received curriculum.  

The distinction can be summarised as follows: in the authoritative communicative 

approach the teacher focuses on one specific point of view and leads students through 

a discourse with the aim of establishing and consolidating that point of view; in the 

dialogic communicative approach the teacher and students consider a range of ideas, 

exploring and working on different points of view. (Adapted from Mortimer and 

Scott, 2003).  

The desire in teaching to acknowledge and build on students’ ideas, and yet to 

achieve conventional knowledge development, leads to “tension between 

authoritative and dialogic discourse” (Scott et al., 2006, p. 605). 

METHODOLOGY 

The extracts reported in this article arise from an attempt to develop inquiry 

classrooms in schools in Bahrain and to study inductively how power and authority 

are structured in different episodes of mathematics lessons (Abdul Hussain, 2010). 

Four teachers in two schools were trained in inquiry methods and supported during 

an academic year in realising them, with video recordings made of lessons at 

different stages in the process, and interviews done with them (and with other staff in 

the school)  before, during and after the intervention.    

Extracts from the study will be used to illustrate: (1) the nature of and limitations to 

authoritative discourse; (2) the nature of dialogic discourse; (3) the way teachers in 

the study developed an interplay of dialogic and authoritative discourse to overcome 

the limitations of each.   
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NATURE OF AND LIMITATIONS TO AUTHORITATIVE DISCOURSE 

In an authoritative communicative approach, the teacher promotes a particular point 

of view, and this often acts as a barrier that inhibits any possible attempt to follow a 

different approach to end up with the solution methods or answers. To illustrate, 

consider this extract from a lesson by the teacher Moneer. Students are working in 

groups on the word problem stated in turn 2 of the extract.  

Episode 1  

1 Moneer: One of your group can read it [again]. Yes, speak.  

2 Student1: A group of 732 tourists arrived at Bahrain International Airport. How 
many buses are required, are required to transfer these tourists if the capacity of 
each bus 48 passengers?  

3 Moneer: What are your ideas?  

4 Student2: 732 tourists arrived Bahrain airport and the capacity of the bus is 48 
passengers.  

5 Moneer: Right, these are the givens of the question (making a gesture by his hands 
to indicate he wants more details about it). Boys, do you have anything to add 
more on the ideas of what was given? What did you do here, boys?.  

6 Student3: A group of 732 tourists arrived at Bahrain International Airport.  

7 Moneer: So at the outset I have to know the number of tourists in the group that 
arrived at the airport, how many ones. The number of the tourists.  

8 Students: 732  

9 Moneer: Well, these are 732 who arrived at the airport. Then, what other 
information is given to us?  

10 Students: 48 passengers.  

11 Moneer: 48 what  

12 Students: Passengers  

13 Moneer: The capacity of the bus, other group, because the capacity of the bus for 
the transfer can take 43, [no] 48 passengers, okay. How many buses were needed?  

14 Student4: 15 buses.  

15 Moneer: Is that enough to transfer the whole group?  

16 Student5: 11 buses.  

17 Moneer: Work now…  

At this point students were allowed to work out their solutions.  

In this lesson, Moneer had a strongly authoritative communicative approach.  From 

the very beginning of the lesson, his point of view was governing the whole process. 

Students not only had no opportunities to take responsibility to solve their questions 

but also did not have any real access to what was supposed to be mathematics. 

Students’ actions were constrained strongly by the teacher’s successive interventions 

such as funnelling (Wood, 1994), paraphrasing and/or filtering students' responses 

(turns 5,7, 9 and 13). In other words, their actions were structured into small steps, 

Abdul Hussain, Threlfall, Monaghan 
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and it was only when their answers were approved and/or modified with the help of 

their teacher that they were allowed to take the next step of completing the answer 

(turns 15 and 17).  

It seems that that there are certain actions embodied in authoritative discourse. 

Broadly speaking, these involve teachers shaping, selecting/overlooking and 

paraphrasing (Mortimer and Scott, 2003), which are used to sustain the development 

of the lesson according to their agendas, and the mathematics instruction is not based 

directly on students’ understandings. As such, this form of teaching and learning 

constrains students’ knowledge construction and meaning making.  

NATURE OF DIALOGIC DISCOURSE 

In contrast, dialogic discourse (by whatever name) is widely supposed to be helpful 

for student learning. Yackel et al. (1991) say that small group discussions can create 

learning opportunities from: (i) verbalising students’ thinking; (ii) 

explaining/justifying answers; (iii) asking for illustrations and (iv) analysing wrong 

solution methods. Wood and Turner-Vorbeck (2002, p. 194) suggest that through 

dialogic discourse, individual students can engage in reflection on their ideas in three 

ways. The first and simplest one occurs when a student is asked to reconsider a 

solution strategy for the sake of providing additional details to the others. The second 

happens in a context of “confusion, complexity, or ambiguity” when students are 

engaged in an inquiry approach of learning. The third form of reflection happens in 

contexts in which students challenge the thinking of each other and are engaged in 

agreeing or disagreeing, justifying and critically inspecting their views. 

The second episode is an extract from the transcript of a lesson undertaken by the 

same teacher, Moneer, later in the year, after he and his class had 

developed an inquiry style. In the lesson, students have been 

working on finding the area of the trapezium shown, by 

developing their own method for doing so.  

Moneer introduces the plenary by saying: 

“Please before we start [our] discussion, the others should be listening and pay 

attention. This means any word of the group that comes out must be discussed and 

[members of the group] are accountable for that. You should not allow passing 

anything [wrong or non-convincing] for them. Be aware and pay attention. Okay, who 

would like to start first?”  

In this extract, Hussain and Salim came out and presented their solution: 

Episode 2  

18 Hussain: At first, we constructed a line from the beginning of the angle (pointing 
to the dotted line). After that we measure it and we got umm 2.5 cm, 2.5 cm.  

19 Moneer (to the audience): Oh boys. Pose your questions.  

20 Student1: Why, why is it 2.5?  
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21 Hussain: Because we computed it  

22 Student2: Why not 3 so they become equal?  

23 Student1: You computed it! Why not 3?  

24 Student2: The length of this must be equal to the length of this, why are they 
different?  

[Hussain and his partner Salim discuss it at the board]  

25 Student1: I’m saying why is it 3?  

26 Moneer: Boys. Do you see what he is doing?  

27 Students: Yes.  

28 Student2: I asked him, teacher, why didn’t you consider them to be 3?  

29 Hussain: What we say is: this side is opposite to that (pointing to the sides 
representing the width in the constructed rectangle) so both of them are equal  

30 Student2: Why did you put it 3? 3cm?  

31 Hussain: Because here will be 2cm because it equals this one (pointing to the lines 
of the widths) and it is opposite to that one, so here will be 2 and this one 2. and 
this side is 5 (the bigger base of the trapezium) and we take away 2 equals 3 (the 
unknown remaining part from the base)  

32 Moneer: What’s your opinion, boys, on what he is saying?  

33 Students: Not correct.  

34 Moneer: We asked him, he said the length of what he has constructed is 3. They 
asked him why is it 3? First it was 2.5 then he changes his mind and said it is 3 
(referring to the constructed line). Well, ask him why it is 3?  

34 Student4: Teacher, he said it is 3 which is its opposite  

36 Hussain: Because its opposite (pointing to the known side of 3 cm long) it is 
opposite to, it is opposite (pointing to widths of the rectangle)  

The above episode indicates a shift in the nature of classroom discourse in terms of 

power and authority. Moneer was interested in hearing students' voices and eliciting 

their multiple solution methods. As it happened, many groups proposed different 

solution methods and the above episode was just one of them. At the start of the 

episode, Moneer articulated his expectations about the nature of classroom 

discussions and subsequently provided more opportunities and freedom for his 

students to articulate their views. He suspended his evaluative authority and also 

asked the students to explore, evaluate and reflect on each other’s ideas (turns 26, 32 

and 34).  When Hussain’s first idea was challenged, Moneer obliged the other 

students to understand each other and engage in negotiations, which convinced 

Hussain and his partner to give up their idea and to adopt the alternative. Moneer 

subsequently obliged the students to get Hussain to justify his answer further.  

ENHANCED DIALOGIC 

In the previous episode, classroom discourse had been transformed and became 

dialogic. Moneer had restructured his power and authority and granted more 

Abdul Hussain, Threlfall, Monaghan 
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the school)  before, during and after the intervention.    
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authoritative discourse; (2) the nature of dialogic discourse; (3) the way teachers in 

the study developed an interplay of dialogic and authoritative discourse to overcome 

the limitations of each.   
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responsibilities to his students in the evolution of classroom interactions. They gained 

the floor and their initiations guided the flow of the discourse and the knowledge 

construction. In addition, Moneer did not restrict his teaching agenda to a pre-

established rigid one. Instead, teaching and learning became open to students' input. 

This dialogic communicative approach was a productive tool to deal with and build 

on students' understanding and also to engage them in advanced practice such as 

conjecturing, justifying and convincing, negotiating, evaluating and reflecting on the 

articulated ideas.  

However, the following episode of Moneer’s teaching, from a later point in the lesson 

to find the area of the trapezium, indicates Moneer’s felt need to retain some 

authoritative discourse to extend mathematics meaning making. It occurred when 

Hussain was recording and communicating mathematically what was agreed upon.   

Episode 3  

37 Hussain: Now we will multiply, 2x3 [is] 6 cm (writing 2x3=6 on the board).  

38 Moneer: What is this 2x3?  

39 Hussain: This is its area [rectangular area]  

40 Moneer: Boys, I am just posing the questions and the groups don’t ask  

41 Hussain: This is its area  

42 Moneer: Hussain, write the area of the rectangle is such and such, keep a name  

[Hussain writes: Area of the rectangle= 2x3.] 

43 Student2: Why didn’t you multiply 3 times 5?  

44 Hussain: Because it is a rectangle, so the length times the width, and this is the 
length and this is the width  

45 Moneer: Excellent, he said the area of the rectangle is the length times the width. 
Colour the rectangle for them so that they can identify it; put some shading for 
example so that we know.  [Hussain shades in the rectangle]  

46 Hussain: The area of a triangle is half of the base times the height. This implies 1.5 
here. …  

47 Moneer: Hussain, make it clear, clarify your work. Finish your story with the 
rectangle. Say to them that we calculated its area and it was this much. Now we 
have the second part.  

48 Hussain: We found its area  

49 Moneer: The second part of the shape that we made is a triangle. In the triangle we 
need to know such and such in order to find its area. So explain and illustrate to 
them. Don’t put just numbers.  

In this extract, there was an emergent issue for Moneer in how Hussain was recording 

mathematically and communicating with others. Even though he understood what he 

had done, Hussain was not recording appropriately. Moneer seemed to feel that 

without this, Hussain would not be considered as competent and other students would 

not have had a common understanding about what was going on. In order to address 

this, Moneer initially used two ‘dialogic’ strategies. First he drew attention to the 
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ambiguity in Hussain’s recording by asking "What is this 2x3?" (turn 38). Second, he 

tried to engage the students in dialogic interactions by inviting them to reflect on the 

matter and to pose some questions (turn 40). However, this invitation was ineffective. 

Moneer felt that he could not ignore this issue as students would not become able to 

develop their competencies in how to communicate mathematically, so he led an 

authoritative discourse to illustrate to the students how they should organize their 

ideas and how to speak and write through using mathematical language. 

CONCLUSION AND IMPLICATIONS 

In many debates about classroom interaction, the authoritative or teacher-centred and 

the dialogic or student-centred are seen as conflicting alternatives that must be chosen 

between. Sherin (2002) proposes establishing a balance between the two faces of 

mathematical discourse by using a ‘filtering approach’ in a whole class discussion 

that follows students’ ideas generation. However, filtering implies a prior decision 

about what is important, which seems little different from an authoritative 

communicative approach.  

Episode 1 represents a 'traditional' kind of authoritative discourse which hindered 

students' access to meaningful learning. In the approach explored in this article, 

however, integrating the authoritative with the dialogic is achieved in a different way. 

The authoritative approach in the teacher dialogue in episode 3 uses student ideas but 

in a way that is emergent rather than pre-decided, taking the students’ ideas but using 

the teacher’s skill and understanding to develop them. The power and authority in the 

approach did not come from either the teacher or the students, but was centred 

primarily on meaning making, and as a result could contain both the students’ 

perspectives and the teacher’s knowledge. In this, and in other examples in the study, 

the dialogic and authoritative discourses seeded each other, which productively 

promoted knowledge construction.  

The main guiding principles of the suggested approach require the teacher to engage 

students in dialogic discourse and also to remain sensitive and responsive to the 

cognitive side of students' work (Potari and Jaworski, 2002). In addition, he/she has 

to offer the necessary challenges that extend students' mathematics learning. As such 

authoritative discourse plays a different function from that in traditional teaching 

approaches because it is emergent rather than pre-decided, resulting from and 

supporting dialogic interactions. In this way students gain more epistemic roles 

(Nystrand, 1997) in classroom discourse, and the discourse becomes a learning tool 

which allows students to retain ownership (Lee, 2006) of the mathematical ideas. 

Our conclusion is that teachers need not be so bound by any felt moral obligation to 

be student-centred that they do not give their own knowledge a voice. By focusing 

attention on emergent meaning making, and using their knowledge to develop it, 

teachers can have it both ways, using their own knowledge to promote student 

understanding, but in effect subordinating their knowledge to the students’ 

developing ideas.      

Abdul Hussain, Threlfall, Monaghan 

 

1- 2 PME 35 - 2011 

particular issue in the context of a teaching intervention in Bahrain, and describe an 

approach to teaching mathematics that seems to locate power and authority in the 

unfolding action, rather than in one or other kind of participant, finding the locus of 

power in how mathematics meaning is made by students, and transcending the 

teacher-centred versus student-centred dichotomy.  

Mortimer and Scott (2003) conceptualize the role of power and authority by 

characterizing the classroom discourse of the teacher and students in terms of 

whether student’ views are taken into consideration during the progression of the 

lesson. Accordingly, the authors identify an authoritative–dialogic dimension of 

discourse. In authoritative discourse, the teacher aims to bring students’ complete 

attention to specific meanings within mathematics as a curriculum subject. This is not 

to say that students do not or cannot express their own ideas, but that the teacher does 

not make room for exploring and working on them unless they are compatible with 

“school math” (Richards, 1991). In contrast, classroom discourse is said to be 

dialogic when it becomes “open to different points of view” (Scott et al., 2006, p. 

610). In a dialogic discourse the teacher always makes room for exploring students’ 

ideas explicitly, even when they do not conform to ideas in the received curriculum.  

The distinction can be summarised as follows: in the authoritative communicative 

approach the teacher focuses on one specific point of view and leads students through 

a discourse with the aim of establishing and consolidating that point of view; in the 

dialogic communicative approach the teacher and students consider a range of ideas, 

exploring and working on different points of view. (Adapted from Mortimer and 

Scott, 2003).  

The desire in teaching to acknowledge and build on students’ ideas, and yet to 

achieve conventional knowledge development, leads to “tension between 

authoritative and dialogic discourse” (Scott et al., 2006, p. 605). 

METHODOLOGY 

The extracts reported in this article arise from an attempt to develop inquiry 

classrooms in schools in Bahrain and to study inductively how power and authority 

are structured in different episodes of mathematics lessons (Abdul Hussain, 2010). 

Four teachers in two schools were trained in inquiry methods and supported during 

an academic year in realising them, with video recordings made of lessons at 

different stages in the process, and interviews done with them (and with other staff in 

the school)  before, during and after the intervention.    

Extracts from the study will be used to illustrate: (1) the nature of and limitations to 

authoritative discourse; (2) the nature of dialogic discourse; (3) the way teachers in 

the study developed an interplay of dialogic and authoritative discourse to overcome 

the limitations of each.   
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PROPORTIONAL REASONING OF PRIMARY TEACHERS 
Silvia Alatorre               Mariana Flores               Tisbe Solís 

Universidad Pedagógica Nacional, Mexico City 
 
This paper reports a case study carried out with five in-service primary teachers to 
whom several kinds of ratio-comparison problems were posed, with different contexts 
and numerical structures. The obtained results are analysed quantitatively and 
qualitatively, and a didactical strategy is proposed that can also be applied in 
teacher training and Professional Development. 
Within the frame of an ongoing investigation on the strategies used by subjects of 
different ages and schoolings when faced to different kinds of ratio comparison tasks, 
this paper deals with the ability that schoolteachers have for proportional reasoning.  
A FRAMEWORK THAT STEMS FROM PREVIOUS WORK 
In previous PMEs and other conferences different parts of the research have been put 
forward. The framework and results obtained by subjects of different ages and 
schooling have been described in Alatorre (2002) and Alatorre and Figueras (2003, 
2004, and 2005). In the following paragraphs we present a succinct summary of these 
papers; the reader is referred to them for a more complete account. 
The problems calling for proportional reasoning can consist of two kinds of task: 
missing-value and ratio-comparison. We deal with the latter, and focus on two of its 
important variables: context and numerical structure. According to their context, ratio 
comparison problems can be classified in three kinds (Freudenthal, 1983; Tourniaire 
and Pulos, 1985; Lesh, Post and Behr, 1988; Lamon, 1993): Rate problems (which 
involve two different quantities); Part-part-whole problems (P-P-W, which involve 
one quantity and which, in turn, can be classified in Mixture or Probability 
problems); and Geometrical problems. Geometrical problems are not dealt with in 
this research; examples of Rate, Mixture (from Noelting, 1980) and Probability 
problems are shown in Figure 1 (each with a different numerical structure, as 
commented below). 
The second variable that we focus on is the numerical structure. The four numbers in 
a ratio-comparison belong to two “objects” (e.g., in Figure 1, girls, jars, bottles); in 
each object there is an antecedent (a; e.g. blocks, concentrate glasses, black marbles) 
and a consequent (c; e.g. minutes, water glasses, white marbles). If we use the format 
(a1,c1)(a2,c2), the foursomes in Figure 1 are (2,3)(2,2); (2,1)(4,2); (2,1)(3,2). Alatorre 
(2002) classified all possible such foursomes in 86 different situations and regrouped 
them in three difficulty levels, L1, L2, and L3, which will be described further on. 
Thus, context and numerical structure provide a double classification of the ratio-
comparison problems. The possible strategies used by subjects in their answers to the 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 9-16. Ankara, Turkey: PME.
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Figure 1. Examples of Rate, Mixture and Probability problems 
problems have also been classified (Alatorre, 2002; Alatorre et al., 2005). Strategies 
can be simple or composed; in turn, simple strategies can be centrations or relations. 
These will be described below; examples refer to Figure 1.  
Centrations can be on the totals CT (e.g. “In bottle 2 it is more likely because it has 
five marbles and bottle 1 only has three”), on the antecedents CA (e.g. “Both girls 
walk at the same speed because they both walk two blocks”), or on the consequents 
CC (e.g. “Jar 1 has a stronger taste because it has less water than jar 2”).  
Relations can be order relations RO (when an order relationship is established among 
the antecedent and the consequent of each object and the results are compared; e.g. 
“Girl 2 is faster because she walks for as many minutes as blocks, whereas girl 1 
takes more minutes than the blocks she walks”, or “In both bottles it is equally likely 
because both have more black marbles than white ones”), subtractive relations RS 
(additive strategies, e.g. “Jar 2 has a stronger taste because it has two more 
concentrate glasses than water glasses, whereas jar 1 only has one more”), or 
proportionality relations RP (e.g. “Girl 2 walks faster because she takes 1 minute per 
block, while girl 1 needs 1½ minute per block”; or “Both jars have the same taste 
because they both have twice as many concentrate glasses than water glasses”; or “In 
bottle 1 it is more likely to get a black marble because it has two black marbles for 
each white one, while bottle 2 lacks a black marble to have the same relationship”).  
Composed strategies are logical juxtapositions of two strategies (e.g. “Girl 2 walks 
faster, because she walks the same two blocks than girl 1 and in less time”, or “In 
bottle 2 it is more likely to get a black marble because it has more black marbles, 
although bottle 1 has fewer white ones”). 
To the above described system can be added Noelting’s (1980) categories BETWEEN 
and WITHIN, which describe if the comparisons are between the two objects or within 
each one: BETWEEN strategies compare a1 vs. a2 and/or c1 vs. c2, while WITHIN 
strategies compare a1 vs. c1 and/or a2 vs. c2. Centrations are strategies of the category 
BETWEEN, while relations are generally strategies of the category WITHIN (such as all 
the examples of the previous paragraph), but they can also be BETWEEN (e.g. “Both 
jars have the same taste because jar 2 is twice as much as jar 1”). 

If bottles are shaken with 
marbles inside, in which one 
is a black marble more likely 
to come out at the first try? 

:03 :02 

Which girl walks faster? 
(The squares stand for 
blocks and the numbers for 
minutes) 

In which jar does the 
mixture of concentrated 
juice and water have a 
stronger taste? 



2-11PME 35 - 2011

Alatorre, Flores, Solís 

PME 35 - 2011 1- 3 

All strategies may be labelled as correct or incorrect, sometimes depending on the 
numerical situation in which they are used. There are three kinds of correct strategies: 
1] RP in all situations; 2] RO (WITHIN) in situations where a=c in one object, as in the 
Rate example of Figure 1, or where a1<c1 and a2>c2 (or viceversa); and, 3] in some 
situations, some composed strategies (BETWEEN, such as the first example of 
composed strategies). Incorrect strategies are: CT and RS in all situations; CA, CC 
and RO in most situations; and most composed strategies.  
The three difficulty levels for the numerical structure mentioned above refer to which 
correct strategies may be applied. Level L1 consists of all the numerical situations 
where, in addition to RP, other correct strategies may be used. In levels L2 and L3 
only RP can be used; L2 consists of situations of proportionality (both ratios are the 
same), and L3 consists of situations of non-proportionality. The Rate, Mixture, and 
Probability problems of Figure 1 exemplify respectively L1, L2, and L3, although of 
course the numbers can change and all the levels are possible in all the problems. 
METHODOLOGY 
A case study was conducted in a suburban lower class area of Mexico City, with five 
primary in-service teachers (M1, M2, M3, M4, and M5). Each of the teachers was 
interviewed in two one-hour videotaped sessions. During the first interviews, teachers 
were posed several questions in each of five sorts of problems, which were two Rate 
problems, two Mixture problems, and one Probability problem. The Rate problems 
were the Speed (S) problem of Figure 1 and a Notebooks (N) problem (two stores sell 
different amount of notebooks for different amount of coins; in which one are the 
notebooks cheaper?); the Mixture problems were the Juice (J) problem of Figure 1 
and an Exams (E) problem (in two exams a girl gets different amounts of correct and 
incorrect answers; in which one did she do better?); the Probability problem was the 
Marbles (M) problem of Figure 1. 
Each of the problems was posed in different questions according to numerical 
structure. Twelve such questions were designed, four in each of the difficulty levels 
L1, L2, and L3. To each subject all of the problems were posed in some of the twelve 
numerical questions, covering at least a couple of the questions of each level (some 
and not all because of time limitations; which ones were posed depended on the kind 
of answers each teacher was giving). Each time, the subjects were asked to make a 
decision (object 1, object 2, or “it is the same”) and to justify it.  
For each teacher, between 45 and 51 answers were thus obtained, which were 
classified using the strategies system described above and also according to 
correctness. For the second interview, the videotape of the first one was edited 
according to the answers that each teacher had given, and this custom-tailored tape 
was shown to the teacher after a general explanation about proportional reasoning; 
she was then invited to give new answers. Thus, the second interview served the 
purpose of feedback and a Professional Development experience. Owing to space 
limitations, here we will focus mainly on the results obtained in the first interview. 
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The results of the first interview were analysed according to the numerical structure, 
the context, and the individual teacher. In each case, a two-fold perspective was used: 
qualitative (strategies used) and quantitative (percentage of correct answers).  
ANALYSIS OF RESULTS 
The overall success rate of the different context types and difficulty levels is shown 
in Figure 2. It corroborates previous findings (Alatorre et al., 2004, 2005; Alatorre, 
Morales & Roldán, 2007): on the one hand the difficulty levels are indeed so; on the 
other hand Rate problems are easier than P-P-W problems, especially in L2 and L3. 

Figure 2. Results obtained in the different contexts and difficulty levels 
In level L1 the teachers made very few mistakes; in all five contexts the success rate 
was above 80%. Often the non-100% was due to incomplete answers, mostly because 
the questions seemed so trivial that the teacher felt that no justification was needed: 

It is obvious that the notebooks are cheaper in store 2 [M5, N(3,3)(2,0)]. 

Since in level L1 several different strategies can be correctly applied, it is interesting 
to see which ones were used by the teachers. In P-P-W problems most of the answers 
(58%) used strategies of the category WITHIN, such as 

[J(1,4)(3,2)] Jar 2 has a stronger taste because it has more concentrate than water, and 
jar 1 has more water than concentrate [M1], 

while in Rate problems most of the answers (79%) used BETWEEN strategies, such as  
[N(1,4)(3,2)] When you compare both stores you see that in store 2 you would pay 

fewer coins for more notebooks [M4]. 

In level L2 all the answers given to Rate problems were correct: the teachers used the 
only correct strategy, RP. However, in P-P-W almost half of the answers were 
incorrect. Most of the errors consisted either on centrations or on additive strategies: 

[M(3,3)(1,1)] In bottle 1, because it has more black marbles than bottle 2 [M2]. 

[J(4,6)(2,3)] The stronger taste is in jar 2, because there’s only one extra glass of water, 
and in jar 1 there are two [M1]. 
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The following excerpt illustrates another erroneous strategy (RO), and also that 
sometimes a subject can make a correct decision for a wrong reason: 

[M(2,1)(4,2)] The same, in both sides there are fewer white marbles than black ones [M4] 

Level L3, in which the only correct applicable strategy was also RP, was by far the 
most difficult of the levels. Only 67% of the Rate problems and 17% of the P-P-W 
ones were successfully solved. Most of the errors are accounted for incorrect attempts 
at a proportional reasoning, but also there were many additive strategies RS: 

[M(5,2)(7,3)] In bottle 1 it is two-to-one, two-to-one, one is left. In bottle 2 it is two-to-
one, two-to-one, two-to-one, one is left. It is the same in both [M3]. 

[J(5,2)(7,3)] The notebooks are cheaper in store 2, because in store 1 I’ll buy five 
notebooks for two coins, and in store 2 it is five notebooks for two coins. 
With the extra coin I will buy two notebooks [M3]. 

[J(2,5)(1,3)] Jar 2 has a stronger taste because one glass of concentrate corresponds to 
one of water and there are two water glasses left, and in jar 1 there are 
three water glasses left [M2]. 

In a comparison within contexts types (Figure 2), both Rate problems behave almost 
identically; there is only a small difference in L3, the Speed problem being slightly 
easier than the Notebook one. This also corroborates the findings with subjects of 
different ages and schoolings (Alatorre et al., 2005; Alatorre et al., 2007). 
However, the comparison among the three P-P-W contexts yielded bewildering 
results. In the previous cited studies the Juice problem was generally the easiest and 
the Marbles problem was generally the most difficult of the three, as is generally the 
case with Probability problems. The cited studies also gave outcomes congruent with 
the well-known fact that the familiarity that a subject has with a context is usually 
determinant in their results; this had been particularly the case with the Exams 
problem, at which subjects with little or no schooling failed almost unanimously. But 
in this study with teachers, the Juice problem, with only 35% of successes in level L2 
and none at all in L3, was definitely the most difficult of the five; it is also noticeable 
that more than half of the errors in the Juice problem were due to additive strategies 
(some examples have already been displayed). In contrast, the Marbles problem was 
not particularly difficult; the teachers applied different forms of RP; for instance 

[M(3,6)(1,2)] In both bottles there is two white marbles and one black one; they can 
have the same proportion for the luck of extracting a black marble [M3]. 

Finally, the Exams problem, which we expected to be very easy for teachers because 
of the familiarity, did not exceed the 57% success rate in L2 and 31% in L3. What 
happened with teacher M3 in this context is interesting. She answered correctly two 
of the first three questions. Then, on the fourth one, she first used RP correctly: 

[E(2,1)(4,2)] It is the same: one-to-two in exam 1; in exam 2 it is twice as much [M3]. 
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But when she was asked to grade the girl she assigned the mark 5 out of 10, maybe 
realizing that in the first exam, with the array (2,1), 1 was the half of 2. Starting from 
the next question, and probably somewhat based in that same array (2,1), she worked 
out a general formula: multiply by 2 and divide into 3 (next transcript). After that she 
applied her formula systematically. 

[E(2,5)(1,3)] In exam 1 there are 7 and in the second one there are 4. Then 7 times 2, 
14; divided by 3, almost 5. Let’s see: 723=4.6 is what she gets in exam 
1. In exam 2 it is 423=2.6, which is less [M3]. 

Figure 3. Results obtained by the five teachers 
There was of course also a variation among the teachers. Figure 3 shows their results 
in the different context types and difficulty levels. M1 and M2 had the best results. 
Both teachers’ mistakes in the first interview (mainly additive strategies; in the case 
of M2 also centrations in the Marbles context) were spontaneously corrected in the 
second interview after a short explanation. The results of M4 were somewhat poorer. 
She also used additive strategies, but half of her mistakes were centrations in L2 and 
L3. She did use RP in all the contexts (especially the Rate ones), but also made 
several incorrect attempts at RP. In the second interview she managed only partially 
to correct the errors; oftentimes she substituted a mistake with a different mistake. 
M3 and M5 had even poorer results. When confronted in the second interview with 
her “formula” for marking exams, M3 even changed the mark 5 she had given in the 
fourth question for 223=1.3 in the first exam and 423=2.6 in the second. When 
confronted again (“But you had said that the girl had had the same results in both 
exams”), she replied “Yes, maybe it is unfair, but if we look at it in proportion those 
would be her marks”. After some help she could apply the rule of three, and she 
concluded “This could even be of some usefulness in my job, but I prefer to apply 
exams with ten questions”. As for M5, she only managed to use four times RP in L2 
(three of which in the very easy structure (3,3)(1,1)), and never in L3. She did not 
even have incorrect attempts at RP; rather, all of her incorrect answers were due to 
centrations, with the exception of two RO. She did not follow the explanation of the 
second interview, and her new answers were of the kind “Let us reason: In which jar 
is the taste stronger? If I said the second jar, then it must be the first one”. 
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CONCLUSIONS 
Before tackling the proportionality issues, we will stress that two methodological 
features of this research have been extremely useful: 1) The use of the videotape for 
the analysis of results and of its edited version as a feedback in the second interview, 
and 2) the interrelation of qualitative and quantitative methodologies in the analysis 
of the results, where both were mutually enriched by each other’s results. 
We can only venture some hypotheses to account for the surprising results among the 
P-P-W problems. The Juice problem was always the first one to be applied (because 
of the good results it had always had), and that may have triggered an insecurity over 
what the questions of the interview were about; however, this does not explain why 
that had never occurred before nor why there were so many additive strategies in this 
context. The difficulties in the Exams problem could be due, as surprising as this may 
seem, to unfamiliarity: many teachers apply exams that are easily marked (as in M3’s 
conclusion), or bought from commercial publishers that explain how to mark them. 
On the other hand, the good results in the Marbles problem could be related to a 
Probability workshop that these teachers had previously attended in a PD program. 
In these interviews we had some glimpses of how school favours routine. The 
mentioned systematic use by M3 of an incorrect formula was not the only case; even 
M2 used mechanically an incorrect algorithm to find equivalent fractions. 
Almost all the teachers tried to apply (often in vain) the strategy recommended by the 
Ministry of Education (SEP, 1992) for the teaching of proportional reasoning. It 
consists of creating tables of doubles, triples, etc of the quantities at stake in a 
problem. For instance, in the Notebook problem, 2 notebooks for 1 coin is equivalent 
to 4 notebooks for 2 coins, 6 for 3, etc. (Table 1). In a problem like (2,1)(3,2), which 
is L3, teachers make a double table such as in Table 2, and then they try to see some 
equivalences within the same row; although it is true that (4,2)(6,4) is equivalent to  
(2,1)(3,2), it does not solve the problem. However, another equivalent is (4,2)(3,2) 
(Table 3), which is a L1 problem: in store 1 you get 4 notebooks for 2 coins, and for 
the same two coins you only get 3 notebooks in store 2; the array (6,3)(6,4) signalled 
in Table 4 is another equivalent and is also L1. 

Store  Store 1 Store 2  Store 1 Store 2  Store 1 Store 2 

N C  N C N C  N C N C  N C N C 

2 1  2 1 3 2  2 1 3 2  2 1 3 2 

4 2  4 2 6 4  4 2 6 4  4 2 6 4 

6 3  6 3 9 6  6 3 9 6  6 3 9 6 

 Table 1 Table 2 Table 3 Table 4 
Thus, the mentioned recommendation is not wrong, but incomplete: Well used, the 
tables can definitely help in the solution of such problems, because they transform a 
L3 problem into a L1 problem. With this in mind, we can complete a proposition for 
the didactical treatment of proportional reasoning in its ratio-comparison modality: 
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First propose L1 problems to students, then L2, then L3. First propose Rate problems 
(favouring BETWEEN strategies), then P-P-W (and WITHIN strategies). When dealing 
with problems of a certain difficulty, never dump those you have seen before. When 
dealing with L3 problems, use tables such as Tables 3 and 4, looking in different 
rows for equivalencies. We sustain that such a proposition can be applied not only to 
students in grades 5 and beyond, but also to teachers in teacher training and in PD. 
Acknowledgments: This research project was supported by a grant from the Consejo 
Nacional de Ciencia y Tecnología (SEP/SEB-CONACTY 2007-2008, 85371). We also 
thank the five participant teachers, as well as our consultant Cuauhtémoc Pérez. 
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HOW TEACHERS CONFRONT FRACTIONS 
Silvia Alatorre,   Elsa Mendiola,   Francisco Moreno,   Mariana Sáiz,  Rosalva Torres 

Universidad Pedagógica Nacional, Mexico City 
 
This paper presents the results of a questionnaire about fractions applied, in the 
context of a Professional Development workshop, to a large sample of in-service 
primary teachers. The main objective of the questionnaire is an exploration of the 
teachers’ ways of solving difficult situations where they have to put into play their 
Common Content Knowledge and their Special Content Knowledge of Mathematics. 
This paper is centred in the knowledge about fractions held by a particular class of 
individuals: in-service primary teachers. A great deal of research has been conducted 
about the difficulties that young children face in the handling and understanding of 
fractions; however, as is often the case, these and other difficulties in the domain of 
arithmetic also occur among teachers (see e.g. Southwell & Penglase, 2005). 
FRAMEWORK  
Since the 80’s many authors have highlighted the problems generated in the act of 
teaching by an erroneous or an incomplete mathematical knowledge of teachers or 
pre-service teachers. Southwell & Penglase (2005) sustain that “if teachers are not 
confident in their mathematical knowledge, they may find it difficult to ensure that 
their students gain confidence and competence.” For these authors it is very 
important to be aware of the actual knowledge of pre-service teachers in order to 
design mathematical courses for them. 
The situation of in-service teachers is somewhat different because they are not in the 
process of training but working, and even if they are aware that their mathematical 
knowledge is weak, they have to confront so many labour issues that they become 
reluctant to mathematical courses. Many teachers think that their difficulties with the 
maths are not with the contents but with how to teach them. In order to figure out this 
situation Shulman (1986) proposed a special domain of teacher knowledge that he 
called pedagogical content knowledge (PCK) as opposed to mathematical content 
knowledge (MCK); since then much discussion has taken place. Ball, Thames & 
Phelps (2008) have developed research in order to define more accurately Shulman’s 
model; they have proposed some clarifications to PCK and a division of MCK into 
Common Content Knowledge (CCK, the word “common” referring to many other 
professions or people in general) and Special Content Knowledge (SCK, the 
mathematical knowledge and skill unique to teaching).  
Thus, CCK, SCK and their interplay are fundamental in understanding how teachers 
comprehend and conceptualize the mathematics topics they teach, which is 
something we take as utterly important. In our research we undertook this in a 
Professional Development (PD) frame with in-service teachers; we designed and 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 17-24. Ankara, Turkey: PME.
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applied workshops in topics chosen by them, with activities that made them work 
with CCK and SCK at the same time. The workshops allowed us to collect 
information from a large amount of teachers, but unfortunately gave us very little 
time to further work with them, so, for instance, no interviews were possible. 
However, references of similar studies (e.g. Zazkis & Siroti, 2004; Southwell & 
Penglase, 2005) have encouraged us to present or results.  
One of the workshops tackled a topic traditionally seen as arduous to teach and/or 
learn: fractions. It is known that teaching and learning fractions are complex 
processes, partly because fractions comprise a multifaceted construct. After the 
seminal identification by Kieren of four subconstructs of fractions: measure, ratio, 
quotient, and operator, Behr, Lesh, Post and Silver recommended adding as a distinct 
one the part-whole relationship (Charalambous and Pitta-Pantazi, 2005).  
METHODOLOGY 
Our Professional Development and Research Study was conducted in a working class 
zone of Mexico City, where a series of workshops called TAMBA were conducted 
with 400 to 800 in-service primary teachers of the public schools of the zone 
(Alatorre, Mendiola, Moreno & Sáiz, 2010). Each workshop was conducted in 20-30 
groups of 20-25 teachers in a 2-hour session focused on one of the topics of the 
Mathematics curriculum of the level. The topics were decided after the teachers were 
consulted; the one most asked for was Fractions. As all of the workshops, this one 
consisted of a 20-minute individual task (IT) based on a questionnaire, a team task 
(TT) as the main activity, and a group discussion (GD); all the tasks were specifically 
designed for the study and both the TT and the GD were videotaped. In this paper we 
will report on the IT; it must be stressed that although the main purpose of the IT is to 
investigate the CCK and SCK related to fractions of the teachers, the videotapes 
registered the discussions about the processes and solutions of the TT, about issues 
related to the teaching of fractions, and about the final reconsideration of the IT’s 
questionnaire as a closure. 
For this workshop, 429 teachers came to the IT; 203 of them work two shifts in public 
schools either as regular teachers or in administrative tasks, and 134 of the 203 are in 
charge of two groups of students (not necessarily of the same grade). Adjacent to the 
questionnaire, which will be described below, several questions pertaining to the 
teachers’ characteristics were asked: in which school they worked, in what position, 
etc. Two variables obtained from this information will be used in this paper: the 
Highest Grade (HG) and the Length of Service (LS). The HG is either the grade 
taught by teachers who have only one group, or the highest grade when they attend 
two groups (134 teachers have HG≤3rd and 212 have HG≥4th). The LS was asked 
directly as the amount of years they have been practicing as teachers (mean=13.4, 
SD=9.6). There is a high statistical association among LS and HG (F=5.80, 
df=1, 277, p=0.0166); LS is generally a growing function of HG, with means going 
from LS(1st)=8.1 to LS(6th)=13.5, with the exception of LS(5th)=14.6 (the 83 teachers 
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only in administrative jobs, with undefined HG, have LS=16.3). Thus, among 
teachers who work with school groups, the most experienced are those of 5th grade. 
The three questions of the questionnaire pretend to explore the teachers’ ways of 
solving difficult situations where they have to use their CCK and SCK. In Q1 and Q2 
a mathematical problem is present with simulated Grade 6 students’ answers to it, 
which were designed considering frequent misconceptions and errors; the teachers 
were asked to mark each one as Right (RP) or Wrong (WO). Thus, the teachers not 
only had to find the solution of the problem but also to analyse and assess the given 
solutions. In question Q3 a problem is posed and the teacher is asked to say if it can 
be solved, and to either solve it or explain why not. A brief presentation of the 
rationale of each question follows (Figure 1 has a reproduction and a translation).  
In Q1 the subconstruct is that of the fraction as measure, although this could be 
debated because of the lack of context. Solutions b(7.5) and e(15/2) are two correct 
ways of solving the problem. In solutions a(NP) and c(6) the underlying error is 
thinking that the amount of times must be an integer. In solutions d(0.83) and f(5/6) it 
is considered that the result is ⅓ of 2.5; solution d) could also come from considering 
that 2.5 ÷ ⅓= 2.5 ÷3. Solution g(1.2) responds to the need of operating with the 
number but not knowing how, and always using the largest number as the dividend. 
In Q2 the subconstruct is that of the part-whole relationship. The size of one of the 
parts is to be found, which generally speaking is a simple task because it is very 
common in the classroom; the complexity here is that the shared part is in turn a part 
of the whole and thus of identifying the unit can be a source of difficulties. Solutions 
b(1/8) and e(1/8) are two correct ways of solving the problem. Solutions a(1/6) and 
c(1/24) lose part of the information: in the former the fact that the can only had ¾ of 
the content, and in the latter the amount of parts destined to the dog and each puppy 
(although it starts with a correct statement, dividing in 24 parts). Solution d(2/9) 
consists of operating with the numbers without knowing what information that gives. 
The subconstruct of the problem of Q3 is also that of the part-whole relationship. 
Here what is to be found is the size of the whole, which is generally a harder task 
than finding the size of a part, and in this case the difficulty is aggravated by the fact 
that the whole is a collection of continuous items, of size 11 2/3.  
Thus, the design of the questionnaire was based on the revised subconstructs of 
Kieren et al., as presented by Charalambous & Pitta-Pantazi, (2005). The problems 
used were inspired in many investigations (e.g.Mack, 2001). The form in which Q1 
and Q2 were asked allowed not only to obtain information about the CCK of teachers 
in regard of fractions, but also to emulate the interplay between CCK and SCK: The 
teachers were confronted with children’s solutions to a problem, and these solutions 
had different levels of correctness and different representations of the numbers and 
other elements of the problems.  
The two-fold analysis of the results was qualitative (also based on Kieren’s revised 
subconstructs) and quantitative. 
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Questions Q1 and Q2 consist of two problems posed to sixth grade students and the 
solutions given by some of them. Mark each one as Right (P) or Wrong (O) 

Q1. How many times does ⅓ fit in 2.5?  Q2. Juan has a can of dog food. He 
gave ¼ to his dog and distributed the 
rest among the 6 puppies. What part of 
the can did each puppy receive? 

a) 
b) 

c) 

d) 
e) 

f) 

g) 

 

 
 

 
 

 
 

 

a) 

b) 

c) 

d) 

e) 

 
 

 

 

 [Translation: a) You can’t solve it because 
there’s one extra part; b) 7.5 because 3 times + 
3 times + 1.5 times; c) 6 because there are 3 in 
each unit; d) 0.83, because I divided 2.5 by 3; 
e) 15/2 because that is the result of 5/2 ÷ ⅓; f) 5/6, 
because of this: 2.5 is . I cut each part in 
3  and each little piece is 1/6 of .  
There are 5/6; g) 1.2, because you must divide 3 
by 2.5]  

[Translation: a) 1/6 because he distributed the 
food among the six puppies and nothing was 
left; b) 1/8, because he distributed ¾ of the 
can among 6; c) 1/24 because if I divide the 
can in fourths and then in sixths, the can ends 
up divided in 24 parts; d) 2/9 because 1/6 
divided by ¾ is 4/18; e) 1/8 because if I divide 
the can in 8 the dog gets 2/8] 

   
Q3. The following problem was found in a book of mathematical puzzles.  

The drawing shows three fifths of the pizzas that 
a group of young people eat at a party. How 
many pizzas were eaten?  

Does this problem have a solution? If it does, which is it? If not, why not? 

Figure 1. Questionnaire used in the Individual Task 
ANALYSIS OF RESULTS 
Questions 1 and 2 
Table 1 reports the frequencies (amount of teachers) that marked each of the 
children’s solutions as Right (RP), Wrong (WO), or neither (NR=no reply).  

solu-
tions 

Q1 (⅓ in 2.5) Q2 (The puppies)  
a(NP) b(7.5) c(6) d(0.8) e(15/2) f(5/6) g(1.2) a(1/6) b(1/8) c(1/24) d(2/9) e(1/8) 

RP 58 253 49 137 154 118 41 62 363 53 26 336 
WO 304 126 291 213 182 219 298 312 40 317 334 58 
NR 67 50 89 79 93 92 90 55 26 59 69 35 
Table 1. Frequencies of marks for each of the children’s solutions of Q1 and Q2.  
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In Table 1, the frequencies in bold correspond to correct marks. Thus, 253 teachers 
correctly marked RP the solution b) in Q1; this and all other frequencies for correct 
RP marks are screened in dark gray. Also, 304 teachers correctly marked WO the 
solution a) in Q1; frequencies for correct WO marks are screened in light gray. In Q2 
all the frequencies for correct marks (312 to 363) are greater than in Q1 (154 to 304). 
But the teachers marking correctly one of the solutions were not necessarily the same 
who did likewise with the other ones in each question. A separate analysis is 
conducted for each teacher with the amount of Right solutions s/he recognised as 
such (RP), the amount of Wrong solutions recognised as such (WO), and the total 
amount of correct marks (see Table 2). It must be stressed that among the 119 
teachers who correctly recognised both Right solutions in Q1 only 57 also correctly 
recognised the five Wrong solutions. Thus, the teachers who marked correctly all of 
the children’s solutions were only 57 (13%) in Q1, but as much as 220 (51%) in Q2. 

 Amount of 
correct RP 

marks 

Amount of correct  
WO marks Amount of correct marks 

 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 
Q1 137 173 119 62 26 40 91 104 106 23 39 32 51 88 83 56 57 
Q2 28 103 298 61 32 77 259   14 32 41 40 82 220   
Table 2. Amount of teachers correctly marking correct/incorrect/total solutions 

The teachers showed a large amount of inconsistency in their answers; two indicators 
of this are shown in the following paragraphs. 
1) As many as 194 teachers (45%) in Q1 
and 102 (24%) in Q2 marked as RP 
different solutions (here we consider that 
7.5 and 15/2 in Q1, 0.83 and 5/6 in Q1, and 
both 1/8 solutions in Q2 are not 
“different”). Table 3 shows a summary of 
this behaviour. Also, for instance, in Q1 
120 teachers (28%) marked as RPat least 7.5 (and/or 15/2) and 0.83 (and/or 5/6).  
2) In Q1, it could be expected that the 58 teachers marking as RP the solution a(NP) 
would mark as WO all or many of the other solutions; however only 24% had 6 WO 
marks and 28% had 5, but as many as 48% had 4 or even fewer WO marks. 
Question 3 (Q3)  
A qualitative analysis was performed with the answers to the third question, and four 
categories were defined: AC: Accepted Correct answer (when the teacher came to an 
exact or approximate result that seemed satisfying for him or her), RNI: Rejected 
Non-Integer (when the teacher declared that the problem does not have a solution or 
rejected the solution s/he had found because of a conflict with a non-integer result), 
INC: Incorrect solutions (incorrect solutions, either with incorrect numerical results, 

 NR 0 1 2 3 4 5 
Q1 13 24 198 143 42 8 1 
Q2 8 4 315 80 21 1   

Table 3. Amount of teachers giving RP  
marks to 0, 1, 2,… different solutions 
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erroneous procedures, incorrect attempts at a solution, or only a description of a 
general procedure), and NJ: No Justification (when the teachers did not answer, or 
answered the first question but failed to explain why, or only gave partial descriptions 
of the problem’s numbers, such as “7= 3/5” or “7 pizzas”). Examples follow: 
AC 65/5=13; 100/5=20; 7/3=2.33; 2.33×5=11.65; 11 65/100=1113/20  

11 2/3, I will eat the extra ⅓ 
The fifth part corresponds to 2.33, the whole corresponds to 11.65 
Approximately 12  
11 pizzas and 2/3 too many  A

cc
ep

te
d 

C
or

re
ct

 

RNI It doesn’t have a solution as a fraction but it does as a decimal number: 11.65 
pizzas 

The solution is 7 × 5/5= 35/5 divided in 3/5 = 175/15; 175 divided in 15 = 11.66 pizzas, 
but it does not have a solution because the amount of pizzas is not 
exact and that causes difficulties to the child’s understanding 

Because you cannot divide in equal parts the 7 pieces in 3 

R
ej

ec
te

d 
N

on
-I

nt
eg

er
 

INC 7= .60, 1= 0.857142; 7= 0.60; 4285710 
7 cannot be divided in 5 and I can’t find the way to convert them to 3/5  
Because I don’t know how many pieces each pizza had  

(No written response, but a circle divided in 5 pieces, each with the legend 2 ⅓) 
Using the rule of three In

co
rr

ec
t 

The overall percentages of these categories are: AC (28%), RNI (8%), INC (34%), 
and NJ (30%), but this varied according to HG, as shown in Figure 2.  
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Figure 2. Distribution of Categories for Q3 among teachers with different HG  

CONCLUSIONS 
Some of our conclusions refer either to CCK or to SCK, but most refer to the 
interplay between both.  
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The first two questions were very difficult for the teachers (only 10% marked 
correctly all twelve children’s solutions), and more so Q1 than Q2; this could be 
explained not only because Q1 is a measure subconstruct task and Q2 is a part-whole 
one, but also because Q1 lacks a context that Q2 does have. Some teachers seem to 
be in a very disadvantaged position regarding their CCK; for instance those who 
marked both b) and e) Right solutions as WO (83 in Q1 and 8 in Q2). 
Some of the solutions in Q1, as well as the RNI category in Q3, correspond to the 
idea that a whole can only be divided an integer amount of times; this misconception 
could be originated and/or reinforced in the almost exclusive use of the area model, 
where the whole (a pie, a rectangle) is always divided into an integer amount of parts, 
and it affects teachers as well as their students. In the case of Q3, the reluctance of 
teachers to accept non-integer results can be aggravated by a careless reading of the 
question: many of their explanations mentioned the pizzas bought for the party, and 
thus seemed to ignore that the question referred to the amount that had been eaten. 
Thus, these teachers were correctly trying to make sense of the situation, which is a 
positive SCK (it is absurd to buy a non-integer amount of pizzas), but misunderstood 
it (it is not absurd for a group of people to eat a non-integer amount of pizzas). 
One of the most striking results of this analysis is the large amount of what we have 
called inconsistencies in questions Q1 and Q2. In order to have a good explanation of 
them we would have needed to interview teachers about their markings, but we can 
venture some hypotheses. One relates the inconsistencies with a careless reading of 
the children’s solutions; this could be partially or totally due to the questionnaire 
being answered in the setting of a workshop, not in the teachers’ actual practice. 
Another possible explanation could lie in the idea held by many teachers that 
mathematics problems have one and only one correct solution, and as a consequence 
they mark only the first one they see; this is particularly evident in Q2, where among 
the teachers who marked as RPonly one solution, 42 marked b(1/8) and only 19 
marked e(1/8). Although this effect is also seen in Q1 with the solutions b(7.5) and 
e(15/2), respectively marked by 59 and 7 teachers, this difference could additionally be 
due to a failure to recognise both solutions as equivalent or as two representations of 
the same result; the same failure could be present in the case of Q1’s solutions 
d(0.83) and f(5/6), marked in that order by 34 and 16 teachers. These hypotheses are 
supported by the fact that the difference in the number of teachers marking only one 
correct answer is much greater in the case of Q1 (59-7=52), where there are two 
representations, than in Q2 (42-19=23), where there is only one. 
Some of the alleged inconsistencies could be seen under the light of an explanation 
based in SCK. For instance, some teachers could be assessing as correct or non-
incorrect some of the children’s solutions beside b and e in both cases, particularly 
when the solutions contain a correct conception or procedure; the teachers doing so 
would most probably be teachers with a long-time experience. This hypothesis, 
which refers to SCK, is supported by a highly significant (p=0.0084) negative 
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correlation between LS and the amount of WO marks among Q1’s solutions a, c, d, f, 
and g: the longer a teacher has been teaching, the fewer WO marks s/he assigns.  
The size of the sample first suggested that many such statistical associations would 
be found between teachers’ characteristics such as their LS and their HG and their 
performance; however this was not the case. The only other interesting result lies in 
some significant models of the relationship, shown in Figure 2, between the 
categories of Q3 and teachers’ HG from 1 to 6. There is a linear growing effect of 
HG in AC (R2=0.79), which could be the effect of “better” teachers often assigned to 
5th grade, because of the widespread idea that it is the most difficult grade in primary 
school (also teachers with HG=5th have the largest LS). There is also a U-shaped 
behaviour in INC (R2=0.69) and an inverse-U shape in NJ (R2=0.89), which could be 
due to teachers with higher HG feeling the obligation to answer all questions posed 
and thus preferring to give an incorrect answer rather than no answer at all. 
None of CCK, SCK or PCK is sufficient for a good teaching of mathematics; rather, 
all are necessary conditions. We have observed serious needs of these in-service 
teachers with respect to their CCK and their SCK on fractions, which most probably 
will impact on a poor teaching and learning of the topic. 
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RATIO: A NEGLECTED DIVISION AT SCHOOLS 
Solange Amorim Amato 

Universidade de Brasília, Brasília, Brazil 
 
The research results presented in this paper are only a small part of an action 
research with the main aim of improving student teachers’ understanding of 
mathematics. The re-teaching of mathematics was integrated with the teaching of 
pedagogy by asking student teachers (STs) to perform children’s activities which 
have the potential to develop understanding of the subject. This report presents some 
results concerning STs’ difficulties in distinguishing and representing different 
division situations, and some practical solutions proposed to reduce their difficulties 
within the time available. 
 

SOME RELATED LITERATURE 
The theoretical framework adopted this study is based on Goldin (2002), who argues 
that research on representations in mathematics learning has the potential to generate 
teaching methods which can make ideas more accessible to a larger majority of 
students. The literature describes division situations (structures, models, constructs, 
etc.) using different perspectives and category systems. Comprehensive reviews can 
be found in Greer (1992) and English and Halford (1995). Figures 1 to 3 exemplify 
three situations for the division 21 ÷ 3 = 7. Division is usually associated with only 
two situations called: (a) sharing or partition (Figure 1), and (b) measurement or 
quotition (Figure 2). Yet Haylock (1995) defines a third division situation called 
comparison or ratio (Figure 3). Comparison situations can also be found in Williams 
and Shuard (1982), SMP (1987), and Greer (1992). Haylock, (1995) explains: 

The ratio division structure refers to situations where we use division to compare two 
quantities … if A earns £300 a week and B earns £900 a week, … B earns £600 more 
than A … The ‘600’ is arrived at by the subtraction, ‘900−300’ … B earns three times 
more than A … The ‘three’ is obtained by the division, ‘900÷300’” (p. 57). 

(a) sharing: 
21 sweets are equally 

shared among 3 boxes. 
 
 
 
 

7 in each box 

(b) measuring: 
21 sweets are packed in 

boxes with 3 sweets each. 
 
 
 
 

7 boxes are needed 

(c) comparing: 
Box A has 21 sweets. 
Box B has 3 sweets. 

 
 
 

7 times more in box A 
7 times less in box B 

The ratio of A to B is 7 
Figure 1 Figure 2 Figure 3 

J 

L 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
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Modelling comparisons with subtraction require the representation of two different 
quantities (e.g., English and Halford, 1995). This seems to be a strong reason for 
defining a third division situation in which two quantities are represented and 
compared (Figure 3). With respect to iconic representations, the literature presents 
several types of diagrams for division (e.g., Greer, 1992, p. 281-282), but most of 
them are not related to comparison. Exceptions were found in Williams and Shuard 
(1982, p. 404) and SMP (1987) in which two quantities or two measurements are 
represented and compared with division (as in Figure 3). Expressing the quotient of a 
division as a ratio is indeed a very powerful comparative tool in data handling: 
“Those people who eat popcorn ingest 2½ times more fibre than those who do not eat 
it”. However, expressing ratio comparisons between two quantities A and B in terms 
of “A is 2½ times more than B” or “B is 2½ times less than A” is a more meaningful 
comparison than simply stating that “The ratio of A to B is 2½”. 
Research tends to show that primary school student teachers (STs) think of division 
predominantly in terms of sharing situations (forming a certain number of equal 
groups) and seem unable to access measurement situations (forming groups with a 
certain number of units) (e.g., Tirosh and Graeber, 1990, Simon, 1993, and Rizvi and 
Lawson, 2007). No studies were found about STs’ knowledge of division in 
comparison situations (comparing two groups with a certain number of units each). 
With respect to ratio, Simon and Blume (1994) report that STs have difficulty in 
recognising ratio relationships. Similarly to school students, they tend to select 
additive strategies when multiplicative strategies are appropriate. Only 7 out of 26 
STs used the ratio width:length to find out the most and the least square of three 
rectangular shapes. All other STs used the difference between the two sides. 
According to Simon and Blume, some of the difficulties faced by the STs seem to be 
connected to their weak pre-requisite knowledge about comparative structures (i.e., if 
the ratio height:length is 3:2, the height is 1½ times the length of the base). STs also 
do not seem to understand the relationship between a symbolic expression for a ratio 
and the associated real-world situations that it represents. Other more recent reports 
show similar results (e.g., Ilany et al. 2004). So the particular research question 
related to the present report is: “In what ways can primary school STs be helped to 
improve their understanding of division situations?”. 

METHODOLOGY 
An action research was initiated in 1995 with the aim of improving primary school 
STs’ understanding of the mathematics they were expected to teach in the future 
(Amato, 2004). The action steps of the research are being performed at University of 
Brasília, Brazil, through a mathematics teaching course component in pre-service 
primary school teacher education. The component currently consists of only one 
semester with 60 hours. In the action steps of the research, the re-teaching of 
mathematics is integrated with the teaching of pedagogical content knowledge by 
asking the STs to perform children’s activities which have the potential to develop 
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mathematical understanding for most of the contents in the primary school 
curriculum. About 90% of the new teaching program became children’s activities. 
The model of action research adopted is based on McTaggart and Kemmis (1982, p. 
5) who emphasize the type of knowledge which must be sought through the action 
research method: “trying out ideas in practice as a means of improvement and as a 
means of increasing knowledge about the curriculum, teaching and learning”. 
Four data collection instruments were used to monitor the effects of the strategic 
actions in the two main action steps of the research: (a) researcher’s daily diary; (b) 
middle and end of semester interviews; (c) beginning, middle and end of semester 
questionnaires; and (d) pre- and post-tests. Much information was produced by the 
data collection instruments, but due to space limitations, only some classroom 
observations and some STs’ responses related to division situations with natural 
numbers are presented in this report. 
A summary of the main (a) research aims, (b) data collection instruments, and (c) 
teaching activities can be found in Amato (2004). The action steps had the duration of 
one semester, thus each action step took place with a different cohort of STs. In the 
third and subsequent action steps, the data collection became more focused on 
particular mathematics contents and representations which presented more difficulties 
for the STs during the first two action steps (the first and second semesters). The 
sequence of activities actually being used for teaching division situations with natural 
numbers is: 

(1) Translating from concrete materials to verbalizations. First I show the class a large 
transparent plastic bag with 21 “sweets” (21 equal shampoo bottle cups) and ask 3 STs to 
stand up in front of the class. I take away from the bag a group of 3 sweets and give 1 
sweet to each ST. I repeat the same process until the bag is empty and each ST receives 7 
sweets. A ST is asked to verbalise the situation. Then I return the 21 sweets to the large 
bag, take away from the bag a group of 3 sweets, and insert the 3 sweets into a small 
transparent plastic bag. I repeat the same process until the large bag is empty and 7 small 
bags are filled. Another ST is asked to verbalise the new situation. Finally I mention that 
both division situations involve repeated subtraction, are recorded as 21 divided by 3, and 
write 21÷3 on the blackboard. 
(2) Practical work and discussion about the sharing and measurement situations for 
division. The STs’ bodies are used as units and they are asked to: (a) stand up and 
organise themselves into 2 equal groups, (b) organise themselves into groups with 2 STs 
each, and (c) sit down, draw and compare the two division situations. If the number of 
STs is odd, I include myself as a unit. Finally I mention that the first situation is called 
“sharing” and the second one is called “measurement”. 
(3) Practical work and discussion about the two situations of division. The class is 
divided into pairs. The STs sitting on the left-handed side of the pairs are asked to use 21 
units of a plane version of Dienes’ blocks (paper squares sized 1cm by 1cm) to model 
sharing 21 sweets equally among 3 people. The STs sitting on the right-handed side of 
the pairs are asked to use 21 units to model packing 21 sweets into boxes with 3 sweets 
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each. Then the pairs are asked to compare the two situations (Figures 1 and 2). Finally I 
revise that the first situation is called sharing and the second one is called measurement. 
(4) Practical work as a home assignment. During the lecture I show the class a big album 
made with 8 sheets of A3 paper illustrating 4 sharing and 4 measurement situations 
involving grouping chocolates (grey paper rectangles sized 5.6 cm by 8 cm) for the sums 
6÷3, 12÷4, 10÷2, and 8÷2. The STs are asked to verbalise the division situation 
illustrated in each page. As a home assignment, the STs are asked to manipulate small 
“chocolates” (grey paper rectangles sized 2.8 cm by 4 cm) in order to construct a similar 
album using 8 sheets of A4 paper to illustrate 4 sharing and 4 measurement situations for 
the same sums presented in the big album. On the instructions’ page each situation is 
revised with an example similar to the ones presented in Figures 1 and 2 which include 
(a) the title “sharing” or “measuring”, (b) words describing each situation and (c) iconic 
representations with lines circling groups of rectangular chocolates. 
(5) An exercise to revise the sharing and measurement situations. The instructions 
include an example for each situation similar to the ones presented in Figures 1 and 2. 
The STs are asked to represent with pictures and with words the two division situations 
for five division sums (18÷6, 40÷8, 10÷5, 60÷15, and 60÷6). Each exercise have two 
parts with the same number of dots (e.g., 18 dots in the case of 18÷6). In part (a) of each 
exercise, the STs have to circle the dots to illustrate a division in an iconic sharing 
situation. In part (b), the STs have to circle the same number of dots to illustrate the sum 
in an iconic measurement situation. At the right side of each set of dots there is also some 
space for representing each situation with words (i.e., a related word problem). 
(6) Another exercise to revise the sharing and measurement situations for the division 
14÷2. The instructions ask the STs to: (a) write the name the division situation being 
illustrated (sharing and measurement), (b) represent each situation with their own 
pictures, and (c) write a word problem for each situation. 

SOME RESULTS 
Using children’s activities proved to be an appropriate strategy to improve STs’ 
understanding of mathematics since the majority of STs said, and many indicated in 
the post-tests, that their understanding had improved (e.g., Amato, 2004). In each 
semester, the majority of the STs mentioned they enjoyed the activities in the 
teaching programme. As an example with respect to division situations using natural 
numbers, one ST wrote “I noticed that traditional content can be learned in diverse 
ways and even with a playing aspect which facilitates the understanding such as using 
our body to exemplify groupings or divisions” (activity 2). However, the distinction 
between the sharing and measurement situations for division proved to be one of the 
most difficult content in the programme. At the beginning of the first semester one 
ST asked for help in preparing a lesson about division. She was having her first 
teaching experiences at school. I could notice how difficult it was for her to 
distinguish between the two situations. For this reason, the initial activities about 
division were revised once more before teaching the first semester class. Yet some 
STs presented similar difficulties. In the second semester I decided to perform a 
systematic research about the frequency of the two situations in some school 
textbooks. There were far fewer word problems involving measurement situations. 
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After the first semester it became clear that the number of activities for distinguishing 
between the sharing and the measurement situations should be increased and spread 
over a greater time along the semester. One way to provide STs with more activities 
for those topics without using the short time available in the classroom was to 
increase the number of home assignments. A new activity asked the STs to construct 
an album (activity 4) illustrating the two situations for division. In the third and 
subsequent semesters two other home assignments were included (activities 5 and 6). 
After performing an extensive and systematic review of the literature about ratio and 
proportion in the years 2002-2003, it also became clear that primary school teaching 
should include activities for comparison divisions and for contrasting the concepts of 
difference (comparing with subtraction) and ratio (comparing with division). 
However, new difficulties have emerged with the inclusion of a third situation 
(comparison) in all the programme activities related to division. For example, at the 
end of activity (3) after being extended to include a comparison situation, I explain: 

Anne has 21 sweets and Beth has 3 sweets. Anne has 7 times more sweets than Beth. 
Beth has 7 times less sweets than Anne. When we compare 21 and 3 with subtraction we 
use the word “difference”. We say that the difference between 21 and 3 is 18. There is 
also a special word for comparing quantities with division. Try to remember [Time is 
given. Usually nobody answers the word “ratio”]. 

Some STs attempt different words and in some classes one ST finally answers “ratio” 
while some demonstrate surprise in one way or another. In the second semester of 
2009 nobody could relate division to ratio and one ST said “that was really 
challenging! I had no idea about that. Ratio was a mystery for me”. I reassured the 
class that although I could relate well ratio to division, I could not clearly relate 
division to ratio (i.e., the opposite relationship) before the literature review in 2003. 
In the third and subsequent semesters new tests with more convergent questions were 
included as another form of diagnosis and assessment. In the year of 2004, a new 
question was included asking STs to represent 24 ÷ 8 with pictures and with words. 
This question is similar to the ones in activity (5) after the inclusion of comparison 
situations. Some STs, especially those who had a very good attendance record, could 
circle groups of dots in different ways in order to distinguish the three division 
situations (Figures 1 to 3). They could also write three correct comparison questions 
using the words “times more”, “times less”, and “ratio”. However, other STs 
continued to present difficulties in distinguishing and in representing the three 
division situations even in the case of small numbers. When illustrating a comparison 
with division (as in Figure 3), they did not circle 3 groups with 8 dots in order to 
show that a group of 24 dots is 3 times more than a group of 8 dots. They simply 
drew a line separating the two quantities being compared. 
Every semester one or more STs usually ask why the results of comparisons (such as 
the one in Figure 3) were “7 times more” (i.e., “ratio times more”, abbreviated as 
[rx>]) instead of “6 times more” (i.e., “ratio minus 1 times more”, abbreviated as [r-
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1x>]). They believed the word “more” only implied the extra dots in the larger 
quantity and it did not include the first three dots that were in 1 to 1 correspondence 
to the smaller quantity. That is, they focused their attention on the number of groups 
in the difference between the dots as it is done when comparing with subtraction. My 
usual explanation is: 

I draw two quantities as in Figure 4, circle the sweets (dots) into groups with 3 sweets, 
and use my hand to separate the first group of sweets in Anne’s larger quantity from the 
other 6 groups. Then I say “Anne has 1 time or the same as Beth”. Next I separate the 
first two groups of sweets from the other 5 groups and say “Anne has 2 times more than 
Beth or the double”. Then I continue to separate the groups and to ask the STs to 
verbalise the next comparisons until finishing all the groups in Anne’s quantity. 

 

 

 

During the classroom activities in the second semester of year 2009, one ST 
commented that she knew “that the correct answer was 7 times more instead of 6 
times more, but her brain still did not agree with it”. It was difficult for her and other 
STs to overcome this misconception as their thinking seemed to be dominated by 
subtraction comparisons. I decided to perform another systematic research in some 
primary and secondary school textbooks. Eight collections and a total 32 primary 
school textbooks (grades 1 to 4, 7-10 year olds) were analysed. There were only two 
comparison division problems in just one of these textbooks. Even in the chapters 
about ratio in 27 secondary school textbooks for grade 6 (12 year olds), all the 
questions asking to compare two quantities A and B were of the type: “What is the 
ratio of A to B?” or “What is the ratio of B to A?”. A few books presented in the 
initial explanations about ratio the words “A is the double of B”, “A is the treble of 
B”, “A is six times B”, “A is 1½ B” and “a scale informs us how many times the real 
object was reduced in the map”. However, I could not find any problems asking 
questions such as: “How many times is A bigger than B?” or “is B smaller than A?”. 
At the end of the second semester of 2009, I decided to administer a new diagnostic 
test in order to probe how prevalent this misconception was among STs. The test 
consisted of 8 similar questions with the following division comparisons: (1) 2 times 
less, abbreviated as [2x<], (2) 4 times more [4x>], (3) 5 times less [5x<], (4) 3 times 
more [3x>], (5) 5 times more [5x>], (6) 2 times more [2x>], (7) 3 times less [3x<], 
and (8) 4 times less [4x<]. The question wording was: “Write how many times more 
or how many times less Anne has in relation to Beth:” The pictures in the test items 
were similar to the one presented in Figure 4 for the comparison “7 times more” 
(abbreviated as [7x>]). In the inverse comparisons such as “7 times less” (“ratio times 
less”, abbreviated as [rx<])”, the larger quantity was drawn below the smaller 
quantity. The categories of responses found are presented in the first and second 
columns of Table 1. 

 Anne has …….……. than Beth. 
Bethà 

Anneà 

Figure 4 
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Table 1: Frequency of responses to questions 1 to 8. 
Abbreviations used in table 1: Letters and other symbols are used to abbreviate certain 
words in table 1: ratio (r), difference (d), times (x), more (>), less (<), and inverse ratio (1/r). 
[r x >] means “ratio times more” and [r x <] means “ratio times less”. 
[1/r] means the fraction “1/r of”, e.g., a comparison such as “A has 1/5 of B”. 
[r-1 x >] means “ratio-1 times more” and [r-1 x <] means “ratio-1 times less”. 
[d x >] means “difference times more” and [d x <] means “difference times less”. 

  Frequency of responses per question: 
 Question number à  (1) (2) (3) (4) (5) (6) (7) (8) 
Cate Ratio Anne to Beth à  6:12 12:3 2:10 15:5 15:3 10:5 4:12 3:12 
-gory Type of response â  [2x<] [4x>] [5x<] [3x>] [5x>] [2x>] [3x<] [4x<] 

A [r x >] or [r x <] 24 26 27 27 27 27 27 27 
B double, treble, … or [1/r] 2 1 1 1 1 2 1 1 
C both categories A and B 1 2 1 2 2 2 1 1 
D [r x a >] or [r x a <] 2 1 1 1 1 1 1 0 
E [r−1 x >] or [r−1 x <] 9 10 11 10 10 7 10 10 
F [r−1 x a >] or [r−1 x a <] 2 4 3 4 4 3 3 3 
G [r a >] or [r a <] 2 1 1 1 1 2 1 1 
H [d x >] or [d x <] 4 3 4 3 3 3 4 4 
I [d x a >] or [d x a <] 1 1 1 1 1 1 1 1 
J Subtraction of fractions 3 2 2 3 2 3 2 2 
K Other responses 3 2 1 0 1 2 2 3 

D to I Sum of categories D to I 20 20 21 20 20 17 20 19 
A total of 53 STs answered the test. Categories A, B, and C were correct division 
comparisons. It should be noted that in Portuguese there are words such as double 
[2x>], treble [3x>] and quadruple [4x>] up to “10 times more” (see category B in the 
first column of Table 1). Only a few STs wrote comparisons such as “Anne has half 
(or ½) of Beth” (in question 1, category B) or “Anne has the quadruple of Beth” (in 
question 2, category B). Category J was mathematically corrected as in Portuguese it 
meant a subtraction comparison using fractions such as “6 is 1/2 less than 12” (for 
ratio 6:12), but it was not what the question was asking for. 
Apart from categories E and H, another indication that some STs were mixing 
subtraction with division comparisons was the existence of responses with an “a” 
before the words “more” and “less” in categories D, F, G, and I. In Portuguese, 
subtraction comparisons are written with an “a” before these words: “18 a mais” 
(translation: “18 more”) and “18 a menos” (translation: “18 less”). For some STs the 
wrong comparisons related to subtraction persisted even after the end of the semester. 

SOME CONCLUSIONS 
Ratio proved to be a neglected division situation in most school textbooks and in the 
literature about division. STs’ previous experiences with comparison divisions were 
scarce. The persistent use of comparisons related to subtraction by adults, who will 
soon become primary school teachers, seems to be more connected to lack of 
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familiarity with multiplicative strategies than to be the result of immaturity. 
Instructional constraints were, in part, responsible for STs’ difficulties in relating 
division to ratio. Like STs, teacher educators’ mathematical and pedagogical 
knowledge is still under construction and also presents weaknesses that are 
transferred to their teaching. Revising the literature previously mentioned, which 
explicitly relates division to comparison situations, was essential in helping me 
connect these concepts and make the necessary changes in the programme. Teachers 
need more time to familiarise themselves with measurement and comparison 
divisions. They also need to acquire the pedagogical knowledge to start teaching 
comparison divisions to young children. Therefore, it is recommended that primary 
school teaching and teacher education programmes place a greater time and attention 
in distinguishing the three division situations mentioned in Figures 1 to 3. 
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The paper presents a cognitive model that describes reasoning encompassing formal 
logic and semiotics, according to two dimensions: formulation and formality. 
Formulation addresses students’ awareness of formal logic rules, referring to both 
the degree of certainty and Radford’s layers of generality. Formality addresses the 
appropriate use of logic rules. Combining these dimensions, we derive, characterize 
and discuss five possible behaviours. Evidence is provided by the analysis of written 
protocols from an experimentation with undergraduate students.     
INTRODUCTION AND BACKGROUND 
Reasoning plays a crucial role in human activities that are specifically cognitive (such 
as: learning, development, knowledge processing), but also in those generically 
creative and social. Amongst reasoning activities, let us consider for example 
inferences: they allow us to get new information from previous one. Inferences, in 
fact, help human beings to access knowledge (whether conscious or implicit), and 
apply it to specific (new) situations. Mathematical formal logic, in any one of its 
formulations, cannot represent a full formalization of all kinds of reasoning activity. 
Several researches from the beginning of the 20th century attempt to link reasoning to 
studies in the field of formal logic (for a review see Casadio, 2006; Toulmin, 1958), 
but the relationship between reasoning, as an everyday activity, and formal logic in 
mathematics is still rather complex: according to Dapueto and Ferrari (1988)  

the contexts in which the “daily” reasoning develops and those in which the deductions 
are built, which (also) mathematical logic deals with, are completely different, with 
different criteria of acceptability and coherence. (p. 779) 

It is possible, however, that some forms of ‘daily’ reasoning enter also in formal logic 
tasks. For this reason, we present a cognitive model for describing students’ 
reasoning in typical formal logic tasks, such as syllogisms and if-then statements. 
Formal logic itself does not only provide a context in which individuals perform 
tasks, but it can provide tools for analysing such tasks. Indeed, formal logic can be 
regarded as a tool for studying reasoning processes, when considered in a wider way 
as the expression of some aspects concerning language. Historically, the birth of 
modern logic and its development are characterized by the change in the role of 
language in mathematics from being only a communication tool to becoming also a 
manipulation one. In this paper, formal logic lenses are provided by Reid’s model 
(2002). Since formal logic alone is not enough, we take into account also other 
Mathematics Education theoretical lenses (Piattelli-Palmarini, 1995; Radford, 2001). 
All these lenses enter our model as different dimensions and our aim is to study how 
they are intertwined in framing students’ logical reasoning. We do not consider the 
2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 33-40. Ankara, Turkey: PME.
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context as a variable in this study, even if we are aware of its importance in 
mathematics teaching/learning processes. 
According to Radford’s cultural-semiotic approach that considers cognition as a 
reflexive mediated activity, mathematical concepts are objectified at different layers 
of generality depending on the semiotic means that mediate activity. Radford (2001) 
identifies three increasing levels of generality: a factual generalization, when the 
objectification of the general scheme takes the form of a perceptual/sensorimotor 
semiosis; a contextual generalization when the general scheme is objectified by more 
abstract semiotic means that, however, bear the spatial and temporal origin of the 
situation they come from; a symbolic generalization when the general scheme is 
objectified by symbolic language that does not allow any relation with the spatial-
temporal dimension. The learner lives a desubjectification of meaning, namely a 
rupture with his spatial-temporal and sensorimotor experience. 
Reid (2002) describes mathematical reasoning across five dimensions. Among them, 
“formulation refers to the degree of awareness the reasoner has of his own reasoning” 
(p. 105). Semiotics helps characterizing formulation. According to Radford (2001), a 
high degree of awareness can be identified with a symbolic generalization, where the 
cultural logical discourse is objectified by the students at an interpersonal level. On 
the counterpart, we claim that when there is an unaware inconsistency between the 
meaning objectified by the individual and the cultural meaning of logical activity, 
personal opinions and misconceptions play a crucial role in guiding learner’s logical 
reasonings. For instance, several studies show that both children and adults make 
errors because they infer not only on the basis of the premises, but either introducing 
other premises or referring to the common sense. The unaware inconsistency can 
occur both when students use a proper formalism, and when they do not. For this 
reason, another dimension from Reid’s model is taken into account: formality. Before 
talking about it, let us further characterize formulation. Both when there is a good 
level of awareness and in the opposite case of unaware inconsistency, we claim that 
the individual tends to feel sure of his resoning. In the first case, such a certainty is 
provided by the formal logic rules: following them correctly, in fact, leads the 
reasoner to arrive at a conclusion that is almost always correct and formally 
grounded. In the second case, according to Piattelli-Palmarini (1995), a student who 
is leaded by misconceptions and personal opinions tends to be sure of his reasoning, 
since they seem to be very reliable.  
Let us suppose that good awareness and unaware inconsistency represent two poles. 
We argue that there is also something in between these poles: in this case, students at 
the same time have a certain degree of awareness that they cannot use only their 
personal opinions, and they suspect that they do not have enough theoretical tools for 
reasoning within the formal logic context. It can be considered as a contextual 
generalization of logical discourse where the individual’s experience and opinions are 
relative to a particular context (Radford, 2001). Indecision and lack of responses are 
expected in this kind of behaviour. We claim that this situation is didactically the 
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most interesting, since the learner is in Vygotskij’s (1978) Zone of Proximal 
Development (ZPD), where teaching/learning processes are effective. In our case, 
ZPD is triggered by a “cognitive conflict” caused by the disagreement between an 
intuitive model and the mathematical model (Fischbein, 1998). Due to the conflict, 
the individual is induced to reorganize the previous conceptions for integrating new 
information coming from the new situation (D’Amore, 1999; Perret-Clermont, 1979). 
The momentary incorrect conceptions, waiting for a more elaborate cognitive 
arrangement, are a transitory cognitive moment from a naive conception  to a more 
elaborate one and closer to the (logically) correct conception.  
We now consider the aforementioned dimension of formality (Reid, 2002): it “refers 
to the degree to which the expression of the reasoning conforms to the requirements 
of mathematical style” (p. 105). Combining together formality and the two poles of 
formulation, there are four possible distinct cases: (1) good degree of awareness and 
proper use of formal logical tools; (2) good degree of awareness, but incapability in 
using logical tools; (3) unaware inconsistency and no use of formal logic; (4) 
unaware inconsistency, but proper use of formal logical tools. Regarding case (4), is 
it possible, however, to use formal logical rules when misconceptions/personal 
opinions enter in reasoning? Some researchers, in fact, claim that in everyday 
thinking people often use logics that are different from the formal one (Ayalon, 
2008). In cognitive psychology, Wason (1966) and Johnson-Laird (1983) point out 
adults’ difficulties in doing also simple inferences. According to Johnson-Laird’s 
theory, common reasoning is not based on formal rules, which are independent from 
the content, but on construction and manipulation of mental models or 
representations (Girotto & Legrenzi, 1999). Our study highlights cases of students 
resorting both to formal logical rules and to misconceptions/personal opinions. 
THE COGNITIVE MODEL 
Is it possible to describe, and to what extent, reasoning according to the degree of 
awareness and the accordance with formal logic rules? Is it possible to further 
characterize it though the means provided by the cultural-semiotic approach, and in 
terms of certainty? These are the research questions that inform our study. The aim of 
the paper is the construction of a model for describing students’ logical reasoning, 
according to the theoretical background we presented and discussed in the previous 
section. The interplay of formulation and formality, along with the role played by 
semiotics and the reasoner degree of certainty, allows identifying five behaviours.  
We address the first one as R and it is the case of the reasoner that is aware of his 
reasoning according to formal logic rules (formulation), and also he properly uses 
them (formality). Moreover, the reasoner is expected sure of his statements. The 
second behavior is called r: there is the same degree of awareness as in the first one 
(as well as the same expected certainty), but reasoning has formal imperfections. On 
the counterpart, when there is an unaware inconsistency between the meaning 
objectified by the individual and the cultural meaning of logical activity, the reasoner 
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uses misconceptions/personal opinions (formulation) and two behaviours are 
possible. We refer to M when almost none formal logical rule is employed. When we 
observe some use of formal logical rules, we refer to m. According to Piattelli-
Palmarini (1995), the reasoner is certain of his statements in both M and m 
behaviours. The last behaviour, which corresponds to the intermediate degree of 
awareness, is called I: plausible interpretation. I is characterized by containing some 
dubitative elements (such as conditional verbs). As a consequence, it seems that 
students perform a reasoning that can be open for being discussed/changed. 
We now seek experimental evidence for the relationship between Reid’s formulation 
and formality, their semiotic characterization, and the degree of certainty, according 
to the five aforementioned behaviours. 
METHODOLOGY 
A test was administered to 111 undergraduate students (86 in November 2009, 25 in 
November 2010), with a weak mathematical background, before the beginning of a 
course in logic. Hence, answers were not influenced by the teaching of logical topics. 
Students carried out tasks about reasoning. The analysis in this paper refers only to an 
example of syllogism (task 1), and to one of if-then task (task 4). We choose these 
tasks because the syllogism is the most classical kind of reasoning scheme and the if-
then statement represents one of typical kind of human reasoning. Furthermore, 
regarding the if-then statements, formal fallacies are very frequent: there is a strong 
tendency of people to interpret “if-then” statements as “if-and-only-if” statements 
(Ayalon, 2008; Leron, 2004). In the case of task 4, for example, we predict that a 
consistent percentage of students would mark the alternative E as the correct one: it 
would have been true, in fact, if the statement had been an “if-and-only-if” one.  
As shown in figure 1, students were requested: (1) to mark one answer, (2) to say 
how much they feel certain of their response, and (3) to provide a written justification 
of their answer. On the basis of the written justifications, we make inferences about 
the reasoning process students activated in their solving activities. According to our 
theoretical framework, in presenting our results we now provide a detailed analysis of 
five protocols, respectively classified as R, r, M, m or I.  
 
 
 
 
 
 

 
  

Figure 1: tasks 1 (syllogism) and 4 (if-then). 
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EXPERIMENTAL EVIDENCE 
In figure 2 we report two histograms with the relative frequencies of selection of each 
alternative of tasks 1 and 4. We observe that almost no one omits the answer, and in 
both cases there is one alternative that has been chosen by a high percentage of 
respondents (together with the correct answer). In task 4 the choice of alternative E 
highlights the typical misconception students have, considering the if-then tasks as if-
and-only-if ones. 

 

Figure 2: the relative frequencies of selection of each answer. 
In figure 3, three answers to task 1 are shown. The English translation is provided in 
the analysis carried out below. 
Let us firstly look at Anna’s protocol (figure 3). In providing her justification, she 
draws a universe set for “human” and inside it she draws three sets for “ingenuous”, 
“adult”, and “bad”. She matches this graphical representation with the sentence 
“Certainly some adult isn’t ingenuous because he is a bad person and the bad 
persons aren’t ingenuous”. She answers correctly to task 1. The justification 
provided by Anna was classified as R: her reasoning conforms to the requirements of 
mathematical style, referring both to formulation and formality. From a semiotic 
point of view, she uses a symbolism that is general and desubjectified at an 
interpersonal level. According to our expectations, Anna is quite sure of her answer, 
since following a correct logical reasoning provides a good level of certainty. 

 
Figure 3: three answers given to task 1. 



2-38 PME 35 - 2011

Andrà, Coppola, Pacelli 

 

1- 6 PME 35 - 2011 

On the counterpart, Bea answers wrongly to task 1. Looking at figure 3, she makes a 
partition of the universe in I (ingenuous persons) and C (bad persons). Moreover, she 
puts the set A (adults) inside the set C, revealing also an incorrect interpretation of 
the existential quantifier “some” (‘qc’ in the protocol is an Italian abbreviation for 
‘some’). She writes also: “Yes, because the question speaks only about the first 
element”. The justification is classified as m, because Bea fails in interpreting and 
representing the statements according to formulation, but we observe the use of 
formal logic rules according to formality. Bea’s mistakes involve both the 
interpretation of the question (‘only the first element’ has been interpreted as ‘only 
the first sentence’, and the fact the only ‘ingenuous’ is stated in the conclusion may 
have lead her to think that only the first sentence is involved), and the representation 
through Venn diagrams: she represents a partition in C and I, with A included in C. In 
Bea’s case, there is some semiotic manipulation, but misconceptions have a central 
role in guiding her reasoning. According to our expectations, she asserts to be sure of 
her (incorrect) answer: when leaded by misconceptions, students feel to be sure. 
Let us now look at Carlo’s protocol (figure 3). In his justification he uses some 
dubitative elements. He writes: “I tried to draw some circles, making some sets, but I 
don’t know”. Mentioned circles and sets are not present in the protocol. We classified 
it as I. We infer that maybe there is a tension between at least two representations in 
Carlo’s mind, hence he is in doubt about his answer. Moreover, Carlo says to be not 
sure of it, according to our expectations.  
In figure 4, two answers to task 4 (an example of if-then task) are shown. 

 

Figure 4: two answers given to task 4. 
Daniela answers correctly to task 4 and she represents a set for “dog barks” and a set 
for “dog bites”. There is no intersection between the two sets. This is accompanied by 
written explanation in a quite formalized daily language: “the biting dog doesn’t 
belong to the barking dogs’ set, because all those which bark don’t bite.” Daniela’s 
justification is classified as r: according to formulation, in fact, her reasoning is 
correct, but there is some mistake in her representations. The barking dogs’ set is not 
explicitly drawn into the not biting dogs’ one. She asserts to be quite sure of her 
(correct) answer. 
Elvira provides an incorrect answer: E. In her explanation, Elvira writes: “alternative 
E states the same thing of the assertion in the question”. This is a typical 
misconception about the “if-then” statements: ‘if-then’ is, in fact, regarded as an if-
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and-only-if statement. This leads us to classify it as M. According to our 
expectations, Elvira declares to be very sure of the answer. 

DISCUSSION AND CONCLUDING REMARKS 
In this paper we carried out an analysis of reasoning that pivoted around formal logic. 
We provided a model for reasoning that, along with formal logic, considers the role 
played by semiotics and the degree of certainty. The interplay of formulation and 
formality allows identifying five reasoning behaviours. It would be interesting to 
investigate why the use of (proper) logical formalisms does not ensure overcoming 
the hindrance of misconceptions and personal opinions, as in the m behaviour. Data 
prove the existence of the aforementioned reasoning behaviours and the degree of 
certainty predicted for each of them. This has been also confirmed by a first 
quantitative analysis that has not been reported in this paper: both when students are 
aware of their reasoning, and when misconceptions/personal interpretations play a 
central role, the majority of them declare to be sure of the answer. Even if we 
observed few students performing I, the majority declares to be unsure of the answer. 
In order to corroborate and strengthen our model, it is necessary to both go beyond 
Radford’s layers of generality and analyse students’ use and integration of different 
semiotic registers, and go beyond the mere use of syllogisms and if-then tasks, 
investigating on the connection between argumentative and proving processes, in 
order to contribute to the international debate regarding the relationship between 
argumentation and proof.  
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The activities with the Mathematical Machines can promote interesting and 
important processes of generating conjectures, argumentations, and mathematical 
proofs.  In this paper, we analyse argumentations produced by the students in 
exploring pantographs for geometrical transformations, showing how the 
argumentations refer to some specific elements of the pantographs (the structure, the 
movement, the drawing traced by the machine) and to different components (figural 
and conceptual) of the geometrical figures representing the linkages. 

INTRODUCTION 
The Laboratory of Mathematical Machines (MMLab), at the Department of 
Mathematics of University of Modena and Reggio Emilia (Italy), contains a 
collection of instruments, called Mathematical Machines, which have been 
reconstructed with a didactical aim, according to the design described in historical 
texts. In this paper, we refer to the geometrical machine as a tool that forces a point to 
follow a trajectory or to be transformed according to a given law (Bartolini Bussi & 
Maschietto, 2008). 
The MMLab organizes activities with the Mathematical Machines for secondary 
school students, groups of university students, pre-service and practicing school 
teachers (Maschietto & Martignone, 2008; Bartolini Bussi & Maschietto, 2008). The 
design and the development of these activities are carried out by the MMLab research 
group with the aim to provide a suitable learning context in which to activate 
important processes, such as the construction of meanings and the construction of 
proof (Bartolini Bussi, 2000).  
Our research focuses on machines that establish a correspondence between points of 
the plan regions, like reflection, central symmetry, translation, rotation, and 
homothety. These transformations are physically performed through two leads fixed 
in two plotter points of an articulated system composed by some rigid rods and some 
pivots (see fig. 1 and 2). These machines, named pantographs or linkages, incorporate 
some mathematical properties in such a way as to allow the implementation of a 
geometrical transformation.  
The study presented in this paper is part of a wider research about the didactical 
potentiality of the machines as tools for teaching and learning mathematical proof. 
Our goal is to investigate the cognitive processes involved in the proof construction 
in activities with the geometrical machines (some first results are in Martignone & 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 41-48. Ankara, Turkey: PME.
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Antonini, 2009a, 2009b): in order to do that, we study the processes that can lead to 
the construction of a proof or that can be an obstacle to this construction. In 
particular, we deal with the analysis of argumentations proposed by subjects to 
support their conjectures.  

  

Fig. 1: An image of pantograph for 
reflection and its products. Two 
opposite vertices (A and B) of a 
rhombus, composed of four equal rods 
pivoted together, can move in a groove 
(a straight path r). The other opposite 
vertices (P and Q) are corresponding in 
the reflection of axis r. 

Fig. 2: An image of Scheiner’s 
pantograph and its products. The linkage 
rods form a parallelogram AQCB. The 
point O is pivoted on the plane. It is 
possible to prove that P, Q and O are on 
the same line and that P and Q are 
corresponding in the homothety of 
centre O and ratio BO/AO.   

THEORETICAL FRAMEWORK 
The study presented here focus on argumentation in geometry context. In the 
following sections we will expose some theoretical considerations on argumentation 
and proof and on the geometrical figures.  
Argumentation and proof 
Many papers have been written on the relationships between argumentation and proof 
(Mariotti 2006). In general, a mathematical proof of a statement consists of a logical 
sequence of propositions that states the validity of the statement. Differently, an 
argumentation consists of a rhetoric means that have the goal to convince somebody 
of the truth or the falsehood of a statement. 
Some authors focus on the differences between argumentation and proof (see, for 
example, Duval, 1992-93). On the other hand, focussing on the processes of 
argumentation and proof generation, the theoretical framework of Cognitive Unity 
(Garuti et al., 1996; Mariotti et al., 1997; Garuti et al., 1998; Pedemonte, 2002; 
Boero, 2007), without forgetting the differences, underlines the analogies between 
them. In particular, these studies suggest that, in open-ended problems (where 
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students are asked to produce a conjecture, to generate an argumentation and a proof 
that support the conjecture), a continuity between the argumentation and the 
subsequent mathematical proof may or may not occur. For these reasons, it is 
important to identify the factors that can favour continuities and the elements that can 
lead to a gap between argumentation and proof.   
One goal of our research project is to investigate the continuity between 
argumentation and proof during the machine exploration that led to the identification 
of the mathematical law made by the machine. In this paper, we focus on the 
argumentations, in the particular situation in which students are involved with 
pantographs or linkages for geometrical transformations of the plane.   
We underline that a mathematical proof is necessarily linked to a theory, a theoretical 
framework within which the proof makes sense (see Mariotti et al., 1997), while an 
argumentation in geometry can also concern some figural aspects (as magnitude, 
shape, etc.) without reference to a theory. In order to take into account these aspects 
we refer to the theoretical framework of figural concepts. 
The theory of figural concepts 
The theory of figural concepts (Fischbein, 1993) provides us with an efficient 
theoretical tool, suitable to analyse cognitive processes in geometrical problem 
solving. According to Fischbein (1993), mental entities involved in geometrical 
reasoning cannot be considered either pure concept or mere image. Geometrical 
figures are mental entities that simultaneously possess both conceptual properties (as 
general propositions deduced in the Euclidean theory) and figural properties (as 
shape, position, magnitude). Fischbein called them figural concepts. A productive 
reasoning, as an efficient process of proof generation, can be generally explained by 
the fact that the figural and the conceptual aspect blend in a figural concepts (see, for 
example Mariotti, 1993; Mariotti & Fischbein, 1997). Our analysis of the 
argumentation will take into account the distinction and the duality between the 
components of a figural concept. 

METHODOLOGY 
The goal of our research is to study the argumentation generated by subjects that are 
asked to discover what the machine does and to prove it. This is an exploratory study 
and in this first step of the research we needed to analyse rich argumentation 
activities linked to the particular situation in which a mathematical machine are the 
object that has to be explored. For this reason, we interviewed subjects who were 
familiar with geometry and with problem-solving (three pre-service teachers, two 
university students and one young researcher in mathematics) but that have not seen 
these machines before. The task was identifying the geometrical transformation and 
to prove that the machine performed that transformation. Data were collected through 
clinical interviews that were videotaped. Subjects were asked to express their 
thinking process aloud. The analysis of the interviews is based both on the transcripts 
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and on the manipulative activities on the pantographs. In this paper we report some 
results about the explorations of a linkage for reflection (fig. 1) and of a pantograph 
for homothety (Scheiner’s Pantograph, see fig. 2). 

ARGUMENTATION IN EXPLORING THE GEOMETRICAL MACHINES 
The argumentations justifying that the machine implements a particular geometrical 
transformation are closely related to three elements: the drawings traced by the 
machine, the structure of the machine (as a figural or a conceptual component), and 
the machine movement. Notice that the same subject could propose more than one 
type of argumentation. This is common in task requiring the production of a 
conjecture and a proof, when one arguments with different goals: producing, testing, 
supporting, and proving a conjecture. 
Argumentation that refers to the drawings traced by the machine 
These argumentations refer to the shape of the drawings traced by the machine and to 
their comparison. There are not theoretical references in this type of argumentation. 
The machine is used to perform effectively the transformation and the argumentation 
is based on the products of the transformation. We notice that the drawings can be 
traced by the leads of the machine but there is also the possibility that the subject sees 
the drawings only through the movement of the plotter points.  
For example, some of the pre-service teachers, exploring the Scheiner’s pantograph, 
state that the machine performs a homothety because one of the two drawings traced 
by the machine appears as an enlargement of the other one.  
Argumentation that refers to the structure of the machine 
These argumentations refer to one or more elements of the static structure of the 
machine, that is the structure of the machine when it is stopped in some position. We 
give two examples. In the first, the subject refers to the figural aspect of the structure, 
in the second to the conceptual aspect of the geometrical figure represented by the 
articulated system. 
Example 1. Lucia, a pre-service teacher, exploring the Scheiner’s pantograph (see fig. 
2), conjectures that the transformation is a homothety and she justifies her statement 
saying that “it has these two pivots [she points at A and B], and this rod [BP] is 
longer than this [AQ]”. This, for Lucia, explains the fact that the drawing made by 
the lead put in the point P is an enlargement of the drawing traced by the lead put in 
the point Q. According to the theory of figural concepts, the argumentation refers to 
the figural aspect (a qualitative relationship between the length of BP and the length 
of AQ) of the geometric figure represented by the articulated system, without any 
reference to a mathematical theory. In a following section we will present a deeper 
analysis of another example. 
Example 2. Anna, a pre-service teacher, exploring the linkage for reflection (fig. 1), 
justifies that the transformation is a reflection showing that the two plotter points (P 
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and Q) are on the segment whose groove is the perpendicular bisector. Then Anna 
refers to some conceptual properties of rhombus to support this fact. According to the 
theory of figural concepts, the argumentation refers to the conceptual aspects of the 
geometric figure represented by the articulated system. Another example will be 
shown in a following section.  
Argumentation that refers to the movement of the machine 
These argumentations refer to some dynamic properties of the articulated system, i.e. 
to some characteristics of its movement. 
Example. In the transcript we will analyse below, Carlo proposes many 
argumentations to support his conjecture about the linkage for the reflection (fig. 1). 
One of these argumentations refers to the movement of the machine, in particular to 
the fact that if one plotter point approaches the reflection axis, then also the other 
plotter point approaches that (see below).  

ANALYSIS OF A TRANSCRIPT 
In this section, we analyse a transcript of an interview in which the subject proposes 
more than one argumentation to support his conjecture about the transformation made 
by the machine: one argumentation referring to the figural aspect of the structure, one 
referring to the movement and one referring to the conceptual aspect of the 
articulated system. Only after these argumentations he generates a mathematical 
proof. Carlo is a young researcher in mathematics and this is his first experience with 
a mathematical machine. He is exploring the pantograph for the reflection.  

Carlo:  […] I see a line in the centre and I think to a symmetry (he makes a 
gesture opening his hands in a symmetric way, like he is opening a book). 
I have thought to a symmetry… reflection, because there is this line, it 
could not be, but… it’s all quite… so symmetric that… (he makes a 
rhombus with his hands) 

Carlo considers the figural aspects of the machine structure. It is the shape, the 
symmetry, underlined by the groove in the centre, that starts to convince Carlo that 
the transformation is the reflection (argumentation referring to the figural aspect of 
the structure of the machine).  

Carlo: […] well, so, then I remind that this will be the transformation […] 
symmetry… as it is called... reflection… I had seen it immediately for the 
shape. 

Carlo recalls the previous argumentation and the fact that it refers to the figural 
aspect of the structure of the articulated system.  

Carlo: Because these are rigid (he points at the rods and then he starts to move 
the articulated system) then probably there can be some properties linked 
to the… (he stops the movement of the machine)… rhombus. 
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The observation of the structure of the articulated system (“these are rigid”) leads 
Carlo to anticipate that there could be some mathematical properties related to the 
figure now identified as rhombus. These properties can justify that the machine 
implements the reflection. There is here an important transition, anticipated and not 
yet implemented, from an argumentation linked to the figural aspects of the machine 
structure to an argumentation related to the conceptual aspect of a geometrical figure 
(rhombus) that represents the articulated system. For the moment it is only an 
anticipation that will lead later to the construction of a mathematical proof. 

Carlo: Anyway, now we will see… 

Carlo postpones the generation of the proof: what he has said about the properties of 
the rhombus remains only an anticipation. As we can see below, it seems that he feels 
the need of other argumentations before constructing the proof. 

Carlo: And also the movement (he starts again to move the machine with two 
hands), the movement seems to me quite significant for this: if I approach 
the axis with this point [P], also the other point [Q] approaches it, both 
perpendicularly ... the fact that there is a movement also in this direction 
(he moves the articulated system by sliding the pins, the points A and B in 
the fig. 1, in the groove)… 

This argumentation is linked to a property of the machine movement, showing a 
dynamic relationship between the two corresponding points (P and Q) of the 
transformation; for Carlo it supports again the fact that this is a reflection 
(argumentation referring to the movement of the machine). 

Carlo:  I do not need the leads. 

He does not feel the need to use the leads, he does not consider important to have an 
argument based on the tracks. The different argumentations produced have convinced 
Carlo but probably the use of the leads is not taken into consideration also because he 
is aware that they would not give any new contribution to the knowledge of the 
machine functioning and then to the construction of a proof.  

Carlo: Then, why it works ... so if they all have the same length, we have a 
figure... this is a geometric figure with four equal sides ... where this (he 
follows the groove with his finger) is a diagonal, therefore it's a rhombus 
... for the rhombus properties the two diagonals are perpendicular, this 
tells me that this diagonal (he tracks with his finger the diagonal PQ) is 
perpendicular and also they (the two diagonals) bisect each other. 

Here, Carlo proposes an argumentation based on the geometrical properties of the 
articulated system (argumentation referring to the conceptual aspect of the structure 
of the machine).  
We observe that Carlo has no difficulties in the identification of the transformation. 
Nevertheless he needs to look for additional argumentations before constructing the 
proof. After a first argumentation based on the figural components of the structure of 
the machines, he proposes an argumentation referring to the relationships between the 
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movement of the two points involved in the transformation. Finally he comes back to 
the structure of the articulated systems but this time he considers the conceptual 
components, supporting his statement in the geometrical theory.  
We think that the different argumentations proposed by Carlo have the goal of 
strengthening the conviction that the conjecture is true, but also to offer a more 
complete argumentation that can take into account different perspectives about the 
machine and its use. It is interesting to notice that, differently from students’ 
processes, the only type of argumentation not generated by Carlo is that linked to the 
drawings traced by the machine. This type of argumentation is very useful to generate 
a conjecture and to test it, and for this reason it is very common among students with 
minor experience. Nevertheless, as Carlo feels, it could not give contributions neither 
to the explanation of the movement nor to the proof construction. 

CONCLUSIONS 
The subjects, as we have shown in the Carlo’s protocol, produced different types of 
argumentations, even during the same exploration phase. It is important to underline 
that mathematical culture, but also familiarity with the machines, seem to promote 
the emergence and the development of different types of argumentations. In fact, we 
have noticed that the experts produce several argumentations and they refer to the 
drawings traced by the machine only when they have difficulties in identifying the 
mathematical law incorporated in the machine; differently, the argumentations 
referring to drawings are very common in students’ activities.  
The proposed analysis of the machines explorations paves the way for the generation 
of hypotheses on the transition from argumentation to proof. In particular, we 
hypothesize that, in the case of argumentations referring to the conceptual part of the 
machine structure, there can be cognitive unity between argumentation and proof, in 
other cases it seems plausible to attend to cases of cognitive break. A special case 
seems to be the argumentations based on movement, because they often lead to 
further argumentations that explain the motion through the structure of the articulated 
system, and a cognitive unity may or may not occur. 
Regarding the transition between argumentation and proof, we mention briefly that in 
the interviews we have carried on, the interviewer’s interventions has been relevant 
in guiding the students to the proof construction. In fact, it seems that some 
interventions, aimed to put an emphasis also on argumentations that students do not 
spontaneously generate, can be educationally effective in the activities with machines 
oriented to stimulate and to develop argumentative and proving processes. 
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According to phenomenological perspectives, students must be educated to see and 
focus things in ways coherent with the mathematical notions to learn: for example to 
see the mathematical properties of a function in a graph representing a certain 
situation. We refer to Rota’s account of mathematical thinking as “disclosure”, and 
give a phenomenological interpretation of the cognitive processes related to 
graphical modelling activities, and of the role of the context therein. We contrast the 
classroom discussions of the same task in two different grades (9 and 11), and show 
how the teacher uses suitable didactic techniques to promote different “layers” of 
students’ disclosures of Calculus concepts. 

INTRODUCTION 
It may be a truism in mathematical education that students must learn to “see the 
general in the particular and the particular in the general” (Mason, 1996). Recently 
such an issue has been analyzed from a phenomenological perspective, deepening in 
particular the relationships between perception and theoretical issues, and focusing 
on the role of the teacher in promoting connections between them to foster the 
students’ learning processes. For example, Radford (2010) has pointed out how 
teachers can 

create the possibility for students to perceive things in certain ways and encounter a 
cultural mode of generalizing. This new way of perceiving (…) in certain efficient 
cultural ways entails a transformation of the eye into a sophisticated theoretician organ. 
(ibid., p. 2) 

From another perspective, the so-called embodied cognition (Gallese & Lakoff, 
2005) claims that the whole of cognition can be understood in terms of perceptuo-
motor activity. Nemirovsky (in print) develops a perspective on mathematical 
embodied cognition consistent with a phenomenological understanding of perception 
and body motion.  
In this paper we follow this last approach and use a phenomenological stance, based 
on the elaboration given by the outstanding mathematician and philosopher G. C. 
Rota (1991) to Husserl phenomenology, to analyze how a teacher manages the 
embodied and theoretical issues while teaching the same lesson in two different 
classrooms (one at grade 9, the other at grade 11). A major result of the analysis is 
that many practices of the teacher can be considered examples of what Husserl called 
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Vol. 2, pp. 49-56. Ankara, Turkey: PME.
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a ‘natural attitude’ towards human phenomena (in our case didactical phenomena). 
Such actions appear to be very common in everyday didactical practices of 
mathematics teachers, even if they not necessarily know phenomenology.  

 “SEEING AS”: A PHENOMENOLOGICAL STANDPOINT 
As underlined by Radford (2010, p. 4), students must be taught to “see and recognize 
things according to ‘efficient’ cultural means” and to convert their “eye (and other 
human senses) into a sophisticated intellectual organ”. Namely it is necessary to 
promote a “lengthy process of domestication” (ibid.) of the way they are looking at 
things while learning mathematics. This process is based on the key 
phenomenological assumption, pointed out by Rota, that there is “no such thing as 
true seeing”, but “there is only seeing as” (Rota, 1991, p. 239). Hence, learning 
mathematics requires different modes of focusing: “just like seeing is focusing upon 
some functions which may be present, similarly, remembering, imagining, or 
visualizing are other modes of focusing” (ibid.). Students must be educated to see and 
focus things in the right way, i.e. in ways coherent with the mathematical notions to 
learn: for example to see the mathematical properties of a function from the graph of 
a mountain track, as in Fig. 1. This delicate process is far from being natural: on the 
contrary, to be achieved it requires precise didactical interventions of the teacher.  
Consequently, in this paper we refer to two related didactic techniques from the 
literature: making present absent things to students, and prompting them in order to 
direct their attention. As pointed out by Ferrara (2006) and following Husserl, we can 
distinguish two aspects of making present, namely remembering, that is “making 
present the past (the absent being the past)”; and imagining, that is “making present 
the not yet known (the absent being the not yet known)” (ibid.). As said above, Rota 
considers both remembering and imagining as modes of focusing. 
Focusing attention is at the core of the work by Mason (2008), who describes as 
follows the prompting technique of the teacher: 

One of the classic interventions used by relative experts to enculturate novices into 
particular practices, is often referred to as scaffolding and fading (Seeley Brown et al. 
1989). A teacher repeatedly uses a particular prompt or question with learners, and then 
begins to use less and less direct prompts or meta-questions such as “what question am I 
going to ask you?” or “what did you do last time in this sort of a situation?”, until the 
teacher need only rarely if at all remind learners of the prompt: the prompt has been 
internalised and become a spontaneous action. (Mason, 2008, pp. 41-42, emphasis in the 
original) 

Prompting the students’ attention to the suitable context, possibly enriched with 
recalled or imagined elements, supports the students towards a progressive disclosure 
of the mathematical objects at stake. Disclosure is a Husserlian concept further 
elaborated by Rota (1991). It indicates the process by which people make sense of the 
world and of the situations in context to which they are exposed: 
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The world is primarily a world of sense… Our primary concern is with sense itself, how 
it originates in the world, how it functions in the world. In short how it relevates… The 
basic relationship to the world is…our senses. (ibid., p. 61).  

Disclosure happens when one is able to grasp the functionality of the objects in the 
context, for example those in a didactical situation:  

Sense-making depends ultimately on our own being-in-the-world, on the situation of our 
interacting, our dealing with the contextual situation in the world […]. If you deconstruct 
the notion of an object, what you find is pure functionality, the pure ‘being good for’ of 
that object or something. So that the world, instead of being a world of objects, will 
become a world of functions, of tools. (ibid., pp. 156-159, passim). 

Such functions are related to each other “by a system of references, a network of 
references among them. […] The world is disclosed to us not just as a system of 
functions, but as a network of related functions” (ibid., p. 159).  
Students must be educated by the teacher to make sense of what they perceive/see 
when exposed to a mathematical situation. Generally a situation may evoke different 
contexts and so produce a different sense-making, according to the age and the 
background of the students. For example, the graph in Fig. 1 can evoke a mountain, a 
graph of a symmetric function, a normal distribution, and so on. Of course, such 
different contexts are not isolated but are layered upon each other; these layers can 
generate different levels of disclosure in the flow of time: 

Side-by-side with our realization that sense is purely contextual goes the realization that 
contexts are not units. Contexts themselves are layered upon each other in various ways, 
and to be in a context is not to be in just one context. … Be-ing in a context does not in 
any way presume that such be-ing is be-ing in one context at a time. (ibid., p. 126)  

Because of the role of contexts, disclosure includes two aspects: grasping a concept 
requires both an emotional and an intellectual component, which Rota calls mood and 
grasp; they can be present in different ways according to the context: 

There are phenomena of disclosure where the actual grasp in the context fits the major 
role and the mood component fits the minimal role – for example, our approach to 
solving a mathematical problem. This is not saying that we have to like the problem, but 
the minimum of mood lets us get involved in it. Unless we get really involved in it, we 
get nowhere. This is the mood-wise component of the mathematical problem disclosing 
itself. Without this component of mood, no matter how little, the problem will not be 
disclosed. (ibid., p. 269). 

In our analysis, we will show how the teacher uses the techniques of prompting and 
making present to evocate suitable contexts in order to support the students towards 
the disclosure of some basic Calculus concepts.  
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THE TEACHING EXPERIMENT 
In 2009 researchers from New Zealand, Israel and Italy started an ongoing common 
research project, with the aims of studying the possible benefits of approaching the 
derivative and the primitive concept in a graphic way. 
This paper is based on the teaching experiment carried out in Italy in two classrooms 
(grades 9 and 11) of a scientifically-oriented high school (‘Liceo Scientifico’) with 
the same teacher. In particular, it focuses on the lesson that followed the first task of 
the teaching sequence. The task was composed of two parts: the first asked to 
interpret a height-distance graph (see Fig. 1) and to draw the graph that represents its 
slope. The second part proposed a gradient graph (Fig. 2) and asked to draw a graph 
whose slope was represented by it (inverse problem). 

                

Figure 1: Distance-height graph of track  Figure 2: The gradient graph 
The students solved the task in groups of 3 or 4, and afterwards were involved in a 
classroom discussion on the concepts concerned with the task.  
The lessons were video-taped by a camera, allowing us to consider the semiotic 
productions of the teacher and of the students (speech, inscriptions at the blackboard, 
and gestures). After a first scrutiny, we carried out a semi-structured interview to the 
teacher to ascertain the reasons of his didactical actions. In the next paragraph we 
will illustrate and discuss some results of our overall analysis at the light of the 
phenomenological perspective described above.  

ANALYSIS 
Sabena (2010) has analysed the students’ processes while solving the task, and 
observed interesting cases of semiotic resources (tipically, words and gestures) that 
could refer both to the given graph, and to the corresponding imagined track, like: 

If the slope of the tangent line is zero the track is parallel to the x-axis.  
The graph goes downhill. 

In each sentence there is some element of the track treated as it were part of a 
Cartesian plane (first example), or vice-versa (second example). Since these signs –
intended in the sense of Peirce (1931-1958) – blend the references to two different 
domains, they have been called “blending signs” (Sabena, 2010). Blending can 
happen since the two objects, though being different, share deep relationships of 
iconic character (e.g. the highest point of the graph corresponds to the highest point 
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of the track). This feature is specific of the task proposed to the students, and was 
meant to facilitate their solving activity. On the other hand, it is possible that the 
students who are using blending signs are not (fully) conscious of their double 
referencial nature.  
From a phenomenological perspective, the blending signs can be interpreted as 
markers for possible disclosures towards the meaning of the graph as a mathematical 
modelling tool. Disclosure can develop because the students become aware of the 
double polarity between the objects and their functions, for example the track 
highness as modelled by a function graph. A blending sign reveals this double 
polarity between what Rota (1991) calls “the facticity of the context” and its 
“functionality” (that he calls also “function”) that must be disclosed.  
The task addresses the students’ attention towards the facticity of the context (the 
track in the mountain), but at the same time it is necessary that this facticity “fades 
before the function” (ibid. p. 127), so that the students can achieve the disclosure of 
the graph as a model of the track. Let us analyse how the teacher helps the students to 
accomplish this goal. 
During the two classroom discussions that followed the task, the teacher refers to the 
different contexts of the task, to foster two different layers of disclosure: a factual 
layer (that of the track, prevailing at the 9th grade) and a theoretical layer (that of the 
functions, prevailing at the 11th grade). For example, in grade 9, the teacher starts the 
discussion by recalling in an explicit way the context of tracks. In fact, the context 
can provide meaning to the graph slope, which the students face for the first time. To 
do that, he uses some blending signs, like saying “the track did something like this”, 
while drawing the graph at the blackboard: 

Teacher: You had a function, about… the track, do you remember, the track did 
something like this, isn’t it? (drawing the graph of Fig. 1 at the 
blackboard ) Ok? Roughly. So we had the graph of a function.  

In grade 11 we observe something different. These students have already some 
competences about functions, and in particular they have studied the slope features of 
a graph and know how to compute approximated values of the function slopes. 
Consequently, during the whole discussion the teacher endeavours to underline that 
the graph and the track are two objects that belong to different domains:  

Teacher: Well, this first task talked about trampers that were following some tracks in 
the mountains. And we have imagined that in profile the graph…do you 
remember? This (drawing the graph of Fig. 1 at the blackboard), ok? This 
graph represented, varying the positions along the track, x… x represented 
the distance from the point?  

Students: The starting point […] 
Teacher: Then, how is the graph when the slope of the tangent line is negative? You 

have said well, you have said that it is… 
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Students: Downhill. 
Teacher: Decreasing. Downhill the track; the graph is decreasing. Remember: the 

properties of the graph are expressed in mathematical language, those of 
the track on the contrary can be expressed like uphill, downhill. 

The teacher stresses the fact that the graph and its parts are signs that represent 
something. Namely the teacher prompts an un-blending process in order to reach a 
further layer of disclosure. 
The overall analysis of the two discussions reveals that, starting from the same task, 
the teacher is working on two different layers of disclosure. For instance, in grade 9 
to refer to the point of highest slope the teacher makes present the experience and the 
mood of biking: 

Teacher: Look! Graphically (pointing at the graph in Fig. 1), can you 
see here that the slopes are increasing (starting to surf 
with his hand along the graph, Fig. 3)? Can you see that 
(moving his hand along the graph)? And that at a 
certain point… (his hand is near the inflection point)?  

Students:  They decrease. 
Teacher: They decrease (taking his hand away from the graph). 

This is the sensation that we feel if we bike along 
this uphill (the hand again on the graph), at the 
beginning it is very hard, isn’t it? At the beginning it 
is very hard because the slope increases (with a 
slanted body and the hand as holding a handlebar, 
he mimes the act of biking uphill, Fig. 4), then (the 
hand along the graph, after the inflection point) it 
becomes less and less hard. In fact at the beginning 
the function increases more and more and then (the 
hand has reached the maximum of the graph)?  

Students:  It increases less and less.  

To grasp the different increasing modalities of the function, and specifically to focus 
the attention to the point of inflection, the teacher makes present with his words and 
his body posture the physical sensation of the fatigue ones feels when climbing a 
steep hill with the bike: it is the mood component in Rota’s account. Such a sensation 
may be well known to the students, since they live in a hilly territory: therefore the 
making present may be accomplished through remembering their lived experiences.  
In grade 11, we do not find such perceptual references for the same mathematical 
concepts. While solving the task, in fact, the students have identified that the point 
with the steepest uphill corresponds to the point of inflection. In the discussion, the 
teacher reads their answers and prompts to the fact that they have well done, without 
making present any experience related to the track. This interpretative hypothesis is 
confirmed by the interview to the teacher: 

Figure 3 

 Figure 4 



2-55PME 35 - 2011

Arzarello, Ascari, Baldovino, Sabena  

 

PME 35 - 2011 1- 7 

[Asked about the bike episode in grade 9] I often search for the situation that I think it is 
nearest to their experience: for instance I speak of skiing for those who go skiing, biking, 
climbing, surfing… so to think to an experience that is very concrete, very perceptive. 
[Referring to grade 11] It is true that the situation was that of tracks, but now the students 
should understand that they have modelled it with a graph, so we speak of the properties 
of a graph, with adequate language. […] I think that for the students at grade 11 the 
concrete situation has not helped them so much. They had the tools to speak in terms of 
graphs. For the students of grade 9 it is different. I imagine that they have indeed started 
from the concrete situation and have imagined the person who was climbing with all the 
problems, then [tried] to eliminate the inessential things and so to think simply to the 
outline of the track that becomes exactly the outline of the graph. 

It is important to notice that the progressive disclosure of the graphs as mathematical 
objects does not imply a definitive discharge of blending signs. On the contrary, the 
teacher comes back to blending signs when teaching about new (possibly difficult) 
properties of the mathematical objects to be disclosed. For instance, in the second 
part of the task the students have to draw the graph of a function, starting from the 
graph of its slopes (i.e. to draw a primitive function). Being an inverse problem, this 
question can raise some difficulty also for the students at grade 11. After drawing a 
primitive graph, the teacher puts on the table the issue of the y-s of the primitive:  

Student 1: [We cannot know the y-s] because the slope graph does not give us that 
information  

Student 2:  The differences could be both from 0 to 1 and from 100 to 101 
Teacher: By the way, this graph here (pointing at the primitive graph drawn at the 

blackboard) could be an underwater mountain, below the sea-level (the 
hand mimes the action of moving the graph below the x-axis) 

It is the teacher himself to introduce a blending sign: in fact, he blends the references 
to the graph (by means of gestures) and to a concrete imagined context (the 
underwater mountain). In this way, he has provided a new context by which the 
students may give sense to a property that regards a relationship between two 
mathematical objects, i.e. a graph and its primitives.  

DISCUSSION 
We have sketched an interpretation of the teacher’s actions in the classroom, based 
on the phenomenological notion of disclosure, as defined by Rota (1991). Disclosure 
happens because people are able to grasp the functionalities of the context. In this 
process, both emotional and cognitive aspects are involved. Our analysis was meant 
to show how the teacher uses didactic techniques like prompting and making present 
(i.e. remembering or imagining) to promote the different layers of students’ 
disclosures. Precisely, we have seen that he fostered the notion of slope of a function 
in a point through the steepness of a road, on which students are asked to 
remember/imagine to bike (grade 9); or the fact that all the primitives of a function 
differ by a constant, imagining a mountain that sinks under the sea (grade 11). In 
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making present these contexts and promoting the disclosure of the related 
mathematical concepts, we have identified the production of blending signs (Sabena, 
2010): for the teacher they are tools for fostering students’ disclosure process. 
Our analysis suggests that in the learning processes, contexts are layered upon each 
other, and that they are never completely discharged. This causes a complex 
dynamics in teaching actions. From the one side, when the teacher judges that 
students have reached a sufficient disclosure of a concept, he pushes towards a more 
abstract layer, where further disclosure processes can start. From the other side, when 
some more difficult concept must be faced, the teacher can go back to a previous 
layer to provoke suitable disclosure processes (e.g. imagining the mountain under the 
water level to support the disclosure of the existence of infinite “parallel” primitives). 
Space does not allow to present things from the side of students, namely to illustrate 
the extent to which the teacher’s actions aimed at provoking learners’ disclosures are 
successful. This problem will be the object of our future research. 
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In this study we take the perspective of multimodality coming from communication 

design and neuroscience to integrate it with mathematics education. We think that in 

the mathematics classrooms interaction and communication are multimodal in the 

same way as text and discourse are in the digital era. Our analysis studies learners’ 

and teachers’ cognitive processes by means of a semiotic lens, focussing on their 

multimodal productions: gestures, words, actions, and inscriptions. We introduce the 

timeline as an analysis tool that considers the variety of semiotic resources in the 

classroom over time. The timeline allows us to observe dynamic evolutions of signs, 

and to better understand the role they play in mathematics teaching and learning.  

INTRODUCTION 

The shift from purely alphabetic writing to multimodal texts occurred in the digital 

era requires new abilities by readers and writers. Multimodal texts are made of 

several modes of communication, like speech, writing, and image, each integrated 

with the others. Think for example of newspapers today with respect to those 

published 40 years ago: actual newspapers are also on the web and have videos, texts, 

images, links to web pages, interactive blogs and platforms, and so on. The capability 

of reading in an interactive way, integrating information from the various modes is 

then necessary, and digital natives have this capability more than immigrate ones.  

Multimodality is a characteristic of texts, as well as of discourse. A specific case is 

that of learners interacting with peers or with the teacher at school, to discuss on 

mathematical tasks. Learners use gestures, gazes, words, sketches and productions on 

the Interactive White Boards or on a software. In our research, we are interested in 

this multimodality of signs to study cognitive processes. To this aim, we refer to a 

theoretical framework on multimodality based on quite recent experimental evidence 

from neuroscience and psychology. Indeed, the evidence of a multimodal nature of 

the brain sensory-motor system gives reason of the fact that human cognitive 

processes are constituted not only by symbolic activity, but also by perceptuo-

sensory-motor-imaginary activities (Nemirovsky & Ferrara, 2009).  

We use the semiotic bundle as an interpretative means for multimodal production. It 

consists of a model to describe the various signs produced by students and teachers 

over time. The description is given by the timeline, a dynamic graphic representation 

of the signs and their relations, through which we get information about the cognitive 

processes happening in the classroom. 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 57-64. Ankara, Turkey: PME.
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MULTIMODALITY 

In recent years we assist to the introduction in mathematics education of the theory of 

embodied cognition (see Wilson, 2002), which focuses on the role of metaphors and 

sensory-motor experiences in thinking and understanding. Neuro-scientific studies on 

mirror neurons (Gallese & Lakoff, 2005) pointed out new features of the sensory-

motor system of the brain, in relation to its role in conceptual knowledge: “mirror 

neurons and other classes of pre-motor and parietal neurons are inherently 

‘multimodal’, in that they respond to more than one modality. Thus, the firing of a 

single neuron may correlate with both seeing and performing grasping.” (ibid., p. 

457, emphasis in the original). As a result, many modalities like hearing, sight, touch, 

motor actions, etc., seem to be not strictly separated but integrated with each other 

when active, each infused with properties of the others. This entails that the brain 

sensory-motor system has a pre-existing character multimodal rather than modular. 

Multimodality thus denies the existence of separate modules for perception and 

action that need to be somehow “associated”. Typical human cognitive activities such 

as visual and motor imagery, far from being of a disembodied, modality-free, and 

symbolic nature, make really use of the activation of sensory-motor brain regions 

(Gallese & Lakoff, 2005). Also, correlates of the mirror neurons system have been 

found in the principles of social cognition. We think these results are very notable in 

teaching and learning processes and that they may tell much about the resources 

students and teachers use in communication and in interaction.  

Multimodality even appears in the design in communication (Kress, 2004). In this 

case, the term is used to indicate multiple modes of representation, as means to make 

meanings, whether they are oral or written messages. In the multimodal landscape of 

communication, the number of ways of expressing and shaping a message implies 

choices and questions. Text is no longer the main way of communicating, but images 

and videos are pervasive. As a consequence, the dominant media are no longer books, 

but videogames, mobile phone, i-Pad, TV, etc. Such aspects should be significant for 

mathematics education too, in order to study the multimodality of communication in 

the classroom. For example, they enable us to explain why learners gesticulate a lot 

or use representational tools during their mathematical activity.  

THE SEMIOTIC BUNDLE 

The perspective on multimodality, along with other studies, supplied mathematics 

education researchers with elements to include the body in the act of knowing: “the 

return of the body is the awareness that, in our acts of knowing, different sensorial 

modalities—tactile, perceptual, kinaesthetic, etc.—become integral parts of our 

cognitive processes. This is what is termed […] the multimodal nature of cognition.” 

(Radford et al., 2009, p. 92). Within this view: “the understanding of a mathematical 

concept, rather than having a definitional essence, spans diverse perceptuo-motor 

activities, which become more or less active depending on the context.” (Nemirovsky 

2003, p. 108). 
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The model we adopt to analyse the phenomena occurring in the classrooms is the 

semiotic bundle (Arzarello, 2006). It is an enlarged notion of semiotic system, which 

encompasses the classical semiotic registers in mathematics (e.g. the algebraic, and 

the Cartesian) as particular cases. The semiotic bundle consists in the description of a 

system of signs produced by one or more interacting subjects according to the 

comprehensive notion of sign given by Peirce (1931-1958). Elements of the semiotic 

bundle are the students’ and teachers’ multimodal productions: words, gestures, and 

inscriptions (but possibly also gazes, tones of voice, postures, etc.).  

Students solving mathematical tasks, which are coordinated by the teacher, produce 

signs (related to each other) that may be analysed with such a model. In particular, 

the semiotic bundle does not only take into account the signs at a certain moment 

(synchronic analysis), but also their evolution over time (diachronic analysis), in a 

dynamic way. An example of the first case is given by a subject that simultaneously 

gesticulates and speaks. With the diachronic analysis of the semiotic bundle, we can 

consider signs produced at different (close or far) times, transformed into other signs. 

Examples of these transformations are given by gestures shared in the classroom and 

then performed for solving new problems in various moments (Arzarello & Robutti, 

2008), but also by conversions between different registers (Duval, 2006) like from an 

equation (algebraic register) to the corresponding Cartesian graph (graphic register). 

Diachronic evolutions can also be found in the semiotic games of the teacher, when 

she/he “echoes” one or more gestures produced by the students, and at the same time 

expresses in the verbal register the rigorous mathematical meaning of gestures 

(Arzarello & Paola, 2007; Robutti, 2009). 

The semiotic bundle thus allows us to analyse the multimodal semiotic activity of the 

subjects in a holistic manner, showing the dynamic evolution of signs over time.  

THE TIMELINE 

To represent the evolution of the cognitive processes through the semiotic bundle, we 

introduce the timeline that makes possible to analyse at different grains the complex 

relations among signs in the semiotic bundle. It consists of a dynamic representation 

of the multimodal production by students and teacher, made of videos, written or 

spoken words, gestures, representations and interactions with tools. The timeline 

provides a microanalysis of the evolution on time of the didactic situation in the 

classroom. In the meanwhile, it offers also a global or a local description of 

classroom processes. For instance, the timeline allows getting precise snapshots of 

what occurs at certain instants and for short time intervals (the finest unit of time 

being 1/24 sec, i.e. the single frame of the video). Or, it may allow having the 

evolution in time or the morphological similarity of different signs (e.g. gestures) 

produced by students in their individual story or within the story of the classroom. 

The timeline is built up using a spreadsheet. It shows three main areas: speech, body, 

and inscriptions (see below for details). We observe them for both the students and 

the teacher. Each word, gesture and sign in the timeline refers to the one that has 
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created or used it. The time grain (appearing at the top of the page) varies according 

to the evolution of the situation and to the analysis necessities. There could be 

intervals where it is very detailed and others where it is grosser.  

Although the timeline per se is a static product, constituted of a series of static 

elements (images of gestures, sketches, drawings, and words), scrolling it gives an 

idea of the complex dynamic and multimodal nature of learning processes. We even 

introduce codes that permit representing these and other specific aspects of the 

various components of the semiotic bundle: examples are subjects’ postures, gazes, 

voice tunes, etc. Tables 1 contains the main codes we take into account.  

 

 

 

 

 

 

 

Table 1: Codes for the speech-body relationships (on the left);                            

further codes: diachronic and synchronic elements, and Post-it (on the right) 

At the top of the timeline, information on time appears: all that is indicated vertically 

occurs in the same moment. The three major sections said above, investigated at each 

time interval, are: 

• SPEECH (spoken productions): transcription of what both the students and the 

teacher are saying; a progressive number gives the right order of the interactions. 

• BODY (bodily productions): the main images (even frame by frame) of gestures, 

gaze, and postures students and teacher use to support their communicative acts. 

• INSCRIPTIONS (written productions): things written by students and teacher. 

There are two complementary sections: one for the TOOLS used in the activity (e.g. 

types of software or materials); the other one for the LINGUISTIC and GESTURAL 

ANALYSIS of the speech/body-section.  

An example of the appearance of the sheet once the analysis is carried out is given in 

Figure 1. Table 2 contains other symbols appearing in the timeline, explicitly related 

to the linguistic and gestural analysis.  
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Table 3: Codes for gestural and linguistic categories 

 

 

 

 

 

 

 

 

 

Figure 1: Example of analysis with the timeline 

In the timeline we take into account some variables necessary to describe the process 

in a semiotic way. One variable is the semiotic game introduced by the teacher. It can 

consist in echoing some signs introduced by the students, in order to reinforce an idea 

at a certain point of the discussion. Really, according to many studies in a 
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Vygotskyian approach (Vygotsky, 1978), teaching consists of a process enabling 

students’ potential achievements. Within such an approach, the teacher can be seen as 

a semiotic mediator, who promotes the evolution of signs in the classroom from the 

personal senses by the students towards the scientific shared sense. Indeed, having 

recourse to the semiotic game, the teacher generally judges from the signs produced 

by the student when they are in Zone of Proximal Development (ZPD), in relation to 

the concept to be taught. Hence, the teacher mimes one of the signs produced by the 

students, using words different from theirs. While the students have possibly used an 

imprecise verbal explanation about the mathematical situation, the teacher introduces 

precise words to describe it. Namely, the teacher uses one of the shared resources 

(gestures) to enter in a consonant communicative attitude with his/her students, and 

another resource (speech) to push them towards the scientific meaning of the 

concepts they are taking. Such a strategy is suitable when the non-verbal resources 

students utilise reveal to the teacher that they are in ZPD. Usually, the students 

explain a new mathematical situation producing at once gestures and speech (or other 

signs). We can frame them using the semiotic bundle. Students’ explanation by their 

gestures seems promising, but their words are very imprecise, when not wrong. The 

teacher mimes the former to recall students’ behaviour, but pushes the latter towards 

the right form.  

Another specific variable is the kind of gesture. (redundant or non-redundant). Kita 

(2000) has elaborated on this relevant matter. Every individual gesture is either 

redundant or non-redundant with respect to information conveyed in the 

accompanying verbal clause. Really, for its bigger generality we prefer the use of the 

terms redundant and non-redundant instead of match (if the entire information 

expressed in gesture is also conveyed in speech) and mismatch in the other cases 

(Goldin-Meadow, 2003). According to Goldin-Meadow (2003), a mismatch is 

“associated with a propensity to learn” (p. 49), and “appears to be a stepping-stone on 

the way toward mastery of a task” (p. 51). Gesture-speech mismatch mainly reflects 

“the simultaneous activation of two ideas” (p. 176). We opt for Kita’s categories of 

redundant and non-redundant, because the presence of a non-redundant gesture does 

not automatically coincide with a mismatch.  

A third variable is the kind of interaction (locutional, illocutional, and perlocutional) 

(Davis, 1980). In speech, one always speaks in relation to these different levels. At 

the locutionary level, he/she says something; at the illocutionary level, he/she tells 

something in a specific manner (e.g. speaking aloud or silently). The perlocutionary 

level is concerned with effects: “a speaker saying something produces an effect on 

feelings, thoughts, or actions of the audience, other persons, or himself” (Davis, 

1980, p. 38). 

DISCUSSION 

In this article, we have presented a tool to investigate, through a semiotic approach, 

students’ and teacher’s multimodal productions during their mathematical activities 
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in the classroom (bodily, oral and written signs). We have used as a model the 

semiotic bundle that takes into consideration any sign introduced by the subjects. The 

model may offer a snapshot of signs at a certain moment (synchronic analysis), or a 

description over time of the semiotic activity (diachronic analysis). Both the analyses 

give insights into cognitive processes and didactical phenomena. Their illustration is 

provided by the timeline, through a microanalysis and a macroanalysis of what 

occurred in the classroom. The first (micro) furnishes, in a short period, an evolution 

over time of the signs the students and the teacher introduce. In this way, the timeline 

gives us a chance to follow processes of meaning making based on: transformations 

of one sign into another, sharing of signs among people, use of a sign to approach a 

concept, etc. The second (macro) shows, in the medium-long period, what happens in 

the classroom or in a group of students, or simply for one student, in their social or 

individual cultural growth. The dimension of time depicts the processes that support 

subjects’ construction of mathematical meanings. For example, we can see whether a 

sign is considered by a student, echoed by the teacher in front of all the students, 

whether the sign becomes a shared sign to recall a concept, to justify a conjecture or 

to find a thesis (Arzarello & Paola, 2007). As another example, we may scrutinize the 

complex process through which a student is able to grasp a mathematical concept 

(e.g. a numerical relationship) starting from a gesture, then transforming it into a key 

word, and finally converting it in a written inscription, all concurring to explain the 

concept (see Arzarello et al., 2006). In the semiotic bundle, we may also have a sign 

coming from interaction between a student and a tool (Arzarello & Robutti, 2008). 

The timeline may show how that sign is re-used in the activity to find an invariant, a 

pattern or a property of similar situations. Briefly speaking, the timeline provides us 

with dynamicity, which is an important element for describing processes. It helps 

understanding how, when, and why social knowledge construction develops. By 

displaying the ingredients of the semiotic bundle, the timeline orders them in a time 

dimension, and uncovers the “movie” of a didactical situation, giving the opportunity 

for a careful analysis. 
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In this paper we examine decisions made by two mathematics teachers who presented 

the same lessons on graphical antiderivative in two different countries, namely Italy 

and New Zealand. In particular we use a theoretical framework comprising 

Schoenfeld’s Resources, Orientations and Goals (ROG) to describe and analyse the 

decision each independently made to produce a table of information for their 

students. A comparison of the orientations and goals behind this decision enables us 

to uncover how the teachers arrived at their different outcomes and the expectations 

they had of the students. This shows the value of the framework for making analytical 

comparisons of pedagogical practice. Understanding the reasons for the different 

paths taken by the two teachers has possible implications for teacher training and 

professional development. 

 

INTRODUCTION AND THEORETICAL FRAMEWORK  

Since the 1980’s, mathematics education research has investigated the competences 

teachers need in order to promote efficient learning. Shulman (1987) provides an 

analysis of the kind of teachers’ knowledge required. Starting from this, several 

authors (e.g. see Sullivan & Wood, 2008) have identified a number of important 

features of effective teaching, one of which is the ability to make appropriate in-the-

moment decisions.  

A detailed investigation of teachers’ in-the-moment decision making led Schoenfeld 

(2008, 2010) to produce a framework for analysing such decisions. It is based on 

Resources, Orientations and Goals (ROG) that lead to the production, prioritisation 

and accomplishment of goals. The framework suggests that teaching (and other 

activities) begin with the orientations, or dispositions, beliefs, values, tastes and 

preferences, etc, that the teacher brings to bear on pedagogy in the classroom 

situation. These orientations then “…shape the prioritization of the goals that are 

established for dealing with those situations and the prioritization of the knowledge 

that is used in the service of those goals.” (Schoenfeld, 2010, p. 29) Thus when 

appropriate goals (and sub-goals) are established, the teacher brings relevant 

resources – and this especially means knowledge, but also physical resources such as 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 65-72. Ankara, Turkey: PME.
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textbooks and technological devices – to bear on the achievement of those goals. This 

requires decisions to be made, either consciously or unconsciously, about how to 

reach the goals using the available resources. In familiar situations, such as classroom 

teaching, automatic scripts, frames, routines or schemata are called upon. For 

example, the most common routine is the IRE sequence, where a teacher initiates an 

interaction (I), gets a response (R) from the class or an individual, and then evaluates 

(E) the response. As a result of the interactions in the goal-oriented behaviour, the 

teacher’s knowledge, goals, and orientations are updated, and the cyclical process 

continues. 

In order to implement the theoretical framework briefly described above, one has to 

access teacher’s ROG. In Schoenfeld’s research this is done by inferring the ROG 

from the video of a lesson. However, Speer (2008, p. 262) concludes that “Analysis 

at a finer grain size, conducted on interview data from discussions of specific 

instances of practice may be what is needed to develop rigorous explanations for 

classroom observational data”. Therefore, in this project we have used interviews 

with the teachers to gather an espoused part of the ROG, as well as inferring part of 

the ROG from video and transcript evidence.  

The framework has been used to link beliefs and goals (Aguirre & Speer, 2000), 

identifying beliefs about the nature of teaching, learning and mathematics that were 

influential on teacher practice and became manifest when goals were changed. Also 

Törner, Rolke, Rösken, & Sririman (2010) show the explanatory power of the theory, 

and describe the dominance of subject matter goals and beliefs over pedagogical 

content goals and beliefs. Further research considering a fine-grained analysis of how 

teacher beliefs play a role in shaping decisions and practices concluded that “…the 

construct ‘collections of beliefs’ was proposed as a unit of analysis for beliefs that 

captures teachers’ views about particular issues in ways that make it possible to 

understand, explain, and even predict teachers’ decisions.” (Speer, 2008, p. 260). 

THE TEACHING EXPERIMENT  

Multi-site teaching experiment 

The data reported here were collected as part of a larger multi-site teaching 

experiment involving seven secondary school teachers in Italy, Israel, and New 

Zealand, who implemented lessons on graphical antiderivatives based on a sequence 

of four tasks (Yoon, Dreyfus & Thomas, 2008). These tasks were initially written in 

English, and translated into the local language. The first task in the sequence is a 

Model Eliciting Activity (Lesh et al., 2000) that asks students to draw the graph of a 

tramping track whose gradient graph has been given. The second task involves asking 

students to draw antiderivatives of a number of functions presented graphically, 

which were intentionally drawn so as to be dissimilar to well known graphs, such as 

straight lines, parabolas, and so forth. The third task focuses on the graphical 

interpretation of the constant of integration, concavity and points of inflection, and 
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the fourth task asks students to identify functions, derivatives and antiderivatives that 

are presented graphically. In this paper, we focus on two teachers – Adam, from New 

Zealand, and Daniel, from Italy. 

Data collection at the New Zealand site 

Adam was in his 2
nd

 year of secondary school teaching at the time of the study, and 

had recent research experience in teaching derivatives using technology that 

facilitated thinking in graphical representations. Adam’s class was a high ability year 

12 (age 16-17) mathematics class in a low socioeconomic multicultural school in 

Auckland, New Zealand, with primarily Maori and Pacific Island students.  

The topic of graphical antiderivatives is not in the New Zealand national curriculum, 

although the related topic of graphical derivatives is part of the curriculum. 

Therefore, Adam was only able to allocate four 60-minute lessons to each of the four 

tasks. The four lessons were audiotaped and videotaped, and student work was 

collected. One videocamera focused on the teacher and the whole class. There were 

two focus pairs of students, both of which had one videocamera focusing on their 

faces and another on their written work. After each lesson, the teacher participated in 

debriefing interviews with the researcher(s), which were audiotaped, in which he 

described his experience of the lesson, explained certain teaching decisions, and 

planned for subsequent lessons. 

Data collection at the Italy site 

Daniel is a teacher with more than 20 years of teaching experience in the secondary 

school and of research in different subjects of mathematics education (proof, real 

analysis, technology…). The school where Daniel is working is a scientific oriented 

high school in Finale Ligure (Genoa). Daniel’s class consists of grade 11 (age 16-17) 

students, who pursue a strong mathematics curriculum (five hours per week). In the 

traditional teaching praxis the topics of graphical derivative and antiderivative are not 

studied in the 11
th

 grade. Daniel decided the students would work for 100-minute 

lessons on the tasks in groups of 3 or 4 students, with very limited support from the 

teacher, who answered only specific questions. After each task there was a 50-minute 

lesson to discuss and formalize the concepts in the task (institutionalization lesson). 

So the whole project took eleven 50-minute lessons. 

In the classroom there were two videorecorded focus groups and every 

institutionalization lesson was videorecorded by a camera focused on the teacher at 

the blackboard. We analyzed the video, considering all the semiotic productions of 

the teacher (speech, inscriptions at the blackboard, and gestures), as well as the 

interventions of the students. At the end of the project the teacher participated in 

audiotaped debriefing interviews with the researcher: Daniel described his experience 

of the lesson and explained certain teaching decisions and his main goals. 
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Data analysis 

The data that were collected at each site were analysed by the researchers located at 

those sites. However, both sites used a similar method for analysing the data. Both 

sites transcribed the interviews with the teachers (Adam and Daniel), and coded them 

according to Schoenfeld’s ROG model, using the same coding scheme. Next, the two 

sites transcribed the video footage of lessons in which the teachers created a table of 

properties (lesson 2 in Adam’s case, institutionalization lesson 1 in Daniel’s case). 

These transcripts were annotated with descriptions of the teachers’ and students’ 

behaviour, as well as pictures of gestures, boardwork, and student work, and were 

coded to identify key teaching decisions occurring during the lesson. Finally, the 

same coding scheme used to analyse the interview data was used to identify the R, O, 

and Gs that appeared to influence the teacher’s decisions 

COMPARISON BETWEEN THE ROGS OF THE TWO TEACHERS  

Adam’s ROG (New Zealand site) 

Before the second lesson started, Adam had a planned goal to create a table of 

properties, and 12 minutes into the lesson, he began copying the outline of the table 

with the headings and subheadings in the first two rows from a piece of paper he held 

in his hand. With input from the students, he filled in the rest of the cells in the table 

over the course of 20 minutes. For each cell, he focused students’ attention on a 

specific point on the graph at x = a, x = b, or x = c (see Fig. 1a), and asked them 

about the corresponding points on the antiderivative. When the students responded 

with the property Adam thought was correct, he wrote it in the relevant cell.  

  

Figure 1: (a) The graph of a function with points x = a, x = b, and x = c identified. 

(b) The table of properties produced by Adam. 

 Function Anti-Derivative 

 function  

value 

gradient of  

pt on anti-der 

behaviour of  

corresponding pt. on anti-der 

At a f(a) negative negative decreasing 

At c f(c) = 0 zero Stationary 

At b f(b):pos positive increasing 

Table 1: Retyped version of the table of properties produced by Adam. 
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Adam’s decision to create the table appeared to be driven by a goal that influenced 

many of his teaching decisions – to give students a firm conceptual foundation that 

would prepare them for the upcoming tasks. This goal is reflected in the following 

comments from his debriefing interviews: “I’ll have to go through this because it 

would make the foundation more firm”, and, “The basic concept of derivative and 

antiderivative will be firmed up and then that will be a very easy task for them later 

on.”. In the particular case of the table of properties, it appeared that Adam intended 

the students to use the table as a tool for drawing antiderivative graphs in upcoming 

tasks. He announced this intention just before he commenced drawing the table, 

saying, “Just to remind you of the aim for this lesson, we want to become efficient in 

drawing the anti-derivative. Not in a mechanical way, but in a deeper understanding 

way.” This goal was supported by his knowledge of which students had previously 

struggled with drawing gradient functions (Resource A1), and his belief that students 

need to be prepared for upcoming tasks by understanding the concepts that will be 

used in the tasks (Orientation A1). 

Adam makes his goal explicit by instructing the students to use the table on two 

occasions. After creating the table, he tells the students to draw the antiderivative of 

the next function themselves, using the table that they had created as a guide, “I 

created a table here, I mean, I created it with you, so let this be our guide.” In another 

instance, one student explains his solution in front of the class, and is unsure whether 

the x-axis intercept in the graph of the function corresponds to a maximum or 

minimum in the graph of the antiderivative. Adam suggests using the table again, 

saying, “If gradient is zero, we go back to the table to guide us.” However, the table 

only tells him that it corresponds to a stationary point, which the student had 

previously said, but not whether it is a maximum or minimum. Thus, although Adam 

made his goal explicit to the students, the students did not appear to use the table in 

the way he intended.  

Daniel’s ROG (Italy site) 

Daniel prepared for the institutionalization lesson after the first task by reading the 

students’ protocols and considering the problems that arose from the working groups. 

A driving goal of Daniel’s decision to construct the table was to give a summarising 

tool for the meaning of the concepts involved in the task. This is in line with his main 

goal: consolidating the students’ knowledge. He wished to check whether the 

students were able to use what they had already done in the years before (they had 

used TN-spire) and how they reacted to topics already covered in a different way. 

Daniel began to construct the table after about 20 minutes of the lesson, during which 

he corrected the first part of the task together with the students. Thus, he created the 

table after mediating the meaning of new concepts and after a revision of old 

concepts. His driving goal is reflected also during the lesson in these comments 

before and during the table construction: “...These things become important…” or “ 

So it’s obvious that this thing that we start to put here is important...”. This last 
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Figure 3 

 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

sentence is matched with his action: to circle the first line of the table on the 

blackboard. His table consists of two rows (see Figure 2):  

First line:   “ f increases f’ positive” 

Second line : “f with upwards concavity f’ increases”  

 

 

 

 

 

Before writing the first line he drew some pictures to support the students in 

understanding how the slopes of the tangents in an increasing function first have 

upward, then downward concavity (Figure 3). Next, he asked some questions of the 

students in order to make them understand that if f’<0 then the function decreases and 

vice versa. After that he drew a picture of the slopes of the tangents to a function with 

downward/upward concavity, asked the students what happened in those cases, and 

wrote the second row of the table circling it. About 1½ min passed between writing 

the first and the second line: in fact he wanted to be sure that the students became 

conscious of the result before writing it down. After about 3 min. Daniel started to 

solve the inverse problem (second part of the task) together with the students. He did 

not explicitly invite the students to use the table but suggested they do that by 

pointing to the table with a gesture and asking: “what information about the slopes 

are you going to look at to obtain information on the function?”. After this, he and the 

students started to use the table to get the information necessary for drawing the 

antiderivative graph. 

Comparison of the ROGs that influenced Adam’s and Daniel’s tables 

It seemed that Adam had planned in advance the construction of the table and had 

thus prepared its format, while Daniel planned to systematize students thinking but 

did not plan in advance the precise time when this would be done. Daniel made the 

table primarily as a way to summarise the concepts the students had encountered over 

the course of the lessons on graphical derivatives, so that students could interiorise it 

as a tool for consolidating their learning. In comparison, the use of the table is quite 

different in the two teachers: Daniel used it in an implicit way to solve the inverse 

problem (research of antiderivative graph) and Adam as a tool for preparing the 

students for success in the upcoming tasks. However, both Adam and Daniel 

involved students in the construction of the tables. 
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DISCUSSION AND CONCLUSION  

It has been recognised that there is still a pressing need for research to investigate 

how teacher orientations, and goals arising from them, shape pedagogical practices 

(Speer, 2008). In this paper we have provided some further evidence that the ROG 

framework (Schoenfeld, 2010) is a useful explanatory tool for analysing this 

relationship. This may be especially true of practice decisions that are made in-the-

moment. In particular, we have seen how two teachers who were using the same 

module of work, and who on the surface may have appeared to be doing very similar 

things, such as making similar decisions, were motivated by quite different beliefs 

and goals. The ROG analysis enabled us to uncover this distinction and to explain it.  

One common outcome was that, while both teachers appear to have achieved their 

goals in relation to the table construction and use, the value to the students was less 

clear. It seems that the students in both classrooms did not fully believe in or value 

the constructed table as a tool for them. This suggests that, as teachers, we need 

constantly to evaluate our practice and goal setting not only against our own 

orientations, but also against those of our students. Failure to find out what students 

value, and show appreciation for it by acting accordingly, could clearly have 

detrimental implications for their learning. 

The apparent surface similarity of the teacher practice disguising underlying beliefs 

and goals also raises important professional development issues. One is the role of 

lesson observation by peers, or those training teachers. It is important that superficial 

observation practice is avoided, possibly, as Speer (2008) agrees, by discussion with 

the teacher that attempts to address, not only their written, prepared goals as 

expressed in lesson plans, but also the values and beliefs that underpin such goals. 

Encouraging teachers to express their orientations and goals will also help with self-

awareness of them, which is likely to be a major step towards positive change. 

Hence, only in this way can professional development avoid a broad-brush approach 

and provide assistance tailored to individual teacher needs.  
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The present research focuses on patterns of talk in which teachers are involved when 
they lead discussions in their classrooms in the course of a Grade 8 learning unit on 
probability and on their impact in subsequent individual argumentative writing. In a 
previous PME publication, we undertook a qualitative analysis to show that teacher-
students interactions were governed by distinctive and relatively stable patterns. In the 
present study we undertake a quantitative analysis to corroborate those findings. 
Moreover, we show that the impact of teacher-led argumentative talk on subsequent 
individual argument elaboration is deep but subtle. Argumentative quality of teacher-
led talk was not be detected in student correctness of solutions, on a claims level, but 
on the quality and frequency of the explanations given to support these claims. 
INTRODUCTION  
The present paper reports on a study focusing on patterns of talk in teacher-led 
classroom discussions, and on their impact on subsequent students’ written arguments. 
Since the tasks on which the discussions focused were specially designed to scaffold 
productive argumentation in probability, we first aimed at observing and analysing 
teacher-led discussions. We observed four teachers who taught the same sequence of 
activities. We already reported on how one teacher triggered explanations and how she 
helped integrating them into coherent arguments (Schwarz, Hershkowitz & Azmon, 
2006), and other did not. The major finding of the above qualitative investigation was 
that teacher-students interactions are governed by distinctive and relatively stable 
patterns. For example, Teacher A adopted a dialogic-dialectical talk in which she 
challenged the diverse claims raised by students to encourage construction of 
knowledge. The talk of Teacher B was governed by an IRE traditional pattern 
(Cazden, 2001) almost exclusively initiated by the teacher. Because of space 
limitations, we reported in the 2006 paper and in this paper on Teachers A and B only. 
In this paper we continue the analyses of three episodes of talk led by the two teachers 
and investigate quantitatively the impact of the teacher-led talk on individual written 
arguments of their students in a final exam. 
THEORETICAL FRAME 
Reasoned discourse is a habit, a way of life. It needs to be socialized, learned daily 
during years in an environment that expects such behavior, supports it and rewards it 
in overt and subtle ways. The only venue through which such socialization is done at 
a widespread scale is the school. Apprenticeship provides the necessary structure to 
acquire these discourse-based reasoning abilities. The socialization of discourse 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 73-80. Ankara, Turkey: PME.
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practices requires that members of the school community—student, teachers, 
administrators—turn these practices to commonplace in every classroom. 
Opportunities for students to reflect and communicate about their mathematical work 
have been identified as essential for learning mathematics in a meaningful way, and 
for effectively implementing high-level tasks. During discussion, students can see 
how others approach a task and can gain insights into solution strategies and 
reasoning processes that they may not have considered. By engaging in whole-class 
teacher-guided reflective discourse, students can explain their reasoning, make 
mathematical generalizations and connections between concepts, strategies or 
representations, and benefit from the collective mathematical work of the class for a 
given lesson or task (Alexander, 2004; Mercer, 2002; Myhill, 2006; Nystrand, 1997). 
However empirical studies showing the efficiency of talk-based pedagogy in school 
learning are still missing. Our study attempts to correlate between interactions 
teacher-students in teacher-led discussions and further learning gains in individual 
tasks.  
THE STUDY 
The overall goals of the study were two-fold. First, we aimed at uncovering patterns 
of teacher-led talk in teachers that taught the same learning unit in their class. Cazden 
(1988) has shown that asymmetric interactive patterns govern these interactions. 
Since then, educators have tried to break these patterns (Mercer, 2002) towards 
interactions in which students and the interactions among them are at the center. 
Researchers have observed that different patterns may emerge in classes (Nathan, 
Eilam & Kim, 2007). Educators consider a blended approach, which has more 
symmetric and interactive patterns and considers the integration between teacher-led 
and students-led activities, as representing the natural classroom environment. We 
already reported that some of the teachers who worked with us broke the IRE patterns 
of interaction, and that, with their students, they adopted other patterns of interaction 
(Schwarz et al., 2006). In the present paper we first report on findings which support 
quantitatively the finding from the former PME report. We then report on findings 
concerning the second aim of the study – investigating the impact of the teacher-led 
talk on individual written arguments of their students in a final exam. Four teachers, 
in three different schools, and their Grade 8 students participated in the study. We 
report on Teacher A and Teacher B and their classes only. The teachers volunteered 
to teach a designed 10 lessons probability unit (Hadas, Hershkowitz & Ron, 2009). 
We intentionally did not provide scripts for teachers' structuring of interactions with 
their students. Rather, they were left free to choose the way to manage their lessons. 
All 10 lessons were video-taped and transcribed. We chose three episodes from the 
three parts of the unit for which all teachers taught the same problem situation 
through a discussion they led. We observed and analysed these parallel episodes 
qualitatively and quantitatively. As mentioned above, we already conducted 
qualitative analyses (Schwarz et al., 2006) to show that patterns of talk persisted 
across all three episodes. In this paper, we first validate this conclusion quantitatively, 
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then study how talk impinged on subsequent individual arguments in a final exam on 
the same content. 
FINDINGS 
a. Quantitative analysis of the patterns of talk of teacher-led discussions 
In Table 1 we present the numbers and percentages of the categories of teachers' and 
students' utterances. These data were calculated for each of both classes.  
  

Teachers 
Students 

 

Teacher 
 

Number 
& % of 

utterances 
 

Encourage 
for 

claim 
 

Encourage 
for 

explanation 
 

Number & 
% of 

utterances 

Claims 
 

Explanations 
 

% of claims 
turned to 

arguments 
 

A 88; 54% 10;11% 55; 63% 75; 46% 35;47% 31;41% 89% 

B 111; 58% 54; 49% 16; 14% 81; 42% 57;70% 10; 12% 17.5% 

Table 1: Numbers (& percentages) of utterances' categories of teachers and 
their students 

Table 1 shows that in both classes, talk was almost equally distributed between the 
teacher and her students. However, there were big differences in the nature of talk: 
Prompts for explanations were very frequent for Teacher A. Students were quite 
responsive as 41% of their utterances were explanations, naturally leading them to 
complete their claims into arguments in 89% of the cases. In contrast, Teacher B 
rarely prompted explanations (14%), and unsurprisingly mostly entailed unreasoned 
claims (82.5%). These findings strongly match the patterns of talk on which we 
already reported (Schwarz et al., 2006). An important question with theoretical 
importance is to check whether these distinctive talk characteristics impinge on 
further students’ cognition.  
b. The impact of teacher-led talk on individual cognition 
The question of the impact of classroom talk on individual cognition is a very hot 
issue (see for example the recent review of the issue by Resnick, Michaels, & 
O'Connor, in press). The methodological difficulties are enormous, as it is highly 
problematic to isolate variables and/or to impose and control teaching methods on 
teachers. However, in our study we could identify a mathematical problem situation, 
on which both teachers focused in a teacher led discussion, where both episodes have 
the same time length. The knowledge which was expected to be constructed in the 
discussions was checked in a final exam, in which students were asked to write 
arguments on ideas learned during the learning unit. The final exam included 
questions which were similar to questions the students dealt with within the learning 
unit in general and in the three investigated episodes in particular. In this section we 
examine quantitative data from one item displayed in Figure 1 and which is similar to 
an activity solved in a teacher-led discussion in part 3 of the learning unit (Schwarz et 
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al, 2006). Three aspects will be separately examined. The first aspect is the correctness 
of answers (the claims) given by the students (right/wrong).  The second aspect is the 
type of explanations provided, and the third, the richness of students' explanations. 
Because of space limitations we will deal here with question 9b only (see Figure 1). 
This question is phrased argumentatively, in order to encourage students to support a 
particular claim and to provide an explanation for the claim. 
 

  

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 1: Question 9 in the final exam 

The correctness of students’ answers and explanations regarding question 9b:  

In this question, two claims were proposed: “Gal claims that the probability of 
encountering a student who is in both 'the Indian philosophy program' and the 'turtle 
nurturing program' is 0.2+0.9" and "Yam claims that the probability is 0.2x0.9”. The 
students were required to decide which of the claims is right. Table 2 shows how 
students in the two classrooms answered this question.  

 

 

 

 
Table 2 shows that in both classes a very high percentage of students gave a correct 
answer and explained it correctly. Differences between classes were non-significant. 
Differences between both classes concerning the explanation's categories: 

The “Nature” school offers a variety of extracurricular programs. 
The probability of encountering a child who is in the "turtle nurturing program" is 0.9. 
The probability of encountering a child who is in the" Indian music program" is 0.3. 
The square below describes the probabilities of meeting children who are in the different 
programs. 
a) Complete the diagram by writing, near the relevant sides of the square, the names of 
the programs in a way that will represent the correct probabilities. 
 

 ______  ל גוח____ 

 ל גוח _____
_________ 

 
b) The school opened an additional program for "Indian philosophy". The probability of 
encountering a child who is in this program is 0.2. Gal claims that the probability of 
encountering a student who is in both the Indian philosophy program and the turtle 
nurturing program is 0.2+0.9. Yam claims that the probability is 0.2x0.9. Which of them 
do you think is right? Explain!!! 

 

 

The ___________ program 

The ________________ program 
 

Teacher Yam is right No explanation Correct explanation No answer 
A 92% 8%  88%  4%  
B 94%  11%  89%  3%  

Table 2. Correctness of students' claims and explanations in Teachers A & B classes 
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Although no differences could be detected at the level of correct answers and proper 
explanations, we will see that further analysis of the explanations to identify the 
principles underlying the explanation yielded very interesting results. We could 
identify three kinds of categories of explanations: 

1. Explanations relying on a multiplication procedure  
This category includes explanations relying on the use of a multiplication procedure. 
A first possibility is simply procedural. The student evokes explanations such as “in 
probability we multiply probabilities”, but, does not show any evidence of 
understanding why the procedure is justified. A very different way to use a 
multiplication procedure is to rely on the area model. The students draw an area square 
diagram, divide it according to the given probabilities, determine the relevant 
rectangle, and calculate its area. In this case, the multiplication procedure supports the 
use of a model that represents the situation in which the probability is calculated. A 
variant of this kind of explanation consists of using “part of the whole” strategy: 
Students explain that they calculate the required probability according to the portion of 
the relevant rectangle out of the whole (the square area).  
 2. Explanations according to the principle “probability can’t be greater than 1” 
Many students chose to support the claim that “Yam is right”, by asserting that “Gal is 
wrong” and backing this claim by a reason such as “0.2+0.9”, the sum of 
probabilities, will lead to a probability that is greater than 1, and it is impossible that 
the area square will contain more than 100%. 

     3.  Explanations combining both principles 
Many students chose to combine principles. For example, they claimed that Gal is 
wrong, because the probability can’t be larger than one, and they added as further 
support a reference to a multiplication procedure, by saying for example that the result 
of the multiplication of 0.9 by 0.2 is 0.18, a probability that is smaller than 1. The 
distribution of categories of explanations in the two classes for item 9b is presented in 
Table 3. χ2 tests were also performed to examine the significance of the differences 
between classes. It is remarkable that, as shown in Table 2, most students justified 
their claims in the final exam. But it appears that the distribution is different and that 
the students whose teacher is Teacher A rely more on the area model, while in the 
other class they invoke multiplication as a procedure.  

Teacher Multiplication 
Only  

Multiplication 
For area 

 

Multiplication 
for part of 

Probability 
 isn’t more 

 than 1  

The 2 
principles 
together 

A 12%  38%  4%  13%  21%  
B 43%  3%  5%  8%  30%  
 P=0.0297 P=0.0023 P=0.5507 P=0.4091 P=0.2957 

Table 3. Categories of students' explanations for question 9b in each class 
However, while 38% of the students in the class of Teacher A provide a meaningful 
explanation according to the area model, a far lower percentage of Teacher B’s 
students (3%) do so. In contrast, more than 40% of them provide an explanation 
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relying only on the multiplication principle, while only 12% of Teacher A's students 
do so. These findings support our hypothesis that the classroom culture as conveyed in 
its patterns of talk, described by Schwarz and colleagues (Schwarz et al., 2006), 
impinges on the students’ conceptual understanding. In teacher B’s classroom, where 
the patterns of talk are based on teacher-centered encouraging and expressing (short!) 
claims only, the students find it harder to provide explanations that are beyond the 
merely procedural. The next subsection comes to illustrate the richness of students' 
explanations. 
Richness of explanations  
We adapted the methodology for analyzing the richness of the written justification by 
idea units defined by Mayer (1982). Idea units are the primitive elements that 
constitute students' justifications. In our case, students' justifications in the exam's 
items. As an example we report on extreme explanations given by two different 
students to 9b item: Naomi (from teacher A's class): Yam is right because Gal action 
is wrong (1) because 0.9+0.2=1.1 and it doesn't make sense that the event will be 
more than 1. (2) and for that reason Yam argues that the probability is getting less 
and less(3) when we multiply 0.2*0.9=0.18, and she is right. We count in this 
explanation 3 idea units. Yosi (from Teacher B's class): Yam, because we should 
multiply and not to add (1). Here we count only 1 idea unit. These are two extreme 
examples which demonstrate this "idea unit methodology".  
The counting of the idea units in each explanation was done independently by three 
researchers. The inter-rater percentage of agreement was 90%. When we calculated the 
average of the number of idea units per explanation for each class, we found that: the 
average in Teacher A's class is 1.58 idea units per explanation, and in Teacher B's 
class is 1.15 idea units per explanation. ANOVA analysis shows that p < 0.0133. 
CONCLUDING REMARKS 
Delegation of responsibilities. The socio-mathematical norms that developed in each 
class impinged at a macro-level concerning the responsibility of students to their 
knowledge constructing. For example in Teacher A's class, the challenges of the 
teacher led students to feel responsibility to provide elaborated explanations. For 
example: almost all (89%, Table 1) of the claims expressed by the students in the three 
episodes were reasoned and eventually turned to full-fledged arguments. In Teacher 
B's class, the elaboration of explanations was not under the responsibility of the 
students but of the teacher. Only 18% of the students' claims, in the three episodes in 
class B, were reasoned. Interactions between the teacher and her students appeared as 
chains of short questions and short claims as answers (70% of the students utterances 
in the class of Teacher B were claims, and 47% in the class of Teacher A), punctuated 
by social validation of correctness. Quite naturally, correctness was valorized rather 
than processes that led to the (correct) result. 
 
 



2-79PME 35 - 2011

Azmon, Hershkowitz, Schwarz 

 
1- 7 PME 35 - 2011  

The transformatory character of argumentation.  
The enactment of dialogic-dialectical talk (like for Teacher A) in a succession of tasks 
designed to encourage knowledge construction, led students to discuss mathematical 
principles under the orchestration of the teacher and to co-construct them with the 
teacher and when left alone in small groups. It turns then that there are strong bonds 
between teacher-led dialectic argumentative talk and subsequent co-construction of 
mathematical principles/concepts.  

Impact of teacher-led argumentative talk in the classroom, on subsequent 
individual argument elaboration. 
 This finding suggests that the impact is deep and subtle. For example: we show the 
analysis of question 9b in the final exam, where a high percent of students in all 
classrooms correctly answer to the questions on a claim level, and try to explain the 
claims. However, the explanations given by the students of Teacher A, a teacher who 
adopted a dialectical-dialogical style in her interactions (as reflected on her distinctive 
patterns of interaction), were different from those by the students in Teacher B 
classroom not because more or less of the answers were correct, but in the fact that 
those answers integrated more mathematical principles and were richer. This result 
resonates with recent studies that show the beneficial effects of dialectical-dialogic 
argumentation on conceptual change (Asterhan & Schwarz, 2009) – the fact that 
patterns of interaction such as those that took place in the classroom of Teacher A, 
deepened understanding rather than consolidated acquisition of factual knowledge. 
The present research suggests the importance of the mediation of the teacher. This 
mediation seems to be more productive when the teacher acts as an agent that 
negotiates meanings with students. The argumentative patterns that characterize talk 
can either give birth to meaningful constructions or to senseless artifacts. The findings 
suggest the importance of in-service teachers' programs focusing on the animation of 
classroom discussions for the sake of the promotion of mathematical reasoning and for 
delegating responsibility to students on their learning. 
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This paper addresses contributions that dynamic geometry systems (DGSs) may give 
in reasoning by contradiction in geometry. We present analyses of three excerpts of 
students’ work and use the notion of pseudo object, elaborated from previous 
research, to show some specificities of DGS in constructing proof by contradiction. In 
particular, we support the claim that a DGS can offer “guidance” in the solver’s 
development of an indirect argument thanks to the potential it offers of both 
constructing certain properties robustly, and of helping the solver perceive pseudo 
objects. 

INTRODUCTION 
Literature shows that although much research has been conducted on the themes of 
proof and argumentation in mathematics education, rarely do the studies focus on 
particular proof structures, such as proof by contradiction. The research centred on 
proof by contradiction has pointed to various difficulties it presents for students (see 
for example, Antonini & Mariotti, 2008; 2007; Mariotti & Antonini, 2006; Wu Yu et 
al., 2003; Leron, 1985) especially the difficulties related to the formulation and 
interpretation of negation, to the managing of impossible mathematical objects, to the 
gap between contradiction and the proved statement. 
Some literature takes into consideration contributions that dynamic geometry systems 
(DGSs) may give to students’ production of indirect arguments. Within the very little 
literature in this area, there is a study conducted by Leung and Lopez-Real that 
describes a proof by contradiction produced by two students working in a DGS. This 
case study triggered the development of a framework on theorem acquisition and 
justification in a DGS that the authors used to put together a scheme for “seeing” 
proof by contradiction in a DGS (Leung & Lopez-Real, 2002). We will illustrate 
aspects of this framework that we will make use of and develop further in the 
following section. 
With the present paper we intend to contribute to better describing roles that a DGS 
can have in reasoning by contradiction. We will further elaborate and make use of 
notions from Leung and Lopez-Real’s theoretical framework, in particular that of 
pseudo object, to analyze such roles. Moreover, we will provide analyses of 3 
excerpts of students’ work to show particular construction choices in a DGS can 
“guide/promote” significantly solvers’ development of indirect arguments/reasoning 
by contradiction.  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 81-88. Ankara, Turkey: PME.
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METHODOLOGY 
The data presented was collected during two different studies on the role of a DGS in 
processes of conjecture-generation and proof in the context of open problems in 
geometry. One study (Leung & Lopez-Real, 2002) was conducted with Form 4 
(Grade 10) students in a Band One secondary school in Hong Kong. (Hong Kong’s 
secondary schools are streamed according to students’ ability. A Band One school is 
for the most able students). The second study (Baccaglini-Frank, 2010; 
Baccaglini-Frank & Mariotti, 2010) was conducted with Italian high school students 
from three different licei scientifici, between the ages of 16 and 18. The participants 
of both studies had been working with dynamic geometry for at least a year prior to 
when the studies were carried out. Data was collected in the form of: audio and video 
tapes and transcriptions of the introductory lessons; Cabri-files worked on by the 
instructor and the students during the classroom activities; audio and video tapes, 
screenshots of the students’ explorations, transcriptions of the task-based interviews, 
and the students’ work on paper that was produced during the interviews. 

THE NOTION OF PSEUDO OBJECT 
When working with paper and pencil and reasoning by contradiction, slight 
inaccuracies in the drawing allow the figure to represent properties, which a proper 
construction would not permit. For example, on paper, with no trouble one can 
assume to have drawn a triangle, of which two bisectors intersect at a right angle. In 
this case one may easily be unaware of his/her assumption of contradictory 
properties, and it is completely up to him/her to become aware of a contradiction.  
In a DGS a similar situation to that described in paper and pencil occurs when the 
solver constructs a figure with a robust property (Healy, 2000) while mentally 
imposing on it a contradictory property without a robust construction. By robust 
construction in a DGS, we mean construction that can keep the desired properties of a 
figure invariant under dragging. What happens if, instead, the solver attempts to 
construct both properties robustly? However, the solver may be uncertain whether 
such a construction is possible or not, or s/he may realize the impossibility when 
interpreting the DGS’ feedback. Such feedback includes the making explicit, 
robustly, of all properties that are derived from the properties constructed robustly 
during the construction steps of the figure. This is the case we find particularly 
interesting. In this paper we report on ways of reasoning that seem to be induced by 
the feedback provided by the DGS.  
As mentioned above, in a DGS no constructable-figure can be realized by robust 
contradictory properties. So to represent a geometrical object with contradictory 
properties (at least) one property must not be constructed robustly, but only 
conceived (or projected onto the figure) by the solver. Therefore the solver is 
completely in charge of conceiving any contradiction. In this paper, we will present 
three DGS cases of (attempts of) reasoning by contradiction by students that involve 
solvers projected non-constructable properties onto geometrical figures. To analyze 
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these cases, we further elaborated Leung and Lopez-Real’s the notion of pseudo 
object (2002) in a dynamic geometry environment as follow:  

A pseudo object is a geometrical figure associated to another geometrical figure either by 
construction or by projected-perception in such a way that it contains properties that are 
contradictory in the Euclidean theory. 

We stress that the notion of pseudo object is solver-centered. Thus, the same dynamic 
figure can be a pseudo object for one solver, but not for another, depending on 
whether the solver has projected upon the geometrical objects contradictory 
properties. In this sense, any dynamic figures defined through a construction have the 
potential of becoming pseudo objects for any given solver. In DGS, this potentiality 
can be realized through a cognitive process of dragging in which conceiving a pseudo 
object is critical in reasoning by contradiction. To facilitate the analyses of this 
process, we introduce a notion of proto-pseudo object: 

A proto-pseudo object is a geometrical object that has the potential of becoming a pseudo 
object – such potential is exploited when the solver perceives a property of such object as 
being contradictory with respect to another of its properties. 

Thus a proto-pseudo object can become an actual pseudo object once (and if) the 
solver consciously projects a property upon it that s/he is aware of as contradictory. 
We will use the notions of pseudo object and proto-pseudo object to show how DGSs 
seem to provide cognitive support in (1) offering the potential of constructing certain 
properties robustly, (2) generating feedback in the form of robustness of all properties 
that are consequences of the constructed ones, (3) and the possibility of dragging 
parts of the dynamic figure to explore compatibility between the robust properties 
and those the solver has projected upon it. As we shall see in the following cases, 
these features seem to guide solvers to conceiving pseudo objects in processes of 
reasoning by contradiction. 

THE ROLE OF DYNAMIC GEOMETRY IN THREE SOLUTION 
PROCESSES  
Consider the following task from Lopez-Real and Leung’s study (2002): 

Given a quadrilateral in which the sum of the pairs of opposite angles is 180°, prove that 
it’s cyclic. 

This task was given to the participants in Leung and 
Lopez-Real’s study. We report on Hilda and Jane’s solution. 
Excerpt 1: the case of Hilda and Jane 
Hilda and Jane construct a quadrilateral ABCD of which the 
vertices A, B, D lie on the same circle with center E, while 
C, D, B lie on a distinct circle with center F. Then they mark 
the measures of the angle in A and in C as a and 180°- a, 
respectively, and proceed to construct the quadrilateral 
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C1

a

180-a

A
B

C
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Figure 1 
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BEDF (Figure 1). If the labeling were Euclidean-correct this construction would not 
be possible since the circles would coincide, thus ABCD is biased and it leads to the 
existence of a non-degenerate quadrilateral BEDF, which Hilda and Jane conceive as 
a pseudo object. This can be seen both in Jane and Hilda’s proof, and in an excerpt of 
the transcript of a follow-up interview1 the researchers had with the girls. 
Statement in the proof:  

“From the diagram we see that it has a contradiction as the sum of the opposite angles of 
the blue quadrilateral (EBFD) is 360° which is impossible.” 

Excerpt of the interview 
7 Int:  So before you did that presumably you first of all drew a circle through 3 

of the points and then you did the same for these 3 points. 
8 H: H: Yes. 
9 Int: So then you marked these 2 centers. What did you say after that?  
10 H: Because the angle sum of a quadrilateral is 360 and these two (referring to 

E and F) already add up to 360 so this is not possible. 

Our analysis suggests that the quadrilateral ABCD is initially a proto-pseudo object, 
and it becomes a pseudo object for the solvers once EFBD is perceived as “not 
possible” (10). EFBD possesses two contradictory properties which the solvers 
perceive simultaneously as (1) a quadrilateral with 4 angles whose sum is 360 
degrees (as all convex quadrilaterals), and (2) a quadrilateral in which the sum of 
only two angles is 360 degrees [statement in proof and 10]. This pseudo object EFBD 
contains the contradiction necessary for a proof by contradiction. The proof is 
completed by noticing that when EFBD is being dragged to degenerate (disappear) 
the two circles [C1 and C2 in Figure1] coincide. In other words, the presence of the 
pseudo object implies the negation of the conclusion of the statement to prove. By 
arriving at the proof, the solvers are aware that their original quadrilateral ABCD also 
possess contradictory properties; that is, (1) its four vertices are on different circles 
and (2) the sum of two opposite angles is 180°. Hence the proto-pseudo object ABCD 
becomes a pseudo object.  
The support offered by the DGS (in this case, Cabri) consisted in guiding the solvers’ 
transition fof ABCD from its status of proto-pseudo object to a genuine pseudo 
object. In this case the transition occurred through the perception of a pseudo object 
(EFBD) associated with ABCD. Finally, it seems quite remarkable that Hilda and 
Jane decided to construct two distinct circles [line 7] through two sets of thee points 
of the original quadrilateral, showing the case in which ABCD is cyclical in terms of 
coincidence of the two circles via dragging in DGS. In particular, they transform the 
problem, which does not contain any impossibility in its original statement, into a 
problem of constructing something impossible. This is the type of problem that 
Stefano and Giulio and Tommaso and Simone were given in the study by 
Baccaglini-Frank and Mariotti. 
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Excerpt 2: the case of Stefano and Giulio 
Similarly to what we described above, in the following cases awareness of the 
presence of a pseudo object determines the impossibility of a construction, thus 
validating a statement such as “this construction is impossible.” In the following two 
cases we encounter similar solution processes to those described by Mariotti and 
Antonini (2009). The solvers conceive a (or various) “new” object(s) that are used to 
“show” a contradiction. However, having the DGS at their disposal, the solvers make 
use of it in significant ways that we will describe. In the transcripts below “Int” refers 
to the interviewer, and the bold letters refer to the solver who is holding the mouse. 
The task: 

Answer the following question: Is it possible to construct a triangle with two 
perpendicular angle bisectors? If so, provide steps for a construction. If not, explain why. 

Giulio and Stefano immediately advance the hypothesis that the construction is not 
possible, but quickly transit to constructing a figure in 
Cabri to try to explain their intuition. 

1  Ste: No, the only way is to have 90 degree 
angles... [unclear which these may be, as 
Ste was not constructing the figure nor 
looking at the screen.] 

2  Giu: That for a triangle is a bit difficult!! 
[giggling]…So...they have to be. 

3  Ste: If triangles have 4 angles... 
4  Giu: no, I was about to say something silly... 

      Immediately Giulio starts constructing two 
perpendicular lines and refers to them as the bisectors of 
the triangle (Figure 2). 
5  Ste: Yes, these are bisectors, right? 
6  Int: Yes. 
7  Giu: So, now we need to get... bisectors... how 

can we have an angle from the bisector? 

[…] 
8 Giu:  the symmetric image? … It's enough to do 

the symmetric of this one.. 
So the solvers have constructed a figure with two robust 
angle bisectors that intersect perpendicularly (Figure 3). 
9 Ste: The only thing is that this [Fig. 3] isn't a triangle! 
10 Giu: Therefore now we could do like this here [drawing the lines through the 

symmetric points and the two drawn vertices of the triangle]  
11 Int: Yes. 

 

Figure 3 

Figure 2 
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12 Ste: It's that something atrocious comes out! 
13 Giu: And here...theoretically the point of intersection should be ....the 

points...very small detail...hmmm 
[…] 
14 Ste: No, we proved that this is equal to this [pointing to angles], and this is 

equal to this because they are bisectors... these two are equal so these are 
parallel. 

[…] 
15 Ste: These two [referring to the two parallel lines] have a hole so it is not a 

triangle. 

We interpret this episode as follow. The solvers use the DGS to construct two 
perpendicular lines and the symmetric image to construct the property of them being 
bisectors. Once the construction is completed they discern properties that are 
consequences of these two robustly constructed properties, and consequently notice 
that “the figure must have two adjacent angles with two parallel sides” [9-15]. As 
soon as they recognize “a hole” in the triangle-to-be [15] the pseudo object exists: 
that is, a figure that has a “base” and two parallel sides, and that has the property 
“triangle” projected onto it. The appearance of this pseudo object reveals to the 
solvers the impossibility of accomplishing a correct robust construction and thus 
allows them to solve the problem. 
Excerpt 3: the case of Tommaso & Simone 
Tommaso and Simone proceed by constructing a proper 
triangle and two of its bisectors. Then they mark an angle 
formed by the bisectors and start dragging one vertex of the 
triangle in the attempt to get the measure to say “90°” (Figure 
4). 

1  Sim: It's endless!! 
2 Sim:  91.2 [reading the measure of the angle between 

the bisectors.] 
3  Sim: Well, yes, in any case it will come out! 
4  Tom: How do you know? maybe... 
5  Sim: Well, of course! It's not like it can go on forever! 

At the end it will make it to be 90! 

[…] 
6 Tom:  I don't think it is possible. 
The solvers seem unsure about the possibility of constructing 
such a triangle, but now seems to think it is not possible. They 
start reasoning differently. 
7  Sim: Eh, it is impossible to construct it! Because... I only have these two 

bisectors. 

 

         

91,0 o

Figure 4 



2-87PME 35 - 2011

Baccaglini-Frank, Antonini, Leung, Mariotti 

 

PME 35 - 2011 1- 7 

8  Int: Hmm. 
9  Sim: How can I .... 
10  Sim: Since...the perpendicular bisectors...it means here there is a rhombus...or a 

square 
11  Sim: If like here...[he draws a segment]…Here...there were...a rhombus...this 

would be 90, 90...or a square. And therefore...then…Eh, I mean, if this is 
like a rhombus, no? here there is 90 and here there is 90, and these are the 
bisectors. 

12 Sim:  And then ...and then I bring these up [pointing to the vertical-looking 
sides of the triangle] and I find their point of ...of intersection. 

With respect to Stefano and Giulio, here the solvers choose a different pair of 
properties to construct robustly: (1) the triangle, (2) the bisectors. They do not 
construct but (assume) project the property “perpendicular bisectors” onto the figure. 
Nevertheless they are not able to conceive a contradiction in it or in the new object 
they conceive: the rhombus. Hence this rhombus is a proto-pseudo object, and the 
solvers do not seem to make the transition to conceiving it as a pseudo object. It is 
significant that the solvers say “it has 4 right angles” [11] pointing to the figure that 
even has a marked measure of one of the angles, and the measure says “ 91° ”!! No 
contradiction among the properties of the “rhombus” is perceived and the solvers are 
not able to reach a conclusion1. They seem to keep on believing that the triangle 
always has a third vertex “somewhere up high”.  
When we compare Excerpt 2 and Excerpt 3, a determining difference, from a 
cognitive point of view, is that in one case the solvers conceive a pseudo object, in 
the other they do not. This can be explained by the solvers’ different choice of the 
properties to construct robustly. The choice determines the type of guidance that the 
DGS can provide to reasoning by contradiction. In Excerpt 3, starting from the 
triangle and trying to obtain perpendicularity of the bisectors through dragging allows 
the solvers to use the DGS (only) as a sort of “amplified paper-and-pencil drawing” 
in that it allowed the exploration of many cases without having to redraw the figure. 
On the other hand, in Excerpt 2 the DGS generates two robust parallel lines as a 
consequence of the constructed properties, thus “guiding” the solvers in perceiving 
their “a hole” in the triangle-to-be and thus such object as a pseudo object. 
CONCLUSION 
We have introduced the concept of pseudo object and illustrated how it can contribute 
significantly to reasoning by contradiction in Euclidean geometry. In particular, in a 
DGS environment, construction and dragging strategies leading to degeneration of a 
pseudo object could guide to ascertainment of a geometric theorem or property. The 
hybrid nature of a pseudo object seems to be conducive to formulating an exchange 
of meaning between dynamic visual reasoning in DGS and theoretical reasoning in 
the Euclidean axiomatic system (in this case proof by contradiction). We have shown 
that there can be a strong subjective element in the process of producing a 
geometrical proof (or a convincing argument) via the solver’s conscious choices of 
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construction and dragging in a DGS. We hope this paper will open up a window of 
discussion to view proof in dynamic geometry environment in ways that can enrich 
the formal deductive reasoning approach. 
Notes 
1. We advance the hypothesis that if they had been able to conceive the rhombus as a 
pseudo object, they would have been able to solve the problem geometrically (instead 
they resort to an algebraic explanation that they cannot coordinate with what they see 
on the screen). 
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The successful completion of the process of students’ achieving the knowledge of 
mathematics is linked directly to the quality of a teacher’s understanding of teaching 
mathematics. In this process, knowing the student—a component of the teacher’s 
knowledge of teaching mathematics—and its sub-component of utilizing the student’s 
prior knowledge prove to be critical to the overall knowledge base teachers should 
have. In this study, classroom observations of pre-service primary school teachers 
were performed to evaluate the teacher candidates’ use of their prior knowledge; 
their lesson plans were examined, and individual interviews were conducted.  It was 
concluded that, although teacher candidates by and large believe that the student’s 
prior knowledge should be taken into consideration during the implementation of a 
course, they lack the necessary information and experience to know how they might 
accomplish this in their own classes. 
1. INTRODUCTION 
Studies on teacher knowledge that Shulman and his associates conducted decades ago 
still prove to be current (Shulman, 1986; Grossman, 1988; Magnusson et al. 1999; 
Ann et al., 2004; Ball, 2008). Shulman (1986) divided teacher knowledge into three 
categories: content knowledge, pedagogical content knowledge and curricular 
knowledge. Shulman defines the knowledge that the teachers are expected to have to 
make sure the students attain the content information as pedagogical content 
knowledge. The successful completion of the process of students’ achieving the 
content knowledge (knowledge of mathematics) is linked directly to the quality of a 
teacher’s knowledge of teaching the content (mathematics). 

 
As can also be observed in the descriptive chart above, one of the most essential 
elements within the category of pedagogical content knowledge is familiarity with the 
knowledge base of one’s students. This knowledge entails making subjects that are 
2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 89-96. Ankara, Turkey: PME.
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routinely taught in mathematics easy for a student to comprehend as the teacher gets 
to know the student (Baki & Baki, 2010). Students carry their previously-acquired 
ideas, perceptions and past experiences to the classroom. If a teacher is aware of 
these notions and takes them into consideration when determining the approaches, 
strategies and practices to be implemented in the classroom, a better organization of 
learning and teaching environment may be realized. This all hinges on the teacher’s 
knowing his/her students well. Grossman (1998) underlines this fact in his study and 
argues that the student’s prior knowledge of the subject matter has a direct effect on 
the teacher’s actions and execution in the classroom. Thus, the component of knowing 
the student, which is part of the teacher’s pedagogical content knowledge, and its 
sub-component of utilizing the student’s prior knowledge take an important place 
within the framework of content with which the teacher should be proficient. 
Mopolelo (1999) observed a group of sophomore primary school teacher candidates 
during their instructional activities in the classroom environment and tried to find out 
about their common features in terms of their approaches, behaviors and performance 
in teaching mathematics. The study led to numerous important findings. For instance, 
it was discovered that most teacher candidates were unqualified in understanding the 
students’ conceptual errors and implementing the type of tasks and activities that are 
necessary to correct such errors. This demonstrates the fact that knowledge of 
mathematics is not  the only guarantee of effective teaching. Magnusson (1991), in 
his study with teachers, argued that teachers’ content knowledge would not, by itself, 
be sufficient in estimating the students’ prior knowledge of the subject matter and in 
arranging instructional activities with the students’ prior knowledge in mind in order 
for the desired learning to emerge. Ann (2004) compared the pedagogical content 
knowledge of primary school teachers in mathematics courses in China and the 
United States. With this purpose, he examined from many angles the ways in which 
primary school teachers employed their knowledge of teaching mathematics in order 
to understand and improve the students’ mathematical thinking. At the end of the 
study, it was concluded that the teachers who were successful in recognizing the 
students’ mathematical analytical thinking, identifying conceptual misunderstandings 
and facilitating the students’ learning from both groups, regardless of their diverse 
cultures, were those who effectively made use of pedagogical content knowledge 
along with content knowledge. Hence, as was the case with other studies, this study 
emphasized that teachers’ content knowledge and their pedagogical content 
knowledge could not be detached from each other in the implementation of effective 
classroom activities and in designing tasks that would aid students’ learning. 
Işksal (2006) investigated, as one of the sub-problems of his study conducted with 
pre-service mathematics teachers, how informed the teacher candidates were 
regarding the beliefs and conceptual misconceptions of 6th and 7th grade students 
about fractions. Işksal’s study revealed that, even though the teacher candidates were 
proficient in carrying out the procedures related to fractions, they were fairly inexpert 
in the areas of describing the concepts to the students in depth and explaining the 
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causes of potential conceptual misconceptions of students. All these studies 
demonstrate to us that teachers and teacher candidates have deficiencies pertaining, in 
a general sense, to knowing the students, and more specifically, with regard to their 
perceptions of the students’ prior knowledge, beliefs and difficulties. This review of 
literature also allows us to see another vital point, which is the need to observe how 
these limitations of teacher candidates are evidenced in actual classroom 
environments.  
In schools of education, pre-service teachers are habitually encouraged, at least in 
theory, to use student-centered approaches. However, before they initiate their 
practicum in schools, they are not provided with sufficient opportunities to acquire 
the training and experience regarding how they should get to know their students and 
how they can organize their classes around their students’ prior knowledge (Baki & 
Baki, 2010). Because the teacher candidates of today will become the teachers of 
tomorrow, pedagogical content knowledge of teacher candidates should be explored 
through in-depth studies; by doing so, it may be possible to implement programs in 
schools of education that would support teacher candidates in this direction. In this 
specific study, the answer to the question of “How do pre-service primary school 
teachers utilize the knowledge of identifying students in mathematics teaching 
endeavors in their field sites?” will be researched.  
2. METHOD OF THE STUDY 
This study was conducted with 4 teacher candidate participants taking the “Teaching 
Practicum” course in the Primary Teaching Program at the Department of Primary 
Education in the Fatih School of Education during the 2009-2010 school year. The 
study is a special case analysis within the framework of qualitative research. 
Observations, field notes, lesson plans and interviews were employed as the data 
collection techniques in the research. Each of the teacher candidates were observed 
for two class hours during the entire semester in 5th grade mathematics courses they 
taught on varied days, and their lesson plans were scrutinized. A voice recording 
device was used during the observations of the teacher candidates’ mathematics 
courses, and at the same time, field notes were taken by the researcher. Interviews 
took place right after the activities of the teacher candidates in the school 
environment. Qualitative data that were obtained from different sources were 
analyzed using the triangulation method considering the sub-themes of the study. 

3. FINDINGS 
In this study carried out with primary school teacher candidates, the aim was to 
evaluate the standing of the teacher candidates on the topic of “being familiar with 
the students’ prior knowledge and linking the students’ past and new information” as 
knowing the student component of the pedagogical content knowledge. Data that 
were collected confirm that teacher candidates are aware of the need to take into 
consideration the students’ prior knowledge in the process of teaching and learning 
that is aimed at teaching a new skill. Yet, it is clear that teacher candidates experience 
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difficulties in deciding to what extent the presence of students’ prior knowledge of a 
topic should be questioned. Some teacher candidates consider the students’ prior 
knowledge to be similar to that of the previous class. It is believed that this repetition 
should be adequate to motivate the students of the new class. For instance, indications 
of this thought is visible in the course Prospective Teacher-1 (PT-1) planned and 
conducted to teach the skill “finding the value of the whole based on a given 
fraction.” As can be observed in the dialogs below, PT-1 launched the lesson without 
questioning whether the topics that would set the groundwork of the subject matter he 
would teach are known by the students: 
PT-1:   You have studied the notions of improper/compound fractions and equivalent 
fractions in past lessons. Today, we will find the value of the whole based on a given 
fraction. Kids, how many calories would be in a whole apple of which one fifth is 25 
calories? 
PT-1 got an apple in his hand to be able to explain the problem and directed the 
following questions to the class: 
PT-1:   Is this apple one whole piece? 
Students:   Yes. 
PT-1:   I divided the apple into five. What does one piece represent? 
Students:   One fifth. 
PT-1:   If the one fifth is 25, I multiple 25 by 5 to find the five fifth. 
To explain this, PT-1 drew the following model onto the board: 

    25     
                                    1/5 
PT-1:   Where is 5? 
Students:   In the denominator. 
PT-1:   5x25 = 125.  As you can see, I multiplied 25 by the denominator. 
It cannot be affirmed that the class fully understood why the given is multiplied by 
the denominator. If PT-1 had initiated the lesson with the problems answered in the 
previous years, this would have given the teacher candidate an idea about what the 
students already knew. Because the students could not relate the newly learnt 
information to their prior knowledge, there were uncertainties in the classroom. It 
was clear that the teacher candidate had trouble pulling the class together and 
organizing the lesson. 
Another pre-service teacher, PT-4, prepared a course outline toward teaching the 
objective of “classifying angles based on their measures.” He tried to motivate the 
students by reminding to them the content of the class taught the previous day. 
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Because he would classify angles according to their measures, he introduced the 
protractor. 
PT-4:   When measuring angles, we use a protractor. Here is our protractor. Take 
your protractors out and look at it. What do you see on it? 
Student:   There are numbers up to 180.  
PT-4:   You see a line right across the 90 degree mark. That is the center of the 
protractor. 
PT-4 drew an angle onto the board and demonstrated to the class, using the protractor 
in his hand, how an angle should be measured. It was observed that the students did 
not understand why the line the teacher referred to as the center of the protractor was 
moved to the vertex of the angle. As is evident here, PT-4, like the other teacher 
candidates, did not pay enough attention in arranging the course to what prior 
knowledge the students had. The teacher candidate treated the students as though they 
knew about angles and elements of angles, and during the measurement process, he 
gave explanations as if the students already knew the terminology regarding the 
vertex and degree of an angle. The teacher candidate failed to comprehend the need 
to check in advance of the class whether the students were familiar with the notions 
of angles and constituents of angles. This situation brought about confusion during 
the course of instruction. When the teacher candidate realized that the students did 
not fully understand what they were being told, he went back and started to tell them 
about the concept of angles. In the interview conducted after the lesson, PT-4 
expressed that he had though the students would have known these concepts. 
The majority of teacher candidates report that they have deficiencies in figuring out 
what students’ prior knowledge about a topic should be and that they cannot guess 
before teaching the lesson what the students knew about the subject. The difficulty 
that teacher candidates have is how to discern whether the actually students have the 
knowledge that they are assumed to have prior to the teaching of a topic and how this 
previous knowledge can be linked to the new knowledge. 
When data concerning the knowledge of the teacher candidates about connecting the 
students’ past and present information is scrutinized, it is obvious that teacher 
candidates have difficulty in referring to previous material in the course of teaching a 
subject and in relating the new topic to the students’ prior knowledge. 
Correspondingly, it was discovered that some of the teacher candidates acted in an 
extremely unprofessional manner in such circumstances. 
PT-2, who prepared and implemented a lesson plan intended for the acquisition of the 
objective of “finding the missing factor in a multiplication operation that has a 
product with a maximum of four digits” in the 5th grade mathematics teaching 
curricula, verified the students’ knowledge of multiplication at the start of the lesson. 
Following the execution of a few simple examples, he asked the students to find the 
missing factor in the multiplication operation he had written onto the board. 
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PT-2 stated that he would demonstrate a different strategy and added that they would 
find the number at the ones place by diving 645 by 215 and the number at the tens 
place by dividing 430 by 215. It was observed that the students could not understand 
why they divided 645 by 215. The teacher candidate appeared to have presumed that 
the students would be able to find the omitted piece in the multiplication operation 
with the help of such a strategy as he believed that the students knew the connection 
between the division and multiplication operations. The pre-service teacher stated 
that he had chosen the example in the teacher guide book and he had not foreseen that 
the students would have experienced such a difficulty in understanding this strategy. 
Because the students did not see a connection between past lessons and this new 
knowledge, they felt that the problem was too complicated, so they began to feel lost 
during the lesson. 
PT-3 was more successful than the other teacher candidates in taking into 
consideration the students’ prior knowledge during the initial phase of the lesson and 
in conducting the lesson by relating it to the students’ prior knowledge. PT-3 
prepared a lesson plan aimed at obtaining the competence of “being able to divide 
numbers with a maximum of four digits by three-digit numbers.” PT-3 reminded the 
students about the operation of division through concrete modeling during the 
introduction stage to the lesson. In the beginning of the lesson, he had the students 
perform divisions with and without remainders with some hazelnuts he had brought 
to the classroom. He demonstrated the difference between divisions with and without 
remainders, and then reiterated the terminology of division. However, as the lesson 
progressed, it was evident that the teacher candidate had difficulty establishing a link 
between the previous information the students should have and the new topic. As a 
getaway, he started to explain the operation of division on the board like it was 
presented step-by-step in the guide book; he assumed that the students knew division 
in this fashion and thus, went on with his explanations. When PT-3 attempted to 
explain, together with its associated structure about the notion of digits, the rules of 
division that the students already knew, things once again started to get mixed up. 
What PT-3 should have done in this situation was to establish a connection with the 
students’ prior knowledge through breaking the problem down into smaller steps and 
finding each digit in the answer one at a time, starting with the ones place. These 
limitations, as was the case in other teacher candidates’ classrooms, caused problems 
for the organization of PT-3’s lesson as well. 
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4. CONCLUSIONS 
Although the teacher candidates were generally aware of the obligation to take into 
consideration the students’ prior knowledge in the process of teaching and learning 
that is prepared, instructed and intended for teaching of a skill, they did not feel the 
need to question the existence of the students’ prior knowledge in the course of the 
lesson as they considered the students to know the relevant information. This study 
indicates that the teacher candidates ignored the students’ prior knowledge due to the 
traditional belief that knowledge can transferred to the students directly by the 
teacher. The teacher candidates, although they shifted to a new topic at the beginning 
of the lesson, considered starting the lesson by making a reference to the previous 
lesson to be satisfactory and neglected to prepare groundwork for the new subject 
matter. Because there is a progression in learning the topics in mathematics, this 
deficiency led to disorder in the teacher candidates’ lessons and therefore caused the 
lessons to be unproductive. Teacher candidates declare that they experience 
difficulties during the lessons, but they are unable to identify what leads to this. The 
teacher candidates justify the difficulties they experience in most lessons with 
statements such as these students are not our permanent students; we cannot know 
what they do or do not know, and this is a challenge for us. Yet, the problem here is 
not that the students are not their regular students, but instead by the fact that the 
teacher candidates are not familiar enough with what the students should already 
know during the introductory stage to the topic, and that they are poor in determining 
the related topics before the teaching of a mathematical notion, topic or operation and 
in terms of the skill of connecting the topics. 
The fact that pre-service teachers do not begin the lesson with what the students 
previously know and they assume that the students already have prior knowledge 
about the topic leads to problems for teacher candidates as the lesson progresses. 
Although pre-service teachers might identify the issue and attempt to clarify things to 
piece the lesson together, this turns out to be not effective since the students are 
already baffled. As revealed here, the school environment provides teacher 
candidates with opportunities for further learning. However, because the teacher 
candidates themselves are still in the process of learning in this practicum period, 
their practices before the students should be monitored and critiqued more often by 
their university supervisors and teachers. Although data in this study were collected 
in a 1-year long teaching practicum, the pre-service teachers’ difficulties in terms of 
getting to know the student persisted and were the same at the end as they were at the 
beginning of the school year. As a suggestion, lesson plans that are put into practice 
by the teacher candidates can be carefully looked over by their university and school 
supervisors, and measures to manage the issues regarding knowing the students can 
be taken. In this way, the teacher candidates will be aware of their weaknesses and 
will become better at dealing with and eliminating these difficulties. 
Not being able to detect the problems experienced by the students and failing to see 
that the topic is not clear to the students appear to be critical shortfalls in terms of the 
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pre-service teachers’ knowledge of students. It is essential that activities to purge 
such deficiencies are included in the content of courses in schools of education more 
often. Because the teacher candidates’ micro-teaching applications that are carried 
out in college classes, such as teaching of mathematics, do not have the student 
component, they do not feel the need to establish a connection between the topics in 
accordance with the students’ prior knowledge, and therefore, the dimension of 
knowing the student is missing in these courses. It is essential that, before teacher 
candidates start their fieldwork, authentic settings that are similar to real-life 
classroom environments, bringing them face-to-face with students are arranged, and 
that the lesson plans prepared for micro-teachings with the students’ prior knowledge 
in mind are meticulously evaluated. 
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STUDENTS’ UNDERSTANDING OF THE NEGATION OF 
STATEMENTS WITH UNIVERSAL QUANTIFIER 
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University of Eastern Piedmont “A. Avogadro”, Italy 

 
This paper explores difficulties related to negating a verbal statement with an 
occurrence of the universal quantifier. The study, carried out with two hundreds and 
two undergraduate science students, shows that the interference of ordinary speech is 
a major cause of failure. Some aspects of colloquial registers affecting students’ 
performance were identified. In particular, data shows that lack of awareness of the 
functions of mathematical language negatively influences the use of logical operators 
and quantifiers. 

INTRODUCTION 
Predicate calculus is one of the basic aspects in understanding mathematics and many 
studies developed in this area, ranging from childhood to undergraduate level and 
from very different perspectives (see e.g. Deloustal-Jorrand 2002, Hoyles and 
Küchemann 2003, O’Brien et al. 1971, Wason 1960, Zepp et al. 1987). Mathematical 
reasoning is affected, on the one hand by logical operations such as implication, 
negation, conjunction, etc. and on the other hand by the use of quantifiers.  For 
example Dubinsky (1991) wrote “A major difficulty in dealing with the usual formal 
definition of the limit is the need to cope with the quantifiers”. Hoyles and 
Küchemann (2003) and references therein stressed the importance of the role of 
logical implication in proving processes. Lin et al. (2003) identified the ability of 
negating a statement as the first task on processing proof by contradiction.  
In this framework this study deals with the logical operation of “negation” and 
addresses this topic by means of a functional linguistic approach. In particular the 
study is focused on the ability at negating a statement with an occurrence of the 
universal quantifier. We have only considered statements given as verbal texts. The 
aim of the study is to explore the interference of everyday language with the 
mathematical interpretation of such statements.  The following research questions are 
addressed: 

• Which factors of colloquial speech affect students’ behaviour? 
• Are students aware of the role of mathematical language and in particular of 

logical rules when facing negation of statements?     
Since the study was carried out in Italian language the results refer to the interference 
of colloquial Italian.  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 97-104. Ankara, Turkey: PME.
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THEORETICAL BACKGROUND 
Many studies in educational mathematics pointed out the interference of everyday 
language with mathematical language as an element of difficulty in mathematics (see 
e.g. Tall 1977, Cornu 1981, Mason & Pimm 1984, Ferrari 2004, Kim et al. 2005, 
Bardelle 2010). Such interference is addressed in this paper by means of a functional 
linguistic approach (Halliday 1985) applied to mathematical language (see e.g. Pimm 
1987, Morgan 1998 and Ferrari 2004). The pragmatic view highlights the role of 
context (including semantic domain, participants and their purposes) in the building 
of meaning. In this perspective some students’ difficulties may be ascribed to the 
overlapping of colloquial registers and literate registers. A register (Halliday 1985, 
Leckie-Tarry 1995) is a linguistic variety based on use, i.e. a conventional pattern or 
configuration of language that corresponds to a variety of situations or contexts. 
According to Ferrari (2004) registers customarily adopted in advanced mathematics 
are extreme form of literate registers and, contrary to everyday-life registers, usually 
violate cooperation principles (as defined by Grice 1975 and many others). The 
ambiguities inherent in language may arise from both special vocabulary and the 
organization of texts. For example in mathematical registers “some” means “at least 
one” but in everyday-life registers is usually interpreted as “more than one”. This 
holds for the corresponding Italian words 1 too.  The “negation” of a sentence in 
Italian 2 may refer to a particular part of it such as the subject or the verb or an 
adjective while in mathematics “negation” is a logic operator with its rules. For 
example possible negations of the sentence “all the children have played football 
today” are “all the children have played football not today but some other day” 
(negation refers here to the adverb “today”), “all the children have not played football 
but they have played volley today” (negation refers here to the object “football”), 
“only some children have played football today” (negation refers to the subject) and 
so on.    
THE EXPERIMENT 
Subjects 
The experiment was carried out with 202 Italian science (biology, chemistry, 
computer science, environmental science, mathematics) freshman students at 
University of Eastern Piedmont in Italy.  
The results come from some questions submitted to students in a written admission test 
and subsequent interviews. The test was held after two weeks of a precalculus course 
and predicate calculus was one of the subjects of the course. Both the course and the 
test were not compulsory but highly recommended. Moreover students could achieve 
one or two credits according to the results of the test. No debts were given if they failed 
the test but if so they were highly recommended to attend tutoring sessions. 
 
 1 

In Italian: “alcuni” (some), “almeno uno” (at least one) and “”più di uno” (more than one). 
2 

 The same argument holds for English language.
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Tasks 
Four questions were developed for the study. Students were asked to recognize 
equivalent sentences to the negation of statements with a universal quantifier 
( x X∀ ∈  ( )P x  - universal affirmative sentences “All S is T” ). The questions were 
grouped into two categories. a-questions involve negative sentences i.e. the negation 
is included in the sentences. b-questions concern affirmative questions to be denied 
i.e. the negation is not included in the sentences. The questions have a multiple 
choice format with the possibility of multiple responses. Each question has three 
options. A): sentence with negation applied to the subject only ( x X∃ ∈ ( )P x  -  
particular affirmative “Some S is T”). B): the correct one ( x X∃ ∈ ( )P x¬  - particular 
negative sentence “Some S is not T”). C): sentence with negation applied to the verb 
( x X∀ ∈ ( )P x¬  - universal negative sentence “All S is not T”) given in the form “No 
S is T”; this last form is more common in Italian language.  
The following tables present an English translation of the questions.  

Which of the following sentences (multiple choices are allowed) are equivalent to  
“Not all the animals of the farm are herbivore” 

A) Some animals of the farm are herbivore 
B) Some animals of the farm are not herbivore 
C) No animal of the farm is herbivore 

Table 1: Question 1a. 
Which of the following sentences (multiple choices are allowed) are equivalent to 

negating  “All the animals of the farm are herbivore” 
A) Some animals of the farm are herbivore 
B) Some animals of the farm are not herbivore 
C) No animal of the farm is herbivore 

Table 2: Question 1b. 
Which of the following sentences (multiple choices are allowed) are equivalent to 

“Not all the monomials are polynomials” 
A) Some monomials are polynomials 
B) Some monomials are not polynomials 
C) No monomial is a polynomial 

Table 3: Question 2a. 
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Which of the following sentences (multiple choices are allowed) are equivalent to 
negating “All the monomials are polynomials” 

A) Some monomials are polynomials 
B) Some monomials are not polynomials 
C) No monomial is a polynomial 

Table 4: Question 2b. 
Interviews 
Ten students were individually interviewed in order to explore their understanding. 
The interviews were not compulsory and explanations about the experiment were 
given to students before starting the interview. The interviews were semi-structured. 
All students were asked: 1. an a-question if they answered a b-question in the 
entrance test and viceversa; 2. the meaning of “equivalent sentences”; 3. the meaning 
of “negating a sentence”; 4. whether they perceive a-questions and b-questions as 
different queries. Such questions were accompanied by flexible ones aimed at 
explaining students’ reasoning. The students were chosen according to the factor 
analyses of the written responses in order to investigate all the patterns of incorrect 
answers with more than 10% of frequency.  

RESULTS 
Table 5 shows students’ written responses to the four questions. We recall that the 
sample was split into four groups. The groups had a similar number of students and 
each group had to face one of the four questions respectively. In the following tables  
A, B, C denote the options A), B), C) of the questions respectively, AB denotes that 
students had chosen both option A) and B) and so on.  

Item Q1a Q1b Q2a Q2b 
A  4% 0% 15% 9% 
B  24% 32% 28% 14% 
C  8% 32% 4% 36% 
AB 60% 12% 53% 23% 
AC 4% 8% 0% 0% 
BC 0% 16% 0% 16% 
ABC 0% 2% 0% 0% 
Total 100% 100% 100% 100% 

Table 5: Responses to written test. 
As a first results it is clear that the number of correct responses (less than 32%) is 
very low as Table 5 shows. Secondly notable differences on percentages are found in 
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relation to a-questions and b-questions. This leads to the conclusion that a-questions 
and b-questions are perceived as different queries.   
Results on a-questions 
In a-question the high frequency of AB answers (60% in Q1a and 53% in Q2a) has to 
be analysed. All the students interviewed who answered AB explained their choice 
arguments like the one reported below: 

I:                    Why did you choose both A and B [in Q1a]?  
S:                   Not all means some do and some don’t.  

This is a clear example of conversational implicature (Grice 1975) typical of 
colloquial registers and arising from the adoption of cooperation principles. The 
expression “Not all x P(x)” such as in Q1a and Q2a if interpreted in a colloquial 
register suggests the speaker tacitly implies that  “Some x P(x)”. This fact clearly 
conflicts with predicate calculus. These data confirm the results on conversational 
implicature already observed by Ferrari (2004) in a quite similar context. This 
behaviour is probably aggravated by the fact that the meaning of the queries of the 
tasks are not well understood or are underestimated. This is confirmed in the 
interviews. For example  

I:                    What does it mean that equivalent sentences?  
S:                   It means that they say the same thing….they express the same concept. 

shows the typical behaviour to the query of explanations about equivalent sentences. 
Such answers do not contain any reference to the mathematical definition or to any 
other mathematical aspect related to equivalence.  
From the investigation of students’ behaviour on a-questions another factor 
occasionally emerged. It seems that students’ chose A because they applied “not” to 
the subject of the sentences (all the animals, all the monomials). In ordinary Italian 
language, negation can be applied just to a part of the sentence and not to the its 
whole meaning. Also this fact conflicts with mathematical language. The following 
interview describes this phenomenon:   

I: Why did you answered A) to the question 1a that is …..? 
S:  Because “not all” means “some”. 

Moreover at the end of the interview this student, rethinking to question 1a, said  
S: A) is not fine…as a particular case “all the animals are carnivore” can     

be ok with the statement “not all the animal of the farm are herbivore”. 
Before I have reasoned on the meaning of “not all” only. 

Probably the failure of this student stemmed from an imperfect knowledge of the 
logical rules he used to give answers, combined with behaviours arising from 
interference with everyday-life registers.   
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Results on b-questions 
The number of students choosing option C (32% in Q1b and 36% in Q2b) is 
impressive. The same phenomenon was already observed by Lin et al. (2003) in 
English and Chinese. Also this behaviour could be ascribed to the interference of 
colloquial registers. The negation of a sentence is not seen as its complementary but 
as a sentence with the opposite meaning. In particular students seemed to focus on 
the negation of the quantifier “all” that in everyday-life register can be seen as its 
contrary e.g. “none” and not as its complementary “not all”. A student explicitly 
confirmed it in his interview: 

I: Why did you answered C) to the question 1b that is …..? 
S:  Because the negation of “all” is “none”. 

In order to investigate what meaning students gave to negating a statement explicit 
questions were asked them in interviews. Some representative answers are   

S1:  Negation gives an absolutely negative sense. 
S2:  “Negation” is stronger than “not”...negation of something means that all 

the thing cannot be….it is its contrary… “not” may refer to a part only of 
a sentence. 

From these interviews it came out that students talked about negation and the 
quantifiers according to their colloquial usage.   
For what concerns the answer BC, chosen by 16% of the samples both in Q1a and 
Q1b  problems could be ascribed to the colloquial interpretation of the concept of 
“equivalence” as a student explained in her interview: 

S:  Negating “All the animals of…..” means ruling out at least in part the 
truth of “All the animals…”…. If A, B and C are truth then it is not truth 
that “All the animals ” hold. 

Notice that this students chose also option A besides B and C. Some explanations 
were asked her: 

I:  Why did you chose A, B and C? 
S:  C is clear…. B because it says that some animals are carnivore and hence 

it denies “all the animals are herbivore” and A because “some animals” 
means “just some animals” and not all the animals and hence it denies “all 
the animals …..”. 

Also in this case we have a use of the quantifier “some” according to colloquial 
Italian, meaning “just some”, and not to its mathematical sense of “at least one”.  
Results on pragmatic awareness 
All the interviewed students were asked whether they used logical rules taught during 
the course to solve the tasks. Some answers are: 
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S1:  I did not think to the rules…I thought to the meaning of the sentences 
only. 

S2:  I didn’t use rules… these tasks can be solved without logical rules.  I do 
not see what’s the point in using them. 

S3:  Instinctively I don’t use the logic rules … I was not accustomed to doing 
it.  

These answers confirm that these students were not aware of the importance of the 
role that mathematical language plays in solving these tasks.  

CONCLUSIONS 
The result of our study highlights difficulties in recognizing equivalent statements 
involving quantifiers and negation given in verbal forms. From the findings of this 
experiment it might be reasonable to draw the conclusion that the overlapping of 
everyday-life registers with mathematical ones, combined with a lack of awareness of 
the functions of mathematical language, is a major cause of failure in students’ 
performance. In particular the meanings assigned by students to “negation” of a 
sentence and to  “equivalence” of sentences often do not correspond to mathematical 
language but are affected by previous knowledge arising from everyday-life contexts. 
It turns out then that also the formulation of the tasks can influence students’ answers 
as shows the comparison of the results to a-questions and b-questions. The meaning 
assigned by students to quantifiers and their negation is another important issue. Also 
in this case colloquial common sense given to quantifiers and to linguistic 
expressions with quantifiers are a hindrance in their conceptualization. Such 
behaviour is sometimes to due cooperation principles such as conversational 
implicature, typical of ordinary speech. Finally interviews reveal that one of the 
reasons of failure may be ascribed to the fact that students do not think or do not feel 
the need to use logical rules for negating sentences with quantifiers.  
According to the result of this study one has to take into account that language-
related troubles may play a major role in the learning of mathematics and that 
pragmatic awareness should be regarded as one of the basic aspects in the teaching of 
mathematics. 
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Abstract 
We examine pre-service teachers’ considerations in using visual representations of 
multiplication. Based on representations highlighted in the literature, a questionnaire 
for teachers was designed in order to explore the visual representations that they 
would use for explanations in different situations. This questionnaire were distributed 
to 445 pre-service primary/elementary teachers in England (n = 181) and Serbia (n 
= 264). Rasch analysis was used to analyse and modify the coding of teachers’ 
responses. The analysis of the pre-service teachers’ responses highlighted a number 
of issues, such as the influence by teachers’ subject knowledge, limitations in 
teachers’ use of representations, and a difference between teachers in England and 
Serbia in terms of linking representations of multiplication and division. 

INTRODUCTION 
Knowing how to use representations of mathematical concepts in the classroom is an 
important part of a teachers’ specialised knowledge of the subject (Shulman, 1986; 
Ball et al., 2008). Leinhardt et al. (1991) emphasized the importance of 
representations in explanations of mathematics, and also highlighted the need to draw 
on more than one representation of a concept: 

“It is not possible for any one representation to capture all of the salient components of 
the target material … However, certain representations will take an instructor farther in 
his or her attempts to explain the to-be-learned material and still remain consistent and 
useful.” (p.108) 

Representations are also important for students. They provide a link between the 
concrete experiences of students and the more abstract world of mathematics (e.g. 
Bruner & Kenney, 1965; Post & Cramer, 1989; Sfard, 1991; Duval 1999). A 
representation can constrain interpretation by highlighting a particular aspect of a 
concept, thereby supporting the understanding of the mathematical idea (Kaput, 
1991; Ainsworth, 1999). Furthermore, the linking of multiple representations 
constitutes a deeper understanding of the mathematical concept (Ainsworth et al., 
1997; Kaput, 1991): 

“To know a mathematical idea “abstractly” means to have a sufficient rich set of mental 
structures so as to be able to deal with the idea on the basis of relatively few salient 
features either in a notation or in a situation to be modeled.” (Kaput, 1991, p.62) 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 105-112. Ankara, Turkey: PME.
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Johnson-Laird (2005) provides a psychological model for thinking, involving the 
internal manipulation of mental models or representations. Therefore, we can argue 
that in order to develop mathematical understanding and thinking, teachers need to 
provide students with a range of representations for a given mathematical concept. 
Despite the importance of representations however, Pape & Tchoshanov (2001) have 
highlighted the controversy regarding the extent to which learners can access 
mathematical concepts in representations. Researchers such as von Glasersfeld 
(1987), Cobb et al. (1992) and Duval (1999) have emphasized that we cannot make 
assumptions about the ways that students recognise or interpret representations. Our 
existing knowledge affects the way that we interpret representations (Lowe, 1993; 
Cook, 2006) and we need to support students in learning to interpret representations 
(Flevares & Perry, 2001). One way of doing this is to draw on external 
representations which are more likely to be part of students’ experiences. Paivio 
(1969) stated that the more concrete the stimulus or external representation, the more 
likely it is to be associated in learning and memory.  
Therefore, in light of the considerations that teachers need to make in using 
representations with students in the mathematics classroom, the aim of this present 
study was to examine pre-service teachers’ use of representations, specifically visual 
representations of multiplication. We wished to find out what considerations pre-
service teachers made when choosing representations in order to explain particular 
aspects of multiplication. 

METHODOLOGY 
The present study specifically examined pre-service teachers’ considerations 
involved in using visual representations of multiplication. This focus developed from 
our previous research (Barmby et al., 2009) that identified the array as being a 
possibly useful representation that could be used in the mathematics classroom. 
However, this research also identified difficulties experienced by students when 
using the array in terms of recognising the array as a representation of multiplication. 
Other research has highlighted a variety of possible visual representations for 
multiplicative situations. The situations identified by Greer (1992) included equal 
groups and Cartesian product situations, which can be represented by diagrams of 
equal groups of objects and arrays respectively. Greer stated as well that the number 
line can be used to represent multiplication and quotitive division. In previous work 
(Barmby et al. 2009), we have suggested that an array with spaces at given intervals 
might support students’ reasoning of the properties of multiplication, specifically the 
distributive properties of the operation. In terms of the simple array, Skemp (1986) 
also highlights the usefulness of this representation in showing the commutative and 
distributive laws for multiplication. Anghileri (2000) also highlights the repeated 
groups or sets representation, with children viewing multiplication as repeated 
addition in their early understanding of multiplication, and then again the array which 
is useful for illustrating the commutative law. Outhred & Mitchelmore (2004) stated 
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that the rectangular array model (we adopt the term area representation) is an 
important model for multiplication, and Battista et al. (1998) stated that the area 
representation is essential for the development of the area concept in students and an 
important model for multiplicative thinking. 
Based on these representations highlighted in the research, a questionnaire for pre-
service teachers was designed in order to explore the representations that they would 
use for explanations in different situations. The representations shown in the 
questionnaire are given in Figure 1. 

 
Figure 1: Representations of multiplication 

In the questionnaire, the teachers were asked to choose one representation for each of 
the following purposes: (Q1) To use with pupils to show the commutative law; (Q2) 
To use with pupils to show the distributive law; (Q3) To use with pupils to show 
multiplication as repeated addition; (Q4) To use with pupils to show division as the 
inverse of multiplication; (Q5) To use with younger pupils, for example in Year 2; 
(Q6) To use with older pupils, for example in Year 6. For each question, the teacher 
was asked to tick one box corresponding to each of the representations, and a space 
was provided in each question for teachers to explain their choice.  This questionnaire 
were distributed to 445 pre-service primary/elementary teachers in England (n = 181) 
and Serbia (n = 264). The English teachers included teachers in the first and final 
year of a three-year undergraduate course, and also a one-year postgraduate teacher 
training course. The Serbian teachers included those in the first and final year of a 
four-year undergraduate course. The teachers completed the questionnaire at the start 
of one their lectures. 
The resulting data from these questionnaires (in terms of the choices (a) to (g) of 
representations) were then inputted into a spreadsheet for the purposes of analysis. In 
order to gain insight into the degree of consideration that teachers made when 
choosing representations, the following framework was used to score the teachers’ 
responses for each question: (Q1) 2D representations (i.e. arrays and area 



2-108 PME 35 - 2011

Barmby, Milinkovic 

 

1- 4 PME 35 - 2011 

representation) show the commutative law more easily; (Q2) 2D representations 
show the distributive law more clearly, particularly the array with spaces; (Q3) 
Multiplication as repeated addition would be shown more by the grouping 
representations and the number lines, then the 2D representations, and finally the 
array with spaces; (Q4) Items showing clear groupings would show division more 
easily, so the grouping representation and the number lines, followed by the 2D 
representations, then the array with spaces; (Q5) Representations relevant to younger 
pupils’ experiences would be better, therefore the plates of strawberries, followed by 
the tangerines array, followed by number lines, then the array, then the area 
representation, then the array with spaces; (Q6) More abstract 2D representations 
would be more useful, so array with spaces, array, area representation, followed by 
tangerine array, then number lines, then strawberries. The above framework therefore 
resulted in the scoring of teachers’ responses as shown in Table 1. When respondents 
had not provided a choice, or provided more than one choice, their score was simply 
coded as ‘missing’. 

Table 1: Initial scoring of items 

Item Choice of representation 
(a) (b) (c) (d) (e) (f) (g) 

Q1 1 2 2 1 2 2 1 
Q2 1 2 2 1 3 2 1 
Q3 3 2 2 3 1 2 3 
Q4 3 2 2 3 1 2 3 
Q5 4 3 5 4 1 2 6 
Q6 2 4 3 2 4 4 1 

 
Following the initial scoring of teachers’ responses, Rasch analysis was used to 
confirm the scoring categories that we had used. Rasch analysis expresses the 
probability of a person being successful on a given item in terms of a mathematical 
function of the difficulty of the item and the ability of the person (Bond & Fox, 
2007). Rasch analysis is commonly used to analyse dichotomous items, but can also 
be used to analyse items with a greater number of possible responses, and also 
allowing for differing numbers of responses on different items. This so called partial 
credit analysis estimates not only the person ability and the overall item difficulty, 
but also provides estimates for the difficulty thresholds between scoring categories. 
These thresholds should increase in an ordered manner, in line with the ordering of 
the scoring categories (Bond & Fox, 2007). Otherwise adjacent categories should be 
combined and reanalysed. We applied this analysis to the scoring categories given in 
Table 1, which resulted in the revised scoring of teachers’ responses as shown in 
Table 3. 
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Table 3: Revised scoring of items 

Item Choice of representation 
(a) (b) (c) (d) (e) (f) (g) 

Q1 1 2 2 1 2 2 1 
Q2 1 2 2 1 2 2 1 
Q3 2 1 1 2 1 1 2 
Q4 2 1 1 2 1 1 2 
Q5 2 2 3 2 1 1 3 
Q6 2 3 3 2 3 3 1 

  
This simplified scoring differentiated between 2D and non-2D representations for Q1 
and Q2, representations that emphasised repeated addition for Q3 and Q4, abstract 
and less abstract representations for Q5, and again 2D and non-2D representations for 
Q6 (although differentiating between the number lines and the grouping 
representation as well). 

RESULTS 
The revised scoring categories provided the following results for the above items.  
Table 4: Percentages of responses and the overall Rasch difficulty (in logits) for each item 

Scoring Q1 Q2 Q3 Q4 Q5 Q6 
Missing 2% 7% 1% 4% 1% 7% 

Full marks 75% 65% 93% 72% 84% 53% 
Partial marks - - - - 11% 36% 
Lowest mark 23% 28% 7% 24% 3% 3% 

Overall Item difficulty (logits) 0.53 0.96 -1.31 0.64 -0.74 -0.08 
 
The pre-service teachers found choosing the representation for repeated addition (Q3) 
to be the easiest item, followed by the choice of representations for younger pupils 
(Q5), and then for older pupils (Q6). The most difficult items for the teachers 
involved representing the distributive law, division and the commutative law, where 
three-quarters or less of the sample of teachers chose the expected representations. 
We can examine these difficult items further by highlighting the percentages of the 
different cohorts of pre-service teachers obtaining full marks on the items. 

Table 5: Percentage of teachers achieving full marks on particular items 

Item 

English Serbian 
Year 1 

UG 
Year 3 

UG PG 
Year 1 

UG 
Year 4 

UG 
Q1 53 77 65 71 91 
Q2 54 81 48 57 77 
Q4 83 85 81 54 73 
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With Q1 and Q2, as me might expect, we see that students who have been studying 
longer on the teacher training courses did better on these items. Turning to the 
explanations provided by teachers for their choices, for Q2, many of the English 
teachers who did not get full marks seem to confuse the ‘distributive law’ with 
distributing objects evenly into a number of groups. Likewise for Q1, some English 
teachers did not know what was meant by the commutative law. However, quite a 
number of these teachers chose the plates of strawberries representation, stating that 
one would still get the same answer if we had 6 plates with 8 strawberries. Likewise 
for the Serbian teachers, a significant proportion did not know what was mean by the 
commutative and distributive law, possibly pointing to limitations in their 
mathematics knowledge when entering the teacher training course. With Q4, we 
seemed to find more of a difference between the English and Serbian teachers. 
Looking at the choices of representations for this question, English teachers were 
much more likely to choose the number lines or strawberries representations, with the 
Serbian teachers choosing to a greater extent the two dimensional representations. 

DISCUSSION 
The analysis of the pre-service teachers’ responses to the questions regarding their 
choice of visual representations in different contexts highlighted a number of issues. 
Firstly, the choice of representations could be influenced by teachers’ lack of subject 
knowledge. This is shown simply by the case of the distributive law (Q2), and to 
some degree for the commutative law (Q1), where some teachers did not understand 
what was meant by these laws. The analysis also highlighted some limitations in 
teachers’ use of representations, for example with the commutative law (Q1) where a 
simplistic argument was provided for using the groups of strawberries representation, 
not taking into account that when 6 groups of 8 would look quite different to 8 groups 
of 6, despite obtaining the same answer. The analysis also identified an interesting 
difference between the teachers in England and Serbia for the division question (Q4). 
A possible explanation for this is that students in Serbia are taught more specifically 
to represent multiplication using the array, and therefore in make the connection of 
division being the inverse of multiplication, Serbian students are therefore more 
likely to represent them in the same way, i.e. with two dimensional representations. If 
this is the case, then our scoring system given above, awarding greater marks to the 
number lines or the strawberries representation, would need re-evaluating. This 
highlights a possible further issue that certainly in England, we may not consider 
these connections to the same extent in terms of representations and connecting the 
operations of multiplication and division. Although we emphasise the array 
representation for multiplication, we do not as readily represent division in the same 
way. We therefore need to explore further how teachers can usefully do this, making 
the connections between these operations and representations, with pupils in the most 
effective way. 
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PERSONAL CONSTRUCTS OF PLANNING MATHEMATICS 
LESSONS 

I. Bausch*, R. Bruder* and A. Prescott** 
*Technische Universität Darmstadt, GER, **University of Technology Sydney, AUS 
 
Teachers’ personal constructs influence how a classroom is organised and what 
mathematics will be emphasised and valued. We asked mathematics student teachers 
in different semesters (N=321) to compare different mathematics lesson plans 
depending on where they were in their teacher education course. They found quite 
different characteristics to analyse the lesson plans. In this explorative study we 
found that personal constructs of planning a mathematics lesson are changing as 
pre-service teachers move through their course 

INTRODUCTION 
In different countries TIMSS and PISA showed some deficits in pupils’ mathematics 
knowledge triggering research into teachers’ education. For example, Oser and 
Oelkers (2001) developed a self-assessment for pre-service and in-service teachers to 
analyse their competencies. Another international study TEDS-M (Blömeke, Kaiser 
& Lehmann, 2010) focused on content knowledge, the pedagogical knowledge and 
the pedagogical content knowledge in their tests. Both surveys focus on important 
parts of the requirement to become a competent mathematics teacher and will affect a 
teacher’s action in class, but each survey alone cannot measure competencies 
(Weinert, 2002). Thus there is the question: 
In which way can competencies of teaching mathematics be measured in a teachers’ 
education? 
Which is a very general question, thus we need to focus. For example, the 
government of Germany and also NSW Institute of Teachers (in Australia) 
formulated standards for teachers’ education. Both require student teachers to 
demonstrate their knowledge of students’ varied approaches to learning, and 
beginning teachers to apply that knowledge to enhance student outcomes (NSWIT, 
2006). It is becoming more important for competence on the part of student teachers 
in the skills of lesson planning (John, 2006). Thus we have chosen lesson planning as 
the central research object. 
Beliefs of what mathematics teaching is about will determine how student teachers 
view the whole range of pedagogical issues in the classroom (Barkatsas & Malone, 
2005; John, 2006, Nisbet & Warren, 2000), including lesson plans (especially at the 
beginning of their course). When deciding how a concept or process is to be taught, 
teachers relay subtle and often unintentional beliefs and attitudes about mathematics 
(Booker, Bond, Sparrow, & Swan, 2004).Planning to teach includes, at the very least, 
a knowledge of students and their needs, an overall aim or aims for learning and a set 
2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 113-120. Ankara, Turkey: PME.
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of instructional objectives, and a teacher´s understanding and perceptions of the 
nature of [mathematics] and learning (Liyanage & Bartlett, 2010). Decisions about 
materials, activities, and methods are likely to vary greatly depending on the 
experience of the teacher, whether that be formal teacher education or informal 
knowledge gained as a student. Writing a lesson plan requires the teacher to effect 
synergies in their knowledge of content, pedagogy and learning as well as the optimal 
conditions for learning. To analyse teacher students’ competencies in planning a 
mathematics lesson, we chose the personal construct theory. 

THEORETICAL BACKGROUND 
Personal construct theory 
The theory of personal constructs dates from Georg Kelly (1955). He formulated the 
following Fundamental Postulate: 

"A person's processes are psychologically channelized by the ways in which he 
anticipates events" (Kelly, 1995, p.46) 

That means our daily action is based on our constructs and interpretation of the 
world. To characterise the personal construct theory there are eleven corollaries, 
which explain how constructs emerge, interact, change and influence individual 
action. To illustrate the construct theory the following example of a mathematics 
lesson is given: 
 
  
 
 
 
 
To reconstruct the intention of the teacher in the example we can use the construct 
theory. The teacher acts as a moderator, because he/she knows that a teacher has to 
be in the background during an explorative lesson. He/she also realises that the 
success of self-explorative learning is very high. So the teacher has the construct that 
students achieve new insights, if mathematical content is developed by the students 
themselves.   
The competence of planning a mathematics lesson is therefore linked with the 
personal constructs of each teacher. If the development of competencies during a 
teachers’ education are to be analysed, it is necessary to gather individual constructs 
of teaching mathematics.    

Example: 

The content of the last lessons was integral calculus. The pupils can integrate simple 
polynomial functions and should now develop by themselves the concept of calculate an 
integral by substitution. The teacher initiates the aim of the lesson and provides the 
process by being a moderator. During the lesson most students are overstrained by this 
task and don’t find the solution. 
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Figure 2: Example of a 
grid 

 
Repertory Grid Method 
To gather individual constructs Kelly (1955) developed 
the repertory grid method. At the centre of this method is 
the comparison of different objects and definitions of the 
different constructs. Lengnink and Prediger (2003) report 
the use of mathematical tasks as objects in an adapted 
repertory grid survey to study student's constructs about 
tasks. One grid is represented in figure 2. The advantage 
of the repertory grid method is that participants give you 
the information in their own words rather than the words 
of the researcher. It then allows the researcher to 
amalgamate the information into categories which can then be compared between 
individuals and between groups within the participants. 

SAMPLE, DESIGN AND METHOD 
Participants 
The participants were taken from teacher education courses at the Technische 
Universität Darmstadt (TUD) and the University of Technology, Sydney (UTS).  
The UTS teacher education program is a 18-month (three semesters) Bachelor of 
Teaching degree which has an accelerated option of 12-months (two semesters). The 
students already have a degree in mathematics and the Bachelor of Teaching allows 
them to teach in secondary schools in Australia. The majority of the students from 
UTS are mature-aged and undertaking a career change i.e. they have been working in 
a different career for at least 8 years.  
The TUD teacher education program is nine semesters long with students completing 
both the mathematics and the teacher education program concurrently. The majority 
of the students begin their courses right after they finish school. 
So far we have asked 41 students of the UTS and 280 students of the TUD. The 
detailed plan in Table 1 shows the structure of the survey. To enable a longitudinal 
study the survey is embedded in obligatory courses.  
 

Knowledg
e 
Personal  
construct

s 

Anticipation  

Problem solving in variable 
situations 

Action 
Perception 

Experience 

Competencies 

Figure 1: Personal construct theory and competencies 
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Figure 3: Grid of an 
Australian student 

Year UTS Australia TUD Germany 

 1. 
semester 

2. 
semester 

1. 
semester 

3. 
semester 

5. 
semester 

last 
semester 

Jan. 09 N=10  N=53 N=44  N=10 
Oct. 09  N=15    N=16 
Jan. 10 N=16  N=67 N=60 N=12 N=8 
Oct. 10      N=10 

Table 1: Participants 
Design 
In Germany there are four points of measurement - in 
the first, in the third, in the fifth and in the last 
semester. In Australia we have two points of 
measurement - at the beginning of their first semester 
and at the end of their second semester. The students 
were asked to complete the survey taking about 45 
minutes. It was conducted during class time but 
students were free to participate or not.  
We adapted the repertory grid method and chose lesson 
plans as objects which should be compared by the 
participants. Initially the participants were asked to 
focus their thoughts on the features of a “good” 
mathematics lesson, listing them in no particular order. 
We believed that this initial part of the survey would 
help them to get started with the analysis of the lesson plans that was important for 
those students who were in their first teacher education class. They then compared 
two lesson plans in terms of those characteristics they thought were important. They 
estimated the occurrence of the characteristics (Figure 2). For example the first set of 
lesson plans were written on introducing trigonometry and used distinct ways of 
introducing trigonometry - an historical 
approach, the right angle triangle and ratios 
approach, and a problem-solving approach. 
The other set consists of different ways of 
introducing newton’s formula. Each lesson 
was considered a valid way to introduce the 
topic but emphasised different aspects of the 
topic. To ensure that students did not 
remember their answers of their first 
comparison we change the lesson plans in 
the following surveys. 

Figure 4: System of categories to 
analyse grids  
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To analyse the different grids in a nomothetic way (Scheer, 1996), we compared 
different descriptions of good mathematic lessons (Leuders, 2005; Helmke, 2009; 
Bruder,1991) and extracted a system of categories (figure 4) to analyse the constructs 
of the students. It is obvious that criteria for good math lessons like “good class-
climate” or “motivation of the teacher” (Helmke, 2009) are left. These criteria cannot 
written in a lesson plan, thus we can’t use them to analyse students characteristics. 
On one hand there are categories which describe the structure and the content of the 
written lesson plan and on the other hand there are categories which describe the 
structure and the process of the lesson. An illustration of the categories is written in 
figure 5. 

Figure 5: Characteristics of the categories 
To analyse the classification in the categories we tested the interrater reliability with 
two trained raters and got a Krippendorfs alpha of 0.81, which is acceptable. 

RESULTS 
First of all the number of characteristics and categories were analysed. The results are 
shown in figure 6. In both cases an increase of the number with higher semester was 
found. The changes with the semester are evidence that the constructs of the students 
change. To analyse the development of the constructs and to identify typical 
constructs a principal component analysis (PCA) was used. The aim of the PCA was 
to find connections between the characteristics. The PCA was practicable because the 
variables correlate substantially (KMO=0.6) and the Bartlett-Test was significant. 

 
Figure 6: Number of characteristics and categories 
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With the help of the PCA four components were extracted (figure 7).  
1. Component: Planning and preparation orientated view on mathematics lessons 

This component is characterised by 
the characteristics of the categories 
“Initial Situation”, “Didactical 
analysis of the content”, “Structure of 
the lesson plan” and “Goals”. The 
common point of these categories is 
that the teacher has to think about the 
elements of the mathematics lesson 
before he/she will teach in class. The 
teacher decides the aims with the 
background of the initial situation and 
thereby didactically analyses of the content.   

2. Component: Activating view on mathematics lessons 
Characteristics of the categories “Cognitive activation” and “Motivation” build 
the second component. These categories are pupil-centered and describe the 
different possibilities to interest and involve pupils in mathematics lessons.  

3. Component: Task orientated view on mathematics lessons 
This component includes the categories “Repetition, practice and results”, 
“Internal differentiation” and “Structure of the teaching process”. A central 
point of these categories are tasks and their structured use in the mathematics 
lesson.  

4. Component: Method orientated view on mathematics lessons  
The categories “Media” and “Ways of teaching and learning” build the fourth 
component. These characteristics describe methods of teaching which are 
useful for mathematics lessons. This view on mathematic lesson plans is 
characterised by general tools to plan and create lessons.   

To analyse the connection between the components and the educational level of the 
students the means of each component are shown in figure 8. 
First of all the peak in “Planning” is conspicuous. This peak describes the results of 
German students who did the survey immediately following a five week practicum in 
school. It seems that their focus is on the characteristics which describe the process of 
planning and writing a lesson plan. This could be explained, because the main 
content of the practicum is to write lesson plans by themselves.  
If the view of these students is compared with the German students, who are in their 
last semester just before their exam, the focus on the component “Planning” does not 
exist. It seems that the analysis of the lesson plans is more multifarious. The 
characteristics are nearly distributed equal on each component. The focus of Germans 

Figure 7: Results of the PCA 
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first semester students is on the methods and 
media, which were used in the lesson plans. By 
contrast Australian first semester students focus on 
the activation and motivation of the pupils. This 
view on lesson plans is intensified after the second 
semester. Equally the characteristics of the 
components “Tasks” and “Methods” get higher in 
the second semester of the Australian students. 
German third semester students focus the 
components “Planning” and “Tasks”. This view of 
lesson plans fits with the main content of the 
course in the third semester.  

CONCLUSION  
Through the results of the PCA it can be seen that the constructs of planning 
mathematics lessons develop with different courses. It seems that the constructs 
develop through different levels. In the first semesters the students find some 
different and not linked characteristics to analyse lesson plans. They have a “trial an 
error orientation” (Galperin, 1974). During their teacher education courses the 
student teacher learns some examples and models to analyse lessons. Thus their 
comparison of the lesson plans is conducted by the main content of the last course 
they had before the survey (cf. the results of German third and fifth semester). They 
generate a “model orientated level” (Galperin, 1974) to analyse the lesson plans. At 
the end of university education teacher students summarise theirs special focuses to a 
multifarious construct system of teaching mathematics, which will affect their action 
in class. 
So far we can describe the development of construct systems about lesson planning. 
But we have not analysed the quality of the constructs. To do that, it is necessary to 
analyse the attachment of the characteristics to the compared lesson plans. Students’ 
constructs should also be compared with self-written lesson plans. With this method 
it is possible to reconstruct students’ concepts and find misconceptions and the 
potential for development of competencies to teach mathematics. To use these 
insights for supporting the development of competencies during teachers’ education 
courses it is planned to create a feedback for the student teachers. This feedback 
should help them to reflect their skills in comparison to other students and also in 
comparison of their individual development.  
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This study investigates prospective teachers’ beliefs and proficiency in using 

analogies in teaching and learning mathematics. The research was carried out with 

22 prospective teachers. It employed a qualitative inquiry and used written exam and 

semi-structured interviews as the main source of data. Data were analysed using 

content and discourse analysis techniques. The participants had strong beliefs in the 

effectiveness of analogy use in teaching and learning mathematics and, they claimed 

that analogies would promote meaningful learning and improve students’ attitudes 

towards mathematics. However, they had lack of proficiency in using such kind of 

instructional tools. Many of the analogues that they used had no content validity to 

represent the sub-notions of function. They had also difficulty in illustrating the 

transfer of knowledge from analogue to targeted concept.           

LITERATURE REVIEW  

The role of instructional analogies in teaching and learning scientific notions has 

been well recognised. Simply defined, analogy is a process of identifying similarities 

between two concepts. It entails using a familiar system (source) as a foundation for 

drawing inferences about an unfamiliar system (targeted concept) (Spellman & 

Holyoak, 1996). It is generally believed that analogies are useful instructional tool to 

facilitate students’ acquisition of scientific notions. Analogies constitute one crucial 

component of the teachers’ pedagogical content knowledge that they need most to be 

effective in teaching practices (Shulman, 1986). Rattermann (1997) states that by 

means of appropriate analogies teachers could communicate a large amount of 

information with little explanation and inspire scientific discovery.  They allow 

teachers to organise their subject-matter knowledge in a way that could be grasped by 

the students of different ability and social background (Shulman, 1986). 

Analogies would support learning in three major ways: they facilitate visualisation of 

abstract notions; they allow comparing new concepts with the ones in students’ real 

world, and they increase students’ motivation (Duit, 1991). Despite their advantages, 

analogies may not always produce intended learning outcomes. This might happen 

for various reasons including, for instance, constraints associated with the transfer of 

knowledge from analogue to target and the students’ unfamiliarity with the analogues 

being used. The quality of learning facilitated by the instructional analogies depends 

upon the transfer of information from a familiar system to an unfamiliar system. 

Thus, educators place a great emphasis on the structural relations between analogues 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 121-128. Ankara, Turkey: PME.
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and targeted concepts, suggesting that it is this phenomenon that has significant 

implication for teaching and learning mathematics (English, 1997). 

Instructional analogies have received a good deal of attention from mathematics 

educators (Fast, 1996; English, 1998; Richland et al, 2004). Fast (1996) indicated that 

analogies can be used to produce conceptual changes in students’ understanding of 

mathematical notions including probability concept. Kathy et al (1999) conducted an 

experimental study in which they used seven concrete analogues to investigate the 

effectiveness of analogies in teaching and learning fractions. Analogies were 

evaluated with respect to their ecological validity – how realistic was the sharing 

context engendered by the analogues – and their ease of partitioning – how easy were 

the analogues to physically partition into quotients. These features had profound 

effects on students’ ability to draw inferences about the concept of fraction. English 

(1998) explored the role of analogical reasoning in solving addition and subtraction 

problems. Most students were capable of recognising surface similarities between the 

problem situations, yet this did not enable them to resolve the tasks they were given. 

The author indicated that to be successful in using analogical reasoning in problem 

solving students should recognise structural relations between the source and target 

problems and, they should know when and where to apply analogical reasoning.     

To sum up, a review of available literature indicates that most of the previous studies 

dealt with the role of analogies in classroom teaching and in knowledge construction. 

Very few of them examined the issue from the perspective of pre-service teachers. 

Thus, the present study takes the interest further and examines prospective teachers’ 

beliefs and proficiency in using analogies in teaching and learning mathematics.  

RESEARCH METHOD 

This study employed a qualitative inquiry (Yin, 2003) to conduct in-depth 

examination of the research case at hand. It was carried out with 22 prospective high 

school teachers. At the time the study was conducted the participants were about the 

finish their master program (master without a thesis) in mathematics education. They 

had taken all the pedagogical modules related to mathematics education including 

teaching methods, school experience and teaching practices. So, it was assumed that 

the participants had theoretical knowledge and practical experience concerning the 

analogy use in mathematics education. Data were obtained from written exam and 

interviews. Students were given a written exam which included two open-ended 

questions. The first one aimed to investigate teachers’ opinions about the 

instructional gains that the analogies would provide for the students:      

Q1. Do you believe in the effectiveness of analogy use in teaching and learning 

mathematics? If you believe in it, what source of benefits that they offer to the 

students? Write down your answer with the underlying reasons.  

The second question was used to explore their proficiency in using analogies to teach 

the concept of function and its sub-notions:   
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Q2. Write down all the analogies that you can you use to teach the concept of 

function and its sub-notions? Explain, in-detail, how could you use them.  

Semi-structured interviews were conducted with three students after the written 

exam. The line of inquiry developed in accord with the participants’ answers. Aspects 

of clinical interview (Gingsburg, 1981) were considered to reveal the participants’ 

actual thinking processes. Interviews were tape recorded and the annotated field notes 

were taken for consideration.  

Theoretical Framework and Data Analysis  

Literature about epistemology of the functions (Dubinsky & Harel, 1992) and the 

instructional analogies in teaching and learning science and mathematics (Kathy et al, 

1999; Podolefsky & Finkelstein, 2006) provided a conceptual base for the data 

analysis. The literature suggests that the function concept can be interpreted as a 

relation that does matching between the elements of two sets or as a dynamic process 

that transforms every input to a unique output. The concept has two fundamental 

properties: univalence and arbitrariness conditions. The former states that every 

element in the domain must have only one image in the co-domain. The latter 

suggests that a function can do matching in a completely arbitrary manner, not 

necessarily through an algebraic or arithmetical rule; and the elements of the domain 

and co-domain could be any kind of entity, not just numbers. On the other hand, 

analogies can be evaluated with respect to their purpose of use and the content 

validity (Bayazit & Ubuz, 2008). The purpose of use is concerned whether analogies 

are offered to illustrate the mathematical notions or to emphasise associated rules and 

procedures. The issue of content validity can be considered at two levels. The first is 

concerned with the very nature of an analogue in that the analogue should have 

intrinsic power to represent the essence and the properties of the targeted concept. 

The second is concerned with the transfer of knowledge from analogue to target.  

Data were analysed in the light of above notions. Content and discourse analysis 

methods (Miles & Huberman, 1994) were used to discern meaning embedded in the 

written and spoken expressions. The first phase of analysis included reading 

thoroughly students’ exam papers and writing up a summary of their answers to each 

question. This process was repeated on different copies of the texts and eventually 

codes were assigned to the units of meaning inferred from the texts. Some of the 

codes produced for the students’ responses to Q1 included, for instance: Mean-Lear 

(Facilitates meaningful learning); Stu-Attitu (Improve students’ attitudes towards 

mathematics); Visu-Abil (Promotes students’ visual ability).  

A sequential approach was employed to analyse students’ responses to Q2. First, 

analogues and targeted concepts were identified. Then, analogies were evaluated with 

respect to their purpose of use – whether they were offered to illustrate function 

related ideas or to emphasise rules and procedures. If the analogies were offered to 

illuminate the function concept, then the analysis continued to identify what sort of 

conception– function as a relation or function as a process – that they addressed. The 
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issue of content validity was considered at two levels. Analogues were examined to 

see whether or not they were intrinsic power to represent function related ideas. If 

they were so, then the examination continued to identify the participants’ proficiency 

at illustrating structural relations between the analogues and the targeted concepts. 

Codes were established to the units of meaning associated with the above notions 

inferred from the texts. This second process was repeated on different copies of the 

text and, finally pattern coding was applied to collect units of meaning under more 

general categories. As it was the manner in the analysis of the students’ exam papers, 

interviews were fully transcribed and considered line by line. Firstly, a summary of 

students’ answers to each question was written up. Then, codes were established to 

the units of meaning inferred from the texts. Repetition of this second process led to 

creation of more general categories, which are presented in the coming section.  

RESULTS 

The results are presented in two ways. First, we consider prospective teachers’ beliefs 

in the effectiveness of analogies in teaching and learning mathematics, and secondly 

we examine their proficiency in using these tools to illustrate the concept of function 

and its sub-notions. The research findings indicated that the participants had strong 

beliefs in the effectiveness of analogy use in mathematics education. They provided 

several rationales to emphasise the importance of analogies and these were associated 

with three areas, namely: cognitive aspect of learning process, social and 

psychological constructs, and mathematics-real life relations. Salient aspects of 

prospective teachers’ beliefs are provided in Table 1. 

Instructional 
Gains  

Rationales  Num. of 
Stud.  

 
 
 
 
 

Cognitive 
Gains 

• Facilitates visualisation of mathematical notions.  
• Shortens the learning process.  
• Eliminates rote learning and facilitates meaningful understanding.  
• Allows students to connect mathematical concepts to each other.  
• Facilitates coding, and allows possession of mathematical 

knowledge in the long-term memory.  
• Makes it easier to remember mathematical notions. 
• Facilitates learning by ‘doing mathematics’. 
• Promotes critical and creative thinking. 
• Makes it easier to use mathematical knowledge.     

 
 
 

21  

 
Social & 

Psychological 
Gains 

• Increases students’ enthusiasm to learn mathematics. 
• Encourages students’ participation in the lesson.  
• Gets students like mathematics. 
• Attracts students’ attention and interest. 
• Motivates them.  
• Eliminates their fear and anxiety.  

 
7  

Mathematics 
& Real Life 

• Creates an idea amongst students that mathematics is part of real 
life.    

4  

Table 1: Key features of the prospective teachers’ beliefs about the effectiveness of 

analogies in teaching and learning mathematics.     
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Those who addressed cognitive benefits of analogies provided several rationales each 

of which highlighted essential features of learning process suggested by the 

constructivist learning theory. Their comments included, fundamentally, the ideas 

that analogies would promote conceptual understanding, support development of 

creative and critical thinking, enhance students’ visual ability and, facilitate retention 

and recalling mathematical notions. The following citation is typical that reflects the 

participants’ opinions:             

...this is because mathematical concepts are abstract notions and this creates difficult for 

many students. Analogies make them [mathematical concepts] concrete and, thus, they 

make it easier for students to learn these notions. …. [Analogies] help learners to develop 

a meaningful learning…it helps them to recall and use mathematical notions…[11]
1
.             

Bringing social and psychological constructs to the attention seven participants 

claimed that analogies would improve students’ attitudes towards mathematics, 

eliminate their fears and anxiety and ensure their participation in the lessons. Four 

participants believed that the use of analogies would enable students to understand 

the role of mathematics in everyday life.  

Interviews with three students complemented the outcomes of the written exam. 

These three students illustrated cognitive and social-psychological gains that the 

analogies would provide for students and, this is seen in the following exchange 

(Episode 1):   

Ilker
2
:  Above all, analogies strike students’ attention… Suppose that you are giving an 

example from daily life...; can you imagine how interesting it will be for 

the students. … They [analogies] eliminate students’ fears and anxiety and 

students start to like mathematics. …   

Interviewer: Do you think analogies would facilitate students’ learning?  

Ilker: … As I said analogies…increase students’ enthusiasm to learn… They enhance 

students’ ability to visualise mathematical concept and…[students] 

develop a meaningful learning. In addition, analogies facilitate retention 

and recalling mathematical ideas. It is difficult for students to hold 

mathematical notions, like definition and theorems, in their minds… 

Illustrating them [mathematical concepts] through analogies makes it 

easier for students to possess and use this knowledge…     

Ilker thinks that psychological advantages precede cognitive ones in that analogies 

motivate students, increase their enthusiasm and, this eventually stimulates 

meaningful learning. He stresses that analogies would promote students’ visual 

ability and increases their mental capacity to hold abstract notions in their minds.  

The participants were relatively successful in using analogies to illustrate the concept 

of function. In this respect 7 analogies were offered by 14 participants (see Table 2).  

                                         
1
 Refers to particular students from the questionnaire; in this case, Student 11.   

2
 Students’ names are altered.  
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Num. of 
Students 

Analogies   
Num. of 

Users  
Validity Condition   

1. City-province relation  1 

2. Mother-children relation   5 

3. Mail-address relation  3 

Function 
as a 

Relation   

 

10 

4. People-destination city relation   1 

5. Factory    2 

 
Satisfies the 

validity condition 

6. Communication system  1 

Function 
as a 

Process  

 

4 
7. Washing machine 1 

Partly satisfies the 
validity condition 

Table 2: A list of analogies offered to describe the function concept. 

Through these analogies 10 students presented the concept as a relation doing 

matching between the elements of two sets and 4 students described it as a process 

transforming inputs to output. Analogies that entailed the idea of relation had the 

content validity and they addressed the univalence aspect of the function concept. An 

analogy of factory was also considered to be appropriate because students’ 

descriptions clearly addressed the notions of inputs, outputs and the transformation:   

We could think of a function like a factory; a factory takes raw materials, processes them 

and then gives out products. Function is like that…it transforms inputs to outputs…[3]. 

The remaining analogies (washing machine and communication system) did not 

explicitly state the idea of input, output and the transformation; thus, they were 

considered to be partially valid.  

Nevertheless, they had great difficulty in using analogies to illustrate the sub-notions 

of the functions. 14 analogies were offered to explain the idea of constant function, 

yet only two of them (children-mother relation and recycling factory) were 

epistemologically appropriate and these were used by 7 students (see Table 3).  

 Num. of users  Num. of Analogies  Purpose of use  Validity  

Constant function  19  14  concept 
2 valid  

12 invalid  

Piecewise  function  11 11 procedures invalid 

1-1 and onto function  1 1 concept valid 

Identity function  1 1 concept valid 

Inverse function  1 1 concept valid 

Table 3: Analogies used to illustrate the sub-notions of the functions.  

An example of inappropriate analogies to illustrate the constant function is seen 

below. One of the interviewees, Ayhan, offered an analogy that “whoever the 

president chooses from the national assembly, he/she is still a member of parliament 

(MP)”. Upon further probing he said (Episode 2):  

Let me define first the constant function..it is f(x)=c. ... Here, let MPs be the elements of 

the domain; here president is the function, f...; he is choosing only one MP amongst 

others and this person is still an MP... I would give this example to illustrate the constant 

function.    
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Ayhan does not clarify relations between the example he gave and the idea of 

constant function. His description incites even an idea that those apart from the 

elected MP were omitted in the domain, so the analogy cannot be a function.    

11 analogies were used to illustrate procedural knowledge about the idea of piecewise 

function (selection of appropriate rules on the sub-domains) or to emphasise its 

surface properties (a piecewise function is defined by more than one rule). In the 

participants’ descriptions there was not even an implicit reference to the idea of input, 

output and the transformation process. For instance, one of the interviewees, Gökçe, 

gave the following explanation (Episode 3):    

... Think that we are forming basketball and handball teams. Yet, we have a rule...those 

who is taller than 180cm shall go to basket team, and shorter than 180cm shall go to 

handball team. We compare the input with the extreme points of the sub-domain and 

accordingly we can choose rule we are going to use...      

It is quite clear that the premise of this episode is selection of the right formula to 

operate on each sub-domain.  

CONCLUDING REMARKS 

The aim of this study was to examine prospective teachers’ beliefs and proficiency in 

using instructional analogies in mathematics education. The research findings 

indicated that the participants have strong beliefs in the efficiency of analogies in 

teaching and learning mathematics. Their beliefs prevailed two major fields: social 

psychology and human cognition. They believed that analogies would motivate 

students, eliminate their fears and anxiety, and encourage them to participate in the 

lessons. They did not consider these social-psychological gains in isolation, rather 

appreciated them to stimulate students’ reasoning over the mathematical notions 

being taught and learned. The participants provided several rationales as to the 

cognitive gains that the analogies would provide for students – analogies could 

promote creative and critical thinking, enhance students’ visualisation, and promote 

their mental capacity to possess and preserve knowledge (see Table 1 & Episode 1). 

These are all consistent with the prescience of major teaching/learning theories, such 

as constructivism, information-processing theory and socio-cultural theory.  

Almost half of the participants offered analogies that presented the concept as a 

relation (see Table 2) and this shows that they were attentive to the consistency 

between the analogies and the idea of function presented in the Turkish mathematics 

curriculum. Most participants lacked, however, the ability to use such tools to 

illustrate the functions, especially the sub-notions of the functions. Many of the 

analogues were epistemologically inappropriate to represent the targeted concepts. 

They also had difficulty in explaining structural similarities between the analogues 

and the targeted concepts (see Episode 2). A number of students offered analogies to 

emphasise procedures and factual knowledge (see Table 3 & Episode 3). In our view, 

this could shift students’ attention from concept to procedures and, hence, confine 

their understanding of the concepts to mechanical manipulations.    
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USING COMPUTER-BASED INSTRUCTION TO SUPPORT 
STUDENTS WITH LEARNING DISABILITIES: 
UNDERSTANDING LINEAR RELATIONSHIPS 

Ruth Beatty Catherine D. Bruce Rich McPherson 
Lakehead University Trent University Trent University 

 
The study of linear relationships is foundational for mathematics teaching and 
learning. However, students’ abilities to make connections among different 
representations of linear relationships have proven to be challenging. In response, a 
computer-based instructional sequence was designed to support students’ 
understanding of the connections between representations. In this paper we report on 
the affordances of this dynamic mode of representation specifically for students with 
learning disabilities. We outline four specific results identified by teachers as they 
implemented the online lessons. We consider the educational implications of using 
online technology in the teaching and learning of mathematics for students with 
learning disabilities. . 

INTRODUCTION 
A current focus of mathematics instruction centres on the push for algebra reform and 
the resulting recommendation from the National Council of Teachers of Mathematics 
(NCTM 2000) that algebra become an essential strand of the intermediate (Grade 7-
8) curriculum, prior to formal algebraic instruction in high school. An understanding 
of linear relationships is central to the development of algebraic thinking. Expressing 
an understanding of a linear relationship can be thought of as describing a systematic 
variation of instances across some domain. The major characteristic of a linear 
relationship is the covariation between two sets of data represented by two variables, 
the independent variable, x, and the dependent variable, y. The nature of the 
relationship is that for every instance of x there is one corresponding instance of y, 
determined by the underlying linear rule. The relationship that connects the two 
variables is one of predictable change or growth. 
Linear relationships can be represented symbolically/numerically through equations 
and algebraic symbols using the form y=mx+b, where m is the coefficient, or 
multiplicative factor, of x, and b is the additive (sometimes known as the constant) 
term of the relationship. A linear relationship can also be represented graphically, 
where m represents the gradient of the slope and b represents the y-intercept. These 
representations are intertwined, such that a change in one representation leads to a 
change in the other representation. Mathematics educational researchers stress that it 
is the ability to make connections among different representations, specifically 
symbolic/numeric and graphic ones, that allow students to develop insights for 
constructing the concept of a linear relationship (e.g., Bloch, 2003; Evan, 1998). 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 129-136. Ankara, Turkey: PME.
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There have been numerous studies that have documented the difficulties students 
have when exploring the connections among representations of linear relationships 
(e.g., Evan, 1998; Moschkovich, 1996, 1998, 1999). Students have difficulties 
shifting between different modes of presentation (Brassel & Rowe, 1993; 
Yerushalmy, 1991). When graphing a linear relationship of the form y=mx+b, 
researchers have noted that the connections between m and the slope of the line, and 
b and the y-intercept are not clear (Bardini & Stacey, 2006). Students also have 
difficulty predicting how changes in one parameter will affect the graphic 
representation (Moschkovich, 1996; Moschkovich et al., 1993).  
Learning Disabilities and Mathematics 
Although little research to date has been conducted on the algebraic learning of 
students with learning disabilities, it would seem predictable that these students 
would also find the conceptual underpinnings of linear relationships as elusive as 
typically developing students. Research on learning disabilities in the domain of 
mathematics is still in its infancy (Gersten, Jordan, & Flojo, 2005). A principal area 
of consideration is the divide between procedural and conceptual instructional 
practice and whether explicit and inquiry based instruction can and should be 
integrated for students with learning disabilities (Pedrotty Bryant, 2005). 
Students with learning disabilities often have difficulty retaining facts (Geary, 1993), 
and so the instructional approach for these students tends toward memorization 
through repetition rather than the development of conceptual knowledge (Cawley & 
Parmar, 1992). This rote drill approach may seem a successful strategy as it offers 
students a means of producing the correct answer, but it is an extremely limited way 
of understanding complex concepts such as linear relationships. 
The National Council of Teachers of Mathematics emphasizes equitable instruction 
for all students. Given the proportion of students with learning disabilities (5% to 8%, 
according to Shalev et al., 2000) there is a need to examine mathematics educational 
for these students, and how these students can be supported to be part of “algebra for 
all.” 
New Instructional Approach for Teaching Linear Relationships 
This paper reports on a research study conducted to investigate the implementation of 
a teaching approach designed to address some of the instructional difficulties outlined 
above. As part of a larger long-term study, we have been investigating the 
affordances of an instructional approach that prioritizes visual representations of 
linear relationships – specifically, the building of linear growing patterns and the 
construction of graphs (Beatty, 2007; Beatty & Bruce, 2008). Previous research on 
the lesson sequence has shown that it supports students’ progression from working 
with linear growing patterns as an anchoring representation to considering graphical 
representations of linear relationships. Students also make connections among 
different representations – pattern rules, patterns and graphs (Figure 1). 
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Figure 1: Connecting the linear growing pattern to a graphical representation. Both 
represent the pattern rule “number of tiles = position number x2+3” or y=2x+3 

In our previous study we evaluated the experimental algebra lesson sequence by 
conducting quantitative analyses of student learning to determine whether there was 
an increase in student scores from pre to post intervention. We calculated a total 
pretest and posttest score comprised of 10 sub-items measuring students’ ability to 
find generalized rules/functions for patterns. The results indicate that the mean 
posttest score (M = 6.72, SD = 2.74) was significantly greater then the mean pre-test 
score (M=4.21, SD =2.74), t (311)=-14.33, p<.000. The standardized effect size index 
d., was .99, a high value. The mean difference was 2.51 points between the two tests. 
Table 1 outlines the results from pre to posttest. 

 Number of students who scored 
between 1 and 5 out of 10 

Number of students who 
scored 6 or above out of 10 

Pretest n=295 204 91 
 (12 achieved scores of 9) 

Posttest n=294 66 228  
(114 achieved scores of 9 

Table 1: Student scores pre to posttest 

We then conducted a one-way repeated-measures ANOVA to compare pre and 
posttest achievement as a function of students’ demonstrated achievement level (low 
n=67, mid n=164, high n=79). Levels were based on teacher rating and report card 
marks. Students designated as low were on Individual Education Plans (IEP) and 
most had been identified as having some kind of learning disability. The multivariate 
test indicated a significant effect, F(1,307) = 159.32, p<.000, but with no interaction 
of test results by level, F(2, 307) = 1.723, p=.18.  These results indicate that students 
at all three levels increased their test scores from pre to post (see Fig 2). These results 
suggested that the positive effects for all students, including those identified as 
having a learning disability, were important enough to pursue further dissemination 
of the learning sequence by capitalizing on the potential of online learning objects.    
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Fig. 2: Estimated marginal means by achievement level pre and posttest. 
In the study reported in this paper we enhanced the original instructional sequence by 
including computer-based dynamic interactive representations of linear relationships. 
These online learning objects, or CLIPS (Critical Learning Instructional Paths 
Supports) offered the possibility of combining a proven instructional sequence with 
unique properties of digital technology.  
Unique Support of CLIPS for Students with Learning Disabilities 
CLIPS are created using flash animation and incorporate audio narration, offering 
students the ability to consider mathematical concepts in non-static environments. 
We hypothesized two specific ways that the affordances that this kind of environment 
would support students with learning disabilities. 
The first affordance is supporting students in focusing their attention.  Students 
naturally focus attention through stressing some features as foreground and ignoring 
others as background (Mason, 2008). The CLIPS computer animation was designed 
to direct student’s attention, in order that they would discern details and recognize 
relationships that we, as the educational designers of the activities, believe are 
important to discern and recognize.  In each activity the aspect that we want students 
to notice – for example the connections between the numeric value of the constant in 
a pattern rule, the number of tiles in a pattern, and the vertical intercept of a trend line 
on a graph – becomes the focus of students’ attention. As the student works through 
this activity, the constant in the pattern rule flashes red, the red tiles that “stay the 
same” in the linear growing pattern flash, and the vertical intercept on the graph has a 
red flashing ring around it (Figure 3).  In addition all activities have audio narration 
that directs students’ attention to particular aspects of the task. 
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The second affordance of the technology is that mathematical connections can be 
conveyed to the students interactively. Students move through a series of scenes for 
each activity, so that the mathematical concepts are introduced in a logical order of 
increasing complexity. The animation creates opportunities for students to interact 
with the material by providing activities in which the co-action between user and 
environment can exist. This co-action takes many forms, from filling in numeric 
values, dragging words to complete sentences, to more sophisticated and rich 
interactions such as constructing patterns using virtual tiles or graphs using the 
graphing tool. Each representation is linked to the other representation so that as 
students create one, they can see the corresponding changes in the other. Thus the 
mathematical symbols that students work with are dynamic objects that are 
constructible, manipulable and interactive. This offers the opportunity for students 
with learning disabilities to construct an understanding of the process of linear co-
variation, rather than simply memorizing rote facts. 

 
Figure 3: Screen capture of activity to compare pattern rules that have the multiplier but 
different constants. In this activity, the words “different constants” and “different vertical 
intercepts” flash, the red circles representing the constant part of the linear growing 
patterns flash, and the red rings around the vertical intercepts of the graph flash. 

METHOD 
This study was part of a larger research project in which we investigated the 
affordance of the CLIPS Algebra sequence for all students. Grade 7 and 8 teachers in 
two different school boards implemented CLIPS in their classrooms as part of their 
Algebra unit. For this paper, we focus specifically on data relating to students with 
learning disabilities. We had hypothesized that the dynamic/interactive nature of the 
CLIPS learning objects would support students with learning disabilities. In fact, all 
of the teachers we worked with expressed overwhelming surprise at the levels of 
learning exhibited by their students who had been identified with learning disabilities. 
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Participants and Data Sources 
Fifteen teachers volunteered to be part of this study. The teachers received three days 
of professional training and implemented CLIPS in their classrooms. Researchers 
observed classroom implementation throughout. On two of the three PD sessions we 
conducted focus group interviews with the teachers. Transcripts from 12 focus group 
interviews with participating teachers were coded to identify categories and themes. 
Subsequently, data was transformed to count the frequency of themes and codes in 
order to identify prevalence of a code or theme.  

RESULTS 
In this paper we highlight four major themes reported by all 15 teachers.  
Teacher’s in-class assessments revealed that students with learning disabilities were 
able to make connections among different representations of linear relationships, and 
could predict how changes in one representation would affect other representations. 

The concepts were introduced slowly and accessibly and reinforced so that with 
confidence I can say all my students on an IEP can look at a graph and tell you the rule 
for that graph, can build a pattern from that graph, and can give you a story related to that 
graph. I’ve never had that experience before. On the quizzes and assessments I’ve been 
doing, they’ve all being getting level 4 [out of 4]. (Teacher 1, FG 2.1). 

Students in pullout remediation programs were no longer removed for math learning, 
but remained in the classroom. All of the teachers reported that the sequential nature 
of the lessons and activities allowed their lowest-achieving students to access the 
material successfully. This was ascribed to the animated, visual nature of the 
materials, the voice-overs of any written descriptions or instructions, and the capacity 
for students to repeat any lesson or activity they did not understand. 
No modifications of the material were necessary. 

All my students with learning disabilities were doing what everyone else was doing – all 
the same lessons. And they’re doing fine! That’s huge! That these kids can engage in the 
same activities and communicate their thinking to the class! There was no IEP in place 
for this. They all did the exact same thing and I did not accommodate any student at any 
time for this. And everyone did well (Teacher 4, FG 2.1). 

Student attendance and contributions to discussion in math class increased. 
The biggest difference for me was seeing IEP kids who are normally petrified of math, 
and not terribly successful, and believing that they can’t do it leading the discussion. One 
of my self-proclaimed weak math students got the concept and was questioning typically 
stronger math students in class about their patterns and explaining why it wasn’t a linear 
growing pattern – that the growth wasn’t predictable. Our class is a bit class with lots of 
learning needs and for the first time EVER they ALL get it! (Teacher 3, FG 1.1). 
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EDUCATIONAL CONTRIBUTIONS 
Sequenced dynamic representations of representations of linear relationships had a 
positive effect on the levels of achievement of students identified as having learning 
disabilities. The online activities directed students’ attention to particular important 
ideas. The activities allowed students to construct their own understanding rather than 
memorize procedures. This construction was supported by the ability to “go back and 
replay if you don’t get something.” The initial entry point was accessible for all 
students. The sequence subsequently incrementally built in complexity. Each student 
trusted that they would be able to continue to successfully work on activities, and that 
the material would not become too complex too quickly. As a result, these students 
demonstrated an understanding of the connections among multiple representations of 
linear relationships that has been shown to be difficult for typically developing 
students.  
This study suggests that students with learning disabilities are capable of learning 
complex mathematical concepts when given the opportunity to do so. All teachers 
reported that, subsequent to working with CLIPS, they became more student-focused 
in their teaching, and that the students who had been in remedial pullout programs 
were no longer removed from the classroom for math, but remained as contributing 
members of the classroom mathematics community. This leads us to question 
whether the learning difficulties for many of these students may have been 
curriculum or instructional difficulties in addition to learning disabilities.  
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USING MATHEMATICAL DISCOURSE TO UNDERSTAND 
STUDENTS’ ACTIVITIES WHEN USING GEOGEBRA     

Margot Berger 
University of Witwatersrand 

 
Sfard’s elaboration of mathematical discourse as a well-defined form of 
communication provides an illuminating framework within which to make sense of 
students’ activities as they engage in mathematical tasks. In this paper I outline key 
aspects of this framework.  I use it to interpret and understand the surprising 
activities of a pair of in-service South African mathematical teachers’ activities as 
they engage in a mathematical task which allows the use of GeoGebra.  
The way in which students use computers as tools for learning of maths has been 
examined from a variety of perspectives. For example, Kieran and Drijvers (2006) 
use the instrumental approach to tool use together with Chevellard’s anthropological 
perspective to illuminate the link between theoretical thinking and techniques in a 
CAS environment. Indeed, Artigue and Cerulli (2008) cite eight major frameworks 
(including the above) commonly used by researchers when examining teaching and 
learning mathematics in digital contexts. Although I do not wish to add unnecessarily 
to this plethora of frameworks, Sfard’s (2008) notion of mathematical discourse, 
which is a key component of her commognitive theory, proved to be a particularly 
useful framework for exposing what was happening as digital immigrants in an in-
service teachers’ course at a South African university used GeoGebra to enhance 
mathematical learning. In this paper I explain this framework and apply it to an 
episode in which a pair of these teachers engage in a mathematical task which 
permits the use of GeoGebra.  
ANALYTIC FRAMEWORK 
Commognition is based on the premise that individual development is 
individualization of “patterned collective activity” (Sfard, 2008, p. 570). That is, 
thinking is individualized communication. With respect to mathematics, patterned 
collective activity takes the form of mathematical discourse and mathematics learning 
is “tantamount to modifying and extending one’s mathematical discourse” (ibid., p. 
567). According to Sfard (ibid.) mathematical discourse is far broader than spoken or 
written words; it is also characterized by visual mediators, routines and narratives. 
These discourse characteristics have been defined and illustrated in the context of 
school mathematical activity, for example Ben-Zvi and Sfard (2007). In this paper, I 
elaborate these characteristics to contexts in which computers are used as a resource 
in the doing of mathematics.   
Sfard (2008) argues that the use of certain words or expressions such as equal, 
function, vertical  asymptote in specific ways indicates that we have  mathematical 
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discourse. Although many of these words also appear in everyday discourse, their use 
in mathematical discourse is well-defined, albeit often implicitly. For example, in 
colloquial discourse, we say: “I have eaten half the chocolate bar” to indicate that we 
have eaten approximately half a chocolate bar.  In mathematical discourse, we use the 
word ‘half’ to mean ‘exactly half’, for example, half of eight is four.  Word use is 
very important in that the use of a word constitutes it meaning (Wittgenstein, cited by 
Sfard, 2008, p. 573). In the task below, the pair of learners initially use the term 
‘vertical asymptote’ in an incorrect way. Indeed they are only able to highlight the 
distinction between a point where the function has a removable discontinuity (a 
‘hole’) and a point at which there is a vertical asymptote, after they change their use 
of  term ‘asymptote’. Visual mediators are visible objects such as symbols, graphs 
and diagrams which participants in a mathematical discourse use to identify the 
objects of their thinking and/or communication; some of these visual mediators are 
created especially for mathematical discourse (Sfard, 2008). In GeoGebra context, 
graphs of various functions may serve as visual mediators. However GeoGebra 
generated graphs may not reveal key aspects, such as removable discontinuities, of 
the function. In the task below, we see how the students use hand-drawn graphs in 
which discontinuities may be represented by a hole as visual mediators, rather than 
computer-generated graphs in which the discontinuities are hidden. Narrative is any 
text, spoken or written, that is “framed as a description of objects, of relations 
between objects, or processes with or by objects” (Sfard, 2008, p. 300); it is subject 
to endorsement and may be labelled “true” or “false”. Within formal mathematical 
discourse, the narratives that are approved by the academic mathematical community 
according to specific well-regulated rules are called mathematical theories. These 
theories consist of various discursive objects such as axioms, theorems, definitions 
(Sfard, 2008). Within the context of computer-based mathematical learning in 
schools, mathematical narratives are ultimately endorsable only if they conform to 
the official mathematical narratives. A routine is a repetitive and well-defined 
discursive pattern (ibid.). A routine may be a procedure; it may also be a practice 
(Ball, 2003)	   such	   as	   generalizing, justifying and endorsing (or rejecting) 
mathematical narratives. Routines are regulated by certain rules.  Within the context 
of computer mediated learning, computer-generated routines require further scrutiny 
in that they do not always conform to the rules of mathematical discourse. For 
example, GeoGebra will generate a continuous graph even if there are removable 
discontinuities in the relevant function.  Consequently the user needs to be aware of 
how to interpret the computer output so that it is compatible with endorsed 
mathematical narratives. Also, the user needs to understand when to use computer 
mediated routines, when not to. The when of routines involves the set of metarules 
that “determine, or just constrain, those situations in which the discursant would 
deem this performance [routine] as appropriate” (Sfard, 2008, pp. 208, 209). In the 
task illustrated below, we see how the students flout the metarules (often implicit) 
that govern the conditions under which it is suitable to use computer-generated 
routines rather than pen and paper routines. 
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CONTEXT 
For reasons born out of South African history, many high school mathematics 
teachers in South Africa have a degree in education rather than in mathematics. 
Unsurprisingly their mathematics content knowledge is generally fairly weak. The 
events I look at here are part of a larger project in which we examine ways in which 
in-service teachers are able to enhance and deepen their own mathematical learning. 
In the particular course in which this research takes place, functions are revisited in 
the hope of extending in-service teachers’ understanding of this fundamental concept. 
The class meets once a week for a three hour session over eleven weeks. Students, 
i.e. teachers, are expected to study a specific chapter from the prescribed precalculus 
textbook (Sullivan, 2008) prior to their weekly session. During the weekly session, 
the class discusses this chapter for the first hour. Students are then presented with 
tasks around the topic which they mostly do in pairs. Some of tasks require the use of 
GeoGebra; others do not. The episode of interest, in which students attempt the task 
given below, took place during the sixth week of the class. As preparation for the 
class, students had studied the chapter, ‘Polynomial and Rational functions’ in the 
prescribed textbook.    
Task and its pedagogical purpose 

Graph each of the following functions. 
2 3 4 51 1 1 1

1 2 3 41 1 1 1
x x x x
x x x xy y y y− − − −
− − − −= = = =  

Is x=1 a vertical asymptote? Why not? What is happening for x=1? What do you 
conjecture about 1

1 , 1nx
xy n−
−= ≥  an integer, for x=1? (Sullivan, 2008, p. 209).  

Be careful, GeoGebra isn’t perfect here.  

It was anticipated that students would  use GeoGebra to generate y1. Having observed 
that the GeoGebra graph of y1 is the straight line y = x+1, we expected students to 
write: 2 1

1 1 1 1x
xy x , x−
−= = + ≠ .  Similarly for y2, y3 and y4.  We hoped that students 

would notice that each function was not defined at x=1, but that by cancelling factor 
x-1 in numerator and denominator, the point x=1 could be removed. Graphically this 
would be depicted by a hole at x=1 (this could be drawn on a print-out of the graph).  
Alternatively, students could use a theorem  (the endorsed narrative) about the 
location of a vertical asymptote as given in the precalculus textbook to decide that 
none of the given functions had a vertical asymptote at x=1, or elsewhere. This 
theorem reads: “A rational function ( ) ( )

( )
p x
q xR x = ,  in lowest terms, will have a vertical 

asymptote x = r if r is a real zero of the denominator q” (Sullivan, 2008, p. 188). 
Since this was a precalculus course we did not expect students to use the language of 
discontinuities. Rather we expected them to speak of holes and/or functions not 
existing at a point.   
Implementation of task  
Eva & Tom, both digital immigrants, were audio-taped and their work was screen-
recorded as they worked on the above task. They were told that they should treat this 



2-140 PME 35 - 2011

Berger 

 

1- 4 PME 35 - 2011 

as a normal classroom session and that they should feel free to ask the researcher any 
question that they would normally ask in a non-recorded classroom session. In an 
earlier survey Eva claims that she is very confident in her use of the computer; in 
contrast, Tom claims that he is confident (not very confident) in its use. Eva is a very 
good student; she obtains 87% in mid-semester test. Tom is one of the weakest 
students in the class; he obtains 34% in the mid-semester mathematics test.  
Description of key events 
At the start of the task, Eva and Tom indicate that they will hand-draw the graphs of 
the four functions and that they will use GeoGebra to check their graphs (line 3, 6). 
They start by considering y1. Eva declares that she is aware that the computer 
generated graph is “not perfect” (line 3).  Eva and Tom talk about having a vertical 
asymptote at x=1 (lines 7 – 11).  

3  E: Right?  OK.  And they say be careful. GeoGebra isn’t perfect here, so let’s 
see what happens.  We will do it sketching first and then we’ll check on 
GeoGebra.  Now if the question is:  Graph each of the following 
functions.  So we’ll have to take each one and graph it, OK? 

4  T: y equals to...  
5  E & T:  x squared minus 1 over x minus 1.  
6  E: Right.  Let’s draw our system of axes.  Drawing our system of axes 
7  T: And then x won’t be equals to 
8  E & T:  1  
9  E: OK but 
10 T: That is our vertical  
11 E: asymptote. 

After a little discussion, Eva writes ( )( )2 1 11
1 1, ( ) 1x xx

x xy f x x− +−
− −= = = + .  She does not note 

that x≠ 1. Nonetheless Tom hand draws the line y = x+1 with a hole (a circle) at x=1 
(lines 36 - 38). He also draws a vertical line at x=1 to indicate a vertical asymptote.  
See Figure 1. 

36 E: So what we’re going to do is draw a non-coloured circle through that.  So 
that’s the only value x is not going to take, right? 

37  T: Yes. 
38 E: So we’re going to draw our circle, right?  Right.  And then continue that 

graph.  That’s it. 

Eva & Tom then generate a GeoGebra plot of y1, presumably to confirm their hand-
plot. Eva notes that GeoGebra does not generate a graph with a hole (line 39).  

39 E:   OK.  But you see GeoGebra doesn’t do that.  Can you see that it’s like a 
continuous graph, né? 

For each of y2 and y3, Eva factorises the numerator and then cancels factor x–1 in 
numerator and denominator. In neither case does she write that x≠1. Eva and Tom 



2-141PME 35 - 2011

Berger 

 

PME 35 - 2011 1- 5 

then spend much time and energy hand-drawing the resulting functions; they use 
calculus and point-plotting routines.  Tom hand draws each graph correctly with hole 
at x=1 (but also with vertical line at x=1). See Figure 1. Eva & Tom confirm each 
hand plot with GeoGebra.   

  
Figure 1: Hand-plots of y1, y2 , y3 and y4   

Eva and Tom persist in talking and writing about x=1 as a vertical asymptote until 
near the end of the activity at which point the researcher asks the students if they 
have any questions. Eva states her concern that GeoGebra is not perfect “because the 
asymptote is not, it’s not reflected when x is equal to 1” (line 324). The researcher 
uses this opportunity to explain that there is no vertical asymptote at x=1: for a 
vertical asymptote, we must have an expression of form a/0, a ≠ 0, in lowest terms. 
Although it is unclear whether Tom accepts this explanation (his response is silence), 
Eva states that she understands. Indeed the students do not speak of or draw an 
asymptote at x=1 again; rather they draw and speak of a hole at x=1 for y4. See 
Figure 1.  
Soon after this Eva and Tom discuss their response to the question: “Is x=1 a vertical 
asymptote? Why not? What is happening for x=1?” (lines 420 – 422, 433 - 436 ):. 

420   E: OK, but now, right. They say is x equal to 1 is a vertical asymptote?  
We’re going to say,  no.  No, it is not a vertical asymptote. 

421.  T: No. 
422.  E: It is not a vertical asymptote. 

¦   
433.  T: For  f equals to 1 it’s undefined because of division by zero... 
434.  E: Mmm, because division by zero is…  So we can write down it as a hole 

that x equal to 1. For x equals to 1 then the function is undefined because 
division by zero...  

435. T: zero is not accepted, or however you need to write it. 
436. E: is undefined.  OK, that’s fine ‘undefined’.  So there is a hole at x equal to 

1 for every  function. 
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Eva then writes, while speaking out loud: “x=1 is not a vertical asymptote. The 
function is not defined for x=1 but is not an asymptote because each function has a 
factor of (x-1) in its numerator which cancels with (x-1) in the denominator. 
Therefore it is not an asymptote but function is undefined at x=1”.  
ANALYSIS 
Endorsing narratives in a technological environment 
In this task, Eva & Tom do not exploit the affordances of GeoGebra as a tool to 
support their activities. That is, they do not use the graphs generated by GeoGebra as 
visual mediators with which to ‘do’ mathematics; rather they spend a lot of time and 
effort in hand-drawing each of the graphs and only use GeoGebra for verification. 
This is despite the fact that they are easily able to use GeoGebra to generate the 
graphs (evidenced by their quick generation of GeoGebra graphs for verification of 
hand-drawn graphs). A possible reason for these (unexpected) actions is that the 
computer-generated graph is not consistent with the officially endorsed narrative 
wherein a removable discontinuity is represented by a hole. So it is regarded as 
generally suspect. Another possible reason for Eva and Tom’s limited use of 
GeoGebra is an entrenched cultural attitude (particularly among digital immigrants): 
mathematics is done by hand. Technology is there as a tool for confirmation of hand-
done mathematics and not for doing institutionally-recognized mathematics. 
Ontologically speaking, mathematical outputs produced by a computer are not part of 
the official mathematical narrative. Indeed Eva, who takes the leading role (Sfard, 
2007) in the discourse, declares right at the beginning of the task, “We will do it 
sketching first and then we’ll check on GeoGebra” (line 3). This attitude was 
surprising: this was the sixth week of this course and my colleague and I had stressed 
that technology could be used as a powerful tool in doing mathematics. Its narratives 
were mostly endorsable although some care had to be taken when interpreting its 
outputs. An alternate explanation for the privileging of the hand-drawn graphs is the 
students’ reading of the cautionary statement in the task: “Be careful GeoGebra isn’t 
perfect here”. This statement was intended to alert the students to the fact that 
GeoGebra did not reveal removable discontinuities in its graphs of functions. But the 
statement may have led to an undue mistrust of GeoGebra and may have reinforced 
the belief (discussed previously) that narratives of computer generated mathematics 
are not consistent with the official mathematical narrative. Indeed Eva implicitly 
justifies the hand-sketching of all graphs by invoking this cautionary statement right 
at the beginning of the task (line 3) and she refers to the warning a further three times 
while doing the task (for example, line 39).  
Visual Mediation 
Eva and Tom do not exploit the visual mediation that the graphs of GeoGebra afford. 
Although GeoGebra generates a visual picture of the graph as if it were a continuous 
graph rather than a graph with a discontinuity at x=1, it was expected that students 
would use this graph together with algebraic reasoning, ie ( )( )2 1 11

1 1, x xx
x xy − +−
− −= =  
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1, 1x x= + ≠ to recognize that x=1 is a point where the function is not defined. So why 
do Eva and Tom prefer to use hand-drawn graphs rather than computer-generated 
graphs as visual mediators? Possibly and as previously discussed, Eva and Tom may 
not accept that GeoGebra graphs can be used in endorsed mathematical narratives. Or 
they may need to see the ‘hole’ in the graph; a hole which they are able to represent 
directly on hand-drawn but not on the computer-generated graphs on the screen.    
Routines 
Eva and Tom execute several routines, each of which they repeat for y1, y2, y3 and y4. 
Specifically they use hand graph-sketching techniques such as algebraic 
simplification, calculus and point-by-point plotting to draw the four functions. As has 
been discussed, in a context in which the students have access to a tool which they 
can use to sketch functions (albeit with some imperfections), executing routines to 
hand-draw the graphs is an inappropriate activity. In this case, I suggest that 
applicability conditions, that is, the rules that demarcate when a particular routine 
should be applied (Sfard, 2008, p. 209) are unclear to the students. This may be 
aggravated by the (unendorsed) narratives which GeoGebra outputs.  
Also, when simplifying the expressions for y1, y2, y3 and y4, the students do not 
explicitly state where the function is undefined. For this reason, the routines that they 
execute with regard to simplification, contradict endorsed mathematical narratives. 
For example, Eva writes: ( )( )2

3 1 1 21
1 1, ( ) 1.

x x xx
x xy f x x x

− + +
−
− −= = = + + She does not 

indicate that x≠1 although she and Tom acknowledge that x≠1 several times 
throughout the task, for example, lines 7-8, 36.  
A further (non-endorsable) routine involves the students’ sketch of the vertical line 
x=1 to indicate a vertical asymptote at x=1 (see Figure 1). Eva and Tom assume, 
presumably because the function is not defined at x=1, that x=1 is an asymptote. See 
for example, lines 7 – 11 and lines 310 – 311.  

310 E: But now again our asymptote is going to be at x is equal to 1, so it’s not 
going to pass through x.  Our graph is not equal to 1.  x will not equal to 1. 

311 T: This 1, you see. 

In the next section, headed ‘Words’, we see how an intervention by the researcher 
triggers a change in students’ discourse with respect to their use of the term 
‘asymptote at x=1’. 
Words 
Initially Eva and Tom use the term ‘asymptote’ to describe a point (in this case, x=1) 
where the function is not defined (see, for example, see lines 7 – 11 and 310 – 311).  
They draw a vertical asymptote at x=1 (although they also talk about and draw a hole 
at x=1) for y1, y2 and y3. But an intervention by the researcher (described in section 
headed ‘Description of events’) triggers a change in Eva and Tom’s discourse and 
after this intervention they no longer talk of a vertical asymptote when referring to an 
undefined point. For example, when discussing y4, they specify that x=1 is not an 
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asymptote (lines 420-422). Also, in response to the question: “Is x=1 an asymptote”, 
Eva (the leader of discourse) presents a written and cogent argument in which she 
argues that x=1 is not an asymptote since the factor ‘x-1’ in numerator and 
denominator cancels out. Arguably, it was necessary for there to be a change in 
discourse (evidenced by the cessation of the use of the term ‘vertical asymptote’ to 
describe every point at which the function is undefined) before Eva could generate an 
endorsed narrative which describes the distinctive feature of a point at which the 
function is not defined but at which there is no vertical asymptote. Here we see how a 
change in discourse, in this case in word use, constitutes learning. 
DISCUSSION 
An arguable weakness of the above analysis is that it focuses on the learning of the 
pair of students rather than on individual students’ learning. In particular it does not 
illuminate what learning takes place for Tom with respect to the distinction between a 
vertical asymptote and a hole. However it signals ways in which non-learning may be 
covered up when students work in pairs in which clear roles are not defined. These 
interactions are the subject of a further paper.  
Nonetheless in this research report we see how Sfard’s framework brings into sharp 
relief key aspects of the pair’s mathematical discourse (words, visual mediators, 
narratives and routines). This focus allows an enhanced understanding of both the 
expected and the unexpected activities of the students, as a pair.  
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As a means of preventing students in pre-service teacher training from developing a 
static view on mathematics which comes along with a teaching based on rote 
learning we have implemented a course in reflexive problem-solving including 
extensive journal writing. The research project ‘Mathematics teachers as 
researchers’ is looking into the effects of such a course. This article will give an 
insight into the development of the complementary set of instruments we were using 
to measure beliefs about mathematics and their change. First we will present a 
process of empirical optimisation of Likert-scales and secondly we will discuss the 
results of an empirical comparison between those classical scales and the so-called 
”semantic differential”. 

INTRODUCTION 
This study originated from the discussion of differences in Germany’s primary, 
secondary and upper secondary mathematics teacher education – especially the 
different emphasis on content knowledge and pedagogical content knowledge 
(Shulman 1986). Teachers who mainly had enrolled in content-related studies in their 
university phase experience a gap between their studies in mathematics and their 
every day practice at school (Terhart, Czerwenka, Ehrich et al. 1994). Furthermore 
“the way most of them studied mathematics leads to a static view on mathematics 
(…) which is also the reason for the claim that teaching in many cases might be very 
superficial and concentrating on the rote learning of some procedures and 
techniques” (Pehkonen & Törner 1999, p.271).  
A course model that aims at improving teachers’ competences, especially at changing 
their beliefs about mathematics is a reflexive problem solving course which includes 
extensive journal writing. This kind of course has already been performed by teacher 
educators (Lester, Masingila, Mau et al. 1994) though its outcomes have rarely been 
studied empirically. Therefore the project Journal writing as an instrument for a self-
reflexive development in professionalism in content and pedagogical content 
knowledge of (pre-service) mathematics teachers’ (University of Education Freiburg, 
University of Freiburg, Germany; funded by the Federal Ministry of Education and 
Research Project number: 01JH0913) addresses as a central research question: Which 
effect does a problem solving course based on journal writing have on the 
participants’ beliefs about mathematics and mathematics teaching?  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 145-152. Ankara, Turkey: PME.
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This question also comprises the methodological question of how such beliefs can be 
measured adequately. Hence our further goals were to optimize existing instruments 
according to the requirements of the study and to find out how different instruments 
complement each other. This paper will give an insight into the process and the 
results of this development. 

THEORETICAL FRAMEWORK 
Some remarks on Beliefs 
First of all there is no distinct definition of what is meant by beliefs. Goldin gives a 
short definition which states that   "Beliefs are defined to be multiply-encoded 
cognitive/affective configurations, to which the holder attributes some kind of truth 
value (e.g. empirical truth, validity, or applicability)" (Goldin 2002, p.59). Beliefs are 
seen as a structure of affects (Grigutsch, Raatz & Törner 1998) which is expressed by 
the term belief systems (Green 1971). These systems are not fixed but “dynamic in 
nature, undergoing change and restructuring as individuals evaluate their beliefs 
against their experience“ (Thompson 1989, p.130).  
Grigutsch et al. (1998) contrast ‘mathematics as an action’ vs. a ‘static view on 
mathematics’. Studies indicate a congruence between the teacher’s beliefs and the 
teaching practice of a teacher (Thompson 1992). As mentioned above belief systems 
are dynamic in nature and undergoing change, still the change of deep-rooted 
conceptions can be considered  one of the main problems in mathematics teacher 
education (ibid.). As already described above, several authors allege that pre-service 
training can initiate a change of teachers’ beliefs (DeBellis & Rosenstein 2004).  
Measuring Beliefs 
Beliefs have been measured and analyzed by means of a wide variety of techniques. 
Researchers  have been using Likert-scales, semantic differential scales, interviews, 
observations, content analysis of journal entries, repertory grid techniques amongst 
others. In German-speaking countries some established Likert-scales are frequently 
used. Baumert, Blum, Brunner et al. (2009) e.g. use scales in COACTIV which are 
called ‘Mathematics as a system’, ‘Mathematics as a process’, ‘Mathematics as a 
toolbox’ and ‘Platonist conception of mathematics’ (Baumert et al. 2009, Köller, 
Baumert & Neubrand 2000). This instrument focuses primarily on the cognitive and 
conscious components of beliefs whereas Semantic differential (SD) scales tend to 
measure unconscious and affective, i.e. associative-connotative aspects of beliefs 
(Osgood, Suci & Tannenbaum 1978, Stahl & Bromme 2007). In a SD a series of 
bipolar adjectives are listed with the same number of divisions (usually 7) between 
each pair. Stahl & Bromme (2007) have developed a semantic differential called 
Connotative Aspects of Epistemological Beliefs (CAEB) They have found a two 
factor solution and labelled it ‘Texture’ (structure and accuracy of knowledge) and 
‘Variability’ (stability and dynamics of knowledge) (ibid.).  
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Both types of scales have the advantage that they can be applied to a large sample 
and that they can be evaluated statistically. But it is disadvantageous in that the scales 
anticipate certain concepts of beliefs in advance, so that one can have doubts about 
their validity. By contrast, interviews and journal entries uncover more individual 
views so that concepts do not have to be given. They can be analyzed through 
qualitative methods. Its disadvantage is often a restricted comparability of the results 
due to a lack of standardisation and a restricted sample size by reason of the time and 
effort that is needed to analyze the data. 
Concept of a reflexive problem solving course based on journal writing 
The pre-service teacher course we implemented can be compared to the one reported 
by DeBellis and Rosenstein (2004) who practiced a problem-solving approach in the 
Leadership Program in Discrete Mathematics to give teachers the possibility to be 
learners themselves. (DeBellis & Rosenstein 2004). This concept of reflexive 
problem-solving courses is closely associated with journal writing. In our case we 
call the journals ‚research journals’. In order to induce reflection, a set of questions is 
needed to prompt the students’ self-reflection (Brouer 2007). In our case the students 
are asked to reflect on their problem -solving process and on the change of their view 
on mathematics.  
In order to understand the character of the intervention it is important to define the 
concept of ‘problem’ we use: „a problem is a situation that differs from an exercise in 
that the problem solver does not have a procedure or an algorithm which will 
certainly lead to a solution” (Kantowski 1981 in Heinrich 2004, p.55). The problems 
were chosen following certain criteria considering the specific objectives of the 
course. One of the problems used in the pilot study that exemplifies these criteria is 
‘Stairnumbers’ (cf. Mason Burton & Stacey 1991): 

Problem 3: Which are the numbers you can write as the sum of consecutive integers 
(e.g. 12 = 3+4+5)? Can you tell which numbers can be written in which different 
ways? When you have worked on the problem to your satisfaction, ask some 
questions, e.g. “What happens if…?” or vary the problem. 

The required prior knowledge for such problems is low, so that the students can 
easily start with working on the problem. The problem question opens different ways 
for discovery. The open-endedness is indicated by the last sentence of the instruction.  

PILOT STUDY 
Methodology 
During the seminar ‘problem- solving’ the students have been working on seven 
problems during 13 weeks by writing all their ideas and calculations into their 
journals. These journals reached a volume of about 100 pages. At the end they were 
asked to reflect on their experiences with the specific problem, with problem- solving 
in general and on the change in their beliefs about mathematics.  
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Amongst others, there were two questions in the focus of the study’s interest: On the 
one hand how the students’ beliefs changed during the problem solving course, and 
on the other hand we were particularly interested in the validity of the questionnaire 
in use. This article will give an insight in the results of the second question. 
For the collection of quantitative data we used established Likert-scales in pre- and 
post-test. They relate to “Beliefs about mathematics” (Grigutsch et al. 1998, Köller et 
al. 2000, Baumert et al. 2009) and “Beliefs about teaching mathematics” (Köller et al. 
2000, Baumert et al. 2009). Additionally, we used the CAEB (Stahl & Bromme 
2007) with the scales ‘Variability’ and ‘Texture’ for mathematics as a science.  
In order to validate and to optimize the scales we analysed the written reflections of 
the students to the question as to how their view on mathematics had changed. The 
texts were analysed by ‘summarizing qualitative content analysis’ according to 
Mayring (2000) regarding the research question: Which aspects of beliefs on 
mathematics do the students bring up on their own? In a second step these categories 
were used to improve the scales. 
Results 
In the group participating in the course (N=63) there was a significant change away 
from the view of ‘Mathematics as a toolbox’ and towards the view of ‘Mathematics 
as a process’. Because of the weak reliability coefficients of some scales they will be 
modified for the main study in order to  detect differences between groups of students 
(for the results cf. Bernack, Holzäpfel, Leuders & Renkl 2011 in press). This can 
probably be amended by simplifying the respective questions.  
The results of the summarized content analysis of the reflection sections of the 
research journals are based on N=10 students. Beside five other categories (cf. 
Bernack et al. 2011), we summarized a large part of the statements under the category 
‘Mathematics as an activity’ with reference to Grigutsch et al. (1998) first, but the 
frequency was very high and they were not coherent. For that reason, the statements 
have been summarized under the categories ‘Dynamic view on mathematics’, 
‘Activities when doing mathematics’ and ‘Individuality while doing mathematics’. 
Going back to the questionnaire, one finds that the categories ‘Dynamic view on 
mathematics’, ‘Activities when doing mathematics’ and ‘Individuality in doing 
mathematics’ are all found in the same scale ‘Mathematics as a process’. Thus, the 
number of mentions and their diversity in the qualitative analysis motivate a re-
composition of the categories in the scale rather than using the overly comprehensive 
scale ‘Mathematics as a process’. Based on the journal entries we developed some 
new items for the scale ‘Mathematics as a process’, changed some of the old ones and  
divided the scale into the subscales ‘Mathematics as a dynamic science’ and 
‘Activities/ individuality when doing mathematics’. The instrument could thus be 
optimised with regards to measuring the effects of the course during the main study 
so that we could begin with its implementation. 
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MAIN STUDY 
Methodology 
In the main study which took place in summer 2010 we implemented the new scales 
and in addition to measuring the overall effect on beliefs we added an experimental 
variation to examine the relative effect of journal writing on one hand and a lecture-
oriented component on the other hand. While a control group was given “classical” 
lecture on ‘Mathematical Thinking’ with the contents problem- solving, proving and 
arguing and generating concepts, the treatment group had a reflexive problem- 
solving course based on journal writing as described above. For ethical reasons the 
intervention changed after half of the time.  
Group Week 1 Week 2-5 Week 6 Week 7-10 Week 11 
1 
N=37 

Data 
collection 1 
(t1) 
Reflection 

Journal 
writing 

Data 
collection 2 
(t2) 
Reflection 

Lecture Data 
collection 3 
(t3) 
Reflection 

2 
N=33 

Lecture Journal 
writing 

Table 1: Main study summer 2010 
While the main goal of the main study – analysis of the relative effects including 
identifying moderator effects – is yet to be carried out, the focus of this article is on 
the instruments in use. Can the reliability coefficient be improved after optimizing 
the scales? Furthermore we were interested in the relation between the two kinds of 
scales in use: the scales which we optimized during the pilot study concerning beliefs 
on mathematics and the scales of the CAEB, also part of the questionnaire. We were 
asking if they measure the same construct and in which way they differ in order to 
know more about instruments measuring beliefs and their relationship. Especially the 
scale ‘Variability’ and the scale ‘Mathematics as a dynamic science’ are very similar 
in their word choice. Because ‘Variability’ encompasses the degree of dynamics of 
mathematics as a science, it is very closely linked to the aspect of process. Thus, we 
hypothesise that there is a strong positive correlation between both of them: The 
same assumption applies to ‘Texture’ and ‘Mathematics as a system’ due to the fact 
that both include the structure of mathematics. Taking into account that the CAEB is 
rather measuring underlying concepts (see above) it will be interesting to see how the 
different types of scales react to the intervention. 
Results 
Regarding the reliability of the scales, the adjustment of the whole scale 
‘Mathematics as a process’ in the course of the pilot study was successful. The 
reliability coefficient has increased considerably and the subscales also reached 
satisfying values. For the sake of completeness, Table 2 shows the results for the 
other scales measuring beliefs on mathematics. 
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 Pilot study Main study 
Scale (Abbreviation, number of 
items) 

t1 
N=63 

t2 

N=63 
t1 

N=154 
t2 

N=109 
t3 

N=72 
M. as a process, pilot study (4) .264 .678    
M. as a process optimized (MP, 14)   .830 .838 .889 
Subscale M. as a dynamic science 
(DS, 6) 

  .679 .724 .817 

Subscale ‘Activities/ individuality 
when doing mathematics’(A, 7) 

  .733 .754 .854 

Mathematics as a system (MS, 7) .659 .664 .754 .768 .743 
Mathematics as a toolbox (MT, 4) .691 .538 .681 .726 .743 
Variability (V, 7) .634 .700 .766 .802 .827 
Texture (T, 9 of 11) .784 .791 .848 .858 .848 

Table 2: Reliability coefficients (Cronbachs α) 
Table 3 indicates the correlation between the scales measuring beliefs about 
mathematics. As assumed there is a large positive correlation between the SD scale 
‘Variability’ and the scale ‘Mathematics as a process’. When you take  the subscales 
into account, the bigger similarity between scale (DS) and (V) becomes apparent, so 
that ‘Variability’ seems to be measuring rather the characteristics of mathematics as a 
science (which can be dynamic or not) than  being in a close relationship to typical 
process-like and dynamic activities. Nevertheless, (V) and (A) correlate with a 
medium positive value. The results also corroborate the hypothesis of the correlation 
between ‘Mathematics as a system’ and ‘Texture’.  
 (A) (MS) (V) (T) 
Mathematics as a process (MP)  -.258** .501** -.267** 
Mathematics as a dynamic 
science (DS) 

,633** -,332** .581** -.319** 

 ‘Activities/individuality when 
doing mathematics’ (A) 

 -,165* .364** -.188* 

Mathematics as a system (MS)   -.445** .478** 
Variability (CAEB) (V)    -.596** 
Texture (CAEB) (T)     

Table 3: Pearsons product-moment coefficient r (Main study, T1); N=150; *p <.05; 
**p < .005 
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DISCUSSION 
The results indicate that the CAEB can be seen as an alternative instrument to 
measure beliefs about mathematics, especially the aspects ‘Mathematics as a process’ 
and ‘Mathematics as a system’. Especially the medium correlation coefficient 
between ‘Texture’ and ‘Mathematics as a system’ is an astonishing result because 
there are no strong similarities in the word choice of the two scales as in the 
aforementioned case. Concerning the scale ‘Variability’, however, we have to 
recognize that it does not take process-like activities into account to the same degree 
as the subscale ‘Activities/individuality when doing mathematics’ does. It seems to 
measure rather the descriptive characteristics of mathematics. One advantage of the 
CAEB is its stable reliability coefficient. Because it tends to measure more 
connotative attitudes, it will be interesting to see in further analyses which instrument 
reacts to which part of the intervention in which way. These analyses also can point 
to further differences between the instruments. These results should make it possible 
for further studies to choose the adequate instrument to measure beliefs about 
mathematics knowing its advantages and disadvantages.  
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MIDDLE GRADES STUDENTS’ EMERGING BELIEFS ABOUT 
ARGUMENTATION 

Kristen N. Bieda   
Michigan State University       kbieda@msu.edu 

 

Students learn norms of proving mathematically by observing teachers generate 
proofs, engaging in proving, and generalizing features of proofs deemed convincing 
by their mathematics instructor or textbook. This study investigated aspects of proofs 
and non-proofs that were convincing to middle grades students. Fourteen students 
completed proof evaluation items in number theory and geometry. In each item, both 
an empirical and a general argument were provided. Students tended to prefer the 
empirical argument for the number theory statement but valued the explanatory 
power of an argument when evaluating a proof for a true geometry statement that 
provided a diagram. Data analysis yielded a descriptive model to illustrate the 
factors that middle grades students’ value when evaluating arguments.  

INTRODUCTION  
Some mathematics educators define proof as the process one undertakes to remove 
doubt, or convince oneself and others that a statement is true (Harel & Sowder, 
2007).  Therefore, learning to do mathematical proof involves adopting the notion of 
a convincing argument in the discipline of mathematics– namely, an argument 
constructed with general, established premises in a rigorous and logically deductive 
fashion (National Council for Teachers of Mathematics (NCTM), 2000). As middle 
grades students (ages 12-14) have yet to learn the norms of proving in mathematics, 
this study investigated their emerging conceptions and proof practices to learn what 
they bring to more formal experiences with proof in settings such as a high school 
geometry course or in undergraduate advanced mathematics coursework. 
Students often learn the norms of proving in mathematics by observing proofs and 
generalizing features of those proofs deemed to be correct by a mathematical 
authority, such as their mathematics instructor (Ernest, 1999).  Existing work 
documents that both high school and undergraduate students, even undergraduate 
mathematics majors, have difficulties distinguishing mathematically correct 
justifications and proofs from non-proofs (Harel & Sowder, 1998; Healy & Hoyles, 
2000; Selden & Selden, 2003; Alcock & Weber, 2005). Weber (2009) acknowledges: 
“The lack of research on how students do read mathematical arguments, as well as 
how they should read them, represents an important void” (p.2). Therefore, 
understanding what students notice and what they value when evaluating 
mathematical arguments, especially students who are novices in doing mathematical 
proof, can support instructional interventions that highlight important distinctions 
between proofs and non-proofs.  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 153-160. Ankara, Turkey: PME.
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This study builds upon an emerging research base on students’ reading and 
evaluating of mathematical proof by addressing the following research questions: 
What features of mathematical arguments convince students, as evident when they 
evaluate proofs and non-proofs? To what extent do students utilize these features 
when modifying arguments to be more convincing?  

LITERATURE REVIEW  
Numerous studies indicate that students tend to generate empirical arguments when 
proving, at the middle school level (Knuth, Choppin, & Bieda, 2009) and beyond 
(Healy & Hoyles, 2000; Senk, 1985, Weber, 2001). It may be the case that students 
have difficulty generating mathematically valid proofs because the organization of 
their mathematical knowledge and the validity of the definitions, theorems, and 
deductive rules they use has been determined solely by a mathematical authority (a 
teacher or textbook) and not debated as a community of practice. Balacheff (1987) 
states that a mathematical proof, “requires a specific status of knowledge which must 
be organized in a theory and recognized as such by a community. The validity of 
definitions, theorems, and deductive rules is socially shared” (p. 30). Some existing 
work has examined the implementation of proof-related tasks from Standards-based 
curricula at the middle grades level (Bieda, 2010), suggesting that little instructional 
emphases is placed upon generating and analyzing definitions as a classroom 
community. Providing example cases to illustrate or verify an explanation or 
definition is likely a normative practice of mathematics classrooms. 
This study explored students’ conceptions of proof by eliciting students’ evaluations 
of both proof and non-proof arguments, and also examining the relationship between 
what students choose as a convincing argument and the modifications they make to 
an argument that is not convincing. Both kinds of activity – evaluation and 
production – require students to draw upon their emerging beliefs about mathematical 
proof and reveal how their conceptions of proving practice aligns with the role of 
proof in the discipline.  

 RESEARCH DESIGN  
Data collection consisted of obtaining students’ responses to proof evaluation tasks 
using one-on-one, videotaped interviews. These interviews were a part of a larger 
exploratory study that included administration of written assessments to 
approximately 200 students, of which the interview participants were a sub-sample, 
to understand students’ proving practices across mathematical domains.  
Interviews 
Twenty-five 7th grade students (ages 11-12) attending the same junior high school 
from a small, suburban, Midwestern district in the United States voluntarily 
participated in interviews. The author conducted the interviews at the students’ 
school over the course of three days. Because of the exploratory nature of this study, 
different items and interview protocols were used between Day 1 and Day 2 and 3 
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interviews to determine the best measures. For this paper, analyses focused on 
students’ responses for Days 2 and 3 across the same set of items. Therefore, out of 
25 interviewees, only the responses of 14 (those participating in interviews in Day 2 
and 3) were considered in analyses for this paper. 
The proof evaluation items for both number theory and geometry are shown in 
Figures 2 and 3. The interview protocols contained, among other items, tasks asking 
students to choose between an empirical justification and a more general, deductive 
justification as more convincing in showing a statement to be true. Students reviewed 
both justifications at the same time, however each argument was printed on a separate 
page. I posed the following questions to the student about the arguments, in the order 
given: 1) Which response convinces you that the statement is true? 2) Why is the 
response you chose more convincing than the other response? 3) If you were to give 
advice to the student who wrote the response you didn’t choose as to how they could 
improve their response to make it more convincing, what would you tell them? 
Data Analysis 

Students’ responses to the proof production items in the written assessments were 
transcribed and analyzed using HyperResearch. The first step in analyzing students’ 
interview responses involved coding students’ responses to Question 1 either as 
Examples-Based or EB (for choice of Response A) or General or G (for choice of 
Response B). To analyze Question 2 and 3, the research team used a  
 

 

 

Figure 2 & 3: Proof Evaluation Tasks for Number Theory and Geometry Statements 

constant-comparative method of coding (Strauss & Corbin, 1990) to develop 
descriptions of aspects of the responses that students noted when describing why they 
chose a particular argument as convincing.  
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RESULTS AND DISCUSSION  
Features of Convincing Arguments 
For middle school students in our sample, examples on their own were often 
insufficient, and a convincing argument is one that shows (with examples) and tells 
(why) the statement is true to the reader (represented as quadrant I in the model given 
in Figure 4). This echoes some findings of Chazan (1993), which indicated that high 
school students prefer mathematical proofs for geometry statements to utilize both 
explanation and examples.  
 
 
 
 
 
 

 

Figure 4: Factors of mathematical arguments that convince students 
Arguments Chosen as Convincing 
To answer the first question for the number theory and geometry items (see Figure 2 
and 3), students chose the response that was more convincing between the general 
(G) and the examples-based (EB) argument and provided a rationale for their choice. 
Given the limitations of a small sample size, it appears that  

Table 1:  Response chosen across tasks (Day 2 and Day 3 interviews) 
students are slightly more likely to choose the G argument as convincing for the 
geometry task than for the number theory task (5 responses compared to 2 responses). 
If responses from Day 1 are included, 8 students chose the G argument as more 
convincing than the EB argument in the geometry task compared to only 4 students 
for the number theory task.  

Task Examples-Based (EB) General (G) Both Neither 

Number Theory 11 2 0 1 

Geometry 7 5 2 0 

TOTAL 18 7 2 1 

Argument tells why 
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Mathematical Arguments Must “Show” The Mathematics…And Explain Why 
In response to Question 2 of the interview protocol, students explained why they 
chose one justification as more convincing. In some responses, it was clear that 
students understood both the limits of just providing examples and the need for a 
justification to explain, mathematically, why the statement is true:  

Michael: Because it’s [Response B, number theory item] explaining it. It’s like 
explaining it other than response A which just picked random numbers showing that it 
works and B is explaining what it means and how and why it’s like that … because it 
could work for them and not work for others.  

Students also attended to the quality of the explanations provided. For the geometry 
item, Michael chose the EB argument as more convincing, explaining:  

It’s [Response A, geometry item] actually showing you like there is five and it’s got two 
different examples to it. And in this one [Response B, geometry item], it’s kind of, it’s 
explaining it but it’s not doing it as well.”  

As exemplified by Michael’s responses, students evaluated arguments based on two 
primary categories: power to demonstrate and power to explain. Students’ responses 
indicated that a convincing argument is one that provides a concrete instantiation of 
the mathematics – a visual containing either a diagram or a numerical example – as 
stated below by another student: 

I’d say response A [number theory item] because it actually gives you examples. Like 
response B does but it doesn’t show you… well, if you read it, it tells you it but it doesn’t 
show you…  Because if you’re like a visual person, like me, you have to see it on paper.  

Students also attended to the quality of the explanations provided. In comparing 
Michael’s responses across the number theory and geometry items, it seems as if he 
contradicts himself; for the number theory item, examples are inadequate but for the 
geometry item, the examples are necessary.  He clearly understands that both items 
present an EB argument as a possible proof. He acknowledges that Response B in the 
geometry item offers an explanation, but is “not doing it as well” as Response A. 
Therefore, one possible explanation for Michael’s choice of Response A for the 
geometry item is that he prefers the EB response. On the other hand, he may have 
chosen Response A simply because Response B gives an unsatisfactory explanation. 
Improving Arguments To Be More Convincing 
Analyses of Question 3 of the protocol offered an opportunity to determine whether 
students would be consistent in applying their beliefs about convincing arguments as 
modeled in Figure 4. We found that students tended to revise arguments using a show 
and tell strategy; that is, if they chose the EB argument, students indicated that the G 
argument could be improved by including examples (show). On the other hand, if a 
student chose the G argument, they indicated that the EB argument could be 
improved by providing facts or more explanation in words (tell).  
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A total of 18 students (see Figure 4) chose the EB argument as more convincing 
across responses on the geometry and number theory items. Not surprisingly, each of 
the eleven students who chose the EB justification for the number theory item 
recommended improving the G argument by including examples to create “show and 
tell”–type arguments. To support their modifications, students claimed that the 
examples showed the fact, while the general argument explained it. The students 
indicated a need to “show” or visualize what the statements were referring to in the G 
argument, so that the reader could actually “see it’s true.”  

If you mixed these two up a little bit, they would pretty much be, like, really good.   
The words are like telling you what they’re showing you in the pictures, not just 
like…like, why.  
Give an example. And make sure you’re being specific about this and not that.  

Only seven students (see Figure 4) chose the G argument as the most convincing 
response across both the number theory and geometry items. When asked how the EB 
response might be improved to make it more convincing, all students stated that there 
was not enough explanation and suggested adding facts to support the examples. As 
one student stated: “[Since] any even plus any odd number is an odd number, [they] 
might want to say that in here somewhere, because that would make more sense to a 
person who’s trying to understand.” Students also noted the importance of including 
technical language in the argument, particularly for the geometry item: “They don’t 
even have the word vertex point, like these sort of points [circles]. They don’t even 
talk about those when this does. And it doesn’t even say that the pentagon has, like, 
five sides.”  

CONCLUSION  
Students’ preferences for “show and tell”-type arguments highlights, as Harel 

(2006) claimed, the interdependence between how students ascertain the truth of a 
statement and how they persuade others of the truth of the statement. Although 
existing work documents students’ tendencies to produce examples-based 
justifications, the findings of this study suggest that students are not depending solely 
upon examples to do the work of justifying and proving but are instead employing 
examples as rhetorical devices to demonstrate the mathematics of the statement being 
proven. 

Further, analyses of students’ responses to proof evaluation items suggest that 
students may use a different proof scheme to persuade than the one they use to 
ascertain. The evidence indicating students’ preferences for arguments that provided 
a concise, yet adequate, explanation of why the statement was true, even when they 
argued that a proof could be improved by adding examples, implies that an argument 
must explain to convince them (or others) that a statement is true. While the 
interview items were not specifically designed to distinguish between the proof 
schemes students used to ascertain and persuade, the results of this work raise 
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questions as to whether students apply the same scheme when engaging in both 
processes when proving. 

Although this work was designed to be exploratory in nature, these findings 
expand our notion of what students attend to when evaluating whether or not a 
mathematical argument is convincing. Although students accept the use of examples 
in mathematically convincing arguments, they also value an argument’s power to 
explain. The ability of a proof to explain why something is true is one of the 
fundamental functions of proof (Hanna, 2000) and arguably one of the most 
important conceptions for students to retain as they continue learning mathematics 
for understanding. 
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TWO TEACHERS AND TWO DIFFERENT WAYS OF HANDLING 
STUDENTS’ DIFFICULTIES DURING MATHEMATICAL TASKS 

IMPLEMENTATION 
 

Ferhan Bingolbali Erhan Bingolbali M. Fatih Ozmantar 
University of Gaziantep Turkey 

 
This paper investigates two elementary mathematics teachers’ ways of handling 
students’ difficulties during the mathematical task implementation. Two teachers’ 
mathematics lessons are video-recorded, transcribed and then analysed. The data is 
analysed in terms of teachers’ ways of handling difficulties encountered in the 
classroom. The analysis reveals that one teacher mainly discusses the difficulties 
while the other totally ignores them. We discuss why this was the case and suggest 
that the way the task is designed imposes some constraints on how teachers handle 
students’ difficulties and it is hence important to examine teachers’ responses to 
students ‘difficulties during the task implementation.    
INTRODUCTION 
Thanks to the influences of socio-cultural and constructivist ideas that value students’ 
active participation in their learning, considerable attention has been paid to 
mathematical task design and implementation in the last three decades in 
mathematics education research (Tzur, Zavlavsky & Sullivan, 2008). Tasks are 
viewed to offer more than just what to be learnt and that they are considered to 
structure and shape the way students think as well (Henningsen & Stein, 1997). The 
way tasks are designed, selected and implemented has hence deep influence on the 
quality of learning. 
Effective task implementation is not an easy endeavour. Unlike traditional ways of 
conducting the teaching, teaching through tasks requires a great deal of work on the 
part of the teacher. Such factors as students’ prior knowledge, students’ learning 
difficulties, classroom organization, instructional materials, instructional methods and 
strategies, role assigned to the teacher and roles assigned to the students need to be 
taken into the consideration if tasks are planned to be used  and all these require 
teachers’ readiness and planning beforehand (Swan, 2008; Marx & Walsh, 1988; 
Henningsen & Stein, 1997). These and similar studies suggest that such factors 
deeply affect the way a task is implemented and even sometimes they can cause the 
task not to be implemented the way it is intended at all.  
Students’ difficulties and misconceptions with the content to be covered is one factor 
that needs closer scrutiny during the task design and implementation (Swan, 2008). It 
is important to closely examine how teachers handle students’ difficulties and 
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misconceptions during the task implementation as their handling types can shape the 
direction of task implementation. This line of research appears to have received little 
attention and, in this study; we focus our attention on how two teachers handle 
students’ mathematical difficulties regarding the concept to be learnt during the task 
implementation and examine the role of the nature of the task on their handling types.  
THEORETICAL FRAMEWORK OF THE STUDY 
Although not particularly with regard to the task implementation, the issue of 
handling students’ mathematical difficulties has long been the focus of attention.  
Given that students’ difficulties mainly manifest themselves through errors, Ball 
(1991) points out that errors can be a window into students’ ways of thinking and 
understanding and therefore teachers need to go beyond “right” and “wrong” answer 
in order to find out the conceptualizations behind the errors. In agreement with Ball, 
Borasi also (1994) suggests that teachers make use of mistakes as “springboards for 
inquiry” so that students have the opportunity to get involved in fruitful discussions 
regarding mathematical concepts. Kazemi (1998) has provided evidence that using 
errors as “springboards for inquiry” and hence their discussions may cause greater 
attainment in students’ mathematical learning.  
A close examination of these and similar studies suggest that discussion of students’ 
errors in the classroom can be fruitful for their mathematical learning. The existing 
literature, however, reveals that teachers handle difficulties in a number of different 
ways. In a study on comparing teachers’ responses to student mistakes in Chinese and 
US mathematics classrooms, Schleppenbach, Flevares, Sims and Perry (2007, p. 131) 
report that US teachers “made more statements about errors than the Chinese 
teachers, who instead asked more follow-up questions about errors”. The Chinese 
teachers were found to encourage their students to work through their errors more 
than providing the correct answers immediately after the error occurred. In their 
analysis, Schleppenbach et al. (2007, p.136) note that teachers respond to students’ 
errors in two distinctive way: i.) making the statements after the error, or ii.) handling 
the errors with follow up questions. “Telling the student the answer is wrong”, 
“giving the correct answer” and “ignoring the error” are examples of the former type 
of responses to the errors while “re-asking the question”, “clarifying the question”, 
“redirecting the question” are the examples of the latter (ibid.).  
In another study, Santagata (2005, p.505) works on Italian and US teachers’ ways of 
handling students’ mistakes and reports that “in both Italy and the US, teachers were 
only randomly observed to organize discussions around students’ mistakes”. 
Alongside the similarities, there were also some differences between Italian and US 
teachers’ ways of handling errors. Italian teachers, for instance, were found asking 
the student who made the mistake to correct his error while US teachers were found 
asking a different student to correct his/her classmate’s error (ibid.).  
Similar studies have been conducted comparing Japanese and US teachers’ ways of 
handling students’ difficulties (Stevenson & Stigler, 1992; Stigler & Hiebert, 1999). 
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These researchers report that Japanese teachers used mistakes as sources of 
discussion and hence take the advantage of encountering them. They report that US 
teachers, in contrast, had the tendency to avoid the discussion of mistakes and were 
concerned with students’ self-esteem. Unlike US teachers, Japanese teachers were 
found to integrate students’ common mistakes into their lesson plans beforehand. 
One can infer form these studies that teachers handle students’ errors differently and 
sometimes teachers’ ways of handling can change from one culture to another. In this 
study, rather than comparing teachers of different countries, we focus on two 
particular teachers’ ways of handling students’ difficulties during the mathematical 
task implementation. The reason that we particularly focus on two teachers’ ways of 
handling difficulties during the task implementation is that every task has ‘an agenda’ 
and that may impose some constraints on how teachers handle students’ difficulties. 
In this study, we wonder whether the task agenda has a role in determining how 
teachers handle students’ difficulties encountered during the implementation.  
CONTEXT OF THE STUDY AND METHODOLOGY  
The theme of this paper emerged from an on-going project concerned with the 
professional development of elementary in-service teachers in Turkey. A group of 45 
elementary teachers (15 classroom, 15 mathematics and 15 science and technology 
teachers) took part in the in-service teacher professional development programme. 
These teachers participated in a course on task design principals and implementation 
that lasted four weeks and it was run by the mathematics education researchers. In 
first two weeks of the course, teachers got training regarding the task design 
principles. Such principals as determining the purpose of the task, selection of 
materials, classroom organizations, students’ prior knowledge, learning difficulties 
etc., were discussed with the teachers. For the third week, teachers were asked to 
bring a designed task (by themselves) for discussions and two such task plans were 
thoroughly discussed. After the third week training, all teachers implemented their 
designed tasks in their classroom and implementation of 9 teachers (3 teachers from 
each subject area) was video-recorded. Two such videos were used for discussion and 
recap in the fourth week of course.  
In this study, we present the video analysis of two elementary mathematics teachers’ 
task implementation. There were three elementary mathematics teachers and we 
chose the two as they designed their tasks from the same topic for the same purpose 
(consolidation). Both teachers implemented a consolidation task related to the solving 
of equations for 7th grade students (aged 13-14). Even though our aim for the training 
was to instruct teachers to design the task in light of the task design principals, in this 
study, we focus our attention on how they handle students’ difficulties during the task 
implementation. We, here, therefore follow an emergent theme. 
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DATA ANALYSIS AND RESULTS 
In this section, we present two teachers’ (Teacher A and Teacher B) data analysis. 
We first present how we analysed the data and then provide results related to how 
teachers handled students’ difficulties.  
For the data analysis, we first examined both teachers’ task plans. Both teachers 
designed their own tasks and briefly explained what they planned to do in their plans 
(we provide details for plans below). We then transcribed the video-recording of task 
implementation of the two teachers. In order to determine the way the teachers 
handled students’ difficulties, we first identified where students had difficulties. For 
this, we had two criteria. First, when an error was encountered in a student’s answer, 
we regard that as student having difficulty. Second, a situation of lull or student 
telling ‘I don’t know’ for an asked question was also taken as student having 
difficulty. This process of identifying difficulties was carried out by the two authors 
of this paper and there was a consensus for every event regarded as difficulty.  
After the identification of the difficulties, we carried on with determining teachers’ 
ways of handling students’ difficulties. In line with the related literature, we 
determined five categories of teachers’ ways of handling difficulties: i.) presenting 
the difficulty to classroom discussion, ii.) asking the questions to the student who had 
difficulty to overcome his/her difficulty, iii.) ignoring the difficulty, iv.) giving the 
correct answer  and v.) uncategorised. We assume that the first four categories are 
self-explanatory but uncategorised category stands for handling types that cannot be 
allocated to the first four. Note that more than one way of handling is used for some 
encountered difficulties.  
Teacher A: Task implementation and ways of handling students’ difficulties 
Teacher A designed a consolidation task related to the solving equations and its 
implementation lasted 40 minutes. He started to implement the task by drawing a 
table on the board first including the following algebraic and verbal expressions:  
‘2x’, ‘3x+9’, ‘ +4’, ‘five more than a number’, ‘three less than two times a number’, 
‘half of a number’, ‘half of three less than two times a number’, ‘If five more than 
three times a number is equal to 15, what is the number?’ He later asked the students 
to state algebraic expressions verbally and state verbal expressions algebraically. 
Alongside these questions, he drew three balance scales on the board and each scale 
represented an equation. Students were asked to state the equations and translation of 
figures on scales is as follows: ‘x=3’, ‘2x+2=8’, ‘x+1=2’. The teacher concluded the 
task with the following two questions: i) ‘If five times three less than a number is 
equal to 25, what is the number?’; ii.) ‘express the figure algebraically’: 

 

The task consisted of the above-mentioned questions. The video analysis, however, 
shows that some difficulties were encountered whilst these questions were solved.  
The analysis reveals that nine difficulties were encountered during the task 
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implementation. Teacher A shared five of difficulties with the whole classroom and 
discussed them. In the case of two difficulties, teachers asked the questions to the 
student who had difficulty to overcome his/her difficulty. Teacher A only once 
directly gave the correct answer while one of his handling was not categorised.  

Teacher question Student answer Teacher ways of 
handling the difficulties 

Three less than two times a 
number 

Student-1: x.2- 3 
Student-2: 2.x-3 
Teacher asks the classroom: 
‘Are they the same?’ 
Some students: ‘No!’ 

- Presenting the difficulty 
to classroom discussion 
 -Asking the questions to 
the student who had 
difficulty to overcome 
his/her difficulty 

Half of three less than two 
times a number  

Presenting the difficulty 
to classroom discussion 

If five more than three times a 
number is equal to 15, then 

what is the number? 

I do not know how to express 
this 

Presenting the difficulty 
to classroom discussion 

One student asked: “Sir! Can 
we write this ( ) as 

?” 

One student has difficulty in 
understanding whether ( ) 

is equal to ? 

Presenting the difficulty 
to classroom discussion 

 
How can we express this as 

an equation? 

x.2=6 (although the answer is 
correct, the student cannot 

provide justification) 

Asking the questions to 
the student who had 
difficulty to overcome 
his/her difficulty 

 
How can we express this in 

terms of equation? 

One student begins to express 
the equation as x+1…the 

teacher reminds that half of the 
triangle should be thought. 

Uncategorised 

If five times three less than a 
number is equal to 25, then 

what is the number? 

One student: 
3+5=8-3=5x 5=25 

Giving the correct 
answer. 

Table 1. Teacher A’s ways of handling students’ difficulties  

Teacher B: Task implementation and ways of handling students’ difficulties 
Teacher B’s consolidation task is also related to the solving equations and its 
implementation lasts 40 minutes. He begins with explaining how the task is going to 
be carried out. Then task implementation unfolds as follows: He writes a question on 
the board and gives students a period of time to solve it. Students are organised as a 
group of four and they work together. Once the question is solved, then the group 
representative tells the answer by putting it on a paper showing to whole classroom. 
There are 9 groups and each group has a name. When the answer is correct, then the 
group gets a plus and otherwise a minus. The following questions are posed:  
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1. If x + 5 = 25 then x = ?,   2. If 5x = 25 then x = ?,    3. If   then x = ?  

4. If 5x-5 = 25 then x = ?,    5. If 5(x+5)=25  then x = ?  6. If   then x = ?,  
7. If 5(x+5) = x+45 then x = ? 
After taking answers to each question, the teacher asked a student from a group to 
come to the board and solve it. He then wrote the following questions on the board 
and explained how they could be solved. But note that he left them unsolved.  
1. x+5 = 25,             2. 2. x – 5 = 25,    3. 5x = 25,      4. 5x + 5 = 25,  
5. 5(x-5) = 25  6. (x+5)/ 5 = 2      7. 5(x+5) = x + 45 

Following this activity, Teacher B counted the number of pluses and minuses that 
each group obtained and declared which group came first, the second and the third. 
The activity ended up with applauding the success of these three groups.  

Teacher question Student answer Teacher ways of handling 
the difficulties 

If x+5=25, then x=? One group: 19; One group: 405 Ignoring the difficulty 
If 5x=25, then x=? Two groups: 20; One group: 2 

One group: 30 
Ignoring the difficulty 

If x/5=5, then x=? Two groups: 5 Ignoring the difficulty 
If 5x-5=25, then x=? One group: 35 Ignoring the difficulty 
If 5(x+5)=25, then x=? One group: 25; One group: 4 

One group: 30; One group: 53 
Ignoring the difficulty 

If (x+5)/5= 25, then x=? One group: 5; One group: 10 
One group: 25 

Ignoring the difficulty 

If 5(x+5)=x+45, then x=? One group: 9; One group: 20  
One group: 15; One group: 8  
One group: 70/6 

Ignoring the difficulty 

Table 2. Teacher B’s ways of handling students’ difficulties 

As Table 2 suggests, even though 19 different errors were encountered, Teacher B 
consistently ignored the students’ difficulties and did not handle them at all.  
DISCUSSION  
Both teachers designed a consolidation task related to solving equations and 
implemented their tasks the way they planned. These are, in fact, what they had in 
common. What is that they did not have almost anything in common is their ways of 
handling students’ difficulties encountered during the task implementation. In 
Teacher A’s lesson, nine students’ difficulties were encountered. He discussed five of 
them with the whole classroom and did not ignore their existences. Teacher A used 
‘asking the questions to the student who had difficulty to overcome his/her difficulty’ 
type of intervention as well. Once he also gave the correct answer immediately after 
the difficulty occurred. Teacher A hence handled all the difficulties encountered and 
discussed most of them. In the words of Borasi (1994), it can be said that Teacher A 
used students’ difficulties as “springboards for inquiry” in his classroom. 
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Unlike Teacher A, Teacher B had a totally different way of dealing with the 
difficulties. In his lesson, difficulties were encountered on seven occasions and in 
total 19 different students’ errors were observed. These errors are rather interesting in 
two aspects. First, all these errors were the results of collaborative works of a group 
four student. Second, we do not know what kind of students’ thinking processes 
generated such errors because the teacher did not ask them to explain their answers. 
What is hence apparent for Teacher B is that he ignored all the difficulties and he was 
very consistent in terms of ignoring the difficulties encountered in his classroom. 
Discussion of students’ errors in the classroom has often been regarded as useful for 
students’ learning. This is because errors are considered as sign of misconceptions 
and lack of understanding and hence overcoming them through discussion is 
necessary for conceptual learning (Ball, 1991). This perspective is especially valid 
for common errors. The discussion of errors in the classroom can be risky too. Their 
discussions, to us, can sometimes cause ‘deviation (shift) of task agenda’ and this 
might result in failure in completing the task and following the syllabus as planned. 
Looking at the data from this perspective, Teacher A discussed the difficulties and at 
the same time did not allow ‘agenda deviation’ to occur. Teacher B did not allow 
agenda deviation for his task either. But it can easily be argued that Teacher B, in 
fact, needed an agenda deviation in his lesson because he was conducting a task for 
consolidation purpose and students still were experiencing serious difficulties. Given 
that students still had serious difficulties, one would expect that Teacher B would 
deal with them. Teacher B, instead, completed the task by ignoring 19 serious errors 
and at the end made the classroom applaud the winners of the task.  
But this was so? Why Teacher A always dealt with students errors whilst Teacher B 
consistently ignored them? This is a complex issue for which we now do not have 
definitive answer. This, however, we think, can be related to such factors as teachers’ 
pedagogies, beliefs, knowledge for teaching and so forth. Alongside these factors we 
also think that this is very much related to how the task was designed in the first 
place. Teacher A designed the task by keeping students’ difficulties in mind, as he 
put notes in his task plan. Teacher B, however, designed his task to have a 
competitive environment and for that reason he had time limitation for every question 
in the task. To him, completing the task with deciding which group of students came 
first was a concern. The nature of the task, to a certain extent, hence imposed some 
constraints and led Teacher B to ignore students’ difficulties. In the words of 
Stylianides and Stylianides (2008), Teacher B were more concerned with “fidelity of 
implementation of tasks” in that he exactly implemented the task the way he designed 
and planned. Although the low fidelity of the task is often criticised in the literature 
(Henningsen & Stein, 1997), this time it appears that fidelity to the task plan was a 
serious issue and in fact ‘infidelity’ was needed as the task was a consolidation one.  
As a final point, our findings suggest that teachers’ ways of handling difficulties 
during the task implementation is a complex issue and needs particular attention. The 
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affordances and constraints that the task imposes as well as the way it is designed can 
deeply influence how teachers handle students’ difficulties. It is hence important to 
examine teachers’ ways of handling difficulties with regard to the way the task is 
designed and planned to be implemented.   
Acknowledgement:	   This study is part of a project (project number 108K330) funded by 
TUBITAK (The Scientific and Technological Research Council of Turkey).	  
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CHILDREN’S, YOUNG PEOPLE’S AND ADULTS’ 
COMBINATORIAL REASONING 

Rute Borba, Cristiane Pessoa, Fernanda Barreto and Rita Lima 
Universidade Federal de Pernambuco 

 
In the present study, 718 participants in regular schooling situation (children and 
young people in lower or upper Elementary School or in High School), and adults (in 
initial schooling or in a professionalization course), solved eight combinatorial 
situations. Schooling had an effect on performance, although similar procedures 
were used both before and after instruction on Combinatorics. Distinct relations 
were represented by different procedures but not always in a systematic manner. 
Cartesian products were more easily understood and arrangements, permutations 
and combinations were very difficult, especially for adults in initial schooling. This 
suggests the need of considering in teaching varied meanings, relations and symbolic 
representations for a broader development of combinatorial reasoning. 

COMBINATORIAL REASONING: IMPORTANCE AND PROBLEM TYPES  
The present study aimed to investigate combinatorial reasoning in a wide range – 
throughout distinct schooling experiences and involving different problem types. In 
general, previous studies (Inhelder & Piaget, 1955; Schliemann, 1988; Bryant, 
Morgado & Nunes, 1992; Moro & Soares, 2006; amongst others) involved one or 
more types of problems (Cartesian products, arrangements, permutations or 
combinations) and were limited to one age range. Thus, the proposal of this study 
was to analyse students’ – children and young people in regular schooling and adults 
in initial process of schooling and in professional High School – understanding of 
problems that involve combinatorial reasoning.  
Batanero, Navarro-Pelayo and Godino (1997) defend that combinatory capacity is a 
fundamental component of formal reasoning, as described by Inhelder and Piaget 
(1955). It is argued that combinatorial reasoning is part of formal thinking because 
there is a need to deal with hypothetical situations in the raising of possibilities.  
Combinatorial reasoning is relevant in situations in which combination of elements, 
analysis and/or categorization is necessary. Thus, it is believed that the study of 
Combinatorics may be a means to develop logical reasoning and to aid general 
mathematical development of children and adults. 
Combinatorial reasoning is understood in the present study as a kind of thinking that 
involves counting, but that goes beyond the enumeration of the elements of sets. In 
Combinatorics, groups of possibilities are counted, based on multiplicative reasoning, 
by systematic actions that attend the requirements of the different combinatorial 
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problems. These strategies involve the constitution of groups of elements, the 
determination of possibilities and the direct or indirect counting of valid cases, 
considering choice, order and repetition of elements. 
Previous studies and documents (Merayo, 2001; Nunes and Bryant, 1996; Vergnaud, 
1983 and the Brazilian National Curricular Parameters – PCN – Brasil, 1997) classify 
combinatorial problems exclusively in Cartesian products (at Primary School) or as 
arrangements, permutations and combinations (at High School), but in the present 
study these situations are considered in one classification. This leads to the reflection 
of the need of considering these four types of problems in the teaching of 
Combinatorics from Primary to High School – both in children’s and young peoples’ 
regular schooling and also in adult education – that in the Brazilian case may involve 
initial schooling processes, returns to school or professionalization.  
The general theoretical approach suggested by Vergnaud (1990) is basis of the 
analysis performed in the present study. According to the Theory of Conceptual 
Fields, concepts are present in sets of situations that provide meanings for the 
concept, that involve conceptual invariants, i.e., logical and operational properties 
that allow generalization and knowledge transference, and that are represented 
symbolically in varied manners. This theoretical framework was adapted in the 
present study to analyse performance on combinatorial situations, based on the triplet 
meanings, invariants and symbolic representations. 
Different meanings are present in Combinatorics and in these are implied invariants (relations 
and properties that are constant through different situations) that can be represented by varied 
means: drawings, lists, trees of possibilities, tables, formulas and other forms. The four basic 
combinatorial situations, as presented by Pessoa and Borba (2009) are:  

1) Cartesian products: Given two (or more) distinct sets (with n and with p elements), 
these are combined to form a new set and the nature of the two original sets is 
distinct from the new set formed. An example: At the square dance, three boys and 
four girls want to dance. If all the boys dance with all the girls, how many pairs will 
be formed? 

2) Permutations: All the n elements of a set are used and the order of presentation of the 
elements implies in different possibilities. For example: Calculate the number of 
anagrams that can be formed with the letters of the word LOVE. 

3) Arrangements: With n elements, groups of 1 element, 2 elements, 3 elements.... p 
elements can be formed, with 0< p < n and the order of presentation of the elements 
implies in different possibilities. An example: The finals of the World Cup will be 
played by: Argentina, Brazil, France and Germany. In how many distinct ways can 
the three first places be formed? 

4) Combinations: With n elements, groups of 1 element, 2 elements, 3 elements.... p 
elements can be formed, with 0< p < n and the order of presentation of the elements 
does not imply in different possibilities. For example: A school has nine teachers and 
five of them will represent the school in a congress. How many groups of five 
teachers can be formed? 
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A COMPARATIVE STUDY OF CHILDREN’S, YOUNG PEOPLE’S AND 
ADULTS’ PERFORMANCE 
The specific aim of the present study was to verify the performance of students in 
different schooling situations and on the different problem types whilst solving the 
same combinatorial reasoning situations. The participants were regular students – 
children and young people – in three levels of schooling: lower Elementary School (7 
to 10 year olds), upper Elementary School (11 to 14 year olds) and High School (15 
to 17 year olds), in a total of 568 students. The adult students were also in these 
school levels and in a professional course at High School level, in a total of 150 
adults in these situations. Each student solved eight problems that involved 
combinatorial reasoning (two problems of each type: Cartesian products, 
arrangements, permutations and combinations). Comparison of performances and 
strategies used, by school situation and meanings involved in the combinatorial 
problems, were performed by analysis of pupils’ protocols.  
Presentation and data analysis 
Performance by school situation 
Student performance by school situation is presented on Table 1. Only answers that 
were totally correct were considered but it is worth mentioning that many students 
started solving the problems in a correct manner but were unable to reach the final 
correct answer – mainly in problems in which the total number of possibilities was 
large. This is evidence that, even before studying Combinatorics at school, students 
are able to understand what is asked in combinatorial situations but most are not able 
to systematically list all the possibilities required or to use procedures of indirect 
counting of all possible cases.  
Despite not presenting very good performance, it was observed that schooling had an 
effect on combinatorial problem solving – both in regular schooling (children and 
young students) and in adult education. However, it was expected that a stronger 
effect would be observed, especially amongst High School students that had already 
studied Combinatorics at school (the 15 to 17 year olds in regular schooling and the 
adults attending professional High School). 

Table 1: Means of correct answers (out of 8) by school situation. 

School situation 
Mean of correct 

answers (out of 8) 

Regular Schooling 
Lower Elementary School (7 to 10 year olds) 0,75 
Upper Elementary School (11 to 14 year olds) 2,68 

High School (15 to 17 year olds) 3,45 

Adult Education 

Initial Lower Elementary School 0,22 
Initial Upper Elementary School 0,93 

Initial High School 0,77 
Professional  High School 2,27 
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The very low performance of adults entering or reentering school is evidence that 
combinatorial reasoning is most likely to develop through school situations. 
Everyday situations – such as work experiences – may have some influence (as 
observed by Schliemann, 1988), but in the case of adults that left school – mainly 
because they needed to work – performance in combinatorial situations was only 
better (but still not ideal) after many years of schooling, that was the case of adults in 
Professional High School. This finding is in accordance with Fischbein (1975) that 
pointed out the role of schooling in the development of combinatorial reasoning.  

Procedures used by children, young people and adults 
Adults in initial schooling were very reluctant in solving the situations proposed. 
Many times they did not recognize the situations as mathematical problems and 
questioned how they could solve the problems when numbers were not even 
mentioned (as in the case of the permutation of the letters of the word LOVE and the 
arrangement of the three first places in the World Cup).  
Children and young people were more used to problems of these types – explicitly 
and many times implicitly worked at school – and devised diverse procedures to deal 
with the distinct combinatorial situations, as may be observed in Figure 1. Drawings, 
lists and simple arithmetic operations were commonly used by these participants 
before and after specific instruction on Combinatorics.  
 

   
   (a)      (b) 

    
   (c)      (d) 
 Figure 1: Examples of students’ varied strategies to solve combinatorial situations. 
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Very few participants used additive procedures (recognizing, thus, that the nature of 
the problems was not additive) and inadequate and adequate use of multiplication 
was common, indicating the recognition of the multiplicative nature of the situations.  
Listing of possibilities was the most common procedure, both amongst children and 
young people and also used by adults. Success in situations that resulted in large 
number of possibilities was not obtained because listing was not the ideal procedure 
in these cases. Participants were more likely to be successful in these cases when they 
used procedures in which they recognized regularity in the groups of cases, i.e., they 
listed some of the possibilities and noticed that they could obtain the total number of 
cases by simple multiplications.  
Formulas were rarely used – only by regular High School students – and the 
participants that used this procedure were not always sure which was the correct 
formula for each specific case.  
Performance by problem type 
The differences in performance in the different school situations, according to 
meanings involved, are presented on Table 2. These results are evidence that the 
distinct meanings involved (Cartesian products, arrangements, permutations and 
arrangements) influence student performance. Combinatorics presents different 
meanings that are not understood simultaneously because different invariants are 
involved that increase or decrease levels of difficulty. Thus, special attention is 
required when presenting combinatorial situations in schooling settings, in order that 
similar aspects may be highlighted but main differences may be pointed out. 

School situation Problem types  
(2 possible correct answers in each type) 

 Arrangements Combinations Permutations Cartesian 
Products 

Regular Schooling  
Lower Elementary 

 
 

0,11 

 
 

0,17 

 
 

0,05 

 
 

0,42 
Upper Elementary 0,66 0,25 0,40 1,38 

High School 0,85 0,23 0,76 1,62 
Adult Education 

Lower Elementary 
 

0,02 
 

0,02 
 

0,00 
 

0,18 
Upper Elementary 0,05 0,05 0,07 0,77 

High School  0,13 0,10 0,10 0,43 
Professional High 

School 
0,53 0,47 0,47 0,80 

Table 2: Mean of correct answers (out of 2) in each school level  
by in meanings involved combinatorial problems. 
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Cartesian product was the easiest combinatorial meaning for all students in all school 
situations and this can be explained either by familiarity or because this is a 
multiplicative problem in which the implicit one-to-many correspondence is clearer. 
In terms of familiarity, Cartesian products are the problems explicitly dealt with since 
lower Elementary School but explanations in terms of cognitive processes implied in 
combinatorial problem solving must also be considered. Nunes and Bryant (1996) 
point out that the one-to-many relation is basic in multiplicative reasoning and that 
this relation marks the difference between additive and multiplicative situations. 
Thus, a hypothesis defended in the present study is that in Cartesian products the 
one-to-many relation is implicit but can be more easily identified than in other 
combinatorial problems, such as arrangements, combinations and permutations. 
In arrangement problems, from a larger set, smaller sets are formed and the orders in 
which the elements are disposed in the sets indicate distinct possibilities. So, in the 
case of arrangements, when students list all possibilities, there is no need to set aside 
some of the sets as has to be done with combinations in which it is necessary to 
observe which cases are equivalent, i.e., despite distinct orders of presentation of 
elements in combinations these represent equivalent sets. This can explain the better 
performance – basically of participants in regular schooling – in arrangement problems. 
Comparing arrangement problems to permutation problems it is noticeable that 
permutations require more rigorous systematization in the listing of all the 
possibilities in which students need to consider the following invariant relations: that 
all elements must be used, each one only once (in the case of simple permutations – 
with no repetition of elements), and that the order of presentation of elements is, thus, 
relevant. In the present study, the main error observed was to list some of the 
possibilities but not attempting to systematically list all the possible cases. 
Combination problems can be very difficult because the pupils need to observe that, 
similarly to arrangement problems, from a larger set of elements, some elements 
must be chosen to form subsets, but differently, the order of the elements does not 
imply in new possibilities. In the present study, the students’ main difficulty was, 
thus, to not consider this invariant relation of combinations and to count more than 
once cases that were the same but that varied in order. 
FINAL REMARKS 
A contribution aimed at the present research was to examine combinatorial reasoning 
by means of a study that involved a large group of students from different school 
levels and situations solving four distinct types of problems. In this sense it was 
possible to consider the influence that schooling directly has on combinatorial 
reasoning and indirectly how maturity and out of school experiences may contribute 
to the development of this kind of thinking. 
The main finding considering schooling is that combinatorial reasoning is influenced 
by school experiences that can lead to a greater systematization and formalization in 
the understanding of the many meanings involved in Combinatorics. Participants’ 
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poor performance indicates the need to aid pupils in the recognition of the 
multiplicative nature of combinatorial situations, highlighting the implicit one-to-
many correspondences present in Cartesian products, arrangements, combinations 
and permutations.   
The results presented bring evidence to the need of recognition that students’ 
development of combinatorial reasoning starts at early school years and is not yet 
concluded at the end of High School. Considering this, at school students’ 
spontaneous strategies for combinatorial situations must be recognised and can be 
taken as starting points in helping pupils in seeking systematic strategies and the 
future use of formal procedures – such as the use of distinct formulas that should be 
used once there is a wider understanding of the variation of different combinatorial 
situations. Thus, in the teaching of Combinatorics distinct meanings involved, the 
correspondent invariant relations and varied symbolic representations should be 
considered in order to provide a wider development of combinatorial reasoning.   
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EXPLORING SCHOOL CHILDREN'S OUT OF SCHOOL 
MATHEMATICS 

Arindam Bose,  K Subramaniam 
Homi Bhabha Centre for Science Education, TIFR, Mumbai, India 

 
The study reports on the preliminary part of an ongoing research study aiming at 
exploring and characterising the nature and extent of everyday mathematics 
knowledge amongst middle grade students and their involvement in economic 
activities. Students' knowledge of numbers related to their currency-denomination 
knowledge was prominently visible even though they had difficulty in representing 
positional values of numbers. Students did operations on multi digit numbers on oral 
mode but not on the school taught methods. Data were collected through interactions 
with 25 students of grades five and seven in two public schools located in one of the 
biggest slum dwelling in India that has apparent vibrant house-hold based economy. 
Categories were created from the obtained data and implications drawn.  

INTRODUCTION 
The out-of-school mathematical knowledge of children has been studied extensively 
beginning with the pioneering work of Nunes, Carraher and Schliemann (1985) since 
it is thought that such knowledge can support the learning of school mathematics. In 
India, a study of children's knowledge of out-of-school mathematics has been carried 
out by Farida Khan (2004), in which she explored the mathematical knowledge of 
child vendors who sold newspapers and betel leaves (paan). To our knowledge, there 
are few studies of children's out-of-school knowledge of mathematics in Mumbai, 
although it has a large population living in slums (shanties), which are often active 
centres of house-hold based industry. An exception is the study by Sitabkhan (2009), 
who interviewed child vendors who sold articles in the local trains in Mumbai. 
In this paper we attempt a preliminary characterisation of the knowledge of 'everyday 
mathematics' prevalent among school going middle grade children (working and non-
working) living in a large Mumbai slum that has a vibrant house-hold based economy 
and offers unique opportunities to its resident children to learn from their 
environment as well as from their schools. We begin by discussing some of the 
current literature on 'everyday mathematics' and follow it up with our observations 
from our interaction with the chosen sample of students. The main part of the paper 
includes the presentation, discussion and analysis of our observations aimed at 
exploring the nature, extent and use of oral techniques of solving daily-life problems 
making use of everyday mathematical knowledge.  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 177-184. Ankara, Turkey: PME.
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THEORETICAL ORIENTATION 
Empirical studies have shown that problem solving in out-of-the-school settings 
intertwined in everyday activities is quite different from the formal ways of solving 
them using school taught techniques. The difference also lies in the structure of 
knowledge and the social conditions of their use. Carraher, Carraher and Schliemann 
(1987) suggest that situational variables often influence school students' tendencies of 
using oral calculation procedures based on their everyday knowledge to find 
solutions and not the strategies learned at school.  
School mathematics entails written mathematics while the 'everyday mathematics' 
involves oral techniques in calculations (Nunes, Carraher & Schliemann, 1985; 
Resnick, 1987; Saxe, 1988). In 'everyday mathematics', the doer has a continuous 
engagement with the objects and the situations and she does not burden herself with 
the extra effort to remember the algorithms, calculation-techniques and the reasoning 
used – a characteristic that Resnick (1987) pointed out as well. This characteristic of 
'everyday mathematics' is in contrast to school mathematics where one does not 
usually have a freedom of making a choice of using alternate techniques other than 
those taught in the classrooms. In schools, mathematical activities are based on 
symbols which get detached from any meaningful context. More stress is usually on 
symbol manipulation and following rules. School mathematics is aimed at improving 
individuals' performances and skills, whereas, out-of-school mathematical activities 
are socially shared. While school mathematics focuses on generalised learning, 
everyday mathematical ability grows from situation-specific competencies (Resnick, 
1987; Resnick & Ford, 1981). The difference also lies in the structure of knowledge 
and the social conditions of their use. 
Most of the studies indicate that participants who were untrained in school 
mathematics could competently perform the calculations needed in their workplace 
activities. In contrast, the school students, trained in school mathematics when 
presented with such problems came up with incorrect solutions or even absurd 
solutions. School students concentrated more on the numbers given in the problems 
and paid little attention to the meanings of the problems. (Nunes, Schliemann, and 
Carraher, 1993, 1985; Lave, 1988). On the other hand, street vendors who with 
'impressive ease' solved their routine problems in everyday settings, could not solve 
the same types of problems which they had earlier solved in their workplace contexts 
when presented to them as formal word problems without any contexts. Sometimes 
they gave insensible solutions, for example, getting as an answer a number in a 
subtraction problem that is bigger than  the minuend (Nunes, Schliemann and 
Carraher, 1993). 

SAMPLE & METHODOLOGY 
The sample for this study was identified from one grade 7 class of an English 
medium school and one grade 5 class of a Urdu medium school run by the Municipal 
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Corporation of Greater Mumbai, located in Dharavi in the north-central part of 
Mumbai, India. Dharavi is among the largest slums in India. Every third roll number 
from the attendance register was chosen to form the sample. Most of the students are 
in the age-group of 10-12 years; different grade years in the English and Urdu 
medium sections were chosen to achieve parity in age. Discussions were held with 12 
students (7 boys + 5 girls) from the Urdu section and 13 students (7 boys + 6 girls) 
from the English section. Each discussion lasted between 30 minutes and one hour.  
The present report discusses preliminary findings from the first phase of the larger 
ongoing research project aimed at characterising students' knowledge of out-of-
school mathematics.  The researcher (i.e. the first author) first observed the students 
in their classrooms and then held informal discussions with them to get a broad 
picture of the nature of their daily activities that have aspects of mathematics and the 
nature and extent of their knowledge of everyday mathematics, and to get an initial 
understanding of the variation among children of out-of-school mathematical 
knowledge, as well as involvement in economic activity. Hence, an attempt was 
made to characterise out-of-school mathematical knowledge at the individual level 
and also form preliminary impressions of the processes by which school-going 
children acquire them. Attempts were made to identify the opportunities that are 
available to the children to immerse themselves in elders' pursuits. The discussions 
were audio recorded after taking the teachers' and each student's consent. The sources 
of data were students' work-sheets, researcher's field-notes and audio records of the 
discussions. 

LOCATION OF THE STUDY 
Dharavi is uniquely different from other slums in the sense that many houses located 
here run workshops or small-scale factories forming a vibrant economy. Children 
become engaged in the workshops/factories at an early age. However, there are 
families which prefer their children to finish studies first before immersing 
themselves in economic activity. Such parents do not let their children work. 
However, it is not surprising to find that even such children who are not actively 
involved in any kind of economic activity have fair knowledge about the activities by 
virtue of being present in the locality. 
Some common house-hold occupations are embroidery, zari (needle work), stitching 
and garment-making, making plastic bags, leather goods (bags, wallets, purses, 
shoes), dyeing and button-making. Some of these activities are done in the house 
itself, while some are carried out in “factories” in small-rooms of the shanties. The 
goods produced are sold not only in Mumbai but sent to many other cities and even 
exported to other countries, mainly in the Middle East. There are many bissi – places 
where food is prepared in large scale to be delivered to different places. Many 
children are involved in delivering food (“tiffin”) boxes. Mumbai being the biggest 
financial hub of India attracts a huge flow of immigrants from different parts of the 
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country, especially from North India. Dharavi is an old, established slum, which 
continues to receive immigrants and hence has a high population density. The 
migrant unskilled workers find jobs in the workshops and some of them become 
apprentices in the small factories. In recent years, there is a move to relocate the 
population of Dharavi, which is a great source of concern among its residents. 

OBSERVATIONS AND ANALYSIS 
The interactions with the students indicated that practically all of them have a packed 
schedule the whole day. The researcher observed the morning-shift school starts at 
twenty past seven and gets over just after noon at half past twelve. Most students 
from the English school reported that they go for Arabic classes immediately after 
school. Many of them go for tuition classes thereafter. Students mostly from the Urdu 
school are already through with their Arabic lessons and report at their respective 
workplaces after the school is over. Because of this packed schedule, the students do 
not get time to play. The lanes and by-lanes of Dharavi are also too narrow for the 
children to play. However, all students reported that they visit shops in the 
neighbourhood to buy groceries and other articles that are house-hold daily needs.  
Knowledge about currency 
All students interviewed had sound knowledge of the various denominations of the 
currency and could recognise all the currency coins and notes 
that are currently in use and their conversions. Some students 
calculated with numbers by thinking of them as money. For 
example, when asked to divide 981 by 9, one student U1 of 

grade 5 of the Urdu school looked at 
the problem as 'equally distributing' 
Rs 981 among 9 children and arrived 
at 109 as the answer. His explanation 
was to divide Rs 900 among 9 
children thereby getting Rs 100 for 
each of them and then divide the 
remaining Rs 81 among 9 children to get Rs 9 for each. 
Hence, each child gets Rs 100 plus Rs 9, i.e. Rs 109. 
Interestingly, when U1 was asked do the calculation on the 
worksheet he arrived at '19' as the answer, making the 
common error of omitting the zero (shown in Fig. 1 above). 
When the discrepancy in the answers was brought to his 
attention, he hesitatingly put a '0' between '1' and '9' 
probably because he had 'more faith' in the oral procedure 

than school taught algorithms. The student U1 works in a garment making workshop 
after the school hours. He had shifted to Dharavi three years ago from Bihar – a 
North Indian state that is economically backward. His interest in studies brought him 

Fig. 1 

Fig.2 
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back to studies after a two-year gap when his financial condition of his family forced 
him to work than attending school. Discussions with U1 had earlier shown that he 
can add currency-values sometimes involving 5 digit numbers purely mentally. For 
example, when asked how much money would be, if taken together 4 thousand rupee 
notes, 13 hundred rupee notes, and 21 ten rupee notes, U1 correctly replied, 'five 
thousand five hundred ten rupees' but initially wrote the sum as 550010 and 
subsequently corrected it to write 5510. When asked to add 13 thousand rupee notes 
with 13 five-hundred rupee notes, 18 one-hundred rupees notes, 19 fifty rupees notes 
and 21 ten rupees notes, U1 had the accurate answer as, 'twenty two thousand four 
hundred sixty' (As shown in Fig. 2 in the previous page).  
Number Knowledge 
The range of number knowledge varied among the students. This may be related to 
the extent of engagement in economic activities, but this needs further exploration. 
Of the 23 students in the sample, 21 had difficulty in writing the numbers dictated to 
them correctly, making place value errors, especially for numbers bigger than 100. 
They wrote the numerals reflecting the number-names, i.e. 1001 for 'one hundred 
one', 10010 for 'one hundred ten', 10051 for 'one hundred fifty one', 20060 for 'two 
hundred sixty', 10001 for 'one thousand one', etc. Numbers which were multiples of 
hundred or thousand like 5000 for 'five thousand'  were written correctly. However, 
irrespective of the place-value errors that students made while writing the numbers in 
figures, they seemed to understand the numbers through their names. This knowledge 
probably is rooted in their regular use of money.  
Interestingly, children expressed the non-integral amount of money (amount that 
involves 'rupees' and 'paise'; 100 paise = 1 rupee) by juxtaposing the rupee amount 
and the paise amount by using a 'dot' or 'point' in between to mark the distinction. 
This is done apparently without the formal knowledge of decimals. Probably, this is 
based upon the socially accepted meaning drawn from the shared experience while 
dealing with money in everyday commercial interactions.   
Arithmetic Operations on Numbers 
Although students in the sample regularly attend school, in several instances they 
used their out-of-school knowledge of mathematics while solving problems. For 
example, the student E-10 from grade 7 of the English Medium School belongs to a 
low socio-economic family of five including her parents. Her father does scavenging 
work and removes debris from the road sides while her mother works as a domestic 
help. The student often goes to the shop to buy everyday articles such as kerosene oil 
for cooking (sold in bottles), milk and other groceries.  She informed the researcher 
that milk is sold for Rs 12 per packet. On asking how much milk a packet contains, 
she quickly replied “aadha litre” (“half a litre”). When asked for the price of 2 
packets, she immediately replied, “24”. She claimed that she knows this as she often 
hears the milk-seller telling this to the customers. When she was asked to find the 
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price of 5 packets, she paused and started thinking. She then added 24 and 12 and 
arrived at 36 and then added 36 and 24 and arrived at 60.  
Her strategy was to use to the known values, viz. 12 and 24, adding them to first 
arrive at the price of 3 packets, and then to add 24 to find the price of 5 packets. 
E-10 told the researcher that a bottle of kerosene comes for Rs 28, who asked her to 
find the price of 5 bottles. She calculated mentally and came up with “one forty 
rupees” as the answer. Her argument was, “bees ke hisaab se paanch bottle ka 
hundred aur aath ke hisaab se paanch ka forty” (“price of five bottles at the rate of 
twenty is hundred and at rate of eight is forty”). Then for 15 bottles, she added 140 
twice and again added 140 to the sum to get 420. To find the price of 7 bottles, she 
added 28 twice and then added the sum (i.e. 56) to 140 thereby getting 196 as the 
answer. Similarly for 22 bottles she added 280 twice and got 560 and then added 56 
to it to get 616 as the answer.  
The strategy to use addition that included 'continuous monitoring' about 'where she is' 
in the midst of a calculation and gave her confidence in the procedures and 

meaningfulness in the results obtained.  
Interestingly, all the students claimed difficulty in the 
division algorithm 
though many of 
them could orally 
divide two numbers 
considering them as 
referents of some 
familiar contexts. 
For example, one 
student (E11) 
repeatedly obtained 
absurd results like 
getting quotients 
bigger than 
dividends (for all 

positive dividend, divisor and quotient). She 
however, did the seemingly easy division orally in a 
contextual problem situation instantaneously (As shown in Figs. 3 & 4).   
Use of the Units 
Discussions with the students showed that children make use of a variety of units 
mostly based on the convenience and syntactic support from prevalent practices. For 
example, the student E-12 wrote 'six hundred sixty' as 6005010 and read it as “chhe 
sau pachaas aur upar se dus” (“six hundred fifty and ten more”) but for 'one hundred 
seventy four' she wrote 10074. This probably happens because the student considers 

     
Fig 3 

   Fig 4 
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the numbers '50' and '10' as 'closed' numbers and took them as units. Several such 
examples could be seen of different units which bear 'names' in the discourses.  
DISCUSSION 
Our observations indicate that school going children from Dharavi who have an 
exposure to currency handling and ensuring its optimal use, can handle operations 
with multi-digit numbers that represent currency denominations, using the oral mode. 
Children use different forms of currencies as tools for mental (oral) activities. The 
resultant cognitive activity of (as in the case of U1, discussed above) involving 
operations on multi-digit numbers were shaped, dependent and governed by the use 
of 'currencies' as tools. In lieu of this, when students attempted to write the resultant 
amount obtained after addition, they expressed the numbers according to the number-
names without caring for the multi-digit representations which carry the positional 
values of the respective digits. This probably happens because of the syntactic as well 
as semantic differences between the language used in everyday contexts and the 
language used during classroom-teaching.  
CONCLUSION AND IMPLICATION 
Multi-digit representation of numbers and algorithms used in the number-operations 
have remained hard-spots for students in the middle grades. However, in this 
preliminary work we have found that children having wide exposure of 'everyday 
mathematics' have sound knowledge about currency handling as well. This includes 
doing arithmetic operations on the currency denominations including multi-digit 
numbers. Though the resultant answers were correct when dealt with orally, but their 
representations in the written form were usually flawed. It remains to be explored 
how much the teachers are aware about the extent of students' everyday mathematical 
knowledge and how can such knowledge be brought in the classrooms to facilitate 
better learning of mathematics. 
It also remains to be explored the role of the language in gaining everyday 
mathematical knowledge in out-of-school contexts and how does language helps in 
facilitating mathematics learning in the classrooms while drawing upon from familiar 
contexts. 'Everyday mathematics' (out-of-school mathematics) bears the functional 
aspect of mathematical knowledge that is available to all and not hidden 
(Subramaniam, 2010). Bringing together everyday mathematical knowledge and 
school mathematics possibly can pave way for developing skills and interests in 
learning mathematics. 
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RETHINKING OBJECTIVITY AND SUBJECTIVITY: RE-
DISTRIBUTING THE PSYCHOLOGICAL IN MATHEMATICS 

EDUCATION 
Tony Brown 

Manchester Metropolitan University 
 
ABSTRACT: Mathematics in schools exists substantially as pedagogical material 
crafted for supposed modes of apprehension. But of course such apprehension 
depends on how we understand mathematical objects and how we understand human 
subjects. This paper follows the recent work of Badiou whose philosophical model is 
centred on set theory in defining a new conception of objectivity, and on a Lacanian 
conception of human subjectivity. In this model objectivity results from counting a set 
of elements as one, such as in making a mathematical generalisation. His conception 
of subjectivity comprises a refusal to allow humans to settle on certain self-images 
that have fuelled psychology and set the ways in which humans are seen as 
apprehending mathematics. 
Introduction 
How do we symbolise mathematical experience? How do we experience 
symbolisation? Gattegno once spoke of a baby pointing to a fly walking across the 
ceiling. Each fly position on a continuous path was associated with a particular 
(discrete) arm position, which Gattegno saw as an algebraic relationship. Meanwhile, 
Brown and Heywood (2010) depict students carrying out body maths exercises where 
they walked the paths of geometric loci. In these exercises continuous curves were 
associated with sets of discrete instructions activating sets of points defined 
according to certain rules. Gattegno has considered the algebraization of geometry, 
that is, how geometrical experience in school is transformed, perhaps compromised, 
by an insistence on it being converted to symbolic form (e.g. 1988). A key concern 
for Gattegno was that in school, such algebraizisation results in a loss. Schubring 
(2008, p. 140), however, has argued “that the processes of algebraization are among 
the most marked characteristics of the historical evolution of mathematics”. That is, 
mathematics evolves through successive attempts to algebraizise its objects. The 
advance of mathematics is defined by the production of its objects. This concurs with 
certain writers (e.g. Bachelard, Lakatos, Althusser) who see science as a practice 
marked by the production of new objects of knowledge (Feltham, 2008, pp. 20-21). 
So it might seem that the attempt to create a mathematical object can result in a loss 
in terms of the experience of mathematics whilst the advance of mathematics depends 
on this happening. This paper argues that this backstitch approach can be understood 
as a model for learning as well as a model for the evolution of mathematics. It utilises 
some apparatus from contemporary philosophy to conceptualise both students and the 
mathematics that they learn.  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 185-192. Ankara, Turkey: PME.
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Much mathematics education rests on supposed cognitive models (e.g. Piaget/ 
Vygotsky) in which the human being is understood in a particular way (as an 
individual, at a particular stage of readiness, in a certain conception of the social 
world, following certain social codes and expectations, etc). These models are 
sometimes extended to consider how the body mediates mathematical experience and 
can occupy similar territory to a variety of such work on gestures and the 
embodiment of mathematics. Lakoff and Núñez (2000) aspire to a scientific 
understanding of mathematics grounded in processes common to all human 
cognition. Nemirovsky and Ferrara, (2008, p. 4) frame their analysis in terms of 
“perceptuo-motor-imaginary activity” that is “fully embedded in the body”. Lappas 
and Spyrou (2006, p. 12) follow Husserl in proposing a “genetic” conception of 
embodied mathematics where “man builds his mental representation of the world, 
through a progressive reorganization of his prior active manipulation of the 
environment”. Meanwhile, Radford (2004, p. 18) in a Vygotskian formulation 
suggests that we “consider mathematical objects as fixed patterns of activity in the 
always changing realm of reflective and mediated social practice”.  

Roth and Thom (2008, p. 2) suggest that Piaget conceives “of mathematics 
generally and of geometry particularly as paradigmatic examples of knowledge that is 
independent of sensual experience, though always given in the form of 
representations that can be related to the things that we come to know through 
sensory experiences”. They contrast his constructivist epistemology with the model 
of van Hiele: “In the Piagetian model, the human mind necessarily develops to 
specific endpoints given by classical logic, whereas in the van Hiele model, emphasis 
is placed on the learning processes that - mediated by language - are specific to the 
historical period”. Roth (2010, p. 8) articulates “a conceptualisation of mathematical 
knowledge that is grounded in materialist phenomenology”. These later comments 
are more resonant with the recent work by the French philosopher Alain Badiou who 
also proposes a very different model to Piaget. Badiou’s model is centred on 
Cantorian set theory in defining a new conception of objectivity and a Lacanian 
conception of subjectivity, where both objectivity and subjectivity are mediated by 
historically specific depictions. These are both highly complex areas that defy a 
thorough account here. Yet the basic ideas are within the scope of a short article. The 
next two sections take objectivity and subjectivity in turn.  
Objectivity: That’s it 
Badiou’s (2009) most recent major project is encapsulated in the title of the book 
Logics of worlds. Worlds are multiple rather than singular. There are multiple ways 
of introducing logics into any given world. Badiou (2007) commenced with a sheer 
multiplicity of elements in a pure state of being. In this state the elements are not 
anywhere. These elements can be combined in subsets of that multiplicity to create or 
define unities. Badiou’s assertion is that any such unity, or object, derives from an 
operation of “counting as one”. “Unity is the effect of structuration – and not a 
ground, origin, or end” (Clemens & Feltham, introduction to Badiou, 2006, p. 8.). 
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That is, an object is produced by counting a set of elements, within a supposed world, 
as one object. This operation brings the object into existence within a world. And in a 
sense it also brings the world into being. The assertion of an object asserts the world 
that is the outside of that object, a world that has perhaps been changed a little by the 
specific noticing of the object. The world is itself a result of a wider “counting as 
one” (of the elements of that world).  

An assertion of a new object comprises an assertion of a new configuration. This 
configuration entails “counting as one” a set of elements within the multiplicity. This 
can be achieved through defining a novel combination of elements. Any element can 
itself be a set and a potential member of other sets. And within any assertion of a set, 
yet further possibilities are created, resulting from the construction of subsets 
producing yet more new entities.  

This very proliferation itself defies any final stability in the universe.  For this 
reason there can be no settling or convergence in the meaning of the constituent 
terms. Badiou contemplates a managed multi-dimensional infinity. Yet forms of 
knowledge are predicated on a world, comprising specific sets of terms within this 
world. Such forms of knowledge might be disrupted as they readjust around the ever-
expanding set of sets being counted as one. For example, Newton’s thought as a 
supposed universal model was disrupted by quantum physics. Such expansion reveals 
objects not previously identified within earlier overarching multiplicities.  

But how might such an abstract theoretical perspective support the examination 
of mathematical learning, or more generally the human apprehension of mathematical 
forms? For a student in school, and probably mathematical learning more widely, 
mathematics can generally be understood through the pursuit of noticing or asserting 
generality, a notion resonant with “counting as one”. Much mathematics education 
research has been predicated on enabling students to experience generalisation to 
emphasise that mathematics has power beyond mere particularities. The noticing of a 
generality results from an operation that apprehends, or perhaps creates, a set of 
mathematical elements (e.g. points, numbers, shapes) as a unity. This can be 
geometric as in seeing a circle as a type of ellipse, or algebraic such as assigning a 
formula to a specific numerical sequence. Whether we are considering students 
encountering socially known mathematical ideas for the first time, or new 
innovations by frontier mathematicians, Badiou’s notion of “counting as one” 
provides a technology. A “counting as one” seen as the acquisition of a new 
generalisation could be understood in either of these two situations in relation to a 
newly extended situation.  

Mathematics can be approached in many ways. For example, to take one object, 
we all know what a circle is but some people may not know that x2 + y2 = 5 defines a 
circle. We could also experience a circle by using a pencil and compasses, by 
drawing around a coin, by running whilst holding a rope tied to a flag post, by 
generating a circle on a computer, etc. Or perhaps, it could be experienced in a new 
way such as by walking in a path defined on a distance ratio 1:3 between two 
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partners. Similarly, all mathematical concepts can be understood from a multitude of 
perspectives and indeed the concept can often be uniquely a function of that 
perspective. 

In Badiou’s framework, the term circle entails an operation to “count as one” the 
objects of a given set. For example, the set of points on the rim of a bowl may be 
“counted as one” and given a name, circle. Or the moon and the sun might be seen as 
displaying a “shape” also occurring in naturally occurring objects, such as, berries, 
oranges, eyes, etc. The group of objects so classified may be given a name, such as 
“circular shapes”, or “spherical shapes”. But thereafter the term can become a 
member of other sets of objects such as “regular two-dimensional shapes” 
{pentagons, ellipses, squares, circles etc}) seen as making up a world and utilised in 
organising our apprehension of the world. Algebraization comprises a similar 
operation of “counting as one” (e.g. identifying the set of points obeying the relation 
x2+y2=5). The objects get to be there, in a world, as a result of the operation. But they 
need that prior (or simultaneous) construction, of a world (in this instance two-
dimensional space, structured according to some rules), to be there. In Badiou’s 
account the existence of an object requires a place for it to exist. 

In this perspective any mathematical object is a function of its perceived world, 
in contradistinction to so many instances where mathematical objects have been 
understood in a more ideal sense, as entities in themselves. A circle requires the very 
human conception of 2D space. Yet in Badiou’s formulation a world is merely any 
presented multiplicity, whether that is an assertion of a mathematical object as a 
generality, or any cultural configuration such as a social structure.  

And in this sense learning can be seen as putting things there. In Badiou’s 
terminology elements are drawn from an undifferentiated multiplicity of pure being 
to produce objects that exist in a world. Learning comprises the placing of an object 
in a world. This requires the assertion of an object, and an assertion of a world. 
Object and world are contingent. They imply each other. With regard to the students 
moving around according to geometric loci the task is to apprehend continuous 
movement as a sequence of points. These points are then aggregated to “count as 
one” object, understood in terms of this mode of aggregation. Retroactively the 
students can recognise the shape they have walked against a new register and declare 
“that’s it”.  
That’s me: subjectivity 
Badiou (2011) draws on Lacan’s conception of the human subject. This subject, 
rather than being seen as a biological cognitive entity, is understood as a reflection of 
a broader symbolic universe. There are societal demands on the subject that shape 
who he or she is. The subject is a function of the stories that are told about him or 
her. In a Lacanian perspective, learning would be understood more as being about an 
experience through time rather than being about apprehending an object located in a 
fixed conception of space. The task is to locate education in the formation of 
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objects/events in time/space rather than to see it as an encounter with ready-made 
objects.  

Objects cannot necessarily be apprehended in an instant. Indeed the 
apprehension may result from a gradual assimilation of the object’s components and 
qualities and how these are combined in forming the object. I may compare new sets 
with a selection of previously known sets. I may contrast the operation of a newly 
located function with more familiar functions. The progressive apprehension of the 
supposed object becomes part of the story of my life, a part of getting to understand 
who I am and how I fit in to a supposed world or how I might make that world 
otherwise. That is, this progressive apprehension builds a story around the abstract 
entities being located, a cultural layer in which any learner is fully implicated since it 
was integral to their very own constitution. 

Lacan’s concept of human formation is triggered by a transformation that takes 
place when a young child assumes a discrete image of herself. Lacan’s iconic 
example is that she looks in to the mirror and says “That’s me”. This allows her to 
postulate a series of equivalences, samenesses, identities, between herself and the 
objects of the surrounding world (the equivalence of my movement on the floor, to 
the drawing on paper, to the image in my mind, seen as continuous movement, or as a 
configuration of points). The image of self, as characterised by a name, fixes an 
egocentric image of the world shaped around that image of self. That is, the 
assumption of a self (a “that’s me”) results in a supposed relation to the world and a 
partial fixing of the entities she perceives to be within the world, that the “me” has 
been gauged against. 

In due course these relations become implicated in more overtly mathematical 
phenomena that underpin the child’s formal mathematical education. Unlike 
Gattegno’s baby the older student can become aware of symbolised mathematical 
relationships, such as how specific bodily positioning responds to a coded spatial 
environment. And notions of humans and of geometrical objects become relatively 
fixed in such images with consequential restrictions on how relations between people 
and geometry can be understood. In Badiou’s terminology this assumption of a self in 
an assertion of saying “that’s me” comprises a collation of a set of characteristics, 
attributes, organs, etc. that make up “me”. This set of characteristics is “counted as 
one” person. Lacan, however, cautions that we should be wary of this image, since it 
is illusory, a snap shot that never quite works. It never fully captures the real me as it 
were, rather like the production of a formula not fully capturing the mathematical 
experience of a curve. In Lacan’s model our real self is never fully visible to us. 
 “That’s it” encounters “that’s me”. 
We thus have a situation where an individual human (a set of characteristics that have 
been counted as one) confronts an object (comprising elements that have been 
counted as one). A “that’s me” encounters a “that’s it” and a relation between these 
two (petrified) entities may be asserted. The image is crafted retroactively 
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(backstitched) within the limits of the apparatus we have available. And this 
apparatus has a track record of being changed on a frequent basis. The operation of 
“count as one” can always be performed differently according to new circumstances. 
The story or image never lasts. It always needs to be renewed. 
A new distribution of the psychological 
Why is this model significant? School mathematics teaching is often in the business 
of enabling students to better apprehend and use socially derived mathematical 
apparatus. And that can drive mathematics into forms more easily managed in the 
educational contexts concerned, and accountable within the regulative apparatus that 
doubles to formally assess understanding of the field and student conformity with 
social norms. That is, in the world of teaching situations, mathematical objects are 
recast as pedagogical and assessment objects that result in the erstwhile mathematical 
definitions becoming implicated in socially governed processes. The assertion of an 
object is the assertion of a particular view of the world. Children’s mathematical re-
productions of such entities are evaluated through filters created from the cultural 
apparatus. This style of teaching is reproductive of culture, in that it either offers 
existing culture, or recognises student work only insofar as it is aligned with such 
culture. At PME Nunes (2010, p. 106) argued: “The frames and analogies used by 
teachers help them observe students, rendering some things more visible, but others 
invisible.” Within educational contexts the meanings of mathematical objects are 
necessarily a function of the relationships within such social settings. That has always 
been the case. The currency in education comprises pedagogically or socially defined 
objects, not so much ideal mathematical objects. For example, geometry can be 
converted into particular linguistic forms for accountancy purposes or formal 
recognition, such as tests or exams. This can compromise aspects of geometrical 
learning in the way Gattegno highlighted, such as where continuous experience of 
certain geometric forms is prematurely seen in terms of discrete categorisation, which 
may obscure or close off potential apprehensions of spatial phenomena.  

But teachers and students also find themselves understood in terms of discrete 
categories with respect to their engagement with mathematical phenomena. Their 
actions are partitioned according to a discrete mark up of the mathematical terrain. 
Teachers are not teachers in themselves but teachers subject to particular cultural 
specifications. They need to be employed in a job with certain social expectations, 
working practices and responsibilities that restrict how others read their actions and 
indeed how they assess their own practice. Specifically they work to curriculums that 
mark out the field of mathematics in particular ways that favour certain priorities or 
groups of people. And student engagement with mathematics is assessed according to 
how recognisable it is against this frame. The “that’s me” is forced into alignment 
with the “that’s it” within an externally defined register that defines “learners”, 
“teachers”, “mathematics” and the relations between them.  

Badiou’s variation on Lacan’s subject is defined by, or comes into being 
through, an encounter with a new way of being. The individual participates in 



2-191PME 35 - 2011

Brown 

 

PME 35 - 2011 1- 7 

historical formation rather than apprehending something fully formed. The subject is 
only a subject to the extent it participates in renewal rather than reproduction. It is in 
this sort of model that Badiou’s notion of subject leaves all affinity with biological 
bodies to become more fully a facet of structures guiding our actions. 

Understood in this way a learner of mathematics would be seeing and 
experiencing mathematics as coming into being. The learner would be experiencing 
mathematics as part of herself, a self that is also evolving in the process. The 
backstitch movement comprises successive attempts to explain ones understanding 
that simultaneously petrify the mathematical content whilst alerting the student to a 
need to move on. The encounter with mathematics is a formative experience for the 
individual. But her participation in the collective enterprise that is mathematics is 
also formative of mathematics itself. One might think of such cultural renewal as 
being consequential to a widespread innovation being introduced in to a given 
community with more or less unpredictable results. Mathematics as it appears in 
school, for example, might be seen as resulting from a collective response to 
curriculum policy, and the attempts made to influence practice across populations of 
teachers and their students. It is such innovations that activate new modes of 
mathematical engagement or educative encounters across that community, that define 
mathematical objects and the worlds that host them, more or less compliant with the 
policies as envisaged by those who created them.  
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LEARNING THROUGH LESSON STUDY: A DESIGN RESEARCH 
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Mathematics design research is garnering the attention of educational researchers 
(Brown, 1992; Bruce, Flynn & Ross, submitted; Collins, Joseph & Bielaczyc, 2004) 
because it offers a framework that encourages researchers to work collaboratively 
with teachers to test and refine theoretical models and practical products. Design 
research is an ideal fit with mathematics professional learning models such as lesson 
study because it is situated in complex classroom contexts and generates tested 
learning trajectories.  In this study, 18 teachers engaged in a two-year lesson study 
process in mathematics. The teachers collaboratively created, tested and refined 
mathematics lessons, leading to improved student understanding and positive teacher 
outcomes such as shifts in instructional and reflective practice through collaboration. 
BACKGROUND 
In this article, we will demonstrate the benefits of applying design research to lesson 
study as a way of testing and refining lessons and instructional sequences in live 
classrooms.  In our two-year study, the process of lesson study acted as a form of 
design research for 18 teachers who worked collaboratively in small teams to develop 
and test lesson sequences. 
LITERATURE REVIEW  
Lesson study is an intensive professional development model that Stigler and Hiebert 
(1999) describe as a way for teachers to look at their own practice “with new eyes”. It 
is, essentially, a systematic inquiry into teaching practice and related student learning, 
carried out by examining lessons. Lesson study is considered a productive 
professional development model because it “is embedded in the classroom and 
focused on students, it is collaborative and ongoing, and it is based on teachers’ own 
concerns and questions” (Darling-Hammond & McLaughlin, 1995). In this way, 
lesson study is a teacher-led activity that has the potential to increase research-based 
knowledge that is critical to improving instruction (Lewis, Perry, & Murata, 2006). 
When “teachers engage in lesson study as researchers and scholars of their own 
classrooms” (Stepanek, 2001), we suggest that this is fits within the methodological 
framework of classroom-based design research.  
Lesson study is a cyclical process that plays out in complex classroom settings, 
requiring the commitment of teacher participants and an openness to learning more 
about pedagogy related to the content and concepts in focus. The lesson study 
working group of researchers of the Psychology of Mathematics Educators of North 
America identified four critical components of lesson study in 2007. They are:   
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Vol. 2, pp. 193-200. Ankara, Turkey: PME.
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1. Goal setting (where a facilitator may assist in setting goals): In the initial goal-
setting stage, teacher participants begin by setting a goal for their students that they 
are aiming to address in their lesson.  This is often a topic area that is difficult for the 
students to learn, or difficult for the teachers to teach. In other words, “the desire to 
improve is stimulated by seeing what’s not working” (Lewis et al., 2006). Goal 
setting leads to an exploration for the best instructional strategies that could be used 
to achieve the goal (Fernandez, 2002). 
2. Curriculum planning (collaborative lesson planning): During the curriculum 
planning stage, the teacher participants benefit from access to outside sources of 
knowledge – both print (e.g., textbooks, professional resources, outside research 
articles) and human (e.g., outside educators, content specialists, researchers, 
knowledgeable others) to support lesson planning.  
3. Implementation and observation: Once the lesson is planned, it is taught and 
observed. Enacting the planned lessons with live observations conducted by 
participants of the lesson planning, as well as guests, is a fundamental and exciting 
stage in the lesson study process. The observations are focused on assessing how 
students respond to the lesson, and whether goals of the lesson were met. Surprises 
and details of student activity are noted.  
4. Debriefing/reflection on the lesson and the lesson study process: The observations 
of the lesson, students and outcomes are shared in a debriefing session where all 
participants contribute to reflection and collective knowledge building from the 
lesson implementation. This debriefing drives the continuation of the cycle as the 
next set of goals is established.   
The interaction between lesson study and design research requires further 
consideration. Design experiments (now commonly referred to as design research) 
emerged in 1992 in articles by both Collins and Brown as a way of refining 
educational designs. Collins, et al. (2004) make explicit connections from design 
research to lesson study, describing the testing and refining processes inherent in both 
as cycles of progressive refinement. They emphasize that “design research should 
always have the dual goals of refining both theory and practice” (19). Recent 
applications of design research by Lamberg & Middleton (2009), illustrate how 
design research encourages simultaneous generation of instructional tools and 
theories. In their multi-phased study, a theoretical lesson trajectory in fractions was 
developed, then tested in a controlled laboratory setting, an then refined in widening 
iterative cycles that expanded to classroom settings.  
RESEARCH METHODS 
Participants. 
In our lesson study research, eighteen mathematics teachers in four Canadian schools 
engaged in Japanese lesson study cycles. Three of the sites were secondary schools 
(students aged 13-18 years) and the fourth site was an urban elementary school 
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(students aged 4-12 years). All four schools were publicly funded and ranked below 
the standard for student achievement.  
Teachers participated in collaborative cycles of lesson study over two years. The first 
cycle of lesson study was a “familiarization cycle” because teachers were new to 
lesson study and were gaining familiarity with the process. The second cycle was 
defined as a “formalization cycle” because the lesson study activity was focused and 
more nuanced including close attention to student learning. The third cycle added a 
focus on exploratory lessons with students to experiment with ideas and strategies 
leading toward the public research lesson. These shifts were in response to teacher 
learning and researcher learning as the research project progressed, reflecting a 
refined understanding of the lesson study process both practically and theoretically. 
Data collection and analysis. 
Sources of data included: transcripts of focus group interviews; field notes and 
planning materials; video footage and related transcripts of all stages of the lesson 
study cycle.   
The study was a qualitative investigation focusing on two types of teacher and 
student outcomes: dependent climate variables (teacher engagement, cooperation and 
risk taking) and dependent learning variables (student mathematics understanding 
and affect). (See summary table 1). 
 

Dependent variables  Outcomes based on the intervention 

Teacher variables Level of teacher collaboration 
Development of trust amongst team members 
Risk taking by teachers in the lesson study teams with one 
another and in the classroom 

Learner variables Student mathematics understanding and achievement 
Student beliefs and attitudes toward learning mathematics 

 Table 1. Analysis matrix for outcomes of Lesson Study activity 

Initially, researchers read through the text data and viewed the video data. Text and 
video episodes were then divided into segments and start codes in the coding 
margins. Codes were reduced through elimination of overlap and redundancy, then 
collapsed into key themes (Creswell, 2008). Three researchers worked together to 
identify the primary themes to uncover the essence of the lesson study experience and 
its effects.  
Although the argument of the article is grounded in qualitative data findings, the 
research team also collected quantitative data in the form of surveys and achievement 
tests to triangulate student outcomes.  
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FINDINGS 
Teacher outcomes: collaboration, trust, and risk-taking.  
Participants indicated that sharing their expertise, their questions and their classrooms 
with one another was positive.  As evidence of the enthusiasm of teachers involved in 
the process, two teams continued with their core group of teacher participants in a 
lesson study professional development program beyond the two years of the study, 
independently seeking alternate funding to support teacher release time. Lesson study 
had a visible and lasting impact at these schools. (For more on these impacts, see 
Bruce & Flynn, 2010, who examine issues of sustainability and spread related to this 
study and describe the ripple effect of lesson study in two school sites.) 
Participants learned from one another during their planning days, through observation 
of classroom teaching and student learning during the formal lesson, as well as during 
the debriefing sessions.  

In terms of observing a public lesson....I did recognize a lot of the same teaching 
strategies used by other teachers that I would normally use but there were some I 
hadn’t even considered.  So it was really enlightening. (Focus group, June, 2007)  

After teaching a public lesson, the lead teacher said to one of her colleagues (who she 
had observed teaching earlier in the process): 

One thing I learned from your lesson is to wait for the students to respond.  I realized I 
was calling on the same students and now that I wait, the ones who were unsure are 
gaining more confidence because I am giving them a chance.  (Debrief transcript, 
December 2007) 

It was through statements like these that participants affirmed effective teaching 
strategies with one another, legitimized the purpose of their work together, and built 
the trust necessary to continue taking risks together. This formal debriefing process 
provided a venue for teachers to articulate their mutual learning. 
Teacher collaboration through co-planning and co-teaching expanded the traditional 
boundaries of teacher professional activity because the isolation of the individual 
classroom was broken down: 

As teachers we rarely get the chance to work with teachers…like you’re a little island 
but now we have bridges between those islands…it gives us something to talk about 
….the best thing about this project is the collegiality. (Focus group, November, 2007) 

This high level of collaboration had the effect of expanding the types and refining the 
quality of instructional strategies the teachers used. Teachers reported they had an 
increased flexibility in their teaching moves as a result of the lesson study process. 
The fact that so many of the teacher-participants were struck by the rarity of such 
collaborative opportunities compared to their previous years of experience suggests 
that lesson study can offer a pathway for a paradigm shift in the ways in which 
teachers interact and support one another in developing effective practices.  
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As a result of their collaborative work, a sense of collective responsibility developed 
among the teams. This shared responsibility – the motivation to see the difficult work 
of the project through – emerged directly from the fact that the teams had autonomy 
in setting the direction for their professional learning: 

There is a lot that is happening in classrooms today that is top down, a lot of things we 
are told to do. And I respect that. But to have a chance to sit down with my colleagues 
and say, we know our kids, we know what they need, let’s work around that – really 
validates me, and really makes me feel like I have some control on this process, and 
makes me more willing to go through it. (Teacher Interview, Feb. 2008) 

Getting to the point of shared responsibility, however, was not without its challenges. 
Teachers identified how difficult it was to be vulnerable to change and to let go of 
personal responsibility by sharing teaching responsibilities with colleagues:  

It’s that piece – for people to let others into their classrooms, into their world … And 
really, I think as a breed, as teachers, that is a really big hurdle for us to let somebody 
else in…building up that trust is a really hard thing to do. (Focus group interview, June 
2008) 

For these forms of collaboration to occur, it was essential that teachers build trust 
with one another. All participants at one time or another during the focus group 
interviews brought up the importance of trust and how establishing that sense of 
mutual trust was a determining factor in the positive outcome of the project.  
Even early on in the process, teachers could detect changes in their thinking as a 
result of participating in lesson study: “I think I was sceptical coming in to this 
project…how is a formal lesson going to change things? But it does because it 
changes your thinking” (Focus group interview, December 2007). Later, teachers 
became even more explicit about the changes in self-perception: 

It all goes back to the fact that the teacher is focused on one thing and re-evaluating 
their style of teaching, is trying something new, is experimenting with something new 
– with all the future lessons we are going to be influenced [by this learning].  (Focus 
group interview, June 2008) 

One experienced teacher talked about the enduring impacts on her professionally: 
“And I feel that I’ve grown more this year than I have in 17, of taking risks myself 
and trying things in new ways.”  (Interview transcript) 
Wallace (1999) discusses “true collaborative cultures”, which are not driven by 
specific projects but are “deep, personal and enduring and are absolutely central to 
teachers’ daily work” (67). Little (1990) calls this “joint work”. As Puchner and 
Taylor (2006) explain, joint work means a shared responsibility for teaching, and 
because it requires shifting from the private isolation of the classroom into the public 
sphere, it requires teachers to admit that they do not know everything, and that they 
might need to rely on someone else.  
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…how amazing it feels to feel safe taking a risk and trying to become better and not 
being afraid to make mistakes. And I think the kids are seeing that, and as a result the 
kids aren’t afraid to make as many mistakes. (Teacher Interview, Feb. 2008) 

Lesson study may be a way of establishing a culture of collaboration where teachers 
feel safe taking the kind of risks that allow deep learning, with enduring impacts on 
teacher perception and practice. 
Learner outcomes: student achievement and beliefs. 
Although the study was primarily qualitative in design, we collected quantitative data 
on students to assess the degree of student learning during lesson study cycles. In 
year one we collected data on the effects of lesson study on student affect. The survey 
measured student dysfunctional beliefs (the belief that math learning occurs quickly 
or not at all and that some students are born without math ability Schommer-Aitkins, 
Duell & Hunter, 2005); and self-reported effort expended in math class (Ross, Xu, 
and Ford, 2008). Survey items were administered to students in treatment schools and 
to a matched set of control school students. Schools were matched using provincial 
math assessment scores and 14 census variables. We conducted a repeated measures 
analysis of the survey scores in which the within-subjects measures were student 
affect, repeated at pre and post test occasions. The between-subjects measure was 
study condition (lesson study or control). All instruments were reliable (alpha=.70+). 
Student dysfunctional beliefs declined (a positive outcome) in the lesson study 
schools, while they increased in the control schools. Further, self-reported effort 
levels were maintained by students in the lesson study school, while self-reported 
efforts declined in the control school students. The differences between lesson study 
and control schools were small but consistent. This population of struggling 
mathematics students has a long history of becoming more and more disengaged with 
mathematics through the grades (O’Connell Schmakel, 2008). Maintaining healthy 
attitudes and beliefs about mathematics learning was an important positive outcome 
of lesson study activity. 
In the second year, teachers in one school administered items measuring grade 7-9 
students’ conceptual and procedural mastery of volume, which was the focus of the 
school’s lesson study. Students demonstrated modest increments in procedural skills, 
even though the focus of the lesson study was on conceptual understanding, and had 
even greater gains in conceptual understanding. The effect sizes (Cohen’s d) were 
small but consistent. 
Mandated provincial tests supported the claim that learning improved for students in 
this same school as scores on the Grade 9 basic level mathematics test improved from 
38% reaching the standard before the lesson study project began to 48% after two 
years of school participation. During the same time period, math scores for the 
district as a whole declined from 37% to 33%.  
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SUMMARY 
The methodological framework of design research was an excellent fit with lesson 
study in this research project. Essentially the lesson study activity of teachers acted as 
a form of design research that generated practical products such as lesson plans as 
well as theoretical products such as shifting conceptions of mathematics teaching. 
Simultaneously, the researchers engaged in design research to test and refine the 
lesson study cycle, developing a deeper theoretical understanding of lesson study as a 
form of professional learning. From this study we learned that teacher-directed, 
classroom-embedded and research-supported professional learning in the form of 
lesson study had a positive effect on teacher collaboration and risk-taking, student 
achievement and student attitudes toward learning mathematics.  
Findings from this study suggest that a design research approach to professional 
learning (using action-oriented models such as lesson study) offers tremendous 
opportunities for teacher-researcher collaboration with a central focus on ways to 
improve and refine learning, instruction and research simultaneously. 
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This paper examines the software used by staff and students in an undergraduate 
mathematics degree. The theoretical framework is activity theory. Of software used 
Excel has a privileged position. We argue that spreadsheet use ‘fits’ with the 
objective of the activity and an important rule of the mathematical community and 
that multiple agents contributed to the privileged use of Excel. 

Introduction	  
In this paper we look at the software used in an undergraduate (UG) mathematics 
degree programme at Sheffield Hallam University (SHU). SHU is well known in 
England for deep integration of technology into its UG mathematics programme. The 
Mathematics Department (MD) at SHU has made extensive use of technology for 
many years but the extent of use of different types of software has changed over time 
and the software most used in recent years is spreadsheets (Excel). Given that many 
MDs use specialist mathematical software (e.g., Mathematica, SAS) we were 
intrigued as to why Excel has a privileged position at SHU. We present an 
exploratory single case study (Ying, 1994) of software used by staff and students in 
an UG mathematics programme. We make no attempt to generalise findings but this 
qualitative study advances knowledge of the complexity of factors influencing the 
software used in a degree programme. 
This paper is a part of a study which examined technology use at SHU MD which, in 
turn, was part of a funded project which looked at technology integration in UG 
mathematics instruction in Canada and the UK. Research objectives included: 
mapping existing international research and literature pertaining to university 
mathematics teaching with computer algebra systems (CAS); providing an overview 
of CAS usage in Canadian universities and to compare this with international trends; 
highlighting, using selected departmental case studies, exemplary practices relating to 
CAS-based instruction. SHU MD was selected as being useful as a comparative case 
study. This paper is structured as follows: the next section gives an account of the 
development of SHU MD; we then consider the use of technology in UG 
mathematics; there follows an overview of the theoretical framework where we pay 
particular attention to constructs used in the Discussion section; the next two sections 
present the methodology used and selected results; the paper closes with a discussion 
which focuses on issues introduced in the Theoretical Framework section. 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 201-208. Ankara, Turkey: PME.
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Undergraduate	  mathematics	  at	  SHU	  
The SHU Mathematics degree has run in its present form since 1996. It was 
consciously designed to reside at what is now called the practical end of the national 
benchmark for degrees in mathematics, statistics and operational research (QAA, 
2007). This positioning entailed an emphasis on applications and solving practical 
mathematical problems, and involved considerable and concerted use of a range of 
technology to support both mathematical learning and the implementation of 
mathematical techniques, for instance in a modelling context. The concerted use of 
technology was already ensconced in the MD’s practice, for example in encouraging 
large groups of engineering students to make constructive use of graphic calculators 
(GC), and using spreadsheets to support statistical learning or implementation of 
numerical methods with engineers and biological science students. CAS systems 
were also gradually included over time, with practice in all technologies transferred 
back and forth between ‘service’ courses and the Mathematics degree.  
The practical emphasis fitted well with the university context. SHU was one of the 
largest providers of ‘sandwich education’ in Europe, and the Mathematics degree 
includes a popular optional one year job placement. An impetus for including the use 
of spreadsheets came from a perception that they provide a tool for elucidating 
mathematical concepts in linear algebra, numerical methods and statistics. However 
feedback from employers soon suggested that a facility with technology in general, 
including spreadsheets, was a valuable ‘employability skill’ in its own right. 

THE USE OF TECHNOLOGY IN UG MATHEMATICS 
Perceived weaknesses in students’ mathematical preparedness for university study 
and the availability of new technology has prompted numerous mathematicians to 
experiment with innovative teaching and a number of them have turned their 
attention to pedagogy (Buteau et al. 2009). In many cases the use of technology into 
undergraduate teaching is seen as way to revitalise teaching and to assist students in 
raising their level of mathematical understanding (Devlin 1997). Although university-
level mathematics teaching is undergoing considerable changes, little attention has 
been paid to teaching issues at this level by the educational research community. In 
particular, little has been known about the current extent of technology use and 
mathematicians’ practices in university teaching. An exception is Lavicza (2008) 
who surveyed 4500 mathematicians from Hungary, the UK and the USA. Lavicza 
claims that: (i) many mathematicians, applied and pure, use technology regularly in 
university instruction; (ii) the use of CAS in one’s own research is the strongest 
predictor for the use of technology in one’s teaching; (iii) university teachers’ 
international mobility and awareness of trends in research and teaching strengthen 
their ability to implement significant innovations in technology integration into 
educational settings; (iv) mathematicians are less bound than school teachers by 
centralised curricula and tests and have greater freedom to develop their own course 
materials, teaching approaches and assessment. 
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Theoretical	  framework	  	  
Our theoretical framework is activity theoretical but activity theory (AT) takes 
several forms and we use constructs from two forms in the Discussion section, so we 
explain these forms and constructs. Engeström (2001) describes three generations of 
AT: (i) Vygotsky and mediation where the unit of analysis was focused on the 
individual; (ii) Leont’ev’s expansion to account for individual action in collective 
activity; (iii) multiple interacting activity systems. Engeström’s (2001) version of 
third generation AT has five principles: the collective activity system (AS) is taken as 
the unit of analysis; the multi-voicedness of ASs; ASs take shape over time; the role 
of contradictions as sources of development of ASs; the possibility of expansive 
transformations (re-organisation of object and motive) in ASs.  
A debate in AT concerns the ‘unit of analysis’. Daniels (2001) contrasts Wertsch’s 
focus on mediated action with Engeström’s focus on activity systems. Cole (1996, p. 
334) claims “Mediated action and its activity contexts are two moments of a single 
process”. Like Cole we recognise there are times (within research) to focus on 
mediated action and times to focus on ASs. Wertsch’s (1998) work on mediated 
action considers Vygotsky’s construct internalisation via two aspects, mastery and 
appropriation of mediational means (tools). Mastery relates to the skilful use of a tool 
and appropriation relates to ones disposition towards a tools. “In most cases … [they 
are] … intertwined, but … [they are] empirically distinct” (p.53). In the Discussion 
section we claim that mastery and appropriation of Excel co-evolved in the AS SHU 
MD. In the Discussion section we also consider agency. Agency, as a construct, 
began as personal agency (free will/choice) but has grown to include collectives 
(what others want us to do), agency of tools (the constraints and affordances of tools) 
and disciplinary agency, e.g., mathematics (Pickering, 1995). 

METHODOLOGY 
Two visits to SHU MD were conducted in 2009 by pairs of authors DJ, ZL and JM: 
to interview ‘core’ MD staff; to observe teaching activities with particular emphasis 
on final year students; to interview students during or after these activities and to 
collect documentary data (department handbooks, assignments, student projects, 
etc.). For this paper we report on interviews: eight with MD staff, six with students 
and two with SHU leaders. All staff interviews were semi-structured and used the 
hierarchical focussing technique (Tomlinson, 1989) whereby a structured interview is 
planned but executed through open questions. The MD staff interviews had one open 
question, ‘tell me about your department’, with follow up questions on: the 
interviewee, the staff (teaching, research, networks), mission statement, place of MD 
in SHU, degree programmes, students, use of technology and room allocation. The 
two interviews with SHU leaders were not initially planned but MD staff interviews 
suggested such interviews would be important to position the MD within the 
university structure (an AS). The students were only asked questions about their 
courses and technology. 
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Neil Challis is an author of this paper and is the head of the MD and this is a possible 
source of bias. But he was not involved in data analysis and the study was an explor-
ation of technology use in his department, not an evaluation of this use. Further to 
this he was able to provide useful comments on our interpretation of the data. 
Two methods of analysing interview transcripts were used to provide the account of 
technology use which follows. The first was open coding (à la Strauss and Corbin, 
1998) but stopping short of a full grounded theory approach as we already had a 
theoretical framework. Coding was done through Atlas.ti and 12 codes and 
documents were produced, of which ‘technology used’ was one. The second method, 
by a different researcher, was done as a reliability check on the ‘technology used’ 
document, and was completed by highlighting all words related to technology in the 
transcripts (e.g., technology, computer, Derive, Excel, etc.). The account of 
technology use in the two documents was deemed consistent. 

RESULTS 
We present four issues arising from data (analysis) to illustrate the embeddedness of 
technology and then explore the place of Excel within the technology used. These 
issues inform discussion in the next section. The four issues are: the presence of 
technology in every code; examining specific software/hardware (SW/HW) other 
than general technology comments; an investigation of whether Excel is privileged 
because of the importance attached to graduate employment; interview extracts that 
present an ‘anti-black box rule’. 
The	  presence	  of	  technology	  in	  every	  code	  

Technology was present in the interview extracts assigned to each of the 12 codes. At 
one level this is not surprising as staff interviewees knew that our interests centred on 
the use of technology in the degree programme, but interviews were sustained and 
wide- ranging and there was no reason why technology had to enter the excerpts 
assigned to every code, but they did. In the following we present each code (other 
than ‘technology used’) followed by an interview except. 
History We weren’t allowed to run a maths degree until about 10 years ago … 
and people were realising computers were quite important, that we wrote our course. 
Structure In the final year we have a large 30-credit project module and many of 
them do a lot of programming in that, particularly with Excel. 
Rationale [See inset excerpt in the final sub-section below] 
Instructor background  [After my degree] I got out into industry and the first 
thing I had to do was to learn the numerical method and … Fortran programming. 
Obstacles and challenges  We ran a seminar for our engineering colleagues … 
we got into all those arguments about the role that technology can play. 
Recruitment  Our programme is very much based around the use of technology. 
We make this clear to students from the outset … We’ve got an open day. 
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Learning community The log book, it’s a log centre on our website … there are a 
lot of tools we use for tracking what they’re doing and communicating. 
Mathematical concepts  I think most of us are genuinely excited about what 
you can do with a mathematical approach using technology. 
Assessment     We … let them use calculators without the algebraic facility in exams. 
Sustained departmental shift  A vast bulk of the group that are absolutely 
committed to that technology and to that philosophical approach. 
Student project [We] use Excel for image analysis … an add-in for image analysis 
which means we can just manipulate images, blur them, structure them. 
Examining	  specific	  SW/HW	  other	  than	  general	  ‘technology	  used’	  comments	  

A lot of SW/HW is used: “the balance is 50% maths, 50% technology” (final year 
student). “There is a computer programme modules where you will learn Excel but it 
also does XTML, PHP, Java Script. There is also a computer programme where you 
use C+, Visual BASIC, the actual Visual BASIC not in Excel.” (final year student) 
Students mentioned MathLab, Excel, SAS, GeoGebra, Derive and Front_Page. Excel 
(19) and SAS (19) account for the vast amount of student references to SW. Students 
also mentioned HW:  their own laptops, SHU computers and GCs. 
In this paper we are interested in what mathematical SW was used and why specific 
SW was used. However, except when following up on an interviewee’s comment on 
specific SW, interview questions were framed in terms of technology, not software. 
The following summarises descriptive statistics from all interview transcripts 
regarding general key words (technology, computers, ICT, calculators) and specific 
SW keywords (Excel, Derive, CAS, SAS, etc.). 
Over all interviews general key words were used much more often than specific SW 
keywords. There were ‘trends’ in the interviews:  the two leaders did not refer to any 
specific SW/HW; students talked about specific SW more than any other group. Of 
the lecturers, two only talked in terms of generalities. Of the other six there was still a 
trend to talk in of generalities, but of specific SW keywords used, 34 were to Excel or 
spreadsheets compared with 16 to SAS, Derive, CAS, TI GCs and the web. 
Is	  Excel	  is	  privileged	  due	  to	  the	  importance	  attached	  to	  graduate	  employment?	  

Interviews with some staff suggested that the answer to the question above is ‘yes’. 
For example, a lecturer paraphrasing a businessman happy with a student placement, 
noted, “He revolutionised our store’s record keeping with the spreadsheet that he 
designed” and another talking about students claimed, “They'll always get the job 
because they can talk and communicate … and they can play with spreadsheets very 
effectively”. To explore this further we constructed a document in which we included 
all references to a word containing ‘employ’ in it (e.g. employment, employability). 
We retained meaningful text preceding and succeeding these words to put the 
‘employ words’ in context. There were 71 ‘employ words’ in this document, 19 
uttered by interviewers. Of the 52 uttered by participants, 13 were from one ‘leader’, 
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seven from students and 32 by mathematics lecturers. There were nine references to 
either Excel (five, all by students, four by a single student) or spreadsheets (four, all 
by lecturers). The only other reference to mathematical SW (MSW) in this document 
is to SAS (two instances, each by a student). So, spreadsheets are the dominant MSW 
reference but if spreadsheets were used just for the employability objective, then one 
would expect more reference to spreadsheets by staff. However, whilst there is not 
evidence that spreadsheets are used simply because of the employability objective, 
there is clearly some relationship here. We explore this further in the next section 
where we use the word ‘fit’, i.e. spreadsheet use fits with the employability objective. 
Rules	  

The term ‘rules’ can mean different things in different theoretical frameworks. To 
Ostrom (2005), ‘or else’ rules are particularly important in studying institutions. 
Rules in AS analyses consist of templates for action by the community for realising 
the objective of the AS. In SHU MD, as a part of SHU, there are many ‘or else’ rules 
regarding, for example, attendance at lectures and the conduct of examinations. 
Below we consider an unwritten rule concerning MSW and the transparency of 
mathematical operations. This rule (though expressed as an aim) was described 
clearly by the leader of the MD:  

Our aim, my aim, has always been—not that the technology would de-skill people, so 
you don't use it as a black box, what you do is you use the technology which forces you 
to really understand what you're doing before you can use it.  And that's why I like the 
spreadsheet so much, because you've got to understand what the  inter-relationship is, and 
you really need to think about, you know … So they're learning a tool which is widely 
used in the industry, but they're also using it … enhance what they're learning 
mathematically as well.  … modelling is a terrific area for doing this kind of stuff.   

This excerpt illustrates a positive attitude to spreadsheets from a negative – they are 
not black boxes, i.e., one must program them (mathematically) rather than the 
programming being obscured in code that the user does not provide. This ‘anti-black 
box rule’ was expressed in similar terms by another member of staff, “The danger is 
that you’ve got that black box that gives you all the answers and that’s certainly not a 
way to train mathematicians—maybe some engineers—the understanding of the 
process”. Other members of staff expressed it in slightly different terms, e.g., with 
regard to coding logic in Excel for mathematical modelling, “We are actually using 
the logic functions in the cells rather than macros, and seeing how you can get those 
to inter-relate to form a model”. Students were also aware of this rule, e.g., a final 
year student in talking about learning, “If you can put the maths into a computer 
program they’ll understand it more”. We return to this rule in the next section. 

Discussion	  
We consider constructs raised in the theoretical framework, activity systems (AS) and 
mastery/appropriation/agency, with respect to SW used (as a subsets of tools used in 
the AS), in the light of the results we have presented. 
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In terms of Engeström’s (2001) version of third generation AT, both SHU and the 
MD can be viewed as an AS. Our primary unit of analysis is the MD, its people (with 
motives), mediating artefacts (tools), rules, and division of labour. The object, clearly 
stated by leaders and MD staff, is employable mathematics graduates. Interviews 
evidenced the voices of the staff and students, of SHU leaders and of employers. We 
view the current AS SHU MD to be the product of its history, with its tensions, and 
periods of expansive learning. We now focus down to the tools in this AS. The tools 
are diverse and interrelated: lecture/workshop formats; assessments; student log 
books; as well as mathematical tools including software. In as much as technology 
permeates all of the codes/categories, technology permeates many if not most of the 
tools in the AS. We now focus further down to MSW and begin by noting two things: 
(i) MSW is a proper subset of the technological tools used, e.g. the MD web site 
includes a number of tools that are not MSW; (ii) apart from a few modules which 
introduced SW, MSW was used as considered appropriate by students in mathematics 
modules, e.g. students could use Excel or SAS for statistical purposes. Within the set 
of MSW, Excel use is privileged but not exclusively so. We consider Excel with 
regard to the ‘anti-black box rule’ as presented above in the AS and the object of the 
AS. Interviews revealed that MD staff regarded both SAS and Derive but not Excel as 
‘black box’ MSW. There is, of course, other MSW which is not black box SW but 
Excel ‘fits’ with this rule. Excel-use also ‘fits’ with the object of the AS, graduate 
employment. We have argued above that while there may not exist a direct 
relationship between Excel-use and graduate employability, ‘fit’ seems an appropriate 
word to describe this relationship. The use of Excel is thus consistent with a rule and 
the object of the AS. We regard this as an important point with regard to the use of 
MSW in UG mathematics programmes and why we refrain from any attempt to 
generalise about such MSW use, for had the rules and object been different, then 
Excel may not ‘fit’. For example, Excel-use is unlikely to fit with an UG programme 
with an objective of ‘maintaining traditional standards with regard the content’ and 
concomitants rules such as ‘must pass exams in real analysis and linear algebra 
before proceeding to their final year’. 
We now consider mastery, appropriation and agency with regard to Excel-use. We 
agree with Wertsch (1998) that mastery and appropriation of tools may develop 
unevenly, e.g. one may master a tool that one does not appropriate, or that the 
development may go hand-in-hand. In our opinion SHU MD staff mastery and 
appropriation of Excel-use not only went hand-in-hand but ‘evolved’ over years: MD 
staff mastered Excel and did not have a disposition against it; initial use of Excel 
fitted with the anti-black box rule and the employability object; use of Excel in 
modules increased and again this use fitted with the rule and the object. This appears 
to have stabilised to the current system of Excel-use being privileged. 
We now turn to ‘agency’ and our argument is that MD staff never decided (on their 
own) to privilege Excel-use in the degree programme, the voices of others had a say 
in this. The voices of others were: employers who were delighted to have placement 
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students with such strong Excel skills; and the voices of students who were pleased to 
have their Excel skills valued by others. Further to this, we argue that the anti-black 
box rule and the employability object exerted agency with regard to choice of tool. 
This statements may need clarifying with regard to the anti-black box rule. Pickering 
(1995) was the first to suggest disciplinary agency. The argument can be put in terms 
of ‘are you free to put any answer down when given a + a?’ Of course you can write 
down something other than 2a but the discipline of mathematics leads you to write 
2a. We believe the discipline of mathematics in SHU MD includes “understand why 
the output is the output” and this leads to the use of a tool which enables this to be 
realised. The upshot of this is that multiple agents impacted on use of Excel at SHU. 
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PROSPECTIVE TEACHERS’ WAYS OF MAKING SENSE OF 
MATHEMATICAL PROBLEM POSING 

Olive Chapman 
University of Calgary 

 
This study investigated prospective teachers’ ways of making sense of mathematical 
problem posing [PP] and the impact of posing various types of problems on their 
learning. Focus was on the generation of new problems and reformulation of given 
problems. Participants were 40 prospective elementary teachers. They were required 
to pose problems for diverse specified situations. Data included their problems, 
reflective journals, and interviews. The findings provide insights into possible ways 
prospective elementary teachers could make sense of problem posing of contextual 
problems and the learning afforded by posing diverse problems. Highlighted are five 
perspectives of problem posing and nine categories of PP tasks important to support 
their development of proficiency in problem-posing knowledge for teaching.  

INTRODUCTION 
This paper is based on a larger, ongoing project that investigates mathematics 
teachers’ sense-making of contextual problems, problem solving, and problem posing 
and their development of problem-solving proficiency and knowledge for teaching. 
The project involves prospective and in-service elementary and secondary school 
teachers. The focus here is on prospective elementary school teachers and their 
mathematical problem-posing knowledge for teaching. 
Problem posing [PP], like problem solving, is promoted as an important way of 
learning and teaching mathematics (Kilpatrick, Swafford, & Findell, 2001; National 
Council of Teachers of Mathematics [NCTM], 2000). But whether or how this view 
gets implemented in the classroom will depend on the teacher and how he or she 
understands it. Thus, it is important to understand teachers’ sense-making of PP and 
ways to help them to develop meaningful PP skills. This study contributes to this 
through the investigation of prospective elementary teachers’ sense-making in posing 
word/contextual problems and the impact of posing various types of problems on 
their learning.   

RELATED LITERATURE 
Since the 1980s, there has been increased attention in promoting PP as an important 
aspect of school mathematics. The NCTM (1989, 2000) has proposed increased 
emphasis on PP activities in teaching mathematics. Kilpatrick (1987) and Silver 
(1993) have suggested that the incorporation of PP situations into mathematics 
classrooms could have a positive impact on students' mathematical thinking. Brown 
and Walter (1983) have also identified important aspects of PP in mathematics. Many 
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benefits are gained from PP, such as enhancing problem-solving ability and grasp of 
mathematical concepts, generating diverse and flexible thinking, alerting both 
teachers and students to misunderstandings, and improving students’ attitudes and 
confidence in mathematics (English, 1997b; Silver, 1994). PP activities reveal much 
about the understandings, skills and attitudes the problem poser brings to a given 
situation and thus is also a powerful assessment tool (English, 1997a; Lowrie, 1999).  
Studies on prospective elementary mathematics teachers have raised issues about 
their knowledge of problem solving. While such studies imply related issues with 
their PP knowledge, this is an area that is under-explored. Studies on PP tend to focus 
on students at school levels. Such studies have increased attention to the effect of PP 
on students’ mathematical ability and the effect of task formats on PP (Leung & 
Silver, 1997). Some studies have investigated the extent to which children generate 
problems (Lowrie, 1999; Lowrie & Whitland, 2000; Silver et al., 1996). One finding 
is that unless children are encouraged to talk about problem solving (Lowrie, 1999) 
and share ideas during mathematical activities (English, 1997a) they tend to pose 
traditional word problems that are variations of those found in textbooks. Lack of 
exposure to meaningful contexts for problems was also found to restrict students’ 
ability to pose problems (Stoyanova, 1998). Since students grow up to become 
teachers, it is likely that prospective teachers maintain some of these issues that will 
then continue the cycle unless they are helped in appropriate ways. 

PERSPECTIVE OF PROBLEM POSING 
Dunker (1945), and more recently Silver (1994), described PP as referring to both the 
generation of new problems and the reformulation of given problems. Stoyanova 
(1998) defined it as the process by which, on the basis of concrete situations, 
meaningful mathematical problems are formulated. For English (1997a), generating 
new questions from given mathematical tasks is considered to be the main activity of 
posing problems. However, as Silver et al. (1996, p. 294) explained, “The goal is not 
the solution of a given problem but the creation of a new problem from a situation or 
experience.” Importantly, the problem poser does not need to be able to solve the 
problem in order for positive educational outcomes (Silver, 1995).  
In this study, the focus is on the generation of new problems and reformulation of 
given problems. The relevance of this is associated with the teacher’s role in 
selecting, creating, or posing appropriate problems to engage students in meaningful 
problem-solving experiences (NCTM, 1989; 1991). To promote diverse and flexible 
thinking for students, it is critical for teachers to be able to generate diverse problems. 
They need to be able to generate a broad range of problems to widely combine 
situations with mathematical concepts or solution methods. For example, for 
mathematics teachers to develop quality-structured PP situations, they should be able 
to pose problems based on textbook problems by modifying and reshaping task 
characteristics; formulate problems from every-day and mathematical situations and 
different subjects' applications; restart ill-formulated or partially formulated problems 
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and pose complex and open problems as well as simple problems.  
Problem posers have to appropriately combine problem contexts with key concepts 
and structures in solutions along with constraints and requirements in the task. Thus, 
both contextual settings and structural features of problems are recognized as crucial. 
Comparison between problems is also important. As Gick and Holyoak (1983) 
demonstrated, similarity judgement between problems facilitated the induction of 
schemata, that is, general information about key elements and their relationships in 
the problems. In PP, it is important to identify key elements and their relationships 
embedded in problems (English, 1997b; Leung & Silver, 1997).  
The preceding theoretical background about PP provided the basis for selecting PP 
tasks used in the study and for framing the research method. 

RESEARCH METHOD 
Participants were 40 prospective elementary teachers in the second semester of their 
two-year post-degree Bachelor of Education program. They had no instruction or 
exposure to formal theory on problem solving or PP prior to this PP experience. This 
timing of the study was intended to capture their initial ways of making sense of PP. 
The PP experience included comparing problems of similar and different structure 
and responding to PP tasks involving posing a problem: (i) of their own choice, (ii) 
similar to a given problem, (iii) that is open-ended, (iv) with similar solution, (v) 
related to a specific mathematics concept, (vi) by modifying a problem, (vii) using 
the given conditions to reformulate the given problem, (viii) based on an ill-formed 
problem, and (ix) derived from a given picture. Table 1 offers examples of the tasks.  

1. Create a “word problem” of your choice for students in a grade of your choice. 
2. Create a “word problem” that you think is open-ended. 
3. Create a “word problem” that you think is similar to the following problem:  
Tennis balls come in packs of 4. A carton holds 25 packs. Marie, the owner of a 
sports-goods store, ordered 1600 tennis balls. How many cartons did she order? 
4. Create three “word problems”; each related to a different meaning of 
multiplication of whole numbers. 
6. Create a “word problem” for the following situation:  
Some students held a bake sale to raise money for a local charity. They sold 
fudge, brownies, and cookies. Each type of treat was put into paper bags and the 
students were allowed to keep the leftovers. They started out with 110 cookies, 
130 pieces of fudge and 116 brownies. 

Table 1: Examples of the PP tasks 
These PP tasks were presented one at a time in an intentional sequence to minimize 
the influence of one task on participants’ thinking of another. Participants were also 
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required to focus on their thinking as they created the problems in order to notice and 
document it. They were told to interpret “word problem” in flexible ways that made 
sense to them. It was not intended to mean only traditional-style problems.  
Data sources were the participants’ written work for the PP experience and reflective 
journals of their thinking. Upon completing all tasks, they wrote journals describing 
what they learned in general and about mathematics, PP, problem solving, and 
teaching and learning mathematics. Six of the participants whose thinking seemed to 
be representative of different ways of making sense of PP were interviewed to further 
explore and clarify their thinking. Interviews were audio taped and transcribed. 
Data analysis began with a process of open coding (Strauss & Corbin, 1990). In 
addition to the researcher’s coding, two research assistants conducted this open 
coding independently of the researcher, and independently of each other. Only after 
initial categories had been identified were the results discussed and compared and 
revisions made where needed based on disconfirming evidence. Themes emerging 
from the initial coded information were used to further scrutinize the data and then to 
draw conclusions. There was triangulation among participants’ problems, interviews, 
and journals. Coding included identifying (i) the types and nature of the problems the 
participants posed based on guidelines developed from the literature and (ii) 
participants’ sense-making and learning based on significant statements in their 
thinking and the knowledge implied in the context and structure of problems. The 
coded information was summarized and categorized for each participant and 
compared for similarities and differences in their thinking, knowledge, and learning.  

FINDINGS 
The findings represent the participants’ ways of making sense of PP prior to taking 
any mathematics education courses. The focus here is on their sense-making of PP in 
general and a sample of the PP tasks and their learning from the PP experience. 
Sense-making of PP in general 
Collectively, the participants’ thinking displayed the following five perspectives of 
posing “word problems” that related to their sense-making of PP. While these were 
partly influenced by the PP task, they all emerged in tasks where there was no 
problem to influence their choice or thinking (e.g., Table 1, #1 & #2) and prior to 
seeing the other tasks.  
(1) A paradigmatic perspective that emphasizes PP as creating a problem with a 
universal interpretation, a particular solution and an independent existence from the 
problem solver. This was evident in some of the participants’ problems of their 
choice and reflected their experience with traditional word problems. 
(2) An objectivist perspective that is similar to (1) but is specific in considering PP as 
creating an object involving a mathematical fact. Thus the goal is primarily to work 
backwards from the fact that needs to be computed or determined in the problem. For 
example, start with a number sentence (2 x 3 = 6) and clothe it with a context. 
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(3) A phenomenological perspective that emphasizes PP as creating a problem that is 
meaningful from the learner/student’s perspective and provides a lived experience, 
i.e., allows students to interact with problem contexts in a personal way and produce 
personalized interpretations and solutions. This was common for the open-ended 
problem. For example, “John is going to the grocery store and needs 6 fruits total. 
How many apples, oranges, and pears did he buy?” This participant explained that 
students could choose any amount for each fruit as long as the total was 6. Another 
participant explained that students could decide who get how many in the following: 

Gary received a package of jelly beans for his 9th birthday. He decides to share them with 
his 3 friends, Brad, Gilles and Monica. If there were 26 jellybeans in total, how many 
would each person receive?  

 (4) A humanistic perspective that is similar to (3) but is specific in considering PP as 
creating situations directly related to personal aspects of the students’ experience; for 
example, their interests, meanings, creativity, and choices.  
(5) A utilitarian perspective that emphasizes PP as creating problems in terms of their 
worth based on their contributions to students’ learning.  
Sense-making of each PP task 
Only three of the tasks, which the participants considered to be the most challenging, 
are discussed here to highlight the uniqueness of their thinking. For posing an open-
ended problem, their common thinking was that open-ended meant more than one 
answer but there was uncertainty about what this meant mathematically. One 
explained, “Open-ended means more than one answer, but when I think of math I can 
only think of one answer, so I couldn’t provide an example.” Some of the problems 
they posed were ill-formed, not mathematical, or lacking sufficient information, but 
not done intentionally or with awareness of these features. Other problems involved 
multiple operations (but not open) and potentially yes/no/don’t-know answers. For 
some problems, open-endedness involved any interpretation/solution whether or not 
appropriate for the given conditions. Examples of their open-ended problems: 

If the population of the earth increases every year by 500000, does the mass of the earth 
increase? 
A teacher creates a lesson on study of fish. Students are to observe the fish over the year. 
Will there be fish babies at the end of the year? 
How many times does Ben have to bounce his basket ball before he refills it with air? 

For the multiplication task (Table 1, #4), 40% of participants created one problem, 
40% created two problems and 20% created three problems. Collectively, they 
produced one meaning for multiplication – combining equal groups. The problems 
involved multiplication only, division only, or various combinations of two or three 
of the four arithmetic operations. For many problems, participants did not attend to 
relationships among numbers, operation, and context and whether the problem made 
sense structurally. Their thinking and problems indicated that they were unaware of 
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their focus/interpretation/use of “times” (e.g., 3 times more; how many times; 3 times 
6; 3 times older), which resulted in the various combinations of operations and not 
necessarily attending to the meanings of multiplication. Their problems included: 

How many books are on the shelf if each book is an inch thick and the shelf is 15 inches 
wide?  
A mouse has 3 babies in January. If a mouse is pregnant for 3 months at a time and has a 
litter of 3 every time, how many children will she have in September? 

The picture task, which represented a comparison meaning of subtraction (i.e., one 
column of eight objects compared to a parallel column of five of the same objects 
showing how much more) was not interpreted this way by any one. They focused on 
pairing, “left over” and other interesting possibilities as in these examples. 

How much energy/force would be required to move the marbles in the left column to 
where they are in the right column? 
Mrs. C found 5 pairs of gloves and 3 toques in the lost and found. How many items did 
she find altogether?  
I have 13 players in a tennis tournament. I need 3 score keepers. How many games of 
tennis would be playing with the remaining players? 

Learning from the PP experience 
The participants focused on self-awareness in describing their learning. They became 
aware of what they could or could not make sense of, were uncertain of, and wanted 
to learn more about regarding PP and the mathematical concepts they encountered in 
the process. They developed awareness of the importance of context in PP. They 
realized that PP can be challenging and developed a different understanding of it and 
appreciation of its importance in learning mathematics. As one participant explained: 

I learned how difficult it is to write math questions that are open-ended and require 
thinking rather than memorization. … I learned the differences between thoughtful 
questions and questions that I experienced that can make math stressful and boring for 
students. … I learned that math is not just memorizing multiplication tables and adding at 
the elementary level. It can be creative and have problem solving at a very young age. … 
I learned that by writing questions properly, students can be given the opportunity to 
share their own good ideas on how to deal with problems. … I learned how problem 
solving can be presented as more about memorization of skills, like the way I learned it, 
than about creating problem-posing abilities. 

Participants also gained self-understanding of limitations of important aspects of their 
mathematics knowledge for teaching. The tasks required understanding of different 
mathematics concepts and provoked different ways of thinking about and reflecting 
on PP which allowed them to engage in mathematical thinking in a variety of ways.  

CONCLUSIONS AND IMPLICATIONS 
The participants’ sense-making of PP was dependent on their mathematical 
knowledge, imagination or creativity, and past experience with problem solving. 
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They were challenged most by the tasks to pose questions that were open-ended, 
related to a specific mathematics concept (meanings of multiplication), and derived 
from a given picture of a mathematics concept (comparison subtraction). These tasks 
conflicted with their prior experience that exposed them mainly to closed problems 
and one meaning of each operation. Many of them were able to imagine and create 
interesting problem situations but, generally, their sense-making of posing “word 
problems” often excluded intentional or conscious consideration of mathematical 
structure or context of the problems or the relationship to the problem situation. The 
five perspectives of PP identified in the study (i.e., paradigmatic, objectivist, 
phenomenological, humanistic, and utilitarian) indicate ways of thinking about “word 
problems” and posing problem situations they can make sense of and thus provide a 
meaningful basis to build on to enhance their PP skills for teaching. In spite of this 
range of perspectives, individually, their initial ways of making sense of PP on 
entering the education program was limited by their lack of experience with PP and 
exposure to mainly traditional ways of experiencing problems and problem solving. 
The study suggests the need to attend to the PP knowledge prospective elementary 
teachers bring to teacher education in addition to addressing PP as an explicit topic in 
order to help them to build on, reconstruct, and extend their sense-making of it. The 
five perspectives of PP provide a basis to compare and unpack their ways of PP. All 
five need to be explored in order to allow the teachers to understand how each could 
support or inhibit students’ mathematical understanding and mathematical thinking. 
The nine categories of PP tasks provide a meaningful basis of prospective teachers’ 
self-understanding and self-study of PP. The examples provided of the participants’ 
thinking for three categories of tasks (i.e., open-ended, meaning of a concept, and 
picture of a concept) draw attention to potential areas of concerns that are important 
to address explicitly in teacher education. These examples, linked to mathematics 
concepts, also imply that it is necessary for PP to be integrated as part of prospective 
teachers’ learning of the mathematics concepts they are expected to understand for 
their teaching. Their relational understanding of such concepts is needed to support 
their PP knowledge and vice versa. This blending of the two could allow them to 
develop the flexibility to engage students in PP not only in terms of being able to 
create and select worthwhile tasks, but also on an impromptu basis during 
mathematical discourse and teaching problem solving. 
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PROBABILITY ZERO EVENTS: IMPROBABLE OR 
IMPOSSIBLE? 

 Simin Chavoshi Jolfaee and Rina Zazkis 
Simon Fraser University 

 
In this study we examined prospective secondary mathematics teachers’ ideas related 
to probability zero events. We asked prospective teachers to provide examples of 
such events and analysed their example spaces according to the sample spaces of the 
events. The results reveal strong dependence on the classical perception of 
probability and a rather limited set of attributes used in responding to example-
generation tasks. Several issues related to the vagueness in the definitions of 
probability concepts are discussed.  

BACKGROUND 
Extended attention to probability and statistics in school curriculum resulted in 
renewed interest in these topics in mathematics education research. Despite the 
growing number of studies that explore understanding of probability concepts among 
students of different ages, the research on teachers’ knowledge and beliefs related to 
probability is still rather limited (Jones, Langrall, & Mooney, 2007). Furthermore, 
among specific probability topics under investigation, no explicit attention has been 
paid to events with probability zero. Our study aims at addressing this deficiency, 
while also contributing to research on teachers’ knowledge of probability. 
THEORETICAL FRAMEWORK  
Within a variety of educational uses of examples in mathematics, we view examples 
as “illustrations of concepts and principles” (Watson & Mason, 2005, p. 3). This 
study is conducted within the framework of learner-generated examples (LGEs). 
Watson & Mason (2005) considered LGEs – an approach in which learners are asked 
to provide examples of mathematical objects under given constrains – as a powerful 
pedagogical tool, through which learners enhance their understanding of the concepts 
involved.  
Watson and Mason also introduced the construct of example space as collections of 
examples that fulfil a specific function, and distinguished among several kinds of 
example spaces.  Of our interest in this study are personal example spaces, triggered 
by a task as well as by recent or past experience, and collective example spaces, local 
to a classroom or other group at a particular time. When invited to construct their 
own examples, learners both extend and enrich their personal example spaces, but 
also reveal something of the sophistication of their awareness of the concept or 
technique (Bills, Dreyfus, Mason, Tsamir, Watson, & Zaslavsky, 2006). In accord 
with this observation, Zazkis and Leikin (2008) suggested that LGEs provide a 
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valuable research tool as they expose learner’s ideas related to the objects under 
construction. Goldenberg and Mason (2008) illustrated how the construct of example 
space can inform research and practice in the teaching and learning of mathematical 
concepts.   
METHODOLOGY  
The participants of this study were pre-service secondary school teachers (n=30), 
holding majors or minors in mathematics or majors in science. There were asked to 
respond in writing to the following task:  

• Give an example of an event with probability zero. 
• Give an example of a more complicated event with probability zero. 

The time for completing the task was not limited. The task was followed by a 
classroom discussion that addressed the examples provided by the participants and 
the general notion of probability zero events. 
The research questions we address in this study are:  

• How do pre-service teachers interpret and exemplify probability zero events in 
variety of situations? 

• What are characteristic elements of their personal example spaces, as well as of 
their collective example space, regarding events with probability zero? 

In what follows we analyse participants’ responses to the task in order to identify and 
describe  (a) their perception of probability zero, and (b) their understanding of “more 
complicated”.  Furthermore, we attend to several issues of interest that emerged in 
the data analysis and in the discussion that followed the task. These include the use of 
numbers in the examples, the chosen context of examples and vagueness of 
probability definitions.  

RESULTS AND DATA ANALYSIS  
The data were first analysed in terms of the respondents’ perception of probability of 
an event, as derived from their examples. Their ideas of probability appeared to be in 
accord with the classical interpretation, that is, the ratio of favourable outcomes to all 
possible outcomes. However, the set of “all possible outcomes”, which refers to the 
sample space of an event, can be either finite or infinite. Further, the infinite sample 
space can be either countable or uncountable, the issue which considerably 
complicates the consideration of a probability as a ratio.  
What is considered a probability zero event? 
Logically impossible events – exact zero 
We first focus on examples of events with finitely many outcomes in their sample 
space, such as flipping a coin, rolling a fair die, or picking a random integer from the 
set of ten positive integers. Most of the examples provided by the participants (50 out 
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of 60) fell in this category, which we entitled “logically impossible events”.  Several 
examples are provided below: 

• Rolling a 7 with a standard die 
• Rolling a sum of 13 with two standard fair dice 
• Having head and tails at the same time when flipping a fair coin 

In these cases the denominator of the fraction that represents probability of an event 
is a natural number, so the probability ratio (fraction) can be equal zero if and only if 
the numerator is zero. Within the provided examples the numerator was considered to 
be zero if the described event did not belong to the set of possible outcomes. While 
this kind of examples dominated the collective example space of this group, we show 
below that during classroom discussion this view was strongly criticised by some 
participants, with the reference to the definition of the “event”.  
Very small probability events – estimated zero 
While “exact zero” value of a fraction can be obtained with numerator zero, a “close 
to zero” value can be obtained with a “very large” denominator.  Three participants 
provided examples of events with “very small” probability, which was estimated to 
be zero.   

• Getting all 6 in 6 roll of a fair die. 
• Getting a pattern (123123) in 6 roll of a fair die. 
• Getting 200 tails in 200 tosses of a fair coin. 

Theoretically, the probability of these events is very small (for example, 1/210 for 10 
heads in 10 flips, which is about 0.00097) and can be considered zero for “practical 
purposes”. 
Very small probability events – converging to zero 
The previous two categories attended to finite (even though occasionally very large) 
sample spaces. We turn now to infinite sample spaces in the participants’ examples, 
where seven examples fit into this category. In these cases consideration of 
probability as a ratio is more complicated. While a numerical value cannot be 

assigned to the expression

! 

1
"

, the limit of 1/x, where x is tending to infinity, is zero 

(
    

! 

lim
x"#

1
x

= 0). This is exemplified by the following:  

• Tossing a fair coin infinitely many times, all of them resulting in Heads.  
• Rolling sixes an infinite number of times with two fair dice. 
• In a roulette game betting on same number every time and always winning 

when playing infinitely many times. 
In fact, these examples do not describe a single event (such as tossing a coin, or 
tossing a coin 3 times, where the probability can be calculated), but a sequence of 
events where the probability is converging to zero as the size of sample space is 
tending to infinity. 
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Measure-theoretical probability zero 
Considering infinite sample spaces, there is also a possibility of infinite and 
uncountable ones.  From a theoretical account we introduce a fourth type of examples 
as “measure-theoretically explainable probability zero” (Example: picking a certain 
number from a given interval of real numbers). Two examples provided by the 
participants could fit this category as they relied on an uncountable sample space; 
however, no evidence of a reference to measures in the sense that distinguishes a set 
of countable points versus a set of uncountable points was given.  

• Picking the number 1.0000097 from [1,2] 
• Picking 4.7123 when picking a random number between 1 and 10. 

However, the classroom discussion suggested that this type of probability zero events 
could be understood from the point of view of each of the three aforementioned 
categories. While from a measure theoretic perspective the probability is 0/1 (a single 
point has a measure of 0 and the interval of real numbers has a measure of 1) it was 
considered as 1/infinity, that is, picking one possible number from infinitely many 
numbers. From this perspective two different interpretations of infinity was 
distinguished: one that treats infinity as an unknown arbitrarily large but fixed 
number (students: we don’t know how many numbers exist between 1 and 2, but 
whatever the number is, it is really huge!). For this group of respondents it is one case 
out of a fixed large number and therefore they perceive the probability as estimated to 
be zero. Another take of infinity considers it as a sequence of growing numbers, the 
common approach to infinity when dealing with it in calculus (students: it is one over 
infinity, it means the limit will tend to zero). For this group however they don’t 
explain how, but one over infinity provokes the concept of converging to zero. 
 The results are summarized in the diagram presented in Figure 1.  

 

                Figure 1: Categorization of examples for probability zero events 
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What is considered ‘more complicated’? 
Watson and Mason (2005) discuss the “give another example” strategy as a powerful 
instructional tool that may direct learners’ attention to unifying features of different 
examples. We modified this strategy by a specific request of making the second 
example “more complicated” with an expectation for more variety within a larger 
pool of examples. However, the examination of second examples in this study 
revealed that in 24 out of 30 cases the first and second examples fell in the same 
category with respect to the sample space. We further examined how the participants 
have made their second example “more complicated”.  It turned out that combining 
events was a popular technique to describe more complicated events.  In 20 examples 
out of 30 the participants combined two events in order to provide an example of a 
more complicated event. 
Three different types of combination have been identified in the data: 
The impossible-possible combination: 
In this type of examples the ‘impossible’ event described in the first example was 
frequently used as the impossible component in the combination, as in the following 
pair:  

First example: Rolling a 7 with a fair die. Second example: Rolling a 5 and 
then rolling a 7 with a fair die. 

The impossible-impossible combination: 
Some participants have conceived “more complicated” as an event even less likely to 
happen than their first impossible event. In the following pair the second example is a 
combination of two probability zero events. 

First example: Getting infinitely many 1’s when rolling a fair die infinitely 
many times. Second example: Getting all faces when flipping a coin infinitely 
many times while getting infinitely many 1’s when rolling a fair die at the 
same time. 

The possible-possible combination with empty intersection: 
Another way to get a “complicated” event was to combine the possible events in the 
sample space such that their intersection is empty, which at the same time makes the 
combined event logically impossible. The frequent example of this type was getting 
both 3 and 4 at the same time when rolling a fair die once.  
As a second technique for adding complexity, some participants have used 
generalization, that is, presenting their second example as a generalized form of the 
first. As such, it satisfied both the conditions: probability zero event and a more 
complicated one, as in the following pair: 

First example: Rolling two dice and getting (6,7).  Second example: Rolling 
two dice and getting (i,j) such that i+j=13.   
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As Watson and Mason (2005) suggest, leading the learners toward generalization is 
one of the merits of asking for another or for a more complicated example. 
On context and numbers  
The provided examples were examined in terms of the probability generators used to 
describe events. From the 60 examples, 32 used dice, 14 used coins, and 8 used 
marbles in a bag (or equivalent variations of it). The remaining 6 examples included a 
spinner, a deck of cards, and picking a random number from some interval. Two 
examples involved “real life” situations, such as a vending machine and street 
crossway. The impact of conventional textbook objects for teaching probability on 
the example spaces of teachers is conspicuous.  
Moreover, any task designed for research that deals with numbers can reveal by-
product facts about people’s perceptions of numbers and part of their number sense. 
The task described in this study is no exception. One of such interesting by-products 
is the different treatment of numbers found in two of examples: in both examples the 
participants described an experiment of picking a random number from a real number 
interval and the probability zero event was to pick a certain pre-determined number, 
4.3275 and 1.0000097 respectively. It is evident that the examples are of the same 
nature: they provide “safe” examples of numbers that are not likely to be picked. 
However both respondents – as was clarified in classroom discussion – were aware of 
the fact that picking any number has the same probability zero, but they may have felt 
that numbers like 0,1,2 or 

! 

1
3
 were not “safe enough” to mention.  

Our unsupported conjecture is that this preference is based on the fact that in the past 
these students were asked to locate integers and simple fractions like 

! 

1
3
 on the 

number line, but they have never been asked to locate on the number line 1.0000097. 
As such, some numbers have been “exposed” as bold dots or thick dashes on the 
number line, whereas others remained “hidden”. In short, the participants’ examples 
were influenced by intuition that a number with several decimal places is less likely 
to be picked at random than an integer, even when their formal knowledge suggested 
otherwise.   

WHAT IS PROBABILITY ZERO? ISSUES FROM CLASSROOM 
DISCUSSION 
As mentioned above, the data collection was followed by a classroom discussion of 
the examples as well as of the notion of probability zero in general. Several issues of 
interest related to the definition of probability and of basic probability related 
concepts surfaced in this discussion. The probability function assigns a value between 
zero and one (inclusive) to any event. As such, it is reasonable to consider – as did 
participants in our study – that an event with probability 1 is a “sure” event that will 
always happen, whereas an event with probability zero is an “impossible event”, that 
can never happen.  As shown, most of the examples referred to logically impossible 
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events with a finite sample space. A small group of students carefully avoided this 
type of examples, and argued that rolling a 7 on a standard dice is not a good example 
of a zero probability event, since getting a 7 is not an event. They relied on the 
definition of sample space to be the set of all possible outcomes, provided that they 
are equally likely. The issue appeared to be with the definition of an event, which is, 
conventionally, any subset of outcomes of the sample space. While rolling 7 is not 
among possible outcomes – they argued – it is not in the sample space and this makes 
it not eligible for being considered as “an event”. Accordingly – considering 
probability as a ratio of favourable outcomes to all possible outcomes – a probability 
zero event could be found only if the “favourable outcomes” are represented by the 
empty set, or in other words, the event that neither of the possible outcomes happens. 
Moreover, following the definition of the sample space as a set of all possible 
outcomes, another awkward situations was identified in case of an infinite sample 
space. When flipping a fair coin twice the sample space is {HH, HT, TH, TT}, a set 
of four (

! 

22) equally likely outcomes, each having a probability of 

! 

1
22

. Following the 

same reasoning, tossing a coin infinitely many times is an experiment with an infinite 
sample space, where each event is an infinite sequence of heads and tails. Since the 
probability assigned to each of these events is zero (

! 

1
2"

), they are all “impossible 

events” by definition. Therefore – a student wondered – the sample space then should 
be empty, since it should include only all possible outcomes. 
Another issue that was attended to in class discussion related to the perceived 
relationship of “impossible” – supported by the “logically impossible examples” – 
hand probability zero. On one hand the participants agreed that the event of picking a 
“2”, or any given number, from the interval of real numbers that includes this number   
has a probability zero. On the other hand, it appeared as “still possible”.  
The above-mentioned arguments give evidence of vagueness in definitions of sample 
space and event and the confusing effect that the word “impossible” (that seems 
prudent to be replaced with “improbable” in textbooks) has on the understanding of 
these concepts. While the “advanced” theory of probability that relies on measure 
theory provides theoretical solutions to these issues, it is important for teachers to be 
aware of potential pitfalls in the conventionally used definitions. The discussion of 
probability-zero provided an avenue for the teachers to raise their awareness.  

SUMMARY AND CONCLUSION 
 In this study we examined ideas of prospective secondary mathematics teachers 
related to probability zero based on the examples of probability zero events that they 
generated and the subsequent classroom discussion. The results reveal that the 
collective sample space of this group includes mostly events that are “logically 
impossible” and that are situated in a conventional context, such as flipping a coin or 
rolling a dice. Additional examples included events with probability that was “almost 
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zero” or zero at a limit.  The request to exemplify a more complicated event resulted 
mostly in events in the same category that either combined two events or generalised 
an event exemplified previously.  
The subsequent classroom discussion revealed complexities in the conventional 
interpretation of probability related definitions in general, and potential problematics 
in identifying “impossible” with “improbable” with respect to probability zero in 
particular. We suggest that explicit awareness to such subtleties is an important 
aspect of teachers’ knowledge. Further research will attend in detail to the distinction 
between infinite sample space and “very large” sample space, and in such between 
probability zero and probability that is “very small”, estimated to be zero or zero at 
limit.  
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AN INVESTIGATION OF RELATIVE LIKELIHOOD 
COMPARISONS: THE COMPOSITION FALLACY 

Egan J Chernoff  and  Gale Russell	  	  
University of Saskatchewan 

 
The objective of this article is to contribute to research on prospective teachers’ 
understanding of probability. To meet this objective, we presented prospective 
mathematics teachers with a novel task, which asked them to identify which result, 
from five flips of a fair coin, was least likely. However, unlike previous research, the 
participants were presented with events (i.e., sets of outcomes) as opposed to 
sequences, which have dominated previous literature on relative likelihood 
comparisons. Given that previous changes to the task have resulted in new areas of 
research, we utilize a new lens – the composition fallacy – when accounting for 
participants’ responses. Use of the new lens also allows us to contend that logical 
fallacies are a potential avenue for future investigations in comparisons of relative 
likelihood and research in probability. 
 
In a recent, comprehensive synthesis of research in probability, Jones, Langrall, and 
Mooney (2007) declared, “research on teachers’ content knowledge in probability is 
sobering at best” (p. 934). However, they also noted, “research on teachers’ 
mathematical content knowledge, pedagogical content knowledge, and knowledge of 
student learning[, which, collectively, they referred to as teacher’s probabilistic 
knowledge] is limited” (p. 933). Recognizing the former point and given the dearth of 
research documented above and elsewhere (e.g., Stohl, 2005), the objective of this 
article, in general, is to contribute to research on teachers’ probabilistic knowledge. 
More specifically, the objective of this article is to (1) contribute to an emerging 
thread of investigations into prospective teachers’ probabilistic knowledge (e.g., 
Chernoff, 2009; Zazkis & Chernoff, in press) and (2) contribute to an established 
thread of investigations into comparisons of relative likelihood (e.g., Borovcnik & 
Bentz, 1991; Chernoff, 2009; Cox & Mouw, 1992; Hirsch & O’Donnell, 2001; 
Kahneman & Tversky, 1972; Konold, Pollatsek, Well, & Lohmeier, & Lipson, 1993; 
Rubel, 2006; Shaughnessy, 1977; Tversky & Kahneman, 1974; Watson, Collis, & 
Moritz, 1997). 
To realize the general and specific objectives we, first rationalize and subsequently 
present a novel task – the relative likelihood of events task – for (present and future) 
research investigating comparisons of relative likelihood. Second, we demonstrate 
that particular responses to the relative likelihood of events task fall prey to the 
fallacy of composition (i.e., because parts of a whole have a certain property, it is 
argued that the whole has that property). Our accounting for responses via logical 
fallacies also, potentially, paves the way for a new thread of investigations – as 
2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 225-232. Ankara, Turkey: PME.
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responses, in the past, have traditionally been accounted for with normative 
reasoning, heuristics (e.g., Tversky & Kahneman, 1974, LeCoutre, 1992), and 
informal reasoning (e.g., Konold, 1989). 
A REVIEW OF THE LITERATURE 
Nearly forty years ago, (psychologists) Kahneman and Tversky (1972) asked a group 
of individuals whether there would be more families with a birth order sequence 
(using B for boys and G for girls) of BGBBBB or GBGBBG. In a second, related 
question, the same individuals were asked whether there would be more families with 
a birth order sequence of BBBGGG or GBGBBG. Kahneman and Tversky argued 
that individuals who declared one sequence as less likely were reasoning according to 
the representativeness heuristic, where one “evaluates the probability of an uncertain 
event, or a sample, by the degree to which it is: (i) similar in essential properties to its 
parent population; and (ii) reflects the salient features of the process by which it is 
generated” (p. 431). Despite the subsequent permeation of the representativeness 
heuristic, there were concerns associated with the inferential nature of responses to 
the task. 
In order to address the inferential concerns associated with the task, Shaughnessy 
(1977) introduced three developments: provision of an equally likely option; request 
for reasoning; reworking from a least likely version to a most likely version of the 
task. Despite these developments, the framework of the task remained, essentially, 
the same. For example, Shaughnessy had individuals compare the birth order 
sequence BGGBGB first to the sequence BBBBGB and, second, to the sequence 
BBBGGG. However, with the “provide a reason” development to the task, 
Shaughnessy was able to reinforce inferred results from Kahneman and Tversky’s 
(1972) research and establish new areas for investigation. For example, certain 
individuals determined, correctly, that the sequences BGGBGB and BBBGGG were 
equally likely, but according to their incorrect justification, because both sequences 
had the same ratio of boys to girls (3:3).  
Presenting an entirely different version of the relative likelihood task than had been 
seen in the past, Konold et al. (1993) provided individuals with four sequences and 
the equally likely option. For example, Konold et al. (1993) asked individuals “which 
of the following is the most likely result of five flips of a fair coin?” and provided 
them with the following options, “a) HHHTT b) THHTH c) THTTT d) HTHTH e) all 
four sequences are equally likely” (p. 395). Further, the researchers gave students a 
most likely version of the task followed by a least likely version. They found, for the 
most likely version, certain participants answered using the outcome approach – “a 
model of informal reasoning under conditions of uncertainty” (Konold, 1989, p. 59) – 
and for the least likely version subjects answered using the representativeness 
heuristic. 
The framework presented in Konold et al.’s (1993) iteration of the relative likelihood 
task has, for the most part, been adopted by all subsequent research on comparisons 
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of relative likelihood (e.g., Cox & Mouw, 1992; Chernoff, 2009; Hirsch & 
O’Donnell, 2001; Rubel, 2006). Alternatively stated, the relative likelihood task has 
not undergone any major alterations in nearly 20 years. To address the issue raised, 
we, in the next section, present and rationalize a major alteration to relative 
likelihood tasks. 
TASK DESIGN  
As seen in Figure 1 below, our task development for comparative likelihood research 
is heavily influenced by previous versions of the relative likelihood task.  
Which of the following is the least likely result of five flips of a fair coin? 

a) three heads and two tails.  
b) four heads and one tail.  
c) both results are equally likely to occur.  

Justify your response... 
Figure 1: The relative likelihood of events task 

Our version of the task, denoted the relative likelihood of events task, is a unique 
blend of particular components found in the original task and subsequent 
developments to the task. First, in a throw back to the original version of the relative 
likelihood task, the present task asks individuals to compare two events, as opposed 
to a larger number of events or sequences. Second, two of the three task 
developments, introduced by Shaughnessy and used by all subsequent research (e.g., 
Cox & Mouw, 1992; Chernoff, 2009; Hirsch & O’Donnell, 2001; Konold et al., 
1993; Rubel, 2006), that is, the equally likely option and the opportunity for response 
justification are present in the current iteration. Third, the wording and framework of 
the task are similar to Konold et al.’s (1993) iteration of the relative likelihood task. 
Fourth, given that Rubel (2006) found “very few instances of such inconsistencies” 
(p. 55) between the least likely and most likely versions of the task and, further, given 
the lack of subsequent research confirming or denying the inconsistencies 
experienced, the present iteration of the task asks individuals which event is least 
likely. In essence, the relative likelihood of events tasks is similar to all previous 
iterations of the relative likelihood task, except for one major difference: instead of 
presenting individuals with sequences of binomial outcomes, they are presented with 
events (i.e., sets of outcomes), which are subsets of the sample space. 
THEORETICAL FRAMEWORK 
As demonstrated in the review of the literature, changes to the relative likelihood task 
have established new domains of research. For example, Konold et al.’s (1993) 
research, which asked participants to determine which of the sequences was most 
likely, led to the now ubiquitous outcome approach. In a similar vein, given that we 
are introducing a new iteration of the relative likelihood task, we have also decided to 
depart from past theoretical frameworks for our analysis of results. Instead of using 
“traditional” theoretical frameworks (e.g., the representativeness heuristic (Tversky 
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& Kahneman, 1972), the outcome approach (Konold et al., 1993), and others) to 
account for participants’ responses, we contend, and will subsequently demonstrate in 
our analysis of results, certain logical fallacies (e.g., equivocation, begging the 
question, the fallacy of composition, the fallacy of division, and others) can be used 
to account for participants’ responses to the relative likelihood of events task. 
Alternatively stated, while, in the past, it has been argued that participants’ responses 
to comparisons of relative likelihood are a result of heuristic or informal reasoning, 
we are contending that certain responses, to our task, are a result of falling prey to 
particular informal fallacies.  
Given the boundaries associated with the present venue (i.e., the 8 page limitation), 
we had decided to limit our scope and, as such, our theoretical framework (i.e., the 
multitude of informal fallacies which can account for relative likelihood responses) 
will consist of one particular fallacy: the fallacy of composition. Put simply, the 
fallacy of composition occurs when an individual infers something to be true about 
the whole based upon truths associated with parts of the whole. For example: Bricks 
(i.e., the parts) are sturdy. Buildings (i.e., the whole) are made of bricks. Therefore, 
buildings are sturdy (which is not necessarily true). As we will now demonstrate in 
the analysis of results, certain participants in our research inferred certain truths 
associated with individual coin flips to be true for events, that is, sets of outcomes. 
PARTICIPANTS 
Participants in our research were (n =) 63 prospective mathematics teachers enrolled 
in a methods course designed for teaching middle-years (i.e., ages 10 to 15) 
mathematics. More specifically, the 63 participants were comprised of two classes, 
containing 26 and 37 students, taught by the same instructor. Participants were 
presented with the relative likelihood of events task and were allowed to work on the 
task until completion. Of note, the participants had not answered any of the other 
versions of the relative likelihood task prior. Further, the topic of probability had yet 
to be discussed in class at the time of the research.  
RESULTS AND ANALYSIS 
Responses from the 63 participants fell into three categories. First, five individuals 
(or 8%) responded incorrectly that three heads and two tails is least likely to result 
after five flips of a fair coin. Second, 12 participants correctly responded that four 
heads and one tail is the least likely result. Third, the majority of participants, 46 (or 
73%), responded incorrectly that both results were equally likely to occur.  
Inconsistencies between responses and justifications were witnessed in both the 
normatively correct and incorrect responses to the task and helped further classify 
responses within each of the categories into subcategories. For example, of the 46 
participants who responded that both results were equally like to occur, 20 of the 46 
(or 43%) response justifications evidenced Lecoutre’s (1992) equiprobability bias 
where the notion of equiprobability is misconstrued as anything can happen. Further, 
a consistency between justifications was evidenced for individuals who (1) declared 
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four heads and one tail as least likely and (2) a sub-group of individuals who 
responded that both results are equally likely to occur – each of which are now 
commented on in turn. 
Four heads and one tail is least likely to occur 
All 12 of the participants who declared, correctly, that the event four heads and one 
tail is least likely to occur after five flips of a fair coin, were unable to provide proper 
normative justifications for their responses. In what follows, we analyse three, 
exemplary responses, which evidence the fallacy of composition.  

Rupert: four heads and one tail are least likely to result because the coin is two-
sided. Because the coin is two sided and has two different sides there is an 
equal chance that either side will result. The chance that the outcome will 
be tails is equal to the chance it will be heads. 

Robert: Answer b) is least likely to occur. It is unlikely that by flipping a coin five 
times your answer would result in four heads and one tail. Since the coin 
has a head side and a tails side there is a fifty percent chance you will get 
either heads or tails. It is just very unlikely that when flipping a coin it 
would result in four heads and one tail. 

Amber: The least likely to occur is b because it would be more in favour of an 
equal end result. 

As seen in both the responses of Rupert and Robert, they pay particular attention to 
the characteristics of the fair coin. More specifically, they reference that the coin has 
two sides and that either side has equal chance of occurring or, as Robert states, 
“there is a fifty percent chance you will get either heads or tails.” Further, the fairness 
of the coin, for Rupert and Robert, influences the ratio of heads to tails they are 
expecting in the events presented. In other words, given that the coin is 50-50 or has a 
heads to tails ratio of 1:1, they are expecting the ratio of heads to tails in the event to 
be close to 1:1 (exemplified in Amber’s response). Given that the ratio of 4:1 isn’t as 
close to the expected 1:1 as 3:2, they declare that the event with four heads and one 
tail is less likely than the event with three heads and two tails.  
Presented within the fallacy of composition framework, Rupert and Robert’s 
responses, declare that the ratio of heads to tails for fair coins is 1:1 (i.e., the brick). 
Further, they note that the event (i.e., the building) is comprised of five flips of a fair 
coin. Therefore, the event should also have a ratio of 1:1. For Rupert, Robert, and 
Amber, the expectation of a 1:1 ratio of heads to tails for five flips of a fair coin leads 
them to declare that the event with a head to tails ratio of 4:1 is least likely. The 
fallacy of composition was also present in certain responses from individuals who 
incorrectly declared that both results were equally likely to occur. 
Both results are equally likely to occur 
As mentioned, 46 of the 63 respondents declared incorrectly that both results are 
equally likely to occur and, while 20 of the 46 responses are accounted for with 
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Lecoutre’s (1992) notion of the equiprobability bias, the majority of the other 
responses are accounted for with the fallacy of composition. In what follows, we 
analyse and elaborate upon 4, exemplary responses, which, again, evidence the 
fallacy of composition. 
Evidenced from Randy and Kelly below, their responses are similar to those of 
Rupert, Robert, and Amber; however, the “bricks” of the “building” are slightly 
different.  

Randy: Because there is equal chance, one head and one tail 
Kelly: both results are equally likely to occur because you have flipped the coin 

five times, there is a chance each time that you can get either heads or 
tails, so there is an equal chance of coming out with the outcome of a) or 
b) 

Randy and Kelly, in their responses, declare that both results are equally likely to 
occur because of the equal chance of one head and one tail for the flip of a fair coin. 
More specifically, Randy and Kelly’s response note that there is an equal chance (i.e., 
the brick) of heads and tails for the fair coin. Further, the event (i.e., the building) is 
comprised of five flips of a fair coin. Therefore, the event should also have an equal 
chance of occurring or, in other words, both results are equally likely to occur. While 
(somewhat) implicitly presented in Randy’s response, Rudy’s response, like Kelly’s, 
further evidences particulars associated with the notion of composition. 

Rudy: Because each time you flip the coin there is a 50/50 chance of the coin 
being heads or tails. Therefore each pattern that is created by flipping the 
coin (answer a and b) is equal in happening. 

Rudy’s response is presented, nearly verbatim, within the framework of the fallacy of 
composition. For example, (1) “each time you flip the coin there is a 50/50 chance,” 
(2) “each pattern that is created by flipping the coin,” (3) “Therefore each pattern...is 
equal in happening.” Further, Rudy’s response, as well as the response from Richard 
presented below, sheds light on how the participants take into consideration each 
individual toss of the coin (i.e., the brick) as part of the event (i.e., the building). 

Richard: When flipping a coin there are only 2 outcomes: heads or tails. Therefore, 
there is a 50% chance of getting heads for one flip and 50% chance of 
getting tails for the same toss. It is just as likely to get 4 heads and one tail 
as it is to get 3 heads and 2 tails because looking at each individual toss 
the coin has equal chance of going heads or tails. 

As presented in the four responses analysed above, the fallacy of composition is able 
to account for particular incorrect responses to the relative likelihood of events task. 
More specifically, the equal likelihood of the fair coin, which is flipped five times, is, 
in essence, transferred to the event. 
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CONCLUDING REMARKS 
Demonstrated in the analysis of results, the fallacy of composition accounts for 
particular responses to the relative likelihood task (which we have introduced in this 
article). In particular, the fallacy is present in (certain) response justifications, which, 
correctly, declare that for five flips of a fair coin four heads and one tail is less likely 
than three heads and two tails; and, also, the fallacy is present in the justifications for 
incorrect responses, which declare that both results are equally likely to occur. 
Further, correct responses with incorrect justifications note that the ratio of heads to 
tails for a fair coin is 1:1, that the event is the result of five flips of a fair coin, and, as 
such, the ratio of heads to tails in the event should be close to 1:1. (Of the options 
participants were presented in this task, the event three heads and two tails is closer, 
as a ratio, than the event four heads and one tail.) Alternatively, the justifications 
associated with (certain) incorrect responses, which declare that both results are 
equally likely to occur, note that a fair coin has equal likelihood of heads and tail, that 
the event is the result of five flips of that fair coin, and, as such, each of the two 
events presented are both equally likely to occur. In other words, the fallacy of 
composition is present in both the former and latter justifications. 
DISCUSSION 
Research involving comparisons of relative likelihood has, historically, been focused 
on accounting for individuals’ responses – both correct and incorrect. Developments 
associated with the task have allowed for parsing between the answer an individual 
gives and the justification for their answer. As a result, related research has 
developed a variety of theoretical models (e.g., representativeness, the outcome 
approach, and the equiprobability bias) to account for incorrect, sometimes 
incomprehensible, responses. However, in more recent years, there has been a lack of 
developments to tasks that investigate comparisons of relative likelihood. In line with 
this point of view, we have presented the relative likelihood of events task for use in 
future investigations. Our analysis of the results has also opened, we contend, a new 
area of investigation for future research on comparisons of relative likelihood: the use 
of logical fallacies, as opposed to traditional methods. More research and, we would 
contend, more variations to relative likelihood comparison tasks, will determine to 
what extent logical fallacies are a part of teachers’ knowledge of probability. 
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A SHIFT IN ONTOLOGY: MATERIAL AGENCY AS AN 
INFLUENCE IN IDENTITY FORMATION 

Sean Chorney 
Simon Fraser University 

 
This research report presents a new framework for identifying and analyzing 
material agency (Pickering, 1995) and its influence on student’s experiences in 
mathematical practice.  This framework is then implemented in attending to affective 
attributes of students, particularly positioning attitudes and identity formation. 
Students engage in a problem solving activity with a technological tool. Analysis of 
the students’ engagement with the tool, in terms of the different types of agencies, is 
based on their spoken words. 

INTRODUCTION 
The idea of allocating agency to materials has a sparse academic history but current 
conceptions about human activity are challenging traditional perspectives  (Coole, 
2010; Malfouris, 2004; Pickering, 1995).  Material agency has been given credence 
in practical areas such as in the relationship between technology and organizations in 
information systems environments (Rose & Jones, 2005), in ecological approaches to 
environment issues (Oliver, 2009), as well as in feminist studies (Grosz, 2010).  
Coole & Frost (2010) presents a more philosophical perspective when they refer to 
the ontology of materials as an essential perspective in these post-modern times.  
They describes a new materialism, arguing that “…reconfiguring our very 
understanding of matter are prerequisites for any plausible account of coexistence 
and its condition in the 21st century” (p. 2). 
Although the notion of material objects is often at odds with the idea of mathematics 
as a more “mental” discipline, the role of manipulatives and, more recently, digital 
tools, has paved the way for a reconceptualization of the status of such artefacts in 
mathematical thinking and learning. One of the purposes of considering the 
mathematics object is that it can be associated with an emotional dimension of human 
experience (Turkle, 2007).  In that having something to hold or touch or engage with 
can have an affective appeal. Papert (1993) states that  “…working with an electronic 
sketchpad…” students acquire “…a new image of themselves as mathematicians” (p. 
13).  Boaler (2002) makes a clear connection between practices and identity 
formation arguing for a shift from focusing on knowledge to one that attends to inter 
relationships of knowledge, practices and identities (p. 47).  This study recognizes 
that the tool itself does more than mediate mathematical learning; it has a much 
greater role in its influence of a student’s identity. Indeed, Tim Lenoir, speaking of 
our technological world, states: “The materiality of media rather than their content is 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
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what matters.  Communicational media are machines operating at the heart of subject 
formation” (p. xii, in Rotman). 
While there are other frameworks to analyze student’s engagement with objects, such 
as the instrumental approach of Rabardel and Verillion (1993), or the mediational 
approach of Vygotsky (1978), they have tended to almost exclusively focus on 
conceptual cognitive development. This study looks at student’s engagement with a 
mathematical object in an attempt to explore and account for the idea of material 
agency as well as to pursue the material influence of the tool and how it shapes the 
identity of the student.  The research question has two parts: one is to determine if 
this is a viable perspective, that is, whether there is evidence of an influence of 
material agency; and, the other is to examine what happens to student identity while 
interacting with a mathematical object. 

THEORETICAL FOUNDATION AND FRAMEWORK 
Pickering has classified three types of agency: individual, disciplinary and material.  
He describes disciplinary agency as the negotiated rules and algorithms of a 
conceptual system, such as mathematics, and he describes material agency as the 
resistant capacities manifested in the engagement with a tangible object.  He argues 
that all advancements and discoveries are a synthesis of individual agency interacting 
with either disciplinary or material agency.  Pickering describes the synthesis from 
the individual perspective as a “dialectic of resistance and accommodation” (p. 52).  
Pickering has referred to this interplay of resistance and accommodation as a “dance 
of agency”.  
Boaler (2002) uses Pickering’s framework to describe different practices in 
mathematics classrooms. She argues that disciplinary agency often determines the 
practices in a traditional classroom, leaving no space for student agency.  If students 
are not given the chance to act independently, the math is given the status to direct 
and determine the practices of math classroom activity. Boaler describes that 
practices, that leave no room for student agency, have a positioning effect.  This 
positioning involves students viewing themselves as receivers of knowledge.   She 
argues further that good classroom teaching would engage a balance of disciplinary 
agency and student agency in which case students would position themselves as 
participants who have a voice (p. 46).  Both Boaler and Pickering, however, do not 
refer to material agency in mathematics. Wagner (2007) also uses Pickering’s 
framework by acknowledging disciplinary agency and its role in his research. He 
questions the role of materials in mathematics practices when he asks, “What is the 
nature of material agency in mathematics?” (p. 43). 
Malafouris (2004) describes agency as not being “properties of things or humans but 
are properties of engagement” (p. 22). Agency is a result of activity; it is an emerging 
product resulting from an interaction. This perspective makes agency a challenging 
word to define as it depends on the actors and context in which it is present.  For this 
study Pickering’s basic definition will be sufficient: who is the cause of the doing?  
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With this definition, materials can be understood as having agency when their 
structures, make-up and design restrict the subject within a context of activity. The 
subject, consequently, has to adapt to the form of the object in activity. 
This study operationalizes Boaler’s connection of practice and identity formation.  
While she has focused more on the disciplinary agency of mathematics and its 
relation to knowledge, this study focuses on the material agency of a mathematical 
tool and its relation to identity formation. Identity, in this context, takes into account 
both the narrative and positional dimension of identity; how the student develops 
their relationship to mathematics and how the student is assigned a position in that 
environment (Horn, 2008). It is within activity that I employ a discursive analysis to 
indicate the positioning and orientation of the student with respect to the practices 
they will engage.  Practice, in this context, refers to the social interaction in the 
moment. 

METHODOLOGY 
Discourse is not just a unit of language but a social process (Herbel-Eisenmann et 
al.). Discourse analysis is an expressive and social perspective.  It commits to 
language as being representative of identity and positioning (Herbel-Eisenmann).  It 
is these particular aspects of discourse analysis that will guide an understanding and 
an account for material agency and its influences on student agency. It is a useful 
methodology as it allows one to trace how students are thinking. Language choice is 
crucial to tracing how speakers shift positions, identities and alignments towards the 
words they speak (Morgan, 1998).  
Herbel-Eisenmann and Wagner (2010) discuss how positioning occurs in a fluid 
activity in moments of action, and in relations to the figures in a scenario. Positioning 
indicates agents of change who have the authority. Personal pronouns identify 
markers of positioning (Fairclough (2001), in Herbel-Eisenmann et al.) so when 
students use “I” it is an expression of themselves and refers to their identity. Keane, 
as well, describes that voice represents the one who is speaking and points out that 
voice can direct attention to positioning and identities (in Herbel-Eisenmann). 
The materiality in this study is manifested in a technological tool.  Papert (1993) 
describes this as an expressive technology and it is a way to see how technological 
and social processes interact.  The agency of computers is particularly interesting, 
given its range of expressive possibilities and feedback.  It presents an environment 
where students can make choices giving them the freedom for expression and 
exercise their agency. 

RESEARCH CONTEXT AND PARTICIPANTS 
The data collection took place in a Vancouver high school with some students who 
had been working in an environment using The Geometer’s Sketchpad (GSP). A pair 
of students worked after class, although it was not in the natural environment it still 
allowed an attending to the idea of material agency and to the student’s experiences.  
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Data was collected by means of a software capturing software, Jing.  Jing recorded all 
the activity on the screen as well as recorded the verbal utterances of the two 
students. 
The task given to the students was in the form of a black box sketch.  Initially two 
points were visible and when the student dragged either point the other point would 
move in a deterministic path. The points were related by a mathematical relationship.  
The problem posed was to identify the relationship, either in words, or as an 
equation, between the two points. This activity was chosen for it was a challenging 
but accessible problem that related to previous curricular work on the topic of 
transformations.  Initially these points, A and B, were visible on the screen (Figure 
1). In this particular case, the points were related by circle inversion defined by 
(AO)(BO) = r2  (O is the centre of the circle of radius r). It might be of interest to note 
that the points A, B and O are collinear.  Later on during the activity, after 
experiencing some difficulty with the problem, the previously hidden circle was 
revealed (Figure 2). The girls worked for 15 minutes.  

 
Figure 1 

 
Figure 2 

 
Jessica and Mark working with the black box sketch. 
This data represents some short excerpts of the students’ work.  Jessica had control of 
the mouse. 
Jessica initially moves point A around the screen and both students observe what B is 
doing.  As soon as she moves B far from the unseen centre of the circle B is not 
moving very much since the inverse relation keeps it still near the centre.   

1 Jessica: How come I can’t see anything? 
2 Jessica: How come it’s not moving when I’m over here. Then it moves when I get 

closer. See…oooo 
3 Jessica: If you move a lot far from B it doesn’t really look like it’s moving but if 

you go closer to it. It moves really far away.  

Jessica seems to be experiencing resistance to how she expected the points to move.  
Although she is just moving points on the screen, she is coming to recognize what the 
software will allow her to do and what it will not.  Between line 1 and 2 she is 
moving the point A.  In a situation of resistance, where B is not moving, she 
accommodates by moving the mouse as well as attempting to explain in line 3. 
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At this point the show all function is turned on and the circle appears as well as its 
centre and a point on its circumference which changes the size of the circle.   See 
Figure 2.   
 

4  Mark:  Move A to that dot (referring to the centre but Jessica thought it was the 
point on the circle ) 

5  Jessica: This dot? 
6  Mark:  No that one. 

Jessica accidentally highlights the point and drags it outward.  The circle gets bigger. 
 

7  Mark :  Ooooh!  
8  Jessica: Woah, oh! 
9  Mark:  I think you’re moving the wrong dot.  (she laughs) 

As Jessica makes the circle bigger B moves off the screen. 
 

10  Jessica:  I’m moving B away, Bye bye.  

Mark puts himself in a position of being able to act in this interaction.  It leads to a 
misunderstanding and both girls are surprised by this new change.  

 
At Mark’s request Jessica drags the point A to the centre of the circle.  Since the 
circle is bigger from the last episode, B moves off the screen much quicker when A is 
dragged toward the centre of the circle.    
 

11  Jessica:  Where did it go? 
12  Mark:  It went that way. Move here (pointing at the centre, B moves off the 

screen)  
13  Jessica:  Huh, didn’t it just go that way? (B appears at the top of the screen but it 

had left the screen on the bottom.  
14  Jessica: How come it wouldn’t ..ok… let me try that again? (She drags A through 

the centre) 
15  Jessica:  You saw that right?  B went down but then it came from above right? 

Okay, let’s do that again.  1, 2, go, go, go, right, B gone. 
16  Mark:  B went out that way. 
17  Jessica:  But then over here. Ahh! So it’s like drawing a circle right but it went like 

this.  Don’t’ you think?  It went like this. (she gestures with her hand, 
drawing a big circle in the air) 

This particular episode indicates that Jessica and Mark are both engaged as well as 
personally connected to the points.  
 
Jessica gets an idea near the end of their activity.  She wants to translate the circle 
from one side of the screen to the other. 
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18  Jessica:  Oh what if you moved the circle over here? I want to see what happens to 

this. 

Though very short, these episodes provide sufficient evidence of material and 
personal agency.  The utterances “I’m moving B away” (line 10) or “Let me try that 
again” (line 14) both employ the “I” voice, indicating an agency, an expression of 
oneself.  In questions like “How come I can’t see anything?” (line 1) or “ Where did 
it go?” (line 11)  are an example of resistance.  They are also a form of positioning 
because it is clear that they are not, currently, exercising their agency.  They are 
allowing “it”, the computer, to perform its act.  Their voice has clearly changed from 
an “I” voice to the third person pronoun, “it”.  

DISCUSSION  
In terms of Pickering’s distinction of agency and his methodological approach of 
resistance and accommodation the data reveals this kind of activity.  There was 
evidence of student’s agency mixed with resistances from the computer.  These 
different agencies indicate more than a back and forth mechanical activity.  There is a 
motivation evident in this exploration.  As Papert claims the students creates a new 
self-image, one that allows them to negotiate their expression within the 
environment.   
It is worthy to note the attitude of wonder and connection such as in line  7, 8, and 10. 
Ooooh! Woah, oh! Bye bye.  These utterances reveal a level of commitment and 
motivation to the activity.  It is interesting to note that these students were not 
engaging with circle inversion but with moving points and changing circles. The fluid 
dynamic activity with the technological tool allowing for instant feedback offered an 
environment of exploration and an opportunity for expressing agency.  
Both narrative and positional identity categories were enacted.  Students positioned 
themselves in a much different way than in what Boaler termed a traditional 
classroom.  Their roles allow for expression and this negotiation with the program 
offers a new perspective of practicing mathematics.  These students were not aware 
of the resistances a priori, their continued engagement showed a motivating force 
inherent in the activity. 

CONCLUSION 
This study is part of an ongoing research plan.  This study has presented a new 
framework for operationalizing a dimensionality of materialism that is considered 
relevant in identifying the constructions of student’s identities and positions.  With an 
attentiveness to students that have a tool to play with, students have access to a range 
of opportunities of expressiveness, authority as well as resistance and challenge. This 
paper has shown that material is important and that it does play a role in developing 
student identity and that there is evidence of agency from the technological tool. 
Reminded of what Boaler described as good mathematics teaching these student’s 
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experiences were balanced with another form of agency.  The results indicate that 
there is evidence of resistance and accommodation when engaging with a 
technological tool and that the framework also raises attentiveness to student identity 
expressed in the practice they participated. 
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 “I’M LIKE THE SHERPA GUIDE”: ON LEARNING TO TEACH 
PROOF IN SCHOOL MATHEMATICS 

Michelle Cirillo 
University of Delaware 

 
This article describes the experiences of a beginning mathematics teacher, Matt, 
across his first three years of teaching proof in a high school geometry course. 
Matt’s past experiences with mathematics influenced his beliefs about what he could 
and could not do to help his students learn how to prove. During his first year of 
teaching proof, Matt claimed that you cannot teach someone to write a proof. Over 
time, however, Matt eventually developed some strategies for teaching proof to his 
students. Within this work is an interest in learning more about how a teacher learns 
to teach proof to students who are just learning how to construct a formal proof. This 
case highlights the importance of pedagogical content knowledge.  
Learning to think and reason both formally and informally is an important goal in the 
mathematics classroom. On the formal end of reasoning, students must learn to 
understand and write a proof (NCTM, 2009). Over the past few decades, proof has 
been given increased attention in many countries around the world (see, e.g., 
Knipping, 2004). This is primarily because “proof is the basis of mathematical 
understanding and is essential for developing, establishing, and communicating 
mathematical knowledge” (Stylianides, 2007, p. 191). In the Reasoning and Sense-
Making document (NCTM, 2009), formal reasoning (i.e., proof) was situated as the 
final of three stages in the reasoning progression required for increasing levels of 
understanding in the high school mathematics classroom. The authors pointed out 
that the effort to help students progress from less formal to more formal reasoning 
requires that “teachers play an essential role in encouraging students to explore more 
sophisticated levels of reasoning and sense making” (p. 11). One might wonder, 
however, how and how well are teachers being prepared to play this essential role? A 
more relevant question to this study might be: Is prior experience with mathematical 
proof as a student sufficient preparation for teaching it?  
In this paper, I use data from a longitudinal case study designed to learn more about 
how a beginning teacher learns to teach proof in Euclidean geometry to address this 
question. At the onset of the study, Matt (a pseudonym) was teaching proof in 
geometry for the first time. Here I address the following research questions: (1) How 
did Matt introduce proof to his students? (2) What limitations did Matt believe that he 
had with regard to teaching proof? (3) What strategies did Matt develop to overcome 
these limitations?  
Before I explore these questions, I review some literature on learning to teach 
mathematics and on proof as problem solving. After, discussing the methodology of 
the study, I present and discuss some findings.     

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
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LEARNING TO TEACH MATHEMATICAL PROOF  
Shulman (1986) described three types of knowledge that are necessary for effective 
teaching: subject matter content knowledge, pedagogical content knowledge, and 
curricular knowledge. According to Shulman (1986), to present specific content to 
particular students, teachers need a special blend of content and pedagogy that he 
referred to as “pedagogical content knowledge.” This includes the ways of 
representing and reformulating the subject that make it comprehensible to students 
(Shulman, 1986). Influenced, in part, by Shulman’s conceptualization of pedagogical 
content knowledge, researchers in the 1980s and 90s sought to identify what teachers 
know (or should know) to teach mathematics (Hill, Sleep, Lewis, & Ball, 2007). This 
area is an important body of work that has provided frameworks to investigate the 
various kinds of knowledge that teachers must acquire to maximize student learning. 
In the interest of brevity, however, in this paper, discussions of mathematics 
knowledge for teaching will include only references to Shulman’s subject matter 
content knowledge (CT) and pedagogical content knowledge (PCK).   Of particular 
interest in this paper is the knowledge needed to teach mathematical proof.  
A number of studies have already reported that proof is a difficult topic, both for 
students to learn (e.g., Senk, 1985) and for teachers to teach (e.g., Knuth, 2002). 
Some research has suggested that perhaps the reason that teachers have not moved 
their students beyond the traditional two-column approach to proof is related to 
teachers’ beliefs about the purpose of proof and their students’ abilities to complete a 
proof (Knuth, 2002). Additionally, teachers may not have had opportunities to 
consider alternative ways of teaching proof that fall outside of the “apprenticeship of 
observation” (Lortie, 1975) experienced in their own mathematics backgrounds. 
Finally, when we think of proof as problem solving, it is easy to understand why it is 
a challenging area in mathematics education. 
PROOF AS PROBLEM SOLVING 
A review of the current proof literature illustrates that some researchers are beginning 
to take the stance that proving is a form of problem solving. By its very definition, a 
task is only a “problem” when there is no immediate, clear solution or a known path 
or strategy that sheds light on the appropriate mathematical action required to 
complete the task (Weber, 2005). Weber (2005) argued that “focusing on the 
problem-solving aspects of proving allows insight into some important themes that 
other perspectives on proving do not address” (p. 352). One example of such a theme 
is the exploration of reasons that students reach impasses in proof where they do not 
know how to proceed (Schoenfeld, 1985).  
In order to solve a proving task that is truly a “problem” as described above, 
successful students eventually have a breakthrough where they progress from not 
seeing a path or strategy to developing one that will assist them in writing a correct 
proof. These kinds of breakthroughs have been described in the literature. For 
example, Barnes (2002) wrote about a student named Naidra who described his lack 
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of insight on one particular day as not having “anything magical” happen. When 
pressed further, Naidra said that “flashes of understanding can happen” and “lots of 
different things can spark that off” (p. 83). This sudden flash of understanding that 
Naidra described as magical is often referred to as an ‘Aha!’ or ‘Eureka!’ experience 
(Barnes, 2002). Mathematicians writing about the creative process have also 
described these kinds of moments. For example, Polya (1965) wrote about “a sudden 
clarification that brings light, order, connection and purpose to details which before 
appeared obscure, confused, scattered, and elusive” (p. 54). In the context of this 
study, these descriptions beg the question: What can teachers do to support their 
students in having these kinds “magical,” “aha” discoveries when they are first 
learning to prove?   
“Discovering” a Proof 
The idea that there are different phases or activities in proving has been tacitly 
acknowledged by various sources. For example, in textbooks, the problem solving 
aspect of proving has been called developing a “Plan for Proof” (Larson, Boswell, & 
Stiff, 2001), “analyzing a proof” (CME project), “scratch work” (Velleman, 2006), 
and so forth. The idea that doing a proof and writing a proof are two different 
activities was explicitly noted by Farrell (1987) who portrayed both of these activities 
as important. The doing requires good problem solving skills, and the writing 
requires rigor and precision. Farrell claimed, however, that prospective teachers 
needed to learn that the writing takes a back seat to the generation of ideas. Because I 
call on Herbst and Brach’s (2006) work related to “doing proofs,” which they 
describe as the range of practices carried out by students and their teacher, I do not 
reference the problem solving part of proving as “doing” a proof as Farrell did. 
Rather, I refer to the problem solving, finding a proof phase of proving as developing 
a proof. As Farrell noted, this activity is the more difficult phase of proving. The 
development precedes writing up the proof, an activity that is important in terms of 
mathematical communication, however, it is more about expressing yourself clearly, 
rather than a problem solving endeavour. This construct is useful for describing a 
practice of this study’s participating teacher.  
METHODOLOGY 
This longitudinal interpretive case study (Stake, 1995) focuses on the classroom 
experiences of a high school geometry teacher, Matt, over a three-year period (2005-
2007) in which Matt taught Euclidean proof to students (ages 15-16) in the regular 
track of a geometry course. At the beginning of the study, he had just taken a new 
position at a public high school in a suburb of a large U.S. city. Matt was chosen to 
participate in this study because of his new teacher status, his willingness to share his 
experiences, and his interest in studying his own practice. He provides an interesting 
case because he had a strong mathematics background as well as a Masters degree in 
teaching. According to the teacher preparation literature, Matt’s background 
represents the “best-case scenario” (Gay, 1994) in terms of beginning high school 
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teacher preparation. Therefore, the case of Matt presents a “well-prepared” teacher 
who is learning to teach proof in school mathematics.  
Data Collection and Analysis 
Data was collected across three years and analysed using qualitative methods. The 
primary data sources were classroom observations, in-situ field notes, and interviews 
with Matt. All interviews were semi-structured and audio recorded. For three years, I 
visited Matt’s classroom during lessons when he introduced proof to his students. 
Each lesson was audio and video recorded. In the interest of illustrating change over 
time, I only report on the classroom observations from Years 1 and 3 here.   
FINDINGS AND DISCUSSION 
In the interest of space, in this section, I present data intertwined with some brief 
discussion. I first describe Matt’s early experiences with mathematical proof in high 
school and at the university in order to shed some light on Matt’s preparation for 
teaching proof. I then describe the ways that Matt introduced proof to his students 
during Year 1 (Y1) and Year 3 (Y3) of this study. Finally, I provide some interview 
data to shed light on the changes observed between Y1 and Y3. Following the 
presentation of findings and discussion, I close with some concluding thoughts.     
Matt’s Early Experiences with Proof 
Matt did not follow a traditional path through mathematics in high school. He 
completed geometry in the 8th grade (age 13-14) as an independent study which was 
two years earlier than most students in the United States. Matt said that he was never 
asked to develop a proof during his school mathematics experience, and he did not 
recall even being shown a proof in high school. As a mathematics major in college, 
however, Matt said: 

I was immediately asked to do all sorts of proofs, which now, looking back at it, I can 
see as not being so bad, but at the time I’m like, this is a joke. I’m like, this is 
impossible. You know, you can’t do this? (Interview, 6/21/06) 

The difficult transition that Matt experienced from school to undergraduate 
mathematics is not uncommon. The paucity of proof in school mathematics coupled 
with the fact that even in the lower-level university courses, few, if any, proofs are 
required of students (Moore, 1994) helps us understand why Matt felt that developing 
proofs was “impossible.”  During Y1, Matt compared the challenge of doing his first 
proof (as a student) to walking through a wall. This, he said, caused him to rethink 
his major in mathematics. These comments may seem surprising given that Matt was 
clearly above-average in school mathematics, evidenced by (among other things) his 
being two years ahead in his studies prior to graduating from high school. As Moore 
(1994) explained, however, “This abrupt transition to proof is a source of difficulty 
for many students, even for those who have done superior work with ease in their 
lower-level mathematics courses” (p. 249). Matt said that even though he did not take 
any sort of an introductory proof course, eventually he was “able to understand or 
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believe that [proof] was something that [he] could do” (Interview, 6/21/06). The 
experiences described here caused Matt to begin to think about mathematics in ways 
that were different from his conception of mathematics prior to his university 
coursework. Next, I describe the ways Matt introduced proof to his own students.  
Introducing Proof to His Students 
Year 1. When presenting the first proof to his students in Y1, Matt told a story about 
Pokémon (an anime series, film, and video game from the U.S. and Japan): 

If [the line segments] have the same length, then they have to be congruent. So, the 
definition of congruence, I choose you...Nobody in here watches Pokémon? Ever? Are 
you kidding me? Are you serious, nobody watches Pokémon?....We’re gonna have to 
rent it. Alright? Piccachu, I choose you. Right? That’s how you wanna think about this. 
I remember this. In college, my roommate one time, he was a good friend of 
mine....And we’re sitting there and one of his internet browsers wasn’t working, so he 
totally decides to switch his internet browser, and of a sudden we’re sitting there 
working and he goes “Minsky, I choose you.”...That was really funny. But I 
remembered that last night. That’s the way you want to think about this, right? 
Definition of congruence. Go, right? Symmetric property. Go. Definition of 
congruence. Go. Now I’m done, right? That’s how we proved this. Okay. (Y1, 9/30/05) 

In this example, in the absence of tools to introduce proof, Matt attempted to connect 
with the students by referencing Pokémon. Even after realizing that the students did 
not understand the reference, Matt continued to connect to Pokémon, saying 
“Symmetric property. Go. Definition of congruence. Go.” Also, in Y1, the students 
were not given very many opportunities to participate in the development of proofs.  
Year 3. Three specific changes were observed in the way that Matt introduced proofs 
in Y3: (a) what Matt wanted students to do before they started writing their proofs; 
and (b) the flexibility Matt stressed related to the form of the proof (c) the confidence 
shown in the way that he spoke about proof which did not involve seemingly random 
analogies. Rather than using the example proofs from his textbook (as he did in Y1), 
in Y3, Matt wanted to start with a proof that was “more interesting.” Matt began the 
lesson by talking about what the students should do before they write a proof: 

Before you ever write a proof, you want to make sure that you can convince yourself 
that it's true, okay? No one learns anything by writing a proof. They just write down 
what they already know has to be true. So look at number 12, here. Look at that problem 
for 25 seconds. See if you can convince yourself that it has to be true. (Y3, 9/21/07) 

Rather than Matt immediately demonstrating proof as he did in Y1, Matt gave the 
students time to think about the proof. Matt attempted to involve students by giving 
them this time and then asking them if they were convinced of the truth of the 
proposition that they were supposed to prove. He then asked the students why the 
statement was true, and then he called on a student to provide an explanation. Matt 
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the proceeded to tap into the students’ thinking as he simultaneously led them 
through a two-column and a flow proof of the theorem.   
Exploring Observed Changes through Interviews 
During an interview at the end of Y1, Matt discussed how students either see or do 
not see how a particular proposition can be proved. 

To do a proof in a real mathematical way is very, it's very isolating. You can't teach 
somebody how to do a proof….I mean if a student's really gonna do a mathematical 
proof, you look at the problem and you either see how you do it or you don't. After that, 
the writing it down, although an important exercise in communication really is sort of 
pointless. I mean it's not pointless, but it's trivial. You know. If you can see how to prove 
something, then you can see how to explain it to somebody else and the seeing or not 
seeing it is nothing that I can teach you. (Interview, 6/21/06)   

After hearing Matt say that “seeing it is nothing that I can teach you,” I asked him if 
there was anything that he could do, as a teacher, to provide students access so that 
they could progress at the pace that was dictated by the demands of the school 
context. To this question, Matt replied: 

I mean you don't want to go so far as to say it doesn't matter what I do, but the reality 
is that I can't prove it for them. You know, simply showing somebody how to do a 
proof will help, but only up to a certain point. Only until they understand…the way in 
which a proof becomes a proof. (Interview, 6/21/06)   

Here, Matt expressed what he saw as a limitation for him as the teacher. After 
teaching proof for the second time, I, again, asked Matt about the comment, “seeing it 
is nothing that I can teach you.”  I was curious as to whether Matt still believed that 
there was nothing or even very little that he could do to help students learn to prove. I 
was interested in his answer to this question because, at that point, I had observed 
Matt teach proof for the second time, and he had made changes that I thought might 
be designed to help his students “see it,” whereas the previous year he said that there 
was very little that he could do. I was trying to understand if there was a shift in his 
thinking. After discussing the analogy of teacher as coach, which did not seem to 
resonate with him, Matt initiated a new analogy:  

I'm like a Sherpa. Okay? That's the word I'm looking for. So…you know, I've been up 
and down the mountain 50 times. And if you didn't have me, you could make it to the 
top of the mountain. ‘Cause I'm not a requirement, right? But it'll probably be a lot uglier 
and take a lot longer. And, there's a good possibility that you would freeze to death and 
never get to the top. Right? So. Yeah, I'm like the Sherpa guide who like, you know, just 
walks with you up the mountain, but then at base camp I just, I go off and meditate 
somewhere else and I really don't pay attention to what you're doing. Right?....And I 
don't just have one person, right? I'm trying to herd like 30 people to the top of the 
mountain before next Friday. (Interview, 4/19/07) 
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So, although, Matt could not climb the mountain for his students in the same way that 
he could not “see it” or “prove it for them.” He seemed to view his role as one of 
being there and knowing (or believing) from experience that it was possible to get to 
the top of the mountain. He also noted the reality of the classroom when he said that 
he had to herd 30 people to the top of the mountain “before next Friday.”  
Significance 
Although there is widespread agreement that novice teachers lack a number of 
important skills, only a few researchers have sought to understand how beginning 
teachers develop their knowledge of and for teaching (Brown, 1993). Researchers in 
the area of science education are beginning to explore the challenges that new science 
teachers face as they begin their teaching careers (Luft, 2007). Similar to Luft’s 
(2007) work with new science teachers, studies such as this one are important 
because they reveal the complexity of being a beginning mathematics teacher in the 
context and setting in which the new teacher works. In this study, data were presented 
to illustrate the ways in which CK is not necessarily sufficient preparation to teach 
proof. Even with a strong mathematics background, Matt still struggled to develop 
tools to support his students through the discovering phase of doing proofs. This 
study illustrates the need for additional studies that seek to observe teachers 
introducing and cultivating proof. It could be helpful to understand what successful, 
experienced teachers do to scaffold proof-development practices in their classrooms. 
In practice, more support should be provided to beginning teachers in their 
preparation to help their students develop proofs.  
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The purpose of this report is to compare three different unit eliciting task structures 
for measurement comparison tasks. Twelve students ranging from grades 2-4 were 
presented length, area, and volume tasks. Student responses were coded for 
correctness and comparison type. The results indicated that students were most 
successful with task structure 1, “How much longer/bigger?” and least successful 
with task structure 2, “How many times longer/bigger?” Students tended to produce 
additive comparisons in response to task structure 1 and tended to produce 
multiplicative comparisons in response to task structure 3, “If this has a(n) 
length/area/volume of 1, then what would you call the length/area/volume of this?” 
Suggestions for use and modification of the three task structures are discussed.   

INTRODUCTION 
Researchers, educators, and policymakers have identified measurement as an 
essential topic in school mathematics because of its practical applications, 
connections to other areas of mathematics, and links to other disciplines (e.g. 
Clements & Sarama, 2007; Lehrer, Jenkins, & Osana, 1998; National Council of 
Teachers of Mathematics, 2000; National Governors Association & Council of Chief 
State School Officers, 2010). This connectivity of measurement can be attributed to 
its nature. According to Battista (2007), “Measurement plays a central role in 
reasoning about all aspects of our spatial environment” (p. 891). Lehrer, Jenkins, and 
Osana (1998) concurred, claiming, “Children’s reasoning provides the foundation for 
instruction about the mathematics of space” (p. 137). The National Research Council 
(2009) also emphasized the pervasive nature of measurement, identifying 
measurement as a system for “describing, representing, and understanding the world” 
(p. 35). Unfortunately, despite the importance of measurement knowledge, 
instruction of measurement concepts is often inadequate or overlooked entirely 
(Clements & Sarama, 2007; Kordaki & Potari, 2002).   
For the purpose of this study, we use a definition of measurement based on one 
proposed by Sarama and Clements (2009): measurement is the process of quantifying 
an attribute of an object in reference to a chosen unit. In other words, we recognize 
that the motivation or end product of measurement is usually a comparison. Piaget, 
Inhelder, and Szeminska (1960) noted the importance of comparison in measurement. 
Their claim was that students compare in three distinct ways, “bringing the objects 
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themselves together, using another object as a common measure, and finally the 
construction of units to measure any distance by stepwise movement, i.e. unit 
iteration” (p. 30). According to Sarama and Clements’ definition these first two 
comparisons are not considered measurement because no unit is chosen. In these 
instances, only a qualitative comparison, for example this object is longer, can be 
produced. In the case of the third, with the introduction of a unit and the change in 
position (unit iteration), the comparison can be a more sophisticated quantitative 
comparison. Research suggests students can be motivated to engage in the more 
sophisticated, quantitative comparisons through the prompt, “How much 
longer/bigger…” is object 1 than object 2? (Cullen et al., 2010). We see this as a unit-
eliciting task because a correct response requires the selection and use of a unit of 
measure. However, it is not clear what type of comparison students are likely to 
produce in response to this prompt, i.e. additive or multiplicative.  
The purpose of this study was to compare three different unit-eliciting task structures 
based on the type of comparison created. We have noted three distinct comparisons 
students tend to generate, additive, multiplicative, and excess. If a student were 
presented with a 3-inch segment and a 9-inch segment, the additive comparison 
would be 6 inches longer, and the multiplicative comparison would be 3 times as 
long. In the case of an excess comparison, the student would produce a comparison 
similar to a percent increase. To clarify, s/he would report that the 9-inch segment 
was two times bigger, essentially noting that it would take two more 3-inch segments 
to be as long as the 9-inch segment. Although we do not consider this comparison to 
be incorrect, we find the production of multiplicative comparisons to be more useful 
because they lay the foundation for measurement as a ratio between object and unit. 
In each of the three task structures, students were first asked to compare two objects 
by some attribute, length, area, or volume. Secondly, we prompted students for a 
quantitative comparison with one of the following task structures (TS):  

TS 1: How much longer/bigger is object 1 than object 2? (Cullen et al., 2010)  
TS 2: How many times longer/bigger is object 1 than object 2? 
TS 3: If this has a(n) length/area/volume of 1, then what would you call the 

length/area/volume of this?  
From our preliminary work with students, we anticipated that TS 1 was likely to 
evoke additive comparisons, TS 2 was likely to evoke comparisons of the excess, and 
TS 3 was likely to evoke multiplicative comparisons. For example, assume a student 
was presented with a task of comparing two line segments (6 inches and 18 inches). 
For TS 1, we anticipated a response of “This is 12 inches longer.” For TS 2, we 
anticipated a response of “This is 2 times longer.” For TS 3, we anticipated a 
response of “This would be called 3,” or “This would have a length of 3.”  
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RESEARCH QUESTION 
How do students’ quantitative comparisons of lengths/areas/volumes differ 
under three conditions of verbal task structure?  

METHODOLOGY 
The data for this study was collected through clinical interviews with 12 students, 
four each from Grades 2-4, during the fall semester of 2010. Each student was 
presented with nine measurement tasks: three length, three area, and three volume. 
These interviews lasted approximately 10 minutes per student. Each of the nine items 
is presented below.  
For each length item, the student was presented with the two indicated objects and 
asked to compare them by their lengths. This was followed by one of the three task 
structures described above. 
 
Length Item Object 1 Object 2 

1 2 inches 6 inches 
2 3 inches 12 inches 
3 1 inch 5 inches 

Table 1: Length items  

 Figure 1: Length item 1 
For each area item, the student was presented with the two indicated objects and 
asked to compare them by their areas. This was followed by one of the three task 
structures described above. 
 

Area Item Object 1 Object 2 
1 1 in x1 in 2 in x 2 in 
2 2 in x 1 in 4 in x 4 in 
3 1 in x 3 in 4 in x 3 in 

Table 2: Area items  

 Figure 2: Area item 3 
For each volume item, the student was presented with the two indicated objects and 
asked to compare them by their volumes. This was followed by one of the three task 
structures described above. 
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Volume Item Object 1 Object 2 
1 1 in x 3 in x 1 in 1 in x 3 in x 2 in 
2 1 in x 2 in x 2in 2 in x 3 in x 2 in 
3 1 in x 2 in x 1 in 1 in x 10 in x 1 in 

Table 3: Volume items Figure 3: Volume item 2  
Student Selection 
The	   participants	   for	   this	   study	   were	   selected	   from	   a	   public	   suburban	   school	   in	   the	  
Midwestern	  portion	  of	   the	  U.S.	  The	  students	  selected	   for	   this	   study	  were	  a	  subset	  of	  
students	  participating	  in	  a	  larger	  study	  characterizing	  cognitive	  developmental	  stages	  
while	  extending,	  amending,	  and	   improving	  existing	  hypothetical	   learning	   trajectories	  
for	   length,	   area,	   and	  volume	   (Sarama	  &	  Clements,	  2009).	  We	   randomly	   selected	   two	  
females	   and	   two	   males	   from	   each	   of	   the	   three	   grade	   levels	   represented	   in	   three	  
classrooms.	  

Data Collection 
These twelve students were posed the set of nine measurement comparisons tasks in 
individual interviews, each lasting approximately 10 minutes. The interviews 
occurred during the normal school day and were videotaped. Each of the twelve 
interviews was conducted by the first author and was observed and videotaped by the 
second. For each interview, the length items were presented first, then area, and 
finally volume. Because the focus of this study was the structure of the task rather 
than the tasks themselves, we varied the task sequencing for each interview. Thus the 
first student interviewed was presented length, area, and volume item 1 with TS 1, 
length, area, and volume item 2 with TS 2, etc. The second student then was 
presented with length, area, volume item 2 with TS 1, length area, volume item 3 
with TS 2, etc. This allowed us to isolate the effects of the three task structures from 
the tasks themselves. 
Data Analysis 
One researcher watched the videotaped interviews and transcribed each student’s 
response to each item. All responses were then coded by a pair of researchers for 
correctness as well as for the type of comparison produced, additive, multiplicative, 
or excess. Any disputes were resolved through discussion between the two coding 
researchers. This data was then organized and analysed by task, task structure, grade 
level, and dimension (length, area, or volume). 

RESULTS  
An analysis of the interview transcripts revealed that the participants utilized four 
comparison types across dimensions and task structures. We categorized them as 
additive, multiplicative, excess, and other. We also classified responses as correct or 
incorrect.  
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The tables below present some of the results. Table 4 displays correctness of 
responses per grade level and TS. This table revealed which of the three task 
structures students were most successful with as well as if student age affected 
success with any one of the three task structures. Table 5 presents the comparison 
type by TS. We used this table to determine if any of the three task structures was 
more or less likely to elicit a specific type of comparison.   

 TS1 TS2 TS3 Total 
Grade 2 83% 8% 33% 42% 
Grade 3 67% 8% 50% 42% 
Grade 4 83% 42% 100% 75% 

Total 78% 19% 61% 53% 

Table 4: Correctness by task structure 
As demonstrated in Table 4, students were most successful with TS 1, “How much 
longer/bigger…?” and least successful with TS 2, “How many times 
longer/bigger…?” This pattern also held for each individual grade level. 
Additionally, we note that there was substantial growth in correct responses to TS 2 
and 3 as the students’ age increases, while TS 1 remained more consistent across all 
three grade levels. Finally, we note that every grade 4 student produced a correct 
comparison when presented with TS 3 regardless of which attribute was identified for 
comparison, length, area, or volume.  

Comparison TS 1 TS 2 TS 3 
Additive 75% 36% 6% 

Multiplicative 3% 19% 61% 
Excess 6% 25% 0% 

Other 17% 19% 33% 

Table 5: Comparison by task structure 
From Table 5, we note three important results. First, TS 1 elicited an additive 
comparison 75% of the time, which was more than 12 times as much as the next most 
popular identifiable comparison, excess. Second, 61% of the time TS 3 elicited a 
multiplicative comparison, which was more than 10 times as much as the next most 
popular identifiable comparison, additive. Third, TS 2 did not clearly elicit a 
consistent comparison strategy; the three identified comparison strategies were used 
at least 19% of the time and none more than 36% of the time.   
The analysis of the interview transcripts also revealed several interesting themes 
related to individual trends. For example, John, a male third grader, gave an answer 
of “2” every time TS 3 was posed and reported the length, area, or volume of the 
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larger object every time TS 1, “How much longer/bigger…?” was posed. Rebecca, a 
female second grader, was the only participant unable to give a single multiplicative 
comparison regardless of attribute or TS.  
Another theme revealed through analysis of the transcriptions related to how students 
understood the attributes. Several students required instruction as to the correct 
definition of volume before proceeding to the volume tasks. Rebecca initially defined 
volume as the amount of sound the blocks made when dropped, and five students 
(three second graders, one third grader, and one fourth grader) defined volume as the 
height of the collection of cubes. Only one student was unable to understand the 
attribute of area despite interviewer interventions. Samuel, a male second grader, 
tried to compare areas of regions by attending to only one dimension. Thus, for Area 
Item 1 with task structure 2, Samuel claimed the 2 in by 2 in region was “one bigger” 
than the 1 in by 1 in unit. 

DISCUSSION 
The purpose of this study was to compare student responses to three different, unit-
eliciting task structures. Our results allowed us to compare these three task structures 
in two different ways, first, by correctness and second, by the comparison type 
typically produced. In general, we are pleased with each of the three task structures in 
that they do prompt students to shift from comparing by “bringing the objects 
themselves together [or] using another object as a common measure” (Piaget et al., 
1960, p. 30), which can only be qualitative, to a comparison based on the selection 
and iteration of a unit, which is quantitative.  
Students were most successful with TS 1 and produced correct responses 78% of the 
time. This task structure also proved to be extremely efficient for prompting students 
to see the need for a unit and producing an additive comparison. Students provided an 
additive comparison 75% of the time when presented with TS 1. Again, we do not 
feel that an additive comparison is inherently less desirable than a multiplicative 
comparison, however, we do feel that students should have experience producing 
both comparison types.  
Students were least successful with TS 2, producing a correct response only 19% of 
the time. Many student comparisons in response to this TS 2 were based on 
quantifying the excess. In fact, more than four times as many excess comparisons 
were given in response to TS 2 than TS 1. We initially intended task structure 2 to be 
a prompt that would motivate the production of a multiplicative comparison, 
however, we found that it lead to more additive and excess comparisons than 
multiplicative. While reflecting on TS 2 we propose a change in the wording to “How 
many times as long/big…?” rather than “How many times longer/bigger…?” It seems 
reasonable that in response to a prompt of “How many times longer…?” a student is 
likely to attend only to the “longer” part of the longer object and to quantify the 
excess, as they did 25% of the time.  
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Students did not perform as well on TS 3 as they did on TS 1, however, they 
performed more than three times as well on TS 3 than they did on TS 2. More 
important to us is the fact that students provided more than three times as many 
multiplicative comparisons to TS 3 than to TS 2. We see both of these task structures 
as prompts for a multiplicative comparison, but we note that TS 3 is far better at 
eliciting this type of comparison. We also note that no student ever produced an 
excess comparison in response to TS 3.  

CONCLUSION 
Comparison and unit are both essential to the teaching and learning of measurement. 
According to Piaget et al. (1960) students can compare in three distinct ways, 
“bringing the objects themselves together, using another object as a common 
measure, and finally the construction of units to measure any distance by stepwise 
movement, i.e. unit iteration” (p. 30). Sarama and Clements (2009) describe 
measurement as the process of quantifying an attribute of an object in reference to a 
chosen unit. With this definition of measurement, we see that it is not until a student 
produces Piaget et al.’s third type of comparison that they are engaged in measuring. 
As we strive to engage students in meaningful measurement tasks, we have followed 
the two-step process described by Cullen et al. (2010), which we have found to be 
effective at motivating students to select and iterate a unit but not effective at 
motivating students to produce multiplicative comparisons.  
As we continue to strive to engage students in meaningful measurement tasks, we 
recommend two task structures to motivate students to produce quantitative 
comparisons. We recommend task structure 1, “How much longer/bigger…?” as an 
effective prompt for the production of an additive comparison and task structure 3 
and “If this has a(n) length/area/volume of 1, then what would you call the 
length/area/volume of this?” as an effective prompt for the production of a 
multiplicative comparison.  
Questions for further research 
We recommend further research to explore modifications of the wording of TS 2 
from “How many times longer/bigger…?” to “How many times as long/big…?” We 
feel that the structure as we have presented here may have been drawing students’ 
attention to the excess because of the use of the words longer and bigger. We also 
recognize that our sampling was small, so further work is needed to check the 
generality of the findings. 
Finally, we are interested in exploring variations of TS 3 to focus on proportional 
reasoning and on the production of ratios between zero and one. For example, when a 
student was presented with area task three (Figure 2) with TS 3, they were told that 
the 1 in x 3 in shape had an area of one and asked to find the area of the 4 in x 4 in 
shape. In this case, the student could be guided to see that 3:12 as 1:4. The focus on 
proportional reasoning could be stressed more by telling the student the 1 in x 3 in 
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shape has an area of 7 and asking them what the area of the 4 in x 4 in shape would 
be. This could help the student to notice that 1:4 as 7:28 or 3:12 as 7:28. As an 
extension, we are interested in modifying TS 3 to explore students’ work with 
rational numbers between zero and one. This can be achieved by presenting students 
with two objects to compare, telling them that the larger object has a length, area, or 
volume of 1 and asking them to find the length, area, or volume of the smaller. For 
example, if a student is presented with a 4 in by 4 in square and a 1 in by 1 in square, 
told the larger square has an area of 1 then the area of the smaller would be ¼. 
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The main aim of this research study was to confirm a composite theoretical model 
concerning middle and high school students’ geometrical figure understanding. Data 
were collected from 888 middle (grade 9) and high (grade 10, grade 11) school 
students. Structural equation modelling affirmed the existence of nine first-order 
factors revealing the differential effect of perceptual and recognition abilities, the 
ways of figure modification, construction of a figure and proof. The four second-
order factors which represented the perceptual, operative, sequential and discursive 
apprehension were regressed to a third-order factor that corresponded to the 
geometrical figure understanding. Data analysis provided support for the invariance 
of this structure across the three age groups.  

INTRODUCTION AND THEORETICAL FRAMEWORK  
In geometry three registers are used: the register of natural language, the register of 
symbolic language and the figurative register. In fact, a figure constitutes the external 
and iconical representation of a concept or a situation in geometry. It belongs to a 
specific semiotic system, which is linked to the perceptual visual system, following 
internal organization laws (Mesquita, 1998). As a representation, it becomes more 
economically perceptible compared to the corresponding verbal one because in a 
figure all the relations of an object with other objects are depicted. However, the 
simultaneous mobilization of multiple relationships makes the distinction between 
what is given and what is required difficult. At the same time, the visual 
reinforcement of intuition can be so strong that it may narrow the concept image 
(Mesquita, 1998). Geometrical figures are simultaneously concepts and spatial 
representations. Generality, abstractness, lack of material substance and ideality 
reflect conceptual characteristics. A geometrical figure also possesses spatial 
properties like shape, location and magnitude. In this symbiosis, it is the figural facet 
that is the source of invention, while the conceptual side guarantees the logical 
consistency of the operations (Fischbein & Nachlieli, 1998). Therefore the double 
status of external representation in geometry often causes difficulties to students 
when dealing with geometrical problems due to the interactions between concepts 
and images in geometrical reasoning (Mesquita, 1998). 
                                         
1 This paper is a part of the research project “Ability to use multiple representations in functions and 
geometry: the transition from middle to high school” (0308(ΒΕ)/03) founded by the Research Promotion 
Foundation of Cyprus.  
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Duval (1995, 1999) distinguishes four apprehensions for a “geometrical figure”: 
perceptual, sequential, discursive and operative. To function as a geometrical figure, 
a drawing must evoke perceptual apprehension and at least one of the other three. 
Each has its specific laws of organization and processing of the visual stimulus array. 
Particularly, perceptual apprehension refers to the recognition of a shape in a plane 
or in depth. In fact, one’s perception about what the figure shows is determined by 
figural organization laws and pictorial cues. Perceptual apprehension indicates the 
ability to name figures and the ability to recognize in the perceived figure several 
sub-figures. Sequential apprehension is required whenever one must construct a 
figure or describe its construction. The organization of the elementary figural units 
does not depend on perceptual laws and cues, but on technical constraints and on 
mathematical properties. Discursive apprehension is related with the fact that 
mathematical properties represented in a drawing cannot be determined through 
perceptual apprehension. In any geometrical representation the perceptual recognition 
of geometrical properties must remain under the control of statements (e.g. 
denomination, definition, primitive commands in a menu). The epistemological 
function of the discursive apprehension is the proof. However, it is through operative 
apprehension that we can get an insight to a problem solution when looking at a 
figure. Operative apprehension depends on the various ways of modifying a given 
figure: the mereologic, the optic and the place way. The mereologic way refers to the 
division of the whole given figure into parts of various shapes and the combination of 
them in another figure or sub-figures (reconfiguration), the optic way is when one 
makes the figure larger or narrower, or slant, while the place way refers to its position 
or orientation variation.  
Recently, some researchers (Deliyianni, Elia, Gagatsis, Monoyiou, & Panaoura, 
2009; Elia, Gagatsis, Deliyianni, Monoyiou, & Michael, 2009) made an effort to 
verify empirically some of the cognitive processes underline the geometrical figure 
understanding proposed by Duval (1995, 1999). Elia et al. (2009) gave emphasis on 
the cognitive processes involved in operative apprehension. Furthermore, Deliyianni 
et al. (2009) affirmed the existence of a third-order model that involved six first-order 
factors indicating the differential effect of perceptual and recognition abilities, the 
ways of figure modification and measurement concept, three second-order factors 
representing perceptual, operative and discursive apprehension and a third-order 
factor that corresponded to the geometrical figure understanding. The study also 
suggested the invariance of this structure across elementary and secondary school 
students. The model emerged in this research study took into account Deliyianni’s et 
al. (2009) findings and moved a step forward by involving sequential apprehension 
dimension, the three ways of figure modification in operative apprehension 
dimension and the deductive reasoning dimension. Specifically, keeping in mind the 
underlying cognitive complexity of geometrical activity (Duval, 1995) and the 
transition problem from one educational level to another universally (Mullins & 
Irvin, 2000) the main aim of this research study was to confirm a composite 
theoretical model concerning middle and high school students’ geometrical figure 
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understanding which involves the whole spectrum of geometrical figure apprehension 
types, i.e. perceptual, discursive, sequential and operative apprehension.  

HYPOTHESES AND METHODOLOGY  
In the present paper the following hypotheses were examined: (a) Perceptual, 
sequential, operative and discursive apprehension influence middle (grade 9) and 
high (grade 10, grade 11) school students’ geometrical figure understanding, (b) 
Perceptual and recognition abilities have a differential effect on perceptual 
apprehension, (c) The three ways of figure modification (i.e. merelogic, optic and 
place way) have a differential effect on operative apprehension, (d) The abilities to 
construct and describe a figure’s construction differentially affect sequential 
apprehension, (e) Inferences based on definition and inferences based on procedures 
for proof differentially affect discursive apprehension and (f) There are similarities 
between grade 9 to 11 school students in regard with the structure of their 
geometrical figure understanding.  
The study was conducted among 888 students, aged 15 to 17, of middle (grade 9) and 
high (grade 10, grade 11) schools in Cyprus (319 in grade 9, 304 in grade 10, 265 in 
grade 11). Taking into account, Duval’s (1995, 1999) apprehensions for a 
geometrical figure the a priori analysis of the test (Appendix) that was constructed in 
order to examine the hypotheses of this study is the following: 
1. The first group of tasks includes task 1 (PE1a, PE1b, PE1c, PE1d, PE1e, PE1f, 

PE1g), 2 (PE2a, PE2b, PE2c, PE2d, PE2e, PE2f) and 3 (PE3a, PE3b). These tasks 
examine students’ perceptual apprehension of a geometrical figure. The task 1 
examines students’ ability to identify and name the squares in a complex figure. 
The tasks 2 and 3 examine their ability to discriminate and recognize in the 
perceived figures several subfigures. 

2. The second group of tasks includes task 4 (OP4), 5 (OP5), 6 (OP6), 7 (OP7), 8 
(OP8), 9 (OP9), 10 (OP10) and 11 (OP11). These tasks examine students’ 
operative apprehension of a geometrical figure. The tasks 4, 5 and 6 require a 
reconfiguration of a given figure, the tasks 7 and 8 an optic way of modification, 
while the tasks 9, 10 and 11 demand the place way of modifying figures     

3. The third group of tasks consists of the tasks 12 (SE12), 13 (SE13), 14 (SE14), 15 
(SE15) and 16 (SE16) that examine students’ sequential figure apprehension. The 
tasks 12, 13 and 14 require students to construct a figure, while the tasks 15 and 
16 investigate students’ ability to describe the construction of a figure.  

4.  The fourth group of tasks includes the verbal problems 17 (DI17a, DI17b, 
DI17c), 18 (DI18), 19 (DI19), 20 (DI20) and 21 (DI21) that look into 
consideration students’ discursive apprehension. Concerning discursive 
apprehension Harada, Gallou-Dumiel and Nohda’s (2000) conceptualization is 
used, who indicated that the hypothetical-deductive proof is produced by this kind 
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of apprehension. In fact, the discursive apprehension is produced by inferences 
based on definitions and valid procedures of proof. Therefore, on the one hand, 
the problem 17 demands inferences based on definitions in order to be solved. On 
the other hand, the problems 18, 19, 20 and 21 require inferences based on 
procedures for proof for their solution.  

Right and wrong or no answers to the tasks were scored as 1 and 0, respectively. The 
results concerning students’ answers to the tasks were codified with PE, OP, SE and 
DI corresponding to perceptual, operative, sequential and discursive apprehension, 
respectively, followed by the number indicating the exercise number.  
Confirmatory factor analysis (CFA), by using the EQS program, was used to explore 
the hypotheses about the structural organization of the various dimensions 
investigated here (Bentler, 1995). The tenability of a model can be determined by 
using the following measures of goodness-of-fit: 2x , CFI and RMSEA. The following 
values of the three indices are needed to hold true for supporting an adequate fit of 
the model: 2x /df < 2, CFI > 0.9, RMSEA < 0.06.  

RESULTS 
Confirmatory factor analysis model. Figure 1 presents the results of the elaborated 
model, which fitted the data reasonably well [ 2x (532) = 1021.58, CFI = 0.96, 
RMSEA =0.03]. The first, second, third and forth coefficients of each factor stand for 
the application of the model in the whole sample (grade 9 to 11), grade 9, grade 10 
and grade 11 school students, respectively. The errors of variables are omitted.  
Particularly, the third-order model which is considered appropriate for interpreting 
geometrical figure understanding, involves nine first-order factors, four second-order 
factors and one third-order factor. The four second-order factors correspond to the 
geometrical figure perceptual (PEA), operative (OPA), sequential (SEA) and 
discursive (DIA) apprehension, respectively. Perceptual, operative, sequential and 
discursive apprehensions are regressed on a third-order factor that stands for the 
geometrical figure understanding (GFU). Therefore, it is suggested that the type of 
geometric figure apprehension does have an effect on geometrical figure 
understanding, verifying our first hypothesis. 
On the second-order factor that stands for perceptual apprehension the first-order 
factors F1 and F2 are regressed. The first-order factor F1 refers to the perceptual 
tasks, while the first-order factor F2 to the recognition tasks. Thus, the findings reveal 
that perceptual and recognition abilities have a differential effect on geometrical 
figure perceptual apprehension (hypothesis b). On the second-order factor that 
corresponds to operative apprehension the first-order factors F3, F4 and F5 are 
regressed. The first-order factor F3 consists of the tasks which require a modification 
of a given figure in a mereologic way. The tasks which demand an optic way of 
modifying a given figure compose the first-order factor F4 and the tasks demanding 
the place way of modifying constitute the first-order factor F5. Therefore the results 
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indicate that the ways of figure modification have an effect on operative figure 
understanding (hypothesis c). The first-order factors F6 and F7 are regressed on the 
second-order factor that stands for sequential apprehension. The first-order factor F6 
refers to the tasks which demand the construction of a figure, while the first-order 
factor F7 consists of the tasks in which the description of a figure’s construction is 
needed. Thus, the results indicate that these two abilities differentially affect 
sequential apprehension (hypothesis d). On the second-order factor that stands for 
discursive apprehension the first-order factors F8 and F9 are regressed. The first-
order factor F8 refers to the tasks which require inferences based on definition, while 
the first-order factor F9 to the tasks which inferences based on  procedures of proof 
are needed. Thus, the findings reveal that the kind of inferences has a differential 
effect on this kind of apprehension (hypothesis e). Loadings indicate that operative 
and discursive apprehension is more strongly related with geometrical figure 
understanding than perceptual and sequential apprehension. 

 

Figure 1. The CFA model of the geometrical figure understanding 
To test for possible similarities between the three grades concerning students’ 
geometrical figure understanding the proposed three-order factor model is validated 
for grade 9, 10 and 11 school students separately. The fit indices of the model tested 
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for grade 9 [x2 (538) = 747.96, CFI= 0.96, RMSEA= 0.04], grade 10 [x2 (529) = 
694.65, CFI= 0.96, RMSEA= 0.03] and grade 11 school students are acceptable [x2 
(539) = 773.33, CFI= 0.94, RMSEA= 0.04]. Thus, the results are in line with our 
hypothesis that the same geometrical figure understanding structure holds for both 
the middle (grade 9) and the high (grade 10, grade 11) school students. It is 
noteworthy that some factor loadings are higher in the group of the high school 
students suggesting that the specific structural organization potency increases across 
the ages. Besides, the factor loadings in grade 10 and 11 regarding perceptual and 
operative apprehensions are lower than in grade 9, while the factor loadings for 
sequential and discursive apprehensions are higher than the corresponding loadings in 
grade 9. These findings indicate that as students grow up are based more on 
mathematical properties and less on perceptual laws and cues.  

CONCLUSIONS 
In this research study a comprehensive model for geometrical figure understanding 
was constructed and verified using structural equation modelling. Moving a step 
forward in relation with previous studies (e.g. Elia et al., 2009; Deliyianni et al., 
2009) which verified Duval’s (1995, 1999) taxonomy, the proposed model involves 
the whole spectrum of geometrical figure apprehension types, i.e. perceptual, 
discursive, sequential and operative apprehension. Specifically, structural equation 
modelling affirmed the existence of a model with nine first-order factors, four 
second-order factors and one third-order factor. The four second-order factors 
correspond to the perceptual, operative, sequential and discursive apprehension of the 
geometrical figure, respectively. Perceptual, operative, sequential and discursive 
apprehensions are regressed on a third-order factor that stands for the geometrical 
figure understanding. Besides, findings affirmed the existence of nine first-order 
factors revealing the differential effect of perceptual and recognition abilities, the 
ways of figure modification, the construction of a figure and inferences based on 
definition or on  procedures of proof. The model also suggests the invariance of this 
structure across middle and high school students. Thus, emphasis should be given in 
all the aspects of geometrical figure apprehension in both educational levels 
concerning teaching and learning. Findings reveal also that operative apprehension is 
the one which contributes the most to geometrical figure understanding. Taking into 
account that visualization consists only of operative apprehension (Duval, 1999) the 
important role of this kind of apprehension confirms empirically Duval’s (1999) 
opinion that there is not understanding in geometry without visualization. The 
specific result indicates also that teaching and learning should give emphasis in this 
kind of apprehension since visualization is not primitive. In fact, the use of 
visualization requires specific training, specific to visualize each register (Duval, 
1999). However, the model points out the important role of the other types of 
geometrical figure apprehension, as well, taking into account that even though 
coordination between them is needed each one is distinct from the other (Duval, 
1999). 
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In addition to extent our knowledge about students’ geometrical figure 
understanding, this study may give valuable information to curriculum designers and 
teachers of both middle and high school education. The elaborated model offers 
teachers a framework of students’ thinking while solving a wide range of geometrical 
tasks in a systematic manner within and between the two educational levels. 
Therefore, the proposed framework may be used as a tool in mathematics instruction 
and designing tasks on geometry in both middle and high school. The framework of 
this study appears to be useful from an assessment perspective, as well. It may 
provide teachers with valuable and specific information on students’ thinking in 
geometry based on prior knowledge and enable them to enhance this thinking by 
giving appropriate support through the tasks focused on the competences and 
cognitive processes for the geometrical figure understanding. 
Concerning age, it is important to stress that the structure of the processes underlying 
the geometrical figure understanding was invariant across the three age groups tested 
here. These findings enhance the validity of the proposed framework and support its 
potential to coherently describe and predict students’ understanding in geometry 
irrespectively of their grade, even during the transitional phase from middle to high 
school. However, findings reveal that some factor loadings are higher in the group of 
the high school students, indicating that overall cognitive development and learning 
take place. Furthermore, the results provide evidence for the existence of three forms 
of elementary geometry, proposed by Houdement and Kuzniak (2003). We may 
assume that in this research study, middle school teaching is mainly focused on 
Geometry I (Natural Geometry) that is closely linked to the perception. On the other 
hand, high school teaching gives emphasis to Geometry II (Natural Axiomatic 
Geometry) that it is closely linked to the figures and privileges the knowledge of 
properties and demonstration. Further research is needed to evaluate the feasibility of 
using this framework for developing effective instructional programs for the teaching 
of geometry in regular classroom situations in middle and high education. 
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METONYMY AND OBJECT FORMATION  
VECTOR SPACE THEORY  

Hamide Dogan, Ruben Carrizales and Persis Beaven 
University of Texas at El Paso 

 
Paper discusses the use of existing metonymies in reasoning with advanced 
mathematics tasks, specifically linear algebra topics, and the role of metonymies in 
the formation of a new object (metonymy).  
INTRODUCTION 
Various theories such as APOS (Parraguez and Oktac, 2010), Balacheff’s theory of 
conceptions and Fischbein’s theory of tacit models (Maracci, 2003) are used in 
interpreting and understanding the cognition of linear algebra concepts. We use the 
framework of metonymy as cognitive construct (Presmeg, 1998; 1997) in our 
interpretation of a linear algebra student’s interview responses. Studies on metonymy 
have mainly been at the pre-secondary level documenting the role of metonymy in 
reasoning and object construction. There have however not been very many studies 
documenting its function at the college level especially at the advanced level topics 
such as linear algebra and analysis. Linear algebra is one of the advanced 
mathematics courses with high degree of abstraction and symbolism, which require 
learners to be able to comprehend abstract representations. Our work identified the 
frequent use of metonymic reasoning while working with abstract language. In this 
paper, we discuss a linear algebra student’s reasoning with metonymies and his 
attempt to use these metonymies to construct another metonymy, thus a new 
mathematical object. 
Framework 
Work on metonymies mainly focuses on them as literary devices, rather than 
cognitive constructs that are used to encode information. Presmeg (1998; 1997) and 
Lakoff &Johnson (2000) on the other hand view metaphor and metonymy as 
cognitive structures. The act of using one object to stand for another is considered as 
functioning with metaphors or/and metonymies. Presmeg (1998; 1997) considers two 
types of metonymies. One of which, namely metonymy proper, is defined as “a 
figure by which one word is put for another on the account of some actual relation 
between the things signified” (Webster). An example of this kind is “We studied 
Gauss.”  Here, the word “Gauss” is used to indicate Gauss’ work (Gauss      Gauss’ 
work). Moreover, mathematical symbols can be put for various mathematical entities 
such as number families. The symbol “x” for example can represent real numbers    
(x      real number) even though the symbol x and the numbers are two unrelated 
objects. Another example of a metonymy proper may be a geometric image of a 
plane which may represent the mathematical attributes of vector spaces. The 
attributes of the mathematical object recognized from the image however are subject 
to the individual’s interpretation of it. The geometric image may in fact be both a 
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metaphor and a metonymy (Dogan-Dunlap, 2007; 2010). An individual may first 
consider the image as having similarities with various aspects of vector spaces, and 
after the initial consideration of the image as a metaphor, the same individual may 
begin considering the image as an object that is solely put for the concept itself. 
Second type of metonymy is considered as figure of speech. In this type, a part is 
used to represent the whole or vice versa (Presmeg, 1998). An example of this kind 
may come from the sentence, “I’ve got a roof over my head.” Here, the part “roof ” 
stands for the whole “house” (roof      house). An illustration of a circle taken to 
represent the class of all circles can also be considered as the metonymy of this kind. 
Presmeg (1997) however argues that this example may go beyond the figure of 
speech type to metonymy proper for the signifier may not be an element of the class 
represented. In other words, because the elements of classes are mental constructs, 
and an act of interpretation by an individual is involved in setting up the metonymy, 
individual may use the illustration to consider a class of circles that are not closely 
related to the figure. Hence, the illustration may become an example of a metonymy 
proper.  
Method 
The data discussed in this paper came from our work with two groups of students 
enrolled in three sections of a matrix algebra course at a Southwest University in 
USA—one traditional and the other two implementing an interactive web-module 
that provided the geometric representations of abstract linear algebra concepts. 
Students volunteered for a set of interviews conducted during spring 2009. The 
student whose interview responses discussed in this paper is from a module section. 
We use an alphanumeric name “SA21,” to refer to him throughout the paper. He is an 
Hispanic-American majoring in mathematics with a secondary education minor. He 
was interviewed toward the end of April, 2009. Interview began with a set of pre-
determined questions on basic vector space concepts such as linear independence, 
span and spanning set, and continued with follow-up questions. Pre-set questions 
were structured based on the learning difficulties reported in the literature (Dogan-
Dunlap, 2010; Maracci, 2003; Sierpinska, 2000). A qualitative approach, namely the 
constant comparison method (Glaser, 1992), is used to analyze the responses.	  	  	  	  	  	  	   

	  	  	  	  	  	  	  	  	  	  	  	  Existing	  Metonymies	  	  	  	  	  
	  	  	  	  	  Linear	  independence	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  New	  Metonymy	  (Mathematical	  Object)	  
	  	  	  	  	  Matrix	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Solution	  	  	  

	  	  	  	  	  Identity	  	  	  	  	  	  	  	  	  	  	  	  	  linear	  independence	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  	  xi	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  vector	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Values	  for	  linear	  combination	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
	  Linear	  combination	  form	  	  	  	  	  	  	  	  

 
           Figure 1. Metonymies displayed in SA21’s reasoning.  
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Results and Discussion 
Data provided in this section came from SA21’s interview responses to a question 
“Define the linear independence of a set of vectors.”  Interview began student sharing 
his definition of linear independence, and continued with follow-up questions. SA21 
shared two main notions with his metonymies embedded in for the linear 
independence/dependence of a set of vectors. One was his notion of linear 
combination. With this idea, SA21 was able to accurately identify linearly dependent 
sets provided that he could obtain a linear combination among the vectors of a set 
resulting in another vector of the set. The second idea he held throughout the 
interview focused mainly on the identity form of a matrix. Whenever a set with 
vectors given, where a linear combination is not easily accessible, SA21 proceeded 
directly (skipping vector equations) to representing vectors with a matrix and 
searching for an identity form via Gauss-Jordan elimination process, which is a part 
of one of the approaches included in the textbook (Johnson, Reiss and Arnold, 2001) 
and covered in class. Using the two notions, SA21 was able to accurately identify 
linearly independent/dependent sets. The two ideas however appeared to have been 
unrelated entities for the student. Throughout the interview SA21 was prompted by 
the interviewer to discuss his understanding of the two concepts by comparing his 
parametric representation of solutions (see figure 2, IV) and its connection to the 
linear combinations he provided. During his attempts, toward the end of the 
interview, he began to apply his existing metonymies, and came up with a new notion 
of how the two ideas may be related. We believe that SA21 was, at the start of the 
interview, unaware of any connections between the two objects, but toward the end 
he began to consider the potentiality. Before proceeding with SA21’s responses, in 
order to provide a context for the responses included in this section, let’s present one 
of the examples student gave.  After sharing his notion of a linear independence, 
SA21 was asked to give an example. He gave the set }
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explain how he identified this set as a linearly dependent one:
  

first, he considered a 
matrix whose columns were formed by the vectors of the set. After applying Gauss-
Jordan elimination process, he obtained the row reduced echelon form (rref) of the 
matrix, which is 

⎥
⎦

⎤
⎢
⎣

⎡

110
201 , circling the identity form as seen in figure 2, I. Furthermore, 

using the rref form he identified the set as linearly dependent reasoning that the last 
column of the matrix is depended on the first two columns since only the first two 
columns form an identity. He proceeded to write both parametric and vector 
representation of the solutions (see figure 2, IV, III respectively). Next, when asked 
to explain how his solutions may imply the linear dependence of the set, he wrote the 
linear combination 2u+v=w directly using the numerical entries of the vectors of the 
set ignoring his solution representations (see figure 2, II). In fact, many of the 
excerpts provided in the results section are revealing SA21’s attempts to explain how 
one may obtain a linear combination among vectors of a set using parametric or 
vector solution forms.  
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At this point, let’s share our perspective of how a linear combination can come 
from a solution. Consider the parametric representation of the solutions seen in figure 
2, IV. One solution would be (-2, -1, 1) with variable x3 assigned value 1. That is, this 
particular solution satisfies the vector equation x1u+x2v+x3w=0 for the vectors u, v 
and w, thus -2u-v+w=0 (This connection appeared to have been missing in SA21’s 
knowledge during the interview). Solving the equation for w, one would obtain the 
vector equation w=2u+v offering a linear combination of the vectors u and v for w. 
Considering x3=2, as another example, one would obtain the equation -4u-2v+2w=0 
leading	   to the vector u written as a 
linear combination of the other two 
vectors. That is u=-1/2v+1/2w. For 
the remainder of the paper, we will 
discuss SA21’s use of his existing 
metonymies while responding to 
interview questions and portray a 
picture of his effort to form a new 
metonymy (a mathematical object)
 

Existing Metonymies  
Linear Independence                     Linear combination 
SA21’s interview displays a frequent use of metonymies in his reasoning. Moreover 
these metonymies appear to constitute his knowledge of linear independence. As 
depicted in figure 1 above, linear combination form appears to be the overarching 
metonymy SA21 functions with. When student SA21 was asked to share his 
definition and his understanding of linear independence, SA21’s initial response 
indicated that he was considering the term “linear independence” to stand for “linear 
combination” ideas, which can be seen in the following excerpt (some of the phrases 
are made bold by the authors in order to put emphasis on):   
SA21:	  Okay	  ….I	  think	  of	  linear	  independence	  so…	  I	  think	  we	  have	  a	  set	  of	  vectors,	  so	  I’ll	  just	  write…	  like	  you	  
have	   u1,	   u2,	   so	   we	   can	   go	   all	   the	   way	   to	   however	   many	   we	   want.	   Then	   I…	   so,	   I	   know	   that	   they	   are	  
independent	  if,	  suppose	  we	  have,	  so	  we	  have	  a1	  which	  is	   like	  some	  real	  number…	  times	  an	  and	  we’ll	   just	  
keep	  on	  going…So	  I	  think	  that’s	  kind	  of	  close	  to	  what	  you	  wanted.	  Since	  this	  is	  the	  key	  component	  [pointing	  
to	  a1u1+a2u2+…+anun;	  	  a1,	  a2,…,an	  are	  real	  numbers].	  	  

Even though later in the interview SA21 stated that his initial description was for 
linear combination and not for linear independence, his responses throughout the 
interview however appeared to sustain the view that the metonymic use of “linear 
independence” for “linear combination” has been a more dominant factor in his 
reasoning.    
Matrix                 Set 

!
	  

Figure 2. View from SA21’s work from his 
interview 
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SA21 was regularly prompted to elaborate his responses. While elaborating, he 
integrated other metonymies into his reasoning. His metonymic use of “matrix” 
standing for “set” for example fits well with his overall notion of linear combination 
ideas. He consistently regarded matrices as representing vectors of sets, and looked 
for linear combinations among the columns. This can be observed in his response 
“So, then here, so I would to determine independence or dependence I know so I just 
build my coefficient matrix…” Here, SA21 goes straight to a matrix whose columns 
are the vectors of his set. Next, he points to the rref of this matrix and states that “it is 
linearly dependent.” When asked what he means by “it,” he says “ Uh… for the set? I 
would I don’t know if I would say for the set or for the matrix…” It is obvious that 
SA21 does not distinguish sets from matrices and that for him matrices are sets.  
Identity Form                   Linear independence 
SA21 continued to consider matrices as sets throughout the interview. While 
searching for linear combinations among the columns of a matrix, he introduced 
another metonymy, use of “identity form” for “linear independence.” In the 
conversation below, for example, when SA21 is asked to explain how he identified 
the linear dependence of a set without considering solution forms, he reasons with his 
metonymy of “identity form.” Here, he focuses on the identity form among the 
columns of matrices to identify “linear independence.” Furthermore, he uses these 
columns to come up with linear combinations.  
I:	  …you	   stopped	   you	   did	   not	  write	   it	   [meaning	   a	   solution	   set].	  You	  directly	   said	   this	   [pointing	   to	   a	   set	   of	  
vectors]	  is	  linearly	  dependent,	  and	  reasoning	  for	  that	  was?	  

SA21.	  …I	  cant	  express	  these	  other	  vectors	   [pointing	  to	  the	   last	   three	  columns	  of	  a	  2x5	  matrix]	  as	   identity	  
…What	  I	  would	  want	  is	  I	  want	  identity	  that	  is	  the	  key,	  for	  a	  3	  by	  3…we	  want	  something	  like	  this	  [meaning	  
an	  identity	  form]	  to	  me	  that	  [meaning	  identity	  form]	  says	  that	  that	  [pointing	  to	  the	  vectors	  of	  an	  identity	  
form	  in	  a	  matrix]	  is	  linear	  independent…	  	  

He next gave, after prompted to provide a solution set, the following response still 
functioning with his metonymy of identity form. 
SA21	  	  ...	  we	  have	  identity	  here	  [pointing	  to	  the	  first	  2	  columns	  of	  a	  2x3	  matrix],	  but	  this	  is	  not	  [points	  at	  the	  
last	  column	  with	  values	  (2,	  1),	  see	  figure	  2,	  I]	  and	  this	  means	  that	  this	  is	  dependent	  on	  this	  [meaning	  that	  
the	  last	  column	  of	  the	  matrix	  is	  dependent	  on	  the	  first	  two	  columns]	  so	  I	  like	  to	  write	  what	  we	  have,	  so	  I'll	  
write	  x1,	   I	   like	  to	  use	  xs,	  equals	  minus	  x	  sub	  2,	  x	  sub	  3,	   	  x	  sub	  2	  equals	  minus	  x	  sub	  3	  and	  then	  x3	  is	  our	  
independent	  vector	  [see	  the	  parametric	  representation	  in	  figure	  2,	  IV]	  So	  then,	  from	  here	  [pointing	  to	  the	  
parametric	  form	  seen	  in	  figure	  2,	  IV]	  I	  can	  just	  see	  that	  we	  have	  a	  dependent	  …	  linearly	  dependent	  set…	  	  

xi                            vector 
The excerpt above also reveals another metonymy, “xis” set forth for “vectors.”  This 
appeared to be the most influential metonymy in SA21’s reasoning. He, in fact, 
seemed to attribute symbols with fixed meanings and reason with these meanings 
throughout the interview. Initially in the interview, SA21 considered “ai “ as symbols 
representing known values in a linear combination but later reserved them for 
unknowns and chose the symbol “xi“ to stand for “vectors.” His preference to use xis 
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in representing vectors is apparent in the phrases “I like to use xs” and “x3 is our 
independent vector.” Furthermore, his persistence to attribute a fixed meaning to xis 
can also be observed in the excerpts below. In this response, SA21 forms a matrix 
using a set of vectors and labels each column as x1, x2, x3, x4 and x5 respectively as 

seen in . It is clear from these responses that student is using the 
symbols, x1, x2, x3, x4 and x5 to represent the five vectors of a set. 
SA21:	  Now,	  if	  I	  was	  to	  write,	  like	  how	  I	  did	  that	  last	  one	  [pointing	  to	  a	  set	  with	  three	  vectors]	  so	  you	  have	  I	  
have	  five	  vectors.	  So	  I	  have	  x1,	  x2	  [marking	  each	  column	  on	  a	  coefficient	  matrix	  with	  x1,	  x2,	  x3,	  x4	  and	  x5].	  
I’m	  thinking…	  so	  I’m	  already	  saying	  that	  I	  think	  I’m	  saying	  that	  my	  x1	  and	  x2	  are	  independent	  vectors…	  and	  
that	  x	  sub…Well,	  the	  way	  I	  can	  think	  about.	  It	  is.	  I	  know	  we	  would	  rewrite	  this	  as	  x1,	  x2,	  this	  is	  gonna	  equal	  
some	  x3	  	  and	  this	  is	  gonna	  be	  -‐2,	  -‐1,	  and	  1	  so	  then	  I	  just	  see	  that	  x3	  or	  our	  third	  vector	  will	  be	  dependent	  
that's	  kinda	  like	  how	  I	  think	  about	  it.	  	  

Formation of New Metonymy  
After prompted for further explanation on the potential connection between a vector 
equation and a parametric representation of solutions, toward the end of the 
interview, SA21 began comparing the roles of the symbols ai and xi. One can clearly 
observe, on his responses below, his metonymic use of the symbols and how each 
symbol continues to hold a distinct meaning. 
SA21:	  …we	  know,	  and	  these	  are	  unknowns	  [pointing	  to	  a1	  in	  a1u1+a2u2+…+anun=0].	  So	  I	  want	  to	  say	  that…	  I	  
think	  that	  a1	  and	  this	  [pointing	  to	  the	  parametric	  solution	  form	  in	  figure	  2,	  IV]	  should	  be	  the	  same,	  is	  that	  
what	  you	  are	  trying	  to	  say?	  	  

It is evident with the phrase, “is that what you are trying to say?” that up to this point 
in the interview, SA21 was not considering the symbols ai and xi holding the same 
meaning. After this point however he began to consider the potentiality of them 
relating. For example, in the excerpt below, while attempting to connect the two 
symbols, he uses his existing metonymies. He begins with reiterating his metonymy 
of xis representing vectors. Next, he uses the metonymies of “columns” for “vectors,” 
and “identity” for “linear independence.” That is, SA21 considers the first two 
vectors of a set (which forms the first two columns of a matrix) as linearly 
independent vectors reasoning with his metonymy of “identity form,” and concludes 
the linear dependence of the last three vectors of the set. He next, for the first time in 
the interview, begins considering xis as unknowns at the same time reserving them as 
signifiers for vectors. For SA21, xis now embrace two meanings. Furthermore, the 
two meanings appear to imply that xis may also be representing coefficient values for 
linear combinations.  
SA21:	  So	  I	  am	  really	  saying	  that	  I	  think	  of	  saying	  that	  my	  x	  sub	  1	  and	  x	  sub	  2	  are	  independent	  vectors,	  and	  

that	   ….or	   I	   would	   say	   these	   two	   [pointing	   to	   u1	   and	   u2	   in	   the	   set	   	   }
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because	  I	  put	  them	  in	  this	  order	  [implying	  they	  would	  lead	  to	  identity	  form].	  So	  I	  would	  say	  that	  these	  two	  
would	  be	  independent	  and	  these	  independent	  vectors	  these	  [pointing	  to	  the	  last	  three	  vectors	  in	  the	  set]	  
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dependent	   on	   these	   [pointing	   to	   the	   first	   two	   vectors	   in	   the	   set]	   so	   and	   I	   think	   this	   is	   telling	  me	   that	   I	  
wonder	   I	  was	   to	   put	   of	   x	   sub	   3	   like	   think	   some	   value?...I	   know	   this	   [pointing	   to 1x 	   and	   -‐2	   in	   the	   vector	  

equation	  
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]	  is	  my	  unknown	  for	  my	  very	  first	  vector	  this	  is	  the	  second	  one,	  this	  is	  the	  third	  and	  

fourth	   [pointing	   to	  x2,	  x3	  and	  x4	   in	   the	  same	  vector	  equation].	   So	   I	  wonder	   if	   I	  was	   to	  put.	   I	   think	  may	  be	  
telling	   me	   that	   if	   I	   was	   to	   look	   at	   it	   this	   way.	   so	   I	   am	   thinking	   if	   I	   want	   to	   express	   the	   third	   vector	  

[circling 3x 	  in	  the	  same	  vector	  equation]	  I	  wanna	  say	  this	  [pointing	  to	  u3	  in	  the	  set]	  is	  my	  third	  vector	  my	  x	  

sub	  3	  because	   I	  gave	   it	   this	  so	   I	  wanna	  say	  that	  suppose	   I	  wanna	  write	  this	  as	  a	  combination	  of	  this	   it	   is	  
telling	  me	  that	  if	  I	  was	  to	  have	  that.	  If	  I	  pick	  any	  value	  for	  x	  sub	  three,	  suppose	  I	  want	  two	  so	  I	  want	  x	  sub	  3	  

equal	  just	  some	  two.	  It	  is	  telling	  me	  that	  I	  can	  write	  a	  linear	  combination	  of	  this	  third	  vector	  [pointing	  to	   3x 	  
in	  the	  vector	  equation]	  as	  a	  combination	  of	  all	  of	  these	  [pointing	  to	  the	  vectors	  in	  the	  set	  above]	  then	  I	  can	  

substitute	  this	  two	  into	  here	  [pointing	  to	  the	  vector	  equation	  
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]	  so	  it	   is	  going	  to	  give	  me…since	  

this	  [pointing	  to	  -‐2	  in	  	  (-‐2,-‐1,1,0,0)]	  belongs	  to	  my	  first	  unknown.	  I	  wanna	  say	  that	  I	  can	  express	  u	  sub	  one	  
as	  a	  minus	  two	  u	  one	  [writes	  -‐2u1]	  …since	  we	  are	  adding	  them	  [meaning	  -‐2u1	  and	  –u2]	  it	  is	  telling	  me	  that	  [-‐
2u1–u2]	  will	  equal	  my	  u	  sub	  3	  my	  third	  vector...	  

	  

Our inference, in fact, is validated by the response below. In this excerpt, SA21 is 
using the values in (-2,-1,1,0,0) as coefficients to form a linear combination for the 
third vector signified by x3. Furthermore he is considering each value in (-2,-1,1,0,0) 
associated with one of the symbols x1,x2, x3, and x4 respectively. That is, he now 
identifies the first vector with x1 and considers the first component value, -2, as the 
coefficient value for the first vector and so on. 
SA21:	   I	   am	   focusing	   on	   since	   I	  want	   to	   express	   these	   I	   know	   somehow	   this	   has	   to.	   This	   [pointing	   to	   the	  

vector	  equation,	  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
1
1
2

3

5

4

3

2

1

x

x
x
x
x
x

]	   telling	  me	   that	   I	   can	  express	   this	   third	  vector	   [pointing	   to	  x3	   in	   the	   same	  

vector	  equation]	  somehow	  with	  a	  combination	  with	  these	  numbers	  [pointing	  to	  (-‐2,-‐1,1,0,0)]…	  

From this point on in the interview, SA21 consistently considered “solutions” 
(represented by parametric representations or vector forms) as values for “coefficients 
of vectors forming linear combinations.” This new notion appeared to have 
developed into a new metonymy and a new mathematical object for SA21.  

Conclusion 
There are many studies documenting metonymic reasoning at the pre-college level, 
but very little at the college level, especially in advanced mathematics topics. This 
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paper outlined one case to discuss the metonymic use at the college level, specifically 
with linear algebra topics. SA21’s interview responses provided a portrait of how a 
mathematics student may be functioning with metonymies. We observed among the 
particular student’s interview responses that metonymic reasoning may have led to 
the formation of a new metonymic knowledge. 

The case we discussed in this paper further supports the earlier studies in that 
metonymies appear to be cognitive constructs with meanings associated to (Presmeg, 
1998; 1997), not just literally devices to aid with recalling. Moreover, they appear to 
be instrumental in forming new knowledge thus need to be taken with utmost 
importance and paid close attention to their role in one’s knowledge of advanced 
mathematics concepts.  

Finally, this paper reported findings of one linear algebra student’s metonymic 
reasoning. They by no means can be taken as generalization to all linear algebra 
learners. Future research, utilizing the work reported here, is in need with a larger 
sample group.  
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THE EFFECTS OF PHYSICAL MANIPULATIVES ON 
ACHIEVEMENT IN MATHEMATICS IN GRADES K-6: A META-

ANALYSIS 
Jadwiga Domino, Medaille College, Buffalo, New York, USA 

Thomas L. Schroeder, University at Buffalo (SUNY), Buffalo, New York, USA 
 
The use of manipulatives in the teaching of mathematics is supported by theory, by 
professional organization’ recommendations, and by some research, but there is no 
conclusive evidence that their use results in higher achievement. The goal of this 
meta-analysis was to synthesize existing research comparing the effects of instruction 
using manipulatives to the effects of traditional mathematics instruction in the USA. 
A systematic search of databases and journals located 31 studies conducted between 
1989 and 2010 that met specified criteria for inclusion in the meta-analysis, The 
mean effect size for these studies was 0.50 with a CI of (0.34, 0.65), indicating that 
students using manipulatives scored statistically significantly higher than students 
who did not.  The effects of nine moderator variables were also investigated. 

INTRODUCTION 
For many years, the use of concrete physical manipulative materials in the teaching 
of elementary school mathematics has been encouraged by mathematics teacher 
educators, mathematics education researchers, and professional organizations of 
mathematics teachers such as the National Council of Teachers of Mathematics 
(2000). Often these recommendations have been supported by psychological theories 
put forward by Piaget (1965), Bruner (1977), or Dienes (1973).  Proponents of 
manipulatives have argued that manipulatives help students in the transition from 
concrete to abstract, that manipulatives help strengthen multiple representations, that 
manipulatives help students understand mathematics, and that manipulatives help 
increase students’ achievement in mathematics.  Others have noted, on the other 
hand, that many US teachers avoid using manipulatives and that students sometimes 
have difficulty using manipulatives effectively.  For example, Kaput  (1989) pointed 
out that one problem sometimes encountered when using manipulatives is that 
connections between actions on the manipulatives and actions on symbolic notations 
are unclear to students, and he hypothesized that the cognitive load imposed during 
activities with manipulatives may be too great for some students.  Other authors have 
made similar observations about the difficulties teachers may have in using 
manipulatives effectively, and some researchers and commentators have described 
these problems as cases of improper use of the physical materials in teaching. 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 273-280. Ankara, Turkey: PME.
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PREVIOUS REVIEWS OF RESEARCH ON MANIPULATIVES 
Since the 1970s many articles have been written about the effects of using physical 
manipulatives in teaching mathematics. In this section two narrative or “vote 
counting” reviews (Fennema, 1972; Suydam & Higgins, 1977) and three meta-
analyses (Parham, 1983; LeNoir, 1989; Sowell,1989) are discussed. 
Fennema (1972)  
Fennema (1972) examined 16 studies carried out from 1950 to 1966 on the 
effectiveness of learning mathematics with the use of concrete manipulatives for 
students in Grades 1-8.  Results from this review supported the use of physical 
manipulatives in the teaching of mathematics in the early elementary grades, 
especially first grade.  However, Fennema found that the use of physical models 
appears to neither improve nor hamper the learning of mathematical ideas for older 
children.  Fennema concluded that as children move through elementary school to 
higher grades, physical models should be replaced by symbolic ones since older 
learners’ background in mathematics is richer than that of younger learners.   
Suydam and Higgins (1977) 
Suydam and Higgins (1977) did a comprehensive review of studies on activity-based 
programs in mathematics conducted between 1933 and 1976 in Grades K-8. They 
provided an annotated bibliography of 235 studies and reviewed research studies on 
manipulative materials and on activity programs and modes of instruction.. 
Suydam and Higgins’ main research question was, “Does the use of manipulative 
materials help student achievement in mathematics?” To answer this question, they 
identified 23 studies conducted from 1957 to 1976 in Grades 1-8 comparing lessons 
in which manipulatives were used with lessons in which manipulatives were not 
used.  Approximately half (11 of 23) of the studies favored the use of manipulative 
materials; ten studies (43%) reported no statistically significant difference in 
achievement between lessons using manipulatives and those not using manipulatives; 
and two studies (9%) favored lessons in which manipulative materials were not used.  
After taking a closer look at these studies, Suydam and Higgins concluded, “Lessons 
using manipulative materials have a higher probability of producing greater 
mathematical achievement than do non-manipulative lessons” (p. 83). 
Parham (1983) 
A meta-analysis of of research on the use of manipulative materials in Grades 1-6 
was conducted by Parham in 1983.  Parham examined 64 research studies carried out 
between 1960 and 1982 that compared achievement in mathematics using 
manipulatives to not using manipulatives.  Parham’s study yielded 171 effect sizes 
for six selected study characteristics: assignment of students to teachers, control for 
author bias in evaluating achievement, number of treatment groups, overall study 
quality, source of study, and publication year.  Parham obtained an overall mean 
effect size of 1.03 for the achievement scores of students who used manipulatives as 
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compared to students who did not use manipulatives.  Parham interpreted this effect 
size to mean that, the average student who used manipulatives in learning of 
mathematics scored at approximately the 85th percentile  whereas the average student 
who did not use manipulatives scored at the 50th percentile.  Parham also conducted a 
step-wise multiple regression analysis to account for the variation in effects among 
the different studies.  The regression analysis indicated that grade level and type of 
study had a significant impact on the outcome.  Parham concluded that based on the 
average effect sizes obtained from her two types of analyses, the use of manipulative 
materials does have a positive effect on student achievement.   
LeNoir (1989) 
LeNoir (1989) conducted a meta-analysis on the effects of manipulatives on the 
acquisition, retention, and transfer of mathematical concepts from kindergarten 
through college.  LeNoir selected 45 studies (41 dissertations and four journal 
articles) carried out between 1958 and 1985 that met his selection criteria.  The 
independent variables in LeNoir’s meta-analysis were: form of publication, date of 
publication, grade level, length of treatment, length of retention period, experimenter 
bias, type of manipulative, subject matter studied, and type of use (teacher or student 
or both).  One or more effect sizes were calculated from each study, bias was 
removed, and correction was made for reliability of the instruments.   
LeNoir (1989) performed three sets of analyses on the data, one each for acquisition, 
retention, and transfer of a mathematical concept.  He also tested each set of effect 
sizes for homogeneity.  If a set was not homogeneous after outliers were removed, 
LeNoir subcategorized the set according to grade level, content area, and length of 
treatment/retention period.  He then repeated the testing for homogeneity.  As a result 
of these three sets of analyses, LeNoir had three specific findings: (1) Grades 10 to 
college students who used manipulatives in learning mathematical concepts achieved 
and retained more than students who did not use manipulatives, (2) Grades 6-9 
students who used manipulatives in learning measurement achieved more than 
students who did not use manipulatives; and (3) Grades 6-9 students who used 
manipulatives in learning various mathematical concepts retained more after 34-112 
days of instruction than students who did not use manipulatives. 
Sowell (1989) 
Sowell (1989) conducted a meta-analysis of studies conducted between 1954 and 
1987 in order to examine the effect of using concrete manipulatives on student 
achievement and attitudes toward mathematics in kindergarten through college.  
Sixty studies (38 journal reports, three unpublished reports, and 19 dissertations) fit 
the inclusion criteria which were: being a comparative study of manipulative use 
versus non-use, using manipulatives in learning mathematics, involving a treatment 
that lasted at least a week, and providing data from outcome measures. Seventeen 
studies (28%) were conducted in Grades K-2, 17 (28%) in Grades 3-4, nine (15%) in 
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Grades 5-6, 11 (18%) in Grades 7-9, and six (10%) at postsecondary level.  
Treatment length varied from one to 72 weeks, with a median of six weeks.  
Sowell (1989) conducted several analyses to determine the effects of treatment length 
and grade level on the acquisition of specific and broadly stated objectives for 
students who used manipulative, pictorial, or abstract methods.  The only result found 
to be statistically significant was that students in Grades 1-6 who used manipulatives 
for a whole school year or longer improved in their achievement of mathematics.  
Conclusions from previous reviews and meta-analyses 
The studies discussed above provide some evidence supporting the use of 
manipulatives in mathematics instruction, but the evidence is not consistently strong.  
Efforts to examine results by grade level, different mathematical topics, or in other 
categorizies have not yielded many positive and statistically significant findings. 
Although teacher educators and professional organizations have become increasingly 
vocal in advocating the use of concrete manipulative materials, especially since the 
Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) were 
published, we could find no meta-analyses of research on this topic published since 
1989. 

RESEARCH QUESTIONS 
The main research question addressed in this study is ”What is the effect of the use of 
manipulatives on achievement in mathematics for students at the elementary school 
level (grades K-6)?” In addition to the main research question, the effects of nine 
moderator variables are also explored.  

METHODOLOGY 
This study uses a meta-analytic approach as defined by Glass, McGaw, and Smith 
(1981) and elaborated by Lipsey and Wilson (2001) and Cooper (2010).  According 
to Glass et al., “The essential characteristic of meta-analysis is that it is the statistical 
analysis of the summary findings of many empirical studies” (p.21).  Meta-analysis 
involves the following steps:  

• formulating the research questions, 
• developing a coding form 
• gathering research studies by searching the literature,  
• carefully coding appropriate information in each research study, 
• calculating effect sizes, 
• analyzing the effect sizes using conventional statistical techniques, and  
• interpreting and reporting the findings 

 
In addition to formulating and delimiting the research question the meta-analysis is 
designed to answer, the researcher must also develop a set of criteria for deciding 
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which research studies to include in the meta-analysis.  The inclusion criteria for this 
study were the following:  

• Eligible studies must involve the comparison of manipulative use to 
manipulative non-use in mathematics classes.  Manipulatives must be used 
by the students, and not just by the teacher. 

• Eligible studies must include students in Grades K-6 only.   
• Each treatment group must contain at least ten students. 
• To be eligible, studies must report scores of achievement in mathematics.  In 

addition, sufficient statistical data must be reported to allow the calculation 
of an effect size (or sizes).   

• Eligible studies in this meta-analysis must use a treatment group / control 
group design.  The treatment condition could be any mathematics topic and 
teaching method in which the use of manipulatives was incorporated for at 
least one week.  The control condition should be the same mathematics topic  
and teaching method for the same amount of time, but not involving the use 
of manipulatives.  

• Only studies conducted in the United States were eligible.  
• Only studies published in 1989 or later were included.  
• Both published and unpublished studies were eligible for this meta-analysis,  

including articles published in refereed and non-refereed journals, 
unpublished dissertations, and unpublished works such as conference papers. 
 

A coding sheet was developed to record the key features of the studies considered for 
inclusion.  Examples of the characteristics coded include the following: form of 
publication, date of publication, grade level, student ability level, socioeconomic 
status of the students, gender, ethnicity, language, community type, measurement 
instrument(s), reliability of instrument(s), mathematical topic, method of instruction, 
type(s) of manipulatives used, length of treatment, amount of teacher training in the 
use of the manipulatives, teaching experience, sampling procedures, experimental 
design (pretest-posttest or posttest only), etc. 

FINDINGS 
Thousands of studies about manipulativs were located as a result of searching 
electronic databases, tables of contents of journals, and reference lists of articles. A 
total of 1035 abstracts were examined closely, but 885 were rejected after it was 
determined that they did not meet the criteria listed above. After carefully reading 
each of the remaining 143 studies, 111 studies were rejected, leaving 32, one of 
which was later determined to be an article based on a dissertation already included.  
A list of the final 31 primary studies is available from the authors.  Four of the studies 
included two dependent variables each, resulting in 35 different effect sizes. 
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Overall Effects of Manipulative Use 
The figure below shows the 35 sample sizes and effect sizes and their associated 95% 
confidence intervals.  The dashed vertical line indicates an effect size of zero. The 
effect sizes ranged from -0.22 to 1.52, effect sizes greater than zero favoring the 
groups of students who used manipulatives, and effect sizes less than zero favoring 
the groups that did not use manipulatives.  The median effect size was 0.52 and the 
unweighted mean effect size was also 0.52.  The weighted mean effect size was 0.50. 
An effect size this large is considered to be a medium effect size. Five effect sizes 
(14%) were negative, and 30 (86%) were positive.  The distribution of effect sizes is 
skewed positively.  
In the forest plot the wider confidence intervals are from studies that have smaller 
sample sizes and low precision, and the narrower confidence intervals are from 
studies that have larger sample sizes and high precision.  If the confidence interval 
includes zero, then the effect size is not statistically significant, but if the confidence 
interval does not contain zero, then the effect size is statistically significant at p<.05;.  
In this meta-analysis, about half of the confidence intervals (18 out of 35) do not 
include zero, which means that those effect sizes are statistically significant.  The 
very short confidence interval at the bottom of the forest plot represents the overall 
weighted mean effect size and its confidence interval.  It is short because it is based 
on the total sample size from all 35 dependent variables in the 31 studies. 
Analysis of Moderator Variables 
Moderator variables reflect characteristics of the primary studies that may affect the 
observed effect size in the study.  Although 25 different potential moderator variables 
were coded, only nine were analyzed because very few researchers reported sufficient 
information about the other potential moderators.  Moderators were tested using 
homogeneity analysis (Cooper, 2010) and the Qb statistic.  A significant Qb indicates 
that the mean effect sizes for the groups of studies vary more that would be expected 
by sampling error alone. All of the nine potential moderator variables had statistically 
significant Qb statistics, indicating that they accounted for significant amounts of 
variance in the mean effect sizes. 
The quality of the studies in this meta-analysis is reflected by the moderator variable, 
type of design (pretest-postest or posttest only). For the pretest-posttest studies the 
mean effect size was about half of that of the studies that employed a posttest only 
design (0.39 vs. 0.73). In both cases the mean effect sizes were significantly different 
from zero. Of the 35 effect sizes in this study, six were from published journal 
articles and 29 were from unpublished dissertations, theses, or ERIC documents. The 
mean effect size for published studies (0.64) was significantly larger than for 
unpublished works (0.47).  The correlation between year of publication and effect 
size was 0.051 (ns) indicating no linear relationship between these variables, even 
though the Qb statistic based on groups of studies in four intervals was significant. 
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Figure:  Total Sample Sizes, Effect Sizes, 95% Confidence Intervals, and Forest Plot 
for 35 Effect Sizes from 31 Studies. 

 

The effect of students’ ability levels was statistically significant, with learning 
disabled students and high ability students having the largest mean effect sizes (1.10 
and 1.07 respectively.  Students with low and average abilities showed lower effect 
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sizes (0.39 and 0.44), but the mean effect sizes for all four groups of studies were 
significantly different from zero.  The analysis by type of achievement instrument 
showed that the mean effect size was highest for researcher- or teacher-made tests 
(0.66) as compared with standardized tests (0.34) and textbook tests (0.40). 

CONCLUSIONS 
These results indicate moderate variability in the results of the primary studies, but an 
overall moderately strong positive effect of using manipulatives in elementary school 
mathematics instruction.  Teacher educators and mathematics supervisors can 
confidently recommend their use. 
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RBC EPISTEMIC ACTIONS AND THE ROLE OF VAGUE 
LANGUAGE 
Thérèse Dooley  

Centre for the Advancement of Science Teaching and Learning,  
St. Patrick’s College, Dublin City University  

 
In this paper, the RBC framework developed by Hershkowitz, Schwartz, & Dreyfus 
(2001) is used to analyse and describe construction of mathematical knowledge by 
primary pupils in a whole-class setting. The lesson concerned the development of an 
explicit formula that could be used to solve what is commonly termed the Handshakes 
problem. On the basis of mathematical principles developed for the lesson, 
transcripts of whole-class discussion were coded using the RBC framework. Some of 
these epistemic actions were inferred by the language used by pupils – for example, 
they tended to use linguistic hedges when conjecturing (building-with) but used 
language of greater certitude when constructing. It also emerged that vague 
language was central to the collaborative construction of mathematical ideas.  

INTRODUCTION 
In research related to mathematical abstraction, a theoretical framework that has 
received considerable attention is ‘Abstraction in Context’ (AiC) (Schwartz, Dreyfus, 
& Hershkowitz, 2009). The three epistemic or observable actions identified by 
Hershkowitz and her colleagues (Hershkowitz, et al., 2001; Schwartz, et al., 2009) as 
giving a strong indication that mathematical abstraction is taking place are 
‘recognizing’, ‘building-with’ and ‘constructing’. This RBC framework has been 
applied to the construction of knowledge by individuals (e.g., Hershkowitz, et al., 
2001) and by small groups of students (e.g., Hershkowitz, Hadas, & Dreyfus, 2006). 
In this paper I extend and illustrate its application to the construction of mathematical 
ideas in the context of whole-class conversation. Attention to the role played by 
vague language further enhances the analysis and description of the constructing 
process.  

THEORETICAL FRAMEWORK 
As mentioned above, the epistemic actions related to AiC are ‘recognizing’, 
‘building-with’ and ‘constructing’.  Recognition of a familiar structure occurs when a 
student realizes that the structure is a component of a given mathematical situation. 
This is not the first time that the student has met the structure. When ‘building-with’, 
the student is not enriched with new, more complex structural knowledge but is using 
available structural knowledge to deal with the problem at hand. This stage is evident 
when he or she is involved in an application task or making a hypothesis or justifying 
a statement. Constructing, the most significant of the epistemic actions that are 
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constituent of abstraction, is a process of building more complex structures from 
simpler structures. It involves the reorganization of mathematical elements so that a 
more refined structure emerges. In order to distinguish between ‘building-with’ and 
‘constructing’, it helps if the goals of the particular activities are considered. In 
constructing, students use a new mathematical structure to attain their goal. In 
‘building-with’, a goal is attained by combining existing structures. These three 
epistemic actions are not linear but nested. In other words, ‘recognizing’ (R) and 
‘building with’ (B) do not precede the process of ‘constructing’ (C) but are rather 
nested within it. Furthermore a construction (or C-action) might subsume not only a 
large number of R- and B- actions but also other C-actions.  
While the RBC model of abstraction described by Hershkowitz et al. (2001) was 
based on data derived from a teaching interview with one student who had a 
computerized tool at her disposal, the effect of peer interaction on abstraction was 
also investigated by the team.  Hershkowitz et al. (2006) found that the interactive 
flow of knowledge among groups of three students afforded the co-construction of 
knowledge. Hershkowitz (2009) has lent the term ‘collective abstraction process’ to 
the situation where different students contribute different building blocks to the 
constructing activity.  

RESEARCH PROCESS 
In order to investigate the construction of new mathematical ideas by pupils I 
conducted a ‘classroom design experiment’ (Cobb, Gresalfi, & Hodge, 2009) in three 
different primary schools  in Ireland. I taught 32 lessons in all to pupils aged 9 – 11 
years1. Data collected included field notes, audiotapes of whole-class and group 
interactions, pupils’ written artefacts, digital photographs of blackboard recordings, 
interviews with teachers and, in two of the schools, pupil diaries and post-lesson 
interviews with small groups of pupils2. Data collection and data analysis were 
interwoven. Retrospective analysis was conducted on micro- (between lessons) and 
macro-levels (between and after cycles of research in the three classrooms). For each 
lesson, I identified mathematical principles, that is, the constructs that pupils might 
be expected to develop over the course of a lesson, and these informed a hypothetical 
learning trajectory. Other principles arose a posteriori and were included in the 
analytic framework. Using the computer aided qualitative data analysis software 
package, Nvivo, I first coded all pupils’ turns as ‘R’, ‘B’ or ‘C’. While use of the 
principles provided a guiding framework, a difficulty I encountered was that I had to 
infer epistemic actions from pupils’ verbal protocol. Pupils’ use of ‘hedges’ and 
pronouns facilitated the coding process. 
Hedges and Pronouns 
A ‘hedge’ according to Lakoff (1973: 471), is a word “whose meaning implicitly 
involves fuzziness - … whose job is to make things fuzzier or less fuzzy”. A modifier 
such as ‘sort of’ is an example of a hedge that a speaker might use to indicate a 
degree of uncertainty around class membership, e.g., “A whale is sort of a fish”. 
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Rowland (2000) developed a taxonomy of hedges with reference to the discourse of 
mathematical conjecture. The first major type of hedge, a ‘shield’ indicates some 
uncertainty in the mind of the speaker in relation to a proposition. In the statement, “I 
think that a square might be a rectangle”, the speaker injects a level of vagueness into 
his/her mathematical assertion and thus implicitly invites feedback on his/her 
conjecture about a relationship between the two shapes. There are two types of 
shield: (a) a ‘plausibility shield’ (e.g. ‘I think’, ‘probably’, ‘maybe’) which can 
suggest some doubt on the part of the contributor that the statement will withstand 
scrutiny and (b) an ‘attribution shield’ (e.g. ‘According to’) in which some degree or 
quality of knowledge is implicated to a third party. The second major category of 
hedges are termed ‘approximators’. The effect of the approximator is to modify the 
proposition rather than to invite comment on it. One subcategory of the approximator 
is the ‘rounder’ which comprises adverbs of estimation such as ‘about’, ‘around’ and 
‘approximately’. The second type of approximator is the ‘adaptor’ – it indicates 
vagueness concerning class membership such as ‘somewhat’, ‘sort of’, e.g., “A 
square is sort of a rectangle”.  
In the analysis of lesson transcripts, it emerged that pupils tended to use this kind of 
vague language (e.g., ‘probably’ ‘might’ ‘I think’) when conjecturing, an action 
coded as ‘building-with’. In turn, the language of a constructing action was marked 
by greater certitude – in particular, pupils often used pronouns such as ‘it’ or ‘you’ to 
signify generalisation (Rowland, 2000). There follows an account of a lesson on a 
Chess problem (a variation of ‘Handshakes’) with a 4th class, in which the analytic 
framework is exemplified.3  

THE CHESS LESSON 
The Chess problem read as follows: 

In a chess league each participant plays a game of chess with all other participants. How 
many games will there be if there are 3 participants? 10 participants? 20? Is there a way 
to find the number of games for any number of participants? 

One way to solve this problem is to consider the number of games played by each 
person. In the case of 8 participants, the first person plays a game of chess with seven 
others, the second with six more, the third with five more and so on. The solution for 
eight people then is 7 + 6 + 5 + 4 + 3 + 2 + 1 giving a total of 28. Of particular 
relevance to this Chess problem were three lessons entitled ‘Friendship Notes’ that I 
had taught one month previously to this class and which I described at PME 33 
(Dooley, 2009). These lessons concerned the number of notes applicable in the event 
of each individual in a group of size n giving a note to each other individual in the 
group. In the second of these lessons, most pupils generated an explicit rule (that is, 
n(n -1)). Both Chess and Friendship Notes are characterised by non-reflexivity (that 
is, no element of a set relates to itself). The main difference between the activities lies 
in the property of symmetry.  ‘Chess’ is symmetrical because if A relates to (‘plays a 
game with’) B, then it follows that B relates to A. However, in ‘Friendship Notes’, if 
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A relates to (‘sends a note to’) B, the reciprocal relationship is not implied. 
Therefore, in a group of size n, the number of friendship notes is double the number 
of handshakes. The function mapping n (the number of people) to y (the number of 
games) in the Chess Problem is y = n(n !1)2 . This might emerge from inspection of 
the relationship between the n and y values as listed in a table of values or if 
consideration is given to the symmetric nature of the activity. 
The lesson extended over two periods (Chess 1 and Chess 2), each having a three-
part structure – introductory whole-class session, group work and final plenary (when 
results were discussed). In Chess 1, pupils were introduced to the problem and in the 
concluding plenary session, they explored the number of games in the case of 20 
competitors. One pupil, David, conjectured that the number of games for 20 
competitors might be found by multiplying 20 by 19 and halving the product. 
However, he was unable to verify this formula structurally.4 
In Chess 2, some revision of the previous day’s work took place. In the ‘group work’ 
phase of the lesson, pupils considered the number of games required for 11 to 20 
competitors – as extension, they were asked to calculate the number of games for 40 
and 100 competitors. The phase of the lesson that is examined hereunder occurred 
during the final plenary session and concerns the development of new ideas by one 
pupil, Enda. However, his construction had embedded within it the contributions of 
others in the class and thus their input is also described and analyzed. 

ANALYSIS OF ENDA’S CONSTRUCTION OF INSIGHT 
Enda’s construction of mathematical insight in these lessons could be traced in the 
whole class discussion. In Chess 1 he made some faulty conjectures - for example, he 
thought that the solution for 20 competitors might be found by adding 45 (the number 
of games for ten competitors) and 19.  
Towards the end of Chess 2, when an explicit rule for any number of competitors was 
being discussed at a plenary session, David developed an explicit formula for Chess, 
that is, “Multiply it by the number less … and then half it”. Shortly after, Enda made 
a connection between Chess and the Friendship Notes activity and this led to 
justification of David’s formula at a structural level. Since I coded his contribution  
as ‘Construction’ in relation to the mathematical principles for the lesson, a transcript 
of this phase of the lesson is now presented, and analysed in more detail. 
Turn Transcription 5 Pupil Action Epistemic 

Action (RBC) 

639 Enda: It looks like … it’s pretty much the very same as the 
friendship cards, it seems kind of like that. 

Enda made a 
connection with 
‘Friendship Notes’. 

Building-
with 

640 TD: Right, Enda, do you remember the friendship notes, 
that’s a good thing. Do you remember the friendship notes? 
Do you remember what you did for the friendship notes? 
What did you do for the friendship notes? Do you remember 
the rule? Barry? 
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Turn Transcription 5 Pupil Action Epistemic 
Action (RBC) 

641 Barry: It’s kind of the same thing as, eh, you wouldn’t have 
to do themselves so there’s going to be one less. 

Barry referred to the 
non-reflexive nature 
of both activities.  

Building-
with 

642 TD: Ok, so but the rule … according to David, when we were 
doing the friendship notes, [   ] For example in friendship 
notes if there were three children than how many notes would 
there be for three children? … Do you remember? … Right, 
Barry? Does anyone remember how many notes there were 
for three children in the friendship notes? … Yeah? 

  

643 Colin: Em, six. Colin recalled 
number of friendship 
notes for six 
children. 

Recognising 

644 TD: Six but see in the chess game it’s only three. So why is it 
a bit different? Does anyone know why it’s a bit different? 
[…] Myles? 

  

645 Myles: Em because in chess you will just have to play them, 
if they played you one time then you have kind of played 
them once. 

Myles referred to 
symmetric nature of 
‘Chess’. 

Building-
with 

646 Ch: Ah!  

647 Myles: In friendship notes you have to play them kind of 
again so like you give them your note and they will have to 
… they will still give back you a note. 

Myles referred to the 
asymmetric nature of 
‘Friendship Notes’. 

648 TD: Ok, so once you play the game you don’t play it back, 
isn’t that what you are saying? 

  

649 Myles: Yeah.   

650 TD: That’s what you are saying. Yes?   

651 Colin: Em, well cos in the friendship notes you have to give 
two because if there were three you would have to give one 
to each person … 

Colin referred to the 
asymmetric nature of 
‘Friendship Notes’. 

Building-
with 

Building with 
652 TD: Hm, hm.  

653 Colin:  … and everyone has to give one to each person, so 
it’s the same as three by two. 

 

654 TD: Hm, hm.  

655 Colin: Eh, and in chess you only have to play them once even 
if they challenge you. 

Colin referred to 
symmetric nature of 
‘Chess’. 

656 TD: Hm, hm.  

657 Colin: So eh …  

658 TD: And what does that mean for the chess game then? What 
does it mean for the chess … rule? 

 

659 Colin: Eh, you don’t … you don’t play them twice.  

660 Ch: Ah!   

661 TD: Ok, so what happens then, what’s the rule for the chess? 
Enda? 
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Turn Transcription 5 Pupil Action Epistemic 
Action (RBC) 

662 Enda: Eh well, I actually definitely agree with David’s way 
by doing the friendship notes, the same way as the friendship 
notes and halving it … 

Enda made a 
connection between 
David’s formula and 
‘Friendship Notes’. 

Building-
with 

663 TD: Hm, hm.  

664 Enda: … because all of the things we get in that are half what 
we get in the chess thing. 

 

665 TD: Hm, hm. Building-
with 

666 Enda: So I definitely agree with David’s way by multiplying 
by one number less and halving it. I definitely agree with that 
now. 

Constructing 

Epistemic Actions 
Initially Enda’s conjecture about a possible relationship between Chess and 
Friendship Notes was marked by uncertainty: 

639 Enda:  It looks like … it’s pretty much the very same as the friendship cards, it 
seems kind of like that. 

He used two adaptors, ‘pretty much’ and ‘kind of’ which, according to Rowland 
(2000), indicate vagueness of class membership – in this instance vagueness about 
the relationship between the two activities. Enda’s ‘it seems’ is an example of 
plausibility shield indicating an awareness on his part that his conjecture might be 
false. In the next pupil turn, Barry also made use of an adaptor: 

641 Barry: It’s kind of the same thing as eh you wouldn’t have to do themselves so 
there’s going to be one less. 

His uncertainty also centres on the extent of the similarity between the two activities 
as he spoke confidently about the unreflexive nature of both (that is, the need to 
multiply n by n – 1). Myles’ input (turns 645 and 647) also indicates some level of 
uncertainty but this seems to be more around the verbs he has chosen to use: 

645 Myles:  Em because in chess you will just have to play them, if they played you 
one time then you have kind of played them once. 

His ‘kind of’ (both here and in his next turn) appears to relate to his concern about 
the appropriateness of the verb ‘played’ and to the idea that both competitors ‘play’ 
simultaneously. However, he has discerned the essential difference between the two 
activities (that is, the symmetric property) and has thus built-with Enda’s proposal. 
Colin further elaborated on this input by ratifying it with an example (that is, three 
players). His input in turns 651, 653, 655 and 657 contains no adaptors or plausibility 
hedges, suggesting greater conviction on his part. Interestingly, a hallmark of the 
assertions made by Barry, Myles and Colin is the presence of the pronoun ‘you’. This 
‘you’ was not used to address me or others in the class but rather as a pointer to 
generalities – what happens ‘every time’ (Rowland, 2000). Enda, who has 
demonstrated in previous contributions that he is not easily convinced by superficial 
arguments, has now been persuaded that David’s rule is viable. He has justified this 
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on the basis that all the numbers in the Chess are half those in Friendship Notes 
(although his description of this in turn 664 is inaccurate). While his initial conjecture 
about the connection between Chess and Friendship Notes was tentative, his 
assertions in turns 662, 664 and 666 are marked by certitude (“I definitely agree ..”) 
and a lack of vague language. Although it is not completely clear that he has taken on 
board the structural justification offered by other pupils in the preceding turns, his 
contribution in turn 666 is coded as ‘construction’ because it is an articulation of the 
relationship between the formula provided by David and ‘Friendship Notes’. Nested 
within this construction are the ‘building-with’ actions of Enda himself and of Barry, 
Myles and Colin. It thus exemplifies the distributed and nested nature of RBC. 
Although the above analysis concerns only a few pupils, the construction can be 
traced back to David’s earlier development of a formula and to a constructing activity 
(involving these and other pupils) that took place in Friendship Notes. The analysis 
therefore supports the applicability of the RBC framework to a whole-class context. 

CONCLUDING REMARKS 
In previous research involving the RBC framework, Williams (2002) identified the 
use of common language rather than precise mathematical language as indicating the 
presence of an amorphous mathematical idea as opposed to one that is well 
structured. In this paper I have developed this idea further by utilizing the categories 
of vague language generated by Rowland (2000). What is shown is that vague 
language fosters construction of new mathematical ideas. It is not that such language 
always implies ‘building-with’ but, in analysis based on mathematical principles, it 
facilitates RBC coding. Furthermore, because it allowed pupils to suggest ideas 
without fully committing to them, other pupils appeared to feel free to build-with 
them further. The development of this ‘conjecturing atmosphere’ (Mason, 2008) 
where ideas are tested and later modified makes particular demands of a teacher, 
particularly in the context of whole-class conversation, and such demands are in need 
of further analysis. 
 
Notes:  
1 Some lessons extended over more than one class period. 
2 Video data were not collected due to ethical constraints. 
3 Pupils were aged 9 – 10 years. 
4 One form of generalization (empirical) is achieved by considering the form of the results, whilst the other (structural) 
is made by looking at the underlying meanings, structures or procedures (Rowland, 1999). 
5 Transcript conventions are: TD: the researcher/teacher (myself); Ch: a child whose name I was unable to 
identify in recordings; … : a short pause; […]: a pause longer than three seconds; [   ]: lines omitted from 
transcript because they are extraneous to the substantive content of the lesson. 
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UNJUSTIFIED ASSUMPTIONS IN GEOMETRY  
Tali Dvora & Tommy Dreyfus 

Tel-Aviv University, Israel 
 
We investigated unjustified assumptions (UAs) made by students when proving 
geometric statements. UAs can originate in partial content or logical knowledge. 
UAs can be used in a forward or a backward way. We thus asked how UAs arise and 
in what ways they are used in the proof. Data were collected by means of written 
questionnaires and interviews. The main findings are that UAs arose when students 
misused theorems or assigned extraneous properties to geometric objects, and that 
UAs were made with the purpose of reaching a critical step in the proof.  

THEORETICAL BACKGRUND 
Geometry and Proof 
Research has shown that high school students as well as university students have 
great difficulty with the task of proof construction (Chazan, 1993; Moore, 1994; 
Weber, 2001): Students don't have an appropriate conception of what constitutes a 
proof; many students believe that verifying a theorem by specific instances is a 
sufficient proof; others believe that a proof of a theorem is valid if and only if it 
follows the format of 'two column proof' taught in geometry (Healy & Hoyles, 1998). 
Moore (1994) reports on students who do not understand the theorems and the 
concepts involved and misapply them. They lack the language needed to express 
mathematical ideas and they do not provide the justification for each step in a proof. 
When learning theorems, students often incorporate information contained in a 
specific diagram as part of a theorem which later constrains the application of the 
theorem. In such cases, concepts are introduced by prototypical examples. According 
to Hershkowitz (1989), and Yerushalmy and Chazan (1990), these prototypes may 
induce inflexible thinking, thus preventing the recognition of a concept in a non-
standard diagram. Students’ definitions may include irrelevant characteristics of the 
diagram. Reliance on prototypes may also lead to the expansion of the definition to 
include non-critical attributes or to its narrowing by omitting critical attributes. Apart 
from these content aspects, students may lack more general skills and strategies that 
influence the proving process. Among these are the availability of working 
backwards and forwards, using symmetry and other patterns, and eventually adapting 
the plan for the proving process. Weber (2001) names this knowledge 'strategic 
knowledge', i.e. the ability to distinguish helpful proof steps from irrelevant ones.  
These difficulties often lead students to assume properties that are not given or not 
essential when proving geometric statements. Dvora and Dreyfus (2004) called such 
assumptions Unjustified Assumptions (UAs); we focused on UAs that were based on 
diagrams and asked whether the way in which a statement was presented (with or 
2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 289-296. Ankara, Turkey: PME.
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without diagram) had an effect on UAs. The findings were that in almost each task, 
the diagram affected students' way of thinking and making UAs.  
Since then, we have expanded the investigation by looking at UAs that have other 
causes such as partial content and logical knowledge. The aim of the study presented 
here was to investigate how UAs arise and how they are used in the proof.  

METHOD 
Data were collected by means of a written questionnaire and by means of individual 
and pair interviews. Questionnaires have been administered to 93 students in Israel 
who were enrolled in a full-year 10th

 grade geometry course. Eight individual 
interviews and four pair interviews have been conducted. More questionnaires will be 
administered and more interviews will be conducted during the coming months. 
Questionnaire 
The goal of the questionnaire was to investigate to what extent students made UAs 
when proving geometric statements. The questionnaire consisted of six geometric 
statements and proof tasks: two on triangles, two on quadrilaterals and two on circles. 
The tasks were chosen on the basis of the following criteria: 

• The tasks were within the field of experience of the students and of a level 
they could be expected to prove in class or in an examination. The tasks 
were chosen to be identical or similar to tasks from the students’ textbook.  

• The tasks had the potential for inviting UAs; for every task, an a priori 
analysis was carried out on the expected UAs.  

• The tasks were varied so that different types of UAs could be expected. 
Three versions of the questionnaire were used. Each version included two proof tasks 
from different topics. This was intended to make the questionnaire appropriate for a 
45 minute lesson while eliminating the influence of any particular task or topic. The 
first task of the questionnaire (see Figure 1) will be analysed in detail below. 
 

Description of the task UAs expected on the 
basis of a priori analysis 

Given: BD=AC, AB⊥BC, 
DC⊥BC  
Prove: DE=AE 
 
 

-  ABCD is a rectangle 
-  ∠ABE=∠ DCE 
-  BE=ED, AE=EC 

Figure 1: Task 1 



2-291PME 35 - 2011

Dvora, Dreyfus 

 

PME 35 - 2011 1- 3 

Interviews  
Two kinds of interviews were conducted: Individual interviews following the 
administration of the questionnaire and pair interviews while answering the 
questionnaire. The individual interviews were audio-recorded and the pair interviews 
were video-recorded. All interviews were transcribed. 
The goal of the individual interviews was to investigate students' explanations of how 
they dealt with the questionnaire tasks. Therefore, these interviews were conducted 
right after the students had finished answering the questionnaire.  
The pair interviews provided a live opportunity to observe students while they were 
dealing with a task in order to get information about the process they were going 
through: how they used the data, how they drew conclusions, why they made the UA, 
whether they had disagreements and how these were resolved.  
We analysed both types of interviews with the purpose of investigating how UAs 
arise and how they are used in the proof. The analysis related to the reasons for 
making the UA, the missing content constructs that might have led to the UA and the 
ways the UA was used in the proof: in a forward or in a backward way. We interpret 
as forward students’ actions based on to the given data, and we interpret as backward 
students’ setting a goal and planning their proof to reach this goal. In addition, we 
were looking for different types of UAs such as: UAs that originate in adding 
extraneous data or in misapplying theorems or UAs that indicate a jump in the proof. 
For each interview, we created a profile based on this analysis. These profiles 
included information on the nature of the UA, how it arose and how it was used in the 
proof. 
FINDINGS AND DISCUSSION 
In this paper, we present findings about task 1 only. Questionnaires including task 1 
were administered to 30 students. Among them, 17 produced incorrect proofs, 14 of 
them making UAs (see Table 1). 
 

Unjustified assumptions Number of students 
i)            i)  ADIIBC  

ii)  ABCD is a rectangle   
iii) AD⊥AB, AD⊥DC      
iv) E is the midpoint of BD 

7 
4 
2 

                  1 

Table 1: UAs in task 1 
The following discussion of an individual interview and a pair interview with 
students about task 1 is intended to shed light on students’ UAs when dealing with 
task 1. 
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Individual interview with Ro 
Ro was interviewed individually after having answered the questionnaire. She 
referred to her UA right away at the beginning of the interview:  

2 Ro: I am given that AC=BD and that AB⊥BC and DC⊥BC, so ∠B=∠C=900 
and I have to prove that AE=DE. I know already that ∠B=∠C=900 so I 
drew an auxiliary line AD, that AD is perpendicular to AB and to DC. 

10 Ro: and then ∠A=D=900 so I get that ABCD is a rectangle since all the angles 
are 900, and in a rectangle the diagonals are congruent and bisect each 
other so AE=DE. 

The UA that Ro made was that line AD was perpendicular to AB and to DC (line iii 
of Table 1). Ro added extraneous data to those that were given.  
How did the UA arise? 

12 Ro: I saw in my mind a rectangle with one side missing so I drew AD and I 
realized that I can prove that half of the diagonals are congruent. 

13 In: When you read the task, you thought of reaching a rectangle because… 
14 Ro: because its diagonals bisect each other 
15 In: and then you added AD so that AD is perpendicular to AB and to DC? 
16 Ro: that is right 
17 In: so you can get two right angles? 
18 Ro: Yes 

Lines 10, 12 and 14 demonstrate that Ro made the UA with the purpose of reaching a 
critical step in the proof; she was directed by the goal of proving that ABCD is a 
rectangle. For this goal she needed three right angles, she was already given two (∠B, 
∠C) and the UA provided two more (∠A, ∠D). Then she concluded that AE=DE due 
to the property of the diagonals in a rectangle.  
While making the UA, Ro neglected the given data that AC=BD. She needed to add 
extraneous data to compensate for this. During the interview, it seemed that Ro was 
unaware of making the UA; she was very sure, her answers were quick and she had 
no doubts about her proof [20]: 

19 In: How would you evaluate your proof? Do you think it is correct? 
20 Ro: I believe it is very good. 

How was the UA used in the proof? 
21 In: You saw at the beginning that it is worthwhile to prove a rectangle? 
22 Ro: Yes, I saw it right away from the diagram 

Ro used the UA in order to reach a specific stage in the proof; she claimed to prove 
that ABCD was a rectangle and then concluded that AE=DE. The UA was made 
while thinking backward from the goal.  
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Pair interview with Mi and Ne 
Mi and Ne were interviewed while attempting to prove the statement in task 1. They 
made two UAs. These two UAs do not appear in Table 1 since they have so far been 
observed only in this interview. The first UA was assuming that BE=CE. This UA 
arose after they tried but did not manage to prove that ABCD is a rectangle [27-81]: 

27 Ne: We need to say that this [ABCD] is a rectangle and then the diagonals 
bisect each other or a parallelogram, I don't know 

35 Ne: Ah, no, wait. In what quadrilateral the diagonals bisect each other? 
36 Mi: in a parallelogram and in a rectangle  
61 Ne: so, I think let's prove first that this is a parallelogram and then it is a 

rectangle  
63 Ne: so how we prove it is a parallelogram? 
74 Ne: we do not remember well, we want to prove a parallelogram and then a 

rectangle 
81 Ne: we do not remember the theorem; I mean the properties that prove a 

rectangle  

They then abandoned this idea and looked for another one.  
93 Mi: Maybe we can prove congruence? 
94 Ne: No  
95 Mi: congruence, congruence 
96 Ne: no, we can subtract congruent segments from congruent segments and 

then look, we can write, look, AC minus, AC minus CE equals BD minus 
BE and then we get that AE equals DE, right? What do you say? 

97 Mi: Ah, right because it says this [AC=BD] is equal  
98 Ne: subtracting congruent segments from congruent segments  
99 Mi: but how do you know that this [CE] and this [BE] are congruent and this 

[AE] and this [DE] are congruent?  
100 Ne: subtracting congruent segments from congruent segments  
101 Mi: but how do you know that this [CE] and this [BE] are congruent, I mean 

all of them… 
102 Ne: because it says that BD=AC  
103 Mi: o.k., but how does it tell you that this [CE] and this [BE] are congruent  
106 Ne: you know that AC=BD and then you can subtract congruent segments 

from congruent segments, got it? 
107 Mi: but you do not know that CE=BE=DE 

Ne came up with the idea of subtracting congruent segments from congruent 
segments. The goal was to prove that AE=DE; AC=BD was given, so Ne proposed to 
argue that AC minus CE equals BD minus BE. This statement relied on the 
assumption that BE=CE. This is considered an UA since it constitutes an addition of 
extraneous data of congruence to given lines that neither follows from previous 
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statements nor relies on given properties. However, the students’ final proof was not 
based on this UA because Mi objected to it and confronted Ne [99, 101, 103, 107]. 
The excerpt 93-107 illustrates that Mi seemed to understand the conditions under 
which the rule of subtracting segments should be used, i.e. not only should the larger 
segments be congruent but the smaller ones should be as well. That is why Mi was 
not convinced by Ne's argument. 
How did the UA arise? 
Mi and Ne could not prove that ABCD is a rectangle. They explicitly said that they 
did not remember what properties were needed to prove a rectangle [74, 81]. One 
may claim that this lack of content knowledge had no direct influence on making the 
UA, but it seems that it did at least have indirect influence: Due to this lack, Ne had 
no tools to deal with the task and therefore assumed that BE=CE.  
This nature of the UA was using the rule of subtracting congruent segments from 
congruent segments without regard for the conditions under which this rule is valid; 
Ne neglected the condition that CE and BE had to be congruent and was satisfied 
with the fact that only AC and BD were congruent [96]. 
As mentioned above, the students’ final proof was not based on this UA since Mi 
objected to it. We therefore have no definite answer to the question how the UA was 
used in the proof. From the conversation between the girls, we interpret that the UA 
was made in a backward way: Ne wanted to prove that AE=DE, and since it was 
given that AC=BD the idea of subtracting segments seemed tempting: It immediately 
provided the statement to be proved. 
The second UA that Mi and Ne made was that the following pairs of angles are 
complementary angles (i) ∠BAC and DAE, and (ii) ∠CDB and ∠ADE (see Figure 
1). This UA arose during the following exchange: 

119 Ne: Do you have something better to offer? 
120 Mi: Ahh, I think I know  
121 Ne: What?  
122 Mi: I know, I know  
123 Ne: What?  
124 Mi: listen, we can prove congruence, triangle ABC and triangle BDC 

Mi and Ne then tried and succeeded to prove that these triangles are congruent, 
although Ne seemed not to see to what use this could be put: 

139 Ne:  But how is this going to help us? 
140 Mi:  because then you can do, this [∠BAC] equals to this [∠CDB], right? 
141 Ne:  well  
142 Mi:  you can, then you can subtract, no, then you do, look, look, you write AD 

it is an auxiliary line and then you say that ∠BAC=∠CDB, o.k.?  
143 Ne:  well  
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144 Mi:  O.k. and then you s.., then you say that, then it has to be that 
∠DAE=∠ADE 

145 Ne: Why? Why it has to be? You do not know that these angles are congruent  
146 Mi: it has to be 
147 Ne:  why? 
148 Ne:  maybe, ah, there is this theorem, if two angles are congruent, then their 

exterior angles are congruent too 
149 Mi:  What? What? 
150 Ne:  if the interior are congruent, then the exterior are congruent too 
151 Mi:  what is exterior? 
152 Ne:  here, this is exterior [∠DAE is exterior to ∠BAC] 
153 Mi:  well, yes, because they are complementary angles  
154 Ne:  Can we write it down?  

After proving that triangles ABC and DCB were congruent, Mi and Ne concluded 
correctly that ∠BAC=∠CDB. From this, Mi and later Ne concluded ∠DAE=∠ADE. 
This conclusion is unjustified, and hence an assumption. (We already note that it was 
also used, shortly afterwards, as an assumption – see below.) The reason they gave 
for making this assumption was that "complementary angles to congruent angles are 
congruent". The students treated those pairs of angles as complementary angles. The 
UA arose and was made with the purpose of reaching a critical step in the proof: Mi 
was directed by the goal to prove that ∠DAE=∠ADE [144, 146]. She insisted that is 
“has to be”, and we interpret this as expressing that she realized it was a critical step 
since it would lead immediately to the conclusion that triangle DAE is isosceles, i.e. 
AE=DE which was the statement to be proved. Mi and Ne were looking for a 
justification for this assumption until Ne came up with the idea of the exterior angles 
[148, 150, 152]. Mi appeared to be relieved that a justification was available and 
offered only a few doubts [149, 151] before accepting it [153].  
Proving congruence between triangles ABC and DCB was a good decision of Mi. 
However, both Mi and Ne were lacking strategic knowledge (Weber, 2001), i.e. the 
ability to distinguish helpful proof steps from irrelevant ones; they did not conclude 
that ∠ACB=∠DBC which would have led to BE=CE and then to AE=DE. Instead 
they concluded that ∠BAC=∠CDB, which was not only not helpful but was a step 
towards making the UA.  

This UA was used in order to reach the stage that ∠DAE=∠ADE which immediately 
provided the statement to be proved. This UA, like the previous ones, seems to have 
been made in a backward way, and then used accordingly, though the situation is 
more complex in this case. Mi correctly claimed that ∠DAE and ∠ADE had to be 
congruent – she probably realized that this would let her complete the proof. Hence, 
she set a goal to prove this statement; the decision to prove triangle congruence 
seems to have been taken as a step to reach this statement: she probably saw right 
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away that she would get that ∠BAC=∠CDB and then expected she could somehow 
prove that ∠DAE=∠ADE.  

SUMMARY 
In this paper, we showed that students make different types of UAs when proving 
geometric statements: UAs that are based on adding extraneous data to given 
geometric objects, and UAs that are based on applying theorems under wrong 
conditions.  
Furthermore, we showed how UAs arise: UAs arise when students want to reach a 
critical step in the proof, when students lack the necessary content knowledge, when 
students use theorems and rules without considering the conditions under which they 
are valid, when students neglect some given data, or when students lack strategic 
knowledge. Of course, combinations of these circumstances also occur when making 
UAs.  
Finally, we showed how UAs are used in the proof: UAs are used in reaching the 
statement to be proved either in a forward or in a backward way. In a forward way, 
students move on according to what they get from the data, while in the backward 
way, students set a goal and plan their proof to reach this goal.  
While this study provides insight into several aspects of UAs, further research is 
needed to investigate which missing knowledge elements entice students to make 
UAs, to distinguish and confirm different categories of UAs, and to identify 
characteristics of tasks that invite UAs. 
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EMBODIED COGNITIVE SCIENCE AND MATHEMATICS 
Laurie D. Edwards 

Saint Mary's College of California 
 
The purpose this paper is to describe two theories drawn from second-generation 
cognitive science: the theory of embodiment and the theory of conceptual integration. 
The utility of these theories in understanding mathematical thinking will be 
illustrated by applying them to the analysis of selected mathematical ideas and 
processes, including proof. The argument is made that mathematical ideas are 
grounded in embodied physical experiences, either directly or indirectly, through 
mechanisms involving conceptual mappings among mental spaces. 

INTRODUCTION 
The goal of this paper is to clarify the central concepts and potential utility of two 
existing theories from outside of mathematics education for understanding 
mathematical thinking. The "outside" theories derive from what is known as "second 
generation cognitive science," which includes neurophysiology, emotion, perception 
and the body in its models of cognition, in contrast to first generation cognitive 
science, which built a model of thinking based on the metaphor of mind as computer, 
employing rules, physical symbols and productions systems (Lakoff & Johnson, 
1999). In this paper, we will look at the theory of embodiment in cognitive science 
(Johnson, 2007; Lakoff & Johnson, 1999), and the theory of conceptual integration 
(Fauconnier & Turner, 2002). The first theory takes a broad view in connecting 
cognition and meaning to bodily origins and existence, and the second offers a 
specific set of analytical tools and proposed mechanisms for explicating how new 
meanings are generated from existing mental structures. The paper presents a 
description of each theory, and also relates them to other influential theories in 
mathematics education. 

EMBODIMENT THEORY 
Embodiment theory offers an answer to the question of how meaning arises, and of 
how thought is related to action, emotion and perception. Embodiment theory 
proposes that meaning and cognition are deeply rooted in physical, embodied 
existence, on at least three levels: 
1. Phylogenetic: At the level of biological evolution, our particular capacities for 
perception, emotion, cognition and the construction of meaning are both enabled and 
constrained by the current evolutionary state of our bodies, including our modes of 
movement, organs of perception, and nervous systems. Furthermore, this state is the 
result of millennia of interaction with various environments, in which the 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 297-304. Ankara, Turkey: PME.
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capabilities that permitted survival (including pattern-noticing, inference and 
problem-solving) were selected for and refined over evolutionary time. 
2. Ontogenetic: At the level of the individual organism, a child is born with (or soon 
develops) a set of basic perceptual and cognitive capabilities as a result of the 
evolutionary processes described above. Recent research in infant cognition has 
demonstrated what could be called "proto-arithmetic", in that they can detect 
changes in small numbers of objects as well as "impossible" changes in the number 
of objects displayed to them (Deheane, 1997). The development of the individual, 
however, is also based to some degree on his or her specific physical experiences 
within a particular environment. Thus, embodiment theory would predict that 
children who learn mathematical concepts and procedures with hands-on 
mathematical manipulatives would have a different conceptualization of them than 
those who are taught only with symbols and two-dimensional representations. 
Given the fact that humans are bipedal, symmetric with respect to left and right, with 
a distinct front and back, and live in a world with gravity, a relatively small 
collection of common perceptual/cognitive constructions that seem to be common 
across cultures has been delineated. These constructions are called image schema, 
and are defined as "recurrent, stable patterns of sensorimotor experience...[that] 
preserve the topological structure of the perceptual whole [and have] internal 
structures that give rise to constrained inferences" (Johnson, 2007, p. 144). A simple 
example of an image schema derives from the fact that we stand in a vertical 
relationship to the ground, and that if we stack objects one on top of another, the pile 
becomes taller. As a result, we develop the image schema UP IS MORE, which is 
used, unconsciously, in numerous situations where we want to express an increase, 
both linguistically and in conventions of representation. We say, for example, "The 
numbers go up" when we mean, "The cardinality of the numbers increases." In the 
Cartesian coordinate system, the y-axis displays numbers that increase "upwardly," 
although, in theory, this convention could have been reversed. 
A second example of an ubiquitous image schema is the SOURCE-PATH-GOAL 
schema, which is based on our basic experience of goal-directed movement, which 
originates at a particular physical location, proceeds along a given path (possibly 
encountering obstacles or detours) and arrives at the goal location. Thus, image 
schema are common (but generally unconscious) building blocks of cognition 
available to all thinking humans living on earth. This construct from embodiment 
theory has already been used in the analysis of mathematical ideas (e.g., Lakoff & 
Núñez, 2000).  
3. Microgenetic: At the level of individuals in interaction with each other, or the 
immediate environment, embodiment is also omnipresent. Humans must use the 
bodies we have to do things in the world, and also to engage in social interaction and 
symbolic production. Although in studying human interaction and symbolic 
production, many have reduced these phenomena to the words exchanged or written 
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inscriptions produced, these things do not happen without the engagement of 
concomitant modalities, including physical motion, bodily stance, gesture, facial 
expressions, prosody and rhythm. These modalities, in particular gesture, are now 
being analyzed as part of a move toward a more complete understanding of human 
cognition and communication (Edwards, 2008; McNeill, 1992, 2005). 
Embodiment proposes a theory of meaning that contrasts with both traditional 
linguistics, in terms of the definition of meaning, and with a representationalist, 
information-processing view of the mind. Rather than an objectivist view of meaning 
as a connection between concepts in the mind and objects in the world, mediated by 
symbols and words that somehow "carry" meanings, the theory of embodiment sees 
meaning and thought as emerging from interactions between the knower and the 
environment. Similarly, cognition is not seen as the manipulation of internal 
representations of the outside world by an internal "processor" or viewer, but as the 
dynamic interaction of patterns of neural activation, responding to perceptions (or 
equivalent re-imaginings) and preparing for action.  There is support from recent 
neuroscience for an embodied theory of cognition and mathematics, whether from the 
discovery of mirror neurons that are activated when one simply thinks of an action as 
well as when one enacts it (Gallese & Lakoff, 2005), or the fact that the area of the 
human brain responsible for counting is the same as that which controls the fingers 
(Dehaene, 1997). 
Johnson (2007) summarizes what he calls an "embodied, experientialist view" of 
meaning, based both on the work of pragmatists philosophers like Dewey and 
William James, as well as empirical work in contemporary cognitive science: 

Meaning ... arises through embodied organism-environment interactions in which 
significant patterns are marked within the flow of experience. Meaning emerges as we 
engage the pervasive qualities of situations and note distinctions that make sense of 
our experience and carry it forward. The meaning of something is its connections to 
past, present, and future experiences, actual or possible (p. 273). 

One of the central principles of embodiment theory, as well as of pragmatism, is that 
of continuity. Under this principle, thinking is an activity that is fundamentally 
connected to other life activities, like moving, perceiving and feeling. In addition, 
human cognition may differ in complexity from that of other living things, but it 
arises under the same circumstances described above by Johnson, and shares many 
common features (see, for example, research on counting abilities among primates 
and certain birds (Dehaene, 1997)). The principle of continuity breaks down the long-
held distinction between body and mind, where image schemas and other concepts 
are products of the interaction between the thinker and the world, not disembodied 
abstractions. The mind is the on-going cumulative trace, in the form of neural 
patterns, of experienced and imagined action. Under the principle of continuity, 
"concrete" thought is not ontologically different from "abstract" thought, and 
mathematics is not ontologically different from other realms of thought. Instead, one 
of the tasks of cognitive science is to delineate how it is that the mechanisms that 
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have allowed people to survive and thrive have also supported the creation of art, 
language, monuments, music and mathematics.  
The principle of continuity has relevance to theories of mathematical thinking. Under 
some theories, there are different kinds of mathematical thought, some embodied and 
some not (e.g., Tall, 2007). However, the theory of embodiment, as originally 
conceived in contemporary cognitive science, does not recognize kinds of thinking 
that are ontologically distinct in this way. Although there are certainly more and less 
complex kinds of thinking, all cognition is "built" using the same set of mechanisms 
and working from the same "raw materials;" all thinking is ultimately embodied. The 
next section considers cognitive mechanisms utilized in the construction of ideas and 
inferences, whether in mathematics or in other domains of thought. 

THE THEORY OF CONCEPTUAL INTEGRATION 
The theory of conceptual integration was developed in order to explain how ideas 
emerge from other ideas, and how the inferential structure of one domain can be 
imported or mapped to another, permitting logical reasoning and the construction of 
more complex networks of thought out of simpler ones. The theory is based on the 
construct of "mental spaces" (Fauconnier & Turner, 2002). Mental spaces (which can 
be compared to the notion of "schema" in cognitive psychology) are partial 
conceptual structures, made up of elements and relations among them, derived from 
and elicited by our experiences and interactions. Fauconnier and Turner (2002) call 
them "small conceptual packets constructed as we think and talk, for the purposes of 
local understanding and action" (p. 40). Examples of mental spaces from 
mathematics are legion: we are presumed to construct mental spaces corresponding to 
everything from whole numbers to polygons to proofs (Lakoff & Núñez, 2000). The 
interesting question is how these mental spaces relate to each other, and how they are 
constructed. It is assumed here that the construction of mental spaces is constrained 
and facilitated by multiple influences, including the physical body, social interactions 
and cultural contexts. Taking these influences as a given, we focus on a specific 
mechanism for creating new mental spaces, conceptual integration. 
As described by Fauconnier and Turner (2002), conceptual integration “connects 
input spaces, projects selectively to a blended space, and develops emergent 
structure” (p. 89). In other words, conceptual integration (also referred to as 
conceptual mapping or conceptual blending) begins with one or more mental spaces, 
designated as "input spaces." Selected elements, inferences and relationships within 
the input space(s) are mapped to a newly created mental space, referred to as a 
conceptual blend or blended space. An example of a conceptual blend in mathematics 
is the number line (Lakoff & Núñez, 2000). A number line is neither strictly an 
arithmetic entity nor a geometric one - it has elements drawn from both domains. It 
conceptually "maps" numbers to points on a line, blending properties of numbers (for 
example, that 2 is greater than 1) with properties of points on a line (for example, that 
point B is to the right of point A). The resulting conceptual blend (that is, the mental 



2-301PME 35 - 2011

Edwards 

 

PME 35 - 2011 1- 5 

 

space for "number line") has a useful emergent inferential structure that is not found 
in either of the input spaces. 
A conceptual blend that maps a single input space ("source domain") to a single 
output space ("target domain") is called a single-scope blend or a conceptual 
metaphor (Fauconnier & Turner, 2002). An example of a conceptual metaphor for 
mathematical proof, based on the image schema SOURCE-PATH-GOAL, is shown 
in Figure 1.  

Source	  Domain:	  Journey	   	   	   	  	  	  	  	  Target	  Domain:	  Proof	  

 
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  

	  

	  	  	  	  	  	  	  	  	  	  	  

Figure 1. The "A Proof is a Journey" Metaphor 

RELATIONSHIPS AMONG THEORIES 
Embodied cognitive science, including the theory of conceptual integration, came 
onto the mathematics education scene at a time in which well-established theories 
were already doing useful work. These theories included radical constructivism, 
socio-cultural theory, various specific theories of reification (process-concept 
transformations), semiotics, and information processing theory. The theory of 
conceptual integration is based on the principles of embodiment, but offers specific 
mechanisms to account for how our embodied experiences become reflected in our 
thought and language (where language is taken broadly to include such things as 
gesture, written inscriptions and external imagery). 
But how do these theories related to the major theories in mathematics education? At 
a foundational level, embodied cognition is incompatible with any theory that views 
meaning as an objective coupling between the external world and internal 
representations, or cognition as a set of rules that could be instantiated in silicon chips 
just as well as in the brain/body. In embodied cognitive science, cognition requires an 
active organism (a brain within a body) engaged in ongoing interaction and 
adaptation within an environment, and thinking, even logical reasoning, is ultimately 
rooted in physical experience. Thus, certain perspectives from information processing 
psychology  (for example, the notion that reasoning can be modelled solely by the 
manipulation of propositions) would contradict embodiment theory. 

Premises	  
Conclusion	  
Sequence	  of	  logically	  linked	  statements	  
from	  premises	  to	  conclusion	  
Process	  of	  generating	  the	  correct	  
sequence	  of	  statements	  
Generating	  a	  statement	  not	  relevant	  to	  
the	  desired	  sequence	  	  
	  

 

Starting	  location	  of	  journey	  
Destination	  
A	  path	  that	  physically	  leads	  from	  starting	  
location	  to	  destination	  
Process	  of	  finding	  the	  correct	  path	  
	  
Moving	  along	  a	  sub-‐path	  that	  does	  not	  
lead	  to	  the	  destination	  or	  the	  correct	  
path	  ("dead-‐end")	  
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However, embodiment is compatible with many other theories used in mathematics 
education. In my view, the situation is like that of the blind men grasping the 
elephant, with each theory giving only part of the whole picture. Embodiment is 
consistent with the tenets of radical constructivism that hold that there is no "gods-
eye," objective view of reality, but only the individual's constructions based on his or 
her experience. However, it proposes a grounding for these constructions in physical 
experience. It is likewise consistent with models of intellectual development in which 
more complex thinking and capabilities emerge from simpler ones. The theory and 
constructs of conceptual integration offer a mechanism for the construction of new 
ideas (mental spaces) that is compatible with schema theory. However, Piaget's 
discontinuous stage theory, in which strict demarcations between levels of conceptual 
development are proposed, would be rejected, on the principle of continuity.  
The theories of embodiment and conceptual integration are also fully compatible with 
socio-cultural theory, situated cognition, and theories that emphasize discourse. 
Embodiment and conceptual integration acknowledge that the environment in which 
cognition develops in humans includes other people, as well as the cultures and 
institutions they have created. It also stipulates that language and discourse are a vital 
part of the medium within which thought develops. Mental spaces and conceptual 
blends do not emerge in isolation from the surrounding culture; in fact, they fully 
reflect (and contribute to) that culture. Returning to proof as an example, for many 
secondary school students in the United States, a proof must be presented in a two-
column format, with statements on the left and justifications (in the form of already-
proved theorems) for the statements on the right. This convention, which is culturally 
specific, would form part of their mental space for proof.  
What the theory of embodiment insists is that although intellectual constructions, 
including mathematical ideas, are socially constructed, they are not unconstrained or 
arbitrary. Instead, they are made possibly by, grounded in, and constrained by 
physical realities (Nuñéz, Edwards & Matos, 1999). As noted in the introduction, 
these realities include the way our bodies and brains have evolved, how they develop 
throughout our life spans, and how we learn through multiple modes of engagement 
with our environment. From the perspective of embodied cognitive science, the 
human intellectual product, mathematics, is grounded in embodied physical 
experiences, either directly or indirectly, and grows through the mechanism of 
conceptual integration as well as other transformations of mental spaces (Fauconnier 
& Turner, 2002). 
The recent work utilizing the theory and tools of semiotics in the analysis of 
mathematics shares the goals of embodiment theory and conceptual integration, to 
understand the construction of mathematical meaning, including attention to the 
important roles of shared signs and symbols. However, embodiment looks for 
meaning beyond relations among signs or within semiotic systems, and is careful to 
avoid the objectification of these human constructions. That is, signs and symbols are 
not characterized or investigated as formal systems, or as the "carriers" of meaning 
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(indeed, the idea that any kind of linguistic expression can "carry" meaning is a 
pervasive objectivist metaphor). Instead, according to embodiment theory, the 
physical (and possibly even the social) world is first experienced at a non-linguistic 
level, and such experiences are needed in order to attach meaning to culturally 
created semiotic systems. 
Anna Sfard (1994) and others have highlighted an important construct in 
mathematics, the idea that mathematical activities and processes are often 
reconceptualized and treated as "objects" by mathematics learners and thinkers. Sfard 
has called this conceptual process "reification" or "objectification", and has proposed 
that this process is the source of a basic metaphor in mathematics, that of the 
mathematical "object" (loc. cit.). From the point of view of embodiment theory and 
conceptual integration, it is more likely that the situation is reversed. That is, our 
knowledge of physical objects and actions provides a foundation for thinking about 
and "manipulating" (metaphorically) the results of abstract mathematical processes as 
if they were objects. In fact, Sfard herself, in a later paper, stated that, "the existence 
of some special beings (that we call mathematical objects) implicit in all these 
questions is essentially metaphorical." (2000, p. 322). Font, Godino, Planas, & 
Acevedo (2009) have elaborated what they call the "objectual metaphor" in 
mathematics: "The objectual metaphor is a conceptual metaphor that has its origins in 
our experiences with physical objects and permits the interpretation of events, 
activities, emotions, ideas... as if they were real entities with properties" (p. 985). 
This metaphor allows someone carrying out mathematical work to treat symbols as 
well as abstract ideas as objects, thus radically reducing the cognitive load that would 
be required if every mathematical sign had to be grounded in its logical or prior 
mathematical definition. 
This paper has only sketched the general outline and basic constructs of the theories 
of embodiment and conceptual integration, and has attempted to bring the ideas of 
these theories into (metaphorical) contact with those of other influential theories in 
mathematics education. One of the goals of carrying out research and building theory 
in mathematics education is, presumably, to reach a more complete understanding of 
mathematical thinking, learning and teaching. Although we may be a long way from 
seeing the whole elephant, I would argue that to reach, eventually, an integrated and 
comprehensive theory of mathematical thinking we shall need to incorporate the kind 
of knowledge gained from contemporary work in embodied cognitive science. 
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INCORPORATING LESSON STUDY IN PRE-SERVICE 
MATHEMATICS TEACHER EDUCATION 
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Tokyo Gakugei University United Graduate School 

 
This study elucidates the potentialities of incorporating the essential elements of 
Lesson Study in the pre-service mathematics teacher education in the desire to 
ameliorate student teachers’ facility in realizing their theoretical knowledge in the 
actual practice of teaching. A single case of student teaching program in a fuzoku 
school in Japan was highlighted in the hope to elevate certain ruminations on how 
Lesson Study might be accessed and nurtured in pre-service teacher education. 

INTRODUCTION 
Field experiences, most popular of which is the student-teaching practicum, subsist as 
a very important component of virtually every teacher education program in the 
world. It is deemed to expose pre-service teachers face-to-face with the complexity of 
the classroom; and in the process, allow them to meld theory into practice. However, 
there always seems to have a certain schism between the theoretical preparation of 
teachers and the practice of teaching as especially tangible during the first times the 
(student) teachers stand in front of the classrooms. Student teachers usually struggle 
to reach an acceptable level of harmony between their conceptions and their teaching 
practice, not to mention the limitations and conditions imposed by the school context 
(Georgiadou-Kabouridis & Potari, 2002). In this light, interventions that would 
facilitate the transition from the theoretical phase of learning to be a mathematics 
teacher to the beginning phase of the actual practice of teaching must be instituted in 
mathematics teacher education environments.   
The perceivable distinctiveness between the positioning of prospective teachers as 
learners in the university and as student teachers in placement schools allows a stance 
for teacher education stakeholders to probe the relationships and transitions that 
dwell in both contexts. Consequently, the theoretical preparation in university courses 
and the prospective teacher’s practicum in schools must be able to engender a 
compatible and reciprocating relationship. Drawing from the sociological research 
traditions, Ensor (2001) utilized the notion of recontextualizing in order to explicate 
the movement of a teacher from methods courses into actual classrooms. The notion 
of recontextualizing highlights the “transformation of discourses as they are 
disembedded from one social context and inserted into others” (Ensor, 2001, p. 297). 
On the other hand, deliberating on the upbringing of every prospective mathematics 
teacher as organic individual entities has implications for the implementation of 
teacher education curriculum. Cobb (1994) articulates that attention must be given to 
teacher cognition and the conditions and opportunities that facilitate their learning in 
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order to understand how teachers learn to teach. This intimates that in teacher 
education, it is also necessary to consider the (student) teachers' learning processes. 
This includes considering their previous knowledge, beliefs, and conceptions, and 
valuing the role of their activity and reflection on the activity; promoting the 
construction of meaning through classroom interactions, between instructor and 
student teachers and among student teachers; and appreciating the heuristic value of 
an investigative dimension in learning as well in the teachers' work (Ponte, 2001). 
This study explores how some elements of ‘Lesson Study’ (LS) are being utilized as a 
powerful intervention in order to facilitate the transition of prospective mathematics 
teachers from being students in methods courses into undergoing actual teaching 
practice in schools during the student teaching program. 

LS IN THE STUDENT TEACHING PROGRAM AT A FUZOKU SCHOOL 
LS is	 a teacher development model that originates from Japan. The history of LS 
dates back from the Meiji period (1868-1912), when it was developed as an 
educational practice which function was to enable the teachers to develop and study 
their own teaching practices (Baba, 2007, p. 2). LS is a process that follows a cycle 
by which teachers of mathematics in the same community of practice work together 
by identifying a goal or a problem for the lesson, collaboratively developing a lesson 
plan, implementing the lesson with observation by colleagues and other experts (also 
called the research lesson), analytically reflecting on the teaching and learning that 
occurred, and revising the lesson (Stigler & Hiebert, 1999). It must be noted that each 
of the components or steps in the LS cycle signifies indispensable features for the 
anticipated fruition of the activity. It is not surprising, therefore, that in the course of 
replicating the practice in other cultures, the inclination towards superficial 
adaptation of the structural or procedural features is readily perceivable. Thus, it 
would be imperative to clarify the deeply rooted principles behind LS by explicating 
on its essential elements. 
The simple premise behind conducting LS is that in order to improve teaching, the 
most effective place to do so would be in the context of a classroom lesson (Stigler & 
Hiebert, 1999). Moreover, Isoda, Stephens, Ohara and Miyakawa (2007, p. xvi) 
identify several underlying ideas about the practice of LS: (1)  teachers can best learn 
from and improve their practice by seeing other teachers teach; (2) there is an 
expectation that teachers who have developed deep understanding of and skill in 
subject matter pedagogy should be encouraged to share their knowledge and 
experience with colleagues; and (3)  while the focus appears on the teacher, the final 
focus is on the cultivation of students’ interest and on the quality of their learning. 
Furthermore, Watanabe (2002) expresses that through the LS experience, teachers 
realize possibilities wherein they could examine all aspects of their teaching, such as 
the curriculum, lesson plans, instructional materials, content, teaching strategies, etc.  
The essence of LS lies in the amount of intellectual and affective engagement of its 
participants who engender a spirit of collaboration – working on a shared goal that 
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they themselves generated. A great deal of contextual generation and edification of 
knowledge, together with critical reflection, are elicited and nurtured in the process. 
The main objective of doing LS is not being able to come up with the best “lesson”; 
instead, the lesson just serves as a vehicle towards achieving intersecting goals on the 
improvement of teaching and student learning, and/or evincing contextual 
mathematical knowledge for teaching. Moreover, LS is driven by making sense of a 
range of resources, starting from student abilities, curricular pre-requisites, school 
context, reform-oriented research recommendations, etc. 
In the Japanese educational system, national universities that offer courses in 
Education have attached institutions that serve as laboratory schools for student 
teachers, among some of their functions. These schools are called Fuzoku Schools, 
which exemplify a well-defined function in the pre-service (and in-service) teacher 
education in Japan. Whereas LS is widely performed in in-service mathematics 
teacher education in Japan, the student teaching program in Fuzoku schools integrate 
some vital elements of LS as a part of the practicum.  
It is believed that undertaking an investigation on how LS is being incorporated and 
nurtured in pre-service mathematics teacher education in Japan will contribute to the 
ongoing reflections on how pre-service mathematics teacher education could be made 
relevant towards a smooth transition of perspective teachers into becoming in-service 
mathematics teachers. In this regard, this particular investigation tackles a focal 
research question: What skills, competencies, or habits of mind are needed to be 
cultivated in pre-service mathematics teacher education in order for perspective 
teachers to successfully participate in LS? 

METHODOLOGY 
This inquiry is a part of a larger phenomenological study that seeks to understand the 
underlying principles behind the accession of LS in pre-service mathematics teacher 
education. Prior to undertaking this particular investigation, the researcher has 
already been amply acquainted to the social context of the practice by observing a 
number of LS in several schools in Japan for about four years. In this report, a 
pre-service teacher was observed daily in his activities as a student teacher (ST) over 
the span of the practicum, which lasted for four weeks. As the objective of the 
researcher is to make an inquiry regarding pre-service teacher education in 
mathematics as a specialized area, the subject for this investigation was purposively 
selected to be a prospective middle school mathematics teacher. The other criterion 
for the selection of the subject was the willingness to be a part of this investigation. 
The placement school was a Fuzoku Middle School of a national university named 
Saitama University, which is located in Saitama (a prefecture that borders the north 
of the Tokyo Metropolitan Area). It is composed of three year levels, each with four 
sections and an average class size of 40. 
The observation allowed the researcher to become acquainted with the contextual 
environment of the practicum, and to be able to generate conjectures regarding the 
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underlying principles that are engendered in the program. Moreover, the interviews, 
informal conversations, and the analysis of the activities that the ST underwent and 
several artifacts (the ST's observation notes, daily journal, etc.) were utilized as rich 
sources of data that would facilitate in the crystallization of findings. The interviews 
with the subject and the cooperating teacher (CT) were audio-taped, along with the 
reflection meetings and the Research Lesson (RL, an important component of LS) 
undertaken by the ST. Though it was not possible for the researcher to videotape all 
the activities and the RL, some photographs were taken when they were allowed. Van 
Mannen’s (1990) phenomenological method was employed in analysing data from 
interview transcripts, observations, and pertinent artifacts. Significant statements, 
utterances, and actions were highlighted to provide an understanding of how the 
participants experienced LS in the Fuzoku school. From these, clusters of meanings 
were formulated into the emergent themes that pertain to skills, competencies, or 
habits of mind that were nurtured and cultivated in the ST during the practicum. 

SUMMARY AND FINDINGS 
The subject for this inquiry was assigned to the CT who handles all the four classes 
of first year; and he was to handle only one section. On the other hand, another ST 
was also assigned to the same CT; she was supposed to teach another class. The CT 
and the two STs together formed a group, wherein, with the guidance of the CT, they 
observed, commented, discussed, and reflected on each other's lessons. This small 
community of practice simulated a small LS group. The ST engaged in a series of 
classroom observations, lesson preparations, actual classroom instructions, and 
hanseikai (reflection meetings held after every lesson done by the STs). A RL was 
also undertaken towards the end of the practicum. All the 7 STs in mathematics 
observed each other’s lessons, together with all the 3 CTs, and 2 mathematics teacher 
educators from the university. They all participated in the hanseikai after all the 
lessons were delivered. Indeed, as the elements of LS are embedded in the 
programme, it appeared that it’s already in the tacit core of beliefs and practices of 
the ST. He said, “I didn’t treat the RL as something special. But I really believe that I 
always have to think of the students’ learning, be it a RL, or just a simple day.” 
It can be said that the strong linkage between the mathematics teacher educators of 
the university and the teachers at the Fuzoku Middle School has been greatly 
beneficial in nurturing a shared common teaching culture between the institutions. 
Thus, the process of recontextualization and enculturation were well coordinated, 
fortifying the socialization of STs from the context of the university into the teaching 
culture of the school. For one, the requirements in university courses were arranged 
so as not to interfere with the rigorous obligations of the ST in the whole duration of 
the practicum. Nevertheless, as it was apparent that the ST was able to develop most 
of the practices that the CT was usually doing in the classroom, the propensity of the 
apprenticeship model of learning to be a teacher in the student teaching programmes 
surfaced. In any case, it must be noted that the teachers of Fuzoku schools themselves 
are actively and continuously participating in research activities (e.g., LS) that 
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espouse reform-oriented views on subject matter teaching and learning, which, in one 
way or another, addresses the danger of socializing STs into continually adhering to 
traditional ways of teaching. 
Four interconnected themes that pertain to skills, competencies, and habits of mind 
were elevated from the investigation: (1) making sense of powerful resources for 
classroom instruction; (2) utilizing the school and classroom contexts as venues of 
inquiry; (3) engaging in critical reflections; and (4) forging the spirit of collaboration. 
Making sense of powerful resources for classroom instruction  
The practicum prompted the ST with opportunities to analyze and make sense of 
student abilities, classroom context, and mathematical or didactical/pedagogical 
stances as rich resources for the development of lessons. This is a substantial habit of 
mind integral for doing LS. Though these resources might have posed potential 
constraints in the recontextualization of the ST’s acquired knowledge from the 
university, he was able to fabricate a rich personal repertoire of mathematical 
knowledge for teaching. Say, when he made use of the example given in the textbook 
as the main task for his first actual lesson, the CT questioned the meaningfulness of 
the task considering the capabilities of the students. Hence, emphasis was given to 
inquiry and making use of all legitimate resources for lesson development. The level 
of aptitude demonstrated by the ST in being able to channel his observations, lesson 
planning, lesson delivery, and reflection to the more important aspects of 
mathematics classroom instruction might have been influenced by his educational 
biography, school context, or the university courses. As it is not definitive as to 
which of these influences shape the process of recontextualization, Ensor  (2007) 
suggests that teacher education is rationalized through access to recognition and 
realization rules (italics from the original, p. 314), and through development of 
mathematical discourses.  In selecting tasks for lessons, the ST said: 

 In the desire to come up with a lesson that promotes conceptual understanding, I was 
impelled towards understanding the mathematical content of the topic by myself, and at 
the same time, think of how it could relate to the students’ understanding. To do so, I 
review what the students learned in the past, think of ways to allow the students to 
summarize the day’s lesson using their own assimilations, and make use of aids that let 
the students visualize concepts that are hard to understand. 

Reinvesting principled rationalizations and critical reflections in amalgamating 
intertwined resources for lesson preparation and actual classroom instruction evoked 
practical considerations on his pre-active and interactive decision-making process, 
which rendered reinforcement in forming his own identity as a teacher.  
Moreover, the opportunity for his actual classroom practices to be available for 
evaluation by the mathematics teacher educators during the RL might have fortified 
reflections on the reproduction of tasks based on the principles engendered in the 
university. Through the comments rendered by the mathematics educators, and also 
by all the CTs, the ST was introduced to relating the lesson to institutional/ 
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contextual/national stances in mathematics education. However, the level of 
sensitization of these bigger mathematical/pedagogical issues on his sensibilities still 
calls for further investigations, especially regarding his beliefs and conceptions of 
these issues and his appraisal of doing RL in the practicum.  
Utilizing the school and classroom contexts as venues of inquiry 
Performing the actual lessons has proven to be a legitimate avenue for the ST to have 
access in the realization of the theoretical knowledge he acquired from the university, 
validate his assimilations from the prior observations he made, and assess the 
soundness of his decisions based on the enacted tasks he planned for instruction. This 
provided an implication on the development of capacities in generating one’s own 
pedagogical content knowledge based on the authentic contexts. Utilizing the 
practicum and the classroom as a legitimate venue for inquiry led the ST into active 
engagement in his induction to mathematics classroom practices. Evidences on the 
students’ engagement and mathematical learning in connection to the classroom 
milieu and mathematical, didactical, pedagogical and institutional decisions 
embodied in the tasks were continuously gathered and deeply internalized.  
The actual instances that happened in the classroom elicited in the ST a necessity to 
further look into his engendered beliefs and practices. For example, it was visible 
from the observations of the ST’s first actual lessons that his concern was more on 
the completion of the planned tasks for the day. This somehow banished him from 
paying much needed attention to the students’ responses to the tasks. After his first 
lesson, his written reflection on his journal read, “Even though I was feeling nervous, 
I think that the first parts of the lesson went well because I was carefully thinking of 
the flow of the lesson.” However, the inability to anticipate students’ possible 
responses on the tasks he prepared revealed the inadequacy and/or the 
inappropriateness of his personal analysis of the students’ abilities during his prior 
observations. He said, “As the students were able to generate more sophisticated 
responses than what I expected, I wasn’t able to respond well and it seemed that the 
lesson was not sustained.” Though his inadequacies surfaced from the actual 
classroom setting, an opportunity to address the problem presented itself. It was 
through the actual classroom experience that his conceptions were affirmed or 
challenged, which provided trajectories for future growth. This exemplifies that 
classroom experiences do not only subsist for students’ learning, but for teachers’ as 
well.  
Engaging in critical reflections, personally or within a group 
With the realization of the complexity of the school and classroom environment, 
critical reflections have been nurtured and made attendant to the ST’s engagement in 
the practicum. It prevented the ST from the trappings of conceptualizing teaching 
mathematics as a technicized endeavour wherein the STs merely imitate the 
techniques of the CT. Furthermore, it has ushered him into further inquiry regarding 
how he could improve his class, with implications on continuous and recursive 
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learning. It also indulged him to emotional engagements and brought him to a certain 
commitments.  He intimated, 

During the hanseikai, the realization of so many things I was not able to consider in the 
actual class even made me feel like crying... Consequently, I am resolved in making the 
next lesson a better one.  

Critical reflections served as a way to address the emancipatory development of the 
ST. Ascertaining others’ perspectives assisted the ST into being able to consider 
things that he wasn’t able to discern in his personal observations and in the enactment 
of his decisions.  This draws implications on the role that social dimension plays in 
an individual’s journey into becoming a mathematics teacher. For example, engaging 
in hanseikai posed an opportunity for the ST’s articulated observations and thoughts 
to be challenged or reinforced, wherein opportunities on making connections between 
actions and theoretical underpinnings were fabricated with the guidance of the CT, 
and also with the support of the other ST. 
Forging the spirit of collaboration 
Working in a community of practice presented certain transformative values in the 
ST’s development towards becoming mathematics teachers, as they learn from the 
diversity of each other’s perspectives. In order to be able to do so, the ST’s were 
impelled into expositions of their thoughts and making their learning public. 
The issue on clarity, in written or verbal form, had been valuable in cultivating in the 
ST the ability to precisely convey his ideas, intentions, beliefs, and thoughts, which 
would allow the creation of a platform for collaboration and critical reflections. This 
was addressed while the ST was in the process of writing the lesson plans; and was 
even reinforced during the RL as the lesson plan must be able to convey a clearer and 
more comprehensive picture of the learning context for the benefit of the ‘outsiders’ 
who were supposed to observe their lessons. Also, verbal explicitations engendered 
during the hanseikai, and even during informal discussions with other STs, provided 
opportunities to reflect and learn from each other’s feedbacks. 
Moreover, systematically structuring the practicum to be conducive for collaborative 
explorations of mathematical classroom norms afforded certain benefits on being able 
to nurture a shared knowledge-base for teaching practice. In the ST’s words: 

In observing the classes of other ST, I can objectively consider some good aspects of the 
instruction which might be missing in my own lesson; and by being able to relay 
feedback regarding some questionable aspects of the lesson which might not be noticed 
by the other ST, I think that the quality of both of our lessons can be improved. 

DISCUSSION 
The findings generated from this particular investigation raise issues on being able to 
balance the purposes and implementation of the student teaching practicum with the 
beliefs and perceived needs of STs when they appear to be located in a polarized 



2-312 PME 35 - 2011

Elipane 

  

1- 8 PME 35 - 2011 

continuum. Several factors, such as time (length of the practicum) and opportunities 
for reconstruction of one’s beliefs and classroom practice, might have exiled the ST 
from being able to make sense of the reform-oriented stances that could be envisaged 
from the process of undergoing the RL. The ST said, “I wanted to deliver the same 
lesson again. In this way, I would have the opportunity to reconstruct and rectify my 
lesson based on the discussions during the hanseikai.” 
Indeed, certain skills or habits of minds that might lead to positive transformations in 
mathematics classroom practices could be cultivated in the student-teaching program 
using the elements of LS as a powerful intervention. More than sensitizing the STs to 
the pedagogical stances of mathematics teaching, deeper understanding and 
continuously recursive learning of the mathematics content and socio-mathematical 
norms were also reinforced through the facilitation of the creation of local theories in 
the collaborative process of preparing, enacting, and reflecting on each lesson.   
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UNPACKING MATHEMATISATION: AN EXPERIMENTAL 
FRAMEWORK FOR ARITHMETIC INSTRUCTION 

David Ellemor-Collins and Robert J. Wright 
Southern Cross University, Lismore, Australia 

 
Research is reviewed that emphasises mathematisation, that is, students bringing 
increased mathematical sophistication to their activity. A framework is described of 
ten dimensions of mathematisation that are important for learning arithmetic: 
complexifying arithmetic, distancing the setting, extending the range, formalising 
arithmetic, organising and generalising, notating, refining computational strategies, 
structuring numbers, decimalising numbers and unitizing numbers. The paper draws 
on a corpus of videotape of interactive teaching from an on-going design research 
project. Uses of the framework are illustrated in analyses of two lesson episodes, and 
in a map of ten ways a teacher could develop the instructional task—8+5. Finally, 
four questions are posed on the potential of the framework to inform instruction. 
The Numeracy Intervention Research Project (NIRP) is a design research project 
developing pedagogical tools for intervention in learning arithmetic (Wright, 
Ellemor-Collins, & Lewis, 2007). Central to our instructional design is the aim of 
cultivating mathematisation. The purpose of this paper is to describe an experimental 
framework of dimensions of mathematisation to support instruction in arithmetic. 

BACKGROUND 
Mathematisation in learning arithmetic 
Students mathematise by bringing more mathematical sophistication to their activity. 
Progressive mathematisation means the development of mathematical sophistication 
over time: for example, developing from adding with counters through to adding bare 
numbers. Freudenthal and others have argued that the central task of mathematics 
instruction is to support progressive mathematisation (Beishuizen & Anghileri, 1998; 
Freudenthal, 1991; Gravemeijer, Cobb, Bowers, & Whitenack, 2000). The emergent 
modelling heuristic (Gravemeijer & Stephan, 2002), for example, seeks to design 
instruction that supports progressive mathematisation from context-bound activity to 
more formal and more sophisticated reasoning. 
Research has established, for learning number and arithmetic, the importance of 
several particular forms of mathematising, such as: symbolising and formalising (e.g. 
Gravemeijer, et al., 2000; Gravemeijer & Stephan, 2002); generalising (e.g. Carraher, 
Schliemann, Brizuela, & Earnest, 2006); flexiblising of computation strategies (e.g. 
Beishuizen & Anghileri, 1998); structuring numbers (e.g. Ellemor-Collins & Wright, 
2009; Gravemeijer, et al., 2000); decimalising to develop base-ten thinking (e.g. 
Cobb & Wheatley, 1988; Freudenthal, 1991); and unitising numbers (e.g. Cobb & 
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Wheatley, 1988; Mulligan, Mitchelmore, & Prescott, 2006). Thus, designs for 
arithmetic instruction need to address several forms of mathematisation. 
Dimensions of mathematisation in interactive instruction 
In moment-to-moment instruction, teachers can observe students’ responses to a task, 
and pitch a subsequent task or comment just beyond the cutting edge of the students’ 
current knowledge, to elicit mathematisation. Such interactive instruction could be 
described in terms of scaffolding or micro-adjusting (Wright, Martland, Stafford, & 
Stanger, 2006). Such instruction requires, in part, that teachers be aware of the 
different ways a task could be developed or extended, and the different forms of 
potential mathematisation involved, similar to what Chick has investigated as the 
affordances of tasks (2007). Hence, designs for instructional tasks and procedures 
could involve articulating the potential dimensions for developing tasks to elicit 
mathematisation. 
A framework of dimensions of mathematisation 
Within the NIRP, an experimental framework of five key domains of arithmetic 
knowledge has been developed (Wright, et al., 2007). Instructional tasks and 
procedures have been developed for each of these domains (Wright, Ellemor-Collins, 
& Tabor, in press). Design of instructional procedures has sought to promote 
students’ progressive mathematisation, and has included the explicit development of 
tasks along particular dimensions of mathematisation. Examples of dimensions 
include: in instruction for addition and subtraction in the range 1 to 20, the 
progressive distancing of the setting (Ellemor-Collins & Wright, 2008); and in 
instruction for conceptual place value, the distancing of the setting, the extending of 
the range of numbers, and the complexification of increments (Ellemor-Collins & 
Wright, in press). However, we were aware that significant dimensions of 
mathematisation have remained less explicitly articulated in the instructional design 
within each domain. Also, dimensions of mathematisation appear to be common 
across the domains. We became interested in unpacking the significant dimensions of 
mathematisation for the learning of arithmetic across all domains, and becoming 
more explicit and systematic about addressing each of these dimensions in 
instruction. 
To this end, we have developed an experimental framework of ten dimensions of 
mathematisation for arithmetic instruction. Research-based frameworks can be 
effective for guiding instruction (Bobis, et al., 2005). The experimental framework of 
dimensions described in this paper is intended to indicate productive dimensions for 
developing tasks to elicit mathematisation in interactive teaching, within all domains 
of arithmetic. More broadly, we intend the framework to characterise the key 
dimensions of progressive mathematisation involved in learning whole number 
arithmetic. The purpose of this paper is to describe the dimensions in the framework, 
and to illustrate the potential of the framework in the development of interactive 
instruction. 
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METHOD 
The NIRP adopted a method based on design research (Lesh, 2002), incorporating 
extensive teaching experiments (Steffe & Thompson, 2000) over three one-year 
design cycles. Each year involved an experimental intervention program, including 
professional development of teachers, student assessments, and a term of intensive 
teaching in classes of one or three students. In total, the project has involved 25 
teachers and 200 students in intensive intervention teaching (Wright, et al., 2007). All 
individual classes and assessments were videotaped, providing an extensive corpus of 
video data for analysis. 
The development of the experimental framework of dimensions of mathematisation is 
a form of instructional design (Gravemeijer & Stephan, 2002). The corpus of 
videotape of intensive interactive teaching is a rich context for unpacking 
mathematisation. Developing the framework has involved an iterative process of 
analysing teaching episodes and teaching procedures for common dimensions of 
mathematisation, devising a conjectural framework, returning to check the 
framework against further teaching, and revising the framework. Thus the design 
process is similar to the method of Cobb and Whitenack (1996) for analysing 
longitudinal teaching data. Nevertheless, as instructional design, our final criterion 
for the success of the framework is not the fit with current data. Rather, the criteria 
are the significance of the dimensions of mathematisation for student learning of 
arithmetic, and the pragmatic usability of the framework by teachers. Thus the 
framework should describe what teachers see students doing and how they think of 
their practice. The framework is experimental in the sense that the design process is 
on-going: we will trial it, and teachers will trial it, in professional development 
projects. 

FRAMEWORK OF DIMENSIONS OF MATHEMATISATION 
Table 1 lists the ten dimensions of the framework. Each dimension is given a one-
letter code for ease of reference. Below we briefly describe each dimension, and give 
examples of the development of tasks to elicit mathematisation along the dimension. 
(C) Complexifying arithmetic. By complexify we mean: develop more parts or more 
directions. Common ways to make a more arithmetically complex task include 
changing: from counting forwards to counting backwards; from adding to finding a 
missing addend; from adding a single ten to adding multiple tens; from tasks that do 
not involve regrouping to tasks that do; and from division without a remainder to 
division with a remainder. 
(D) Distancing the setting. In the instructional design, initial tasks often involve an 
instructional setting such as ten-frames or base-ten materials. The student can be 
progressively distanced from the setting through steps such as: (1) manipulating the 
materials; (2) seeing the materials but not manipulating them; (3) seeing them only 
momentarily; and (4) solving tasks posed in verbal or written form without materials. 
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C  Complexifying arithmetic 
D  Distancing the setting 
E  Extending the range 
F  Formalising arithmetic 
G  Organising and generalising 

N  Notating 
R  Refining computation strategies 
S  Structuring numbers 
T  Decimalising numbers (T for Tens) 
U  Unitizing numbers 

Table 1: Framework of dimensions of mathematisation for arithmetic instruction. 
(E) Extending the range. Tasks can be posed using higher numbers. The range of 
numbers can progress through: 1-5, 0-10, 0-20, 0-100, 0-200, 0-1000, beyond 1000. 
(F) Formalising arithmetic. Formalising means investing more significance in form, 
especially in notations and language. Formalising arithmetic can involve: developing 
more formal notation, such as shifting from idiosyncratic notation, to informal arrow 
notations, to formal number sentences; developing more precise terminology, such as 
shifting from ‘take ‘away’ to ‘subtract’; and developing more standardised 
arrangements of materials, such as a practice of grouping counters in rows of five. 
(G) Organising and generalising number relations. Organising can involve making 
categories: for example, from a set of ten-frame cards, separate the five-wise and 
pair-wise configurations. As well, organising can involve making an ordered list: for 
example, list the partitions of 6 in order: 0+6, 1+5, 2+4, 3+3. Organising is closely 
aligned with generalising about number relations. For example, considering the ten-
frames, how can we characterise five-wise configurations? Considering the ordered 
list of partitions of 6, how many partitions of 7 or of 8 would there be? 
(N) Notating. A teacher can notate, or can ask the student to notate. Arithmetic tasks 
can be notated: for example, the task “16 and how many more to make 20?” 
presented on the arithmetic rack can be notated as 16 + ⃞ = 20. Also, computation 
strategies can be notated: a jump strategy for solving 34+19 can be notated as jumps 
on an empty number line, or with number sentences: 34+10=44, 44+6=50, 50+3=53.  
(R) Refining computation strategies. Students can reflect on and discuss their 
computation strategies. In discussions, teachers can draw attention to curtailed 
procedures or the use of number relations, and encourage efficiency, flexibility, and 
insight in computation. Teachers can also pose tasks selected to elicit particular 
strategies, for example, posing the set of tasks 34 + 19, 64 − 18, 49 + 27, 57 + 28, to 
elicit strategies capitalising on numbers near a decuple. 
(S) Structuring numbers. By structuring numbers we mean noticing and using number 
relations, and developing an increasingly dense network of number relations. A 
common task to elicit structuring is, in a setting such as a ten-frame, to describe a 
number as a combination or partition of other numbers: for example, describing an 8-
dot ten-frame as 5-and-3, or as 10-less-2. Also, students can be asked to use a number 
relation to solve a task: for example, can you use that 8 is close to 10 to solve 8+7? 
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(T) Decimalising numbers (T for Tens). By decimalising we mean developing the 
practice of organising numbers into ones, tens, hundreds, thousands and so on; 
developing base-ten thinking. Tasks can involve incrementing and decrementing by 
1s, 10s, and 100s. Tasks can involve arranging materials in groups of ten. Tasks can 
emphasise decimalised language—“how many tens, how many ones?”—or the 
decimalised numeration system—“why are there zeros in the numeral 1007?” 
(U) Unitizing numbers. By unitizing we mean students coming to regard numbers as 
units, that is, as single whole objects that can be counted. For example, when a 
student counts how many 3s in 12 as one 3, two 3s, three 3s, four 3s; the 3s are 
regarded as units. Unitizing can involve, for example, reasoning that if there are four 
3s in 12, then there are eight 3s in 24, which involves counting units of units. Tasks 
to elicit unitizing include counting rows in arrays, and drawing attention to the 
unitary aspect alongside the composite aspect of numbers. 

LESSON EPISODES ILLUSTRATING THE DIMENSIONS 
Below we describe two lesson episodes. For each episode, we analyse how the 
teachers develop tasks to elicit particular dimensions of mathematisation. These 
accounts serve as illustrations of how the dimensions arise in interactive teaching. 
Further illustrations of the dimensions in teaching are available in earlier papers 
(Ellemor-Collins & Wright, 2008, in press). 
Episode 1: Subtracting nine 
Mr Benz used an arithmetic rack, a frame with two rods each of ten sliding beads. Mr 
Benz posed 16–9, which Alan did not solve. With 16 on the rack (10 upper & 6 lower 
beads), Mr Benz asked Alan to take away 9 on the rack. Alan shuttled all 6 lower 
beads, and 4 upper beads, and after questioning, changed to 3 upper beads. Mr Benz 
said “You’ve taken away nine. And how many’s left?” Alan looked at the rack and 
said “Seven!” Mr Benz built 16 again and indicated 9 upper beads. “You take away 
those nine.” Alan shuttled 9 upper beads. Mr Benz asked, “What’s left?” Alan 
answered “Seven!” Mr Benz made 16 again, saying “You can say, well if I took away 
ten (shuttling 10 beads), but I leave one (returning 1 bead) and that’s like taking away 
nine.” Next, Mr Benz asked Alan to write 14−10, and momentarily displayed 14 on 
the rack. Alan answered “Four,” checked with the rack unscreened, and wrote “= 4”. 
Mr Benz asked Alan to write 14−9, and momentarily displayed 14 on the rack. Alan 
answered “Five.” Mr Benz unscreened the rack, asking “Where’s the big nine you 
can grab?” Alan shuttled 9 upper beads, then confirmed and wrote “= 5”. 
Analysis of dimensions. Mr Benz suggested that taking nine beads can be related to 
taking ten, eliciting structuring of the numbers (S). He posed 14−10 followed by the 
more complex 14−9 (C). He micro-adjusted the distance of the arithmetic rack setting 
(D), between Alan manipulating the rack, looking at the rack, and only briefly seeing 
the rack. He also had Alan write each task and each answer (N), and prompted him to 
write formal number sentences (F). 
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Episode 2: 75 −  39 
Connor solved two 3-digit addition tasks mentally. In previous lessons Connor was 
unsuccessful when attempting 2-digit subtraction tasks. Mrs James posed “75 take 
away 39” (with 75–39 written), asking Connor to start with 75. After ten seconds 
Connor answered “36”, and Mrs James wrote 36. She proceeded to jointly work 
through the solution: 

Mrs James: I want to keep the 75 as a whole number. 75 take away 30 equals …? 
(writing 75–30=  ). 

Connor: 45. 

Mrs James: (Writes 45 to complete the number sentence 75−30=45.) 45 take away...? 
(writing 45–  ). 

Connor:  Five (pointing at the 9 in 39). 

Mrs James: Okay. (Writes 5 & 4 under 9.)…five is 40 (completes writing 45−5=40). 
40 take away…? (writing 40−  ). 

Connor:  Four (pointing to the 4 under the 9).  

Mrs James: …4 gave you the 36 (completes writing 40−4=36). Well done. 

Analysis of dimensions. Mrs James shifted from posing addition tasks to posing a 
subtraction task (C). At the same time, she retreated from 3-digit numbers to 2-digit 
numbers (E). She asked Connor to start with the 75, and after he solved the task, she 
led him through a jump strategy, to encourage a preferred strategy for subtraction 
(R), which organises the subtrahend in tens and ones (T). Mrs James notated the 
strategy (N), using standard number sentences (F), with an extra notation to record 
the partition of 9 into 5 and 4 (S). 

APPLYING THE FRAMEWORK IN INSTRUCTION 
Our instructional aim is to encourage students to mathematise their arithmetic 
activity. In interactive teaching, the framework dimensions serve a dual purpose: to 
make explicit the dimensions along which students might mathematise their activity, 
and to indicate ways a teacher can develop tasks to elicit such mathematisation. 
Teachers might elicit mathematisation by commenting on a student’s response to a 
task, or by posing a similar task with one dimension ratcheted up a level. The 
framework of dimensions can serve as a map of these possibilities at any given 
moment in interactive teaching. 
To illustrate, imagine the task 8+5 has been posed with visible ten-frames, and a 
student has responded. At this point, possible teacher’s comments and task 
developments to elicit particular dimensions of students’ mathematisation include: 
(C) posing 8+?=12 with ten-frames; (D) posing 8+4 with screened ten-frames; (E) 
posing 28+5 with ten-frames; (F) posing 8+4 in standard written form; (G) posing 
“Make all the pairs of numbers that sum to 13”; (N) asking the student to notate her 
strategy on an empty number line; (R) comparing a counting-on strategy (8: 9, 10, 11, 
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12, 13!) with an add-through-ten strategy (8+2à10+3à13); (S) asking what number 
relations could be used to help solve 8+5; (T) drawing attention to regrouping the 
numbers using 10; (U) asking how many fives there are (one in the eight, and one in 
the five). Thus, drawing on the framework, we can devise up to ten ways to develop 
an instructional task, with each development directed toward significant 
mathematisation. 

SUMMARY 
As described earlier, particular forms of mathematising are well established in the 
research literature. The potential contribution of the framework is to synthesise into a 
coherent and instructionally useful form an account of the significant forms of 
mathematisation for learning arithmetic. We expect the framework of dimensions to 
enhance our broader instructional framework, and to serve as a map of instructional 
possibilities in interactive teaching. As well, the framework will be of interest to 
others developing arithmetic instruction based on mathematisation. 
Having developed this experimental framework, we will continue to trial and revise it 
in professional development settings. Questions arising include: How can we refine 
our current instructional procedures using the framework? How can teachers use the 
framework to inform moment-to-moment teaching? How does the framework clarify 
the link between moment-to-moment teaching decisions and medium-term goals for 
student learning? What is the potential of a framework of several dimensions of 
mathematisation, as an alternative to one- or two-dimensional learning frameworks? 
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This paper reports on how a program based on educative supervision supported the 
supervisory knowledge and practices of a mathematics cooperating teacher. The role 
of cooperating teachers in the professional development of student teachers is 
important; however, research indicates that cooperating teachers need support in 
transitioning from being classroom teachers to being teacher educators. We adopted 
an emergent perspective to understand how one cooperating teacher developed his 
supervisory knowledge and practices as he engaged in the program activities.   

INTRODUCTION 
As a result of a shift in many countries towards school-based teacher education, there 
has been a need to support cooperating teachers [CTs] as teacher educators (Koster, 
Korthagen, & Wubbels, 1998). Despite their significant impact in the professional 
career of student teachers [STs], research has found that CTs need support in enacting 
their role as teacher educators, such as in delivering feedback to STs (Clarke, 2006). 
Several researchers recommended that university supervisors [USs] might provide 
guidance and modelling for effective supervision to CTs as the teachers transition 
from being classroom teachers to being teacher educators (Borko & Mayfield, 1995; 
Koster, Korthagen, & Wubbels, 1998; Fernandez & Erbilgin, 2009). This might also 
help develop partnerships between schools and university programs. Aligned with 
this suggestion, we designed a program where the university supervisor [US] assisted 
the development of the supervisory practices and knowledge of mathematics CTs. 
This paper reports on the development of supervisory knowledge and practices of one 
mathematics cooperating teacher as he engaged in the program activities with other 
CTs and a US. 

THEORETICAL FRAMEWORK 
In the field of mathematics teacher education, Blanton, Berenson, and Norwood 
(2001) advocated “educative supervision” as an approach to supervise STs. An 
educative supervisor supports the ST’s growth by asking open-ended questions, 
engaging the ST in discussions of critical incidents from the ST’s teaching, and being 
sensitive to the ST’s developmental level. Educative supervision is in sharp contrast 
to ‘evaluative’ supervision through which the supervisor is focused on conducting 
authoritative evaluations of STs (Blanton et al., 2001). We used the construct of 
educative supervision and developed the program discussed in this paper to help 
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mathematics CTs implement more educative supervision approaches in their 
supervisory practices. The theoretical basis of educative supervision is the notion of 
“zone of proximal development” [ZPD] defined by Vygotsky (1934/1978). ZPD can 
be drawn on as a basis for the learning of the CTs engaged in our program and 
supported by a US knowledgeable in educative supervision. In designing the program 
activities, we adopted an emergent perspective and sought to integrate Vygotsky’s 
social learning theory with an individualistic view of learning. According to the 
emergent perspective, learning is a process that involves both social and individual 
aspects (Stephan, 2003). From this perspective, a group comes to a shared 
understanding through discussion and participation by its members while at the same 
time individual participants reorganize their own understanding, and contribute to the 
group’s evolving practice. Individuals’ construction of knowledge and the group’s 
construction of shared knowledge is a reflexive process.     

THE SUPERVISION PROGRAM 
The program was designed for a period of 15 weeks to fit with the student teaching 
experience. It was designed as a kind of practicum for CTs: a program providing CTs 
with opportunities to improve their supervisory knowledge and practice while 
working with a student teacher as recommended by Fernandez and Erbilgin (2009). 
The CTs participated in three online and four face-to-face meetings. The content of 
each program meeting was as follows in the order of occurrence within the program. 
The first face-to-face meeting included an introduction to and negotiation about the 
program. The first online discussion was about current reforms in teaching 
mathematics. The second online discussion involved readings and discussions about 
educative supervision. The second face-to-face meeting focused on learner-centred 
supervision practices in support of STs’ growth. The third online discussion was 
about fostering STs’ reflection on their own teaching. The third face-to-face meeting 
included activities that engaged participants in reflecting on, analysing and discussing 
their present supervisory practices. The fourth face-to-face meeting focused on 
supervision approaches from the perspectives of CTs and STs.  
Over the course of the program, the CTs were asked to conduct a formally planned 
post-lesson conference with the STs every week. Additionally, the CTs participated 
with the US in triad post-lesson conferences with the STs that provided opportunities 
for the US to model aspects and facilitate the use of educative supervision.  

METHODOLOGY 
The participants of the supervision program were three mathematics CTs. The CTs 
had over 30 years of teaching experience and had each supervised between 3 to 8 
mathematics student teachers prior to this study. Pseudonyms are used throughout 
this paper for the participating CTs: Denise, Lauren, and Andrew. One of the 
researchers assumed the role of the US. She had 3 years of mathematics teaching 
experience and had supervised three mathematics STs prior to this study.  
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In this paper we report on an investigation of Andrew’s learning about and 
implementing educative supervision. We chose to report on Andrew’s case because 
although each teacher changed their supervisory practice as the program progressed, 
the changes were more marked in Andrew’s case. We used the emergent perspective 
to interpret the development of Andrew’s supervisory knowledge and practices as he 
participated in and contributed to program activities. We took into account both 
Andrew’s individual construction of knowledge and the social context of the program 
meetings in which he was a participant.  
The primary data for this paper comes from the post-lesson conferences between 
Andrew and his ST, Alison (pseudonym). The post-lesson conference 
communications were analysed from three perspectives based on literature (Shulman, 
1986; Blanton et al., 2001; Fernandez & Erbilgin, 2009) and open coding. First, we 
determined the amount of communications contributed to the conferences by the CTs 
and STs through the use of the “word count” function of a word processor. Second, 
we determined the content (i.e. mathematics, pedagogy, mathematics pedagogy, 
teacher-student relationship, classroom management, and general teacher growth) of 
the post-lesson communications. Third, we determined the types of communications 
(i.e. questioning, assessing, suggesting, describing, explaining, and emotional 
talking) used by the CTs and STs. The description of each category can be found in 
Erbilgin (2008). A combination of the three types of analyses helped us understand 
how the supervision style of the CTs changed, if any, throughout the semester. We 
cross-checked the consistency of the findings by using triangulation of sources. 

RESULTS 
Andrew’s Supervision Style before the Program was Implemented  
Andrew supervised about seven STs prior to this study. He attended a course on 
supervising STs less than 10 years prior. He learned how to supervise STs mainly by 
attending that course and through repeated experiences as a CT. In his initial 
interview, when asked about how he communicated feedback to his STs, Andrew 
said that he communicated his thoughts explicitly to the student teachers in a positive 
manner and encouraged them to ask for his feedback. In her initial interview, when 
asked to describe a typical post-lesson conference with her CT, Alison said “He 
always points out all the positives first, he says this is going very well…maybe you 
might want to look at this or maybe put it in a different way.” Providing feedback in 
the forms of assessment and suggestion in a positive manner seemed to be the norm 
in Andrew’s initial supervision style.   
Another piece of information about Andrew’s initial supervision style came from a 
role play experience. In both the initial and final interviews, the CTs were asked to 
watch a mathematics lesson clip, imagine that the teacher in the video was their 
student teacher, and explain what and how they would communicate with this ST 
during a conference. In his initial role play, Andrew focused on pedagogy (e.g. 
getting every kid involved) and somewhat on mathematics pedagogy (e.g. 
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significance of the volume formula). He posed two questions in the beginning, and 
then communicated his suggestions (three of them) and explanations (five) with 
positive assessments (four) between his comments. Offering suggestions, 
explanations, and positive assessments was a common trend that we found in his 
initial post-lesson conferences with Alison. In summary, Andrew did not seem to be 
implementing an educative supervision approach before he participated in the 
program.  
Changes in Andrew’s Supervision Style as he Participated in the Program 
Andrew and Alison had five audio-taped post-lesson conferences; the first two 
conferences were conducted before educative supervision was discussed in the 
program. We sought to understand if there were any changes or not in Andrew’s 
supervision style by analysing his post-lesson conferences with Alison from three 
perspectives: amount of communications contributed to the conferences, content of 
the post-lesson communications, and types of communications. Andrew had the 
following talking percentages from the first conference to the fifth conference 
respectively: 98%, 98%, 81%, 50%, and 46%. Alison’s corresponding percentages in 
these conferences were 2%, 2%, 19%, 50%, and 54%. The calculation of talking 
percentages by Andrew and Alison revealed that Alison’s voice in the post-lesson 
conferences drastically increased from the first conference to the fifth conference.  
Having student teachers voice their ideas, an attribute of educative supervision, was a 
focus of the program. For instance, in the second face-to-face meeting during the 
discussions about the meaning of educative supervision, the US elaborated that 
educative supervision values that the student teachers express their ideas to analyse 
their own teaching. Denise contributed that “Like you let them speak instead of 
giving them the answers.” Lauren added that “I usually, when we first meet then, I 
have her reflect on her lessons.” As part of the meeting, the teachers were provided a 
lesson plan of a student teacher, read a transcript of the post-lesson conference 
between the student teacher and her cooperating teacher, and critiqued the post-lesson 
communications. One focus of the CTs’ responses in this activity was on the amount 
that the ST spoke. For instance, Lauren said that “I think that there was too much 
talking by the cooperating teacher and not enough by the student…” Andrew spoke 
as follows: 

Yeah, and I’m not saying the lesson was not a good lesson. It’s just that she pointed 
everything out to the student teacher and those were definitely directed questions with a 
short response and you never really got to know what she thought, good or bad.  

As evident in the above excerpt, Andrew observed that the ST was not given 
opportunities to express her thinking. The program’s continuous focus on helping 
STs voice their opinions in the post-lesson conferences is aligned with Andrew’s 
change toward encouraging Alison do more talking in their post-lesson conferences.  
Figure 1 shows the percent of communications in each content category across five 
post-lesson conferences between Andrew and Alison. A big change from the first 
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conference to the fifth conference was that the talk about mathematics pedagogy 
increased considerably. 

 

Figure 1: Types of Content in Post-lesson Communications 
Not only did the quantity of communications in the mathematics pedagogy category 
increase, their quality also improved. During the first two post-lesson conferences, 
Andrew and Alison discussed general ideas rather than talking about the specifics of 
the lessons. For example, Andrew talked about explaining the concepts in more detail 
in the first conference, but he did not provide examples and observations from 
Alison’s lessons. In contrast to the general ideas discussed in the first and second 
meetings, Andrew and Alison had discussions related to specific details of the lessons 
that Alison taught, during the third, fourth, and fifth post-lesson conferences. For 
instance, in their fourth conference, after Alison made an evaluation of her lesson, 
Andrew described a mathematics problem from the lesson, and asked Alison to 
compare how the students in the two classes handled it. This gave Alison an 
opportunity to think about what modifications she did from the first period to the 
second period and how it affected the students’ understanding. It was valuable from 
the program’s perspective that Andrew and Alison started talking about specifics of 
Alison’s lessons because talking about classroom incidents might help student 
teachers to reflect deeply on the day and is a key element of educative supervision 
(Blanton et al., 2001). The quantitative and qualitative improvements of the 
mathematics pedagogy category in Andrew and Alisons’ post-lesson conferences 
might be a result of the program because in several face-to-face meetings, 
mathematics pedagogy was put forward as an important teaching domain to be 
discussed in the post-lesson conferences. Other program activities supported this idea 
as well, such as the articles that the teachers read and the triad conferences that the 
US led during her visits to the STs’ classrooms.  
Figure 2 represents the percentages of communications in each category used by 
Andrew in the post-lesson conferences. Figure 2 shows that Andrew used 
communications in the questioning category in the third, fourth, and fifth conferences 
while he did not pose any questions in the first two conferences. He focused on 
transmitting his opinions to Alison in the first two conferences.  
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Figure 2: Types of Communications used by Andrew 
The analysis of how Andrew used questioning communications and what type of 
questions he used revealed a gradual change. In the third conference, out of the nine 
questions Andrew posed, only two of them requested Alison’s reflection on her 
teaching.  The two questions were asked in the beginning of the conference. The rest 
of the conference included mostly suggestions and explanations by Andrew along 
with confirming or requesting information type questions. Alison’s voice was mainly 
heard in the form of “uh, huh.” This was also evident in the talking percentages (19% 
for Alison). The third conference represents a transition for Andrew from traditional 
supervision to educative supervision. Changing beliefs and practices is a slow process 
(Gregoire, 2003). Thus, if there was a change in the supervision style of Andrew, it 
should have occurred slowly. In the fourth and fifth conferences, he used questioning 
communications frequently to help the student teacher reflect on that day’s lesson. 
One finding about his questioning style in the fourth and fifth conferences was that 
Andrew did not use follow-up questioning regularly in the conferences. In other 
words, he posed a question, received Alison’s opinion, and then offered his opinion 
rather than posing further questions. We believe that using follow-up questions might 
give CTs opportunities to dig at the STs’ thinking. This might be considered in 
designing future supervision programs. 
Asking open-ended questions to help the STs think deeply about their teaching is a 
key component of educative supervision and was a main focus in the program 
activities. In the second face-to-face meeting, the CTs wrote down questions that a 
CT could have asked the ST in a transcribed conference. Here is a part of their 
discussion:   

Denise: You know, if we want to have post-lesson conferences with a student teacher, 
there would be exactly those questions asked each time. What went good with this 
lesson? What were you happy about? What did you see as problems? What did the kids 
seem to learn from the lesson? 
Andrew: Tell me why you’d do it again? Why you wouldn’t do it again? 
Denise: Yeah, what would you do differently?  
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The CTs supported each others’ thinking, brainstorming about possible open-ended 
questions to ask the STs in the post-lesson conferences. In the third face-to-face 
meeting, the CTs shared a video segment from their own recorded post-lesson 
conference, a segment where they felt they implemented educative supervision. The 
shared segments included many open-ended questions posed by the CTs. We feel that 
the discussions in the program activities provided the CTs with opportunities to gain 
new knowledge, share ideas on supervision, and implement educative supervisory 
practices. In summary, data analysis revealed that as Andrew engaged in the program 
activities, he started asking more questions to Alison, they talked more about 
mathematics pedagogy in detail, and Alison spoke more in their post-lesson 
conferences. Hence, Andrew started implementing a more educative supervisory 
approach.  
Andrew’s Supervision Style after the Program was Implemented  
In the final interview, Andrew watched the same lesson video that he watched in the 
initial interview and explained what and how he would communicate during a 
conference with the ST. Compared to his focus on general pedagogy and somewhat 
mathematics pedagogy in the initial interview, Andrew showed a deeper focus on 
mathematics pedagogy (e.g. connecting the volume formula to real life, the sequence 
of mathematics topics taught, and relating mathematical topics with each other) in the 
final interview. Regarding the types of communications, Andrew used 7 questioning, 
5 assessing, 5 suggesting, 3 describing, and 2 explaining communications. His use of 
questioning communications increased in the final interview (32%) compared to 
initial interview (14%). These findings are aligned with our observation that Andrew 
started implementing more educative supervisory practices.   
Interviews with both Andrew and Alison confirmed that Andrew’s supervision style 
changed in the direction of the program’s goals. In her final interview, Alison 
elaborated that their conversations were based on more structured questions about the 
lessons later in the semester. Alison’s perception of change in their post-lesson 
conferences was shared with Andrew during his final interview. He explained that the 
program’s goals made sense to him and it became part of his supervisory practices. 
He wrote the following in his reflection survey. “The adjustments I have made are a 
direct result of what I learned from this program. They are very sound and effective 
modifications.” 

DISCUSSION AND CONCLUSIONS 
In this study, we examined how a program that focused on educative supervision 
supported the supervisory knowledge and practices of Andrew. The analysis of the 
five post-lesson conferences from the three perspectives revealed that the supervision 
style of Andrew changed throughout the semester towards educative supervision. We 
observed similar changes in the supervisory practices of the other two participating 
teachers as well (Erbilgin, 2008). We believe that this study contributes to efforts to 
create learner-centred student teaching experiences through program activities that 
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help CTs progress toward supervising from an educative approach and supports ways 
that CTs and USs can work together as proposed by previous studies (Borko & 
Mayfield, 1995; Koster, Korthagen, & Wubbels, 1998; Fernandez & Erbilgin, 2009). 
Supervising a ST at the time of the study helped the CTs implement what they 
learned in the program and reflect on their supervision.  
The results of this study suggest further questions to be examined by possible future 
research. For instance, what might be perceptions of STs about their growth during 
student teaching when working with CTs implementing and those that are not 
implementing educative supervision? Another question might be, how does a 
program that focuses on educative supervision work with prospective CTs? Also 
different designs of similar programs (e.g. more than one US working with CTs) 
might be examined.  
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The aim of this research is to identify aspects that support the development of 
prospective mathematics teachers’ professional noticing in a b-learning context. The 
study presented here investigates the extent to which prospective secondary 
mathematics teachers attend and interpret secondary school students’ proportional 
reasoning and decide how to respond. Results show that interactions in an on-line 
discussion improve prospective mathematics teachers’ ability to identify and 
interpret important aspects of secondary school students’ mathematical thinking. 
 
THEORETICAL BACKGROUND  
A relevant skill of mathematics teachers is the professional noticing (Jacobs, Lamb, 
& Philipp, 2010). Although this skill has been conceptualized from different 
perspectives in the last years, the connexion is making sense of how individuals 
process complex situations (Mason, 2002; van Es & Sherin, 2002). Mason (2002) 
considered noticing as a fundamental element of expertise in teaching characterized 
by: (a) keeping and using a record, (b) developing sensitivities, (c) recognizing 
choices, (d) preparing to notice at the right moment and, (e) validating with others. 
On the other hand, van Es and Sherin (2002) considered that noticing in teaching 
involves (a) identifying significant events of a classroom situation, (b) using 
knowledge about a context to reason about these events, and (c) making connections 
between the specific classroom events and broader principles of teaching and 
learning. These approaches are concerned with the development of perceptual 
frameworks that enable teachers to view mathematics teaching situations in a 
particular way.  
A particular focus for mathematics teacher’s professional noticing is children’s 
mathematical thinking. In this context, Jacobs et al. (2010) conceptualize professional 
noticing of children’s mathematical thinking as a set of three interrelated skills (i) 
attending to children’s strategies: the extent to which teachers attend to the 
mathematical details in children’s strategies; (ii) interpreting children’s mathematical 
understandings: the extent to which the teachers’ reasoning is consistent with both the 
details of the specific child’s strategies and the research on children’s mathematical 
development; and (iii) deciding how to respond on the basis of children’s 
understandings: the extent to which teachers use what they have learned about the 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 329-336. Ankara, Turkey: PME.
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children’s understandings from the specific situation and whether their reasoning is 
consistent with the research on children’s mathematical development.  
Researchers have focused on how professional noticing is developed (Llinares & 
Valls, 2010; Star & Strickland, 2008). A relevant issue in this context is the 
characterization of the development of professional noticing of children’s 
mathematical thinking in specific mathematics domains (Levin, Hammer, & Coffey, 
2009).  So, in this study, we are going to focus on prospective mathematics teachers’ 
professional noticing of children’s mathematical thinking in the context of the 
transition from students’ additive to multiplicative thinking, since researchers have 
shown the difficulty of students in discriminating additive from multiplicative 
situations (Fernández, Llinares, Van Dooren, De Bock, & Verschaffel, 2010; 
Modestou & Gagatsis, 2007). 
A context for the development of prospective mathematics teachers’ professional 
noticing  
Recently, the development of on-line approaches in mathematics teacher education 
and specific contexts of blended learning approaches (b-learning) have generated 
particular issues about how the professional noticing skill is developed in these new 
learning contexts. From a social learning perspective (Wells, 2002), participations in 
social interaction spaces are considered as a way of learning. Furthermore, the 
characteristics of on-line environments seem to influence the way in which 
prospective teachers interact with knowledge and the professional vision of 
classroom events and children’s mathematical thinking. In a specific way, Mason 
(2002) underlined that the validation of the records and interpretations of 
mathematics teaching situations with others is an important aspect of the structure of 
teachers’ attention.  
RESEARCH QUESTIONS 
In this study, we analysed how prospective mathematics teachers’ professional 
noticing of children’s mathematical thinking is developed in the context of the 
transition from students’ additive to multiplicative thinking. We are also interested in 
how the participation in on-line discussions, the analysis of secondary school 
students’ answers to proportional and non-proportional problems and the resolution 
of tasks collaboratively could support the development of prospective teachers’ 
professional noticing o secondary school students’ proportional reasoning. 
METHOD 
Participants and context 
Participants were 7 prospective secondary school mathematics teachers that were 
enrolled in a post-graduate program. This program qualifies them to teach 
mathematics in Secondary Education. This study was carried out in one of the 
subjects of this program called “Learning of mathematics in Secondary Education”. 
One of the aims of this subject is that prospective teachers learn to identify and 
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interpret characteristics of secondary school students’ mathematic thinking. A 
specific subject-matter refers to the relation between the additive and multiplicative 
thinking on secondary school students (12-16 years old) in the context of proportional 
reasoning. 
A b-learning (blended learning) environment was designed to this part of the subject 
integrating face-to-face and on-line activities in a web platform. In the face-to-face 
activities, prospective teachers worked collaboratively in the classroom in order to 
solve and discuss the proposed tasks. In the on-line activities, they shared and 
synthesized their ideas into a final joint report. The learning environment consisted of 
five face-to-face sessions during five weeks in which prospective teachers had to read 
theoretical papers about the transition from additive to multiplicative thinking, 
analyse video-clips where secondary school students solved problems with additive 
and multiplicative structures and analyse written student work. The prospective 
mathematics teachers began these tasks in a face-to-face context but they continued 
them in an on-line context that included the discussion in on-line debates. In this 
paper, we are going to focus on the resolution of the initial task and its discussion in 
the on-line debate. 
The initial task 
Prospective teachers solved an initial task that consisted of the analysis of four 
secondary school students’ answers to two proportional problems (modelled by the 
function f(x) = ax, a ≠ 0) and two non-proportional problems with an additive 
structure (modelled by the function f(x) = x+b, b ≠ 0) (Figure 1). Prospective teachers 
had to analyse a total of 16 secondary school students’ answers (four problems × four 
secondary school students). Secondary school students’ answers were selected taking 
into account the different profiles of primary and secondary school students when 
they solve proportional and non-proportional problems (Van Dooren, De Bock, 
Gillard, & Verschaffel, 2009). These students’ profiles are: students who solve 
proportional and additive problems proportionality, students who solve proportional 
and additive problems additively, students who solve both type of problems correctly 
and finally, students who solve problems with integer ratios using proportionality 
(regardless the type of problem) and problems with non-integer ratios using additive 
strategies. 
Prospective teachers were asked to answer three questions related to the three 
component skills of professional noticing of students’ mathematical thinking in each 
student answer: (i) “Please, describe in detail what you think each secondary school 
student did in response to each problem” (prospective teachers’ expertise in attending 
to students’ strategies); “Please, indicate what you learn about secondary school 
students’ understandings related to the comprehension of the different mathematic 
concepts implicated” (prospective teachers’ expertise in interpreting secondary 
school students’ understanding), and (iii) “If you were a teacher of these students, 
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what would you do next?”  (prospective teachers’ expertise in deciding how to 
respond on the basis of students’ understandings). 

 
Figure 1. Part of the initial task: Example of a student who solve problems with 

integer ratios using proportionality (regardless the type of problem) and problems 
with non-integer ratios using additive strategies. 

Analysis 
Firstly, we identified the mathematical significant elements that prospective teachers 
should identify in each problem and strategy (for instance if the ratio or the difference 
between quantities remains constant, or if the function passes through (0,0) or not). 
Secondly, we determined whether prospective teachers’ answers indicated attention 
to these mathematical details. This led us to identify each participant attention to 
secondary school students’ strategies. We also considered the extent in which 
prospective teachers identified the different profiles mentioned above. This provides 
information about if prospective teachers were able to discriminate proportional from 
additive problems using the relevant elements identified. For example, how 
prospective teachers identified if the additive strategy was used correctly in the 
additive problems but also incorrectly in the proportional problems. In that way, we 
analysed how prospective teachers interpret students’ understandings. Finally, we 
analysed if prospective teachers were able to include considerations of students’ 
understandings in their decisions of how to respond.   
RESULTS 
In the first part we describe how prospective teachers attended and interpreted 
secondary school students’ strategies and, in the second part, we show how the 
discussion in an on-line debate helped prospective teachers to develop the 
professional noticing of students’ mathematical thinking.    
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Attending and interpreting secondary school students’ strategies and deciding 
how to respond 
Initially, most of the prospective teachers were able to recognise and describe some 
of the secondary school students’ strategies but had difficulties in discriminating 
proportional and additive problems and in relating the types of problems and the 
characteristics of strategies in order to interpret students’ mathematical thinking. 
Only one of the prospective teachers was able to identify a student profile (student 
who solved proportional and additive problems additively). For example, the 
prospective teacher P6 only described the operations that the secondary school 
student made to solve the first problem (Figure 2) and was not able to recognize the 
additive structure of the second problem. 

 
Figure 2. Part of the initial task.  

Problem 1.  P6 The student tries to solve the problem using proportions. He/she tries to 
go from 20 to 70 using multiplications and additions. The student 
knows that has to go from 20 to 70 so he/she multiplies by 3 and then 
adds 10. So we have to do the same operations with 50. We obtain 175. 
Therefore, I think that this student does not know proportions but 
he/she solved the problem correctly. 

Problem 2.  P6 This student used the method of proportions. Although he/she did not 
write 20:100 = 60: x, he/she wrote 100×60/20. 

On the other hand, prospective teachers’ interpretations of students’ mathematical 
thinking influenced their teaching decisions. So, when prospective teachers did not 
identify additive and proportional problems then they indicated general teaching 
actions such as asking to the students more explanations about their answers or 
explaining the use of procedural approaches to solve proportional problems.  
The development of prospective teachers’ professional noticing of students’ 
mathematical thinking 
Through the on-line debate, prospective teachers were able to focus on the 
characteristics of the problems and to identify some secondary school students’ 
profiles. Therefore, the interaction motivated by the interpretation of secondary 
school students’ answers made prospective teachers to start to attend and interpret 
jointly secondary school students’ answers. For example, prospective teacher P1 
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discriminated proportional from non-proportional situations in the initial task 
underlying the importance of the sentences “they load equally fast but Peter started 
later” and “they started together but Jean swims slower” but prospective teacher P4 
did not discriminate them. Interactions in the on-line discussion between prospective 
teacher P1 and prospective teacher P4 led prospective teacher P4 to start to 
discriminate both type of problems identifying relevant aspects of the situations. 

P1 Students use elemental operations (such us addition, subtraction…) 
correctly. However, they do not usually read well the problem and 
interpret, in the same way, the fact to start later and the fact to be slower. 

P4 I agree with you. Students do not differentiate between “doing equally fast 
an action but starting at different times” and “starting at the same time but 
doing an action faster”. We have to find out if students did not read well 
the problem or they had difficulties in understanding the concept of 
proportionality (the difference between proportional and non-proportional 
problems).      

An example of how interaction led students to identify secondary school students’ 
profiles is the interaction between prospective teachers P7, P3 and P1. This 
interaction started with the participation of P7. This prospective teacher identified 
that the secondary school student solve one of the two proportional problems 
correctly but the other incorrectly and the same happened with the additive problems 
(Figure 1). The participation of the prospective teacher P3 was not relevant. 
However, P1 focused on the multiplicative relationships between quantities. In that 
way, P1 indicated that the secondary school student solved the two problems with an 
integer relationship between quantities (triple) proportionality but when the 
relationship was non-integer the student solved the problems additively. 

P7 This is a strange case because there are two proportional problems but one 
is solved correctly and the other incorrectly. And there are two problems 
where they do not start at the same time and again, one is solved correctly 
and the other incorrectly. How can we explain it? The student could not 
understand the problem or he/she could have some difficulties. We have to 
ask students for explaining their answers. 

P3 It is true that it is a strange case. As you said, if we ask for more 
explanations, students could understand when he/she can use the strategy. 
For example, when he/she wrote 100-40 = 60, he/she should have written 
“60 boxes loaded by Tom when Peter start to load”  

P1 Respect to this student, we could say that he/she did not discriminate 
proportional from additive problems. However, two problems were solved 
by the same strategy because the multiplicative relationship between 
quantities is integer (“the triple”, the multiplicative relationship between 25 
and 75 and the multiplicative relationship between 3 and 9). The other two 
problems have a non-integer multiplicative relationship between quantities 
and they are solved looking for a difference and using it. So when students 
had difficulties in looking for the relationships between quantities they used 
a constant difference instead of a multiplicative relationship.   
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Moreover, teaching decisions changed after the participation in the on-line 
discussion. All prospective teachers stressed the necessity of differentiate 
proportional and non-proportional problems and when prospective teachers were able 
to identify the secondary school students’ profiles they proposed to focus on the type 
of ratio and on the use of qualitative problems instead of missing-value problems. 
These data indicated that the participation in the online discussion and the fact that 
prospective teachers had to write a joint report with the conclusions of the on-line 
discussion allow them to begin to develop the professional noticing of students’ 
mathematical thinking focused on the proportional reasoning. 
CONCLUSIONS AND DISCUSSION 
This study contributes to the research base on how prospective teachers see and make 
sense of classrooms, particularly in how they begin to develop making sense to 
students’ mathematical thinking. New in this line of research is that we characterise 
the professional noticing of children’s mathematical thinking in a specific 
mathematic domain: the transition from students’ additive to multiplicative thinking 
and we also provide a specific context for the development of the professional 
noticing integrating on-line discussions. 
Results show that initially prospective teachers had difficulties attending and 
interpreting students’ mathematical thinking. They described students’ answers 
without including mathematical significant aspects about the structure of the problem 
or about students’ strategies, and therefore they were not able to identify secondary 
school students’ profiles. However, the participation in the on-line discussion led 
prospective teachers to begin to develop the professional noticing of students’ 
mathematical thinking. 
A characteristic of the on-line discussion is the progressive discourse that it was built 
facilitated by the interaction and the integration of ideas related to proportional and 
non-proportional situations and to the characteristics of secondary school students’ 
proportional reasoning. Therefore, the on-line debate and the characteristics of the 
task played a relevant role in the construction of knowledge. 
Finally, our results also indicate that professional noticing can be learned (Jacobs et 
al., 2010) and that the b-learning environments could help to develop this skill 
(Llinares & Valls, 2010). However, it is necessary more studies about how some 
characteristics of the learning environment (such as the specific use of on-line 
discussions and the characteristics of the task) could support this development.   
Acknowledgement. The research reported here has been financed in part by Ministerio de 
Educación y Ciencia, Dirección General de Investigación, Spain, under Grant no. 
EDU2008-04583. 
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YOUNG STUDENTS THINKING ABOUT MOTION GRAPHS 
Francesca Ferrara, Ketty Savioli 

Department of Mathematics, University of Torino, Italy 
 
This article considers an individual activity given to grade 2 students at the end of a 
teaching experiment lasted about four months. The students have extensively used a 
motion sensor to work with graphical representations of position versus time. The 
activity asks the students to compare two graphs, choosing two cartoon characters, 
animals, and vehicles, as subjects of possible corresponding motions. Analysing their 
written arguments, we look at the thinking strategies the students adopt to solve the 
task. A common factor characterizes these strategies: the meaning of the horizontal 
straight line in terms of motion modelling is used as a key to the understanding. 

INTRODUCTION AND THEORETICAL FRAMEWORK 
“In the mathematics laboratory, the construction of meanings is strictly tied to the 
tools used in the activities, on the one side, and to the interactions among people that 
develop during those activities, on the other” (Anichini et al., 2004, p. 28). The idea 
of the mathematics laboratory is not that of the traditional mathematical lesson that 
entails an imparted teaching. On the contrary, learners are like apprentices in a 
Renaissance workshop: they learn by doing, seeing, and communicating with each 
other and with the experts. An example is given by the series of experiences about 
which we speak in this paper. A group of fifteen grade 2 (7-year old) students took 
part in activities on modelling motion through graphing. Graphing is intended as 
“drawing graphs, reading graphs, selecting and customising graphs for particular 
purposes, and interpreting and using graphs as tools.” (Ainley, 2000, p. 365). 
Previous research has analysed the cognitive processes of students studying motion, 
mostly focussing on individual interviews, and on older students (e.g. Nemirovsky et 
al., 1998; Ferrara, 2006). In general, this research has shown that representing motion 
situations through the use of bodily actions enriches the ways students encounter and 
make sense of ideas relative to kinematics, like distance, speed, acceleration, and 
time. On the other hand, motion embodies the cognitive roots of the basic concepts of 
Calculus (Tall, 2000).  
The students involved in our activities used a motion sensor called CBR (Calculator 
Based Ranger) to display in real time graphical representations of their movements in 
front of the sensor. Through this kind of experiences, they started to grasp meanings 
related to the function concept (Ferrara & Savioli, 2009). Particularly, the students 
developed a covariance view of the functional relationships (in the sense of Slavit, 
1997). For instance, they were able to understand the meaning of a horizontal straight 
line. This is a delicate matter: one sees a horizontal straight line originating point by 
point on the screen, although there is absence of motion. No one is moving in front of 
2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 337-344. Ankara, Turkey: PME.
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the CBR, but something moves: the point marking the origin of the curve of position 
versus time. Time is the key for comprehension. Not an easy task at so early age.  
In this paper, we centre on a specific activity of the series that required the children to 
compare two graphs related to similar but different movements. If we analyse the 
children’s written productions, we can shed light on the meaning they were able to 
give to the horizontal straight line in terms of motion, and on how they used this 
meaning in a functional way to support their arguments.  

METHODOLOGY AND ACTIVITY 
The activity we consider here comes from a teaching experiment lasted about four 
months, from February to May 2006. The experiment is part of a 4-year longitudinal 
research study that finished in 2009. The study was conducted in a primary school in 
Chieri, a small town in the surroundings of Torino, in the Northern Italy. At the time 
of the experiment, the fifteen students were attending the 2nd grade, and they had no 
experience with motion phenomena and graphs describing them. All the activities 
were carried out during regular mathematics lessons, and designed by the authors 
(respectively, university researcher and teacher). In these lessons, the students spent 
much time working in groups of 2 or 3, and in individual tasks, being always required 
to explain their reasoning. The researcher also directed some general discussions that 
permitted the students to communicate and compare their different solutions.  
In the course of the experiment, the students worked with graphical representations of 
position vs. time related to movements they performed in front of the motion sensor. 
They could watch the real time origin of the graphs thanks to the use of a view-screen 
that allowed projecting on a wall the screen of a calculator connected to the sensor. 
The calculator processed the position-time data coming from the sensor, displaying 
the corresponding position-time graph. Sometime the students were asked to interpret 
graphs associated with specific movements; at other times, they had to anticipate the 
movements connected to given graphical shapes. In this way, they were involved in 
the double passage, from motion to model, and from model to motion. Skills on both 
the passages are fundamental ingredients to construct a sense for the graph, in terms 
of functional relationships. In order to collect data, we used two video cameras: one 
filming the movements of the students and the subsequent graphs; the other one 
filming the groups’ dynamics, both in the case of small groups and in the case of the 
whole classroom. We further used all the written productions coming from both pair 
and individual written tasks solved by the students (only seldom from small group 
tasks). This article focuses on one of the individual written activities we proposed to 
the students toward the end of the experiment, when they had extensively used the 
motion sensor for tackling problems of different type.  
Those problems largely included as graphical shapes horizontal and slanted straight 
lines, which describe respectively absence of motion and uniform motion (walking 
away from, or approaching the CBR). In some of the activities, the students had to 
choose at random a card that hid a cartoon character, an animal or a vehicle, and to 
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move in front of the sensor (according to the trajectory they prefer) assuming to be 
that character/animal/vehicle, while the classroom mates had to draw the expected 
corresponding graphs. The data we present here comes from the written arguments 
produced in particular by two students (Elisa and Gaia) to solve the following task: to 
associate two animals, two cartoon characters, two vehicles with two given graphs, 
and to explain the choices. In this case, both graphs represent piecewise functions 
that consist of a first increasing slanted piece and a second horizontal piece. They are 
similar in shape, but differ from each other since one has a steeper slanted piece, and 
a longer horizontal piece than the other one. Figure 1 shows the (hand made) graphs. 
The labels on the axes are letters for the variables, as they appear on the screen of the 
calculator: position (distance to the sensor) in meters (D[m]), time in seconds (t[s]).  
 

 
Figure 1. The two graphs of the activity 

The complete text of the activity is as follows (“below” refers to the inserted Fig. 1):  
Choose two animals to be associated with the drawings below: Explain your reasoning 
and the motive of your choices.  
Repeat the reason using, instead of animals, two cartoon characters, and two vehicles.   

Investigating the written explanations that support the choice of the moving subjects, 
we look at the thinking strategies the students adopt to solve the task. Particularly, 
these strategies are expressed by, and contained in the ways the students compare the 
two graphs. A common factor features the explanations. Indeed, most students tend to 
collate the horizontal pieces of the graphs, and to give reason of their choices through 
reference to such pieces. Few other arguments compare the slanted pieces instead. In 
general, the reports well highlight the link between the shape of the graphs and the 
speed at which the chosen subjects move. Focussing on the language of the selected 
arguments and on inscriptions, if possible, the analysis will mark how the meaning of 
the horizontal straight lines as models of motion is clearly interiorised.  

ANALYSIS AND DISCUSSION 
We consider the strategies produced by two young girls (Elisa and Gaia) to solve the 
first section of the activity: they account the horizontal pieces of the two graphs as 
functional to the thinking processes. In each of the two extracts below, punctuation in 
the text and references in parentheses are added for the sake of clarity; underlined 
words are key words for the investigation. We start analysing Gaia’s explanation. 
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Gaia 
As regards the choice of the two animals, Gaia gives a verbal description but does not 
introduce any sketch. Gaia writes:  

For the first drawing [Figure 1, left] I chose the pig ’cause it is slow and the line that 
came, it [the pig] started near the CBR, it walked and then it stopped at the end of the red 
band, and a horizontal line came. In the first drawing I chose the pig ’cause it goes 
slowly and the drawing shows that it [the pig] takes longer to arrive at the end of the red 
band, and a shorter horizontal line came ’cause it [the pig] took longer than the horse. 
The horse is faster [than the pig] and it went faster, a longer horizontal line came [Figure 
1, right], and the horizontal lines are equal in height, ’cause they [the pig and the horse] 
both stopped at the end of the red band, and they stopped at the end of the red band and 
they waited for the 15 seconds to finish.  

Gaia chose a pig and a horse and distinguished them assigning each a colour: pink to 
the pig, orange to the horse. She coloured the lines and the animals’ names written 
under the horizontal pieces, which are what discriminate between the graphs in the 
argument. Gaia does not look at the graphs globally but locally: she draws attention 
just to their horizontal part (“the line”, “a horizontal line”), and this is enough to 
justify her choice of the two animals. The slanted pieces are not of interest to her. 
Since the beginning, Gaia uses the third person singular “it” to refer to the pig in an 
implicit way. Indeed, at a first reading of the expression “the line that came, it started 
near the CBR” in the original Italian language (where punctuation is not used), it was 
not so evident that “it” alluded to the pig. We initially thought of a fusion of “the line 
that came” with the moving subject that “started near the CBR” (Nemirovsky et al., 
1998). But we solved the doubt as soon as we read the first segment about the choice 
of the cartoon characters Micky Mouse and Beep Beep, the name for Road Runner 
from Wile E. Coyote (“as before” refers to the situation above): “I wanted to put 
Mickey Mouse in the first drawing ’cause it is slower than Beep Beep, and as before 
they both started near the CBR, they walked away and they stopped at the end of the 
red band”. The experiences with the motion sensor play a pivotal role in the account. 
Naturally, Gaia makes present in the graph the image of a real pig that moves so to 
obtain a shape like the one “that came”. In so doing, Gaia imagines the actual 
movement as embodied in the graphical representation: “it started near the CBR, it 
walked and then it stopped at the end of the red band”. Even the red band is made 
present in this imagination process (a red band was put on the floor to mark the 
spatial range where the children were free to move – a range that cannot be over 6 
metres for the functioning of the sensor). Imagining the movement of the pig is the 
first step to start the real explanation of the choice for the graph on the left, advanced 
since the very beginning (“I chose the pig ’cause it is slow”). After this imaginative 
step, Gaia is able to give an effective justification that links a real quality of the pig’s 
motion (“it goes slowly”) with a quality of the horizontal piece on the left (being a 
“shorter line”) with respect to the horizontal piece on the right. Again, the image of 
motion is made present in the graph to express that link: “the drawing shows that it 
takes longer to arrive at the end of the red band”, “it took longer than the horse” 
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(associated with the graph on the right). From this moment on, the horse enters the 
argument to complete it. The fact that one line is “longer” than the other one depends 
on the speed Gaia imagines the animals moving at: “the horse is faster”, “it went 
faster”. Reference to the animals’ motion for interpreting and explaining the shape of 
the graphs in a global manner rather than local, is present up to the end (“’cause” 
repeated many times). So, the same “height” for the graphs is linked with the stop of 
both the pig and the horse “at the end of the red band”; having horizontal pieces 
means in terms of motion that “they waited for the 15 seconds to finish” (in fact, the 
sensor collects data in real time for a 15-second time interval). In this conclusion, 
Gaia leaves implicit that being faster for the horse/slower for the pig corresponds to 
waiting longer/shorter for the 15 seconds to finish.  
Elisa 
Elisa produced an interesting argument, in which again the horizontal pieces are used 
in a functional way, and the slanted pieces are not taken into account. A new strategy 
is adopted with respect to Gaia to differentiate the lines, though. Elisa chose a frog 
and a snail, respectively for the graph on the right and the graph on the left (Fig. 2).  
 

 
Figure 2. Elisa’s sketches of a snail (on the left) and of a frog (on the right) 

Even if the argument is mainly expressed in verbal form, Elisa also drew sketches of 
the chosen animals just over the horizontal parts of the two lines (Figg. 2 and 3). She 
writes:  

The drawings are equal in height but there’s a thing that is not equal, I chose a frog and 
a snail [Figure 2], then I looked at the drawings and the first one on the left, where 
there’s the horizontal line I counted the big squares and they were 3 and a half, and it 
means that the snail went slowly. The second one on the right, the horizontal line and I 
counted the big squares again and they were four and a half, and it means that the one 
went more slowly and the other fast; the frog fast, the snail very slowly ‘cause the frog 
goes fast and if it goes fast it stops earlier than the snail. And the snail goes slowly and 
arrives later, if the frog goes fast it arrives earlier and the 15 seconds are not finished. 

Elisa’s strategy is developed (like Gaia’s) by focussing on the length of the horizontal 
parts of the graphs (“where there’s the horizontal line”). Nonetheless, it differs from 
Gaia’s strategy for the fact that the two lengths are distinguished through the count of 
the big squares filling the Cartesian space just under the horizontal pieces (“I counted 
the big squares”; see the circled regions in Fig. 3).  
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Figure 3. The regions where Elisa counted the big squares 

We may suppose that the count of the big squares was the very first step of Elisa’s 
thinking process, and that Elisa introduced on the graphs the sketches of the snail and 
of the frog as soon as she ended the count and understood which one of the horizontal 
pieces is the longest. Like for Gaia, even for Elisa the previous experience with the 
motion sensor plays a pivotal role in the argument. As a matter of fact, Elisa thinks of 
each number of big squares as associated with an animal moving at a certain speed 
(“slowly” or “fast”). So, the “3 and a half” squares counted under the piece on the left 
correspond to the choice of the snail (“it means that the snail went slowly”). This is 
because three and a half are less than the “four and a half” squares Elisa has counted 
on the right (exactly, that region contains four squares and a portion of a fifth square, 
but the reasoning is still valid). In terms of motion, counting less squares on the one 
side with respect to the other “means that the one went more slowly and the other 
fast”. As a consequence, the frog that goes “fast” is associated with the “four and a 
half” squares, while the snail that goes “very slowly” is connected to the “three and a 
half” squares. Up to here, the report has a fuzzy nature: we may state that Elisa was 
likely to have clear in mind the motive of her choice, but she was not yet able to 
express it fine to her readers. She repeats more times the subjects (“the one”/“the 
snail”, “the other”/“the frog”), referring to the different qualities of their movements 
in terms of speed (“went more slowly”/“very slowly”, “fast”). At this point, the causal 
use of the conjunction “’cause” transforms the fuzziness of the former description 
into the effectiveness of the justification. The change is also marked by the presence 
of the “if”–form. This form may be seen as an implicit ‘if… then’ that provides the 
reader with the real explanation of Elisa’s choice: “if it goes fast it stops earlier”, “if 
the frog goes fast it arrives earlier”. Quite the contrary, “the snail goes slowly and 
arrives later”. As a result, since “the 15 seconds are not finished” the graphs contain 
two horizontal parts, one longer than the other due to the speed the frog and the snail 
move at.  
CONCLUDING REMARKS 
Gaia and Elisa show to have understood the graphs’ shape in terms of motion, even if 
they do not make any reference to the slanted parts. Gaia and Elisa have interiorized 
the meaning of the horizontal straight line as a model of absence of motion, so much 
to use it in a functional manner in order to compare the situations described by the 
two graphs, and to justify their choices. For what concerns Gaia’s language, the sense 
of the comparatives “shorter” and “longer” to speak of the horizontal parts is soon 
connected to the pig’s and the horse’s speed. Concerning Elisa’s argument, the count 
of the “big squares” filling in the region under the horizontal pieces allows her first 
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to discriminate between the lengths of the two lines, and then to associate each with 
the right animal – the rightness being determined by the speed at which the frog and 
the snail move. The previous bodily experience with the motion detector is recalled 
by imagining the animals’ real movements on the graphs. The latter thus become 
objects of consciousness (condensing qualities of motion and mathematical qualities) 
through language but also through: the two colours for the different animals, and for 
the different shapes, in the case of Gaia; the sketches (over the horizontal pieces just 
as if they were moving along), in the case of Elisa. On the other hand, imaginary 
activity constitutes mathematical thinking beside perceptuo-motor-sensory activities 
(Nemirovsky & Ferrara, 2009). In both cases, the young girls provide a real dress to 
the abstract shape of the graphical representations, a dress certainly influenced by 
cultural factors (like knowledge of animals, and beliefs on the speed at which animals 
move). Gaia’s and Elisa’s behaviour is not an isolated example. Looking at all the 
written explanations, we find other instances of analogous strategies concentrating on 
the horizontal pieces. For example, Marco chose a mole for the graph on the left and 
a horse for that on the right. He stresses: “I chose the mole ’cause it goes less fast 
than the horse but it goes enough fast. I chose the horse because it goes very fast, and 
in fact in the second drawing it is motionless longer”. Marco makes present the 
image of a horse that “goes very fast”, and does not move for a “longer” time than the 
mole. Similarly, Manuele illustrates his choice of a cat and a turtle to be linked with 
the lines: “The cat goes slowly ’cause it is in the first path, instead the turtle went 
faster ’cause the straight line is longer; for the cat the seconds are more instead for 
the turtle they are less but the turtle waits longer since the line is longer ’cause the 
turtle has been motionless”. The explanation is untidy (particularly when the “more” 
and “less” seconds for the slanted pieces are introduced), but at the end the length of 
the line on the right (its being “longer”) is related to the fact that “the turtle waits 
longer”, meaning that it waits longer for those 15 seconds to finish also considered 
by Gaia. These examples all evidence that 7-year old students can grasp meanings 
related to the covariance of variables, and make sense of graphical representations of 
motion. Non-standard laboratory activities on graphing motion enabled our grade 2 
students to make sense of horizontal straight lines as models of absence of motion, 
coming to use them in a functional way for supporting their thinking processes. 
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ALGEBRAIC THINKING OF PRIMARY STUDENTS 
Torsten Fritzlar  Nadja Karpinski-Siebold 

University of Halle-Wittenberg, Germany 
 
On the one hand, algebra plays an important role in mathematics teaching at school. 
On the other hand, it often still proves to be particularly difficult to many students. 
This is why efforts have been made especially over recent years to connect arithmetic 
and algebra as early as primary school. Less frequent are studies which sys-
tematically explore the natural capacities of primary school pupils regarding their 
algebraic thinking patterns.  
This contribution attempts to describe algebraic thinking at primary school age. In 
addition, we report of a study which captures the relevant abilities of primary school 
pupils by looking at the way in which they handle potentially algebraic problems.  

INTRODUCTION 
Of course, there are varied and partly profession-specific perceptions of algebra, for 
instance by mathematicians, teachers, pupils, educators ...  
A more functional perspective in particular stresses the significance of algebra for 
mathematics as a whole. So, Ball (2003) describes algebra as a tool for representing 
and analysing quantitative relationships, as a technical language which makes it pos-
sible to model situations as well as formulate and prove general statements. Further-
more, algebra provides fundamental methodology and concepts for several branches 
of mathematics, thus contributing profoundly to the coherence of mathematical sub-
domains.  
A psychological and didactic perspective places a stronger focus on the processes in-
volved. Kaput (2007), for instance, mentions two core aspects of algebraic work: 
firstly, an explicit generalisation of patterns and connections by means of a system of 
symbols which is increasingly becoming more differentiated and conventionalised. 
Secondly, he points to the syntactically guided handling of symbolic generalisations. 
It is important to keep in mind that making generalisations explicit is necessary to be 
able to speak of algebraic activity. We believe, however, that this is also sufficient, 
especially with regard to primary school. The use of symbolic systems and a syntacti-
cally driven handling of symbols usually develop only at a later stage and only grad-
ually so.  
These core aspects manifest in various spheres of activity and general fields of com-
petence within mathematics, e.g. in the exploration of patterns, functions and rela-
tions, in modelling, arguing and problem solving (Kaput, 2007; Kieran, 2004). 
On this basis, algebra seems to be an important access path to “higher mathematics”, 
but it has also proven its role as a so-called gatekeeper: Coping with algebraic de-
mands is crucial to the overall success in mathematics lessons at secondary level of 
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education (Cai & Knuth, 2005). It is thus alarming that students experience numerous 
difficulties with algebraic content, a fact repeatedly shown in case studies and large-
scale comparative studies (e. g. Carraher & Schliemann, 2007; Kieran, 2007). 
The main reason for these difficulties is seen in the discontinuities between arithmetic 
and algebra, and also seemingly seamless continuations often involve shifts in and 
expansions of meaning (Carpenter, Levi, Franke, & Zeringue, 2005). This is support-
ed by the findings that even those students who are good at arithmetic in class (during 
primary school), frequently perform poorly in school algebra (Kieran, 2004). 
An initial assumption was that overcoming these discontinuities was exclusively im-
peded or hindered by the students’ limitations in terms of developmental and cogni-
tive psychology. Newer studies now suggest, however, that mathematics lessons 
themselves play a significant role in the manifestation of the frequently observable 
difficulties. While recognizing that preconditions exist regarding developmental psy-
chology, these studies find that an important reason for these difficulties is that the 
semantic and conceptual differences between arithmetic and algebra are addressed at 
too late a point in time (Schliemann, Carraher, & Brizuela, 2007). 
This is why several Early-Algebra-programmes have been developed over the past 
years (e. g. Blanton, 2008). In this context, relevant works in the field of didactics of 
mathematics have largely been more in the shape of intervention studies. Descriptive 
studies depicting algebraic abilities of young students without any special prior inter-
vention programmes, are scarce up to now. 

ALGEBRAIC THINKING 
In 1998, Hewitt wrote: Working algebraically means “awareness of awareness” (cited 
in Mason, Graham, & Johnston-Wilder, 2005, p. 309). This clearly shows what can be 
taken for granted at primary school: Algebra is more than just knowing how to deal 
with terms, equations or functions. Algebraic abilities at primary school age become 
apparent in algebraic thinking, for which we postulate the following components: 
Handling operations (as objects) and their inverses (Mason, Graham, & Johnston-
Wilder, 2005; Kieran, 2004): This predominantly includes knowledge regarding 
arithmetic operations and their application, e. g. in calculation rules (inversion tasks, 
commutative, associative, distributive law, identity elements, …), but also solving 
simple linear equations by “backward calculations” with the inverse operation. Reify-
ing arithmetic operations makes it possible, for example, to compare them regarding 
their characteristics and effects. 
Establishing relationships between numbers, sets and relations (relational thinking) 
(Warren, 2003): At primary school age, this can show especially in the use of rela-
tionships between numbers (e. g. 12 + 13 = 12 + 12 + 1 or 9 + 6 = 10 + 5) or operations 
(e. g. 2 + 9+ 6 – 9 = 2 + 6) for advantageous calculations, i. e. in the rearrangement of 
arithmetic expressions for an easier subsequent calculation.  
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On the basis of these first two components of algebraic thinking, students can derive 
general transformation rules for algebraic expressions in the long run. 
Generalising (Blanton, 2008): This component, detaching the thought from the con-
crete object, is of great, or even constitutional, significance to algebra. In interplay 
with the first two components, it enables a generalised arithmetic by the transition 
from an arithmetic-empirical perspective of concrete objects and processes to an al-
gebraic understanding of relationships and structures. At primary school age, the 
“generalising” component can show especially in the identification or construction, 
and use of relationships, for instance in exemplary arithmetic-geometric sequences, 
or in operationally structured exercises (Wittmann, 1992). We can here differentiate 
between induction based purely on empirics and a structure-based generalisation in 
Radford’s sense (2006). 
Dealing with changes (Zevenbergen, Dole, & Wright, 2004): This includes identifi-
cation and use of functional dependencies, e. g. in simple (linear) correlations, espe-
cially in dynamic situations or those thought to be dynamic. The concept of variables 
as changeable numbers or quantities, which is highly demanding for primary school 
pupils, is relevant to this component too. 
Dealing with unknowns: Here, we can further differentiate, for instance between con-
stellations (1) where an unknown can be determined at the end of the calculation pro-
cess, (2) where a relationship between two unknowns has to be established, and (3) 
where unknowns must indeed be treated as known mathematical objects. For the lat-
ter, one could consider equations such as ax + b = cx + d, for example, for which 
equivalence transformations of the equation are necessary in order to solve it. Experi-
ence has shown that this is extremely challenging for primary school children, and 
some scholars speak of a “cognitive gap” (Herscovics & Linchevski, 1994) or “didac-
tical cut” (Filloy & Rojano, 1989) in this context. 
Using (symbolic) representations (Kieran, 2004): This component generally includes 
algebraic expressions or terms, but also the (related) perception of the equal sign as a 
relational sign, and the dual character of terms as processes and products.  
The symbolic language of algebra is not only demanding, it also has a supportive 
character, and the syntactically driven handling of symbols is extremely important for 
algebra as a whole (Kaput, 2007). However, algebraic thinking is possible even with-
out letters as variables (Linchevski, 1995). At primary school age, this component is 
shown especially in using not necessarily symbolic representations of characteristics 
and relations (Radford, 2006). 
If we compare the components of algebraic thinking with characterisations of math-
ematical giftedness at school age (e. g. Krutetskii, 1976), implicit similarities with 
characteristics of mathematically gifted children become apparent. On the other hand, 
algebraic thinking is not explicitly referred to in existing attempts to describe mathe-
matical giftedness. It thus still remains unclear which relationships exist between a 
student’s apparent mathematical talent and his capabilities of algebraic thinking. 
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RESEARCH QUESTIONS 
Within the framework of a qualitative case study, we have two main goals: 
By analysing the way in which Year 4 primary school students of varying proficiency 
levels deal with specific mathematical problems, we want to identify and describe 
natural elements of algebraic thinking in detail. The primary goal is not to assess stu-
dents according to their respective abilities. Rather, as the main result of the study we 
strive for an age-group-specific ascertainment of natural components of algebraic 
thinking. In addition, we want to find out whether – on the basis of observed individ-
ual cases with regard to the components of algebraic thinking – certain ability pro-
files can be determined. 
In doing so, our study wants to give empirically substantiated suggestions regarding 
the components of algebraic thinking and the content areas of primary math classes in 
which linking arithmetic and algebra could be particularly fruitful. It can thus create a 
foundation for possible intervention programmes on the basis of current curriculums 
and practices in mathematics lessons. 
We look at the way in which students handle specific mathematical problems both 
among mathematically gifted students as well as among students who approximately 
represent the respective form’s spectrum of proficiency. Through a comparative 
analysis of algebraic thinking among these two groups of students, we want to exam-
ine, from a differentiated perspective, whether and to which extent according abilities 
can also be considered as indicators for the presence of mathematical giftedness. 

METHODOLOGY 
To answer the research questions, we conduct (semi-standardised) diagnostic inter-
views, in which students work on selected mathematical problems with potential for 
algebraic approaches. The sessions are videotaped and analysed by content. 
Some specialised German grammar schools with focus on mathematics and natural 
sciences require applicants to pass highly demanding entrance exams in mathematics. 
In our current research phase, we collaborate with such a school in Halle and identi-
fied some of their mathematically gifted Year Four applicants. Of these students, we 
picked ten to participate in our study, and additionally chose three other students 
from each of these students’ forms, respectively, who roughly represented the form’s 
spectrum of proficiency. In total, we thus conduct about 40 diagnostic interviews, 
each with duration of 30 to 45 minutes (max).  
The interviews are analysed on the basis of the “algebraic thinking”-construct as de-
picted above, with its various degrees of manifestation at primary school age, while 
the components of algebraic thinking are differentiated and specified for each respec-
tive problem used during the interview. The system of analytical categories and the 
basic theoretical assumptions, on which it is based, however, is kept generally open. 
Particularly during this current first phase of the study, aspects of analysis are also 
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derived from the material itself and the categories used for evaluation are inductively 
complemented or refined. 

PRELIMINARY EXPERIENCES 
During the diagnostic interviews, we used, among others, the following problems. 
They had also already been tested in a preliminary study. 

 

Figure1: Problem 1 – Trading cards 
 

 

Figure 2: Problem 2 – Piggy banks 
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Figure 3: Problem 3 – Advantageous Calculations 
 

 
Figure 4: Problem 4 – Double computation chain 

In the interviews conducted so far, we found that these problems carry potential for 
an algebraic approach by primary school students, and that they address the following 
components of algebraic thinking in particular: “relational thinking” (problem 1, 
problem 3), “generalising”, “dealing with operations” (problem 4), “dealing with 
change”, “working with unknowns” (problem 2).  
On the other hand, it has already become clear that the problems can, in fact, distin-
guish different degrees of manifestation of algebraic thinking among the observed 
age group. 

a) 

b) 

c) 

Fill in the blank in the second expression so that the result is the same. 
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Due to the limited scope of this paper, we can only discuss selected results we ob-
tained for Problem 3 during our preliminary study. It addresses the component “rela-
tional thinking”, i. e. determining relationships between numbers, sets or relations. 
This is the case because by putting numbers into relation with each other (359 = 362 –
 3, 219 = 215 + 4, 14 = 5 + 9), it is possible to avoid a time-consuming calculation of 
solutions, and on this basis, a calculation of the missing numbers in the respective 
terms on the right side of the equation.  
The following categories may be useful to evaluate the students’ work regarding this 
component:  

1: Exercises a) and b) are partly solved incorrectly by means of written arith-
metic. 

2: Exercises a) and b) are solved correctly by means of written arithmetic. 
3: Student makes opposite changes to numbers in exercise b) after giving ad-

vice on exercise a). 
4: Student makes uniform changes to numbers in exercise b) after giving ad-

vice on exercise a). 
5: Advantageous calculations applied in exercises a) and b). 
A: Exercise c) is not understood. 
B: Order of operations not followed in exercise c). 
C: Exercise c) correctly solved by computation.  
D: Number bonds (to 14) used in exercise c). 

For the Year 4 students that participated in the preliminary study, who demonstrated 
very high (mathematically gifted), good and average mathematical performance, re-
spectively, we obtained the following results for their work on Problem 3:  
 

 Math. gifted students Good students Average students 
Boys 5C, 5B, 5D, 5D 3D, 5C 2B, 2B 
Girls 2C 3- 2B, 1C, 1B, 3B, 2B 

Table 1: Categories for work on Problem 3 
Table 1 clearly shows the differences between the individual students. It also be-
comes clear that this problem distinguishes between groups of students with varying 
levels of performance regarding the observed component of algebraic thinking.  
Overall, the existing results of the current research phase also indicate that abilities 
concerning the several different components of algebraic thinking are surprisingly 
weak among students who were perceived to have not a special mathematical talent. 
The opposite is the case for mathematically gifted students in the same group. 
Further problems used in this study as well as important results of our current re-
search phase will be presented and discussed in the presentation. 
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The extent to which students are competent in identifying circular arguments in 
mathematical proofs remains an open question, as does how it might be possible to 
enhance their competency. In this paper we report on a study of learners encountering 
logical circularity while tackling geometry proof problems using a web-based proof 
learning support environment. The selected episodes presented in the paper illustrate 
how learners who have just started learning to construct mathematical proofs make 
various mistakes, including using circular arguments. Using the feedback supplied by 
the web-based proof learning support environment, and with suitable guidance from 
the teacher on the structural aspects of a proof, learners can start bridging the gap in 
their logic and thereby begin to overcome circular arguments in mathematical proofs. 

INTRODUCTION 
Bardelle (2010) provides an example of some undergraduate mathematics students in 
Italy being presented with the diagram in Figure 1 as a "visual proof" of Pythagoras' 
theorem. The students were asked to use the figure to help them develop a more 
formal written proof of the theorem. 

  
 

Figure 1: a "visual proof" of 
Pythagoras' theorem Figure 2: a rectangle from Figure 1 

Bardelle relates how one student focused on the rectangles that surround the central 
square. By defining a as the short side and b the longer one (as in Figure 2), the 
student used Pythagoras’ theorem to get  and thence, by squaring both sides, 
the student obtained Pythagoras theorem . This is an example of a student 
using a circular argument or circulus probandi (arguing in a circle). It entails 
assuming just what it is that one is trying to prove (Weston, 2000, p75). In logic, 
circular reasoning is considered a fallacy as the proposition to be proved is assumed 
(either implicitly or explicitly) in one of the premises.   

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 353-360. Ankara, Turkey: PME.
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In a comprehensive consideration of the key questions for mathematics education 
research on the teaching and learning of proof and proving, Hanna and de Villiers 
(2008, p333) raise the issue of the extent to which students are competent in 
identifying circular arguments in proofs. They also ask how it might be possible to 
enhance such competency in students. In this paper we report on a study of learners 
working with logical circularity while tackling proof problems. Our research 
questions encompass how it is that they create a proof which has a logical circularity, 
and how they modify their thinking through to constructing a correct proof. To 
answer these questions we analysed selected episodes collected as students work on 
geometry proof problems using a web-based proof learning support environment (for 
more details of this web-based system, see Miyazaki et al, 2011).  

CIRCULAR ARGUMENTS IN DEDUTIVE REASONING 
Rips (2002) has argued that the psychological study of reasoning should have a 
natural interest in patterns of thought like circular reasoning, since such reasoning 
may indicate fundamental difficulties that people may have in constructing and in 
interpreting even everyday discourse. However, Rips claims that up until his study in 
2002 there appeared to be no prior empirical research on circular reasoning. While 
Rips reports on a study of young adults, Baum, Danovitch and Keil (2008) report 
findings with younger students - indicating that by 5 or 6 years of age, children show 
a preference for non-circular explanations and that this appears to have become 
robust by the time youngsters are about 10 years of age. 
While learners' preference for non-circular explanations may be robust by the time 
they are ten years old, within mathematics education Kunimune, Fujita and Jones 
(2010) report on data on Grade 8 and 9 pupils showing that as many as a half of 
Grade 9 students and two-thirds of Grade 8 pupils are not able to determine why a 
particular geometric proof presented to them was invalid; that is they could not see 
the logical circularity in the proof. Likewise in Germany, Heinze and Reiss (2004) 
report that from Grade 8 to 13 an unchanging two-thirds of pupils fail to recognise 
circular arguments in mathematical proofs. Such evidence illustrates that pupils are in 
need of considerable support in order to identify and overcome circular arguments in 
mathematical proofs. As Freudenthal (1971, p427) observed "you have to educate 
your mathematical sensitivity to feel, on any level, what is a circular argument".  

THEORETICAL FRAMEWORK 
We take as our starting point that a mathematical proof generally consists of 
deductive reasoning starting from assumptions and leading to conclusions. Within 
this reasoning process, at least two types of deductive reasoning are employed: 
universal instantiation (which deduces a singular proposition from a universal 
proposition) and syllogism (where the conclusion necessarily results from the 
premises).  
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In order to understand the structure of proof, students need to pay attention to 
elements of proof such as its premises and conclusions and their inter-relationships. 
Both Heinze and Reiss (2004) and McCrone and Martin (2009) identify appreciation 
of proof structure as an important component of learner competence with proof. In 
this paper we use the following levels of learner understanding of proof structure 
elaborated by Miyazaki and Fujita (2010): 

• Pre-structural: this is the most basic status in terms of understanding of the 
proof structure, where learners regard proof as a kind of ‘cluster’ of possibly 
meaningless symbolic objects and they cannot see that within the structure of 
proof ‘singular propositions' are those which are universally instantiated from 
'universal propositions’, that ‘syllogism' is necessary to connect 'singular 
propositions’, and so on. 

• Partial-structural: given that a proof consists of elements of proof such as 
singular and universal propositions, deductive reasoning, and their relational 
network, if learners have started paying attention to each element, then we 
consider they are at the Partial-structural elemental sub-level. To reach the next 
level, learners need to recognise some relationships between these elements 
(such as universal instantiations and syllogism). If learners have started paying 
attention to each relationship, then we consider them to be at the 
Partial-structural relational sub-level. 

• Holistic-structural: at this level, learners understand the relationships between 
singular and universal propositions, and see a proof as ‘whole’ in which 
assumptions and conclusions are logically connected through universal 
instantiations and syllogism (much like the 'warp' and the 'weft' when weaving 
textiles). Once learners have ‘Holistic-structural’ understanding, they should 
be able to start refining proofs, become aware of the hierarchical relationships 
between theorems, be able to construct their own proofs, and so on. 

The Pre-, Partial-, and Holistic-structural levels of understanding of proof structure is 
summarised in Figure 3. 

 

Figure 3: Pre-, Partial-, and Holistic-structural levels of understanding of proof 
According to this framework of Pre-, Partial-, and Holistic-structural levels of 
understanding of proof, most learners who are just starting to learn proofs would be 
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at either the Pre or Partial-structural level. In particular, if learners do not fully 
understand the role of syllogism, then they would be likely to accept or construct a 
proof which includes logical circularity.  

METHODOLOGY 
To investigate students’ understanding of logical circularity in mathematic proofs, a 
web-based learning platform (hereinafter the system) was utilised (for details of this, 
see Miyazaki et al, 2011). The current version is online at: 
http:// www.schoolmath.jp/flowchart_en/home.html 
For this learning platform, flow-chart proofs are adopted (see Ness, 1962) and both 
open and closed problems in geometry are available to learners, including ones that 
involve the properties of parallel lines and congruent triangles. Learners tackle proof 
problems by dragging sides, angles and triangles to cells of the flow-chart proof and 
the system automatically transfers figural to symbolic elements so that learners can 
concentrate on logical and structural aspects of proofs. The geometry problems that 
student tackle when using the learning platform include both ordinary proof problems 
such as ‘prove the base angles of an isosceles triangles are equal’ (we call these 
‘closed’ problems) and problems by which students construct different proofs by 
changing premises under certain given limitations (we call these ‘open’ problems). 
Each time the learners selects a next step in their flow-chart proof, the web-based 
system checks for any error via a database of possible next steps. If there is an error, 
the learners receive orderly feedback in accordance with the type of error (such as 
error in the deductive chain, error in selecting the appropriate theorem, error in the 
antecedent and the consequent of a singular proposition, and so on). 
For data collection, a range of individual or grouped learners (up to 4) tackled one or 
more mathematical activities with the web-based system and their conversations were 
recorded by video camera and then transcribed. In the next section we report selected 
cases involving five learners: two high-attaining secondary school students aged 14 
years old (WS1 and WS2) and three undergraduate primary trainee teachers (an 
individual, R, and a pair, J1 and J2). None of these learners had prior experience of 
mathematical proof in geometry.  
DATA ANALYSIS AND DISCUSSION  
In the problem in Figure 4 (lesson 2-b00), the learners are asked to prove ‘AB=CD’, 
with reasoning in both universal instantiation and syllogism being required to deduce 
a proper conclusion. This is an example of an open problem in that while learners 
have to use ‘AO=CO’ for their proof, they can decide for themselves which other 
properties to use. In this problem, they could either consider AO=CO, BO=DO and 
∠AOB=∠COD (the SAS condition) or use AO=CO, ∠AOB=∠COD and 
∠OAB=∠OCD (the ASA condition). 
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Case 1: after practicing with an introductory problem, and understanding that there 
are three conditions that can be used to say that two triangles are congruent, two 
14-year-old students, WS1 and WS2, undertook the problem in Figure 4. 

 
Figure 4: System interface and Lesson 2-b00 

Without any hesitation, their first attempt involved using the SSS condition as 
follows (I: Interviewer) 
50 WS2 That one and that one (BO and DO)? That one looks bigger than that one. 

Is it that one (∠AOB=∠COD)? [student chooses SSS condition, and 
checks answer] No.  

 
51 WS1 I don’t think that angle is … [indicating] 
52 I What does it say? 
53 WS2 [Reading the hint] You cannot use the conclusion to prove your 

conclusion. 
54 I What do you want to prove? 
55 WS1 We want to prove that the three pairs of sides …..I don’t know, I am really 

confused.   

They made a mistake (line 50) as they put ∠AOB=∠COD are congruent, rather than 
ΔOAB and ΔOCD. More importantly, they failed to notice that they should not use 
‘AB=CD’ in their proof. This is evidence that they did not have good understanding 
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of universal instantiation (line 55) or of logical circularity (line 50). The system 
highlighted the use of logical circularity by showing a box saying "you cannot use the 
conclusion to prove your conclusion". After receiving this hint from the system, and 
with additional support from the interviewer, the students started considering that 
‘AB=CD’ should not be used in their proof. With this they began to understand, as 
shown below in the dialogue immediately below, why AB=CD should not be used.  
86 WS1 It is the same as that. [reviewing WS2’s answer] You have done AB=CD 

again! 
87 WS2 Why can’t we do that? 
88 WS1 Because it is the same conclusion. 

After realising that AB=CD should not be used, they finally constructed a correct 
proof. Nevertheless, the above example illustrates that understanding the meanings 
and roles of premises and conclusions are difficult for learners who have just started 
learning mathematical proof. Moreover, from the structure of proof point of view, our 
evidence shows that learners who cannot see the whole structural relationships 
between premises and conclusion (namely that they are not at the Holistic structural 
level) cannot identify the logical circularity. In order to identify logical circularity as 
a serious error, learners need to understand at least the role of syllogism which 
connects premises with conclusions. It means learners need to understand the aspect 
of syllogism included in the relational Partial-structural relational sub-level (see Fig 
3). 
Case 2: in the episode below, student R, a first year student on a primary teacher 
training course, first considered that it would be possible to use SSS condition as a 
way to tackle the open problem to prove ‘AB=CD’. This indicates that R is lacking 
understanding of logical circularity. After making several mistakes, including logical 
circularity, student R finally reasoned why it was not possible to use SSS (see lines 
34 - 40 below). This shows that student R was in the upper level of the 
Partial-structural relational level involving the understanding the aspect of syllogism 
at least. 
34 R I don’t think anymore answers. 
35 I Are you confident to say so? 
36 R Yes. 
37 I If you choose ∠AOB&∠COD, and ∠ABO&∠CDO, then… 
38 R We need to use BO and DO but … 
39 I No, we can’t use them as AO=CO is already assumed. Also we can’t use 

AB=CD, because this is… 
40 R What you are trying to find! [laughs] 

Case 3: J1 and J2, two first year students on a primary teacher training course, are 
towards the end of their work on the proof problem. In the extract below, they are not 
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only considering why they cannot use the SSS condition for the problem (lines 
149-151 below), but also eliminating other possibilities for answers (lines 152-157). 
This illustrates their capacity to identify logical circularity in proofs, and that their 
understanding of structure of proof is almost at the Holistic structural level as there is 
evidence that they have started grasping the relationship between premises and 
conclusion.  
147 J1 Um, try again? 
148 J2 You could do all the … 
149 J1 All the sides? 
150 J2 Yes… actually no, because.. 
151 J1&J2 You are trying to prove [AB=CD] … 
152 J1 And if you can’t use this line [AB] then we can’t use the other angle… 

because it is not included… 
153 J2 You mean those [∠ABO&∠CDO]? 
154 J1 Yes, it is not included [as AB cannot be used]… and we’ve already got 

others… 
155 J1 How about AO-∠OAB-AB? 
156 J2 You cannot use these, because… 
157 J1 Because these ones [AB&CD] which we are trying to prove… 

This example shows that students J1 and J2 could overcome the logical circularity 
gradually by considering possible combinations of premises and conclusion and 
checking whether their proof fell into logical circularity or not. This might mean that 
the kinds of activity available with the web-based flow-chart proof system are useful 
to understand the whole structural relationship between premises and conclusions 
more deeply, to encourage learners to shift the level of the understanding of proof 
structure, and that this may lead to them, in the end, overcoming the error of logical 
circularity. 
CONCLUSIONS 
The selected episodes presented in this paper illustrate how learners who have just 
started learning to construct mathematical proofs make various mistakes, including 
using a conclusion to prove the same conclusion. Our conjecture is that the cause of 
this is their incomplete understanding of whole structure of proof, especially their 
lack of understanding of the role of syllogism. The web-based learning environment 
with its open problem situations using flow-chart-type proof, as we show in this 
paper, can reveal learners' naive status of understanding, in particular their lack of 
understanding of syllogism (for example, cases WS1 and WS2, and R).  
While it is appears difficult for learners to consider why logical circularity cannot be 
used in a proof (see the example of WS1 and WS2), to overcome such difficulties it 
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is important for teachers to encourage learners to attend to the structural relationships 
between premises and conclusion and how they could be bridged (via syllogism). As 
support, the feedback supplied by the web-based proof system provides guidance on 
what help might be given learners to help develop their understanding. By focusing 
on the structural aspects of a proof, the learners start bridging the gap in their logic in 
syllogism (see example R, lines 34 - 40). For some learners (for example, J1 and J2), 
by using the open problem situation, logical circularity is eliminated by considering 
possible combinations of premises and conclusion (see case J1 and J2, lines 
141-157). This suggests that both considering possible combinations of premises and 
conclusion, and checking whether the proof falls into logical circularity or not, are 
useful for overcoming errors of logical circularity. 
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STUDENTS' MEANING MAKING IN A COLLABORATIVE 
CLASSROOM PRACTICE AS INITIATED BY TWO TEACHERS 

Sharada Gade 
Umeå Mathematics Education Research Centre, Umeå University, Sweden 

 
This paper reports the nature of classroom practice that afforded students' meaning 
making at an upper secondary mathematics classroom in Norway. The participation 
of both teachers and students in the collaborative classroom practice they jointly 
establish is outlined. A longitudinal and person-in-practice view sheds light not only 
on the meaning producing foreground that was initiated, but also the nature of its 
growth. An artefact of instructional practice of two teachers Olaf and Knut is thus 
evidenced. In this there is opportunity to appreciate mathematical content, pedagogy 
and students' thinking in an integrated manner – making such knowledge useful and 
usable by practising as well as prospective teachers of mathematics. 

INTRODUCTION 
Drawing upon a year-long doctoral study at an upper secondary mathematics 
classroom, I report on one of four themes found grounded in my data (Gade, 2006). 
These themes emerged in response to my research question – Within a collaborative 
teaching-learning practice in the mathematics classroom, how do artefacts and 
activity mediate: meaning making in participation, consolidation of meaning made, 
development of problem solving know-how, and cooperation in problem solving. In 
reporting on the first of these themes, I describe the nature of classroom practice that 
was initiated by Olaf and Knut who shared teaching in the class I conducted my 
study; and whose prior objective it was to have their students cooperate in small 
groups within instruction. I label the classroom practice they established jointly with 
their students as a collaborative one, since it provided students opportunity to 
cooperate not only with each other in their groups, but also with students from other 
groups. At times groups of students presented solutions to tasks they had cooperated 
upon to other groups in the classroom. I explore how such practice was conducive to 
students meaning making in relation to the mathematics being demanded of them. 

LITERATURE REVIEW 
The need to attend to practices in mathematics classrooms has been recognised in 
PME and wider literature (e.g. Seeger et al., 1998; Boaler, 2003; Forman, 2003; 
Morgon, 2009). Socio-cultural-historical and activity or CHAT perspectives have 
also enabled classroom research to move beyond claims about individual cognition 
alone. A larger analytical zoom and holistic understanding has enabled research to 
inform a person-in-practice view of students and their teachers (Lerman, 2001). A 
relational view of mathematics, students, teachers and material aspects of practice has 
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in turn led to insight about the nature of participation and negotiation of meaning that 
is capable of leading to greater knowing in classrooms. Greeno (2003) has argued 
that such a situative view has consequences, not only for what students learn but the 
kind of learners that students become. Attending to changes in patterns of discourse, 
it has also become possible to address critical aspects in mathematics education, 
especially those inherent in the complexities of everyday classrooms. The study of 
any sphere of practice which provides experience and enables students to bring forth 
their intention and foreground their personal meaning making has thus been argued 
for as desirable (Skovsmose, 2005). The demand to understand mathematical content, 
pedagogy and students' thinking in an integrated manner has also been recognised 
(Silver, 2009). Such practice-based knowledge has potential, Silver points out, to be 
useful and usable by practising and prospective teachers, as well as in professional 
development. Though the theoretical benefits of such knowledge have been 
recognised, it is time Silver argues, to reap these benefits in empirical terms. I 
respond to this demand by reporting on the nature and growth of an instructional 
practice that Olaf and Knut initiated and steered in my study. 

THEORETICAL FRAMEWORK 
CHAT perspectives offer constructs that enable appreciation of the participation of 
individuals in practices. Built upon Vygotskian assumptions, which are fairly broad 
and under current scrutiny, these perspectives consider the social environment as the 
provider of cultural tools and resources that mediate psychological processes and 
determine development. Resting upon innate biological functions, such psychological 
processes identified as higher mental functions, are mediated by cultural tools and 
resources. CHAT perspectives thereby analyse how higher mental functions emerge 
and became functional in individuals. These perspectives premise human engagement 
in practical activity as the means by which individuals transform themselves, at the 
same time as they are transforming external reality (Steksenko 2004). Analysis of 
various activities in which individuals objectify their psychological processes as they 
participate, thus forms methodological basis. Participation as unit of analysis in my 
study is informed also by Rogoff (2003) who distinguishes this unit with individuals' 
actions such as remembering or planning, where transformations in these are dynamic 
and indicative of participation in cultural practices. Laying emphasis on relationships 
rather than transformations Lave (1993) identifies participation, in addition, with 
relations entered into in local social practices. Her emphasis on relationships is not on 
those entered into between participants and their contexts, but on those relations that 
contextualise the way people act both within and across those very contexts.  
Participation with meaning of individuals in either a cultural or social conception is 
guided further by Bruner (1996) who argues that the role of culture in general and 
education in particular, is the idealisation and consolidation of personal meaning into 
academic forms. In treating education as embodiment of culture and not a preparation 
for participating in one, Bruner says it is thus demanded of pedagogy to select ways 
of negotiating the academic meaning that is to be made. Teachers and students are 
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thereby treated as if they had intentional states and considered as acting with purpose. 
Extending Bruner's arguments, Olson (2003) has singled out the need for teachers to 
make timely decisions within instruction so as to bring together students' minds as 
well as various cultural tools and available resources. In particular Olson draws 
attention to the formation of joint intentions between teachers and students in practice 
- characterised by their sharing a common vocabulary and the eventual taking over of 
responsibility by the students of their own learning. In adopting a person-in-practice 
(Lerman, 2001) and situative (Greeno, 2003) view of the mathematics classroom, it is 
my intention to evidence the nature of one such practice steered by Olaf and Knut. In 
this I outline how their students transformed themselves within instructional activity 
(Stetsenko, 2004) and formed joint intentions with their peers and teachers through 
participation (Olson, 2003). I turn to methods adopted for studying such participation 
which resulted in students taking over responsibility of their own learning.  

METHODS 
The principal means with which I investigated Olaf and Knut's classroom practice 
was ethnographic. Such a stance not only drew upon my experience as a teacher but 
also became a way to embed methods that were necessary for studying various other 
units of analysis found necessary in my study. Enabling me to bring ground to figure 
such an approach was question driven, wherein I could match evolving models about 
teaching-learning with events that transpired in subsequent practice (Weisner, 1996). 
Of the three specific methods I utilised – field notes, survey response by students to 
group-tasks, and transcriptions of problem solving conducted with student groups; I 
now explain my collection of field notes that informed participation as unit. 
I made field notes as a participant observer during the length of data collection. This 
enabled me to appreciate Olaf and Knut's bilingual instruction in Norwegian and 
English of 32 students seated in 8 small groups. Making field notes enabled me to 
record not only that discourse which transpired in English, but also make additional 
notes about material aspects that accompanied teaching-learning. Inclusive of who 
was speaking, from which group and whether one was stationed at their desk or 
blackboard, I obtained a thick description of actions, events and cultural artefacts that 
constituted instructional practice (Geertz, 1973). The corpus of data collected was 
thus naturally occurring and included my interpretation of the experience of teachers, 
students and myself (Silverman, 2001). While I draw extensively on field notes in 
this report, I acknowledge having arrived at current interpretations with multiple 
levels of triangulation by deploying units of analysis other than participation as well. 
When Olaf taught alone at the beginning of the academic year, I made notes by 
seating myself to one side of his classroom. Upon Knut joining teaching duties, 
which coincided with commencement of the second chapter of the textbook, I sat 
beside one particular student group. This enabled me to view classroom teaching-
learning as much as was possible from that group’s point of view. I sat with a new 
group with every subsequent chapter of instruction and report in this paper from 
events that transpired in the first three chapters. 
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RESULTS AND DISCUSSION 
I sketch the nature of classroom practice established within my larger study in three 
sections. First, when Olaf taught alone, next when he and Knut initiated group work, 
ending with students' discussion and formalisation of rules for group cooperation. 
A single teacher 
Olaf began instruction with the chapter titled Number Understanding while stationed 
near the blackboard. With his students seated in groups around tables they had pulled 
together, Olaf's proximity to his students and their workings was restricted. Beyond 
greeting students on the first day of instruction Olaf began his instruction as below:  

Olaf: Turn to page 14 ... there are some rules in the box 
Olaf: [A while later] If you have a problem, box first, partners next, then me.  

The very brief exchange above is indicative of the nature of relationships that Olaf 
was forging with his students in his classroom. Aware of talk that could arise when 
students worked in groups, Olaf was guiding the manner in which his students were 
to speak with each other and seek guidance when in doubt. The rules in the box that 
Olaf drew attention to, demonstrated how one could obtain equivalent fractions and 
how one could reduce a fraction to its simplest form. Olaf's drawing the attention of 
students to these rules had a two-fold purpose within classroom practice. First, these 
rules reminded students of procedures they would have been familiar with even prior 
to his classroom. Second, Olaf signalled his intention of having students utilise rules 
even before seeking assistance from peers in their group or even him. It was with 
such advice that Olaf embedded classroom practice with his intentions (Olson, 2003). 
Being new to his classroom, Olaf's students were now participating in an instructional 
practice that he was laying out. Their making of meaning in mathematics was made 
between the cultural resource of the textbook, their peers and him (Greeno, 2003). 
The participation of Olaf and his students was therefore not independent, but 
anchored in a specific kind of classroom practice that Olaf had initiated. 
A team of teachers 
There were several changes in classroom practice when Knut joined teaching at the 
commencement of chapter Equations and Proportionality. In line with their stated 
objective of having students cooperate in groups, Olaf and Knut conducted two tasks 
When Together and How Heavy in consecutive sessions of teaching-learning. The 
tasks and sample solutions evidenced in Table 1 are indicative of two aspects. First, 
that the use of diagrams in the two tasks was different. Where in the first, the given 
diagram was used to cooperate, by the second, students had to provide a diagram or 
equation in order to cooperate. Second, group cooperation was also different. Where 
in the first, cooperation was initiated by Olaf and Knut, by the second, students took 
for granted and consolidated group cooperation. It was in the conduct of these tasks 
that Olaf and Knut realised their objective of having students cooperate in small 
groups, which was to become the norm of instructional practice in the classroom. 
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Table 1: When together and How Heavy – Tasks and sample solutions 

The changes in classroom practice just outlined changed the participation of Olaf, 
Knut and their students in four distinct ways. First, corresponding to changes in the 
manner students worked with say diagrams, I record Olaf and Knut noticeably work 
as a team and complement each other while say teaching at the blackboard. These 
transformations corresponded to their continued participation in the changing practice 
(Rogoff, 2003). Second, Olaf and Kunt's students also had opportunity to bring forth 
personal meaning and knowledge they had prior to participation in this sphere of 
practice (Skovsmose, 2005). Third, in privileging the use of a simple equation by one 
student group, Olaf and Knut led their students to utilise forms of societal knowledge 
that were acceptable beyond the context of the classroom (Lave, 1993). By this Olaf 
and Knut guided various versions of meaning students had about balancing to greater 
academic forms, as was the case with a simple equation (Bruner, 1996).  
Group cooperation is formalised 
From students in my study being asked to turn to a particular page in the beginning of 
the year, their manner of participation gained far greater freedom by the third chapter 
Scale factor in similar figures. Illustrating one such instance, I relate how Olaf both 
accepted and acknowledged the accuracy of personal meaning made by Levi - which 
was independent of the one Olaf was discussing with Levi's other classmates. 

Olaf: What is the scale factor of the side?   
Jan: Three 
Tove: Three 
Levi: Or one by three [Belonging to the group I was sitting beside] 
Olaf: What is the scale factor of area? 
Researcher: [Records Olaf to extend this discussion with Levi's other classmates in 

relation to the scale factor of area, as well as that of volume] 
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Olaf: So you were right Ulrik ... So if you have the volume of one of them we 
can calculate the value of the other 

Levi: What if we do it the other way? [Persisting to question Olaf] 
Olaf: If we know volume of the larger we find the volume of smaller 
Olaf: [Demonstrating correctness of Levi's scale factor on the blackboard] 
Olaf: Good question [Addressing and accepting Levi's version of scale factor] 

My sitting beside Levi's group allowed me to observe and record how Levi's version 
of scale factor was independent of the one being discussed by Olaf with the whole 
class. While Olaf and Levi's classmates were working with a numerical value of three 
as scale factor, Levi was working with its reciprocal. In presenting the above extract I 
evidence the manner in which Levi pursued Olaf, seeking to ascertain the correctness 
of his version of scale factor - one which Olaf accepted and demonstrated as accurate 
on the blackboard. From offering explicit instructions with regards to how students 
were to make meaning in the first chapter, by the third chapter Olaf acknowledged 
the personal meaning that Levi had independently made. Illustrative of the kind of 
timely decisions that Olson (2003) said a teacher needed to make within one's own 
instructional practice, my final extract shows how Olaf was working with one version 
of scale factor as cultural tool (with Jan, Tove and Ulrik) and its reciprocal as another 
acceptable cultural tool (with Levi). In guiding the utilisation of different forms of 
academic meaning (Bruner, 1996) and the formation of corresponding higher mental 
functions (Stetsenko, 2004) Olaf's role by this time in practice had now shifted from 
being custodian, to arbitrator of alternate kinds of mathematical meaning being made 
by his students. By the end of this chapter, Olaf and Knut also had all students groups 
discuss arguments and counter-arguments in relation to working in small groups, so 
as to formulate ways in which such manner of working was best possible. I present 
guidelines that the eight student groups together agreed upon in Table 2:   

  Cooperative learning in mathematics 
1 Everyone must be treated with respect 

2 Everyone must contribute 

3 All ideas must be considered by the group 

4 Everyone must be aware of what transpires before the group moves ahead 

5 Everyone must be able to present the work of the group 

6 Everyone must ask the others in the group before seeking help from the teachers 

Table 2: Students guidelines in relation to group cooperation 
Put up in large letters on their pin-up board these rules became part of the new norm 
in instructional practice. In Olaf and Knut thereafter encouraging students from 
across groups to present their group work either at the blackboard or to each other, I 
witnessed classroom practice to progressively became a collaborative one. 
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CONCLUSION 
With participation as unit of analysis it has thus been possible to appreciate a person-
in-practice view of the classroom (Lerman, 2001). Such analysis viewed the efforts 
Olaf and Knut made to guide the meaning being made by students within their sphere 
of practice (Greeno, 2003; Skovsmose, 2005). There was opportunity for either, to 
participate in the intentions of others (Olson, 2003). Olaf was first seen establishing 
his own intentions. With Knut he then guided the sharing in groups of the meaning 
students were making with their peers, affording opportunity for them to participate 
in their own as well as others intentions. Finally, Olaf's student Levi had occasion to 
externalise the meaning he had personally made. This was representative, more 
generally, of independent meaning making by students and coincided with a shift in 
responsibility to them for their own learning. I summarise the growth of the 
instructional practice that Olaf and Knut so initiated as follows: 

Chapter number and topic  The collaborative practice 
1: Number Understanding Establishment by the teacher of his intentions 

2: Equations and proportionality Participation by students in their and other's intentions 

3: Scale factor in similar figures Participation by students with independent intention 

Table 3: Nature of growth of Olaf and Knut's classroom practice  
A person-in-practice study has had two implications for my ongoing research. First, 
based on opportunities that students had for imitation, I have since shown how a zone 
of proximal development or zpd was formed when students cooperated as well as 
collaborated within such an instructional practice (Gade, 2010). The corresponding 
development of higher mental functions resulted in students becoming independent. 
Second, analysing day-to-day material practices in relation to meaning making has 
provided me with researcher strategy that is conducive to the conduct and sustenance 
of action research (Gade, 2011). While I respond in this report to Silver's (2009) call 
of the need for empirical examples of practice-based studies, I also illustrate how the 
mathematical content taught; pedagogy and students' thinking were interrelated in 
one such practice. I thereby underscore the need to recognise classroom practices in 
general and the role that these may have in the meaning being made by teachers and 
students in particular classrooms. Towards this, I have argued for the benefits of one 
such practice that two teachers Olaf and Knut had instituted in my study. 
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TOWARDS A COMPREHENSIVE THEORETICAL MODEL OF 
PRE-SERVICE TEACHERS’ CONCEPTUAL UNDERSTANDING 

OF FUNCTIONS 1 
Athanasios Gagatsis and Annita Monoyiou   

University of Cyprus 
 

The aim of this study is twofold, to confirm a model for the structure of the 
conceptual understanding of functions related to multiple representational flexibility 
and problem solving ability and to investigate its stability across pre-service teachers 
from two countries. Confirmatory factor analysis (CFA) affirmed the existence of five 
first-order factors representing the concept definition and examples, the recognition 
of the concept, the conversions, the vertical transformations and problem solving, 
two second-order factors representing multiple representational flexibility and 
problem solving ability and a third-order factor that refers to the conceptual 
understanding of functions. Results provided evidence for the invariance of this 
structure across the two countries.  

INTRODUCTION AND THEORETICAL FRAMEWORK  
There is a basic difference between mathematics and other domains of scientific 
knowledge as the only way to access mathematical objects and deal with them is by 
using signs and semiotic representations. Given that a representation cannot describe 
fully a mathematical construct and that each representation has different advantages, 
using multiple representations for the same mathematical situation is at the core of 
mathematical understanding (Duval, 2006).  
Nowadays the centrality of different types of external representations in teaching and 
learning mathematics seems to become widely acknowledged by the mathematics 
education community. Furthermore, the NCTM’s Principles and Standards for School 
Mathematics (2000) document includes a new process standard that addresses 
representations and stresses the importance of the use of multiple representations in 
mathematical learning. In fact, recognizing the same concept in multiple systems of 
representations, the ability to manipulate the concept within these representations as 
well as the ability to convert flexibly the concept from one system of representation 
to another are necessary for the acquisition of the concept (Lesh, Post, & Behr, 1987) 
and allow students to see rich relationships (Even, 1998). Moving a step forward, Hitt 
(1998) identified different levels in the construction of a concept, which are strongly 
linked with its semiotic representations. The particular levels are as follow: 1) 
incoherent mixture of different representations of the concept, 2) identification of 

                                         
1 This report is related with the research project “Ability to use multiple representations in functions and geometry: the 
transition from middle to high school” (0308(BE)/03) founded by the Research Promotion Foundation of Cyprus. 
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different representations of a concept, 3) conversion with preservation of meaning 
from one system of representation to another, 4) coherent articulation between two 
systems of representations, 5) coherent articulation between two systems of 
representations in the solution of a problem. In this research study the term multiple 
representational flexibility is used extensively and it is defined as the ability to switch 
mental sets in response to within- and between-representation alterations 
(recognition, treatment, conversion) of the same mathematical object. In other words, 
it is assumed that multiple representational flexibility refers to switching between 
different systems of representations of a concept, as well as to recognizing and 
manipulating the concept within multiple representations (Gagatsis, Deliyianni, Elia 
& Panaoura, 2010). 
In this research study we incorporated a synthesis of the ideas articulated in previous 
studies on learning with multiple representations to capture pre-service teachers’ 
processes in multiple representations tasks. This may enable us, firstly to gain a more 
comprehensive picture of function understanding related to multiple representational 
flexibility and problem solving ability; secondly, to understand pre-service teachers’ 
multiple representational flexibility in a more coherent way; and thirdly, to find out 
more meaningful similarities in Cypriot and Italian pre-service teachers’ 
representational thinking and problem solving ability. In particular, two hypotheses 
were tested: a) multiple representational flexibility and problem solving ability 
influence the conceptual understanding of functions and b) there are similarities 
between Cypriot and Italian pre-service teachers in regard with the structure of their 
conceptual understanding of functions. 

METHODOLOGY  
The participants of this research study were 279 Cypriot and 206 Italian pre-service 
teachers. The subjects were admitted to the University of Cyprus and to the 
Universities of Bologna and Palermo on the basis of competitive examination scores. 
The above investigation is conducted in two countries in order to explore if there are 
differences between the Cypriot and Italian pre-service teachers concerning their 
cognitive structure of the various dimensions of the conceptual understanding of 
function. The participation of pre-service teachers from two countries will give 
further validation to the model. The fact that it is a comparative study is quite 
important, since these two countries have cultural similarities. It is noteworthy the 
fact that the impact of cultural tradition is highly relevant to mathematics learning. 
However, despite cultural similarities, differences are observed in the educational 
systems of the two countries. Two tests, consisted of nine and fourteen task, were 
administered to the teachers by the researchers in two 90 minutes sessions. The tests 
that were constructed in order to examine the hypotheses of this study included: 

1. Five tasks demanding a definition or examples of the concept of function (D1, 
D2, D3, D4, Ex).Examples of these tasks are:  
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Task D2: Does there exist a function all of whose values are equal to each other? 
Explain your answer.  
Task D3: Can f be a function, if  ( 2) 3f − =  and ( 2) 0f − = ?    Yes    or    No   

Task Ex: Give two simple examples from the applications of functions in everyday 
life. 

2. Four tasks involving recognition of functions given in different modes of 
representation. There were given five Venn diagrams (Red1-Red5), six graphs 
(Reg1-Reg6), six symbolic expressions (Res1-Res6) and four verbal 
expressions (Rev1-Rev4). Examples of these tasks are:   

Task Red1: Examine if the 
correspondence 
presented in the 
form of a Venn 
diagram is a 
function. Give an explanation. 
 

Task Reg1: Examine if the following 
graph represents a function. Explain. 

 

Task Res1: Examine whether the 
following symbolic expression may 
define a function and justify your 
answer. 

 
5 3 0x + =  

Task Rev1: Explain whether we define a 
function when: 
a) In the set of the girls of a class, we 
correspond a girl with different 
classmates of hers (George, Homer, 
Jason, Thanasis, etc.) with whom she will 
probably dance at a party.  

 
3. Four tasks involving six conversions, three of them from an algebraic 

expression to a graphical representation and the other three from a graphical 
representation to an algebraic expression (Coag1, Coag2, Coag3, Coga1, 
Coga2, Coga3). Examples of these tasks are:   

 Task Coag1: Task Coga1: Choose the 
function that corresponds to 
the graph. 

 
a) 5 0y x+ =     b) 5 2y x= − −  
c) 3 2y x+ =     d) 3 1y x+ =  
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4. Four tasks involving vertical transformations of functions. In each task, there 
were two linear or quadratic functions. Both functions were in algebraic form 
and one of them was also in graphical representation. There was always a 
relation between the two functions. Teachers were asked to interpret 
graphically the second function. (Trans1, Trans2, Trans3, Trans4). An example 
is:  

Trans1: In the following diagram 2y x=  is given. Draw the function 2 1y x= + .  
f(x)=2x
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5. Six complex problems with functions. Examples of these tasks are:  
Task Pr3: The function 2( )f x ax bx c= + +  is given. Numbers a, b and c are real 
numbers and the ( )f x  is equal to 4 when 2x =  and ( )f x  is equal to -6 when 7x = . 
Find how many real solutions the equation 2ax bx c+ + has and explain your answer. 
Task Pr4: A parachutist jumps from an airplane which is in 3000 m height (above the 
earth). The parachutist falls with stable speed 30 m/s. (a)  Express the parachutist’s 
height as function of time, (b)  Draw the graph of the above function, (c)  Find the 
parachutist’s height (from earth) 1 minute after his/her fall and (d) In what height the 
parachutist will be 20 minutes after his/her fall? (Give an explanation).  
Right and wrong or no answers to the tasks were scored as 1 and 0, respectively. The 
results concerning pre-service teachers’ answers to the tasks were codified with D 
(Definition), Ex (Example), Re (Recognition), Co (Conversions), Trans 
(Transformations) and Pr (Problems), followed by the number indicating the exercise 
number.  

RESULTS  
In order to explore the structure of the various dimensions of the conceptual 
understanding of function a third-order CFA model for the total sample was designed 
and verified. Bentler’s (1995) EQS programme was used for the analysis. The 
tenability of a model can be determined by using the following measures of 
goodness-of-fit: 2x , CFI (Comparative Fit Index) and RMSEA (Root Mean Square 
Error of Approximation). The following values of the three indices are needed to hold 
true for supporting an adequate fit of the model: 2x /df < 2, CFI > .9, RMSEA < .06.  
A series of models were tested and compared. Specifically, the first model involved 
only one first-order factor associated with all of the tasks. The fit of this model was 
poor [ 2x (276) =2133.13; CFI=.74; RMSEA=.12, 90% confidence interval for 
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RMSEA=0.116-0.126], indicating that a single common factor is not sufficient to 
describe the solution of all the tasks in the test.The second model involved five first-
order factors and one second-order factor on which all of the first-order factors were 
regressed. The first-order factors stand for the concept definition and examples, the 
recognition of functions given in a diagrammatic, a graphical, a symbolic and a 
verbal expression, the conversions from a graphical to an algebraic representation and 
vice versa, the vertical transformations and problem solving. The second-order factor 
stands for the conceptual understanding of functions. The fit of this model was also 
poor [ 2x (270) =1203.01; CFI=.87; RMSEA=0.087, 90% confidence interval for 
RMSEA=0.082-0.092].  

 

Figure 1. The confirmatory factor analysis model accounting for performance on the 
tasks of both tests by the whole sample, the Cypriot and Italian pre-service teachers 

separately  
Note: Three tasks were omitted due to low loadings (D1, Coag2, Pr2) 
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Figure 1 presents the results of the elaborated model, which fits the data reasonably 
well [ 2x (178) =360.92; CFI=0.97; RMSEA=0.047, 90% confidence interval for 
RMSEA=0.040-0.054]. The third-order model which is considered appropriate for 
interpreting the conceptual understanding of function, involved five first-order 
factors, two second-order factors and one third-order factor. The two second-order 
factors that correspond to the multiple representational flexibility and problem 
solving ability, respectively, regressed on a third-order factor that stands for the 
conceptual understanding of function. On the second-order factor that stands for the 
multiple representational flexibility three first-order factors (F1-F3) are regressed. 
The first first-order factor (F1) referred to the tasks involving the definition end 
examples of the concept of function, the second first-order factor (F2) to the 
recognition of functions given in various representations and the third first-order 
factor (F3) to conversion tasks from an algebraic to a graphical representation of 
function and vice versa. The first-order factor F1 to F3 loadings strength revealed that 
multiple representational flexibility constituted a multifaceted construct. Thus, the 
findings revealed that concept definition and examples, the recognition of the concept 
given in various representations and the conversions from a graphical to an algebraic 
representation of the concept and vice versa have a differential effect on the multiple 
representational flexibility concerning the concept of function.  
On the second-order factor that corresponds to problem solving ability two first-order 
factors (F4, F5) were regressed. The first first-order factor (F4) involved the vertical 
transformations of functions and the second first-order factor (F5) consisted of the 
complex problems. Therefore the results indicated that vertical transformations of 
functions and the complex problems have an effect on problem solving ability. It is 
noteworthy that complex problems loadings are higher than the respective vertical 
transformations loadings, indicating that in order to be solved extra mental processes 
are required since more complicated processes are demanded. The two second-order 
factors that correspond to the multiple representational flexibility and to the problem 
solving ability regressed on a third-order factor that stands for the conceptual 
understanding of function. Their loadings values are almost the same revealing that 
pre-service teachers’ function understanding is predicted from both multiple 
representational flexibility and problem solving ability. 
To test for possible differences between the two countries in the structure described 
above, multiple-group analysis was applied, where the higher order model was fitted 
separately on each group. The model was first tested under the assumption that the 
relations of the observed variables to the five first-order factors would be equal 
across the two groups. The fit of this model was quite good [ 2x (369) = 548.29; 
CFI=.97; RMSEA=.046, 90% confidence interval for RMSEA=0.038-0.054]. In 
order to achieve an improvement of the model some of the equality constraints were 
released. Releasing some of the constraints resulted in a considerable improvement of 
the model fit [ 2x (366) = 508.17; CFI =0.98; RMSEA = 0.041, 90% confidence 
interval for RMSEA=0.032-0.050]. Although the same structure holds for the two 
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groups, in the multiple group model (see Figure 1), many of the factor loadings are 
stronger in the group of the Italian pre-service teachers. This finding indicated that 
the dependence of the conceptual understanding of function varies across the two 
groups.  

CONCLUSIONS  
The main purpose of this study was twofold, to test whether multiple representational 
flexibility and problem solving ability have an effect on function understanding and 
to investigate its factorial structure within the framework of a CFA, across pre-
service teachers from two countries. The results provided a strong case for the 
important role of the multiple representational flexibility and problem solving ability 
in Cypriot and Italian pre-service teachers’ understanding of the concept of function. 
Specifically, CFA showed that two second-order factors are needed to account for the 
flexibility in multiple representations and the problem solving ability. Both of these 
second-order factors are highly associated with a third-order factor representing the 
conceptual understanding of function. CFA also showed that three first-order factors 
are required to account for the second-order factor that stands for the multiple 
representational flexibility and two first-order factors are needed to explain the 
second-order factor that represents the problem solving ability. This finding is in line 
with the results of previous studies that underline the important role of multiple 
representations (Even, 1998; Lesh et al., 1987) and problem solving (Schoenfeld, 
1992) in the understanding of mathematical concepts. Furthermore, the important 
relation between the representational flexibility and problem solving is highlighted, 
verifying the results of previous studies (Gagatsis et al., 2010). Particularly, Gagatsis 
and Shiakalli (2004) and Hitt (1998) claimed that the ability to translate from one 
mode of representation to another is closely related with function problem solving.  
On the second-order factor that stands for the multiple representational flexibility the 
first-order factors referring to the concept definition and examples, the recognition of 
the concept given in various representations and the conversions from an algebraic to 
a graphical representation of the concept and vice versa are regressed. The important 
role of recognition, treatment and conversion in representational flexibility was also 
highlighted in other studies (Gagatsis et al., 2010; Duval, 2006). In this study a new 
dimension of the multiple representational flexibility emerged, that is the concept 
definition and examples of functions and this was expected since in order to give a 
definition and examples of the concept pre-service teachers had to use and flexibly 
manipulate various representations. On the second-order factor that stands for 
problem solving the first-order factors referring to the solution of complex problems 
and the vertical transformations of functions were regressed. This is in line with the 
results of Lage and Gaisman-Trigueros (2006) that showed that transformations of 
functions, that are considered to be problem solving tasks and are strongly related 
with the problem solving ability since they can be used in the solution of many 
problems, are also strongly related to the understanding of the concept of function. 
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Furthermore the results of their study showed that flexibility with the use of different 
representations is highly related with the transformations of functions.  
It is noteworthy that the structure of the processes underlying the function 
understanding is the same across the two countries. Even though some factors 
loadings are higher in the group of the Italian pre-service teachers, probably due to 
the differences exist in the educational systems of the two countries, the results 
provided evidence for the stability of this structure. This fact gives further validation 
to the model emerged in this study. The results of this study have direct implications 
for teaching and assessment. One must remember that in order to teach functions, it is 
important to include the different dimensions emerged in this model.  It seems that 
there is a need for further investigation into the subject. In the future, it is interesting 
to conduct the same research with students attending middle and high school and 
examine whether the model for the conceptual understanding of function proposed 
here applies and remains invariant for these students.  
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GENERAL VS. MATHEMATICAL GIFTEDNESS  
AS PREDICTORS OF THE PROBLEM SOLVING COMPETENCE 

OF FIFTH-GRADERS 
Thomas Gawlick    Diemut Lange 

Leibniz University of Hanover 
 
Project MALU (Mathe-AG an der Leibniz Universität) is a mathematical enrichment 
program for fifth-graders. Our research interest lies in investigating differences 
between the cooperation of exceptionally vs. normally gifted students, see the 
research report of Lange in these PME proceedings. To that end, it is appropriate to 
select first a sample of differently gifted students from a representative sample. 
Certainly a test can be only one method of assessment for the multi-faceted construct 
of mathematical giftedness (Sriraman 2008), but it will suit the need to differentiate 
rather quickly between a large number of individuals. Children with varying degrees 
of giftedness are invited to take part in project MALU. In retrospect, the degree of 
success of the students will shed some light on the predictive validity of the test. 

THEORETICAL BACKGROUND  
The literature on mathematical giftedness is exceedingly vast. However, there seems 
to be no consensus on some main points concerning the definition of this construct. 
Following Heilmann (1999), we view mathematical talent as the potential for future 
high achievement. Tests are then means to predict future achievements by present 
ones. One point of interest here is whether one should use tests for general 
intelligence or rather tests that were developed specifically for mathematics. This 
depends of course on the theoretical conception of mathematical giftedness. In 
principle, three different models to explain mathematical achievements are 
conceivable: Namely, interindividual differences for achievement in mathematics 
could be explained by 

• different degrees of mathematical giftedness, 
• different degrees of general giftedness or 
• a combination of both. 

The first opinion is hold for instance by Krutetski (1976), the second one by Rost 
(2009). Empirical research (e.g. Lubinski & Humpreys 1990) indicates the 
concomitance of high general and high mathematical giftedness, thus supporting 3. 
General giftedness is here as often understood as intelligence: „A very general mental 
capability that, among other things, involves the ability to reason, plan, solve 
problems, think abstractly, comprehend complex ideas, learn quickly and learn from 
experience. It is not merely book learning, a narrow academic skill, or test-taking 
smarts. Rather, it reflects a broader and deeper capability for comprehending our 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 377-384. Ankara, Turkey: PME.
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surroundings – "catching on," "making sense" of things, or "figuring out what to do“ 
(Gottfredson 1997). The enumeration suggests, that intelligence has various aspects, 
which in turn are operationalized by different subtests of intelligence tests. For a long 
time it used to be an issue whether the manifest variables given by such tests scores 
are better conceived of as  manifestations of one latent variable „general intelligence“ 
(namely Spearman’s general factor g) or rather by several latent variables 
representing different abilities (e.g. Thurstone’s „primary mental abilities“). Factor 
analyse was developed to settle this issue. 
From a different research base, mathematics educators have raised concerns whether 
tests, especially intelligence tests, are apt to assess mathematical giftedness (see e.g. 
Meissner et al. 2008). Namely, closed tasks as they occur typically in intelligence 
tests admit only one correct solution, thus leaving too little room for originality and 
creativity and representing a too narrow view of mathematics as a finished well-
defined topic (Käpnick 1998, Wagner & Zimmermann (1986).). Consequently these 
researchers developed specific tests for their respective enrichment projects. We draw 
on the work of the Käpnick group, since their test is completely published in Käpnick 
(1998). Indeed, Käpnick developed a system of indicative tasks for mathematical 
giftedness, starting from the interpretation that mathematical giftedness means 
giftedness for specifically mathematical activities and drawing on the system of 
indicators developed by Krutetski (1976) as well as on own observations. 
Käpnick’s system of indicators for the detection of potentially gifted third- and 
fourth-graders focuses on features of mathematical giftedness like originality and 
fantasy during mathematical activities, retentiveness for mathematical content, the 
capability to structure , the capability to change representations, reversibility and 
transfer of operations as well as supportive personality traits like a high level of 
mental activity, a high level of commitment, enthusiasm  for problem solving and 
perseverance. 

STUDY 1  
To clarify which of the three possible explanations for interindividual in 
mathematical achievement applies to the  MALU sample, we administered both a 
general as a mathematics giftedness test. Our interest lay in determining the “natural 
occurrence” of mathematical giftedness. Therefore we tested whole classes of fifth-
graders. To ensure comparability, we confined ourselves to grammar schools. 

DESIGN 
In August 2008 and  in August 2009 we administered in 23 classes of grade 5 in 
Hannover, Germany, a general giftedness test (CFT-20R) and a mathematical 
giftedness test (a sample of Käpnick’s indicative tasks). 684 fifth graders completed 
both tests, each of which lasted for one school period. 
The rationale for choosing the tests was as follows: Besides Käpnick’s indicative 
tasks (henceforth designated as Käpnick test) there is only one  mathematical 
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giftedness test in Germany, namely the HTMB by Kießwetter, which is unfortunately 
unpublished (but see Kießwetter  (1985) and Wagner & Zimmermann (1986)). For 
organisational reasons, it was necessary to shorten the test so it could be administered 
in 45min instead of 90min. To that end, we performed a stepwise regression analysis 
via SPSS, including the test items that yielded maximal multiple validity for the total 
test score. Referring to the published test results of the 154 study participants of 
Käpnick (1998), we thereby obtained a multiple validity of .959. 
As intelligence test we choose the CFT-20R (Weiß 2006), tracing back to the Culture 
Fair Test by Raymond B. Cattell. Like Raven’s Progressive Matrices test, the CFT-
20R is independent of speech comprehension. The Culture Fair Test scores loade 
higher on the "General Intelligence" factor than on the "Achievement" factor, which 
is consistent with the concept of the test being a measure of "fluid" rather than 
"crystallized" intelligence (Cattell, Krug & Barton (1973)). According to the German 
manual, the abilities measured by the CFT-20R  include the problem comprehension 
in novel situations (Weiß 2006, p.16). In contrast to the Raven test, current standards 
for fifth-graders are available for the CFT-20R. Furthermore, this test contains a 
shortened version that can be administered in a school period. 

RESULTS 
Within the given sample, the test score of  CFT 20-R and Käpnick test correlate .374 
(p<0.01), so we can assume a weakly positive association of the underlying 
constructs (as one would expect): to put it differently, 14 % of the variance of one 
test score can be explained by the variance of the other one.  
Since theory excludes a direct causal connection between the test scores, according to 
the three possibilities above one has to consider the following connections between 
the latent variables general giftedness (g) and mathematical giftedness (m): 

Fig. 1: Theoretically possible models including latent and manifest variables 
To find out, which of the models fits best given data, the corresponding structure 
equation models where subjected to a confirmatory factor analysis (Bollen & Long 
1993). The utilized software was AMOS 17 (Byrne 2001). The global model fit 
indices are given in table 1: 
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model χ² p-value χ²/df  CFI RMSEA SRMR 

model 1 55.724** .000 2.786 .935 .051 .0400 

model 2a 37.106** .008 1.953 .967 .037 .0324 

model 2b 9,532 .890 0.596 1.000 .000 .0153 

model 3 173.524** .000 8.676 .722 .106 .1258 

Table 1: Selected model fit indices for the four theoretically possible models 
All indices suggest that model 2b can explain best the empirical relation between the 
manifest variables (see e.g. Bühner 2006, pp. 252ff).  
This result assorts well with the contingency table in table 2 in which we  distinguish 
high achievers according to both measures from the rest of the sample. As usual 
(Rost 2009), high achievement in the IQ test is defined by a cut-off rate of 130, (i.e. 
two standard deviations above the mean). For the Käpnick test, no cut-off value for 
high giftedness has been published, since Käpnick (1998) is of the opinion that it is 
unsuitable to determine giftedness only by the use of a test score. But for the sake of 
comparability as well as for statistical reasons, the same proportion of the sample 
should be considered high achieving in the CFT 20-R and in the Käpnick test1. 
Furthermore we set a cut-off value by only analysing the tasks. Both cut-off values 
match. High achievement was coded as 2, others as 1. Based on these preliminaries, 
we can conclude that the result of confirmatory factor analysis is in good accordance  
with the fact that the entries in position 21 and 12 of table 2 are nonempty, but 
significantly lower than one would expect for independent variables (χ²=30,618, 2-
sided, p<0,01): 

   Käpnick test 

   1 2 

IQ test 

 

 

1 number 580 46 

expected number 568.3 57.7 

2 number 41 17 

expected number 52.7 5.3 

Table 2: Contingency table for high achievement (label 2) in both tests 

If we would have to choose one of these tests,  we would prefer the Käpnick test 

 1 There is a slight deviation in the actual number, since the cut-off score in the Käpnick test was attained by several students. 
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because of the results of the confirmatory factor analysis:  The Käpnick test loads on 
the g-factor too. But if we would like also to select the students with a good score in  
the  intelligence test but with an average score in the mathematical giftedness test 
(position 21, table 2), we have to administer both tests. Otherwise these 41 students, 
that means 39% of the possibly gifted students, were lost. 

STUDY 2  
Since we are interested in the contribution of cooperation to the problem solving 
outcome, we had first to determine the influence of the individual giftedness 
variables. Since a pilot study revealed that the prediction of a pair’s achievement by 
individual cognitive capability characteristics was rather low, we wanted also to 
determine in comparison the prediction of individual problem solving outcome. 

DESIGN 
In four classes of grade six four MALU tasks were processed individually and four 
other tasks were processed in pairs. Also, the mathematics and German marks of the 
students as well as the CFT-20R and Käpnick scores were collected. We have the 
complete data for 108 sixth graders. The individual and pair scores constitute the 
criterion variables for problem solving, the test scores and marks form the predictor 
variables. Figure 2 depicts a typical MALU task. 
 
         Oh yes the chessboard 

                                                                                                    
 

Fig. 2: The chessboard problem (idea: Mason et al. 2006)      

RESULTS 
To assess the predictive validity of both tests, we first correlated bivariately the test 
scores with the criterion variables as well as the other two predictors: 

 

N =130   
grade 6 

 German maths individual scores 

Käpnick test r=0.350** r=0.411** r=0.290** 

CFT r=0.199** r=0.394** r=0.305** 

Table3: prediction of marks and individual test scores 

 
Peter loves playing chess. He likes playing chess so  
much that he keeps thinking about it even when he  
isn’t playing. 
 
Recently he asked himself how many squares there are 
on a chessboard. Try to answer Peter’s question!  
 
 
Versucht, Peters Frage zu beantworten!   
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DISCUSSION 
The intelligence test as well as the mathematical giftedness test are valid predictors 
(according to the literature) of mathematical achievement, but they explain only 16% 
of the variance regarding mathematical  of mathematical performance at school (if we 
regard the mark as a criterion rather than a predictor) and  even less, namely 9% of 
the variance regarding mathematical problem solving in the sense of MALU. 
Regarding the theoretical conception of the Käpnick test, it is especially surprising 
that the latter value is even less than the former.  
Thus questions regarding the reliability of the test administration are in order. We can 
cope with them as follows: the correlations of the test scores with the marks fall in 
the ordinary realm – e.g. CFT-20R correlates  with  .40 to the maths mark (Weiß 
2006, 87). For the Käpnick test, no comparison values are published. 
The intercorrelation of the tests is lower than e.g. in the TIMSS study, where the –
maths score correlates to basic cognitive skills with  .49 (figural) resp. .59 (verbal), 
see Baumert et al. 1997). This suggests that the measured construct by the Käpnick 
test is farer from general giftedness and might be more specific for mathematics. 
Alas, one has to account also for the contradictory evidence that the explained 
variance for mathematical problem solving is even lower than for school marks.  
By combining the tests, the predictive validity can be augmented considerably, but it 
still remains unsatisfactory: 

 

 

 

N =130    
grade 6 

 maths mark individual score 

Käpnick test+CFT R=.469 R=.347 

Käpnick+CFT+maths mark  -- R=.399 

Käpnick+CFT+ maths mark 
+German mark 

 -- R=.415 

Table  4: multiple correlations of test scores and marks  
The multiple correlation of the maths  score with Käpnick and CFT test is R=.469, 
which gives an explained variance of R²=.220. For problem solving the values of 
R=.347 and R²=.120 are even lower. An obvious conjecture is that a significant factor 
of problem solving was not assessed – however it remains unclear,  which factor that 
could be. It is not the mathematical foreknowledge, since the multiple correlation 
rises only to R=.399, if the mathematics, score is not regarded as criterion, but is 
included as an extra predictor measuring prior knowledge of mathematics. The 
German results of the PISA study would suggest to consider language competence, 
but this can also be excluded, since the multiple correlation rises only by .016 to 
R=0.415, if one includes the German mark as a predictor. All in all, both tests and 
both marks together explain only 17% of the  variance within the individual MALU 
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scores. Since these results are far from satisfactory, we postpone the analysis of 
MALU scores which were obtained by pairs, since it is known that groupwork adds 
an extra difficulty in predicting problem solving performance (Kunter et al. 2005). 
To explain our results, one might reckon that the format of the test tasks differs 
significantly from the MALU tasks: A typical intelligence test tasks can be processed 
in around a minute and requires only to mark the unique correct solution with a cross. 
In contrast to this, a MALU task as in figure 2 typically takes the children about 
20min to 30min to perform. For a correct solution, a written answer out of contiguous 
arguments is required, and several solutions are well possible.  
However, it remains unclear, to what extent this plausible distinction applies also to 
school marks. It is known (Jordan et al. 2008) that the cognitive potential of exam 
tasks is rather low in German secondary schools. This would support the view that 
the marks are comparable to intelligence test scores – and a similar argument has 
been put forward by Rindermann (2006) concerning the mathematics tasks of the 
PISA study which where deemed curricularly valid also for the German classroom. 
Insofar it remains an open question how problem solving performance (either 
individual or even more in pairs, as was also observed by Kunter et al.(2005), when 
analyzing the outcome of the German extension concerning problem solving of the 
PISA study) can be validly predicted by test tasks. This is in accordance with the 
view of the mathematics education community that test scores can only be one part of 
the selection process for an enrichment project. A holistic selection procedure, which 
could be based on interviews and/or process observations, is certainly more 
satisfying, but of course also considerably more costly than any paper and pencil test. 
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This paper presents a model for numeracy that integrates the use of digital 
technologies among other elements of teaching and learning mathematics. Drawing 
on data from two school based projects which include records of classroom 
observations, semi-structured teacher interviews and artefacts such as student work 
samples, two vignettes are presented which illustrate possibilities for technology 
integration into classroom practice. While positive examples of the use of digital 
tools are outlined, we ask how a greater number of teachers could develop an 
orientation towards recognising and taking advantage of opportunities to create 
holistic numeracy tasks that seamlessly incorporate the use of digital tools. 
The notion of numeracy (which in some international contexts is also known as 
mathematical literacy) as the capacity to make use of mathematics to accommodate 
the demands of the lived worlds of private and public life, has been an issue of 
discussion within mathematics education from at least the time of the Crowther 
Report  (e.g., Ministry of Education, 1959). Subsequent reports and influential 
literature (see for example, Cockcroft, 1982; Steen, 1999) have since emphasised the 
importance of numeracy as a focus for schooling. More recently, the importance of 
numeracy was recognised internationally through the OECD's Program for 
International Student Assessment (PISA). According to PISA’s definition 
mathematical literacy is:  

an individual’s capacity to identify and understand the role mathematics plays in the 
world, to make well-founded judgments, and to use and engage with mathematics in 
ways that meet the needs of that individual’s life as a constructive, concerned and 
reflective citizen. (OECD, 2004, p.15)   

This interpretation of numeracy is also consistent with the widely accepted definition 
within Australia: “To be numerate is to use mathematics effectively to meet the 
general demands of life at home, in paid work, and for participation in community 
and civic life” (Australian Association of Mathematics Teachers, 1997, p.15).  
While this may be interpreted as a call for vocational specific approaches to teaching 
mathematics, Straesser (2007) warns against narrow approaches to mathematics 
education and training. He views mathematics as a strategic tool that can be adapted 
for a range of contexts and settings. In particular, he signals a concern for the “black 
box” view of mathematics in the workplace where the underpinning features and 
functions of mathematics are subsumed into simple routinised practice. Straesser 
goes on to suggest that the type of mathematics that spans the gap between school 
mathematics and the workplace is “no longer part of mathematics or ‘the rest of the 
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world’ alone, but are a new type of knowledge bridging the divide between 
mathematics and the rest of the world” (p. 169). 
These statements imply that the purpose of learning mathematics in schools should 
have a broader reach than singly gaining proficiency within the discipline of 
mathematics itself.  While traditionally mathematics curricula have placed little 
emphasis on the use of mathematics in the beyond school world (Damlamian & 
Straesser, 2009) there are developing areas of research and practice which focus on 
the integration of the teaching and learning of mathematical knowledge and the 
utilisation of this knowledge in real world contexts. This includes research into the 
increasingly emerging issue of the shape of numeracy education in an age where 
digital technologies have an impact on nearly all aspects of life; where young people 
are growing up in what Steen (1999) describes as “data drenched” worlds. Jorgensen 
Zevenbergen (2011) has argued that young people have already begun to 
accommodate their information saturated environments through the development of 
more holistic approaches to solving problems by making use of all available tools – 
especially digital technologies. 
This paper explores how teaching and learning in schools can best support young 
learners to develop technology integrated mathematical capacities that will prepare 
them for the beyond schools worlds of work and active citizenship. 
Digital	  Tools	  and	  New	  Numeracies	  
Noss (1998) points out that the valuing of mathematics for its utility in the workplace 
and in civic life stems from the Cockcroft (1982) report. While the balance between 
teaching of mathematics from a purely mathematical versus utilitarian perspective is 
still a matter of debate for curriculum authorities, syllabus writers and teachers, it 
now seems accepted that applications of mathematics must have some place in 
students’ mathematics educations. However, as Noss (1998) further argues, the 
nature of these applications must be connected to current practices in working, 
private and civic life and that these practices are now tied inextricably to the 
capabilities offered by digital technologies.  
In a further exploration of this theme (Zevenbergen, 2004) notes that there is 
intergeneration difference in the numeracy expectations of workplaces she 
investigated.  She observed that younger workers were happy to defer cognitive 
labour (e.g., mental arithmetic) to digital tools which enabled them to take on the 
more strategic aspects of their work more effectively. These young adults were very 
good at estimating, problem solving and holistic thinking. Zevenbergen concludes 
from this and subsequent studies (Jorgensen Zevenbergen, 2011) that the influence of 
technology in schools and the workplace, and by implication other aspects of the 
lived in world, has shaped the habitus of young people who, as a result, are reshaping 
the various structuring practices that serve to recognize and validate particular 
dispositions and skills within their workplaces.  This new generation of workers also 
seem to have the capacities to make use of their personal mathematical knowledge 
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and their confidence and capabilities with ICTs (Information and Communication 
Technologies) to solve on the job problems in more inventive ways than their more 
experienced co-workers. 
These commentaries imply that mathematical knowledge alone will not be sufficient 
to meet the demands of the ever changing workplace and that the capacity to think 
adaptably, a disposition to continue to learn new approaches to solving problems as 
they arise, and the capacity to embrace the use of technological tools are as important 
as the type of mathematical knowledge traditionally taught in schools. These are 
elements of Straesser’s “in between worlds”. But what is this new type of knowledge 
and what would it look like if we were to see it in a mathematics classroom? 
Theoretical	  framework	  
Increasing interest in the role of ICTs in enhancing the learning and teaching of 
mathematics in context-laden situations has led to the development of ICT inclusive 
models of mathematical inquiry. Confrey and Maloney (2007), for example, draw on 
Dewyian principles of inquiry learning to develop a framework in which technology 
is assigned a vital role in the application of mathematics to contextualised situations 
by coordinating the inquiry, reasoning, and systematising processes that lead to a 
final outcome. In another attempt to describe the role ICTs play in applying 
mathematics to real world situations via a mathematical modelling approach, Geiger, 
Faragher and Goos (2010) found that digital technologies can influence all aspects of 
the solution process. While both of these studies provide insight into the potential for 
digital tools to influence how we use mathematics to solve problems in real world 
contexts, neither attempts to address the broader issue of how this potential can be 
harnessed in concert with other important aspects of teaching and learning 
mathematics. 
 
 
 
 
 
 

 

 

 

 

In a development of the concept of numeracy to accommodate the changing nature of 
knowledge, work and technology, Goos (2007) developed a model that incorporates 
attention to real-life contexts, the deployment of mathematical knowledge, the use of 

Figure 1. A model for numeracy in the 21st century (Goos, 2007) 
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physical and digital tools, and consideration of students’ dispositions towards the use 
of mathematics. The development of a critical orientation was also emphasised in 
relation to numeracy practice, for example, the capacity to evaluate quantitative, 
spatial or probabilistic information used to support claims made in the media or other 
contexts (Figure 1). This model offers a broader interpretation of the role of 
mathematics and ICTs in bridging the gap between school mathematics and the wider 
world and has been used as a framework to audit mathematics curriculum designs 
(Goos, Geiger & Dole, 2010) and for analysis of teachers attempts to design for the 
teaching of numeracy across the curriculum (Goos, Dole & Geiger, 2010). The use of 
this model to examine classroom practice will now be illustrated through two 
vignettes drawn from two primary school classrooms. 
METHODOLOGY 
The data presented in this paper are drawn from two numeracy projects which were 
conducted independently – one in each of two Australian states. The aim in each case 
was to empower teachers to work with numeracy across all curriculum areas. Pairs of 
teachers were selected from schools that placed expressions of interest in the relevant 
projects with their school system. In the first project 10 pairs of middle school 
teachers (Years 6 to 9) were selected from schools across South Australia during 
2009 (Goos, Geiger & Dole, 2010). In the second project 12 pairs of primary and 
secondary school teachers (Years 1 to 12) were chosen from schools across the south-
east corner of the state of Queensland during 2010. The Loucks-Horsley, Love, 
Stiles, Mundry and Hewson (2003) framework for professional development 
underpinned the design of both projects.  
In both projects, teachers came together for an initial meeting to become familiar 
with the ideas embedded in the numeracy model and to work through investigations 
that allowed for the elaboration and clarification of the ideas embedded in the model. 
After this initial meeting teachers were asked to adapt activities presented in the 
workshop to their own classroom contexts, or to develop new ideas based around the 
elements of the numeracy model and trial these in their classrooms. After a number 
of months, teachers were brought together again to present examples of activities 
they had trialled and to engage in further curriculum planning while being supported 
by teachers from other schools. The project concluded with another cycle of trialling 
activities, visits from the research team and a final presentation to the whole project 
group. Between each of the whole project meetings a research team consisting of the 
authors of this paper and representatives of the sponsoring system authorities visited 
teachers to discuss the success of the activities they were trialling and to provide 
further input and support as was necessary. The data used in this paper are drawn 
from field notes of classroom observations, records of semi-structured interviews 
which took place when the research team visited teachers and artefacts such as 
student work samples and computer files collected during school visits. The quality 
of classroom learning experiences were analysed in relation to how they related 
holistically to the numeracy model.  
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VIGNETTE 1 
This example is drawn from the 2009 study in South Australia. As part of the project, 
one teacher developed an activity within her Year 6 Physical Education (PE) program 
where students investigated the level of their physical activity through the use of a 
pedometer that they wore during all waking hours over one week. The collected data, 
that is, the number of paces walked or run, were entered into a shared Excel 
spreadsheet every day. Students were asked to analyse their own data by using 
facilities within Excel, for example, the graphing tool, and then to compare their 
results with those of other students (see Figure 2). 

 
Figure 2: A comparison of males’ and females’ weekly total steps. 

As part of this analysis, students were asked to convert their total daily and total 
weekly paces into kilometres to gain a sense of how far they typically walked in the 
course of a day or a week. The task was also designed to help students realize that the 
distance they walked was not determined by the number of paces alone as an 
individual’s pace length was also a factor. In order to make this conversion, students 
were required to design a process for determining the length of their own pace. After 
some discussion, which was guided by the teacher, students negotiated an approach 
which was acceptable to all members of the class. This involved marking out a 
distance of 100 metres along the footpath which bordered the school against which 
students counted the number of paces they each took to walk this distance. After 
demonstrating the procedure for obtaining the length of her pace and the converting 
paces in a day to kilometres from her own personal data, the teacher asked students to 
complete conversions of their own pace totals to kilometres. She also suggested that 
students compare their kilometric distances with each other and to discuss why they 
were different. The teacher indicated the next session would include a further 
investigation of the number of paces Usain Bolt takes during a 100 metre sprint.  
Tools were used throughout the lesson, physical tools such as tape measures and 
digital tools. Digital tools included pedometers, electronic calculators and Excel 
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spreadsheets. Technology in this investigation provided the capability to collect data 
(pedometer), perform initial calculations (electronic calculators) and record, analyse 
and represent data (Excel spreadsheet). These tools also mediated discussion between 
students in relation to differences they observed as they critically compared their own 
results to those of others and attempted to explain the differences. Thus, technology 
was connected to all other elements of the numeracy model: mathematical knowledge 
(measurement, estimation, ratio, collection, organizing and representing data); 
context (use of a pedometer to collect personal data in an outdoor investigation); 
dispositions (challenging students to think flexibly about the representation of their 
personal details so these could be compared with others); and critical orientation 
(comparing their own results with others and speculating on the reasons for 
differences). 
VIGNETTE 2 
The second vignette comes from the study situated in Queensland during 2010. In 
this example the teacher endeavoured to promote the mathematics learning of her 
Year 5 students by engaging them in an international web based activity in which 
whole classes of school students were required to document their steps per day as 
recorded on a pedometer. Students entered the number of steps they recorded each 
day over a two month period (October to November) into a spreadsheet provided by 
the teacher.  The total for each day was then calculated and entered by the teacher 
into the website interface. After entering data the website could be interrogated for: a 
record of daily entries represented graphically (Figure 3); a progressive class average 
by week and month represented both numerically and graphically; position rank in 
comparison with other schools participating in the Challenge.  

 
Figure 3: Daily class step totals 

The site also included a facility that mapped how far the class step total had taken 
them along a predetermined route across the globe beginning in North America and 
then passing through South America and Africa before finishing in Europe. 
Information about each country visited on this route was available from the website 
as each new location was reached. The teacher reported that students were very 
engaged in this challenge. Their desire to improve their position against other classes 
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of students in their school and across the globe promoted extensive discussion of 
what was meant by average, how to improve their class average in a targeted fashion 
and how to interpret and use the information available via the web based tool to 
understand and further promote their position. 
Digital tools were central to the activity. Technologies included pedometers, Excel 
spreadsheets and web based tools. Again, technology provided the capability to 
collect data (pedometer), but the Excel spreadsheet here was more a means of 
banking and collating data before it was entered into the web based analysis tool. 
Once entered into the web interface the teacher, with her students, was able to 
complete comparative analyses of data from within the class, across the school and 
internationally. This provided opportunity to engage students in a discussion about 
how they might contribute in order to improve their position in comparison to other 
classes in the school and in other countries or what it would take to progress their 
class to the next destination on the global journey. Technology was connected to 
other elements of the numeracy model: mathematical knowledge (measurement, 
estimation, mean, graphical representation); context (use of a pedometer to collect 
personal data in an outdoor investigation); dispositions (motivation through using 
mathematics to improve relative position in a gentle competition); and critical 
orientation (strategies to improve the class average). 
Conclusion	  	  	  
In order to prepare students for the types of worlds Steen (1999) and Jorgensen 
Zevenbergen (2011) have described, more holistic approaches to teaching and 
learning numeracy are necessary. It is also apparent that a model of numeracy in 
which digital tools are seamlessly integrated with other elements of mathematics use 
in context bound situations, is required in order for students to move more readily 
into these “data drenched” worlds. The cases presented in this paper demonstrate that 
such integration is possible if teachers have a model for teaching which draws their 
focus to additional elements of numeracy other than mathematical knowledge alone. 
Digital tools in these cases have been used to collect, analyse and represent data. The 
results of these processes provided material for students to critically examine the 
situations they are investigating and to speculate on what measures are necessary to 
change outcomes in their favour. It has to be acknowledged, however, that these are 
two outstanding cases and that not all teachers in the project developed tasks that 
challenged students to use all elements of the numeracy model in such an integrated 
way. Further research is necessary into how to assist teachers to develop a habitus 
which orientates their thinking towards recognising and taking advantage of 
opportunities to create tasks relevant to the lived in worlds of their students and 
beyond.  
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This paper describes how 11-13 year-old students justify the equivalence or non-
equivalence of models and rules for figural linear patterns constructed in a specially 
designed computer microworld, the eXpresser. Students were asked to build their 
own models of a figural pattern and associated rules and to reflect on model and rule 
before sharing them with a peer to discuss equivalence. Findings point to the diverse 
justification strategies students articulated to support equivalence and their potential 
for fostering the development of students’ algebraic ways of thinking. 
INTRODUCTION 
Introducing algebra to secondary school students is widely known to be problematic 
(see for example, Küchemann & Hoyles, 2009; Kaput et al. 2008). Pattern activities 
are widely adopted (Mason, 1996; Lee, 1996) although, as Dörfler (2008) and 
Küchemann (2010) suggest, they are rarely presented in ways that encourage an 
awareness of the structure underlying the patterns.  
In the MiGen2 project, we are designing a technical and pedagogical environment to 
support students in expressing algebraic generalisations arising from how they 
visualize the structure of a figural pattern. Our goal is to introduce pattern-based 
activities in ways that promote algebraic ways of thinking; that is, to identify the 
commonalities that form a structure and express relationships that represent this 
structure (Noss et al, 2009; Geraniou et al, 2009). It is relatively straightforward to 
show generality using numbers and gestures, but expressing it in words or in an 
algebraic form has proved consistently problematic (Radford, 2010). Frequently, the 
algebraic rule is disconnected from the problem and simply added as an end point. 
In the MiGen project, we are trying to bridge this gap between showing and saying 
by providing students with a set of tools and scaffolds to express generality, to 
provide an alternative representational infrastructure that can play the expressive role 
of algebraic symbols and their grammar. At the core of the system is eXpresser, a 
microworld designed for students to construct patterns from repeated building blocks 
of square tiles. Accompanying the software is a set of designed activity sequences 
that comprise figural pattern tasks alongside reflective and collaborative activities, all 
focussed on fostering students' engagement with and expression of justification and 
generalisation.  
1 This research was conducted while Eirini Geraniou was at the London Knowledge Lab, IOE, University of London.   
2 The MiGen project is funded by the ESRC/EPSRC Teaching and Learning Research Programme (Technology 
Enhanced Learning; Award no: RES-139-25-0381). For more details about the project see http://www.migen.org 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 393-400. Ankara, Turkey: PME.
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This paper presents data from several studies in UK schools, focusing on the 
collaborative phase and in particular how 11-13 year old students justified to their 
peers the equivalence (or otherwise) of their quasi-algebraic rules in eXpresser. 
THEORETICAL BACKGROUND 
It is widely known that even though students are capable of generalising a pattern or 
a rule, few are able to explain why the rule is valid (Coe & Ruthven, 1994; Ellis, 
2007). Most rely on empirical examples to justify the truth of statements: it would 
hardly be surprising if a student who generalises based solely on specific cases, were 
to use one or more examples as a form of justification. Relevant research in fact 
suggests that a student who generalises by attending to the structure of a pattern and 
relating every algebraic expression to the corresponding part of the pattern-model-
construction has a better chance of understanding the generality of their expression 
and possibly produce a general argument to justify the equivalence of rules (Ellis, 
2007; Küchemann, 2010). 
Thinking algebraically is more than thinking about structures and the general: it is the 
‘use and availability of symbolism to reason about and express generalisations’ 
(Kieran, 1989). Research documents different strategies students employ when 
constructing the algebraic rules that underpin patterns. For example, Rivera and 
Becker (2008) differentiate between constructive and deconstructive generalisation 
depending on whether or not students perceive the figural pattern as having 
overlapping components. Chua and Hoyles (2010) also refer to reconstructive 
generalisation, where components of the pattern are rearranged to reveal the pattern 
structure. All these strategies are used as ways students support their chosen method 
for deriving the general rule.  
We conjecture that focusing on figural pattern activities and orchestrating students’ 
discussions on equivalence of models and related quasi-algebraic expressions in the 
context of a dynamic computational system, could prove to be a powerful approach to 
fostering algebraic thinking (see also Tall & Thomas, 1991; Kieran & Sfard, 1999). 
Such discussions should therefore stimulate students explicitly to relate the symbolic 
representation to the relevant parts of the pattern, give meaning to symbols and allow 
justifications to be formed in a quasi-algebraic manner. 
METHODOLOGY 
The data presented in this paper are from twenty-eight 11-13 year old students from 
three schools in England. Students were familiarised with the MiGen1  system in two 
lessons through a number of introductory activities, asking students to construct 
figural models. In eXpresser, an initial figure is presented dynamically drawing 
students’ attention to the general problem, rather than the inevitably static (and 
therefore specific) problem that could otherwise be posed on paper. Figure 1(A) 
shows the "Train - Track" model :   it is animated randomly from left to right with the 

1 The eXpresser is a part of a much broader computer environment that we refer to as the MiGen "system". 
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 value of the model number changing accordingly1. Students were asked to construct 
the Train-Track model in eXpresser using different patterns and combinations of 
patterns (examples are shown in Figure 1B), depending on their perceptions of the 
Train-Track's structure.  

 
Figure 1: The Train-Track task (A) and different students’ perceptions of it (B). 

After constructing their model, students were asked to reflect on it by answering the 
following questions: (1) Use your model to find the number of tiles for Model 
Numbers: 6, 12, 1 and 100. (2) Is your rule correct or not? In the next task, you will 
discuss with another student. Make some notes here to explain why your rule is 
correct or not to prepare for this group activity. Based on the dissimilarity of their 
models2, students were paired to work on a collaborative task to discuss the 
correctness and equivalence of their rules. In this paper, we focus on students' 
reactions to the question: Can you explain why the rules look different but are 
equivalent? Discuss and write down your explanations.  
The students’ discussions were orchestrated by a teacher or researcher and audio-
recorded, transcribed and analysed qualitatively. A number of justification strategies 
were identified. Once a first set of categories had been established, the raw data was 
revisited to assess their validity and evaluate whether all the justification strategies 
used by students were adequately captured. When this was not the case, a new 
category was incorporated and validated against the data. This iterative cycle was 
repeated a number of times. 
JUSTIFICATION FOR EQUIVALENCE  
The data analysis revealed three main categories: structural, symbolic and empirical. 
These are described below along with their subcategories3.  
(A) Structural Justification for Equivalence  
Justifications in this category all focused on the structural aspect of the pattern by, for 
example, comparing the building blocks used in the different patterns and making 
arguments as to their equivalence (based on this comparison) with little if any 
reference to the symbolic rule. We distinguished three subcategories illustrated below 
with data from the study.  

1 For this and other design priorities and rationales, the reader is referred to Noss et al. (2009). 
2 An intelligent component suggests to teachers possible groupings based on the dissimilarity of students’ models. This 
is outside of the scope of this paper (see http://www.migen.org for the system’s functionalities and other publications). 
3 Note that sixteen out of the twenty-eight students used more than one strategy. 
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A1) Reconstructive Justification (number of responses, 20). In this subcategory, 
different building blocks are compared or reconfigured as illustrated by the case of 
Janet and Nancy (see Figure 2). 

 
Figure 2: Janet and Nancy’s model, building blocks and general rules1  

Nancy compared her building block with that of Janet’s: 
Nancy: Yeah it’s one red building block plus one blue building block so that 

would actually kind of make the… 

Janet: yeah, it would make the same shape... 
Nancy: because one red building block added to one blue building block… 

Janet: and that’s the same as one of my green building blocks. 

Students complemented each other’s arguments and concluded that their building 
blocks were in fact the same. Neither explicitly related the models to their rules or 
linked the number of tiles in each block to the coefficients in the algebraic 
expressions. Rather, they simply compared the building blocks underlying the 
patterns used.  
A2) Experimental Justification (number of responses, 7). In this subcategory, students 
choose a specific case and compare their two models and rules for this case, as 
illustrated by Alex and Anne. 
 

 

 

 

 

1 Students are encouraged by the design of the system to "name" their numbers (Noss et al., 2009, Geraniou et al. 
2009). 
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Figure 3: Alex’s and Anne’s model, building blocks and general rules 

Alex: I kind of got a C, but coloured them in different ways so I mean the 5 is 
only added at the end... 

Anne: then there are just 7 tiles in one model. 
Alex: Yes, but your first model has 12 tiles and your second model has 7 tiles. 

For 5 red blocks I have 5 blue extra tiles, but you have 12 blue extra tiles. 

Anne was able to read Alex’s rule and recognised the configuration of tiles that 
formed a similar building block to hers. Yet it was evident that both students 
considered each building block as a separate model. At first, Alex chose to change 
the number of red blocks in her model to 5 to match Anne’s model, but then realised 
that it was just not possible to match: the two models, in fact, had different constant 
terms. Alex then decided to compare the two models for the same model number and 
then justified the non-equivalence of the two rules. 
A3) Justification by Contradiction (number of responses, 5). Students use the same 
model number and calculate the number of tiles used, and notice that they obtain the 
same - or in this case, different - answers, as illustrated by Amy and Nick (Figure 4). 
They had to go back to comparing their models structurally. 

Amy: I think for model number 5, I’ve got 43 and Nick’s got 40. 

Nick: Oh, I think I might know why. Hers is 7 blocks high. Mine is 5 blocks 
high. So if it was, if she had 5 blocks high it would be the same. 

Nick noticed that for the same value of the independent variable, their models could 
never be the same. His justification was based on a contradiction. 
(B) Symbolic Justification (number of responses, 12)  
This category comprised student justifications focused on their eXresser rules and 
justified their equivalence by adding the constants and variables in each rule and 
comparing them as illustrated by Leo and Penny's case (Figure 5). 



2-398 PME 35 - 2011

Geraniou, Mavrikis, Hoyles, Noss 

  

1- 6 PME 35 - 2011 

 
Figure 4: Amy’s and Nick’s model, building blocks and general rules 

 
Figure 5: Penny’s and Leo’s model, building blocks and general rules 

When paired, Leo realised that his rule was incorrect, but was able to derive a correct 
general rule that he wrote on paper as [5] × 9 – [5] × 2 + 5. This is what they both 
compared with Penny’s rule. 

Leo: I had 5 times 9 because I had 9 things but I have to take away 2 of my red 
building block, so I have to take away 10 tiles because I need to have 5 
sevens. I had that many on the end of each one [pointing at his model]. 
That is why I have to take away 2 and then plus 5 because I need an extra 
line at the end. The 9 minus 2 is equal to plus 7 and the 5 is the same and 
then the 5 is the same so they’re the same rule but written differently. 

Penny: Mine is 5 times 1 plus 8 times 7. These 8 times 7 because we’ve got 8 of 
the 7 blocks and so 8 times 9 minus times 2 is 8 times 7. 

They concluded that Leo’s second rule on paper was equivalent to Penny’s rule. 
(C) Empirical Justification for Equivalence  
Some students focused solely on the numerical aspect of the rules, avoiding any 
reference to the structure of their model constructions. Two subcategories were 
distinguished. 
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C1) Matching-Terms Justification (number of responses, 12). In this category 
students pick a constant or a variable and compare with the equivalent term in the 
other students’ rules. Here is Alex at an early stage of her collaboration with Anne: 

Alex: They both have 7 in them plus something to make the end of the pattern. 

She picked a constant in her rule and identified it in Anne’s rule too (see Figure 3). 
She noticed the similarities in the algebraic expressions, but also the difference in the 
added constant term (5 in Alex’s rule, but 12 in Anne’s rule). 
C2) Evaluating-Terms Justification (number of responses, 2). In this category, 
students compared the number of tiles for different model numbers. Later in their 
discussion, Alex chose a value for the independent variable and compared the 
answers for the two rules: 

Alex: Model number 1 is blue blocks and it’s got 12 tiles in total. The 
backwards C is model number 2. So, we have 12 plus 7…19 tiles. 

Anne: No, model number 2 is 2 backward Cs plus the blue block. So, 2 times 7 
plus 12… 26 tiles. 

Anne’s answer included 7 more tiles because of the blue block she had added to her 
model (see Figure 4). The students were confused at this point as to what the model 
was and what the model number was. 
CONCLUDING REMARKS 
The collaborative task challenged students to read, deconstruct and match their rule 
with their own and their partner's model. In their justification efforts, students 
revisited their generalising actions, built on them, and took new actions that were 
more powerful and meaningful. Their investment in building their own models 
supported them in deriving generalisations by directing their focus towards 
relationships between quantities, and the quasi-algebraic discourse of eXpresser - the 
grammar of objects and relationships between them - gave students a means to 
express generalisation without the machinery of algebra. The findings point to the 
students’ preference for referring to the structure of their models to justify 
equivalence of their rules, since most students (20 in total) used the reconstructive 
justification strategy. The second most common strategy (12 students) was symbolic 
justification (B). This result supports the usefulness of eXpresser for students’ 
introduction to algebra and possibly proof (as the next step from justification). We 
are currently working on elaborating the collaborative phase to assist in bridging 
from arithmetic to algebraic expression.  
In summary, we can claim that students’ engagement in acts of justifying through 
collaboration seemed to support further their generalisation skills in a number of 
ways: (a) recognise the importance of seeing structure, (b) find the invariants and 
variants (constants and variables) in models and rules, (c) express relationships using 
an independent variable to link patterns within models and (d) see the rationale for 
and recognise the power of mathematical generalisation. 
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Two interpretive Place Value tasks were added to the Early Numeracy Interview in 
2010 to gain further insight about 761 Grade 2 and Grade 3 students’ construction of 
conceptual knowledge associated with 2-digit numbers. Previously, the researchers 
had noticed that most students were successful at reading, writing and ordering 2-
digit numbers, but that interpreting these numbers for problem solving remained a 
struggle for many. Analyses of students’ responses showed that the new tasks 
distinguished students who previously were assessed as understanding 2-digit 
numbers, but who could not identify 50 on a number line or state the total of a 
collection (36) that was reduced by ten. The new tasks assist teachers to identify 
students who need further instruction to fully understand 2-digit numbers. 

INTRODUCTION 
Research during the Early Numeracy Research Project in Australia (ENRP, Clarke, 
Cheeseman, Gervasoni, Gronn, Horne, McDonough, Montgomery, Roche, Sullivan, 
Clarke, & Rowley, 2002) found that being able to read, write, order and interpret  
2-digit numbers was a difficult growth point for young children to reach. It seems 
that most children learn to read and write 2-digit numbers fairly easily, but that 
interpreting the cardinal value of these numbers is the greater challenge. In a later 
study involving over 7000 Australian primary students, Gervasoni, Turkenburg, & 
Hadden (2007) were also concerned by the number of students they identified in 
Grades 2-4 who were yet to fully understand 2-digit numbers. If we are to improve 
young children’s whole number learning then it is important to understand the 
challenges children face in coming to understand 2-digit numbers. This is the key 
issue explored in this paper that reports on the refinement of the ENRP Early 
Numeracy Interview (ENI) and framework of growth points (Clarke et al., 2002) as 
part of the Bridging the Numeracy Gap Project (Gervasoni, Parish, Upton, Hadden, 
Turkenburg, Bevan, Livesey, Thompson, Croswell, & Southwell, 2010). The research 
team aimed to refine and extend the ENI and growth points, originally designed for 
use in the first three years of schooling, so that they were more appropriate for 
assessing students across the primary school. The aspect of the research reported here 
is the refinement of the assessment tasks for Growth Point 2 (GP2) – reading, writing, 
interpreting and ordering 2-digit numbers. 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 401-408. Ankara, Turkey: PME.
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THE CHALLENGE OF UNDERSTANDING 2-DIGIT NUMBERS 
Many studies have provided insight about the challenges involved in understanding 
and using 2-digit numbers. One important finding is that children who have not 
constructed grouping and place value concepts often have difficulty working with 
multi-digit numbers (Baroody, 2004). Also, being able to interpret numerals to order 
them from smallest to largest is another difficulty for some children. Griffin, Case, 
and Siegler (1994) observed that this involves integrating the ability to generate 
number tags for collections, and make numerical judgments of quantity based on the 
construction of a mental number line (Griffin & Case, 1997; Griffin et al., 1994).  
Other studies have found that successful problem solving with two-digit numbers 
depends on children’s ability to construct a concept of ten that is both a collection of 
ones and a single unit of ten that can be counted, decomposed, traded and exchanged 
for units of different value (e.g., Cobb & Wheatley, 1988; Fuson et al., 1997; Ross, 
1989; Steffe et al., 1988). Cobb and Wheatley (1988) found that some children 
develop a concept of ten that is a single unit that cannot be decomposed, and 
proposed that this type of concept is constructed when children learn by rote to 
recognise the number of tens and ones in a numeral, but do not recognise that the face 
value of a numeral represents the cardinal value of a group. 
Fuson et al., (1997) identified five different correct conceptions of 2-digit numbers 
and one incorrect conception that children use, several of which may be available to a 
given child at a particular moment and used in different situations. These six 
conceptions provide researchers with a detailed model to analyse children’s use of  
2-digit numbers and was considered by researchers when developing the ENRP Place 
Value framework of growth points and the associated Early Numeracy Interview 
(ENI). However, for the ENRP, researchers opted for a less complex model than the 
Fuson et al. model that they hoped would be more user-friendly for teachers. Ten 
years on, in refining the ENRP assessment interview and framework of growth points 
as part of the research reported in this paper, it will be important to consider whether 
the Fuson et al. model better explains the difficulties that some children experience in 
coming to understand 2-digit numbers. The six conceptions of 2-digit numbers are 
explained in detail in Fuson et al. (1997). They are the: Unitary Multi-Digit 
Conception; Decade and Ones Multi-digit Conception (noticing word parts); 
Sequence of tens and ones conception (noticing the advantage of counting by tens 
associated with partitioning in tens); Separate Tens and Ones conception (noticing 
the number of tens and the number of ones); Integrated sequence-separate tens 
conception (noticing that the number of tens is linked to the number name); and the 
Incorrect Single-Digits Conception (viewing each digit as representing ones). 
Fuson et al. (1997) contend that for full understanding of number words and their 
written symbols, children need to construct all five of the correct multi-digit 
conceptions, and that this requires considerable experience and time. Thus, we 
believe that the refinement of the Early Numeracy Interview needs to ensure that 
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teachers can identify students who use the integrated sequence/separate tens 
conception of 2-digit numbers. Indeed, we are interested to learn whether or not 
students who previously reached GP2 in Place Value are successful with this task.  
Constructing a Mental Number Line 
Another important characteristic of number learning is forming a mental number line. 
This requires the ability to visualise and abstract a number line so that students can 
locate any given number, order numbers by quantity, and generate any portion of the 
number line that may be required for problem solving.  
Griffin, Case and Siegler (1994) proposed that success in early arithmetic depends on 
the formation of a mental number line in association with understanding the 
generative rule that relates adjacent cardinal values (i.e., each adjacent number in the 
number line is one more or one less than its neighbour); and understanding the 
consequence of the previous idea: that each successive number represents a set which 
contains more objects, and thus has a greater value along any particular dimension. 
One way to help children develop a mental number line for use in problem solving is 
to engage them in activities involving an empty number line. This is a strategy widely 
used in the Netherlands and aims to link early mathematics activities to children’s 
own informal counting and structuring strategies. “The choice of the empty number 
line as a linear model of number representation up to 100 (instead of grouping models 
like arithmetic blocks) reflects the priority given to mental counting strategies as 
informal knowledge base” (Beishuizen & Anghileri, 1998, p. 525). This emphasis in 
the research literature on the importance of the mental number line and empty 
number line as a means of interpreting numbers is not reflected in the ENI until GP5. 
When refining the ENI it may be useful to include a 2-digit number line task earlier 
in the interview to determine whether students who reach GP2 are able to interpret 
numbers on a number line.  
ENRP Assessment and Growth Points 
The Early Numeracy Interview developed as part of the Early Numeracy Research 
Project (Clarke, Sullivan, & McDonough, 2002), is a clinical interview with an 
associated research-based framework of growth points that describe key stages in the 
learning of nine mathematics domains. The data examined in this paper were drawn 
from the ENI and Growth Point Framework, so it needs to be understood.  
The principles underlying the construction of the growth points were to: describe the 
development of mathematical knowledge and understanding in the first three years of 
school in a form and language that was useful for teachers; reflect the findings of 
relevant international and local research in mathematics (e.g., Steffe, von Glasersfeld, 
Richards, & Cobb, 1983; Wright, Martland, & Stafford, 2000); reflect, where 
possible, the structure of mathematics; allow the mathematical knowledge of 
individuals and groups to be described; and enable a consideration of students who 
may be mathematically vulnerable. The processes for validating the growth points, 
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the interview items and the comparative achievement of students are described in full 
in Clarke et al. (2002). The following are the growth points for Place Value. 

1. Reading, writing, interpreting and ordering single-digit numbers. 
2. Reading, writing, interpreting and ordering two-digit numbers. 
3. Reading, writing, interpreting and ordering three-digit numbers. 
4. Reading, writing, interpreting and ordering numbers beyond 1000. 
5. Extending and applying place value knowledge. 

Each growth point represents substantial expansion in knowledge along paths to 
mathematical understanding (Clarke, 2001). The number tasks in the interview take 
about 20 minutes for each student and are administered by the classroom teacher. 
There are about 40 tasks in total, and given success with a task, the teacher continues 
in a domain (e.g., Place Value) for as long as a child is successful. Teachers report 
that the ENI provided insights that might otherwise remain hidden (Clarke, 2001).  
Refining Assessment Tasks for 2-digit Numbers - Growth Point 2 (GP2)  
This paper examines students’ Place Value Knowledge and the effect of two new 
tasks designed to identify students who were assessed at GP2, but who may not 
interpret successfully the quantitative value of 2-digit numbers. The data examined is 
drawn from the 2010 assessment interviews of nearly 3000 Reception (R) to Grade 3 
students (5-8 years old) from 42 low SES school communities in Victoria and 
Western Australia who are part of the Bridging the Numeracy Gap Project 
(Gervasoni, Parish et al., 2010). This is a Federal Government funded Project aiming 
to close the education gap for low SES and Aboriginal and Torres Strait Islander 
students, and is a collaboration between 42 school communities, Catholic Education 
Offices in the regions of Ballarat, Sandhurst, Sale, and Western Australia, and 
Australian Catholic University. The new tasks are shown in Figure 1 below.   

Figure 1: New Growth Point 2 tasks. Students’ Place Value Knowledge. 

Pop-Sticks Bundling Task  
Ask the child to unpack the icy pole sticks. Here are some icy pole sticks in 
bundles of ten  (offer the chance to check a bundle if it seems appropriate). Here 
are some more loose ones.  Show white card for 36.  
a) Get me this many (icy pol e) sticks. (If the child starts to count all in ones, 
interrupt and ask them if they can do it a quicker way with the bundles. If they 
can’t, Tell me how you worked that out.  
b) Please put one bundle back. How many sticks are there now?  
How do you kno w that?  

2-Digit Number Line Task  
Show the child the mauve 2 -digit number line card.  
Look at this number line. Please tell me the largest number. (100)  
Point to the little mark . What number would go here? (acceptable number 
range is 45 -55). b) Please explain.  
 
  
 
 

0 100 
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Part b of the Bundling Task was designed to distinguish those students who use the 
integrated sequence/separated tens strategy when interpreting a collection of 36 pop-
sticks. Inclusion of the number line task reflects the emphasis in the research 
literature of the importance of students developing a mental number line to interpret 
quantities when problem solving. 
A key issue for the research reported in this paper was to determine students’ Place 
Value Growth Points, and whether the new GP2 tasks identified students who were 
not successfully interpreting the quantitative value of 2-digit numbers. Figure 2 
shows the distributions of Growth Points at the beginning of the 2010 school year for 
nearly 3000 Reception-Grade 3 students.  

 

Figure 2: Place value growth point distribution for R-Gr 3 students.  
Each student was assessed by their classroom teacher, and the growth points were 
calculated independently by trained coders to increase the trustworthiness of the data. 
An issue highlighted in Figure 2 is the spread of growth points at each level, 
particularly from Grade 1 onwards. This has been noted elsewhere (e.g. Gervasoni & 
Sullivan, 2007; Bobis et al., 2005) and confirms the complexity of the teaching 
process and the importance of teachers identifying each student’s current knowledge 
and knowing ways to customise learning to meet each student’s needs.  
These data indicate that about two-thirds of Grade 1 students have reached GP1, and 
therefore the initial focus for Place Value instruction is GP2 – 2-digit numbers. By 
the beginning of Grade 2, most students reach GP2. However, by Grade 3, half the 
students remain on GP2. Examination of the assessment tasks for GP3 and GP4 
indicate that students cannot reach these growth points if they do not interpret the 
quantitative value of numbers. We also noted that students could reach GP2 
successfully using only procedural knowledge to read, write and order numbers, and 
collect 36 pop-sticks. The original tasks did not actually require the interpretation of 
quantity, although conceptual knowledge was assumed. 
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Next we examined the data to determine the effect of the new GP2 tasks to determine 
whether these tasks identified any students who were not interpreting the quantitative 
value of numbers. The first new task required students to identify the value of a 
quantity that was reduced by ten. Students strategy for achieving this was observed 
and recorded by teachers on the assessment record sheet, and only students who were 
judged to be using Fuson et al.’s (1997) integrated sequence/separated tens strategy 
were deemed to be at GP2. This provided confidence that students were able to use 
all five correct conceptions of 2-digit numbers. The second task required students to 
interpret a number line. Students were asked to identify the number that was half way 
between 0 and 100 on the number line. Students who stated a number between 45 and 
55 were deemed to be successful. As most students in Grades 2 and 3 had reached 
GP2, students in these grades who were assessed at GP2 were selected for further 
examination, and their responses to the two new tasks analysed.  
The data presented in Figure 3 demonstrate that these tasks did identify some 
students who were assessed at GP2, but who did not successfully interpret 2-digit 
numbers in the Bundling and Number Line tasks. More than half of the Grade 2 
students and one-third of the Grade 3 students on GP2 were not able to solve the two 
new tasks. This highlights that interpreting 2-digit quantities is an issue for many 
students. The number line task was the more difficult of the new tasks. The most 
common incorrect response was 10, with students counting by ones along the number 
line until they reached the half-way mark. Of the remaining students who were 
successful, analysis of their responses to the 3-digit assessment tasks showed that 
none of these students were successful with the interpretive tasks, although most 
could read, write and order 3-digit numbers. This inability to interpret quantities was 
the reason why all these students did not progress to GP3.  

 

Figure 3: Percent of Gr 2 & 3 students on GP2 who could solve the 2-digit tasks. 
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CONCLUSION 
Analysis of 761 Grade 2 and Grade 3 students’ responses to new tasks in the ENI 
showed that these tasks distinguished students who were assessed as understanding 2-
digit numbers, but who in fact could not identify 50 on a number line or state the total 
of a collection of bundled pop sticks (3 tens and 6 ones) that was reduced by ten. 
These additional tasks assist teachers to identify students who need further 
experience with 2-digit numbers to construct full conceptual understanding, and 
highlight the importance of teachers focusing instruction on interpreting quantities, 
and not simply reading, writing and ordering numerals. Most children learn to read 
and write 2-digit numbers quite easily, but interpreting the cardinal value of these 
numbers is the greater challenge. However, it is this interpretation of quantity that is 
essential for problem solving and conceptual understanding. Perhaps the fact that the 
ENI has not included tasks that identify students who do not fully interpret 2-digit 
quantities has given teachers an inflated impression of some GP2 students’ 
understanding. We argue that some of these students need further instruction focused 
on their development of 2-digit number conceptions and a mental number line.  
One implication of the findings is that learning trajectories associated with Place 
Value and the development of whole number concepts need to adequately account for 
students’ interpretations of quantities. We believe that the ENRP Place Value growth 
points and the associated assessment interview needs to be modified accordingly. 
Such a refinement will give teachers more certainty about students’ current 
knowledge and assist them to design more precise instruction. 
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This paper reports on the findings of a three-year case study project situated in ten 
Pacific coastal public middle schools. We extend the generally accepted construct of 
sociomathematical norms to include the affect of cultural context on discourse and 
advancing students’ mathematical learning. We posit a teacher’s ability to negotiate 
a set of sociomathematical norms that successfully support student learning may 
depend, in part, on the teacher’s understanding of students’ cultural context. In 
particular, we note that project teachers who engaged students in the oral tradition 
of “talk-story” were better able to initiate and sustain a level of discourse that 
extended student learning.  
INTRODUCTION  
This paper reports on the findings of a three-year case study project situated in ten 
Pacific island public middle schools. The study extends the generally accepted 
construct of sociomathematical norms (Yackel & Cobb, 1996) to include the affect of 
cultural context on classroom discourse and potential to advance students’ 
mathematical learning. Observation data across the three years of the study suggest a 
teacher’s ability to negotiate a set of sociomathematical norms that successfully 
support student learning may depend, in part, on the teacher’s understanding of 
students’ cultural context. In particular, we propose that project teachers who engage 
students in the oral tradition of “talk-story” are better able to initiate and sustain a 
level of classroom discourse that facilitated student learning.  
The project’s research focus and corresponding professional learning activities focus 
on investigating and deepening teachers’ Content Knowledge for Teaching (CKT). 
We recognize that teaching effectiveness is influenced by the mathematical 
knowledge that guides the specific tasks of teaching, including the knowledge needed 
to (a) interpret and enact state standards and curricula; (b) assess student work (Adler 
& Davis, 2006); (c) respond appropriately to student questions; and (d) choose and/or 
create questions and problems that correctly target specific mathematical concepts 
(Ball, 2003). In fact, studies at the elementary level have found that improving 
teachers’ mathematical knowledge for teaching significantly affected students’ 
learning of mathematics (e.g. Hill, Rowan, & Ball, 2005). Understanding the 
potentially positive implications of advancing teachers’ CKT, the research team was 
intrigued when early in the process of collecting and analysing the observational data, 
we noted an unexpected and significant cultural factor that appeared to negatively 
impact student learning.  

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 409-416. Ankara, Turkey: PME.
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We suggest that although advancing teachers’ content knowledge for teaching may 
advance one’s ability to support student learning of mathematics; it is equally 
important to advance teachers’ understanding of culturally relevant practices that 
serve to engage student participation in the mathematics classroom. This paper 
reports on Keoni, a Native Hawai‘ian teacher, whose practice incorporates the oral 
tradition of “talk-story,” a form of discourse practiced in students’ homes and 
communities. Students’ cultural understanding of “talk-story” encourages them: to be 
keen listeners when others communicate ideas; to be compassionate, and support 
others who may need help to communicate their thinking; and to remain open and not 
dispute another’s ideas without justification (Affonso et al., 2007). Importantly, talk-
story is embedded in the practice of kuleana, an individual’s responsibility for their 
actions that require them to do their best work in support of the community.  
THEORETICAL BACKGROUND 
For the purposes of this study, we have adopted the framework of sociomathematical 
norms. We recognize that each classroom develops its own set of norms regarding 
mathematics. “Sociomathematical norms . . . are established in all classrooms 
regardless of instructional tradition” (Yackel & Cobb, 1996, p. 462). Yackel and 
Cobb (1996) argue that these norms are established in stages, as components of the 
development of a classroom culture. During the first stage, the teacher and students 
engage in discourse about the description of a procedure (e.g. instructing students in 
the necessary procedures to do a mathematical task). The discourse that occurs during 
the second stage describes an action on a real (mathematical) object. During the third 
stage, the teacher and students accept or reject the second stage as a valid object of 
reflection and decide if it is valid for others [italics added for emphasis]. These three 
stages can be interpreted as stages of computation, conceptual explanation and 
reflective action to other instances or cases. Importantly, as students begin to consider 
the adequacy of an explanation as it pertains to and can be used and understood by 
others in the classroom community rather than simply for themselves, the explanation 
itself becomes the explicit object of discourse (Feldman, 1987). In particular, this 
project characterizes sociomathematical norms through the lens of students’ 
intellectual autonomy, defined in respect to students’ contribution to the routines of 
discourse in the classroom community. This autonomy is co-constructed between the 
teacher and students. “[W]hat constitutes an acceptable mathematical reason is 
interactively constituted by the students and the teacher in the course of classroom 
activity” (Yackel & Cobb, 1996, p. 469). This process of sensemaking is further 
complicated in a multicultural setting, as evidenced throughout the project 
observations.  
The research team was curious to understand the significant disconnect that seemed 
to exist between teaching practice and the students’ cultural reality when students 
were not allowed to talk-story in class. Project teachers’ ability to hear and interpret 
students’ mathematical thinking through the filter of talk-story was compromised 
when that thinking and its expression were markedly different than their own 
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(Thames, 2006). In reciprocal fashion, students struggled to understand and respond 
to a classroom culture that was markedly different than that found in their home and 
community. The resulting cultural disconnect between classroom practice and 
students’ need to talk-story limited teachers’ abilities to effectively negotiate an 
appropriate set of sociomathematical norms needed to advance student learning.  
Native Hawaiian education, the practice of Aó, is based on building the necessary 
skills to survive and thrive in an ocean-based community.  

The elders well knew that, I ka nānā no a ‘ike, by observing, one learns. I ka ho’olohe no 
a ho’omaopopo, by listening, one commits to memory. I ka hana no a ‘ike, by practice, 
one masters the skill. . .  To this a final directive was added: Never interrupt. Wait until 
the lesson is over and the elder gives you permission. Then—and only then, nīnau. Ask 
questions. (Pukui, Haertig, and Lee, 1979, p. 48 as cited in Chun, 2006, p. 4) 

Thus, the five components of Aó, require students to: observe, listen, reflect, do, and 
question. This deliberate order “form[s] an approach that is different from the 
methods of inquiry we find in education today” (Chun, 2006); and frames the cultural 
norm Hawaiʻan students expect when they enter the classroom. 
METHODOLOGY  
The professional development component of this project was designed to increase 
middle school mathematics teachers’ ability to: 1.) develop discourse communities 
within their classrooms; 2.) identify and create questions that promote student 
discussion; and 3.) focus on student understanding from a formative assessment 
perspective. This design was based on the understanding that effective questioning 
and formative assessment strategies extend from CKT and serve as a model for 
teachers’ and students’ emerging development of sociomathematical norms in the 
classroom. The project was situated in racially and ethnically diverse public school 
classrooms. The Hawaiian population by ethnicity includes Asian (42%), White 
(24%), Native Hawaiian or Other Pacific Island (9.4%). The picture of diversity 
becomes even more complex when mixed-race students are also considered, with 
58% of Asian, 39% of White, and 23% of Native Hawaiian and Other Pacific 
Islanders reporting as one race alone or in combination with one or more other races 
(United States Census Bureau, 2000). Within this culturally rich setting, educators are 
challenged to understand and implement appropriate cultural practices that better 
support student learning. Specifically, the vast majority of the project population 
derives from a long-standing oral tradition for group work called “talk-story” 
(Affonso, Shibuya, & Frueh, 2007). “Talk-story is respected for its value of behaviors 
that resemble ground rules,” (p. 403) which serve as the basis for connecting school 
work to students’ cultural understandings.  
The study examined teachers’ capacity to identify and create questions leading to 
student discussions that have been linked to promoting student understanding, such as 
funnelling vs. focusing, (Wood, 1998) and generating discussion. Ten middle school 
mathematics teachers were observed over the course of a three year professional 
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development project. Two researchers conducted each observation, with one person 
charged with following the progress of the discussion and tracking the questions 
asked by the teacher and the students, the number of teacher/student and 
student/student interchanges, and the mathematical content of the interchanges. The 
other researcher was charged with tracking the mathematical trajectory of the class 
and the emerging sociomathematical norms that framed classroom discussions. 
Immediately following each observation, the two researchers met to debrief, compare 
notes, and to create a single document to authenticate the pedagogical and 
mathematical path of each lesson.  
The resulting data was then organized into a map that emerged from the analysis of 
the discourse between the teacher and students. Interactions were classified as 
teacher-generated or student-generated according to who asked the initial question 
that began the discussion. Questions which elicited a limited set of specific and 
correct answers were categorized separately from questions that led to discussion of 
underlying mathematical concepts. Questions were also categorized by direction 
(teacher to student, student to teacher, or student to student).  
RESULTS 
This study was initially conceived to identify teachers’ implementation of formative 
assessment practices as a result of their participation in a professional development 
project. The working hypothesis was that providing teachers with ongoing 
opportunities to learn about funnelling, focusing, and discussion generating questions 
would support students’ engagement with mathematics and would assist them in 
identifying and creating appropriate questions and discussions. In addition to the case 
study observations, data for this study came from a pre-post test of CKT utilizing the 
University of Michigan’s Learning Mathematics for Teaching instrument, project 
generated student pre-and post-tests, teacher reflective logs, and field notes and 
reports from the professional development facilitators. The teacher pre-and post-tests 
were used to determine changes in teachers’ CKT, with particular attention paid to 
the items that focused on interpreting student work and the ways to promote student 
understanding of mathematics; and questions that asked teachers to consider possible 
responses to student misconceptions. Data from the teacher and student assessments 
were analysed quantitatively to determine the extent to which any changes occurred 
and if these changes were significant. The case study observations were analysed 
qualitatively to illustrate possible links between the professional development 
experiences and any change in teachers’ use of formative assessment strategies, 
paying particular attention to questioning strategies of the three types and the 
resulting classroom discussions. 
For the purposes of this paper, we report on Keoni. We noted early on that the lesson 
structure and classroom norms established by Keoni differed significantly from that 
of other project participants. Keoni began each lesson by modelling a concept so that 
students had an opportunity to observe expert practice. During each lesson we noted 
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that he would often tell students “Stop what you’re doing, look up here, and listen to 
me.” Many of Keoni’s lessons incorporated a project to be completed in small 
groups. Over time we observed a reoccurring lesson structure in which students 
would observe the task being done by the teacher, listen to his explanation, have 
opportunities to reflect and talk in groups as they practiced the new skill. Only then 
were students encouraged to ask questions. 
For example, in one lesson (a scaling activity), Keoni put a map of the students’ 
island under the document camera and called their attention to the map scale. He 
showed them how to measure the scale in centimetres and set up the activity that 
followed (observe) They decided to use 6.6 centimetres as equivalent to 6 miles. 
Having observed Keoni’s use of the scale, students were told to work in groups and 
use the map and scale to find the actual distance between two island locations.  

Ok, boys and girls, stop, look and listen.(listen) Please do a little self evaluation and 
think about if you are on task. …What strategy can we use to figure out what centimetres 
would be in miles? Think back to the strategy we could use to do this. (reflect) 

After the teacher explained the process and set up the activity, he allowed students to 
work in groups at their own pace. (do) Stopping at one table, he asked students what 
information they needed to know to calculate the ratio. He scaffolded this question by 
reminding students of a similar activity that they did earlier in the week. Periodically, 
he shared strategies with the whole group. This was a safe time for students to 
practice their understanding and make mistakes with fear of embarrassment. 
(question) We observed much “on task” talk during this block of time as students 
asked questions of each other and of the teacher. As Keoni observed each group, he 
monitored their mathematical progress while simultaneously reinforcing the concept 
of kuleana (a sense of responsibility for oneself and others). He commented to one 
group,  

What I’m noticing is that you’re not working as a team. We need to figure out how we 
can work this out together so that we figure it out as a team …together. 

After noticing that two students had lagged behind, he admonished one group,   
You need to figure out what your teammates need ...to catch up to you and answer the 
remainder of the questions.  

Keoni established a set of classroom norms in his mathematics classroom that 
reinforced students home culture, and which socialized “students to the often implicit 
cultural expectations of the classroom such as turn-taking, participation rules, and 
established routines” (Echevarria & Short, 1999, p. 5). Additionally, when 1700 
project students were given a project-created algebra test (29 question pre and post), 
Keoni’s students on average, were able to correctly answer two and one half more 
questions on the post test than they did on the pre-test. This rate student growth 
exceeded the project class average of two more correct answers on the post test. 
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DISCUSSION 
After observing multiple classrooms the first year of the project, we were curious to 
understand teachers’ reoccurring admonitions to students to not talk-story. Realizing 
our “outsider” status, we spent time with the researchers in the Hawaiian Studies 
program at the University of Hawaiʻi, exploring native cultural traditions. In 
particular, we appreciate the help of Dr. Morris Lai and the Pihana Na Mamo project 
staff for helping us better interpret what we were seeing in classrooms.  
We examined different levels of participation by students who are intellectually 
autonomous in mathematics contrasted with those who rely on the pronouncements 
of an authority to know how to act appropriately. The practice of structuring 
classrooms around student-student interactions, while potentially valuable, does not 
guarantee that the interactions will be purposeful and effective (Lobato, Clark, & 
Ellis, 2005). The link between the growth of intellectual autonomy and the 
development of an inquiry based classroom environment becomes apparent when we 
note that, in such classrooms, the intent is for the teacher to guide the development of 
a community of inquiry, which encourages a transference of responsibility from the 
teacher as sole source of mathematical knowledge to a shared responsibility of sense 
making and collaboration. “Many teachers find it easy to pose questions and ask 
students to describe their strategies; it is more challenging pedagogically to engage 
students in genuine mathematical inquiry and push them to go beyond what might 
come easily for them” (Kazemi & Stipek, 2001, p. 60). The purpose of establishing 
sociomathematic norms is to “help students to clarify their statements, focus carefully 
on problem conditions and mathematical explanations, and refine their ideas” 
(NCTM, 2000).  
Theoretical arguments for the discourse-learning connection are based on social-
constructivist and social-cognitive perspectives (Cobb, Yackel, & Wood, 1992; 
Hatano, 1988; Pimm, 1987). It is commonly accepted by researchers, teachers, and 
teacher education programs that discourse benefits student learning; if students are 
talking about mathematics, they must be learning about mathematics (Piccolo et al, 
2008). Based on the findings, the project observation team noted a significant lack of 
examples of teachers and students participating in mathematical discourse that could 
be considered “doing mathematics.” We attribute this gap in the educational process 
in two ways: (1) teachers lacked significant content knowledge for teaching to 
support the level of mathematical discourse needed for student learning, and (2) there 
was a significant disconnect between what constitutes teacher-allowed discourse and 
students’ cultural understanding of community-based discourse. 
CONCLUSION 
Paradoxically, project teachers consistently warned students that talk-story was not 
allowed in the mathematics classroom. –Teachers considered talk-story to be “a 
waste of students’ time,” and so its practice was actively and consistently 
discouraged. It is our contention that limiting students in this manner effectively 
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stops the potential to develop a positive set of sociomathematical norms that 
encourage mathematical discourse and concomitantly, student learning. Rather, the 
majority of students whose cultural apprenticeship for learning stems from an oral 
tradition are disenfranchised from practicing learning strategies that they have 
learned at home and in their community. “No talk-story” effectively silenced student 
discourse and thus, reduced learning. In the case of Keoni, students were encouraged 
to do mathematics in a culturally appropriate manner that supported essential 
classroom discourse and advanced student learning. 
References 
Affonso, D., Shibuya, J., & Fruch, C. (2007). Talk-story: Perspectives of children, parents, 

and community leaders on community violence in rural Hawaii. Public Health Nursing, 
24:5. pp. 400-408.  

Adler, J. and Davis, Z. (2006). Opening another black box: Researching mathematics for 
teaching in mathematics teacher education. Journal for Research in Mathematics 
Education, 36(4), 270-296.  

Andrade, N., Hishnuma, E., Junimoto, J., Goebert, D., Makini, G. (2006). The national 
center on indigenous Hawaiian behavioral health study or prevalence of psychiatric 
disorders in native Hawaiian adolescents. Journal of the American Academy of Child and 
Adolescent Psychiatry, 45:1, pp. 26-36.  

Ball, D. L. (2003) What mathematics knowledge is needed for teaching mathematics? 
Secretary’s Mathematics Summit, Feb. 6, 2003, Washington, DC. Retrieved February 15, 
2008 from http://www.ed.gov/rschstat/research/progs/mathscience/ball.html. Edmonton, 
AB: CMESG/ GCEDM.  

Cobb, P., Wood, T., & Yackel, E. (1993). Discourse, mathematical thinking, and classroom 
practice. In E. Forman, N. Minick, & A. Stone (Eds.), Contexts for learning: 
sociocultural perspectives  in children’s development (pp. 91-119). New York: Oxford 
University Press.  

Chun, M. N. (2006). Aó: Educational Traditions. Honolulu: Curriculum Research & 
Development Group, University of Hawaii. 

Chun, M. N. (2006). Pono: The way of living. Honolulu: Curriculum Research & 
Development Group, University of Hawaii. 

Echevarria, J. & Short, D. (1999).  The Sheltered Instruction Observation Protocol: A Tool 
for Teacher-Researcher Collaboration and Professional Development.  ERIC Digest 
EDO-FL-99. Accessed April 25, 2010 from URL http://www.siopinstitute.net/ media/ 
pdfs/sioppaper.pdf 

Feldman,C . F. (1987). Thought from language: The linguistic construction of cognitive 
representations. In J. Bruner & H. Haste (Eds.), Making sense: The child's construction of 
the world (pp. 131-162). London: Methuen. 

Hatano, G. (1988). Social and motivational bases for mathematical understanding. In G.B. 
Saxe & M. Gearhart (Eds.), Children’s mathematics (pp. 55–70). San Francisco: Jossey-
Bass.  



2-416 PME 35 - 2011

Gilbert, Gilbert 

 

1- 8 PME 35 - 2011 

Hill, H., Rowan, B., Ball, D. (2005). Effects of Teachers' Mathematical Knowledge for 
Teaching on Student Achievement. American Educational Research Journal. 42(2), 371-
407.  

Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary 
mathematics classrooms. Elementary School Journal, 102, 59-80.  

Kawai‟ae‟a, K. (2002). Na Honua Mauli Ola: Hawaii guidelines for culturally healthy and 
responsive learning environments. Hilo, HI: Native Hawaiian Educational Council and 
Ka Haka Ula O Ke’elikOlani College of Hawaiian Language, University of Hawaii-Hilo.  

Lobato, J., Clark, D., & Ellis, A. (2005). Initiating and eliciting in teaching: A reformulation 
of telling. Journal for Research in Mathematics Education 36:2. pp. 101-136.  

Moses, R. P., & Cobb, C. E. (2001). Radical equations: Math literacy and civil rights. 
Boston: Beacon Press.  

National Council of Teachers of Mathematics (2000). Principles and standards for school 
mathematics. Reston, VA.  

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation 
standards for school mathematics. Reston, VA: Author.  

Piccolo, D., Harbaugh, A., & Carter, T. (2008). Quality of instruction: Examining discourse 
in middle school mathematics instruction. Journal of Advanced Academics, 19:3 pp. 
376–410.  

Pimm, D. (1987). Speaking mathematically. New York: Routledge.  
Thames, M. (2006). Using math to teach math. Mathematicians and Educators Investigate  

the Mathematics Needed for Teaching. Critical Issues in Mathematics Education Series, 
Volume 2. Mathematical Sciences Research Institute. Berkeley, CA  

United States Census Bureau. (2000). Hawaii: Profile of general demographic 
characteristics. Retrieved July 4, 2009, from http://factfinder.census.gov/servlet/ 
QTTable?_bm=y&-geo_id=04000US15&qr_name=DEC_2000_SF1_U_DP1&-
ds_name=DEC_2000_SF1_U  

Wood, T. (1998). Alternative patterns of communication in mathematics classes: Funneling or 
focusing? In Steinbring, Bussi, and Sierpinska (Eds.), Language and communication in the 
mathematics classroom (pp. 167-178). Reston, VA: National Council of Teachers of 
Mathematics. 

Yackel, E., Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 
mathematics. Journal for Research in Mathematics Education 27:4 pp. 458-477.  

 



2-417

 

  1- 1 
2011. In xxxx (Eds.). Proceedings of the 35th Conference of the International Group for the Psychology of 
Mathematics Education, Vol. 1, pp. XXX-YYY. Ankara, Turkey: PME. 

EXAMINING THE CONNECTION BETWEEN TEACHER 
CONTENT KNOWLEDGE AND CLASSROOM PRACTICE 

Michael Gilbert Barbara Gilbert 
University of Massachusetts Boston Harvard University 

	  

This paper extends existing research regarding content knowledge for teaching 
(CKT) and the role it plays in advancing student learning. In this report, two teachers 
(one with high and one with low measured CKT) are observed on the same day 
teaching the same content. Many studies have recently been published linking student 
achievement to teacher’s CKT, and in the U.S., many schools are beginning to 
include CKT measures in teacher hiring and retention decisions. The classroom 
teaching observed for this study illustrates that content can effectively be taught by 
teachers across the spectrum of CKT levels, but that the observable and significant 
differences in their teaching leads to important questions for inservice and preservice 
teacher educators.  
INTRODUCTION  
The single greatest factor determining student achievement is the quality of the 
teaching1. This paper extends current research into teacher effectiveness by extending 
existing research into content knowledge for teaching (CKT) and the role it plays in 
advancing student learning. Specifically, we examine the connections that exist 
between teacher CKT and classroom practice. The research reported here was part of 
a larger case study of participants in a National Science Foundation project that 
investigates feasible models of implementing formative assessment in mathematics. 
The paper researches and extends the construct of Content Knowledge for Teaching 
(CKT), the mathematical knowledge and skill unique to teaching (Ball, Thames, & 
Phelps, 2008). This construct is based on the understanding that just as many 
professions require effective practitioners to possess skills that are distinctive to their 
work, effective teaching requires not only a deep understanding of mathematical 
procedures and concepts, but also of the learning trajectories and emerging 
knowledge of students in schools. Mathematics teachers use CKT to identify how 
mathematical tasks relate to and build upon one another, recognize salient features of 
tasks, and includes understanding how a shift of features of a task can aid (or hinder) 
the development of additional ideas, concepts, or procedures. We seek to further our 
understanding of the way that teachers’ knowledge of CKT influences teaching 
practice and resulting ability to teach effectively.  
CONCEPTUAL FRAMEWORK  
It is generally accepted that mathematics teachers’ effectiveness is influenced by the 
mathematical knowledge they possess. For example, when teachers differentiate 
problems to challenge and/or provide additional scaffolds for students, their 
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understanding of mathematics allows them to: 1.) listen to students’ explanations of 
unconventional solution strategies and quickly determine whether or not they are 
likely to lead to generalizable approaches, 2.) press student thinking through 
appropriate questioning, and 3.) create or select formative and summative assessment 
problems that are mathematically appropriate for the class.  
Over the past two decades, research studies suggest that while individuals with 
bachelor’s degrees in mathematics may have a specific kind of knowledge, they often 
lack what Liping Ma (1999) described as a profound understanding of fundamental 
mathematics, a deep understanding of basic mathematical ideas. And yet, a major 
factor in increased student achievement is a knowledgeable, skillful teacher (NCTA, 
1996). In fact, Darling-Hammond and Ball (1998) conclude that teacher quality 
accounts for 40% of the variation in student achievement. Knowing how to respond 
appropriately to students’ questions and develop the ability to choose or create 
questions and problems targeting specific mathematical concepts is at the centre of 
the content knowledge needed for teaching (Ball, 2003). Studies involving teachers 
of elementary students have found that improving their mathematical knowledge for 
teaching significantly affects students’ learning of mathematics (e.g. Hill, Rowan, & 
Ball, 2005). At question is how best to conceptualize and implement appropriate 
components of mathematics content, pedagogy, and other aspects of teaching to pre 
and inservice teacher education.  
METHODOLOGY  
This study is a comparative case study of two teacher participants in a professional 
development project. The project included thirty-two teachers from 15 schools in a 
Pacific coastal district. Both of the teachers reported on in this study taught in the 
same school. Overall, the project teachers participated in five days of full-cohort 
professional development in June 2008 and four days in June, 2009; five half-day 
follow up sessions during the 2008-2009 and 2009-2010 school years, and at least 
three coaching visits per year from project staff.  
Data collection included the University of Michigan’s Learning Mathematics for 
Teaching (LMT) instrument to measure any change in participants’ CKT. This test 
was administered at the beginning of the summer institute in year one, after one year 
of participation, and again at the end of the project. The content strands of this test 
include items intended to assess teacher’s fluency with determining and interpreting 
patterns, functions, expressions, equations, and representations. The instrument 
consisted of 29 responses in the form of multiple-choice questions. Project-created 
student pre and post tests were administered to all of the participating teachers’ 
students in September and May of both years. Analysis of the second year’s student 
data has not been completed and is not included in this analysis.  
The two teachers involved in this case study, Elina and Keoni, were chosen because 
although they worked closely together (they both taught seventh grade and met daily 
to plan their lessons), they represented the upper and lower quartiles of scores on the 
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LMT. Both Elina and Keoni were observed a total of five times each year over a two 
year period. Their preservice coursework was similar, and completed at the state 
university. They are both relatively new teachers, with five and three years of 
teaching experience; and on the teacher pre-survey they both reported a high level of 
satisfaction with their ability to work with technology.  
Two researchers conducted each observation, with one person charged with 
following the progress of the discussion and tracking the questions asked by the 
teacher and the students, the number of teacher/student and student/student 
interchanges, and the mathematical content of the interchanges. The other researcher 
tracked the mathematical trajectory of the class. Immediately following each 
observation, the two researchers met to debrief, compare notes, and to create a single 
document to authenticate the pedagogical and mathematical path of each lesson. 
Interactions were classified as teacher-generated or student-generated. Questions 
which elicited a limited set of specific and correct answers were categorized 
separately from questions that led to discussion of underlying mathematical concepts. 
Questions were also categorized by direction (teacher to student, student to teacher, 
or student to student). 
RESULTS 
The LMT scores are shown in Table 1 below. The test was administered three times. 
The same form was given at the beginning of the project and again after one year of 
participation. A post-test was given at the end of the project.  

 

Pretest 1 
June 2008 

IRT Scale 
Score 

Pretest 2 
May 2009 

IRT Scale 
Score 

Posttest 
May 2010 

IRT Scale 
Score 

Elina 76% 0.381756 83% 0.723952 93% 1.517683 
Keoni 48% -0.73437 48% -0.73437 74% 0.348509 
Project 
totals 70% 

 

78% 
 

78% 
 Table 1: LMT scores 

We recognize the limitations of reporting percentage scores for individuals and the 
small number of participants in this study. The figures are reported only for purposes 
of comparison within the data set. Keoni’s score was unchanged on the second test, 
although he did change eight answers on the second test iteration. Elina’s score 
increased with each test, and she had among the highest scores for each test.  
The importance of the growth in both of their scores is seen as a predictor of student 
achievement. For each one point gain on all project teacher’s post-test scores in year 
1, their students achieved 0.448 higher points on the student post-test after accounting 
for the influence from the other teacher variables (Olson, Im, Slovin, Olson, Gilbert, 
Brandon, Yin, 2010). The results of the student test are shown in Table 2 below.  
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Average number of correct 
responses Fall 2008 

Average number of correct 
responses Spring 2009 

Difference 
Post – Pre 

Elina 13.9 19.2 5.3 

Keoni 14.2 16.7 2.5 

Project 
Total 14.0 16.0 2.0 

Table 2: Student pre and post test results 
Please note that these student scores are from the first study year, the year in which 
Keoni’s CKT score did not change. Also notice that the increase in the number of 
correct responses in both cases are above the project average. In particular, Elina’s 
students’ averaged a gain of over five correct answers on the post test (among the 
greatest improvement of all participant teachers). Although Keoni, with one of the 
lower scores on the first two test administrations, also showed improvement. We 
were curious to investigate the circumstances behind the fact that in spite of low 
CKT, Keoni was an effective teacher who improved student learning. This motivated 
us to carefully review our observations of Elina and Keoni.  
The case study findings reported here are from two observations (one each for Elina 
and Keoni) done on a single day late in the Fall of the second year. The observation 
from this day was very representative of all of our observations of them, and the 
results we report could easily have come from other observations. An additional 
statistic that should be reported is the number of mathematical errors made while 
teaching (an error was coded as a mathematically incorrect statement made to the 
class). Overall, Keoni coded an average of 2.6 mathematical errors per class, while 
Elina made 1.4 errors. As was their usual schedule, Elina and Keoni had met daily 
during their planning time to jointly discuss and plan instruction. Given the space 
limitations for this paper, we will restrict our discussion to the explication of one 
activity for each teacher. In Elina’s case we will examine the focus problem she did 
at the beginning of the class. With Keoni, we will look at the discussion of a 
homework problem from the previous day that was reviewed in class.  
Elina’s teaching style is to move through classroom 
work very quickly. Students have to attend very 
carefully to keep up. There is no “catch up” time 
built into her class. If students fall behind at any 
point, they may miss critical information. In this 
class, the focus problem asked students to find the 
true statement about ∆XYZ from a list that related to 
∆ABC (Figure 1).  The scale factor from ∆ABC to 
∆XYZ is given as 4. 
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1. The area of  ∆ABC is 16 times the area of ∆XYZ  
2. The area of ∆ABC is ¼ the area of ∆XYZ 
3. The area of ∆ABC is 4 times the area of ∆XYZ 
4. The area of ∆ABC is 1/16 the area of ∆XYZ 

Elina begins the activity by displaying the task using the document camera. She is 
very comfortable using technology to project student responses for all to see. The text 
says “Using the following similar figures identify the true statements. Hint: find the 
areas of both triangles.” She wants the students to input answers on their calculators 
and send them to her.  
1 E Send me the area of triangle ABC. She counts down  10, 9, 8, . . . . . . . Send 
2 E Send me the area for triangle XYZ. Counts down from 10. . . . . . Send 
3 E Last question . . . Send me the numbers of the questions that you thought were 

true. (students appear a bit confused) Send me the ones that you thought were 
true. 10, 9, 8, …….. Send 

4  After looking at the submitted responses (she has not displayed them on the 
screen for the rest of the class), Elina recognizes that many students are 
confused. 

5  Can somebody remind us how to find the area of a triangle?  
6 S1 Base times height 
7 E One half base times height. … Pauses . . .Does ½ make a big difference? 
8 S2 Yes 
9  Elina now shows the student responses for the area of triangle ABC.  11 out of 19 

responses show 24, the correct answer. 
10  Looking at the screen, Elina notes that there are 3 responses of 48. 
11 E What did these 3 people forget to do? (pointing at 48)   
12 S3 Divide 
13 E Some people forgot to divide by two.  
14 E Let’s take a look at this one.  ….11. Five responses of 11.    

How many of you just added? (no one responds) … 
15 E That’s something we may have to review.  ….huh? …the area of triangles. 
16 E On #1, is ABC being multiplied by 4? Several student respond with “No” 
17  Elina works through the solution aloud and determines that it is True. 
18 E What is this question asking?  #1, which stated that the area was 16 times larger. 
19 S2 You can fit 16 ABC triangles into XYZ. 
20 E No, but close.  (This is true, but not what the question asked. Elina did not clarify 

this point.) 
21 S4 ABC is bigger than XYZ. (This is not true.) 
22 E Is this true or false? Several students say “False” 

In Keoni’s class, there was very little full class discussion and his primary teaching 
method was to provide instructions to the full group, circulate between individual 
tables, and answer student questions. The task for the day involved scaling a 
rectangle on a grid by a scale factor of ¼. The rectangle is shown in Figure 2. As 
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Keoni begins the activity, he goes over the instructions. He tells them that they will 
need to answer numbers 1 and 2 before they can answer the rest of the questions. He 
carefully tells students that for some of them this is a review of how to draw the 

figures on a grid, but that because some students 
don’t know how to do this, they will revisit how to 
draw the figure. Keoni is giving students very 
detailed instructions about how they are to proceed. 
The first instruction asked the students to plot the 
points. The second asked students to dilate the 
original figure by ¼ using the point A as the origin. 
The rest of the worksheet asked the students to 
describe what needed to be done to perform the 

dilation. Students are required to get Keoni’s approval for the first portion of the task 
before they can move on to the next step. He sets a timer for 10 minutes and tells 
students to draw the figures. As Keoni goes around the room and checks students’ 
answers, he asks a couple of students if they mind moving to other tables to share 
their process and thinking with other students. 
When the timer rings, most of the students are still struggling to identify the points on 
the grid. Keoni goes to each table and makes sure that they are able to draw the figure 
correctly before he allows them to proceed to the next step. As he has students check 
their points, they catch that several individuals have mislabeled the figures. Once 
they correct their labels, Keoni lets them check off that problem.   
Next, he asks the class if dividing by ¼ is the same as multiplying by .25. Several 
students say “Yes.” Keoni gives students 20 minutes to do the rest of the questions. 
After three minutes, he stops the work and tells the class that everyone is having 
some difficulties, and they’re going to go over the problem step-by-step.  

What I’m noticing that you’re not working as a team. We need to figure out how we can 
work this out together so that we can figure it out as a team …together.  

After Keoni says this, two girls who had correctly solved the problem got up from 
their seats and went to the other side of the table to help their table partners find the 
solution. Several students at another table also began helping a table partner who was 
struggling. Keoni allowed students “an extension of the time,” telling the class that 
they should  “figure out what your teammates need to catch up to you and answer the 
remainder of the questions.”  Two girls at a front table were persistent in their effort 
to help a girl who was clearly struggling. Several groups had huddled together and 
were working on the problem. Students actively responded to Keoni’s call to work 
together and were engaged in finding a solution.  
DISCUSSION 
The difference between the two classrooms is striking. Elina was relentlessly 
efficient. She had very specific classroom procedures and rules that she expected 
students to follow without deviation. Several times she told students, “Let’s not waste 
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time ….yeah?” As seen in Lines 1 and 2 above, she followed many tasks with a 
countdown from 10 to keep the class moving forward. Her style in responding to 
incorrect student answers was similarly direct (see Line 7). Her instruction followed a 
characteristic pattern, in which she quickly reviewed responses, comments or made 
corrections, and then moves on. Although she constantly asked questions and listed to 
student feedback, it was clear that Elina was the focal point of this classroom. This is 
clearly seen in Lines 19 – 21, and although the student’s response was accurate, Elina 
chose to keep students focused on the side lengths being multiplied by 4.  
Elina’s interactions with individual students tended to be brief and to the point. Her 
CKT was evident in both her interactions with students and with the mathematics. 
Questions were largely funnelling (Wood, 1998), and seem intended to move 
students in a set direction. She did not need to mask her understanding of the content 
by making broad, general statements. Rather, her comments were driven by a 
predetermined solution strategy. While Elina maintained a strict focus, students did 
feel comfortable teasing her (the boys in particular). 
Keoni was also quite intentional about each step in the process of instruction, but his 
focus was more on the social nature of the learning community. He consistently 
reminded students that they had a responsibility to their groups. Keoni reinforced a 
culturally appropriate community dynamic. In contrast to Elina, Keoni often gave 
students “an extension of time” so that they might complete their work. His major 
press was to create a collaborative community of students engaged in the 
mathematics. Unfortunately, Keoni’s lack of appropriate CKT allowed many students 
to leave the classroom unsure of how to solve this particular problem. A major source 
of misunderstanding for students when scaling is to understand the difference 
between relative change (multiplicative) and absolute change (additive). This activity 
led students to think additively and will likely cause them to have misconceptions 
later. Keoni was unable to resolve this situation. Also, several times when discussing 
the scaling activity he referred to sides as congruent, not corresponding, a major 
mistake that may also lead to later confusion for the students.  
CONCLUSION 
The challenge for this study is to derive conclusions from two dimensions of data, 
CKT and pedagogical practice, which seriously compound traditional comparison 
methods. Although CKT has been qualified as a valid predictor of teaching 
effectiveness and student achievement, there remain other factors that also positively 
influence teaching effectiveness. In this study, Elina’s CKT was measurably greater, 
as was her student’s achievement. But higher student scores may also be the result of 
Elina’s pedagogical style, which was demonstrably different from Keoni’s. 
Conversely, the classroom environment developed in Keoni’s class did result in 
student learning, in spite of a lack of specific mathematical direction and a greater 
number of mathematical mistakes.  
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This preliminary study was undertaken to investigate an interesting discrepant case, 
and to define parameters for future research. Recognizing CKT is closely linked to 
classroom practice, how do we increase the CKT of inservice teachers with relatively 
high effectiveness but low content knowledge?  Further, since preservice teacher 
course work largely concentrates on pedagogy with limited CKT focus, we continue 
to question what may be done to improve CKT of preservice teachers? We posit that 
improvements for preservice and inservice teacher education lie in our ability to 
understand (a) how CKT is supported by pedagogical practices, (b) how pedagogy 
can advance CKT, and (c) possible connections that will result in more effective 
practice. We believe that future research should study more than teacher content 
knowledge or pedagogical practice in isolation. Without attempting to mandate a 
course of study and practice that devalues either CKT or supportive pedagogy, our 
continued challenge is to learn enough about the intersection of CKT and pedagogical 
practice to support teacher learning from both perspectives.  
1 National Comprehensive Centre for Teaching Quality, 2005 
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Although definition is a cornerstone in the building of mathematics, it is neglected in 
the school syllabi of many countries. Research studies in mathematics education 
report some difficulties students experience with definitions: Students have a limited 
grasp of the role of definition and don't always distinguish between descriptions and 
definitions. The result is a poor understanding of concepts and consequences thereof. 
The parabola is an example of a concept that students grasp as the graph of a 
function rather than as an independent geometrical shape. We present a research 
study in which students were engaged in the process of constructing the definition of 
a parabola as a locus. We argue that by doing so the students are likely to improve 
their understanding of parabola and may overcome inappropriate concept images.  

THEORETICAL BACKGROUND 
Mathematical definition 
The origin of the word definition is the Latin word finis, which means end, boundary, 
border. "When you define something you put boundaries around what it can mean. A 
good definition puts an end to confusion about what a term means" (Schwartzman, 
1994, p. 68). Pimm (1993) calls the notions of definition, theorem, proof, and 
proposition meta-mathematical marker terms: "terms which serve to indicate the 
purported status and function of various elements of written mathematics" (p. 261).  
A famous example for the importance of a definition and its role is Cauchy's 
"mistake" as presented by Lakatos (1978): Cauchy has been regarded by historians of 
mathematics as the person who gave the calculus its final foundation and put it on 
solid ground. In his Course d'Analyse (1821), Cauchy proved that the limit of an 
everywhere convergent sequence of continuous functions is continuous, a claim that 
is today considered false. Was it carelessness? Oversight? According to Lakatos, 
Cauchy's "mistake" stemmed from using a different definition of continuity from the 
one we use today. While this famous example emphasizes the arbitrariness character 
of definition our study emphasizes the conceptual understanding aspect of definition. 
Definitions in mathematics education 
Vinner (1991) states that "the ability to construct a formal definition is a possible 
indication of deep understanding" (p. 97), and the NCTM Standards (2000) 
recommend "to give students experiences that help them appreciate the power and 
precision of mathematical language" (p. 63). In spite of that, Borasi (1992) claims 
that "an analysis of the most popular syllabi and textbooks, as well as conversations 
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with several mathematics teachers, soon made it clear that despite its importance, the 
notion of mathematical definition is rarely, if ever explicitly examined in precollege 
mathematics instruction" (p. 7). 
In the research literature there is evidence for various difficulties students experience 
with mathematical definitions. Students don’t perceive the nature and the functions of 
mathematical definitions (e.g. Edwards & Ward, 2004; Zaslavsky & Shir, 2005), and 
have difficulties using definitions. A difficulty documented in many studies is that 
students use concept images that are not compatible with the concept definition (Tall 
and Vinner, 1981) to solve problems (e.g. Alcock & Simpson, 2009; Vinner, 1991).  
Researchers argue that putting students in a situation in which they feel the need for 
definition will promote the acquisition of the definition and the understanding of the 
concept (e.g. Kidron, 2008, in press; Nachlieli, 2004; Ouvrier-Buffet, 2006). 
In this paper we present a study in which students were engaged in a process of 
constructing the definition of a parabola as a locus, an independent geometrical shape 
made up of points with a common property rather than just any curve or even a curve 
that is a product of a specific functional rule. We argue that by doing so the students 
grasp a better understanding of this concept and overcome some wrong concept 
images concerning the parabola. 
Parabola 
The origin of the word parabola is the word παραβολή, which means parallelism and 
refers to the angle of a conic section. Menaechmus was the first one to study the 
conic sections in the middle of the 4th century BC (Knorr, 1982). He sectioned the 
cone at different angles. The intersection of a cone and a plane parallel to a generator 
of the cone is a parabola. Another planar of a parabola is the locus of points in the 
plane that are equidistant from a given point, the focus and a given line, the directrix.  

The graph of the quadratic function f (x) = ax2  is a parabola with focus (0, 1
4a
)  and 

directrix y = ! 1
4a

. Since the graph of any quadratic function f (x) = ax2 + bx + c  is a 

shift of the graph of f (x) = ax2 , the graphs of any quadratic function is a parabola. The 
opposite is true, too: for any parabola there is a Cartesian coordinate system in which 
this parabola represents the graph of f (x) = ax2 . 

Students usually come to know the parabola at first as the graph of a quadratic 
function. This is probably the reason why many students grasp the parabola as a 
graph of a function (sometimes any curve that is not a straight line) and not as an 
independent geometrical shape like, for example, a circle.  

THE ACTIVITY 
In this section we describe the activity used in the research. It was designed to raise 
the need for a definition of a parabola as a locus and to construct this definition. The 
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activity has 4 parts. In the first part the students deal with the notion of locus, in the 
context of a circle as well as in the context of a perpendicular bisector; they already 
met the notion of locus in class when defining a circle. 
The second part of the activity is represented in Figure 1.  

In the drawing there are circles with a common center M and parallel lines. The 
distance between any two neighboring lines is 1 unit. Every line 
except the one through M is tangent to a circle. 
a. Number the circles from 1 to 8, the inner one being 1. 
b. Denote the bold line by L and number the lines above it 

from 1 to 12. 
c. Mark the intersection points between line n and circle n, 

n=1…8. 
d. Which shape do you think passes through the points you marked? 
e. Are you sure? 

Figure 1: The second part of the activity. 
In the third part the students are asked to find a common property of all the points 
they marked, add more points with this property, and to define the resulting shape 
using this property. In the fourth part the students are led to realize why the graph of 
a quadratic function is called parabola. Hence, in the third and the fourth parts the 
students construct the definition of a parabola as a locus.  

THEORETICAL FRAMEWORK  
Since the activity offers students opportunities for constructing abstract mathematical 
knowledge, Abstraction in Context (AiC; Hershkowitz, Schwarz & Dreyfus, 2001) 
provides a suitable theoretical framework and methodology for the analysis of 
learning with the activity. In AiC, abstraction is defined “as an activity of vertically 
reorganizing previous mathematical constructs within mathematics and by 
mathematical means so as to lead to a construct that is new to the learner” (Schwarz, 
Dreyfus & Hershkowitz, 2009, p. 24). According to AiC, a process of abstraction has 
three stages: the need for a new construct, the emergence of the new construct, and 
the consolidation of the new construct. Abstraction will not occur without the need 
for a new construct; this need may stem from an intrinsic motivation to overcome 
obstacles such as contradictions, surprises, or uncertainty. The second stage is the 
central stage during which the new construct emerges. Consolidation is a long-term 
process, discussed further below. 
The RBC model 
Abstraction is a mental process and as such it is not observable. For analyzing the 
second stage, AiC suggests three observable epistemic actions: Recognizing (R) - the 
learner recognizes that a specific previous construct is relevant to the problem he or 
she is dealing with; Building-with (B) - the learner acts on or with the recognized 
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constructs in order to achieve a goal like understanding a situation or solving a 
problem; Constructing (C) - using B-actions to assemble and integrate previous 
constructs by vertical mathematization to produce a new construct. Hence R-actions 
are nested within B-actions, and B-actions are nested within C-actions. C-actions 
may be nested in higher level C-actions.  
Constructing refers to the first time the learner uses or mentions a construct. Later 
uses may be part of consolidation. Consolidation is characterized by self-evidence, 
confidence, immediacy, flexibility and awareness when dealing with the construct 
(Dreyfus & Tsamir, 2004), as well as by language becoming more and more precise 
(Hershkowitz, Schwarz & Dreyfus, 2001) a characteristic of consolidation, which is 
especially appropriate for the case of definition. We will argue below that this is also 
a characteristic of the construction of a definition itself. 
The match between the design of the activity and the stages of AiC 
The aim of the activity is constructing the definition of parabola as a locus. The 
design of the second part (Figure 1) is expected to raise the need for this construct. 
By connecting points, students obtain a shape that looks like one they know from 
another context - quadratic functions. They might ask: Is this the parabola we know? 
What actually is a parabola? This question expresses the need for a definition. In the 
third part of the activity, students construct the definition of a parabola as a locus 
using previous constructs (locus, the property of the points). In the fourth part they 
realize that a graph of a quadratic function is a parabola according to this definition. 
This is their first opportunity for using the new construct, and hence for 
consolidation. 
A priori analysis  
Constructing can be a long and complex process. In order to focus the analysis of 
student protocols, we carried out an a priori analysis of the knowledge elements that 
students might act upon by R-, B- or C-actions. We also operationally define these 
knowledge elements. Our analysis then looks for these knowledge elements in the 
protocols in order to follow the constructing process, keeping in mind that students 
might also use alternative constructs (Ron, Dreyfus & Hershkowitz, 2010). Here we 
only discuss the operational definition of the knowledge element expected to be 
constructed during the activity - parabola as a locus - ignoring knowledge elements 
from the students’ previous knowledge like: function graphs or locus.  
We shall say that students have constructed the parabola as a locus if they say, in 
their own words, one of the following: a. for a given straight line and a given point, 
every point in the plane that is equidistant from the line and the point is on a curve 
called parabola; or b. for a curve called parabola there exist a straight line and a point 
from which every point on the curve is equidistant. Part 3 of the activity encourages 
formulation a, but we assume that students who use a also mean b. Way b might also 
arise in the rest of the activity, when students discover that a graph of a quadratic 
function has the same property as the shape they just defined. 
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One of the characteristics of a definition is precision, as was demonstrated in 
"Cauchy's mistake" and as expected by the NCTM recommendations cited above. 
Kidron (2008) reports a learning experience aimed to develop students' understanding 
of the need for a formal definition. During the construction process of the concept she 
observed verbalization changes, which found expression in a more and more precise 
language. To have a better view of the construction process of the definition we also 
looked for such verbalization changes.  

CONSTRUCTING THE PARABOLA DEFINITION AS A LOCUS 
Here we report on an interview with two grade 11 students, Noa and Gal, which was 
audio-taped, transcribed, and analyzed using the nested epistemic actions model for 
abstraction in context. In this section we present excerpts from the transcript and our 
interpretation of the analysis as a process of constructing the definition of a parabola 
as a locus. 
At the end of the third part of the activity, Noa and Gal were asked to complete the 
sentence: "A parabola is the collection of all points in the plane that __________". 
The following excerpts stem from the part of the interview where they dealt with this 
question: 

185 Noa [reading] A parabola is the collection of all points in the plane that 
186 Gal are at a straight distance 
187 Noa at the same distance 
  … 
194 Noa The collection of all points in the plane that are at the same distance… 

you understand? I'm trying to write 
195 Gal No this definition is wrong. This point is not at the same distance from 

this point. 
  … 
210 Gal We have one symmetric point that is exactly opposite… it is   
211 Noa  Whose distance… the collection of all points in the plane that, like, if their 

symmetry is at the same distance, somehow. Is it related to symmetry? 
212 Gal Of course 
213 Noa Good. The collection of all points in the plane that are… that the point and 

its symmetry are equidistant from the ends of the segment? You should 
also somewhere…  

  … 
270 Noa If we, like, chose a line if we choose a point they will have the same 

distance  
  … 
286 Gal They are not equidistant from this thing 
287 Noa Why? If you are looking at the point 
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288 Gal They are not equidistant from the point and the line. This point and this 
point have no connection 

289 Noa Why? But if each one you look at it by itself it is at the same distance 
from L and at the same distance from M 

290 Gal OK 
291 Noa Like, you see, it isn't like they all equal the same thing. But if you take a 

point and draw two lines the two lines will be equal 
292 Gal So there will be the same distance also… 
293 Noa Yes. All the points in the plane which everyone by itself is equidistant 

from a given point and a given line. It is not as though this will be equal to 
that [presumably referring to the distance of two points from the same 
object] but this will be equal to that [the distance of a single point from M 
and from L].  

  … 
299 Noa So we'll choose a length, draw it from this direction to that… like, from 

the focus and from the directrix, we’ll intersect them and we'll go on with 
any ratio we want and we'll get a parabola. 

The students recognized that equidistance of points is relevant to the definition. They 
began to build-with it intending to find the common property, but they were 
influenced by the locus of a circle which they had considered at the beginning of the 
activity: all points equidistant from a given point. Hence they looked for a common 
property in which all points are equidistant from a fixed object (lines 186-187, 194). 
Gal realizes that this doesn't work (line 195). A long search for the common property 
follows, during which they recognize symmetry as a knowledge element potentially 
relevant to their task but fail to build with it the definition (lines 210-213). Somewhat 
later, Noa finds the common property, which they need to complete the definition 
(line 270). This is a component of the main construct. Gal is still caught in the wrong 
conception that all the points must have the same distance from something and Noa 
directs her not to look at all the points at the same time but at a single point every 
time, which helps her see the common property (lines 286-292). Here they build with 
the property that Noa found and construct the definition of a parabola as a locus (line 
293). Noa completes the task by expressing the other direction of the definition 
(mentioned in the a priori analysis above): starting from a given point and a given 
line one can build a parabola (line 299). Now, Noa and Gal grasp the parabola as a 
geometrical shape in the plane. In the fourth part of the activity they realize that a 
graph of a quadratic function is a parabola because it satisfies the definition they have 
constructed. 
Paying attention to the utterances formulating versions of the definition along the 
constructing process, we observe the progressively more precise language the 
students use (see lines 186, 194, 211, 213, 270, 289, 293 in this order). We observe, 
that like in Kidron (2008), in the case of constructing a definition, language 
becoming more precise is a characteristic of the constructing process itself and not 
only of the consolidation stage.  
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CONCLUSIONS 
Since definition is a fundamental component in the mathematical world, it is 
important to make students understand the need for definitions and let them 
participate in the process of defining; this includes realizing the need for precise 
language that forms the difference between a definition and a description. Activities 
designed to put students in a situation of need for a definition and to let them 
experience the process of defining are a tool of choice for achieving this aim. 
Constructing a definition by themselves is likely to let students achieve a better 
understanding of the concept they defined and overcome concept images, which are 
not compatible with the concept definition. 
In this paper we presented a research study, in which students were engaged in an 
activity designed to raise the need for a definition of parabola as a locus and construct 
this definition. As a consequence of the process of constructing the definition, the 
students had the opportunity to coordinate different registers: the parabola as a 
function with an algebraic representation, its graphical representation and of course 
the independent geometrical shape made up of points with a common property. It is 
characteristic of the definition that it permits to have all these representations 
incorporated in a single term, and we argue that the process of constructing the 
definition has the potential to help students realize that the concept comprises not 
only more than any one of its representations but also more than the union of its 
representations. We see this as the central characteristic of students’ participation in 
the process of defining and we see the parabola activity described and analyzed in 
this paper as one example of a design that affords students an opportunity for 
constructing a definition, thus participating in a process of defining. 
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STUDENT DIAGRAMMING MOTION: A DISCURSIVE 
ANALYSIS OF VISUAL IMAGES 
Shiva Gol Tabaghi and Nathalie Sinclair 

Simon Fraser University 
 

This paper examines pre-service elementary teachers diagramming for a given story.  
The Systematic Functional framework (O’Halloran, 2005) for visual images is used 
to analyse the content and representational features of the diagrams. We analyse the 
strategies that the pre-service teachers used to produce visual images within the 
framework to identify the different meanings (representational and interpersonal) of 
visual images. In particular, given the central importance of time and motion in the 
story, we focus on the strategies used to express time and motion in their diagrams.  

DIAGRAMS IN MATHEMATICAL THINKING  
Diagrams are “the natural accomplice of thought experiment” writes the philosopher 
of mathematics Gilles Châtelet; they “capture gestures mid-flight” (2000, p. 10). 
Diagrams have played a central role in the development of new mathematical ideas, 
as evidenced in Châtelet’s historical investigation. Researchers also highlight the 
important role that diagrams can play in school mathematics problem solving 
(Diezmann & English, 2001; Polya, 1957; Nunokawa, 2006). However, diagrams 
appear infrequently in student work (Kress & van Leeuwen, 2006).  
The goal of this paper is to examine diagrammatic conventions used by pre-service 
elementary teachers. In particular, we are interested in the ways they choose to use 
diagrams to think about time and motion, which are crucial aspects of many 
mathematical concepts, including functions. This interest is fuelled by the recognition 
that visual images—and diagrams in particular—are a key component of the 
mathematical discourse, and that, as such, learning how to read, use, and create them 
is central to mathematical learning. 

THEORETICAL FRAMEWORK 
O’Halloran (2005) argues that mathematical discourse shifts through three semiotic 
resources: grammars of language, mathematical symbolism and visual images. Given 
that each resource is perceived according to its unique discourse and grammatical 
systems, she suggests a Systematic Functional (SF) framework for each resource. The 
SF framework for visual images enables an analysis of the content, and also the 
representational features of graphs and diagrams. The content analysis includes the 
analysis of the two major systems—discourse semantics and grammar—through 
which visual images are organized as a semiotic resource for representational 
(experiential and logical), interpersonal and compositional meanings. 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 433-440. Ankara, Turkey: PME.
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Representational (experiential and logical) meaning is the main function of a visual 
image. The experiential meaning is concerned with the construction of experience 
through a sequence of episodes, figures, relations, and parts, whereas the logical 
meaning is concerned with spatio-temporal relations. Discourse semantics is not just 
about the development of mathematical content through a sequence of images, but it 
is also about the logical and compositional meanings. O’Halloran emphasizes that 
“our perceptual apparatus permits logical deductions based on spatiality to be 
performed through visual means rather than depending upon formalized linguistic 
and symbolic selections” (p.145). The interpersonal meaning of a visual image is 
realized through the choices of labels, colour, font, line width and so forth that one 
uses to construct a diagram or graph. The choices that one makes have direct impact 
on a viewer’s engagement with the significant aspects of the representational 
meaning of the graph or diagram. As we will not be focusing on compositional 
meaning in this study, we will not elaborate on it here. 
The particular choices that are made in terms of these different meanings are highly 
conventionalised in mathematics. For example, an understanding of the experiential 
meaning encoded within a graph comes from reading the graph as a set of relations 
unfolding temporally and spatially as framed through the Cartesian coordinate 
system. In terms of interpersonal meanings, it is conventional to labels axes and use 
certain italics for variables. Learning how to read, use and make diagrams thus 
involves becoming aware of these conventions. However, as newcomers to the 
discourse, learners will likely employ non-conventional strategies of expressing 
meanings in their diagrams. Our goal in this study is to examine these strategies, and 
study how they can be seen to express productive mathematical meanings.  

DIAGRAMMING TIME AND MOTION  

PARTICIPANTS AND TASKS 
Twenty-five pre-service elementary teachers enrolled in a mathematics methodology 
course in a medium-sized North American University participated. The course 
covered basic mathematical ideas in number theory and geometry. As an introduction 
to story graphs and the Cartesian coordinate system, we asked them to create a visual 
image related to the following story: MellowYellow decides to walk to the corner 
store, which is less than a mile away from her house. She gets about halfway there 
and stops to pick up a penny. She looks at it for a while and then starts walking 
toward the corner store again, but faster than before, to make up for lost time.  
Our goal was to draw on the participants’ non-normative strategies for graphing the 
story in order to relate them to conventions used in Cartesian graphs—and in so 
doing, to help them appreciate, interpret and make such graphs. We guided the class 
discussion by focusing attention on aspects of their diagrams that were 
mathematically relevant. We used this to introduce a dynamic representation of the 
story on a Cartesian coordinate system as a way to scaffold their understanding of 
how the coordinate graph encodes meaning about time, motion, and distance. In this 
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paper, we focus only on an analysis of the diagrams. For a discussion of the transition 
to Cartesian coordinates, see Sinclair & Armstrong (2011).  

ANALYSIS OF DIAGRAMS   
O’Halloran uses her SF framework to analyse the visual images that are part of the 
mathematical discourse. These images employ several norms of the discourse. They 
are also to be seen as final products of written text as opposed to sketches used to 
explore or understand a problem. The visual images we will concern thus differ from 
those of O’Halloran: they are being created as a way of exploring a problem; and, 
they do not necessarily conform to the norms of the mathematical discourse. In our 
analysis we thus focus on the strategies that were used to produce visual images that 
communicate meanings related to time and motion.  
Given the central importance of time and motion in the MellowYellow story, we first 
classified the visual images into three categories: (1) those that do not express 
temporality or movement, (2) those that express one but not the other, (3) and, those 
that express both. In terms of the second category, any expression of motion also 
fundamentally involves time, but this category includes visual images in which time 
was not expressed explicitly. Given that the prompt required only the production of a 
visual image (and not of corresponding text), we will focus on the first two meanings 
of the SF framework: representational and interpersonal. Given the fact that the 
participants were not fluent in the mathematics discourse, we expect their meanings 
to be expressed differently than the way they are in formal mathematics; in particular, 
we expect they would not provide Cartesian coordinate systems to express their 
experiential meanings, nor the accompanying labels and objects. Nevertheless, they 
could still express representational and interpersonal meanings that draw on previous 
mathematical experiences or on everyday discourses of visual images. 

Absence of time and motion 
This category includes three diagrams (out of 25). The diagrams illustrate a path, the 
origin, the destination and a penny halfway between the two (as exemplified in 
Figure 1). The diagram provides a snapshot of the situation, with MellowYellow 
captured at the halfway point, about to pick up the penny. In order to understand the 
experiential meaning expressed in the diagram, one needs to assume that the girl in 
the diagram walks along the path, from the house to the corner, even though she is 
only represented as being at one particular location. The presence of the line is meant 
to evoke the meaning of travel along a path—if the line segment was absent, this 
experiential meaning would be much harder to discern.  
As described by O’Halloran, the logical meanings of the diagram are mainly spatial 
in nature, as they are expressed through the positioning of the important component 
of the story: the house, the corner store, MellowYellow and the penny. The sun does 
not contribute to the logical meaning of the visual image. Three markers are used to 
draw attention to what is important: the two labels for the house and corner store and 
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the tick mark to indicate the position of the penny. The viewer is positioned as being 
perpendicular to the event, but the girl is shown facing the viewer, thus drawing 
attention to the subject of the event, rather than the quality of the motion. The 
presence of the sun, as well as the house and corner store, lead to a much more 
prolonged interpersonal meaning than what is found in a mathematical visual image. 

 
Figure 1. George’s diagram: where both motion and time are absent  

Presence of motion, but not time  
This category contains two subcategories that we describe as discrete (10/25) and 
continuous (8/25). Meanings for motion were expressed using a variety of strategies, 
with the former involving discrete techniques and the latter continuous ones.  
Figure 2 shows Petra’s diagram, in which the strategy for expressing motion involves 
shifting from a single arrow (-->) to a triple one (-->>>). This discrete indication of 
change of speed is accompanied by the labels “Speed = A” and “Speed = A x 2,” 
which provides interpersonal meaning about the relative speed of each type of arrow.  
Unlike the first diagram, the penny in this one is much less visually important 
(indeed, it requires an arrow and text to mark its presence). And while the 
experiential meaning is mainly communicated through the presence of a path and a 
character placed on it, it differs from Figure 1 since the character is represented in 
side view, which contributes to the sense of MellowYellow moving. As with Figure 2 
there are also many interpersonal meanings (tree, bicycle, house, corner store). The 
use of the labels and the arrows draws interpersonal attention to a change in speed. 

  
Figure 2. Petra’s diagram: use of arrows to express change in speed   

Figure 3 also expresses movement discretely. The steps are metonyms for 
MellowYellow, who does not actually appear in the diagram. Six out of ten diagrams 
distinguish faster from slower movement by using symbols such as steps and arrow. 
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Figure 3. Julia’s diagram: use of steps to express change in speed 

None of the discrete diagrams are explicit about the passage of time, or about the fact 
that faster walking results in less elapsed time during the second part of the journey. 

Using the literal features of the story, these diagrams encode spatial, logical and 
temporal relations. However, the experiential meanings do not include the dimension 

of time, nor the relationship between movement and time. 
We now consider diagrams that communicate motion using continuous techniques. 
The diagrams are similar to the discrete ones in terms of illustrating origin, 
destination and the halfway penny location. Figure 4 exemplifies this category. Like 
the discrete models, the diagrams do not explicitly express the dimension of time. 
Jordan’s diagram includes three different MellowYellows, which hint at the passing 
of time, with one MellowYellow used for each of the three major events (walking, 
stopping, running). The longer curved lines provide an experiential meaning similar 
to the longer strides of Figure 3. These focus the viewer’s attention more than the 
literal components that provide interpersonal meaning (the fence, swing set, and tree 
at home). The sharp right angle turn in the road also draw attention to the 
significant—and perhaps even singular—event of picking up the penny. The diagram 
expresses the passage of time, but not the relation between time and motion.  

 
Figure 4. Jordan’s diagram: use of larger ‘waves’ to indicate faster speed 

We include one final example, which contains three parts, each using different 
techniques for expressing continuous motion. This visual image contains both the 
arrow and character techniques seen in the previous diagrams. However, it also 
contains a third graph in which distance is plotted again speed. Again, none of the 
diagrams explicitly evoke time. All are very sparse, with few literal features included. 
If the graph was drawn first, this lack of literal features in the two other parts may be 
influenced by the almost entirely logical meanings of the graph.   
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Figure 5. John’s diagram: combination of techniques 

Presence of motion and time   
This category includes four diagrams in which both time and motion were expressed. 
As with the previous category, we found two types of diagrams in this category, one 
invoking time and motion in a discrete fashion and the other in a continuous one.  
Niki’s diagram in Figure 6 tells a three-part, discrete story (labelled numerically). 
Each part involves different types of movement (walking, resting and running), with 
the change in speed indicated by the depiction of the MellowYellow character (the 
running legs and the “I’m late” text both express the meaning of faster speed. The 
experiential meaning comes in part from the use of three characters, which express 
three different temporal events, and in part from the depiction of walking versus 
running. However, the logical meanings are also very strong, both in terms of the 
spatial arrangement, but also the labelling of the three different types of motion and 
the “less than 1 mile” indication of total distance.  

 
Figure 6. Niki’s diagram: three-part sequence of motions 

Unlike Niki, Jack expresses time and motion continuously. His diagram includes two 
parts: the first part is similar to the diagrams in the second category. He uses arrows 
to express movement. Arrows are labelled “regular speed” and “faster” to qualify the 
movement, and a circle at the halfway point along the horizontal line segment is 
labelled “time spent.” The second part includes two bulb-like symbols and a dashed 
line circle. The larger bulb may either indicate slower speed or longer time, while the 
smaller one would indicate either faster speed or shorter time, respectively. Based on 
the presence of the question mark at the ½ point, we think that the bulbs indicate 
time, with the question mark suggesting that the amount of time elapsed while 
picking up the penny is unknown. The dotted line might thus indicate an event that is 
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not associated with the passage of time, something that is possible in the virtual 
setting of the diagram, but not the real setting of the story. 

 
Figure 7. Jack’s diagram: explicit expression of time and motion 

It is obvious that Jack notices the importance of the dimension of time in the story. If 
the second diagram is meant to elucidate the dimension of time, then we can infer 
some compositional meaning in his visual image, with the second one elaborating the 
first, or providing a parallel representing focused on time rather than motion.  

DISCUSSION 
We have identified three categories of diagrams in terms of expressing time and 
motion. Of the twenty-five diagrams twenty-two express motion, but only four 
explicitly express time. This difficulty of thinking of motion in terms of time is 
consonant with historical developments; Koyré (1996) finds that in pre-modern 
scientific thought, it was more difficult to think in terms of time than in terms of 
space when it came to problems about motion. Indeed, Radford writes that time 
“remained an implicit notion, embedded in the duration of motion” (p. 47).  
On reason for distinguishing discrete from continuous modes of expressing motion 
relates to the convention of Cartesian graphs, which employ the latter. However, 
discrete strategies were more frequently used. In addition to the examples shown in 
Figures 4, 5 and 6, we also saw diagrams drawn in cartoon style, with split frames for 
each event. Interestingly, Sinclair & Armstrong (2011) found that among grade 8 
students engaged in the same task, almost half of them used this strategy. This 
suggests that a certain kind of visual literacy taken from a non-mathematical context 
can shape the strategies learners use to create mathematical diagrams. One advantage 
of inviting learners to create diagrams using discrete strategies such as split-frame 
cartooning is to emphasize the advantage that the Cartesian coordinate system has in 
explicitly expressing both quantitative changes in time and, of course, speed. 
O’Halloran’s framework enabled a detailed analyses of the strategies used to express 
different meanings related to the stories. While we saw a preponderance of 
interpersonal meanings that are not conventionally used in the mathematics 
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discourse, we also found several representational meanings that expressed the central 
mathematical aspects of the story, such as origin, location, distance and speed. Of 
particular importance were the different strategies used to express motion, including 
specialised symbolic markers (arrows, footprints, loops, words, etc.). Discrete 
expressions of time were less explicit, but could be seem in diagrams with multiple 
appearances of MellowYellow. We suggest that further work with diagramming 
could help learners identify the difficulty of expressing motion through time and 
better motivate the use of the conventional discourse of coordinate systems. One 
problem with the hasty move to Cartesian graphs is that, for non-experts, as static 
visual representations, they effectively remove the experiential temporal dimension 
of a phenomenon. But this dimension is central to an understanding of functions. 
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OPPORTUNITIES TO LEARN 
Funda Gonulates & Lorraine Males 

Michigan State University 
 
This study explores opportunities to learn area measurement content through an 
examination of the textual elements in three widely used U.S. elementary curriculum 
materials. We focus on what the textual elements illuminated in regards to students’ 
access to area measurement concepts and procedures by describing the knowledge 
expressed and the curricular voice. We then provide a description of the textual 
expression of elements that are critical to building an understanding of area 
measurement. By examining the textual elements, we were able to describe the 
opportunity to learn area measurement. Our analysis indicated that while students 
were spoken to, they were often asked to “do” rather than “know.” While there were 
instances of underlying concepts, students did not often have direct access to them.  
 
Extensive evidence has shown that U.S. students’ grasp of spatial measurement—
length, area, and volume—is poor, despite the wealth of spatial experience and 
knowledge they develop and use outside of school. This evidence includes analyses 
of the U.S. National Assessment of Educational Progress (NAEP) performance by 
4th, 8th, and 12th graders (Blume, Galindo, & Walcott, 2007); cross-national 
comparisons such as the Third International Mathematics and Science study (TIMSS) 
(National Center of Education Statistics, 1997), and smaller research studies that 
have focused on students’ patterns of reasoning (Chappell & Thompson, 1999; 
Woodward & Byrd, 1983). 
Empirical research on students’ and teachers’ knowledge, theoretical work on 
mathematical language and discourse, and observations of classroom lessons suggest 
that the poor learning of spatial measurement may be contributed to the interaction of 
the following six factors: weaknesses in K–8 written curricula (Lehrer, 2003), 
insufficient content and time devoted to teaching measurement, the predominance of 
static representations of 2-D and 3-D geometric figures, the nature of classroom 
discourse about measurement (Sfard & Lavie, 2005) , the “calculational” orientation 
that dominates classroom instruction and discourse (Thompson, Phillip, Thompson, 
& Boyd, 1994), and weaknesses in teachers’ knowledge of measurement (Simon & 
Blume, 1994). This study focuses on the first factor, the written curriculum, because 
it seemed like a worthy factor to investigate as it may affect the other factors. 
Furthermore, it has been noted that investigating the features of written curriculum is 
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an underdeveloped area of research that needs our attention (Stein, Remillard, Smith, 
2007).  
While performance in all spatial measures is poor, this study specifically focuses on 
the ways in which area measurement is expressed in curriculum materials. We focus 
on area measurement because it is mostly seen as a product of two measures, length 
times width instead of a measurement activity (Lehrer, 2003). Moreover, no simple 
tools exists for measuring area, thus motivating an  algorithmic approach which hides 
the underlying meaning of procedures (Stephan & Clement, 2003) and makes length 
times width even harder for students to understand (Kamii & Kysh, 2006). 
Instructional approaches become crucial in developing a strong understanding of area 
measurement and with the reliance on curriculum materials by many teachers 
(Remillard, 2005) it is important to  know more about how area measurement is 
treated in curriculum and how this aligns with what we know about how students’ 
develop an understanding of area measurement.  
PURPOSE 
In this paper we address one aspect of an NSF-funded study, the purpose of which is 
to understand the capacity of U.S. written curricula to support students’ learning of 
measurement. We describe using textual elements to code how spatial measurement 
content is expressed in written curriculum materials and what this type of analysis 
illuminates. Features of written curriculum, such as textual elements, have received 
little attention in curriculum analysis (Stein, Remillard & Smith, 2007) and we 
hypothesize that these elements provide different Opportunities to Learn (OTL). We 
begin to address some of these questions by examining how knowledge is presented 
to students through textual elements in curricula for area measurement in grades K-4. 
The textual expression is important in area measurement because knowing how 
curricula provide opportunities for engaging with area concepts in addition to skills 
and procedures is critical as “often the tools and procedures used in measuring area 
mask the intended conceptual aspects that underlie area measurement” (Stephan & 
Clements, 2003, p. 10). 
METHOD 
Data 
Evidence of wide use in the U.S. and substantial differences in basic design 
principles guided our choice of curriculum materials. We analysed The University of 
Chicago School Mathematics Project’s (2007) Everyday Mathematics (EM), Scott 
Foresman-Addison Wesley’s (2008) Michigan Mathematics (SFAW), and Larson’s 
(2004) Saxon Math (Saxon).  
Framework & Analysis 
Our analysis included: a) locating measurement content and b) coding measurement 
content. To locate the measurement content, two coders found every lesson, problem, 
and activity in all curricula that pertained to measurement.  
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To code measurement content, members of the larger research team developed a 
Curriculum Coding Scheme, a set of structured knowledge and textual elements. 
Knowledge elements are divided into three kinds of measurement knowledge (i.e., 
conceptual, procedural, conventional). Textual elements are divided into five types of 
expression (i.e., Statements, Demonstrations, Worked Examples, Problems, 
Questions) and were used to code how knowledge was expressed. Statements, 
Demonstrations, and Worked Examples have been unproblematic to identify, 
whereas Questions and Problems (taken collectively as “Queries”) have been more 
difficult. We found it useful to distinguish between these types of queries using three 
criteria: student autonomy, expectations for responses (i.e., one or all students 
engage), and cognitive demand. Questions were determined by the expectation that 
not all students engage in the query, little to no student autonomy, and low cognitive 
demand, whereas Problems were determined by the expectation that all students 
engage, student autonomy, and high cognitive demand. If two out of three criteria 
indicated Problem, the instance was coded as Problem. We also found it important to 
note whether instances appeared in student materials or only in teacher materials 
because these different types of access may impact OTL. Therefore, for each textual 
element, we distinguished voice (whether the text speaks to teacher or student) as 
other researchers have suggested (Herbel-Eisenmann, 2007). See Table 1 for 
descriptions and examples of the most frequent textual elements.  

 Knowledge Elements 
 Conceptual Procedural Conventional 

Statements  Assertions of basic 
principles 

Ex: “Smaller units 
produce larger 

measures.” 

Directions to complete a 
set of steps/actions  
Ex: “To measure a 

segment, you should...” 

Assertions about tools, 
notations, and systems  

Ex: “1 foot = 12 
inches” 

Questions Query requiring 
conceptual 

knowledge and two 
of the following: a) 

under teacher 
direction; b) limited 
number of students 

expected to respond; 
c) low cognitive 

demand 
Ex: Whole Class: 
“Why did we use 

different numbers of 
pattern blocks?” 

Query requiring 
procedural knowledge 

and two of the 
following: a) under 
teacher direction; b) 
limited number of 

students expected to 
respond; c) low 

cognitive demand 
Ex: Whole Class: “How 

many cm long is this 
line segment?” 

Query requiring 
conventional 

knowledge and two of 
the following: a) under 

teacher direction; b) 
limited number of 

students expected to 
respond; c) low 

cognitive demand  
Ex: Guided Practice: 
“How many ft in 1 

yd?” 
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Problems A query requiring 
conceptual 

knowledge and two 
of the following are 

true: a) not under 
teacher direction; b) 
all students expected 
to respond; c) high 
cognitive demand  
Ex: Small Group 

Task: “Which will 
give you a greater 

measure [paperclip, 
unit cube]? Explain.”   

A query requiring 
procedural knowledge 

and two of the 
following are true: a) 

not under teacher 
direction; b) all students 
expected to respond; c) 
high cognitive demand 
Ex: Individual Task:  

“Measure each object to 
the nearest ½ inch.” 

A query requiring 
procedural knowledge 

and two of the 
following are true: a) 

not under teacher 
direction; b) all 

students expected to 
respond; c) high 

cognitive demand 
Ex: Individual Task: 

“How many mm are in 
9 cm? 

Table 1: Descriptions and examples of most frequent textual elements. 
RESULTS & DISCUSSION 
We focus on what the textual elements illuminated in regards to students’ access to 
area measurement concepts and procedures by describing the knowledge expressed 
(i.e., conceptual procedural, conventional), and the curricular voice (i.e., student, 
teacher). We then provide a more detailed description of the textual expression of the 
elements recommended by Stephan and Clements (2003) for building students’ 
understandings of area measurement.  
Knowledge Expression 
The analysis of the textual elements of the three curricula illuminated both 
similarities and differences. Of the five textual elements all three curricula contained 
mostly Queries. They accounted for more than 79% of all textual elements in each 
grade. These Queries were most often of a procedural nature. There were very few 
instances of conceptual or conventional Queries; never accounting for more than 
6.5% for any curricula at a particular grade and more often being below 1%.  
Unlike with Queries, we noticed more variety in the ways Demonstrations and 
Worked Examples were expressed in the curriculum materials. Demonstrations were 
more prevalent in Saxon. For each grade, Saxon had a higher percentage of 
Demonstrations, capping at 17.5% in grade 4, while EM and SFAW range from 0% 
to 6.8%. With respect to Worked Examples, SFAW had a higher percentage, ranging 
from 2.7% to 7.1% of the total codes in each grade, whereas EM and Saxon each 
only had one grade above 2%.Similar to Queries, for all three curricula, 
Demonstrations and Worked Examples were procedurally focused.  
Statements accounted for anywhere between 0% and 11.4% of the total codes for a 
curriculum at a particular grade. In all grades except for K, EM had the largest 
percentage of Statements and in grades 3 and 4 had over double the number of 
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Statements as SFAW and Saxon. In all curricula, Statements were used to express all 
three types of knowledge, one being no more prevalent than the others. However, 
since conceptual knowledge was expressed so little by the other textual elements it is 
interesting to note that, Statements were used equally or more often to express 
conceptual knowledge than other textual elements in over half of the grades..  
Curricular Voice  
Generally, there was more teacher voice in the earlier grades (i.e., K-1) and as the 
grades increased (i.e., 2-4) we found more instances of student voice in SFAW and 
EM. Saxon, on the other hand, was quite different. Saxon had more teacher instances 
in all grades (over 54% in each grade) except for Grade 1. Looking more closely at 
the textual elements, we found that most Problems were in student materials, whereas 
most Questions and Statements were posed or made by the teacher. This result may 
make sense based on our coding scheme, which involves determining whether a 
query is teacher directed. If a query is posed by the teacher it may be more likely to 
be teacher directed than if it is in the student materials. Unlike, Queries, Statements, 
as defined by our scheme, were equally likely to appear in student materials or be 
made by teachers. However, in all but four grades (EMK, SFAW1, SFAW3, EM4), 
Statements were more often in teacher materials than student materials.  
Elements for Building Students’ Understanding of Area 
 Research indicates that computationally focused instruction might lead to weak 
conceptual understanding. Stephan and Clements (2003) provide the following 
recommendations for developing students’ understanding of area measurement: 

(a) construct the idea of measurement units (including measurement sense for standard 
units); (b) have many experiences covering quantities with appropriate measurement 
units and counting those units; (c) structure spatially the object they are to measure; and 
(d) construct the inverse relationship between the size of a unit and the number of units 
used in the measurement.” (Stephan & Clements, 2003, p. 13-14).   

In our analysis we looked at the ways area content was expressed in the curricula by 
using these instructional recommendations. We picked knowledge elements that 
satisfied each of these recommendations. In some cases we had a one-to-one fit 
between one of our knowledge elements and one of the recommendations, like unit-
measure compensation from our coding scheme and recommendation (d). In other 
cases, we clustered elements from our coding scheme to satisfy the 
recommendations, such as using all of our covering and counting knowledge 
elements to satisfy recommendation (b). 
The first recommendation, which we call conception of area measurement was 
predominantly (over 44 % for all three curricula) expressed as Statements to be 
spoken by teachers to students. Students did not have access to many of the concepts 
that might help build a conception of area measurement directly, except for a few 
instances in SFAW and EM.  
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The second recommendation, which we call covering and counting, has more of a 
procedural focus. Each curriculum provided opportunities mostly in the form of 
Queries (over 90% for all three curricula) with some other textual elements being 
used in lower frequencies. Of all four recommendations, covering and counting had 
the most emphasis and variation in terms of the ways content was provided. For 
example, in addition to Queries and Statements, which were common for the other 
recommendations, there were also Demonstrations and Worked Examples.  
The third recommendation, which we call Spatial Structuring of Space was expressed 
mostly by Queries. Each curriculum provided Queries both in teacher and student 
materials. In addition, there were two Statements in EM and two Demonstrations in 
SFAW.  
We found very few instances of the last recommendation, which we call unit-measure 
compensation. Most instances were Queries, designated both student and teacher 
(three in EM and Saxon and four in SFAW). In addition, there was one teacher 
Statement in EM.  
In summary, we found that there was little variety in terms of the ways in which 
knowledge was expressed. Curricula predominantly used Queries and some 
Statements. For example, almost all instances of covering and counting were 
provided in the form of Queries, whereas instances of conception of area 
measurement were mostly Statements. While we pointed out earlier that most 
conceptual knowledge was expressed by Statements, looking at the elements related 
to the Stephan and Clements’ (2003) recommendations, we found that the type of 
knowledge used to express content might be dependent on the particular content 
itself. For example, unit-measure compensation, a conceptual element, was not 
expressed primarily as Statements, but was expressed almost exclusively as Queries. 
A possible explanation for this might be the connection between length measurement 
and area measurement. The inverse relationship between units and measurement is 
not a concept specific to area. The same concept also holds for length measurement 
and curricula might assume that they have described this concept in length 
measurement and they may not see a need to restate the same definition or 
description; hence, less Statements. 
Implications for OTL 
Investigating textual elements and their interaction with types of knowledge and 
voice shed some light on students OTL area measurement. Our analysis indicated that 
these curricula do speak to students; in fact SFAW and EM speak more to students 
than teachers. However, when we examined what students had access to, we found 
that these instances were more about following procedures than engaging with area 
concepts. Esmonde (2009) urges us to consider students “access to (positional) 
identities as knowers and doers of mathematics (Gresalfi & Cobb, 2006)” (p.249). If 
students are to have OTL area measurement, they must be positioned in ways that 
allow them to identify as knowers and doers of mathematics. Our analysis indicated 
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that while students were spoken to, they were often asked to “do” rather than “know.” 
This is evidenced by the high number of procedural Queries. Furthermore, we see 
more emphasis on Stephan and Clements’ (2003) second recommendation, covering 
and counting, a more procedurally focused element, than the other recommendations. 
Conceptual knowledge, what little there was, was expressed mostly as Statements, 
not as Queries in which students were expected to engage. Furthermore, most 
Statements were in teacher materials not directly accessible to students. If curricula 
do not provide opportunities for students to engage with conceptual knowledge of 
area, they are not providing adequate OTL area measurement. 
SIGNIFICANCE 
Written curriculum has the potential to influence transformations between written, 
intended, and enacted curriculum (Stein, Remillard, & Smith, 2007), yet few studies 
have investigated how mathematical knowledge is presented to students in text.  This 
study illuminates the importance of analysing the textual elements of written 
curricula and raises issues for researchers; namely, how do features of written 
curricula express the types of knowledge that contribute to students OTL. 
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In this paper we analyse the introduction of the concepts of real and irrational 
number in school textbooks adopted by Brazilian public schools. Our results indicate 
that irrational numbers are mostly introduced both on the basis of the decimal 
representation and on the use of tasks which do not foster conceptualisation; and that 
the mathematical need for the construction of the field of real numbers remains 
unclear in the textbooks. 

INTRODUCTION 
Traditionally, in school, the set of integers is constructed from the algebraic 
limitations of natural numbers. The motivation for such a construction is based on 
some “daily life” problems in which it is necessary to find the difference between two 
natural numbers. Similarly, the extension from integers to rational numbers involves 
the limitation of the operation of division. Therefore, the learning of different sets of 
numbers in elementary school entails notable cognitive growth: a progressive 
extension through the algebraic structure of nested number sets, from the primitive 
notion of counting to the ideas of comparing and measuring. 
The case of the extension from rational to real numbers is particularly dramatic. 
Unlike the previous extensions, this is not simply an algebraic step, as it requires 
notions of convergence and completeness. This has proven to be a crucial obstacle, 
which dates back to the incommensurable magnitudes controversy in Pythagorean 
mathematics. Moreover, only a discrete set of numbers is enough to deal with the 
empirical problem of measurement, whilst the real numbers system accounts for the 
construction of a consistent theory of measure. Therefore, the need to introduce real 
numbers can hardly be established upon empirical motivations. As research has 
shown (see the following section), these epistemological obstacles and theoretical 
constraints have repercussions in teaching and learning. On the one hand, the 
theoretical roots of the concept of real number are surely incompatible with 
elementary and secondary school. On the other hand, the concept cannot be built 
upon empirical or algebraic motivations. Nevertheless, real numbers are an 
indispensable topic in school mathematics education, due to their inherent importance 
and their entangled relation with many other equally important topics, such as the 
circle length and the Pythagorean Theorem. This poses a key question to textbooks 
and in syllabi design: the balance between rigour and intuition is particularly delicate 
in the case of real numbers. 
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Contradictorily, the real line structure (including its algebraic, topological and 
analytical properties) is assumed to be well understood by students when higher 
mathematical concepts are introduced. In fact, the structure of real numbers, as the 
subtle distinction between density and completeness, is at the heart of the theoretical 
grounding of effectively all infinitesimal calculus concepts. Therefore, a weak 
understanding of basic properties of real numbers at school can be a source of 
obstacles and misunderstandings in postsecondary and university education. 
The approach used to introduce real numbers in school textbooks is the focus of this 
paper. Taking the difficulties pointed out by literature into consideration, we aim to 
analyse how these numbers are introduced and what significance is given to them in 
textbooks. We use empirical data from a selection of textbooks used in Brazilian 
public schools. The study reported in this paper is a part of a broader research project 
that addresses the approaches privileged by the institutions (mainly through syllabi, 
school textbooks, and teacher practice) to teach concepts of algebra and analysis that, 
despite their key importance, have usually deserved lesser attention. Partial results of 
this project (focusing the concept of continuity) have been presented at the PME33 
conference (Giraldo, González-Martín & Santos, 2009). 

LITERATURE REVIEW 
Difficulties in understanding the concept of real number or some of its properties by 
students and even teachers have been addressed by the literature. Surprisingly, we 
have not found research papers focusing on the introduction of this concept in 
textbooks. Some papers show that even university students give incorrect definitions 
for irrational numbers, and are unable to explain the necessity to extend the field of 
rationals (e.g. Soares, Ferreira & Moreira, 1999). Some authors have even found that 
many prospective teachers associate irrational numbers exclusively to square roots 
and π (e.g. Sirotic & Zazkis, 2007). For example, Robinet (1986) establishes that for 
17-18 year-old students, real numbers are conceived as the reunion of natural, 
integer, rational, and decimal numbers, together with some numbers as 2  and 3 . 
Dias (2002) establishes the hypothesis that school teachers’ conceptions about the 
real line structure and the notion of density (in particular their concept image and 
concept definition) are the same as those present in their students. She found concept 
images for real numbers as an almost discrete set, through underlying conceptions of 
a finitude (or even inexistence) of numbers between two given real numbers. This is 
consistent with Robinet’s (1986) study, who found that 43% of the students who can 
conceive the straight line model for real numbers hold an atomist model for this line. 
Another study focusing on the conceptions of prospective teachers (Sirotic & Zazkis, 
2007; Zazkis & Sirotic, 2004) showed the inconsistencies between the formal, 
algorithmic, and intuitive dimensions. For instance, the authors found the idea that 
for every rational, there is an irrational, and these numbers are placed in an order that 
suggests the idea of successor in a discreet set. Some participants also had the idea 
that the set of rationals is “richer” within [0, 1], because they did not know any 
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irrationals (like π) in this interval. The authors also identified some difficulties in 
conceiving irrational numbers as 5 2+  as an object. 
Other works (e.g. Robinet, 1986; Fischbein, Jehiam & Cohen, 1995) identify more 
incorrect conceptions, as the idea that an irrational number is a number with an 
infinite decimal representation (with no consideration for the presence or absence of a 
period). There is also an identification between rational numbers and the decimal 
representation (independently of the presence or not of a period), or the definition of 
irrational numbers as “numbers which are not exact”. Finally, we stress the fact that 
Robinet (1986) showed that high school students give more importance to the 
different writings for numbers than to their specific properties. 

THEORETICAL FRAMEWORK 
Our analysis of how textbooks introduce the concepts of irrational and real number is 
grounded in two dimensions: institutional choices and their repercussions 
(Chevallard’s anthropological theory); and cognitive activities demanded in the 
textbooks (Duval’s theory of the registers of semiotic representation). 
Chevallard’s (1999) anthropological theory attempts to achieve a better 
understanding of the choices made by an institution in organising the teaching of a 
given concept, and the consequences of these choices on the significance given to the 
concepts taught, as well as the learning achieved by the students. Chevallard 
recognises that mathematical objects are not absolute objects, but entities which arise 
from the practices of given institutions. These practices may be described in terms of: 
tasks (t, being T a type of tasks); techniques (τ) used to complete these tasks; a 
discourse (technology, θ) which both explains and justifies the techniques; and the 
theory which includes the given discourse (Θ). If we want to understand the meaning 
attributed by a given institution for “knowing a mathematical object”, we need to 
identify and to analyse the practices which bring this object into play within the 
institution. From this perspective, we are interested in analysing the type of tasks the 
textbooks use most often in introducing irrational and real numbers in secondary 
education. We will observe the types of mathematical and didactic organisation that 
the textbooks develop around the tasks concerning the concepts of irrational and real 
number, as we aim to determine whether textbooks establish a complete praxeologic 
organisation (which accounts for the quartet T/τ/θ/Θ), or just a partial organisation. 
According to Duval, the development of mathematical understanding requires the use 
of different semiotic representations of the mathematical objects being studied. The 
reason for this is that learners need to distinguish any mathematical object from its 
representation. In order to achieve this distinction the use of different representations 
is necessary, since the mathematical object cannot be directly accessed and each 
representation expresses only a restricted group of its characteristics. Therefore, 
Duval defines treatment of a representation as an activity within one single register, 
and conversion of representations which happens between different registers. Thus, a 
key cognitive activity is the ability to make conversions from one register to another. 
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METHODOLOGY 
Sampling 
In Brazil, compulsory education is organised into three slots: fundamental school I 
(grades 1 to 5, ages 6 to 10), fundamental school II (grades 6 to 9, ages 10 to 14), and 
middle school (grades 1 to 3, ages 15 to 17). Real numbers are usually introduced 
during fundamental school, grade 8 (age 12). Textbooks used in public schools are 
bought by the federal government and distributed for free to the students. The 
textbooks adopted by each school are chosen by the school, out of a list previously 
assessed and approved by the Ministry of Education. The assessment process is 
mainly based on referrals by experts. 
To portray how the concepts of irrational and real number are presented in 
compulsory education, we analysed a sample of textbooks approved by the Ministry 
of Education in the latest assessment processes: 9 titles for fundamental II (out of 16 
approved in 2008) and 5 titles for middle school (out of 8 approved in 2007).We 
constrained ourselves to approved textbooks for two reasons: 1) these textbooks 
reach all the public schools in the country, and 2) due to the assessment process, 
these textbooks have been approved by educators active in compulsory education, so 
they are assessed with didactic, pedagogical, conceptual, and structural criteria. 
Elements of the analysis grid 
We discuss in this paper the following categories of our analysis grid: (I) types of 
definitions, examples, and properties used, (II) types of representations used, (III) 
types of tasks proposed. The subdivision of each category into dimensions is 
summarized in the following table. These categories reflect our theoretical approach, 
which takes into account both institutional issues, and the cognitive activity fostered 
through the use of different registers of representation. 
 

Categories Dimensions 
(I) types of 
definitions, 
examples, and 
properties used 

types of definitions  
coherence between the definition, examples and tasks 
examples for the definitions 
examples which problematise the need for a new kind of numbers 
examples of properties, types introduced and justification 

(II) types of 
representations 
used 

figural register 
numerical symbolic register 
algebraic symbolic register 
natural language register 
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(III) types of 
tasks proposed 

classification of a number using the belonging relationship 
classification between rational or irrational 
classification in true or false 
determining an irrational number between two numbers 
calculation by approximation 
ordering real numbers 
representing numbers in the real line 
numerical intervals 

Table 1: Dimensions of the analysis grid. 

DATA DISCUSSION 
Definitions, properties, examples and representations 

The definitions given by the textbooks for irrational numbers were classified in two 
types: “irrational number is a number which cannot be written in the form of a 
fraction” (DA), and “among numbers written in decimal form, there are numbers with 
infinite non-periodic decimals, called irrational numbers” (DB). In our sample, 5 
textbooks use definition DA, and 8 use definition DB. The remaining textbook does 
not give a definition for irrational numbers and barely uses any problems to introduce 
them. None of the textbooks uses both definitions at the same time. Concerning the 
definition of real number, all the textbooks of our sample define real numbers in the 
following way: “any rational or irrational number is a real number” (DC). 

Among the 14 textbooks of our sample, 9 introduce the concept of irrational number 
through examples of numbers which are not rational, which are presented before the 
definition, (allegedly) pointing out to the existence of a “new” type of numbers. In 
these textbooks, a problematisation for the introduction or the existence of these 
“new” numbers is absent. Six out of these 9 textbooks use 2  as the introductory 
example, 4 of which through the measurement of the diagonal of a square with a 
unitary side, and other 2 through the decimal representation. The other 3 textbooks 
use examples of numbers with infinite non-periodic decimal expansions. 

In all the textbooks analysed the examples concerning irrational numbers are mainly 
used to illustrate definitions and properties. The statement of a definition or a 
property is usually accompanied by some examples verifying it. The numbers 2 , 
3 , and π are among the illustrative examples used in all the textbooks. The decimal 

representations of these numbers are assumed to be known. In general, there is no 
justification to show that the decimal writings of these numbers do not have a period. 
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It is important to note that, in order to define irrational numbers, both DA and DB 
suppose the existence of another type of number which is not rational. In fact, both 
DA and DB require, respectively, the existence of numbers that are not fractions and of 
numbers that have infinite non-periodic decimal representations. Thus, DA and DB do 
not establish the existence of a new kind of number. Rather, they label the class 
called irrational among a set of numbers which is assumed to be previously existent. 
Such a set cannot be any other than the set of real numbers. However, in these 
textbooks, the definition of real numbers not only comes after the definition of 
irrationals, but also depends on it, since DC presents a real number as one that is 
either rational or irrational. Therefore, these definitions are inconsistent and mutually 
dependent. From a mathematical point of view, they could not even be considered as 
definitions. Moreover, definition DB is based on the assumption that every real 
number admits a decimal representation, which is a remarkably non-trivial property, 
whose verification depends on the familiarity with the notion of convergence. 
Surprisingly enough, the acceptance of this property by students appears to be taken 
for granted. Another problem we find is the lack of characterisation concerning the 
nature of both the numerator and the denominator of the fraction as integers, which 
can later produce some confusion between the concept of fraction, and the more 
general concept of rate (which does not always correspond to rational numbers).  

The most prominent properties presented in the textbooks concern mainly the 
operations (closeness and operations between rationals and irrationals), and the 
localisation of points on a line. Examples are mainly used to illustrate properties. As 
none of the properties is formally proved, this could lead students to develop the 
incorrect idea that a property can be proved through the verification of some 
examples. Despite the fact that 7 of the textbooks state the density property of 
rational numbers, the density of real numbers is only referred to in 3 textbooks. None 
of the textbooks mention the density of irrational numbers. 

The numerical-symbolic register (including decimal notation, fractions, roots and 
combinations of those) is clearly privileged over the figural, algebraic-symbolic and 
natural language registers. In 11 out of the 14 books in the sample, more than 70% of 
the representations used are numerical-symbolic. Furthermore, the treatment of 
representations within the same register is privileged over conversion, so students 
might develop difficulties to coordinate registers. In fact, the only cases of conversion 
of registers found occur: 1) within the numerical-symbolic register, when conversion 
between decimal and fractional representations is made, and 2) when students are 
asked to represent numbers in the real line (possibly fostering atomistic conceptions). 
However, the student is not asked to perform the inverse conversion, this is, to 
represent numbers in the real line in their numerical-symbolic form, affecting the 
coordination of registers (which requires the ability to convert in both senses from 
one register to another). 
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Tasks 

If we now consider the tasks proposed by the textbooks, there is an absence of 
questions aiming to foster a conceptualisation of real and irrational numbers. If we 
consider that an individual’s conception of a mathematical object is strongly shaped 
by the tasks she or he develops with this object, real numbers seem to be reduced to a 
list of properties and to a definition which does not question their existence. The 
textbooks in our sample emphasise tasks involving mainly: 1) classification 
(assuming that the existence of the two categories is natural), 2) determining an 
irrational between two numbers (without mentioning their density, which could lead 
to the false impression that there is a definite number of irrationals between two 
numbers), 3) approximation (eluding the notion of convergence), and 4) representing 
numbers in the real line (which could lead to an atomist conception of real numbers 
in the real line). We can say that most of the tasks (t) we have found in the textbooks 
favour the reproduction of certain techniques (τ, which are usually previously 
exemplified), and algorithms to get solutions. However, the justification θ of these 
techniques is usually out of reach at this school level. The list of properties and 
techniques given is not proved or justified in any way, with no attempt to develop 
students’ mathematical competences related to argumentation. This characterises 
what Chevallard (1999) calls an incomplete praxeology, that is, the predominance of 
types of tasks and techniques (praxis , T/τ) over discourse and theory (logo, θ/Θ). 
Therefore, we conclude that the textbooks of our sample only offer a partial 
praxeologic organisation, which can have dramatic effects on the students’ 
introduction to the concepts of irrational and real number. 

CONCLUDING REMARKS 
Our analysis reveals that the approach used to introduce irrational and real numbers 
in the textbooks puts little focus on conceptual and theoretical aspects, whilst 
emphasizes routines and algorithms presented without justifications. These “new” 
numbers are not given any utility, and the tasks they are reduced to do not lead to the 
development of a discourse or a theory. Properties of the operations and techniques to 
solve some routine tasks are highlighted in detriment of aspects regarding the 
construction of some basic conceptual understanding to later, in postsecondary 
education, deal with topological and analytical properties of the real line, such as 
density and completeness. 
Moreover, definitions are formally inconsistent and the justification of properties is 
based exclusively on examples. Therefore, mathematical argumentation is absent 
from the textbooks. The coordination of registers is also lacking in the textbooks, as 
almost all the discourse developed is found in the numerical-symbolic register. On 
the other hand, there is little discussion concerning the theoretical need for the 
construction of the field of real numbers, such as which kind of mathematical 
problem rational numbers are unable to solve, reducing the family of tasks (T) which 
could be used to conceptualise these numbers. 
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It is important to stress that we do not intend to advocate a formal approach to real 
numbers, aligned with the criteria of mathematical rigour, to school education. 
However, the mere presentation of procedures and representations, without any (not 
even informal) kind of argumentation, is not likely to contribute to students’ 
understanding of the concept of real number. This seems to be the choice followed by 
the textbooks in our sample in order to to avoid the road of mathematical formalism. 
In our view, another (possibly more effective) instructional choice would to adopt a 
more problematic approach. That is, to focus more on the mathematical problems that 
engender the concept of real numbers – rather than trying to formalise, or (in the 
other end of the spectrum) just avoiding them and taking things for granted. 
Even if we have analysed a sample of Brazilian textbooks, we believe these textbooks 
share characteristics of secondary textbooks in other countries. In the light of these 
considerations, it is reasonable to expect that, if teachers simply follow the 
approaches proposed in the textbooks, then students will be unlikely to be able to 
build an adequate structure to deal with real numbers and their properties in 
undergraduate studies, and consequently, they will not be prepared for the kind of 
mathematical reasoning required in undergraduate mathematical education. 
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TEACHERS’ PERSONAL CONCEPTIONS OF NUMERACY 
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This paper reports on a project that helped teachers to plan and implement numeracy 
strategies across the school curriculum. Because teachers need to model the kind of 
numeracy they want their students to develop, we examined how their personal 
conceptions of numeracy changed during the project. Teachers came to a richer 
understanding of numeracy that emphasised effective use of mathematical knowledge 
and skills, solving problems in everyday contexts, and positive dispositions. Other 
components of numeracy – use of tools and development of a critical orientation – 
were less often incorporated into teachers’ personal conceptions of numeracy. 
The term “numeracy” was first introduced in the UK by the Crowther Report 
(Ministry of Education, 1959) and was defined as the mirror image of literacy, but 
involving quantitative thinking. In some parts of the world it is more common to 
speak of quantitative literacy or mathematical literacy. In the USA, for example, 
Steen (2001) described quantitative literacy as the capacity to deal with quantitative 
aspects of life. The OECD’s (2004) PISA program defines mathematical literacy as:  

an individual’s capacity to identify and understand the role mathematics plays in the 
world, to make well-founded judgments, and to use and engage with mathematics in 
ways that meet the needs of that individual’s life as a constructive, concerned and 
reflective citizen. (p. 15) 

Steen (2001) maintains that numeracy must be learned in multiple contexts and in all 
school subjects, not just mathematics. A recent review of numeracy education 
undertaken by the Australian government (Human Capital Working Group, Council 
of Australian Governments, 2008) concurred, recommending: 

That all systems and schools recognise that, while mathematics can be taught in the 
context of mathematics lessons, the development of numeracy requires experience in the 
use of mathematics beyond the mathematics classroom, and hence requires an across the 
curriculum commitment. (p. 7) 

This paper reports on a year long research and development project that investigated 
approaches to help teachers plan and implement numeracy strategies across the 
curriculum in the middle years of schooling (Grades 6-9). The project was informed 
by a rich model of numeracy that was introduced to teachers as an aid for their 
curriculum and pedagogical planning. One of the challenges in promoting numeracy 
learning in all curriculum areas is for teachers themselves to model the kind of 
numeracy they want their students to develop (Hughes-Hallett, 2001). Thus the 
purpose of this paper is to examine teachers’ personal conceptions of numeracy and 
the extent to which these conceptions changed over the duration of the project. 

2011. In Ubuz, B. (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, pp. 457-464. Ankara, Turkey: PME.
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THEORETICAL FRAMEWORK 
In Australia, educators and policy makers have embraced a broad interpretation of 
numeracy similar to the OECD definition of mathematical literacy: “To be numerate 
is to use mathematics effectively to meet the general demands of life at home, in paid 
work, and for participation in community and civic life” (Australian Association of 
Mathematics Teachers, 1997, p. 15). This definition became widely accepted in 
Australia and formed the basis for much numeracy-related research and curriculum 
development. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A model for numeracy in the 21st century 
Recently, however, Goos (2007) argued that a description of numeracy for new times 
needs to better acknowledge the rapidly evolving nature of knowledge, work, and 
technology. She developed the model shown in Figure 1 to represent the multi-
faceted nature of numeracy in the 21st century. The model was intended to be readily 
accessible to teachers as an instrument for planning and reflection; however, its 
development was also informed by relevant research, as outlined below. 
A numerate person requires mathematical knowledge. In a numeracy context, 
mathematical knowledge includes not only concepts and skills, but also problem 
solving strategies and the ability to make sensible estimations (Zevenbergen, 2004).  
A numerate person has positive dispositions – a willingness and confidence to engage 
with tasks and apply their mathematical knowledge flexibly and adaptively. Affective 
issues have long been held to play a central role in mathematics learning and teaching 
(McLeod, 1992), and the importance of developing positive attitudes towards 
mathematics is emphasised in national and international curriculum documents (e.g., 
National Curriculum Board, 2009; OECD, 2004).  
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Being numerate involves using tools. Sfard and McClain (2002) discuss ways in 
which symbolic tools and other specially designed artefacts “enable, mediate, and 
shape mathematical thinking” (p. 154). In school and workplace contexts, tools may 
be representational (symbol systems, graphs, maps, diagrams, drawings, tables, ready 
reckoners), physical (models, measuring instruments), and digital (computers, 
software, calculators, internet) (Noss, Hoyles, & Pozzi, 2000; Zevenbergen, 2004). 
People need to be numerate in a range of contexts (Steen, 2001). A numerate person 
can organise their personal and social lives (e.g., finances, health, leisure activities). 
All kinds of occupations require numeracy, and many examples of work-related 
numeracy are specific to the particular work context and use mathematics in different 
ways from how it is taught at school (Noss et al., 2000). Informed citizenship 
depends on the ability to interpret data, make projections, and engage in the kind of 
systematic thinking that is at the heart of numeracy. Different curriculum contexts 
also have distinctive numeracy demands, so that students need to be numerate across 
the range of contexts in which their learning takes place at school (Steen, 2001). 
This model is grounded in a critical orientation to numeracy since numerate people 
not only know and use efficient methods, they also evaluate the reasonableness of the 
results obtained and are aware of appropriate and inappropriate uses of mathematical 
thinking. In an increasingly complex and information rich society, numerate citizens 
need to decide how to evaluate quantitative, spatial or probabilistic information used 
to support claims made in the media or other contexts. They also need to recognise 
how mathematical information and practices can be used to persuade, manipulate, 
disadvantage or shape opinions about social or political issues (Frankenstein, 2001). 

METHODOLOGY 
Twenty teachers were recruited from ten demographically diverse schools on the 
basis of their interest in cross-curricular numeracy education. They came from four 
primary schools (Kindergarten-Grade 7), one secondary school (Grades 8-12), four 
smaller schools in rural areas (Grades 1-12), and one school that combined middle 
and secondary grades (Grades 6-12). The focus on teaching numeracy across the 
whole curriculum meant that it was important to include teachers with varying 
subject specialisations. Thus participants included generalist primary school teachers 
as well as secondary teachers qualified to teach particular subjects (mathematics, 
English, science, social education, health and physical education, design studies). 
The project was conducted for a full school year in 2009. There were two elements to 
the research design. First, three professional development days in March, August and 
November brought together researchers and teachers to discuss the numeracy model, 
try out numeracy investigations that drew attention to particular aspects of the model, 
engage in collaborative planning of numeracy units of work, and reflect on progress. 
Second, the research team conducted two daylong visits to each school in June and 
October, between the professional development days, to observe lessons, collect 
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planning documents, interview teachers and students, and provide feedback to 
teachers on further development of teaching strategies related to the numeracy model. 
This paper draws on two types of data collected at the beginning and end of the 
project. At the start of the first professional development day, immediately before 
teachers were introduced to the numeracy model in Figure 1, their initial conceptions 
of numeracy were explored by asking them to complete the following sentence stems: 

• Numeracy involves … 
• A numerate person knows … 
• A numerate person is … 
• A numerate person can … 

Teachers worked in groups to provide responses. Groups were not required to 
provide a single response to each sentence stem and so multiple responses were 
common from each group. This activity was repeated in a slightly different way at the 
end of the project: before the final meeting we emailed teachers individually and 
asked them to respond to the same sentence stems again. While each teacher 
responded to the email, not every teacher responded to all stems, and so the number 
of responses to each stem varied. Initial and final responses were analysed by 
matching them to components of the numeracy model and recording frequencies of 
responses so classified to look for changes over time. For example, Numeracy 
involves … “using mathematics to be successful in everyday life” was matched to the 
contexts component of the model; A numerate person can … “use technology 
effectively” was matched to tools; A numerate person knows … “when information is 
misleading” was aligned to critical orientation; A numerate person is … “confident 
in their application of mathematical knowledge” was linked to dispositions. 
Responses could be classified in multiple ways if they referred to more than one 
component of the numeracy model. 
The second type of data was collected at the end of the final professional 
development day, when we provided teachers with copies of the numeracy model and 
asked them to map their trajectory through the model during the project. Teachers did 
so by annotating the model to identify the component that represented their main 
interest or concern when they started the project, and then other components of the 
model that became progressively more meaningful or significant to them over time. 
Responses were analysed by listing all the trajectories teachers identified and 
grouping them according to the starting point and subsequent pathways.  

FINDINGS: TEACHERS’ PERSONAL CONCEPTIONS OF NUMERACY 
Analysis of teachers’ responses to the sentence stems and their trajectories through 
the numeracy model provide insights into their changing conceptions of numeracy. 
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Numeracy sentence stems 
The most frequent responses to the stem Numeracy involves … showed an 
appreciation of the role of context, and this increased over time: from over half of the 
initial responses; (8/15; e.g. “everyday connections”) to 80% of final responses (8/10; 
e.g., “application of mathematical processes in everyday practical situations”). 
Problem solving as an aspect of mathematical knowledge was referred to in nearly 
half of initial responses (6/15; e.g., “solving problems in life”) and half of the final 
responses (5/10; e.g., “having a repertoire of strategies”), indicating that many 
teachers maintained a sense of numeracy as involving more than using learned 
procedures in routine situations. 
Initial conceptions of what A numerate person can … do were mainly based on the 
skills aspect of mathematical knowledge: over half of the responses were of this type 
(10/19; e.g., “use numbers to solve problems”). At the end of the project, nearly 
three-quarters of responses reflect an understanding of numeracy in which context 
has priority (11/15; e.g., “sort out how to transfer mathematical knowledge into real 
life situations”). The next most frequent type of response at the end of the project 
referred to numerate people being good problems solvers (6/15; e.g., “use problem 
solving skills to help them to better understand some aspects of numeracy”). 
In deciding what A numerate person knows …, at the start of the project the most 
common type of response alluded to mathematical knowledge in the form of specific 
skills (8/13; e.g., “how to convert currency”), and there was no reference to problem 
solving. At the end of the project, responses still identified skills worth knowing, but 
nearly half referred to choosing mathematics that was appropriate to a particular task 
(7/15; e.g., “how and when to use what skill”). There was also a new emphasis on 
contexts, with one-third of responses mentioning knowing how to use mathematics in 
everyday life (5/15; e.g., “understand stock market data; know how to navigate 
through a map; understand the odds of Melbourne Cup horses”). The importance of 
positive dispositions was additionally noted in about one-third of responses at the end 
of the project (4/15; e.g., “not to be scared of numbers”). 
Comparing initial and final responses to the stem A numerate person is … revealed 
increasing recognition of contexts as a component of numeracy. While one-third of 
responses made mention of contexts at the start of the project (3/9; e.g., “someone 
who uses numeracy in everyday situations”), half did so at the end of the project 
(7/14; e.g., “a person who can deal with numeracy ideas in their everyday life”). 
More striking is the increased emphasis on dispositions in responding to this sentence 
stem: fewer than one-quarter of initial responses (2/9; e.g., “confident and 
comfortable in making links”) compared with more than half of final responses (8/14; 
e.g., “flexible in their mathematical thinking and confident to take learning risks to 
test their knowledge and ideas”). Problem solving, an aspect of mathematical 
knowledge, was not mentioned in any responses at the start of the project but was 
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referred to in nearly half of the final responses (6/14; e.g., “If they cannot deal with 
the ideas immediately, they are able to use problem solving skills to deal with them”). 
In summary, this group of teachers came to the project understanding numeracy as 
involving mainly contexts and knowledge (skills + some problem solving). By the 
end of the project, the conception of numeracy displayed by the group had expanded 
to include an even greater emphasis on contexts, a more sophisticated appreciation of 
knowledge (problem solving + judicious use of mathematical skills), and attention to 
students’ mathematical dispositions. These are generalisations that represent the most 
frequent responses. There were also some references at the beginning and end of the 
project to tools (e.g., “can use a variety of tools”, “knows how to access a very full 
tool box”) and a critical orientation (e.g., “knows when data have been manipulated 
to present bias”, “can identify when information is inaccurate”), but such comments 
were rarer than those that were linked to the other components of the numeracy 
model. On our school visits we observed increasing use of tools, especially digital 
technologies such as spreadsheets, but teachers may not have considered this worth 
mentioning when responding to the sentence stem task. In the case of a critical 
orientation, classroom observations and teacher interviews confirmed that teachers 
found this aspect of the numeracy model the most difficult to implement. 
Teacher trajectories through the numeracy model 
Of the 20 project teachers, 18 completed the mapping task in the way we requested. 
Figure 2 shows these teachers’ starting points and the direction in which they 
indicated they had developed as the project progressed.  

Dispositions (D) Knowledge (K) Context (C) 
D – C K – D (2 teachers) C – K – CO  
D – C – T  K – D/C C – K – D – T  
D – C – K (2 teachers) K – D – T  C – All 
D – K/T/C K – T – D (2 teachers)   
D – K/T – C  K – C – D   
D – K/T – C/CO   
D – K/T/C – CO   

Figure 2. Starting points and trajectories in engaging with the numeracy model 
Of the 18 valid responses, 8 teachers indicated that they had entered the project with 
a concern for students’ dispositions. Their annotations suggested that they were 
uneasy with students’ negative feelings towards mathematics and wanted to devise 
numeracy learning experiences that would have a positive impact. Seven teachers 
indicated that their starting point had been students’ mathematical knowledge and 
skills, and their annotations suggested that they believed that if students had 
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appropriate mathematical knowledge and skills, they would be successful in applying 
these as required in context. Only 3 teachers indicated that they started the project 
with an emphasis on contexts, stating that this approach allowed students to apply 
their mathematical knowledge in meaningful situations. None of the teachers said 
they came to the project with a primary interest in tools or a critical orientation.  
Although varied, teachers’ trajectories through the model showed some patterns of 
similarity (see Figure 2). Knowledge to dispositions (K – D) and dispositions to 
knowledge (D – K) were common patterns, possibly indicating teachers’ beliefs about 
the connection between success in using mathematical knowledge and a positive 
disposition. For the latter pathway, tools were linked often with knowledge. Only four 
teachers indicated that they considered the critical orientation aspect of the numeracy 
model, and this was their end point. One teacher, indicated by C – All in Figure 2, put 
the starting point as contexts, but then annotated the model comprehensively to show 
how integrated and equally important all these elements were.  
Although the teachers identified different starting points and trajectories through the 
numeracy model, at least half of the valid responses to the mapping task indicated 
they had attended to four of the model’s five components during the life of the 
project: 16 teachers annotated knowledge, 16 dispositions, 13 contexts, and 9 tools. 
These results are somewhat consistent with the analysis of numeracy conceptions 
revealed in the sentence stem task, where it was found that, by the end of the project, 
teachers had developed an understanding of numeracy as mainly involving 
knowledge, contexts, and dispositions. However, it was interesting to observe that 
teachers’ most common starting point in engaging with the model was a concern for 
student dispositions, when this was not a strong feature of teachers’ initial numeracy 
conceptions as elicited by the sentence stem task. Teachers may have initially paid 
most attention to components of the model representing student characteristics of 
concern to them, such as dispositions and mathematical knowledge, and then 
explored the use of contexts, tools, and, less commonly, a critical orientation as a 
means of enriching their numeracy teaching.  

CONCLUDING COMMENTS 
Sharing the responsibility for teaching numeracy in all curriculum areas, in the sense 
implied by the numeracy model presented in this paper, requires that teachers in 
primary and secondary schools, whether mathematics specialists or not, have a rich 
conception of numeracy themselves. The study reported here documented teachers’ 
personal conceptions of numeracy and how these changed throughout a yearlong 
professional development project. The numeracy model provided a framework for 
attending to and valuing numeracy in a holistic way. Teachers seemed most 
comfortable with incorporating the knowledge, dispositions, and contexts components 
of the model into their thinking about numeracy. Although some teachers reported 
giving more attention to tools, especially digital tools, more professional support is 
needed for technology integration to develop teachers’ confidence and expertise. This 
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seemed to be particularly the case for primary teachers and secondary non-
mathematics teachers. Development of a critical orientation occurred to a lesser 
extent. Perhaps teachers still lacked a clear understanding of how this could be 
incorporated into numeracy teaching, or they may not have felt ready to address this 
aspect of the model until their understanding of other components was secure. 
Further research is needed to explore how teachers can be supported in developing 
personal conceptions of numeracy, as well as numeracy teaching practices, that value 
a critical orientation, since this perspective is vital to educating informed and aware 
citizens. 
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HISTORICAL JUNCTURES IN THE DEVELOPMENT OF 
DISCOURSE ON LIMITS 

Beste Güçler 
 University of Massachusetts Dartmouth 

 
Existing research on limits documents many difficulties students encounter when 
learning about the concept. Research also highlights some similarities between 
mathematicians' realizations of the concept over history and students' realizations of 
limits in today's classrooms. This theoretical study explores the historical 
development of limits and identifies some junctures that may also be critical in 
student learning. The study uses a communicational approach to learning, a 
framework developed by Sfard (2008), to investigate the development of discourse on 
limits over history. 

INTRODUCTION 
The notion of limit presents many challenges to students. Research indicates that 
students' informal realizations of limits are mainly based on dynamic notion, which 
can interfere with the representational and formal (static) realizations of the concept 
(Bagni, 2005; Tall, 1980; Tall & Schwarzenberger, 1978; Tall & Vinner, 1981; 
Williams, 1991). Student difficulties with limits can also be related to difficulties 
about the underlying notions such as functions, and infinitely small and large 
quantities (Parameswaran, 2007; Sierpińska, 1987). The dominance of dynamic and 
procedural aspects of limits in calculus textbooks and teaching as well as students' 
attitudes towards mathematics are also considered as factors that can contribute to 
student difficulties about limits (Bezidenhout, 2001; Parameswaran, 2007; Williams, 
1991). Additionally, researchers also explored the historical development of limits to 
uncover some epistemological obstacles related to limits (Cornu, 1991; Sierpińska, 
1987) that occurred "because of the nature of mathematical concepts themselves" 
(Cornu, 1991, p. 158).  
Throughout the history of calculus, as the discourse around limits was developed, 
mathematicians encountered some of the conceptual obstacles students encounter 
today. For example, "limit as a bound" (Cornu, 1991; Williams, 1991), and "limit as 
unreachable" (Tall & Schwarzenberger, 1978; Williams, 1991) are among the 
incorrect student realizations about limit identified by research that were also 
problematic for mathematicians. Limit as a bound refers to the realization that a limit 
is a value past which the function cannot go. Limit as unreachable is based on the 
assumption that a limit is a value that can be approached but never reached. During 
the historical development of limits, mathematicians also debated "whether a variable 
can go beyond the limit and whether a variable can definitely reach the limit" 
(Schubring, 2005, p. 293). Similarly, Bagni (2005) mentioned that the historical 
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development of visual, verbal, and symbolic representations of limit may parallel 
students' development.  Williams (1991) also stated that  

Just as students' informal limit models tend to parallel those of the mathematical 
community prior to Cauchy, it is possible that only by appreciating the sorts of problems 
that motivated Cauchy's work will students be motivated to understand its implications. 
(p. 235)  

This study explores the historical development of limits and uses an alternative lens 
to examine whether a communicational approach to learning can provide further 
insights regarding the nature of conceptual obstacles in the development of discourse 
on limits. The study addresses the following theoretical questions: (a) What are the 
historical junctures in the development of limits that resulted in changes in the 
discourse on limits?, and (b) How, and whether, can those junctures be useful for 
researchers to gain further information about the teaching and learning of calculus in 
today's classrooms?  

THEORETICAL FRAMEWORK 
The study uses the commognitive framework (Sfard, 2008), which highlights the 
close relationship between thinking and communication. This approach assumes that 
thinking is an individualized form of communication and considers cognitive 
processes and interpersonal communication as facets of the same phenomenon. Given 
these assumptions, the term commognitive combines the terms cognitive and 
communicational. From this perspective, developmental transformations are “the 
result of two complementary processes, that of individualization of the collective and 
that of communalization of the individual” (Sfard, 2008, p. 80, italics in original). 
Therefore, the study of human development can be considered as the study of the 
development of discourses, which are constructed and reconstructed through the 
interplay of individualization and communalization. Sfard (2008) defines the term 
discourse as the  

different types of communication set apart by their objects, the kinds of mediators used, 
and the rules followed by participants and thus defining different communities of 
communicating actors (p.93).  

This approach considers learning as participation in a discourse, and characterizes 
mathematics as a specific type of discourse that is distinguishable by its word use, 
visual mediators, routines, and narratives. Word use refers to the ways in which 
participants use words in their mathematical discourse. Visual mediators refer to the 
visible objects created and operated upon to enhance mathematical communication. 
Routines are the collection of metarules characterizing the repetitive patterns in the 
participants' discourse. Finally, narratives refer to the set of utterances describing 
mathematical objects and their relationships that are subject to endorsement or 
rejection. The narratives of a mathematical discourse that are endorsed by the 
majority of the experts of the community are considered as true.  
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An important element of mathematical word use is objectification, which results in 
replacing the talk about processes and actions with states and objects (Sfard, 2008). 
Through objectification, we identify the commonalities between different processes 
within a discourse and unify many lower-level phenomena under one name. 
Objectification increases the effectiveness of mathematical communication and is 
also a means of formalization. However, it hides the discursive layers that constitute 
mathematical objects. 
Unlike object-level rules, which "take the form of narratives on the objects of the 
discourse", metarules “define patterns in the activity of the discursants trying to 
produce and substantiate object-level narratives” (Sfard, 2008, p. 201). Metarules are 
often tacit due to the metaphorical nature of mathematical objects, which is amplified 
by objectification and symbol use. The mechanism of metaphor is “the action of 
‘transplanting’ words from one discourse to another” (Sfard, 2008, p. 39). Note that 
the use of a metaphor is a metarule of mathematical discourse. Therefore, although 
metaphors are crucial mechanisms with which we build and expand discourses, the 
incorporation of them into an existing discourse requires changes in the metarules of 
the previously existing discourse. As a result, the exploration of the metaphors that 
govern different layers of a mathematical discourse becomes a central part of the 
exploration of the metarules in the development of the discourse. The implicitness of 
the changing metarules of mathematics is probably one of the reasons why the 
insiders of the mathematical discourse (e.g., mathematicians, mathematics teachers) 
“lose the ability to see as different what children cannot see as the same” (Sfard, 
2008, p. 59). Therefore, the identification and analysis of junctures in the 
development of a discourse with respect to the changes in the metarules may give us 
information regarding the transitions learners need to go through as they participate 
in the extended discourse. 

METHODOLOGY 
The work reported here is part of a larger study that investigated the development of 
discourse on limits in a beginning-level undergraduate calculus classroom. The larger 
study examines the historical development of infinity, infinitesimals, and limits; one 
instructor's and his students' discourse on these notions; and comparison of the 
development of discourse on these concepts over history with that in the classroom. 
In this document, only the theoretical portion about limits is presented.  
When analyzing the development of discourse on limits over history, the initial focus 
was on word use. Following Sfard's (2008) terminology, word use about limits was 
classified as operational if limit was referred to as a process based on dynamic 
motion; and objectified if it was referred to as a number or a distinct mathematical 
entity. This was followed by the exploration of the metaphors, and metarules to 
identify the historical junctures that led to changes in the metarules of the discourse 
on limits. For the purposes of this study, the term historical junctures refer to the 
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points in the development of limits over history that resulted in changes in the 
metarules of the previously existing discourse on limits.   

RESULTS  
Historical development of the limit concept  
The historical development of limit is quite intertwined with the development of 
functions as well as infinitely small and large quantities. It is not possible to provide 
all the details of such development in this paper. However, it should be highlighted 
that the dynamic view with an underlying assumption of continuous motion 
dominated mathematicians' discourse as they worked on these concepts till the 18th 
century. Continuous motion and geometrical foundations formed the bases of 
mathematician's formalizations of the notions such as infinity and infinitesimals till 
the end of the Renaissance period. However, as mathematicians like Viete (1540-
1603), Descartes (1596-1650), Fermat (1601-1665), and Wallis (1616-1703) 
recognized the use of algebra as an aid to geometry, symbolic-algebraic approaches 
gained popularity and initiated the stage called the arithmetization of geometry.  
Using the limit notion as a process is referred to as the limit method in the historical 
documents. Being the founders of calculus, Newton (1643-1727) and Leibniz (1646-
1716) both used the limit method and infinitesimals in their theories as they worked 
on incremental change. By obtaining the tangent line at a point through the use of 
sequences of secant lines passing from that point (Lakoff & Núñez, 2000), they were 
both using limit as a process, which is based on the metaphor of dynamic motion. On 
the other hand, Newton used a geometric approach due to the nature of his problems 
at hand, whereas Leibniz relied more on arithmetic.  
After Newton and Leibniz, mathematicians such as MacLaurin (1698-1746) and 
d'Alembert (1717-1783) kept on using this method on their problems. Lagrange 
(1736-1813) opposed to them on their use of the limit method: 

MacLaurin and d’Lambert used the idea of limits; but one can observe the subtangent is 
not strictly the limit of subsecants, because there is nothing to prevent the subsecants 
from further increasing when it has become a subtangent. True limits… are quantities 
which one cannot go beyond, although they can be approached as close as one wishes. 
(Lagrange, 1799, as cited in Schubring, 2005, p. 293)  

Lagrange's arguments were based on  
the lacking of the concept of absolute value…so that it seems as if the variable goes 
beyond the limit; the criticism is also at the problem, which has always remained 
controversial, whether a variable can definitely reach the limit or is only allowed to come 
close to it at any rate (Schubring, 2005, p. 293). 

Here, we again see mathematicians' struggles regarding whether limit was a bound or 
whether it could be reached. Although Lagrange used words like "true limits...are 
quantities", it was not until Cauchy (1789-1857) that the notion of limit was 
objectified. Lagrange talked about limit as a "subtangent", which is the "limit of 
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subsecants". So he realized limits through the limit method and did not explicitly 
define them. Lagrange's operational word use in his utterance "[true limits]...can be 
approached as close as one wishes" entails infinitesimal increments as well as 
dynamic motion.  
The discourse of calculus went through a fundamental change with Cauchy. He 
realized the necessity of establishing a theory of limits, which required the explicit 
definition of the concept. Cauchy defined limit as follows:  

When the values successively attributed to the same variable approach indefinitely a 
fixed value, eventually differing form it by as little as one could wish, that fixed value is 
called the limit of all the others (Kitcher, 1983, p.247). 

An analysis of Cauchy's word use reveals that he objectified the notion of limit by 
referring to limit as a “fixed value”, that is, a distinct mathematical object. Note also 
that he used the words "successively", and “approach”, which are based on the 
metaphor of continuous motion. Finally, the phrases “approach indefinitely” and 
“differing from it as little as one could wish” entail the use of infinitely small 
quantities, namely, infinitesimals. Therefore, Cauchy’s definition of limit was based 
on infinitesimals and the continuous motion metaphor, which were both problematic 
for mathematicians of his time. The dynamic interpretation of limit was considered 
intuitive by the community since terms like tending to have a “connotation of desire, 
of aspiration. Numbers do not tend” (Fischbein, 1994, p. 239). 
Weierstrass (1815-1897) and Dedekind (1831-1916) attempted to ‘remedy’ Cauchy’s 
definition by finding “a purely arithmetic and perfectly rigorous foundation for the 
principles of infinitesimal analysis” (Dedekind, 1963, p.1, as cited in Kleiner, 1991). 
These mathematicians wanted to replace Cauchy’s kinematic approach with the 
algebraic-arithmetic approach.  The goal was to reconceptualize calculus as 
arithmetic by eliminating spatial intuition. In order to do this,  

natural continuity had to be eliminated from the concepts of space, planes, lines, curves, 
and geometric figures. Geometry had to be reconceptualized in terms of sets of discrete 
points, which were in turn to be conceptualized purely in terms of numbers: points on a 
line as individual numbers…The idea of a function as a curve in terms of the motion of a 
point had to be completely replaced. There could be no motion, no direction, no 
approaching a point. All these ideas had to be reconceptualized in purely static terms 
using only real numbers. The geometric idea of approaching a limit had to be replaced by 
static constraints on numbers alone, with no geometry and no motion. This is necessary 
for characterizing calculus purely in terms of arithmetic. (Lakoff & Núñez, 2000, p. 308) 

By considering space as consisting of discrete sets of points, and by reformulating 
continuity as the preservation of closeness, Weierstrass replaced the metaphor of 
continuous motion with the metaphor of discreteness. Weierstrass' formal definition 
of limit was similar to the following: 
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Let a function f be defined on an open interval containing a, except possibly for a itself, 
and let L be a real number. Then Lxf

ax
=

→
)(lim  if and only if for any number 0>ε  

there exists a corresponding number 0>δ  such that if δ<−< ax0 then ε<− Lxf )( .  

Having eliminated the metaphor of continuous motion associated with infinitesimals 
and geometry, and having arithmetic as its foundation, this definition seemed to 
provide the precision mathematicians were looking for. The definition also explained 
anomalous cases that violated the geometric and dynamic conceptions of functions as 
curves. So this definition was generalizable to a broader number of situations.  On the 
other hand, it can be argued that this definition wipes out all the intuitive tools with 
which to make sense of the concept. Note that the formal definition of limit is not 
constructive since it does not help us find what the limit of a function is but helps us 
prove the limit value we initially hypothesize is indeed the limit of the function at a 
particular point. That may be why the dynamic approach is still widely used both by 
mathematicians and students as they work on limits. 
Historical junctures in the development of the limit concept  
Two types of historical junctures in the development of discourse on limits will be 
highlighted: one led to the objectification of the concept; and the other led to an 
alternative realization of limits by the elimination of dynamic motion from the 
previous discourse on limits. Table 1 shows the junctures that transformed the 
metarules in the discourse on limits over history.  

Junctures Changing metarules 

Cauchy's objectification of 
limit 

Realization of limit as a process is changed 
to the realization of limit as a fixed value 
obtained as a result of the process. 
Limits become distinct objects of 
mathematics that can be defined and 
operated upon. 

Weierstrass' introduction of 
the formal definition of limit 

The metaphor of continuous motion is 
replaced by the metaphor of discreteness. 
Continuous motion and infinitesimals are 
eliminated from the theories of geometry, 
infinity, functions, and limits.  
Motion is reformulated as the static distance 
between discrete points. 

Table 1: Historical junctures in the development of discourse on limits 
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DISCUSSION  
By being based on tacit metarules and metaphors, historical junctures eventually 
require changes in the word use and endorsed narratives of a mathematical discourse. 
Although the historical processes of object creation can follow a different sequence 
than students' individualization of those objects, the communal aspect of mathematics 
contains the words, visual mediators, narratives, and the metarules (in the form of 
routines) students need to adapt to as they become participants in the mathematical 
discourse. Sfard's (2008) framework gives researchers the tools with which we can 
examine the development of mathematical discourse. A second contribution of this 
approach is to highlight the elements of teachers' and students' mathematical 
discourse that can remain implicit in the classroom. Teachers' explicit attention to the 
changes in word use, metarules, and metaphors can enhance their classroom 
communication.  
The findings of the study indicate that objectification of limit and the elimination of 
dynamic motion were critical in the historical development of limits. A question that 
remains to be answered is whether those junctures may also be critical in students' 
development of discourse on limits. Although the work presented here cannot provide 
an answer for this, there is some evidence in the larger study regarding the question. 
As suggested by research on student learning about limits, the students in the larger 
study only used the dynamic aspect of limit. In addition, they rarely referred to limit 
as a number in their discourse. For example, even in the cases where they computed a 
limit accurately and wrote 2)(

4
lim =
→

xf
x

 using the equal sign, when asked to state 

what the limit was, they said "it is approaching to two" rather than "the limit is equal 
to two". In other words, the students used words operationally as they realized limit 
as a process and could not objectify the concept in their discourse at the end of their 
instruction on limits. Therefore, objectification and coping with the interplay between 
dynamic and static aspects of limit were also problematic for the students in the 
study. Further research is needed to examine the validity of the issue for the learning 
of limits and other mathematical topics.  
Some cautionary comments are worth mentioning. First, the study does not suggest 
the development of limits over history is identical to students' development. Students 
may have many idiosyncratic obstacles about limits that are not present in the 
historical development. Moreover, students are presented with limit related ideas in a 
different order than historical development of those ideas, and do not have as much 
time to reflect on the concepts due to their curricular load.  Second, the study does 
not suggest teachers should teach the historical development of mathematical 
concepts in their classrooms. Rather, it points to the features that can remain tacit in 
teachers' and students' mathematical discourse (e.g., metarules, and use of metaphors) 
when they talk about limits. Last, the study does not suggest all learners of calculus 
should learn about the formal definition of limit and limit-related proofs. Instead, it 
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highlights the conceptual challenges surrounding the interplay between the dynamic 
and static aspects of limit resulting in different realizations of the concept. 
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8TH GRADE TURKISH STUDENTS’ VAN HIELE LEVELS 
AND CLASSIFICATION OF QUADRILATERALS 

Bulent GUVEN, Samet OKUMUS  
Karadeniz Technical University, Rize University 

 
In this study, we tested the van Hiele levels of the 8th grade Turkish students and 
examined their classification preferences (hierarchical or partitional) about 
relationships between some quadrilateral pairs. We also discussed the 
effectiveness of the materials (geo-stripes, dot paper and geo-boards) used for 
teaching the topic of quadrilaterals in terms of the students’ classification 
preferences. The results indicated that most of the students were at van Hiele 
level 2 before starting their high school education and the students generally 
chose partitional classification. Therefore, we concluded that the materials had 
some limitations and were not adequate for learning the topic. 
INTRODUCTION 
The common theory used in geometry was proposed by two mathematics 
educators Pierre and Dina van Hiele. This theory with its five sequential levels, 
explains the learners’ acquisition of geometric concepts and the development of 
geometric thought (Fuys, Geddes & Tischler, 1998). The characteristics of these 
first three levels are characterized by Burger and Shaugnessy (1986, p.31) as 
follows: 

• Level 1 [Visualization]: The student reasons about basic geometric 
concepts, such as simple shapes, primarily by means of visual 
considerations of the concept as a whole without explicit regard to 
properties of its components. 

• Level 2 [Analysis]: The student reasons about geometric concepts by 
means of an informal analysis of component parts and attributes. 
Necessary properties of the concept are established. 

• Level 3 [Abstraction]: The student logically orders the properties of 
concepts, forms abstract definitions and can distinguish between the 
necessity and sufficiency of a set of properties in determining a 
concept. 

Fundamental mental processes like identification and classification of 
geometrical concepts have an important role for developing high level 
geometrical thinking abilities. However, many studies indicate that the abilities 
of identification and classification, which have key roles to reach a higher level, 
have not developed enough in students. Therefore, it is not possible for students 
whose mental processes have not developed enough, to be successful in high 
school and university level courses requiring them to have logical deduction 
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(Fuys, Geddes & Tischler, 1998). It is beneficial for students to have abilities of 
identification and classification of fundamental geometrical concept at their 
elementary school years to change this negative situation. 
As it can be conclude from the properties presented above, to define, classify 
and realize the hierarchical relationships between geometrical concepts, with 
their minimum properties are related the van Hiele level 3. Although there have 
been controversies about the classification of quadrilaterals (Jones, 2001), many 
researchers prefer to test students’ geometrical level by using relationships 
among them. Classifying the quadrilaterals in a hierarchical manner plays an 
important role for elementary students to reach logical deductions. Here the 
word hierarchy (inclusive) refers to consideration of more specific concepts as 
subsets of more general concepts.  In contrast, students may consider the 
concepts as disjointed or partitioned (exclusive) from each other (de Villiers, 
Rajendran, Patterson, 2009). On the other hand, in most curricula, students are 
expected to think about the hierarchical relationships of the quadrilaterals and 
reach logical deductions among them.  
In his research, de Villiers (1994 p.15) points out that the hierarchical definition 
and classification is superior to partitional ones because 

• it leads to more economical definitions of concepts and formulation of 
theorems 

• it simplifies the deductive systematization and derivation of the properties 
of more special concepts 

• it often provides a useful conceptual schema during problem solving 
• it sometimes suggests alternative definitions and new propositions 
• it provides a useful global perspective 

Classification of Quadrilaterals in the Turkish Elementary Curriculum 
The new Turkish elementary curriculum, which was applied in 2005, offers 
learning environments which give students opportunities to explore 
mathematical relationships use mathematical communication with their peers 
and use different learning styles which are enriched by learning centred 
approaches (MEB, 2005). Upon examination of the elementary geometry 
curriculum, it can be seen that the topic of quadrilaterals is an important 
component. Although at every elementary level some types of quadrilaterals are 
in the curriculum, the main focus occurs at the fifth and seventh grade levels. 
Both fifth and seventh level students study with squares, rectangles, 
parallelograms, rhombi and trapezoids. At fifth grade level, students generally 
learn their side, angle and diagonal properties and compare their differences 
rather than using logical deduction among them. At seventh grade level students 
are encouraged to consider hierarchical relationships, as shown in Figure 1, and 
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make progress on deductive reasoning. In conclusion, the students are expected 
to reach van Hiele level 3 before starting high schools. 
 

 
Figure 1: Classification of Quadrilaterals at 7th Grade Level 

 
The Properties of Materials 
Geo-stripes, geo-boards, dot paper and tangram are the mainly used materials as 
shown in Figure 2 for teaching the topic of quadrilaterals.  
 

    
Geo-stripes Geo-board Dot paper Tangram 

Figure 2: The Materials Used for Learning Quadrilaterals 
 

The geo-stripes have more preferred materials than the others. Four stripes are 
generally used but more than four could be used, as well, to create 
quadrilaterals. They have flexible structure to change some types of shapes into 
the other type. The possible conversions with four stripes, after the 
manipulation, are as follows: 

• quadrilateral → trapezoid (sometimes) 
• trapezoid → quadrilateral 
• parallelogram → rectangle 
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• rectangle → parallelogram 
• rhombus → square 
• square → rhombus. 

 
Geo-boards are used together with elastic garters. Students have opportunities to 
create shapes and examine their properties. Although geo-stripes limit students 
on convention, students can turn some shapes into others with geo-boards. Dot 
paper is generally used for exploring the side, angle and diagonal properties of 
the shapes benefiting from dot observations. The last material, tangram, is 
generally for creating the quadrilaterals. 
The Purpose of the Study 
 We aim to determine the 8th grade students van Hiele Geometric Thinking 
Level before starting their high school education. Also, we examined the 
effectiveness of materials which are used for teaching the topic of quadrilaterals. 
METHODS 
Participants 
The participants for this study 56 (26 boys and 30 girls) 8th grade students were 
selected from two different classes in an elementary school in the borough of 
Cayeli, Rize. The school is one of the top schools in this area. The same teacher 
has taught mathematics to both classes for almost three years. The study was 
carried out near the end of the spring semester of the 2009/2010 academic year. 
The ages of students in both groups ranged from 14 to 15. 
Instruments 
According to van Hieles students at the elementary school levels could reach the 
third level, so the first 15 questions of the van Hiele Geometric Thinking Test 
(VHGTT) developed by Usiskin (1982), which consists of 25 multiple choice 
questions, were taken into account. The researchers also tested students’ 
classification and logical deduction abilities by asking some questions about 
them. For testing their classification abilities, students were encouraged to 
identify six different shapes’ types hierarchically (Appendix). The students were 
given ten questions on the relationships between quadrilaterals for testing their 
logical deduction abilities. For example, for the relationship of a parallelogram 
and a trapezoid it was asked that a parallelogram is __________ a trapezoid 
and students were encouraged to fill the blank using “always,” “sometimes,” or 
“never” by choosing one of the words that makes the sentence true.  
FINDINGS 
Each question was 1 point in the VHGTT. Therefore, in the test, the lowest and 
the highest score one could get were 0 and 15 respectively. The results of the 
test are shown in the Table 1. As it can be seen from the table, the scores ranged 
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from 4 to 11 and the average of the test was 6.71. The standard deviation value 
1.95 indicates the homogeneity of the scores. 

 

N Minimum Score Maximum Score Mean S.D. 
56 4 11 6.71 1.95 

Table 1: Descriptive Statics of VHGTT Results 
Table 2 shows the answers given for each shape A to F (Appendix), for 
example, the figure A was a rectangle: 43.75% (49 of 112) of markings cited it 
as a rectangle and correctly it was also marked 33.04% (37) as a quadrilateral 
and 15.18% (17) as a parallelogram. While none of the markings were trapezoid, 
incorrectly 5.36% (6) were marked as a rhombus and 3% (2.68) were marked as 
a square. In the table, bold characters represent the correct identifications. When 
the answers were analysed it was seen that students identified the figures 
prototypically. Additionally, the shapes were known with their general images. 
Also, the most preferred second answer was “quadrilateral”. Only figure E could 
be excluded from that view because although it was only a quadrilateral, most of 
the markings (47 of 81) were trapezoid and it was not considered prototypically 
like the others. 

Figure 
Q T P Re Rh S 

N % N % N % N % N % N % 
A 37 33.04 - - 17 15.18 49 43.75 6 5.36 3 2.68 
B 34 30.63 6 5.41 47 42.34 11 9.91 11 9.91 2 1.8 
C 33 27.27 - - 9 7.44 7 5.79 20 16.53 52 42.96 
D 27 27.84 43 44.33 22 22.68 2 2.06 3 3.09 - - 
E 30 37.04 47 58.02 - - 2 2.47 2 2.47 - - 
F 31 26.72 13 11.21 28 24.14 2 1.72 32 27.59 10 8.62 

 
 (Q: Quadrilateral,  T: Trapezoid,  P: Parallelogram,  Re: Rectangle,  Rh: 

Rhombus, S: Square) 
Table 2: Given Answers with Their Percentages to Each Shape 

The results of the analysis shown in the Table 3 indicated that the inclusive 
properties could not be considered as much as desired. Although none of the 
correct answers were “never”, a number of students marked it. Also, the students 
were more successful to identify correct relationships going down from the 
hierarchical chain shown in Figure 1 rather than going up. For example; while 
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58.93% (33 of 56) marked that a parallelogram is always a rectangle, only 
39.29% identified correctly that a rectangle is sometimes a parallelogram.  

The pairs of  
quadrilaterals 

Number of Students’ Responses 
Always Sometimes Never Empty 

N % N % N % N % 
Q-T 3 5.36 43 82.14 10 17.86 - - 
P-Re 11 19.64 33 58.93 11 19.64 1 1.79 
Re-P 22 39.29 18 32.14 14 25 2 3.57 
S-Rh 36 64.29 8 14.29 9 16.07 3 5.36 
Rh-S 19 33.93 25 44.64 11 19.64 1 1.79 
S-Re 22 39.29 27 48.21 7 12.5 - - 
Re-S 6 10.71 11 19.64 38 67.86 1 1.79 
P-T 8 14.29 21 37.5 26 46.43 1 1.79 
T-P 6 10.71 17 30.36 31 55.36 2 3.57 

Rh-P 24 42.86 22 39.29 10 17.86 - - 
Table 3: The Results of the Logical Deduction Part 

(Q: Quadrilateral,  T: Trapezoid,  P: Parallelogram,  Re: Rectangle,  Rh: 
Rhombus, S: Square) 

DISCUSSIONS and CONCLUSIONS 
This study showed that the 8th grade students could not reach van Hiele level 3 
before starting their high school education. They were generally at the level of 
van Hiele 2 so the lack of hierarchical thinking might pose a problem in 
understanding high school mathematics courses which require logical deduction.  
The students had difficulties in ordering figures logically and comparing the 
interrelationships between them. Also, the students had tendencies to label the 
shapes by their general images as seen by the classification part. The trapezoid 
was the most problematic type of all. The students generally did not prefer to 
associate it with the others; they even entitled a general quadrilateral as a 
trapezoid without looking at its parallelism. One reason for this might be 
because the word of “trapezoid” in the Turkish language “yamuk” which means 
slanty. The students, therefore, were not inclined to label the other types, in 
particular a square and a rectangle, as a trapezoid.  
Although the overall scores were not as high as desired, the logical deduction 
part results (Table 3) showed that the students were more successful on some 
pairs. This could be because of the properties of geo-stripes. As it was 
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mentioned before, geo-stripes have limited inclusive conversions between pairs. 
For example; the students got higher scores for the pairs of rhombus-square and 
square-rhombus than the rectangle-square and the square-rectangle pairs. 
Because students could not turn a rectangle into a square with geo-stripes, this 
limited conversion posed an obstacle for hierarchical thinking. To construct 
hierarchical thinking, it is important to use transitive materials, but limited 
transitive materials, like geo-stripes, could be insufficient. So the geo-stripes and 
the others (Figure 2) could be used for learning the properties of quadrilaterals 
rather than exploring hierarchical relationships.  
To overcome this transitive material problem, it could be more efficient to use 
the dynamic geometry software. In the dynamic geometry software, the shapes 
could be constructed with proper construction, so considering shapes 
hierarchically could be easier. In particular, the Geometric Supposer (Schwartz 
& Yerushalmy, 1985) has rich opportunities for the topic of quadrilaterals, 
which could make a contribution for developing students’ logical deduction 
abilities.  
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Appendix 
The Questions of the Classification Part 
Which words name each shape? Please, circle all that apply. 
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In this paper we analyze and discuss the influence of CAS technology and an Activity 
designed with a Technical-Theoretical approach on two 10th grade students’ thinking 
on a Task related to simplifying rational algebraic expressions. The theoretical 
elements adopted in this study are based on the instrumental approach. Results 
indicate that CAS and a technical-theoretical-oriented Activity provoked students to 
theorize on certain aspects of the simplification of rational expressions, thus 
illustrating the epistemic role of CAS technique and its influence in improving 
students’ learning with respect to specific technical-theoretical components of 
rational expressions. 

INTRODUCTION 
Ever since the arrival of Computer Algebra Systems (CAS), many researchers have 
studied the role of this kind of technology in the learning of algebra (Thomas, 
Monahan & Pierce, 2004). According to some researchers (e.g., Artigue, 2002; 
Lagrange 2003) the technical aspect of algebra (i.e., the symbol manipulation) is 
fundamental in order to promote students’ conceptual understanding. Accordingly, 
Kieran (2004) has pointed out that, due to the fact that conceptual understanding can 
come with technique, the study of algebraic transformations will be an area of 
research interest during the years to come. Thus, it is not a coincidence that in the 
past few years CAS has played a major role, mainly in those studies related to that 
aspect of algebraic activity that Kieran (2004) has identified as transformational 
activity. 
In this sense, many studies (e.g., Kieran & Damboise, 2007; Kieran & Drijvers, 2006, 
Hitt & Kieran, 2009) related with the use of CAS and a technical-theoretical 
approach to algebra, have indicated the potential of this kind of technology in algebra 
learning. These studies have shown that the use of CAS promotes conceptual 
understanding if the technical aspect of algebra is taken into account. For instance, 
Kieran and Damboise (2007) pointed out how weak algebra students can improve 
both technically and theoretically by means of a CAS experience involving the 
factoring of algebraic expressions. Kieran and Drijvers (2006) showed that 
techniques and theory co-emerge in CAS environments where tasks promote the 
interaction between CAS and paper-and-pencil media. 
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According to the reported literature, with respect to CAS studies, little or nothing has 
been said on the role of CAS technology in students’ thinking on the simplification of 
rational expressions – a task embedded in the transformational activity of algebra. 
Our interest in studying this domain of school algebra in a CAS environment is based 
on more than three decades of research that has recognized (e.g., Davis, Jockusch & 
McKnight, 1978; Matz, 1980) that students have difficulty when they try to 
manipulate (simplify) rational expressions, making well known errors in tasks of this 
sort. Thus, the aim of this study is to answer the following research question: Which 
technical and theoretical aspects are promoted [or emerge] in students’ thinking by 
the use of CAS and an activity designed with a technical-theoretical approach to the 
simplification of rational algebraic expressions? 

THEORETICAL FRAMEWORK OF THE STUDY 
The instrumental approach to tool use has been recognized as a framework rich in 
theoretical elements for analyzing the processes of teaching and learning in a CAS 
context (e.g., Artigue, 2002; Lagrange 2003). This approach encompasses elements 
from both cognitive ergonomics (Vérillon & Rabardel, 1995) and the anthropological 
theory of didactics (Chevallard, 1999). According to Monaghan (2007), one can 
distinguish two directions within the instrumental approach: one in line with the 
cognitive ergonomics framework, and the other in line with the anthropological 
theory of didactics. In the former, the focus is the development of mental schemes 
within the process of instrumental genesis. Within this approach, an essential point is 
the distinction between artifact and instrument (for more details see Drijvers & 
Trouche, 2008). 
In line with the anthropological approach, researchers such as Artigue (2002) and 
Lagrange (2003, 2005) focus on the techniques that students develop while using 
technology. This approach is grounded in Chevallard’s anthropological theory. 
Chevallard (1999) points out that mathematical objects emerge in a system of 
practices (praxeologies) that are characterized by four components: task, in which the 
object is embedded (and expressed in terms of verbs); technique, used to solve the 
task; technology, the discourse that explains and justifies the technique; and theory, 
the discourse that provides the structural basis for the technology. 
Artigue (2002) and her colleagues have reduced Chevallard’s four components to 
three: Task, Technique, and Theory, where the term Theory combines Chevallard’s 
technology and theory components. Within this (Task-Technique-Theory) theoretical 
framework a technique is a complex assembly of reasoning and routine work and has 
both pragmatic and epistemic values (Artigue, 2002). According to Lagrange (2003), 
technique is a way of doing a task and it plays a pragmatic role (in the sense of 
accomplishing the task) and an epistemic role. With regard to the epistemic value of 
technique, Lagrange (2003) has argued that:  

Technique plays an epistemic role by contributing to an understanding of the objects that 
it handles, particularly during its elaboration. It also serves as an object for a conceptual 
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reflection when compared with other techniques and when discussed with regard to 
consistency. (p. 271) 

According to Lagrange (2005), the consistency and effectiveness of the technique are 
discussed in the theoretical level; mathematical concepts and properties and a specific 
language appear. This epistemic value of techniques is crucial in studying students’ 
conceptual reflections within a CAS environment. In our study, this T-T-T 
framework was taken into account in all aspects: the designing of the Activity related 
to the task “simplifying rational expressions”, the conducting of the interviewer 
interventions, and the analyzing of the data that were collected. 

THE STUDY AND METHODOLOGICAL CONSIDERATIONS 
In the present paper we discuss and report the results of the first section of the 
designed Activity, which is part of a wider research study on the role of CAS and a 
Technical-Theoretical approach to algebra on the simplification of rational 
expressions. 
Rationale of the Designed Activity. 
It is important to mention that in this study we use the term Task as is defined in the 
T-T-T framework; it refers to a question embedded within the Activity. That is, as 
Kieran and Saldanha (2008) state, the Activity is a set of questions related to a central 
Task – in our case, the simplification of rational expressions. Since we have adopted 
the T-T-T framework for conducting the research study, the Activity was designed so 
that Technical and Theoretical questions were central and, hence, that students would 
have the opportunity to reflect on both Technical and Theoretical aspects in both 
paper-and-pencil and CAS environments. In the present report, only the following 
parts of the activity are reported: first, students’ paper-and-pencil work (with 
Technical and Theoretical questions); second, their subsequent CAS work (Technical 
question); and, finally, Theoretical questions related to their work in both 
environments. 
Population. 
The participants were eight 10th grade students (15 years old) in a Mexican public 
school. The selection of the students was made by their mathematics teacher, who 
believed that they were strong algebra students. None of the students were 
accustomed to using CAS calculators; consequently, at the outset of the study, all the 
students received some basic training from the interviewer on how to use the TI-
Voyage 200 calculator for basic symbol manipulation. 
Implementation of the Study. 
The data collection was carried out by means of interviews conducted by the 
researcher. Students worked in pairs; each work session lasted between two and three 
hours. Each team of two students had a set of printed Activity sheets as well as a TI-
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Voyage 200 calculator. Every interview was audio- and video-recorded so as to 
register the students’ performance during the sessions. 

ANALYSIS AND DISCUSSION OF THE DATA 
In this report we analyse and discuss only one team’s work. This team was chosen for 
the report because we consider that their work was typical of all participants and 
represents the role played by both the CAS and the designed Activity (we’ll call each 
member of the team S1 and S2). The analysis, which is qualitative in nature, is based 
on the team’s work sheets, as well as the video-recorded interview. The analysis and 
discussion of the data is detailed below as follows. 
On the paper-and-pencil work related to Technique and Theory. 
As per the task design, the first section of the activity helped reveal the students’ 
Technique and Theory related to their paper-and-pencil simplification of rational 
expressions (see Figure 1). From their work, we confirm that, in this environment, 
students made the expected errors: they eliminated the ‘literal components’ that were 
common to both numerator and denominator, without taking into account whether 
these ‘literal components’ were, in fact, a factor of both the numerator and the 
denominator. 
We note too that whenever there were parentheses, the students first tended to expand 
the expressions of the numerator and denominator (see the first example of Figure 1) 
before cancelling. This initial expanding, which was not preceded by a first 
observation in terms of factors, was something that hindered their theoretical 
reflection and seemed to lead them to make the kinds of errors that are reported in the 
literature. In their written explanations, they used the terminology of dividing (see the 
second example of Figure 1, where the students wrote, “we divide the same letters”). 

 
Figure 1. Simplification of expressions: Paper and pencil work. 
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On the New Technique and Theory, Based on the Use of CAS. 
In the context of the designed Activity, the use of CAS led the students to rethink 
their first techniques and explanations and provoked a theoretical reflection that 
could explain for them the results given by the CAS. The differences between the two 
sets of results led them to wonder about their paper-and-pencil techniques and 
explanations. They began to question the theoretical underpinnings of their work. 
Figure 2 shows the corresponding students’ CAS work. 

 
Figure 2. Simplification of expressions: CAS work. 

For the expressions that involve just one term in the denominator (as in the first 
example of Figure 2), the students could see that their paper-and-pencil technique 
was not correct, but could also see how to fix it. As the following extract suggests, 
they were able to make a quick adjustment to their first technique (adjustment 
without theoretical justification that called for cancelling each occurrence of the 
given term in the numerator) so as to eliminate the discrepancy between the results: 

1  S1: What is it? [Asking for the result given by the calculator for the first 
expression of Figure 2] 

2  S2: x plus 3 [the CAS result for the first expression of Figure 2] 
3  S1: And we wrote 3 plus x squared [She refers to the result which they got by 

paper and pencil at the time they obtain the CAS result for the first 
expression of Figure 2] 

4 S2:  Yes, We must have taken off only one x [Meaning that they had to 
eliminate another x]. No matter. What’s next? 

However, for the second and third examples of Figure 2, the students could not easily 
come up with a simple adjustment to their paper-and-pencil technique for simplifying 
those expressions containing a binomial as the denominator. The following extract 
illustrates their bewilderment at the CAS results for the last two expressions: 

5 S2:  Yes, here [Referring to the first expression of the Figure 2], it makes 
sense [the result given by the calculator] because the x’s were taken off, it 
first multiplied and we missed taking off the two x’s. [She states the 
multiplication procedure that she thinks the calculator did, just as they 
had expanded the numerator of the first expression of the Figure 2]. But 
in here, I’m not quite sure why it’s 4, neither the result in here [Referring 
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to the last two results (Figure 2) given by the calculator]. Why it is the 
same [referring to the 3rd result of Figure 2], I don’t have any idea. 

While they could accommodate the result given by the CAS for the first example, the 
other two examples remained mysterious. They kept asking themselves if there were 
other ways to think about these simplifications. How might they justify the results 
given by the CAS? The following extract underlines their dilemma, but then student 
S1 suddenly had an idea: 

6 S2:  It’s believed that in this case we should’ve taken off the x and the y, we 
take off both [The repeated terms in the numerator and the denominator 
of the 2nd expression in Figure 2]. But why is it 4? [The result given by 
CAS] 

7 S1:  Let’s see [Pause]. This is a division of polynomials! 

It is clear that the CAS Technique provoked a conceptual change in one of the 
students (line 7 of the above transcription). This theoretical reflection induced by the 
discrepant results moved the students from a Technique involving eliminating literal 
symbols that are repeated in the numerator and the denominator to a Technique 
involving division of polynomials (the long division of polynomials algorithm) as can 
be seen in the next Figure 3. 

 
Figure 3. New paper and pencil Technique for simplifying rational expressions. 

It is interesting to see how the students came to adapt their new technique and theory 
so as to make it also fit the case of rational expressions that could not be simplified. 
They found, on their own, that if the quotient works out exactly, then the rational 
expression can be simplified – the quotient of the division being the final 
simplification. But if the division is not exact, then the rational expression can not be 
simplified and the CAS calculator will give as the result the same expression. For 
those cases where the denominator is a monomial, the students continued to believe 
that the technique of cancelling the monomial of the denominator with all of its 
occurrences in the numerator is workable. 
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CONCLUSIONS 
In this report we have showed the epistemic role of CAS Technique, in the sense that 
the use of the CAS provoked in students a spontaneous theoretical reflection that 
allowed them to think of new techniques for simplifying rational expressions. The 
use of the CAS provoked a change in the students’ technique for simplifying rational 
expressions whose denominator is a binomial (from canceling ‘literal components’ 
that were common to both numerator and denominator to using the polynomial 
division algorithm as the new Technique). This epistemic role played by the CAS 
was evident also in terms of the students’ language, the students’ initial language 
evolving from “canceling and dividing” terms to using terminology involving the 
division of polynomials. 
However, other technical-theoretical aspects did not emerge, such as noticing the 
structure of the expressions in terms of factors. Thus new questions arise, such as, 
How to promote in students’ thinking a focus on seeing the expressions in terms of 
factors? CAS technology and appropriate tasks may not be sufficient; teacher 
intervention may be critical in encouraging technical-theoretical noticing of other 
aspects of this domain on the part of students. 
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