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PROTO-ALGEBRAIC LEVELS OF MATHEMATICAL THINKING 
Lilia P. Aké1, Juan D. Godino1, Margherita Gonzato1, Miguel R. Wilhelmi2 

1University of Granada (Spain), 2 Public University of Navarra (Spain) 
 
Researches on the nature and development of algebraic reasoning in early grades of 
primary education have been inconclusive about the boundaries between 
mathematical practices of algebraic nature and those not algebraic. In this report we 
define primary levels of algebraization in school mathematics activity and prototypical 
examples of answers to a task for each level, based on the type of objects and processes 
proposed by the onto-semiotic approach of mathematical knowledge. This model can 
be useful to develop the meaning of algebra in elementary school teachers and 
empower them to promote algebraic thinking in primary education. 
Key words: elementary algebra, mathematical practice, reasoning level, teacher’s 
training, onto-semiotic approach. 
 
INTRODUCTION 
The complex issue of making advances to clarify the nature of algebraic thinking is 
necessary from the point of view of education. As Radford says (2000, 238): “To go 
further, we want to add, we need to deepen our own understanding of the nature of 
algebraic thinking and the way it relates to generalization”. The development of a 
comprehensive model of elementary algebra could facilitate the design of instructional 
activities that promote the emergence and progressive consolidation of algebraic 
reasoning. 
In this report we address this problem by using some theoretical tools of the 
Onto-semiotic approach to research in mathematics education (Godino, Batanero and 
Font, 2007). We believe, together with various authors (Mason and Pimm, 1984; 
Carraher, Martinez and Schliemann, 2008; Cooper and Warren, 2008), that 
generalization and also the means to symbolize both generalization situations and 
modelling (in particular, using equations) are key features of algebraic reasoning.  
First we summarize the vision of elementary algebra according to the onto-semiotic 
approach developed in Godino, Castro, Ake and Wilhelmi (2012); then we define two 
levels of proto-algebraic reasoning framed between two other levels: one, in which the 
reasoning is purely arithmetic (level 0 of algebraization), another in which the 
algebraic features are consolidated (level 3). Finally we highlight some implications of 
the model for the training of primary school teachers. 
ONTO-SEMIOTIC APPROACH TO ELEMENTARY ALGEBRA  
The pragmatic, anthropological and semiotics perspective of the onto-semiotic 
approachto research in mathematics education (OSA) (Godino, Batanero and Font, 
2007; Godino, Font, Wilhelmi and Lurduy, 2011) provides theoretical tools that can 
help to characterize algebraic reasoning in terms of types of objects and processes 
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involved in mathematical practice. Considering a mathematical practice as intrinsically 
algebraic can be based on the presence of certain types of objects and processes, 
usually considered in the literature as algebraic. 
Prototypical algebraic objects  
In the framework of elementary algebra the following are considered as prototypical 
algebraic objects: 
1) Binary relations ─equivalence or order─ and their respective properties (reflexive, 
transitive and symmetric or antisymmetric). These relationships are used to define new 
mathematical concepts. 
2) Operations and their properties, performed over elements of various sets of objects 
(numbers, geometric transformations, etc.). The algebraic calculation is characterized 
by the application of properties. Concepts like equation, inequality, and procedures 
such as elimination, factorization, etc. can also intervene. 
3) Algebraic functions, generated by addition, subtraction, multiplication, division, 
potentiation and root extraction of the independent variable. It is necessary to consider 
different types of functions (polynomial, rational, radical) and its associated algebra 
(operations and properties).  
4) Structures and their types (semigroup, group, ring,…) studied in abstract algebra. 
Prototypical algebraic processes 
Particularization and generalization processes are particularly importantfor algebraic 
activity, given the role of generalization as one of the key features of algebraic 
reasoning. Thus, for analysing algebraization levels of mathematical activity it is 
useful to focus attention on the objects resulting from the generalization and 
particularization processes. As a result of a generalization process we obtain a type of 
mathematical object we call intensive object, which becomes the rule that generates the 
class (collection or set) of generalised objects and that enables the identification of 
particular element as representative of the class (Godino et al., 2011). Through 
particularization processes new objects are obtained that we call extensive (particular) 
objects. A finite set or collection of particular objects simply listed should not be 
considered as an intensive until the subject shows the rule applied to delimit the 
constituent elements of the set. Then the set becomes something new, different from 
the constituent elements, as a unitary entity emerging from the set. Therefore, besides 
the generalization process giving rise to the set, there is a process of unitization. 
Moreover, the new unitary entity has to be made ostensive or materialized by a name, 
icon, gesture or symbol. The ostensive object embodying the unitary object emerging 
from generalization is another object that refers to the new intensive entity, so there is a 
process of representation accompanying to the generalization and materialization 
processes.  Finally, the symbol is released from the object which represents to become 
the object upon which actions are performed (reification process).  
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The different types of algebraic objects and processes can be expressed with different 
languages, preferably alphanumeric at higher levels of algebraization. Nevertheless, 
primary school pupils might also use other means of expression to represent objects 
and processes of algebraic nature (Radford, 2003). 
In the next section, we describe the boundary between arithmetic and algebra in terms 
of the dualities and processes described. This boundary is not objective or platonically 
established, since these dualities and processes are relative to the context where 
mathematical practice is developed. In fact, the algebraic character is essentially linked 
to the subject’s recognition of the rule that shapes the intensive, the consideration of 
the generality as a new unitary entity and its enactment by any semiotic register for 
subsequent analytical treatment. This threefold process (recognition or inference of 
generality, unitization and materialization) allowsdefining two primary levels of 
algebraic thinking, distinguishable from a more advanced level in which the intensive 
object is seen as a new entity represented with alphanumeric language. 
ALGEBRAIZATION LEVELS 
In this section we describe the characteristics of the practices to solve mathematical 
tasks, affordable in primary education, which allow to define different levels of 
algebraization. We propose to distinguish two proto-algebraic levels of primary 
algebraization. These levels are framed between a 0 level of algebraization and a third 
level in which mathematical activity can be considered as properly algebraic. This 
level is assigned, not to the task itself but to the mathematical activity that is 
performed. To explain the features of the algebraization levels we use examples of 
student teachers’ responses to a task on geometric patterns. The description of such 
teaching experience is not the aim of this report due to space restrictions. 
The problem posed to a sample of 52 student teachers is as follows: 
See the following figure, and answers: 

 
 

 

 
 

 

 
 

 

   

Fig. 1 Fig. 2     Fig. 3 …   

a) How many balls are there in figures on fourth and fifth position? 

b) How many balls are there in figure 100? 

Level 0 of algebraization 
If we want to train primary school teachers so they can help their pupils to develope 
algebraic reasoning, we need to describe the mathematical practices of level 0, that is, 
those that do not include algebraic features. This is an unclear issue in the literature on 
early algebra (Carraher and Schliemann, 2007). We propose the following rule to 
assign level 0 of algebraization to a mathematical practice: 
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Extensive objects, expressed by natural, numerical, iconic or gestural language, are 
involved. Symbols that refer to an unknown value can also intervene, but that value is 
obtained as a result of operations on particular objects. 
Figure 1 shows an example of mathematical activity we consider indicative of absence 
of algebraic thinking. 

 
Figure 1. Level 0 response 

The student writes the first six values of the independent variable of the function (order 
number of the figure) and below the number of balls that corresponds to each value, 
along with the criteria for obtaining these values (sum of successive natural numbers). 
He uses a numerical and visual language to express particular values, and makes no 
attempt to generalize the assignment criteria, or the initial and final sets of the 
correspondence. It is true that for the first six terms the student writes a formation rule, 
which extrapolated to any subsequent term would be indicative of the kind of factual 
generalization that Radford (2003) describes, but in this student’s case such 
generalization does not occur. 
Level 1 of algebraization 
Intensive objects, whose generality is explicitly recognized by natural, numerical, 
iconic or gestural languages, are involved. Symbols that refer to the recognized 
intensive objectsare used, but there is no operation with those objects. In structural 
tasks relationships and properties of operations are applied and symbolically expressed 
unknown data may be involved. 
Figure 2 shows a student’s response that exemplifies this proto-algebraic level of 
thinking. 

 

Translation: We 
have seen in Figure 
1 there is a row with 
only one ball, in the 
second, two rows 
with 2 and 1 
successively, in 
Fig. 3, three rows (3 
+2 +1), in the fourth 
(4 +3 +2 +1) 

Figure 2. Level 1 response 
This student finds a general rule (intensive object) that allows him find the value of the 
function for any value of the independent variable (figure position) and that explicitly 
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define with a sum of consecutive numbers. He uses ordinary language (to explain the 
formation rule) and arithmetic language (natural numbers and the sum of the first 100 
natural numbers), but he has not been able to find a symbolic expression for this sum. 
The student can find the number of balls in figure 100, without forming this figure and 
without, therefore, explicitly count the beads, but operating with the sequence of 
particular numbers. It is a factual generalization (Radford, 2003). The operational 
scheme is limited to the concrete level, which however would allowhim to deal 
successfully with virtually any term. 
Level 2 of algebraization 
Indeterminate or variables expressed in literal-symbolic language to refer the intensive 
objects recognizedare involved, but they are linked to the spatial or temporal 
information of the context. In structural tasks the equations have the form Ax ± B = C. 
In functional tasks the generality is recognized, but there is no operation with variables 
to obtain canonical forms of expression. 
An example of this algebraization level is shown in figure 3. 

 

 

 

 

Translation: 
Multiplying a row of 
balls by other (to 
which we subtract 1 
not to count several 
times the same balls) 
we get a square of 
balls. …  Dividing it 
by 2 we get a triangle, 
but still the new row 
of that series should 
be added to get the 
right amount.  
For this pattern as 
many balls as those 
indicated by the 
ordinal of the figure 
are added. Thus, for 
Fig. 11, 11 balls will 
be added to the 
amount that Fig. 10 
had. 

Figure 3. Level 2 response  
The student finds a correct formula for calculating the number of balls on the figure in 
any position, expressed with alphanumeric language. The justification of the formula is 
based on visual reasoning, expressed with  confuse and not entirely correct natural 
language, since the visual inference of the formula requires forming a rectangle of 
sides n(n–1), and not a square. He does not operate with variables to get a canonical 
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expression of the correspondence criterion. The student’s reasoning includes aspects of 
contextual and symbolic generalizations (Radford, 2003). There is an explicit use of 
generic elements for the figure position and the corresponding number of balls, 
expressed in contextual terms and also symbolically. However, the mere use of literal 
symbols in a general expression is not enough to recognize the presence of aproperly 
algebraic practice. 
Level 3 of algebraization 
Intensive objects are generated which are literal-symbolically represented, and 
operations are carried out with them; transformations are made in form of symbolic 
expressions preserving equivalence. Operations are performed on the unknowns to 
solve equations of the form Ax ±B = Cx  ± D, and symbolic and decontextualized 
canonical rules of expression of patterns and functions are formulated.  
Level 3 of algebraization supposes, in our proposal, operate with the intensive objects 
symbolically represented, and therefore those objects have any contextual 
connotations. On the student’s response (Figure 3) the symbolic expression of the 
proposed formula, , is related to the visual arrangement of the beads. 
Any attempt that the student could perform, operating with this expression to obtain 
alternative forms, for example, , would be indicative of a more 
consolidated algebraic activity (level 3). 
SUMMARY AND IMPLICATIONS FOR TEACHER TRAINING 
We can identify more advanced levels of algebraic reasoning, such as those involving 
recognition, statement and justification of structural properties of mathematical objects 
involved. However, our approach focuses on identifying “what is algebraic” regarding 
“what is non-algebraic” in mathematical practice. In order to achieve this 
identification, we consider useful to introduce two intermediate levels of 
proto-algebraic activity.  
We should recognize that boundaries between levels might sometimes be blurred and 
that within each level we can make distinctions that could lead to propose new levels of 
algebraization. However, our approach can be useful to guide the action of an 
elementary school teacher who tries to stimulate the progression of his/her pupils’ 
mathematical thinking into progressive levels of generalization, representation and 
operative efficiency. 
In figure 4 we summarize the main features of the proto-algebraic reasoning model we 
have described. In summary we propose to use three criteria to distinguish levels of 
elementary algebraic reasoning: 

1. The presence of intensive algebraic objects (i.e., entities which have a character 
of generality, or indeterminacy). 

2. Type of language used. 
3. The treatment that is applied to these objects (operations, transformations) based 

on the application of structural properties. 
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The algebraization levels we propose are related to two aspects that Kaput (2008) 
identifies as characteristic of algebra and algebraic reasoning, namely algebra as: 

a) Systematic symbolization of generalizations of regularities and constraints. 
b) Syntactically guided reasoning and actions on generalizations expressed in 

conventional symbolic systems. 
Aspect a) is specified in our model in levels 1 and 2 of proto-algebraic reasoning, while 
b) is associated with level 3, where algebra is already consolidated. Our requirement of 
using literal-symbolic language to assign a properly algebraic level (level 3) to 
mathematical practice, and the requirement of operate analytically/ syntactically with 
this language is concordant with other authors interested in defining “the algebraic” 
(e.g., Puig and Rojano, 2004). 

 

Figure 4. Levels of proto-algebraic mathematical thinking  
In line with the proposals of the authors researching in the field known as “early 
algebra” (Carraher and Schliemann, 2007), we proposed to distinguish two primary 
levels of proto-algebraic reasoning to distinguish them from other forms stable or 
consolidated of algebraic reasoning. The key idea is to “make explicit the generality”, 
of relations (equivalence or order), structures, rules, functions or on modelling 
mathematical or extra-mathematical situations, while operating with such generality. 
The analysis of the nature of algebraic thinking has implications for teacher education. 
It is not enough to develop curriculum proposals (NCTM, 2000) that include algebra 
from the earliest levels of education; the teacher is required to act as the main agent of 
change in the introduction and development of algebraic thinking in elementary 
classrooms. The characterization model of “early algebra” that is proposed on this 
report, including the distinction of levels 1 and 2 of proto-algebraic reasoning, can be 
useful in training primary school teachers.  
Acknowledgment 
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MATHEMATICAL MODELING THROUGH CREATIVITY 
LENSES: CREATIVE PROCESS AND OUTCOMES 

Miriam Amit, Talya Gilat  
Ben Gurion University of the Negev (Israel) 

 
The aim of this paper is to demonstrate the process of mathematical modeling 
development and its significant outcomes through creativity lenses, as part of a more 
inclusive intervention study. The intervention included engaging students in three 
modeling workshops involving authentic, hands-on mathematical situations. An 
analysis of students’ modeling process and outcomes revealed their creative thinking 
skills. The participants were mathematically talented primary school students who 
were members of “Kidumatica” math club. This “visual” analysis gave us a better and 
clearer view of students’ creative skills as manifested in the diversity of their 
significant mathematical ideas and the variety of approaches leading them to create, 
invent and discover significant conceptual tools.    
INTRODUCTION 
Creativity and innovation are becoming increasingly important to development and 
progress in the 21st century, because of their contribution to economic prosperity, the 
promotion of individual and societal welfare, and rapid scientific and technological 
growth. Within the context of core knowledge learning (e.g. mathematics), students 
must also acquire essential skills such as problem solving, creativity and systems skills 
for success in today’s rapidly changing world (OECD, 2012). Model-eliciting 
activities (MEAs) not only provide students with the opportunity to apply their creative 
skills, they also encourage skill development and improvement (Lesh & Doerr, 2003). 
The development of students' creative competencies (Guilford, 1967; Sriraman, 2009) 
is crucial, although sometimes students’ creativity may not be easily observable. In this 
paper, we demonstrate how analysis of students’ modeling processes and their 
outcomes through the lens of creativity can lead to a better understanding and 
recognition of students' creative thinking during the mathematical modeling process. 
MATHEMATICAL MODELING AND CREATIVITY 
MEAs are non-routine, ambiguous, structured and complex. According to Sriraman 
(2009), these characteristics are required for the emergence of students’ creative 
thinking. These activities are intended for middle-school students, specifically in 
groups of three to five. MEAs are designed according to six principles: reality, model 
construction, self-evaluation, documentation, sharability and reusability, and the 
effective prototype (Lesh, Amit, & Schorr, 1997). Model-development processes 
usually involve a series of recursive cycles consisting of interpretation, development, 
testing, and revision. This process encourages students to discover, invent or develop 
different mathematical patterns and rules using different pathways and representations, 
thereby increasing their tendency to produce original ideas (Guilford, 1967; 
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Sriraman, 2009). Guilford saw the potential for creativity as a dynamic ability that can 
be developed in students, and defined creative ability as divergent thinking, 
characterized by fluency, flexibility, originality, and elaboration. 
METHODOLOGY 
The study described herein is part of a larger, inclusive intervention study aimed at 
revealing the implications of MEAs on students' creative mathematical thinking. The 
intervention program included three workshops based on different MEAs, which were 
worked on by small groups (3–4 students). Each MEA workshop had three parts: a 
warm-up activity, a modeling task and a student presentation session. The first MEA 
was based on the "Bigfoot" modeling task (Lesh & Doerr, 2003), in which students 
were asked to help a scout group discover who fixed their fountain. The only clue was 
“huge” footprints left in the mud. Students had to develop a conceptual mathematical 
tool that would enable estimating the height of this “giant” man. Each group of 
students received a cardboard with an image of an authentic large footprint's stride, and 
measuring tapes and calculators. The second MEA, called "Pocket Money", was based 
on the “The Sears Catalogue Problem” (Lesh et al., 2000). Students were asked to help 
a boy named Shmulik. Shmulik’s parents want to give him the same amount of pocket 
money that his sister got 10 years ago and he needs help in persuading them to increase 
the amount of money they are giving him today. Each group of students received two 
cards that included pictures and prices from 2001 and 2011 of the things Shmulik 
wishes to buy with his pocket money. The third MEA, called “Relay Race”, was 
designed especially for the intervention study according to the six aforelisted 
principles (Lesh et al., 2000), based on English and Watters' modeling activity 
“Volleyball”(Lesh & Doerr, 2003). In this task, the students were asked to help a sports 
committee select 4 runners (out of 8) to participate in an upcoming relay race. Each 
group of students received two tables of data on the 4 boys and 4 girls who had won 
gold or silver medals in the 80 and 100 meter races held in the previous autumn, winter, 
spring and summer seasons. The first table contained their records in those prior races. 
The second included their medals in the prior races, as well as a descriptive evaluation 
by the sports teacher as follows: MK—accelerates toward the end of the race, 
AK—good at short- and long-distance races, and SK—excels in group sports. For each 
of the above modeling tasks, the students were asked to write down a mathematical 
justification of their solution and an explanation of how to use this conceptual tool.  
Participants 
Participants in this study included 85 "high-ability" and mathematically gifted students 
in the 5th through 7th grades who are members of the "Kidumatica" math club. The 
"Kidumatica" program provides a framework for the cultivation and promotion of 
exceptional mathematical abilities in youth from varied socioeconomic and ethnic 
backgrounds (Amit & Neria, 2008). 
Data 
The data consisted of students’ documents written during the MEA, classroom 
observations, and video-recordings of the students' presentations of their models. The 
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written data included students’ modeling drafts, conceptual tools and written 
presentations. It should be emphasized that the students were asked to write down 
everything, so that drafts, sketches and final solutions could be collected. The 
video-recording included students' oral presentations of their models, researcher 
interviews and class discussions. Transcripts of these videotapes were used along with 
students’ written data to assist researchers in the analysis.  
Instruments 
WTS – Ways of Thinking Sheets 
Students’ mathematical strategies for solving the modeling were documented 
according to WTS (Chamberlin, 2004). This instrument was designed by Chamberlin 
for teacher investigations of students' work in modeling activities. In our research, we 
used this instrument to document students' unique and significant strategies. 
QAG – Quality Assurance Guide 
The QAG (Lesh et al., 2000) was used to assess the appropriateness of the model and 
identify the strengths and weaknesses of different results produced by the students. 
This instrument provides guidelines for determining how well the client’s needs are 
met by the students' solution, thus quantifying the quality of the solution by dividing it 
into five different levels of performance. This quantification then enables statistical 
comparisons using the standardized test scores. 
FINDINGS AND RESULTS 
MEAs engage students in hands-on exploration; the model-eliciting process requires 
students to pass through several cycles. Each group went through different cycles of 
interpretation, development and testing, refinement, improvement and elaboration. 
These cycles demonstrated their creative thinking abilities, consisting of fluency, 
flexibility, originality (of the appropriate outcome) and elaboration (including 
refinement and generalization). 
Fluency 

 
Figure1: Students engaging in different phases of the “Bigfoot” modeling task 

Developing a conceptual tool requires multiple modeling cycles that involve different 
ways of thinking about the goals, facts and problem situation (Lesh & Doerr, 2003). 
This process requires students' fluent thinking ability which is demonstrated through 
the variety of ideas and conjectures they raise, and their consideration of different 
perspectives and interpretations that could lead them to the discovery of significant 
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patterns and regularities (Guilford,1967). The following shows the development of the 
students' modeling process during the “Bigfoot” MEA. The first phases were 
premature and naïve, with some students exhibiting difficulties coping with the 
complexity and ambiguity of how to use the data to create a meaningful model. 
However, as the process progressed, they improved their interpretations, and 
discovered repetitive behavior in the data which led them to mathematize the situation 
and develop diverse mathematical responses, some of which could be innovative and 
original. In Images 1 and 2 (Figure 1), we see one of the first interpretations made by 
two boys: they took one of the boy's shoes, and tried to estimate how many times they 
could place it along his body. In Image 3 (Figure 1), they have moved to the next phase, 
using the measuring tape to measure their height, which they later use as part of their 
data. These students moved from accumulating the number of times they could place 
their shoe to measuring their height, which helped them discover a different construct 
of the data.   
Other groups went through different phases. For example, the following was recorded 
from one of the groups (of 6th graders) in their advanced phases:  

Y': "We need to find the ratio between the height and the shoe length…" 
N': "and the width, we need to measure the shoe width.” 
Y’: "But it [the width] differs along the shoe." 
Y': "So we will measure it at the thinnest part." 

In this group, the students found that they could obtain different patterns, as affected by 
the diversity of data and their sources. 
Flexibility 
During each of the modeling processes, students demonstrated the capacity to consider 
a variety of approaches to, and perspectives on a particular problem, reflecting their 
ease in switching from one mental operation to another (Kruteskii, 1976; Guilford, 
1967), retrieving information, knowledge (including concrete and intuitive 
knowledge) and ideas from a variety of disciplines. These were then used to find 
several different perspectives and approaches to describing both the dataset and its 
behavior via different types of representations (verbal, figural, algebraic and graphs, 
for example) (Gilat & Amit, 2012). The following results demonstrate 5th-grade 
students’ approach to the “Pocket Money” MEA. There were two phases to the 
students’ modeling development; in both, the students carefully chose five products: a 
bowling ticket, a movie ticket, a kid's meal, a skateboard and a snack. The students 
began by identifying the relationship between product prices and calculating the ratio 
between each of two equivalent products from 2001 and 2011, respectively (Figure 2, 
phase I). Then they calculated the average of all five ratios and wrote "2.16 times 
more" referring to how much 2011 prices had increased. Though at their presentation, 
the students demonstrated a different pathway, where they calculated the ratio between 
the sum of the five products’ prices in 2001 and 20 NIS, the amount of pocket money in 
2001. This ratio allowed them to find the amount of pocket money Shmulik should get 
from his parents in 2011 by dividing the sum of the five products' prices for 2011 by 
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  Strategy description                           # of groups (31)  
1 Shoe length * ratio 14 
2 Shoe size * averaged ratio + constant 10 

3 Two linear equations whose variable 
depends on the age of the person 2 

4 Shoe width or (width + length)* ratio  2 
5 Ratio between several parts of the body 2 

6 
Two linear equations whose variable 
depends on the ratio between shoe width  
and length 

1 

 

the former ratio, as illustrated in their explanation in Figure 2. The students 
demonstrated flexible thinking, switching from different strategies and pathways to a 
global, more general, easy-to-use conceptual tool. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: 5th grade outcomes of “Pocket Money” MEA 
Originality and Appropriateness  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Frequencies of student strategies in the Bigfoot modeling task 
Originality was quantified according to the statistical rarity of the responses (Guilford, 
1967). The following results demonstrate an analysis of the modeling responses of 31 
groups working on the “Bigfoot” MEA. The responses were first documented using 
WTS (Chamberlin, 2004), which assists in documenting students’ strategies and 
following up on their thinking process, their reasoning, their sources of knowledge 
(mathematical and general), the patterns and rules they found and the mathematical 
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Hello Shmulik's parents! 
We ask to raise the amount of Shmulik's pocket money 
from 20 NIS to 55 NIS because in 2011, the sum of all 
products was 495.5 NIS and in 2001 it was 176.5 NIS; 
so divide 176.5 by 20 to get 9; then divide 495.5 by 9 to 
obtain 55, the amount of pocket money Shmulik should 
be getting. 
 

Bowling ticket 2001 - 10 NIS x 3   2011- 30 NIS 
Kids’ meal   2001 - 19 NIS x 1.3 2011- 26 NIS 
Skateboard 2001 - 120 NIS x 3.3    2011- 400 NIS 
Movie ticket    2001 - 25 NIS x 1.4      2011- 35 NIS 
Snack              2001 - 2.5 NIS x 1.8     2011- 4.5 NIS 
Average 2.16 times more 
 

 
Phase 

I 

 
Phase 

II 
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presentation used to represent them. The QAG (Lesh et al., 2000) with five 
performance levels was used to evaluate the appropriateness of the products 
documented by WTS. Appropriateness refers to the extent to which a proposed 
conceptual tool (e.g. mathematical model) is sharable, manipulatable, modifiable, and 
reusable for constructing, explaining, predicting and controlling mathematically 
significant systems. Only appropriate strategies (QAG’s score ≥ 3) were used to 
evaluate the originality of the students’ responses. In the "Bigfoot" modeling task, the 
students demonstrated six different clusters of strategies (Figure 3). The 6th cluster 
was the least frequently used strategy as illustrated in Figure 3, and it therefore scored 
high on originality, while strategies belonging to first cluster scored low on originality. 
Elaboration  
Elaboration becomes apparent in the students' refinement, generalization and 
abstracting abilities which, according to Lesh, Amit, & Schorr (1997), Lesh et al. 
(2000) and Guilford (1967) represent students' extending, refining, or integrating their 
ideas to develop a new level of more abstract or formal understanding.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: 6th grade students' conceptual tool for the “Relay Race” MEA  
Figure 4 illustrates the conceptual tools developed by 6th grade students for the "Relay 
Race" MEA. The foundation of their conceptual tool or, as the students described it, 
“The key to this procedure is averages,” referring to the average of the 200 m results 
for each runner in all four competitions. Here the students used averaged time as the 
key element of their model, while their conceptual tool was based on comparison, as 
demonstrated in the dashed rectangle in Figure 4. The team defined the comparison as 
“the person who has the lowest score [is the best] will participate in the relay race." 
Though the average was the key element, students continued to mathematically 
elaborate on the developed model, engaging other essential elements such as the 
season in which the relay race took place and the teacher evaluations for each runner; 
they considered the data relations and mathematized them according to their 

The key to this procedure is averages: 
 
We calculate the average time for each of the children 
and reduce scores based on the teacher's evaluation:  
SK - minus 1 point  
MK - minus 2 points 
AK - minus 3 points 
In addition to this summation, we add the child’s result 
in the autumn and round it to an integer. 
 
Example:                           Miriam  
[41+40.5+39.7+39]:4-2+41=79.05≈ 79 
Note: the square brackets  
was added by the researcher 

The two with 
the lowest 
score will 
participate in 
the relay race. 
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interpretation; teacher evaluation was ranked from 1 to 3 (the “best”) and was 
subtracted from the average time, and the results of the 200 m race in autumn were 
added. 
Generalization 
The following model was developed by a team of three 6th graders for the provided 
data and problem situation and then generalized so that it could support other similar 
situations. The students’ conceptual tool was based on a comparison of averaged 
velocity in the 200 m and 80 m competitions which took place in the autumn, as 
illustrated in Figure 5. They used the “average velocity”— the ratio between the 
summation for the 200 m and 80 m races and the summation of the autumn results for 
the 80 m and 200 m runs. This group elaborated upon and refined their model by 
adding a ranking score for medals (10 for gold medal and 5 for silver). They also 
offered a ranking for teacher evaluations but did not proceed any further with this. In 
the last part, the students offered the “members of the sports committee” a “general” 
procedure that could be used to select players in other sports based on an “average 
achievements” ratio, and gave the example of selecting a football player using the ratio 
of all goals scored in all games divided by the number of games. 

 
Figure 5: 6th grade students’ “Relay Race” conceptual tool 

CONCLUSIONS 
Through the use of creativity lenses, students’ creative thinking features are clearly 
revealed as they manifest themselves in students' modeling process and outcomes. The 

To the members of the sports committee,  
This is our method and who we chose:  
We chose Gil, Ali, Mica and Liri. 
We chose them according to this method: 
-First we summed everyone's results for the 
 80 m and 200 m races (run in the autumn). 
 Then, we performed the following division:   
                                                 280 : results = velocity 
                                Summing 80+200                
-After obtaining the results, you choose the 4 best 
 (those whose results are highest). If results are equal, 
 consider medals: 
*more medals = a higher level is given 
*Evaluations can be used as well:  
-recommended to choose AK and SK first.                              
-Add 10 points to the final score for a gold medal and 5 points for a silver one. 
You can also use this method for other sports, such as football:                                                   
                                               
             We hope you will use this method                                                

                                                                                                

Ratio=Number of games: Number 
                                     of goals at all                                                   
                                     of the games 
                                                            

opposite 
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data were obtained from an inclusive intervention study in which the students 
participated in three workshops with different MEAs. The creativity lenses were 
derived from the four characteristics of divergent thinking: originality and 
appropriateness, fluency, flexibility and elaboration (Guilford, 1967). The modeling 
process involved multiple cycles of exploration in which new ideas, responses and 
pathways were generated and alternative solutions were invented or discovered, tested 
and revised (Guilford, 1967; Sriraman, 2009), encouraging students to utilize their 
fluent thinking skills. Moreover, the results demonstrated how this recursive process 
stimulates students’ elaboration skills, including refinement and generalization. The 
results revealed students’ flexible thinking as they shifted between various pathways 
with various levels of correctness, depending on their interpretations, mathematical 
abilities, general knowledge and skills (Lesh & Doerr, 2003). The results suggested 
that various responses may be appropriate, thus increasing the possibility of creating an 
inventive and original conceptual tool (Guilford, 1967; Lesh et.al, 2000). This “visual” 
analysis gives us a better and clearer vision of students’ creative thinking which 
manifests itself through the creative modeling process and its outcomes. 
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MEASURING IMMEASURABLE VALUES  
Annica Andersson, Lisa Österling 

 
This paper critically explores research on values in mathematics education from a 
methodological perspective. In the contexts of conducting large-scale international 
collaborations and comparisons we problematize the interpretation of learning 
activities as indicators of a certain value. Interviews with students supported our work, 
and we argue that a learning activity can be interpreted out of different categories of 
values, depending on the context. 
Keywords: mathematics, mathematical values, cultural values, contexts, methodology. 
INTRODUCTION 
Values like the prize of gold on the market are values that are easy to measure and 
compare. Values that guide students when they decide what is important when learning 
mathematics are difficult to measure, and even more difficult to compare. Still, this is 
the aim of the Third Wave project.   
The Third Wave Project (Seah & Wong, 2012) was initiated 2008 in Monash 
University in Melbourne, Australia. It is an international research project investigating 
teachers’ and students’ values in mathematics learning in different cultures. The 
relation between values and learning activities can help us understand why lessons are 
different in different cultures. A second aim is to develop a survey tool to continue 
investigating values, independently of culture (see Seah, this volume). This paper 
concerns Study 3 within the project: “What I find important (when learning 
mathematics)” (WiFi). WiFi is a survey study, conducted in countries as Australia, 
Brazil, China, Hong Kong SAR, Malaysia, Singapore, Sweden, Taiwan, Turkey and 
the US. This large-scale investigation consists of a Web Based questionnaire with 89 
questions, some multiple choice and some open questions. It is to be distributed to 11 
and 15 year old students in the different countries. Stockholm University is 
coordinating the Swedish part of the study.  
Our task as the Swedish team was to translate the quantitative questionnaire, developed 
in an Australian-Asian context, into Swedish with possibilities to, first, research 
Swedish students’ values and, second, to be able to make international comparisons. 
The aim of this paper is to problematize the interpretation from the posed questions, as 
a value indicator, to a certain value.  
THEORETICAL BACKGROUND 
Values in mathematics education are “the deep affective qualities which education 
fosters through the school subject of mathematics” (Bishop, 1999, p. 2). However, 
according to Hannula (2012), there is a terminological ambiguity in the research field 
of mathematics-related affect. Hannula describes the ambiguity if values researched 
are values by the individual or the community. Seah & Wong (2012)  take the stance 
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that “values are regarded in [the Third Wave project] from a sociocultural perspective 
rather than as affective factors.” To give one example, Andersson and Seah (2012) 
demonstrated, with a socio cultural theoretical perspective the complex interplays 
amongst learning contexts, the valuing involved, and student agency when analysing 
the Swedish student Sandra’s narratives over a year’s participation in mathematics 
class. While changes in learning contexts lead to variations in student agency with 
regards to engagement, Sandra’s story demonstrated the interplays between what these 
contexts value and whether these values are aligned (or not) with what Sandra values 
as a learner. 
The diversity of values has meant a need to differentiate amongst the many values that 
are portrayed in the classroom. Bishop (1996) emphasised three categories of values in 
the (Western) numeracy classroom, namely, mathematical, mathematics educational, 
and general educational. To investigate cultural values, the project uses the theoretical 
framework of Hofstede and Hofstede (2005).  
In the WIFI-study, the three categories (mathematical values, mathematic educational 
values and cultural values) all have sub-dimensions of values, and the study deals with 
a set of 24 different values. Children responding to the questionnaire cannot be 
expected to relate directly to a value; hence, the questions posed are about different 
learning activities, regarded as value indicators. Seah and Peng (2012) conducted a 
scoping study in Sweden and Australia, where students were asked to write down or 
take photos when they found themselves learning mathematics well. The learning 
activities pictured were treated as value indicators, and the results allowed the 
researchers to reflect on the problem of making a difference between a value and a 
value indicator.  

 
Figure 1: Categorisation of values from value indicators 

Here, the indicator is analysed within three categories of values. In every category, 
there are several value dimensions. 
An example of how figure 1 is used may be useful. In the designing stage of the WIFI 
questionnaire, the learning activity “Learning the proofs” is categorized as an indicator 
of the mathematical value of rationalism (see Bishop, 1988), and “Doing mathematics 
by myself” is categorized as an indicator of the cultural value of individualism (see 
Hofstede 2005). 

Categories of 
value dimensions 

Learning activity Value 
indicator 

Mathematical 
values 

Mathematics 
educational 

values 

Cultural 
values 
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In this paper, the mathematical value dimensions used are the mathematical values of 
rationalism, objectism and control. Rationalism is central in mathematics; it is about 
valuing reasoning and proof. Objectism emphasizes that mathematics is constructed 
from objects by an axiomatic system, and can be applied and concretised. The value 
control emphasizes procedures and mastery of rules. The Mathematical Educational 
value dimensions used in this paper are application, computation, recalling and effort.  
The cultural values dimensions have an impact on several areas in society, from family 
to companies, and Hofstede and Hofstede (2005) also ascribe its impact on education. 
In this paper, we discuss the cultural value dimensions of individualism, as opposed to 
collectivism, and uncertainty avoidance. In an individualist culture, knowledge is 
valued differently from in a collectivist culture. The purpose of learning in an 
individualist culture is less to know how to do than to know how to learn. The 
assumption is that learning in life never ends; even after school and university learning 
will continue (e.g. through post academic courses). The individualist society in its 
schools tries to provide the competencies necessary for the “modern man” (Hofstede & 
Hofstede 2005, p. 98). A collectivist society in it schools values knowledge that is 
beneficial for the society.  A diploma is also valued differently, in an individualist 
society, a diploma gives the holder a better economic status but it also improves his/her 
self-respect. In a collectivist society, a diploma provides entry to higher-status groups.  
Valuing uncertainty avoidance in school is about wanting structure and right-answer- 
questions rather than open-ended questions (Hofstede & Hofstede, 2005). Students do 
not question teachers or textbooks; they demand them to be correct. Hence, their own 
results are being attributed to circumstances or luck. The opposite position, a culture 
with weak uncertainty avoidance, is one in which students are expected to be rewarded 
for originality; and one in which results are attributed to a person’s own ability. 
To be able to analyse the relation between value indicators and values, a few earlier 
Swedish studies were consulted. The Swedish School Inspectorate (2009) made an 
assessment on mathematics teaching in Sweden. It concluded that Swedish teachers 
were still relying then on the textbook when teaching mathematics. Instead of relying 
on the curriculum, they trust the textbook to address all mathematics needed. The focus 
is often the practicing of calculation procedures. The historical development might 
have influenced this. Lundin (2008) concludes that historically, the focus has been on 
learning calculation procedures. He writes that “This need led to the promotion of 
schoolbooks filled with a large number of relatively simple mathematical 
problems,arranged in such a way that they (ideally) could keep any student, 
regardlessof ability, busy – and thus quiet – for any time span necessary.” (p. 376). 
These students’ experiences are reinforced in the context of Swedish mathematics 
education; according to Lindqvist, Emanuelsson, Lindström and Rönnberg (2003), 
textbooks in Swedish mathematics education seemed to define the essence of school 
mathematics. This way of organizing mathematics education is believed to support 
teachers in managing non-homogeneous group of students so that each student could 
work according to his/her previous learning and needs, as well as following curriculum 
and reform concerns (Johansson, 2006).   
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Taking another viewpoint, Björklund Boistrup (2010) showed four assessment 
discourses in Swedish classrooms when researching students’ semiotic resources and 
assessment acts. She labelled one assessment discourse “Do it quick and do it right”. 
Within such a discourse, we can expect teachers and students to value activities that 
allow them to practice calculating procedures. However, she also describes an 
assessment discourse labelled “Reasoning takes time”, where the teacher assess 
mathematical reasoning. Another Swedish example is the different learning contexts 
Sandra, in the example above, participated in. 
The aim of the Swedish mathematics curriculum emphasises the school subject of 
mathematics as problem solving, application, methods, reasoning and concepts. 
Problem solving has a status not as an application of mathematics, but as a part of 
mathematics. ”Teaching in mathematics should essentially give students the 
opportunities to develop their ability to:/…/ formulate and solve problems using 
mathematics and also assess selected strategies and methods” (Ministry of Education, 
2011).  
Despite those different aims and learning contexts, is there a way of describing 
common values in Swedish mathematics education? 
METHODOLOGY 
In order to better relate the value indicators to an appropriate value, we conducted short 
scoping interviews (Kvale & Brinkman, 2010) with eleven Swedish students, aged 
10-15 years old. The students were asked to elaborate on two open questions: “What do 
you find important when learning mathematics?” (The name and aim of the 
questionnaire) and “How would you design maths lessons if you were to decide 
yourself?” The students’ responses were then categorised to match the questions in the 
questionnaire with the purpose to indicate the correspondences between indicators and 
values in the Swedish context.  
Analysis 
This is an example to describe the analysis process.  

Interviewer:  What do you find important when learning mathematics? 
Student: I calculate in my textbook and I do homework. (Jag räknar i matteboken 

och jag gör läxor) 

First, the interview answer is regarded as our value indicator. Second, we analyzed the 
correspondence between the student’s interview answers and the questions in the 
questionnaire. Question 57 in the WIFI-questionnaire says “Homework”, so there is a 
corresponding question to one part of the students answer. Question 36 says 
“Practicing with a lot of questions”. There is a certain correspondence to “calculate in 
my textbook”. Third, the questions that appeared most frequently in the interviews 
were chosen for a categorization out of all three value categories (mathematical values, 
mathematics educational values and cultural values) and the underlying value 
dimensions. In this analysis process, we use the motivations expressed in interviews by 
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the students, as well the theoretical frameworks described for values, as well as 
research about traits in Swedish mathematics education.  
RESULTS  
When comparing the answers students gave in the interviews to the questions in the 
questionnaire, four questions matched several answers. Those questions are: A) 
“Problem solving” (six students), B) “Knowing the times tables” (multiplication 
tables), (six students), C) “Practicing with lots of questions” (seven students) and D) 
“Connecting maths to real life” (three students).  
Questions B) and C): “Knowing the times tables” and “Practicing with lots of 
questions”  
Students mentioned different calculation abilities, “knowing the times tables” was the 
most common, but addition (“tiokamrater”, “additionstabellen”) was also mentioned. 
We related all those answers to the question “Knowing the times-tables”. These are 
examples of activities where it is important “to do it quick and do it right” (Björklund 
Boistrup, 2010). Five students, 10-13 years old, gave answers that we related to the 
question “practicing with lots of questions”, even though what they said was “working 
in the textbook”. Four students, 13-15 years old, said that they found it not rewarding 
or discouraging to work in textbooks, and they wanted mathematics teaching to contain 
more problem-solving activities, implying that problem solving tasks were missing in 
the textbook.  
In the WIFI Research Guidelines, the question “Knowing the times tables” is 
categorised as an indicator of the mathematics educational value of recalling, and 
“Practicing with lots of questions” is categorised as an indicator of the valuing of 
effort. What the Swedish students actually said was “working in the textbook”, not 
“practicing with a lot of questions”. The Swedish School Inspectorate (Rapport, 2009, 
p. 5) found that working in the textbook is practicing procedural calculations. We 
argue, from the Swedish learning context, that is also an indicator of the mathematical 
value of control, concerned with the mastery of rules and procedures.  
The question formulates “Getting the right answer”. We interpret both “knowing the 
times tables” and “Practicing with a lot of questions” as similar indicators, you are 
likely to get the right answer if you know the times tables or practice with a lot of 
questions. For this reason, we argue that these questions are also indicators of the 
cultural value of uncertainty avoidance. In the uncertainty avoidance-dimension, 
Sweden ranks 48/49 out of 53 countries (Hofstede & Hofstede, 2005). This means that 
there is a weak uncertainty avoidance in Sweden. In school, uncertainty avoidance is 
about wanting structure and right-answer-questions rather than open-ended questions. 
Students do not question teachers or textbooks, they demand them to be correct, and 
their own results are being attributed to circumstances or luck. The opposite position, 
which goes for Sweden, is students expected to be rewarded for originality; results are 
attributed to a person’s own ability. The younger students’ answer, that it is important 
to do procedural activities, contradicts the common Swedish value. But when the older 
students express that they want less work in the textbooks and more problem solving, 



Andersson, Österling 

 

2 - 22 PME 37 - 2013 

this can be interpreted as an indicator of weak uncertainty avoidance, and of the 
students socialising themselves into the Swedish society. 
Questions A) and D): Problem solving and Connecting maths to real life 
Five of the older students mentioned problem-solving, mostly in the context that they 
liked problem-solving and wanted more problem solving activities, rather than 
working in a textbook. In the research guidelines, problem solving is categorised as an 
indicator of Mathematical Educational Value of Application.  
It is not obvious what students are valuing when they say problem solving. It might be 
a way of them to express “doing something else than working in the textbook”, as they 
do not have the vocabulary to express any alternative but problem solving. They gave a 
variety of explanations why they prefer problem solving, like working together, more 
variation, teacher solves problems, more fun, learn differently, working in pairs and 
share ideas.  
If problem solving is considered as a part of mathematics rather than a tool for learning 
mathematics, as it is described in Swedish curriculum, it is more relevant to categorise 
it as one of Bishops (1996) Mathematical values, the mathematical value of objectism, 
where applying mathematical ideas is emphasized. From our interviews it is hard to 
determine whether students view problem solving as a mathematical content or a tool 
for learning.  
Concerning cultural value dimensions, Hofstede & Hofstede (2005) describe their 
impact on education, and in the description of the individualist cultural dimension, 
there are findings relevant to problem solving. Sweden ranks nr 10/11 out of 53 nations 
in the individualism/collectivism cultural dimension which means that Sweden is an 
individualist rather than collectivist society. The purpose of learning in an individualist 
society is less to know how to do than to know how to learn. An individualist society 
rather tries to provide the competencies necessary for lifelong learning. (Hofstede & 
Hofstede, 2005). The question in the WIFI-questionnaire related to this dimension is 
formulated “Working out the maths by myself”. This is often a part of problem solving 
in the Swedish context, application can be a part of problem solving, but not always. 
This is not only a linguistic difference, rather a different practice. 
From the discussion above, we argue that problem solving is not only a value indicator 
of the mathematics educational value of application. In the Swedish learning context it 
can also be categorised as an indicator of mathematical value of objectism, as well as a 
cultural value of individualism.  
Five of the older students mentioned that mathematics was important for finding a job, 
or to get a good grade or good education in the future. They value mathematics as an 
important competence in life. Three answers could be related to the question in the 
WiFi-questionnaire about “Connecting maths to real life “. In the research guidelines, 
this is categorised as an indicator of mathematics educational value of application. But 
from the motivations we got, we argue that this rather indicates a cultural value in the 
individualism – dimension, in the same way as for the problem solving question. We 
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also argue that these answers are indicators of the mathematical value of objectism, 
where students value knowledge of mathematical objects for giving an explanation of 
real world phenomena. 
As a result, we can argue that these four questions can be regarded as value indicators 
for one value in each one of the value categories proposed, mathematical values, 
mathematics educational values and cultural values. 
CONCLUDING DISCUSSION 
In the analysis section above, we have showed that the different categories of 
mathematical, cultural, and mathematics educational values are related to different 
value indicators. They can overlap, that is, a particular value indicator may suggest the 
valuing of one or more categories of values in the mathematics classroom. The 
individual students’ values are assumed to be influenced by mathematics, mathematics 
education, culture and probably more at the same time.  This means we have to take 
more into consideration than one check in the “important”-box to determine what value 
a certain answer indicates. The interpretation will probably vary between cultures, so 
the WIFI study will give us the distribution of value indicators rather than values. 
Value indicators can be measured, compared and analysed. Values still seem 
immeasurable. 
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Traditional studies approach students’ intuitions giving a task and observing their 
reasoning. In Mathematics Education, it would be interesting to provide an 
understanding of intuitions specifically in learning processes. This is the aim of this 
paper. To accomplish it, we provide both a theoretical framework to encompass the 
specificity and the complexity of intuition in learning mathematics, and an example, 
from classroom activities in a longitudinal study, that shows intuitive thinking as 
emerging within a socially shared activity, and interrelating with other ways of 
thinking throughout the students’ objectification process. We conclude that intuitions 
may come from the individual’s insight, but it is in the socio-cultural activity that they 
are part of mathematics learning processes. 
Traditionally, from different perspectives (Fischbein, 1987; Gigerenzer & Selten, 
2001; Kahneman, Slovic, & Tversky, 1982), intuitions have been regarded as a way of 
thinking that is in contrast with the mathematical deductive one, identified as mediated, 
analytical and justification-requiring, in accordance with the rules of formal logic 
(Fischbein, 1987). The intuitive form of thinking, indeed, establishes a necessity that 
does not follow the logical necessity criterion.  
The theory of knowledge objectification (TKO) is specifically interested on how people 
think when they learn, rather than generally how they think (Radford, 2008). Looking 
at intuitions from a teaching/learning point of view requires both a theoretical and a 
methodological shift. On the one hand, given this change of theoretical focus from 
thinking to thinking in learning, instead of looking at cognitive functioning, we need to 
provide theoretical tools that encompass the consciousness movement (Radford, 2012) 
as reflecting a cultural and historical dimension that transcends it. Therefore, the aim of 
this study is to frame intuitions within an Activity Theory strand (see Roth & Radford, 
2011). On the other hand, an experimental investigation cannot look at the response of 
the subject exposed to a specific task or problem to scrutinize his cognitive structure, 
but it is necessary to provide data that show the complexity of the consciousness’s 
movement towards a mathematical generalization. 
LITERATURE REVIEW ON INTUITION 
Fischbein (1987) underlines that intuitions are neither a source, nor a method, but a 
type of cognition. He distinguishes between: perception, a form of immediate 
cognition, and intuition, which exceeds the given facts. Perceptual knowledge is 
immediate, while intuitive knowledge is also extrapolative (Fischbein, 1987). 
Immediacy is the widely acknowledged basic feature of intuition. Furthermore, 
intuitions refer to self-evident statements that exceed the observable facts. Being 
apparently self-evident, intuitions appear generally as absolute and unchangeable–they 
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possess a coercive character. A certain statement that is accepted as self-evident is also 
accepted globally as a structured, meaningful, unitary representation. The unity 
between the particular, the specific, the directly convincing example, and the general 
principle derived through similarity and proportionality from the particular case, needs 
to be established by the subject in order to have intuitive knowledge. The globality of 
intuitions – based on tacit, perceptual elaborations – is generally expressed in a 
selection process which tends to eliminate the discordant clues and to organize the 
others so as to present a unitary, compact meaning (Fischbein, 1987). In a sense, 
globalization in intuitive knowledge can be regarded as a form of generalization. This 
is in line with Radford’s (2013) understanding of sensuous cognition as a feature of 
living material bodies which have responsive sensations. Perception is, according to 
this view, the substratum of mind and it is culturally shaped. Perception is a sensing 
form of action and reflection, which can pave the road to culturally-historically forms 
of mathematical generalization. 
Gigerenzer & Selten (2001) consider intuition the most effective form of thinking 
compared to rational and deductive thinking. Intuition for Gigerenzer is good 
adaptation, namely both copying prestigious individuals, and conforming to the most 
common behavior in the population. Fischbein (1987) suggests that intuitions do not 
disappear from intellectual (mathematical) endeavors, because they are an integral part 
of any intellectually productive activity. In fact, as a consequence of Goedel’s 
incompleteness theorem, formally, any mathematical system cannot be absolutely 
closed, it cannot possess in itself all the necessary formal prerequisites for deciding 
about the validity of all its theorems (see Fischbein, 1987). Psychologically, no 
productive mathematical reasoning (solving problems, producing theorems and proofs, 
etc.) is possible by resorting only to formal means (Fischbein, 1987). This is reported 
by Liljedahl (in press) in a study on famous mathematicians’ “AHA!” experiences: the 
aspects of illumination that sets this occurrence apart from other mathematical 
experiences are affective in nature. The cognitive components are not absent, but 
mathematicians comment on attributes such as a sense of certainty, a sense of 
significance, a sense of simplicity. The “AHA!” would be ascertained through 
verification, but this “sense of” is the very real aspect of illumination. Following Roth 
& Radford (2011), within the Vygotsky-Leont’ev strand of cultural-historical activity 
we stem from in this work, cognition cannot be understood independently of emotions. 
Emotions are not a static, trait-like feature of the subject, but they constitute a holistic 
expression of the subject’s current state with respect to the object and the subject’s 
sense of likelihood of success. Emotions mediate the movement of the activity itself. 
Hence, we can see intuitive knowledge as the expression of the sensuous-valuational 
and volitional character of activity. 
Existing studies on intuition share some limitations. Both Fischbein’s and 
Gigerenzer’s understanding of intuition lack a precise explanation of what intuitions in 
mathematics really are, beyond a definition that casts them in opposition to logical 
thinking. If, according to Fischbein, globalization, as well as immediacy and 
self-evidence, does not lead necessarily to an intuitive acceptance, how does the 
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individual establish the unity between the particular, the specific, the directly 
convincing example, and the general principle derived through similarity and 
proportionality from the particular case? Furthermore, we believe that it is necessary to 
look at the emotional and sensuous dimension of the individual not as an element that 
hinders or enhances thinking, or as a need to care of for a successful cognition, but as a 
constitutive part of thinking itself.  The view of intuitions as an effective form of 
adaptation (Gigerenzer & Selten, 2001), beyond pure rationality, of the individual to 
the constraints and challenges of its environment is based on the illusion of an 
autonomous self-determined individual that constructs his knowledge (Radford, 2012). 
In our view cognition is not only the individual’s adaptation but it is a mediated 
reflexive activity (Radford, 2008). The cultural and historical dimension embodied in 
socially shared activity (Roth & Radford, 2011) is the true substance of the 
individual’s self-determination and cognition.  
INTUITIVE THINKING IN A CONTEXT OF LEARNING 
We are not disregarding the importance of the previous results, both in psychology and 
in mathematics education. In fact, we are aware that there exist mathematical concepts 
that are more intuitive than others (Fischbein, 1987) – or that there are ways of framing 
mathematical tasks that foster intuitive thinking more than others, but the fact that we 
recognize concepts that are more intuitive than others is not absolute: it is culturally 
determined. And for a certain subject a concept, which is culturally recognized to be 
intuitive, may be not intuitive – or viceversa, regardless of his incorrect or correct 
answer to a task. Hence, it is important to consider how the subject relates himself to 
the concept, and not only the concept itself. Similarly, we are aware that there exist 
individuals who are more intuitive – and researches studying their behaviour are worth 
considering, but this approach leads to accounting for learning as adaptation 
(Gigerenzer & Selten, 2001). Learning is also adaptation to a physical/social/cultural 
environment, but it is more than mere adaptation.  
In our view, cognition is a mediated reflexive activity (Radford, 2008). The teacher 
plays a crucial role in learning, since he is the only one who knows where the activity 
should lead to. In this view, intuitive learning is a determinate way to intertwine the 
subject, with its material and ideal components, a reified cultural and historical activity 
(the so called mathematical object or mathematical content), and a set of semiotic 
means (ideal and material) that allow the individual to become part of, re-enact and 
make sense of such an activity. The intuitive relationship between the individual and 
the content of knowledge is a reflexive activity mediated at an embodied, perceptual 
and sensuous level. Thinking is not purely sensorial, nor purely conceptual. Intuition 
can be seen as the sensuous side of intellectual-emotional activity when the activity is 
mediated mainly through objects, artefacts, gestures, bodily movements, deictic and 
generative use of natural language (Andrà & Santi, 2011). Intuitions are a relationship 
between the subject and a content of knowledge that allows sensibilities to notice, to 
think, to become in proximity and synchrony with generality. Intuitions are a way of 
being and becoming of the consciousness in its movement towards the generality of 
mathematical knowledge, with the feeling you are close to and re-enacting what 
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culturally transcends you. Intuitive thinking allows the students moving towards a 
more accepted concept, relying on previous knowledge both cultural and historical, 
and that is being objectified in the reflexive activity. This mode of existence is 
dialectically entangled with the logical and discursive one. The dialectics between the 
two modes of existence accounts for the consciousness trajectory towards the 
recognition of the general that is the essence of mathematics.  
AN EXAMPLE FROM CLASSROOM ACTIVITY 
Data come from a longitudinal study that observes the development of algebraic 
thinking in students of a same classroom from grade 2 to grade 6. In particular, this 
paper focuses on a cycle started in the school year 2010/11. We discuss a 
teaching/learning sequence involving grade 3 students in the school year 2011/12.  
The experimentation has been designed according to activity theory methodology 
(Roth & Radford, 2011): (a) presentation and discussion of the activity to the whole 
class, (b) work in small groups of students, with the support of the teacher who goes 
around and discusses with each group, (c) general discussion and a new cycle begins. 
The mathematical content of the activity is part of grade 3 curriculum of Ontario: the 
search for regularity in number sequences. Data are collected both from videotaping 
and written material produced by the students. 
The first task asks the students to find the regularity of the series: 25, 22, 19, 16. The 
students also know that they should underline the important words on the sheet. In a 
group of four, Estela proposes “find”, “regularity”, “this” and “series”, and James 
suggests to reduce to “regularity” and “series”. After having agreed about the most 
important words to underline, Estela proposes to use the number table, and she goes 
taking one of them from the teacher’s desk. In the meanwhile, Mike tells to James that 
he already knows the answer. 

1. James: Seriously. [he gazes Mike’s eyes] 
2. Mike: Yes, I know the answer: one subtracts 3 at any time. You subtract 3 at any time. 

[Mike makes no gesture, he stands firmly in front of James] 

Estela comes back with the number table and tries to make sense of the task, addressing 
James. Alone, Mike counts with his fingers “1,2,3 (Figure 1-a,b,c). 1,2,3” (Figure 
1-d), then he talks to the group: 

3. Mike: I know what it is, I know what it is. [At this point Mike looks at his mates] 
4.  Estela: What is it? [Estela addresses Mike, changing her posture] 
5.  Mike: one subtracts 3 any time. [The students take the number table and Mike 

counts on it (figure 1-d)]. 1,2,3. 1,2,3.  
6.  Mike: 25 minus 3, 1,2,3. 1,2,3. [James follows Mike’s pointing on the table] 
7.  Mike: Look, 45  
8.  James: 25. 
9.  Mike: then –3, 1,2,3. 1,2,3. [points on the table, follows numbers in reverse order] 
10.  Estela: 25. So 25, 22 
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11.  Mike: 1,2,3. 1,2,3. [still points on the table] 
12.  Estela: 19. 
13. Mike: 1,2,3. [continues to point on the table] 
14. Estela: Oh, yes!  

 
Figure 1: Mike’s intuition on his hand and on the table (Mike is the boy on the right). 
We notice that Mike has a starting intuition about the regularity of the series. He tells it 
to James, but immediately after this, Estela comes back to the group with the table and 
she catches the group’s attention wondering how to deal with the task. Alone, Mike 
tries his intuition by counting with his hands (Figure 1-a,b,c), and then comes back to 
the group: resorting to the number table, he shows the solution to his mates, repeating 
several times “1,2,3” and pointing on the number table (Figure 1-d). Mike’s first 
intuition can be accounted as an “AHA!” experience, in that he lives a sense of 
certainty, a sense of significance, about his solution. The nature of Mike’s intuition 
seems to be affective rather than cognitive at this stage. In fact, we can see a sense of 
proximity with the general rule. In a second moment, he tries the correctness of his 
solution by counting with his hands, while the other three students wonder for a 
response. This is a private, more cognitive, moment for Mike. Emotions are still part of 
his thinking, giving him a sense of likelihood of success about his starting idea. This 
moment is immediately followed by a public one: Mike shares his intuition. In the rest 
of the excerpt, Mike repeats again and again the numbers “1,2,3”, pointing with his 
fingers on the number table. Finally, Estela intuits the general rule (“Oh yes!”). Mike’s 
intuition starts to become shared. In Estela’s voice we can perceive a sense of 
disclosing, accompanied with positive emotions. The students’ behaviour highlights 
the need for the intuitive part of mathematical thinking in terms of their space-time and 
tactile experience, bodily movements, rhythm. This intuitive thinking pivots around 
the number table as a semiotic means of objectification that allows the synchronic use 
of gestures and language, through which the students develop their space-time 
experience. We remark that at this point, in their movement towards mathematical 
generalization, the students have not yet fully objectified the generality behind the 
sequence of numbers, they are becoming part and re-enacting what culturally 
transcends them. Now the group activity goes on: the students have to write their 
answer on the sheet. 

15.  Mike: Ok, one does 25 – 3  
16.  Estela: Yes, yes, yes, yes 25 – 3, so 25 – 3 = 22 
17.  Maria: Are you sure? Because… 
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18.  Estela: Yes. 22 –, we have already counted on my number table. 
19.  James: 22 – 3 = 
20.  Estela: 3 = 19, right? [echoes James, but addresses Mike] 
21.  James: Yes, I believe that it is so. 
22.  Estela: 19, 19 – 3  
23.  Mike: I have already done, look. 
24.  Estela: = 16. 
25.  Mike: Look, that I have already done. 
26.  Estela: We should make a circle around all the threes. Circle all the threes, like 

circle 3, circle 3, circle the third 3. Is there a statement like an idea of a 
statement which we can write such as: one counts, one subtracts always 
three, or something similar. 

27.  Mike: One subtracts three at any number 
28.  Estela: (contemporary to writing) One subtracts, always… 

The students are in the process of agreeing about the written answer to report on the 
sheet. Firstly, they write down the computations, accounting of what they have done on 
the number table. Again, the number table is a SMO the students resort to in order to 
have a sense of likelihood about what they are expressing in written words. Maria’s 
doubt (“are you sure?”, 17) comes from her emotional sense of likelihood, given that 
she is still struggling to intuit the general rule. The reference to the number table is 
made explicit in 18 by Estela, who replies to Maria. Then, the students discuss about 
the statement to be written, and a new word arises in the discourse: “always” (26). This 
can be taken as a movement towards mathematical generalization, but also allows us to 
infer that intuitive thinking does not inform only an initial moment, nor it should be 
disregarded as if there is a moment in the students’ trajectory in which they think “truly 
mathematically”. In fact, this intuitive thinking both supports and triggers the need for 
a formal and discursive objectification of the general rule. The students, even if it isn’t 
required in the task, try to express the general rule: you always subtract three, at any 
number. There is also a redundancy in the use of both “always” and “any” in their 
shared written solution. 
In the two sequences already shown, it is evident how intuitive thinking, in our 
socio-cultural approach, sometimes can be an autonomous stroke of genius of a 
student, but it is in the communitarian self (Radford, 2012) –the shared activity 
between the members of the group– that it becomes objectified, as it is testified in the 
students’ evolving use of language: already in 2, Mike uses the expression “at any 
time”, and he repeats it in 5. But it is Estela who, in 26, suggests to use “always”. Mike 
echoes her words, saying “at any number” (27), and recognizing the emerging 
generality. The communitarian self resorts to the territory of artifactual thought: 
artifacts, in fact, constitute what we are, feel, think, etcetera. The number table is a 
good example of a semiotic means belonging to the territory of the artifactual thought: 
it is not just a representation of the first 50 natural numbers, but it culturally determines 
the way the students make sense of the sequence. James, for example, in 6-13, follows 
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with his fingers Mike’s pointing on the table, and without saying a word he objectifies 
the rule intuited by Mike. Both in 8 and in 19, we have a clue to infer that James can 
recognize such a rule, since he contributes to the discussion, correcting Mike in 8 and 
suggesting how to go on in 19. And the number table belongs to the culture, both in 
general as part of the mathematical knowledge, and in particular as part of the 
classroom culture. Also the list of computations (15-24) is a semiotic means of 
objectification, which (differently from the number table that is given) is created and 
shared within the group, and allows a further leap towards the general rule: the 
students, in fact, firstly underline the threes on their sheets (26), then they write a 
closing statement where they underline “One subtracts, always” (28). The 
consciousness’ movement of the students is constantly culturally and historically 
determined both by their previous knowledge and the semiotic means of objectification 
to which they are exposed. The interplay between intuitive (e.g. –3) and more abstract 
(e.g. “always”) forms of thinking, and the communitarian consciousness’ movement, is 
expressed throughout the dialogue, especially when the students invite each other to 
pay attention (“look”). 
DISCUSSION AND CONCLUSION 
We have argued that our understanding of intuition doesn’t allow us to cast them in the 
individual’s cognitive and psychological behaviour, nor in the structure of the 
mathematical object: we must look at the dialectical relationship––culturally mediated 
and transcended––between the individual consciousness and the content of knowledge, 
between the particular (–3) and the general (“One subtracts, always”), that gives 
subjective activity objective reality and bestows objective reality with the subject’s 
determinations. Intuitive thinking can be seen as the sensuous side of intellectual 
activity when the activity is mediated mainly through objects, artefacts, gestures, 
bodily movements, deictic and generative use of natural language. In intuitive thinking 
the mathematical content belongs to the student’s space-time experience in terms of 
emotions (Mike’s sense of certainty in 1), feelings, perception, movement, rhythm 
(Mike’s counting 1-2-3 on his hand and then on the number table, sharing his 
intuition), manipulation of objects (the number table itself), which account for the 
sense of proximity with, and enactment of, the general (“any”, “always”) that 
transcends the individual. This act of mediated recognition determines both the content 
and the subject. It is a process of being and becoming that could not take place without 
the intuitive part of this double-sided activity that we call thinking.  
From an educational standpoint, this student-content relationship we termed as 
intuition is a way of thinking, or rather, a mode of existence that is always present in 
the consciousness’ trajectory towards the objectification of mathematical knowledge 
both in learning-teaching processes and in the cultural and historical development of 
mathematics. It is necessary to further scrutinize the nature of this special type of 
mediated reflexive activity that we bound to intuitive thinking both to better 
understand this phenomenon and to design suitable instruction in the classroom.   
Finally, this work can be taken as an attempt to show that intuition may belong to a 
private, individual sphere, but it is in the communitarian self that it becomes part of the 



Andrà, Santi 

 

2 - 32 PME 37 - 2013 

mathematical activity we call learning. In that, we are also addressing an issue on the 
political, as insightfully pointed out by Pais and Valero (2012). We remark that our 
understanding of politics follows Milani’s (1967) words: “through teaching I have 
learned that the problem of the others is the same as mine: coming out alone is avarice, 
coming out together is politics”. 
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STRAIGHT ON THE SPHERE: MEANINGS AND ARTEFACTS 
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This report is drawn from a teaching intervention which aims at introducing spherical 
geometry in a primary school. Assuming a perspective according to which learning 
should involve students in processes leading to the explicit formulation and elaboration 
of meanings, this report is meant to explore the dynamics between students’ 
elaboration of meanings emerging from an activity with artefacts and students’ explicit 
reflection on the use of the artefacts themselves. 
CONCEPTUAL FRAMEWORK AND RATIONALE 
The use of technologies for teaching and learning has raised several issues concerning, 
for instance, the role of digital and non-digital artefacts in mathematics teaching and 
learning, the potential and critical aspects related to their use in the classroom, the 
professional needs of teachers (for an overview, see Hoyles and Lagrange, 2010). 
Generally speaking, the learning potential of artefacts is supposed to rest on their 
mediating function, that is on the potential for artefacts to play as intermediary entities 
able of establishing links between the artefact user and the object towards which the 
artefact’s use is directed (Rabardel, 1995; Meira, 1995; Trouche, 2000; Borba and 
Villarreal, 2005). More specifically, Rabardel (1995) assumes the existence of two 
directions of mediation: the pragmatic mediation, oriented towards the action on the 
object and its transformation, and the epistemic mediation, oriented towards the user’s 
awareness of the object, its properties and its changes after the user’s action.  
With that respect, Mariotti and Maracci (2012) noticed that the study of the mediating 
function of artefacts often focuses on the analysis of its role in relation to the 
accomplishment of tasks, while the complexity of the relationship between use of 
artefacts and meanings-making risks to remain concealed. Assuming a Vygotskian 
perspective (Vygotsky, 1978), we firmly believe that the objectives of education entail 
the conscious development of meanings. This raises the need to explicitly address the 
issue regarding students’ awareness of the meanings developed in relation to the use of 
artefacts.  
Another crucial epistemological issue concerns the relationship between the personal 
meanings which the individual develops through the use of artefacts and the 
mathematical meanings at stake, the appropriation of which is the objective of an 
educational intervention (Bartolini Bussi & Mariotti, 2008). Bartolini Bussi and 
Mariotti (2008) remark that the personal meanings cannot be assumed to evolve 
spontaneously towards the desired mathematical meanings, which for their very nature 
are general, de-contextualized, and not-negotiable. In fact, the meanings emerging in 
relation to the use of artefacts develop with respect to a complex system of meanings 
(that includes stable and unstable meanings, meanings elaborated in depth and still 
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developing ones). The evolution of students’ meanings needs to be mediated by an 
expert (the teacher) aware of all this complexity. 
Summarizing we think that there is the need of deepening the study of the meanings 
which the students develop in relation to the use of artefacts and the conditions under 
which these meanings can evolve towards mathematical meanings. More specifically, 
our study aims at investigating the process of meanings-making in relation to an 
activity involving the use of artefacts with a specific focus on the dynamics  among: 

• students’ explicit reflection on the meanings emerging from the activity, 
• their elaboration of the use of artefacts, and 
• their explicit reflection on such use, 

in the context of a specific teaching intervention at primary level.  
METHODOLOGY 
The teaching intervention is part of a pilot project which is still in progress. Currently, 
two 5th grade classes (with 20 and 16 pupils) of a primary school are involved. The 
intervention is structured in 10 sessions of one hour each (two sessions for week), held 
during the normal school-time. It includes both group activities - in which students are 
involved in the exploration of concrete models of plane geometry (floor, board, sheet) 
and spherical geometry (plexiglass sphere 1 , see Lénárt, 1993) - and collective 
discussions during which the outcomes of the previous group activities are shared and 
discussed. Depending on the specific task, pupils can use several artefacts: adhesive 
tapes, cords, rubber bands, paper tapes... 
All the sessions are videotaped. The analysis is developed on the basis of the videos 
realized and on the verbatim transcripts of the verbal interactions among students and 
between them and the teacher. The data analysed are drawn from the activity within the 
larger class. 
THE TEACHING INTERVENTION: PRINCIPLES AND AIMS 
We present synthetically the main principles which inspired the design and realization 
of the teaching intervention, in order to frame the activity which we analyse in the next 
section (a discussion of these  ideas is out of the scope of this report): 

• the importance of the epistemological analysis of the mathematical content, 
object of the didactical intervention (Arzarello & Bartolini-Bussi, 1998); 

• the idea of “mathematics laboratory” as the phenomenological space of 
mathematics teaching and learning, structured by the use of specific 
technological artefacts and negotiation processes (Chiappini, 2007); 

• the role of the use of artefacts (Bartolini Bussi & Mariotti, 2008); 
• the role of kinesthetic and perceptual experience in the process of 

meanings-making (Nemirovsky, 2003; Radford, 2003) ; 

                                           
1 Due to how the plexiglass sphere is built, a maximum circumference and two antipodal points are clearly marked on its 
surface. The pupils will spontaneously refer to them as “equator” and “poles” respectively. 
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• the role of verbalization processes in the process of meaning-making (Leont’ev, 
1964/1976; Bartolini Bussi & Mariotti, 2008); 

• the teacher’s role in setting up the activities, supporting pupils’ exploration and 
managing the classroom discussion (Bartolini Bussi & Mariotti, 2008). 

The teaching intervention is centred on the exploration of concrete models of plane 
geometry and spherical geometry, and on the comparison between the outcomes of 
these exploration. The leading hypothesis is that such kind of activity fosters pupils’ 
consciousness-raising of the geometrical relationships characterizing the geometrical 
objects of plane (they are already familiar with) and sphere.  The epistemological 
analysis led us to take the notion of geodesic as the starting point of our intervention, 
and design activities centred on the realization and exploration of straight paths (see 
also the analysis of Arzarello et al., 2012). As Hilbert and Cohn-Vossen state 
(1932/1990, p. 220, italics in original): 

“The geodesic lines, or geodesics, of a surface are a generalization of the straight lines of 
the plane. Like the straight lines, they are endowed with several important properties 
distinguishing them from all other curves on the surface. Hence they may be defined in 
various ways […] as shortest lines, as frontal lines, and as straightest lines.” 

DATA ANALYSIS AND RESULTS 
We analyze the first two sessions devoted to the exploration of straight and 
non-straight paths on the sphere. For the sake of readability, we split the description of 
the sessions into episodes which correspond to different leading tasks posed by the 
teacher. Before these sessions, pupils were involved in activities concerning plane 
geometry. Specifically, they were asked to realize straight and non-straight paths 
walking on the floor of the classroom and of the hallway, and using adhesive tape and 
cord. This activity was meant to let pupils reflect on the kinesthetic experience of 
“going straight” on the plane and to explicitly notice that “it’s easy to lay down the tape 
on the straight paths, while on the non-straight ones it becomes tangled, spoiled” (here 
and in the following, pupils abbreviate “adhesive tape” with “tape”). That is a general 
property: if a piece of “strict enough” tape is carefully laid down on a surface so as to 
adhere on it without wrinkles, then the tape “approximates” a geodesic. 
First session - episode 1. The teacher launches to pupils the request of drawing 
straight and non-straight paths on the sphere. The class is split into 4 groups of 4 pupils 
each; each group has a plexiglass sphere and marking pens. In a few minutes, all the 
groups draw “straight” paths (i.e. maximum circumferences on the sphere) and 
“non-straight” ones. When comparing the outcomes of their work, the pupils 
immediately show a clear agreement on which paths are straight and which are not. 
Their spoken reports, instead, reveal different levels of elaboration of this experience. 
Some pupils only describe the non-straight paths as “haphazardly realized”, and the 
straight ones as “difficult to realize”. Other ones (e.g. P) try to describe the paths 
making reference to spatial properties, and identifying the procedure they followed: 

P:  the non-straight path, as we can see, you can go everywhere, turn and then 
go back, do what you want more or less. In the straight path, you can move 
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straight […] from one pole to the other one, [...]continue, continue, and […] 
the equator.   

Episode 2. After the comparison of the outcomes of the group work, the teacher poses 
the task: “how can we ascertain that a path is straight or not on the sphere?” The task 
is decoded in two radically different ways by P and F. The former refers to the drawing 
procedure and to the spatial properties which in his view characterize the straight 
paths. The latter expresses the need to introduce an artefact for checking the paths:  

P:  from your departure, you fasten something on it and go ever straight, if 
when you can back you are again in that point, it means that you have 
turned around (he sketches circles on air with a finger)… you’ve gone 
straight and you’ve done all the rotation of the sphere (he sketches with a 
finger a larger circle)  

F:  in my opinion, to manage to make a straight path […] using the tape, 
because the tape […] shows if you manage to put the path in straight way, 
and on the contrary if you don’t manage, it means that it isn’t straight, it is 
curved.   

These interventions already intimate the different roles that use of an artefact, spatial 
and graphical properties, and kinesthetic  experience, play in the development of 
meanings related to “straight path on a sphere” for the two pupils. This difference will 
emerge more and more clearly in the following. 
Episode 3. The teacher re-launches F’s idea to the class, asking pupils to try and lay the 
adhesive tape on their paths, and observe what happens. Then, the pupils share and 
discuss the outcomes. That leads pupils to explicitly elaborate on the use of the artefact  
for accomplishing the task, and to reach a general consensus regarding the fact that: the 
tape adheres well on the sphere along the straight paths, while it is difficult to make it 
adhere along the non-straight paths – “it folds up”, “it is very complicated”, “it is 
impossible”. The analogy with the experience on the floor is recalled by the teacher 
who provides a synthesis of the discussion and concludes: “the tape is an instrument 
for checking”, (later on) “the best one”. Given the consensus which has been 
apparently reached, the teacher intervenes to provide a first “official” characterization 
of the “straights paths”: a straight path on the sphere is a closed line which divides the 
sphere in two equal parts. At the very beginning this characterization is agreed upon by 
all pupils. Then, at the very end of the session, unexpectedly, P intervenes proposing a 
new “straight path” (a non-maximum circumference, that we will call the “P’s path”): 

P:  […] not ever it cuts the sphere into perfect halves […]. If you start from 
here and go straight straight […] turn here (points out a vertical 
non-maximum circle) here is a larger part and here is a smaller, then it 
doesn’t cut perfectly.  

This path is immediately refused in a peremptory way by most pupils.  
Second session - episode 4. The teacher recalls the path proposed by P and asks pupils 
to express their point of view: is the P’s path straight? The following discussion reveals 
that the meanings related to “straight path on the sphere” were not so shared and stable 
as appeared at the end of the previous session:  
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G:  it can be both [straight and non-straight] because, when you draw a path on 
the sphere, the sphere is rounded […] then if you make a circle (she points 
out a non maximum circle on the sphere) […] it can seem straight but, to 
me, it isn’t. 

F:  to me it isn’t straight […], because you have done the circle […] that means 
to turn 

P:  […] here I haven’t curved […] you go ever straight, look (his finger goes 
through the non-maximum circle he has drawn before) 

It is here evident an emergent tension between an intrinsic point of view (according to 
which there are straight paths on the sphere) and an extrinsic one (no path is really 
straight on the sphere). Later on, P adds: 

P:  you go ever straight, […] the sphere is rounded and then you shape a circle 
[…] because the sphere is rounded, you don’t make a circle, because you 
walk, you go ever straight. 

No pupil evokes the use of artefacts to test the P’s path, notwithstanding the apparent 
solid consensus on the use of the adhesive tape as a decisive instrument for checking.  
Episode 5. Then the teacher suggests P and all the groups to draw this kind of path on 
their sphere and try and stick the tape on it. P and all the pupils experience that the tape, 
when laid on non-maximum circumferences, folds up and form several wrinkles. But 
this experience does not lead all of them to refuse the P’s path. On the contrary, some 
pupils begin to question the use of the adhesive tape itself. Three different points of 
view emerge little by little: (a) it is difficult to use the tape accurately; (b) a certain 
tolerance is allowed, that is the presence of few folds is not decisive; (c) one can use the 
tape in different ways, for instance one can cut and stick small pieces of tape instead of 
a long continuous one. P is the first proponent and the most strenuous defender of the 
first two points of view: 

P:  it doesn’t come very well… but... with the tape it is difficult because here 
[in the equator] it is easier […] 

P:  also in my opinion with the tape is more difficult but it is straight as well, 
because the tape should turn or fold up, here it comes just few folds.  

Only for few pupils this test is decisive: the P’s path cannot be regarded as a straight 
path because the tape forms a lot of wrinkles, see M and F’s joint argument: 

M:  [...] the circle [the P’s path], to me 
F:  that P said to be straight 
M:  to me is not straight, because we have tried [...] and it [the tape] becomes 

ever tangled 
F:  and then it means that it is a non-straight path 

The interventions of F and P polarize the following discussion on two opposite 
arguments: those based on the use of the artefact (by F), and those based on the spatial 
properties of the paths and on the drawing experience (by P). No agreement between 
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them seems possible. And the consideration of the spatial properties of the paths gain a 
greater and greater consensus among pupils: 

G:  this path [the equator] is straight, but if you make it [the path] smaller […] 
of course it is more difficult [to lay the tape down] but it’s the same stuff, 
it’s equal. 

Episode 6. Notwithstanding the numerous interventions of the teacher aiming at 
regaining a consensus among pupils on the use of the artefact, no conciliation is 
reached. The observation that the tape is tangled originates a tension between two 
opposite interpretations; the tape is tangled because: (a) the path is not straight, (b) the 
tape has not been accurately stuck. Such tension is evident, for instance, in the use of 
terms “tangled”, “crooked”, and “badly put” as nearly synonymous, and in the prompt 
and inflamed reaction of F (the pupils are describing the tape laid down by F along a 
circle, drawn in the blackboard by F in order to recall the use of the tape on the plane):  

Some pupils: [the tape is] “tangled”, “crooked”, “badly put” 
F:  no! badly put, no! It is put completely tangled because it is not straight! 

Later on, the same tension emerges again, describing the tape on the sphere (P’s path): 
F:  on a sphere it comes tangled […], look […] that it comes ever 

taaaaaaaaaaaangled!! 
P:  because […] you must put it well  

The questioning of the artefact becomes more and more radical: 
B:  the tape […] of course you’ve to tangle, but if you had another thing, you 

don’t tangle 
P:  […] I don’t mean that it [the tape] has this problem, [but] it has this 

characteristic. On the sphere, if you haven’t put central (near the equator), 
it is tangled. 

SYNTHESIS AND CONCLUSIONS 
The analysis developed in the previous section highlights the complexity of the 
dynamics involving the explicit reflection on the meaning emerging from the activity, 
the elaboration of the use of artefacts and the explicit reflection on such use. Several 
elements, many of which we could not analyse here, play a key role in the process of 
meaning-making: the use of artefacts; the semiotic activities - both verbal and 
non-verbal - in which the students were involved; the kinesthetic activities, and in 
particular the modalities of drawing lines on the sphere; the teacher, in setting the 
activity and managing the discussions. All these can contribute to the evolution of 
different and, sometimes, contradictory meanings, which coexist in the classroom and 
even in single pupils  (e.g. G in thinking that the P’s path is both straight and not 
straight).  
The common experience with the artefacts, while playing a crucial role in 
meanings-making, cannot suffice in itself to assure that meanings are shared among 
pupils and evolve as desired. However, what makes our analysis interesting to us is a 
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more complex aspect. In fact, the tension between the different emerging meanings 
stimulates pupils’ reflection not only on such meanings, but, in particular, on the use of 
the artefact, and led pupils to adjust, doubt, or even refuse the artefact for its 
“inadequacy”. Hence it is the co-emergence of contrasting meanings which led pupils 
to question the artefact. With that respect, an interesting issue to us is whether specific 
constraints of artefacts and activities can avoid a so radical questioning, or conversely, 
how the possibility of a radical questioning of the mode of use of specific artefacts can 
be exploited for educational purposes. 
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CONFLICTING DISCOURSES THAT SHAPE MATHEMATICS 
TEACHERS' PROFESSIONAL IDENTITY 

Yigal Asnis 
University of Haifa 

 
The ongoing research reported in this paper concerns mathematics teachers identity 
and the tensions within it due to contradictions between numerous discourses 
struggling to shape it. The concept of professional identity, defined in discursive terms, 
allows for empirical inquiry that, unlike the traditional research evolving around the 
notion of beliefs, leaves much space for the sociopolitical context. Qualitative and 
quantitative techniques of critical discourse analysis are used in analyzing written and 
spoken texts from different sources, representing different communities: policy 
documents, newspaper articles, various education-related websites and interviews 
with mathematics teachers. 
THE THEORETICAL FRAMEWORK 
The notion of beliefs has been borrowed from psychology to explain the active, 
transforming role of individual mathematics teachers in applying proposed reforms. 
Because of reported inconsistencies between professed beliefs and actual decisions, 
researchers tend to infer beliefs from observations on the teacher's practice rather than 
just from what she or he says in an interview. This cognitivist approach has been 
criticized as non-operational (Sfard & Prusak, 2005) and as suffering from logical 
fallacy of circularity (Lerman, 2002), whereas the cause that seeks to explain the action 
is derived from the action itself.  
In addition, the traditional approach seems to be overlooking the fact that the real 
motives for how modern mathematics education is designed and functions reside in 
political and economic realm, rather than in the domains of mathematics or education 
in the narrow sense (e.g., Keitel & Vithal, 2008). Within this context, modern math ed, 
instead of caring for development of mathematics thinking and understanding, is often 
cultivating “prescription readiness” among the students, thus serving the neo-liberal 
market demands (Skovsmose, 2011). 
The problems of the cognitivist approach arise from the Cartesian split between mental 
and “bodily” (material) phenomena. Activity theory, based on the concept of activity 
as “purposeful changing of natural and social reality” (Davydov, 1999, p. 39) is a 
promising alternative conceptualization of mental capabilities. Activity is mediated by 
physical (tools) and semiotic (communicational) means. Taking as a point of departure 
the related “participationist” vision, according to which “patterned, collective forms of 
distinctly human forms of doing are developmentally prior to the activities of the 
individual”, Sfard (2008, p. 78) arrived at the conclusion that thinking can be defined 
as “individualized version of (interpersonal) communicating” (p. 81). Following Sfard 
and her colleagues (Heyd-Metzuyanim & Sfard, 2012; Sfard & Prusak, 2005), I define 
teachers' professional identity as those reifying narratives about mathematics and 
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mathematics teachers that answer the basic questions underlying teachers' 
decision-making: “What is mathematics? Why, what and how should we teach?” It is 
worth noting that those questions and the related narratives are “fractal” in the sense 
that they can be asked/told with regard to any area of math ed, even to the narrowest 
one. The identifying narratives are coming from numerous discourses and, in result, 
they are often contradictory. 
In order to be able to deal in the research with sociopolitical issues of math ed , I adopt 
the approach known as critical discourse analysis (CDA; Fairclough, 1995). Among 
the distinctive features of CDA one can count (1) viewing discourses as a practice of 
using language; (2) assuming dialectical relationships between discourses and social 
structures; (3) studying issues of power distribution, exploitation and other forms of 
social distortions; (4) denying the neutrality of social research, i.e., arguing for the 
necessity of considering social implications of the research. 
The majority of social fields is afflicted with interdiscursive conflicts—conflicts 
between discourses struggling for imposing their view of reality. The winning, 
hegemonic discourse is perceived as “common sense”, thus serves as the ideology. In 
educational research, a few attempts have been made to identify discourses struggling 
for impacting teachers’ identity—see e.g., Sachs’ (2001) work on the conflict between 
“managerial” and “democratic” discourses. This area of research, however, is rather 
scarce and there is still much need for thorough empirical studies in which 
mathematics teachers' professional identity is investigated from discursive, especially 
that of CDA, point of view. 
RESEARCH OVERVIEW 
In spite of the comprehensive body of research on collisions in mathematics teachers' 
decision-making on the one hand, and about sociopolitical contexts of math ed on the 
other hand, there is still much need for theoretically sound, empirically grounded 
research that would link these two areas. I argue that the present study may contribute 
to providing what is missing. 
The main goal of my research is to explain Israeli mathematics teachers’ decision 
making by considering the broad sociopolitical context of their practices. The first 
necessary step in dealing with the issue is to describe different, possibly conflicting 
discourses that feed into the teacher's professional identity. Each such discourse is 
characterized by its representation of mathematics and mathematics teachers, its origin 
(community) and purpose, and the means with which it struggles for domination. 
I use two kinds of data: interviews with mathematics teachers and written texts from 
various sources, some of them to be found on the web (that is, I am using techniques 
known as “Web As Corpus”, WAC). 
The interviewees are secondary school mathematics teachers and the interviews are 
designed in such a way as to minimize the influence of either the interview setting or 
the interviewer’s discourse. The analysis of interview transcripts is mostly 
quantitative, and they include looking for nodal points (concepts around which the 
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discourse is built) and floating signifiers (nodal points that conflicting discourse define 
in different ways; Laclau & Mouffe, 2001), identifying argumentation strategies and 
metaphors, etc. In two pilot interviews I found two conflicting discourses regarding 
mathematics teaching (floating signifier), built around the concepts of exam and of 
understanding (nodal points). The discourse of exam uses metaphors of avoidance, 
such as “to cover (which in Hebrew means, literally, to conceal) things that can be 
asked in exam” and resorts to organizational argumentation, rested on time 
management. For example, fostering the student’s intuition is rejected as activity that 
takes time that could be used for a more direct preparation to the exam (e.g., for solving 
routine textbook problems). In contrast, the discourse of understanding uses metaphors 
of struggle, such as “to attack the problem from several directions” and has recourse to 
cognitive argumentation. Here, teaching and learning are described as “timeless” 
processes involving relationships between such entities as sense of success, 
understanding and love. It seems that today, the discourse of exam dominates over that 
of understanding, and the question that needs to be answered is that of the power 
source(s) of its hegemony. It is also interesting to ask why some teachers nevertheless 
choose the discourse of understanding. 
WAC techniques involve retrieving texts from the Internet, choosing appropriate 
sources—those that represent relevant communities, and thus discourses. The chosen 
corpora are analysed mostly programmatically, e.g., by searching for patterns in 
frequencies and co-frequencies of key words. Some of these techniques are 
exemplified in the following sections. 
GOOGLE BOOKS N-GRAMS 
The term n-gram signifies contiguous sequence of n words. Google books project 
provides the database containing all n-grams, 1≤n≤5, that appear in at least 40 digitized 
books. The database shows number of appearances of each n-gram for each year. From 
36,499 Hebrew books included in the project, 31,309 were printed after the 
establishment of the state of Israel. My analysis was restricted to those latter years. 
There is no distinction in Hebrew database between scientific literature and fiction, 
thus the following data can be described broadly as representing the literary discourse 
on mathematics and math ed. 
Relative frequency of unigram (1-gram) “mathematics” shows steady growth from 
3.85·10-6 in 1948 to 6.55·10-6 in 2008 (increase of 70%). At the first glance, this result 
corroborates the claim about the significance of mathematics nowadays. And yet, the 
subsequent analysis of bigrams (2-grams) demonstrates that this assumption may be 
wrong. Of all bigrams featuring the word “mathematics”, 44.0% are related to math ed, 
with “mathematics teacher" the most frequent of them (22.8%). It is notable that in 
other school subjects this proportion is quite different. For instance, only 5.2% of 
bigrams that include the word “physics” are related to physics education. For biology 
and chemistry, the results are 14.6% and 26.0%, respectively. Finally, the use of 
“mathematics teacher”, which for five decades had been lagging behind the use of 
“Hebrew teacher”, “English teacher”, “history teacher” and “literature teacher”, in the 
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last few years has run past all of those. These latter findings—the fact that in almost 
half of the cases the word “mathematics” appears in the context of math ed and the 
rapid growth in the use of “mathematics teacher"—account for most, if not for all, of 
the increase in the relative frequency of the word “mathematics”. 
The disproportionally extensive use of the word “mathematics” in educational context   
raises a question of whether the modern math ed is really about learning mathematics. 
This finding seems to corroborate one of the principal claims of critical math ed 
research, according to which the main purpose of math ed is to serve specific 
sociopolitical and economical interests. 
COMPARATIVE COLLOCATES ANALYSIS 
Most of CDA quantitative techniques of corpus analysis are based on “the comparison 
of frequencies and the analysis of the syntagmatic environment of key words” (Orpin, 
2005, p. 39). I will demonstrate one of such techniques—collocates analysis. 
Corpora 
Five corpora were compiled from different sources on the Internet, with each corpus 
representing a particular community: 
1. “Teachers”. Source: The biggest Israeli forum of teachers—“Tapuz morim”1. The 
broadness of its area of discussion and the anonymity of most participants support a 
free exchange of opinions concerning all aspects of teachers' identity. The corpus, 
therefore, may be considered as bringing the authentic voice of the teachers. 
2. “Journals”. This corpus includes two sources: The Bulletin for Mathematics 
Teachers—semi-annual journal meant for high school mathematics teachers issued 
currently by the National Center for High School Mathematics Teachers at Haifa 
University, and privately owned Educational Connection [Kav le-Chinuch]—weekly 
journal “read today by the majority of educational decision makers [of Israel]"2. The 
corpus represents the discourse of the educational establishment, directed to the 
educators.  
3. “Governmental”. Source: Protocols of The Knesset Committee on Education, 
Culture and Sport meetings. Governmental represents the political-governmental 
discourse. 
4. “Newspapers”. The sources are two popular Israeli daily newspapers: Israel Today 
(Israel ha-Yom) and NRG Maariv—online edition of Maariv newspaper. Obviously, 
this corpus represents the media (more specifically, the press). 
5. “Alternative”. Source: The Natural Way (be-Ofen Tiv'i)—a well established Israeli 
Internet community, devoted to issues of “education, natural parenthood and green 
life"3. The community is made distinct by its strong preference for alternative forms of 

                                           
1 http://www.tapuz.co.il/Forums2008/forumpage.aspx?forumid=352. 
2 http://www.kav-lahinuch.co.il/?CategoryID=576. 
3 http://beofen-tv.co.il/cgi-bin/chiq.pl?%E1%E0%E5%F4%EF_%E8%E1%F2%E9. 

http://www.tapuz.co.il/Forums2008/forumpage.aspx?forumid=352
http://www.kav-lahinuch.co.il/?CategoryID=576
http://beofen-tv.co.il/cgi-bin/chiq.pl?%E1%E0%E5%F4%EF_%E8%E1%F2%E9
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education, such as homeschooling or open schools. The corpus represents the 
alternative discourse on (mathematics) education, attracting people with sceptical 
attitudes toward the state education system. 
The corpora were processed in the following way: the units of text (threads of forum, 
articles of newspapers etc.) that contain a given sequence of letters (e.g., “mathemat"4), 
were extracted and, by removing non-Hebrew characters and some additional cleaning, 
has been transformed to one long string of Hebrew words, separated by spaces. Total 
words count of the processed corpora: Teachers – 888,106; Journals – 959,478; 
Governmental – 6,007,382; Newspapers – 737,221; Alternative – 9,131,985. 
Collocates analysis 
This method is based on retrieving a list of words (collocates) that appear in a text 
within a given distance (span5) from a given “node word”. The idea behind the 
collocates analysis is that words that are significantly “attracted” to the specific node 
word (tend to appear in a close vicinity of this word) in the specific corpus give a good 
idea about the meaning of that word within the given corpus and, consequently, in the 
discourse that a given corpus represents.  
The analysis was performed for three node words—"mathematics”, “teacher” and 
“teach” (plural verb). For each node word in each corpus, and for each collocate, two 
values were calculated: “observed frequency” O—number of a collocate’s 
occurrences—and “expected frequency” E—frequency in the (hypothetical) case of 
random reciprocal appearance of the node word and the collocate. The simplest 
measure of attraction, mutual information (MI), is log2(O/E), which gives positive 
scores for “attraction” (O>E) and negative scores for “repulsion” (O<E). As Evert 
(2008) notes, MI measure is biased towards infrequent words. I thus used a somewhat 
more complicated formula, accounting for statistical significance as well. 
The collocations then were categorized as belonging to several semantic fields. For 
example, the category of “cognition” included words “knowledge”, “understand”, 
“think” etc. The score of category was calculated as the sum of all its members’ scores 
in a given corpus. For a given node word, the categories6 can be thought of as axes of 
coordinate system, in which each corpus is represented by point, according to 
categories’ scores in that corpus. To transform the data to more convenient and 
intuitive form, principal components analysis (PCA) was implemented. The PCA 
reduces the number of dimensions, keeping most of the original data set information. 
This goal is achieved by creating appropriate new coordinate system, when new axes 
(called principal component, PC) are special linear combinations of the original ones, 
so as the corpora coordinates in the first three7 PCs, taken together, account for about 
90% of original data information.  

                                           
4 To incorporate words as "mathematics", "mathematical" etc. 
5 I use symmetric span of 4, i.e. looking for collocates within the 4-words range from both sides of the node word. 
6 Their number varies around 15-20, depending on the node word. 
7 In the present case. For other data this number can be different. 
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The convenient way of PCA results examination is provided by biplots of the points 
(corpora) coordinates in PCs together with the coefficients that the original axes 
(categories) have in PCs construction. Then the proximity of a category to certain 
corpus indicates that this corpus is distinguished by attracting that category. Fig.1 
shows biplot of the first two PCs for the node word "mathematics". For example, 

categories time (words like "before", "after" etc.) and me/we (first person pronouns), 
have negative coefficient in PC1 and positive coefficient in PC2, and corpora Teachers 
and Journals have negative PC1 coordinate and positive PC2 coordinate. Thus those 
categories are especially attracted to "mathematics" in the two corpora. For the 
complete analysis the PC3 should be considered, but the complementing biplot, as well 
as biplots for other node words are not presented here due to space shortage. 
Interpretation of the results of collocates analysis, as recorded in the biplots 
1. Node word “Mathematics". In the Governmental texts, the word mathematics 
signifies mainly a school subject (subjects8), whereas in Journal and Teachers corpora 
it is to be understood as a part of a personal (me/we) story (time) of the text authors. 

                                           
8 Here and below, categories names (italicized) mentioned in a corpus description mean that the corpus is distinguished 
by attracting those categories. 

Figure 1: Biplot of PC1 and PC2 for node word “mathematics”. 
Corpora are in grey capital letters, categories are in black, lowercase. 
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The stage of the story is the classrooms (grades and class), the theme is teaching. 
Surprisingly (although probably not for those who hold the critical view on math ed), 
the Alternative corpus is the one that deals with the cognitive aspects (cognition) of 
mathematics and its teaching methods, deliberating extensively (argumentation) about 
those issues. Also, children has more central place here than formal positions of 
students, indicating that the main concern is with the needs of a future citizen (child) 
rather than just with the “technical” needs of a person who tries to function within the 
educational system (student). 
2. Node word “Teacher". Again, Governmental discourse relates the word teachers 
mostly to school subjects. For Journals, time is still central, indicating the 
preoccupation with stories about processes, however the stories are not personal here, 
but rather refer to how the topic is or should be taught (methods). For the Teachers, the 
issue is still personal (me/we), but this time, it is related to the teacher’s profession. 
Teachers emerge from these texts as concerned about the terms of their employment 
and as having debates, and possibly disagreements, about it (argumentation). 
Newspapers speaks about what should be done (modality) in the light of exams 
outcomes, with regard to teachers’ (deficient?) training. Alternative is concerned 
mainly with assessment (evaluation) of teachers as professionals (workforce) within 
the education system (administration) and with their impact on students. 
3. Node word “Teach” (plural). This node word, although close in its meaning to the 
previous one, was chosen in view of the difference between “teacher” as profession 
and “teaching” as the action that not only teachers can perform. This assumption can 
explain the striking opposition between Journals and Alternative. While the first 
identifies teaching with teachers, explaining again what they should do (modality), 
when the issue of exams is at stake, the latter speaks about the teaching as such, 
possibly performed by other agents (e.g., parents).  Again, all this is strongly related to 
the cognitive (cognition) side of the process and is addressing children directly.  
Conclusion 
To summarize the relationships between the corpora with regard to the three node 
words findings, Teachers is closest to Governmental, and then to Journals. The most 
distant (and the most independent overall) is the corpus Alternative. Thus, the tentative 
conclusion can be made that the teachers' identity discourse is influenced most strongly 
by the governmental discourse, and also, at least to some degree, by 
conceptual-ideological discourse of educational establishment. Of the five discourses, 
it is the Alternative that brings to the fore the all-important issue of mathematics 
education, and especially its cognitive side and its importance for children. 
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We investigated children’s informal knowledge of multiplicative reasoning. Data were 
collected at the end of first grade, before this mathematical domain was explicitly 
taught. A large sample of children (n = 1176) was assessed in a relatively formal test 
setting, through an online test containing 28 multiplicative problems with and without 
contexts. On average, the children correctly answered more than half (58%) of the 
problems, indicating that before formal instruction on multiplicative reasoning, 
children already have a considerable amount of knowledge available in this domain, 
which teachers can build on when teaching them formal multiplication and division. 
We found that multiplicative problems with an equal groups semantic structure and 
context problems with a picture involving countable objects were easiest to solve. 
INTRODUCTION 
Children have usually already built up a considerable amount of informal knowledge in 
a mathematics domain before this domain is taught (e.g., Baroody, 1987; Ginsburg, 
Klein, & Starkey, 1998). Characteristic of this knowledge is that it is constructed in 
response to situations that children encounter in daily life, and that it is developed 
largely independent of explicit instruction (Leinhardt, 1988). Many mathematics 
educators have stated the importance of building on children’s informal mathematical 
knowledge when teaching them mathematics (e.g., Baroody, 1987; Leinhardt, 1988). 
They argue that through their informal knowledge children can give meaning to the 
formal symbols and procedures of mathematics (e.g., Baroody, 1987). Despite the 
importance of connecting the formal mathematics to the informal mathematics 
children bring to school, researchers found that teachers often fail to make these 
connections (e.g., Leinhardt, 1988). An explanation for this might be that teachers 
underestimate children’s pre-instructional knowledge (e.g., Lee & Ginsburg, 2009; 
Van den Heuvel-Panhuizen, 1996). For teachers to be aware of this knowledge, it is 
crucial that the informal knowledge of children is revealed. In the study described here, 
we aimed to map children’s informal knowledge in the domain of multiplicative 
reasoning just before they start receiving formal instruction on this domain. 
Multiplicative reasoning 
The mathematics domain of multiplicative reasoning, comprising multiplication and 
division, is clearly distinguished from the domain of additive reasoning, including 
addition and subtraction (e.g., Schwartz, 1988; Vergnaud, 1983). In contrast to 
additive reasoning, in which quantities of the same type are added or subtracted (e.g., 2 
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cookies and 3 cookies are 5 cookies altogether), multiplicative reasoning involves 
quantities of different types (e.g., 3 boxes with 4 cookies per box means 12 cookies 
altogether). A multiplicative situation is, in its most elementary form, characterized by 
a group structure which involves sets (groups, e.g., boxes) of items with the same 
number of items (e.g., cookies) in each set (see Greer, 1992). 
Previous research on children’s informal multiplicative knowledge 
Most research on informal mathematical knowledge has focused on counting, addition 
and subtraction (e.g., Ginsburg et al., 1998), but also in the domain of multiplicative 
reasoning, which comes later in the curriculum, studies have shown that young 
children already have some informal understanding of the domain before it is formally 
introduced in school (e.g., Anghileri, 1989; Kouba, 1989; Mulligan & Mitchelmore, 
1997; Nunes & Bryant, 1996). Kouba (1989), for example, found that around 25% of 
first graders could already solve simple multiplication and division word problems. 
Furthermore, in a longitudinal study by Mulligan and Mitchelmore’s (1997), 
Australian children at the beginning of grade 2 correctly solved an average of 31% of 
the multiplicative word problems, increasing to 48% at the end of grade 2 and 55% at 
the beginning of grade 3 (all these measurements were before formal instruction on 
multiplicative reasoning). In all earlier studies on informal multiplicative knowledge, 
the problems were either presented in a physical context (e.g., Anghileri, 1989) or the 
children were allowed and encouraged to use physical materials, such as counters and 
blocks, to construct a physical representation for themselves (e.g., Kouba, 1989; 
Mulligan & Mitchelmore, 1997). From these studies it is not known whether children 
can also show this informal knowledge when assessed in a more formal setting in 
which they have te work on their own, do not have physical representations available, 
and are presented not only context problems but also bare number problems. 
Problem characteristics 
Several studies have shown that the mathematics performance children display may be 
related to characteristics of the problems offered to the children. 
Problem format. Research has shown that, for students who have had no or only 
limited formal instruction on a particular mathematics domain, context problems in 
that domain are often easier to solve than bare number problems (e.g., Koedinger & 
Nathan, 2004; Van den Heuvel-Panhuizen, 2005). For young children, contexts 
presented with manipulative materials are particularly helpful in solving arithmetic 
problems (e.g., Ibarra & Lindvall, 1982). But also without the use of physical 
materials, context problems may be easier than bare number problems, especially 
when context problems include a picture involving countable objects. 
Semantic structure. Based on earlier literature (Greer, 1992; Mulligan & Mitchelmore, 
1997), three semantic structures can be considered relevant for first-graders’ 
multiplicative reasoning: equal groups (e.g., 3 boxes with 4 cookies each), rate (e.g., 1 
cookie costs 3 euros, how much do 4 cookies cost?), and rectangular array (e.g., 3 rows 
of 4 chairs). Of these semantic structures, equal groups problems have generally been 
found to be easiest (e.g., Christou & Philippou, 1999). For the case of informal 
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multiplicative knowledge, though, Mulligan and Mitchelmore (1997) did not find 
differences in difficulty level between the three abovementioned semantic structures. 
Operation. In children who have received formal instruction on multiplication and 
division, it has generally been found that multiplication problems are easier than 
division problems (e.g., Christou & Philippou, 1999). This may be a result of the 
school curriculum, in which multiplication commonly is formally introduced before 
division. In contrast, Mulligan and Mitchelmore (1997), in their study on children’s 
informal (i.e., pre-instructional) or early abilities in solving multiplicative problems, 
found approximately equal difficulties for multiplication and division problems. They 
explain this by arguing that young children intuitively connect multiplication and 
division and can use the same strategies for both. 
Research question 
In our study, we aimed to extend previous research by collecting data about children’s 
informal multiplicative knowledge in a relatively formal setting, which closely 
matches the school practice as children progress in their school career. This will give 
us more information about the actual size of the assumed gap between children’s 
informal knowledge and the formal mathematics they have to learn in school. If we 
could show that children’s informal knowledge can be applied in or transferred to a 
more formal setting, then this would imply possibilities for teachers to draw more on 
children’s informal knowledge when introducing formal multiplication and division. 
The following research questions were specified: 

1. To what extent are children, just before they start receiving formal instruction on 
 multiplication and division, able to solve multiplicative problems in a relatively formal 
 setting (in a formal test procedure, without physical objects provided, and including 
 context problems as well as bare number problems)?  
2. How is the informal knowledge children display influenced by characteristics of the 
 problems offered to them? 

METHOD 
We carried out a large-scale survey in the Netherlands. Since in the Netherlands 
multiplication is formally introduced at the beginning of grade 2, we decided to assess 
children’s informal knowledge of multiplicative reasoning at the end of grade 1. 
Participants 
In total, 53 first-grade classes from 53 different primary schools in the Netherlands 
were involved in the analysis, comprising a total of 1176 students (580 boys, 596 girls; 
M  = 7.2 years, SD = 0.4 years). 
Test of informal multiplicative knowledge 
Students’ informal multiplicative knowledge was measured by an online test with 28 
multiplicative items. The use of an online test ensured a relatively formal, standardized 
test setting, and it facilitated our large scale data collection. As explained before, 
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physical objects were not provided to the students as aids in solving the test problems. 
However, the students were not forbidden to use their fingers as manipulatives. 
Composition of the test. The 28 multiplicative items varied according to problem 
format, semantic structure, operation, and countability level. The numbers used in the 
test items were 1, 2, 3, 4, 5, 6 and 10. Regarding problem format, the test contained 14 
context problems (see Figure 1a-b) and 10 bare number problems (see Figure 1c-d). 
Additionally, 4 “groups-of problems” were included to specifically assess students’ 
understanding of the groups-of structure typical of multiplicative situations (see Figure 
1e). The bare number problems included 6 problems with “times” instead of the × 
symbol (see Figure 1c), and 4 doubling problems (see Figure 1d). 

a b

ec d

Figure 1. Examples of test items and questions: a. “How many points together?” b. 
“Eight carrots. How many carrots does each rabbit get?” c. “Five times two is…” d. 
“Make it double. Each time fill in the answer.” e. “What sentence fits the picture?” 
The context problems varied by their semantic structure: 9 were equal groups 
problems, 3 were rate problems, and 2 were rectangular array problems. Furthermore, 
regarding the operation involved, 10 of the context problems were multiplication 
problems, whereas 4 were division problems. Since we aimed to measure the informal 
multiplicative knowledge that is available to build on when formal multiplication and 
division are introduced, we decided the majority of the problems to be of the equal 
groups structure and the multiplication operation, which are most common in early 
formal instruction of multiplicative reasoning. 
Finally, the test items differed with respect to their countability, that is, the extent to 
which the picture presented in the problem could be used to find a solution by 
counting. For example, in the problem in Figure 1b, the rabbits are countable, but the 
carrots are not. We distinguished four levels of countability. 
Test administration. The online test was administered at the end of the grade 1 school 
year, in June/July 2010. To control for order effects, four different versions of the test, 
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containing the items in different orders, were randomly assigned to the students. Each 
test item was individually displayed on the screen (except for the doubling problems, 
see Figure 2b) and the accompanying question was read aloud by the computer. 
Data processing. Since the text boxes in which the students had to type their answers 
accepted all kinds of input, not all responses were in the form of a number. Input errors 
were corrected when it was clear which number was meant by the student, such as 
“4’0” or “4o” instead of “40”. For 0.59% of the item responses this resulted in a change 
to a correct answer. 
Psychometric properties of the test. The reliability of the test consisting of 28 
multiplicative items was sufficiently high (Cronbach’s alpha of .89). An exploratory 
factor analysis for dichotomous data (Revelle, 2012) indicated a 4-dimensional factor 
structure. The four factors can be interpreted as follows: 1) context problems (14 
items), 2) bare number times problems (6 items), 3) bare number doubling problems (4 
items), and 4) groups-of problems (4 items). Apart from this 4-factor structure, there is 
also some evidence that the test can be well represented by a unidimensional summary, 
for it appeared that about 37.7% of the total variance can be attributed to the first 
dimension, and there was a large ratio of 4.00 of the first and second eigenvalue. Thus, 
next to looking at factor subscores, it also makes sense to regard the test as a whole. 
RESULTS 
On average, the students (n = 1176) answered more than half of the total of 28 items 
correctly. We found a mean proportion correct of .58 (SD = .23), with 2 students 
(0.2%) having no answers correct and 19 students (1.6%) having all items correct. 
When zooming in on the four groups of items identified through factor analysis, we 
found mean proportions correct of .63 (SD = .23) for context problems, .52 (SD = .35) 
for bare number times problems, and .63 (SD = .44) for bare number doubling 
problems, and .47 (SD = .38) for groups-of problems. 
To study the influence of problem characteristics on problem difficulty, we performed 
a Wald Chi-square test for each characteristic (e.g., operation), comparing the mean 
proportion correct of items belonging to the different categories of the characteristic 
(e.g., multiplication vs. division items). The nested structure of the data (children 
within schools) was accounted for by using the TYPE = COMPLEX option in Mplus 
(Muthén & Muthén, 1998-2010). As an effect size measure we used the ω² estimate of 
explained variance, for which a value of .010 can be interpreted as a small effect, .059 
as a medium sized effect, and .138 as a large effect (e.g., Kirk, 1996). 
For all problem characteristics, results were highly significant (p < .001). For the 
characteristic problem format (χ2(3) = 1229.14, ω² = .038), it appeared that context 
problems and bare number doubling problems were easier to solve than bare number 
times problems and groups-of problems (for descriptives see above). Regarding 
semantic structure (χ2(2) = 1374.23, ω² = .041), equal groups problems appeared to be 
easier (M = .68, SD = .23) than rate problems (M = .54, SD = .37) and rectangular 
array problems (M = .53, SD = .37). For operation (χ2(1) = 178.58, ω² = .007), 
although the difference between multiplication (M = .61, SD = .24) and division 
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problems (M = .56, SD = .32) was significant, the effect size was trivial (ω² < .01), 
meaning that the effect was so small that it can be considered irrelevant. Thus, in our 
study multiplication and division problems can be considered equally difficult. Finally, 
for countability level (χ2(3) = 128.71, ω² = .090), it appeared that problems offering 
pictures with more opportunities for counting were easier to solve (no terms countable: 
M = .56, SD = .30; 1 term countable: M = .50, SD = .32; both terms countable: 
M = .69, SD = .27; both terms and solution countable: M = .73, SD = .26). 
CONCLUSIONS AND DISCUSSION 
Our results show that first-graders, even when assessed in a relatively formal setting, 
display a substantial knowledge of multiplicative reasoning before being taught. This 
finding extends earlier findings (e.g., Kouba, 1989; Mulligan & Mitchelmore, 1997), 
of young children being able to solve several multiplicative problems in individual 
interviews, with the help of physical objects. Interestingly, in our more formal setting 
we found a higher percentage correct (58%) than did Kouba (29%, first-graders), and 
Mulligan and Mitchelmore (48%, second-graders). 
Further extending previous research, we found that in addition to the ability to solve 
context problems, pre-instructional multiplicative knowledge for many children also 
included the ability to solve bare number multiplication problems, in the form of 
doubling or with the × symbol replaced by the word times. In accordance with previous 
research (Koedinger & Nathan, 2004; Van den Heuvel-Panhuizen, 2005), context 
problems appeared easier than bare number problems with times. The groups-of 
problems in our study appeared the hardest, indicating that, although many children 
can solve multiplicative problems, this does not necessarily mean that they have an 
explicit understanding of the groups structure typical of multiplicative situations.  
Regarding the semantic structure of the problems, we found that equal groups 
problems were easier to solve than rate and rectangular array problems, which is in 
contrast with Mulligan and Mitchelmore’s (1997) finding that before formal 
instruction, there is no difference in difficulty between these semantic structures. Our 
finding that the equal groups semantic structure was easier may partly be explained by 
the fact that informal and preparatory multiplicative activities that occur in the Dutch 
first-grade curriculum primarily focus on equal groups situations.  
With respect to operation, from our results it appeared that, before formal instruction 
on multiplicative reasoning, multiplication and division can be considered equally 
difficult. This finding calls into question the usual approach in the Netherlands of 
introducing division later than, and separated from, multiplication. Mulligan and 
Mitchelmore (1997) found that young children use the same strategies for both 
multiplication and division, indicating that children intuitively see connections 
between the two operations. Possibly, simultaneous introduction of multiplication and 
division would better exploit these informal insights, but further research is needed. 
Finally, we found a significant effect of countability level, indicating that 
multiplicative problems offering pictures with more opportunities for counting were 
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easier to solve. This indicates that, in addition to physical materials (Ibarra & Lindvall, 
1982), also pictures can act as manipulatives and assist in solving problems. 
The above results should be taking with caution. Due to testing time restrictions our 
test had a limited number of items and was not counterbalanced for all problem 
characteristics. In order to more thoroughly study the effects of the different problem 
characteristics, an item set is needed in which all characteristics are combined with all 
other characteristics. Another shortcoming, which is rather insurmountable in a 
large-scale study like ours, is that we do not really know the conditions in which the 
children made the test. Although the teachers were not told to give the students 
physical objects, we cannot be sure that such objects were indeed did not employed. 
In conclusion, we found that, when instruction of multiplicative reasoning starts in 
grade 2, students have a lot of informal knowledge to build on, which can even be 
tapped in a relatively formal setting. For teachers, next to knowing what informal 
knowledge children generally bring with them, it is also important to be aware of the 
knowledge base their individual students have available. Our study showed that a 
computer-based test can be a useful way of assessing this knowledge. 
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This study is a part of an ongoing research which aims to support teachers to integrate 
statistics in their mathematics teaching and to investigate the development of the way 
they perceive this integration in the context of learning and teaching statistics. A study 
group has been formed where ten secondary school teachers and two researchers work 
together in various activities for a period of an academic year. In this paper we 
analyse three meetings where the discussion focuses on sample and sampling. Some 
initial results indicate the development of teachers’ awareness of the complexity of the 
notions of randomness and representativeness and the importance of conducting 
experiments in the teaching of statistics. 
INTRODUCTION 
In recent years statistics has gained increased attention in mathematics education. 
Nevertheless, statistics is still in its infancy (Lajoie & Romberg, 1998). Research 
shows that many students find statistics difficult to learn and understand in both formal 
and everyday contexts and that learning and understanding may be influenced by ideas 
and intuitions developed in early years (Gal & Garfield, 1997). On the other hand 
mathematics teachers seem to have many difficulties in helping their students to 
acquire a deep understanding of statistical concepts and techniques (Watson, 2001). In 
Greece, a recent curriculum emphasises statistical and probabilistic concepts and 
reasoning posing new challenges for the mathematics teacher. 
A difficulty that teachers face for adopting a reform-oriented teaching of statistics is 
related to the epistemological status of stochastics, which is contradictory to 
deterministic mathematics (Steinbring, 1986). This requires different way of thinking 
and different means to deal with it than those that mathematics teachers use for the 
other mathematics areas.  One way to tackle the above problem is to promote teacher 
awareness of the relationship between statistics and mathematics. In spite of a notable 
amount of studies (e.g. Gattuso, 2008) which focus on a fruitful collaboration between 
statistics and mathematics, there is little in the literature to show how the integration 
between statistics and other mathematics areas can be promoted in teacher education. 
This is an ongoing study that aims to support teachers in the direction of the smooth 
integration of mathematics and statistics in their teaching, and it is guided from the 
following research questions: a) How can the conceptual connections between 
statistics and mathematics be promoted in professional development and b) What kind 
of understandings teachers develop in making such connections in relation to teaching 
and learning? 
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THEORETICAL BACKGROUND 
In this study we see teacher collaboration in a study group as a means for teacher 
professional learning (Arbaugh, 2003). This context supports self-action and 
reflection, negotiation and interplay. Moreover, it makes it feasible for the researchers 
to get insight in how teachers’ awareness, understandings and practices develop.  
The work of this study group is based on an inquiry approach. The inquiry is 
incorporated in two forms. First, teachers have the opportunity to engage with 
statistical inquiry. According to a number of studies (e.g. Makar, 2008), by engaging 
teachers in an investigate cycle (Problem-Plan-Data-Analysis-Conclusion), teachers 
are supported to develop or deepen understandings of statistical concepts, develop a 
statistical way of thinking, and link to other areas of mathematics. Moreover, providing 
teachers with opportunities to address inquiry-based problems themselves, can act as a 
catalyst to develop their teaching and adopt more investigative and conceptual 
approaches. Second, teachers have the opportunity to inquire in the teaching of 
statistics. Jaworski (2006) points out that inquiry enables teachers to engage critically 
with key questions and issues in practice, “such practice can involve addressing 
mathematical tasks in classrooms, developing approaches to mathematics teaching or 
finding ways of working with teachers to promote teaching development” (p. 187). 
In our attempt to encourage the development of teachers’ awareness for the 
relationship between statistics and mathematics we prompt teachers to identify sources 
of meanings, differences and commonalities of mathematical concepts under different 
contexts, namely the deterministic and the stochastic context (Biehler, 2005). Biehler 
calls this process reconstruction of meaning and suggests it as an approach that can 
broaden teachers’ picture for mathematical concepts and support the improvement of 
teaching. 
In this paper we concentrate on the concepts of sample and sampling. Tversky & 
Kahnemann (1983) document the persistent errors and “misconceptions” that people 
make when making probabilistic “judgments under uncertainty”. They theorize that 
people's mental resources are too limited to be able to generate probabilistically 
accurate judgments. People are forced to fall back on computationally simpler 
heuristics such as the representativeness heuristic they describe. On the other hand, 
many studies (e.g. Abrahamson, 2009) demonstrated how the most obvious traps 
described by Tversky and Kahneman (1983) can, under the appropriate conditions, be 
circumvented. Pratt (2005) suggests four pedagogic implications on how teachers 
foster students’ understanding of probability and chance: purpose and utility, testing 
personal conjectures, large-scale experiments and systematic variation of context. 
Moreover, students find it difficult to integrate expectation and variation (uncertainty) 
into the sampling construct. Other difficulties are related to the different meanings that 
are attributed by students to the term “sample” in different contexts (Watson & 
Moritz, 2000). 
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RESEARCH DESIGN 
The study group and its characteristics 
The study group consists of ten teachers and two researchers. Eight of the teachers 
have a degree in mathematics and two in applied mathematics and physics. All of them 
recently completed or are about to complete the same postgraduate program in 
mathematics education. In this program they attended one course in statistics. 
According to their teaching experience, five of the members are novice (T1-T5) and 
five with varied teaching experience (T6-T10). In spite of their extensive teaching 
experience their experience regarding to the teaching of statistics is very little in all 
cases except T8. T7 and T9 are quite familiar with the content of statistics. All teachers 
agreed to work voluntarily in this study group. The researchers participate in all 
discussions, often challenging teachers to reflect on emerging issues and giving them 
particular tasks and materials and resources (eg. selective bibliography, textbooks and 
statistical software). 
Professional tasks  
The suggested tasks are usually developed further in the process of the group 
interaction. The topics discussed in the meetings are: producing data, data exploration 
and statistical inference. In this paper we will be restricted in the study group’s work 
related to the topic of producing data with main focus on the concepts of sample and 
sampling. The teachers were engaged in the following three tasks:  
Task 1. Personal involvement in statistical tasks: Teachers were asked to work in 
groups to define a problem, develop a sampling method and explain their choice. 
Task 2. Reading research papers: Teachers were asked to read one of five research 
papers chosen by the researchers and discuss them within the group (the papers of 
Kahneman & Tversky (1983) and Fischbein & Schnarch (1997) were discussed in the 
data analysed in this paper). 
Task 3.  Analysing and transforming tasks: Teachers were given a task from a textbook 
(see Figure1). They were asked to work in groups to identify the main statistical ideas 
as well as teaching and learning goals. After the initial discussion, they were asked to 
transform this task to be more appropriate for the classroom. 
In the first task the main focus was to engage teachers in statistical inquiry while in the 
other two in the inquiry in learning and teaching statistics. All tasks aimed to promote 
the relation between statistics and probability implicitly (tasks 1 & 3) or explicitly 
(task 2). 
Data collection and analysis 
This study is part of an ongoing research. The group of teachers meets twice a month 
for a whole academic year. Each meeting lasts for about two hours. Individual 
semi-structured interviews with all the participants were conducted before the first 
meeting, focusing on their teaching experience, academic background and attitudes 
upon statistics and teaching statistics. 
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All the meetings are 
videotaped. At the end 
of each meeting the 
teachers report their 
reflections on the work 
in the group. Moreover, 
the principal researcher 
(the first author) writes 
a report summarising 
the main themes and 
emerging issues of the 
meeting. This report is 
notified to all members 
for further thought and 
reflection. For the 
analysis regarding to 
sample and sampling 
notions, based on the 
principles of grounded 
theory, we focused on 

critical episodes among discussions which reveal how teachers conceptualise the 
relationship between probability and statistics. In this report we trace teachers’ 
perceptions through the three main tasks and study emerging shifts in teachers’ 
understandings. 
INITIAL RESULTS 
Simple random sample· a random choice or a free choice 
Through the first meeting there was a debate whether a simple random sample 
constitutes a representative subset of the survey population. This issue was dominant in 
the group’s discussions and different views about the notion of randomness revealed. 
From the analysis of the group discussion, it seems that some teachers use the word 
‘random’ to refer to a sample that was selected ‘by chance’. For example, in the group 
discussion about the choice of T3’s, T7’s and T6’s subgroup to select a simple random 
sample (SRS) of students to address the question ‘Which is students’ favourite 
course?’ T5 claimed that we cannot trust a SRS even if the sample size is sufficient: 

T5: A random sample is not necessarily representative. I mean, it could be 
random (meaning fortunate in this instance) but unfortunate. I mean that the 
students that are chosen would be only the ‘good’ students, those who 
prefer mathematics or ancient Greek courses. 

T9:  Supposedly that the sample size is sufficient. I don’t think so. 

In a similar way, T8 suggested stratified sampling method as the only way to achieve 
representativeness which cannot be achieved through a SRS: 

T8: The main issue is to choose an appropriate sample. 

 

Figure 1: Problem taken from Watkins, Scheaffer, & Cobb 
(2008) (p. 249) 
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T9: We said that the sample size will be large enough. 
T8: Not only the size, to be appropriate. I mean the proportion according to the 

Grade level. 
T9: But we don’t care about students’ grade level. …  
T8: You can’t just choose from a list. You need to define the proportions with 

respect to each grade level. 
T9: If you choose randomly, the proportions will be close to the actual. Aren’t 

they? … I mean is it possible that in your population the 60% are 8th 
Graders and from a random choice you choose for example 10%? 

T8: Why this cannot be? If your choice was free then it can be. 

T9 challenged T8’s position by implying that a random sample follows the laws of 
probability. T10 made explicit the role of probability and mathematics in general in 
sampling situations. 

‘Randomly means that every individual in the population have equal chance of being 
selected. If I say I want this number of boys, that number of girls, so many 8th Graders etc, 
that is another thing … If we refer to a random sample and talking about predetermined 
proportions, this is not random. We need to know what it is a random sample and how it 
can be produced. There is power in the random... There is mathematics behind’. 

Understanding the role of availability and intuition  
In the second meeting teachers discussed on the papers they read. They linked the 
findings of the papers to their personal understandings and intuitions. They were also 
involved in solving the tasks presented in the papers by themselves and talk about their 
solutions. Through the discussion, a growing awareness of teachers’ 
conceptualizations regarding statistical and probabilistic ideas seemed to emerge. For 
example, in the discussion about availability heuristic (Kahneman & Tversky 1973b), 
T10 identified that the meaning we attribute to statistical terms is affected by our own 
experiences and images we have from the everyday use of the terms: 

‘It is very important how we use the word sample in our everyday language. When we refer 
to sample for example in blond tests, we know that the sample has exactly the same 
characteristics with the population. By keeping this in mind, we believe that whenever we 
get a sample we can generalize to the population neglecting the sample methods’. 

T7 recognized his own false intuitions and appreciated the need for statistical inquiry 
as a means for developing understanding: ‘You need to experiment in order to 
understand this. I have taught it in school, I have also been taught it as a student but I 
still can’t understand it. This is not convincing. I mean internally’.  
In the following episode a strong connection between statistics and probability seems 
to emerge regarding the teaching of these areas:  

T7: I think we don’t have the right intuitions to build on such concepts (he 
means probabilistic). 

T9: I agree with that. Actually, we don’t have the right experiences. 
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[…] 
T7: From my point of view, the right intuitions are not directly accessible but 

only indirectly through statistics and combinatorics. 
Researcher: What could be helpful for the students? 
T9: The question is what could be helpful for us! (laugh) 
T7: There has to be space for discussion and negotiation in the classroom. The 

school context is not very supportive to this direction due to many 
limitations that exist. 

T10: You don’t actually need to discuss anything. You just give an open problem 
to students and the other things come alone. 

T9: I think that for statistics and probability, experiments and simulations are 
very important. 

T6: It is very difficult for us. 
T10: There are simple things that you can do. 
T7: One difficulty is that you can’t verify the answers. … I insist that the 

development of the right images can be only through statistics and the 
analysis of real data. How else? 

In the above dialogue the teachers realized the need for developing their own 
understanding while the need for an experimentation-based teaching approach and the 
constraints that the school context imposes were also addressed.    
Thinking with respect to teaching and learning 
In the third meeting, the teachers also initially attempted to solve the problem (fig.1) 
and discuss their solutions. In the discussion the notions such as randomness and 
representativeness were reconsidered. In this case it seemed that there was an 
agreement for what is a random sample, although the uncertainty about the meaning of 
representativeness of a random sample still existed. In the following dialogue in a 
subgroup, T8 expresses a different meaning for the random choice than the one he had 
expressed in the first meeting. T8 refers explicitly to the concept of probability when 
he talks about randomness and seems that he trusts now the SRS as sampling method:  

“It is random (he means the method with the small papers). Every piece has an equal 
chance, namely 1/30, if you have 30 students in the classroom. … The best method is the 
one with the pieces of paper”.  

In relation to the representativeness all the subgroups, who worked on this activity 
gave different answers with respect to the best-method choice. One subgroup 
(T4-T6-T8) suggested the second method as the best one, explaining that they prefer a 
random method and the second is better than the third as it produces groups of the same 
size. The subgroup of (T1-T7-T10) chose the first one as the best to produce 
homogeneous and representative groups. In this decision aspects such as sample size 
and the fact that students’ choice criteria will be subjective are considered. Finally, the 
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last subgroup (T2-T3-T9) rejected the first method and claimed that the other two 
methods were equivalent. 
In the discussion regarding how a student can be benefited from such an activity and 
how the task can be transformed to support students’ learning T10, T9 and T8 
summarized the work of their subgroup: 

“It is important that the students make conjectures and then try the methods. I mean that, 
regarding to the 3rd method, the students probably guess that by flipping a coin the two 
groups would have approximately the same size. If they do it, they will come to realize that 
this conjecture is not correct, that there is variability”. (T10)  
“It would be interesting to do such an activity for a big population, such as to the whole 
school. In this case, the student would realize that the second and the third method produce 
equivalent groups”. (T9) 
“It is important for the students to have a specific goal. If I could transform it, I would 
firstly make clear which specific characteristic will be studied and what the goal of this 
activity is, and then I would ask them to discuss the three methods”. (T8) 

T10 pointed out again the students’ active involvement with the statistical 
experimentation as a central teaching goal. T9 extended the tasks in the direction of 
helping students to understand the effect of sample size to determine the 
appropriateness of a sampling method. T8 emphasized that for the students it is 
important to have a clear goal when decide about the effectiveness of a method.          
CONCLUSION        
In this paper, we focused on various ways for integrating statistics and other areas of 
mathematics in teacher education. The tasks that were designed by the researchers and 
developed in the group meetings supported teachers to consider epistemological and 
didactical issues related to the teaching of statistics as this emerged from the group 
discussions. The nature of the tasks as well as the collaboration among teachers with 
different backgrounds in statistics and its teaching seem to have a positive impact on 
the development of teachers’ awareness of the complexity of statistical content 
regarding to the learning and teaching. By connecting sample and sampling with the 
concept of probability, teachers start to reconstruct their meaning of statistical notions 
in general as Biehler (2005) points out. In the group discussion pedagogical 
implications suggested by Pratt (2005) for fostering students’ understanding of 
probability and chance were addressed by the teachers themselves in the process of 
negotiation. Testing personal conjectures, purpose and utility and large-scale 
experiments were identified in the process of transforming a statistical task to a 
students’ classroom activity. Moreover, the teachers considered students’ involvement 
in experimentation as a process of creating meaning. We expect that in the next phases 
of the work more insights will emerge related to the effectiveness of integrating 
statistics and mathematics in teaching and teacher education. 
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THE INFLUENCE OF VERBAL LANGUAGE IN A 
MATHEMATICAL CONTEXT: A STUDY ON NEGATION 

Cristina Bardelle 
University of Eastern Piedmont “A. Avogadro”, Italy 

 
This paper deals with the “negation” of verbal statements and addresses this topic by 
means of a functional linguistic approach. The negation is investigated as an effect 
between a sentence and the subjects’ coding of abstract diagrams. The study, carried 
out with about three hundred Italian science undergraduates, shows that implicatures 
occurring in everyday communication heavily affect the interpretation of a variety of 
sentences. 
INTRODUCTION 
The importance of language in the learning of mathematics has grown up in the last 
decades and the central role played by the language in the learning of mathematics has 
become the subject of a rapidly increasing investigation (see e.g. Ferrari 2004, Sfard 
2001). The centrality of language in the interpretation of obstacles in doing 
mathematics can be found, for example, in Sfard’s claim that “learning mathematics 
may now be defined as an initiation to mathematical discourse …” (Sfard 2001, p.28), 
and so languages are to be regarded not just as carriers of pre-existing meanings, but as 
builders of the meanings themselves. 
In this framework this paper is aimed at investigating the influence of (Italian) verbal 
language in a mathematical context. In particular, the focus is on the “negation” of 
verbal statements addressing it by means of a functional linguistic approach, with the 
hope of giving a new insight differing from previous studies on this topic which do not 
take into account the pragmatic aspects of language, i.e. the complex interactions 
between language and context (Lin et al. 2003, Antonini 2001, Barnard 1996, etc.). 
Negation is a fundamental concept for the construction of meaning in general, and, in 
particular, for the construction of meaning in mathematical context. Difficulties 
concerning this topic can significantly influence the learning of other mathematical 
concepts and, in particular, the understanding of the links among the mathematical 
concepts. In particular, difficulties occurring in the negation of statements are often 
related to the use of quantifiers. In literature, it is shared the idea that negation may 
cause troubles, for example, in proofs by contradiction (Lin et al. 2003), in the use of 
syllogisms and in particular of modus tollens (Wason and Johnson-Laird, 1972), etc. 
Despite the recognized relevance of negation, few studies have been carried out in the 
field of the learning of mathematics but, on the contrary, a lot of research has been 
developed about negation in numerous other fields such as logic, philosophy, 
linguistics, psychology, etc. (some references are Aristotle, Grice 1975, Wason and 
Johnson-Laird 1972, Miestamo 1985, Horn 1989, etc.). 
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In particular, the investigation is focused on the ability at negating verbal statements of 
the kind “All A is B”, that is to interpret a sentence of the kind “Not all A is B”. The 
present study is the sequel of a study on the same issue described in Bardelle (2011) 
and in Ferrari (2004) where the interpretation of negation was investigated as an effect 
between two sentences. In that case the subjects had to recognize whether two abstract 
sentences had the same, or different meaning (equivalence of statements). In the 
experiment described here, negation has been investigated as an effect between a 
sentence and the subjects’ coding of a physical state of affairs. In particular, abstract 
diagrams (ranks of circles) have been exploited to investigate students’ interpretation 
of the negative sentence of the kind “Not all A is B”. The aim is to explore the role of 
context (purposes of the communication, relationships among participants, mode, 
subject of the communication, etc.) in the mathematical interpretation of such 
statements and moreover attention is paid to investigate students’ awareness of the role 
of mathematical language when facing negation of statements. 
THEORETICAL BACKGROUND 
The application of functional linguistics (Grice 1975, Halliday 1985) to the learning of 
mathematics (cf. Ferrari 2004) has been remarkably developed in the last years and it 
has assigned to the “functions of languages”, rather than to semantic and syntactic 
aspects of the standard linguistics, a role of primary importance for the understanding 
of difficulties related to the learning of mathematics. According to this approach, the 
context influences the construction of meaning. Context refers to several aspects as the 
relationships among participants, the purposes of communication, the mode of 
communication, the subject of communication, etc. The context influences the register 
(Halliday 1985) that is a linguistic variety based on use (linguistic resources used by an 
individual to express meaning related to some context and goals of a communication). 
Many difficulties in mathematics are due to improper use of registers or to a their 
improper understanding. The analyses of the responses of students by taking into 
account the registers adopted, allows to explain the interference between the technical 
language of mathematics and other languages, first of all the everyday one. The 
overlapping of colloquial registers with technical ones has been for a long time subject 
of research for the understanding of difficulties in the learning of mathematics (Mason 
and Pimm 1984, Ferrari 2004, Kim et al. 2005, Bardelle 2010) but, in most of these 
studies such interference usually has not been sufficiently analysed or explained. This 
work is based on the Ferrari’s idea that “the registers customarily adopted in advanced 
mathematics share a number of features with literate registers and may be regarded as 
extreme forms of them” (Ferrari, 2004, p. 387). Literate registers violate the 
cooperation principle (Grice, 1975) that usually occur among participants in everyday 
communication or who share a common context. The difficulties arise both from using 
technical terms and from the organization of texts. For example, in a mathematical 
register “some” means “at least one”, but in a colloquial register “some” is interpreted 
as “more than one but not all”. The use of “some” as “more than one but not all” is an 
example of an implicature, that, in the frame of pragmatics,  is the portion of the 
information provided by the text that follows from the assumption that it is adequate to 
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the context rather than from its propositional content (Ferrari, 2004). This example, 
typical of colloquial speech at least in Italian language (some evidence on the same 
issue is anyway reported also in English, see e.g. Mason and Pimm 1984 and 
references therein) is due, in particular, to the violation of the Maxim of Quantity 
(Grice 1975, p. 47) according to which a communication has to be as informative as 
required (for the current purposes of the exchange). 
THE EXPERIMENT 
Subjects 
The experiment has been carried out with 294 Italian science (biology, chemistry, 
computer science, environmental science) freshman students at the University of 
Eastern Piedmont in Italy. The results come from a set of questions administered to 
students in a written placement test and subsequent interviews. The test was 
administered  after a two-week precalculus bridging course in order to verify students’ 
initial knowledge. A two-hour unit of the course has been devoted to illustrate some 
aspects of mathematical language (such as connectives and quantifiers) within the 
setting of naive set theory. Both the course and the test were not compulsory, but 
warmly recommended. Moreover, students could achieve a bonus according to the 
results of the test. There were no negative consequences if students failed the test, but 
in that case, they were then strongly recommended to attend tutoring sessions in the 
first semester. 
Tasks 
Four types of questions were developed for the study. Students were asked to 
recognize the truth or the falsehood of the negation of a statement with a universal 
quantifier trough some diagrams. The negative sentences used in the experiment were 
of the kind “Not all A is B”. The questions were grouped into two categories: 
1-questions involving diagrams with two circles only and 2-questions involving 
diagrams with more than two circles (four circles). The questions have a multiple 
choice format with the possibility of multiple responses. The following tables present 
an English translation of the questions.  

Which of the following diagrams (multiple choices are allowed) make the 
statement “Not all the circles are black” true? 

A)  B)                     C)                   
Table 1: Question 1t (Q1t). 

Which of the following diagrams (multiple choices are allowed) make the 
statement “Not all the circles are black” false? 

A)                     B)                           C)                     

Table 2: Question 1f (Q1f). 
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Which of the following diagrams (multiple choices are allowed) make the 
statement “Not all the circles are black” true? 

A)  B)                   C)   

Table 3: Question 2t (Q2t). 
Which of the following diagrams (multiple choices are allowed) make the 
statement “Not all the circles are black” false? 

A)  B)                         C)   

Table 4: Question 2f (Q2f). 
The sample was split into four groups of about 74 students each. Each of the four 
questions was assigned to one  group.  
Interviews 
After the analyses of the written responses 14 students were individually interviewed 
in order to explore their understanding. The students were chosen according to the 
factor analyses of the written responses in order to investigate all the patterns of 
answers with more than 10% of frequency.  
The interviews were not compulsory and explanations about the experiment were 
given to students before starting the interview. The interviews were semi-structured. 
All students were asked explanation about their answer to the written question they had 
to face in the admission test. Moreover, they were asked a question 1t or 2t (where the 
subjects had to recognize the truth of the statement), if they answered a question 1f or 
2f (where the subjects had to recognize the falsehood of the statements), in the entrance 
test and viceversa. They were asked whether they attended the precalculus course and 
whether they used logical concepts while they were answering that kind of question in 
the entrance test. Such questions were accompanied by personalized ones aimed at 
explaining students’ reasoning.  
RESULTS 
Table 5 shows students’ written responses to the four questions. We recall that the 
sample was split into four groups. The groups had about the same number of students 
and each group had to face one of the four questions respectively. In the following 
tables  A, B, C denote the options A), B), C) of the questions respectively, AB denotes 
that students had chosen both option A) and B) and so on. As a first result, questions 1t 
and 2t proved to be more difficult than questions 1f and 2f (34,24% versus 41,89% in 
1-questions and 22,22% versus 48% in 2-questions). Secondly, different percentages 
are due to questions of type 1 or 2, that is, with two circles or more than two circles 
respectively. In Q1t and Q2t proper answers (AC) are more numerous in 1-questions 
that in 2-questions (34,25% versus 22,22%), while in Q1f and Q2f proper answers (B) 
are less numerous in 1-questions than 2-questions (41,89% versus 48%). 
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Item Q1t Q1f Q2t Q2f 
A  1,37% 1,35% 0,00% 0,00% 
B  1,37% 41,89% 1,39% 48,00% 
C  60,27% 21,62% 76,39% 20,00% 
AB 1,37% 28,38% 0,00% 25,33% 
AC 34,25% 6,76% 22,22% 5,33% 
BC 1,37% 0,00% 0,00% 1,33% 
ABC 0,00% 0,00% 0,00% 0,00% 
Total 100,00% 100,00% 100,00% 100,00% 

Table 5: Responses by percentage to written test. 
In Q1t and Q2t the most common behaviour is to answer just C, that is the diagram 
with both black and white circles. This behaviour is due to an implicature occurring in 
an everyday communication, according to which “Not all the circle are black ” means 
that “just some circles are black and some do not”. This phenomenon is well described 
in this interview 

1  I: Why did you choose only C [question Q1t] and not also A? 
2 S1:  “Not all circles are black” means that there are white circles but it does not 

rule out that there are black circles. I would have chosen A if it was written 
“All the circles are not black” 

This student clearly explained that the sentence “Not all the circle are black” is not 
appropriate i.e. cooperative to the state of affair of diagram A with all white circles.   
The same implicature is also responsible of response (AB) in Q1f and Q2f. In this case 
the students chose diagram (A) and diagram (B) as the complementary of diagram C, in 
the sense that they chose (C) as the diagram that makes true the statement “Not all 
circle are black” and hence they ruled out C since they had to mark diagrams that 
makes the statement false. This behaviour is described in the interview of another 
student 

1  I: Can you explain the reason why you chose both A and B [question Q1f]? 
2 S2:  “Not all circles are black” means that there are both white and black circles 

... hence C makes true while A and B makes false. 
It seems that the misreading of the text of the question followed by an implicature as 
above is the cause of response (C) to questions Q1f and Q2f. In this case all the 
students interviewed, who answered (C) to Q1f or Q2f in the entrance written test, 
declared that they misread the question. They did not read the requirement about the 
falsity of the statement but they answered looking for the diagrams that corresponded 
to the statement “Not all circle are black”, i.e. that made the statements true. An 
example of this behaviour is given in the following interview.  
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1  I: Can you explain the reason why you chose C [question Q2f]? 
2 S3:  “Not all circles are black” means that there must be at least one white circle 

besides black circles. 
3  I: What does the question require?  
4 S3:  It requires to find the diagrams that correspond to “Not all circles are 

black”. 
5 I:  Can you please read again the question? 
6 S3:  I’m sorry…. I didn’t read false…I answered to another requirement… 

Probably, also the answer (AC) is due to the improper reading of the text of the 
question which lead them to look for diagrams that made the statement true instead of 
false. Unfortunately, there are not interviews supporting this interpretation, since the 
answer (AC) was not investigated by interviews.  
Another purpose of the interviews was to understand why the questions 1t and 2t 
proved to be more difficult than questions 1f and 2f (34,24% versus 41,89% in 
1-questions and 22,22% versus 48% in 2-questions). The following interview is 
interesting about this phenomenon. The interviewed student S4 answered (B) to 
question Q2f.   

1  I: Can you explain the reason why you chose B [question Q2f]? 
2 S4:  Saying that “Not all circles are black” is false means that all circles are 

black. 
3  I: Can you explain better?  
4 S4:  “Not all circles are black” means that the circles are white or some white 

and some black. The contrary is all circles are black. 
5 I:  Can you tell which diagrams make “Not all circles are black” true [Q2t]? 
6 S4:  C 
7 I:  So you are saying that diagram B makes the sentence false while diagram C 

makes the sentence true? That’s right? 
8 S4:  Yes! 
9 I:  And what about the diagram A? How does it make the sentence, true or 

false? 
7 S4:  It is not relevant to the question. 

From this interview it arises that the syntactic and semantic aspects of  “Not all circles 
are black”, concerning its truth or falsity, are overcome by the pragmatic one. Actually, 
in everyday communication sentences are often assessed related to their adequacy 
rather than their truth. This holds for negative sentences too, as their goals often 
overcome their truth. It is intended to stress how the formulation of the text of 
questions i.e. in terms of truth and falsity did not sufficiently draw the attention to a 
more mathematical context.  
From the factor analysis of responses to written questions a discrepancy between 
1-questions and 2-questions emerged. It seems that diagram C of 2-questions (3 black 
circles and 1 white circle) evoked more the use of a conversational implicature than 
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diagram C of 1-questions (1 black circle and 1 white circle). This should be explain the 
higher percentage of answers C in Q2t (76,39%) than answers C in Q1t (60,27%). 
According to this pragmatic view the white circle of diagram C of 2-questions would 
be coded as an exceptional item with reference to the residual class of the black circles, 
and then, the statement “Not all circles are black” is more cooperative when referring 
to diagram C of 2-questions rather than to diagram C of 1-questions. The statement 
“Not all circles are black” in the context of diagram C of 2-questions seems to advice 
the interlocutors that but there are an exception to the fact that all the circles are black. 
A sentence of the kind “Not all A is B” is pointless regarding diagrams C of 
1-questions. Therefore 1-questions could be evoked  the use of a less colloquial 
register but more suitable in a mathematical context. 
Finally, it is important to stress that all the students interviewed declared that they 
answered the questions without thinking to special aspects of mathematical language 
(such as connectives and quantifiers) encountered, even if briefly, in the precalculus 
course or described in the notes of the course. The students were not aware of the 
importance of the role that mathematical language plays in solving these tasks, but they 
settled for answering in an empiric way only.  
This experiment, conducted using diagrams, in order to investigate the interpretation of 
negative sentences of the kind “Not all A is B”, confirmed the results obtained in the 
previous studies of Bardelle (2011) and Ferrari (2004), in a quite similar context but 
where the interpretation of negation was investigated as an effect between two 
sentences, that is the students were asked to recognize equivalent sentences. The 
percentage of the results are very similar and the analyses of all these experiments 
identified the overlapping of everyday registers with the mathematical ones as a typical 
students’ behaviour. In particular, this experiment has confirmed that verbal 
component of statements of the form “Not all A is B” heavily affects their 
interpretation (meaning) according to their conventional use in the colloquial register, 
that is “not all” is conventionally used  to say “some do” and “some don’t” that is “not 
all A is B” conveys the implicature “There are some A that surely is B”. This behaviour 
is related in particular to the violation of the maxim of Quantity (Grice 1975); student 
S4 showed clearly this fact arguing that diagram A (all white circles) is not informative 
about the truth or falsehood of the statement “Not all circles are black”; also student S1 
showed it arguing that “Not all circles are black” is not related to diagram A but that a 
sentence of the kind “All the circles are not black” would have been relevant. 
This experiment has confirmed that the interpretation of verbal statements in a 
mathematical setting may happen to be based on everyday context and not on a 
mathematical one and, since some verbal statements, as those presented here, seems to 
evoke meanings conflicting with the mathematical ones, particular attention has to be 
paid in their use in the teaching of mathematics. 
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FORMAL AND INFORMAL LANGUAGE IN MATHEMATICS 
CLASSROOM INTERACTION: A DIALOGIC PERSPECTIVE 

Richard Barwell 
University of Ottawa, Canada 

 
A perennial concern with the issue of informal and formal language in mathematics 
classrooms has led to an assumption that students must move from informal to formal 
mathematical expression as they learn mathematics. In this report, I draw on a 
Bakhtinian, dialogic perspective to examine formal and informal language in an 
elementary school mathematics classroom in Québec, Canada. The students, who are 
second language learners, are learning about polygons. I argue that informal and 
formal language are both necessary, and are always in tension. 
INTRODUCTION 
Many mathematics curricula now include an explicit focus on the development of 
mathematical language. Such development is generally conceptualised as a shift or 
transition from students’ informal expressions of mathematical thinking, to 
communication using more standardised mathematical language. The Ontario 
elementary school mathematics curriculum, for example, suggests that in Grade 4, 
students should “communicate mathematical thinking […] using everyday language, a 
basic mathematical vocabulary, and a variety of representations” (OME, 2005, p. 65). 
By Grade 8, students are expected to use “mathematical vocabulary and a variety of 
appropriate representations, and observ[e] mathematical conventions” (p. 110). The 
use of ‘everyday’ language and ‘basic’ mathematical vocabulary has been replaced by 
‘mathematical vocabulary’, implying a direction for development from the former to 
the latter. While this kind of approach seems reasonable, human language use is rarely 
so straightforward. In this report, I consider the nature of the relationship between 
informal and formal language in mathematics classroom interaction. To do so, I focus 
specifically on interaction in a classroom featuring second language learners of 
mathematics. The role of informal and formal language in such classrooms becomes 
particularly salient and significant. 
FORMAL AND INFORMAL LANGUAGE IN MATHEMATICS 
CLASSROOMS   
It is clear from the literature that the relationship between formal and informal 
language in mathematics is not entirely straightforward. For example, Pimm (1987) 
suggests that the appropriation of everyday language within the mathematics register 
may be a source of confusion for students. A word like ‘difference’, for example, has a 
common everyday meaning (‘not the same’) and a more specific mathematical 
meaning (‘the result of a subtraction’). This observation suggests that there is a degree 
of overlap between informal, everyday language and mathematical language as it is 
commonly used. At the same time, research on mathematical discourse has 
increasingly highlighted the need to broaden the scope of inquiry to include a variety of 
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meaning-making resources, including symbols, gestures and a variety of languages and 
language practices (e.g., Moschkovich, 2008). This work also shows that there are no 
clear-cut boundaries between mathematical language and everyday language; 
mathematical language is never entirely formal. 
Research in classrooms featuring second language learners or bilingual or multilingual 
learners has also highlighted the issue of the development of formal mathematical 
language. In Adler’s (2001) study in South Africa, for example, teachers reported a 
dilemma they experienced about whether to allow their multilingual students to 
express their mathematical ideas using informal language, or whether they should 
interrupt students’ explanations to teach them formal, standardised mathematical 
language. This dilemma reflects a more widespread tension that has been observed in 
several other contexts. In multilingual classrooms, this tension interacts with tensions 
between students’ home languages and the language of instruction and between 
language policy and classroom practice (see Barwell, 2012).  
Both Setati and Adler (2001) and Clarkson (2009) have suggested that in multilingual 
or second language classrooms, students need to move along three different 
dimensions: informal to formal mathematical language; spoken to written 
mathematics; and home language to the language of instruction. This kind of approach 
is prevalent in the literature more generally and is apparent in the Ontario mathematics 
curriculum, as discussed above. This approach is productive and has generated 
valuable suggestions for classroom practice. It has not, however, interrogated 
sufficiently the nature of the relationship between informal, everyday expressions of 
mathematical thinking and more formal mathematical language. While there is 
recognition that the relationship is complex and that there are no clear boundaries, 
research is dominated by a model of transition from one to the other. 
THEORETICAL FRAMEWORK: BAKHTIN’S DIALOGIC THEORY OF 
LANGUAGE 
Although Bakhtin is primarily known as a literary theorist, his work includes a highly 
developed theory of language (see, in particular, Bakhtin, 1981). His theoretical 
perspective is wide-ranging and difficult to reduce to a list of simple tenets. For this 
report, I will summarise a few key ideas that are particularly relevant to the issue of 
formal vs. informal language. First, Bakhtin’s theory of language is dialogic. This 
means that language use is dynamic and situated. In particular, any utterance is 
understood to be a response, one turn in an ever-unfolding chain of utterances, which 
“cannot fail to be oriented toward the ‘already uttered,’ the ‘already known,’ the 
‘common opinion’ and so forth” (Bakhtin, 1981, p. 279). Moreover, each utterance is 
in dialogic relation with myriad alternatives, whether in terms of alternative 
pronunciation, choice of words, formulations, choice of language and so on. In this 
sense, dialogicality is a relational perspective on language. Meaning is made through 
the relations between sounds, words and utterances, not through these things ‘in 
themselves’. Furthermore, the relationality of language is always towards what 
Bakhtin often calls ‘an alien word’, that is, difference or otherness.  
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Second, language precedes us. This means that we must always use the words of others, 
alien words, to express ourselves. But these words continue to express much that we 
may not intend:  

Language is not a neutral medium that passes freely and easily into the private property of 
the speaker’s intentions; it is populated – overpopulated – with the intentions of others. 
Expropriating it, forcing it to submit to one’s own intentions and accents, is a difficult and 
complicated process. (p. 294) 

Hence any utterance is not simply an expression of an individual’s idea; it expresses a 
host of ‘other’ ideas that derive from preceding usage and must be understood in the 
light of preceding utterances. Furthermore, since we can never escape from being in 
relation to the language that precedes us, this language in some sense defines who we 
are. For Wegerif (2008), “for each participant in a dialogue, the voice of the other is an 
outside perspective that contains them within it” (p. 353) (see also Radford, 2012). 
Third, Bakhtin’s theory of language includes a continual tension between a centripetal 
force towards uniformity (“unitary language”) and a centrifugal force towards 
heteroglossia, which refers to the tremendous variety of language-in-use. This variety 
is related to social differences: “languages of social groups, ‘professional’ and 
‘generic’ languages, languages of generations and so forth” (Bakhtin, 1981, p. 272), 
including the languages of mathematics, as well as the languages of social class, race, 
region and so on. The tension between informal and formal language, observed in 
many mathematics classrooms, is an instance of Bakhtin’s more general tension. 
Formal mathematical language amounts to a unitary language, the idea of which exists 
in tension with the diverse forms of expression that students may use. Heteroglossia is 
an important aspect of dialogicality, since it is variation that leads to the continual 
interplay of different ideas, perspectives and meanings. As Holquist emphasises, 
however, “heteroglossia is a plurality of relations, not just a cacophony of different 
voices” (p. 89).  
Finally, in the context of education, Wegerif (2008) contrasts a dialogic perspective 
with a dialectic perspective (which he associates with a neo-Vygotskian perspective on 
learning). From a dialectic perspective, differences must be overcome, synthesised into 
something new (and so, arguably, tending towards uniformity). It is, arguably, this 
perspective that informs the idea of a uni-directional process from informal to formal 
language. From a dialogic perspective, by contrast, differences open up possibilities 
for making meaning; the process is no longer necessarily uni-directional.   
RESEARCH CONTEXT: LA CLASSE D’ACCUEIL 
The work reported in this paper is from a project designed to examine mathematics 
learning in different second language settings in Canada, a country with two official 
languages, English and French. In this report, I refer to one of these settings: a 
sheltered class for new immigrant learners of French, known as a classe d’accueil. In 
the province of Québec, new immigrant children must attend school in French. If they 
do not speak French, they attend a classe d’accueil for up to a year to learn enough 
French to join mainstream classes.  
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I visited a Grade 5-6 class (10-12 years), along with a research assistant, towards the 
end of the school year, by which time the students had acquired a degree of basic 
French. Between us, we attended all the students’ mathematics lessons for a period of 
three weeks. We made audio-recordings of whole-class interaction, as well as some 
small-group interaction. We also collected examples of students’ written work and 
interviewed small groups of students and the teacher. The class comprised 18 students 
with a variety of origins and language backgrounds, including South Asian, West 
African and South American. The teacher reported that the main aim of the class was to 
prepare the students for school life in Québec and to learn to speak and think in French. 
In mathematics, she focused on vocabulary. All mathematics texts used in class were in 
French and the teacher insisted on the use of French at all times. 
The analysis reported below examines the first of a sequence of three lessons 
introducing some language and concepts in geometry. During these lessons, the main 
emphasis was on learning the concepts and words for polygon, non-polygon, convex 
and non-convex. For this report, I focus particularly on the introduction and application 
of the words for polygon and non-polygon. Students were also introduced or 
reintroduced to the words for: straight, curved, quadrilateral, open, closed. Many of 
these words have broader everyday connotations. The names of basic shapes (e.g., 
circle, rectangle, triangle) seemed to be familiar to students already. Using principles 
from conversation analysis, participants’ orientations were used to language that they 
themselves saw as formal or informal. 
POLYGON OR NON-POLYGON?  
Prior to introducing the terms for polygon and non-polygon, the teacher took the 
students through two activities. First, she worked with the class on different ways of 
classifying the students in the room, including, for example, students wearing jeans vs. 
those not wearing jeans. The teacher referred to the resulting two groups as “les jeans” 
and “les non-jeans”, with emphasis on “non”. The discussion therefore introduces the 
students to the use of the prefix “non”. Second, the teacher handed out packets of 
regular and irregular shapes to students and asked them to work in small groups to sort 
the shapes into two distinct sets. She invited different groups to show how they had 
separated their shapes and to explain how they had divided them. Students often 
struggled to explain their thinking in a way that the rest of the class and the teacher 
could make sense of, such as when they said (in French) “I don’t know how to say it in 
French” or “how do you call those” or pointed, traced straight or curved lines with their 
hands or used words like “this” or “like that”.  
Next, the teacher introduced the terms “polygone” and “non-polygone” and drew 
examples of each on the blackboard. She asked the students to examine her drawings 
and deduce what a polygon is and what a non-polygon is. She said [1]: 

ok donc il y avait plusieurs façons de classer les figures […] une des façons (.) la plupart 
l’ont trouvée (.) il y a des figures qu’on appelle les (.) polygones (2) et les autres (.) qu’on 
appelle les (.) non (.) polygones […] ok c’était bon c’était très bon votre façon aussi on va 
en reparler plus tard (.) aujourd’hui on va plus voir les autres (.) donc polygone je vais te 
dessiner des exemples de polygone […] dans les non polygones il y a ça ça ça (6) avec mes 
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dessins (.) et tu capable de m’expliquer qu’est-ce que ça veut dire (.) polygone (.) et 
qu’est-ce que ça veut dire non polygone? (.) explique-moi la différence (.) 
ok so there are lots of ways to sort shapes […] one of these ways (.) most of you found it (.) 
there are shapes that we call (.) polygons (2) and the others (.) that we call (.) non (.)  
polygons […] ok your way was good it was very good as well we’re going to come back to 
it (.) today we’re going to look more at the others (.) so polygon I’m going to draw you 
some examples of polygons (…) for non polygons there’s this this this (6) with my drawings 
(.) can you explain what it means polygon (.) and what does non polygon mean? (.) explain 
the difference for me (.) 

The teacher’s introduction features several sets of differences: between the students’ 
distinctions and the teacher’s; between the two groups of shapes that the teacher draws 
on the blackboard; and between polygons and non-polygons. These differences are in 
dialogue with each other; making sense of the word and the concept “polygon” arises 
through the differences between the two groups of shapes on the blackboard, between 
the different ways of classifying shapes that preceded this moment, and so on. This 
approach captures a little of the tension between formal (unitary) and informal 
language (heteroglossia) to which Bakhtin refers. The teacher acknowledges the 
students’ ways of classifying shapes, saying they were “very good”, but sets them to 
one side in order to focus on the more formal terms of polygon and non-polygon. As 
such, she implicitly constructs the students’ classifications and language they use to 
express them as less formal.  
In the next few turns, the teacher elaborated on the meaning of polygon and 
non-polygon, with reference to the examples on the blackboard. She emphasised, in 
particular, the need for the sides to be straight and the shapes to be closed, pointing to 
examples on the blackboard as she spoke: 

les polygones c’est une ligne (.) droite (.) des lignes droites une ligne qu’on appelle brisée 
(.) ̂ ça veut dire quand elle est brisée comme ça c’est quand il y a plusieurs côtés^ et fermée 
(2.5) s’il y a les lignes courbes ou si la ligne elle n’est pas fermée (.) automatiquement c’est 
un non polygone (.)  
polygons it’s a straight line (.) straight lines a line that’s called broken (.) ^that means 
when it’s broken like that it’s when there are several sides^ and closed (2.5) if there are 
curved lines or if the line isn’t closed (.) automatically it’s a non polygon (.)  

Again, the interaction between informal and formal language is apparent. For example, 
the teacher uses the formulation “une ligne brisée” (literally ‘a broken line’ but 
meaning rather something like a ‘jointed’ line). This formulation appears on the 
worksheet she gave out just after the above quotation. The formal definition on the 
worksheet reads “Un polygone est une ligne brisée fermée, tracée sur une surface 
plane.” (A polygon is a broken, closed line, drawn on a plane surface). The teacher also 
explains ‘brisée’, using more informal language (“when it’s broken like that it’s when 
there are several sides”). Both formal and informal language are marked: the word 
“brisée” is preceded by “that’s called” indicating a new term; the subsequent 
clarification opens with “that means”, which signals a more informal formulation.  
The worksheet also featured a set of shapes, labelled A-L. The students were asked to 
list each shape in a table, in columns labelled  “POLYGONE” and 
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“NON-POLYGONE”. After the students had worked on this task, the teacher went 
through the shapes with the whole class. For each shape, the exchange had a similar 
structure: the teacher nominated a student and stated which shape; the student stated if 
they thought it was a polygon or a non-polygon; the teacher asked why; the student 
provided a reason; the teacher revoiced or clarified with the student, in some cases 
leading to a new classification. For example:  

Teacher le C [E38] le C tu l’as mis dans 
quelle colonne?  

C [E38] which column did you put 
C in? 

E38 non polygone non polygon 
Teacher non polygone (.) pourquoi?  non polygon (.) why? 
E38 parce que c’est (.) pas ligne droit  because it’s not a straight line 
Teacher ce n’est pas ligne droite c’est ligne 

(1.5) cou:rbe (.) garde je vais 
t’écrire ici (.) une ligne ça peut être 
droite (.) ou cou:rbe (2) k? bravo  

it’s not a straight line it’s line (1.5) 
look I’ll write it here for you (.) a 
line can be straight (.) or curved (2) 
okay? well done 

The teacher’s revoicings make small adjustments to the students’ formulations. These 
adjustments are at different times to grammar, syntax, pronunciation, word choice or to 
mathematical distinctions. In the above exchange, E38 says “ligne droit” (the final t is 
silent). “Ligne”, however, is feminine, so the standard adjectival form that follows 
would be “droite” (the t is sounded). The teacher’s revoicing adjusts this and then 
elaborates, adding in “curved” as the contrast with straight. She then writes the two 
words on the blackboard. Over the course of 12 exchanges (for shapes A-L), some 
abbreviation occurred: students accounted for their classification without being 
prompted, for example. One student explained that her shape is polygon “because the 
lines are straight and closed” to which the teacher replied “perfect”.  
The lesson moved on to look at other attributes of geometric shapes. At the end of the 
period, however, the teacher asked a student to define polygon: 

E53 un polygone c’est comme forme 
qu’il a des lignes droites (.) et il n’y 
a pas de trous 

a polygon is like shape that it has 
straight lines (.) and there aren’t 
any holes 

Teacher ok lignes droites fermées (.) si je te 
demande c’est quoi un 
non-polygone: [E54] 

ok straight lines closed (.) if I ask 
you what’s a non polygon [E54] 

E54 non polygone c’est comme ah il y a 
comme il y a un trou dans le carré ou 
les lignes sont c-courbes 

non polygon is like ah there’s like 
there’s a hole in the square or the 
lines are curved 

Teacher donc il y a une ligne courbe ou une 
ligne qui n’est pas fermée 

so there’s a curved line or a line 
that isn’t closed 

In these brief exchanges, two students give an account of their interpretation of the 
meaning of polygon and non-polygon. Again, the interaction between formal and 
informal language is apparent. Both students use the informal word “hole”, for 
example, while the teacher revoices each time using the more formal word “closed”.  
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DISCUSSION 
In the lesson described above, the language of mathematics precedes the teacher and 
her students. They must grapple with it in an attempt to make it submit to their 
intentions. For the students, this struggle includes their encounter with the otherness of 
new words, new distinctions or new ways of using language. The teacher also 
encounters otherness, in the students’ diversity, of accents, pronunciations, 
non-standard French and their informal expressions of mathematics. According to 
Wegerif (2008), this otherness “contains them within it”. In the above lesson, the 
students must try to see things as the teacher does. When she asks “polygon or 
non-polygon?”, they must use her formal terms and her distinction to respond. The 
question contains them; it reflects a centripetal force towards a particular way of seeing 
shapes and doing mathematics. By the same token, however, when the students reply, 
using a more informal language of holes and lines and gestures and pointing, the 
teacher must try to see things as they do. Their utterances, then, reflect a centrifugal 
force that contains the teacher. Throughout, there is a dialogue between the two. 
Through this dialogue, the students and the teacher come to use language in new ways: 
the language of both changes through the lesson in response to the utterances of the 
other.  
A dialogic perspective on formal and informal language in mathematics classrooms 
highlights a relationship between formal and informal that is not uni-directional. 
Rather than steady progress from informal to formal, these students work at both. The 
teacher, too, must make skilful use of varying degrees of formality. Of course, students 
need to learn formal mathematical language as part of learning mathematics, but this 
does not mean that informal language disappears; nor is it simply a scaffold to reach 
more formal language. Both are necessary; they will always be in tension. 
Note 
1. Transcription: (.) or (2) for pauses, ^ ^ for whispering, […] for omitted parts. The 
translations are my own. 
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Abstract Although technology can be used as an important tool in teaching 
mathematics, its integration into teaching methods lags behind. To support teachers in 
their use of Information and Communication Technologies (ICT) in the mathematics 
classroom, a Community of Practice has been set up which consisted of the 
researchers and twelve teachers teaching eight grade students. The influence of the 
community on teachers’ professional development has been evaluated. Analysis shows 
that throughout the project teachers have become more confident in their use of ICT 
and more aware of the importance of teacher guidance when ICT is used to support 
student learning. Evaluation of the enterprise shows that teachers’ development has 
not been optimally supported by the community.  
 
INTRODUCTION 
In the last ten to twenty years, digital technology has evolved from being solemnly a 
gadget to being an essential part of everyday life. This development greatly influenced 
education, specifically mathematics education, which becomes apparent in the 
growing use of smartboards and graphic calculators in the classroom. The National 
Council of Teachers of Mathematics’ position statement claims, “Technology is an 
essential tool for learning mathematics in the 21st century, and all schools must ensure 
that all their students have access to technology,” (NCTM, 2008, p. 1). Central to this 
use of technology in the classroom is the guidance by the teacher. Teacher practice 
significantly affects student learning (Ely, 1996), and teachers “...play [an] important 
role in [determining] the time, place, and manner for technology to be engaged in the 
classroom” (Brown & Cato, 2008, p. viii).  
Although technology can be used as an important tool in teaching mathematics, its 
integration into teaching methods lags behind. According to Sabra and Trouche 
(2013), new technology creates new needs and complicates the work of teachers. 
Therefore, it is necessary to support teachers’ professional development concerning 
the use of ICT in the classroom. Wenger states that Communities of Practice can 
greatly support learning of both the individuals and the community. To explore this 
support, a Community of Practice was formed to support teachers in their use of ICT in 
the classroom.  
THEORETICAL FRAMEWORK 
Wenger (1998) advocates the emphasis on collective learning as a substantial part of 
adult – and non-adult – learning. This collective learning results in “…practices that 
reflect both the pursuit of our enterprises and the attendant social relations,” (Wenger, 
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1998, p. 45). A community in which these practices are central is defined as a 
Community of Practice. Communities of Practice can be described using three 
dimensions: mutual engagement, a joint enterprise, and a shared repertoire (Wenger, 
1998). These three dimensions formed the thread of this study and will be explicated 
below, where Wengers’ definitions are extended with notions from more recent 
research. 
Mutual engagement is an important source of coherence within the community. 
Participants need to feel included in what matters, giving them a sense of belonging. 
Besides this individual need, community engagement needs to be fostered by diversity 
and partiality, because mutual engagement involves not only our own competence, but 
also the competence of others. In time, this engagement will connect participants to 
each other in ways that are diverse and complex, forming relationships which will 
reflect the complexity of the group’s collective actions.  
The second dimension, a joint enterprise, gives participants a shared purpose, 
enlarging the sense of coherence within the community. The goal of the enterprise 
should be the result of a collective process of negotiation, reflecting the full complexity 
of the mutual engagement. During the realization of this goal, the connection between 
the community and the ‘real world’ is made by the production of boundary objects. 
These are products made by, or within, the community which can be used outside the 
community. It is important that all participants are able to equally contribute to the 
realization of the goal. In doing so, two aspects have to be taken into account: 
participants should consider more than their own perspective, and they should feel 
mutual accountability (Kisiel, 2009).  
The third dimension, a shared repertoire, is the result of the different activities which 
are carried out to pursue the enterprise’s goal. The origination and development of this 
shared repertoire can be described by a process called “Community Documentational 
Genesis” (Gueudet & Trouche, 2012). This is an extension of the process of Individual 
Documentational Genesis (Gueudet & Trouche, 2008). Documentational Genesis 
represents the process through which an individual uses a certain resource within his or 
her scheme of utilization and so turns it into a document. This is a dynamic and cyclic 
process. Community Documentational Genesis arises when Documentational Genesis 
is considered within a Community of Practice. The result of this process is 
Community: a repertoire of shared documents including resources, knowledge, and 
practices (Sabra & Trouche, 2013; Wenger, 1998).  
METHODS 
This study was part of a larger research project called the DPICT project (Drijvers, 
Tacoma, Besamusca, Doorman, & Boon, 2013a, 2013b). During the school year 
2011-2012, six pairs of teachers were asked to use three pre-designed mathematics 
modules in their eighth grade classrooms. The modules were designed on a Digital 
Mathematics Environment (DME). During this period, a Community of Practice was 
set up to support the teachers. This community consisted of the six pairs of teachers, 
four researchers, and two master‘s students. Interaction took place through five 
face-to-face meetings and communication on a digital platform called Moodle.  
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To foster mutual engagement, teachers were included in everything that mattered for 
the project. They implemented and tested the Modules, indicated design errors (which 
were consequently fixed by the designer), and led the discussions in the meetings with 
their findings and opinions. Diversity and partiality were established by choosing the 
teacher-pairs from six different schools throughout The Netherlands and letting 
teachers choose their own approach when using each module. Several teacher activities 
were analysed to evaluate the teachers’ mutual engagement. First, blog writing activity 
was analysed: teachers were asked to post a blog on Moodle for every lesson they 
taught in which they used the DME. A count was kept of the blogs written per module. 
Second, Moodle activity was analysed: teachers could visit a forum, post additional 
documents, and read documents posted by either the researchers or other teachers. A 
count was kept of the different pages which the teachers visited in Moodle. Finally, 
teachers’ opinions were evaluated. Teachers were asked to give their opinion on the 
activities within the community in a questionnaire at the end of the project. These 
opinions were analysed and linked to their activity. 
The quality of the joint enterprise was analysed by evaluating the enterprise’s goal and 
the related individual and communal activities, including the production of boundary 
objects. In the questionnaire at the end of the project, teachers were asked to give their 
view on the enterprise. These views were analysed and related to the evaluation 
described above. 
The analysis of the shared repertoire was focused on the processes of Individual and 
Community Documentational Genesis, specifically the development of knowledge and 
attitudes. A list of topics of discussion was extracted from recordings of the meetings 
and from the written blogs. Subsequently, the topics judged as most relevant by the 
researchers have been explored in depth. 
The analysis of the Community Documentational Genesis was based on the 
development of the five chosen topics in the meetings. The teachers sparsely used the 
forum on Moodle. Therefore, this data-source was not included in this analysis. The 
analysis of Individual Documentational Genesis was based on the development of the 
five chosen topics in the blogs. The data from the blogs were supported by an ICT 
questionnaire which focused on teachers’ attitude towards ICT and interviews focused 
on what teachers encountered when using ICT in the classroom. To complete and 
verify the resulting picture, the teachers were asked to complete a final questionnaire at 
the end of the project. The Community Documentational Genesis has been linked to 
the Individual Documentational Genesis, similar to research done by Sabra and 
Trouche (2013). The connection between the Genesis and actual teacher practices lay 
outside the focus of this article. The interested reader is referred to Drijvers et al. 
(2013a) and Drijvers et al. (2013b). 
RESULTS 
The results are listed below according to Wenger’s (1998) three dimensions. 
Mutual Engagement 
During the project, teachers were asked to write a blog for every lesson they taught in 
which they used the DME. This should have led to a total of about 100 blogs per 
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module. The amount of written blogs however, is far lower, ranging from 86 blogs for 
the first module, to 57 for the second, and 58 for the third. Teachers lost interest in 
writing their blogs after the first part of the project. This is supported by the teachers’ 
evaluation of the blogs in the questionnaire, which showed a relatively low opinion of 
the added value of the blogs.   
Teachers’ activity on Moodle also lessened as the project progressed. The visits in the 
months of September-November were nearly twice as frequent as the visits in the 
months of December-June. Of the different aspects of Moodle, teachers’ visits of the 
blogs were most frequent. Apparently, although teachers did not value the blogs much, 
this only impaired their writing activity and did not keep the teachers from reading 
them frequently. This can be explained by time-constraints, an impairing factor which 
teachers mentioned more than once during the meetings with regard to their blog 
writing. Teachers only sparsely visited the Moodle forum, and almost never visited the 
additional documents posted by the researchers and other teachers. Their opinions in 
the questionnaire support this fact, showing a relatively low appreciation of the forum 
and the additional documents. 
Joint Enterprise 
For the teachers, the goal of the enterprise was to learn how to use ICT – or more 
specifically the three modules designed in the DME – in the classroom. A secondary 
goal for the teachers was to investigate the added value of the use of ICT in the 
classroom. Individual activities related to the teachers’ primary goal include the 
preparation of lessons in the blogs, exploring the different features of the DME, and 
using the modules in the classroom. The writing of blogs can also be considered a 
communal activity, dependent on the degree to which teachers keep their peers’ 
perspectives in mind while writing their blogs. Other communal activities include 
participation on the forum, reading peer blogs, and participating in the face to face 
meetings.  
During the project, the relations between the members of the community gradually 
shifted. At the start of the project, the researchers intended for authority between 
members to be equally divided. As the project progressed, however, the power shifted 
partially, making the researchers the authority figures. This change was unintended 
and likely due to the members settling into their basic roles. In other words, the 
researcher, who initiated and guided the project, was the natural authority figure, while 
the teachers, who applied for the project, naturally followed his lead.  
Boundary objects were a missing element in the community. During the project, 
teachers could read and post documents on Moodle. These documents ranged from 
articles on the theoretical framework supporting the research to actual lesson plans and 
study guides. Teachers only sparsely read and posted these documents, which indicates 
their lack of feeling of mutual accountability. Emphasizing this point, only two 
teachers took the opportunity to post documents on Moodle. During the meetings, most 
discussions lingered on ideas and opinions on the use of ICT in the classroom, not 
making the step to concrete lesson-plans. This, again, points to a lack of boundary 
objects, which normally form the connection between the community and the ‘outside 
world’ (Wenger, 1998). Tasks associated with generating these objects were missing, 
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although these are an important part of the community (Gardner, 1994). A more 
thorough description of the content of the discourse is given in the paragraph below on 
the Shared Repertoire. 
In the questionnaires, teachers indicated that they felt supported by the community 
during the project. They were most positive about the contact with colleagues, the 
opportunity to share experiences, the technical support of the researchers in using the 
DME, and the opportunity to use the ICT-modules which the project offered. As stated 
before they did not fully appreciate the added value of the blogs and documents, which 
showed in their use of these resources.  
Shared Repertoire 
The analysis of the shared repertoire focused on the development of the knowledge and 
attitudes of the teachers on five topics: computer versus paper, feedback, tests, 
DME-technical, and technical facilities.  
The topic computer versus paper has been prominent during all the meetings, having 
been discussed almost thrice as much as other topics. It concerns the balance which 
teachers have to make between letting the students work on the computer, letting the 
students work out of their books, and guiding the students in their work on the 
computer. At the start of the project, teachers were undecided on how they would make 
this balance, even considering letting students work independently on the computer. In 
both the Individual and Community Documentational Genesis, it becomes apparent 
that towards the end of the project teachers could better enunciate the balance they 
chose. In the final questionnaire, they emphasized the need for teacher guidance when 
working with computers, leaving their original idea where students’ working 
independently on the computer was possible. This development has also been found in 
the research by Abboud-Blanchard and Vandebrouck (2012). 
The topic Feedback concerns the feedback which the DME offers on student answers. 
The Community and Individual Documentational Geneses show that, during the 
project, teachers became more sceptical about the value of this feedback, stating that it 
limits students’ independence of thought and understanding more than expected. The 
final questionnaire shows that they still appreciated the feedback, stating that it 
motivates students and lets them work independently.   
The topic Tests considers the choice which teachers have to make between using either 
a digital or paper test. During the course of the project, half of the teachers chose to use 
a digital test at least once. Both the meetings and the blogs show that, when choosing 
between paper and digital tests, teachers consider the way students have practiced and 
how they will be tested in their final exams. After use of the tests, teachers were 
sceptical on the grading done by the DME. Often they did not agree with the points 
assigned, increased their total revision time. This discovery resulted in discussions on 
the form of the digital tests, for which a more deterministic form, which can be graded 
better by the DME, might be better suited. In the final questionnaire, two teachers 
stated that they learned that the choice for either using digital or paper tests is 
dependent on what you want to know. Well performed digital testing is more 
deterministic of nature than paper testing, which gives the teacher more insight into 
student understanding. 



Besamusca, Drijvers 

 

2 - 86 PME 37 - 2013 

DME-technical represents the technical issues concerning the DME, including 
activities such as logging in and creating accounts. This topic was only discussed in the 
initial meeting, which inhibits the analysis of the topic development describing the 
Community Documentational Genesis. Analysis of the blogs, however, shows that 
during the project teachers became more confident in their use of the DME, solving 
problems easier and faster. This Individual Documentational Genesis is confirmed by 
the results from the questionnaires and interviews.  
The last topic, Technical facilities, concerns the technical facilities which the school 
offers. Analysis of the Individual and Community Documentational Genesis shows 
that teachers became more and more confident in their use of the facilities, solving 
problems easily even when facilities were lacking. The only impairing factor which 
teachers could not overcome was the infrastructure of the classroom, the location and 
formation of computers in the classroom sometimes greatly influenced their lessons. 
The increase of confidence and capability to solve problems has also been found in the 
research by Abboud-Blanchard and Vandebrouck (2012) 
 
CONCLUSION AND DISCUSSION 
The goal of this study was to evaluate the use of a Community of Practice to support 
teachers’ professional development. Analysis of teachers’ engagement within the 
community showed that as the project progressed, they did not fully utilize the 
available methods for support. This could be due to many factors, of which some 
follow from the analysis of the joint enterprise. Boundary objects were sparse, as 
neither the teachers nor the researchers fully recognised the value of these documents. 
A possible reason for this is that the teachers did not have enough feeling of ownership 
over the project, a result from potentially unevenly distributed authority. Without full 
responsibility, teachers did not feel fully accountable for the different tasks performed 
within the community. 
Analysis of the development of knowledge and attitudes showed that the Individual 
Documentational Genesis was in accordance with Community Documentational 
Genesis. To evaluate the influence of the Community of Practice on teachers’ 
development, however, a causal relation is needed: a connection which shows that the 
community discourse directly influences the knowledge and attitudes of individuals. 
Such a connection was not found in this study. In contrast, evidence for such influence 
was found in similar research done by Sabra & Trouche (2013), a project with a greater 
emphasis on boundary objects. In that project, research instruments were more directed 
at exploring the influence of the Community of Practice, as for example reflections by 
teachers on all the communal activities (Sabra & Trouche, 2013). 
When broadening the search to an overall influence of community activities on 
individual thinking, more examples are found. The theoretical evaluation of articles by 
Voogt et al. (2011) is most relevant in the context of this research. A causal 
relationship was found between community activities and teacher change, which is 
defined by knowledge, beliefs and attitude (Clarke & Hollingsworth, 2002). The main 
difference between the articles researched by Voogt and the study presented here is the 
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clear existence of boundary objects in Voogt’s research, formed in that case by the 
curriculum. 
With respect to this project, two improvements could be made which may make it 
possible to find a causal relation focused on teachers’ professional development. First, 
with regard to the data, more should have been gathered on teacher practices, such that 
a development of their practices could be thoroughly mapped and linked to their 
Individual Documentational Genesis. Second, with regard to the setup of the 
intervention, the most communal aspects of the Community of Practice (the meetings) 
could have focused more on the actual practices, the boundary objects. By this, the 
content of the community practices and individual practices would be more congruent, 
and links between the Documentational Genesis and practices would be more apparent. 
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One goal of Norway’s new primary teacher education programme of 2010 was 
improved school placement: the relationship between the teacher education 
institution, practice schools and pre-service teachers was to be formalized as a 
tripartite cooperation. However, in the area of mathematics education, cooperation is 
not straightforward: tensions arise because of pre-service teachers’ prior experience 
and beliefs, and differences between university college training and school practice. 
This paper reports on questionnaire data and focus group interviews with first-year 
pre-service teachers and their mentors following school placement. It illustrates the 
complexity of the partnership and its impact on pre-service teachers’ professional 
development in the area of mathematics. 
BACKGROUND: THE SCHOOL-UNIVERSITY-PRE-SERVICE TEACHER 
PARTNERSHIP 
As mathematics teacher educators in Norway, we are obliged to focus on supporting an 
idealised tripartite cooperation between teacher mentors, pre-service teachers and our 
university college (hereafter HiOA). Based on national guidelines, HiOA developed a 
plan for in-school placement, focusing on how to share responsibility for pre-service 
teacher education between educators at HiOA and teacher mentors in partner schools. 
This shared responsibility is underlined by the joint development of the pre-service 
placement plan by teacher educators, mentors and pre-service teachers.   
During the first year of the 4-year programme, the overall focus is on the teacher’s role. 
However, students’ personal epistemologies of mathematics – what mathematics is, 
and how it is developed in teaching and learning – frequently associate it with 
memorized facts and rules, solution speed as an indicator of ability which is fixed and 
which cannot be acquired/improved through effort, and the equation of mathematical 
truth with teacher approval (see de Corte, Op’t Eynde & Verschaffel, 2002; 
Schoenfeld, 1989; Smestad et al, 2012). Such beliefs are associated with 
‘transmissionist’ rather than ‘connectionist’ styles of teaching (Pampaka et al, 2012). 
While the university attempts to challenge such beliefs, the impact of school placement 
can force a return to earlier embedded ideas, particularly when assessment, testing and 
accountability are high on the agenda. Both pre-service teachers and teacher educators 
can experience a number of tensions between school practice and university 
theory/practice. Nolan (2012) reported on conflict between support for inquiry-based 
pedagogies at university level, and instrumentalism in practice schools. She argues that 
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this is not just due to the role of accountability and assessment in schools, but also to 
pre-service teachers’ educational habitus and cultural routines associated with 
teaching: ‘every adult knows what teaching and learning should look like because he or 
she has spent thousands of hours as a student in school’ (Bullock & Russell, 2010, p. 
93, cited in Nolan 2012). Allen (2009) also found that beginning teachers privileged 
what they had learned on placement rather than university theory. 
Goos (2009) analyses the gap between what pre-service teachers are taught at 
university and what they actually do when they teach, focusing on the need to 
understand how they interpret their teacher education programs, how (and why) they 
appropriate certain aspects of those programs, and the nature of the different 
influences on the execution of their teaching plans. So, for example, Arvold (2005), 
like Nolan, uses the idea of habitus as an explanatory device, but in this case to argue 
that pre-service teachers attend to different aspects of their teacher education programs 
and make sense of them differently, through the lens of their prior experience of being 
taught mathematics. Bednarz and Proulx (2005) also suggest that pre-service teachers 
appropriate different things from their teacher education courses, resulting in different 
views of what they about, which are in turn reflected in their own teaching practice.  
In this paper, we examine the relationship between theory and practice held by the 
different partners involved in the practicum. We focus on the tripartite cooperation in 
the early stages of the project, addressing the following research question: How do 
pre-service teachers and their mentors perceive the connection between what 
pre-service teachers are taught about mathematics education in University College and 
their learning from practice within the school placement? 
Our analysis discusses the challenges of school placement, from the points of view of 
both pre-service teachers and their mentors. We will suggest that pre-service teachers 
do not necessarily take on the intended messages of their university teaching, partly 
because these are filtered through their prior experience, but also because of the 
difficulties of translating theory into practice when faced with diverse classroom 
demands. We also explore how school placement experience plays a role in pre-service 
teachers’ development as they reflect on these tensions.  
METHOD 
Two hundred and eight first-year pre-service teachers at HiOA completed 
questionnaires after their school placement in 1st–4th grade. Information was gathered 
on the influences of school and HiOA training on their teaching practice, and their 
perceptions of mathematics and mathematics teaching and learning. For comparison, 
their 46 teacher mentors completed questionnaires covering their experiences as 
mentors, and their perceptions of mathematics teaching and learning, and their 
mentees’ performance as teachers. Questionnaires comprised a number of statements 
requiring 5-point Likert scale responses, and also 3 free-text questions. In these, 
pre-service teachers were asked to describe a practice situation where (1) they 
benefitted from learning on their mathematics course at HiOA, and (2) they benefitted 
from learning from their teacher mentor. Mentors were asked 2 parallel questions 
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about mentees’ use of learning from HiOA and from themselves. Question 3 asked 
both pre-service teachers and mentors to describe the challenges for pre-service 
teachers of using HiOA learning in practice. 
Fourteen teacher mentors also participated in one of 2 focus groups, in which they were 
asked to reflect on the teacher mentor role. Similarly, 25 pre-service teachers formed 
five focus groups, in which they were asked to reflect on the challenges of their school 
placement, on their own development as a teacher of mathematics and on the role of 
their teacher mentors.  Including focus groups in the methodology enabled a 
broadening of the analysis to extended reflections about participants’ experiences in 
the placement partnership. 
Analysis 
The Likert-scale data were coded on a 5-point scale (“strongly disagree” = 1 and 
“strongly agree” = 5), and comparisons between pre-service teacher and teacher 
mentor responses analyzed using Mann-Whitney U tests. The free text data and the 
focus group data were analyzed thematically, in order to identify the discourses of 
mathematics learning and teaching which participants drew on, and their perceptions 
of connections between theory and practice. We blend our analysis of the quantitative 
and qualitative data in the following sections.  
Teaching and learning in university college and school 
Following on  from the suggestion that pre-service teachers do not necessarily take 
what teacher educators intend from their courses, we were interested to understand 
whether pre-service teachers attributed what they learned and did during their 
placement to their HiOA experience or to their workplace learning with their teacher 
mentor. We were also interested to explore the university-school partnership link by 
comparing their responses with those given by the teacher mentors to parallel 
questions. Analysis of these free text responses and related Likert-scale scores 
identified some interesting mismatches, two of which we describe here.  
The first of these involved mismatches regarding the use of manipulatives (physical 
models) in teaching. Forty-nine per cent of pre-service teachers recorded this as a 
technique learned from their HiOA course, and 15% said they had learned it from their 
teacher mentor. However, teacher mentors took a different view: only 15% reported 
use of manipulatives as something their pre-service teachers had learned at HiOA, 
versus 39% who reported that this was something they had taught the pre-service 
teachers themselves. These mismatches are fleshed out in the focus group data, where 
teacher mentors commented on the ‘gap’ as resulting from pre-service teachers’ failure 
to understand how to translate what they learn at HiOA into practice:  

I think they [pre-service teachers] need to be better at thinking/using manipulatives when 
they explain... But they don’t even think of it. ... You do work with manipulatives here [at 
HiOA] but they don’t see the usefulness...  

Aware that the HiOA educators stress the importance of manipulatives, the teacher 
mentors felt, however, that they had not managed to teach the pre-service teachers 
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how, when and why they should use them in their lessons, and that this was something 
that they themselves made clearer:  

I know that [HiOA] operates with manipulatives a lot but not with the transfer...  
I think they learn from [...] tying the practical contexts to the theoretical. It is no use [in 
learning maths] to just bake buns with your pupils, you also have to actually write it down, 
convert between units of measurement, specify the units.  

Pre-service teachers also commented that they were limited in their experience of the 
practical use of manipulatives: 

I think the challenge was the materials [we] worked with, because we were trained to work 
with [manipulatives], in the introduction of a topic, and there was very little to work with.  

The second issue concerned the central role of understanding pupil reasoning. As a 
major focus of the HiOA course, we had expected that pre-service teachers would be 
likely to cite this as a beneficial piece of learning from their course. However, only 
13% of them (and 7% of teacher mentors) did so, and a further 4% of pre-service 
teachers (and 22% of teacher mentors) said this was learned from the teacher mentor. 
This pattern may be related to a series of findings from the Likert-scale data on 
pre-service teachers’ perceptions of mathematics teaching, which indicated a 
conservatism about teaching and learning and pupils’ roles which was not reflective of 
the HiOA programme intentions. More ‘traditional’ personal epistemologies of 
mathematics were reflected in 50% of pre-service teachers’ agreement or strong 
agreement that “Mathematics is a subject for rote learning”. They were also more 
conservative than the teacher mentors in response to completions of the opening 
statement “When pupils are to learn mathematics, it is important that…..”.  For 
example, teacher mentors agreed significantly more strongly than pre-service teachers 
with the completion statements “…they use their own algorithms”, “ …they take what 
they know as a starting point”, “…they have to explain what they think” and “…they 
can use fantasy and creativity in their work” (p<0.01).   
These issues are followed through in the focus groups, where teacher mentors 
frequently reflected on pre-service teachers’ difficulties with adjusting their teaching 
plans to fit pupils’ needs.  They saw this as something that they needed to model in 
their role as mentors: 

… the [pre-service teachers] must try [...] different methods, and it is paramount that they 
see us as role models. And also […] see that there are many ways forward, and while they 
are with us they can find out how pupils think, that they can linger on some things.  I think 
that linger is the right word; for the most part they just go directly on, doing what they have 
planned. And then they are not so good at assessing afterwards.  

Here the same issue is raised but also connected to a perception that pre-service 
teachers lack subject knowledge: 

...when pupils explain how they think, I often feel that [pre-service teachers] fail to follow 
the pupil and it is certainly a matter of training but I also think it’s about their basic 
understanding of numbers and mathematics [...]. Then I have to get involved, to say “I 
think I understand how you think”, because they [the pre-service teachers] stand there 
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perplexed, and also the pupil sits there thinking "what did I say wrong?" and often it isn’t 
wrong. 

A slightly different angle notes the effect of pre-service teachers’ assumptions about 
the nature of mathematics and related previous experience:  

I think maths is also a subject where students are very afraid of doing something wrong, 
because they think like "oh! it must be done correctly" so that they get hung up on some 
boring methods sometimes and they don’t dare to take a wider view as they do in other 
subjects.  

While mentors alone focus on the need to understand pupils, they share a common 
concern with pre-service teachers regarding the need to make oneself understood as a 
teacher.  Here a teacher mentor talks about the need to be careful about terminology: 

In most mathematical topics you must be extremely careful what terms you use with the 
pupils, because in front of the class, as soon as you start fumbling, or you let the pupils 
make a mess of it for each other, it is going to be a problem. 

In the following quotation, a pre-service teacher expressed a parallel concern with 
explanation of her own understanding: 

We must try to explain things as simply as possible. This is a challenge because it always 
goes through a filter, namely the teacher, who understands it. 

Returning to the questionnaire data, teacher mentors were less likely to agree that “To 
become good at mathematics, you need to do lots of exercises” and that “The solution 
of a mathematics exercise is either right or wrong” (p<0.05), but in the focus groups 
some nevertheless described their classes in such terms, showing the influence of 
national testing: 

We have been working on [national] assessment tests in mathematics - so very much 
practicing for the test.    

Here a pre-service teacher notices an emphasis on exercises in school placement:  
Going through the problems ... on the blackboard. Then we ask the pupils how they would 
solve this task, we talk a little about the solution. Then the pupils do the work individually.  

Although these comments were few, they indicate a potential source of affirmation for 
deeply embedded traditional views about the nature of mathematics, as well as a 
further source of potential conflict for pre-service teachers regarding their experience 
of putting HiOA theory into practice.  
The relationship between theory and practice 
These results indicate the presence of various mismatches between school and 
university experience, and between university input and pre-service teachers’ attitudes. 
As we have seen, they revolve around the issue of putting theory into practice, the 
focus of the third free-text question, which asked about the challenges for pre-service 
teachers in using learning from their HiOA course in practice. Only 8% of pre-service 
teachers replied that there were none, while 24% responded that it was difficult to 
translate theory into practice, and 12% that it was difficult to find the right language. 
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Several themes emerged, including a perceived absence of HiOA teaching on 
particular school topics: 

It can be difficult to draw connections and parallels between theory and practice. 
Especially considering that the topics we have used in school practice have not been 
particularly emphasized at HiOA.  

But it was recognised that this could be a translation issue: 
Not many situations have come up that can be linked to the topics we’ve had. And if they 
have, I haven’t thought about them in a way that relates to what I’ve learned at HiOA.  

Thirty-four per cent of students said that mathematics at HiOA was too difficult for 
them, or was irrelevant for their teaching. Many comments were clearly illustrative of 
the problems of applying pedagogic principles noted above: 

It’s not easy to connect what I have learned with [my practice] in the school placement 
because I feel that much of the curriculum isn’t linked to the teaching of first grade, but to 
further grades. 

Teacher mentors recorded fewer barriers, but also cited difficulty in translating theory 
into practice (20%), difficulty/irrelevance of mathematics at HiOA (13%) and 
insufficient mathematics at HiOA (9%). In free text responses, 13% said that they did 
not know what pre-service teachers learned at HiOA. Focus groups also included 
criticism of pre-service teachers’ subject knowledge: 

Some have poor background knowledge when they come, I think. I had students in practice 
[in.] ... fourth grade, and then it was elementary things they did not know, I was quite 
surprised. 

Some comments blamed lack of enthusiasm for uninspired teaching, but others were 
more indicative of the problem of application of theory into practice: 

I had a student who could not explain to the pupils what she intended, she became more 
and more frustrated.  

This could include not having the confidence to depart from the lesson plan: 
… they think it's hard to meet the challenge [when] they get a lot of input from pupils 
[...]  to use the input for further teaching ... it seems that they do not dare to do so […], 
“What I have written, I'll execute!”. 

In terms of the partnership itself, the questionnaire data showed that 91.6% of 
pre-service teachers agreed that “Experiences from practice have been important in the 
rest of the programme”. Indeed, a number of them were critical of the HiOA course in 
their focus groups: 

... there’s nothing wrong with theory, but we must learn how to combine it with practical 
methods. It needs to be explained to us, why, how and when. … It is the practical work that 
I remember best.  

While these and other comments suggest that many pre-service teachers see university 
college and school placement as very separate, others were more reflective about how 
the two together contributed to their development as professionals: 
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I've heard several of the class who talked about what they have done in practice, but said 
they had not used what they had learned here [at HiOA], but it was exactly what we learned 
here that they had. I think you don’t quite connect, I think that reflection days are very 
good for becoming more aware of that. 

Some reflected on the difficulties of this stage of their development, and the need to 
learn from HiOAs’ aim to teach pedagogic principles as opposed to ‘recipe-following’ 
teaching tips: 

Math teaching at HiOA focuses on our awareness of how we think when we do various 
calculations. I find that difficult, and have not come so far in the process yet that I feel I can 
take advantage of this when teaching.  

Others noted the difficulties of being a novice but also the importance of reflection: 
It's easy to forget to use one’s knowledge in some situations. But in retrospect, one thinks 
of what was done and finds that there was a much better option. 
One has to reflect along the way to learn by experience. 

 
DISCUSSION 
Previous research indicates that pre-service teachers will inevitably draw selectively 
from university programmes, through the lens of their own experience and beliefs. This 
is an effect which can be reinforced in school placement. In addressing our research 
question, this study has illustrated the complexity of the tripartite partnership involved 
in school practice. We have found that many of our pre-service teachers had missed the 
point of much of HiOA’s input, and that their experience of the school placement is 
one of learning concrete practice from their mentors which they see as more informing 
than their university programme. For their part, mentors are often critical of their 
mentees’ subject knowledge, but see themselves as acting as important translators of 
theory into practice. Additionally, pre-service teachers’ learning in both institutions is 
mediated by their prior experience and perceptions of the nature of school 
mathematics.  
These findings indicate some ways forward in enabling pre-service teachers to make 
the most of their school placement and for the University College-school partnership to 
be strengthened, including better communication with mentors, and more 
opportunities for reflection on the nature of mathematics and on the relationship 
between course content and placement experience.  
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CROSSING THE BORDERS BETWEEN MATHEMATICAL 
DOMAINS: A CONTRIBUTION TO FRAME THE CHOICE OF 

SUITABLE TASKS IN TEACHER EDUCATION 
Paolo Boero, Elda Guala, Francesca Morselli 

Mathematics Dept., Genoa University; School of Education, Turin University 
 
In mathematics teaching, closed boundaries between mathematics domains may 
convey to students a “fossilized” image of mathematics, and, in turn, cause difficulties 
in problem solving. Teachers should promote a “crossing” perspective in their 
teaching. In order to make teachers able to cross the borders, teacher education must 
encompass suitable tasks to be experienced and discussed. This paper reports a study 
aimed at framing the choice of such tasks, and the analysis of related problem solving 
behaviors. A contribution to framing comes from an adaptation of Habermas' 
construct of rational behavior. An experimental situation is planned and analyzed 
according to the resulting framework. Some educational implications are derived. 
INTRODUCTION 
Usually, mathematics is taught in secondary school as a discipline divided into 
separate domains (algebra, geometry, analytic geometry, etc.), each of them with 
specific theories, problems to solve and tools to solve them. This situation conveys a 
“fossilized” image of school mathematics and is one of the causes of students' 
difficulties in complex pure and applied mathematical problem solving. The traditional 
organization of mathematics teaching at university level, with reference to curricula 
designed for prospective mathematics teachers, may reinforce such kind of teaching 
and even justify it at the teachers' eyes - against present trends in the development of 
pure and applied mathematics, where frequently problems in a domain are tackled by 
using tools and strategies belonging to other domains. 
Two questions arise: how to promote student-teachers' awareness of the nature of 
mathematics (in particular, the potential inherent in crossing the boundaries between 
different domains, according to the needs of problem solving activities); and at the 
same time: how to prepare them to teach mathematics avoiding the usual closed 
compartments of teaching? According to a position shared by most mathematics 
educators (see Watson & Sullivan, 2008), prospective teachers should experience 
meaningful activities that allow them to develop awareness about crucial aspects of 
mathematics, and at the same time suggest them suitable tasks/methodologies for 
teaching, focused on those aspects. In our case a natural, initial step might be to allow 
student-teachers to experience, compare and discuss different ways (different tools and 
strategies, belonging to different domains of mathematics) of dealing with a task in 
pure or applied mathematics. 
In this perspective, in order to plan and analyze suitable didactical situations we think 
that it would be useful to elaborate a framework including: 
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- a description of the specific competencies (concerning the specificities of the 
different areas of mathematics and possible links to establish between them)  
prospective teachers should develop; 
- an analytical tool allowing to characterize and compare specific validation criteria of 
statements and inferences, specific problem solving strategies and specific ways of 
communicating in different domains of mathematics; 
- an appropriate methodology to create and satisfy the need for detecting and 
comparing the specificities of the different domains of mathematics, in particular when 
involved in the solution of the same problem. 
As concerns the first point, an initial contribution by the first two authors concerns the 
Cultural Analysis of the Content to be taught as a competence of epistemological, 
historical and anthropological analysis to be gradually acquired by teachers (see Boero 
& Guala, 2008). 
As concerns the second point (related to the subject of this report), we can rely upon the 
previous work by the first and the third author who adapted Habermas' construct of 
rational behavior in discursive practices as a tool to plan and analyze some 
mathematical classroom activities: conjecturing and proving (see Boero, Douek, 
Morselli & Pedemonte, 2010); and the use of algebraic language in proving and 
mathematical modeling (see Morselli & Boero, 2011). 
The aims of the study reported in this paper are: to further develop the adaptation of 
Habermas' construct of rational behavior, as a tool to characterize and compare the 
"rationalities" of different domains of mathematics; and to ascertain if the adapted 
construct can be exploited to plan and analyze suitable classroom activities aimed at 
preparing teachers to cross the closed borders of mathematical domains, thus 
contributing to the third point. 
THEORETICAL FRAMEWORK 
The interest of adapting Habermas' construct of rational behavior in discursive 
activities (as an analytical tool to characterize and compare the "rationality" of 
different domains of mathematics) depends on the fact that it consists of three 
inter-related components, which can be referred to three crucial and deeply 
interconnected aspects of mathematical activities: 
- epistemic rationality (ER), consisting in the conscious validation of statements 
according to premises, true statements and inference rules that are shared in the 
reference community; 
- teleological rationality (TR), consisting in the conscious choice of strategies and tools 
to achieve the aims of the activity; 
- communicational rationality (CR), consisting in the conscious choice of  suitable 
means to share ideas, problems, solutions in the reference community. 
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In Italy and in other countries two main subjects of secondary school mathematics are: 
synthetic (in particular, Euclidean) geometry; and analytic geometry. Using the 
adapted construct of rational behavior, we can distinguish between: 
- a rational behaviour of synthetic type (briefly: synthetic rationality), according to the 
model of Euclidean geometry (but it can be transferred to other geometries too), based 
on strategies (TR) referring to visual evidence, aimed at proving the truth of statements 
and the validity of geometrical constructions (ER) through the construction of 
deductive chains based on axioms and previously proved statements; natural language 
not only plays a crucial communicational (CR) and reflective role, but also a treatment 
role to validate statements (ER: deductive chains mostly consist of verbal statements 
enchained through verbal links); 
- a rational behavior of analytic type (analytic rationality), rooted in Greek 
mathematics (Menaecmus and Apollonius) and firstly made explicit in general by 
Descartes (1637; 1979), which consists (TR) in the construction of appropriate 
equations expressing the links between the relevant variables of the problem to be 
solved as if it would have been already solved,  and in the solution of those equations - 
the resulting values of the unknowns allow to identify the solutions of the problem. We 
can further extend the scope of analytic rationality from the use of algebraic equations  
to include the use of calculus tools (like the use of the derivative to deal with tangent 
lines). In the case of analytic rationality natural language in its mathematical register 
works as a communicational (CR) and reflective tool, while algebraic language plays 
the major role in treatment, and epistemic control (ER) is exercised on the 
construction, transformations and interpretation of algebraic expressions (for details on 
ER in analytic rationality, see Morselli & Boero, 2011). 
The aforementioned distinction guided us in planning a specific teacher education task; 
we have tested it in a selection process, thus in a situation far from an educational 
perspective (but, as we will see in the last section, the discussion of the task was an 
occasion to stimulate a reflective and learning process for some candidates). With 
reference to the chosen task, the aims of this research report are: to illustrate potential, 
specific features and limitations of synthetic and analytic methods, corresponding to 
specific aspects of synthetic rationality and analytic rationality; to describe and 
interpret people's behaviors according to the adapted Habermas' analytical tool; and to 
derive some implications as concerns teacher education (in the perspective of a more 
flexible teaching of main subjects of secondary school mathematics curricula). 
While the adapted Habermas' construct plays a major role in the a-priori cultural 
analysis of the task and in the a-posteriori interpretation of behaviors, for the 
evaluation of the distance between people's behaviors and the requirements of 
epistemic and teleological rationalities we will exploit other theoretical tools: 
- the construct of figural concept (Fischbein, 1993), which may account for the 
difficulties met in the mastery of figures without relating them to properties and 
definitions, or in the mastery of formal definitions and representations without the 
support of figural evidence; 
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- the construct of procept (Gray & Tall, 1994), which in particular accounts for the 
different ways of dealing with equations like y=ax2+bx+c as processes or as symbolic 
objects representing geometric entities - and the related difficulties. 
METHOD 
The task at issue was administered to 35 candidates to become mathematics teachers in 
secondary schools; most of them had a master degree in mathematics; the others had a 
master degree in Engineering or in Physics, with a strong curriculum in Mathematics; 
some candidates had also a Ph. D. in Mathematics or in Physics. The selection had to 
result in the choice of 15 candidates, who will enter one-year intensive professional 
preparation (including courses of mathematics education and stages in the schools) to 
become teachers. 
Candidates had already passed a national test (35 candidates at the Genoa University 
had been successful in that test, out of 76) based on 60 multiple-choice questions. The 
further steps in the selection process (in each university) included a written test based 
on open problems, and an oral discussion with the local Commission "starting from the 
discussion of the written test" (in the case of the Genoa university).  
The following task was prepared as one of the three tasks for the Genoa university 
written test (the other two tasks concerned calculus and probability issues; three hours 
was the whole available time): 

To characterize analytically the set P of (non degenerated) parabolas with symmetry axis 
parallel to the ordinate axis, and tangent to the straight line y=x+1 in the point (1,2).   
To establish for which points of the plane does it exist one and only one parabola belonging 
to the set P.  
To find straight lines that are parallel to the ordinate axis and are not symmetry axes of 
parabolas belonging to the set P. 

The formulation of the task, as well as the a-priori analysis, was guided by the 
aforementioned theoretical framework concerning different rationalities in different 
mathematical domains. In our intention, the formulation of the questions would have 
encouraged the adoption of analytic methods without preventing candidates from using 
synthetic considerations with heuristic/teleological and control/epistemic functions, or 
even to get the solution for the third question. Moreover the formulation of the first and 
third questions would have encouraged the use of the language and methods of analytic 
geometry without preventing candidates from using calculus tools (an alternative 
choice more oriented towards calculus would have been to use calculus terminology: 
"quadratic functions", "graphs", "graph slope", and so on).  
In the a-priori analysis of the task, we had imagined that: 
- candidates could have answered the first question by intersecting the straight line  
y=x+1 with a generic parabola of equation y=ax2+bx+c passing through the point (1,2), 
and imposing that the intersection points collapse in that point; but also calculus 
notions could have been used by considering the quadratic function f(x)= ax2+bx+c 
with two conditions: f(1)=2, f '(1)=2; 
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- candidates could have answered the second question by choosing a generic parabola 
of the set P and imposing the condition of passing through a generic point (x0, y0), and 
then finding algebraically for which points the coefficients of the parabola are 
determined in an unique way; synthetic geometry might have provided them with the 
conjecture that lines x=1 and y=x+1 had to be excluded, and/or with a possibility of 
checking the correctness of their algebraic solutions. Note that synthetic geometry was 
not suitable to easily answer the second question, because proof  (that, given a point S 
out of the excluded lines, it belongs to one and only one parabola of the set P) requires 
the use of geometric properties of parabola, which are usually neglected in Italy in the 
teaching of conic sections; 
- candidates could have answered the third question: either by analytic methods (once 
answered the first question, they could have written down the equation of the 
symmetry axis, or imposed that the first derivative is zero, given the equation of the 
parabola); or (once answered the second question) by synthetic geometric 
considerations bringing to the exclusion of the line x=1 due to the fact that the tangent 
line in the vertex (1,2) should be perpendicular to the symmetry axis, against the given 
condition of tangency in that point to the line y=x+1. 
Possible limitations inherent in the didactical contract (concerning the legitimacy of 
the use of methods not alluded to in the text of the task, a serious problem in the case of 
a selective task) were at least partly overcome by the comment of one member of the 
commission, who under request of a candidate made explicit the fact that "different 
methods may be used to answer each of the three questions". 
After the written test, the discussion with candidates (the further, final step of the local 
selection process) concerned this task for a representative sample of about one half of 
them (the other candidates discussed the other tasks of the test). The discussion of the 
work done by them in the written test was organized according to a semi-structured 
interview, around one or two of the following issues:  
- difference between analytic and synthetic methods to deal with the questions (in 
terms of strategies and criteria of validation), in particular as concerns the exclusion of 
the lines x=1 and y=x+1 for the second question, and the line x=1 for the third one;  
- heuristic and control potential of synthetic methods; 
- relationships between the method of collapsing the points of intersection straight 
line/parabola in the tangency point, and the method which exploits the derivative of the 
quadratic function. 
For the present research, data at disposal are: candidates’ written solutions; and the 
records of the discussions of the candidates with the Commission. 
SOME RESULTS 
In order to give an idea of the preliminary analysis of the solutions, the following table 
summarizes some crucial features of the solutions of the first 11 candidates. AnGeo, 
Calc, SynthGeo are for the respective methods, with brackets indicating traces and/or 
trials, not the main adopted method; A added to AnGeo means purely algebraic 



Boero, Guala, Morselli 

 

2 - 102 PME 37 - 2013 

calculations, with no substantial reference to geometric properties of parabolas, 
tangency, etc; PF and F mean, respectively, partial failure (when only one part of the 
answer is provided and is correct) or total failure. -- means: question not dealt with by 
the candidate.  

Candidate Degree First question Second question Third question 
1 Eng AnGeo; (Calc) --  AnGeo, A; F 
2 Ph.D.Math AnGeo AnGeo AnGeo 
3 Math AnGeo AnGeo; PF AnGeo; PF 
4 Math AnGeo; (Calc) -- AnGeo 
5 Math AnGeo; (Calc) AnGeo; PF AnGeo 
6 Math AnGeo; (Calc) -- AnGeo 
7 Math AnGeo SynthGeo AnGeo 
8 Phys AnGeo; (Calc) AnGeo AnGeo 
9 Math AnGeo, A AnGeo SynthGeo 
10 Ph.D.Math AnGeo; (Calc) AnGeo AnGeo 
11 Ph.D.Math AnGeo; (Calc) AnGeo AnGeo; 

(SynthGeo) 
 
Some results emerging from further qualitative analyses of available data are: 
a) the very limited use of the synthetic method; only 6 candidates out of 35 proposed 
some very short arguments of synthetic type; we observe that the formulation of the 
problem does not encourage it, thus using it requires consciousness of its potential and 
limitations. Moreover almost all those who engaged in synthetic geometry activities 
were unable to develop a rational behavior on the sides of TR (parabolas are only 
sketched, with no relation with the algebraic expressions representing them and very 
weak traces of some properties of parabolas of the set P) and ER (drawings are very 
poor, with no comment, and sometimes do not include the parabolas under the line 
y=x+1, thus they cannot be used to check the validity of results derived through 
analytic methods). In terms of figural concepts (Fishbein, 1993), we may say that the 
figural aspect prevails on the conceptual one, with lack of epistemic control on the 
drawings and the related geometric figures;  
b) the lack of functional connections between ER and TR; once engaged in the analytic 
geometry method, the algebraic calculation of the solution brings to a result which is 
neither checked by coming back to parabolas and their geometric properties, nor 
referred to the initial aim of calculations and (in the case of questions 2 and 3) to 
previous results; 
c) for most students, CR works well only on the side of analytic geometry and of 
calculus; some students produce sequences of algebraic calculations with very few and 
not always appropriate words to present their solutions; 
d) in some cases, the purely algebraic management of the analytic geometry method 
(11 candidates out of 35 performed only algebraic treatment) prevents students from 
discovering mistakes or lacks in their conclusions (ER); in terms of procepts the 
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symbolic expression: y= ax2+bx+c is only a formal expression, with no reference to the 
process of generation of a line in the Cartesian plane and to its result. 
e) many students, during the a posteriori discussions, had difficulty in connecting a 
typical feature of TR in the case of the analytic geometry approach to the first question 
(collapsing the intersection points parabola/line y=x+1 in (1,2)) with the limit process 
encapsulated in the expression f '(1). During the discussions, the fact that the secant 
line does not pivot around the point (1,2) seems to prevent candidates from seeing that 
the analytic geometry process results in the approach of the secant to the tangent line in 
the point (1,2), and thus in an alternative way to access the derivative f '(1); 
F) during the discussion, the authors noticed positive learning reactions by the 
candidates (in spite of the psychological stress, due to the selective character of the 
discussion); most of them were able to realize (even with evident surprise!), under the 
commission members' guide, that: 
- the method of collapsing the intersection points between the line y=x+1 and the 
parabola into the point (1,2) is another way of generating the derivative of the quadratic 
function for x=1; 
- synthetic geometry can work as a tool for conjecturing and for checking results of 
analytic methods for questions 2) and 3);  
- synthetic geometry can also allow to answer question 3), once question 2) has been 
solved.  
CONCLUSIONS AND EDUCATIONAL IMPLICATIONS 
The first data analysis shows the potential of the adapted Habermas' construct to 
produce suitable tasks for putting into question the rigidity of the separation between 
different mathematical domains, and to analyze people's behaviors in terms of their 
distance from rational behavior. The rigidity inherited from secondary and university 
teaching of mathematics is revealed, in terms of ER, TR and CR components, through 
the difficulties of moving forwards and backwards between synthetic and analytic 
geometry considerations, but also of identifying relationships between processes in 
analytic geometry and in calculus. The only language used by most candidates at an 
enough satisfactory and precise level is the language of analytic geometry. Thus, the 
task might be a starting point for an activity of teacher education aimed at putting into 
evidence the negative consequences of the rigid separation (in mathematics teaching) 
between different mathematical domains, and the opportunities offered by crossing the 
boundaries between them through suitable tasks. A further development concerns the 
conception of a teacher education experience, starting from the experimented task. The 
task, indeed, might be suitable (as revealed during the discussion) to start a program of 
Cultural Analysis of the Content to be taught (on the epistemological side), in 
particular in terms of critical consideration of nature, potential and limitations of 
analytic and synthetic methods, and features of the related rationalities. With reference 
to this possibility, an open problem concerns the opportunity that the adapted 
Habermas' construct , introduced as a tool for the researcher, becomes also a tool for 
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teachers to identify and compare specific features of activities in  synthetic geometry 
and in analytic geometry (and in other domains too), and of synthetic and analytic 
methods to deal with problems like the one considered in this report. 
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THE PMA: AN EARLY MATHEMATICS SCREENER AND 
PROGRESS MONITORING TOOL 

Jonathan L. Brendefur, Michele Carney, Keith Thiede, Sam Strother 
Boise State University 

 
There is a critical need for early identification of students who are experiencing 
difficulties in mathematics and, then, the provision of immediate and targeted 
intervention in order to build foundational skills and knowledge. The purpose of this 
study was demonstrate the effectiveness of an early mathematics screener -- the 
Primary Mathematics Assessment. The results demonstrate that the PMA can assess 
four comprehensive areas (number, relationships, measurement, and space) within 8 
minutes per student, has strong internal reliability withing these four subconstructs, 
and predicts well to a state standardized test two year later. 
BACKGROUND 
Based on the poor performance of fourth grade students on national and international 
tests of mathematics, it is evident that U.S. students in the early grades are not 
adequately prepared in mathematics (Clements, Xiufeng, & Sarama, 2008; NRC, 
2009). Using large data sets or nationally representative samples, several researchers 
have also demonstrated that students who complete kindergarten with an inadequate 
knowledge of basic mathematics concepts and skills will continue to experience 
difficulties with mathematics throughout their elementary and secondary years 
(Duncan et al., 2007; Jordan, Kaplan, Ramineni, & Locuniak, 2009). This research 
points to the critical need for early identification of students who are experiencing 
difficulties in mathematics and, then, the provision of immediate and targeted 
intervention in order to build foundational skills and knowledge (Ginsburg, Lee, & 
Boyd, 2008).  
There is a great need and demand for reliable, efficient, and valid primary level 
mathematics screening and diagnostic tools to identify students with mathematics 
deficiencies so teachers can intervene with differentiated lessons in order to remediate 
student deficiencies. Most current tools provide inadequate diagnostic information or 
are too time consuming to administer on a large scale to an entire classroom of young 
children. The purpose of this study is to examine the Primary Mathematics Assessment 
(PMA) system as a viable tool for assessing students age 5 to 8.  
Response to Intervention (RtI) in mathematics 
There has been a conscious effort over the last decade to create and implement a 
Response to Intervention (RtI) framework in elementary schools across the U.S. This 
model requires schools to analyse student learning in the context of instruction (Gersten, 
2009). A major tenet of the RtI model is to initially screen the entire class for early 
identification of those students who have specific weaknesses. This framework hinges 
on one critical tool – a comprehensive universal screener. The development of a quick 
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screener is paramount for grades K-2 as these students are too young to reliably and 
independently take tests and, therefore, must be administered the test individually by a 
trained administrator. 
This paradigm of improving instruction through assessment hinges on accurate and 
early identification of students’ mathematical deficiencies. However, using a screener 
for early identification of deficiencies is only the first step of the process. Once 
identified, these students must undergo a more thorough evaluation with a more 
comprehensive targeted assessment so effective instructional interventions can be 
designed for remediating their deficiencies. This process of monitoring the success of 
instructional interventions through continuous evaluation is embedded in the (RtI) 
model (Fuchs et al., 2007). More specifically, monitoring students’ academic progress 
through formative assessments coupled with early and immediate feedback has shown 
increases in student achievement by 0.7 standard deviation units (Hattie, 2009). 
Mathematics screeners at the primary level  
The screening and diagnostic instruments for K-2 mathematics currently in use have 
not demonstrated adequate predictive validity against standardized achievement tests 
(Clements et al., 2008; Fuchs et al., 2007). Clements and colleagues have demonstrated 
that most early childhood diagnostic instruments in mathematics have been limited to 
number concepts and do not include other important domains that are predictive of 
later success in mathematics. While these screeners are quick to administer, they 
produce an insufficient profile of student deficiencies, which results in ineffective 
interventions. And screening for only number concepts does not evaluate other 
important mathematical skills necessary to succeed in these recommended standards 
for K-6 mathematics. The National Research Council (2009) has called for better 
quality instruments to diagnose students’ level of competence in different areas of 
mathematics. The review of the extant research on mathematics skills in the primary 
grades supports four key areas that predict students’ later success in mathematics: 
concepts of number, relationships, measurement, and spatial reasoning. Each of these 
areas is critical to the development of mathematical competencies and should be 
evaluated in any early mathematics screener or diagnostic instrument (Clements et al., 
2008; Clements & Sarama, 2004).  
Current comprehensive multi-item mathematics assessments require thirty minutes to 
an hour to administer (NCRTI, 2011). These longer forms provide more detailed 
information about student deficiencies, but are difficult to administer to a large number 
of young students in a timely fashion. The expenditure of resources with the longer 
form tests at the K-2 level is great. A 30 - 45 minute screener administered to a class of 
just 20 K-2 students will require 10 - 15 hours to complete as opposed to a 10 minute 
screener, which would require 3.3 hours. Also, a large number of students who are 
tested with comprehensive instruments will be found not to have any mathematical 
deficiencies, resulting in an unnecessary use of valuable time and resources. What is 
needed is a tool that utilizes a brief stage 1 screener, to quickly identify students who 
need a further stage 2 comprehensive evaluation.  
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The Primary Mathematics Assessment (PMA) 
The Primary Mathematics Assessment (PMA) – Screener is used to quickly identify 
those students who have mathematical deficits. It is a research-validated, universal 
screening tool that assesses domains beyond simple number concepts (Brendefur, 
Thiede, & Strother, 2011). The conceptual framework incorporates concepts of 
number, relationships, measurement, and spatial reasoning.  
Early childhood researchers describe the importance of early number skills within the 
domain of number such as number recognition, number sequencing, and fluency and 
flexibility (Clements et al., 2008; Clements & Sarama, 2004; Ginsburg & Baroody, 
2003; Lee, Lembke, Moore, Ginsburg, & Pappas, 2007). Three mathematical skills: 
number knowledge, ordinality, and quantitative reasoning have been demonstrated to 
have an average effect size of 0.34 on later academic success (Duncan et al., 2007). 
Fluency and flexibility are intimately linked. Students are ‘fluent’ with whole numbers 
when they can solve problems, answer questions, and extend patterns in a quick and 
efficient way (Baroody & Dowker, 2003). When dealing with fluency, speed is 
important. By quickly recalling a basic addition fact, a student has demonstrated 
fluency. But fluency is often the by-product of flexibility (Beishuizen & Anghileri, 
1998; Thompson, 1997). Flexibility is the ability to solve problems in a variety of 
ways, use information already known to solve unknown problems, and the capability 
to determine the most efficient method to use when confronted with a challenging 
problem (Star & Madnani, 2004). Flexible mathematical thinkers have been shown to 
develop faster recall of basic facts and to be more successful in classroom settings 
(Beishuizen & Anghileri, 1998).  
Understanding equality and the relationship of numbers and solving contextualized 
problems form the basis of algebraic understanding (Van Amerom, 2003). Hiebert and 
Carpenter (1992) demonstrate that young students are capable of using operation 
properties (commutative, inverse, identity, etc) when solving arithmetical problems 
and naturally transfer informal knowledge of these operation properties to new 
situations. However, Demby (1997) and Lee and Wheeler (1989) provide evidence that 
by the time students reach high-school algebra they are reluctant or unable to use these 
operation properties when solving problems. Realizing this issue, other countries built 
curricular opportunities in grades 4 – 6 to assist students in transitioning from solving 
contextualized problems and informal approaches to formalized symbolism and 
algebraic reasoning and notation (Anghileri, Beishuizen, & Van Putten, 2002; Van 
Amerom, 2003). Accurately solving contextualized problems (e.g. word problems) is a 
key factor in early mathematics achievement.  
Measurement of length has a direct link to knowledge of fractions and decimals 
because measurements often do not use complete units (Cramer, Post, & del Mas, 
2002; Watanabe, 2002). A table can be 3 ½ feet wide. Students must make sense of that 
‘part’ of the unit left over after the 3 complete units are counted. This is different than 
just counting discrete objects like fingers or cubes (Kamii & Clark, 1997). When 
counting units of length, the student begins to develop a model for the continuous 
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nature of rational numbers (e.g. fractions, decimals, percents). This supports students 
learning about fractions and ratios in later grades (McClain, Cobb, Gravemeijer, & 
Estes, 1999). Many nations that use informal measurement and measurement 
estimation as a way to introduce fractions perform at a much higher level than the U.S. 
on rational number items found on standardized tests (Stephan & Clements, 2003; 
Watanabe, 2002). Students in these countries have an understanding of the meaning of 
rational numbers connected to measurement (Mullis et al., 1997).  
Researchers have demonstrated that spatial reasoning has a very high predictive value 
for mathematics achievement (Gustafsson & Undheim, 1996). Two categories of 
spatial reasoning are spatial visualization, the ability to mentally transform objects, and 
spatial orientation, the ability to remain unconfused when the object’s positioning 
changes. Spatial reasoning also helps develop fluency with flexible operations in 
arithmetic and strengthens and supports students’ ability in measurement (Tartre, 
1990) and, as with measurement, builds concepts of proportional reasoning (NRC, 
2006).  
METHODS 
Instrument 
The PMA is built on four areas. First, Number includes items in Number Identification, 
Number Recognition, Number Sequences, and Fact Fluency. Second, Relationships 
examines Relational Thinking and Interpreting Context. Third, measurement included 
Iteration and Partitioning. Fourth, spatial reasoning includes Decomposing and 
Composing shapes. 
Context: Setting and Participants 
The participants in this study were from multiple districts across one state in the U.S. 
They included Kindergarten, first and second grade students in over 34 schools, which 
were from rural, suburban, and urban areas. Students from these schools were from 
low, middle, and high SES and had varied ethnicities (Table 1). 
 

 Kindergarten 
n = 5405 

Grade 1 
n = 5673 

Grade 2 
n = 4629 

Average 
Percentage 

Gender     
  53.3% 51.1% 51.9% 52.1% 
  46.7% 48.9% 48.1% 47.9% 
Ethnicity     
   68.2% 64.5% 61.3% 64.7% 
  19.9% 24.4% 25.9% 23.4% 
   11.9% 11.2% 12.9% 12.0% 

Table 1: Demographic characteristics of student participants. 
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Measures 
The PMA progress monitoring tool and the PMA-Screener were used to test students at 
the beginning of middle of the school year for kindergarten, first and second grades. 
All students were screened using the PMA-S and, then, a random sample of students at 
each grade level was tested using the progress monitoring tool. 
RESULTS 
We conducted Rasch analyses on the items measuring each domain across the PMA to 
verify the assumption of unidimensionality had been satisfied. In Rasch analysis, the 
assumption of unidimensionality is satisfied when a set of items accounts for at least 
20% of the variance and when no other contrast (set of items) can explain 5% of the 
variance (Reckase, 1997). As seen in Table 2, the dimensionality assumption was met 
for all domains.  Scales within constructs were also tested to verify unidimensionality. 
We examined the reliability of the scales. Two of the PMA scales were in the excellent 
range (α > .90) – number and spatial relationships – while relationships were 
considered in the good range (.80 < α < .90) and measurement in the acceptable range 
(.70 < α < .80) (Nunnally, 1978). Table 2 highlights the reliabilities. 
 

Construct Number of Items Variance Explained Reliabilities 
Number 25 32.0 .93 
Relationships 17 41.2 .86 
Measurement 14 36.2 .77 
Spatial Relationships 11 32.1 .92 

Table 2: PMA scale dimensionality and reliabilities. 
For each domain, we constructed a small set of screener items that assess the skills 
within the larger domain. This screener, the PMA-S contained a small set of items from 
the PMA progress monitoring tool, which from the Spearman–Brown prophecy 
formula can decrease the reliability of the tests (Allen & Yen, 1979). As seen in Table 
3 below, we were able to produce highly reliable screener for the four domains. 
 

Construct Number of Items Correlations (n = 110) 
Number 6 .94** 
Relationships 6 .91** 
Measurement 4 .89** 
Spatial Relationships 4 .68** 

Table 3: PMA Screener and Targeted Assessment correlations (**p <.001) 
DISCUSSION 
The PMA Screener is the short form and predicts well to the PMA progress monitoring 
tool. The PMA system is intended to meet the needs of classroom teachers by 
providing a series of items from all four of the predictive constructs that can still be 
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given to individual students in less than 10 minutes. As teachers and schools have the 
ability to compare individual student screener results to class, school, and state-wide 
results, the PMA-S can assist teachers in giving special emphasis to certain 
mathematical topics during instruction and to provide more targeted support for 
students demonstrating deficiencies in specific areas. The PMA-S offers teachers data 
indicating their students’ responses to items that are mathematically important from a 
predictive standpoint yet do not require teachers to adhere to any particular curricula or 
textbook.  
Because the screener predicts well to the progress monitoring tool, teachers only have 
to assess students performing in the bottom quartile (for example) with the longer 
PMA. The PMA system as a whole becomes an effective formative assessment that 
can be used to guide instruction and support teachers’ efforts to assist students in 
grades K-2 learn mathematics that will support their long-term mathematics 
achievement.  
The purpose of the study was to examine the reliability and validity of a screener and 
progress monitoring tool. The PMA system can consistently and reliably be used to 
identify students who need additional work in a particular mathematical topic. This 
detailed information to teachers regarding their students’ strengths and weaknesses 
will be an asset to making timely decisions on interventions.  
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A DEFINITION FOR EFFECTIVE ASSESSMENT AND 
IMPLICATIONS ON COMPUTER-AIDED ASSESSMENT 

PRACTICE 
Stephen Broughton, Paul Hernandez-Martinez, Carol L. Robinson 

Mathematics Education Centre, Loughborough University 
 
For a decade, computer-aided assessment (CAA) has been used extensively with 
first-year mathematics and engineering undergraduates studying mathematics 
modules at the institution under investigation. This project sought to evaluate the 
effectiveness of CAA. Using assessment literature and activity theory to frame the 
study, this paper explores the aims of assessment and what it means for assessment to 
be “effective”: it proposes a definition for effective assessment and discusses whether 
CAA can be considered effective assessment by this definition. 
BACKGROUND 
This project seeks to evaluate the use of a computer-aided assessment (CAA) system at 
a higher education establishment in the United Kingdom. The CAA system is used to 
test mathematics learning in first year mathematics and engineering mathematics 
modules. It asks questions that are mainly procedural in nature, in multiple choice and 
numerical input forms. Although lecturers employ the facilities that CAA offers in 
different ways (Robinson et al., 2012), most students have the opportunity to practice 
similar questions to the ones they receive in the summative test. 
Performing this evaluation required a comparison of the CAA system against an 
accepted standard for assessment; however, the trend for evaluations of CAA 
conducted hitherto has been in the form of self-report commentaries of practice. These 
evaluations lack an objective standard upon which to compare; hence, no precedent has 
been made and there are calls in the literature for a rigorous review (for example, Bull 
& McKenna, 2001 and Sangwin, 2003). 
Formative assessment appeared to offer such a standard: it has been widely discussed 
in the literature; it has been argued to be effective (Black & William 1998, for 
example); and proponents of CAA suggested that it could be adopted with formative 
intentions (Bull & McKenna, 2001). However, there remain two concerns with using 
formative assessment as a standard for evaluation. 
First, the definition of “formative assessment” is disputed and the term is used 
inconsistently. For example, there is disagreement whether it is necessary for students 
to demonstrate improvement as a consequence of the feedback they receive from 
formative assessment. Sadler (1989 pp.120-121) believed that improvement is 
necessary, citing Ramaprasad’s (1983 p.4) distinction between information about 
performance and feedback, which requires the student to act upon information about 
performance. This distinction is not maintained in the most recent definition of 
formative assessment (Black & Wiliam, 2009). 
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Black and Wiliam (2009 p.10) believed this requirement was too stringent: 
determining whether an assessment is formative would require establishing that the 
assessment has caused an improvement that would not have occurred otherwise. 
Furthermore, they added, “even the best designed interventions will not always result 
in better learning for all students” (Black & Wiliam, 2009 p.10, emphasis in original), 
making it difficult to confidently declare an assessment “formative”. 
Determining whether practices are formative assessment or not depends on the 
definition of formative assessment used.  
Second, there are gaps in the theoretical underpinning of formative assessment. After 
Black and Wiliam (2009) developed the theory of formative assessment further, using 
cultural-historical activity theory for some aspects, Bennett (2011) and Taras (2010) 
believed that there was scope to develop the theoretical framework of formative 
assessment still further. 
Ultimately, we decided that formative assessment did not provide the standard that we 
wished to evaluate CAA with. Instead, we would develop a definition for effective 
assessment that describes the process of assessment, the criteria for success, the roles 
of the actors in the activity of effective assessment and the outcomes. 
THEORETICAL FRAMEWORK 
Cultural-historical activity theory (CHAT) offers three ideas in particular that would 
be necessary in a definition for effective assessment that were not developed fully for 
formative assessment. 
First, there is the role of the community on activity. In CHAT, the community provides 
resources, shares the activity and imposes rules. For a student, teachers and peers have 
an impact on the activity of learning; there are rules of the classroom and there are 
shared responsibilities. For formative assessment, Taras (2010 p.3017) noted, “It is 
never quite clear who is involved in … the assessment cycle”. Black and Wiliam (2009 
p.9) suggested they used a framework derived from CHAT to develop themes for their 
theory of formative assessment; however, while Black and Wiliam discussed the role 
of the teacher in setting assessment and regulating learning, there remains a desire to 
explore the roles of peers and individual learners in more detail. 
Second, activity theory maintains that all human activity is purposeful — “the 
expression ‘objectless activity’ is devoid of any meaning” (Leont’ev, 1978). 
Therefore, the way in which a student interacts in a learning activity is shaped by 
his/her own learning goals. When discussing the notion of object-oriented activity in 
expansive learning, Engeström and Sannino (2010 p.4) pointed out that “motives 
cannot be taught, they can only be nurtured” over time with students. That is, teachers 
and peers can influence or dictate students’ goals. 
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Figure 2: An Engeström (2000) representation of the activity of effective assessment 
Black and Wiliam (2009 p.22) believed teachers must have learning intentions and 
engineer opportunities for learning. There are two problems with this construction. 
First, the teacher’s learning intentions and the student’s learning goals may not always 
cohere; the formative assessment literature does not consider the outcomes of such a 
contradiction. Second, many teachers have little, if any, influence on self-assessment, 
peer assessment or peer support that happens outside the classroom, in which students 
may set their own learning goals. The outcomes of these assessments are not discussed 
in the formative assessment literature. 
The third CHAT construct that we consider missing from formative assessment arises 
from the model of expansive learning proposed by Engeström and Sannino (2010 
pp.8-9): that learning occurs in cycles through the development of the object of 
learning activity. That is, the objects of future learning activities are evolved from 
previously achieved learning goals. This is particularly true for mathematics learning, 
where learning more advanced concepts quite often demands requisite knowledge 
from simpler concepts. It is this evolution that permits viewing learning as a cycle and 
assessment as a process within it: successful learning warrants the setting of new 
learning goals and assessing new learning. 
We propose the following definition of “effective assessment” that incorporates the 
advice from assessment literature and the constructs of CHAT. 
A DEFINITION FOR EFFECTIVE ASSESSMENT 
We consider assessment and feedback as tools in the activity of learning, with learning 
goals forming the object of learning. The student is viewed as the subject of the 
learning activity (fig. 1): it is the student that performs the assessment and, most often, 
the aims of the assessment relate to the student’s learning and development. 
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Effective assessment is, in part, defined as an assessment that enables the student to 
achieve his/her learning goals. However, the student does not act alone in this activity. 
Assessors and peers have roles as members of the learning community. They provide 
opportunities to assess learning and provide feedback. They also have an influence on 
the student when setting learning goals (fig. 2). 
As Yorke (2003) suggested for formative assessment, effective assessment should be 
both a process and part of a cycle. In this cycle, the student possesses initial learning 
goals. He/she undergoes assessment to test whether those learning goals have been met 
and receives feedback. On receiving feedback, the student might re-attempt the 
assessment; or revise his/her learning goals; or, if the student has achieved his/her 
learning goals, he/she can set more challenging learning goals. 
Lecturers and peers have an influence in setting goals, setting assessments and 
providing feedback. Initially, a novice student may be completely directed by the 
lecturer: goals may be set (explicitly or implicitly) on behalf of the student; and the 
assessment and feedback are managed entirely by the lecturer. In effective assessment, 
the student gains experience, knowledge and understanding so that he/she can take 
more responsibility for these stages of the learning process. 
It could be argued the ultimate aim of learning is that the student “should be able to do 
unaided what previously needed knowledgeable support” (Yorke, 2003 p.496); an 
effective assessment should support students in developing self-regulation skills and in 
setting new personal learning goals autonomously. Therefore, for an assessment to be 
effective, the impact of lecturers and peers on the activity of learning is reduced. 
We define “effective assessment” in the following way: 

• An effective assessment must be a purposeful assessment with the aim to test 
whether the student has achieved his/her learning goals. 

Figure 3: Effective assessment in a model learning cycle and the influence of lecturers 
and peers on the processes in this cycle 
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• An effective assessment must be part of a wider learning cycle in which the 
student sets more challenging learning goals with diminishing influence and 
input from lecturers and peers. 

• An effective assessment must give opportunities for the student to receive 
feedback that is related to his/her performance in relation to his/her learning 
goals and opportunities for the student to demonstrate that he/she has developed 
sufficiently to achieve his/her learning goals. 

Since each statement of the definition refers to the individual student, it is not possible 
to separate the effectiveness of an assessment from the individual. That is, if an 
assessment has been particularly effective for one student, one cannot conclude that it 
is effective for all. 
With these criteria, we can describe the extent to which CAA is effective for each 
student. Evaluating the effectiveness of CAA with several students according to these 
criteria yields common strengths and weaknesses. 
METHODOLOGY 
The definition of effective assessment demands the study of individual students to 
evaluate effectiveness for his/her circumstances. We adopted a case study approach — 
limiting the study to one CAA system at one institution — to identify strengths and 
weaknesses particular to this system. Nine self-selecting first-year undergraduates 
from four disciplines (four mathematicians, three aeronautical and automotive 
engineers, one materials engineer and one sports technology engineer) and six lecturers 
teaching first-year mathematics modules (three in mathematics, two in materials 
engineering and one in mechanical engineering) were interviewed. 
The interview questions related to how students and lecturers use CAA, the influence 
of peers and lecturers on CAA, and how CAA has helped both students and lecturers. A 
professional transcriptionist transcribed the audio files and the first author coded the 
participants’ responses according to parts of the definition for effective assessment and 
other parts of the learning process (fig. 2). 
ANALYSIS 
The students 
In terms of setting learning goals for themselves, many of the students set seemingly 
superficial short terms goals that related to their long-term aims of career success. 
Consequently, many of the students’ goals when using CAA were expressed in terms 
of a percentage of marks. 
Many of those students believed that achieving high marks in CAA was a 
demonstration that they had developed the required knowledge and understanding that 
was expected of them. These students set high percentages as their goals for CAA, with 
some not happy unless they achieved 100%. To that end, the practice test facility was 
used extensively to fully prepare for the summative test. They were confident that 
CAA helped them to improve in this respect and the feedback was detailed and 
appropriate enough. 
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Other students felt that CAA did not test their conceptual knowledge as well as other 
assessments had. It seems for these students, CAA related poorly to the perceived 
implicit learning goals. One such student was interested in pursuing an academic 
career in mathematics research; however, her learning goals were also expressed in 
terms of marks and did not lead to more challenging learning goals beyond the CAA 
summative test. Even for these students, there is a dependence on the lecturer to 
provide implicit learning goals. 
These students had developed procedures for approaching and completing the CAA 
tests; largely comprising a regime of practice test attempts and learning the method 
offered in the feedback. Although this aided the students in achieving their goals, it 
appears that it did not inspire them towards further learning. 
Although the students were satisfied that they had achieved their learning goals — 
insomuch that they had achieved the marks they had set for themselves — it would 
appear that they felt the primary benefit of doing so was the accumulation of marks that 
contributed to their module grade. Some went further: they wished to accumulate the 
“easy marks” that CAA offered to lessen the burden of the exam for passing the 
module. From these comments, CAA has not been effective for these students in terms 
of encouraging further learning with more challenging learning goals. 
Peers have an important role in CAA, with many of the students reporting that they had 
engaged in collaboration at some point during their first year for CAA. Most of the 
students had clear, though not always correct, views on when collaboration becomes 
plagiarism; other students had less clear views and were prepared to engage in 
practices that could be interpreted as plagiarism. For example, one student believed 
that helping others in a summative test was satisfactory, since the purpose of the first 
year is to ensure that all students have developed a common foundation of 
understanding for subsequent study. 
Over the course of the first year, the students became more willing to engage with their 
peers by offering mutual support. The culture of these student cohorts appears to have 
had a role in this, since one student commented that she was aware that others on her 
course were collaborating and later did the same. Another student expressed an initial 
reservation to collaborate on CAA, but he had recently started to collaborate with 
others prior to the interview. While the students found such support helpful, it appears 
to come at the expense of developing self-regulation skills, since the students became 
less likely to attempt the assessment by themselves first. 
Few students referred to the influence of lecturers, particularly in terms of support 
during assessment. It would appear that they were content with the assessment and 
feedback they were offered and they possessed little desire to self-assess beyond the 
compulsory assessment content. It could be argued that this is a culture that they have 
become accustomed to: that studying beyond the provided content for which credit can 
be received has insufficient value. 
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The lecturers 
Although most of the lecturers would have liked CAA to test students’ knowledge and 
understanding more deeply than it currently does, the primary reason for using CAA is 
the need for regular assessment — for both formative and summative purposes — and 
CAA provided a means to offer regular assessment to large cohorts without a 
significant marking burden. Other forms of assessment addressed the need to test 
students’ conceptual knowledge. 
The lecturers believed that the students would only be sufficiently motivated to engage 
with CAA if they were offered module credit. However, they were concerned about the 
impact of collaboration and the impossibility of eliminating the plagiarism that arises 
from group-work, since, in some cases, it is not possible to invigilate the entire cohort 
in one computer laboratory. Hence, lecturers typically offered between 2.5% and 5% 
of module credit for each CAA summative test. 
Some lecturers reported that many students develop a mechanical approach to 
answering CAA questions. As a result, some students have become quite adept at 
performing a mathematical procedure without having the flexibility to adapt to 
different contexts. Often, this problem is not identified until the final exam. 
DISCUSSION AND CONCLUSIONS 
In terms of satisfying learning goals, CAA is effective to a point: the students were 
content that the feedback enabled them to demonstrate an improvement; the lecturers 
are content that students have the opportunity to practise what they have learned in 
lectures and receive immediate feedback. 
A concerning issue is that these students perceived high marks in CAA to be an 
indication of satisfying implicit learning goals set by the lecturer. The lecturers 
indicated that CAA might not always be an appropriate test of the knowledge and 
understanding that they wish to test of students. 
The students did not express their aims in terms of the learning that is required; their 
learning goals were stated in terms of percentages and they often achieved those goals. 
On the one hand, achieving these learning goals gave the students confidence and 
reassurance that they had learned the material. On the other hand, students had set 
superficial goals that did not indicate what had been learned, and perhaps this explains 
in part why more challenging goals were not set. 
Our earlier work with a similar cohort revealed similar findings: students face a 
contradiction between pursuing more challenging learning goals and concentrating 
efforts on pursuing marks (Broughton et al., 2011). The culture and history to which 
these students belong weighs in favour of pursuing marks: past and future 
examinations are perceived to determine success; and since no marks are offered for 
learning beyond summative assessment material, it is perceived to have little value. 
Hence the learning cycle is broken. 
The implication is that CAA is effective for low-level goals, where the depth or breadth 
of understanding is not important for the student. However, CAA did not inspire the 



Broughton, Hernandez-Martinez, Robinson 

 

2 - 120 PME 37 - 2013 

students to continue the learning cycle and explore new learning goals, so there is a 
point where CAA is no longer effective. The challenge for CAA is to expose students 
to the value of pursuing further learning. 
References 
Bennett, R. E. (2011). Formative assessment: a critical review. Assessment in Education: 

Principles, Policy & Practice, 18(1), 5–25.  
Black, P., & Wiliam, D. (1998). Inside the Black Box. Phi Delta Kappan, 80(2), 139–148. 
Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational 

Assessment, Evaluation and Accountability, 21(1), 5–31. 
Broughton, S., Hernandez-Martinez, P., & Robinson, C.L. (2011). Focus groups to ascertain 

the presence of formative feedback in CAA. In: C. Smith (Ed.), Proceedings of the British 
Society for Research into Learning Mathematics, 31(2). Leeds, UK: BSRLM. 

Bull, J., & McKenna, C. (2001). Blueprint for Computer-Assisted Assessment. CAA Centre: 
Loughborough. 

Engeström, Y. (2000). Activity theory as a framework for analyzing and redesigning work. 
Ergonomics, 43(7), 960-974. 

Engeström, Y., & Sannino, A. (2010). Studies of expansive learning: Foundations, findings 
and future challenges. Educational Research Review, 5(1), 1–24.  

Leont’ev, A. N. (1978). Activity, Consciousness, and Personality. Prentice-Hall. Retrieved 
from http://www.marxists.org/archive/leontev/works/1978/index.htm  

Ramaprasad, A. (1983). On the definition of feedback. Behavioral Science, 28(1), 4–13. 
Robinson, C. L., Hernandez-Martinez, P., & Broughton, S. J. (2012). Mathematics lecturers’ 

practice and perception of computer-aided assessment. In P. Iannone & A. Simpson (Eds.), 
Mapping University Mathematics Assessment Practices (pp. 105–117). University of East 
Anglia.  

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. 
Instructional Science, 18(2), 119–144. 

Sangwin, C. J. (2003). New opportunities for encouraging higher level mathematical learning 
by creative use of emerging computer aided assessment. International Journal of 
Mathematical Education in Science and Technology, 34(6). 

Taras, M. (2010). Assessment for learning: assessing the theory and evidence. Procedia - 
Social and Behavioral Sciences, 2(2), 3015–3022. 

Yorke, M. (2003). Formative assessment in higher education: Moves towards theory and the 
enhancement of pedagogic practice. Higher Education, 45(4), 477–501.  

http://www.marxists.org/archive/leontev/works/1978/index.htm


 

 

2013. In Lindmeier, A. M. & Heinze, A. (Eds.). Proceedings of the 37th Conference of the International 2 - 121 
Group for the Psychology of Mathematics Education, Vol. 2, pp. 121-128. Kiel, Germany: PME. 

MATHEMATICAL KNOWLEDGE BUILDING OF LOW 
ACHIEVERS IN A RICH LEARNING ENVIRONMENT – A CASE 

STUDY 
Orit Broza, Yifat Ben-David Kolikant  
Hebrew University of Jerusalem, Israel 

 
We traced the thinking processes and interaction patterns of low-achieving students 
studying subtraction with decimal numbers, as they worked in small groups within a 
rich learning environment involving a computerized game, play money, peer 
interactions and various scaffoldings and meta-scaffoldings. We used videotaped 
sessions, worksheets, observations and pre- and post-program teacher evaluations to 
describe and characterize their complicated, nonlinear knowledge construction 
process, and their shifts from old behavioral and cognitive habitudes to new ones. A 
case study of one such student is presented herein, demonstrating the potential of this 
innovative pedagogy.  
INTRODUCTION AND THEORETICAL BACKGROUND 
The question of how to increase the impact and effectiveness of teaching and learning 
processes presents an important challenge to researchers and teachers alike. This 
challenge is particularly significant when it comes to low-achieving students in 
mathematics, for whom many of the existing teaching practices appear to be of little 
benefit (Haylock, 1991). 
Although the population of low-achieving students is heterogenic, some cognitive 
difficulties and behavioral characteristics are common. For example, such students 
find it difficult to retrieve basic mathematic facts from their memory (Geary, 2004) and 
to use effective computation strategies based on meta-cognitive skills (Goldman, 
1989). They are sensitive to the learning context (e.g., written and oral arithmetic 
practices or everyday and formal mathematics), and find it much harder than other 
students to solve simple and complex addition and subtraction problems (Linchevski & 
Teubal, 1993). These difficulties may lead them to use less sophisticated strategies, 
and thus commit more errors. As they repeatedly experience failure and cannot keep up 
with the class, their motivation and self-esteem decrease. Therefore they might have a 
weak sense of internal responsibility, be passive and/or rely on external authority 
(Geary, 2004; Linchevski & Tuval, 1993; Haylock, 1991).  
Some teachers believe that low-achieving students are unable to deal with high-order 
thinking-skills tasks (Karsenty & Arcavi, 2003). Such teachers typically conclude that 
the most effective way of promoting mathematical performance in low-achieving 
students is to ‘drill and kill’ (Anderson, Reder & Simon, 2000), that is to focus more on 
the mathematical algorithms than on the mathematical meaning.  
Conversely, it is our belief that these students need an intervention aimed at improving 
their understanding of mathematical procedures, concepts and terminology. With the 
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appropriate support, children may be able to advance in what Vygotsky (e.g., 1978, in 
Wertsch & Stone, 1985) termed the Zone of Proximal Development, the metaphorical 
area between their current cognitive performance on their own and their potential 
cognitive performance. The Learning in Context approach, namely presenting 
mathematical concepts and procedures in a context relevant to the child’s day-to-day 
life (Gravenmeijer & Doorman, 1999) and with appropriate scaffoldings, may be a key 
to promoting meaningful learning for low-achieving students (Ben-David Kolikant & 
Broza, 2010).  
This premise led us to design an environment in which studying subtraction's strategies 
involves playing a computer game enacting the managing of an ice cream shop. Games 
have the potential to engage and motivate students in becoming active rather than 
passive, by enabling experiments and explorations without fear of failing in front of the 
entire class (Squire, 2008; Gee, 2003). The use of games for teaching may thus be 
particularly beneficial for low-achieving students. Moreover, we hoped that through 
active participation in a meaningful and authentic learning environment, subtraction 
strategies for calculating change will develop naturally, as the concrete context of 
working with play money would serve as a cognitive scaffolding (Wood, Bruner, and 
Ross, 1976). 
We were aware that in the context of learning mathematics with tools, meaning 
construction requires the guidance of a teacher, to mediate the use of tools and to 
orchestrate the students' activities (Mariotti, 2000). Hence, meta-scaffoldings are 
required. These "scaffolds for the scaffolds" (Pea, 2004) involve the teacher's support 
and directions to students who are using a tool or working with other scaffoldings.  
The goal of the study is to examine whether and how students construct and use new 
knowledge and strategies within the environment. Here we focus on one fifth grade 
student, Tom, in a case study that demonstrates the complicatedness and non-linearity 
of the learning process in the environment, as well as the positive potential of such 
interventions.  
METHODOLOGY 
Twenty six low-achieving fifth grade students took part in the above-mentioned 
extracurricular program, for one weekly hour, for the duration of 8 weeks. They 
studied subtraction with decimal fractions prior to the topic being studied in their 
parent math classes, learning in small groups (up to 4 students), with a teacher trained 
by the first author. The instruction framework emphasized a delicate transition from 
the realistic environment to formal math. For this reason, for example, in the first four 
lessons, subtraction was presented only through monetary simulations and problems, 
with no formal exercises. From the fifth lesson onward, the formal representation of 
operations was interwoven into the learning situations, while maintaining the focus on 
authentic contexts.   
When playing the learning environment's "ice cream shop" game 
(http://kids.gov.il/money_he/glideriya.html), the students acted as sellers: they 
received orders, prepared ice-cream, and then calculated and gave change. In addition, 
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students were asked to work in supplementary online study units, which concerned the 
transition between money and formal representations, as well as change calculations. 
Students also enacted game-like situations with mock Israeli money (shekels and 
agorot).   
While students engaged in computerized activities, the teacher stayed in the 
background, observing their work and difficulties, taking notes for the following 
discussion and intervening when needed. Much of class time was devoted to pair and 
group discussions. The teacher's interventions did not include direct corrections of 
students' strategies, but rather meta-scaffolding questions that encouraged the students 
to use the tools in the environment in order to build their own strategies. 
Our primary data source was the transcripts of 8 videotaped, 45-minute-long learning 
sessions, accompanied by 8 screencaptured computer sessions video screenshots 
(about 20 minutes each). Other tools included pre-program student interviews focusing 
on mental computation strategies, observation of the parent mathematics classes, 
student evaluations filled in by their parent math class teachers' pre-and post-program, 
and individual worksheets each student filled in during the extracurricular lessons.  
The transcripts were coded twice by two researchers. In the first step, we segmented 
utterances into episodes, so that each episode began with the presentation of a new task 
(Ben-David Kolikant & Broza, 2010). We then classified each episode, according to 
the problem it deals with, and examined: (1) who participated in it; (2) the tools that 
were involved; (3) the knowledge pieces that emerged; and (4) the difficulties that 
arose, including whether they were solved, and if so how and by whom.  
In order to understand more deeply the knowledge building processes involved in 
working with the environment, an integrative analysis of the transcripts was conducted 
as a second step. For this purpose, we adapted the microanalysis epistemic actions 
model (RBC) developed by Hershkowitz, Schwarz & Dreyfus (2001). According to 
them, Recognize (R) means "identifying cases in which a student makes use of a 
construct or structure that has been constructed earlier" (p. 212). Building with (B) 
occurs "when students are engaged in achieving a goal such as solving a problem, 
understanding and explaining a situation, or reflecting on processes" (p.215). 
Constructing (C) refers to "finding a new phenomenon and reflecting on it, on its 
internal structure and on its external relationship to things they [students] know 
already" (p.216). 
After identifying the episodes in which constructing occurred, we searched for 
historical evidence, i.e. indications in previous episodes, that could hint about the 
specific ways this new piece of knowledge could have been constructed (i.e. 
recognizing and building with actions). This integrative analysis enabled us to focus on 
the developmental changes in the student's thinking and behavior chronologically, as 
well as to examine it with respect to the literature of low-achieving students.  
In the following section we present a case study of one of the low-achieving students 
who best demonstrates this process, tracking important episodes and aspects of his 
learning process within the environment. 



Broza, Ben-David Kolikant 

 

2 - 124 PME 37 - 2013 

TOM: A CASE STUDY 
Our pre-program data regarding Tom indicated a passive, unmotivated student, with no 
solid mathematical strategies. During his interview, Tom used his fingers in order to 
calculate the result of exercises that require "breaking up the ten" like: 11-8 or 31-7 and 
wrongly calculated 50-28 and 100-18. He succeeded in adding exercises like 95+10 or 
395+10. His teacher reported that Tom was unmotivated, used partial strategies, which 
led him to wrong answers, and had difficulties in providing explanations for his 
calculations. His math score was 60.  
During the first half of the program (lessons 1-4), Tom was silent and seemed 
unconfident. During the computer assignments (game simulations and other online 
study units), he was more engaged and active, but still lacked confidence, allowing his 
peers to make the final decisions. Yet, whenever the teacher asked him to, he provided 
his own answers.  
Tom constructs a new strategy 
A shift in Tom's performance emerged in the fifth lesson. In fact, he constructed a new 
strategy for the first time. The task was to calculate verbally the change for a client who 
paid 20 shekels for an ice cream cone that cost 7.70 shekels. Tom's first answer was 
erroneous: 13.30. When asked by the teacher how he reached this result, he told her 
that he performed the formal subtraction exercise 20-7.70. When prompted for further 
explanations, Tom moved to the context of using money and expressed himself using 
addition, an operation he was more comfortable with (as indicated in his pre-program 
interview), rather than subtraction: 
1. Tom: I add 30 agorot to the 70 agorot, it becomes 100 agorot. 
2. Teacher:  [Do you want me] to write 30 agorot plus 70 agorot? [Tom nods] 
3. Teacher: O.k. so how do I write it? Tell me exactly how to write it. 
4. Tom: Seventy plus thirty. 
5. Teacher:  [Writes on the board: 70+30] … this is how it should be written? 
6. Tom: Yes. 
7. Teacher: Yes? OK. 
8. Tom:  Equals 100. 
9. Teacher:  Yes. 100 what? 
10. Tom: Agorot.  
11. Tom:  Now, we add this (30 agorot) to the 7.70, it becomes 7.100. Then while adding 

this…. 
12. Teacher:  Wait, wait, what are we doing now? I am writing exactly all the exercises you 

tell me to write. So tell me what to write. 

Tom’s shift to talking in monetary terms (line 1) could be viewed as a result of the 
teacher's demand for explanation, apparently a meta-scaffolding that forced him to 
reflect about his attempts at calculation. This situation reflects the group’s discussion 
norm, established earlier by the teacher, when she accepted procedures with the money 
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model as satisfactory. This is probably the reason why, when the teacher insisted on 
formal writing (line 3), a task less familiar to Tom, his next explanation was still 
focused on the monetary context.  
Tom’s thinking in monetary terms was made even more evident when he reached the 
result of 7.100, which in formal terms is wrong. The teacher’s hint (“what are we doing 
now?”) was perhaps aimed at this. However, for Tom, this representation was 
apparently appropriate for his purposes: it had shekels on the left (of the "decimal" 
point) and agorot on the right. He thus continued with his mental money model:     
13.  Tom:  And then 100 agorot are a shekel.  
14.  Teacher: Again? [seems that it is difficult for her to follow] 
15.  Tom:  I see that 100 agorot is shekel. 
16.  Teacher:  100 agorot are 1 shekel [writes as an equation] 
The rule 100 agorot = 1 shekel was elaborated in lesson 3 by another student, in a 
different context (when converting shekel coins to agorot). Tom recognized the 
usefulness of this rule. In fact, he used it to build his own strategy. Tom's 
representation of 7.100 (utterance 11) is a unique scaffold that he built for himself, 
when converting 7 shekels and 100 agorot to 8 shekels.  
Moreover, in this discursive move, Tom disregarded the teacher’s repeated hints 
(utterances 2,3,5), aimed at moving his informal  representation to a more formal 
representation in writing. Tom preferred staying with the familiar and meaningful 
context of using monetary terms, which was given legitimacy by the teacher up to that 
lesson, showing confidence and persistence for the first time. Nonetheless, as he 
moved on with his explanation, he did move to formal symbols. This time the teacher 
kept reminding him of the money context: 
17.  Tom:  And then we add it to seven and it becomes… 
18.  Teacher:  We add the shekel to seven? So, let's write seven shekels. 
19.  Tom:  Plus. 
20.  Teacher:  Plus one shekel, it becomes? 
21.  Tom:  Eight. 

At the end of the episode, Tom subtracted these 8 shekels from 20 shekels, which gave 
him 12. And then, to get to the final result he added the 30 agorot to the 12, coming up 
with the correct answer of 12.30. This was the first time he had used such a strategy of 
mixed operations, addition for the decimals and subtraction for the whole numbers. 
Tom's use of new strategies across contexts: Progress and Regression 
Tom didn't use the same strategy during the following lesson 6 and the beginning of 
lesson 7, although there were opportunities for this. Instead, he kept making 
calculation errors, as if regressing to his old habits.  
A progressive move was noted later in lesson 7, during the group discussions and the 
meta-scaffoldings led by the teacher (e.g., creating conflict between two different 
strategies and using a checking procedure to find out whose strategy is correct). Tom 
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elaborated another correct strategy (as can be seen in Figure 1, reproduced from his 
worksheets), feeling enough confidence to use only subtractions, both for the decimals 
and for the whole numbers.  
Moreover, Tom returned to the rule that 100 agorot = 1 shekel in lesson 8, this time as 
an anchor to transfer his new mental subtraction strategy to the written context, while 
solving the exercise 10-3.99. Despite the relative dependence of low-achieving 
students on context, reported in the literature, Tom could express his strategy in writing 
intuitively (Figure 1). 

 
Figure 1: Tom's written representation  

He then initiated a checking procedure, where he used the shekels/agorot conversion 
rule, again for converting "9.100" to 10 (Figure 2), similar to what he did in lesson 5. 
We concluded that this rule served as a scaffold for Tom to deal with subtraction 
problems.  

 
Figure 2: Tom's checking strategy 

Tom's overall progress was also reflected in his parent math class teacher's 
post-program evaluation, which emphasized his increased flexibility in using various 
strategies during calculations, his reduced passivity and his improved motivation and 
explanation ability. Similar progress was observed in about a third of the students 
taking part in the program, and further examples will be presented at the conference. 
DISCUSSION AND CONCLUSIONS 
Through his participation in the program, Tom constructed new knowledge using 
scaffoldings such as the money model and the rules it entails (e.g., 100 agorot equal 1 
shekel), as well as more abstract yet informal representations (e.g., 7.100). Although 
these informal representations did not align with the accepted and even more 
abstracted formal representation, they helped him perform correct calculations, use 
subtraction strategies for decimals as well as whole numbers, engage in mathematical 
discussions, and adopt mathematical habits (such as checking himself). He was able to 
apply his newly constructed knowledge to new tasks and situations, albeit 
inconsistently (using it in lessons 5, 7 and 8, but not 6, even when appropriate). 
Furthermore, he seemed more confident in his knowledge and abilities (as 
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demonstrated by his disregard of some of the teacher's hints and prompts), more 
motivated and less passive (as reported by his parent math class teacher). 
According to Yackel & Cobb (1996), children's thinking displays socio-mathematical 
norms that were shaped during interaction. Tom's cognitive and behavioral changes 
were made possible through the affordances of a specific combination of tools (e.g., 
the ice cream shop game), peer interaction, and the meta-scaffoldings and 
socio-mathematical norms initiated by the teacher's mediation (e.g., urging for 
explanations). 
Tom’s case study highlights the complex knowledge construction of low-achievers, 
characterized by progression and regression, and fragile and localized consolidation. 
Considering the methodological limitations, the indications of his progress might not 
be easily generalized to other contexts. However, as a micro example of the main 
findings (to be reported at the conference), Tom's story indicates the positive potential 
of our pedagogy’s meaning-focused, teacher-mediated, context-driven instruction of 
mathematics for low-achieving students.  
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The study reported herein is part of a larger study1that examined high-school students' 
understanding of the roles of examples in proving. Data is based on a series of 
students' interactions with specially designed mathematical tasks that elicit their 
thinking. The findings provide a complex account of students' conceptions and reveal 
inconsistences in their understanding. In particular, all students in our study exhibited 
indicators of understanding that for a universal statement to be true it has to hold for 
all cases. At the same time, some of these students remained convinced that a statement 
can be 'proven' through examination of several confirming examples.    
BACKGROUND 
NCTM (2000) Standards and Common Core State Standards for Mathematics (CCSSI, 
2010) state that reasoning and proving are an integral part of school mathematics. In 
order for students to engage in proving they need to develop an understanding of the 
status of empirical evidence in proving and refuting mathematical statements (e.g., 
Harel and Sowder, 2007). However, studies consistently show that students at all 
grades and levels tend to rely on examples that satisfy a given statement as sufficient 
evidence for proving it. This phenomenon is referred to as empirical proof scheme 
(Harel and Sowder, 2007), naïve empiricism (Balacheff, 1988), or example-based 
proof (Healy and Hoyles, 2000). In addition, students often hold incorrect views with 
respect to counterexamples: they reject them or treat them as exceptions (Balacheff, 
1988). These studies suggest that developing an understanding of the status of 
examples in proving (and refuting) is a non-trivial process. 
Although, the Standards define instructional goals and outcomes, they do not specify 
the methods for achieving them (CCSSI, 2010). Stylianides and Stylianides (2009) 
maintain that there has not been enough research into the ways of supporting students 
in developing coherent understanding of the role of empirical evidence in proving. 
Thus, students are often left to develop this understanding on their own, with 
insufficient direct instructional support.  
The goals of our study were to explore high-school students' understanding of the 
status of empirical evidence in proving and refuting mathematical statements, along 
with ways in which this understanding can be diagnosed and enhanced. To address 
these goals we developed a framework (Buchbinder and Zaslavsky, 2009) that captures 
our conceptualization of what it means to understand the status of examples in 

                                           
1 The study was supported by Israeli Ministry of Education.  
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determining the validity of mathematical statements. The framework provided a basis 
for constructing special tasks that elicit students' conceptions and for analyzing 
students’ conceptions.   
What does it mean to understand the status of examples in proving? 
Every mathematical statement can be characterized by a domain D of mathematical 
objects to which it refers (e.g., 'all integers ending with 7') and a proposition that 
describes a certain property P (e.g., 'multiple of 7'). A universal statement that is based 
on domain D and property P states that every x in D has the property P (e.g., the false 
universal statement: ‘every integer ending with 7 is a multiple of 7’). An existential 
statement that is based on domain D and property P states that there exists x in D that 
has the property P (e.g., the true universal statement: ‘there exists an integer ending 
with 7 that is a multiple of 7’). With respect to a given domain D and a property P, four 
types of mathematical objects can be defined, based on whether or not an object x 
belongs to the domain D or not, and whether it satisfies the given property P or not: 1. 
An object that belongs to D and has the property P (e.g. x=77). This is a confirming 
example, for both universal and existential statements; 2. An object that belongs to D 
and does not have the property P (e.g. x=17). This is counterexample or a 
contradicting example for the universal statement and a non-confirming example for 
the existential statement; 3. An object that does not belong to D, and has the property P 
(e.g. x=70); 4. An object that does not belong domain D and does not have the property 
P (e.g. x=71).  Objects of types 3 and 4 are irrelevant to both kinds of statements 
(universal and existential). We separate them as they may be interpreted differently in 
terms of their logical status. Our framework describes the logical status of each type of 
example with respect to the two types of statements (Buchbinder and Zaslavsky, 
2009). Thus, one confirming example is insufficient for proving a universal statement, 
but is sufficient for proving an existential statement. One counterexample is sufficient 
for refuting a (false) universal statement, but a non-confirming example is insufficient 
for refuting an existential statement. Irrelevant examples have no logical status in the 
sense that they do not support any proof or refutation of a statement. 
In the spirit of Borgen and Manu (2002) we conceptualize 'understanding' of the roles 
of examples in determining the validity of mathematical statements in operational 
terms as becoming fluent with types of inferences that can and cannot be drawn based 
on the four types of examples with respect to two types of statements. In this paper we 
focus on students' understanding of the status of confirming and contradicting 
examples in proving or refuting of universal statements. According to the conceptual 
framework such understanding entails: (1) recognizing the type of the statement 
(universal); (2) realizing that in order for it to be true the proposition has to hold for all 
the elements in the domain; (3) realizing that confirming examples are insufficient for 
proving; and (4) understanding that a single counterexample is sufficient for refuting a 
false universal statement.  
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THE STUDY 
Instruments 
Based on the conceptual framework presented above, we constructed a collection of 6 
types of tasks that aim at revealing and enhancing students' understanding of the roles 
of examples in proving. Each type of task addressed various aspects of the framework, 
and the collection as a whole covered all aspects of the framework2 (Buchbinder & 
Zaslavsky, in press).  
The tasks drew on topics from the regular 9th and 10th grade mathematics curriculum in 
Israel. While we wanted to ensure that students have the relevant content knowledge to 
cope with the tasks, we tried to confront them with statements that were unfamiliar to 
them, and which had a potential to evoke uncertainty regarding their truth-value. 
Uncertainty is widely recognized as a powerful trigger for creating situations that 
promote students' intellectual need for proof (e.g., Zaslavsky, 2005). The process of 
resolving the uncertainty can both reveal and enhance students’ understanding. One 
type of task, inspired by Healy and Hoyles (2000) and by Zaslavsky and Ron (1998), 
which we term "Who is right?", creates uncertainty by confronting students with a 
false universal statement followed by arguments of five hypothetical students stating 
their opinion on its truth-value. Student A uses multiple confirming examples to 
“prove” the statement; Student B refutes the statement with a single counterexample; 
Student C maintains that multiple counterexamples are needed; Student D maintains 
that the statement is false but does not accept counterexamples as sufficient, and 
requires a general argument; Student E maintains that since both confirming and 
contradicting examples exist, the truth value of the statement cannot be determined. 
 

 
Figure 1: Two parts of the algebraic version of the task ‘Who is right?’ 

                                           
2 For discussion of types of tasks and the underlying design principles, see Buchbinder & Zaslavsky (2012). 

Five students worked independently on determining whether the following 
statement is true or false:   For every natural number n,  n2+n+17  is a prime. 
For each of the arguments raised by the students below, decide whether it is correct 
or not, and justify your decision.  

 

 

 

 

 

 

Tali:   
I checked the value of the expression for 10 different natural numbers (odd, even, prime) 
and in all cases the result was a prime. For example:  
For n=2, I got 23, which is a prime.  For n=3, I got 29, which is a prime. 
For n=11, I got 149, which is a prime.  Thus the statement is true. 

 
Yael: 
 I tried n=16 and got: 162+16+17=289.  289  is not a prime since 17·17=289. 
Thus, the statement is false.  
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For each argument, participants were asked to determine whether it is correct or not 
and to justify their decision.  Figure 1 shows 2 parts (Students A & B) of the algebraic 
version of the task. 
Data Collection 
Two parallel versions of the tasks (algebraic and geometric) were implemented with 
six pairs of top-level 10th grade students from two distinct schools in the northern area 
of Israel. The group included 7 girls and 5 boys who volunteered for the study. Each 
pair of students participated in a series of six, one hour long, task-based interviews.  
Across all task types, each pair responded to 11 tasks involving universal statements. 
During the sessions, students coped with the different tasks with minimal intervention 
from the interviewer. There were no time constrains, so students could discuss the task 
with each other as much as they needed. Data collection included video recordings of 
the interviews, students’ written work and researcher field notes. 
Data Analysis 
The data were analyzed using qualitative research methodology. Students' written 
work and utterances consistent with the framework were coded as 'indicators of 
understanding' (IOU). E.g., expressions stating that confirming examples are 
insufficient for proving. Students' responses inconsistent with the framework were 
coded as 'non-normative responses' (NNR). E.g., explicit acceptance of an 
example-based 'proof' as valid. Note that only explicit indicators of understanding (or 
mis-understanding) were coded.  
Each task was chosen as a unit of analysis, even though multiple IOUs and NNRs 
could occur in it. Also, since students worked on the tasks in pairs, and it was not 
possible to distinguish between individual contributions, both types of indicators (IOU 
and NNR) were assigned to pairs, not to individuals.  
FINDINGS 
The findings provide a complex account of students’ understanding. All students 
exhibited IOUs in each one of the aspects outlined by the framework. Note that each 
pair received 11 tasks involving universal statements, thus, there were 66 possibilities 
to exhibit IOUs, NNRs, or both. 
With respect to confirming examples, we recorded 16 IOUs (Table 1). This relatively 
low rate (only 24%) can be related to the fact that only explicit indicators of 
understanding were recorded. As shown in Table 1, all pairs provided at least one 
explicit IOU that confirming examples are insufficient for proving. At the same time, 
all pairs also exhibited at least one NNR, such as justifying a statement by checking 
several confirming examples, or accepting such justifications, made by others, as valid. 
Overall, the same number of IOUs and NNRs was documented for understanding the 
status of confirming examples, with only two pairs exhibiting more IOUs than NNRs.  
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 Understanding the status of 
Confirming examples in proving 

Understanding the status of  
Counterexamples in refuting 

Student pairs No' of IOU No' of  NNR No' of IOU No' of  NNR 
Neta and Ronit 2 3 8 3 
Nurit and Limor 6 4 18 1 
Omer and Yaron 1 1 11 0 
Tami and Natalie 2 4 6 3 
Keren and Ben 2 3 11 2 
Paz and Ronen 3 1 8 0 
Total 16 16 62 9 

Table 1: Distribution of indicators of understanding (IOU) and non-normative 
responses (NNR) with respect to the status of examples and counterexamples in 

proving and refuting universal statements.   
All students provided multiple evidence of understanding of the role of 
counterexamples. Overall, 62 such IOUs were documented. In other words, in 94% of 
tasks involving false universal statements, students provided explicit indicators of 
understanding that a single counterexample refutes a universal statement. The 9 cases 
of NNRs reflect the instances in which students required multiple counterexamples for 
refuting a false universal statement.  
We illustrate our findings through the case of one pair of students’ encounters with the 
parts of the task illustrated in Figure 1. 
The case of Neta and Ronit 
Neta and Ronit started by checking some small values of n, which appeared to confirm 
the statement. Then they turned to examine the hypothetical students' arguments:    

Ronit: Is Tali's response correct? Yes. Why? ….According to her results… 
Neta: [While writing] In addition to Tali, we tried several numbers and every time the 

result was a prime. Thus, Tali is right. 
Ronit: Wait! Look at the response of Yael. [Reads it aloud]. 289 is not a prime… 
Neta: She is right, what can I tell you… 
… 
Ronit: So, first of all, Tali is right. It [the statement] is true but not for all natural numbers. 

Because here, Yael proved that if we take n=16…..It's not that the statement is 
false…. It's like…. this statement is false. It's not for every natural n. So here, Yael 
is right and Tali not. Because she [Tali] didn't check all natural numbers. Perhaps 
some of them do not [satisfy the statement]. 

Neta: The statement is false.  
Ronit: So, Tali says that the statement is true, because she tried different numbers and the 

resulting numbers are primes. She is right, like, in her way, but she is not right in 
that…. the statement is false. 

Neta: So, both Tali and Yael are right.  
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Ronit: Yael is right. It is not "for every natural n".  
Neta: Yes. [While writing] Yael is right because she found a proof that not every natural 

number that we substitute for n gives us a prime number.  

Neta and Ronit did not change their written justification for Tali's utterance. They 
moved on with the task but later returned to Tal's response. It seems that they realized 
that their acceptance of both Tali's and Yael's arguments constitutes a contradiction. 
Following is their attempt to resolve the conflict:  

Ronit: OK. Now we have to go back to Tali. [Reads Tali's response aloud]. She is right!  
Neta: Definitely. She is right. We can tell that Tali is right since we do not know what 

happened earlier. 
Interviewer: What do you mean?  
Neta: We have met her [Tali] earlier. And she is right. For example, we meet Tali on 

Sunday, and she proves to us that the statement is true. She gives us examples, 
gives us the whole investigation that she made, and she shows us that she got it 
right. We read her report, and we see that she is right. The next day, we meet 
someone else - Yael, and she shows us that the statement is false. So the first girl 
was right, but the second girl is also right. Afterwards. 

Ronit: We can say that it [the statement] is false based on what Yael did. It is false 
because we saw what Yael did and we found out that not for every natural 
number that we substitute for n, the result will be a prime.  

Interviewer: Do I understand correctly, that if you would not have met Yael, you would 
say that Tali's response is correct?  

Ronit: Exactly.  
Neta: Yes.  

DISCUSSION  
Applying our framework to analyse Ronit and Neta's case we can see that they 
correctly identified the statement as universal and explained that it has to hold for all 
natural numbers. They accepted Yale's counterexample as refutation and used it to 
justify why the statement is false. At the same time, Neta and Ronit referred to Tali's 
example-based argument as valid, even after direct prompting. Their line of reasoning 
can be described as "the statement is true, unless shown otherwise". Outside 
mathematics it is common to regard repeating evidence as true unless contradicting 
evidence is presented; which, in turn, does not necessarily overthrow previous results. 
It is possible that Neta and Ront's reliance on confirming examples for justifying 
universal statements stems from such 'every-day logic'. This is consistent with Leron 
and Hazan (2009) who maintain that in case of conflict between mathematical 
reasoning and every-day logic, students often resolve the conflict in favour of the 
latter.  
Our findings outline a complex picture of students' understanding of the roles of 
examples in determining the validity of mathematical statements. Specifically, we 
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identified two types of inconsistencies. The first type of inconsistency is manifested as 
discrepancies between students' responses to different tasks. In particular, with respect 
to the status of confirming examples in proving, the students, as a group, exhibited the 
same number of non-normative responses as the number of indicators of understanding 
(Table 1). This means that while on some tasks the students stated explicitly that 
confirming examples are insufficient for proving, on other occasions (or even on the 
same task) they used confirming examples to justify that a certain universal statement 
is true.  
Some students justified the use of confirming examples by maintaining that they have 
been chosen in a specific way - systematically or by random. Balacheff (1988) terms 
this type of reasoning - crucial example. Neta and Ronit justified their reliance on 
confirming examples by referring to the timing of occurrence of a counterexample. 
Though their reasoning was unique for our group of students, we hypothesise that it 
can occur with other students outside our group. Thus, our findings concur with the 
literature on students' difficulties to accept the limitation of empirical evidence as 
means for proving (Harel & Sowder, 2007, Healy and Hoyles, 2000). 
Contrary to the literature on counterexamples (Balacheff, 1988, Zaslavsly and Ron, 
1998) the students in our study exhibited strong understanding of the status of 
counterexamples, accepting them as refutations. The data in Table 1 and Neta and 
Ronit excerpts from Neta and Ronit's discussion illustrate this finding.  
The second type of inconsistency in students' understanding of the roles of examples in 
determining the validity of universal statements is their apparent lack of connection 
between the roles of examples and counterexamples in this process. From a logical 
point of view, to understand that in order for a universal statement to be true it must 
hold for all elements in the statement’s domain and that a single counterexample is 
sufficient for refuting a false statement, implies that confirming examples are 
insufficient for proving and that a general justification is needed (Harel and Sowder, 
2007, Stylianides and Stylianides, 2009). Our findings, and specifically the case of 
Neta and Ronit, suggest that students held two conceptions that logically are 
contradicting.  
Implications for education 
Supporting the development of students' understanding of proving, is a non-trivial task 
for mathematics educators. One approach to that involves designing instructional tasks 
that highlight limitations of empirical evidence by emphasizing the role of 
counterexamples (Buchbinder and Zaslavsky, 2012, Stylianides and Stylianides, 
2009). The type of task Who is right? proved successful in evoking uncertainty, and in 
promoting students' awareness of their own conceptions. In most cases this led to 
enhanced understanding of the roles of examples in proving. However, as our data 
show, some students did not resolve the uncertainty in mathematically correct way. 
More research is needed to determine the types of tasks and instructional scaffolding 
needed to promote students' understanding of the roles of examples in proving.  
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This paper presents initial findings from a longitudinal study, which investigates the 
effect of the Connected Mathematics Program (CMP), a middle school reform 
curriculum on student learning in high school. The findings of this study showed that 
students who used the reform curriculum in middle school performed significantly 
better than or equally well to those students who did not use reform curriculum in their 
middle school.  The findings of this study not only show the necessity of examining the 
curriculum effect beyond the grade levels, but also suggest possible effective ways to 
investigate the curriculum effect beyond the grade levels. In addition, the findings of 
this study suggest the potential long-term effect of problem-based mathematics 
curriculum on student learning.  
In the past decade, a number of studies have been conducted to understand the impact 
of mathematics education reform in general and standards-based curriculum in specific 
in the United States (e.g., Cai et al., 2011; Harwell et al., 2007; Post et al., 2008; Reys 
et al., 2003). So far, researchers have focused mainly on examining curricular effects 
within a grade band. There has been no study that examines the relationship between 
using Standards-based or traditional curricula and students’ learning across the middle 
and high school grade bands. This paper reports findings from a large project, 
Longitudinal Investigation of the Effect of Curriculum on Algebra Learning (LieCal).  LieCal 
Project investigates how the use of different types of middle school curricula affects 
the learning of high school mathematics for a large sample of students from ten high 
schools in an urban school district. 
BACKGROUND AND THEORETICAL BASIS 
Standards Movement and Reform Curriculum 
In the late 1980s and early 1990s, the National Council of Teachers of Mathematics 
(NCTM) published its first round of Standards documents (e.g. NCTM, 1989), which 
provided recommendations for reforming and improving K-12 school mathematics. 
These Standards documents not only specified new goals for school mathematics, but 
also specified major shifts in teaching mathematics.  With extensive support from the 
National Science Foundation (NSF), a number of school mathematics curricula were 
developed and implemented to align with the recommendations of the Standards. The 
Connected Mathematics Program (CMP) is one of the Standards-based middle school 
curricula developed with funding from NSF (Lappan et al., 2002). The CMP 
curriculum was designed to build students’ understanding of important mathematics 
through explorations of real-world problems. Students using the CMP curriculum are 
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guided to investigate important mathematical ideas and develop robust ways of 
thinking as they try to make sense of problems based on real-world situations. 
LieCal-Middle School Project 
LieCal Project consists of middle school project and high school project.  In the 
LieCal-Middle School Project, we have been investigating the differential effects of 
the CMP and more traditional (non-CMP) curricula on middle school students’ 
learning of algebra. It was found that CMP and non-CMP curricula are very different. 
For example, in the non-CMP curricula, equation solving is introduced symbolically 
by using the additive and multiplicative properties of equality (equality is maintained if 
the same quantity is added to, subtracted from, multiplied by, or divided into both sides 
of an equation). On the other hand, in the CMP curriculum, equation solving is 
introduced using real-life contexts that are incorporated into contextually based 
justifications of the equation solving steps.  We also conducted an analysis of the 
algebra problems in the CMP and non-CMP curricula (Cai, et al., 2010). The results 
strikingly illustrate the extent of the difference between the types of problems posed in 
the two curricula. We classified the mathematics problems in the CMP curriculum and 
one of the non-CMP curricula into four increasingly demanding categories of 
cognition: memorization, procedures without connections, procedures with 
connections, and doing mathematics. It was found that a significantly greater 
percentage of the tasks in the CMP curriculum (71%) than in the non-CMP curriculum 
(21%) are cognitively higher-level tasks (procedures with connections and doing 
mathematics) (χ2(3, N = 3311) = 759.52, p < .0001). 
Besides conducting analyses of the CMP and non-CMP curricula, we also analyzed the 
instruction of the classroom teachers who implemented the two types of curricula 
(Moyer et al., 2011). We found that CMP teachers emphasized the conceptual aspects 
of learning significantly more often than the non-CMP teachers (t = 12.40, p < .001). 
On the other hand, non-CMP teachers emphasized the procedural aspects of learning 
significantly more often than the CMP teachers (t = 10.43, p < .001). 
Regarding student performance, we found that on the open-ended tasks (assessing 
conceptual understanding and problem solving), the growth rate for CMP students over 
the three middle school years was significantly greater than that for non-CMP students 
(Cai et al., 2011).  In particular, our analysis using Growth Curve Modelling showed 
that over the three years, the CMP students’ scores on the open-ended tasks increased 
significantly more than the non-CMP students’ scores (t = 2.79, p < .01). An additional 
analysis using Growth Curve Modelling showed that the CMP students’ growth rate 
remained significantly higher than non-CMP students on open-ended tasks even when 
students’ ethnicity was controlled (t = 3.61, p < .01). On the other hand, CMP and 
non-CMP students showed similar growth over the three middle school years on the 
multiple-choice tasks assessing computation and equation solving skills. These 
findings suggest that, regardless of ethnicity, the use of the CMP curriculum is 
associated with a significantly greater gain in conceptual understanding and problem 
solving than is associated with the use of the non-CMP curricula. However, those 
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relatively greater conceptual gains do not come at the cost of lower basic skills, as 
evidenced by the comparable results attained by CMP and non-CMP students on the 
computation and equation solving tasks. 
LieCal-High School Project 
Our previous findings with middle school students are similar to the findings from 
research studies of the effectiveness of Problem-Based Learning (PBL) on the 
performance of medical students (Dochy et al., 2003; Hmelo-Silver, 2004).  That is, 
using a PBL approach to train medical students, researchers found that PBL students 
performed better than non-PBL (e.g., lecturing) students on clinical components in 
which conceptual understanding and problem solving ability were assessed.  However, 
PBL and non-PBL students performed similarly on measures of factual knowledge.  
When these same medical students were assessed again 6 months or a few years later, it 
was found that the PBL students not only performed better than the non-PBL students 
on clinical components, but also on measures of factual knowledge (Vernon & Blake, 
1993). This result may imply that the conceptual understanding and problem solving 
abilities learned in the context of Problem-Based Learning facilitate the retention and 
acquisition of factual knowledge over longer time intervals. The CMP curriculum can 
be characterized as a problem-based curriculum (Cai et al., 2010). Analogous to the 
results of research on the learning of medical students in the PBL research, we found 
that CMP students outperformed non-CMP students on measures of conceptual 
understanding and problem solving during middle school.  Also analogously, CMP and 
non-CMP students performed similarly on measures of computation and equation 
solving. Therefore, it is reasonable to hypothesize that the superior conceptual 
understanding and problem solving abilities gained by CMP students in middle school 
may result in better performance on a delayed assessment of manipulation skills such 
as equation solving, in addition to better performance on tasks assessing conceptual 
understanding and problem solving.  The purpose of the LieCal-High School Project is 
to test the hypothesis.  In this paper, we want to investigate how CMP and non-CMP 
students perform in high school on different learning outcome measures.  
METHODOLOGICAL CONSIDERATIONS 
Participants 
In the previous middle school study, a quasi-experimental design with mixed methods 
has been used. We have followed more than 1300 students (650 using CMP and 650 
using Non-CMP curricula) from a school district in the United States for three years as 
they progressed through grades 6-8.  In the 2008-2009 school year, most of these 1300 
CMP and non-CMP students from the middle school study entered high schools and 
became high school freshmen.  In the LieCal-High School Project, we followed 
students enrolled in the 10 high schools that have the largest numbers of 1300 CMP 
and non-CMP students.  
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High School Curriculum and Instruction 
All high schools in the district are required to use the same district-adopted 
mathematics curriculum.  CMP and non-CMP students were mixed into each class in 
each of the ten high schools.  Thus, all of these CMP and non-CMP students used the 
same curriculum and taught by the same teachers in their high school.   
Student Learning Outcome Measures 
In the LieCal-High School Project, we also used a quasi-experimental design with 
statistical controls to examine longitudinally the relationship between students’ high 
school learning and their curricular experiences from their middle grades. We used 
various student learning outcome measures to assess student learning in high school.  
For example, we have developed open-ended problem solving and problem posing 
tasks to assess student conceptual understanding and problem solving.  We have 
developed multiple-choice tasks to assess students’ basic skills in algebra. We have 
also collected state assessment data, course grades, enrolments in advanced math 
courses, and SAT/ACT registrations and scores to assess student learning.   
INITIAL FINDINGS 
As we noted above, the results of the LieCal-Middle School Project presented parallels 
to the results of research on the learning of medical students using the PBL approach. 
CMP students outperformed non-CMP students on measures of conceptual 
understanding and problem solving during middle school. In addition, CMP and 
non-CMP students performed similarly on measures of computation and equation 
solving. Thus, we hypothesized that the superior conceptual understanding and 
problem-solving abilities gained by CMP students in middle school could result in 
better performance on a delayed assessment of manipulation skills, such as equation 
solving, in addition to better performance on tasks assessing conceptual understanding 
and problem solving in high school. So far, we have collected all of the achievement 
data for the LieCal-High School Project.  While we are still conducting the data 
analysis from various aspects, the initial findings show evidence to support the 
hypothesis.  That is, on all student learning outcome measures, CMP students 
performed better than or as well as non-CMP students in high school. In this paper, we 
present evidence from three learning outcome measures.   
Ninth Grade Results 
In the school district, Classroom Assessments Based on Standards (CABS) was 
administered to the 9th graders every 6 weeks. Each CABS task typically consists of a 
single open-ended mathematics problem that students are asked to solve and explain. 
In the 2008-2009 school year, we provided the school district with field-tested CABS 
open-ended problems that aligned with the adopted high school curriculum. Every six 
weeks, the participating teachers administered one of the LieCal-provided CABS 
assessments to the 9th grade students in the 10 LieCal high schools.  An Analysis of 
Covariance (middle school achievement as covariate) showed that on some tasks, the 
9th graders who used CMP in middle school performed significantly better than those 



Cai, Moyer, Wang 

 

PME 37 - 2013 2 - 141 

9th graders who used non-CMP in middle school (F = 4.69, p < .05).  On the rest of the 
tasks, CMP students performed equally well as tnon-CMP students.   
Tenth Grade Results 
Students in the school district were required to participate in the state test, which is a 
standardized test.  It is composed of items specifically designed for the state to assess 
basic mathematical skills.  The purpose of the state test is to provide information about 
student attainment of mathematical proficiency to students, parents, and teachers, 
information to support curriculum and instructional planning; and a measure of 
accountability for schools and districts. For the high school students, only tenth graders 
were required to take the state test.   We have collected the data to see how CMP and 
non-CMP students perform on this state test. 
As mentioned above, in the LieCal Middle School Project, we used both open-ended 
tasks to measure student conceptual understanding and problem solving and 
multiple-choice tasks to measure students’ basic mathematical skills.  We conducted 
an Analysis of Covariance (ANCOVA) using students’ 6th grade based line data on 
both open-ended tasks and multiple-choice tasks as covariates and 10th grade state 
math test scale score as the dependent variable.   As shown in Table 1 below, CMP 
students have significantly higher 10th grade scaled mean score than the non-CMP 
students (F(1, n= 492) = 7.76, p < 01).  In particular, the adjusted mean for CMP 
students on the 10th grade state math test is 533.5 and 525.9 for non-CMP students.  
When we used students’ 6th grade based line data on open-ended tasks and 
multiple-choice tasks separately in the ANCOVA, the findings are similar.  That is, 
CMP students have significantly higher 10th grade scaled score than the non-CMP 
students when using open-ended tasks as a covariate (F(1, n= 500) = 3.90, p < 05) and 
using multiple-choice tasks as a covariate (F(1, n= 502) = 5.13, p < 05).   

Covariate F-Value Significant Level 
6th Grade Project Multiple-Choice (MC) Tasks 5.13 < .05 
6th Grade Project Open-ended (OE) Tasks 3.90 < .05 
Both PI Developed 6th Grade MC and OE tasks 7.76 < .01 
6th grade State math scaled score 9.58 < .01 
7th grade State math scaled score 9.57 < .01 
8th grade State math scaled score 11.79 < .001 

Table 1: Analysis of Covariance on 10th Grade State Math Scaled Score 
We also used 6th grade state math test scaled score, 7th grade state math test scaled 
score, and 8th grade state math test scaled score, respectively, as the co-variable in the 
ANCOVA analysis, and we found that CMP students have significantly higher 10th 
grade scaled score than the non-CMP students, as shown in Table 1.  For example, the 
adjusted mean for CMP students on the 10th grade state math test is 531, but 523 for 
non-CMP students, using the 8th grade state test score as the covariate.  
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Eleventh Grade Results   
In the eleventh-grade, we have administered 13 open-ended tasks to assess the impact 
of middle school curriculum on students’ high school learning.  Two of the tasks were 
problem-posing tasks.  Students were given graphs or equations and then they were 
asked to pose mathematical problems based on the graphs or equations.  Problem 
posing can be a feasible, liable, and valid measure of the effect of middle-school 
curriculum on students’ learning in high school (Cai et al., in press).   
A total of 390 11th graders were included in the analysis (243 former CMP and 147 
former non-CMP students). In order to compare the high school performance of those 
students who had used the CMP curriculum in middle school to that of students who 
had used more traditional curricula, we divided their scores from the baseline 
examination taken in the 6th grade into thirds.  Generally, when comparing the problem 
posing performance of the CMP students in each third to the non-CMP students in the 
same third, the CMP students performed as well or better than the non-CMP students in 
the same third. For example, when grouped into thirds using the baseline equation 
solving scores, the CMP students in the top third were more likely (z = 2.01, p < .05) to 
generate a problem situation that matched at least one of the graph conditions (slope 
and intercept). Similarly, the CMP students in the top third were more likely to 
generate a problem situation that reflected the linearity of the graph (z = 2.40, p < .05). 
DISCUSSION 
Curriculum reform is often seen as holding great promise for the improvement of 
mathematics teaching and learning.  The findings of this study extended findings from 
earlier investigations that the effect of reform curriculum on student learning went 
beyond the grade band.  In particular, the findings from this study showed that students 
who used CMP curriculum in middle school performed significantly better than or 
equal to those students who did not use CMP in their middle school.   
The contribution of this study can be discussed from two aspects.  First, the findings of 
this study not only show the necessity of examining the curriculum effect beyond the 
grade band, but also suggest possible effective ways to investigate the curriculum 
effect beyond the grade levels.  In the past there is no study that has examined 
curriculum effect beyond grade levels.  This study breaks the new ground in 
curriculum studies.  Second, the findings of this study suggest the potential long-term 
effect of problem-based mathematics curriculum/instruction on student learning.  In 
mathematics education, there is a growing consensus that problem-based mathematics 
instruction offers considerable promise.  Theoretically, this approach makes sense. As 
students solve problems, they can use any approach they can think of, draw on any 
piece of knowledge they have learned, and justify their ideas in ways they feel are 
convincing.  The learning environment of teaching through problem solving provides a 
natural setting for students to present various solutions to their group or class and learn 
mathematics through social interactions, meaning negotiation, and reaching shared 
understanding. Empirically, there are needs for more data confirming the promise of 
problem-based mathematics instruction. The CMP curriculum can be classified as a 
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problem-based curriculum.  The use of CMP curriculum in middle school not only has 
the positive effect on students’ high school performance on open-ended problem 
solving (9th grade results) and problem posing (11th grade results), but also on basic 
mathematical skills assessed by the state test (10th grade results).  Thus, the findings of 
this study suggest the potential long-term effect of problem-based mathematics 
curriculum on student learning. 
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PRE-SERVICE PRIMARY TEACHERS’ KNOWLEDGE FOR 
TEACHING OF QUOTITIVE DIVISION WORD PROBLEMS  

María Luz Callejo, Ceneida Fernández, Maximina Márquez 
Universidad de Alicante (Spain) 

 
The purpose of this study is to analyse pre-service teachers’ specialized content 
knowledge of quotitive division word problems with fractions. Two tasks were solved 
by 84 pre-service teachers integrating both the resolution of the problems and the 
interpretation of primary school students’ answers. Results suggest that having a 
common content knowledge it is not enough to analyse and interpret students’ answers 
and errors since the activity of interpreting need the specialized content knowledge. 
Furthermore, results indicate that the majority of pre-service teachers’ interpretations 
were focused on the validity of the method and that there were more pre-service 
teachers that identified the procedural errors than the conceptual ones. Finally, some 
implications for teacher training programs are given. 
THEORETICAL BACKGROUND AND OBJECTIVES 
In this study we explore pre-service teachers’ specialized content knowledge for 
teaching mathematics. This is a kind of content knowledge that previous research has 
shown that is seemed to be critical for effective teaching and could be acquired during 
teacher preparation programs (Morris, Hiebert, & Spitzer, 2009). 
Since Shulman’s (1986) initial research, many other studies have continued to specify 
the different types of mathematical knowledge needed for teaching. Ball, Thames, and 
Phelps (2008) proposed a more detailed classification of the mathematical knowledge 
for teaching (MKT) identifying three subcategories inside the content knowledge: the 
common content knowledge is the knowledge of mathematics that most educated 
people acquire; the specialized content knowledge is the mathematical knowledge that 
is unique and essential for teaching mathematics; and the horizon content knowledge is 
the knowledge needed to link the mathematical concepts and relate them with the 
curricula. 
Specialized content knowledge is the knowledge that allows teachers to imply 
themselves in common teaching tasks such as representing the mathematical ideas to 
the students, evaluating whether student responses show an understanding of the key 
concepts and examining and understanding no common students’ strategies. We focus 
on the specialized content knowledge since this is the knowledge that pre-service 
teachers can develop during their teacher education programs and because this 
knowledge is required to the interpretation of the students’ understanding. This task 
has been highlighted as one of the professional tasks in mathematics teaching 
(Fernández, Llinares, & Valls, 2012; Son, 2010).  
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• In this study, we examine pre-service teacher content knowledge related to 
quotitive division word problems. Problems with a multiplicative structure have 
been broadly studied, particularly, quotitive division word problems, identifying 
students’ strategies and students’ difficulties and errors; some of them related 
with the interpretation of the remainder (Carpenter, Fennema, Franke, Levi, & 
Empson, 1999; Downton, 2009; Vergnaud, 1994). However, it is necessary 
more studies focus on the teachers’ knowledge for teaching of this type of 
multiplicative structure problems. This information is relevant for the teachers’ 
training programs. 

 
Pre-service teachers’ knowledge of problems with a multiplicative structure 
Research has shown that pre-service teachers have clear weaknesses in understanding 
quotitive division word problems. Graeber, Tirosh, and Glover (1986) pointed out that 
pre-service teachers tend to interpret the division only as a partitive that involves 
sharing a quantity (dividend) between a given number (divisor) of equal-sized groups 
and have difficulties in situations where they have to interpret the division as quotitive 
that involves finding how many groups of a given size (divisor) will go into a given 
quantity (dividend). Ball (1990) found that pre-service teachers have difficulties with 
the meaning of a division of fractions since they are able to interpret only the division 
as partitive. However, this interpretation is not valid in situations where the divisor is a 
fraction (quotitive division). Nillas (2003) described pre-service teachers strategies 
used when they solve problems with fraction divisions and showed that pre-service 
teachers’ ability for solving does not imply that they have a good conceptual 
comprehension of the topic. Pre-service teachers of this study failed in problem posing.   
Osana, and Royea (2011) designed a teaching experiment focused on fractions. Their 
results revealed a better conceptual understanding but pre-service teachers also failed 
in the ability of problem posing. Furthermore, these authors identified some cognitive 
obstacles in pre-service teachers when they tried to think about solutions and represent 
them symbolically. Tirosh (2000) also designed a course to improve pre-service 
teachers’ knowledge about the division of fractions. Before the course, the majority of 
pre-service teachers were able to divide fractions. However, anyone knew how to 
explain the algorithm, and their interpretations of incorrect students’ answers were 
based on the application of the algorithm or on difficulties related to the reading and 
comprehension. At the end of the course, pre-service teachers identified other causes of 
students’ common errors, for instance, the interpretation of the division as partitive or a 
limited conception of the fraction concept or of the operations properties.  
Most of the previous research is related to pre-service teachers’ resolution of problems 
that required the division of fractions. However, there is not too much information 
about how pre-service teachers interpret students’ answers in this type of problems 
(related to pre-service teachers’ specialized content knowledge).        
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Objectives 
The aim of the study is to examine pre-service primary teachers’ specialized content 
knowledge related to quotitive division word problems. More specifically, the research 
questions were formulated as follows: 

• How do pre-service primary teachers solve quotitive division word problems? 
• How do pre-service primary teachers interpret students’ strategies and errors in 

quotitive division word problems? 
METHOD 
The participants were 84 pre-service primary teachers (PPTs) in their first year of their 
degree. These pre-service teachers replied to two tasks (task 1 and task 2). In task 1, 
PPTs had to solve four quotitive division word problems. These problems were chosen 
and modified from previous research that had shown that pre-service teachers have 
difficulties in solving them (Verschaffel, De Corte, & Bogart, 1997). In task 2, PPTs 
had to analyse four primary school pupils’ answers to each problem from task 1. In this 
study, we present the results of one of the problems that implies the use of a fraction, a 
continuous magnitude and it is asked for the quotient and the remainder of the division. 

You have four cakes. You would like to give three fifths to each child.  
• How many children can you give cake? 
• What part of the cake left? 

 
Primary school students’ answers (Figure 1) included in task 2 were selected attending 
to students’ strategies and errors identified in previous research (Bulgar, 2003; Tirosh, 
2000). In the answer A, the student makes each cake in 5/5 using a unit of measurement 
equal to the piece to be given to each child (3/5). He/she places this unit in the sliced 
rectangles that represent the cakes and then counts how many times do 3/5. The child 
commits a procedural error of measurement (only two pieces are in black color) and 
does not express the excess “3 pieces” as a fraction. Moreover, “3 pieces” cannot be the 
part of the cake left because it is equal to the divisor (conceptual error). In the answer 
B, the student uses fractions and divides the number of cakes between the fraction of 
the cake that you have to give each child. He/she uses correctly the algorithm but does 
not know to interpret the terms of the division 20:3 since the divisor means how many 
fifths you have to give each child and not the parts in which the unit is divided 
(conceptual error).  So, the student expresses the remainder as 2/3 (and not as 2/5). In 
the answer C, the student uses also fractions but inverts the terms of the division as if 
this operation had the commutative property (conceptual error). Furthermore, he/she 
applies the algorithm incorrectly (procedural error). Both errors are neutralized and 
this is why the result is correct. In the answer D, the student also makes each cake in 
5/5 and enumerates the pieces that give to each child. The answer is correct. PPTs had 
to grade students’ answers with 0, 0.5 or 1 point and justified their punctuation. The 
justifications provided gave information about PPTs’ interpretations of the method 
used by the students and whether they identified the errors made by students.     
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Figure 1: Students’ answers included in task 2 

Firstly, pre-service teachers solved task 1 (problem solving) and 15 days later, they 
solved task 2 (interpreting the primary students’ answers).  
Pre-service teachers’ answers to each problem in task 1 were classified as correct when 
the method was correct. Answers were classified as almost correct when pre-service 
teachers applied a correct method and indicated how many children can be given cake 
but they said “two pieces” or “2/3 of cake” (is that, they did not interpret the remainder 
correctly). Answers without sense were classified as incorrect. Furthermore, the 
methods used by PPTs were classified as the use of natural numbers, measurement or 
the use of fractions (Bulgar, 2003). Answers were classified as “the use of natural 
numbers” when PPTs converted the 4 cakes in 20 fifths, reasoning and justifying the 
response using natural numbers. Answers were classified as “measurement” when 
PPTs created a new unit of measurement equal to the piece of cake that you have to 
give to each child (3/5 of a rectangle or a circle) and took the measure on the 4 cakes. 
Answers were classified as “the use of fractions” when PPTs used operations with 
fractions (for instance, repetitive additions or subtractions or a division). Figure 2 
shows an example of each method. 
The PPTs’ justifications to the primary school students’ answers in task 2 were 
analysed individually by three researchers. The agreements and disagreements were 
discussed in an attempt to share categories in order to classify PPTs arguments. Once 
we shared these categories, we applied these categories to all the data. With regard to 
the interpretation of the method used by students we generated three categories: 
interpretations that are based on the validity of the method (if pre-service teachers 
considered whether the strategy works or not in the given problem situation), 
interpretations that are based on the generalizability of the method (if they considered 
whether the strategy works for any problem), and interpretations that are based on the 
clarity of the method to identify the remainder of the division (if they considered 
whether the strategy was presented in a clear way). If PPTs only considered the 
correctness of the result, we classified this answers as others. For example, the next 



Callejo, Fernández, Márquez 

 

PME 37 - 2013 2 - 149 

PPT interpretation of the answer D refers to the validity “the student knows the 
strategy and develops it correctly; therefore he/she also obtains a correct result”. The 
following PPT interpretation refers to the validity-generalizability “It is a correct 
strategy but it is not the most adequate one. If the student had bigger numbers, this 
strategy did not work”. And finally, the next PPT interpretation is related to the 
validity-clarity “The strategy used to solve the problem (a drawing) led to see clearly 
that the student understands the problem and knows how to solve it. In this strategy, we 
can observe clearly the 2/5 of the cake”. 

 
Figure 2: Examples of each method 

In relation to the identification of students’ errors we examined whether PPTs 
identified the conceptual errors, the procedural errors, or both type of errors.  
RESULTS 
How do pre-service primary teachers solve quotitive division word problems? 
Only 54.8% of pre-service primary teachers provided a correct answer to the quotitive 
division word problem, and 16.7% gave an almost correct answer, is that, these 
pre-service teachers used a correct method but failed in the interpretation of the 
remainder of the division (Table 1).  
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Method Correct Almost 
correct 

Incorrect Total 

Natural numbers 11.9 8.3 0.0 20.2 
Measurement 27.4 2.4 14.3 44.1 
Fractions 15.5 4.8 7.1 27.4 
Others 0.0 1.2 7.1 8.3 
Total 54.8 16.7 28.5  

Table 1: Percentages of pre-service teachers who gave a correct, almost correct or 
incorrect answer and the method used  

On the other hand, 44.1% of pre-service teachers used a measurement method, using a 
graphical representation to solve the problem, and 27.4% of pre-service teachers used a 
fractions method. 52.2% of the pre-service teachers who used a fraction method, they 
used the division algorithm. Furthermore, 56.5% of the pre-service teachers who used 
a fraction method gave a correct answer, is that, almost half of the pre-service teachers 
that used the fraction division algorithm or the repetitive subtraction of fractions did 
not interpret the remainder or gave an incorrect answer. 
These results indicate that few pre-service teachers solved the problem correctly, and 
most of them struggled in the interpretation of the remainder. With regard to the 
method used, the majority of them used a measurement method implying a graphical 
representation. 
How do pre-service primary teachers interpret students’ strategies and errors on 
quotitive division word problems? 
Table 2 shows the percentages of the type of interpretation that pre-service primary 
teachers gave to each primary school students’ answers. Most of the pre-service 
teachers’ interpretations were focused on the validity of the method (71.4%). However, 
some interpretations of pre-service teachers in answers A and D (graphical method) 
were related to validity-generalizability (7.2% and 17.8% respectively) and in answer 
D to validity-clarity (16.7%).  
 Answer A Answer B Answer C Answer D Total 
Validity 73.8 79.8 76.2 55.9 71.4 
Validity-generalizability 7.2 0.0 2.4 17.8 6.9 
Validity-clarity 1.2 2.4 3.6 16.7 6.0 
Others 17.8 17.8 17.8 9.6 15.7 
Table 2: Percentages of the type of interpretation that pre-service primary teachers 

gave to each primary school students’ answers 
Table 3 shows the percentages of PPTs who identified the conceptual and procedural 
errors of students’ answers. For example the next pre-service teacher identified the 
conceptual error in answer B “the method is correct but the result is incorrect. The 
remaining portions must be a multiple of 1/5 and you obtain 2/3. The student commits a 
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mistake” and the next, he/she identified the procedural error in answer A “The method 
is correct but the result incorrect because the student left a piece unpainted”. 

Type of error Answer A Answer B Answer C 
Conceptual 4.7 23.8 4.8 
Procedural 32.5 - 7.2 
Conceptual-Procedural 0.0 - 1.2 

Table 3: Percentages of pre-service teachers who identified the type of error in each 
answer  

Any PPT identified all errors in student’s answers. We underline the few pre-service 
teachers who identified the errors in answer C since they observed that the result was 
correct. Furthermore, there were more pre-service teachers who identified the 
procedural errors in answer A and C (32.5% and 7.2%, respectively) than the 
conceptual errors (4.7% and 4.8%, respectively).  
CONCLUSIONS AND DISCUSSION 
The aim of this study is to analyse pre-service primary teachers’ specialized content 
knowledge of quotitive division word problems examining how they solve quotitive 
division word problems and how they interpret students’ strategies and errors on these 
problems. 
The majority of pre-service teachers who solved correctly the problem used a 
measurement method (graphical representation) (common content knowledge). Few 
pre-service teachers used fractions (division or subtraction). Furthermore, few 
pre-service teachers identified the students’ errors (conceptual or procedural) and most 
of their interpretations of students’ answers were focused on the validity of the method 
(few pre-service teachers focus on the generalizability of the method). These findings 
suggest that having a common content knowledge it is not enough to analyse and 
interpret students’ answers that require specialized content knowledge.  
This study also shows that there were more pre-service primary teachers that identified 
the procedural errors than the conceptual ones. This result is consistent with other 
studies such as Son (2010). Furthermore, if the result was correct (answer C) but not 
the procedure, pre-service teachers did not identify the error since they only focused on 
the result. On the contrary, if the result was incorrect (answer B), pre-service teachers 
analysed deeply the answer identifying the error.  
Finally, there were pre-service teachers who did not solve the problem correctly but 
they identified the validity of the method used by students. We think that this type of 
task could be useful to help pre-service primary teachers to develop specialized content 
knowledge in teacher training programs.  
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FACILITATING PROSPECTIVE SECONDARY MATHEMATICS 
TEACHERS’ LEARNING OF PROBLEM SOLVING  

Olive Chapman 
University of Calgary 

 
This study explored two “self-study of personal experience” approaches to determine 
their effectiveness in helping prospective secondary mathematics teachers to develop 
mathematical problem-solving knowledge for teaching. Participants solved non- 
routine problems and recorded their processes using two different approaches. Both 
approaches were found to be helpful for their learning, but one was more effective in 
highlighting taken-for-granted cognitive aspects of the process, thus producing a more 
realistic view and model of problem solving as a way of thinking mathematically. The 
study offers support for the use of a combined approach in teacher education to 
provide a rich basis of personal experience to make sense of problem solving. 
INTRODUCTION 
Problem solving is central to the mathematics curriculum and an integral part of all 
mathematics learning. This is highlighted in the National Council of Teachers of 
Mathematics [NCTM] (2000, p. 52) problem-solving standard that states: 

Instructional programs from prekindergarten through grade 12 should enable all students 
to  build new mathematical knowledge through problem solving; solve problems that arise 
in mathematics and in other contexts; apply and adapt a variety of appropriate strategies to 
solve problems; and monitor and reflect on the process of mathematical problem solving.  

This focus on problem solving is a shift from how it is treated in traditional 
mathematics classrooms and conceptualized by teachers whose knowledge of it is 
based on experiences in such classrooms as students of mathematics. This makes it a 
challenge for such teachers to engage students in genuine problem solving, that is, 
solving a task for which the solution method is not predetermined. This justifies the 
importance of ongoing research to identify ways to work with teachers to help them to 
transform their thinking and teaching of problem solving to meaningfully support 
students’ learning of it and mathematics. This study contributes to this by exploring 
two “self-study of personal experience” approaches to determine their effectiveness in 
helping prospective teachers to develop problem-solving knowledge for teaching. 
RELATED LITERATURE  
Studies on problem solving in mathematics tend to focus more on the learner or 
problem solver. So the literature offers us insights into the nature of problem-solving 
expertise (Schoenfeld, 1985; Silver & Marshal, 1990); problem-solving strategies or 
heuristic processes (Polya, 1954; Schoenfeld, 1985); effective teaching of problem 
solving (Schoenfeld, 1985; Silver & Marshal, 1990); and belief systems regarding 
problem solving (Callejo & Vila, 2009). Teachers have been studied as problem 
solvers both in terms of understanding their approaches to problem solving and in 
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helping them to become better problem solvers. As Thompson (1985) argued, teachers 
need to attain experience in "mathematical problem solving from the perspective of the 
problem solver before they can adequately deal with its teaching" (p. 292).  
Some studies that focus on prospective mathematics teachers’ learning have 
investigated interventions to improve their problem solving. For example, Szydlik, 
Szydlik, and Benson (2003) studied an approach to help prospective teachers to 
become autonomous problem solvers by promoting community autonomy rather than 
autonomy of individuals. The participants worked on “demanding problems” in small 
groups, then discussed their findings, strategies, solutions and arguments. The authors 
found that the participants experienced a broadening in the acceptable methods of 
solving problems. They concluded that a classroom focusing on problem solving using 
a variety of strategies, reflection on the process of problem solving, and engagement in 
the process of exploration, conjecture, and argument can help prospective teachers 
develop mathematical beliefs that are consistent with autonomous behavior.  
With a different focus, Guberman and Leikin (2013) studied the development of 
prospective teachers' problem-solving competencies through the use of multiple- 
solution tasks. They identified the participants’ strategies used in solving the multiple- 
solution elementary mathematics problems and their ability to produce multiple 
solutions to the problems they solved. They found that the multiple-solution tasks were 
effective in helping the participants, whether high or low achievers in mathematics, to 
significantly improve their problem-solving competencies. There was also a 
significant shift in the participants’ problem-solving strategies for multiple- solution 
tasks from mainly trial and error strategies used in the pre-test towards systematic 
strategies in the post-test. By the end of the course, the participants were solving 
problems flexibly, changing representations used, and employing more advanced 
problem-solving strategies.  
In this study the focus is not on improving the prospective teachers’ problem solving 
but their understanding of the process for teaching. The emphasis is on a self-study 
process in which the prospective teachers record and learn from their own experiences 
solving mathematical problems through individual self-reflection and collaboration 
with peers. Thus the study offers an approach that highlights self-study and personal 
experience as a basis of prospective teachers’ learning. 
THEORETICAL PERSPECTIVE 
As in Mason, Burton, and Stacey (1982), problem solving is being considered here in 
relation to mathematical thinking. This study is also framed in Mason et al.’s view of 
the importance of self-study of personal experience as a basis of improving 
mathematical thinking or problem-solving ability. They suggest that problem solving 
“can be improved by tackling questions conscientiously; reflecting on this experience; 
linking feelings with action; studying the process of resolving problems and noticing 
how what you learn fits in with your own experience” (p. ix).   
Mason et al. (1982) encourage the writing of one’s thinking to help one notice and 
thereby to learn from one’s experience. There are several things worth noting, 
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particularly: key ideas; key moments that stand out in one’s memory; and positively 
what one can learn from this experience. To facilitate this process, Mason et al. suggest 
four key words to use in making notes and in one’s thinking: Stuck!, Aha!, Check, and 
Reflect. Whenever one realizes one is stuck, one writes down Stuck and why one is 
stuck. “For example: I do not understand . . .; I do not know what to do about . . .; I 
cannot see how to . . .; I cannot see why . . .” (p. 16). Whenever one gets an Aha, i.e., an 
idea or thinks one sees something, write it down. For example, “write down Aha and 
follow it with Try . . .; Maybe . . .; But why . . .” (p. 16). One then Checks any 
calculations or reasoning; any insight on some examples; that the resolution does in 
fact resolve the original question and Reflects on what happened. These key words 
provide a scaffold around which a resolution is built, and encourages checking and 
reflecting on one’s resolution, an essential ingredient for improving one’s 
mathematical thinking. 
While this process is intended to improve one’s problem-solving or mathematical- 
thinking ability, in this study it is being adapted to improve mathematical problem- 
solving knowledge for teaching [MPSKT]. The focus is on one aspect of MPSKT 
identified in Chapman (2012); knowledge of problem solving, i.e., “teachers should 
have conceptual and procedural knowledge of mathematical problem solving. This 
includes understanding the stages problem solvers often pass through in the process of 
reaching a solution” (p. 108). In particular, the goal is to check the effectiveness of a 
self-study of experience with non-routine problems using only the key words Stuck 
and Aha as a basis of doing this compared to one without them. 
METHODOLOGY 
The participants were 20 prospective secondary mathematics teachers [PSTs] in the 
second semester of their two-year post-degree education program. This was their first 
course in mathematics education that included a focus on learning through and about 
problem solving. The study focused on the following intervention intended to help 
them to understand the problem-solving experience to develop this aspect of MPSKT. 
The intervention consisted of two approaches. In Approach 1, the PSTs were required 
to solve three problems; describe in detail narrative form the processes they went 
through in solving them; develop a model of problem solving based on the processes; 
share and discuss their processes and models in small groups; develop a group model 
of problem solving and represent it as a flow chart. In Approach 2, they were required 
to solve three different problems and describe their solution processes by recording 
every time they were stuck and got an idea (an Aha!); develop a model of problem 
solving; share and discuss their processes and models in small groups; develop a group 
model of problem solving and represent it as a flow chart. Following this, they wrote 
journals reflecting on what they learned from Approach 2 that they did not from 
Approach 1. All of the problems were taken from Bolt (1989) so they are of similar 
nature. Three were used in each approach to allow the PSTs to see a pattern to develop 
their model of problem solving. Examples of these problems: 
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Approach 1: Emma was always looking for ways to save money. While in the remnant 
shop she came across just the material she wanted to make a table-cloth. Unfortunately the 
piece of material was in the form of a 2m x 5m rectangle and her table was 3m square. She 
bought it however having decided that the area was more than enough to cover the table. 
When she got home however she decided she had been a fool because she couldn’t see how 
to cut up the material to make a square. But just as she despaired she had a brainwave, and 
with 3 straight cuts, in no time at all, she had 5 pieces which fitted neatly together in a 
symmetric pattern to form a square using all the material. How did she do it? [p. 23] 
Approach 2, Problem 1 [A2P1]: For the end of season squash tournament there were 27 
entries. The tournament was arranged on a knockout basis with the loser of each match 
being eliminated. A number of players received a bye in the first round so that from the 
second round onwards the number of players going forward at each stage was halved. 
Norman and Theresa, the squash captains, met to arrange the draw. Their first problem was 
to decide how many matches would be needed in the first round and hence how many 
players should have byes. Norman was worried, he didn’t really know how to begin, but 
Theresa with experience of organising tennis tournaments on similar lines was very 
quickly able to say how many rounds would be needed, how many byes to give and how 
many matches there would be in the whole tournament. What are the numbers involved? 
How many matches would need to be played in a tournament with N players? [p. 17] 
Approach 2, Problem 2 [A2P2]: The micro millionaire studied his balance sheet at the end of 
the year with great interest. The total income from the sale of the very popular Domomicro 
model came to ₤1,000,000,000. What aroused his interest was not so much the total as that 
neither the number of micros sold nor the cost of an individual micro contained a single 
zero digit. How many micros were sold? [p. 23] 

Data consisted of copies of all of the PSTs’ written work required for the activities. 
There were also field notes of their small-groups and whole-class discussions. Data 
analysis used an emergent approach to identify (i) the nature of the participants’ 
description of the their problem-solving processes for the two approaches; e.g., what 
they considered to be Stuck and Aha, how they represented them, what they high- 
lighted in the process; (ii) the nature of their problem-solving models in relation to 
Polya’s four-stage model; (iii) what Approach 2 offered them over Approach 1 in 
terms of their learning about problem solving and teaching it. This information was 
summarized for each participant and compared for similarities and differences in their 
processes and thinking. The findings reported here regarding the effectiveness of the 
approaches are based on what was common conceptually in their processes.  
FINDINGS 
There were significant differences in nature of the PSTs’ descriptions of their 
processes in Approach 1 versus Approach 2. Representative descriptions for Approach  
1, problem 1 is in Table 1 and for Approach 2, problem 1 in Table 2 for PSTs 1 and 2.  
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PST 1 PST 2 

I read the problem and immediately 
thought I would draw rectangles measuring 
5” by 2”. ... After a couple of unsuccessful 
drawing, I realized that drawing wasn’t 
helping me much and that the rectangle 
may need to be folded and then cut to make 
the 5pieces necessary.  I cut out some 
rectangles and began folding them. … At 
this point, I thought of the calculation of 
area of the square and something didn’t 
feel right when I was folding the 
rectangles. … In my initial folding 
attempts, I kept folding the short side of the 
rectangle over to form a 2x2 square and a 
3x2 rectangle. After realizing that each 
side of the resulting square would have to 
be √10 or 3.162, I stopped doing this and 
tried another strategy of folding the 
rectangle lengthwise to determine whether 
I could get 5 pieces that way…. 

I read the problem and pick out all the 
facts so I can start looking for a pattern. 
… If I have 3 cuts, how can I make 5 
pieces? Try a few and see how the 
pieces look. … So I will need to make 4 
pieces with 2 of the cuts and then cut 
one of those 4 pieces to create the fifth 
piece. Now that I know how that works, 
I need to try doing this on the 2 by 5 
rectangle…. No, this doesn’t make 
sense… this makes a 3x3 shape but this 
only uses 4 pieces instead of 5 and one 
of the pieces doesn’t fit in. Okay, let’s 
try again. … Ok, but this only has 4 
pieces, so it doesn’t make sense, I don’t 
want to build this with all the decimals. 
Besides, I don’t think breaking it into 
decimals lengths will help. Maybe the 
square is 4 by 4? … No, that doesn’t fit 
properly. Maybe I am going about this 
completely wrong. I’m going to reread 
the problem... 

Table 1: Samples of PSTs’ description of process in Approach 1, Problem 1 
PST 1 PST 2 

S [Stuck!]: I don’t see how to ensure all 
evens, because a number like 14 will give 
7 remaining, then a bye is required 
A [Aha!]: The numbers should be powers 
of 2 (2ⁿ) 
S: I’m not sure that this doesn’t eliminate 
some legitimate possibilities. 
S: I don’t see how to check with-out just 
picking numbers at random to test that are 
even but not 2ⁿ 
A: Trying with random even numbers 
smaller than 27 ... 
S: Starting with 16 players means 11 byes 
in first round, then where do they go? 
S: I don’t know … if we are not to have 
any byes after the first round, it’s 
ambiguous. If we can, changes the 

S: I’m not sure what to do with the odd 
number of players 
A: Try to divide 26 by 2 since half of the 
players have to get byes 
S: I cannot see how that is going to work 
since the 2nd round will have 10 matches 
which isn’t half of 7 matches in the 1st 
A: Try having all the players playing in 
round 1 except one. …. 
S: I’m not sure what to do with this extra 
person in the 3rd round. It makes sense to 
give the person a bye to the 4th round but 
the problem only mentioned byes in the 
1st round. 
A: Maybe the first round isn’t the only 
place that players received a bye. … 
Therefore there are 5 rounds 2 byes and 
26 matches. So in a tournament with N 
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problem completely 
A: Will allow byes in any round ... Each 
round that finished with an odd number 
also had a bye …  
S: I can’t be sure that will always be the 
case 
A: Try testing numbers near 27 to see what 
pattern develops [… figuring out …]  
A: Number of matches is N-1 always. … 
Number of rounds is given by the power of 
the next highest power of 2 ... 
S: I can’t nail down the pattern for the 
byes, although I can see one developing … 

players, there will be N-1 matches 
S: looking back on the problem, I have a 
few problems with the odd numbers 
which don’t divide evenly. … 
A: Maybe that is how we can figure out 
how many byes we’ll have all together. 
Every time we get an odd number of 
winners in a round we’ll get a bye …. 
S: I’m not sure if the question with N 
players is using the same method as the 
problem uses 
A: Try some other tournaments with 
different numbers of players and see 
how many matches they get … 

Table 2: Samples of PSTs’ process description in Approach 2, Problem 1 
For Approach 1, there was limited attention to Stuck in the PSTs’ descriptions of their 
process. For most of them, the focus was on the strategies they thought would work to 
resolve the problem. They recognized when something did not work or make sense or 
feel right, as in the case of PST 1 and PST2, when considered a major block to their 
progress, but these often were framed in a way that seemed to be less important to the 
process. The result was a process with the possibility of barriers to one’s strategy. The 
general orientation of their problem-solving model was to read problem, try a strategy, 
if does not work try something else, if out of ideas start over (re-read question) or quit. 
For Approach 2, without exposure to theory on the nature of Stuck and Aha, the PSTs’ 
seemed to have a very good understanding of what they involved when considered in 
relation to Mason et al. (1982). They were very detailed in identifying them with equal 
attention throughout the process. For example, they all identified some level of Stuck 
after reading the problem, as in the case of PST 1 and 2, Approach 2, problem 2 [A2P2] 

S: I do not understand the question. How can you figure out how many he sold if you only 
know the total sales value? [A2P2, PST 1] 
S: What to do? The numbers are too big. I don’t see where to begin. [A2P2 PST 2] 

This started a process that involved a series of Stuck-Aha-Check cycle. Thus the 
general orientation of the PSTs’ problem-solving model was now a complex path with 
problems nested within problems. For example, each Stuck was a problem of various 
level of challenge within the problem. Each Aha was a plan to get out of Stuck 
followed by trying the plan and reflecting on the outcome. Thus, instead of, for 
example, one four-stage process to a solution as associated with Polya (1954), the 
problem-solving process emerged as a nested series of a cycle of four stages where 
each stage could have a Stuck-Aha cycle.  
The PSTs highlighted better understanding from Approach 2 of the meaning of 
heuristics, having a plan, being stuck, and how to support their students’ problem 
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solving. For example, based on their shared experience, they understood “having a 
plan” more meaningfully in terms of the Ahas. One PST explained, “it is really an Aha; 
an idea that you think will work but does not necessarily work out as intended and 
could lead to another stuck.” Based on this perspective, their process reflected several 
ways of approaching “a plan”. For example, it could be a conjecture. 

A: I still think it has something to do with the fact that neither N (the number of units sold), 
nor C (the unit cost) contains a single zero digit. [A2P2, PST 1] 
A: maybe the interpretation of this does not matter, because all we need to be concerned 
with is the fact that his are lighter than normal [A2P3, PST 1] 

It could be recalling something. 
A: I remember any number in base ten can be represented as …  

It could be thinking of a simpler situation (what Mason et al (1982) call “specializing”) 
A: Let me try and simplify the problem ... Maybe I should try another simplified version of 
the problem, but this time let V=1000 and odd power of 10. ... [A2P2, PST 1] 
A: Break it into smaller numbers … which are powers of ten ...[A2P2, PST 2] 

It could be looking for patterns. 
A: I see a pattern. There are two factors for all powers of ten ...[A2P2, PST 2] 

Their process also reflected different ways of thinking about being stuck. They saw it 
as anything that impeded their progress, whether small or large; e.g., [A2P2, PST 1] 

S: But what does that really mean? What does it mean to not contain a single zero digit?  
S: The problem asks for how many were sold. … Does that mean the problem is looking 
for a unique answer? I do not know. [A2P2, PST 2] 

Approach 2 allowed the PSTs to notice how being Stuck allowed them to reflect, to 
think about what to do, to think about what they know and didn’t know, to be 
challenged, and to think mathematically. Thus they were necessary to learn to think 
when solving problems and to work on such problems. Recording Stuck allowed them 
to persevere because they knew what they needed to overcome and think through to 
continue. They quit only when they kept cycling to the same stuck and needed help to 
shift their thinking out of it. They needed someone to intervene. One explained, “I got 
to a point where I needed someone to give me a hint. … I see the importance of 
working with others.” This understanding allowed them to make sense of when a 
student is stuck and how to intervene with a question or prompt that would make sense 
to the student. They realized the importance of Stuck and allowing students to figure 
out why and not intervening too soon. 
CONCLUSION  
Both approaches were helpful for the PSTs’ learning about problem solving [PS]. 
However, Approach 2 highlighted more of the taken-for-granted cognitive aspects of 
the PS process, thus producing a more realistic view and model of PS as a way of 
thinking mathematically. In Approach 1, the PSTs included affective aspects in 
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describing the PS experience (e.g., feelings of frustration) while Approach 2 focused 
mainly on the cognitive aspects. Thus an approach that combines the two will likely be 
more powerful than each separately in capturing the lived experience of PS. The study 
offers support for the use of such an approach in PST education to provide a rich basis 
of personal experience for a meaningful self-study to make sense of PS. It will allow 
the PSTs to go beyond describing the steps leading to a solution which gives the 
appearance of a linear process and hides the thinking aspect of it. The peer 
collaboration and discussions, creation of problem-solving models are also key aspects 
of the approaches to allow them to validate and extend their processes and what PS 
means. However, such approaches are not sufficient by themselves to help their overall 
development of MPSKT, which involves other factors not dealt with in this study. 
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This is a study focused on materials use for teaching Year 6 geometry. The results from 
classroom observations and interviews of ten Year 6 teachers and a national survey 
show that primary school teachers in Taiwan tend to use traditional materials, such as 
diagrams on wall charts or drawings and concrete materials. They think that 
manipulations and observations of concrete materials are the best ways for teaching 
geometry but they tend not to notice their limitations (three examples are given) or 
notice the advantages of using IT materials. Taiwanese teachers need to learn how IT 
materials can be used for teaching specific geometry topics, and their practical 
concerns of easy access to computers and projection in classrooms must be addressed. 
INTRODUCTION 
Traditional geometry teaching usually shows theoretical properties and principles with 
diagrams and students solve geometrical problems from diagrams (Berthelot & Salin, 
1998). After Piaget’s emphasis on individual cognitive processes and activity for 
learning, kinaesthetic activities, such as drawing and folding shapes, became 
prominent in geometry teaching and learning.  Thus, activities with concrete materials, 
such as sticks, mosaic puzzles, tangrams and cubes, are nowadays generally used by 
teachers. Other researchers (e.g., Clements & Battista, 2001; Hannibal, 1999) note that 
children already have some basic geometric concepts about shapes before they enter 
school and stress that materials for teaching geometry can also be from the students’ 
everyday world such as toys, books or even TV programs.  
More recently, many IT materials for teaching geometry have been developed, 
including Logo driven Turtle Geometry, computer software ‘apps’ displayed with 
interactive whiteboards, and multiple Dynamic Geometry Environments (DGE), 
including the programs of Cabri-3D, Geogebra and the Geometer’s Sketchpad (GSP). 
Their use has received a great deal of research attention. Much research has shown 
dynamic geometry software can have positive effects on geometry learning for 
students (Chen, Lai, Tsai, & Huang, 2007; De Lisi & Wolford, 2002; Laborde, 
Kynigos, Hollebrands, & Stresser, 2006; Leung, 2008; Vincent, 2003). They have 
researched how computers can show properties of shapes dynamically, support 
manipulations and interactions between the geometric figures by learners, stimulate 
the need for proof, and provide the best solution for visual representations. 
However, although academic research has paid much attention to IT materials use and 
shown advantages for using these dynamic materials, this may not have yet penetrated 
into common practice. This paper investigates whether the current primary teachers in 
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Taiwan understand the benefits of IT materials use for geometric learning, and whether 
they use these materials in their teaching. 
METHODOLOGY 
This paper reports results on just one aspect from a large study of Taiwanese teaching 
of geometry (see Chiang, 2013). The main part of this study is a set of case studies of 
the teaching practices of ten current Year 6 primary school teachers. There is also a 
national survey which was intended to provide data on whether the in-depth findings 
from the case study were likely to be representative of all teachers in Taiwan. Year 6 is 
an important year for learning geometry in Taiwan, and so was a good choice for a 
study of primary teachers.  
Participants and their schools 
In the case studies, all ten participant teachers (called T1 to T10) were qualified,  
current Year 6 teachers with at least five years of primary teaching experience in 
Taiwan. The backgrounds of these teachers showed diversity of gender (8 women, 2 
men), ages (from 28 to 50), type of teachers’ training institutes, years of teaching 
experience (from 5 to 30 years), and having undertaken postgraduate study or not. The 
teachers were from four schools with varying characteristics and they used different 
textbooks. Thus, the results from these ten teachers are likely to represent typical 
geometry teaching in Taiwanese primary schools.  
The survey used stratified random sampling to select 30 primary schools across 
Taiwan and all Year 6 teachers in these schools were invited to participate.   The aim 
was to sample around 1% of the 10,671 Year 6 teachers distributed in 2,563 primary 
schools across Taiwan, Further details are given by Chiang (2013). All 30 selected 
schools participated, and 152 teachers completed the survey during the 2008 school 
year (72% response rate). There were small omission rates on individual items - up to 7 
missing responses in the items reported here - which were considered in calculating 
average responses.  
Data collection 
Because this study aims to investigate what materials Taiwanese Year 6 teachers use 
for teaching geometry and why they use them in the classroom, it is important to see 
what the teachers do in practice and talk to teachers to understand their reasons. Thus, 
in the case studies, the research instruments are a classroom observation framework, 
and a semi-structured interview schedule. Several types of documents were also 
collected and reviewed including diaries and planning notes kept by the teachers 
throughout the observation period. For the specific focus of this paper, observations 
supplied the main data on what kinds of materials the teachers selected to use for 
teaching; the interviews provided the main information about why they made these 
choices. The survey used a questionnaire with Likert items designed by the first author. 
One item is relevant to this paper. All instruments and interviews were established in 
Mandarin, the official language in Taiwan, and then translated to English for the 
purpose of this report. Pilot testing of the questionnaire, interview schedules and the 
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classroom observation framework for the case study by volunteer teachers in Taiwan 
was followed by refining the schedules and framework before implementation. 
Each case study teacher was observed when he/she taught the lessons of one geometry 
topic in school year 2008/2009. On average about 9 consecutive lessons were observed 
per teacher. The observed topics included “The properties of two-dimensional shapes”, 
‘The area formulas of (rectilinear) shapes”, “Circumferences” and “The area formula 
of circles”. After finishing all the lessons of the topic, each teacher was interviewed 
face-to-face and one-to-one by the researcher, and the interview included questions 
about the teachers’ choice of materials. The interview questions were (1) “Why did 
you use this [material] for showing this [some geometric concept] ?”,  (2) “Why (not) 
use IT materials for representing this [some geometric concept]?” and (3) “Have you 
ever used IT materials for showing geometric concepts? Why?” 
The questionnaire for the survey contained one item on materials use:  “Which 
materials do you use to teach geometry lessons?” Participants were provided with a list 
of materials as shown in Table 1 and there was also space for participants to add other 
materials not listed. For each material, participants selected responses from “always”, 
“often”, “usually”, “seldom”, and “never” which were scored sequentially 5 (always) 
to 1 (never) for analysis.  
The strength of the data collection arises from the range of teachers in the study, the 
variety of textbooks used and topics taught, the number of lessons observed, the 
in-depth observations. Lessons were closely observed by the researcher and 
video-taped for later analysis, and teachers were able to explain reasons for their 
practices in the subsequent interview.  The national survey also provides the broad 
picture around Taiwan and enables the researcher to test the generality of the findings.  
RESULTS 
The results from both parts of the study shows the teachers generally ignored IT 
materials for teaching geometry, and thought concrete materials or real-world objects 
are the best materials for teaching geometry. In doing this, they overlooked some of he 
inadequacies of traditional materials. The following sections discuss the details.  
The materials used by the teachers  
Firstly in the case study, the classroom observations showed that these ten teachers 
mainly used the concrete materials provided by the textbook publishers. These come 
ready-made with most textbook series in Taiwan. They include wall charts, large 
geometric tools for the blackboard, concrete materials for teacher demonstrations and 
accessory books for each student with pre-marked card for constructing and cutting, 
folding, transforming and comparing. In the observed classes, teachers often used the 
wall charts for showing diagrams and they often drew accurately constructed diagrams 
using the large blackboard set-squares and compasses for explaining the concepts or 
answers. In addition, the majority of the teachers used concrete materials from the 
supplied students’ accessory books or the materials box for transforming or combining 
shapes. Some of the ten teachers drew students’ attention to real-world objects which 
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illustrated geometric concepts, such as the frame of the window for parallel lines, and a 
single-wheeled cycle for the circumference of a circle. Some teachers even made 
classroom materials by themselves, for example to show the area of overlapping 
shapes and sectors. However, only one teacher used the instructional DVD that was 
provided with the textbooks and none of them used other IT materials. 
The result from the survey item on materials use x also shows the teachers (N=152) 
tended to use the materials provided by the textbook publishers and rarely used IT 
materials. The average and mode ratings shown in Table 1 give measures of the 
popularity of each material. Using the textbook and the wall charts and drawings was 
almost universal. IT materials use is far less than use of the other materials except 
materials personally made by the teacher.   

Materials Average rating Mode rating 
Textbook and its exercise book(s) 4.7 5 (always) 
Concrete materials supplied with 
textbook 

4.2 4 (often) 

Wall charts or blackboard drawings 4.7 5 (always) 
Your personally created materials 3.0 3 (usually) 
IT materials 2.8 2 (seldom) 
Real-world objects 3.7 4 (often) 

Table 1: Summary of ratings for use of geometric materials (N= 152) 
The results of both the case studies and the survey are clear. Taiwanese Year 6 teachers 
mostly use traditional materials for teaching geometry, such as diagrams displayed on 
the wall chart or the blackboard, and manipulation of concrete materials (including 
real-world objects). The textbook publishers also tended to prepare these traditional 
materials for the teachers.  
The reason why the teachers choose these materials 
The interviews probed why the teachers made the choices of materials that they did. 
The teachers generally explained that they thought using concrete materials is the best 
or most appropriate method for teaching geometric concepts. The majority of the ten 
teachers said that they would not generally use IT materials for teaching geometry. 
Only two of the teachers were able to describe any IT materials that would be helpful 
for teaching specific topics. One teacher mentioned IT materials for teaching angles 
and another knew about materials for teaching the area formula of circles.  
Four of the case study teachers replied that they had used IT materials for teaching 
geometry in the past and six teachers replied that they had not.  Two of these six 
teachers believed they would disadvantage students. T4 said “The materials of 
technology [e.g., computer software] - I won’t use them because I feel it only wastes 
time to set up everything. I also need to darken the classroom. It is inconvenient for 
me”. T10 showed similar feelings when saying “I think these IT materials, like a 
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computer, projection TV and cables, will make the students distracted from their study. 
Geometric concepts are much more important than the other mathematics topics so I 
won’t do that in class”.  
Weaknesses of using traditional materials for geometry 
According to the classroom observations and interviews, the Taiwanese Year 6 
teachers generally thought that manipulating and observing concrete materials would 
clearly show the geometric concepts and assist in constructing the students’ geometric 
thinking.  However, the classroom observations revealed several weaknesses that 
appeared in the teachers’ geometry teaching because of the use of hand-drawn 
diagrams or manipulated concrete materials for showing some specific geometric 
concepts. Three examples are presented.  
The first example is that accurately constructed drawings or diagrams on the 
blackboard or wall chart could not show the difference between lines and segments, 
and therefore could not clearly represent the concept of parallel lines. For example, in 
T2’s classroom, the teacher drew two segments of equal lengths to demonstrate 
parallel lines.  Then, when T2 called one student [S1] to draw a line parallel with a line 
on the blackboard, another student [S2] claimed S1’s drawing was wrong because S1 
had drawn a segment of length different to that of T2’s drawn line (actually, of course, 
a segment).  T2 and the majority of the students all agreed that parallel lines should be 
the same length without noticing this is a misconception. However, dynamic geometric 
software such as ‘Geogebra’ shows apparently infinite straight lines (a line still appears 
no matter how far out the window goes) and so can clearly distinguish lines from line 
segments. This can be used to explain the concept of parallel lines clearly.   
The second example highlights a pedagogical need for dragging figures. T1’s students 
were persistently confused by the differences and inclusive relationships among 
parallelograms, rectangles, squares and rhombuses. T1 had tried her best to repeat all 
properties of these by drawing diagrams. He/she also drew a Venn diagram on the 
blackboard for explaining that rectangles are a special kind of parallelogram and 
squares are special kinds of rectangles and rhombuses. Even so, one student [S3], 
speaking for many, still argued squares are not rhombuses or rectangles because 
squares have four equal sides and right angles but rhombuses and rectangles have not. 
If T1 could have used dynamic geometric software to demonstrate how squares deform 
to rhombuses etc, by transforming the segments and angles of the quadrilaterals (as 
suggested by Leung, 2008) it seems likely that the students would have more easily 
understood these inclusive relationships.  
A third example arose when teachers T9 and T10 derived the formula for the area of a 
circle by using concrete materials. These are cardboard circles separately cut into 8 and 
16 sectors, which are reassembled to form an approximate rectangle. Figure 2 from (a) 
to (g) shows T9’s procedures of manipulating these concrete materials. The known 
area of the rectangle gives the unknown area of the circle. T10’s manipulation was 
similar to that of  T9 and both are similar to the textbook. 
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     (a)                               (b)                          (c)                              (d)                    

                              
     (e)                               (f)                                        (g)                

                      
Figure 2. T9 derives the area formula of circles by rearranging cut-out sectors. 

In the classes of both T9 and T10, most students believed the ‘rectangle’ shape in 
figure 2 (g), was (tending to) a trapezium or parallelogram instead.  In fact, it has one 
pair of parallel straight sides (the short ones), and a pair of parallel multiply curved 
sides. Both teachers asserted that this was a rectangle when the number of sectors is 
much larger. However, it was clear to the observer that the students had difficulty 
imagining that the shape was going to a rectangle in the limit, rather than a 
parallelogram or trapezium. Some students seemed to doubt this conclusion. Even 
though both T9 and T10 had spent more than ten minutes for arranging these concrete 
sectors together on the blackboard, the representation of these materials still could not 
convince the students. In fact, if the teachers could use dynamic computer software 
such as a Flash ‘app’, even 100 sectors could be easily assembled together in an 
animation and the ‘rectangle’ appears on the computer screen within a few seconds. 
This is shown in Figure 3 (a) to (e) from the website “Mathematics Field”.  
                  (a)                            (b)                                (c)                           

                                                     
                 (d)                                              (e) 

                            
Figure 4. Screen shot of a circle cut into 100 pieces and reassembled, from “area of the 
circles” in Mathematics Field (http://www.paps.kh.edu.tw/aspx/math_menu/math_source.aspx) 
CONCLUSION  
This study had strength because it used in-depth analysis of nearly 100 lessons from 10 
teachers, teaching four different geometric topics in Year 6 with follow-up interviews 
and the representative nature or the findings being confirmed by a national survey with 
careful sampling. The study gave substantial insight into the close detail of how 
materials are used in teaching geometry. The consistency of the findings makes it 
likely that advice and training for Taiwanese teachers about new possibilities for 
material use will be beneficial.  

http://www.paps.kh.edu.tw/aspx/math_menu/math_source.aspx
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The study found low use and low awareness of IT materials for teaching geometry. In 
the case studies, a few teachers mentioned the detail and benefits of using IT materials 
for teaching geometry, but none of them used it in the observed lessons. Moreover, the 
majority of the teachers appeared not to know the advantages of using dynamic 
geometry software or animated figures from the Internet (e.g., Flash applets). A few 
teachers even actively rejected using IT materials for geometry teaching. 
Taiwanese Year 6 teachers should be aware that traditional geometric materials cannot 
fully represent the whole of geometric concepts (such as parallel lines, reasoning the 
area formula of circles with many sectors or the inclusive relationships among 
quadrilaterals), and that dynamic geometry software or special purpose ‘apps’ can 
assist.  
According to the case study teachers’ responses in the interviews, limited lesson time 
and inconvenient facilities in the classroom may be major obstacles to the use of IT 
materials in class. So addressing practical issues for IT use seems essential. 
Convenient access to computers in the classroom and good projection facilities is a 
pre-requisite. Cost need not be a great issue since there is good dynamic geometric 
software which can be freely obtained where licences for proprietary products are not 
possible. IT materials also have other practical advantages: teachers do not need to 
return them to the storage room or the material boxes as they do with concrete 
materials and there are no heavy class sets to carry.  The school teachers can obtain 
these IT materials for teaching geometry easily.  
Eventually, textbooks could also use IT materials within their textbooks and save the 
budgets, space and resources for making concrete materials for some specific 
geometric concepts. However, IT materials initially take more time and budget to 
create and maintain for the schools and textbook publishers. That may be the reason 
why the textbook publishers still tend to provide only traditional materials. Also it is 
possible that if the educational authority do not actively approve of and promote IT 
skills for the teachers, the teachers might quickly lose interest in using software for 
teaching geometry. This is a risk in a system with strong central authority such as 
Taiwan.  
The most important advantage is using these IT materials lies in the new insights that 
the new dynamic environment can give students, including when used in conjunction 
with traditional materials. Dragging in dynamic geometry has been shown in the 
literature to have many advantages - this study showed its potential use in 
understanding definitions and inclusion relationships. The area formula example 
showed the value of the IT capacity to show multiple cases (different numbers of 
sectors of a circle) quickly and to demonstrate cases beyond by-hand manipulative 
skill. The case study also highlighted how showing specific geometric concepts, such 
as segments and lines, might be better done or at least profitably supplemented, in a 
virtual environment.   
To sum up, all Taiwanese primary teachers should be aware that there are many 
advantages for using IT materials for geometry. Diagrams, drawings or concrete 
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materials alone cannot represent all geometric concepts. Practical limitations currently 
seem large, but in reality may be relatively easily overcome in most schools in Taiwan. 
Teachers will also need to be shown how IT materials can help students achieve 
current learning goals more readily.  
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UNFOLDING THE MULTIFACETED NOTION OF ALGEBRAIC 
THINKING  

Maria Chimoni, Demetra Pitta-Pantazi 
University of Cyprus 

 
The present paper aimed to empirically test a theoretical model which analyses 
secondary school students’ algebraic thinking. The model is based on Kaput’s 
theoretical assumption about the two core aspects that serve as lenses for interpreting 
the nature of algebraic thinking: (i) making generalizations and expressing those 
generalizations through increasingly symbolic forms, and (ii) syntactically guided 
reasoning and actions on generalizations. Data were collected from 190 8th, 10th and 
12th grade students through a written test. The analysis indicated that a variety of 
algebraic tasks could be categorized according to the aspect of algebraic thinking they 
required for being processed. The findings of the study also suggest that the model 
involving the analysis of algebraic thinking into core aspects was the same among the 
three age-groups.  
INTRODUCTION  
It has been well documented that algebraic thinking is a wide conceptual field which 
does not merely coincide with what we know as traditional algebra. Algebraic thinking 
is considered to be within the conceptual reach of all students and vital for their 
participation in society (Mason, Graham & Johnston-Wilder, 2005). For this reason, 
great importance is given to the development of algebraic thinking, which “moves 
across the grades” instead of being taught through traditional courses of algebra in the 
middle school (NCTM, 2000). This idea raised the important issue of which are the 
aspects of algebraic thinking both in the primary and secondary education. Yet, the 
nature and components of algebraic thinking have not been coherently defined.  
Researchers’ approaches to describe algebraic thinking are characterized by diversity 
and few of them made an attempt for depicting a thorough picture of the field (Carraher 
& Schliemann, 2007). 
A considerable number of research studies described the kinds of meaning secondary 
students make when they are engaged with algebraic tasks either through constructivist 
/ cognitive or social / cultural frameworks (Kieren, 2007). More recent research 
focused on the development of young learners’ algebraic thinking (e.g., Irwin & Britt, 
2005; Warren & Cooper, 2008; Zaskis & Liljedahl, 2002). While both of these bodies 
of research provided important advances to the field, it still remains unclear how they 
are related to each other. As Carraher and Schliemann argued (2007), it has not yet 
been clarified whether early algebraic thinking represents a distinct domain of study or 
it is better to be integrated into a more general algebraic terrain that captures the 
teaching and learning of algebra for both younger and older students.  
The present study aimed to address this issue. More specifically, the purpose of the 
study was to investigate whether students’ performance in algebraic tasks can be 
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analysed in specific components. The analysis was based on the theoretical 
assumptions proposed by Kaput (2008) about the core aspects that characterize 
algebraic thinking. Although Kaput’s perspective on algebraic thinking is used 
extensively in algebra studies, it has not been empirically tested. Moreover, Kaput’s 
theoretical framework offers a scarce opportunity for investigating the evolution of 
algebraic thinking from K-12 grades. While Kaput’s main thrust was to define early 
algebra, his ideas also respond to the algebra of middle and high school. This study 
aimed to empirically test the way in which this perspective might be adapted in 
secondary education.  
In the following, there is an overview of research concerning the nature and 
components of algebraic thinking, including a description of Kaput’s theoretical 
assumptions that were used for analyzing the data in this study. Then, there is a 
description of the empirical study conducted and its results.  
THEORETICAL BACKGROUND  
Kieran (1996) was among the first who tried to conceptualize algebra as a multifaceted 
mathematical activity. Employing this idea, Kieran (1996) developed a model which 
encompasses three types of activities; generational activities where equations and 
expressions are generated from various situations; transformational activities where 
expressions are simplified according to rules; and global, meta-level activities in which 
quantitative situations are not strictly represented in a symbolic way but they can be 
understood relationally. Early algebraic thinking is linked to the global meta-level of 
algebraic activity. According to Kieran (2004), the global meta-level activities involve 
more general mathematical processes such as the analysis of relationships between 
quantities, the identification of structure, the study of change, generalization, problem 
solving, modeling, justification, proof, and prediction. They are considered as 
appropriate for for the introduction of young learners to algebraic thinking, since they 
do not require the use of letter-symbolic forms.  
Similarly, Radford (2000) suggested that algebraic thinking entails efforts of the 
individual to represent generality in certain ways. This process does not necessarily 
involve mathematical symbols. In this perspective, Radford (2004) added to the field 
by clarifying the importance of “semiotic mathematical and non-mathematical” 
systems in students’ production of meaning when they encounter algebraic tasks. In 
particular, there are three sources of meaning in algebraic activities: (a) the algebraic 
“structure itself” (e.g. the letter-symbolic representations), (b) the problem context 
(e.g. word problems, modeling activities) and (c) the exterior of the problem context 
(e.g. social and cultural features, such as language, body movements, and experience). 
Kieran (2007) reflected on Radford’s conceptualization of meaning in algebraic 
activity, by suggesting that the first source also involves mathematical representations, 
such as graphs and tables; students could draw on multiple representations in 
conjunction with letter-symbolic representations for producing meaning in algebraic 
tasks.   
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Kaput, for many years, sought ways for organizing algebraic thinking (Carraher & 
Schliemann, 2007). His perspective is slightly different from that offered by Kieran 
(Kieran, 2011). While Kieran (2004) stressed out that younger students could be 
engaged in global meta-level activities without the use of the letter-symbolic form, 
Blanton and Kaput (2005) placed an emphasis on the process of establishing, 
systematically expressing and justifying generalizations in increasingly formal ways. 
They highlighted that expressing generalizations with symbols depends on students’ 
age and level. Kaput (2008) further specified that there are two core aspects of 
algebraic thinking: (i) making generalizations and expressing those generalizations in 
increasingly systematic, conventional symbol systems, and (ii) reasoning with 
symbolic forms, including the syntactically guided manipulations of those symbolic 
forms. In the case of the first aspect, generalizations are produced, justified and 
expressed in various ways. The second aspect refers to the association of meanings to 
symbols and to the treatment of symbols independently of their meaning. Kaput (2008) 
asserted that these two aspects of algebraic thinking denote reasoning processes that 
are considered to flow in varying degrees throughout three strands of algebraic 
activity: (i) generalized arithmetic, (ii) functional thinking, and (iii) the application of 
modeling languages for describing generalizations.  
Relying on Kaput’s theoretical framework, this study aimed to analyze secondary 
school students’ performance in algebraic tasks. Specifically, the purpose of the study 
was: (a) To investigate whether different types of algebraic tasks could be used to 
explore the core aspects of algebraic thinking, and (b) To investigate the extent to 
which different aged-groups of middle and high school students reflect these aspects. 
METHODOLOGY 
Participants 
A total of 190 secondary school students participated in the study. 48 were students of 
Grade 8 (13 years old), 56 were students of Grade 10 (15 years old), 53 were students 
of Grade 12 taking courses of basic mathematics and 33 were students of Grade 12 
majoring in mathematics (17 years old).  
The test 
Drawing on theoretical and empirical evidence from existing research studies, a test on 
algebraic thinking was constructed. Furthermore, the test was aligned with the content 
of the mathematics textbooks used in middle and high schools in Cyprus.  More 
specifically, the test included 9 tasks which reflected the three strands of algebra as 
described by Kaput (2008). Assuming that these 9 tasks required different aspects of 
algebraic thinking to be processed, they were accordingly categorized into two groups.  
The first three tasks (FT1, FT2 and FT3) investigated the participants’ functional 
thinking. Two of them required finding the nth term in geometrical patterns and 
expressing this generalization in a verbal, symbolic or any other form. The third one 
required the operation on a symbolized expression for investigating the 
correspondence among the temperature degrees in Celsius and in Fahrenheit. It was 
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assumed that for responding to these tasks the aspect of generalization and expression 
of generalization was required, since they entailed the exploration and expression of 
regularities. The next three items (GA1, GA2, and GA3) intended to capture the strand 
of generalized arithmetic. The first two involved solving equations while the third one 
involved the solution of an inequality. In these tasks, the participants had to treat 
equations as objects that expressed quantitative relationships.  More specifically, they 
had to treat an organized system of symbols without any reference to the meaning of 
the symbols. Thus, it was assumed that syntactically guided action was required. The 
last three tasks addressed mathematical modeling (MM1, MM2, and MM3). In 
particular, the first one required the generalization of regularities by observing the 
relationships represented by tabular data. For this reason, it was assumed that 
generalization and expression of generalization was required. The last two tasks 
engaged the participants with the analysis of information that were presented 
symbolically, graphically or diagrammatically. The first one was about encoding 
information represented graphically in respect to the services offered by a phone 
company and calculating the total cost of phone calls. The second task involved 
encoding information that was represented diagrammatically for calculating the 
volume of packages. Because both tasks required associating meanings extracted from 
the modeling situation to symbols, it was assumed that they required syntactically 
guided action.  
Scoring and Analysis  
The marking of the test was based on the scale 0-2, where 0 was given for an incorrect 
answer, 1 for a partially correct answer and 2 for a correct answer. 
The quantitative analysis of the data was carried out using an electronic structural 
equation modelling program, MPLUS (Muthén & Muthén, 1998). Confirmatory 
Factor Analysis (CFA) was used for investigating whether the theoretical assumptions 
of the model about the core aspects of algebraic thinking fitted the data. Goodness of fit 
of the data was evaluated by using three indices: chi-square to its degree of freedom 
ratio (x²/df), Comparative Fit index (CFI), and Root Mean-Square Error of 
Approximation (RMSEA). The observed values of x²/df should be less than 2, the 
values for CFI should be higher than 0.9, and the RMSEA values should be close to 
zero. 
In the present study, the hypothesized model consisted of two first-order factors, the 
aspect of generalization and expression of generalization and the aspect of 
syntactically guided action. The first-order factors comprised a second order factor 
which reflected secondary school students’ algebraic thinking. Generalization and the 
expression of generalization are related to the tasks within the strands of functional 
thinking (FT1, FT2 and FT3) and modelling (MM1). Syntactically guided action is 
related to five tasks , two of them within the strand of generalized arithmetic (GA1, 
GA2, and GA3) and two of them within the strand of the application of  modeling 
languages (MM2 and MM3).  
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RESULTS 
The theoretical assumptions of the model were tested using CFA. The construct 
validity of the model was evaluated by examining whether the tasks employed in the 
present study loaded adequately on each of the two factors. The results indicated that 
the data did not fit the model well (CFI=0.919, x2=58.782, df=26, x2/df=2.26, 
RMSEA=0.081).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 The model of algebraic thinking. FT1-FT3: generalizing numerical patterns to 

describe functional relationships (Functional Thinking); GA1 – GA3: using arithmetic 
as a domain for expressing and formalizing generalizations (Generalized Arithmetic); 

MM1-MM2: modeling as a domain for expressing and formalizing generalizations 
(Mathematical Modeling). 

Subsequent model tests revealed that the model fit indices could be improved by 
modifying the model. More specifically, the items which were addressing modelling 
situations (MM1, MM2, and MM3) were linked to a third factor which could represent 
a third aspect of algebraic thinking. The three model factor that emerged after this 
modification had a very good fit to the data (CFI=0.983, x2=30.829, df=36, 
x2/df=1.28, RMSEA=0.039). Figure 1 presents the model that emerged from the 
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analysis. The observations that arise from Figure 1 indicate that each of the tasks 
loaded adequately on each factor, as they were statistically significant, with z values 
greater than 1.96. The models’ goodness of fit demonstrate that the tasks used in the 
written test were grouped into three distinct components. 
The second aim of the study concerned the examination of possible differences 
between the three age-groups in the structure of the model. To this end, one more test 
was conducted in order to investigate whether the model in Figure 1, which analyses 
algebraic thinking into core aspects, is independent of the age of the individuals. 
Multiple group analysis was applied, where the CFA model was fitted separately for 
the three age-groups. The multiple groups CFA model with the factor loading 
constrained to be equal across the three age-groups provided good fit to the data 
(CFI=0.975, x2=60.600, df=61, x2/df=1.40, RMSEA=0.047). This result provides 
support for the invariance of this structure between the three age-groups. Students of 
13th, 15th and 17th years old dealt in a similar way with the algebraic tasks included in 
the test. 
DISCUSSION 
The purpose of this study was to investigate whether algebraic tasks could be used to 
explore aspects of secondary school students’ algebraic activity. The findings of the 
study indicated that there are three distinct aspects of algebraic thinking. The tasks that 
were designed within the context of functional thinking were linked to the aspect of 
generalization and the expression of generalization in increasingly systematic, 
conventional systems. The tasks that were designed within the context of generalized 
arithmetic were linked to the process of syntactically guided action. Hence, the two 
core aspects described by Kaput (2008) indeed do represent distinct components of 
algebraic thinking. Nevertheless, the modeling activities were linked to a third discrete 
factor, signifying that they require different reasoning processes in relation to the other 
two groups of tasks.  
Two reasons seem to offer possible explanations for this finding. First, modeling 
activities are described in literature to be of highly cognitive demand (English & 
Doerr, 2003). In this perspective, such activities might require the integration of a more 
complex spectrum of reasoning processes compared to those needed for manipulating 
the activities of generalized arithmetic and functional thinking. According to Kieran 
(2007), modeling is involved in global-meta level activity and addresses not only 
algebraic thinking but also more general mathematical processes. Similarly, Carraher 
and Schliemann (2007) when describing the dimensions characterizing algebraic 
reasoning declare that modeling is central in any kind of mathematical activity. Thus, 
modeling is not directly associated with any of the dimensions of algebraic reasoning.  
The observation that modeling activities required an aspect of thinking other than the 
one embedded in generalized arithmetic or functional thinking, might also be 
explained by the fact that these activities involved representations such as tables and 
graphs. This provides support to Kieran’s (2007) argument for adding multiple 
representations in the synthesis proposed by Radford (2004) about the sources from 
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which students produce meaning when they are engaged in algebraic tasks. The 
treatment of multiple representations in conjunction to letter-symbolic representations 
in order to extract specific algebraic meanings might be associated to the application of 
a differentiated assortment of reasoning processes. Kaput (2008) also stressed that 
representations such as algebraic notation, graphs and tables both are used for 
expressing generalizations in conventional forms and act as mediators of individuals’ 
algebraic thinking. 
The secondary aim of the study was to examine whether different age-groups of 
secondary school students are able to integrate the various aspects of algebraic 
thinking. The multiple groups CFA analysis showed that the model of algebraic 
thinking was the same among the three age-groups. The independence of the model 
construction from the age factor supports that the core aspects of algebraic thinking are 
within the conceptual reach of students of different ages, despite the differences in the 
duration and content of algebra teaching they received. This finding provides empirical 
validity to the assertion that algebraic thinking is a broader conceptual field.   
Moreover, the findings indicate that Kaput’s (2008) ideas, which were developed in the 
context of early algebra, respond to secondary school students’ algebraic thinking.  It 
seems then that early algebra and secondary education algebra might not constitute two 
distinct domains of study.  
Drawing on the results of the present study, future research could follow different 
directions. For instance, the way by which pivotal themes on early algebra include the 
various and diverse aspects of algebraic thinking needs to be examined. Research 
needs to address the issue of algebraic thinking from a cognitive perspective in order to 
articulate the nature of the reasoning processes that are inherent in each of the aspects 
of algebraic thinking. From an instructional perspective, research needs more 
systematically to reflect on the routes by which algebraic thinking growth can be 
encouraged within the classroom settings. 
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A POST-HUMANIST PERSPECTIVE ON A GEOMETRIC 
LEARNING SITUATION 

Sean Chorney 
Simon Fraser University 

 
This research report presents a post-humanist approach to analysing a geometrical 
activity involving grade 9 students. In looking at students’ practices in using 
mathematical tools in different contexts, this study considers the range of components 
involved in a learning situation, rather than focusing only on the learner, taking into 
consideration the student, the tool (the Geometer’s Sketchpad) and mathematics, all of 
which can be considered to have influence or agency in such a learning environment. I 
use the construct of intra-acting agency to examine the relation between the 
components of the situation. 
INTRODUCTION 
Traditional perspectives on human practice are being challenged by researchers within 
a post-humanist paradigm (Barad, 2007; Sorensen, 2009; Malafouris, 2008). 
Post-humanists view the individual as important but not as the only “participant” or 
“agent.” In contrast, many learning theories, like constructivism, focus on the 
individual as the main source of action and agency. Socio-cultural theories 
acknowledge the role of others in shaping an individual’s actions, but are still 
principally about the human. Technology-based theories like instrumental genesis aim 
to understand the way in which tools affect human action, but still subordinate the tool 
to the epistemic subject. These anthropocentric perspectives position the subject as an 
external author; a post-humanist perspective adopts the idea that non-human elements 
can “participate” in various forms of practice.  
In this study, the mathematical practice of a classroom of students will be considered. 
The focus will not be solely on the students, but on the intra-actions between subject, 
their tools and the mathematics. Agency will be granted to the non-human elements of 
this environment to help identify forms of activity. This is not a study of individual 
parts collected together but one of a mutual co-constitution of emerging agencies. The 
ultimate goal of this study is to show how this intra-action might look in a mathematics 
setting. 
THEORETICAL FOUNDATION AND FRAMEWORK 
A post-humanist perspective does not view learning as an individual achievement 
(Sorensen, 2009, p. 5). This challenges an anthropocentric perspective, which can be 
limiting in that it dismisses the physical world around us and how it shapes us.  In her 
studies on quantum physics, philosopher and physicist, Karen Barad (2007), describes 
her observations of Bohr’s work on particle physics indicating that actants become 
defined in the emergence of activity: “Objects are not already there; they emerge 
through specific practices” (p. 157). She uses the term intra-action, as opposed to 
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interaction, so that the focus is on things emerging and not on capacities or attributes of 
things before they come together.  I contend that there is a tendency to think that 
individuals are fully formed and stable but this perspective can lead to a focus on 
individual capabilities. But instead of focusing on what an individual is bringing to an 
interaction, I suggest that the question should be what kind of distributed activity 
occurs across the human and the non-human actants. The focus is not on pre-action nor 
on post-action, but on action itself. 
In addition, Barad (2007) challenges the idea of analysing individuals or things outside 
of context. The very notion of identifying individuals or things distinctly involves 
creating divisions or boundaries. According to Barad, these cuts are arbitrary, 
subjective and continually shifting. For example, traditionally, to speak of an 
individual would typically include a person bounded by their skin.  But if a blind 
person is using a walking cane to help navigate an environment, their “self” is clearly 
extended. The tip of the cane might be considered the extent of their “touch”.   
In her analysis of Bohr, she describes how concepts are dependent upon apparatus, or 
modes of observation: “Concepts, in Bohr’s account, are not mere ideations but 
specific physical arrangements” (p. 54). Although Barad is using Bohr’s model of 
observation in a context of quantum mechanics, I contend that the context is analogous 
to a learning environment for a mathematics student. In any educational context there 
are different arrangements of mathematical tools. I propose each has its own emerging 
outcomes and corresponding concepts, such that where an apparatus begins or ends is a 
matter of subjectivity. Certain arrangements bring forth different features, ways of 
looking at, or constraints of observation or action. The thinker or rational being needs 
to be redefined, not as an individual but as a subject immersed in activity intra-acting 
with other things: “Knowing is a matter of intra acting” (Barad, p. 149). Therefore, 
mathematical activity is considered to be an assemblage of human and non-human 
agencies.   
Using Barad, agency is operationalized as a construct to identify methodologically 
what emerges from the intra-action of a student with a mathematical tool or concept. 
Agency has traditionally been conceptualized as a human capacity but many 
researchers now see it as emerging from intra-action, thereby granting non-humans the 
ability to act (Malafouris,  2008). Barad states that agency is not an attribute but the 
ongoing reconfigurings of the world  (p. 141).  Agency can be thought of as an action 
or a doing. Intention is not synonymous with agency, for otherwise it becomes a 
human-centered construct.  
Although Pickering’s model is based within a humanist paradigm, his perfomative 
idiom is helpful in identifying assemblages of agency. In his study of practitioners in 
science studies, Pickering highlights the cycle of resistance and accommodation, 
which occurs in scientific work with machines. Within an education setting, this model 
may be analogous to a student using, say, a dynamic geometry software (DGS). In any 
task, the DGS may provide a resistance or a challenge, and the student will then need to 
accommodate their action to overcome this challenge. Although Pickering focuses on 
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the individual, we can name the resistance as a material agency.  The material, 
non-human element imposes a restriction upon the user. Further, a DGS may extend 
possibilities or distribute activity of the person, as the walking stick had done for the 
blind individual.  
As Sorenson posits, “…to decenter we can still emphasize the individual” (Sorensen, 
p. 57). Given the setting of this study, I have chosen to emphasise the individual by 
introducing the notion of self-agency. The human is an exceptional figure and how she 
acts can be acknowledged so as to keep analysis clear. Self-agency is the degree of 
agency a person has, when using an “I” voice such as “I am driving this car” they are 
enacting a self-agency. According to Knox (2011), a developmental psychologist, 
self-agency is necessary to development; I contend this development of self-agency 
parallels Barad’s idea of becoming.  
Providing students opportunities to act, they come to see themselves as participants, 
which may lead them to experience self-agency. Opportunities for self-agency do not 
necessarily evoke self-agency, nor is self-agency guaranteed or even linear. What is 
important here is that what results from exercising self-agency is a “sense” of agency. 
An individual may or may not have a sense of agency in a particular context. This is an 
important feature of this study because one must have a sense of agency in order to 
participate in a performative idiom (Pickering, 1995).  
The question of this study is based on a change of physical arrangement. A geometry 
activity is observed in two different contexts. The first involves a traditional 
classroom, the second includes a newly-introduced digital tool. In observing the two 
contexts, I identify significant changes in the students (their self- and sense of agency), 
their practices (actions) and the resulting mathematics. These actants are in the process 
of becoming. The mathematics adopted in this study is a discipline of negotiation, 
conjectures and exploration, not one of infallibility. In this study, I have chosen to 
focus more on the co-constitution of student and the tool, leaving their co-constitution 
with mathematics for another study. 
METHODOLOGY 
The theoretical framing of this study demands close attention to the back and forth and 
integrated intra-action of the student using tools in a mathematical activity.  Attention 
to discourse, written or verbal, provides the means by which I identify activity. I use 
James’ (1983) distinction of the  “I” voice as expressions of self-agency and his 
distinction of the “me” voice as the objective self, as that which is being acted upon. I 
will use these distinctions of voice to identify resistance and extensions. These will be 
examples of material agency. Student discourse will be a major source of identifying 
intra-action between themselves and the software.  
RESEARCH ACTIVITY AND PARTICIPANTS 
The data for this study was collected in a Vancouver high school in a grade 9 (14 years 
old) classroom during a geometry unit. Mathematics 9 in British Columbia has an 
extensive geometry component that involves rotations, symmetries, circle properties as 
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well as coordinate geometry. Students had last worked explicitly with triangles and 
squares in grade 6.  
The teacher introduced a two-phase activity based on what he had done in previous 
years. I requested a third phase.  The teacher’s two phases of instruction corresponded 
to my interest in looking at different practices and using different tools in different 
environments. In phase one, the teacher drew (freehand) what looked like a triangle 
and a square on the whiteboard for all of the class to see. He requested that students try 
to identify how they might determine whether these geometrical figures were, in fact, 
as claimed, a triangle and a square. Students worked in pairs to encourage discussion 
and wrote their responses. For phase two, the teacher took all the students to a 
computer lab, sat them in pairs and requested the students use The Geometer’s 
Sketchpad (GSP) (Jackiw, 1988) to construct both a triangle and a square. During 
phase two, the teacher allowed students to explore the software’s environment, as this 
was the first time the students had used the program.  He also went around and gave 
guidance and support by approaching pairs of students who seemed to be having 
difficulty or who were asking questions. In addition, he challenged student 
“constructions” to see if dragging would break them. Although the triangle was 
constructed by almost all students, the square provided more of a challenge. Students 
most commonly “fit” four segments together, but when the teacher dragged one of the 
vertices of the “almost-square” (Figure 1), the “square” would morph into another 
shape.  Students were given more time to try to construct the square over the course of 
the 80-minute class in the computer lab. For phase three, the teacher brought all the 
students back to the classroom and requested that they again write, in pairs, how they 
would determine whether a given figure is a square. The researcher was present during 
all three phases; he also interacted with students, lent support and “challenged” their 
constructions.   
All written work for phases one and three were collected and analyzed. Data from the 
computer lab was collected by using SMRecorder, which records all the digital activity 
on the screen as well as verbal utterances of students.  
ANALYSIS 
The analysis of the data is based on identifying examples of changes in students’ 
conception of themselves or of the mathematics. The majority of data in this study is 
based on data from the computer lab because this is where the agency emerged and 
made itself known.  I identify examples of both self-agency and material agency in 
working with GSP.  I also contrast the transition from phase one to phase three 
identifying significant changes in students’ conceptions of geometrical shapes.  I then 
present four examples rich in intra-action and agency. 
In phase one, students written work in the classroom, almost exclusively, listed 
properties of the geometrical shapes. Their conception of these geometrical shapes was 
based on properties. Although the figures drawn at the front of the room did not have 
these properties (they were drawn freehand), the students discussed, recalled, using the 
diagrams to guide their memories of grade 6 geometry. In all of the written work there 
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was no reference to the “I” voice, nor were there references to the shapes as imposing 
themselves in any way. It is relatively clear, in this activity, where the boundaries were 
drawn. The mathematics was represented on the whiteboard, and the students were the 
subjects expected to absorb or recall the knowledge.   
In the computer lab, the proposed activity supported a process of exploration which in 
turn actualized enactments of agency. For example, in constructing an “almost-square” 
(Figure 1), multiple pairs of student could not get the lengths of the sides to equal. One 
way to deal with this was to draw one segment and copy and paste three more. This was 
a good idea (although this still did not “construct” a square), for the segments were all 
the same length, but the lengths did not remain constant under dragging, as Laura 
found out. 

Laura:  ohhhhh, how come it changes length? 
This back and forth attempt to make the square is an example of Pickering’s model of 
resistance and accommodation.   

 
Figure 1: An “almost-square” 

There were multiple examples of self agency in the computer lab that were evident as 
the students worked on the task:  

 Ricardo:  I want to see what moving this will do.  
 Alice:   I want to know what happens when I try this… 

There were also examples of resistance, where the software did not do what the student 
expected: 

 Mitchel:  It won’t let me drag the point. 
 Heather:  How come this part is not moving? 

The transition between phase one and three is significant.  Data from the classroom 
after the intra-action with GSP, in contrast with the phase one activity, was distinct in 
that the conceptions of squares and triangles were different.  In general, their 
descriptions of the square from phase three included new vocabulary, new metaphors 
and new forms of engagement. In their written activity new words were used such as: 
pull, put all, flip, adjusted, drag, copy and paste, angle and locked. 
The following four examples were chosen because they were rich in intra-action and 
agency. The first three are occurrences from the computer lab. The fourth example was 
an occurrence in the classroom during phase three.  
Justin and David constructed a triangle and then translated it partly off the screen and 
the question “Is this a triangle?” was posed.   
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 Justin:  Is this a triangle?  

 
Figure 2: Justin’s triangle 

In this particular activity we see an example of students generating new questions; 
there were new opportunities for negotiation. Unlike a drawing of a triangle on a 
whiteboard or a sheet of paper, this triangle was initially fully visible and then 
translated off the screen. The limitation of the screen became negotiable due to the 
intra-action of the student and screen agencies. The agency of the screen limits 
visibility but also the tools allows for easy access to translate the triangle back. The 
boundaries of the triangle are challenged. The students seem to be the ones asking the 
question, but the screen and the triangle occasion this situation. Justin’s half triangle is 
an example of the relationship between humans and negotiation, a challenge not 
available without the tool. Justin challenges the perspective of the student and 
introduces the question of where the mathematics lives. Does it exist off the screen?  
Also in the computer lab, another pair of students, Luna and Michel, described to the 
teacher how they constructed the square using the grid option in GSP. They thought 
they had constructed a perfectly good square (Figure 3). Most other students were 
getting their square pulled apart by the teacher, but Luna and Mishel were confident 
that their square would hold up since it lined up with the coordinate grid. The teacher, 
however, changed the scale on the grid and the square became a rectangle (Figure 4). 
They did not try to figure out another way to construct the square; instead they based 
their construction on the limitation of not being able to change the scale.  

Luna:  This created a 1x1 square and no matter how you move the point, it stays a 
square – unless you change the grid. 

As long as someone did not change the scale, the square that they had made was a 
square. Luna and Michel’s definition of their virtual square illustrates an assemblage of 
human and non-human forms for they based their definition on a particular situation in 
GSP which included software, agency and mathematics. The definition held all 
components together.  

    
Figure 3: Luna’s square   Figure 4: Luna’s rectangle 
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According to James the diagram in Figure 5 is not a triangle. James discussed, with the 
teacher, how GSP expected endpoints to be connected properly otherwise segments 
could be dragged away from each other and the shape did not retain invariant features. 
James challenged the idea of endpoints and intersections. A new way of categorizing 
intersections was introduced; intersections did not become “points” without 
self-agency and the tool. 

James:  The four sides must be touching but not intersecting. 

 
Figure 5: James’ non-triangle 

The last example draws from phase three. One male student said the following while 
explaining to the teacher what a square was. 

Leo:   It has four corners, 90 degree angle, four equal sides, has 360 degrees.  You 
can move it around it is still 360 degrees. The four points are attaching 
perfectly so you can move it around. 

When the teacher asked him what it meant to move it, he moved his hands around in 
the air as if he was turning a steering wheel. The mathematics was changing because 
the object had changed definition – it had become accessible and he had developed a 
sense of agency with it in that he knew he could move a square and it would hold its 
invariance. With the tool, the square became available for empirical challenge, thus 
radically affecting student’s acceptance to what a square was.   
DISCUSSION AND CONCLUSION 
In the computer lab, the students used Sketchpad to test whether a shape is a square. 
The shape became a figure to move around, push; an object with hinges. But a student 
needs a sense of agency to begin the enactment and a self-agency to endorse the square. 
Without the ability to flip, move, drag, the determination of whether the figure is a 
square is not possible. Only in the combination of invariance and movement could a 
square be actualized. The boundaries in such an intra-action are difficult to identify. In 
the classroom, boundaries were easy to identify but with Sketchpad, possibilities were 
enhanced, for the students were doing things with squares and triangles that they had 
not conceived.  Dragging the triangle off the screen, challenging its existence outside 
of perception was something not possible in the classroom.  Moving his hands in the 
air, Leo’s sense of agency is actively trying to access the square. The possibilities of 
engagement were extended for the square did not exist without intra-action. Otherwise 
there would be no way to determine the difference between an “almost-square” and a 
proper square. The square depends on the student to act and the student depends on the 
tool to act and the boundaries of agency continually shift. 
If we are to accept Bohr’s statement that concepts are physical arrangements we should 
consider that Sketchpad is such an arrangement. Thus, the concept of a triangle is 
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different than its representation on the whiteboard.  The concept of a triangle is not 
based on properties of a transcendental platonic geometrical figure but an actualized 
digital form that necessitates student engagement.  In phase three when students were 
describing the triangle in terms of gestures, new words, and new metaphors, the tool 
did not just draw attention to different aspects of the triangle but reconceptualised the 
triangle.  As de Freitas and Sinclair (2012) write: “A concept of this kind, with logical 
and ontological functions … resists reification while carving out new mathematical 
entities and forming new material assemblages with learners” (p. 12). 
This study troubles existing, humanist assumptions about the role of tools. If the tool 
can alter the way we look at simple geometrical figures as well as the way we look at 
our own involvement in mathematical activities, both the way digital tools are 
designed as well as the way they are presented can have very important effects on our 
mathematical experiences.  
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The study examines students’ ability to operate on unknowns through students’ levels 
of justification in generalized arithmetic tasks in which algebraic expressions are 
present. Two tasks about generalization of properties of numbers were administered to 
73 fifth-grade elementary school students and then 10 semi-structured interviews were 
carried out. Results indicate that a respectable percentage of students can operate on 
one unknown by providing generalizable arguments about the result of an “unknown 
even number+3” without the need of reducing abstraction. On the contrary, most of 
the students face difficulties to think at an abstract level when confronted with the 
operation that involves two unknowns and provide numerical examples as 
justifications. Implications of these findings are discussed. 
INTRODUCTION AND THEORETICAL BACKGROUND 
Building generalizations from arithmetic is taken by many educators and researchers 
as the primary entry to algebra (Kaput, 2008). Traditionally, arithmetic has focused on 
computational accuracy and efficiency, while much of algebraic problem solving 
focuses on reasoning about operations and numbers, generalizing their properties and 
reasoning about more general relationships (Blanton, Levi, Crites & Dougherty, 2011; 
Kaput, 2008). According to Caspi and Sfard (2010), algebraic thinking begins when 
one starts scrutinizing numerical relations and processes in the search for 
generalization. The generalizations start as conjectured relations and some work must 
be done mathematically before a conjecture is accepted as a generalization (Blanton et 
al., 2011). Classroom practice that promotes reasoning and proof, provides the chance 
to students to build arguments to justify these conjectures and through this process 
conjectures are transformed into generalizations (Blanton et al., 2011). 
Therefore, in today's classrooms students must be encouraged to make conjectures, 
should be given time to search for evidence to prove or disprove them, and should be 
expected to explain and justify their ideas (NCTM, 2000). A number of chapters and 
research papers (e.g. Blanton, et al., 2011; Carpenter, Franke & Levi, 2003) focused on 
elementary school students’ ability to engage in generalized arithmetic tasks and build 
convincing arguments concerning the properties of numbers and operations. For 
example, Carpenter et al. (2003) examined students’ ability to build generalizations 
about classes of numbers like "An odd number plus an odd number is an even number". 
According to Blanton et al. (2011) this type of generalization derives from the 
fundamental properties of numbers and operations since students’ work to justify their 
answer focuses attention to the structure that underlies computation. For example, the 
student could write down "b+b+1+d+d+1=b+b+d+d+2" and explain that if we add a 
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number to itself we get an even number, and 2 is an even number, so the result must be 
an even number (Blanton et al., 2011).  
The abovementioned type of justification falls in the highest level of justification as 
proposed by Carpenter et al. (2003). More specifically, Carpenter et al., (2003) 
describe the following different types of justification:(a) appeal to authority where 
students relate their reasoning to a rule or procedure that was taught or told to them by 
someone with authority, (b) justification by example where they use numerical 
examples to test the conjectures and (c) generalizable arguments where students 
present a logical argument (verbal, symbolic or concrete) that applies to all cases. 
Research suggests that children’s justifications will often use simple empirical 
arguments based on testing a number of specific cases (Blanton et al., 2011). However, 
students in grades 3-5 should learn that several examples are not sufficient to establish 
the truth of a conjecture (NCTM, 2000). As in the studies mentioned above we also use 
the general notions of justification and argument, rather than proof, since they are more 
appropriate for the elementary grades (Blanton et al., 2011). 
The generalization tasks of the present study, for which students had to justify their 
answers, were expressed symbolically through the use of literal symbols. For this 
reason, we took also into consideration students’ wrong interpretations of the variable 
as described in the literature. In some cases students assign one numerical value to the 
literal symbol (sometimes based on their place in the alphabet) even in cases where it 
must be seen as a generalized number (Kuchemann,  1981; MacGregor & Stacey, 
1997). In addition to this, students might interpret the letters as abbreviations of an 
object's name (Kuchemann, 1981; MacGregor & Stacey, 1997). Another difficulty 
identified is when students are confronted with expressions like 3+n, which they 
rewrite as a single entity with no operation, such as 3n (MacGregor & Stacey, 1997). 
However, despite the difficulties, some studies (Carraher, Schliemann & Brizuela, 
2001; Hewitt, 2012) provide examples of nine-year-old children using algebraic 
notation to represent a problem of additive relations using algebraic expressions (e.g. 
N+5). These students were not only able to operate on unknowns but they also 
understood the unknowns to stand for all possible values (Carraher et al., 2001). 
Similarly, a recent study by Hewitt (2012) showed that 5th grade students were able to 
work with formal notation and more specifically with complicated linear algebraic 
expressions, after three lessons with a certain computer software. 
Based on the above, the purpose of the present study is to examine 5th grade students’ 
ability to operate on unknowns and engage in the process of justifying their 
generalizations about properties of numbers. The levels of justification are used as a 
tool that can help us determine students’ ability to generalize properties of numbers by 
operating on unknowns or their need to reduce the level of abstraction and work with 
numerical examples. Unlike previous studies, in which the use of letters was usually 
encouraged for the representation of students’ generalizations, the algebraic 
expressions in the present study are provided in the instructions of the tasks in order to 
enable us to examine students’ understanding of the symbolic notation and students’ 
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ability to operate on unknowns (from K+K to M+M+3). Also, in order to move one 
step further and add on previous studies’ results (Carraher et al., 2001), we use tasks 
that involve operations with two unknowns (instead of just one unknown). Therefore, 
we sought answers to the following questions: (a) Are 5th grade students of the study 
able to work in generalized arithmetic tasks in which literal symbols are present? (b) 
Are 5th grade students of the study able to use generalizable arguments as justifications 
by indicating an ability to operate on unknowns or do they turn to the use of numerical 
examples? (c) Is the level of justification provided by students the same in both tasks? 
METHODOLOGY 
Participants and Procedure 
The participants were seventy-three 5th grade elementary school students of three 
different classes. These students had never had (constant) formal instruction about the 
use of letters, besides the fact that they met the use of literal symbols-unknowns in a 
few tasks that are included in their mathematics textbooks. Initially, the generalized 
arithmetic test was administered to the participants. Based on the test results and the 
taxonomic qualitative method of analysis by Spradley (1980), different levels of 
justification were formed. Once this was done, 6 semi-structured interviews were 
carried out with students who adopted the same level of justification in both tasks and 4 
semi-structured interviews with students who had changed their initial level of 
justification (in the first task) to a higher level justification in the second task.  
The Generalized Arithmetic Test 
The test included two tasks which concerned generalization of properties of numbers 
(see Table 1). Students had to complete the test in a 30 minute session.  

Task 1: Variable K can be any integer number. Indicate whether the sum K+K results 
in an even or an odd number. Explain your answer. 
 Task 2: Variable M can be any integer number. Indicate whether the sum M+M+3 
results in an even or an odd number. Explain your answer. 

Table 1: The algebraic thinking tasks 
Coding of the Responses and Analysis of Data 
In both tasks, each answer (regardless of the justification-explanation) was coded as 
correct (success=1) or incorrect (success=0). Correct answer for task 1 was "an even 
number" whereas for task 2 "an odd number". Then, a second code was given for the 
type of justification. It must be noted that we examined the level of justification only in 
correct answers because wrong answers or incomplete work could not reveal any type 
of justification. In contrast to previous studies (Carpenter et al., 2001), justification by 
authority was not expressed by students in this study, not even during the interviews. 
Also, our findings revealed that the previously described general level "justification by 
example" (Carpenter et al., 2003) should be analyzed further since two sub-levels (1a 
and 1b) were identified. The four categories of justification that were identified based 
on the test results and the interviews are the following: (a) no explanation-0: Their 
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explanations are phrases repeating the instructions of the task without really providing 
an explanation; (b) use of random examples-1a: They use several random examples to 
justify their answer. They think that some examples are enough to prove a conjecture 
and they are not able to express generalizable arguments; (c) working with groups of 
numbers-1b: They work with classes of numbers to justify their answers (e.g. they 
choose to work with even and odd numbers). They realize somehow the fact that some 
random numerical examples are not enough and they tend towards a more coherent 
way of working. They may also have an idea that some numerical examples of odd 
numbers and even numbers are still not enough however, they are not able to produce 
another more generalized argument; (d) generalizable arguments-2: They use general 
statements to justify their answer and they do not need examples to test  their answers. 
At this level students are  able to explain if something is true and most importantly they 
can explain why the statements are true, something that is necessary in proof.  
For the quantitative analysis of data, descriptive statistics were applied, whereas for the 
qualitative analysis the taxonomic method (Spradley, 1980) was used. 
RESULTS AND DISCUSSION 
As shown in Table 2, the majority of students, 72% and 71% were able to provide 
correct answers in task 1 and task 2, respectively. However, their justifications can 
provide a clearer picture of students’ achievement in these tasks. Table 2 shows that the 
majority of students used justification by random examples in task 1, whereas only two 
students were able to justify through generalizable arguments in this task. Twelve 
students that had used justification with random examples (level 1a) in task 1 and 11 
students that had used justification with classes of numbers (level 1b) in task 1, 
provided higher level of justification in task 2 by using generalizable arguments. This 
indicates that 25 students were able to build on their previous generalization (even if 
that generalization occurred from sufficient or insufficient justification) in order to 
form the generalization that M+M+3 will give an odd number. Therefore, twenty three 
students were able to "compress" in some way the procedure they had used in task 1 
and instead of following that procedure again they realized that the sum of M+M is the 
same as the sum of K+K. They were then able to "treat" K+K or "M+M" as a sum and 
not as a procedure (Caspi & Sfard, 2010). The fact that they could then reason about 
the sum of an "unknown even number+3" reveals their (spontaneous) understanding to 
operate on unknowns. Their difficulty to operate on unknowns in the first task is 
probably due to the greater difficulty of the operation that requires adding two 
unknowns. It must be noted that students’ worksheets with correct answers (regardless 
of their level of justification 0,1a,1b,2) provided evidence that students interpreted the 
letters K and M as taking all possible values. Only one student who gave correct 
answers to the tasks (but wrong justifications) and six students who provided wrong 
answers from the beginning (and thus their justifications were not examined), 
interpreted the letters K and M as specific unknowns. More specifically, these students 
assigned the values 10 and 12 to the letters K and M respectively, based on their place 
in the Greek alphabet. For the remaining 8 students that did not provide correct 
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answers we could not determine how they interpreted the letters since their work was 
incomplete.  

Table 2: Frequencies and percentages of correct answers and for levels of justification 
for the generalization tasks 

While most students with "1a level of justification" in task 1 remained at the same level 
of justification in task 2, the majority of students with "1b level of justification" in task 
1 adopted "level 2 justification" in task 2 and all students with "level 2 justification" in 
task 1 remained at the same level in task 2. Due to space limitations, we provide below 
the transcripts of the interviews with one student of each of these three cases.   
1a Level of Justification in both Tasks 
At this level students use a few examples to justify their answer. It is obvious that 
students’ decisions that the sum of K+K will be an even number, is based on the few 
examples they use and they are not able to express a generalizable argument. Their 
need to reduce the abstraction is evident also in task M+M+3 in which they are not able 
to build on their previous work and they persist to the use of numerical examples:  

Interviewer: You have used the examples 2+2=4, 3+3=6, 4+4=8 to decide that K+K 
always results in an even number. Why have you used these examples? 

Lena: I wanted to try out some numbers and see what was going on. 
Interviewer: Are you completely sure that the result will always be an even number? 
Lena: Yes, because I tried three examples. 
Interviewer: Ok. How can you be sure that is true for other numbers as well?  
Lena: If it works for these numbers, then I guess it will work with all numbers. However, 

the only way to be completely sure is to try other numbers as well, I mean 
use more examples with more numbers.  

Interviewer: Ok. As I can see your explanation in task 2 is the same as in task 1. However, 
you already knew that K+K results in an even number so you could have 
used this information in M+M in order to avoid numerical examples. 

Lena: No, even if I have used the information that M+M is an even number I would not 
know what to do afterwards with +3, since I cannot add 3 to an even 
number that I don't know. I wanted to use numbers and see what is going 
on.  

Task Correct 
answers 

Level of justification for the correct answers Wrong 
justification 0 1a 1b 2 

 N % N % N % N % N % N % 

K+K 59 80,8 11 18,6 32 54,2 13 22,0 2 3,4 1 1,7 

M+M+3 59 80,8 11 18,6 21 35,6 1 1,7 25 42,4 1 1,7 
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From 1b Level of Justification in Task 1 to Level 2 Justification in Task 2 
Students in this case provide justifications using classes of numbers in task 1, however 
they provide more generalizable arguments in task 2: 

Interviewer: As you have explained in task K+K you chose to work with even numbers 
first and then with odd numbers. Can you explain why? 

Laoura: K could be any number. I did not have so much time or space in my test to start 
writing down all numbers. So, I figured out that I could work with groups of 
numbers in order to see what is going on...em....and I found out that the 
result is an even number regardless of the group of numbers. 

Interviewer: Ok. As I can see you have used 5 examples with odd numbers and five 
examples with even numbers. Are these examples enough to decide? 

Laoura: I think yes...because 5 examples of odd numbers and 5 examples of even 
numbers convinced me that K+K gives an even number...I could try more 
examples but I had to stop somewhere. 

Interviewer: Can you explain why this holds for all numbers? 
Laoura: Hm.....This is what we get when we try it with numbers of different groups. 
Interviewer: As I can see in task 2 you justified without the use of examples that 

(M+M)+2+1 will be an odd number. Can you explain a bit more? 
Laoura: As I tested with examples…K+K gives an even number, so M+M which is the 

same thing will also result in an even number. But when we I add an odd 
number to an even it becomes odd. 

Interviewer: How do you know that? 
Laoura: As I wrote (in M+M+2+1) we added another pair but when we add one more 

(resulting in adding 3) it becomes odd since one is left alone. 

Level 2 Justification in both Tasks 
This level of justification indicates a higher level of abstraction and reveals conceptual 
understanding regarding properties of numbers. This student is able to operate on 
abstract symbols by indicating clearly that K+K equals to the formalism 2×K and is 
also able to use another letter (E) to represent even numbers: 

Interviewer: You wrote that you are sure that K+K is going to be an even number because 
K+K has "a half". What do you mean?  

Leo: K+K means we have two times K and it means I have two times "something". If I 
have two times something (says 2×K in words)...then this means I can 
divide it by 2 and nothing is left.  

Interviewer: And how did this help you decide that the sum of K+K is an even number? 
Leo: Only even numbers can be divided by 2. When we divide an odd number by two we 

have one item left. Since K+K can be divided by 2 and not leave anything, 
then it is an even number. 
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Interviewer: Ok. In task 2 you have explained that M+M+3 will be an odd number and 
you wrote (E)+3 because everything in E will have a pair but this does not 
hold for 3. Can you explain why you wrote that? 

Leo: I wrote E to represent all even numbers since this is the result of M+M as I explained 
previously for K+K, thus any even number plus 3 gives an odd because 
everything in E and 2 can be divided by 2….and not leave anything…but 
one is left alone because we add 3 and not 2. 

CONCLUSION 
It is encouraging that students of this study were able to engage in tasks that involved 
literal symbols, even if they did not have previous formal algebraic instruction 
(Carraher et al., 2001; Hewitt, 2012). The majority of students indicated through their 
justifications an understanding of the unknown as standing for all the possible values.  
Furthermore, the present study indicates that the use of numerical examples as 
justifications depends on the difficulty of the task, which in this case is related to the 
number of unknowns in the operation. Most of the 5th graders of the present study 
were able to use generalizable arguments to justify their generalizations about "an even 
+3" (in task 2) but turned to the use of numerical examples in the case where they had 
to generalize operations with two unknowns "K+K" (in task 1). Based on these results, 
two implications occur. First, the fact that almost all students (except 2 students) were 
not able to justify through generalizable arguments in the first task, reveals students’ 
superficial understanding (a) of adding a number to itself and the connection of that 
result to multiplication and (b) of properties of numbers. Their difficulty was due to 
their need to reduce the level of abstraction in order to examine the behavior of the 
operation with unknowns and not due to wrong interpretation of the letter. In addition, 
the fact that school mathematics emphasize the traditional view of arithmetic prevents 
students from reflecting on the operations and on the properties of numbers. Therefore, 
classroom practice that encourages reasoning and justification and the use of tasks that 
focus attention on the structure that underlies operations and numbers are necessary to 
help these students develop conceptual understanding regarding properties of numbers. 
Starting even from activities with concrete materials (e.g. blocks) providing the chance 
to students to "see" how the sum with even and odd numbers works and then helping 
them represent their observations though the use of symbols, enhance both arithmetic 
and algebra. Second, the fact that one third of the 5th graders provided evidence that 
K+K equals M+M and could reason about "an unknown even number+3" without 
having formal algebraic  instruction coincide with previous studies results that younger 
students are able to operate on unknowns and work with formal algebraic notation 
(Carraher et al., 2001; Hewitt, 2012). The results are also in line with the results 
provided by Caspi and Sfard (2010), who found remarkable structural similarities 
between students’ verbal meta-arithmetic (in our case use of general arguments) and 
formal reified algebra (in our case algebraic expressions K+K, M+M+3). Therefore, 
the present study provides some further evidence that younger students are able to 
work with algebraic expressions. More than a decade ago, Carraher et al. (2001) 
pointed out that "surprisingly little is known about children’s ability to work with 
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algebraic notation" (p. 138). The growing amount of evidence that is provided by 
recent studies should be taken into consideration by curriculum reformers in order to 
help students invest on their true capabilities that will in turn have paybacks for both 
algebra and arithmetic. Algebraic understanding will evolve slowly over the course of 
many years; however we need not await adolescence to help its evolution (Carraher et 
al., 2001, p. 137). Nevertheless, further research in this direction will shed more light 
about what younger students are able and not able to do concerning work with 
algebraic notation  
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This paper describes the design principles behind a test instrument, called the 
JuStraGen test, that had been specially developed to assess students’ ability to 
generalise figural pattern generalising tasks, as well as to measure the effects of two 
task features on their rule construction. A discussion of some student responses then 
follows to shed light on how students dealt with some tasks in the test.  
BACKGROUND 
Several past studies on pattern generalisation have reported low success rates for 
figural generalising tasks in which just a single configuration was presented. In a study 
by Hoyles and Küchemann (2001), nearly 2800 high attaining Year 8 students in the 
UK were asked in one of the tasks to inspect a single generic case in order to find the 
number of grey tiles needed to surround a row of 60 white tiles. The border-tiling task 
had a success rate of 42%, which was considerably low taking into account the 
students’ prior attainment. The same border-tiling task was also used by Cañadas, 
Castro and Castro (2011) on over 350 Years 9 and 10 students in Spain, this time 
asking them for the number of grey tiles needed to surround a row of 1320 white tiles. 
The success rate of about 55% was similarly moderate. Like these researchers, Steele 
(2008) had rather limited success in getting students to work out a functional rule for 
predicting the number of blocks in a staircase with n steps in a classic Staircase task 
that shows only a four-step-high staircase. Six of the eight students in the US had 
difficulties constructing the functional rule, which was quadratic. The type of function 
in this task might well have been a contributing factor. In another “classic” matchstick 
task that appeared in TIMSS–2007, a single configuration showing a row of four 
squares made of 13 matchsticks was provided and Year 8 students were asked about 
the number of squares in a row that could be made using 73 matchsticks. The success 
rate for Year 8 students internationally was barely 9% compared to about 41% for 
Singapore students (Foy & Olson, 2009).  
The success rates of students in the abovementioned studies clearly indicate that the 
rule construction process in pattern generalisation is often fraught with difficulties, 
with many students often failing to navigate this process successfully. Such difficulties 
could be attributable to several student-related factors, ranging from ignorance of 
appropriate generalising strategies (Moss & Beatty, 2006) to lack of spatial 
visualisation techniques (Warren, 2005) and inexperience in using the highly specific 
mathematical language of algebra to express generality (Hoyles, Noss, Geraniou, & 
Mavrikis, 2009). But in the light of the earlier paragraph, we posit that student 
difficulties in rule construction might also be triggered by task features, in particular, 
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two features that we categorise as the format of pattern display (Chua & Hoyles, 2012) 
and the type of function. Revisiting the Staircase task in Steele’s (2008) study for 
example, we wonder if the students’ difficulties were influenced by the provision in the 
task of only a single generic case, or by the quadratic nature of the underlying pattern. 
Whether Steele realised these potential obstacles in her task is unclear, but Küchemann 
(2010), however, firmly maintains that the factor contributing to student difficulties in 
that task was the format of pattern display, and not the type of function.  
Our present study, therefore, aims to examine systematically the effects of different 
formats of pattern display and types of function on students’ pattern recognition and 
their ability to generalise. In order to carry out the study, it was first necessary to 
construct and validate an instrument; in this case a specially-designed paper-and-pencil 
test. In this paper, we address the following question: What task design considerations 
were taken into account when devising the test instrument? In what follows, we 
describe the development of the test instrument, present some test items and highlight 
some student responses to illustrate its implementation. 
DEVELOPMENT OF TEST INSTRUMENT 
We were unable to identify from the review of the research literature a test instrument 
that would characterise the effects of task features on students’ pattern recognition and 
their ability to generalise. We therefore set out to design a new test instrument, which 
we entitled Strategies and Justifications in Mathematical Generalisation (JuStraGen). 
It was developed specifically to achieve the aims of the present study. 
The JuStraGen test was designed to provide an assessment of students’ ability to 
generalise figural pattern tasks, as well as a measurement of the effects of two task 
features on their rule construction. It is a paper-and-pencil test consisting of eight 
generalising tasks designed to investigate how students construct and justify the 
functional rule for predicting any term of a pattern in the tasks. Of the eight tasks, the 
underlying pattern structure was linear for four of them and quadratic for the other 
four. Furthermore, the test was also developed specially to examine systematically the 
effects of the format of pattern display (i.e., successive vs non-successive 
configurations) and the type of function (i.e., linear vs quadratic) on students’ ability to 
construct the functional rule. Figure 1 shows a linear task in the two different formats. 
Students were required individually to work out a functional rule for the pattern in 
terms of the size number, and justify how they obtained the rule. 
To examine whether different formats of pattern display had any effect on students’ 
rule construction, we chose to use a between-subjects experimental design involving 
two groups, Group 1 (G1) and Group 2 (G2), of students. As for testing whether 
different types of function had any effect on students’ rule construction, a 
within-subjects experimental design was adopted. In short, G1 worked on both linear 
and quadratic generalising tasks with successive configurations whereas G2 was given 
identical tasks but with non-successive configurations. 
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(a)  Successive format                    (b) Non-successive format 
Figure 1: Bricks 

The development of the JuStraGen test was guided by the research design above and 
the following general considerations. 

(a) Number of generalising tasks  Deciding on how many tasks to set is a tricky matter: too few 
tasks may limit the generalisability of the results about the effect of task features on students’ 
success in establishing the functional rule; whilst having too many tasks is simply not 
practical given the time needed to complete them. After pre-piloting a task to gauge the 
amount of time students needed to complete it, we decided to set eight tasks. We believed that 
this number of tasks was a reasonable figure for covering a range of non-successive 
configurations. 

(b) Task scenario  Most figural generalising tasks used in research and in textbooks ask students 
to consider a sequence of configurations and then make some near and far generalisations, 
followed by finding the rule underpinning the pattern depicted in the sequence (see Rivera & 
Becker, 2008). The tasks rarely provide a scenario in which the purpose of representing the 
pattern with a functional rule might be apparent. For some students, it might, therefore, be 
difficult to see why they have to do what is required of them. To provide some impetus for 
students, we tried to adopt the notion of purpose (Ainley, Pratt, & Hansen, 2006) to make the 
tasks as meaningful as possible for the students. We framed the generalising tasks in different 
scenarios, such as making wall designs for Bricks, and stated the motive as wanting the 
students to help the character in the task to find the rule for constructing any size (e.g., John 
wanted to find the number of bricks he had to use to make any size in Bricks. Write down the rule John 
might have used in terms of the size number). 

(c) Parallel tasks  To determine whether the format of pattern display influenced the students’ 
construction of the functional rule, each task was created in two different formats, with its 
pattern depicted as (1) a sequence of three successive configurations, and (2) a single 
configuration or a sequence of two or three non-successive configurations. For instance, the 
Bricks task in Figure 1 above shows three configurations (Sizes 1, 2 and 3) for the successive 
format and a single generic configuration (Size 3) for the non-successive format. 

(d) Matching tasks  To determine whether the type of function influenced the students’ 
construction of the functional rule, each linear generalising task had a matching quadratic 
generalising task. Table 1 below lists the matching linear and quadratic generalising tasks, 
with details about the format of pattern display. For each pair of tasks, the description of the 
scenario was kept invariant: for instance, both Bricks and Wall Design were set in the same 
scenario of creating wall designs using bricks. Furthermore, the shape of the configuration in 
each linear task was created to resemble as closely as possible that of the matching quadratic 
task. Considering the Birthday Party Decorations and Christmas Party Decorations tasks for 

Size 3 Size 2 Size 3 Size 1 
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example, both sets of configurations look alike except for the blocks in the middle. We 
believe that careful considerations to such details during the task design process are essential 
as pre-emptive measures for minimising the possible interference of task scenario on the 
outcome of the JuStraGen test so that more robust conclusions can be drawn about the effect 
of the type of function on how students construct the functional rule.  

Linear Quadratic 
Bricks 
For successive format: Sizes 1, 2, 3 were 
given 

 

Wall Design 
For successive format: Sizes 1, 2, 3 were 
given                                         

 

Birthday Party Decorations 
For successive format: Sizes 1, 2, 3 were 
given 

 

Christmas Party Decorations  
For successive format: Sizes 1, 2, 3 were 
given 

 
Towers 
For successive format: Sizes 2, 3, 4 were 
given 

 

Oh Deer! 
For successive format: Sizes 2, 3, 4 were 
given 

 

High Chairs 
 For successive format: Sizes 2, 3, 4 were 
given 

 

Tulips 
 For successive format: Sizes 2, 3, 4 were 
given 

 

Table 1: Matching linear and quadratic generalising tasks 
Bricks, Birthday Party Decorations, Towers, High Chairs, Oh Deer and Tulips were six new 
generalising tasks designed specially for the JuStraGen test. Christmas Party Decorations 
and Wall Design were adapted from studies by Rivera (2007), as well as Smith, Hillen and 
Catania (2007). 
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(e) Number of non-successive configurations  In order for students to move to articulating the 
functional rule underpinning a pattern, we notice from the literature review that there are two 
common approaches in figural generalising tasks: first, to provide three configurations (see 
Rivera & Becker, 2008; Smith et al., 2007); and second, to show just a single configuration to 
represent a generic case of the figural pattern, as we have discussed previously. What is less 
common in the literature, however, is the use of two configurations. So far, we have found 
only three studies using it. The Ladder problem in Stacey’s (1989) study showed two 
successive configurations whereas Healy and Hoyles (1995), as well as Warren and Cooper 
(2008), used two non-successive configurations in their studies. All these studies provided 
little, if any, explanation of the rationale for choosing to use these numbers of configurations. 
But, nonetheless, these numbers do appear to be sufficient to allow students to detect the 
pattern and then construct the rule. So we can infer that having more configurations would not 
make any difference. Guided by the outcome of the literature review, the present study 
decided to use one, two or three non-successive configurations in the JuStraGen test. 

One might now ask whether it is really possible to discern the underlying pattern structure 
from just a single configuration. To address this concern, it was important to offer a general 
description of the single configuration. Although the description provided essential 
information for students to realise how the pattern would grow, it did not disclose the 
functional rule underpinning the pattern however. Furthermore, the use of a single 
configuration was limited to only one pair of generalising tasks – Bricks and Wall Design. 

No description of the configuration was given for the remaining pairs of generalising 
tasks. Like single configuration, the use of two non-successive configurations was also 
limited to one pair of tasks – Birthday Party Decorations and Christmas Party 
Decorations. Three configurations were provided in Towers and Oh Deer, as well as in 
High Chairs and Tulips. 

(f) Structure of task  All the generalising tasks were unstructured in order to allow students 
scope for exploration so that they could come up with their own interpretations. This would 
allow us to see how the students came to recognise and perceive the pattern without 
scaffolding. so there were no part questions asking for near or far generalisations that would 
gradually lead students to detect and construct the functional rule underpinning the pattern. 

(g) Size number of configurations  The size numbers of the three given successive 
configurations ran from either Size1 to Size 3 or Size 2 to Size 4. As for the non-successive 
format, any single configuration starting from Size 3 was thought to be a reasonable generic 
case for representing a pattern. Thus Size 3 was given in Bricks and Wall Design. Warren and 
Cooper (2008) used solely odd-numbered sizes (Sizes 1 and 3, and Sizes 1, 3 and 5) in two of 
their tasks that involved two or three non-successive configurations. Their choice of 
configurations, we would argue, might be unfortunate because students might think that the 
even-numbered sizes did not exist in these tasks. So for generalising tasks with two or three 
non-successive configurations, we believed it was important to include both odd-numbered 
and even-numbered sizes so as not to mislead any students into thinking that certain sizes did 
not exist in the pattern. Therefore, we included both Sizes 1 and 4 in Birthday Party 
Decorations and Christmas Party Decorations. In a similar vein, Sizes 1, 2 and 4 were shown 
in Towers and Oh Deer, and Sizes 2, 3 and 5 in High Chairs and Tulips. 

(h) Shape of building materials  Square cards or tiles and rectangular bricks were used to build 
the configurations. Other shapes such as circles and triangles were omitted in order to 
eliminate the confounding influence of the shape used to build the configurations on students’ 
ability to generalise. 
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This section highlighted the key design principles that we had applied to develop 
carefully crafted generalising tasks for the JuStraGen test. Due to limited space here, 
we will briefly describe what some students actually did when dealing with the 
non-successive tasks in the next section. 
SOME FINDINGS AND CONCLUSION 
56 G2 students (aged 14 years) from a secondary school in Singapore were 
administered the JuStraGen test with non-successive configurations. Having learnt the 
topic of number patterns before sitting the test, the students should be able to continue 
for a few more terms any pattern presented as a sequence of numbers or configurations, 
make a near and far generalisation and establish the functional rule in the form of an 
algebraic expression. 
The unstructured nature of the generalising tasks allowed students plenty of scope for 
developing their answers. When a single or two configurations were given, some 
students had to work out other configurations before they could see the structural 
relationship from the geometrical arrangement of tiles or cards (see Figure 2(a)). For 
some other students, finding additional configurations was not necessary at all as they 
were able to abstract the structural relationship from the given diagrams by treating 
them generically (see Figure 2(b)). Therefore, students’ ability to derive the functional 
rule was clearly assisted by their awareness of the structure inherent in the pattern, and 
not the format of pattern display. We consider this finding very encouraging, knowing 
that our decision to design unstructured tasks was appropriate. 

 
 (a) with additional configurations  (b) without additional configurations 

Figure 2: Recognising structure in Christmas Party Decorations 
Students’ inability to recognise the pattern underpinning a single or two configurations 
is not totally unexpected and, in particular, two student responses are worth discussing 
with respect to our design principles. Figure 3(a) shows a student misinterpreting the 
Bricks pattern despite the provision of a description of the configuration. For this 
student, the number of rows in a configuration corresponds to its size number, and the 
number of bricks per row alternates between four in odd rows and three in even rows. 
Although there were only six such cases (11%) in the present study, the frequency of 
cases could have been higher if the task had not provided the description. We are, 
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therefore, now convinced that the inclusion of a general description of the single 
configuration in the Bricks task was crucial and necessary. 
 

 
(a) Bricks    (b) Christmas Party Decorations 

Figure 3: Student errors 
The response in Figure 3(b) shows a wrong pattern produced by a student for the 
Christmas Party Decorations task. Somehow the student must have inspected the 
difference between the given Sizes 1 and 4, then figured out that the difference could 
be evenly divided over four successive configurations. This discovery eventually led to 
working out Sizes 2 and 3. The numerical terms {5, 12, 19, 26} did not match the 
figural pattern even though they formed a linear sequence. Its validity could have been 
easily verified by drawing out the configurations for Sizes 2 and 3. We want to argue 
that the student’s error is not caused by any design flaw in the task but by the student 
himself or herself for making a wrong assumption about the pattern and using an 
inappropriate strategy (i.e., finding the common difference). 
To conclude, this paper introduced the JuStraGen test instrument that was developed 
from scratch to serve the purposes of the present study. We hope the detailed 
description of the design of the test instrument will permit other researchers to use the 
instrument in the same way as we used it and to further develop it so it can serve as a 
useful tool for the community. 
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CHORAL RESPONSE AS A SIGNIFICANT FORM OF VERBAL 
PARTICIPATION IN MATHEMATICS CLASSROOMS IN SEVEN 

COUNTRIES 
David Clarke, Lihua Xu, May Ee Vivien Wan 
International Centre for Classroom Research 

University of Melbourne, Australia 
 
Choral response is an under-researched aspect of mathematics classroom discourse. 
We analysed the use of choral response in 22 junior secondary mathematics 
classrooms from 7 countries. Reporting a categorisation scheme developed from this 
research, we demonstrate that the function of choral response in many mathematics 
classrooms goes far beyond the simple recitation and memorisation drills suggested in 
the literature. Examples are provided of each form of choral response, from approval 
or agreement to the completion of mathematical propositions and the identification of 
mathematical procedures. Choral response warrants greater research attention and 
appears to be most evident in those classrooms where student-student interaction is 
least frequent, offering a culturally-compatible method to promote student speech. 
INTRODUCTION 
The research-based advocacy of student engagement in classroom dialogue (eg 
Walshaw and Anthony, 2008) tends to privilege the voice of individual students. 
Choral Response (CR) is rarely recognized as a legitimate form of verbal participation 
with the potential to engage students in classroom dialogue about mathematics. Yet 
choral response, also known as unison responding, has been shown in primary school 
and non-mathematical contexts to facilitate a high degree of active student 
involvement (Carnine, Silbert, Kame’enui, & Tarveer, 2004) and to build confidence 
in low-achieving students by allowing them to perform well in front of peers, rapidly 
increasing active student response in group instruction (Heward & Wood, 2009). 
However, because of the lack of complexity typical of students’ choral responses 
compared to the sophistication possible with elaborated individual responses, choral 
response is often associated with recitation and memorizing drills, and has been 
criticized as not conducive to good learning (Doyle, 1986).  
It appears that most of the studies of choral response have been conducted in primary 
schools, particularly with language classes (eg Grow-Mienza, Hahn, & Joo, 2001; 
Wang, 2010). Few studies have investigated the use of choral response in secondary 
mathematics classrooms. We have analysed the use of choral response in 22 secondary 
mathematics classrooms from 7 countries around the world. This study extends our 
research on spoken mathematics (eg Clarke & Xu, 2008), by examining the 
mathematics content of choral response, its sophistication, context and purpose.  
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METHODOLOGY 
We analysed video records of 110 lessons from 22 classrooms in Australia 
(Melbourne), China (Hong Kong and Shanghai), Germany (Berlin), Japan (Tokyo), 
Korea (Seoul), Singapore, and the USA (San Diego). The lessons were taken from the 
data corpus collected for the Learner’s Perspective Study (LPS). Details of the project 
methodology are available elsewhere (eg Clarke, 2006). For this analysis, it is 
important to note that three video cameras were used (teacher camera, student camera 
and whole class camera) and each provided an audio record from which classroom 
speech could be analysed. We distinguished three types of public utterances: teacher 
utterance, choral utterance, and (individual) student utterance. Public utterances were 
those that occurred in whole-class discussion or during teacher-student interaction.  

City 
School/ 
Classroom 

Average number of 
Choral Responses 
per lesson (average 
over 5 lessons) 

Percentage: 
CR/AU 

Percentage: 
IU/AU 

Shanghai 
  
  

SH1 75 30% 15% 
SH2 30 12% 26% 
SH3 35 15% 17% 

Hong Kong 
  
  

HK1 7 4% 39% 
HK2 26 9% 15% 
HK3 8 3% 32% 

Seoul 
  
  

KR1 44 16% 2% 
KR2 83 26% 5% 
KR3 70 32% 0% 

Tokyo 
  
  

JP1 5 1% 33% 
JP2 1 0.4% 16% 
JP3 3 1% 28% 

Singapore 
  
  

SG1 34 10% 28% 
SG2 42 8% 34% 
SG3 26 8% 31% 

Berlin 
  

GE1 1 0.5% 41% 
GE2 3 1% 42% 

San Diego 
  

US1 22 4% 39% 
US2 43 13% 27% 

Melbourne 
  
  

AU1 0 0% 38% 
AU2 1 0.2% 44% 
AU3 0 0% 37% 

Table 1. Average number of choral responses per lesson for each classroom 
Table 1 displays the average number of choral responses (CR) per lesson for each of 
the 22 junior secondary mathematics classrooms studied, expressed as a percentage of 
all public utterances (CR/AU), and compared with the individual student utterances 
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(IU) expressed as a percentage of all public utterances (IU/AU). All other public 
utterances were spoken by the teacher. 
Given that the average was calculated over five lessons for each classroom, the entries 
in table 1 can be taken as indicative of the level of usage of choral response in each 
classroom. The results suggest that the classroom frequency of choral utterances varies 
significantly between cities/school systems and in some cases within the same school 
system. The number of choral responses as a proportion of total public utterances also 
differed from classroom to classroom. In this analysis, we sought to compare 
indicative levels of use of choral response between classrooms, and also to investigate 
the diversity of forms and the relative sophistication possible through the use of choral 
response. Table 1 provides an indication of the relative frequency of choral response in 
the classrooms studied and of the variation in use between school systems. Our second 
goal required the careful classification of choral response types. 
No. Type of choral response 
1 “Yes, No” (select choice) responses 

- the class is given two (at most three) options and have to choose the correct 
option 

2 Numerical responses 
- where a numerical value (other than an indexical label referring to a 
point/option/equation etc) is the intended answer to the teacher’s question 

3 Mathematical symbolic expressions 
- consists of a combination of numbers, pronumerals and/or mathematical 
symbols representing equations, algebraic expressions, ordered pairs, points, 
vertices,  etc. 

4 Mathematical terms 
- word(s) or phrase(s) used in the mathematical discourse relevant to the topic 
taught 

5 Mathematical procedures 
- step(s) involved in solving a problem or deriving an answer 

6 Mathematical propositions 
- all or part of a mathematically proven or declarative statement affirming that a 
mathematical fact or relationship is either true or false 

7 Non-mathematical responses 
- a response related to an organisational or social aspect of the task or instruction 

8 Unclassified responses 
- an undecipherable response or an utterance expressing excitement or social 
ritual. 

Table 2. Categories for types of choral response 
We used an iterative approach to develop a set of categories for the types of choral 
response identified. Starting with the lesson with the most choral responses from each 
classroom, we generated an initial set of categories, which were then augmented by 
consideration of other lessons, leading to the classification system shown in Table 2. 
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In this paper, we are interested in the responses that are directly related to mathematics 
activities, that is, responses that contain mathematics content. Therefore, this paper 
will only focus on the first six types of choral response. In order to determine the nature 
and the level of sophistication of the response, each category was further differentiated 
into two sub-categories: recall and analysis (Table 3). 

Recall When the class recalls a mathematical fact; recognises the answer 
to a question that is either already included in the question on the 
board/screen/handout/textbook or can be counted at a glance; or 
reads aloud information from the board/screen/handout/textbook 

Analysis When the class obtains/derives an answer after reflecting on or 
solving a problem by working it out mentally or with pen and 
paper or by using technology 

Table 3. Nature of choral response 
TYPES OF CHORAL RESPONSE 
In the remainder of this paper, we illustrate the different types of choral response by 
drawing upon examples from the lessons analysed and discuss the value of choral 
response as a form of verbal participation in mathematics classrooms.  
Yes/no (select choice) responses 
Among all the lessons studied, one of the most common choral responses required the 
“yes/no” selection from two or at most three options. Among the responses analysed, 
more than one-fifth belonged to this category. In each instance, there was only one 
right answer. The question usually related to a known fact, a concept taught previously, 
a previous question or the evaluation of a student’s oral/written response. Below is an 
example from one Hong Kong classroom, in which students were given two choices in 
making judgements about y values and x values.  
Example 1: HK2-L02 (00:02:45:14) (recall) 

T: This is a pair of simultaneous equations: y equals x plus one and y plus 
two x equals sixteen. 

T: We talked about it yesterday. These are two equations, a pair of y and a 
pair of x, how should the pair of y values be? [Two seconds of silence] 

T: Are they equal or not? 
Ss: Equal. 
T: How about the values of this pair of x? 
Ss: Equal. 
T: They are equal. When they are solved, their values should be the same. 

Let me put it the other way around: if I substitute the values, they fit 
perfectly. That is the values that will satisfy both the first and the second 
equations. 

The first question from the teacher was not immediately answered by the class, 
possibly because of its ambiguity. The closed question “Are they equal or not?” was 
proposed after a two-second silence from the class, and the class was able to respond in 
chorus. This choral response required the recall of information previously learned.  
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Numerical responses 
Another common type of choral response required the students to recognize or provide 
a numerical answer to a given question (approximately one-fifth of analysed 
responses). We are not talking here about an indexical reference to a numbered 
equation or example, but to a question for which the correct answer was a quantity. 
Example 2. SH1_L01 (00:03:47:05) (recall) [discussing 2x + y = 10] 

T: Use the second rule and divide two from both sides of the equation, 
right? So, we can simplify it to two x plus y equals ten. Then, 
classmates, now let's see how many unknowns are there in this 
equation? 

Ss: Two. 
T: Two unknowns. So what's the index of the unknown? 
Ss: One. 

Even in an example as simple as this one, the teacher’s question is predicated on the 
assumption that all the students had some knowledge about unknowns and indices.  
Mathematical symbolic expressions 
Mathematical symbolic expressions provided another common choral response 
category in the classrooms analyzed. These could consist of a combination of numbers, 
pronumerals and mathematical symbols representing equations, algebraic expressions, 
ordered pairs, and so on. In Example 3, the students were required to transform the 
equation mentally and express it in the general form of a linear equation in two 
unknowns.  
Example 3. HK2_L02 (00:06:53:32) (analysis) 
Solving a pair of simultaneous equations by substitution: y + x = 3 and 2x + y = 24  

T: But is there any here? In the two equations, none of them is expressed 
in the general form. We don't have anything like x equals something or 
y equals something. 

T:  If we face such situation, we have to express one equation of our 
choice in the general form.  

Ss: y equals three minus x. 
T: y equals// 
Ss: //three minus x. 

Mathematical terms 
In some of the classrooms studied, the students were expected to use specific 
mathematical terms in responding to the teacher’s questions. 
Example 4. US2_L05 (00:21:55:25) (recall) 

T [Writing on board: y = mx + b] That is a special form of a what?  What 
graph? 

T Curve or a line - linear or non-linear? 
Ss Linear 
T Linear.  Okay, what are these components? [Pointing to equation] 



Clarke, Xu, Wan 

 

2 - 206 PME 37 - 2013 

What's this?  [Circles the M]. 
Ss Slope. 
T Slope.  [Writes 'slope' on board] What's this?  
Chelsea The Y intercept. 
T [Jumps into air with meter stick over head] The what? 
Ss Y intercept.  
T Y intercept, yeah. Oh heavens. Okay. Y intercept.  [Draws arrow on 

white board pointing to the B in the equation] Okay, put that into your 
notes.  

The rehearsing of mathematical terms by the whole class was a key characteristic of 
some of the classrooms analysed (Clarke, 2010). The elicitation of mathematical terms 
in these classrooms could be seen as a purposeful attempt by the teacher to help the 
students memorize the terms that were regarded as mathematically important.  
Mathematical Procedures 
Another type of choral response involved the procedures or sub-procedures required to 
solve a problem. Students were invited to solve a problem together by orally stating the 
steps involved. This was usually elicited by a series of teacher questions.  
Example 5. SH1_L02 (00:27:00) (analysis) 

T:  Now we have to decide its abscissa. How can we do it [identify the 
x-coordinate of point P]? 

Ss:  Draw a vertical line from point P to the x-axis. 

In this case, no explicit information about the form of the choral response was provided 
and the successful provision by students of the expected choral response depended on 
the understanding of the students regarding how it should be said based on their 
previous experience (that is, on their proficiency with the discourse and 
meta-discursive rules of that mathematics classroom).  
Mathematical propositions 
Students were sometimes required to provide an elaborated answer as part of a 
mathematically proven statement or a declarative statement that affirmed that 
something was either true or false in general. Below is an example in which the 
students were asked to respond with a mathematical proposition. 
Example 6. SH3_L01 (00:06:02:28) (analysis) 
Identifying linear equations in two unknowns. 1) 2x + 3 = 0 2) x + 2y - 1 = 0 

T:  The first is not a linear equation in two unknowns. What about the second one? 
Ss:  It is. 
T:  Yes, say together, why? 
Ss:  It has two unknowns and the unknowns are of power one. 

The students were asked to provide a reason for why the second equation is a linear 
equation in two unknowns by rehearsing a definition that was learned previously. 
Rather than a simple recall of the definition, it involves some analysis of the situation 
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before the students can generate the answer in unison. The generation of such 
sophisticated choral responses is a consequence of repeated and purposeful practice by 
the students, where the phrases of mathematical justification are rehearsed.  
CONCLUSION 
It is clear that the function of choral response in many mathematics classrooms goes far 
beyond the simple recitation and memorizing drills suggested in the literature. The six 
types of mathematical choral response reported in this paper demonstrate the diversity 
of ways that each teacher employed this discursive element to serve different 
instructional purposes. A simple “yes” or “no” could be a response to a very closed 
question, the main purpose of which is to keep the students on task. But it could also be 
a sophisticated response that required the evaluation of a solution or of a generalized 
mathematical statement. A choral response was also elicited as a way to involve 
students in simple mental calculation or in the process of solving a problem. In some 
classrooms, students were also required to complete the statement of a mathematical 
proposition as a whole class. The generation of sophisticated choral responses was 
limited to only a few of the 22 classrooms analysed. For these classrooms, it is clear 
that the collective way of responding had become a normative practice in the 
classroom. Elsewhere (Clarke, Xu & Wan, 2010), we have reported that the 
encouragement of student-student interaction is a classroom strategy employed 
extensively in some classrooms and not at all in others. Choral response is most evident 
in precisely those classrooms in which student-student interaction is least frequent, and 
conversely (see Table 1), and can be interpreted as a culturally-specific solution to the 
challenge of stimulating student spoken mathematics. Certainly, the use of choral 
response in mathematics classrooms warrants more attention than it has received to 
date. A companion paper will report classroom discourse patterns employing choral 
response as an integral element. 
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This report is based on data gathered as part of a UK project looking into tackling 
underachievement in primary mathematics through a focus on creativity. We initially 
analyse, within the framework of noticing (Mason, 2002), if in the discussions of 
in-service primary school teachers on the project, there is evidence of the shifts in 
teachers’ noticing, proposed by Jacobs, Lamb, and Philipp (2010) as growth 
indicators. Results show evidence of these shifts. However, we go on to analyse the 
data further and find a significant shift that is not captured by Jacobs et al’s indicators. 
We conclude by arguing for a re-conceptualisation of the idea of growth indicators, 
towards a more cyclical sense of movement and development. 
INTRODUCTION 
We report on the analysis of four transcripts of teacher meetings that took place over 
the academic year 2011-12, in the context of a project aimed at tackling 
underachievement in primary mathematics through creativity. The funded project1 is a 
collaboration between the University of Bristol and the charity “5x5x5=creativity”2. 
For the purposes of the project, we define creativity within mathematics to be indicated 
by students noticing patterns; asking their own questions; and making their own 
conjectures. In the first year, which we report on here, three primary/infant schools (A, 
B and C) in the South West region of the UK were involved. One teacher from each of 
the three schools joined a project group that met five times over the academic year. 
These were twilight meetings that generally lasted just over an hour. Alf convened this 
group and, in between meetings, visited the schools to observe and then lead sessions 
with the teachers’ classes, with a focus on running activities and class discussion in a 
way that allowed and supported student creativity. Alf made on average 10 visits to 
each school. The focus of the group meetings was on teachers sharing the work they 
had been doing, which included strategies for developing creativity and tackling 
underachievement. The ages of the children in the focus classrooms were 6-7 years old, 
in schools A and B and 7 to 9 years old in school C. 
THEORETICAL FRAMEWORK AND OBJECTIVES 
The development of the skill of noticing  
Learning to notice is part of the development of expertise. Noticing what is happening 
in a classroom is an important skill for teachers. However, noticing effectively is both 
complex and challenging (Jacobs et al., 2010). Mason (2002) characterized noticing as: 
keeping and using a record; developing sensitivities; recognizing choices; preparing to 
notice at the right moment; and validating with others. Using Mason’s work, van Es 
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and Sherin have conducted extensive work on noticing in mathematics education (van 
Es & Sherin, 2002) often using “video clubs” in which teachers watch and discuss 
video from each others’ classrooms. These authors proposed a noticing framework that 
includes identifying noteworthy aspects of a classroom situation; using knowledge 
about the context to reason about the classroom interactions; and, making connections 
between specific classroom events and broader principles of teaching and learning 
(van Es & Sherin, 2008). They found that teachers can improve their noticing by being 
supported in moving from a focus on teachers’ actions to students’ conceptualizations 
and by moving from evaluative comments to interpretative comments based on 
evidence. This improvement in noticing, going from descriptive and evaluative 
noticing towards a more interpretative one has been reported in other studies such as 
Crespo (2000). 
Recent studies have provided other contexts for the development of the skill of 
noticing. For example, Coles (2012) proposed aspects of the role of the facilitator of 
teachers discussing what they notice from video clips of teaching. One of these aspects 
is moving to interpretation. Having had a period of time sharing accounts of (Mason, 
2002) what was observed on a video clip (the task being to reconstruct the precise 
words or actions and their chronology), in focusing on the detail of what was noticed or 
observed, it is possible to then move to accounts for (interpretations of what occurred 
and why) avoiding judgmental comments. Noticing is supported by having a period of 
time describing the episode in all its detail and re-watching the clip when needed. 
Santagata, Zannoni, and Strigler (2007) offered a lesson-analysis framework (the 
identification of learning goals; the student learning in relation to those goals; and 
alternative teaching strategies to accomplish those goals) to help prospective teachers 
gain expertise in observing and reasoning about classroom events. Lundeberg, Cooper, 
Fritzen, and Terpstra (2008) suggested that video-supported reflection enabled 
elementary prospective teachers to write more specific (versus general) comments 
about their teaching and focus less on themselves and more on children when they 
reflected on video clips of their teaching and, therefore, this facilitates noticing. Star, 
and Strickland (2008) indicated that, after a teaching methods course where improving 
observation skills through videos was an explicit goal, prospective service teachers’ 
observation skills increased, particularly in teachers’ ability to notice: features of the 
classroom environment; the mathematical content of a lesson; and teacher and student 
communication during a lesson. Scherrer, and Stein (2012) pointed out improvements 
in teachers’ ability to notice interactions between teachers and students when 
analyzing classroom discussions. In this report, we are interested in the development of 
in-service teachers’ noticing and use a framework linked to children’s mathematical 
thinking skills.  
The development of teachers’ noticing of children’s mathematical thinking  
Jacobs et al. (2010) conceptualize the expertise of professional noticing of children’s 
mathematical thinking as a set of three interrelated skills: attending to children’s 
strategies; interpreting children’s understanding; and deciding how to respond on the 
basis of children’s understanding. This conceptualization is focused on in-the-moment 
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decisions, based on what the teacher notices. Teachers have to make such decisions on 
a daily basis in the classroom when children offer strategies or explanations. In the 
study, findings also indicate that this skill could be developed, providing growth 
indicators that can help professional developers identify and celebrate shifts in 
teachers’ professional noticing of children’s mathematical thinking (p. 196, numbering 
added). Specifically, 
A shift from general strategy descriptions to descriptions that include the 
mathematically important details. 
A shift from general comments about teaching and learning to comments specifically 
addressing the children’s understanding. 
A shift from overgeneralizing children’s understandings to carefully linking 
interpretations to specific details of the situation. 
A shift from considering children only as a group to considering individual children, 
both in terms of their understandings and what follow-up problems will extend those 
understandings. 
A shift from reasoning about next steps in the abstract to reasoning that includes 
consideration of children’s existing understandings and anticipation of their future 
strategies. 
A shift from providing suggestions for next problems that are general to specific 
problems with careful attention to number selection. 
There are six indicators but we focus on the first four as the last two are linked to future 
instructional decisions. In the meetings that we analyse, teachers are reflecting on their 
work with their classes (describing students’ strategies and interpreting understanding) 
and so they did not talk about what they were going to do next.  
Recently, research has shown evidence of prospective teachers’ professional noticing 
of children’s mathematical thinking development in relation to this framework. 
Fernández, Llinares, and Valls (2011; 2012) show that participation in on-line debates 
supports this development in the specific domain of proportional reasoning. Text 
produced by prospective teachers in on-line debates helped some of the teachers attend 
to the mathematical elements of proportional and non-proportional situations and link 
these elements with characteristics of students’ understandings. In Fernández et al. 
(2012), there was evidence of such shifts from general strategy descriptions (before the 
participation in the on-line debate) to descriptions that included the mathematically 
important details (after the participation). However, more studies, focusing on the 
different contexts that could improve this skill, are needed.  
So, our objective is to analyze if, in the discussions of in-service primary school 
teachers who participated in the project introduced above, there is evidence of any 
shifts in relation to the first four indicators. In reflecting on this analysis, we go on to 
offer a critique of the indicators themselves. 
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METHOD 
In this report, we focus on one of the three in-service teachers: Anna (a pseudonym). 
Anna is an in-service teacher in school B, which is an infant school in an area with high 
levels of social deprivation. We chose Anna as the focus since there is the clearest 
evidence of growth against the indicators in her case, although there is evidence of 
growth across all the teachers in the study. 
We transcribed audio data of four of the five meetings between staff. The first teacher 
meeting was not audio-recorded to allow for an ethical discussion about participation 
in the project. For the analysis, three researchers (the authors of this report) analysed, 
individually, the transcript of the first audio-recorded meeting, looking for evidence of 
the aforementioned shifts (Jacobs et al., 2010). We discussed agreements and 
disagreements as we shared what we saw as evidence for shifts. Through these 
discussions we identified common filters to use in looking at the data. For example, 
one filter we used was to look for when teachers spoke about a group of children and 
when they spoke about individuals (this filter is linked to indicator 4). Once we had 
shared this evidence and come to an agreement about what constituted evidence, we 
applied these filters to the rest of the teacher meeting data. We briefly explain, below, 
what we consider to be evidence for each of the four shifts. 
A teacher gives a general strategy description (indicator 1) when he/she identifies a 
tool or mentions that the problem was solved successfully but omits details of how the 
problem was solved. If, later on, for example thinking about whole-number operations, 
the same teacher comments how children counted, used tools or drawings to represent 
quantities, or decomposed numbers to make them easier to manipulate, we would see a 
shift into the consideration of “mathematically important details”. Teachers may give 
general comments about teaching and learning (indicator 2), such as, “I learned that 
it’s important to allow students to use different tools to come up with mathematical 
problem solution” (Jacobs et al., 2010, p. 186). If, later, they make sense of the details 
of a student strategy and note how these details reflected what the children did 
understand, for example recognizing the ability to count by 2s or the ability to switch 
between counting by 2s and 1s we could identify a shift into giving comments 
specifically addressing the children’s understanding. A teacher overgeneralizes 
children’s understandings (indicator 3) when they go beyond the evidence provided. 
For instance, saying, “children understand subtraction and addition — and which to 
choose when presented with a problem…” (Jacobs et al., 2010, p. 186). This broad 
conclusion is difficult to justify on the basis of the children’s performance on a single 
problem on which many may have used different strategies. If, later on, teachers make 
sense of the details of a student strategy and note how these details reflected what the 
children did understand in specific situations, we would say that there is a shift into 
linking interpretations to specific details of the situation. Finally, considering children 
as a group (indicator 4) is another characteristic of overgeneralising children’s 
understanding and a shift is indicated by discussion of anything linked to individual 
understanding.        
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RESULTS 
In this section, we present evidence of shifts in Anna’s ways of talking. We report on 
meeting 2 and 3 (of the 4 audio recordings) as there was the clearest evidence of 
change in between these meetings. We observe that Anna, in all meetings, focused on 
individual children (indicator 4). In both meeting 2 and 3, Anna spent some time 
discussing child “M”. We have used excerpts of her talking about the same child in 
order to analyse changes in how she talks. 
Anna (meeting 2). So, we’ve got this boy who actually I don’t know if you remember 
M on the first session and he sat, one of the first times when you came in, when he 
copied and he sat next to A who records really neatly. He didn’t know what was going 
on but he copied how she recorded, as in one number in each box. So, I was, he’s 
copied, he hasn’t done anything. But actually from that he’s recording his own and 
recording in that way which is really nice. So here it was, they could each choose, they 
chose their own number and practising how many different ways they could make that 
number using the Cuisenaire, so he picked up the yellow. So, we worked out what 
number that was and it was ‘five’. So, then he started building his five wall and 
recording it and for him this is amazing. So, he is knowing that it all equals five. He is 
beginning to see well he’s adding them together even though it’s not in the 1 plus 2 
plus 3. 
Anna (meeting 3). And then M. He tried this with Cuisenaire and realized he couldn’t 
really work it out so he moved onto a hundred square when he was doing his finding 
out about the five times table and so then spotted the pattern that he is going and 
circling on the hundred square, so he could just carry it on. And that was the first step in 
January of him being able to notice a pattern that he could then use. 
Anna has given comments addressing the children’s understanding, and is not in the 
realm of giving general comments about teaching and learning (indicator 2). For 
example, in meeting 2, she says “he picked up the yellow. So, we worked out what 
number that was and it was ‘five’. So, then he started building his five wall and 
recording it…he’s adding them together even though it’s not in the 1 plus 2 plus 3”. 
And in meeting 3, she says, “he tried this with Cuisenaire and realized he couldn’t 
really work it out so he moved onto a hundred square when he was doing his finding 
out about the five times table and so then spotted the pattern that he is going and 
circling on the hundred square”. We see, in both these instances, a focus on M’s 
understanding (indicator 2). However, we can observe a shift from overgeneralizing 
children’s understanding in meeting 2, to linking interpretation to specific details of the 
situation in meeting 3 (indicator 3). The evidence is that in meeting 2 she says, “So, he 
is knowing that it all equals five. He is beginning to see well he’s adding them together 
even though it’s not in the 1 plus 2 plus 3”. Although there is attention paid here to the 
child’s understanding, we read an overgeneralisation in the comment “he is beginning 
to see well he’s adding”, which is not something it is possible to observe directly. This 
kind of comment is also around in meeting 3, for example “he … realized he couldn’t 
really work it out so …”; here, again, Anna cannot know whether M realised something 
or not. However, also in meeting 3, Anna says “And that was the first step in January of 
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him being able to notice a pattern that he could then use”. Here, in contrast, the 
comment is a careful interpretation of specific details – M has noticed a pattern that he 
was able to continue and it was the first time he had done this during the year. It would 
have been possible to observe this new behavour of M’s and the attribution of his 
noticing is closely linked to what Anna saw and hence is justified. In relation to 
indicator 1, across both meetings we see evidence of Anna considering mathematically 
important details although perhaps, as ever, there are more mathematical issues that 
could be raised. 
We also considered whether there are significant changes that took place over the 
meetings not captured by the growth indicators - the data on Anna indicates there are. 
Indicators 1 and 2 denote a shift from general descriptions to the particular of 
classroom events. While we agree with Jacobs et al. (2010) that this is an important 
shift, we do not see it as the end of the story. Anna, as we have shown, talked in the 
meetings about individual children and events. As well as, on occasion, generalising 
from these observations, for example in the except below we read her articulating a 
general move in her teaching to “letting children speak”: 
Anna (meeting 2). And I think it goes back to that very first session we did when you 
let J read those numbers because at that very beginning, it’s her trying to spot 
something and other children are spotting and to us it didn’t really make any sense. 
And it is like letting children like M for example going ‘I used a pattern, I did two, two, 
two, two, two’ because he’s added two every time and just allowing them to say that 
out and then gradually you see actually through this that they’ve then actually begun to 
spot patterns that they can use that are helpful.  
Anna, here, is noticing a similarity in an incident involving J and one involving M. In 
both cases there is a “letting” of the children talk about what they notice. Articulating 
this kind of more general label, we see as significant in teacher learning (see Brown & 
Coles, 2012). The movement is in the opposite direction to what Jacobs et al. (2010) 
see as “growth”, yet we believe the articulation of a label such as “letting children 
speak” supports future noticing. The label is an example of a “purpose” (Brown, 2005) 
that supports the development of new actions in the classroom, linked to the label. This 
kind of articulation is perhaps also an example of what van Es and Sherin label: 
“making connections between specific classroom events and broader principles of 
teaching and learning” (2008, p. 245). Like van Es and Sherin, we also see this kind of 
connection as one of the marks of expertise (Brown & Coles, 2011) and so in 
supporting teachers to reach such articulations we support them in developing 
expertise in their classrooms. 
DISCUSSION 
This study analyses if, in the discussions of in-service primary school teachers who 
participated in a project, there is evidence of any shifts in relation to the first four 
indicators proposed by Jacobs et al. (2010) indicating a development in their skill of 
noticing. Results indicate that in-service primary school teachers who participated in 
the project showed evidence of shifts related to the way that they notice children’s 
understandings. Therefore, teachers show evidence of development of the skill of 
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noticing. So, the meetings of the project where in-service teachers shared the work they 
had been doing to tackle underachievement and develop creativity and the visits at the 
school by one of the researchers running activities and supporting student creativity 
seem to support this development.  
We have found the growth indicators used in the analysis above have helped us to see 
more in Anna’s words. The indicators have helped tease out subtleties and 
complexities that we did not notice ourselves initially. However, we argue that there is 
a significant shift not captured by the indicators, when Anna, from the detail of talk 
about students, is able to articulate a more general statement about principles guiding 
her interactions and teaching. Articulation of such general statements supports future 
noticing and the accrual of strategies in the classroom linked to the statement (Brown 
& Coles, 2012). One issue we find with the idea of a “growth indicator” is an 
assumption of a one-way direction of development. When it comes to making general 
comments about teaching and learning, compared to focusing on individuals, we see 
our work with teachers more as a cycle than an upward gradient. We do not believe it 
likely that anyone can arrive directly at general statements of principle, if discussion 
begins at a general level. There is a need to support discussion of the detail of 
classroom events, as Jacobs at al. (2010) suggest. However, we suggest that growth is 
also supported by a cycling back, from the particular to the more general, in order to 
arrive at the succinct articulation of principles or “purposes” (Brown & Coles, 2012) 
that can be kept in mind, to inform future noticing and future actions. 
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Verschaffel et al. (1994) presented upper primary school children word problems that 
were problematic from a realistic modelling point of view (so-called P-items). They 
found that pupils in general did not use their everyday knowledge when confronted 
with such P-items, and thus solved them unrealistically. In this paper we report two 
related studies that investigated whether and how illustrations that represent the 
problematic situation described in a P-item help higher education students to imagine 
the problem situation and thereby solve the problem more realistically. We found that 
participants barely look at these representational illustrations and when they do look, 
there is no effect of the illustrations on the realistic nature of their solutions. 
INTRODUCTION 
Students encounter various kinds of illustrations in their mathematics textbooks. Some 
of these illustrations just decorate the textbook page, while others are more or less 
directly linked to the mathematical content. A lot of theoretical and empirical research 
has already investigated the relation between text and illustrations, but up to now little 
or no research has been done about the influence of illustrations on students’ 
approaches to mathematical word problems that are problematic from a realistic point 
of view (so-called P-items). Previous research shows that students exclude their 
knowledge of everyday life when solving such word problems (Greer, 1993; 
Verschaffel, De Corte, & Lasure, 1994). In the present paper we report two closely 
related studies that investigated whether and how students attend to and use the 
illustrations that accompany P-items and that are, as we would expect, helpful to solve 
these problems realistically. Before presenting these studies we will briefly review the 
research about students’ approaches to and solutions of P-items. 
THEORETICAL AND EMPIRICAL BACKGROUND 
It is generally claimed that, as a result of their year-long participation in traditional 
mathematical word problem solving lessons, many students approach these problems 
in a superficial and artificial way. They just search for the mathematical operation(s) to 
perform with the given numbers, with little or no attention to the meaningfulness of 
their solution (Lave, 1992; Reusser & Stebler, 1997; Schoenfeld, 1991; Verschaffel, 
Greer, & De Corte, 2000). In an attempt to provide empirical evidence for this claim, 
Verschaffel, et al. (1994) presented 75 elementary school pupils 20 word problems to 
solve. Ten of these problems were standard items or S-items, i.e., “items that ask for 
the straightforward application of one or more arithmetic operations with the given 
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numbers” (Verschaffel et al., p. 275). For example: “A man cuts a clothesline of 12m 
into pieces of 1.5m each. How many pieces does he get?” The other ten items were 
problematic items or P-items, i.e., items “in which the mathematical modelling 
assumptions are problematic, at least if one seriously takes into account the realities of 
the context called up by the problem statement” (Verschaffel et al., p. 275). For 
example: “A man wants to have a rope long enough to stretch between two poles 12m 
apart, but he has only pieces op rope 1.5m long. How many of these pieces would he 
need to tie together to stretch between the poles?” Only 17.0% of the reactions to these 
P-items were realistic reactions (RRs), which led the authors to the conclusion that 
upper elementary school children have a strong tendency to neglect their everyday 
knowledge when solving mathematical word items. 
During the past 15 years several researchers have replicated this finding while others 
have tried various manipulations and interventions to better understand the origin and 
development of this tendency, and to counter it (see Verschaffel et al., 2000; 
Verschaffel, Greer, Van Dooren, & Mukhopadhyay, 2009). Examples are studies in 
which pupils are alerted at the beginning of the test that some problems need careful 
consideration (Verschaffel et al., 2000; 2009; Yoshida, Verschaffel, & De Corte, 1997) 
or are confronted with more authentic versions of the P-items (Palm, 2008). The results 
of the studies in which pupils were alerted were not or only moderately positive, 
whereas the studies in which the problems were made more authentic showed 
significant positive effects.  
In a previous study (Dewolf, Van Dooren, Ev Cimen, & Verschaffel, in press) we 
investigated whether presenting illustrations that represent the problem situation (i.e., 
representational illustrations according to the categorisation of Elia & Philippou, 2004) 
increased the number of RRs on P-items. The study consisted of two parallel data 
collections in Turkey and Belgium. Respectively 402 and 233 pupils from the 5th or 
6th grade from elementary school in Turkey and Belgium were confronted with a 
subset of P-items and S-items from the study of Verschaffel et al. (1994). One fourth of 
the pupils received the problems without any manipulation, another fourth with an 
illustration that represented the problematic situation, another fourth with a warning 
about the tricky nature of some of the problems in the test, and a last fourth with both 
an illustration and a warning. The expectation was that there would be a positive effect 
of the illustrations and of the warning on the number of RRs on the P-items, and 
especially when these illustrations were combined with a warning. However, contrary 
to our expectations, neither the presence of an illustration, nor the presence of the 
warning, and not even the combination of both, resulted in an increase of RRs. 
In this paper, we will build further upon this study by reporting two closely related 
studies in which we will further investigate whether problem solvers pay attention to 
these representational illustrations and use them to solve P-items more realistically. 
STUDY 1 
In the first study we investigated why complementing P-items with representational 
illustrations (that as we expect help the problem solver to build a richer mental 
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representation of the problem situation and thereby to evoke real world knowledge 
about the situation) does not result in more RRs. To investigate this we collected and 
analysed students’ response data, reaction times (RTs), eye movements, and 
confidence scores on a subset of word problems from the study of Verschaffel et al. 
(1994). 
Method 
Thirty higher education students were equally divided in three conditions: 1) the 
Representational Illustration condition (RI-condition), in which the word problems 
were presented together with representational illustrations (i.e., illustrations that 
provide an overall depiction of the problematic situation), 2) the No Illustrations 
condition (NI-condition), in which the problems were presented in their original form 
without illustrations, and 3) the Decorative Illustration condition (DI-condition) in 
which the word problems were presented together with decorative illustrations (i.e., 
illustrations that have no connection whatsoever to the content of the problem). For an 
example of the Rope P-item and the planks P-item together with their representational 
or decorative illustration see Table 1. 
Each student was tested individually. Sixteen word problems (eight S-items and eight 
P-items) from the study of Verschaffel et al. (1994) were modified so that all parallel 
S-items and P-items were comparable in number of words, linguistic complexity, 
number of lines of text, and required mathematical operation(s). These 16 items were 
presented one by one on the computer screen. Students were asked to solve them and 
give their answer and possible additional comments orally. Depending on the 
condition, the word problems were presented with or without an illustration. The word 
problem was presented on the left side of the screen (text area), and the illustration – 
representational, decorative, or a blank space – was presented on the right side of the 
screen (illustration area). 
While solving the problems, students’ eye movements were recorded with the Eyelink 
II. Afterwards, the eye movement device was turned off and the students received a 
paper-and-pencil questionnaire with the same 16 word problems, presented again with 
a representational or decorative illustration or without an illustration (depending on the 
condition). In this questionnaire students were asked to indicate, for each item, to what 
extent they had hesitated about their answer (by responding: a) not at all, b) almost not, 
c) a little bit, and d) very much), and if so, why. 
Analysis and Results 
Students’ responses on the items were analysed with a logistic regression analysis. 
First of all, we found that, just like elementary school pupils, higher education students 
tend to exclude real world knowledge when solving P-items. Only 27.9% of the 
reactions to the eight P-items were realistic. As in our previous study (***), no effect of 
representational illustrations was found; the number of RRs in the RI-condition 
(31.3%) did not differ significantly from the number of RRs in the DI-condition 
(31.3%) or the NI-condition (21.3%), X²(2,240) = 4.38, p = .112.  
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Rope P-item  
a) A man wants to have a rope long enough to stretch between 

two poles 12m apart, but he has only pieces of rope 1.5m 
long. How many of these pieces would he need to tie together 
to stretch between the poles? 

 
b) A man wants to have a rope long enough to stretch between 

two poles 12m apart, but he has only pieces of rope 1.5m 
long. How many of these pieces would he need to tie together 
to stretch between the poles? 

 
Planks P-item  
a) Steve has bought 4 planks of 2.5m each. How many planks of 

1m can he get out of these planks? 

 
b) Steve has bought 4 planks of 2.5m each. How many planks of 

1m can he get out of these planks? 

 

Table 1: The rope P-item and the planks P-item with a representational illustration (a) 
and a decorative illustration (b). 

Second, there were no significant differences between conditions in RT, X²(2, 
480) = 0.29, p = .865. There was however a significant difference between solving 
P-items and S-items; P-items were solved significantly slower than S-items, 
X²(1, 480) = 40.42, p < .001. There was no interaction between condition and item 
type, X²(2, 480) = 0.77, p = .680, so, P-items were processed more deeply than S-items, 
irrespectively of the presence or nature of illustrations.  
Third, students’ eye movements on the text also showed no significant effect of 
condition on the number of fixations, X²(2, 480) = 1.36, p = .507. However, in line with 
the RT data, significantly more fixations on the text were needed to solve P-items than 
S-items, X²(1, 480) = 26.23, p < .001, while there was no interaction between condition 
and item type, X²(2, 480) = 0.62, p = .732. Concerning mean duration of the fixations, 
there was no effect of condition, X²(2, 19207) = 0.99, p = .610, item type, X² (1,19207) 
= 2.80, p = .094, nor an interaction effect, X²(2, 19207) = 0.77, p = .681. 
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Fourth, students’ eye movements on the illustration area revealed that they barely 
looked at the illustrations. There were however significantly more fixations on the 
illustration area in the RI-condition (1.5% of all fixations), than in the DI-condition 
(0.4%), where the illustrations were not linked to the problem, or the NI-condition 
(0.0%), where the illustration area was blank, X²(1, 13230) = 34.48, p < .001. To 
calculate how many illustrations in total were at least minimally processed with a 
minimum fixation of 150ms (Rayner, Smith, Malcolm, & Henderson, 2009), the 
longest fixation on each illustration, for each item per student was identified. In the 
RI-condition 26.3% (16.9% P-items and 9.4% S-items) of the illustrations were 
processed, versus only 8.8% (6.3% P-items and 2.5% S-items) in the DI-condition. 
This difference between conditions was significant (X²(1, 320) = 7.93, p = .005), 
leading to the conclusion that students’ attention was captured more by the 
representational than by the decorative illustrations. We also looked at the relation 
between looking at the illustration and giving a RR, but neither in the RI-condition nor 
in the DI-condition there was a significant relation.  
Fifth, students’ responses on the questionnaire showed that hesitations about the 
correctness of the answer occurred significantly more on P-items than on S-items but 
the amount of hesitation did not differ significantly between the conditions. When 
looking at the P-items that were solved non-realistically, we see that students tended to 
hesitate more about the problematic nature of the P-items in the RI-condition than in 
the other two conditions, suggesting again some impact of the representational 
illustrations on students’ solution processes of the P-items. 
Conclusion 
We can conclude that students fixated the illustration area only very rarely, even when 
being confronted with representational illustrations of P-items. So we have strong 
evidence that in the vast majority of cases, the representational illustration was not 
helpful because students simply did not look at them. Two additional explanations that 
may account for a much smaller number of cases wherein the presentation of a 
representational illustration did not led to a realistic response, are that sometimes 
students may have looked at the representational illustrations but without noticing the 
realistic modelling complexity, or that students’ beliefs about solving school word 
problems may have prevented them from giving a RR as their final answer (even 
though they may have processed the illustration and noticed the realistic modelling 
complexity). 
STUDY 2 
Study 2 departed from the main finding of Study 1, namely that students barely look at 
the provided representational illustrations. This time we manipulated the presentation 
of the illustrations to maximize the chance that students would actually attend to them 
and process them. We hypothesised that, when actually processed, the representational 
illustrations would help students to think more realistically about the P-items and thus 
to generate more RRs to them. 
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Method 
Hunderd-and-fourty-two higher education students were randomly assigned to three 
conditions; 1) a DI-condition in which the word problems were presented together with 
decorative illustrations, 2) a RI-condition with representational illustrations, and 3) a 
RIW-condition with representational illustrations and an additional warning. 
The experiment was conducted in seven sessions with groups of approximately 20 
students. The same eight S-items and eight P-items as in Study 1 were presented to 
each student individually on the computer. In each condition the illustration was 
presented for five seconds before the problem text to guarantee that students would 
actually process them. After these five seconds, the illustration was presented again 
together with the problem text (as in Study 1). Depending on the condition the 
illustrations were decorative or representational. In the RIW-condition an additional 
warning was given above each illustration that stated that they can be helpful to solve 
the problem. Different from Study 1 (in which students had to state their answer 
orally), students were asked for each word problem to write down their answer and 
possible additional comments. Afterwards, students received the same 
paper-and-pencil questionnaire as in Study 1, in which they had to indicate how much 
they had hesitated for each item, and if so, why. 
Results 
Students’ responses on the items were, as in Study 1, analysed with a logistic 
regression analysis. First of all, the percentage of RRs on the P-items, across all 
conditions, was, although higher than in Study 1, still quite low. Only 53.0% of the 
reactions was considered realistic. There was no significant difference between the 
three conditions, X²(2, 1129) = 0.01, p = .995. There were 53.1% RRs in the 
DI-condition, 52.7% in the RI-condition and 53.1% in the RIW-condition.  
Second, while students hesitated significantly more about their solutions of the P-items 
than of the S-items, there was no significant difference in amount of hesitation between 
the three conditions, and also no differences between the three conditions were found 
for reasons why students had hesitated. Also when looking at the P-items that were 
solved non-realistically, there was no difference in the reasons why they had hesitated 
between the three conditions. These results with respect to students’ hesitations are 
generally in line with what we found in Study 1. 
Conclusion 
From Study 2 we can conclude that forcing students’ to look at the representational 
illustrations of P-items, even in combination with an explicit warning about the 
usefulness of these illustrations for solving the problems, did not yield a positive effect 
on the number of RRs on these items.  
GENERAL CONCLUSION AND DISCUSSION 
Based on these two related studies we first of all can conclude that representational 
illustrations do not help to solve P-items realistically, above all, because students 
simply do not look at these illustrations (Study 1). Second, even when students are 
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experimentally forced to actually attend to these illustrations, and even when they are 
extra motivated to use them in their solution endeavours, still no positive effect on the 
number of RRs was found (Study 2).  
It must be noted that the percentage of RRs of Study 2 was higher than in Study 1 
(53.0% versus 27.9%), but the percentage remained quite low and within the range of 
percentages found in other previous studies with higher education students 
(Verschaffel, De Corte, & Borghart, 1997). We have no clear explanation for the 
difference in percentage RRs between both studies. Possibly, the small sample size of 
Study 1, or slight differences in the test administration may explain the difference in 
RRs between both studies. 
The findings of both studies need more research to yield a more fine-grained and 
deeper account of why the representational illustrations did not bear the intended effect 
and what can be done to those illustrations to make them more effective. For example, 
it has to be investigated whether simple line drawings or more realistic real life 
photographs would be more effective than the elaborated coloured drawings used in 
the present studies. Also modifying the representational illustrations so that the 
problematic nature of the item is more salient would be interesting, because it is 
possible that in the illustrations that were used the realistic modelling difficulty (e.g., 
the fact that, in the rope item, the pieces of rope had to be knotted together) was not 
sufficiently prominent. Finally, the present studies should also be replicated with 
elementary school children, because it can be argued that those children will be more 
attracted by illustrations accompanying word problems than educated adults.  
These disappointing findings concerning the use of representational illustrations do not 
allow us to make some conclusions concerning education. To come to a meaningful 
and relevant conclusion concerning education, and to make recommendations 
concerning the use of illustrations together with non-standard word problems in 
textbooks and mathematics classes, we need to wait for the results of our future studies.  
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The relationship with mathematics of future primary teachers is very often built on 
negative experiences with mathematics as students and characterized by strong 
negative emotions towards mathematics. This phenomenon is alarming because of its 
consequences on teachers’ development and practice. Nevertheless, many future 
primary teachers reveal a desire for “redeeming” themselves from negative past 
experiences in order to become “good mathematics teachers”. In this perspective, we 
conducted a narrative study aimed at deepening the knowledge of this 
“math-redemption phenomenon”, and trying to identify its roots and features. 
INTRODUCTION AND THEORETICAL BACKGROUND  
In her very famous book “Do you panic about maths?”, Laurie Buxton (1981) 
describes how, for many pre and in service primary teachers, the relationship with 
mathematics is often built on several negative experiences with school mathematics 
and it is characterized by negative emotions. In particular, pre-service primary 
teachers’ negative emotions towards mathematics are confirmed by more recent 
studies (Di Martino & Sabena, 2011). This phenomenon is worrisome because, on the 
one hand, emotions towards mathematics influence teachers’ practice, and therefore 
strongly affect the quality of students’ learning in mathematics (Hodgen & Askew, 
2011). On the other hand, they can seriously interfere with pre-service primary 
teachers becoming good mathematics teachers (Hannula et. al, 2007). Teachers’ 
emotions are a crucial factor that influence also teachers as decision-makers: 

Teacher knowledge is located in ‘the lived lives of teachers, in the values, beliefs, and deep 
convictions enacted in practice, in the social context that encloses such practices, and in the 
social relationship that enliven the teaching and learning encounter’. These values, beliefs 
and emotions come into play as teachers make decisions, act and reflect on the different 
purposes, methods and meanings of teaching. (Zembylas, 2005; p. 467, emphasis as in the 
original) 

Nevertheless, there is not much literature about teachers’ emotions: whereas research 
on teachers’ beliefs has been extensive and subsumed into almost all areas of research 
on mathematics education, the study of teachers’ affect has not (Philipp, 2007). 
Moreover, the emotions evoked by mathematics are largely a product of the lived 
experience with mathematics as students (Brady and Brown, 2005), but:  

limited research, however, was located that examined the relationship between pre-service 
teacher education students’ experiences with formal mathematics instruction, and their 
future professional practice. Specifically, more needs to be known concerning the manner 
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in which past experiences at school may have influenced both attitudes towards the subject 
as well as confidence in teaching it. (Brady & Brown, ibidem, p. 37) 

Within this framework, three years ago we began a study to investigate about primary 
pre-service teachers’ emotions towards mathematics and their links with their past 
experiences (as math-students) and their future perspectives (i.e. the emotions evoked 
by the idea of having to teach mathematics in the future). The results of the study, 
based on an open-ended questionnaire, confirmed the connection between emotions 
towards mathematics and past experiences as math-students. Moreover they also 
highlighted that many future teachers, among those who declare strong negative past 
relationship with mathematics, express the desire to reconstruct a relation with 
mathematics (Coppola et al., to appear). This desire, that we call the desire for 
math-redemption, appears to be a very promising phenomenon for teacher education: it 
is the desire to face the “challenge” of teaching mathematics, starting from a personal 
reconstruction of the relationship with the discipline. As teacher educators, we have the 
chance of leveraging this desire, in order to break the chain connecting the negative 
past school experiences with the negative feelings towards mathematics of many 
primary pre-service teachers. Therefore, we have recently conducted a new study with 
the aim of deepening the knowledge of the math-redemption phenomenon. The study 
is guided by the following research question: what are the cognitive and emotional 
roots of the desire for math-redemption of future primary teachers? We use a narrative 
approach to trace these roots in future teachers’ mathematical stories.  
METHODOLOGY 
Procedure and population. Our study developed through two phases:  
i) The first phase involved a group of 90 future primary teachers, enrolled in the 
compulsory course on Mathematics and its Teaching of the University degree for 
primary school teachers of a relatively small Italian public University. In the first 
lesson of the course, we administrated the open-ended questionnaire developed in the 
previous study (Coppola et al., to appear). Respondents were asked to answer in 
anonymous way (choosing a nickname), within 45 minutes. The questionnaire is 
composed by 12 questions, investigating emotional disposition, beliefs and perceived 
competence in mathematics. In this paper, we focus primarily on the answers to the 
questions related to emotional disposition towards mathematics and towards the idea 
of having to teach it. They are: Q1: “Write 3 emotions you associate to the word 
mathematics” and Q2: “Which emotions do you feel in knowing that you will have to 
teach mathematics? Why?” 
ii) In the second phase, we conducted 11 semi-structured interviews. This phase 
involved 11 volunteer students: 6 of them had participated to the first phase and, in 
answering to the questionnaire, had declared some negative emotions towards 
mathematics. The other 5 students had been enrolled in the course on Mathematics and 
its Teaching (and they had filled the same questionnaire in their first lesson of the 
course) two years before, when the course was not compulsory in order to obtain the 
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degree. So, they had chosen to follow the course, despite the declared problematic past 
relationship with mathematics.  
The interviews were based on the explicitation interview method (Vermersch, 1994). 
This method is based on particular techniques for the formulations of the re-launchings 
(questions, reformulations, silences) aimed at facilitating and attending the a posteriori 
verbalization (in the sense of putting into words) of a particular experience. In our 
case, the initial hints were prepared on the basis of the analysis of the 
open-questionnaire used in the first phase. They regarded: an episode of the 
mathematical experience that the interviewee considered particularly significant, a 
mathematics teacher that has influenced (positively or negatively) the personal 
relationship with mathematics, the eventual turning points in this relationship, the idea 
of having to teach mathematics. Because of their nature, interviews had not a settled 
time: in our case, it varied in a range from 20 to 45 minutes. The interviews were 
audio-recorded and then fully transcribed. 
Rationale. The choice of the research instruments is not neutral: the choice of the 
open-ended questionnaire reflects our conviction that the variety of possible answers 
coming from open questions is an irreplaceable value for the purpose of our study. 
According to Cohen et al. (2007, p. 249): 

It is open-ended responses that might contain the ‘germs’ of information that otherwise 
might not have been caught in the questionnaire (…) An open-ended question can catch the 
authenticity, richness, depth of response, honesty and candor which are the hallmarks of 
qualitative data.  

The data gathered by the questionnaire were analyzed through an inductive content 
analysis (Patton, 2002). In particular, for a first rough classification of emotions into 
positive/negative emotions, we referred to the theory of cognitive origin of emotions 
(Ortony et al., 1988), that describes emotions as “valenced reactions” to consequences 
of events, action of agents, or aspects of objects, and classify the reactions to events in 
being pleased and displeased, the reactions to agents in approving and disapproving, 
and those to objects in liking and disliking. These dichotomies permitted a first 
classification of emotions into positive and negative. On the other hand, we are aware 
that open questions too have their limitations: they are still one-way, when compared 
with interviews. Then, in line with Bruner (1990), that describes narrative as a strong 
means to interpret human actual thoughts, we completed our survey through the use of 
interviews. In particular, Kaasila (2007) has highlighted the potential of narrative 
interviews for the study of pre-service teachers’ emotions towards mathematics. 
Regarding the analysis of this kind of narrative data, Lieblich et al. (1998) recognize 
two main independent dimensions: holistic vs categorical and content vs form. The 
former refers to the chosen unit of analysis, which can be the narrative as a whole, or 
specific utterances singled out from the complete narrative; the latter refers to the 
traditional dichotomy made in literature between the content and the form of a 
narrative. Our approach is mainly content-categorical oriented, being considered 
particularly suitable to study a phenomenon common to a group of people (Kaasila, 
2007). 
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RESULTS AND DISCUSSION 
The analysis of the answers to the questionnaire confirms that mathematics evokes 
negative emotions in many primary pre-service teachers. Looking at the answers to Q1 
“Write 3 emotions you associate to the word mathematics”, we find two alarming 
results: the 28,9% of the participants writes only negative emotions; three over four 
(the 75,5%) of the participants to our survey uses at least one of the following terms: 
fear, anxiety, stress, distress, tension, anger, anguish, affliction, dread, boredom, 
panic, discouragement, depression, repulsion, revulsion, frustration, unease. 
However, answering to the question Q2 (“Which emotions do you feel in knowing that 
you will have to teach mathematics? Why?”), the students show more positive 
emotions about their eventual future enterprise of teaching mathematics: the 43,3% 
declares positive emotions towards this eventuality, compared with 41,1% that 
declares negative feelings (10% does not provide an answer to this question, and 5,6% 
replies with mixed - positive/negative - emotions: for example fear and excitement). 
These data seem to be related to math-redemption, and this impression is confirmed by 
reading the motivations written by those respondents indicating negative emotions 
towards mathematics, and positive emotions towards the idea of having to teach it. For 
example, Shirly writes: “Since I am a person more inclined towards humanities, seeing 
myself in the role of mathematics teacher is very gratifying”; and Maggiolina: “I’m 
convinced that using a good method, I will be able to get my pupils to love 
mathematics. I can get my redemption”. 
In Table 1 we report the percentages of Positive (P), Negative (N), Mixed (M) 
emotions evoked by the idea of having to teach mathematics in relation with the four 
groups identified by the answers to the item “Write 3 emotions you associate to the 
word mathematics” (NE_0, NE_1, NE_2, NE_3 indicate respectively the group of 
respondents that have indicated 0, 1, 2 or 3 negative emotions): 

 P N M No reply 
NE_0 63,2% 15,8% 10,5% 10,5% 
NE_1 53,6% 42,9% 3,5% 0% 
NE_2 36,4% 40,9% 13,6% 9,1% 
NE_3 11,1% 66,7% 16,7% 5,5% 

Table 1: cross-analysis of answers to Q1 and Q2.  
The quantitative cross-analysis summarized in Table 1 shows that a subgroup with 
positive emotions towards the idea of having to teach mathematics is present in all the 
NE groups. On the other hand, the different consistence of these subgroups within the 
whole groups seems to indicate that the strength for pursuing a math-redemption 
decreases dramatically when the emotions towards mathematics are too negative. 
The narrative data, gained through the interviews, provide many cues to understand the 
differences between emotions towards mathematics and towards the idea of having to 
teach it, highlighting the math-redemption phenomenon. Content-categorical analysis 
of these data allows us to identify some features of the phenomenon. All the 11 
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respondents speak about their serious difficulties in the relationship with mathematics, 
and they identify a clear turning point in school-experience, a real crisis’ moment:  

Angela: During grade 12 I wanted to change school (…) It was a real crisis of 
rejection, during grade 12. Now I remember! Exactly a crisis of rejection 
(…) because I was not able to sustain the charge, especially for what 
concerns maths (…) And then I said to myself “I finish this year, and after 
that I don’t want have nothing to do with math”. 

In these turning points, the role of math-teachers is always recognized as crucial. 
Almost all the narratives of the students describe one or more school episodes featuring 
a math teacher that is disrespectful of the students’ needs, sometimes a teacher with 
whom it is impossible for the students to establish any relationship: 

MariaTeresa: During grade 10 there was a change, I have had a teacher with which really, 
I was not able to built a relationship (…) and in that moment I have had…in 
other words like I was done, I was over mathematics.  

Doriana: During high school I had an old school teacher, detached in the relationship 
(…) he used to write and write entire blackboards with numbers, and, when 
he arrived at the end, he used to delete the signs and start again.  

This poor consideration for students is recognised as particularly problematic for those 
who have difficulties in mathematics:  

Piurla: They explain a topic, a theorem, something. If you understood: good! If 
you did not understand something, it was you that did not understand! They 
did not use to face the question “why did he/she not understand?” or 
“perhaps I could try to explain that in a different way”, No! That was ‘The 
way’!  

On the one hand, the firm awareness of this negative influence of the math teacher on 
their relationship with math elicits in the pre-service teachers the fear to do the same 
errors. So, fear becomes the emotion with which they approach the teaching of math:   

Margot: [speaking about her first experience as math substitute teacher] I was afraid 
of not being able in teaching math. That is, I was afraid to make the same 
errors that my math teachers made with me.  

On the other hand, however, the same awareness is one of the main motivations for 
trying the reconstruction of the relation with math, the germ of the math-redemption: 

Margot: The incentive to restart with mathematics has been the motivation to be a 
good teacher.  

Iperurania: It would be great if I had to teach math! Just for my past experience I would 
do something more. If I could teach math, I’d wake up in the morning with 
a lot of energy, because I want to transmit what has not been given to me, I 
don’t want that my students think of mathematics as I thought of it!  

From the interviews, it emerges that this motivation is shared among all the 
respondents: they show a strong desire to become a better teacher than their own 
teachers, and to spare their future students from math-pain. But, in some cases (2 over 
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11 of our respondents), a feeling of uncontrollability prevails: it seems impossible to 
imagine overcoming the difficulties with mathematics related to strong negative 
emotions towards mathematics, and to inadequate math knowledge. This feeling of 
uncontrollability affects the self-perception as mathematics teachers, and determines 
negative emotions also towards the idea of having to teach mathematics; hence it 
appears to preclude any possibilities for math-redemption: 

La mente contorta: I associate non-positive emotions towards the idea of having to teach 
mathematics (…) just because I have had bad experiences during high 
school education, I don’t know how cover my blanks! 

Tania Bolena: I hope that I will never have to teach math. Sincerely, I don’t like 
mathematics and then I don’t know how I could spread passion for maths to 
my pupils. I already know that I could ruin them! 

Vice versa, for all the other 9 cases, the feeling of controllability is the key-element for 
the math-redemption. These respondents express the conviction that, in order to 
become a good teacher, the reconstruction of the personal relation with mathematics is 
needed: it will be a hard challenge, but they will be able to win this challenge. This 
aspect appears particularly explicit in the words of the 6 students that have chosen the 
mathematics course when it was not compulsory: 

Margot: During my first year at university, I could choose between physics and 
mathematics course. I had no problem with physics, it would have been the 
easiest way, but I thought “No, it is the time for facing with math, for 
understanding whether I’m able to get closer to mathematics or if me and 
maths are on separate rails”. 

Angela: It was a challenge that I wanted to do! I chose that one, despite my 
difficulties with maths (…) Thinking to teach mathematics troubles me to a 
certain extent, but now I am quiet because I have a different approach: 
before I used to think “no, I am not able” and I rejected to find a solution to 
the problems, now I gear up and I try to understand how to find a solution, 
because I believe that difficulties can be overcome.  

Among the 9 narratives reporting a travel towards the math-redemption, it is possible 
to recognize some further interesting common features. All the narratives are full of 
emotional charge: pain is the label usually used to describe the experience as math 
students. This pain is also related to the awareness that the relationship with math has 
strongly influenced important choices in the life, sometimes even impeding the 
pursuing of some personal ambitions:  

Margot: I gave up entering college of architecture because of math: what a pity!  

From the narratives, it clearly emerges how school experience of the respondents, i.e. 
their past as math students, influences the process of redemption in terms of:  
i) motivations: the desire of math-redemption is often linked with the will to take a sort 
of ‘personal revenge’ on teachers. 

Angela: Surely I’m going against the image that my primary teachers had of me: 
yes, this is a little revenge!  
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Mathe: At the end of the middle school, despite the fact that I got the maximum 
mark, my teacher said to me “but I don’t suggest you to carry on with 
mathematics”: he should not have said to me this! Now, maybe, I will 
become a mathematician, and he will not know that!  

ii) emotions: the pain experienced in the past makes the ongoing math-redemption 
process full of positive emotions. 

Marika: Despite my past rough relationship with mathematics, now I succeed in 
having this cohesion with math: it is an incredible satisfaction!  

iii) possibility to become a good teacher, taking care of students’ difficulties and being 
able to understand them, since they personally experienced those difficulties. 

MariaTeresa: it is possible to learn a lot of things: above all, from our past negative 
experiences. 

Mathe: It is just because I felt this hostility towards mathematics as a student that I 
believe to have those motivations and also that experience useful to 
understand where pupils could run into problems, or feel hostility.  

CONCLUSIONS 
The research carried out for several years has confirmed the worrisome spread, among 
future primary teachers, of strong negative emotions towards mathematics. 
Nevertheless, it has also highlighted a very interesting phenomenon: what we have 
called the desire for math-redemption. Through the analysis of the narratives, we have 
outlined some typical features of this meaningful phenomenon: the pain during the 
experience at school; the key-role of a teacher that constitutes a sort of negative model 
(the narrator recognizes in this negative model what he/she does not want to become); 
the need of glimpsing the possibility that the reconstruction of the relationship with 
mathematics succeeds; and, finally, the deep (positive) consequences on the emotional 
disposition and on the self-perception of glimpsing this possibility. As teacher 
educators, we cannot ignore these features, in order to appeal to the desire for a 
math-redemption and to support future primary teachers in the challenge of 
reconstructing their relationship with mathematics. Our role as teacher educators is 
fundamental in the whole path of a math-redemption: first, in spurring future teachers 
to consider the idea of taking on this challenge, in creating propitious conditions for the 
overcoming of feelings of uncontrollability, and in persuading the future teacher that 
s/he can reconstruct a positive relationship with mathematics. The support of teachers’ 
educators is crucial also throughout the math-redemption process. In fact, being a 
“recovery” process, math-redemption is emotionally hard, as expressed by Chicca: 
“the process of recovering my relationship with mathematics has been very hard from 
an emotionally point of view”. The collected narratives show that, because of negative 
past experiences with mathematics, who decides to face this challenge proceeds with 
caution. These future teachers, above all at the beginning of this path, feel insecure and 
they need some help. With regard to this aspect, it is very significant the metaphor used 
by Margot: “During the university degree, when I decided to get back into the game 
with math, I approached it very cautiously, just like children that are learning to walk”. 



Di Martino, Coppola, Mollo, Pacelli, Sabena 

 

2 - 232 PME 37 - 2013 

Staying in the metaphor, as teachers’ educators we have to motivate future teachers to 
take the first steps, as well as to encourage them after the unavoidable falls, guiding 
them with the hand, in order to make future teachers as confident as to decide to leave 
the hand and to walk alone. 
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In this paper, we present some results related to the learning of math’s of a high school 
student, when involved in drafting a reflexive portfolio of Math’s. The results obtained 
can support the affirmation that in the drafting of the portfolio the student has engaged 
in guidance and organization processes to choose and prepare a first approach of 
entry. It gave rise to setting up analogies and to the process of anchoring the aspects 
related to the chosen task. The translation, justification, interiorization, verification 
and registration processes were mandatory requirements that were improving with 
each version in each entry. This is a way to assess which favours an active, conscious 
and self-regulated participation from the student in their learning, with the treatment 
of mathematical' content and processes comprehensively, and in the improvement of 
the mathematical communication. 
INTRODUCTION 
The labour requirements imposed by society and others advocate an education directed 
to the development of competences and a strong regulating assessment (Santos, 2004), 
and mathematics, for social, cultural, formative and political reasons, is considered a 
central discipline in the achievement of that goals. The expression regulating 
assessment holds the view that, during the process of teaching and learning, 
assessment takes into account the implementation of learning tasks without time 
constraints, during which students have the opportunity to create, think/reflect on what 
they created, redo and so on until the final presentation of the product; and that the 
teacher monitors and guides the entire evolutionary process of the students (Santos et 
al., 2010). The assessment is thus to be understood as a communication process (Pinto 
& Santos, 2006), integrated in the own learning process and incorporated into the 
day-to-day school activities (Perrenoud, 2004; Santos, 2005, 2008; William, 2009). 
For authors such as Bryant & Timmins (2002), the use of assessment reflexive 
portfolios are an example of how it is possible, in Mathematics, implement this form of 
assessment. It is in this context that aims to understand the extent to which the reflexive 
portfolio, developed all along one school year, can contribute to learning mathematics 
in a secondary school student. In particular, it seeks to study the processes that 
develops in the realization of the reflexive portfolio contributing to learning math. 
THEORETICAL FRAMEWORK 
It was considered that the student learning activity, which depends on the needs that 
he/she feels, the reason that drives him/her to participate and even the results that 
he/she expects to achieve by going through this process, it’s developed in a activity 
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system (Engeström, 1999), where action of the subject on the object is mediated by 
mediators artefacts, from which stands out the portfolio and speech (written) produced 
in dialogic interactions themselves (teacher-student) or imaginary (with internalized 
subjects), and that makes a significant transformation of the object in the expected 
results. In this transformation process is presented the concept of Zone of Proximal 
Development (ZPD) (Vygotsky, 1934), which is here understood as a symbolic space 
of interaction and communication, used as the main mediator of cognitive activity, a 
process that is intended to be of increasing self-regulation. The self-regulation in 
learning is a multidimensional construct that, according to Zimmerman (2000), 
includes the metacognitive, motivational and behavioural components. It is considered 
that a student is self-regulated, in that he/she is active in all these three dimensions. 
The mathematical thinking is intrinsically linked to the processes that give rise to 
mathematical knowledge. The cases presented in the literature are diverse and there 
isn’t an "fixed" order or predetermined between them since they are often interrelated 
and cyclically arise when working in a mathematical situation, furthermore, a series of 
processes can also be considered a process (Frobisher, 1994). However, it can be stated 
that there are processes which relate more closely with mathematics as the testing 
process (Pirie, 1987; Holding, 1991; Frobisher, 1994; Burton, 1984); there are others 
that are more independent of the mathematical content but that apply when these are 
solved problems in mathematics as is the process of reflection (Pirie, 1987) or the 
communication processes (Frobisher, 1994). Pugalee (2004) defines four groups of 
metacognitive processes used in problem solving: orientation, organization, execution 
and verification. With more focus on the first group, you can find the processes of 
interpretation established by Dias (2005). The author establishes a second group of 
cases - the development that has points in common with other cases brought by 
Pugalee. These and other processes, given that they involve higher skills, should be 
encouraged and developed through explicit instruction, for a sufficiently broad, so that 
the student use the pass to consciously and judiciously (Mason, Burton & Stacy , 1982) 
and can be studied through communication in written form when solving problems in 
Mathematics. 
METHODOLOGY  
This investigation has followed an interpretative paradigm (Yin, 2002), with recourse 
to case study (Burns, 2000). Participants were three students from a High School from 
the county of Lisbon but this paper reports one else. Selection criteria used were 
availability and willingness to participate in the study, the ease of speaking and as 
differentiating factor different levels of performance in the discipline. Francisca 
(student with 16 years old) was considered a student with a good performance in math. 
An entry portfolio consists of all versions of the resolution of a task chosen by the 
student and a final reflection, balance of all the work done in this entry. At the end of 
each semester, at these entries, joins a final reflection on the development of the 
portfolio. Delivery dates of the first and second versions of an entry and feedback on 
the first version, are defined prior to the start of the execution of the portfolio, as well 
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as the subject being treated in each of the six entries and covering the main contents 
provided in the 11th grade. The delivery of the remaining versions is agreed 
individually, according to the aspects to be improved and the availability of each of the 
players (student and teacher). The resolution of the problematic situation chosen by the 
student must be accompanied by a written explanation, the reasoning applied and the 
reasons for their decisions. It is on these records that the teacher, through their 
feedback, seeks to provide structures that guide the student to correct their mistakes 
and overcome their difficulties. 
Data were collected through two semi-structured interviews, one at the end of the third 
entry, the other at the end of the sixth and final entry portfolio and gathering 
documentary which brings out all versions of the entries made by the student to the 
portfolio and the compilation of all emails exchanged between teacher and student 
related to the versions of entries of the portfolio and respective feedbacks. 
The data analysis followed the categorization of metacognitive processes of Pugalee 
(2004). In enforcement proceedings, observable through local actions (eg 
calculations), monitoring of progress and change-making, are associated with the 
reflection processes (Pirie, 1987) and self-monitoring (Zimmerman, 2000). In the 
interpretation process group, identified by Dias (2005), translate, initial experience, 
internalize and anchor are considered. As purpose of this latter process, we considered 
the process of zigzag (Dias, 2005), the establishment of analogies (Holding, 1991), and 
the process of selecting a strategy (Pirie, 1987). Given the specificities of the 
assessment instrument under study, the justification process (Mason, Burton & Stacey, 
1982; Burton 1984; Pirie 1987; Pugalee, 2004; Holding, 1991) that must accompany 
any execution of the portfolio, was also considered. 
RESULTS 
The fact that was Francisca that select the tasks for the entries, made her to engage in 
processes of orientation, familiarizing yourself with the mathematical topic and 
analyzing information. Francisca was beyond this part because, on its own initiative, 
within the mathematical theme of each entry, gathered all the information she deemed 
to be related to the chosen task, putting it by topic, both in terms of content (formulas, 
definitions, theorems), but also in terms of process (type of reasoning, base 
procedures), as illustrated in the following excerpt from the beginning of the second 
entry: 
The exercise itself encompasses many points of theme, interconnected: trigonometry, 
scalar product, geometry and as such requires a combination of all and focuses 
primarily on the need to employ concepts such as:  
- Reduced equation of a straight line - 𝑦 = 𝑚𝑥 + 𝑏 To reach this expression requires a 
point belonging to that line and a vector of the same director (or any information that 
will give us the slope). First obtains the slope (m) from the vector director or from any 
information given and subsequently learns the value of the ordinate at the origin (b) by 
substituting the expression of the unknowns x and y, the x and y coordinates of a point 
belonging this line.  
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- Concept of scalar product – The scalar product it is an operation which is performed 
between two vectors, obtaining a numerical value of this operation. One of the 
expressions of calculating the dot product between the vectors 𝑢�⃗  and �⃗�  is: 𝑢�⃗ �⃗� =
‖𝑢‖‖𝑣‖ cos(𝑢�⃗  �⃗�). However, it is relevant to take into consideration to perform this 
exercise is that the scalar product between two vectors perpendicular to one another is 
always zero, whereas cos 90° = 0.  
- Equation of a circumference – The equation of a circumference (the concept of 10th 
grade) is constructed from the point that contains the coordinates that belong to the 
origin of the circumference - a point C of coordinates C (x, y) - and the respective 
radius (r). The expression is given by (𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 = 𝑟2. 
- Trigonometric ratios – For these exercises is also necessary to take into account the 
three trigonometric ratios given by: (...) (2nd entry, 1st version, 05/02/2011) 
Naturally, in this preliminary work, Francisca found herself also engaged in 
organization processes, where she presented the information that she disposal in order 
to have a common thread and sometimes resorted to some schemes or other graphical 
representations, some of which were built by her. However, in this part, all 
mathematical themes were treated in a not integrate way. Only then, Francisca proceed 
to the treatment of specific problematic situation that was chosen for entry. In this 
treatment, Francisca was seeking what she had written in the preliminary approach, 
seeking to establish analogies and/or relating the "new situation" to what she already 
knew and had written in a anchoring process. It was also in this way that the student 
chose an initial strategy for the resolution of the task. When the strategy did not 
produce the desired effect, she turned back and tried another. In fact, it was notorious, 
throughout the execution of the portfolio, a self-monitoring progress and changing 
decision by the student. Only when she hadn’t more ideas that she sent the first version, 
but leaving the failed attempts recorded and its justifications. In each version, the 
delivery was accompanied by a current status that the student has developed by a 
verification process, which not only became the finding discrepancies between the 
idealized and achieved, but also the analysis of what was her own action or the reasons 
for obtaining the response clogged, as can exemplify the following extract on the first 
entry, in which the student bent over a demonstration of a trigonometric equality: 
In my first attempt to solve it, I focused simultaneously in both members, in the first 
member I solved that the notable case of existing denominator of the fraction (A) and 
in the second member, based in the relation between the tangent and the other two 
trigonometric ratios, I replaced the tangent by this ratio, with the intention of 
facilitating the resolution (B). (...) From here I stopped knowing how to continue. I 
even thought about cutting 𝑐𝑜𝑠2𝛼 from the numerator of the first member, with 𝑐𝑜𝑠2𝛼 
from the denominator of the same member and do the same between sins, however I 
needed that they were a multiplication and in this case it was a subtraction. As such, I 
decided to pick up a member separately and try to reach the other, and this attempt is 
based my second resolution [presenting then the second attempt of resolution 
accompanying with the same kind of explanation]. (...) From here, I don’t know how to 
continue. (1st entry, 1st version, 08/01/2011) 
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Throughout the work of the portfolio, it was necessary to improve and fix aspects of 
mathematical communication and reasoning. In fact, the registration processes that the 
portfolio forced allowed the teacher and the student to realized aspects that, by the way 
that were originally written, revealed that concepts and/or reasoning and the 
relationship between them weren’t very well understood, nor well structured or related. 
Is in this record that the student, in a process of translation, makes evident the degree of 
understanding of the situation and the clarification of ideas and allows the teacher to 
give appropriate feedback towards the correction or improvement in mathematics 
learning: 
I knew that point B has as reduced equation of the line, the equation constructed in the 
preceding question and was contained in the circumference equation, then sufficed to 
do a system of equations with two unknowns to determine x and y (…) 

.  (2nd entry, 1st version, 05/02/11) 

A point is not contained in equation.. (…)   (Instead of the thread 
token, you should use the symbol of the length). (Feedback given at the 1st version of 
2nd entry, 11/02/11) 
It was in the remake of her written works that there was verified a zigzag that allowed 
her to internalize all aspects involved in each choice. In this context, the student also 
addressed the meaning of the concepts and results in a internalization process.  
Throughout the portfolio, Francisca looked into their personal productions and then 
compare them with the previous ones, to draft a new version. Doing so led her to reflect 
and thus to study more focused on understanding instead of memorization: 
This trend of decorating steps to follow wouldn’t let me open enough to realize that the 
areas cannot be negative!! Usually I face problems of this kind because as I have 
already structured the idea I never think beyond it, I consider it even a big obstacle for 
me in solving math problems, because I never remember having to do anything 
different or get something else that is not immediately present in my head, because of 
the different circumstances that exercise can have. (5th entry, 3rd version, 14/05/2011) 
Also the justification process, in the cross-holding of the portfolio, as a mandatory 
requirement, improved and become increasingly precise and explicit. In fact, the 
student initially held in written productions often unnecessarily long and very poorly 
structured. These are becoming increasingly more precise and explicit: "Yes, that was 
what I was saying, but had not thought in , only integer numbers” (6th entry 2nd 
version, 31/05/2011).  
All processes identified above arising from the preparation of the portfolio were 
worked explicitly and continued over a period sufficiently extended, changing some 
behavioural habits of the student, who usually left the study to focus on the eve of 
summative assessments: 
Due to the existence of these entries, I was always being aware of the mathematical 
subjects worked at class (Year-End Reflection, 06/06/11). 
I didn’t realize how the asymptotes work. I did the portfolio and the mathematical 
subjects entered. Then when I went to study [for the test] and I have just only to revisit 
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it, that's good because it isn’t all new. It’s not that idea "oh now I have test tomorrow, I 
have test in two days and I don’t understand anything of this." And in that sense it is 
very good. (2nd interview, 06/06/2011) 
FINAL CONSIDERATIONS  
In her action, Francisca acted on the problematic situations chosen for the entries about 
concepts, desires, as one of the mediators artifacts (Cole & Engeström, 1993) the 
portfolio, which constituted a facilitator of the learning activity in order to give the 
student power in transforming these objects in outcomes such as new mathematical 
cognitive and metacognitive learning. The language established in the context of the 
ZPD and therefore here understood as a process of production and negotiation of 
meaning (Roth, 2004), was another major mediators element (Vygotsky, 1978). In the 
portfolio, writing, requiring an inner speech and a deliberate and intentional structuring 
of a network of meanings (Vygotsky, 1934), was seen as an way for reflection and an 
awareness of mathematical and metacognitive processes for self-regulation essential 
for the individual to become independent and to learn to work strategically (Pugalee, 
2004) and become increasingly active in the dimension of metacognitive 
self-regulation. The behavioral dimension of self-regulation was also affected 
positively because it was modified work habits, and the study left to be concentrated on 
the eve of summative assessments. The portfolio is an effective way to exercise a 
differentiated pedagogy, and this was noticed by the student, with positive effects on 
the motivational dimension of self-regulation. 
Any of the processes identified, for more simple, at the outset, appear to be, only are 
effectively learned and reusable by the student without outside help, if they become the 
subject of an explicit work, regular, in a sufficiently extended period of time, and 
headed for a awareness of the activity performed (Mason, Burton & Stacey, 1982; 
Burton, 1984; Schoenfeld, 1992; Frobisher, 1994). From the foregoing, it is clear that 
the portfolio was a way to give to Francisca, and individually, this way of working, 
from entry to entry, from release to release, with the rereading, the remake, the 
reorganization and improvement ideas awareness about her own work. Note that even 
in situations where the student thought she had no doubt there was an opportunity for 
corrections and/or improvement of written communication of the mathematical 
reasoning and even the mathematical content.  
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MULTIPLICATIVE THINKING 
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In this paper we report on results of one aspect of a study that investigated students’ 
development of multiplicative thinking. The focus here is on factors that influenced 
students’ strategy choice. In a one-to-one interview students were given opportunity to 
choose the task level of difficulty. The findings suggest that there is a relationship 
between strategy choice and task level of difficulty: the more difficult the task chosen 
the more sophisticated the strategy choice, the less difficult the task, the less 
sophisticated the strategy choice. 
INTRODUCTION 
One of the goals of teachers of mathematics is to move students from naive to 
sophisticated strategies for solving tasks that involve multiplicative thinking. From the 
ways that many texts are constructed, it might be assumed that the authors’ approach is 
to start with simple exercises and make them progressively more complex, with the 
intention that completion of the easier exercises provides the information needed for 
the harder ones. This paper presents evidence which challenges this approach. 
Specifically we found that, given an option, many students will choose a challenging 
task over a less challenging one. Further, having chosen to work on a complex task 
they will use a more sophisticated solution strategy than they would have on a simpler 
one. The paper explains the importance of multiplicative thinking, indicates that there 
are competing views on task difficulty in the literature, and describes the research and 
results that led to our conclusion. There are implications for resource design and 
teacher planning. 
THEORETICAL FRAMEWORK 
A consistent theme in the literature is that multiplicative thinking is the foundation for 
higher-level mathematics. Multiplicative reasoning is the basis of proportionality, and 
a necessary pre-requisite for understanding algebra, ratio and rate, interpreting 
statistical and probability situations, and understanding and reading scale (e.g., 
Callingham, 2003; Siemon, Breed, & Virgona, 2005). The development of ratio and 
proportion concepts is embedded within the development of the multiplicative 
conceptual fields (Greer, 1988; Vergnaud, 1988).  
There are specific studies that argue that the difficulties associated with students’ lack 
of proportional reasoning are directly related to their limited experience with the 
different multiplicative situations (e.g., Greer, 1988; Vergnaud, 1988). Others attribute 
the difficulties to students’ reliance on additive reasoning when multiplicative 
reasoning is required (e.g., Lamon, 1993; Singh, 2000).  
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The development of multiplicative thinking is more conceptually demanding than 
additive thinking and takes time to develop (Clark & Kamii, 1996; Steffe, 1994). 
Clarke, Cheeseman, Gervasoni, Gronn, Horne, McDonough, et al., (2002) found that 
51% of Grade 2 students were unable to abstract (simultaneously coordinate two 
composite units mentally, without the use of perceptual models), when solving 
multiplication tasks. De Corte and Verschaffel (1996) found that many students remain 
dependent on modelling beyond the junior primary years. Steffe (1994) describes the 
demands of multiplicative thinking in the following way: 

For a situation to be established as multiplicative, it is necessary at least to co-ordinate two 
composite units in such a way that one of the composite units is distributed over the 
elements of the other composite unit. (p. 19) 

In order to do this requires a level of abstraction and inclusive relationships that are not 
required in additive thinking (Clark & Kamii, 1996). Singh (2000) found that when 
students move from additive thinking to multiplicative reasoning with whole numbers, 
two important changes occur, the first being a shift from “operating with singleton 
units to coordinating composite units” (p. 273), and the second a change in the 
meaning given to a number.  
The key issue for teachers is whether it is possible to promote the move from additive 
to multiplicative thinking in students and how this might be done. On one hand, 
Sullivan, Clarke, Cheeseman, and Mulligan (2001) suggested that abstracting, 
characterised by students moving beyond the need to create physical models, to 
forming mental images to find solutions, is a key stage in the learning of multiplicative 
concepts. They also argued that one of the reasons why students do not make the 
transition from a reliance on models to abstraction is teachers’ reluctance to engage 
students in problems that gradually remove physical prompts and encourage students 
to form mental images of multiplicative situations. Similarly, Greer (1988) suggested 
incorporating more complex number combinations routinely in word problems so that 
the appropriate operation cannot be intuitively grasped is one way to overcome a 
reliance on additive thinking. Greer also suggested the need to provide multi-step word 
problems, rather than single operation word problems, to push students to think more 
deeply about which operations to use and to move beyond superficial strategies. 
On the other hand, Sherin and Fuson (2005) found that students reverted back to 
repeated addition, or counting based strategies to solve problems involving large 
number triples (combination of three numbers, two of which multiply together to give 
the third). Mulligan and Mitchelmore (1997) indicated that students used direct count 
strategies for large numbers, as they seemed to experience a “processing overload” (p. 
322) when attempted to use the same strategy for larger number triples. A close 
examination of the number triples used in some of the aforementioned studies 
indicated that those that focused on Grade 1 to Grade 3 were limited to small numbers 
such as (3, 4, 12), (3, 5, 15), (3, 6, 18), (3, 8, 24),  (4, 5, 20), (4, 6, 24), and (5, 6, 30) 
(e.g., Anghileri, 1989; Clarke et al. 2002; Kouba, 1989; Mulligan & Mitchelmore, 
1997). Studies of Grades 4 to 6 students’ solution strategies involved more complex 
number triples, such as (5, 8, 40), (5, 19, 95), (13, 7, 91), (23, 4, 92) (e.g., Heirdsfield, 
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Cooper, Mulligan, & Irons, 1999). The particular number triples used are central to the 
argument in this paper. In the data below, number triples like (8, 6, 48; 6, 9, 54) are 
used in tasks described as medium difficulty, and triples like (7, 8, 56; 16, 8, 128) are 
used in tasks at the challenge level. Noting that the interviews were near the 
commencement of the Grade 3 year, even the medium difficulty triples are more 
complex than those used in most other studies at this level. 
METHODOLOGY 
This paper draws on one of the findings of a larger study of young children’s 
development of multiplicative thinking. The study involved Grade 3 students (aged 
eight and nine years) in a primary school located in suburban Melbourne. In terms of 
mathematical achievement, the spread of students overall is similar to statewide results 
on the systemic assessment. All the students in the grade were interviewed prior to the 
commencement of the study using the counting, addition & subtraction strategies, and 
multiplication & division strategies domains of the Early Numeracy Interview (Clarke 
et al., 2002). The resultant “growth point” data were used to identify 13 students in the 
class, four at either end of the scale and five in the middle, to participate in the study. 
This number of students provided a reasonable cross section of the grade of 27. A 
one-to-one, task-based interview was administered with the students to gain insights 
into their understanding of and approaches to multiplicative problems. The findings of 
a subset of these results are reported in this paper.  
The first author developed a multiplication task-based interview which consisted of 15 
tasks in the form of word problems across five semantic structures identified by 
Anghileri (1989) and Greer (1992): three Equal Groups tasks; four Allocation/Rate 
tasks; four Rectangular Array tasks; three Times-as-Many tasks; and one Cartesian 
Product task (a decision made following the trialling of the tasks). The Allocation/Rate 
tasks included two two-step tasks and two one-step tasks to gain a better sense of a 
student’s strategy choice. Each task consisted of three levels of difficulty (easy, 
medium, challenge). In some instances an extra challenge question was offered if the 
student appeared to find the challenge task relatively easy. The number triples were 
deliberately chosen with some repetition both within and across levels of difficulty. 
This was to ensure that students who always chose a particular level of difficulty had 
one or two questions that might challenge them. For example, the number triple 8, 6, 48 
occurs in an Allocation/ Rate task at the medium level of difficulty and in an Equal 
Groups task at the challenge level. 
Each interview was audio taped and took approximately 30 to 45 minutes, depending 
on the complexity of students’ explanations. The problems were presented orally and 
students were encouraged to work out the answers mentally. However, paper and 
pencils were available for students to use at any time. Generous wait time was allowed 
and the researcher asked the students to explain their thinking and whether they 
thought they could work the problem out a quicker way. Once a response was given the 
student was asked to explain his/her thinking and record a number sentence on paper. 
Responses were recorded and any written responses retained. Students had the option 
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of choosing the level of difficulty to allow them to have some control and to feel at ease 
during the interview. If a student chose a challenge problem and found it too difficult, 
there was an option to choose an easier problem.  
Method of Analysis 
While acknowledging that providing students with a choice contributed to the richness 
of the findings, it also added to the level of complexity both in the analysis and 
presentation of data. The data were coded for two purposes, first to ascertain student 
performance and second to identify student approaches to multiplication tasks. As the 
researcher was interested in knowing both the approaches students used and 
components of the task that may influence their strategy choice, an extensive analysis 
was undertaken of each of these components (e.g., semantic structure, level of 
difficulty, number triples). The results of the analysis presented in this paper pertain 
only to the challenge and extra challenge levels of difficulty.  
The students’ strategies were coded according to the level of abstractness and degree of 
sophistication, drawing on the categories of earlier studies (Heirdsfield et al., 1999; 
Kouba, 1989; Mulligan & Mitchelmore, 1997; Sherin & Fuson, 2005). Abstractness 
used in this context refers to an ability to imagine the individual items as a composite 
unit and to solve a problem mentally without the use of physical objects (including 
fingers), drawings or tally marks. The strategies chosen by the students were 
categorised in the following way. The first category, Building Up, is additive: 

Building Up: Visualises the groups and the multiplication fact but relies on skip 
counting, or a combination of skip counting and doubling to calculate an answer.  

The other three categories are considered to be multiplicative: 
Doubling/Halving: Derives solution using doubling or halving and estimation, 
attending to both the multiplier and multiplicand. 
Multiplicative Calculation: Automatically recalls known multiplication facts, or 
derives easily known multiplication facts.  
Holistic Thinking: Treats the numbers as wholes—partitions numbers using 
distributive property, chunking, and/or use of estimation.  

RESULTS AND DISCUSSION 
From the analysis of data two findings were evident. First, many more students than we 
anticipated chose the challenge level of difficulty tasks rather than the medium or easy 
levels, and they responded correctly. Second, multiplicative strategies were the 
preferred strategy of choice to solve the problems at the challenge level of difficulty. 
Table 1 presents the frequency of tasks responses for the challenge and extra challenge 
levels of difficulty for each semantic structure. Due to the complexity of the 
Times-as-Many and Cartesian Product semantic structures no extra challenge tasks 
were offered. From the data presented in Table 1 it is evident that substantial numbers 
of students chose the challenging level tasks. 
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 Equal 
Groups 

Allocation/ 
Rate 

Rectangular 
Array 

Times-as- 
Many 

Cartesian 
Product 

Number of 
Possible 
Responses 

39 52 52 39 13 

Challenge Tasks  23 27 34 22 1 
Extra Challenge 
Tasks  9 5 2 Not 

applicable 
Not 

applicable 
Total challenge 
/extra tasks  32 32 36 22 1 

Table 1: Frequency of Task Level of Difficulty Responses for Each Semantic Structure 
Of the 195 responses of the 13 students across the fifteen tasks, 123 were for the 
challenge and extra challenge levels of difficulty, 66 responses were for the medium 
level and 6 were for easy level of difficulty. It is worth noting that some of these 
students who chose the challenging tasks and used sophisticated strategies were not 
higher performing students on the pre-test interviews. Also of note, it is likely that in a 
one-on-one interview with an unfamiliar adult the tendency for students would be to 
opt for correctness. 
 Equal 

Groups 
Allocation/Rate Rectangular 

Array 
Times-as- 

Many 
Cartesian 
Product 

Additive 13 4 9 1 0 
Multiplicative 19 28 27 21 1 

Table 2: Frequency of Strategy Choice for Each Semantic Structure 
Three findings are apparent from the data presented in Table 2. First, multiplicative 
strategies (doubling/halving, multiplicative calculation, holistic thinking) accounted 
for 78% (96 out of 123 responses). This suggests that students who consistently use 
these strategies are thinking multiplicatively rather than additively. It seems that 
offering students the opportunity to engage with number triples beyond what is 
commonly posed at this level prompts the use of multiplicative solution strategies.  
Second, there was less contrast in the distribution of strategies for the Equal Groups 
tasks. Given students’ familiarity with the Equal Groups semantic structure it was 
expected that more students would use multiplicative strategies especially as five of 
these students consistently chose these strategies for all other tasks. However, it could 
be argued that the number triple for the first Equal Groups challenge task (7, 8, 56) was 
familiar to these students and so they chose a less sophisticated strategy such as 
Building Up. Interestingly, four of these five students used multiplicative strategies for 
the Equal Groups extra challenge task 2 (8, 14, 112) for which the use of a skip 
counting strategy would have been time consuming and inefficient. The following 
abridged excerpts from the interviews illustrate the students’ use of multiplicative 
thinking for the Equal Groups extra challenge task.  
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Equal Groups (task 2): On the table are 8 boxes of crayons with 14 crayons in each 
box. How many crayons are there altogether? 

Annie: I know 7 eights are 56 so I just doubled it to get 14 eights and that’s 112.  
Mark: I know 12 eights are 96 and two more eights is 16, so 96 and 16 is 14 eights 

that’s 112. 
Sandy: I know 8 tens is 80 and 4 eights is 32. I then added 80 and 32 to get 112, so 

8 times 14 is 112.  

Both Annie and Mark used a Multiplicative Calculation strategy derived from known 
facts such as 7×8 then doubled it, or 12×8 and then added on another 2 eights. Sandy 
used Holistic Thinking as she partitioned the 14 into 10 and 4 and separately multiplied 
these by 8, reflecting her place value understanding and use of the distributive 
property. These responses indicate the students’ awareness of the multiplicative nature 
of the task and the relationship between the numbers. 
Third, Holistic Thinking was the preferred strategy for the Times-as-Many tasks (77% 
or 17 out of 22). Given that this aspect of multiplication is quite different from the other 
structures and that the number triples were more challenging, one might have expected 
students to choose a less sophisticated strategy. One could infer from this that the 
complexity of the semantic structure and the size of the number triples facilitated this 
level of thinking. Further evidence to support this was the use of Holistic Thinking on 
the challenge Times-as-Many task 12 (4, 18, 72) by two of the lower performing 
students (Marty and Lewis) on the pre-test. In the few other instances where they chose 
challenging level tasks, a Multiplicative Calculation or Holistic Thinking strategy was 
chosen, whereas Building Up was the preferred strategy chosen for the medium level 
of difficulty. Their use of a multiplicative strategy indicates an ability to use 
multiplicative rather than additive thinking when presented with a task involving 
number triples outside the factor structure implied by the curriculum at this level. The 
following responses for the Times-as-Many characterised the type of multiplicative 
thinking students used for the challenge tasks. 

Times-as-Many (task 12): Jamie collected 18 stamps. Jack collected 4 times as 
many. How many stamps does Jack have?  

Mark: I know 12 fours is 48 and 6 fours is 24, then I added 48 and 24 to get 72 and 
that’s 4 times as many as Jamie. 

Marty: Ten, 4 times is 40 and eight 4 times is um 32. 40 and 32 is 72. 
Lewis: Four times as many as 18? 20, oh umm, so 4 times? 80, take away umm 8, is 

umm 72. I took away 10 first and added 2 onto 70, cause it’s easier. 

Both Mark and Marty partitioned the 18. Mark partitioned it into two known facts and 
added the partial products, whereas Marty partitioned it into ten and eight and operated 
on each separately, reflecting his place value understanding. Both students showed an 
understanding of the distributive property. Lewis rounded the 18 to 20, a number that 
he could calculate mentally and then compensated by subtracting eight.  
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These three findings highlight the value of allowing students to choose the task level of 
difficulty and uncover students’ untapped mathematical capabilities. These findings 
together suggest that by enabling students to engage with complex tasks prompts the 
use of more sophisticated strategies than may normally be the case.  
CONCLUDING REMARKS 
The findings of this study suggest that giving students opportunities to experience 
complex number combinations and semantic structures such as Times-as-Many, that 
require them to think more deeply, will encourage them to move beyond the need for 
models or a reliance on additive thinking to multiplicative thinking. This supports the 
recommendation by Greer (1988) that incorporating more complex number 
combinations routinely in word problems so that the appropriate operation cannot be 
intuitively grasped can encourage students to move beyond a reliance on additive 
thinking.  
The findings also indicate that not only can Grade 3 students engage with tasks across 
less familiar semantic structures such as Allocation/Rate and Times-as-Many, but do 
so using more sophisticated strategies that one might expect. As suggested by Greer 
(1988) providing multi-step word problems and less familiar situations push students 
to think more deeply about which operations to use and move beyond superficial 
strategies.  
The implications of these findings for mathematics instruction include engaging 
students in word problems that incorporate number combinations which cannot be 
intuitively manipulated using additive thinking. It appears that by doing so can prompt 
the use of sophisticated strategies. This has implications for both teacher educators and 
authors of teacher texts and other resources. 
 Second, engaging students in multiplicative word problems across a range of semantic 
structures may support their developing understanding of multiplication and their 
transition from additive to multiplicative thinking. Engaging students in a range of 
semantic structures also develops a deeper understanding of the nature of 
multiplication. This also indicates the importance for teachers of students as young as 
Grade 3 not to delay the development of multiplicative thinking by restricting students 
to the use of models that oversimplify multiplicative situations. 
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Pedagogical content knowledge (PCK) about dealing with multiple representations 
should encompass the awareness of their key role for mathematical thinking and for 
designing rich learning opportunities. However, it should also include a certain 
sensitivity for the complexity of changing between representations and thus the 
problems that learners may have with such conversions in specific classroom 
situations. Consequently, this study focuses on PCK regarding the role of 
representations and their conversions for the learning potential of tasks as well as for 
students’ understanding in classroom situations. Such PCK of Polish and German 
pre-service teachers is compared, with German in-service teachers as a further 
reference. The results indicate significant differences between the samples. 
INTRODUCTION 
It is well-known that representations play a crucial role for the construction processes 
of learners’ mathematical understanding. Hence, knowledge about the role of 
representation for student’s learning and about how to deal with multiple 
representations in the mathematics classroom is an important part of PCK, which 
merits closer attention. However, specific empirical research is scarce. Such PCK 
should be investigated on different levels of globality resp. situatedness: Besides the 
awareness of the fact that multiple representations are important for fostering 
mathematical competencies on a global level, in particular the more content- and 
situation-specific knowledge about how to deal with representations may be decisive 
for the way teachers use representations in their classrooms. Thus, especially 
knowledge about how representations can be used to create rich learning opportunities 
and tasks as well as knowledge about what kind of role they play for the learners’ 
understanding in specific classroom situations should be explored. Consequently, this 
study focuses on such PCK about dealing with multiple representations. We use a 
trans-national design with German and Polish pre-service teachers, in order to take into 
account the possibility that such PCK could be culture-bound. Bringing pre-service 
teacher into focus and using in-service teachers as a reference affords identifying needs 
for initial teacher education and teacher professional development. 
The following first section gives a brief overview of the theoretical background, which 
leads to the research interest for this study as presented in the second section. We will 
then describe the design and methods of the study in the third section, report results in 
the fourth section and conclude with a discussion in the fifth section.  
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THEORETICAL BACKGROUND 
It’s impossible to imagine mathematical understanding without the use of 
representations, since mathematical objects aren’t directly accessible (Duval 1999). In 
fact, usually it’s not enough to have a single representation for a mathematical object, 
since single representations mostly emphasise only some properties of the 
corresponding object, so multiple representations have to be integrated in order to 
develop an appropriate concept image (Ainsworth, 2006; Tall 1988). Hence, flexibility 
with multiple representations is crucial for successful mathematical thinking and 
problem solving (e.g. Lesh, Post & Behr, 1987; Ainsworth, 2006). Consequently, the 
key role of dealing with multiple representations is also acknowledged in the German 
as well as in the Polish national standards (c.f. KMK, 2003; MEN, 2008). We thus 
assert that awareness of the relevance of using multiple representations for learning 
mathematics can have a significant impact on the teacher’s ability to design rich 
learning opportunities. However, multiple representations are not per se beneficial for 
mathematical understanding, but can also be obstructing: Integration of different 
representations and changing between them are highly demanding for learners and can 
pose an obstacle to comprehension (Ainsworth, 2006; Duval, 2006). Thus, for 
supporting learners teachers constantly have to make decisions which must find a 
balance between encouraging them to change between representations on the one hand 
and avoiding excessive demands linked with such conversions on the other hand. 
Being aware of this ambiguous role of multiple representations for learning 
mathematics and being able to balance the related dilemma in the mathematics 
classroom should therefore be part of a mathematics teacher’s professional knowledge 
(Dreher, 2012). For exploring such professional knowledge, this study uses a 
multi-layer model (Kuntze, 2012), that combines the spectrum between knowledge and 
beliefs (e.g. Pajares, 1992), the domains by Shulman (1986) with levels of globality, 
i.e. a spectrum between general and specific knowledge resp. views (cf. Törner, 2002; 
Kuntze, 2012). According to this model, especially the content-specific and classroom 
situation-specific knowledge domains are in the centre of interest, such as the 
content-specific awareness of the learning potential of conversions contained in tasks 
and situation-specific knowledge about dealing with representations in the 
student-teacher-interaction.  
RESEARCH INTEREST 
According to the need for research pointed out in the previous sections the study 
presented here aims to provide evidence for the following research questions:  
To what extent are Polish and German pre-service teachers able to recognize the 
learning potential of tasks focusing on conversions of representations, in comparison 
with tasks including rather unhelpful pictorial representations?   
Are Polish and German pre-service teachers able to realize a change of 
representations by a teacher in a given classroom situation and decide reasonably 
whether or not it was sensible for helping students’ understanding? 
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SAMPLE AND METHODS 
In order to find answers to these research questions, a questionnaire was designed in 
German and was then translated into Polish by a native speaker who is also fluent in 
German and has worked in mathematics education in Germany for several years. At 
the beginning of the questionnaire there were explanations of the notions 
“representation” and “pictorial representation” in a mathematical context given to 
ensure that all participants had a similar understanding of these key terms for the study. 
Connecting to our prior research, the questionnaire concentrates on the content domain 
of fractions (e.g. Dreher & Kuntze, accepted; Dreher, 2012). 
The questionnaire was administered to 58 Polish pre-service teachers (49 female, 9 
male) and 219 German pre-service teachers preparing to teach at primary and 
lower-attaining secondary schools (“PLS pre-service teachers”) (183 female, 26 male, 
10 without data) and also to 58 German in-service teachers at academic track 
secondary schools (“ATS in-service teachers”) (23 female, 32 male). Moreover, a 
version of the questionnaire which was reduced due to time limitations was answered 
by 67 German prospective teachers at academic track secondary schools (“ATS 
pre-service teachers”) (34 female, 33 male). The Polish pre-service teachers had an 
average age of 20.2 years (SD=0.6), the German PLS pre-service teachers were on 
average 20.7 years (SD=2.5) old and the German ATS pre-service teachers had a mean 
age of 21.4 years (SD=2.2). The German PLS pre-service teachers were at the 
beginning of their first year, whereas the Polish and the German ATS pre-service 
teachers were at the beginning of the second year of their university studies, but they 
all had in common that they were not taught specific courses in mathematics education 
so far. The German ATS in-service teachers were on average 41.5 (SD = 12.3) years 
old and had been teaching mathematics for 13.6 (SD =12.3) years. 
Corresponding to the research questions for this study two parts of the questionnaire 
are focused: One part about task-specific views on the learning potential of multiple 
representations and one part focusing on situation-specific knowledge about changing 
representations and related consequences for student’s understanding. In the first part 
the participants were asked to evaluate the learning potential of six fraction problems 
by means of multiple-choice items. The teachers could express their approval or 
disagreement concerning these items on a four-point Likert scale. They were told that 
the problems were designed for an exercise about fractions in school year six.  

Figure 1: Samples for tasks of type 1 (left) and of type 2 (right) 
Three of these tasks are about carrying out a conversion of representations, whereas 
solving the other three tasks means just calculating an addition or a multiplication of 
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fractions on a numerical-symbolical representational level. The pictorial 
representations which are given in the problems of the second type are rather not 
helpful for the solution, since they can’t illustrate the operation needed to carry out the 
calculation. Samples for both kinds of tasks are shown in Figure 1. In the second part of 
the questionnaire the participants were given the transcript of a fictitious classroom 
situation (shown in Figure 2). The teacher in this classroom situation makes a critical 
change of representations: A student wants to know how you can see the addition of 
two fractions in the given rectangle, but the teacher explains the calculation using a 
pizza representation, supposedly because it is suited better. But in fact, it is here easier 
to show the addition with the rectangle, since the necessary subdivision in twelfth is 
already available. Hence, it is neither necessary nor advisable to force the student to 
engage with another representation at this point, even if previously the pizza 
representation was used for adding fraction in this class. In order to realise that the 
teacher’s reaction should be seen critically, because the change of representations in 
this situation is hardly conductive to the student’s understanding, awareness for 
conversions of representations in mathematics classrooms and a certain sensitivity for 
their key role for students’ understanding is needed. Thus, the participants were asked 
the following question: “How much does this response help the pupil? Please evaluate 
the use of representations in this situation and give reasons for your answer.”. 

 
Figure 2: Transcript of the fictive classroom-situation 

The answers of the participants were evaluated by coding them under two main 
aspects: “How was the teacher’s response evaluated?” and “Which role does the 
teacher’s use of representations play in the justification for this evaluation?”. Possible 
categories for the first aspect were “no evaluation”, “positive evaluation”, “negative 
evaluation” and “balanced/ undecided evaluation”. For the second aspect the following 
categories were used: “no justification given for the evaluation”, “justification without 
referring to representations” (e.g. “The student is confused, since multiplication 
suddenly turns into addition.”), “justification referring to representations in general” 
(e.g. “ The use of diagrams reverts the child back to seeing the question before the 
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challenge.”), “justification referring to the pizza representation only” (e.g. “Especially 
for adding fractions pizzas are still best suited.”), “justification referring to the pizza 
and the rectangle representation (comparative), but not to the change of 
representations” (e.g. “The first drawing is completely confusing for pupils. The pizzas 
are easier to understand”) and “justification referring to the change of representations” 
(e.g. “T could and should have shown the addition using the partitioned rectangle. The 
change hardly helps the pupil.”). All the answers were coded by two raters with high 
inter-rater reliability: Cohen’s kappa was 0.92 resp. 0.90.  
RESULTS 
We start with the results concerning the first research question, namely the teachers’ 
evaluation of the learning potential of the tasks given in the questionnaire. The design 
of this questionnaire section could be confirmed in two respects: Firstly, a factor 
analysis including all items in this section yields for each task a single reliable 
four-item scale (Cronbach’s α range from 0.73 to 0.87) about its learning potential with 
respect to its use of representations. A sample item of these scales is: “The way in 
which representations are used in this problem aids students’ understanding.” 
Secondly, a factor analysis with the six scales about the learning potentials of the six 
problems yields two “meta-scales” linked to the two types of tasks, namely 
“conversions of representations” vs. “unhelpful pictorial representations” (cf. Dreher 
& Kuntze, accepted). Both of these scales are reliable with α = 0.81 resp. α = 0.79.  

 
Figure 3: Evaluations of the learning potential regarding the two types of tasks 

Figure 3 shows the means and standard errors of the two meta-scales for all the 
subsamples of this study, except for the German ATS pre-service teachers, since this 
section was not part of the reduced version of the questionnaire. Comparing the means 
of the two scales for each subsample seperately yields significant differences: While 
the German PLS pre-service teachers’ rating of the learning potential was higher for 
type 2 tasks than for type 1 tasks (T=2.12, df =218, p<.05, d=0.18), the pattern is 
reversed for the German ATS in-service teachers (T=3.01, df=57, p<.01 d=0.53) and 
interestingly also for the Polish pre-service teachers (T=2.22, df=57, p<.05, d=0.37). 
Focusing on the views about the learning potential regarding tasks of the first type, the 
in-service teachers have given higher ratings than the German PLS pre-service 
teachers (T=4.221, df=275, p<.001, d=0.63) and than the Polish pre-service teachers 
(T=2.93, df=114, p<.01, d=0.54). Comparing the subsamples regarding their 
evaluation of the learning potential of type 2 tasks on the other hand shows that the 
Polish pre-service teachers have assigned a lower learning potential than the German 
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PLS pre-service teachers (T=3.61, df=275, p<.001, d=0.53). The Polish pre-service 
teachers in our sample even tended to give lower ratings than the German in-service 
teachers, but this difference is not significant. 
However, the results related to the classroom situation may show the specific PCK 
about dealing with multiple representations of the Polish participants in another light. 
The fictitious classroom situation shown in Figure 2 is designed in a way that a 
participant being aware of the complexity of changing between representations should 
realise the change of representations in this situation as being potentially obstructing 
for the students understanding. Hence, such a participant is expected to criticise the 
teacher’s response and refer to his change from the rectangle to the pizza 
representation. Consequently in an overview approach, such awareness should be 
indicated best by the codes “negative evaluation” and “justification referring to the 
change of representations”. It is therefore interesting to look at the proportion of 
participants in each subsample receiving these codes, respectively the combination of 
both of them. The teacher’s response was evaluated negatively by  
65.5% of the German ATS in-service teachers, 
34.3% of the German ATS pre-service teachers, 
21.5% of the German PLS pre-service teachers and by 
13.8% of the Polish pre-service teachers. 
And it was referred to the teacher’s change of representations by 
79.3% of the German ATS in-service teachers, 
41.8% of the German ATS pre-service teachers, 
33.8% of the German PLS pre-service teachers and by 
39.7% of the Polish pre-service teachers. 
More answers have received the code “justification referring to the change of 
representations” than the code “negative evaluation”, since there were also participants 
who declared themselves in favour of the teacher’s change of representations. 
However, for the reasons given above, it is the combination of both of these codes that 
we assert to be an indicator for the awareness of the situation-specific role of multiple 
representations for students’ understanding. Both codes in combination appeared for 
60.3% of the German ATS in-service teachers, 
29.9% of the German ATS pre-service teachers, 
16.6% of the German PLS pre-service teachers and by 
13.8% of the Polish pre-service teachers. 
DISCUSSION AND CONCLUSIONS 
The key focus of this trans-national study is on the content-specific awareness of the 
learning potential of conversions contained in tasks and on situation-specific 
knowledge about dealing with representations in the student-teacher-interaction. The 
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findings suggest certain profiles of PCK related to the teachers’ awareness of dealing 
with multiple representations. Whereas the ATS in-service teachers show on average a 
relatively high awareness of the learning potential of conversions between 
representations and of the demands of the unnecessary change of representation in the 
classroom situation, the samples of pre-service teachers appear to have a less 
elaborated PCK on the content- and situation-specific levels.  
Comparing the samples of the pre-service teachers, the Polish sample shows an 
interesting pattern compared to the German subsamples: The Polish pre-service 
teachers preferred the learning potential of the conversion tasks to the potential of the 
tasks with unhelpful representations, comparable to the in-service teachers. However, 
only a minority of these pre-service teachers saw the representation change in the 
classroom situation as a problematic aspect of supporting students’ understanding in 
the classroom interaction. In particular, the relative frequency of answers of German 
pre-service teachers showing an awareness of this issue was higher. The evidence may 
hence suggest that the Polish pre-service teacher group does not have a more 
developed PCK than their counterparts in the German samples, but we can rather 
conclude different profiles of PCK from the data. The findings could also indicate an 
influence of classroom culture: Learning situations and types of tasks may be 
considered according to different underlying criteria according to the 
socio-mathematical norms in different school cultures.  
However, the present findings may challenge the view on PCK and on goals of 
pre-service teacher education, considered within and across cultures: The dilemma 
between using multiple representations as a support of insightful learning and the 
demands of conversions between representations is an established feature which can be 
considered as valid across cultures. On the level of goals for initial teacher education, 
solutions and strategies have to be found on a culturally valid level, which can be 
however informed by comparative studies such as the one presented here. 
We would like to recall that the findings of this study should be interpreted with 
care, as sample size, possible selection effects (e.g. choice of career of university 
studies) as well as the design of the study constitute clear limitations. The findings 
hence call for deepening studies which could explore underlying structures in 
PCK or epistemological beliefs by qualitative methods. Moreover, evaluating 
views of teachers related to more classroom situations could contribute to 
explaining the findings presented there. Such analyses are currently being 
carried out, as the questionnaire comprised of three more open items related to 
situation-specific PCK. Complementing these analyses and seeking to explain the 
findings, we also evaluate more general views of the teachers related to dealing 
with multiple representations.
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KINDERGARTEN TEACHERS’ USE OF SEMIOTIC RESOURCES 
IN PROVIDING EARLY LEARNING EXPERIENCES IN 

GEOMETRY WITH A PICTURE BOOK AS A DIDACTICAL TOOL  
Iliada Elia, Kyriacoulla Evangelou, Katerina Hadjittoouli 

University of Cyprus  
 
This study investigates the semiotic resources utilized by kindergarten teachers and 
their mediating role in young children’s geometrical reasoning in different 
teaching-learning processes based on the use of a picture book as a didactical tool. 
Data were collected and analysed from two kindergarten classes. The teachers were 
found to use multiple semiotic resources in different ways. The mediating role of the 
teachers’ use of semiotic resources on children’s making sense of geometric shapes 
was manifested in various ways, but was stronger in one of the two classes.  
INTRODUCTION  
In early childhood education it is crucial for the learning of mathematics to be 
connected to children’s everyday experiences and make sense to them. Children’s 
literature is considered as a didactical tool which has the potential to provide children 
with an appealing context in which the problems, situations and questions they 
encounter are meaningful to them (e.g., Columba, Kim, & Moe, 2005).  
A number of studies have provided evidence about the positive role of the 
characteristics of a picture book itself - pictures and text - on young children’s 
mathematical reasoning (e.g., Elia, Van den Heuvel-Panhuizen, & Georgiou, 2010). 
Researchers in the field of mathematics education have recently examined the semiotic 
resources used within classrooms when students work on problems and explorations 
related to various mathematical concepts (e.g., Bjuland, Cestari, & Borgersen,  2008; 
Radford, Edwards & Arzazello, 2009). To our knowledge, however, there is no 
evidence about the effects of various semiotic means that are utilised within 
classrooms, when mathematics is taught through the use of picture books, on 
children’s learning. In this study, we investigate the semiotic resources used by 
kindergarten teachers and their mediating role in young children’s geometrical 
reasoning in two different teaching-learning processes based on the use of a picture 
book as a didactical tool. 
THEORETICAL FRAMEWORK 
By picture books we mean books consisting of text and pictures, in which pictures have 
a fundamental role in full communication and understanding (Nicolajeva & Scott 
2000). Besides the meaningful context that picture books offer for the learning process 
in mathematics, through their pictorial representations in conjunction with the text, 
picture books can also support the initial stages of interpreting and using semiotic 
representations and in this way contribute to the development of mathematical 
understanding.  
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A main focus of this study is the investigation of the semiotic resources teachers utilize 
while using picture books in mathematics instruction from a multimodal perspective. A 
multimodal approach includes ‘‘the range of cognitive, physical, and perceptual 
resources that people utilize when working with mathematical ideas’’ (Radford et al., 
2009, p. 91). A more focused notion proposed by Radford (2003) concerns the 
semiotic means of objectification, including gestures, speech and inscriptions (such as 
graphs, formulas, tables and drawings), which have an essential role in the process of 
sense-making.   
This study adopts also a socio-cultural approach to analyse classroom interactions. 
Mediation is a major term which is used within a socio-cultural perspective. This term 
is used to illustrate how people interrelate with cultural tools in action (Bjuland, 2012). 
The term mediation is here applied to identify how the semiotic resources used by 
kindergarten teachers play a mediating role for children in order to deal with early 
geometrical reasoning.   
Geometry is an indispensable part of contemporary early childhood curricula and 
educational programs (Sarama & Clements, 2009). In this study the focus is on the 
perceptual apprehension of two-dimensional shapes (Duval, 1998), including the 
recognition and naming of figures, through the use of a picture book. Besides playing, 
walking and looking around, picture book reading could be regarded as another 
meaningful and natural way by which children can discover spatial relations and 
geometric concepts (Elia et al., 2010).   
The present study addresses the following research questions: (a) Which are the 
semiotic resources kindergarten teachers use to help children experience geometrical 
ideas in different teaching-learning processes based on the use of a picture book as a 
didactical tool? (b) What mediating role does the teachers’ use of semiotic resources 
play in young children’s geometrical reasoning in different teaching-learning 
processes based on the use of a picture book as a didactical tool? 
METHODS 
To collect the data for this case study two classes of two public kindergartens in Cyprus 
were visited. From each class a lesson was videorecorded. The teachers of the classes 
were called Melina and Georgia respectively. Melina’s class consisted of 26 children 
(14 girls and 12 boys), while Georgia’s class consisted of 25 children (12 girls and 13 
boys). The children in both classes were from 4 to 5 years of age.  
In their lessons, both teachers introduced two-dimensional geometric shapes to the 
children, by using the picture book ‘Oscar the Button’, which is a familiar book among 
the kindergarten teachers in Cyprus for teaching geometry. This picture book was not 
familiar to the children of the two classes, though. It is written by Nagy Eszter and is 
translated to Greek by Margarita Rega. The book was first published by Siphano 
Picture Books in 2000 in England. The story is about a button called Oscar who lives 
on an overcoat. One day he pops off and rolls away to discover the world. But because 
he is round, nobody wants to know him - doors, roofs and kites all snub him because he 
is a different shape! Then he meets the Moon, who is round as he is.  



Elia, Evangelou, Hadjittoouli 

 

PME 37 - 2013 2 - 259 

In both cases, the story of the book was presented as a full class by the teachers by 
using a different approach. The first teacher, Melina, followed the typical way to 
present the book. She read the book to the whole class using a board to place enlarged 
pictures of the book and then she posed some questions about the picture book’s 
content. The second teacher, Georgia, used the theatre game approach to present the 
story of the picture book. She took the role of Oscar, holding a puppet of a button 
(Figure 2b), and during the story telling she urged the children to complete some of the 
sentences she started or posed some questions which were related mainly to the 
mathematical components of the book story.  
RESULTS 
In order to address the research questions we will analyse some dialogues from 
Melina’s class and Georgia’s class from a multimodal (Radford et al., 2009) and a 
socio-cultural perspective (Bjuland, 2012).  
Analysing the dialogues in Melina’s classroom  
The children are sitting in a semicircle, looking at the board with the enlarged pictures 
of the book. Melina, who is sitting close to the board, produces iconic gestures for all 
the pictures which have geometric components in order to give more emphasis on the 
geometric figures which are included in the text and the pictures. Table 1 presents 
some examples of the semiotic resources that Melina uses, after reading that Oscar was 
rejected by the triangular roofs of some houses because he did not look like them.   

Text/Explanations Pictures/Gestures  
Text (read by teacher): He (Oscar) met 
two coloured doors. “Hello”, he said. 
“Can I play with you?” “Well, are you 
blind?” The doors snap him. “All of us 
here are rectangles. You are a circle.” 
“Rectangles? Hmm, I've heard 
somewhere,” Oscar said.  

She makes a rectangle 
with her pointing finger.  

 

 

Explanation (given by teacher): He 
was rejected by the triangular roofs as 
well as the rectangular doors. 

She makes a triangle with 
her pointing finger.    

Table 1: Examples of semiotic resources used by Melina 
As shown in Table 1, Melina’s words and gestures are coordinated in order to help the 
children remain focused on the shapes of the figures in the pictures of the book. It must 
be noted, though, that the mediating role of Melina’s semiotic resources on children’s 
mathematical reasoning was not apparent during the reading of the book, but it became 
obvious later, when she posed some questions about the picture book’s content. The 
extract below illustrates how Melina interacts with the children at a part of this latter 
phase of the lesson.  



Elia, Evangelou, Hadjittoouli 

 

2 - 260 PME 37 - 2013 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Melina: What shape was Oscar? 
Children: Circle. 
Melina: ...so he (Oscar) decided to 
leave. Where did he go first? Who did 
he visit? 
Louis: The roofs (he opens his arms 
and lifts one up). 
Melina: What was the shape of the 
roofs Louis? 
Louis: Triangle (he makes a triangle 
with his pointing finger). 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Melina: What other things do you know 
that have the shape of triangle? Who 
knows to tell me? Irene, tell me 
something that looks like a triangle. 
Irene: The roofs of the houses. 
Melina: Another thing? Let’s see... 
Where did he go then? Fryda? 
Fryda: To the rectangle. 
Melina: Tell me other things which 
have this shape, rectangle. Nefeli? 
Nefeli: The door. 

 
Melina’s iconic gesture and speech at first and her communicative strategy of posing 
closed (e.g., line 1) and open questions (e.g., lines 20-21) later on encourage the 
children to introduce the various geometric figures (circle, triangle and rectangle) into 
the dialogue. The dialogue also illustrates the close relationship between Melina’s 
questions and the iconic gestures she produced before, when referring to the pictures 
and the text she read from the book. In sum, the semiotic resources in the 
teaching-learning process here are produced by the teacher-child communication, 
including linguistic and gestural activity, and the inscriptions of the geometric shapes 
in the enlarged pictures of the book on the board. A closer look at Melina’s 
presentation with respect to mathematics indicates that she focuses on (a) the iconic 
inscription of geometric shapes, (b) the names of shapes, and (c) the recognition of 
shapes in other contexts besides the book story.  
As we can see from the above extract, children’s activity is influenced by the different 
semiotic resources the teacher uses. More specifically, when Melina asks them to 
identify some objects which have the shape of triangle and rectangle, the children 
express ideas that are obviously affected by the examples presented in the picture book 
and represented by the iconic gestures of Melina. For example, about the triangle, Irene 
refers to the roofs (line 16) which have been used in the book for the presentation of the 
shape of triangle and highlighted by Melina’s linguistic and gestural activity. The 
children do not refer to other objects besides the ones mentioned in the book.  

 
Figure 1: Louis iconic gesture about the triangle.  

Interestingly, children also tend to reproduce the teacher’s gesture in order to express 
their ideas. Particularly, when Melina asks children to tell her which is the shape of the 
roofs that Oscar met at first, Louis (Figure 1) produces the same iconic gesture that had 
been produced by the teacher previously, when she was reading the book. Specifically, 
he makes a triangle with his pointing finger on the air (lines 10-11).  
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Analysing the dialogues in Georgia’s classroom  
Georgia tells the story to the children, who are sitting in a semicircle, by holding the 
button puppet or the picture book (Figure 2a, b). The extract that follows illustrates 
Georgia in action with the children of her class during the presentation of the book, 
after telling them about the rejection of Oscar by the rectangular doors. 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

Georgia: He runs quickly and he moves 
close to a window which has the shape 
of … (she makes a square with her 
pointing finger).  
Children: A square.  
Georgia: A square.  
Georgia (As Oscar): Hi, square. Hi 
square window! Would you like to 
become friends? 
Georgia (As square): No, I don’t want to 
be your friend. You are different. You 
haven’t got straight lines like me (she 
makes a straight line on air)  
Georgia: And what must he do? He 
cries.    
Georgia (As Oscar):  Snif. Snif.  
Georgia: … Oscar walks alone.  
Georgia (As Oscar): Nobody wants to 
be my friend because I’m different and I 
don’t have straight lines. 
Chris: This red shape is a circle. 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

Georgia: Oh, Chris. Tell me Chris.  
Chris: The sun.  
Georgia (As Oscar): Oh, I didn’t see it 
before, does it look like me? 
Children: Yes it’s a circle.  
Georgia (As Oscar): Yes it is a circle, 
oh, and I did not see it before (she 
makes with her pointing finger a circle 
on the air). 
Chris: The sun.  
Georgia (As Oscar): One sun. But now 
is night, it’s dark and I feel so lonely.   
Chris: A moon.  
Mary: The circle, the moon (she makes 
a circular motion with the pointing 
finger of her right hand). 
Children: Yes! 
Georgia (As Oscar): Does it look like 
me? 
Children: Yes! 
Mary: But now it is half, later…. 

Georgia is telling the story as a narrator or by taking the role of the button, or other 
objects in the story having different geometric shapes, is posing questions and is giving 
the opportunity to the children to finish her sentences.  

     
Figure 2: (a) Georgia shows pictures of the book; (b) Georgia holds the puppet of Oscar 

and Chris’s pointing gesture about the sun; (c) Mary’s iconic gesture about circle 
This multifaceted communicative strategy is synchronized with Georgia’s iconic 
gestures which represent the different geometric shapes, i.e., square and circle (lines 
25-26, 57-59), as well as the straight lines, stressing that they are a property of the 
square, but not of the circle (lines 34-35). Both semiotic resources, speech and gesture, 
provoke the children to introduce the various geometric shapes into the dialogue. 
Georgia’s speech and gestures in conjunction with the physical/didactical tools she 
uses (e.g., picture book, puppet) are coordinated in order to help the children stay 
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focused on the inscriptions of geometric figures included in the book. The semiotic 
resources in the teaching-learning process here are produced by the synchronized 
linguistic activity of the teacher-child communication, the teacher’s and children’s 
gestures, and the inscriptions of geometric figures in the pictures of the picture book. 
As far as the mathematics is concerned, Georgia’s presentation of the book story 
focuses on (a) the recognition of geometric shapes through iconic gestures, (b) the 
names of shapes, and (c) the difference between the circle and other geometric shapes 
with straight lines (e.g., square), and (d) the identification of objects that have the 
shape of circle and the similarity between them.  
In the last part of the dialogue (after line 36) Georgia, through her words and role 
playing as Oscar, who is feeling lonely, invites implicitly the children to focus on the 
latter mathematical strand, that is to explore and find other objects that have the shape 
of circle. Chris spontaneously shows with a pointing gesture a picture of a sun which is 
on a board in the classroom and tells Georgia: “This red shape is a circle” (line 43); 
“The sun” (line 45) (Figure 2b). Then the teacher, without going beyond the story and 
thus keeping the context meaningful for the children, elaborates on Chris’s idea by 
saying that “now it’s night” which implies that there is no sun and Oscar is alone again, 
in order to give children the opportunity to find other circular objects. Mary, following 
Chris’ response (“the moon”), reproduced (lines 57-59, Figure 2c) the teacher’s 
previous iconic gesture for the shape of circle for the sun (lines 49-52) saying “circle, 
moon”. Then Georgia asks whether the moon looks like Oscar, to encourage the 
children identify the similarity between these circular items. This question stimulated 
Mary to find out that in their classroom there was an image of the crescent moon and 
compare it with the shape of circle. Comparing the crescent moon and the circle, she 
told the teacher that “now it’s half, later...”.   This last part of the dialogue shows that 
the semiotic resources used (words, i.e., elaborations and questions based on the book 
story and children’s responses, gesture and inscriptions, i.e., pictures) challenge the 
children to experience and appropriate the shape of circle, its properties and 
differences with other shapes (e.g., semicircle). At the same time, this dialogue 
illustrates a kind of collective activity in which the two children and the teacher are 
attuned to each other’s perspective; they are acting together so as to respond to the 
implicitly assigned task, to find objects that have the same shape as Oscar. 
DISCUSSION  
The analyses of the dialogues in two classrooms revealed that the two teachers under 
study used various semiotic resources in different ways during their interaction with 
the kindergartners and/or the mathematics involved in the picture book. The most 
crucial common semiotic resource used by the teachers was linguistic activity which 
was manifested in two ways by Melina, the first teacher, that is, by reading the text and 
posing questions, and in multiple ways by Georgia, the second teacher, that is, by 
telling the story as a narrator, role playing, asking questions, giving explanations and 
elaborating on children’s ideas. Both teachers used gestures in their communication 
strategies which were mathematics oriented and iconic. That is, gestures were used 
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mainly when the teachers were referring to geometric concepts and they represented 
visually the geometric figures that were included in the story. For the second teacher, 
during the whole teacher-child interaction, gestures and speech were coordinated with 
other semiotic means, that is, the inscriptions of geometric figures in the pictures of the 
book in order to help the children stay focused on the two-dimensional geometric 
shapes she intended to introduce. For the first teacher, this coordination took place only 
while reading the book, during which there was not a teacher-child interaction. During 
the dialogue with the children the first teacher did not use any gestures or other 
semiotic resources besides speech (posing questions).  
The mediating role of the teachers’ use of semiotic resources on children’s geometrical 
reasoning was manifested in various ways, but was stronger in the second class. 
Children in both classes used in their verbal utterances geometrical terms, and 
specifically the names of shapes, or examples of objects having a specific shape, which 
were represented in the pictures and the text of the book and were highlighted by the 
teachers’ words and gestures. Furthermore, the iconic gestures that were used by the 
teachers in introducing the various geometric shapes were interwoven also in the 
children’s gestural activity when referring to the same or even to different objects. This 
latter case of reproduction of gesture, which was observed only in the second class, can 
be considered as an elaboration on the iconic gestures produced by the teacher. In a 
broader sense, our findings also suggest that the teacher’s semiotic resources produced 
in the teacher-child dialogue in the second class, including words stressing that the 
circle does not have straight lines, iconic gestures representing the shape of circle, 
inscriptions of shapes in the book’s pictures, and their synchronized coordination with 
two children’s production of semiotic resources, mediated these children experience 
early geometrical reasoning while comparing the shape of circle with shapes of objects 
in everyday life. Thus, these semiotic resources contributed to the children’s process of 
objectification for the shape of circle and its differences from other shapes.  
The difference in the mediating role of the semiotic resources in children’s process of 
objectification for geometric shapes between the two classes could be also explained 
by the difference in the mathematics that was addressed through the teacher’s use of 
semiotic resources. The second teacher had a clearer focus with respect to the 
mathematics she intended to promote through the picture book. She focused on the 
concept of circle and its comparison with other shapes, while the first teacher 
addressed the various geometric shapes included in the picture book without 
concentrating on their characteristics and relationships.      
Another explanation for this difference could be the different level of opportunities 
given to the children for participation and for experiencing the mathematics 
themselves in the two classes. In the second class children could express their ideas and 
reasoning, and interact with the teacher about the mathematical content of the book to a 
greater extent, throughout the whole lesson. Furthermore, the second teacher 
elaborated on the children’s mathematical ideas in an insightful way without going 
beyond the picture book’s story, in order to keep the context meaningful for the 
children, such that all of the communication partners, teacher and children, could 
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contribute in the production of semiotic resources in order to apply the reasoning 
strategy of comparing the shape of circle with shapes of objects in everyday life.    
In conclusion, this study’s findings suggest that the proper use, the coordination and 
the dynamics of semiotic resources produced in the teacher-child interactions could 
have a major role in children’s active and effective involvement with mathematics in a 
teaching-learning process based on the use of a picture book. Future research could 
focus on how various semiotic systems (e.g., speech, gestures, inscriptions) and their 
connection to different ways of using picture books in the teaching-learning process 
might enhance children’s involvement and learning in mathematics. 
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CHOOSING AND USING EXAMPLES: HOW EXAMPLE 
ACTIVITY CAN SUPPORT PROOF INSIGHT 

Amy B. Ellis, Elise Lockwood, M. Fatih Dogan, Caroline C. Williams, Eric Knuth 
University of Wisconsin-Madison 

 
This paper presents the results of two studies aimed at identifying the ways in which 
successful provers (students and mathematicians) engage with examples when 
exploring and proving conjectures. We offer a framework detailing the participants’ 
actions guiding a) their example choice and b) their example use as they attempt to 
prove conjectures. The framework describes three categories for example choice 
(choose examples that test boundaries, emphasize mathematical properties, and build 
a progression of example types) and three categories of uses (identify commonality, 
see generality, and anticipate change). 
INTRODUCTION: PROOF IN SCHOOL MATHEMATICS 
Proof in school mathematics plays an important role in students’ mathematical 
reasoning abilities, with researchers arguing that proof should be a central part of 
students’ education at all levels (e.g., Ball et al., 2002). Yet despite a strong emphasis 
on proof in school mathematics, students struggle both to produce and understand 
mathematically valid proofs (e.g., Harel & Sowder, 1998; Healy & Hoyles, 2000). 
Researchers suggest that a critical source underlying students’ difficulties is their 
treatment of examples, particularly the tendency to rely on example-based arguments 
as justification that a universal statement is true (e.g., Healy & Hoyles, 2000; Knuth, 
Chopin, & Bieda, 2009). 
Although it is important to help students understand the limitations of example-based 
arguments, we propose that it is equally important to avoid situating example-based 
reasoning solely as an obstacle to overcome. Given the essential role examples can 
play in exploring conjectures and developing proofs, we suggest that providing 
students with opportunities to carefully analyse examples may contribute to their 
abilities to develop and understand conjectures and proofs. This paper presents the 
results of two studies aimed at identifying the ways in which successful provers 
(students and mathematicians) engage with examples when exploring, understanding, 
and proving conjectures. We offer an initial framework detailing the characteristics of 
participants’ example choices and their example usage as they explore conjectures and 
develop deductive proofs. By studying the thinking of those who are successful at 
proving, our aim is to gain insight into the nature of the type of example-related 
activity that could ultimately support students’ proof development. 
BACKGROUND AND THEORETICAL FRAMEWORK 
The Role of Examples in Conjecturing, Generalizing, and Proving 
Examples play an important role in mathematical reasoning, and the time spent 
analysing examples can provide both a better understanding of a conjecture and insight 
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into the development of its proof (Epstein & Levy, 1995). Thinking with examples can 
help students make sense of conjectures and can support the development of 
conceptual understanding more generally (e.g., Alcock & Inglis, 2008). Example use 
has also been found to support students’ acts of generalizing (e.g., Goldenberg & 
Mason, 2008; Naftaliev & Yerushalmy, 2011), and analyzing structural similarities 
and variation across examples can support proof development (Goldenberg & Mason, 
2008; Pedemonte & Buchbinder, 2011). 
Research on mathematicians’ thinking similarly shows that examples play a critical 
role in both mathematicians’ development of conjectures and in their subsequent 
construction of proofs (Alcock & Inglis, 2008). Epstein and Levy (1995) contend that 
mathematicians spend considerable time thinking with examples, noting, “It is 
probably the case that most significant advances in mathematics have arisen from 
experimentation with examples.” (p. 6) This current study builds on prior work 
(Lockwood et al., 2012) in which mathematicians described using examples 
specifically to gain insight into proof. While the initial research on example use shows 
promise, more nuance is needed in understanding how to best support students’ 
thinking with examples in order to promote proof. The findings presented in this paper 
shed light on the specific mechanisms through which example exploration provides 
insight into proof development for both students and mathematicians. 
Proof and Proof Activities 
We refer to proof and justification interchangeably to mean the activity of ascertaining 
(convincing oneself) and persuading (convincing others) (Harel & Sowder, 1998). An 
individual’s proof scheme consists of what constitutes ascertaining and persuading for 
that person. We rely on Harel and Sowder’s (1998) proof schemes framework – 
recently updated (Harel, 2007) – for classifying students’ proof schemes. The 
framework establishes three main classes of proof schemes: (a) External Conviction 
class, (b) Empirical class, and (c) Deductive class. Proof schemes in the first two 
classes rely on external authority, the appearance of an argument, manipulation of 
symbols without a coherent system of referents, or evidence from examples. In 
contrast, the deductive class of proof schemes represents schemes dependent on 
generality, operational thought, and logical inference.  
METHODS 
Student Study: Participants and Instrument 
Participants were 20 students aged 12-14, each who participated in a videotaped 1-hour 
interview. Eleven students were female and 9 students were male. The interview 
instrument presented students with seven conjectures and students were asked to 
examine the conjectures, develop examples to test them, and then provide a 
justification. The conjectures addressed ideas in number theory and geometry. A 
sample conjecture is as follows: “Kathryn thinks this property is true for every whole 
number. First, pick any whole number. Second, multiply this number by 2. Your 
answer will always be divisible by 4.” After the students worked with examples for 
each of the conjectures, they were asked why they chose the examples they did. 
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Mathematician Study: Participants and Instrument 
Participants were 6 male faculty members from two university mathematics 
departments who participated in 1-hour videotaped interviews. Five participants hold 
PhDs in mathematics and one in mathematics education. During the interviews, 
mathematicians were asked to explore three mathematical conjectures and to think 
aloud as they worked. After each conjecture, the participants were asked clarifying 
questions about their work, including their example-related activity. Sample 
conjectures are shown in Table 1.  
 
1 

Let S be a finite set of integers, each greater than 1. Suppose that for each integer 
n there is some  such that  or . Show that there exist 

such that  is prime.  

2 All the numbers should be assumed to be positive integers. An abundant number 
is an integer n whose divisors add up to more than 2n. A perfect number is an 
integer n whose divisors add up to exactly 2n. A deficient number is an integer n 
whose divisors add up to less than 2n. Conjecture 2a. A number is abundant if and 
only if it is a multiple of 6. Conjecture 2b. If n is deficient, then every divisor of n 
is deficient. 

Table 1: Sample conjectures given to mathematicians 
Analysis 
The justifications that the student participants produced were coded according to Harel 
and Sowder’s (1998; Harel, 2007) proof schemes taxonomy and identified as 
representing proofs from the deductive class, the empirical class, or the external 
conviction class. Five of the 20 student participants produced no proofs from the 
deductive class, and 11 participants produced some proofs from the deductive class. 
Because the paper focuses on successful provers, the student analysis was restricted to 
the remaining 4 students who produced proofs that were all from the deductive class, 
and all of the mathematician interviews were analysed. Each of these 4 students was 
able to produce a deductive proof for every conjecture he or she encountered. 
Both the mathematicians’ and the students’ examples were coded into a pre-existing 
framework of example types and uses developed by the authors (Ellis et al., 2012; 
Lockwood et al., 2012). We then re-analysed the data by coding the participants’ 
responses to each conjecture in order to characterize common themes across their 
actions. This open coding process led to the development of two major categories of 
themes, example choice and example use. The research group discussed the codes and 
clarified uncertainties as emergent codes solidified. A given response could be coded 
in multiple categories simultaneously, both within and across choices or uses.  
RESULTS: EXAMPLE CHOICE AND EXAMPLE USE 
We identified two major actions with examples that supported the participants’ proof 
activities: Deliberate and strategic choice of examples, and insightful use of examples. 
The categories of example choice and example use are shown in Table 2. Although 

Ss∈ 1),gcd( =ns sns =),gcd(
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every category occurred in both the mathematician data and the student data, due to 
space constraints we limit our discussion to the most salient examples. 
 
 
Example 
Choice 

Test boundaries: Selecting examples that target the boundaries of the 
hypothesis or conjecture, including counterexamples. 
Emphasize properties: Purposefully choosing examples with particular 
properties or features relevant to the conjecture in question. 
Build a progression: Building a deliberate progression of specific 
examples that may range in type or role. 

 
 
Example 
Use 

Identify commonality: Attending to common features or characteristics 
across multiple examples in order to identify a broader mathematical 
structure. 
See generality: Identifying a general or representative structure embedded 
in one example that may provide insight into the structure of a general 
argument. 
Anticipate and imagine change: Envisioning an example as a dynamic, 
changing representation. 

Table 2: Categories of example choice and example use 
Example Choice 
The participants demonstrated a dispositional orientation towards choosing examples 
in a deliberate, strategic manner. The first category of example choice is testing 
boundaries, in which one purposely attempts to find examples that could potentially 
break the conjecture, or could provide insight into the conjecture’s limitations. For 
instance, in the mathematician’s Conjecture 2b, Professor Lowry specifically chose to 
explore examples that included 6 as a factor because 6 is a perfect number: “We know 
6 is perfect…so actually it’s a good choice for a potential counterexample, because it’s 
not deficient, but it’s not far from being deficient.” He further clarified his motivation 
for this choice by saying it is “likely that if something interesting is going to happen 
with an example, a boundary case is usually where it would be interesting.” Professor 
Lowry indicated that by examining boundary cases and looking for counterexamples, 
he suspected that he might gain some insight about the conjecture and about a possible 
proof. The student participants also selected examples with boundary testing in mind. 
For instance, Genna examined Conjecture A, the conjecture that the sum of the lengths 
of any two sides of a triangle is greater than the length of the third side. Genna believed 
that this must be true for equilateral and isosceles triangles because she could imagine 
that “two of the sides added together are obviously bigger than the third side.” Genna 
then tried to think of “a triangle that wouldn’t work”, and drew a scalene triangle. 
Genna’s explorations with different scalene triangles led to a general argument for all 
triangles. In general, successful provers recognized what they could gain from 
boundary cases and specifically sought out those types of examples.  
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Participants also chose examples based on their mathematical properties, the second 
category of example choice. When doing so, participants sought out examples with 
specific types of properties that they viewed as relevant to the conjecture at hand. This 
was evident in Genna’s selection of a scalene triangle, as she thought that triangles 
with three different side lengths might be more likely to break the conjecture than 
equilateral or isosceles triangles. An attention to properties emerged frequently for the 
mathematicians. In his work on Conjecture 1, Professor Parker drew upon the specific 
mathematical property of relative primeness in ascertaining the truth of the conjecture: 
“See I was definitely using relatively prime to this [circles a 4], relatively prime to this 
[circles a 6], giving me the existence or non-existence of a two and a three.” In his 
work, mathematical properties such as prime numbers, greatest common divisors, and 
relative primeness were readily available to him, and he referred to them often in 
selecting examples.   
The final category of example choice is progression, which describes an attempt to 
build a set of examples that either varies across different types or roles, or that together 
contributes to a more complete picture of what is happening. For instance, for 
Conjecture 2 Professor Lowry chose examples with 6 as a factor. He first specifically 
chose the example 12, which is 6•2, but he recognized the fact that because 6 was half 
of 12 he would never attain a counterexample. He thus proceeded to choose an 
example that did not have a perfect factor that was exactly half of it, selecting 6•3. As 
he worked through this example, though, he realized that many other factors were 
being generated. He did not want to have “much stuff between six and the whole 
number,” and this led him to choose 6•11. In the end, it was his work with the 6•11 
example that led him to a proof of the conjecture. Professor Lowry’s strategic and 
carefully chosen progression of 6•2, 6•3, and 6•11 provided him with a number of 
insights and ultimately contributed to his successfully proving the conjecture. 
Example Use 
The participants’ dispositional orientation towards using examples reflected the belief 
that the purpose of example exploration is not merely to check a conjecture’s truth, but 
to try to understand a conjecture’s logic through the example. In the first category of 
use, identify commonality, participants paid careful attention to the variation across 
multiple examples, attending to what changed and what remained the same as they 
shifted from one example to the next. For instance, Professor Larkin noted that he 
wanted to be aware of patterns emerging in multiple examples, in particular “what 
pattern it’s creating for me. So that, if in fact, the [conjecture] is true, I have some sense 
of the pattern I can create to prove it.” In his work on Conjecture 1, Professor Willis 
also mentioned seeking a pattern across examples, suggesting that he was looking to 
identify a common structure among his chosen examples that would shed light on why 
the conjecture might be true.  
In the second category of example use, see generality, participants were able to 
develop insight into the mathematical structure of a potential argument through 
exploration with just one example. This way of thinking is evident in Reed’s 
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exploration of Conjecture B, the conjecture that the sum of three consecutive whole 
numbers is equal to three times the middle number. Reed tested with the triple 33, 34, 
35. When the interviewer asked if that example worked, he replied, “Yes it did. That’ll 
do. Well, of course it’ll always work.” Reed underlined the middle number, 34, and 
appeared to experience an insight into why the conjecture must always work. When the 
interviewer asked him to explain, Reed used a new triple, 6, 7, and 8, to explain his 
insight (Figure 1): 

 
Figure 1: Reed’s example to demonstrate the truth of Conjecture 1 

Reed: Eight minus 1 equals 7, and 6 plus 1 equals 7. So take 1 off this (gestures to 
the 8) and put it on there (gestures to the 6). And it comes out 7 plus 7 plus 
7.  

The final category of use, anticipate and imagine change, refers to an ability to 
imagine one example as dynamic rather than static, changing the boundaries or 
features of the example in order to mentally anticipate and test multiple cases at once. 
In some cases this can also enable participants to deliberately manipulate the example 
in a way that can assist with insight into a proof. This is seen in Reed’s work with 
Conjecture A. Reed constructed several triangles to try to imagine whether it would be 
possible to have two sides longer than the third, which he began to suspect might be 
impossible. In order to confirm his suspicions, Reed created a final triangle with two 
sides each of length 4 and the third side of length 8, explaining what would happen if 
he “straightened” the two sides of length 4, by which he means flattening the sides so 
the triangle became more and more obtuse until it approximated a line: 

Reed: Because if these sides were straightened out to make a line, it’d be this long 
(gestures a length from A to C, a length longer than the 3rd side) so this line 
right here from point A to point B is not the same as – the same or longer 
than points A to C.  

The participants’ orientation towards example use was one that cast examples as a way 
to better understand the conjecture. In contrast, students who were unable to develop 
deductive proofs viewed examples primarily as a way to test a conjecture’s truth. By 
moving beyond testing activities, the successful provers in this study were able to 
leverage the power of examples to provide meaningful insight into the conjectures and 
their potential proofs. 
DISCUSSION 
Although the students and the mathematicians differed in the sophistication of the 
arguments they were able to construct, there were a striking number of similarities in 
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the ways in which each participant group thought strategically about their example 
choice and made deliberate use of examples in order to think about broader 
mathematical structures. Their ways of choosing and using examples differed from 
what occurred in the work of the student participants who did not ultimately produce 
deductive arguments (see Ellis et al., 2012). These differences suggest that exposure to 
examples is not sufficient for fostering proof insights; instead, learners must engage 
with examples in particular ways in order to benefit from their utility as a way to gain 
understanding and inform the development of deductive arguments.  
In addition, there were some important differences across the two participant groups; 
for instance, the mathematicians were more apt to recognize the potential power of a 
specific example before choosing it, and they demonstrated an explicit meta-cognitive 
awareness of the usefulness of examples more generally in providing insight into the 
nature of a conjecture and its proof. These findings, rather than framing examples as 
obstacles to overcome, emphasize that students may benefit from instruction in how to 
strategically choose examples and how to think carefully with the examples they have 
chosen. Further, instructional practices that encourage students to discuss and justify 
their choice and use of examples could foster the development of the meta-cognitive 
awareness demonstrated by mathematicians. A stronger understanding of the strategies 
successful provers employ as they use examples to create, explore, and prove 
conjectures could ultimately inform instructional guidelines aimed at more effectively 
fostering students’ abilities to prove.  
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Exponential functions are an important topic in school algebra and in higher 
mathematics, but research on students’ thinking suggests that understanding 
exponential growth remains an instructional challenge. This paper reports the results 
of a small-scale teaching experiment with students who explored exponential functions 
in the context of two continuously covarying quantities, height and time. We present a 
learning trajectory identifying three major stages of conceptions about exponential 
growth: pre-functional reasoning, covariational reasoning, and correspondence 
reasoning. The learning trajectory identifies relationships between these conceptions 
and the nature of the tasks that supported their development. 
INTRODUCTION 
Exponential functions represent an important transition from middle-grades 
mathematics to the more complex ideas students encounter in secondary instruction 
and beyond. However, the instruction of exponential functions has proved challenging 
given students’ documented difficulties in understanding exponential growth. Students 
struggle to transition from linear representations to exponential representations, to 
identify what makes data exponential, and to explain what a function such as f(x) = bx 
means (Alagic & Palenz, 2006; Weber, 2002). These challenges suggest a need to 
better understand how to foster students’ learning about exponential growth. As Simon 
and Tzur (2004) argue: 

The most important use of the elaborated HLT would be for teaching concepts whose 
learning is problematic generally or for particular students. In such cases, greater 
understanding of learning processes and how they can be supported…is essential for 
developing a theoretical basis for dealing with difficult pedagogical problems. (p. 101) 

This paper reports on the results of a teaching experiment introducing exponential 
growth in the context of two continuously covarying quantities. We present a learning 
trajectory specifying students’ understanding over time, identifying connections 
between students’ conceptions and the tasks promoting the development of those 
conceptions. Findings suggest that situating an exploration of exponential growth in a 
model of covarying quantities can support both students’ understanding of what it 
means for data to grow exponentially and how to express exponential relationships 
algebraically. 
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BACKGROUND AND THEORETICAL FRAMEWORK 
Hypothetical Learning Trajectories 
Simon (1995) defined a hypothetical learning trajectory as “the learning goal, the 
learning activities, and the thinking and learning in which students might engage” (p. 
133). Clements and Samara (2004) elaborate on this definition, characterizing a 
learning trajectory as a description of children’s thinking and learning in a specific 
domain connected to a conjectured route through a set of tasks designed to support that 
thinking. We offer a learning trajectory presenting a model of students’ concepts about 
exponential growth and an account of how those concepts changed as students 
interacted with mathematical tasks (Confrey et al., 2009; Steffe, 2004). In contrast to 
learning trajectories emphasizing strategies or skills, we focus on conceptual 
understanding and its development. Our aim is to contribute to the field’s 
understanding of learning about exponential growth, an area known to be challenging 
for students.  
Quantitative Reasoning and the Rate-of-Change Perspective 
A popular approach to function relies on the correspondence perspective (Smith, 
2003), in which a function is viewed as the fixed relationship between the members of 
two sets. Smith and Confrey (Smith & Confrey, 1994) offer an alternative to the 
correspondence view, which they call the covariation approach. Here one examines a 
function in terms of a coordinated change of x- and y-values, moving operationally 
from ym to ym+1 coordinated with movement from xm to xm+1. Relying on situations that 
involve quantities that students can manipulate can foster their abilities to reason 
flexibly about dynamically changing events (Castillo-Garsow, 2012). This approach 
may be especially useful in helping students understand exponential growth, given its 
connection to contexts involving multiplicative relationships. 
METHODS 
The study was situated at a public middle school and consisted of a 12-day teaching 
experiment with 3 female eighth-grade students (ages 13-14) in which the first author 
was the teacher-researcher. Each 1-hour session focused on the relationship between 
height and time for an exponentially growing Jactus plant; students were able to 
manipulate the plant’s growth using an interactive computer program called Geogebra. 
Although this scenario is not realistic, the context is realizable (Gravemeijer, 1994) in 
that students could imagine, visualize, and mathematize the relevant quantities. All 
sessions were videotaped and transcribed. 
We assumed that any understanding students might have about exponentiation before 
entering a teaching experiment would be dependent on an image of repeated 
multiplication. Building on that conception, our primary goal was to foster students’ 
understanding of the following set of concepts for an exponential function 𝑦 = 𝑎 ∙ 𝑏𝑥: 
The period of time x for the y-value to increase by the growth factor b is constant, 
regardless of the value of a or b. 
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There is a constant ratio change in y-values for each constant additive change in 
corresponding x-values.  

The ratio of the change in y, which can be expressed as 𝑦1
𝑦2

= 𝑏𝑥1−𝑥2, is always the same 
for any same and the value of  is dependent on .  
Data analysis relied on retrospective analysis techniques to characterize students’ 
changing conceptions. Project team members developed preliminary codes for 
concepts on the trajectory based on students’ talk, gestures, and task responses as 
evidence of understanding at different stages. The first round of analysis yielded an 
initial learning trajectory, which then guided subsequent analysis in which the project 
team met as a group to refine and adjust the codes. This iterative process continued 
until no new codes emerged. Once coding was complete we chose 20% of the data 
corpus for independent coding, which yielded an inter-rater reliability rate of 92%.  
RESULTS 
The progression of the students’ conceptual development occurred in three major 
stages, which we call pre-functional reasoning, covariation reasoning, and 
correspondence reasoning (Figure 1). Although pre-functional reasoning did precede 
the development of both the covariation and the correspondence views, the latter two 
ways of thinking did not occur in a sequential nature. Rather, students constructed an 
early covariation understanding, and then began to simultaneously develop both a 
more sophisticated covariation perspective and a correspondence understanding. 
Students were able to flexibly shift between these perspectives as needed. 
Pre-functional reasoning 
The students entered the teaching experiment with only a qualitative understanding of 
exponential growth, and were unable to quantify the manner in which the plants grew. 
Exploration with the Geogebra program enabled the students to then develop a 
repeated-multiplication understanding of exponentiation. For instance, students 
encountered a Jactus that grew by quadrupling its height every week. Uditi described 
its growth: “They’re all going up by like times 4, like, 16 times 4 is 64 and then 64 
times 4…that’s 1024.” Absent from Uditi’s language is any attention to how much 
time it takes for the plant’s height to quadruple. 
Through comparing plants with different growth rates, students began to realize that 
the growth factor determined the nature of the growth, identifying plants with larger 
growth factors as those that would grow taller over time. For instance, given a 
comparison problem with a plant that doubled each week, Laura could determine that 
the quadrupling plant grew faster than the others, “because it’s growing 4 times and it’s 
more than 2 times and 3 times.” However, at this stage the students did not attend 
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Figure 1: Graphical Representation of Exponential Functions Trajectory 

to the connection between the growth of y-values and the growth of x-values; thus their 
understanding remained pre-functional. Table 1 summarizes the pre-functional 
reasoning portion of the learning trajectory: 
Concept Definition Sample Tasks and Data Examples 
Qualitative understanding: Understanding that 
y-values grow larger at an increasing rate over 
time, but manner of increase unspecified. 

Manipulate GeoGebra Jactus (via sliders). “It 
would start, like, small and then it will get, like, 
really big in a short amount of time.” 

Repeated multiplication: Understanding that 
repeated multiplication determines how height 
(y) grows without attending to time (x).  

Find missing values in a table; Complete far 
prediction problems for large x-values. 
“They’re all going up by like times 4, like, 16 
times 4 is 64 and then 64 times 4…that’s 1024.”  

Magnitude of growth factor determines height 
change: Understanding that the growth factor 
determines how growth occurs. 

Compare plants with different growth rates to 
determine which grows the fastest. “The 
tropical [is fastest], because it’s growing 4 
times and it’s more than 2 times and 3 times.” 

Table 1: Pre-functional reasoning 
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Early Covariation Reasoning 
In an attempt to encourage coordination of the plant’s height with the number of weeks 
it had been growing, we introduced a task to draw the plant’s height after 1 week and 
after 3 weeks if it doubled every week. When asked to predict what would happen for 
weeks 4 and 5, the students began to coordinate growth in height with weeks, 
explaining that the height for Week 4 “would be double the last week,” (Jill) and the 
height for Week 5 “would double the week before” (Laura).  
As students encountered non-uniform tables of data, they began to coordinate the 
change in height with the change in weeks for small multiple-week spans. For a table 
with a gap between Week 15 and Week 18, Uditi divided the plant’s height at Week 18 
by the plant’s height at week 15 and got 64. She then wrote,  “___ × ___  × ___ = 64” 
and determined that the growth factor must be 4. At this stage, students’ abilities to 
coordinate height change with the change in time were reliant on an image of repeated 
multiplication. Table 2 summarizes the early covariation reasoning portion of the 
learning trajectory. 
Concept Definition Sample Tasks and Data Examples 
Implicit coordination: Understanding that 
the plant’s height grows by a constant 
multiplicative factor “each time”, but the 
time values are not explicitly quantified.  

Non-well-ordered tables containing jumps in week 
values; Tables in which ∆x is not 1. “So here’s 8, 
and then the next is 16 and…it goes up, if that’s the 
rate…” 

Multiplicative growth for any unit change: 
Understanding that for any 1-week time 
change, the plant will grow by (b). 

Predict current height relative to what it was any 
number of weeks in the past or future. “For each 
week it goes…times the same number. Times 3, 
times 3, and the value between each week increases 
as the weeks go on.” 

Explicit coordination: Coordination of 
multiplicative growth in height with explicit 
time changes; time has now been quantified. 

Draw the plant each week or with skipped weeks. 
“In 1 week it’s going to be 1 inch and in 2 weeks it’s 
going to be 2 inches, then in 3 weeks it’s going to be 
4 and 4 weeks it’s going to be 8.” 

Coordination of change in y for small 
changes in x: Coordination of the ratio of 
two height values for multiple-week time 
periods.  

Complete non-uniform tables; Determine growth 
rate given only two point values. “I did 
20,615,843,020 ÷ 322,122,547.2 and I got 64. So I 
tried to figure out what number times itself times 
itself = 64 and it was 4.” 

Table 2: Early covariation reasoning 
Development of the Correspondence Reasoning 
Once the students understood that the growth factor represents the multiplicative 
change in height per week, they began to express this relationship algebraically. The 
students also began to shift from thinking about the initial height, a, as simply the 
unquantified “starting value” to understanding that the initial height could also be 
viewed as a multiplicative constant (Table 3). The students eventually encountered 
tasks in which, given two points, they had to determine whether a third point was 
accurate. If the x-values were sufficiently large, this motivated expressing the height of 
the plant based on an existing height value. For instance, the students worked with a 
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plant given two height values: 956,593.8 inches at 14 weeks, and 8,609,344.2 inches at 
16 weeks, and were asked whether the point (1, 0.6) was correct. Uditi wrote, “It is 
right because 0.6 × 313 = 956593.8.” Table 3 summarizes the correspondence view 
portion of the learning trajectory. 
Concept Definition Sample Tasks and Data Examples 
Initial height is a multiplicative 
constant: Understanding that the initial 
height changes the height at any given 
week by the multiplicative constant (a).  

Compare plants with different initial heights and same 
growth rates. "Cause it starts out like times that number, 
like if it’s 4 then it’s like 4 times as big as the original 
one’s starting number…" 

Growth factor has greater effect than 
initial height: Recognizing that the plant 
with the larger growth factor will be 
taller after a large amount of time, 
regardless of the initial heights. 

Compare plants with different initial heights and growth 
rates to determine which grows the fastest. “The 
evergreen…because it triples, so when you keep going 
in the weeks, it’s going to be bigger than the one that 
doubles.” 

y = abx: Understanding that the relation 
between x and y can be expressed 
generally as y = abx 

Determine the plant’s height for any given week. “I kept 
dividing 19,660.8 divided by 4 each time until I got to 0, 
and then I took 0.3 times 4 to the 15th power.” (Writes “y 
= 0.3 × 4x”) 

yk=yibx
k

-x
i : Understanding that any 

height value can function as a 
multiplicative factor provided ∆x is 
adjusted appropriately. 

Determine the growth factor given two point values 
without an initial height. Given points (8; 19,660.8) and 
(15; 322,122,547.2), a student determines missing b 
value by writing: “19,660.8  = 322,122,547.2” 

Table 3: Correspondence Reasoning 
The Covariation Perspective 
Tasks with larger gaps between weeks encouraged students to truncate the repeated 
multiplication imagery. For instance, when students encountered two height values at 4 
weeks and 15 weeks and had to determine the growth factor, Uditi took the ratio of the 
height values, which was 4,194,304, and wrote “___11 = 4,194,304”. She no longer 
relied on an image of repeatedly multiplying the height at week 4 by the growth factor 
11 times to achieve the height at week 15. In the early stages this coordination 
sometimes relied on a re-unitizing strategy (see Table 4). 
In order to foster the coordination perspective for cases in which was , we asked 
students to predict how much a plant would grow for different increases in time. For 
instance, given a plant that triples each week, students had to consider how much larger 
it would grow in 1 day. Uditi responded to the question with “ ”, explaining, “I 
divided 1 week into 7 parts, which represents 1 day each and it’s .14 of a week.” In this 
manner Uditi was able to make sense of a non-whole number exponent. Table 4 
summarizes the final section of the learning trajectory for the covariation reasoning. 
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Concept Definition Sample Tasks and Data Examples 
Re-unitizing: Creating a new chunk of time 
and using that chunk as a unit for 
multiplicative growth. 

Require comparison of the same plant’s growth 
across different data sets with different time units. 
(Student creates a unit out of a 3-week chunk): “Like 
since the 8…it’s 8 for 3 weeks, 8 times 8…equals 64 
for the 6 weeks.” 

Coordination of change in y for large 
changes in x: Coordination of the ratio of 
height values for any time span >1; no 
longer relying on repeated multiplication 
imagery. 

Determine the growth factor given two data points 
with a large ∆x. “Well for that one we did 3 to the 5th 
and that was 5 weeks, so then I just doubled that so I 
did 3 to the 10th because it was double 5, which is 
10, then 10 weeks.” 

Coordination of change in y for change in x 
< 1: Coordination of the ratio of height 
values for any time span, even when ∆x is < 
1. Determine how much a plant would grow 
in k days given a growth factor (b) provided 
in terms of weeks, by multiplying a height 
by b(k/7). 

Scenarios with a growth factor in weeks that require 
determining how much the plant grows in a portion 
of a week. (Given a plant that triples every week, 
determine how much it would grow in 1 day): “For 
one week there are 7 days, and I divided 1 by 
7…and I got 0.14, so I did 3 over 0.14.” [Wrote 30.14 

= 1.17]. 
Constant change in x yields proportional 
multiplicative constant change in y: 
Understanding that for any ∆x, the ratio of 
two heights y2 to y1 will be b(x2 - x1) and does 
not depend on the individual x1 or x2 values. 

Predict how much larger the plant will grow from 
week x3 to x4 if one knows how much the plant grew 
from x1 to x2, when x2- x1 = x4- x3. Do you think it 
will always get 8 times as big for any 3-week jump? 
“Yes, because 2 x 2 x 2 = 8, like the difference 
between each week is 2.” 

Table 4: Covariation Reasoning 
DISCUSSION 
Steffe (2004) argues that “The construction of learning trajectories of children is one of 
the most daunting but urgent problems facing mathematics education today” (p. 130). 
By offering an empirically based learning trajectory focusing on students’ initial 
understanding of exponential functions, we aim to contribute to the field’s knowledge 
of students’ learning processes and how they can be supported (Simon & Tzur, 2004). 
Our findings suggest that situating an exploration of exponential growth in a scenario 
in which students can manipulate continuously covarying quantities in a dynamic 
environment fosters their ability to correctly coordinate multiplicative growth in y with 
additive growth in x.  
In addition, the students’ abilities to coordinate the ratio of height values with the 
additive difference in time values played a significant role in their development of 
algebraic representations. In general, the students’ early covariational thinking 
preceded their ability to develop correspondence rules of the form y = f(x), which 
reflects Smith and Confrey’s (1994) assertion that students typically approach 
functional relationships from a covariational perspective first. This study offer a proof 
of concept that even with their relative lack of algebraic sophistication, middle-grades 
students can engage in an impressive degree of coordination of covarying quantities 
when exploring exponential growth.  
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BELIEF SYSTEMS’ CHANGE - FROM PRESERVICE TO 
TRAINEE HIGH SCHOOL TEACHERS ON CALCULUS  
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This report focuses on a part of a research programme concerning (prospective) 
secondary teachers´ beliefs towards their teaching of mathematics and calculus in 
particular. First the theoretical framework and methodology will be shortly outlined. 
Afterwards the focus lies on studying these teachers´ beliefs with a particular concern 
for how these beliefs might change depending on the stage of their professional 
development. Results from a qualitative study of preservice teachers and teacher 
trainees will be discussed centered on the nature of beliefs on calculus, their structure 
being built up and why and how possible changes in their teaching orientation occur. 
INTRODUCTION  
Teachers are challenged to consistently enhance their professional knowledge as well 
as to change or to modify their beliefs beyond a status quo achieved after university 
studies (Clarke & Hollingsworth, 2002). This individual, everyday and life-long 
learning aims to achieve the overarching objective for mathematics instruction, i.e. to 
seek a teaching style that facilitates students’ learning as best as possible. 
Subsuming this life-long learning process referring to pre-service and inservice teacher 
training to the construct of teacher change (Hannula & Sullivan, 2008), this learning 
process concern both knowledge and beliefs with respect to mathematics as a school 
discipline and the teaching and learning of mathematics (Oliveira & Hannula, 2008). 
Research in the field of teacher change has identified a crucial point in time concerning 
a possible change when teachers acquire their first experiences in the classroom 
(Huberman, 1989; Oliveira & Hannula, 2008). This change occurring in the interplay 
of existing beliefs and classroom experience (Zaslavsky & Linchewsky, 2008) refers 
particularly to the teachers’ knowledge and beliefs relating to teaching and learning 
mathematics (Oliveira & Hannula, 2008). 
For this reason, our focus in this paper is on mathematics beliefs of teachers that we 
attend from the end of their university studies to their commencing teacher career. In 
Germany, this time lasts two years in which teacher trainees pass through a special 
programme involving partly self-dependent teaching practice partly teaching practice 
that is guided by a mentor. As part of a larger research programme (Erens & Eichler, 
2012) aiming to investigate secondary teachers’ beliefs concerning a specific 
discipline (cf. Franke et al., 2007), we regard teacher trainees referring to their beliefs 
about the teaching and learning of calculus. For this, we briefly outline our theoretical 
framework and method that is relevant for this paper. Afterwards we discuss results of 
our research. 
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THEORETICAL FRAMEWORK 
Although a teacher change concerns both knowledge and beliefs, the focus in this 
paper is on teachers’ beliefs that represent the teacher’s individual convictions 
referring to the teaching and learning of mathematics and that are “inextricably 
intertwined” with the teachers knowledge in respect to these issues (Pajares, 1992, 
311).  
Following Green (1971) beliefs are organized in belief systems, including belief 
clusters that can coherently be connected, but could also be contradictory 
(quasi-logicalness). Further, beliefs or belief clusters could be central, i.e. strongly held 
by a teacher or, by contrast, peripheral. According to the construct of subjective 
theories, which is defined similar to belief systems (Groeben et al., 1988), belief 
systems represent teachers’ teaching objectives.  
Further, teachers’ beliefs representing overarching teaching objectives are called 
teachers’ (world) views (Grigutsch et al., 1998) involving 
a formalist (world) view, i.e. a teacher emphasizes the logical, formal and deductive 
nature of mathematics; 
a process-oriented view, i.e. a teacher emphasizes mathematics as a heuristic and 
creative activity that allows solving problems using individual ways; 
an instrumentalist view, i.e. a teacher emphasizes the “tool box”-aspect of mathematics 
consisting of formulas and procedures to be memorized; 
an application oriented view, i.e. a teacher emphasizes the utility of mathematics for 
solving real world problems. 
On the basis of this theoretical framework, our research question for this paper is  how 
possible belief changes of prospective teachers in the time span from the end of 
university studies to the beginning as school teachers can be described.   
METHOD 
In this report we refer to a sample of 10 pre-service teachers, who have just completed 
their mathematics undergraduate courses at university, and 10 teacher trainees that 
have participated in the special teacher education programme between university and 
the professional career in school for about one year and thus have gained their first 
experience with self-dependent and guided teaching in classrooms. All teachers are 
secondary teachers that have attended university courses with an emphasis on 
mathematics and few courses on mathematics education or pedagogy (cf. Oliveira & 
Hannula, 2008). 
Data were collected by in-depth interviews lasting about two hours focusing in 
particular on calculus and including different topics referring to calculus and 
mathematics, e.g. instructional content, teaching objectives, reflections on the nature 
of calculus as a mathematical discipline and as an issue of school mathematics, the 
students’ views, or textbook(s) used by the teachers. Further, we use prompts to 



Erens, Eichler 

 

PME 37 - 2013 2 - 283 

provoke teachers’ beliefs, e.g. tasks of textbooks, fictive or real statements of teachers 
or students concerning instructional objectives (cf. Erens & Eichler, 2012). 
Data analysis is based on a coding approach that is near to grounded theory (Strauss & 
Corbin, 1998). In this paper, we report only those beliefs or beliefs clusters that we 
have identified as, at most temporarily, central for the teachers (Erens & Eichler, 
2012).  
RESULTS CONCERNING PRESERVICE TEACHERS’ BELIEFS 
The preservice teachers of our sample, who have just completed their mathematics 
undergraduate courses at university, have no experience in classroom except of an 
internship (usually after the initial year at university) that is mainly of observational 
nature. For this reason, these teachers did not refer to their classroom experience, but 
refer mostly to an authority when they think about a possible classroom practice or 
teaching objectives. 
One authority is an anonymous teacher represented by the preservice teachers’ 
retrospection of their own schooldays. 

Mrs. R: In my calculus course at school we learned procedures to be able to 
calculate the given tasks – of course it was very schematic, but as a student 
you were on secure ground. […] 

Mrs. M: When I think back to my own calculus course at school, I can remember 
doing 20, 30, 40 curve sketchings that we just calculated. Worked perfectly 
well, but I didn´t really appreciate that – it just made no sense. Making 
sense of the mathematical methods is something I would like to get across 
to my students. 

Although such retrospection might not necessarily be valid, it gives evidence about the 
contemporary state of these teachers’ beliefs. There are prospective teachers like Mrs. 
R who combine an instrumentalist view in some sense with a positive attitude 
represented by the belief that a schematic way of teaching could give students 
certainty. Although Mrs. M also remembers her calculus course as schematic, she 
seems to overcome this negatively connoted retrospection. This could serve as 
evidence that for this teacher a change of perspective has already taken place, i.e. a 
change from mathematics as schematic tool (instrumentalist view) to something 
ambiguous that is meaningful, but non schematic. Comparing both teachers, it is 
striking that Mrs. R acknowledges the authority represented in her retrospection 
whereas Mrs. M does not. 
Another aspect of authority for prospective teachers concern university mathematics:  

Mr. G: Well, I daresay I could do calculus at school with a more theoretical and 
formal approach – similar to introducing concepts in algebra and topology. 
Maybe for some it would make things easier, but this will probably not be 
possible to implement in most courses. 

Like Mr. G some of the prospective teachers hold a strong formalist view of 
mathematics and suggest teaching according to this view later. However, the scope of 
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answers in the transition from university to prospective teaching ranges from 
emphasizing a formalist view (formal aspect is most important characteristic of 
calculus) to a complete rejection of formalism (particularly negative) that is illustrated 
by the case of Mrs. R. 

Mrs. R: In my university courses it was always hard for me to understand these 
proofs – especially in calculus. I have always tried to avoid these very 
formal things and I will probably do that as a math teacher, too. […] 

Later in the interview, Mrs. R was challenged with a different statement to the teaching 
objectives on calculus. Confronted with the assertion: “Formal rigor and precision is a 
necessary ingredient of calculus” she responded: 

Mrs. R:  No, not in my opinion. That is contradictory to my stance on calculus.  Of 
course one has to be precise and to some degree things have to be formally 
correct, but that is not a prerequisite of good calculus teaching. 

The case of Mrs. R shows in some sense a failed attempt of belief change. Thus, she 
resisted adopting a formalist view in her university studies and seems to retain a view 
concerning mathematics that was formed in her schooldays (see above).  
A mentioned above, authority that is represented by a retrospection (looking back) 
referring to an anonymous teacher from schooldays and university studies seem to be a 
crucial source for pre-service teachers’ beliefs. However, the teachers also make a 
prediction (looking ahead) to their own practice as teachers of calculus (cf. Skott, 
2001). For this prediction, the teachers use a self-referred reflection, i.e. the teachers 
seem to make an inference from their own learning to the learning of their future 
students. For example, Mrs. R mentions her difficulties with university mathematics 
(representing a formalist view) and her certainty experienced in her classroom that 
represents an instrumentalist view. Based on this experience, she makes an inference 
that an instrumentalist teaching orientation would potentially be the best way for her 
students. In the same way, Mr. G contemporarily favors a formalist view on teaching 
calculus. The aspect of self-referred reflection seems to serve further as a basis to 
acknowledge or to reject an authority. For example, Mrs. R acknowledges her 
(anonymous) school teacher representing an instrumentalist view, but rejects 
university mathematics representing a formalist view as basis for her future practice as 
teacher of calculus. 
Although all teachers refer to both an authority and a self-referred reflection, in 
general, it is an expected result that the prospective teachers’ belief systems are quite 
more inconsistent than the belief systems of experienced teachers that we have 
regarded elsewhere (Erens & Eichler, 2012). Thus, before gaining first classroom 
experience and further pedagogical assistance by teacher trainers prospective teachers 
are particularly unconfident about a number of relevant teaching objectives and also 
methods to achieve these objectives: 
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Mrs. M:  How I would actually teach derivation rules? Of course we did these things 
very formally at university- with proofs and so on. Well, to be honest I 
cannot yet say how I would actually teach that. 

Regarding their instructional orientation, i.e. a transmission view or a constructivist 
view (Staub & Stern, 2002), there is an even greater uncertainty than to other views 
like the instrumentalist and formalist view. Some prospective teachers value a clearly 
structured and teacher-centered way in their own lessons as student, others clearly 
focus on the students and their preferences of effective learning strategies. 
RESULTS CONCERNING TRAINEE TEACHERS’ BELIEFS 
In changing the perspective from a prospective teacher to that of a teacher, our data 
sample suggests that in the transition from university education to classroom 
experience there occurs a key change in teachers´ beliefs and a confirmation or 
rejection of already existing beliefs takes place. Thus, the teacher trainees show a shift 
from self-referred reflection to reflection referring to their classroom practice and the 
learning of their students. In accordance with Cooney (1998), reflection plays an 
important role in the growth of prospective teachers and can be regarded as a change 
initiated by own judgment based on first experience (shock of the first practical 
experience) on the one hand and a composition of skepticism (challenging existing 
concepts) and desire for change on the other hand: 

Mr. C:  An example from my lessons? Well, I introduced derivatives just in the 
way we did it in our own calculus course at school, starting with a secant 
then approximating it to the tangent and so forth, .., in retrospect I would 
say in future lessons I won´t emphasize that so deeply; it will be rather more 
interesting for students to start with an application-oriented example and 
then spend more time doing exercises. 

Starting with existing and known concepts originating from a retrospection regarding 
his schooldays, Mr. C notices that enacting this conceptualization is not in accordance 
with his own beliefs. Based on his reflection of his first practical experience on 
teaching calculus, he decides for a change in his (future) classroom practice and, thus, 
for a possible rejection of an authority represented by his retrospection to his 
schooldays. 
Although teacher trainees like Mr. C seem to change their beliefs concerning the 
teaching and learning of mathematics due to their reflection, they also seem to struggle 
with respect to differences between their beliefs and their classroom performance. This 
possible cognitive conflict might be seen in connection with the subjective perception 
of uncertainty and the need to make their lessons manageable: 

Mr. C:  Accuracy is an essential point in my lessons; there are some lesson phases 
where I teach according to the principle of direct instruction – not because I 
think that is the right way, just because at the moment I do sometimes not 
find another way to get my lessons working. 

Throughout the interview Mr. C stated that a dialogic discourse with his students is of 
central importance to him as he favors math lessons with lots of self-contained student 
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activity and methodological variation, but he experiences many obstacles in 
developing that kind of discourse in his actual practice. In essence he recognizes that 
he returns to a transmission approach (Staub & Stern, 2002) in order to structure and 
control the class. By reporting about this conflict there emerges a conflict between his 
more constructivist teaching orientation and his uncertainty of teaching practice at this 
point of his career.  
Reflection on and challenging of existing concepts can also be unveiled in connection 
with the intervention of the teacher training which attempts to form and reshape 
trainees´ practice: 

Mr. G.:  In conceptualizing new content I always use a task-oriented approach, 
which is a guideline given by our teacher trainers. In my opinion it´s not 
bad, but I think it´s too stringently guided like our trainers want it to be 
implemented. […] From time to time I vary a little bit, but at the moment I 
must keep in mind my demonstrative exam lessons with my students. […] 
however in doing so the teacher guidance is quite high so I sometimes think 
I could just demonstrate the tasks myself. 

In his mathematical socialization Mr. G can be characterized to favor a rather formalist 
view of mathematics. Reflecting on his first teaching experience (reflection) this 
formalist view is being challenged and a process of nuanced replacement takes place 
which is (partly) initiated by theoretical input of his teacher training course (authority). 
Thus, the aspect of authority is mingled with the aspect of reflection here. The 
implementation of a specific teaching concept is an instrument of nuanced change: On 
the one hand Mr. G. expresses alignment with the teacher educator´s idea on the other 
hand his reflection shows that a cognitive process of individual adaption concerning 
his teaching orientation is under way. 
It is one of the functions of teacher education courses to challenge and correct existing 
beliefs that contradict the view of appropriate classroom practice of teacher trainers. 
Thus, when teacher trainees are faced to make pedagogical decisions, their teacher 
trainers want them to hold certain beliefs and they also want those beliefs to influence 
practice. Again, it is the question to what degree this intervention of an authority 
effects change in trainee´s beliefs, which is dependent on the individual teachers´ 
confidence and willingness to identify themselves in the cognitive process of matching 
intervention and classroom experience. As can be seen with Mr. G, he casts doubts on 
the method of the task-oriented approach which he is expected to enact in his 
demonstrative exam lessons. However, these teacher training exams are a decisive 
criterion for the future career, i.e. whether a permanent teaching position will be 
offered to him. His personal beliefs, however, are not in accordance with the teacher 
trainers´ views, and thus his future enacted curriculum will presumably differ from the 
task-oriented approach. The awareness of the authority of teacher trainers can be 
validated in all the interviews of our sample, as the following example confirms: 

Mr. C.:  Quite important to me is that my lessons are well-structured; and that this 
structure is visible especially to my teacher trainers 
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DISCUSSION AND CONCLUSION 
Beliefs are often robust and “many of teachers´ core beliefs need to be challenged 
before change can occur” (Sowder 2007, p.160). Research on teacher change has 
acknowledged that any change or development in teachers´ beliefs is a long-term 
process (Oliveira & Hannula, 2008). However, looking at possible points of rupture in 
the education of future teachers in more detail, it is possible to identify deep-seated 
beliefs in their mathematical and pedagogical socialization as well as some 
mechanisms of belief changes. 
Regarding our sample of teachers, it seems possible to partly ascertain two factors of 
potential belief changes in the context of the teacher training intervention which are 
intertwined with each other, i.e. authority and reflection.  

• Authority could involve different issues like the (anonymous) teacher of a 
prospective teacher’s own schooldays, mathematics experienced in university 
studies, the teacher trainer and also – maybe later – colleagues, textbooks or 
administrative conditions.  

• Reflection could be based on a (self-referred) reflection including the experience 
of a prospective teacher as student in school or university, but in particular the 
reflection of teaching and learning in the teachers’ first practical experience. 

Firstly, a fundamental change involves the shift from self-referred reflection to 
reflection of the classroom practice. This change also seems to impact on the teachers’ 
perception of authorities: Whereas prospective teachers at the end of their university 
studies refer to an authority connected to their own learning (like Mrs. R), teacher 
trainees take into account several authorities, but adjust the views represented by these 
authorities with their classroom experience (like Mr. G). 
In order to initiate change in teaching mathematics in the course of teacher education 
and development, it is possible to accentuate two aspects concerning prospective 
teachers´ beliefs. Firstly the identification and understanding of beliefs (and the belief 
system) of future teachers can be accomplished by investigating their special 
perspective and the context of how individual beliefs have been formed. We will 
investigate the development of the prospective teachers regarded in this paper by 
subsequent interviews. Examining the generative process in which the existing belief 
system of pre-service teachers is connected to the new perspective and (teaching) 
context may facilitate to determine approaches to influence (desired) changes that have 
an impact on (future) enacted curricula. 
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TEACHERS’ MATHEMATICAL KNOWLEDGE FOR TEACHING 
EQUALITY 

Janne Fauskanger, Reidar Mosvold 
University of Stavanger, Norway 

 
This paper has a focus on what can be learned about teachers’ knowledge by analyzing 
their responses and written reflections to items developed to measure mathematical 
knowledge for teaching (MKT). 30 teachers’ responses, as well as written reflections, 
to one testlet (five items) are analyzed and discussed. The items focus on relational and 
operational understanding of the equal sign. The results indicate that analyses of 
teachers’ written reflections provide a richer picture of teachers’ knowledge than 
analyses of responses to the multiple-choice items only. It also appears that teaches 
draw upon different domains of MKT in their written reflections than the items were 
developed to measure. 
INTRODUCTION 
Researchers at the University of Michigan have—with their concept “mathematical 
knowledge for teaching” (MKT) (Ball, Thames, & Phelps, 2008) and measures of 
teachers’ MKT (Hill, Sleep, Lewis, & Ball, 2007)—contributed to the long-lasting 
discussion about the knowledge needed to teach mathematics. They claim that MKT, 
as assessed by their measures, makes a difference to the mathematical quality of 
instruction (Hill et al., 2008; Hill & Charalambous, 2012). Teachers with high MKT 
elicit, understand and build on student thinking; teachers with low MKT struggle more 
in their teaching and are unable to follow and build on student thinking (e.g., Hill & 
Charalambous, 2012).  
The MKT measures have been criticized by many, and Schoenfeld (2007), who is one 
of the critics, has argued that the MKT items should be opened up. Fauskanger and 
Mosvold (2012) attempted to open up the items by letting the teachers add their written 
reflections to a selection of multiple-choice items. Their analysis revealed a mismatch 
between teachers’ responses to the multiple-choice items and their written reflections. 
In this paper, we have taken this one step further when we aim at answering the 
following research question:  
What can be learned about teachers’ knowledge of the equal sign by analyzing their 
responses and written reflections to MKT items? 
In order to answer this question, we analyze the responses and written reflections given 
by 30 teachers to one testlet (including an item stem and five items). If instruction 
forms the basis for students’ lack of sophisticated understanding of the equal sign (e.g., 
Asquith, Stephens, Knuth, & Alibali, 2007; Behr, Erlwanger, & Nichols, 1980; Kieran, 
1981), and most children are capable of a relational understanding of the equal sign if 
they are given appropriate experience in a supportive context (Seo & Ginsburg, 2003), 
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then it can be argued that teachers’ knowledge for teaching meanings related to the 
equal sign is important. 
THEORETICAL FOUNDATION 
Several frameworks for teacher knowledge have been developed, and these 
frameworks differ in important ways. For the purpose of this paper, we use the MKT 
framework as a theoretical foundation (e.g., Ball et al., 2008). We adopt the broad 
conception of knowledge that is used by Ball and colleagues (ibid.)—including skills, 
habits of mind and insights. This corresponds with the view of Beswick, Callingham 
and Watson (2012), who contend that beliefs and confidence are included in teacher 
knowledge. The MKT framework builds upon Shulman’s (1986) conception of teacher 
knowledge. One of his concepts—subject matter knowledge—has been divided into 
three domains. Common content knowledge, which is one of these domains, represents 
knowledge that is acquired by most educated people. Another domain, horizon content 
knowledge, involves being cognizant of the large mathematical landscape in which the 
present instruction is situated; the equal sign’s relation to learning algebra (Carpenter, 
Franke, & Levi, 2003; Knuth, Stephens, McNeil, & Alibali, 2006) can be regarded as 
part of primary teachers’ knowledge at the horizon. The third domain—specialized 
content knowledge—is defined as “the mathematical knowledge and skill unique to 
teaching” (Ball et al., 2008, p. 400). Relational as well as operational understanding of 
the equal sign—as represented by the testlet used here—might be considered as part of 
teachers’ specialized content knowledge. 
Pedagogical content knowledge is divided into three domains where knowledge of 
content is combined with knowledge of students, teaching and curriculum. Knowledge 
of content and students is important in order for teachers to be able to predict students’ 
misconceptions related to the equal sign, and knowledge of content and teaching is, 
among other things, needed to decide how to help students correct these 
misconceptions. One example of such misconceptions is to view the equal sign as a ‘do 
something signal’ (Kieran, 1981). 
Prediger (2010) showed that diagnostic competence comprises didactically sensitive 
mathematical knowledge for teachers. Limited understanding of the meaning of the 
equal sign is regarded as one of the major stumbling blocks in learning algebra 
(Carpenter et al., 2003; Knuth et al., 2006), and students do not seem to develop this 
understanding properly throughout the school years (Knuth et al., 2006). In 
categorizing different meanings of equality, Kieran (1981) emphasized the important 
distinction between the following two meanings for equality: the operational 
(asymmetric) and the relational (symmetric) meaning. These categories were then 
extended by Prediger (2010), who proposed that relational meaning is divided into 
four: 1) symmetric arithmetic identity (e.g., “5 + 7 = 7 + 5), 2) formal equivalence (e.g., 
“x² + x - 6 = (x - 2)(x + 3)), 3) conditional equation (e.g., “Solve x² = -x + 6”) and 4) 
contextual identities in formulas (e.g., V = 1/3π ⋅ r² ⋅ h). The items in focus in this paper 
relate to symmetric arithmetic identity in particular. The testlet also includes 
operational meaning, since the items are developed to reveal whether or not teachers 
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only regard the equal sign as a “do something signal” without also keeping the 
relational meaning of the sign in mind. 
METHODS 
Previous analyses indicate that written reflections related to MKT items give insight 
into teachers’ knowledge as well as their beliefs (e.g., Fauskanger, 2012; Fauskanger & 
Mosvold, 2012). In this study, 30 teachers were asked to give their written responses as 
well as reflections to 28 MKT items (6 testlets and 10 item stems) at home. These 
teachers were teaching different grade levels, but they were all participating in the 
same professional development course—the course was lasting one year and a 
half—and the written work reported on was given as an assignment after their first day 
in this course. Their teaching experience varied from less than 5 years to more than 20 
years, and their formal education in mathematics/mathematics education varied from 0 
to 60 ECTS.  
The testlet we focus on in this paper includes an item stem presenting the context of a 
teacher who was supposed to consider whether or not five given statements were 
mathematically correct. The statements presented were of the following kind: 
8 + 15 = __ + 9 and 14 + 5 = 19 + 5 = 24 + 5 = __ . In addition to the items, the 
following questions were added for written reflection: 1) Does the testlet reflect a 
content that is relevant for the grade(s) in which you teach? 2) Do these items reflect 
knowledge important for you as a teacher? For both follow-up questions, the teachers 
were asked to elaborate on why they did/did not think so. The teachers were also asked 
to reflect upon which of the ten items they thought best capture knowledge important 
for them as teachers. 
We began by identifying what was written related to the testlet in focus, followed by a 
directed/theory driven approach to content analysis (Hsieh & Shannon, 2005). This 
analysis was based on the literature regarding teachers’ MKT related to the equal sign. 
For the present analysis, the teachers’ writings were coded on the following 
dimensions: 

Subject matter knowledge 
• Common content knowledge 
• Specialized content knowledge 

(operational understanding and 
relational understanding/symmetric 
arithmetic identity) 

• Horizon content knowledge 

Pedagogical content knowledge 
• Knowledge of content and 

curriculum 
• Knowledge of content and 

students (diagnose students’ 
misconceptions) 

• Knowledge of content and 
teaching 
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RESULTS AND DISCUSSION 
In this section, we first give a presentation and discussion of the teachers’ responses to 
the items in the testlet. Then we present and discuss teachers’ written reflections, 
before we end up in a discussion (and conclusion) of how these two aspects are related. 
When looking into the teachers’ responses, we learn that 26 out of the 30 teachers gave 
a correct response to all the five items in this testlet. Jan (5th-7th grade), Frøya (6th 
grade) and Inge (7th grade) gave a wrong response to one of the items, whereas another 
teacher, Mons (8th-10th grade), responded incorrectly to three of the five items. Jan, 
Frøya and Mons responded that the item 14 + 5 = 19 + 5 = 24 + 5 = __ is not 
mathematically problematic. It might be that these teachers focus on the operational 
meaning of the equal sign (e.g., Prediger, 2010) and thus look at the mathematical 
statement in three parts: 14 + 5 = 19, 19 + 5 = 24 and 24 + 5 = __. When doing that, all 
three parts—when seen in isolation—can be regarded as mathematically 
unproblematic. Another explanation could be that the teachers see this as an “equality 
string” (Knuth et al., 2006); such strings are frequently used by students. Adding the 
relational meaning of the equal sign, or in particular “symmetric arithmetic identity” 
(e.g., Prediger, 2010), would have helped these three teachers identify this item as 
mathematically problematic.  
Mons gave a wrong response to the following item: 10 – 7 = 3 + __. This might be due 
to operational as well as relational understanding of the equal sign. Operational if 10 – 
7 = 3 is looked upon as “solved” and relational if he does not recognize 10 – 7 = 3 + 0 
as the symmetric solution making this item mathematically unproblematic. The reason 
why Mons also responded incorrectly to 6 – 2 = __ + 7 = __ + 5 = 16 might be due to 
his operational understanding of the equal sign, making him think of the following 
solution to the item: 6 – 2 = 4 + 7 = 11 + 5 = 16, not recognizing that such an “equality 
string” (Knuth et al., 2006) involves an incorrect use of the equal sign. Another 
possibility is to look at the first part of the item only: 6 – 2 = -3 + 7 = -1 + 5, and 
forgetting the = 16. When Mons responded incorrectly to three out of the five items in 
this testlet, it might indicate that his “local MKT” (Hill & Charalambous, 2012) related 
to equality is relatively low—and in particular his understanding of the relational 
meaning of the equal sign. 
By looking at the teachers’ responses to the items only, a conclusion might be that most 
of them—at least the 26 out of 30 who gave correct responses—have proper 
understanding of what the items were intended to measure. When analyzing the 
teachers’ written reflections, however, we get a richer picture of the teachers’ MKT. 
The reflections from 25 of the teachers indicate a relational understanding of the equal 
sign; Dina’s (2nd grade) written reflections represent one example of this. When 
reflecting on which of the ten items that best captured knowledge important for her as a 
teacher, Dina highlighted the knowledge represented by this testlet. She argued that the 
five items represent knowledge important at the grade level she teaches, and she wrote: 

The pupils frequently encounter tasks where they are supposed to fill in the correct number 
on the empty lines. This is a preliminary stage of algebra, and it is important that such tasks 
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are introduced early in elementary school. The pupils have to learn about the equal sign. 
How does one interpret this sign? The equal sign can be interpreted as a sign requiring 
action—indicating that they should calculate—like in the following examples: 16 + 5 =__,  
22 + 19 =__,  146 - 24 = __.  
In addition, it is also very important that the pupils get to understand that = means “the 
same as”. The equal sign means that the value of the expressions on each side should be the 
same. The pupils then need to experience that the mathematical expression could equally 
well be placed on the right hand side. The pupils should meet both in tasks that are given to 
them. They must get the opportunity to explore that 9 can be divided as the sum of 5 and 4. 
Yesterday, Per walked 9 kilometers. First, he walked 5 kilometers, then he walked 4 
kilometers. 9 = 5 + 4.  

In these reflections, Dina showed operational as well as relational understanding of the 
equal sign, and she argued that both are important aspects of her MKT. The way she 
was highlighting the items’ focus as a preliminary stage of algebra might be related to 
her knowledge at the mathematical horizon (Ball et al., 2008). It can also be viewed as 
an indication that she might want to prevent her students from one of the major 
stumbling blocks in learning algebra—limited understanding of the meaning of the 
equal sign (Carpenter et al., 2003; Knuth et al., 2006). In their reflections, 12 teachers 
discussed how the content of these five items can be seen as a precursor to algebra. 
Referring to the MKT model again, this can be seen as a link to horizon content 
knowledge (Ball et al., 2008). As an example of this, Oda (4th grade) wrote:  

In elementary school, where I work, these tasks would be relevant. We start by splitting 
numbers like 7 = 3 + 4 etc. So, already in first grade, we have a language to talk about this. 
Early on, the pupils need to know what the sign represents. Being conscious about this 
already from the beginning, we can develop a solid foundation for later use in more 
advanced equations. 

Although the testlet has a focus on content knowledge, teachers also draw upon 
different aspects of pedagogical content knowledge in their reflections. Some teachers 
refer to the textbook in their written reflections. Klara (2nd grade) wrote about how the 
equal sign was represented by a balance scale. The image of a balance scale, she wrote, 
is probably not something the pupils have previous experiences with, and they might 
find it rather abstract still. This is an example of how teachers, in their written 
reflections, argue by drawing upon knowledge of content and curriculum (Ball et al., 
2008). Further on in her reflections, Klara also demonstrated experience with pupils 
and teaching in relation to the equal sign when she wrote that pupils are often familiar 
with number sentences where the equal sign indicates: “here comes the answer”. She 
also contended, however, that “the problem often becomes more obvious when we 
leave out an addend as in 2 +__=  4”. Other teachers presented examples from the 
classroom and provided reflections that were explicitly related to knowledge of content 
and teaching (Ball et al., 2008). Carla (1st grade) wrote about the importance of 
learning the meaning of the equal sign, and she related this to her own experiences with 
letting the pupils create story problems:  
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Per has 3 balloons and two burst. How many is left? You can also do this the other way 
round. Per had three balloons when he went out, but when he came back home, he only had 
one left. How many had burst? It is important that the pupils take part in creating their own 
story problems. 

Several teachers drew upon knowledge of content and students in their reflections, and 
they focused in particular on the importance of getting to know about and identify 
pupils’ misconceptions about the equal sign. In her reflections, Gerd (2nd grade) wrote: 
“In such tasks, one can see if the pupils have an understanding of the = sign. Many 
pupils don’t distinguish between these signs. In this, they show a lack of knowledge 
and understanding of what the = sign actually means.” Another teacher, Frøya (6th 
grade), wrote: “Pupils who sit and work together with an ‘unknown’ talk about what 
they know. This is something I, as a teacher, can take advantage of, listening to how 
they get to a solution.” In these reflections, she discussed the teachers’ ability to listen 
– and showed that she values diagnostic competence (e.g., Prediger, 2010) – which is 
important in relation to knowledge of content and students (Ball et al., 2008). 
CONCLUSION 
Most children are capable of developing a relational understanding of the equal sign if 
they are given appropriate instruction (Asquith et al., 2007; Behr et al., 1980; Kieran, 
1981; Seo & Ginsburg, 2003) and it can thus be argued that investigations of what 
mathematical knowledge teachers need for teaching this is important. When analyzing 
teachers’ responses to multiple-choice items, like the ones we have in focus in this 
paper, we learn something about teachers’ MKT. By opening up the items and letting 
teachers add their written reflections, we can learn even more about the teachers’ 
knowledge than through analyses of their responses to the multiple-choice items only.  
The items we have in focus in this paper were created to measure aspects of teachers’ 
mathematical knowledge for teaching equality, and analysis of the responses made by 
the teachers in our study might lead us to the conclusion that most of these teachers had 
a proper content knowledge in this respect. In a previous study, we found a mismatch 
between teachers’ responses to multiple-choice items and their written reflections 
(Fauskanger & Mosvold, 2012), but such a mismatch did not emerge from the analysis 
reported in this paper. Our present analysis did, however, provide us with further 
insight into how teachers might draw upon different aspects of MKT when responding 
to such a multiple-choice item—aspects different from the ones the items were 
developed to measure. This finding is relevant for researchers who are involved in the 
validation and continued adaptation of items (Fauskanger, Jakobsen, Mosvold, & 
Bjuland, 2012). 
Studying teachers’ knowledge is a complex enterprise. Our results indicate that even 
though you can successfully investigate such knowledge by the use of multiple-choice 
items, a richer picture will be given by adding teachers’ written reflections. Further 
studies of written—and possibly also oral—reflections in relation to the further 
development, adaptation and use of MKT items are relevant. We also contend that such 
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studies might be important for the further development and refinement of the MKT 
framework as such. 
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The aim of this research is to understand the way in which students struggle with the 
distinction between dimensionality and “directionality” in the context of the relations 
between length and area of enlarged geometrical figures. 131 third grade secondary 
school students were confronted with a test consisting of six problems related to the 
perimeter and the area of an enlarged figure. Results indicate that more than one fifth 
of the students’ answers were directional, suggesting that students struggled with the 
distinction between dimensionality and “directionality”. A single arrow showing one 
direction (image provided to the students) seemed to help students to see a linear 
relation for the perimeter problems. Two arrows showing two directions helped 
students to see a quadratic relation for the area problems.  
THEORETICAL AND EMPIRICAL BACKGROUND  
Linearity is a powerful tool to model real-life situations, even if these situations are 
only approximately linear. For that reason, one major goal of mathematics education at 
all levels is to obtain both procedural and conceptual understanding of linearity in its 
variety of forms and applications. However, the educational attention that goes to 
linearity at numerous occasions in students’ school careers, along with the intrinsically 
simple and intuitive nature of the linear model (Rouche, 1989), has a serious drawback:  
It may lead to a tendency in students to see and apply linearity everywhere, thus also in 
situations that are not linear at all. Already in 1983, Freudenthal warned for that pitfall: 
“Linearly is such a suggestive property of relations that one readily yields to the 
seduction to deal with each numerical relation as though it were linear” (p. 267). 
Examples of the misuse of linearity can be found at different age levels and in various 
mathematical and scientific domains (Fernández, Llinares, Van Dooren, De Bock, & 
Verschaffel, 2012; for a review, see Van Dooren, De Bock, Janssens, & Verschaffel, 
2008). 
Misuse of linearity: A geometrical context 
One of the best-known and most frequently investigated cases of students’ misuse of 
linearity relates to application problems about the effect of an enlargement or reduction 
of a geometrical figure on its area or volume. The principle governing this type of 
problems is that an enlargement or reduction with factor k enlarges all lengths (and 
thus also the perimeter) with factor k, the area with factor k2, and – for a solid – the 
volume with factor k3. A crucial aspect in understanding this principle is the insight 
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that these factors only depend on the dimensions of the magnitudes involved (length, 
area, and/or volume) and not on the type of figure involved (square, triangle, circle, 
cube…).  
During the last two decades, students’ tendency to treat relations between length and 
area or between length and volume as linear instead of, respectively, quadratic and 
cubic, has been extensively studied (e.g., De Bock, Verschaffel, & Janssens, 1998; 
Gagatsis, Modestou, Elia, & Spanoudes, 2009; Modestou, Gagatsis, & Pitta-Pantazi, 
2004). In the study by De Bock et al. (1998), for instance, 12- to 16-year-old students 
were administered paper-and-pencil tests with word problems related to lengths, 
perimeters, areas and volumes of different types of figures. More than 90% of the 
12-year-olds and more than 80% of the 16-year-olds failed on area problems because 
they applied linear methods.  
Van Dooren, De Bock, Hessels, Janssens, and Verschaffel (2004) developed and 
implemented a lesson series with the aim to break 9th graders’ tendency to give linear 
responses in non-linear situations, more specifically in the context of the relationships 
between the linear measures of a figure and its perimeter, area and volume. It was 
found that non-linear relations and the effect of enlargements on area and volume 
remained intrinsically difficult and counterintuitive for many students even after 
extensive instructional attention. It was also shown that students who, by the end of the 
lesson series, finally understood that the length-area relationship is quadratic, suddenly 
started to doubt about the nature of the linear length-perimeter relationship. The 
authors exemplified this with a striking question raised by a student in the final lesson: 
“I really do understand now why the area of a square increases 9 times if the sides are 
tripled in length, since the enlargement of the area goes in two dimensions. But 
suddenly I start to wonder why this does not hold for the perimeter. The perimeter also 
increases in two directions, doesn’t it?” (p. 496). This quote suggests that the student 
struggled with the distinction between dimensionality and “directionality” (the 
perimeter of a square is one-dimensional, but it has two “directions”). So we wondered 
if this type of potential confusion between dimensionality and “directionality” could be 
an important factor affecting students’ tendency towards improper linear reasoning. 
Dimensionality  
Although dimensionality is crucial to many parts of mathematics and science, research 
about this concept is scarce. Freudenthal (1983) stated that “dimension is an 
indispensable tool if magnitudes and their mutual relations are at stake” (p. 266). He 
pointed out that in measuring magnitudes it is critical to know what kind of magnitudes 
they are (length, area, volume…), and at this point the dimension has an important role: 
What dimensions does the object to be measured have? Moreover, it should be stressed 
for didactical reasons that “the behavior of geometric measures under geometrical 
multiplication depends on the dimension” (p. 267). 
Area measurement is particularly interesting because it involves the coordination of 
two dimensions. There is extensive evidence that both primary and secondary school 
students have inadequate understanding of area and area measurement. For example, 
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Carpenter et al. (1988) showed that almost half of a sample of Grade 7 students could 
calculate the area of a rectangle when given both dimensions; however, only 13% 
applied their knowledge of the area formula to a square, even when they knew that the 
sides of a square are equal.  
The experiential origin of the area formula is the action of physically covering a 
rectangle with unit squares. But whereas this action is one-dimensional and involves an 
additive process, the formula is two-dimensional and multiplicative. Outhred and 
Michelmore (1996) showed that when students were covering a rectangle with squares 
(the unit to measure the rectangle), many Grade 1 students did not see the importance 
of joining the units so that there were no gaps, and drew units individually. Until 
students began to join the units in two dimensions, they did not usually align rows and 
columns. Before drawing arrays using only lines, some students drew lines across the 
width of the rectangle to indicate rows and marked off the units in each row 
individually while others drew some individual units (usually the top row and the left 
column) as a guide for drawing the array. So, drawing lines in one dimension appeared 
to be a precursor to recognise rows as composite units. Such recognition helped 
students to perceive that squares could be constructed by joining lines in the other 
direction, and hence realise the two-dimensional structure of an array. In another study, 
Outhred and Michelmore (2000) focused on understanding the relationship between 
the size of the array and the linear dimensions of the rectangle in which it is enclosed. 
They found that, although the fact that the number of units in the array must depend on 
the measurements of the sides may seem self-evident to adults, it is clearly not obvious 
to children. 
PROBLEM STATEMENT  
To sum up, there is quite some evidence showing that students struggle with 
understanding dimensionality. A major claim underlying the present study is that one 
reason for that struggle is that students confuse the dimensions of an object or 
magnitude with its “directions”. In this study, we will empirically investigate the 
existence and impact of this potential confusion. Of course, “directionality” is not a 
genuine mathematical term, but we use it for referring to the different directions a 
geometrical (plane) figure has. For example, a triangle has three directions, a square 
has two directions (if we assume that parallel sides have the same direction), and a 
regular pentagon has five directions.      
So, the aim of this research is to unravel the extent to which and the way in which 
students struggle with the distinction between dimensionality and “directionality” and 
how this may affect their tendency towards improper linear reasoning in the context of 
the relations between length and area of enlarged geometrical figures. 
METHOD 
131 third grade secondary school students (14-15-years-olds) from four different 
Spanish schools participated in the study.  
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These students were confronted with a test consisting of six problems related to the 
perimeter and the area of an enlarged figure: Two problems were about an equilateral 
triangle (one related to its perimeter and the other to its area), two problems were about 
a square (again, one related to its perimeter and the other to its area), and two problems 
were about a regular pentagon (again, one related to its perimeter and the other to its 
area). For each problem, students had to choose the correct answer from three given 
alternatives. Independent of the fact it was an area or a perimeter problem, each 
problem was accompanied with the same answer alternatives. The first and second 
alternatives (alternatives a and b in the test) were selected taking into account the 
common difficulties of students when they relate lengths and areas and the third 
(alternative c) was selected taking into account the idea of “directionality”. Alternative 
a (linear) was based on the linear reasoning that if the side of a figure is doubled, the 
perimeter is doubled (correct) and the area is doubled too (incorrect). Alternative b 
(quadratic) was based on the claim that if the side of a figure is doubled, student may 
think that the perimeter is multiplied by four (incorrect) and the area too (correct). 
Alternative c (directional) was based on the idea of directionality. For instance, for an 
equilateral triangle, if the three sides of the triangle are doubled (three directions), the 
perimeter or area of the enlarged figure will become 3 × 2 = 6 times larger (incorrect). 
Problems were formulated in a missing-value format, as in previous investigations on 
students’ improper linear reasoning (De Bock et al., 1998; Fernández et al., 2010) and 
we asked for the perimeter or the area in an indirect way, i.e. by using a variable that is 
proportionally related to the perimeter or area. Examples of the two items about an 
equilateral triangle are given in Figure 1.   
Participants were randomly divided in three subgroups receiving a different version of 
the test: D1, D2, and D3. Each test version differed with respect to the images that were 
shown to the students. In the D1 version, one arrow with two heads was provided 
(Figure 1). In the D2 version, two double-headed and perpendicularly oriented arrows 
were provided and, finally, in the D3 version no arrows were given (Figure 2). Our 
hypotheses were, first, that the single arrow in the D1 version might help students to 
apply a linear relation for the perimeter problems, but might at the same time 
strengthen the tendency towards improper linear reasoning for the area problems. 
Second, we hypothesized that the two arrows in the D2 version might help students to 
apply the quadratic relation for the area problems, but put them on the wrong track for 
the perimeter problems. Third, in the D3 version, because of the absence of any extra 
arrow(s), only the different directions in the figure might lead to responses in which the 
number referring to these different directions is used. Fourth, we wonder if the type of 
figure (triangle, square, or pentagon) has an effect on the occurrence of directional 
answers. 
Forty-three participants answered the D1 version of the test, 44 the D2 version, and 44 
the D3 version. The order of the problems in each version of the test was varied: In 
each version problems were put together in six different orders. The three versions of 
the tests as well as the different orders in each version were randomly provided to the 
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participants. Students received between 10 and 15 minutes to complete the test, which 
was sufficient for all students.  

 
Figure 1: Area and perimeter problems related with the equilateral triangle 

 
Figure 2: Images given in the different versions of the test 
Answers were classified as linear (if a student chose alternative a), as quadratic (if a 
student chose alternative b), or as directional (if a student chose alternative c). Results 
were statistically analysed by means of a repeated measures logistic regression 
analysis using the generalized estimating of equations (GEE).  
RESULTS 
Table 1 shows the percentages of linear, quadratic, and directional answers for the 
three versions of the test. Results clearly confirm students’ tendency towards improper 
linear reasoning. As shown in Table 1, 66.7% of the students gave a linear answer on 
the area problems in the D1 version, 57.6% in the D2 version, and 65.9% in the D3 
version. Furthermore, 21.3% of all answers were directional (mean of the three 
versions). Although, this is not a high percentage, it suggests that in about one fifth of 
the cases participants may have struggled with the distinction between dimensionality 
and “directionality”. However, against our third hypothesis, this result was 
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independent of test version, since the different ways in which the problems were 
presented in the three versions did not significantly influence students’ tendency to 
respond directionally. 

 D1 D2 D3 
Answer P A Total P A Total P A Total 
Linear 60.5 66.7 63.6 62.1 57.6 59.8 78.0 65.9 72.0 

Quadratic 17.0 10.8 13.9 11.4 18.2 14.8 7.6 16.7 12.1 
Directional 22.5 22.5 22.5 26.5 24.2 25.4 14.4 17.4 15.9 

Table 1: Percentages of linear, quadratic and directional answers in each version of the 
test (A = Area problems, P = Perimeter problems; correct answers are in bold).  

On the other hand, as we hypothesized (first hypothesis), the single arrow in the D1 
version seemed to strengthen the tendency towards improper linear reasoning: 
Students tended to give more linear answers on the area problems in the D1 version 
(66.7%) than on the area problems in the D2 version (57.6%). However, the repeated 
measures logistic regression analysis showed that this difference was not significant, 
since the test version and type of problem interaction effect on the choice for the linear 
answer was not significant. In contrast, the two double-headed arrows in the D2 
version seemed to be helpful to find the correct answer on the area problems: Students 
gave more quadratic answers on the area problems in the D2 version (18.2%) than on 
the area problems in the D1 version (10.8%) but, again, this difference was not 
significant (second hypothesis). Finally, the repeated measures logistic regression 
analysis revealed a significant test version (D1, D2, or D3) and type of problem (area 
vs. perimeter) interaction effect on the incorrect choice for the quadratic answer, χ²(2, 
N=131)=19.080, p<0.001, due to the fact that students gave significantly less incorrect 
quadratic answers in the D2 version (11.4%) than in the D1 version (17.0%). 
We also analyzed the effect of type of figure (triangle, square, or pentagon) on the 
occurrence of directional answers. Table 2 shows students’ percentages of linear, 
quadratic and directional answers for each of the three types of figures. 

 Linear Quadratic Directional 
Triangle 68.32 19.85 17.56 
Square 60.31 14.12 25.57 

Pentagon 66.79 13.36 19.85 

Table 2: Percentages of linear, quadratic and directional answers for each figure 
The repeated measures logistic regression analysis showed that the variable type of 
figure (square, pentagon, or triangle) had a significant effect on the occurrence of 
directional answers, χ²(2, N=131)=23.301, p<0.001. Pairwise comparisons indicated 
that both the square-pentagon and the square-triangle difference were significant 
(while the pentagon-triangle difference was not significant). The table shows that 
students gave more directional answers for the square figure (25.57%) than for the 
pentagon or triangle (19.85% and 17.56%, respectively).  
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CONCLUSIONS AND DISCUSSION 
The aim of this research was to unravel the way in which students struggle with the 
distinction between dimensionality and “directionality” in the context of the relations 
between length and area of enlarged geometrical figures. Firstly, results confirm a 
linear tendency in students’ answers on problems involving length and area of similar 
plane figures, as observed in several previous studies (De Bock et al., 1998; Gagatsis et 
al., 2009; Modestou et al., 2004). Our problems differ from the ones in the other studies 
since we used a multiple-choice response format. However, this alternative response 
mode did not radically break students’ tendency to give linear responses on area 
problems. 
Secondly, results show that the single arrow with two heads (showing one direction) in 
the D1 version seemed to help students to apply a linear relation for the perimeter 
problems. With regard to the D2 version, the two arrows (showing two directions) in 
this version helped students to apply a quadratic relation for the area problems. 
However, the two arrows did not put students on the wrong track for the perimeter 
problems: The D2 version did not foster students to apply a quadratic relation for the 
perimeter problems.  
Finally, the statistical analysis did not show a significant effect of the test version or a 
significant interaction effect of test version and type of problem on students’ choice for 
the directional answer. So, students gave directional answers independently of the test 
version. However, about one fifth of the answers were directional suggesting that in a 
significant number of cases students struggled with the distinction between 
dimensionality and “directionality”. Although the test version did not affect the 
occurrence of directional answers, a main effect of the type of figure was observed. In 
fact, students gave more directional answers on problems about a square than on 
problems about a pentagon or triangle. So, it seems that students struggle more with the 
distinction between dimensionality and “directionality” in figures where the number of 
directions and dimensions coincide. This is the case of the square that has two 
dimensions and also, “two directions”.  
For future research, it could be interesting to use more open tasks for directional 
reasoning or to do individual interviews with students with a view to know why they 
choose a particular answer.  
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This paper aims to investigate the way past experience with some tools to draw conics 
becomes part of the experience of designing a new drawer. In particular, it centres on 
the thinking processes of a group of university students who have the following task: to 
design a hyperbola drawer. The analysis is carried out using the perspectives of 
transfer of learning and instrumental approach, and focuses on utilization schemes 
and the interplay between scientific and technological aspects.  
INTRODUCTION 

I love analogies a lot, considering them as my very reliable masters, experts of all the 
mysteries of nature; in geometry, one has to pay attention to them, especially when they 
enclose –even if with expressions that seem absurd– infinite cases intermediate between 
their extremes (and a centre), and thus put before our eyes, in full light, the true essence of 
an object. Analogy also helped me a lot to draw conic sections. From reading Propositions 
51 and 52 [concerning the metric properties involving the foci] from Apollonius’s Third 
Book, one can easily see how to trace ellipses and hyperbolas: these tracings can be made 
with a thread. […] I regretted that for long I wasn’t able to describe the parabola in the 
same way. At the end, the analogy revealed to me that to trace this curve is not much more 
difficult (and the geometric theory does confirm it). (Kepler, 1604, Italian version, pp. 3-5; 
English translation of the authors) 

This brief excerpt from the Italian version of the text Ad Vitellionem paralipomena 
shows how much relevant analogy was for Kepler in geometrical thinking. Kepler’s 
problem was that of drawing conic sections by means of a thread, from Apollonius’s 
Propositions. His use of analogy in the case of the parabola is strikinlgy meaningful for 
us, due to attention deserved to analogy and analogical reasoning by the literature in 
Mathematics Education (English, 1997). However, we do not want to adopt a specific 
meaning for analogy over the many considered in the research. Instead, we will refer to 
it in a naïve manner, as Kepler. We are interested in the spontaneous ways in which 
elements of situations that have been faced before are recalled in a new situation. This 
is exactly what Kepler makes. When referring to analogy to think of the construction of 
a new machine for the parabola, he applies knowledge acquired about hyperbola and 
ellipse.  
To study the spontaneous ways said above, we present here a case study about some 
university students that are asked to construct a drawer to trace hyperbolas, after they 
have investigated the functioning of other drawers for conics, using them concretely. 
Such drawers are for us mathematical machines. A mathematical machine is defined as 
a tool that forces a point to follow a trajectory or to be transformed on the basis of a 
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given law (Maschietto, 2005; Bartolini Bussi & Maschietto, 2008). In this paper, we 
will centre on how the past experience of the students becomes part of the new 
experience in which the machine is no longer the starting point but the end point of the 
task. In so doing, we consider the perspectives about transfer of learning and 
instrumental approach, and we look at phenomena of transfer in terms of schemes that 
depend on the type of task. 
TRANSFER OF LEARNING AND UTILIZATION SCHEMES 
Transfer of learning 
The notion of transfer of learning has been recently studied in a new perspective that 
integrates phenomena of cognition, emotion and bodily experience (Nemirovsky, 
2011). Drawing on past studies about transfer, Nemirovsky considers transfer of 
learning as relevant when “it is immersed in the context of common and experiential 
phenomena of learning”. He defines transfer in terms of experience: 

I see transfer as part of the study of how one experience becomes part of another. People 
can all sense that experiences do become part of other experiences. It is also clear, I think, 
that such participation can be lived in numerous ways, some of which I suggest calling 
“transfer”. (p. 309) 

From this point of view, transfer of learning has a dynamic meaning that overcomes 
any operational definition, depending on the direct and participative engagement of 
learners. However, since the realm of ways in which an experience becomes part of 
another is wide, a growing number of studies would furnish information about the 
features of transfer of learning that characterize it within such realm and about the 
different ways in which it occurs. The point here is not “to ascertain mechanisms of 
transfer but to elucidate those experiences that are amenable to being described as 
transfer of learning.” (ibid., p. 334). In this perspective, transfer of learning can be 
interpreted as strictly related to the subjective feelings of the subjects, instead of being 
ascribed to something stipulated or secured a priori.  
In our context, we see the idea of transfer of learning as possibly related to analogy à la 
Kepler. In fact, Kepler uses his previous experience with the ellipse and the hyperbola 
to solve the problem of finding a way to trace a parabola with a thread. We may think 
of him as if he were thinking of a machine with tightened thread to obtain the tracing, 
his use of analogy being reasoning by continuity and extension from past experience. 
He transfers knowledge acquired about the other conics in the new task, in order to 
describe the parabola. Regarding our university students that have to face a similar task 
(thinking of a new machine), we may then ask: How does their past experience with the 
other conics and drawers become part of the new experience? 
Utilization schemes 
We adopt transfer of learning as a perspective to analyse how our students solve the 
design-like problem of thinking of a new machine, after they had concretely used other 
machines. The presence of artefacts (physical in past activities, potential in the new 
activity –being its goal) strongly influences the task assigned to the students. 
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Concerning this influence, we see as interesting the notion of utilization scheme as it is 
studied by cognitive ergonomics research in the analysis of human action mediated by 
tools (Vérillon & Rabardel, 1995; Rabardel, 2002). The instrumental approach 
underlines that the use of an artefact to solve a specific task implies to activate certain 
utilization schemes. Rabardel (2002) defines such schemes as “stable and structured 
elements in the user’s activities and actions” (p.65). The approach pays attention to the 
distinction between artefact and instrument: the former is a material or symbolic 
object, constructed by human beings; the latter is a mixed entity made of the artefact 
and of associated utilization schemes. The schemes result from a personal construction 
of the subject or from the appropriation of social schemes already formed outside of 
him. They are related to accomplishing a specific task on the one hand and, on the other 
hand, to managing characteristics of the artefact that are strictly related to the given 
tasks. 
A significant element for our context depends on the fact that the task of constructing a 
tool can be considered between technological and scientific activities, as Weisser 
(2005) highlights in the field of technology education. In particular, the machine that 
the students have to think of has the double status of artefact and instrument during the 
solution phase. Following Rabardel, the process of creating an instrument (that is, the 
instrumental genesis) has two components: instrumentation, subject-oriented and 
leading to the emergence and evolution of utilization schemes; instrumentalization, 
object-oriented and concerning the emergence and evolution of the instrument’s 
artefact component. Speaking of utilization schemes, Rabardel highlights that they are 
“the object of more or less formalized transmissions and transfers” (ibid., p.84).  
With respect to the question of how students’ past experience with the other conics and 
drawers becomes part of the new experience, we see as fundamental the role of 
utilization schemes. So, we may ask: Do the students transfer utilization schemes 
previously formed? How do acquired schemes shape new schemes for the new 
machine in a new kind of task (to use vs. to construct: the drawer is no longer the 
starting point but the end point of the activity)?  
THE ACTIVITY 
The activity is part of a university course on Elementary Mathematics from an 
Advanced Standpoint. The course can be attended at the second year of the Master’s 
Degree in Mathematics; its specific topic considers conic sections and their properties, 
since Greek Mathematics. 
Regarding work methodology, the construct of mathematics laboratory is the basis of 
the course’s activities. The mathematics laboratory is meant as a structured set of 
activities aimed to the construction of meanings for mathematical objects (Anichini et 
al., 2004). It is defined as a space of interaction and collaboration, in which the tasks 
are addressed and solved using (physical and digital) tools.  
Specifically, our students dealt with types of drawers for conics that use a tightened 
thread. These drawers base on the definition of conic sections as loci of points. Their 
essential elements are: a wooden flat surface; one pin/two pins for the focus/foci; a 
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thread to materialize distance between each focus and any point it is stretched from. A 
pen that moves while stretching the thread draws a curve, its point belonging to the 
curve. For the ellipse, the drawer satisfies the gardener’s method. For the parabola, see 
Figure 1: F is the focus, P is the generic point of the curve.     

A  B  C  
Figure 4. Parabola drawer with tightened thread 

In five laboratory sessions the eight university students met five machines. They were 
divided into two groups, in which one of them had the role of observer. In the first three 
sessions the students have worked with: the Cavalieri’s drawer for parabola, the 
parabola drawer and the ellipsograph both with tightened thread. The three machines 
were explored through three phases: to describe their physical structure, parts and 
spatial relationships; to centre on the product of the machine; to produce conjectures 
and proofs on that product. An individual report and a collective discussion lead by the 
teacher (one of the authors) concluded the activity. In this study, we focus on the fourth 
activity, whose task is completely different from the previous ones, asking the students 
to imagine how a machine with tightened thread for hyperbola is made. The students 
have the curve as starting point, but not the machine to trace that curve.  
The investigation of how they face this situation is the core of the paper. Data comes 
from the video-recording of one group, and from the students’ written reports and the 
observer’s notes. Our interests are on the way elements from the previous activities 
with drawers for parabola and ellipse are transferred in the new situation, and on how 
they originate new ways of writing, new ways of drawing, new ways of thinking.  
ANALYSIS AND DISCUSSION 
We present here some pieces of the work of one group (we label the group A and the 
students A1, A2, A3 and A4, the observer). Like for the other group, group B (Ferrara 
& Maschietto, 2013), four phases can be captured, the first three depending on the 
means that the students use (paper and pencil; a wooden plan with two pins and one or 
two threads; a rod). For the sake of space constraints, we only focus on the phases 1 
and 2 of group A’s work. 
In what follows, past experience is usually recalled by linguistic expressions of the 
kind: “let’s think of how we did the other time”, “last time”. In addition, depending on 
the moment, technological aspects or scientific aspects can be at play, as well as 
gestures of usage can be produced (see Ferrara & Maschietto, ibid.). We will make 
explicit reference to utilization schemes and to these other aspects when necessary. 
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1) Work with paper and pencil on graphical representations 
Group A begins its work with the metric definition of hyperbola accompanied by the 
algebraic expression and the standard graphical representation (with generic point P, 
foci, vertices, etc.). Immediately, the students recall their previous experience with the 
ellipsograph to detect first components of the new machine: 

A1:  Let’s think of how we did the other time… we have two foci, two foci that 
were fixed [pointing her fingers to the foci]; maybe we could think that 
there are two pins 

The students transfer the artefact component of the instrument ellipsograph: they look 
for those components of the machine that materialize elements of the definition of the 
curve (the pins for the foci, the tightened thread for the distance focus-point of the 
curve). The students think of the thread as a given part of the new machine, that is, as 
one of its artefact components. They also search for a link between the length of the 
thread and the constant k in the formula . However, the relationship 
(length of the thread, constant k) coming from the ellipsograph cannot be transferred as 
such in this case. In effect, for the ellipse, the length of the thread represents the sum of 
the two distances focus-point of the curve.   

Resting on the formula , the students point out the connection 
between the constant difference and the distance between vertices (apparent on the 
graphical representation). This marks a new beginning: the established link (scientific 
aspect) affects the idea of the machine (technological aspect), because it entails the 
understanding that the components translated from the ellipsograph are not useful for 
the new machine. So, the parabola drawer is in turn recalled: 

A3: You cannot do many things just using the two foci 
A1: But for the parabola drawer, we also had the rod (b in Figure 1A and 1B) 

The parabola drawer intervenes in thinking of the technological aspects of the new 
machine. A3 recalls through graphical representations utilization schemes for the rod, 
looking for their application in the present case, without success. Attention is drawn 
back to the thread as element that has to incorporate the condition about distances. 
Another utilization scheme associated to the parabola drawer is recovered: when the 
thread is kept tightened, the equivalence of the distances point-focus and 
point-directrix is assured (d(P, F) and d(P, a) in Figure 1C). This exploration brings the 
group to conclude that the length of the thread does not count for the hyperbola and that 
constant k must be looked for in another way (scientific and technological aspects). 
Reference to the parabola drawer fails to help the students.  
Recognizing the presence of material elements in the group discussions, the teacher 
now furnishes the students with a wooden plan with two pins and a thread. Group A 
begins to work with one thread, but then asks for a second thread.  
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2) Work with threads  
The idea that guides the group action is to represent the parameter of the curve using 
the thread. For this reason, the students choose a certain segment of the thread (that 
corresponds to 2a in the formula), they tie one of its ends to a pin and they try to handle 
it (Figure 2A). A1 tests with the thread segment various configurations that all assure 
to satisfy the definition of hyperbola. In other terms, A1 begins a sort of process of 
instrumentation of the thread. The students also try to include in this kind of 
exploration a ruler that should play the role of the rod.  
The observer A4 intervenes in the dialogue to suggest that the students think of the 
placement of the pencil to draw the curve. The task is brought back by the need for the 
tracing. The students must pass from a static configuration (test that a chosen point 
satisfies a certain relationship) to a dynamic one (a movement permits to trace the 
curve). A4’s intervention supports the transfer of a specific utilization scheme of the 
previous drawers: the pencil guides the movement tightening the thread. As a result of 
this action, the pencil’s point also corresponds to a point of the curve. So far, the 
students had not transferred this scheme that is instead crucial to draw the curve.  

A  B  C  D  
Figure 5 

A new intervention of the teacher marks that these explorations do not consider the 
second focus, pushing the group to produce symmetric actions so to tie another thread 
to the second pin (Figure 2B). The students find configurations that seem to match 
sketches by Kepler (1604; e.g. Figure 2D).  
The group tries to keep constant the difference PF2-PF1 (Figure 2C) and to look for 
new gestures of usage in an instrumentation of the artefact with two threads. Indeed, 
moving the threads, the students want to preserve that difference when tracing the 
curve. At the basis of this attempt, there is the detection of an isosceles triangle 
(scientific aspect, see Figure 2C). But the students abandon this way as soon as they are 
faced with a technological issue: “We are not successful in thinking of a tool that can 
replace my hands to move the two threads as desired” (from A1’s written report). In the 
case of the artefact with two threads, the construction of a new utilization scheme 
through the placement of the pencil is problematic for the students: they are only able 
to find discrete points but not the curve by continuous motion. The latter is another 
element of utilization schemes previously acquired that has to be transferred in the new 
situation, since it is a fundamental constraint for students’ action. 
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CONCLUSION 
In this paper, we focused on how previous experience can become part of a new 
learning situation. In particular, we centred on the way a small group of university 
students recalls past experience with some mathematical machines for conic sections 
in order to face the task of constructing a new machine. This kind of task differs from 
the previous ones. Before, the students were asked to explore drawers for ellipse and 
parabola using them concretely (to understand how they are made, how they work, 
what they trace and why). In the new situation, they are required to think of and design 
a drawer for hyperbola. So, the machine is no longer the starting point of the activity, 
but the goal of it. Due to the presence of machines in the tasks, the notion of utilization 
schemes is interesting for us, especially in terms of their transfer and formation in the 
new situation.  
Considering the perspectives of transfer of learning and of the instrumental approach, 
we have investigated if the students transfer utilization schemes previously formed, 
and especially how acquired schemes shape new schemes for the new machine in the 
new kind of task. Through the analysis of some work of group A, we have observed 
that the students’ process of constructing the instrument for hyperbola bounces 
between the technological side and the scientific side. The first side regards the fact of 
having a machine as goal of the activity and investigating its material components (that 
is, the artefact components). The second side refers to mathematical constraints that 
have to hold for tracing a given curve (a hyperbola) with that instrument. The 
relationship between the two sides is complex for the students for at least two reasons: 
on the one hand, the physical parts that constitute the machine have to materialize 
mathematical constraints; on the other hand, the curve has to be traced by a continuous 
motion with the instrument. Utilization schemes do just intervene in the search for such 
relationship.  
Our analysis has shown that the students of group A try to construct a new artefact by 
transferring artefact components from the instruments to draw ellipse and parabola 
(e.g. the pins for the foci, the thread). The metric property that defines the hyperbola 
furnishes the mathematical constraint to be implemented in the machine. This implies 
that the students look for a condition on the length of the thread recalling utilization 
schemes activated with the ellipsograph and the parabola drawer. The interventions of 
the observer and of the teacher help the students focus on other utilization scheme 
relevant for the machine: the motion of a pencil that keeps the thread tightened serves 
to trace the curve.  
We believe that activities of this kind are relevant for mathematics learning because 
they encourage the students to make explicit theoretical principles under the machine. 
Following Koyré (1967), the construction of the new drawer corresponds to “creation 
of scientific thought or, better yet, the conscious realization of a theory” (p. 106). 
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USING FACEBOOK FOR INTERNATIONAL COMPARISONS: 
WHERE IS MATHEMATICS A MALE DOMAIN? 

Helen J. Forgasz, Gilah C. Leder, Hazel Tan 

Monash University 
 
Mathematics continues to be an enabling discipline for STEM-based university studies 
and related careers. Explanatory models for females’ underrepresentation in higher 
level mathematics and STEM-based courses comprise learner-related and 
environmental variables – including societal beliefs. Using Facebook to recruit 
participants, we explored if mathematics is (still) viewed as a male domain. Responses 
were received from 724 people in 84 countries. Findings from nine countries with at 
least 30 respondents – Canada, China, Egypt, India, Israel, Singapore, UAE, UK, and 
Australia – are reported. Among those who held gender-stereotyped views (and many 
did not), mathematics was considered more suitable for males than for females.  
INTRODUCTION AND PREVIOUS RESEARCH 
In 2011, the United Nation’s 55th Commission on the Status of Women was held in 
New York. The focus was science and technology. At the conclusion of the 
Commission, a set of 22 conclusions was agreed upon. The importance and benefits of 
attaining gender equality in science and technology was recognized in conclusion 
number nine:  

The Commission notes that quality education and full and equal access and participation in 
science and technology for women of all ages are imperative for achieving gender equality 
and the empowerment of women, and an economic necessity, and that they provide women 
with the knowledge, capacity, aptitudes, skills, ethical values and understanding necessary 
for lifelong learning, employment, better physical and mental health,… as well as for full 
participation in social and economic and political development. (Commission on the Status 
of Women, 2011, p. 2) 

While women’s enrolments in tertiary education internationally have increased 
dramatically (UNESCO, 2012), they remain under-represented around the world in 
tertiary computing and engineering courses (UNESCO, 2012), for which studies in 
mathematics are pre-requisites and/or co-requisites. Hill, Corbett, and Rose (2010) 
report that, in the USA, the challenge of achieving gender equality in STEM areas is 
clear when employment figures by gender in STEM-related careers are considered. In 
the USA, it was reported that “women are vastly underrepresented in STEM jobs and 
among STEM degree holders despite making up nearly half of the U.S. workforce and 
half of the college-educated workforce” (Beede, Julian, Langdon, McKittrick, Khan, & 
Doms, 2011, p. 1).  
At the school level in the USA “girls and boys take math and science courses in 
roughly equal numbers” (Hill et al., 2010, p. 4). This is also the case in Australia, 
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except that males outnumber females in the most challenging, calculus-based, 
mathematics subject on offer at the grade 12 level (Forgasz, 2006). 
There is a large body of research indicating that: 

Negative stereotypes about girls’ and women’s abilities in mathematics and science persist 
despite girls’ and women’s considerable gains in participation and performance in these 
areas during the last few decades. Two stereotypes are prevalent: girls are not as good as 
boys in math, and scientific work is better suited to boys and men. (Hill et al., 2010, p. 38) 

Through the media, gender stereotypes in mathematics and science can be reinforced 
(for example in print – see Forgasz, Leder, & Taylor, 2007) or challenged (for example 
on television – see Steinke, 1998). Parents and teachers have been found to hold 
gender-stereotyped beliefs about and expectations of children’s mathematical 
capabilities; these beliefs are often more strongly held by males (e.g., Tiedemann, 
2000).  
While several explanatory models for gender differences in mathematics learning 
outcomes – achievement, participation, and attitudes – include the views of society at 
large (see Leder, 1992), less often are views related to the gender stereotyping of 
mathematics gathered from the general public (Leder & Forgasz, 2010), as opposed to 
stakeholders such as parents and teachers.  
The aim of the present study was to gather the views of the general public from around 
the world about the gendering of mathematics, and to compare views by country. 
Findings from an earlier stage of this study were reported by Forgasz and Leder (2010). 
In that study, data were gathered from pedestrians in the street of Victoria, Australia. 
THE STUDY: METHOD AND INSTRUMENT 
The instrument used by Forgasz and Leder (2010) was used in the present study. 
However, the items were transferred onto the online survey platform, SurveyMonkey. 
To obtain views from around the world, Facebook was used as the means of participant 
recruitment. An advertisement was placed on Facebook inviting potential participants 
to complete the online survey – see Forgasz, Leder, and Tan (2011) for more details on 
how this was done. Those who clicked on the advertisement were directed to the online 
survey instrument. 
Instrument 
To maximize completion rates, the survey was limited to 15 items which focused on: 
personal background data; the learning of mathematics at school; perceived changes in 
the delivery of school mathematics; beliefs about boys and girls and mathematics, and 
their perceived facilities with calculators and computers; and perceived suitability for 
careers in science and computing. 
In this paper we focus on four questions related to the gendering of mathematics and 
technology capabilities. The four items analysed and discussed are: 
Q1. Who are better at mathematics, girls or boys? 
Q2 Is it more important for girls or boys to study mathematics? 
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Q3 Who are better at using calculators, girls or boys? 
Q4 Who are better at using computers, girls or boys? 
For each item, participants were required to select from: Boys / Girls / Same / Don’t 
Know/Depends. Respondents also had the option to explain their responses to each 
question. Space constraints limit the findings presented here to the quantitative data. 
RESULTS AND DISCUSSION 
Responses were received from 784 participants aged over 18 (an ethical requirement), 
representing 84 countries. Of these, there were nine countries – Canada, China, Egypt, 
India, Israel, Singapore, UAE, UK, and Australia – with at least 30 responses from 
each. The 505 responses from these countries represented 70.2% of all responses 
received. Frequencies and percentages of the 505 responses from the nine countries are 
shown in Table 1. 
 

Country Frequency Valid %  Country Frequency Valid % 
Canada 35 6.4  Singapore 35 6.4 
China 76 13.8  UAE 46 8.4 
Egypt 84 15.3  UK 58 10.5 
India 66 12.0  Australia 119 21.6 
Israel 31 5.6     

Table 1. Frequency and valid percentage of responses by country 
Participants’ responses to the four questions listed above were analysed by country. 
Chi-square tests were conducted to determine if there were statistically significant 
differences in the frequency distributions to the response options by country. The 
findings for the survey questions are presented and discussed below. [NB. Sample 
sizes were too small for analysis by respondent gender.] 
Questions about the gendering of mathematics: Q1 and Q2 
The frequency distributions of responses by country for Q1, “Who are better at 
mathematics, girls or boys?”, and Q2, “Is it more important for girls or boys to study 
mathematics?” are shown in Figures 1 and 2 respectively. 
For Q1, “Who are better at mathematics?”, the chi-square test revealed that there was a 
statistically significant difference in the frequency distributions of responses by 
country (χ2=56.0, df=24, p<.001). Figure 1 reveals that: 

• “Same” (i.e., boys and girls considered equally good at mathematics) was the 
response with the highest frequency from participants in five of the nine 
countries – Canada (45.8%), Egypt (39.7%), Israel (45.8%), UAE (38.2%), and 
UK (41.5%) In these countries, among those whose response was 
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gender-stereotyped (“boys” or “girls”), more respondents identified “boys” than 
“girls” as being better at mathematics.  

• For China (69.2%), India (48.2%), and Singapore (44.4%), “boys” was the most 
frequent response. 

• For Australia the same percentage of people (34.9%) responded “same” and 
“boys”. 

 

 

Figure 1. Response percentages by country: Who are better at mathematics? 

 

Figure 2. Response percentages by country: Is it more important for girls or boys to 
study mathematics? 

In summary, more participants from each country considered “boys” to be better at 
mathematics than considered “girls” as being better. Respondents from China, with 
69.2% saying that “boys” were better at mathematics, held the traditional 
gender-stereotyped view more strongly than in other countries. 
For Q2, “Is it more important for girls or boys to study mathematics?”, there was no 
statistically significant difference in the response distributions by country. As shown in 



Forgasz, Leder, Tan 

 

PME 37 - 2013 2 - 317 

Figure 2, an overwhelming majority in each country considered it equally important 
for girls and boys to study mathematics. Interestingly, among the small minority in 
each country who held gender-stereotyped views, a slightly higher proportion felt that 
it was more important for boys than for girls to study mathematics.  
Capabilities with Technology: Q3 and Q4 
The frequency distributions of responses by country for Q3, “Who are better at using 
calculators, girls or boys?”, and Q4, “Who are better at using computers, girls or 
boys?”, are shown in Figures 3 and 4 respectively. 
Chi-square tests for the frequency distributions of responses for Q3 and Q4 were both 
statistically significant: Q3 (χ2=63.9, df=24, p<.001) and Q4 (χ2=38.7, df=24, p<.05).  
For Q3, “Who are better at using calculators, girls or boys?”, Figure 3 show that: 

• In seven countries – Canada (52.2%), China (38.8%), Egypt (57.1%), Israel 
(56.5%), Singapore (63.0%), UAE (50.0%), and Australia (48.1%) – the most 
frequent response was “same”, that is, that boys and girls are equally capable 
with calculators. In five of these seven countries, among those with 
gender-stereotyped views, more respondents considered “boys” than considered 
“girls” to be better with calculators. The two exceptions were Canada (8.7%) 
and Egypt (14.3%) where the same percentages of people considered “boys” and 
“girls” to be better with calculators. 

• In India, the same percentage of people (38.9%) replied “same” (ie., boys and 
girls equally capable with calculators) as replied that “boys” were better than 
“girls” at using calculators.  

• Interestingly, in the UK, the most frequent response was “Don’t know/unsure” 
whether boys or girls were better with calculators (50.0%). Again, however, of 
those holding gender-stereotyped views, more people indicated that “boys” 
(7.5%) were better with calculators than said that “girls” were (2.5%). 

For Q4, “Who are better at using computers, girls or boys?”, Figure 4 reveals that: 
• In six countries – China (55.1%), India (52.7%), Israel (52.25), Singapore 

(48.1%), UAE (48.4%), and UK (40%) – the most frequent response was that 
“boys” were better than girls at using computers. That in China, India, and 
Israel, “boys” was the response of the majority (ie., over 50%) indicates that the 
traditional gender-stereotyped view was very strongly held by participants from 
those countries. 

• In the remaining three countries – Canada (47.8%), Egypt (53.6%), and 
Australia (40.7%) – the most frequent response was “same”, that is that boys and 
girls were equally capable with computers. However, among those with a 
gender-stereotyped view, considerably more respondents indicated that “boys” 
rather than “girls” were better at using computers. 

•  
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Figure 3. Response percentages by country: Who are better at using calculators, girls 
or boys? 

 

Figure 4. Response percentages by country: Who are better at using computers, girls 
or boys? 

In summary, for both items about capabilities with technology, boys were generally 
considered more capable than girls. This trend was much stronger with respect to 
computer use than with calculator use, and the views were more strongly held by 
participants from some countries than from others. 
Conclusions and implications 
One very positive outcome of this study was that in all nine countries there was strong 
endorsement of mathematics as an important study for all students irrespective of 
gender. Differences by country were evident, however, when it came to perceptions of 
boys’ and girls’ capabilities with mathematics (the enabler for higher level STEM 
studies and career paths), and for boys’ and girls’ capabilities with technology 
(calculators and computers).  
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It is important to note that many people in the nine countries did not distinguish 
between boys and girls with respect to mathematics or technology capability. However, 
if a gendered belief was held, it was evident that in all countries it was more likely that 
the traditional gender-stereotyped view that mathematics is a male domain (i.e., that 
mathematics studies and related careers are more suited to boys than to girls) prevailed 
over mathematics being seen as a female domain. There were clear differences by 
country in the extent to which this traditional view was held. Interestingly, in all nine 
countries, there was no item for which the response “girls” had a higher percentage 
response rate than the response “boys”. 
Participants from China appeared to hold the strongest traditional beliefs about 
mathematics as a male domain. Participants from English-speaking countries appeared 
to be more likely than participants from non-English speaking countries to hold 
gender-neutral beliefs, that is, they were more likely to respond “same” to the items. 
There were limitations to this study. First, the survey was in English and so participants 
from non-English speaking countries had to be sufficiently fluent in English to respond. 
This may have skewed the findings to reflect the views of the more highly educated in 
those countries. Related to this is that the recruitment method limited the potential pool 
of respondents to Facebook users. This may have skewed findings to reflect the views 
of those from higher socio-economic backgrounds who have access to the Internet and 
Facebook. It should also be noted that Facebook may also have introduced an 
age-related factor, as Facebook users over 18 years of age are more likely to be in the 
under-35 than in the over-35 age range (Burbary, 2011). Facebook clearly had some 
advantages as well. Using Facebook allowed data to be gathered from respondents 
from a range of national backgrounds, not easily obtained through more traditional 
research approaches. 
Clearly further research is needed to obtain data from larger number of respondents 
from more representative samples of the populations of the countries included here and 
from elsewhere. However, despite the limitations of the present study, the consistency 
in the direction of the findings in support of the traditional male stereotype provides 
strong evidence that gendered perceptions of mathematics remain alive and well in 
many parts of the world. Changing attitudes and perceptions is a challenge. Yet to 
maximise human progress, the discipline of mathematics and STEM fields in general 
cannot afford to sideline half the world’s population, women.  
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THE FLOW OF A PROOF –  
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The notion “flow of a proof” encapsulates various aspects of proof presentation in a 
classroom. This paper presents a global flow analysis of the proof of the Euclidean 
algorithm, as presented to a class of prospective teachers. The findings are based on 
lesson observation, questionnaires and interviews with lecturer and students. The 
analysis reveals the existence of a gap between the main ideas of the proof as perceived 
by the lecturer and by the students. This is also reflected in the way the students 
self-estimated their level of understanding. We explain these findings by relating to the 
global features of the flow and discuss potential alternative flows.   
Learning mathematical proof and justification is considered an essential part of 
students’ mathematical education. Teachers are encouraged to explain and justify 
mathematical concepts and processes and to use proof as an explanatory tool (Hanna, 
2007). Nevertheless, teachers’ didactic knowledge regarding strategies for teaching 
proof is still an emerging research topic. Teachers’ lack of such knowledge and 
strategies has been pointed out (Dreyfus, 2000; Knuth, 2002). Alcock (2010) and 
Weber (2010) have provided insight into pedagogical considerations used by 
experienced mathematicians while teaching proof, and found that mathematicians 
lacked the required strategies to achieve their didactic goals. A few approaches to 
teaching proof have been suggested but there are still no robust findings regarding the 
effect of using those approaches in mathematics classrooms. Thus, establishing ways 
to improve teachers’ pedagogical knowledge about proof teaching is a valuable task 
(Hanna, 2007). Mariotti (2006) further recommended investigating cognitive and 
meta-cognitive perspectives of proof learning in the context of teachers’ training.  
THE FLOW OF A PROOF 
The concept of flow is embedded in the way mathematicians think about proof and 
proving. Thurston (1994) writes that “when people are doing mathematics, the flow of 
ideas and the social standard of validity are much more reliable than formal 
documents“ (p.169). The present research introduces the notion of flow of a proof, 
which attempts to encapsulate various aspects of proof presentation in such a way that 
the flow can be used as a pedagogical tool. The approach is holistic in nature; thus an 
initial characterization of flow relates to: (i) the way the logical structure of the proof is 
presented in class; (ii) the way informal features and considerations of the proof and 
proving process are incorporated in the proof presentation; (iii) contextual factors 
(mathematical and instructional). The flow of a proof is expected to affect students’ 
cognitive and affective responses to the proof and the research aims to study those 
effects in situations where the flow is recognized by the students and when it is not. 
When students recognize the flow, they are expected to be able to notice and reflect on 
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main formal and informal ideas of a proof and on the way those ideas relate to each 
other, so that insight, intuition and formalism are balanced. 
The flow of a proof can be analysed from a global and from a local perspective. The 
global perspective is concerned with the way a proof is divided into modules and with 
the choices made by the lecturer as to how to present those modules in class so they are 
combined and communicated to the students as an intelligible, unified, coherent and 
hopefully engaging story. The local perspective involves the examination of single 
formal or informal arguments in the proof using argumentation theory, particularly the 
full scheme of Toulmin’s model (Toulmin, 1958). In this paper the focus is on the 
global perspective of the flow of a proof. Contextual aspects are also briefly addressed. 
Specifically, a global flow analysis is applied to the proof of the Euclidean algorithm as 
presented to a class of prospective secondary level mathematics teachers during their 
first year of training. The effect this flow had on the way the prospective teachers 
understood the main ideas of the proof is discussed, and possible explanations and 
alternatives are presented. 
METHOD 
The research was carried out in a class of 38 prospective secondary level mathematics 
teachers taking a course in Number Theory during their first year of training. This 
paper refers to the lesson in which the proof of the Euclidean algorithm for finding the 
greatest common divisor of two natural numbers was taught. A summary of the proof 
as it was presented in the lesson is depicted in Figure 1.  

 
Figure 1: The proof of the Euclidean algorithm and the example given in the lesson 

After the lesson the students were asked to answer a questionnaire relating to cognitive 
and affective aspects. The questions in the cognitive part concerned global and local 
aspects. The “global-oriented” questions asked the students to specify main ideas of 
the proof, to illustrate the proof with an example and to explain why the algorithm is 
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finite. The affective part included questions relating to interest, confidence and 
significance. The lecturer of the course was informed in a very general manner that the 
research relates to teaching proof but was not instructed before the lesson how to 
present the proof and did not see the questionnaires. The lesson was observed and 
audio recorded. A researcher took notes on the lesson as well as remarks and responses 
of students and of the lecturer. In addition, two types of post-lesson interviews were 
conducted: (i) a reflective interview with the lecturer; (ii) two individual interviews 
with students, designed to probe their questionnaire answers, the way they perceived 
(if at all) the flow of the proof and mathematical or pedagogical factors that improved 
or impeded their understanding. 
These data enabled examination and analysis of (i) the way the proof was presented by 
the lecturer; (ii) the way the proof and its presentation were received by the students; 
(iii) the correlation between the two.  
FINDINGS AND DISCUSSION 
Context 
Thurston (1994) writes that “[for him] it became dramatically clear how much proofs 
depend on the audience” (p.175). A proof is not presented in a vacuum but in the 
context of a lecturer with firm beliefs and convictions, and to an audience with certain 
characteristics. Therefore, a proof might communicate some mathematical concepts 
and ideas in one context but others in another context. 
The participating students can be roughly divided into two groups: students who are 
starting their academic studies, and students that finished their studies in another 
academic discipline but are currently qualifying as mathematics teachers. The latter are 
more experienced academically. Those two groups were sitting in separate areas. 
The lecturer is experienced and knowledgeable. He regularly teaches the course in 
different academic institutions to different populations. He lectures frontally but also 
patiently answers students’ questions. He is enthusiastic about the course content and 
this is reflected in his teaching. During the post lesson interview, he expressed 
awareness of the existence of two groups in the class as well as his belief that the proof 
presentation should be based on purely mathematical considerations rather than 
audience dependent, that the proof should be presented as accurately and formally as 
possible, and that it is especially important for prospective mathematics teachers to be 
exposed to formal proof even if they are not going to teach such proofs later. 
Analysis of the proof presentation 
The lecturer started the lesson referring to the topic of previous lessons, the properties 
of a number that divides a specific other number, and to today’s topic, a number that is 
a common divisor of two numbers. The lesson ended with the lecturer stating the topic 
of the next lecture: analyzing the efficiency of the algorithm. These opening and 
closing statements situate the lesson within a larger frame of reference. They 
contribute to the sense of building a complete mathematical theory, and situating the 
theorem as part of a theory. Thus a mathematical context is provided. 
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I. Introduction, definition, discussion (16’) 
    Central topic: How to find gcd(a,b), a,bϵN? 

              

II. Using Euclid’s algorithm to find gcd(225,120) (5’) 

IVa.  Describing and proving the algorithm (15’) 

        

What if the numbers are very large? 

Motivation to prove two lemmas 

Last 
week…  

III. Stating and proving lemma 1 (13’) and lemma 2 (2’) 

Next 
week…  

indices 

We need to generalize the algorithm and 
   

Next, the lecturer defined the greatest common divisor (gcd) and introduced some of 
its basic properties without formally proving them. He showed a naïve way of finding 
gcd(220,125) and raised the question: What if the two numbers a,b for which we try to 
find the gcd are very large and have many divisors? He thus motivated the need for an 
efficient way of calculating gcd(a,b). Next he demonstrated the use of Euclid’s 
algorithm for finding gcd(220,125), basing the algorithm on two lemmas, which he 
then proved, lemma 1 formally and lemma 2 verbally. Finally he described the 
algorithm using general notations involving indices as in Figure 1) and proved it 
formally. He used the well-ordering principle to show that the algorithm is finite. 
Hence the lesson can be divided into four modules (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Schematic global analysis of the flow of the proof 
The schematic presentation in Figure 2 is based on an analysis of the lesson and 
provides a compact visualization of the order and duration of the lesson’s modules, the 
way they were tailored to each other and their interrelations. For instance the lemmas 
in module III were used during the numerical example of module II but were also 
motivated by it; similarly the lemmas are used in the general proof in module IV. The 
dashed boxes in Figure 2 represent the transitions between the modules. We interpret 
these transitions as the lecturer’s attempt to transform a collection of modules into a 
unified, coherent and possibly engaging story. The stars represent places that might 
disturb the flow. The star in module II reflects the demonstration of the algorithm on a 
numerical example before it was formally introduced. The star in module IV represents 
the transition to index notation as in Figure 1.  
The global proof presentation involved many choices made by the lecturer, choices 
which are directly connected to the flow of the proof. In the following subsections we 
will examine how these choices are reflected in the way the lecturer and students 
answered the question “What were the main ideas of the proof?” 
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Main ideas of the proof as stated by the lecturer and as stated by the students 
During the post-lesson interview, the lecturer was asked what he sees as the main ideas 
of the proof (ideas 1-4 in Table 1). The students were asked the same question in the 
questionnaire. Fifteen students answered the questionnaire and thirteen of them 
answered this question. A summary of the students’ answers is presented in Table 1.  
 

The proof’s main ideas Nb of students 
1. The division algorithm 5 
2. A common divisor of ,a b  is a divisor of any linear 

combination of ,a b  1 

3. Examining smaller and smaller numbers until a trivial 
situation is reached 2 

4. The algorithm is finite (well-ordering principle) 7 
5. gcd( , ) gcd( , )a bq r a b b r= + ⇒ =  8 
6. |b a  if and only if gcd( , )a b b=  6 

7. Iterations 3 
8. The remainder sequence is monotonically decreasing 1 
9.  Getting a deeper understanding of the divisors of ,a b  1 

Table 1: The main ideas of the proof as stated by students and lecturer 
Table 1 reveals that none of the lecturer’s main ideas was mentioned by a majority of 
the students. This demonstrates the variety that might exist in a group of students who 
participate in the same lesson, as well as the existence of gaps between the main ideas 
as perceived by the lecturer and the students. 
Idea 1, the division algorithm, was referred to by only 5 students although Euclid’s 
algorithm uses it repeatedly. During his interview the lecturer referred to idea 2 as one 
of the underlying ideas of the proof, casually mentioning that this is actually Lemma 1, 
but only one student stated this idea in his answer, and this student also stated idea 5 as 
if it was a separate idea. Interestingly, ideas 5 and 6, which are simply Lemmas 1 and 2, 
were mentioned by a relatively large number of students. Idea 6 was not mentioned by 
the lecturer at all; also during the lesson, he did not accord it much importance: he 
explained it briefly and wrote it on the board without proof. Idea 4 referring to the 
algorithm being finite was explicitly stated by only 7 students although it was very 
apparent throughout the lecture: it was discussed informally and even quite 
enthusiastically, and was also proven formally. Similarly, idea 3, which is at the heart 
of the algorithm was mentioned by only 2 students, or possibly also by the 3 students 
who stated idea 7: “iterations” which may be a less accurate way of expressing idea 3. 
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A possible explanation for these gaps may lie in the global flow of the proof (Figure 2). 
The lemmas were stated and proved right after the numerical example, using simple 
algebraic language, followed by a complicated general formulation involving indices. 
This might have caused the students to consider the lemmas as the main part of the 
proof, or perhaps they were the last part of the lesson they felt comfortable with. This 
explanation is supported by the following extract taken from the interview with Moran, 
one of the students. She stated ideas 5 and 6 as the main ideas of the proof and 
explained that they seem more applicable than others and that she feels more 
comfortable with algebraic expressions than with verbal explanations.  

Interviewer: So is this because these expressions are written in algebraic form? 
Moran: Yes, but these are expressions that even after a month has passed I can still 

understand what I wrote here, I don’t have a problem with that… But I 
don’t have any idea how to repeat the proof. To explain to you verbally 
what the lecturer wrote? I don’t have a clue… But that’s me. 

Daniel, the other interviewed student, listed ideas 1, 3, 4, and 7. When asked to 
describe the proof in a general manner he referred to using the division algorithm 
repeatedly in order to reduce the numbers, and stated that the algorithm is finite. When 
asked about the connection between the gcd of the numbers in the beginning and in the 
end of the process he did not answer but said this was “a missing link”.   
The students were also asked to self-estimate their level of understanding of the 
Euclidean algorithm and of its proof. The results are summarized in Table 2. 
 

Understanding level of the… Very high High Reasonable None 
Euclidean algorithm 3 4 7 1 
proof of the algorithm 1 1 10 3 

Table 2: Students’ self-estimations of their algorithm/proof understanding level  
Out of 15 students who answered the questionnaire only two (seven) estimated 
themselves as having high or very high level of understanding of the proof (of the 
algorithm). The lecturer was asked to relate to possible difficulties encountered by 
students during the lesson. He stated that based on his past experience he demonstrates 
the algorithm on a numerical example before the general proof, and this raises 
students’ involvement in the lesson and improves their understanding of the general 
proof; he perceived no particular difficulties. Taking into account his belief that 
considerations for proof presentation are purely mathematical, the data in Table 2 may 
be interpreted as showing a lack of adaptation of the flow of the proof to the audience.. 
This is also supported by the following excerpts from the interviews: 

Moran: The board is filled with words and I am completely lost, I can’t understand 
where the beginning is and where the end... I am constantly writing because 
I need to figure it out at home, but during the lesson it’s like I am writing 
Chinese… 
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II. Using Euclid’s algorithm to find    

       

III. Stating and proving two lemmas  

IV. Proving the general algorithm  
 

 
 

 
III. Stating and 
proving two  

  

IV. Proving the  

 
 

II*. Using  the 
numerical example 
a=225, b=120 to 
demonstrate the two 
lemmas and the 
algorithm  

 

Daniel: I am taking two courses and this lecturer is by far better than the other … 
He’s very organized, answers every question, I don’t have much criticism, 
but … somehow, during the proofs I’m getting lost. It suddenly happens, I 
am telling myself: “Hey, wait a minute, where am I?”…  

Possible alternative flows 
Hence the question arises whether alternative flows based on the same modules might 
produce higher levels of student comprehension. Figure 3 presents two options.  
 
 
 
 
 
 
 
 

Figure 3a: (left) & 3b (right): Alternative global proof flows 
Figure 3a represents a somewhat more conventional textbook type of flow, linearly 
proceeding from the lemmas to the algorithm’s general proof and ending with an 
example. One characteristic of this flow is the temporal proximity between the 
example and the general algorithm. That proximity can also be achieved by the flow 
depicted in Figure 3b.  Here the numerical example is used for framing the lemmas as 
well as the general proof, by going back and forth between formal deductions and their 
numerical illustration. This flow might also help to adjust the pace of the lesson to the 
students and to solve a problem indicated by Moran relating to the gap between the 
experienced mathematician and the students: 

Moran: For him to say gcd – it’s just gcd, it’s clear. For me it’s the first time I 
encounter this expression and it takes me ten minutes to understand what he 
means. Like, wait a minute, what’s gcd? And then to see “a|b”. Ten times 
during the lesson… whenever he wrote a|b I wrote a verbal note “a divides 
b” so when I read it at home I can remember that it means “a divides b” and 
not “b divides a”. So I’m stuck on that - and he’s running … 

The decision to favour one type of flow over the other is of a didactic nature and the 
effect of using such alternative flows is a topic for further research.  
CONCLUSIONS 
In this paper, the notion of flow of proof was introduced, and global flow analysis was 
used to discuss the gap between the lecturer’s and his students’ answer to the question: 
What are the main ideas of the proof of the Euclidean algorithm? The analysis 
demonstrates the potential to produce a deep understanding of a multifaceted learning 
scenario, but many questions remain open. The analysis of local features of the proof 
presentation and the relation between the local and the global features is one further 
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topic for research. Another one is the effect of the flow on affective factors and the 
intertwining between the cognitive and the affective factors.  
The lecturer had a clear view of the main ideas he intended the students to have at the 
end of the lesson and he presented these ideas accordingly. Nevertheless, our data 
show that the outcome of the lesson was less than intended. Using a different flow, 
perhaps missing from the lecturer’s “didactic arsenal”, might help. In addition, the 
lecturer did not correctly assess the students’ proof comprehension difficulties. The 
lack of suitable didactic strategies and adequate assessment methods is consistent with 
findings of Weber (2010) and Alcock (2010), and it impedes the creation of the type of 
communication that should exist in the mathematics classroom as Hanna (2007) 
recommends. This communication is perhaps particularly important in the training of 
future mathematics teachers, in accordance with Mariotti (2006) and Dreyfus (2000). 
Hopefully, studying the different aspects of the flow of a proof in a way that will shape 
flow as a didactic tool will help turning proof presentation in class into deep 
mathematical communication between teacher and students. 
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THE EFFECTS OF MODEL-ELICITING ACTIVITIES ON 
STUDENT CREATIVITY 

Talya Gilat, Miriam Amit 
Ben Gurion University of the Negev (Israel) 

 
This paper presents one part of a comprehensive study examining the implications and 
consequences of model-eliciting activities (MEAs) on mathematically talented and 
gifted students' development in several dimensions. This part focuses on the effect of a 
MEA intervention program on students' creative thinking. The method was based on 
pre-test and post-test forms of the Figural Torrance Tests of Creative Thinking 
(TTCT). The participants were 71 school students with diverse cultural backgrounds 
who are members of “Kidumatica” math club. Some of the students participated in a 
control group and the rest participated in the intervention program. The TTCT pre- 
and post-tests were administered to both groups. Findings indicated that MEAs have 
the potential to develop and improve students’ creativity. 
INTRODUCTION 
In an era dominated by changes driven by cutting-edge discoveries, technological 
revolutions and innovative science, the development of students' abilities to create 
something novel and valuable has become crucial. Acknowledging the importance of 
mathematics and science education in this development, the OECD (2012a) set the 
following goal for its innovative education conference: “to present and discuss 
evidence and policies in mathematics and science education that can lead to better 
skills in thinking and creativity” (p.16). 
Moreover, our ever-changing and highly competitive world requires an educational 
system which can provide students with authentic learning experiences that will 
encourage and cultivate their creative potential and give them opportunities to practice 
it, while exposing them to unfamiliar real-word problematic situations (OECD, 2012b; 
Lesh & Sriraman, 2005). The development and promotion of students' abilities to solve 
problems creatively have been explored by many educators and education researchers 
in all domains using different approaches (Guilford, 1950; Torrance, 1974; Amabile, 
1996; Chamberlin & Moon, 2005).  
Model eliciting activities (MEAs) give the student opportunities to deal with 
non-routine, open-ended “real-life" challenges. These authentic problems encourage 
the student to ask questions and be sensitive to the complexity of structured situations, 
as part of developing, creating and inventing significant mathematical ideas (Lesh & 
Thomas, 2010; Amit & Gilat, 2012; Gilat & Amit, 2012 ). However, the implications 
and consequences of such model problem-solving on the development of students' 
creative thinking have only been addressed in a few studies (Chamberlin & Moon, 
2005). The current study was therefore aimed at exploring the effects of a MEA 
intervention program on the development of students’ creative-thinking skills, using 
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the widely used Torrance Test of Creative Thinking (TTCT) which has become highly 
recognized in the field of education and in the business world (Kim, 2011). 
Creativity: definition and assessment  
Guilford (1950) noted the importance of creativity as a research topic, emphasizing the 
implications of educational research and practices related to creativity and creative 
abilities, which should be encouraged and developed among students. Guilford was 
concerned with the creative behavior of the problem-solver, which he described as a 
sequence of thoughts and actions resulting in a novel production, and he defined 
creativity as the divergent production operation that identifies a number of different 
types of creative abilities, such as originality, fluency, flexibility, and elaboration. This 
definition, and the scoring of these four components, has served as the basis for many 
creativity tests (Guilford, 1967; Torrance, 1974; Sternberg, 2006).  Guilford (1967) 
researched and developed a divergent thinking test known as Guilford’s Alternative 
Uses Task, in which the test-takers are asked to list all of the uses they can think of for 
a common object, such as a cup, paperclip, or newspaper. Torrance (1974) developed 
the Torrance Test of Creative Thinking (TTCT) based on Guilford’s definition of 
divergent thinking. In the present study, we used the TTCT-Figural to measure 
participants’ creativity. According to Cramond (1993) and Torrance (1977), the figural 
test is presumed to be fair in terms of gender and race and for persons who have various 
language, socioeconomic, and cultural backgrounds (as cited in Kim, 2006).  
MATHEMATICAL MODELING, PROBLEM SOLVING AND CREATIVITY 
The parallelism between problem solving and creative thinking has been addressed in 
several studies (Guilford, 1967; Amabile, 1996; Sriraman, 2009). Guilford (1967) 
argued that problem solving and creative production “have so much in common that 
they are basically the same phenomenon” (p. 312). However there are a great variety of 
problem-solving tasks, applied in many subjects and in many different domains, that 
can stimulate, encourage and develop students’ creativity. The literature reveals some 
features that characterize the problem or task involved in the creative problem-solving 
process: non-routine and heuristic, complexity of information, and multiple cycles 
(Mumford, Mobley, Uhlman, Reiter-Palmon, & Doares, 1991;Amabile, 1996; 
Sriraman, 2009)  
Non-routine task - Amabile (1996) claimed that creative problem solving requires a 
heuristic task in which the path to a solution is unknown, rather than an algorithmic 
task which involves a known execution of a preexisting algorithm, without any 
exploration of other possible pathways. Sriraman (2009) argued that the creative 
mathematical process entails a non-routine problem, a problem with complexity and 
structure which requires not only motivation and persistence but also considerable 
reflection. Mathematical modeling activities based on “real-life” problem situations 
are none routine, authentic tasks with a high level of complexity, in which students are 
given the opportunity to construct powerful ideas relating to interdisciplinary data 
(Lesh & Doerr, 2003;Lesh & Sriraman, 2005). 
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Complexity of information - Mumford et al. (1991) underlined the importance of the 
information involved in the task, emphasizing the need for categorization and 
reconstruction of information rather than just recalling and understanding. MEAs 
differ from traditional “word problems” which define static assumptions involving 
givens and goals (Lesh & Doerr, 2003, Della & Cynthia, 2010). Mathematical 
modeling activities are based on “real-life” problem situations in which students are 
given the opportunity to construct powerful ideas relating to interdisciplinary data 
(Lesh & Sriraman, 2005). The ambiguity and the complexity of the data expose 
students to different approaches, multiple pathways and different or innovative 
mathematical solutions (Chamberlin & Moon, 2005; Amit & Gilat, 2012).  
Multiple cycles and solutions - The literature reveals the importance of tasks that 
involve multiple cycles of exploration, in which the generation of new ideas, 
responses, new pathways, and alternative solutions are invented or discovered 
(Guilford, 1967; Munford et al., 1991); Amabile, 1996; Sriraman, 2009). The 
model-development processes involve a series of recursive cycles consisting of 
developing, testing, and revising phases in which a variety of different ways of 
thinking are repeatedly expressed, tested, and revised or rejected (Lesh & Doerr, 2003; 
Lesh & Thomas, 2010). 
METHODOLOGY 
In this paper, we describe part of a multidimensional study aimed at revealing the 
implications of a MEA intervention program on students' cognitive abilities, creativity 
and creative mathematical thinking. The intervention program focuses on exposing 
students to a variety of authentic mathematical modeling activities developed 
according to the six principles of MEAs: reality, model construction, self-evaluation, 
model documentation, model generalization, and the simple prototype principle and 
modeling process theory (Lesh, Amit, & Schorr, 1997). The study included two 
groups. The experimental group participated in the intervention program, while the 
control group did not. The experiment lasted 7 months; before the start of the 
intervention program, a pre-test was administered to students in both groups to assess 
their level of creativity. The intervention program included three different workshops 
that were administered by the researchers in four experience lessons lasting 75 minutes 
each. Each intervention workshop was made up of three parts: a warm-up activity, a 
MEA and a poster-presentation session (Figure 1). Upon completion of the program, 
both groups were evaluated with a post-test.  
The warm-up activity consisted of a math-rich reading passage and readiness 
questions, serving to generate students' interest and motivation, and to introduce the 
context for the modeling activity. This activity ensured that students would have the 
initial knowledge to solve the modeling task, including factual knowledge and 
cognitive and technical skills, so that their solution would stem from their own 
experience (Lesh & Thomas, 2010).    
The modeling activity consisted of a data section and a modeling task. The data 
section contained tables, images or drawings, with the third part of the readiness 
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questions often referring to these structures. The modeling task consisted of a short 
question or statement, asking the student to solve a mathematically complex problem 
for a hypothetical client (Amit & Gilat, 2012). This part was performed in groups of 3 
or 4 students, and was likely to involve several iterative cycles in which the students 
need to significantly test and revise their thinking about the situation.  
In the poster-presentation session, each group prepared and presented a poster 
showing their results, in which they explained, justified and mathematically 
communicated their solution.  
 
 
 
 
 

Figure 1 - Typical modeling workshop 
Research questions  
To what extent, if at all, does experience in eliciting mathematical models for 
"real-life" situations develop and improve creativity in talented and gifted students? 
Are there any gender differences in the development of creativity among students that 
gain experience in eliciting mathematical models? 
Participants 

Participants in this study included 71 "high-ability" and mathematically gifted students 
in the 5th through 7th grades who are members of the "Kidumatica" math club. The 
“Kidumatica” program provides a framework for cultivation and promotion of 
exceptional mathematical abilities in youth from varied socioeconomic and ethnic 
backgrounds. The study consisted of a control group of 24 students (10 girls and 14 
boys), and an experimental group of 47 students (14 girls and 33 boys) who 
participated in the intervention program. Both groups were exposed to the same 
amount of weekly mathematical enrichment activities at “Kidumatica” (such as logic, 
problem-solving, number theory, etc.) (Amit & Neria, 2008). While the experimental 
group participated in the intervention-program activities, the control group worked on 
other mathematical activities. Pre- and post-test comparisons were made in both the 
control group and the experimental group; the control group's results served as a 
baseline to which pre-test and post-test results from the experimental group were 
compared. 
Instrument  
This study utilized the standardized TTCT-Figural. The TTCT displays adequate 
reliability and validity (Kim, 2011) as a measure of creativity. The TTCT is one of the 
most commonly used measures of creativity in education and educational research, and 
has been translated into over 35 languages (Kim, 2006; Yuan & Sriraman, 2010). The 
test has two forms: A and B. The two forms of the figural test were used as pre and 
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post-tests, respectively, and were scored according to the Streamline Scoring 
Procedure (Torrance, 2008). The test consists of three activities: picture construction, 
picture completion, and repeated figures of lines or circles. For each activity, students 
are asked to complete the drawing by turning it into something meaningful and 
imaginative. A translation (into Hebrew) and back-translation cycles were handled by 
the first author and two education researchers.  
FINDING AND RESULTS  
Research question 1 
Significant differences were found between the TTCT pre- and post-test results among 
students participating in the intervention program and among control students. Both 
groups showed improvement from the pre- to post-test, although the experimental 
group showed relatively higher improvement (Figure 2).   
To determine whether, and to what extent, experience in eliciting mathematical models 
for "real-life" situations develops and improves creativity in talented and gifted 
students, we examined the results of the TTCT-Figural pre- and post-tests from the 
control and experimental groups by performing repeated measure ANOVA with 
post-hoc analysis using Bonferroni correction. The results indicated significant 
differences between post- and pre-tests—F (1, 69) = 30.84, p < 0.000, 

 = 0.31—indicating that both the control and experimental groups had improved over 
the course of the experiment. Moreover, results indicated a significant interaction 
between the groups and the time (pre-test to post-test)—F (1, 69) = 9.15, p < 0.003, 

 = 0.12—indicating a significant difference between the experimental group's 
improvement and that of the control group. Post-hoc tests were conducted to evaluate 
pairwise differences among the means. In the pre-test, the mean score of the 
experimental group was 41.28 (SD = 22.9) and that of the control group, 42.5 
(SD=24.5); in the post-test, the respective mean scores were 67.11 (SD = 24.59) and 
50.08 (SD = 28.37) (Figure 2). This indicates that although both groups started with 
almost the same creative potential according to the TTCT-Figural, after the MEA 
intervention program, the experimental group exhibited higher improvement than the 
control group.  
Research question 2 
The results indicated gender differences in the development of creativity in the 
experimental group, with the girls scoring higher than the boys on the TTCT tests (pre 
and post) and showing higher improvement. To further examine the question of gender 
differences, repeated measure ANOVA was conducted with post-hoc analysis. The 
results indicated significant differences between girls and boys—F (1, 45) = 3.35, 
p = 0.073,  = 0.513. Post-hoc tests were conducted to evaluate pairwise differences 
among the means. The girls' mean pre-test score was 47.50 (SD = 23.15), and the boys' 
was 39.67 (SD = 23.14); in the post-test, the girls' mean score was 76.57 (SD = 15.47) 
and the boys' was 63.67 (SD = 26.7) (Figure 3). Based on this finding, there was a 
gender difference in the experimental group: the girls demonstrated higher creative 
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improvement (ΔM29.07) and a higher final score (76.57) than the boys (ΔM24.0 and 
63.67, respectively). 
 
 
 
 
 
Figure 2 - Intervention and control groups’ scores on TTCT-Figural pre- and post-tests  
 
 
 
 
 
Figure 3 - Scores of girls and boys in the experimental group on the TTCT-Figural pre- 

and post-tests  
DISCUSSION  
In the first part of this study, the students participating in the experimental modeling 
program scored significantly higher on their creativity tests than the control group, 
although both groups showed improvement in their creativity scores. The development 
of students’ creative thinking skills has been investigated in many studies on 
education, including mathematical education (Torrance, 1974; Kim, 2006; Baer & 
Kaufman, 2008; Yuan & Sriraman, 2010). Some of those studies used TTCT scores as 
an indicator of students' overall creative potential (Kim, 2006; Yuan & Sriraman, 
2010). The MEA intervention program introduces students to challenging real-world 
problem-solving activities which was completely new to them (Lesh & Sriraman, 
2005; Lesh & Thomas, 2010). Although this experimental program involved 
mathematically challenging problem solving, it required students to use their 
innovative and creative thinking skills (OECD, 2012a; Chamberlin & Moon, 2005; 
Lesh & Sriraman, 2005). Both control and experimental groups demonstrated 
significant development in their creativity, in accordance with Amit and Neria's (2008) 
finding of empowerment of students who are gifted or have high mathematical ability 
due to their participation in weekly high-enrichment workshops at “Kidumatica” math 
club.  
Results from the second part of this study indicated that the girls participating in the 
intervention program were somewhat more creative than the boys. These findings 
coincide with Baer and Kaufman’s (2008) conclusions, from their inclusive review of 
creativity studies, on gender differences in creativity, arguing that “the overall 'winner' 
in the numbers of studies in which one gender outperformed the other, it would be 
women and girls over men and boys” (p. 98). The participants in this research—both 
boys and girls—volunteered to participate in the mathematical enrichment program at 
“Kidumatica” due to their interest in mathematics and their desire to learn more (Amit 



Gilat, Amit 

 

PME 37 - 2013 2 - 335 

& Neria, 2008), which could indicate a great deal about their motivation (Amabile, 
1996). According to Baer and Kaufman (2008) and Amabile (1996), motivation plays a 
large role in gender differences in creativity and has a much stronger effect on girls 
than on boys (Baer & Kaufman, 2008). In addition, the girls were young (5th to 7th 

grade) and according to some researchers “girls do not show less creative achievement 
until after high school” (Baer & Kaufman, 2008, p. 94). However, reports of studies on 
gender differences based on TTCT scoring are inconclusive (Torrance, 1977; Kim, 
2006; Baer & Kaufman, 2008). This suggests a need for further research, with a higher 
number of participants and additional analyses of TTCT-Figural factors across control, 
experimental and gender groups. Although the presented pre- and post-test results are 
still preliminary and limited, overall this study clearly indicates a positive effect of the 
MEAs intervention program on the development of students’ general creativity. 
Furthermore it reveals young girls’ creative advantage over young boys.  
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CONNECTING TEACHER LEARNING TO CURRICULUM 
Michael Gilbert, Barbara Gilbert 

Harvard University, University of Massachusetts Boston 
 
Teacher effectiveness is influenced by individuals’ knowledge. Traditionally, this 
knowledge is measured by the number of college mathematics courses taken. But a 
plateau effect indicates student learning is only slightly affected beyond a certain 
number of courses, suggesting that advanced classwork may encourage teachers’ 
compression and abbreviation of the mathematics. This report outlines a plan to 
increase teaching effectiveness using curricular materials designed for student and 
teacher learning. We posit that unpacking the mathematical knowledge inherent in 
tasks can provide entry points for student understanding and essential background 
knowledge necessary for teaching. Importantly, embedding professional learning in 
curriculum development may be critical to advancing mathematics learning as 
continued reductions in school district budgets restrict access to quality professional 
learning opportunities for in-service mathematics teachers.  
INTRODUCTION 
It is widely established that teachers need to possess an understanding of mathematics 
that goes beyond the math they teach. Teachers of mathematics activate this additional 
mathematical knowledge when they differentiate problems to challenge students, listen 
to students’ explanations of unconventional solution strategies to determine whether or 
not they are mathematically productive, or select assessment problems that are 
mathematically similar to the work done in class. However, for middle and high school 
teachers, the nature of that knowledge remains unclear.  Research indicates that 
effective professional learning models incorporate aspects of content and pedagogy 
(Ball and Cohen, 1996; Borko, 2004; Putnam and Borko, 1997), however, little 
research has been done to “… understand how such useful and usable knowledge of 
mathematics develops in teachers” (Ball & Hill, 2004, p. 333).  

The research, then, is clear: teachers cannot teach what they do not know, and they cannot 
teach what they know if they do not have the skills to do so. Changing teaching is the 
single most powerful way to improve science and mathematics competency in the United 
States” (Sanders, 2004).   

Research indicates that effective professional development relies on authentic 
classroom activities linked to the context of schools (Ball and Cohen, 1996; Rosebery 
and Puttick 1998; Garet 1999; Wilson and Berne 1999) and a rigorous examination of 
the concrete and site-specific challenges of teaching (Goldenberg and Gallimore, 
1991).  
We propose a pragmatic solution to advancing teachers’ mathematical knowledge 
needed to teach effectively that is both timely and tied to classroom practice. We 
suggest that the widespread adoption of the Common Core State Standards (CCSS, 
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2010) in the U.S.  and subsequent requirement that districts resequence, if not rewrite, 
their curriculum guides and unit assessments provides an opportunity to realign 
curriculum while improving teaching. Rather than assigning teachers the role of 
treatment subjects within a professional development intervention, teachers could be 
collaborators in designing and piloting curriculum revisions. Within this model and to 
better guide student thinking, teachers learn how children’s ideas about a subject 
develop, as well as the connections between student ideas and the important concepts 
in mathematics (Schifter and Fosnot, 1993). This approach embeds professional 
learning in districts’ systemic reform process and ensures the potential for continuous 
learning in an otherwise constrained educational and fiscal setting. 
THEORETICAL FRAMEWORK 
The use of curriculum materials in mathematics classrooms “is one of the oldest 
strategies for attempting to influence classroom instruction” (Ball & Cohen, 1996) and 
improve student learning. However, a significant gap remains between the intended vs. 
the enacted curriculum. Unfortunately, mathematics education researchers rarely make 
a purposeful distinction between the curriculum as outlined by curriculum designers 
and the curriculum as it is interpreted and enacted by classroom teachers (Stein, Smith, 
Silver, & Henningsen, 2000; Stein, Remillard, & Smith, 2006). This is a major factor 
contributing to the lack of fidelity in curriculum implementation (O’Donnell, 2008; 
Ball & Cohen, 1996). Further, curriculum developers have often failed to assess 
teachers’ content and/or pedagogical knowledge (Sarason, 1982); and as a result fail to 
fully appreciate the necessity for teachers to deeply understand the content in order to 
implement the materials in a way that maximizes student learning (Dow, 1991). 
Clearly, curriculum materials should be created with closer attention paid to the 
process of curriculum enactment and teachers’ learning of content (Ball & Cohen, 
1996). 
We suggest two models could be combined to increase the content knowledge of 
teachers and provide greater levels of curriculum coherence. First, teacher 
Professional Learning Communities (PLCs) should be formed in schools. PLCs have 
been shown to positively impact teacher learning and student achievement (Burdett, 
2009; McLaughin & Talbert, 2006; Sparks, 2005) and are uniquely positioned to 
advance this work. Implemented properly, this approach could provide a low-cost 
model to increase teachers’ content knowledge as well as encouraging collaboration 
and professionalism. And second, the PLCs should be tasked with creating Educative 
Curriculum Materials (ECMs), teacher materials designed to deepen teachers’ 
knowledge of content, and increase teachers’ ability to flexibly apply their 
mathematical knowledge across a variety of problem contexts (Davis & Krajcik, 
2005). An ECM is not intended to script instruction, but rather is designed to “make 
teachers’ learning central to efforts to improve education, without requiring heroic 
assumptions about each teacher's capacities as an original designer of curriculum” 
(Ball & Cohen, 1996, P. 7).  A purpose of the ECM is to guide teachers away from 
developing or favouring a single approach to a problem–to recognize that this suggests 
to students that there is a best or only way to approach these types of patterns. We posit 
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it will be necessary to go beyond traditional curriculum materials and teacher guides 
(including those found in reform curricula) to support teacher learning by helping 
teachers: (a) develop the specific mathematical content knowledge needed to teach 
students, (b) consider appropriate pedagogical content strategies to support student 
learning, (c) cultivate a classroom community focused on learning mathematics over 
time, and (d) reconsider the role students and the broader community play in 
mathematics learning (Schneider & Krajcik, 1999). Even though teachers routinely use 
textbooks as the primary classroom resource (Freeman & Porter, 1989; Sosniak & 
Perlman, 1990; Stodolsky, 1989; Woodward & Elliott, 1990), textbooks are not 
uniformly of high quality and can limit, rather than support, teachers’ learning and 
developing professionalism (Ball & Feiman-Nemser, 1988; Woodward & Elliott, 
1990). Davis and Krajcik (2005) note that to positively affect teacher learning, ECMs 
must reflect the complex classroom setting and incorporate all aspects of classroom 
instruction, including: “planning, lesson modification, assessment, collaboration with 
colleagues, and communication with parents” (p. 3). With this design, ECMs are thus 
“uniquely situated in the classroom, unlike other professional development 
opportunities” (Schneider, Krajcik, & Marx, 2000, p. 60) and subsequently, may prove 
to be more effective at bridging the gap between educational theory and classroom 
practice. Since ECMs are used by teachers as they plan lessons for their students, they 
necessarily access knowledge of content and pedagogy as they reflect on their students 
in a particular context. It is important to note that although ECMs have been presented 
as a promising option for advancing teacher learning (Ball et al., 1996; Schneider et al., 
2000; Davis et al., 2005), little development work has been done in this area.  
Use of PLCs mediates a criticism of the reform movement that argues educational 
reforms will not result in improved student learning unless the change process resides 
in schools, in individual teacher’s classrooms (Elmore, 2007). Elmore (2007) suggests  
the current reform movement ignores “the weak incentives operating on teachers to 
change their practices in their daily work routines, and the extraordinary costs of 
making large-scale, long-standing changes of a fundamental kind in how knowledge is 
constructed in classrooms” (p. 24). PLCs can provide the type of school-embedded 
deep practice that presses teachers’ understanding of content knowledge and the 
associated pedagogical strategies that will best support student learning (Lave & 
Wenger, 1991, Loucks-Horsley, 1998). Within this professional context, student and 
teacher interactions support continuous growth over time.  
We strongly believe that to prepare students for success in mathematics, classroom 
activities must simultaneously develop procedural and conceptual strategies along 
with problem solving skills. We agree with the National Mathematics Advisory Panel 
that “Debates regarding the relative importance of these aspects of mathematical 
knowledge are misguided. These capabilities are mutually supportive, each facilitating 
learning of the others. Teachers should emphasize these interrelations; taken together, 
conceptual understanding of mathematical operations, fluent execution of procedures, 
and fast access to number combinations jointly support effective and efficient problem 
solving” (2008, p. xix).  
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Another key element in this approach is recognition of the need to emphasize the 
connected knowledge that is organized around the foundational ideas of a discipline. 
Learning is the result of an iterative development between conceptual and procedural 
understanding, where increases in one type of knowledge lead to increases in the other 
type of knowledge, which elicit new increases in the other (Rittle-Johnson, Siegler, & 
Alibali, 2001). It is not sufficient to simply provide students (or teachers) with expert 
models and expect them to learn (NRC, 2005). The connections between any particular 
procedure and the more “. . . fundamental principles and ideas appears to be the main 
road to adequate transfer” (Bruner, 1960).  

Teachers need to be able to apply their ideas to novel situations. . . With sufficient robust 
connections between specific, situated instances and more general principles, the 
connections should allow the teacher to identify new situations as occasions where the 
general principle might apply and to recognize ways of applying it as she adapts novel 
curriculum materials. (Davis, & Krajcik, 2005, p. 8)  

PROPOSED ECM DESIGN 
ECMs are teacher guides that include supports for teaching strategies and for teacher 
learning. They are designed to increase teachers’ knowledge in specific instances of 
instructional decision making by helping them develop more general knowledge that 
can be applied flexibly in new teaching situations. This allows teachers in PLCs to 
explore the range of ideas that students teaching the lesson. The ECM prompts teachers 
to use classroom discussions to have students compare their individual solution bring 
to the problem prior to strategies to the strategies used by their classmates to solve the 
problem. In this manner, the teacher learns the mathematical knowledge needed to 
press student thinking and understanding, and to make the distinction between 
conceptual and procedural knowledge visible to students. In addition, the teacher is 
afforded opportunities to explore, discuss, and implement a variety of instructional 
“best practices” in a safe environment that support student engagement with the 
mathematical content. 
Table 1 (below) provides an example page of a prototype ECM that would accompany 
a portion a lesson on proportional reasoning. The structure of the ECM is intended to 
provide a narrative context for the progression of the mathematics. Please note that the 
left-hand column describes the sequence of the actual task to be used during the student 
investigation, and provides possible discussion prompts. The middle column offers 
insights into the mathematics and prompts for teacher reflection. This column provides 
explanatory comments about the mathematics, brief questions that press the teacher’s 
thinking about the underlying mathematics in the task, and explicit connections to 
important mathematical concepts that are possible extensions from the task. The 
right-hand column provides samples of student work that press teacher understanding 
of the mathematics students might uncover during the course of the lesson. 
 



Gilbert, Gilbert 

 

PME 37 - 2013 2 - 341 

  

Class Activity (What you do) ECM Notes (What you think 
about) 

Student Samples (What you may see) 

Study Buddies - Question 1  
 
Lincoln Elementary pairs 2nd 
and 6th grade students as 
“Study Buddies.” Two-thirds 
of the 2nd graders are paired 
with three-fourths of 6th 
graders. 
Are there more 2nd graders or 
more 6th graders? How do you 
know? 
Think/pair/share: Each person 
spends 3-5 minutes working 
the task alone, and then works 
with a partner for 5-7 minutes 
to share and discuss their 
thinking.  
Ask students to use clear 
language when discussing 
their solutions and to define 
their variables if they use 
variables. When they say a 
quantity, they need to say 
what the quantity is 
representing (e.g. “two-thirds 
of the 2nd graders”). Remind 
them that they are striving to 
understand each others’ 
solutions.  
 
Important Note: It is more 
important to spend plenty of 
time discussing details of 
solutions thoroughly than to 
end this activity after 10 
minutes. The emphasis on 
discussion is true throughout 
the facilitation guide. 

There are several ways to 
answer this question. If 
two-thirds of one number is 
the same as three-fourths of 
another number, the first 
number is larger.  
 
Look for examples that use:  
Tables,  
Picture,  
Diagrams,  
Numbers,  
Graphs,  
Proportional reasoning, 
Algebraic relationships. 
 
Take care to value all 
student representations. You 
can do this by (a) clearly 
explaining how the different 
approaches uncover 
mathematical information, 
and (b) unpacking the 
connections between the 
representations during the 
class discussion. 
 
Be intentional in deciding 
what order to have 
participants show and 
explain their solutions. Start 
the discussion by having the 
students that used tables, 
pictures, diagrams, 
numbers, or graphs share 
their work first. Have 
students present symbolic 
and proportional reasoning 
solutions last. 

Following are several examples 
collected from high school students: 
Example 1: The student in the first 
example reasoned that since the ratio 
of paired 2nd graders is smaller than the 
ratio of paired 6th graders, the class of 
2nd graders must be larger.  

 
Example 2: This student identified the 
ratios and then stated that “there are 
more 2nd graders.”  Since the student 
did not provide the rationale for this 
answer, some potential follow-up 
questions might include: How did you 
use the ratios to help you draw your 
conclusion? Or, Can you name a 
different pair of ratios that would also 
tell you that there were more 2nd 
graders? 

 
Example 3: Ask this student to 
describe the reasoning for using 1/3  
and 1/4 , as well as how the use of 
decimals supports the conclusion 

 
Example 4: Ask this student to explain 
the relationship between 2/3 of one 
group and 3/4 of another group. 
Consider: Is one of these quantities 
larger than the other? What does that 
infer for the quantities to be 
compared? 

 
Table 1: Sample ECM © Mathematics Content Collaboration Community (MC3), 2008. Used by 

permission. 
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DISCUSSION 
Teachers’ mathematical knowledge has been measured largely by the number of 
college mathematics courses taken (Hill, Sleep, Lewis, and Ball, 2007).The 
mathematics taught in college courses, however, is often quite different than the 
mathematics used in teaching (Gilbert & Coomes, 2010). In fact, Monk (1994) found 
that beyond five courses, student learning was less affected by amount of mathematics 
teachers had taken. Research studies over the last two decades have suggested that 
while people with bachelor’s degrees in mathematics may have a specific type of 
mathematical knowledge, they often lack what Ma (1999) described as a profound 
understanding of fundamental mathematics –a deep understanding of basic 
mathematical ideas. In fact, Adler and Davis (2006) suggest that advanced courses may 
encourage teachers’ compression and abbreviation of mathematical knowledge. This 
situation is particularly problematic when considering teaching practice, since 
unpacking mathematical knowledge can provide critical entry points for students to 
understand, and therefore is necessary for teaching. This process has led to an 
increased focus on research into teachers’ mathematical knowledge as it concerns the 
depth, connectedness, and explicit articulation of the specific mathematics of teaching 
(Ball, 2003; Ma, 1999); and further suggests that deepening the content knowledge that 
teachers need to teach effectively may require a vastly different approach to 
professional learning than has occurred in the past (Ball & Cohen, 1996; Schneider et 
al., 2000).  It is important to note that “although many reform-based curricula are being 
developed, they have not been explicitly designed to support teachers’ learning” 
(Schneider et al., 1999, p. 4), nor do they provide the necessary connections to essential 
mathematics knowledge for teaching. 
ECMs go beyond the scope of traditional curricula and are created intentionally to 
support both student and teacher learning (Ball & Cohen, 1996; Schneider et al., 1999). 
The traditional approach to mathematics curriculum design has been to define and 
present mathematics as a hierarchy of procedural skills presented incrementally from 
basic arithmetic through more advanced subjects. This approach is in contrast to the 
way that students learn, developing mathematical understanding through the 
construction of increasingly detailed relationships between concepts (NRC, 2005). 
Working within PLCs, district specialists and teachers will create mathematics support 
materials in the form of ECMs and thus, bridge the gap between the procedural and 
conceptual strategies that are separate in most mathematics curriculum designs. As 
teachers use the materials to plan classroom lessons, they advance their own content 
knowledge. The materials help teachers to reflect deeply upon and unpack the content 
knowledge that they must know to teach concepts clearly and concisely, to interpret 
student responses, and address students’ mathematical inaccuracies and 
misconceptions. ECMs, developed in teacher-led professional learning communities, 
may serve to address the profound lack of sustained professional learning that is the 
reality for public school teachers (Collopy, 2003). Rather than merely providing 
“guidelines” for teacher actions, educative curriculum materials provide teachers with 
insights about the ideas underlying the tasks and choices made for student activities 
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(Stein, Remillard, & Smith, 2000). Importantly, ECMs produced within PLCs will 
advance teacher learning while advancing teacher autonomy (Shkedi, 1998). 
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CONSTRUCTING META-MATHEMATICAL KNOWLEDGE BY 
DEFINING POINT OF INFLECTION 
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We present one case from a larger study designed to investigate ways to evoke a need 
for mathematical definitions among high school students and the process of 
constructing the definition following that need. The case describes a learning 
experience in which two students dealt with the notion of inflection point. We argue 
that the process of constructing a definition in this case like in other cases offers 
opportunities for constructing meta-mathematical ideas over and above the 
construction of the definition itself.    
INTRODUCTION 
Some mathematics educators argue that dealing with a definition is a necessary 
condition for understanding the concept that is defined. For instance Ouvrier-Buffet 
(2006) suggests that  

Apprehending a concept implies taking simultaneously all the following elements into 
consideration: examples and non-examples of the concept, allowing a first apprehension of 
the concept, the definition(s) of this concept and the proof of their equivalence, several 
representations of this concept and above all, the situations which allow the emergence of 
the concept and preserve its meaning. (p. 261)  

Vinner (1991) stated that "the ability to construct a formal definition is a possible 
indication of deep understanding" (p. 97). But observing mathematical instruction 
reveals that this important issue is often neglected. Already 20 years ago, Borasi (1992) 
wrote:  

An analysis of the most popular syllabi and textbooks, as well as conversations with 
several mathematics teachers, soon made it clear that despite its importance, the notion of 
mathematical definition is rarely, if ever explicitly examined in precollege mathematics 
instruction. (p. 7) 

Two decades later it seems as though nothing has changed. Students are rarely asked to 
deal with the roles and characteristics of mathematical definitions. If and when they 
encounter definitions, these usually come as polished statements formulated by the 
"authorities" – mathematics teachers, textbooks etc. In this paper, we suggest a way to 
involve students in mathematical activity concerning definitions, taking into account 
the elements suggested by Ouvrier-Buffet (2006). Our designs are intended to evoke a 
need for a definition, which leads the students to construct the definition. 
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One of the characteristics of a mathematical definition is its arbitrariness. Definitions 
are man-made. They are not right or wrong, but accepted or 
rejected. The arbitrariness, says Borasi (1992), is not 
absolute. Definitions are mathematicians' attempts to create 
useful concepts compatible with our intuitive conceptions 
and they provide valuable tools to inquire into a 
mathematical situation. 
A concept that can nicely demonstrate the arbitrariness of a 
definition is inflection point. The arbitrariness can relate to 
questions like: does the function have to be 
continuous/differentiable at an inflection point? Does the 
2nd derivative always equal zero at an inflection point? For example, are points P or Q 
in Figure 1 inflection points? It's a matter of conventional agreement which conditions 
we require and how we answer the above questions.  
Tsamir and Ovodenko (2004) studied secondary school mathematics teachers’ images 
and definitions of inflection points. They found that "commonly the concept image of 
inflection points included two types of points: those that fulfil the requisite ( ) 0=′ xf , 
and those that are (mis)placed in the spot where the curve bends" (p. 343). To the 
question "what is an inflection point?" most respondents provided concave-convex 
considerations, several suggested the insufficient condition ( ) 0=′′ xf , but none of them 
referred to the continuity or differentiability of the function.   
THE STUDY 
The case presented in this paper is part of a larger study. The study investigates ways to 
evoke a need for a mathematical definition among high school students and examines 
different aspects of the process of constructing the definition following that need. Five 
activities were designed, dealing with different concepts: zero exponent, parabola as a 
locus, tangent to a graph at a given point, vertical asymptote and inflection point. 
Task-based interviews (Goldin, 2000) for each activity were carried out with four pairs 
of students. Every interview was videotaped and transcribed.  
The process of investigating students’ need for a definition of a concept and their 
construction of that definition might have different aims. One aim might be the 
construction of a concept that is accompanied with cognitive difficulties (e. g., the 
concept of derivative as a limit as described in Kidron, 2008). Another aim might be 
the construction of a concept (its conceptual understanding) and at the same time the 
ability to overcome the difficulties to coordinate between different registers (algebraic, 
graphic etc.), which offer different representations of the concept (e. g., the parabola 
example as described in Gilboa, Dreyfus & Kidron, 2011). The aim of the present 
study relates to the questions “what is a definition?", "what are the characteristics of a 
definition in mathematics?" and in particular to the arbitrariness characteristic of a 
mathematical definition. For this we designed a task-based interview dealing with the 
notion of inflection point. The activity includes examples that might conflict with the 
students' previous knowledge (for instance a point in which the 2nd derivative is not 



Gilboa, Kidron, Dreyfus 

 

PME 37 - 2013 2 - 347 

defined but the curve turns from concave to convex) and thus evoke the need for a 
definition.  
The methodology for analysis (AiC) 
We analyze the data using the RBC nested epistemic actions model for Abstraction in 
Context (Schwarz, Dreyfus & Hershkowitz, 2009). We chose this framework because 
it offers a systematic way to investigate processes of constructing knowledge and it 
takes into account the need for a new construct as part of the process of abstraction. 
According to AiC, a process of abstraction has three stages: the need for a new 
construct, the emergence of the new construct, and the consolidation of the new 
construct. Schwarz et al. (2009) claim that the need for a new construct is a prerequisite 
for the construction of the construct. They say: 

The need [for a new construct] may arise from of the design, from the student's interest in 
the topic or problem under consideration, or from combination of both; without such a 
need, no process of abstraction will be initiated. (p. 24) 

The second stage is the central stage during which the new construct emerges. For 
analyzing the second stage, AiC suggests three observable epistemic actions: 
Recognizing (R) - the learner recognizes that a specific previous construct is relevant 
to the situation he or she is dealing with; Building with (B) - the learner acts on or with 
the recognized constructs in order to achieve a goal such as solving a problem; 
Constructing (C) - using B-actions to assemble and integrate previous constructs to 
produce a new construct. Hence R-actions are nested within B-actions, and B-actions 
are nested within C-actions. Constructing refers to the first time the learner uses or 
mentions a construct. Later uses may be part of the consolidation stage. 
The story of one case 
Two grade 11 students, Ruth and Adi, learning in a high level mathematics' track, were 
engaged in the task-based interview on points of inflection. In the first part of the 
interview, the students were asked to indicate inflection points of given graphs of 
functions; some of the graphs were accompanied by corresponding algebraic 
expressions. The students had learned about inflection points at school, and were 
influenced by that. Their concept image (in the sense of Vinner & Hershkowitz, 1980) 
of inflection point was identified on the basis of their answers as follows: An inflection 
point is a point on a graph of a function that fulfils the following requirements: (a) At 
this point the concavity of the graph turns from concave to convex or vice versa; the 
students called this the "pictorial explanation"; and (b) at this point the value of the 2nd 
derivative is zero and turns from positive to negative or vice versa; the students called 
this the "mathematical explanation". The case of the function 3 xy =  (Figure 2a) caused 
a conflict between the two "explanations": The 2nd derivative of this function is not 
defined at the origin, but the transition from concave to convex at the origin is visually 
obvious. The following are some excerpts from the interview, in which Ruth and Adi 
express the conflict:    

246  Ruth: It seems like there is [an inflection point], but maybe it is a hole on the 
graph. I mean, it just passes through this point but there is nothing there. 
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265 Adi: We actually say that there is no inflection point, but we see that it is 
inflecting.  

308 Ruth:  It’s like an asymptote of an inflection point… It’s supposed to be an 
inflection point but it was cancelled… It is an inflection without the point, 
but it is not an inflection point. 

The students recognised (in terms of AiC) their previous construct of inflection point 
as reflected in their concept image as relevant to the task, but they realized that it is not 
sufficient for deciding whether or not there is an inflection point in this case. They 
understood that their “explanations” are not sufficient for determining in all cases 
whether a point is an inflection point or not. Hence, they felt a need for a definition of 
this concept expressed by Adi (387): "But if we don't have the graph, we don't see it, 
and she gave us only the equation, then we have to know if there is an inflection point, 
even if mathematically it isn't reasonable".  
During the discussion of Figure 2a Adi (577) said: "Maybe about the 2nd derivative it’s 
not always true. Like, maybe it’s usually true but sometimes not". They also found out 
that the sign of the 2nd derivative turns from plus to minus, and they decided to "put the 
mathematical part in brackets". In terms of AiC, they constructed the knowledge 
element "It is not a necessary condition for an inflection point that the 2nd derivative 
equals zero". 
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Toward the end of the interview, the students dealt with the function g(x) shown in 
Figure 2b. They discussed whether a point of discontinuity can be an inflection point. 
Here are some excerpts from this discussion: 

842  Ruth: If it’s not continuous can it be an inflection point? 
843 Adi: I don't know. If let’s say there wasn't a point at zero 
844 Ruth: mhm 
845 Adi: then we would say that 
846 Ruth: It's like we said before 
851 Adi:  that we determined that there is, that's how we knew, and it didn't work out 

mathematically. 
852 Ruth: Right. So here it is also doesn't work out mathematically. 
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855 Adi: You understand what I am saying? If I didn't have the zero then actually I 
wouldn't have an inflection point 

856 Ruth: Yes, yes 
857 Adi: and then it is like this… there is inflection. 
860 Ruth: Right. Maybe it is. It is just for not having zero, zero.   
861 Adi Maybe just because x equals zero it is telling us that there is an inflection 

point    
862 Ruth Yes. It is not inflecting, that is to say it is inflecting but you can't actually 

see it 

Building with (in terms of AiC) the previous construct "It is not a necessary condition 
that the 2nd derivative equals zero", they agree that the origin in 2b is an inflection point 
of g(x). They also build with the idea that once you determine a definition, all specific 
cases that satisfy the definition are examples of the concept (846-852, 857), and they 
formulate their definition (867-876): "An inflection point is a point where the graph 
turns from concave to convex or vice versa, where the x and the y of the point belong to 
the domain of the function". They add that they have put the mathematical part in 
brackets because it is not always true.  
At this point, we argue that the students have constructed a definition for inflection 
point, namely the one they formulated. Next, the following dialogue took place (I 
denotes the interviewer): 

879  I: O.K. this is your definition. Does it work for all the examples we had? 
883 Adi:  Ah, yes. If we leave it like that. But if we want to include the mathematical 

part, because that is what we were taught 
884 Ruth: it changes the answers. 
903 Adi: I have a question. Is our goal to determine if there is an inflection point 

from a graph without a formula or from a formula without a graph and get 
the same answers? Let's say if there is an inflection point or there isn't an 
inflection point in both cases?   

906 I:  More or less. Your answer to the question 'what is an inflection point?' 
should work for all the examples. 

910 Adi:  So it depends on our decision. Because if we had determined that it is not 
[an inflection point, referring to the origin in Figure 2a] then we could keep 
the mathematical part. 

911 Ruth: Right. The question is if you need the mathematical part or not. 
912 Adi: You can understand directly from the word inflection that there is a change 

in the concavity or in the convexity that it is inflecting. 
913 Ruth: But mathematically it doesn't work. 
914 Adi: But they cannot take a concept and say that it is like this mathematically. 

Maybe it was translated incorrectly.      

In terms of AiC, we say that Ruth and Adi constructed a new knowledge element – the 
arbitrariness of a definition – in the context of the definition of inflection point. They 
again question the necessity of 0=′′y  and raise the question whether an inflection point 
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is a mathematical concept, characterized by certain algebraic conditions but not 
necessarily accompanied by a graphic expression, or whether it is a visual idea. Adi 
(914) even suggests that the term inflection may have been translated incorrectly into 
Hebrew (which, in fact, is not the case; the Hebrew term is best translated back into 
English as “twisting point”, a term that expresses the notion at least as well as 
“inflection point”).  Using the arbitrariness (building with it, in terms of AiC) they then 
construct a new definition that includes 0=′′y  as a necessary condition for inflection 
points. They determine that according to this new definition, g(x) (Figure 2b) has no 
inflection point not because of the lack of continuity but because the 2nd derivative is 
not defined at the origin, and that the same holds for 3 xy = .  

DISCUSSION 
Is there a happy end to the story? One might say that the last definition the students 
constructed is the same as their concept image at the beginning of the learning 
experience, but we argue that, in spite of the similarity, they constructed new 
mathematical knowledge and learned an important lesson. Prior to the learning 
experience, the “pictorial explanation” and the “mathematical explanation” existed as 
parallel (and not necessarily compatible) registers in the students’ minds. In the two 
examples, the “pictorial explanation” had the upper hand and the “mathematical 
explanation” was simply not always germane for the students. Adi's saying in line 903 
and the dialogue in lines 910-914 demonstrates that as far as the definition is 
concerned, the students have difficulties coordinating between the two registers. 
Constructing the arbitrariness character of definition enabled the students to reinforce 
the status of the “mathematical explanation” and to allow it to have the upper hand. 
Determining that the origin in Figure 2a is not an inflection point, despite of what is 
visually obvious, confirms that they understood the difference between a definition and 
a description; they understood that a definition is not a description with some pictorial 
explanation.  
In the process of constructing “their” definition, Ruth and Adi achieved some aims of 
the process of constructing a definition:  

• They understood the difference between a definition and a description. 
• They understood that a definition must not be only pictorial but must coordinate 

registers, the graphical representation and what the students called “the 
mathematical explanation”. 

• They realized the arbitrariness character of definition, at least in the current 
context. 

In addition, two more ideas can be inferred from our case study:   
(1) The case demonstrates a situation that was identified in previous studies (e. g., 
Alcock & Simpson, 2009; Edwards & Ward, 2004; Vinner, 1991; Vinner & Dreyfus, 
1989): Even when students had been exposed to the mathematical definition of a 
concept they frequently didn't use it when solving problems that required the use of the 
definition. The concept image dominated the concept definition. In our story, the 
students constructed the knowledge element "It is not a necessary condition for 



Gilboa, Kidron, Dreyfus 

 

PME 37 - 2013 2 - 351 

inflection point that the 2nd derivative equals zero", which could and did, at first, lead 
them to construct the conventional definition. But eventually they abandoned it for the 
benefit of their concept image: an inflection point is a point where the second 
derivative exists and 0=′′y .      

(2) The students did not construct the conventional definition of inflection point, which 
requires continuity. They exploited the fact that, as we noted in the introduction, the 
definition of an inflection point is to some extent a matter of conventional agreement 
and the arbitrariness character of the definition permits different definitions. AiC 
researchers are not interested primarily to analyse if the students constructed the 
conventional constructs. The AiC analysis focuses on what the students actually did 
construct and how they progressed. The RBC epistemic actions model, a systematic 
tool for analysis offered by AiC, enabled us to look beyond the "last line" of the present 
story, namely that supposedly nothing new was learned. Using this tool for analysis of 
constructing processes revealed to us the important constructing process of 
arbitrariness of a definition, which in turn served as a building block for the 
construction of the new definition that includes 0=′′y  - a construct which, 
superficially, looks like the students’ old concept image, but through the lens of AiC 
turns out to be a bona fide mathematical definition based on mathematical grounds.     
The case we presented in this paper demonstrates the importance of letting students 
construct mathematical definitions, following the emergence of a need for the 
definition. The larger study, which is still in progress, includes other examples where 
the need for a definition is evoked and the definition is subsequently constructed. 
These examples demonstrate further opportunities to achieve important aims during 
the process of constructing a definition (see also Gilboa et al., 2011), and to construct 
other meta-mathematical ideas than the arbitrariness of a definition, for instance 
essence (what constitutes a mathematical definition) or consistency (a definition must 
not cause a contradiction among the mathematical system in which it defined), 
constructs that contribute to the mathematical knowledge of the students over and 
above the knowledge of specific definitions.   
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We present results of a research conducted with secondary students (15-16 years old), 
which addressed the effects of the teaching of algebraic solving of 
arithmetic-algebraic word problems by using the software Hypergraph Based 
Problem Solver (HBPS). We show students’ performances in which they construct 
equations by making one of the unknowns appears isolated in one side of the equation. 
Students’ actions and comments suggest that this tendency stems from the difficulty in 
interpreting the equal sign as a comparison between quantities. 
Keywords: word problem solving, intelligent tutoring systems, algebra, equal sign 
INTRODUCTION AND AIMS 
There are studies that relate the students’ previous arithmetic experience with the 
displayed difficulties when they solve word problems in an algebraic way. Behr, 
Erlwanger, & Nichols (1976) and Kieran (1981) agreed that students use to give a 
procedural character to the equal sign, that is, they conceive this sign as a signal to do 
something. In the same way, Stacey & MacGregor (2000) exposed that students often 
have difficulties to think in the equation, given their propensity to calculate. They 
identified also different perceptions of equations: a formula for working out the 
answer, a narrative describing operations yielding a result and a description of essential 
relationships. 
In addition, the use of technology in teaching and learning the algebraic way of solving 
word problems has occupied an important role in the developed educational research 
along last decades. Intelligent tutoring systems (ITS) have been designed and 
evaluated with the aspiration to exploit the possibilities of one-to-one tutoring. Some 
examples are AnimalWatch (Beal, Arroyo, Cohen, Woolf, & Beal, 2010) or MathCAL 
(Chang, Sung, & Lin, 2006). 
In this paper we provide results of a case study in which it is observed how secondary 
students solved word problems in an algebraic way using an ITS called Hypergraph 
Based Problem Solver (HBPS) (Arnau, Arevalillo-Herráez, Puig, & González-Calero, 
2013). In particular, we will focus on analyzing the students' difficulties when 
constructing the equation (or equations) that solve a word problem. 
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THEORICAL FRAMEWORK 
In this study, we adopt the theoretical and methodological perspective of Local 
Theoretical Models (LTM), that was presented in Filloy (1990) and was fully 
developed in Filloy, Rojano, & Puig (2008). Next, we present the formal competence 
model and the fact that HBPS was intentionally built under the constraints of our 
competence model has led us to consider it an ideal element in our teaching model. 
Competence in solving algebraically word problems requires, among other factors, 
competence in the process of translating the text of the statement problem in natural 
language to algebraic language (Filloy, Puig, & Rojano, 2008). Overall, we can 
describe this requirement through the first four steps of the ideal sequence of steps in 
which we can break down the Cartesian Method (CM): 1) the analytic reading of the 
statements of the problem to transform it to a list of quantities and relations among 
quantities; 2) choosing a quantity (or several quantities) which one designates with a 
letter (or several different letters); 3) writing algebraic expressions to designate the 
other quantities, using the letter (or letters) introduced in the second step and the 
relations found in the analytic reading made in the first step; 4) writing an equation (or 
as many independent equations as the number of letters introduced in the second step) 
based on the observation that two (non-equivalent) algebraic expressions written in the 
third step designate the same quantity; 5) transforming the equation into a canonical 
form; 6) the application of the formula or the algorithm of solution to the equation in 
canonical form; and 7) the interpretation of the result in terms of the statement of the 
problem (Puig, 2010). The CM is the method with which is usually introduced the 
teaching of algebraic solving of word problems, although CM is not usually presented 
explicitly. The operation of HBPS forces the student to complete one step before 
moving to the next one. This could promote the reflection on the ideal step sequence of 
the CM and improve the competence in translating the text from natural to algebraic 
language. In fact, and in line with this thesis, Arnau et al. (2013) put forward results of 
an empirical study that shows how the use of HBPS produces an increase of the 
competence level in algebraic solving of word problems. 
THE INTELLIGENT TUTORIAL SYSTEM HBPS 
The tutor HBPS stands out for its ability to offer flexibility to the user during the 
resolution maintaining appropriate tutoring on users’ actions. So, HBPS is able to: 1) 
support the resolution following different paths of resolution; 2) allow algebraic 
resolutions with one or more letters; 3) support arithmetic resolutions when the 
characteristics of the problem permits it; and 4) provide immediate feedback to the 
solver. 
We will illustrate briefly how the tutor HBPS works using the problem The tea, but 
first we will make an analysis of the problem. The problem reads as follows: 

We have two types of tea: one from Thailand at 5.2 €/Kg. and other one from India at 6.2 
€/Kg. How many kilograms of tea from India we have to add to 45 kilos of tea from 
Thailand to obtain a mixture at 5.75 € / Kg? 
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The analytical reading constitutes the first step of the CM and transforms the problem 
into a list of quantities and relations. A possible reading for The tea could be: 

Quantities: price of a kilo of tea from Thailand (Put), price of a kilo of tea from India (Pui), 
price of a kilo of tea mixture (Pum), kilos of tea from Thailand (Ct), kilos of tea from India 
(Ci), kilos of tea mixture (Cm), total price of tea from Thailand (Pt), total price of tea from 
India (Pi) and total price of tea mixture (Pm). 
 Relations: Put·Ct = Pt, Pui·Ci = Pi, Pum·Cm = Pm, Ct + Ci = Cm; Pt + Pi = Pm 

Second and third steps in HBPS are expressed in an explicit definition of all the 
involved quantities in the analytical reading. The definition of a known quantity 
demands the assignment of a numerical value, while the definition of an unknown 
quantity involves the assignment of a letter or an expression. This (algebraic or 
arithmetic) expression reflects the relation between this quantity with other quantities. 
In HBPS, after selecting the problem, initially it is only shown the statement and the 
Quantity definition panel (see Fig. 1) 
 

 
Fig. 1. After selecting the problem The tea. 
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Fig. 2. Finishing the third step of the CM 

All the quantities defined by the solver are stored and displayed in a table and can be 
consulted at any time during the resolution. Fig. 2 is a screenshot of the resolution at 
the time of declaring the unknown quantity, total price of tea mixture (Pm). As the 
figure shows, the solver has opted to use only one letter (x), assigning it to Ci, and 
expressing the other unknown quantities in terms of this letter. The only exception is 
total price of tea from Thailand (Pt), which has been represented by the arithmetic 
expression 5.2 ⋅ 45 (Put ⋅ Ct), and that the tutor calculates directly (234). In summary, 
Cm is represented by 45 + x (Ct + Ci), Pi by 6.2x (Pui·Ci), and Pm by 5.75 (45 + x) 
(Pum·Cm).  
At the time the solver has assigned expressions to all quantities (which means to 
complete the third step of the CM), HBPS automatically activates the Equation 
construction panel (fourth step of the CM). In the present example, the program will 
allow only the construction of one equation, because only one letter has been used 
previously. Fig. 3 shows the Equation construction panel at the time in which the 
solver introduces the correct equation. The solver is building an equation on the dual 
representation of the quantity total price of tea mixture (Pm): 5.75(45 + x) (using the 
relation Pm = Pmu·Cu) and 6.2x + 234 (using the relation Pm = Pt + Pi). 
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Fig. 3. Finishing the fourth step of MC 

THE EXPERIMENTAL DESIGN 
We analyze excerpts of protocols obtained from recordings of two pairs of students 
while they solve the problem The Tea in an algebraic way using HBPS. The students 
were part of a natural group of 36 students in the fourth year of secondary school 
(15-16 years old) in a Spanish public secondary school. They had received prior 
instruction in the algebraic way of solving word problems. 
The pair P & M in the problem The tea 
We begin the analysis when students started the fourth step of CM. Until then, P & M 
had used two letters and had assigned expression to all unknown quantities in terms of 
these two letters. In particular, the letter x represents the quantity Ci and the letter y the 
quantity Pm. The remaining unknown quantities were expressed as follows: Cm as 
45+x (using the relation Ct + Ci = Cm); Pi as 6.2x (using the relation Pui·Ci = Pi); and 
Pt as 234 (result of using Put·Ct = Pt, where Put and Ct are quantities informed in the 
statement of the problem). At that moment, the relations Pum·Cm = Pm and Pt + Pi = 
Pm remained unused. They should construct the equations on them. 
In the dialog that follows, M rereads the statement and proposes to start writing an 
equation in explicit form (y = …) (item 1). However, when M asks what the letter y 
represents, P shows doubts (item 4). In fact, it is M who finally looks for it in the 
defined quantities table to make sense to the letter. Furthermore, it is M who enters 
correctly the first of the two equations using the relation Pt + Pi = Pm (item 6). 

1. M: So ... how many kilos of tea from India must be added to 45 of tea from 
Thailand to get the mixture at 5.75? (She rereads the statement). 

  […] 
2. P: y is equal to… I think first we have to put down y is equal to… 
3. M: Let´s see … So what was it? 
4. P: Mmm… I think it´s the cost of… 
5. M: The price of tea (after consulting in the defined quantities panel by 

dragging the scroll). I mean this, five point seventy-five, which costs a kilo 
by the kilos you have. Right? 

6 M: (M writes y = 234 + 6.2*x). 
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M seems to appear surprised by the fact that they have not finished yet (item 8). She 
might not be aware that they must construct as many equations as used letters. Besides, 
P says that “they already have” Pm and now they must calculate Ci (item 9). In 
principle, this could be interpreted as if each equation allows them to calculate an 
unknown or that the second equation must be built on a dual expression of the quantity 
Ci (which is represented by the letter x). But later, while discussing how to construct 
the second equation, P affirms “Listen to me, M, in this (equation) forget the prices, 
because the prices are supposed to be in the above one (referring to the first equation)”. 
From this, it could be deduced that P intends to build the second equation using only 
quantities belonging to the magnitude weight, but not prices. However, the relation 
between these quantities from magnitude weight has been already used to express the 
quantity Cm (it was assigned 45 + x using the relation Ct + Ci = Cm). 

7. P: OK. (M presses the OK button and the program validates the equation). 
8. M: We have to do two! (She laughs surprised). 
9. P: Ok. Now…We have already the total price of the mixture (point at the first 

equation). Now we have to make the kilos. 
The verbalization of M appears to verify that she considers all that is left to do is to 
calculate the quantity Ci (x) (item 10). This enhances the interpretation that they 
consider that the other unknown, y (Pm), has been calculated. Again it becomes 
evident how the idea of calculating a quantity leads them to write equations with an 
isolated letter on one side. Finally, they failed to build the equation correctly. This is 
not surprising since the quantity Ci (x), on which they intended to build the last 
equation, does not belong to the only unused relation (Pum ⋅ Cm = Pm) and, 
accordingly, a second expression for it could not be obtained. 

10. M: We are supposed to need to know the kilos of tea from India. Right? 
11. P: x… no, wait… 
12. P: x. I think now we have to write x is equal to… the tea from India is equal 

to… 
13. M: The total minus forty-five… all the mixture of tea minus forty-five … (She 

starts to write x=…). 

The pair D & E in the problem The tea 
Before the fourth step, D & E represented with the letters x and y the quantities Ci and 
Cm, respectively. The remaining unknown quantities were expressed as follows: Pm as 
5.75y (using the relation Pum·Cm = Pm); Pi as 6.2x (using the relation Pui·Ci = Pi); 
and Pt as 234 (result of using Put·Ct = Pt). At that moment the unused relations were:  
Ct + Ci = Cm and Pt + Pi = Pm. 
D asks what they can isolate to write the equation (item 1). E's reply clarifies that they 
have to isolate the quantity which is asked for in the statement (item 2). Finally, D 
changes his mind and decides to isolate the letter y (item 5). In this case, the tendency 
to construct equations in explicit form does not constitute an obstacle, and they 
construct correctly an equation using the relation Ct +Ci = Cm. 
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1. D: What can we isolate? 
2. E: The x that is what is asked for, right? 
3. D: Yes, it’s asked for the x, that is the kilos of tea from India. (He writes x =…) 
4. E: What must be added to forty-five kilos of tea if every kilo of tea from 

Thailand costs five point two...? 
5. D: Maybe… y equals forty-five plus x. (He writes y = 45 + x. The program 

validates the equation). 
To construct the second equation, D says that “it has to be the x” (item 8), which is 
much more significant if we consider that his last verbalization reflects they initiated 
the construction of the equation without knowing about which quantity operated (item 
10). 

6. D: Now… 
7. E: x… 
8. D: Now, maybe, it is not the x, is the price… or what? Yes, it has to be the x… 

(Write x = …). 
9. E: I mean, the x is if every… if it´s forty-five times… 
10. D: What is the x? The kilos of tea from India… the price of … no, no… and the 

price of tea from India…? (He writes x = (6.2*x)/x. The program reports the 
error). 

D & E modify their strategy (item 14), but again D seems to only consider the option of 
writing equations in explicit form. This time he tries with the unknown y. Finally, they 
failed to build the equation correctly. As the relation that remained to use                       
(Pt + Pi = Pm) does not include the quantities Ci (x) and Cm (y), it was impossible for 
D & E to construct an equation following the criterion of maintaining one of the letters 
isolated on one side. 

11. E: No. Maybe it´s divided by y… 
12. D: By y? No, because the y is… ok, let´s try. (He writes x = (6.2*x)/y. The 

program reports the error). 
13. D: No.(…) What can we isolate? 
14. D: We need another equation. (He writes y = …). The y is the kilos of tea… of 

tea mixture… 

CONCLUSIONS 
We have described the emergence of a tendency to construct equations in which one of 
the unknown appears isolated on one side when solving problems using HBPS. The 
format of the equation and students’ comments seem to indicate that, by expressing the 
equation in this way, they intended, although it was not possible, to calculate the value 
of the quantity linked to the letter. In the analyzed cases, the students gave priority to 
this mechanical construction against the need to address the remaining unused 
relations, which would allow them to build the equation. Sometimes this led them to 
failure to finish the problem because the letter that they sought to place isolated on one 
of the sides did not appear in the only remaining unused relation, and therefore, it was 
not possible to construct a second expression for that quantity. We can conclude that 
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this tendency is a reflection in the algebraic solving of word problems of the difficulty, 
already reported, to interpret the equal sign as a comparison between quantities rather 
than a signal to do something. 
On the other hand, during the teaching of functions in secondary school it is very usual 
to encourage students to represent functions in explicit form. It could be reflected in the 
way students build equations. In order to limit the possible influence of this fact, we are 
currently designing an experiment with students in second year of secondary school 
(11-12 years old) (not yet exposed to the representation of functions in explicit form) to 
study if this tendency is also present. 
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STUDENTS’ PERSONAL RELATIONSHIP WITH THE 
CONVERGENCE OF SERIES OF REAL NUMBERS AS A 

CONSEQUENCE OF TEACHING PRACTICES 
Alejandro S. González-Martín 

Université de Montréal (Canada) 
 
Our research focuses on the teaching of series and on the consequences of institutional 
choices on students’ learning. Our analyses of textbooks and teaching practices led us 
to conjecture that the existence of some implicit contract rules in the existing 
praxeologies to teach series may have an impact on students’ learning. The analyses of 
the students’ responses to a questionnaire suggests that, although organised around 
the application of convergence criteria, existing praxeologies do not seem to prevent 
the development of ideas of convergence linked to the use of the potential infinity. 
INTRODUCTION AND BACKGROUND 
Infinite series of real numbers (series in what follows) have played a key role in the 
historical development of Calculus and have many applications within mathematics 
(such as the writing of numbers with infinite decimals, or the calculation of areas by 
means of rectangles), and also outside of the field of mathematics (as the modelling of 
situations such as the distribution of pollutants in the atmosphere, or of medication in 
the blood system). These elements may justify their position in the introductory 
Calculus courses in many countries. 
In Canada, the organisation of education and official curricula is under the jurisdiction 
of each province. In the province of Québec, compulsory education finishes at the age 
of 16 and students who wish to pursue university studies need to follow two years of 
pre-university studies (called collégial) before they can enter university. Students who 
want to pursue scientific or technical careers will have an introduction to Calculus 
during the collégial studies. 
Research literature about series is scarce and it has mostly focused on their learning, 
but not on their teaching. Regarding their teaching, Robert (1982), stated in a pioneer 
work that inadequate conceptions of convergence of sequences and series found in 
university students in France could be, in part, due to the exercises used in teaching. 
Regarding their learning, Kidron (2002, pp. 209-211) summarised some main 
difficulties specifically linked to series: 1) the infinite sum as a process or as an object; 
2) the intuition of the infinite process as a potentially infinite process or as an actual 
infinite sum; 3) the reading of the equality S = a0 + a1 + … + an + … from left to right 
or from right to left, which is cognitively different; 4) the concept definition of infinite 
sum is not necessarily linked to the concept image; 5) symbolic notation. In particular, 
based on the work of Fischbein et al (1979), Kidron stated that “the ‘finitist’ character 
of our intellectual schemes might cause difficulties when we deal with the notion of 
Infinite Sum” (p. 210) and added that “the natural concept of Infinity is in fact the 
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concept of “Potential Infinity”, which is simply a process that goes on without end, like 
counting without stopping” (p. 210). Other difficulties in the learning of series can be 
found in González-Martín, Nardi & Biza (2011).  
Our literature review led us to reflect upon whether or not the teaching of series takes 
into account these learning difficulties. For this reason, we decided to analyse how 
series are presented in collégial textbooks and the possible consequences linked to 
their teaching. For the first stage, we analysed a sample of 17 textbooks used in 
collegial studies in Québec from 1993 to 2008 (González-Martín, Nardi & Biza, 2011), 
paying special attention to the praxeologies (see next section) privileged by textbooks. 
Our main results can be summarised as follows: 

• Series are usually introduced through praxeologies which do not lead to a 
questioning about their applications or their importance (raison d’être). 

• Praxeologies tend to introduce series as a tool in order to later introduce 
functional series, but the importance of series per se is usually absent. 

• Praxeological organisations tend to ignore some of the main difficulties in 
learning series identified by research. 

• The vast majority of tasks concerning series are related to the application of 
convergence criteria, or to the application of algorithmic procedures. 

The second stage of the research consisted in analysing collégial teachers’ use of 
textbooks, and whether, through their practices, they attempt to do something different 
from what is usually presented in the textbooks (González-Martín, 2010). Our 
interviews with five teachers revealed that they considered the textbook they use as 
adequate for the teaching of series, and that their practices tended to mostly reproduce 
what was presented in their textbooks.  
As a consequence of the results of these two stages, we conjectured the existence of 
some implicit contract rules in the teaching of series in the collégial institutions in 
Québec. In González-Martín (2013) we discussed two implicit rules implying that 
students do not need the definition of what a series is to solve the tasks given to them, 
and also that applications of series are not important. For the purposes of this paper, as 
we are interested in the notion of convergence, we only discuss the following one: 
Rule 1: “The notion of convergence can be reduced to the application of convergence 
criteria”. 
This rule has been chosen for this paper because the convergence of a series is a key 
element, but research has identified many difficulties with the notion of convergence. 
In addition to this, our analysis of textbooks showed that an average of 77% of the tasks 
given to the students are related to the study of the convergence or the sum of given 
series applying criteria (González-Martín, Nardi & Biza, 2011, p. 578), seeming to 
confirm Rule 1. We believe that this rule is a direct consequence of R4. It could also be 
a consequence of R3: instead of directly addressing the main difficulties concerning 
series, its teaching focuses on the application of rules and criteria which reduce series 
and their complexity to some algebraic manipulations. One consequence of this rule is 
that students might become able to apply criteria to decide whether a series is 
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convergent or not; however, what being convergent means, or whether the limit is 
actually reached or not, are key questions which are not addressed. In particular, in 
González-Martín (2013) it was apparent that when students define what a series is: 1) a 
very small number of students (5/32) was able to provide a definition with no 
erroneous elements; 2) among them, mentioning that the sum could converge or 
diverge seemed to be an important thing to mention for only one student (1/5). 
To verify whether Rule 1 has an impact on collégial students’ learning of series, we 
decided to create a sample of students and to apply a questionnaire. Let us define first 
the main elements of our theoretical framework, before clearly stating our objectives. 
THEORETICAL FRAMEWORK 
As we recognise the important role of institutional choices in the learning of 
mathematics, and the repercussions of these choices, our research follows an 
anthropological approach (Chevallard, 1999). 
Chevallard’s (1999) anthropological theory attempts to achieve a better understanding 
of the choices made by an institution in order to organise the teaching of mathematical 
notions. This theory recognises that mathematical objects are not absolute objects, but 
entities which arise from the practices of given institutions. These practices can be 
described in terms of tasks, techniques used to complete the tasks, technologies which 
both justify and explain the techniques, and theories which include the given 
discourses. According to this theory, every human activity generates an organisation of 
tasks, techniques, technologies and theories which Chevallard designates as 
praxeology, or praxeologic organisation. A praxeological analysis allows us to 
characterise the institutional relation to mathematical notions within given institutions. 
This institutional relation is mainly forged through the exercises (or tasks), and not 
only through the theoretical explanations (Kouidri, 2009). Praxeological analyses are 
useful to describe praxeological organisations, but also to identify the existence of 
(sometimes implicit) contract rules, which are rules that the institution fosters through 
its practices around a mathematical notion and which contribute to determine the 
institutional relation to a mathematical notion. This institutional relation and its 
contract rules play an important role in the development of the learners’ personal 
relationship with the mathematical notions s/he learns within the institution. 
Chevallard states that “from this personal relationship, the learner will constitute what 
one could designate as being ‘knowledge’, ‘know-how’, ‘conceptions’, 
‘competencies’, ‘mastery’ and ‘mental images’” (1988/89). 
In our case, our objective is to have elements to characterise collégial students’ 
personal relationship with the convergence of series and to see if this personal 
relationship seems to have a strong relation with the implicit contract Rule 1 we have 
identified in the teaching processes. 
METHODOLOGY 
To verify the impact of the contract Rule 1, among others, on the students’ personal 
relationship with series, we created a sample of 32 students in their first year of 
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collégial studies (where series are introduced) after the teaching of series had occurred. 
These 32 students had had three different mathematics teachers, who we name teachers 
A, B and C. Our sample consists of 4 students from teacher A (referred to as students 
A1 to A4), 14 students from teacher B (referred to as students B1 to B14), and 14 
students from teacher C (referred to as students C1 to C14). 
We constructed a questionnaire with 10 questions, aiming to asses the students’ 
learning about series, as well as to verify our conjectures about the impact of different 
contract rules on their learning. The questionnaire was administrated in May 2011 
during one of their courses (approximately 55 minutes in duration), and the students 
participated voluntarily. 
In this paper, we discuss the students’ responses to the two following questions: 
Question 7: 

Consider the infinite sum ∑
∞

=

−
1

)1(
n

n = 1 – 1 + 1 – 1 + 1 – 1 + … where we add infinitely 

+1 and -1. This series was studied in 1703 by the mathematician Guido Grandi. 
According to you, what would be the sum of this series? 
a) The result is 0.  b) The result is 1.  c) The result can be 0 or 1. 
d) The result is ½.  e) The result is infinite. f) The result does not exist. 
g) Other (explain). 
Explain your answer. 
Question 9: 
Let’s consider a circle with a given area A. Let us now suppose that: 
- x1 is the area of the square inscribed in the circle.  
- x2 is the area of the 4 isosceles triangles which,  
together with the square, form a regular octagon  
inscribed in the circle.  
- x3 is the area of the 8 triangles isosceles which, together with the octagon, form a 
regular 16-sided polygon inscribed in the circle. 
- Etc. 

Would you agree with the statement that ∑
∞

=

=
1n

n Ax ? Justify your answer. 

Figure 1. Questions 7 and 9. 
In the next section, we present and comment on the results obtained from these 
questions. 
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DATA ANALYSIS 
Question 7 (Q7) 
The distribution of responses to this question is the following: 

The result is 0 Idea that each time that you add 1, 
you subtract it 

A3, B11 

The result is 1  A4, B7 
 
The result can 
be 0 or 1 

“At infinity, you don’t know if it’s 
even or odd, so both are possible” or 
“For n even it’s 1, for n odd, it’s 0” 

 
B2, B4, B9, B13 

Other B10, C12 
The result is ½  None 
The result is 
infinite 

 C1, C4 

 
 
 
 
The result 
does not exist 

No explanation C9 
It’s divergent A2, B13, C5, C8 
There’s no definite sum for this series C2, C7 
It’s always 0 and 1 in alternation – 
It’s like sine and cosine – The 
numbers cancel each other. 

B6 
C3, C6 

At infinity, we wouldn’t know if it’s 
1 or 0 

B5, B8, B12 
C10, C14 

Unclear explanation B1 
 
Other 

Wrong application of a criterion A1 
Explanations involving “the series 
diverges”, “undefined” or “there 
won’t be a result” 

B3 
C11, C13 

I don’t know  B14 

Table 1: Responses to Question 7. 
This question was used by Bagni (2005) with students who hadn’t previously studied 
series. This might explain why the distribution of answers in our study is different, and 
half of our students answer that the result does not exist. However, only ten students 
(10/32) give a detailed explanation for this fact. We believe that the distribution of our 
results is quite surprising, since this series is usually presented in the introductory 
examples; however, it seems that the fact that the students have not solved any task 
involving it leads to the fact that they do not remember how to interpret it. We can also 
see some justifications which seem to call for the use of the potential infinity (A3, B2, 
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B4, B9, B11, B13, C12), especially in the students of teacher B. We also note that some 
students use the term “diverge” meaning “tends to infinity”, whereas others use it 
meaning “does not converge” (mostly those of teacher C). 
Interestingly, these students have spent a great amount of time studying the 
convergence of far more complex series through the application of convergence 
criteria, in the algebraic setting. Indeed, some students tried to answer the question 
(wrongly) by applying algebraic techniques (A1, A4, B7, B10). However, the students 
seem to be blocked when the study of the convergence does not require the application 
of any criterion. The fact that praxeologies seem to focus so often on when a series 
converges or tends to infinity, seems to have an effect on the students’ reaction when a 
series does not converge. 
Question 9 (Q9) 
The distribution of responses to this question is the following:  

 
 
 
 
Yes 

At some point, x∞ will be infinitely small, but will 
form the whole area with the previous ones 

B8 
C8 

The more we add figures, the more the whole figure 
will look like a circle 

B2, B9 

It’s a very precise approximation – The whole area 
will be almost completely filled – We approach the 
area of the circle – Tends to the area of the circle 

B1 
C3, C5, C10, C11 

The error tends to zero C2 
We can see it C13 
Unclear justifications A2, A3, B5, C14 
No explanation A1, C12 

No B3, B4, B6, B11 
C1, C9 

 
Other 

A4, B7, B10, B12, 
B13, B14, C4, C6, C7 

Table 2: Responses to Question 9. 
In this case, the use of a question in the geometric setting seems to have a stronger 
impact in the students’ interpretation of the situation. Only 10 students (10/32) (none 
of them from teacher A) seem to be able to interpret the phenomenon, although 7 of 
them (B1, B2, B9, C3, C5, C10, C11) seem to use arguments implying that we 
approach the circle as much as we want, suggesting the use of the potential infinity. 
This makes us wonder whether or not when students conclude the convergence of a 
series applying a criterion, they are convinced that the series reaches the result, or they 
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believe that the series gets very near the result? We must say that in the case of teacher 
A, all the students were able to study the convergence of the series ∑

∞

=1

2)
3
1(

n

n  (Q5 in the 

questionnaire) applying criteria, but none replied correctly to Q7 and Q9. From teacher 
B, among the 6 students who correctly studied the convergence of the series in Q5, 3 of 
them were unable to provide a correct response to both Q7 and Q9; however, among 
the 8 students who did not correctly study the convergence of the given series (Q5), 2 
replied correctly to Q7, one replied correctly to both Q7 and Q9, and 5 did not reply 
correctly to either Q7 or Q9. From teacher C, among the 7 students who correctly 
studied the convergence of the given series (Q5), only one replied correctly to both Q7 
and Q9, 4 replied correctly only to Q7, and one only to Q9. These results seem to 
suggest that the capacity to correctly apply criteria does not guarantee the development 
of tools useful for interpret situations where convergence may or may not be involved. 
FINAL REMARKS 
Our results, both from the textbook analysis and the teaching practices, seem to 
confirm the presence of contract Rule 1: the study of convergence is mostly reduced to 
the application of criteria in the algebraic setting. And as we conjectured, some 
students seem able to apply criteria to decide whether a series is convergent or not; 
however, what being convergent means, whether the limit is actually reached or not, 
and the study of cases which cannot be tackled algebraically seem to be questions out 
of reach for many students. 
To sum up, the main characteristics of the existing praxeologies for the teaching of 
series (R1 to R4) in collegial studies suggest a set of implicit contact rules. In 
González-Martín (2013), we discussed the rules implying that students do not need the 
definition of what a series is to solve the tasks given to them, and also that applications 
of series are not important. Our current findings seem to support the existence of a rule 
implying that the study of convergence can be reduced to the application of 
convergence criteria. The existence of these implicit rules seems to clearly have an 
impact on students’ personal relationship with series and their convergence. In the 
interviews with the teachers, it seemed apparent that they reduced series to the study of 
the convergence of series, which is reduced to the application of algebraic techniques 
(González-Martín, 2010). But what a series is, what being convergent (or not) means, 
and how to reason about these questions seem to be issues which are not present in the 
praxeologies, and they are generally absent from the students’ personal relationship 
with series. Some difficulties with series (as the use of the potential infinity) are not 
taken into account by existing praxeologies, and we can see them appear 
spontaneously in our students. 
Our next steps consist in concluding our analyses of the questionnaires to have a whole 
portrait of the student’s personal relationship with series, and to make connections 
with teaching practices. We hope our results can contribute to the debate about whether 
the current teaching of series could be improved, and how this improvement can be 
made. 
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IMAGINATION AND TEACHING DEVELOPMENT 
Simon Goodchild 

University of Agder, Norway 
 
This paper sets out to provide a reason for the limited effectiveness of mathematics 
teaching development activity with a project set up to establish communities of inquiry. 
Teaching development is set out briefly, using constructs from community of practice 
theory and activity theory. Development and research methodologies arising from 
these theoretical perspectives are summarized and illustrated. Data comes from an 
episode that embraces two consecutive workshops that took place within the project. It 
is concluded that many forces combine to align teachers to their school practice, 
development is a slow extrapolation of practice based on shared ideas that, when 
supported by experience, are meaningful in the imagination of teachers. 
INTRODUCTION 
This paper reports from a mathematics teaching developmental research project 
introduced to the PME community by Jaworski (2004). The project set out to establish 
communities of inquiry of teachers from grades one to thirteen and university teacher 
educator/researchers (didacticians). It was theorised initially from a communities of 
practice (CPT) perspective. Later activity theory (AT) became a useful framework 
within which to theorise development. Teaching development is usually a slow 
process; Liljedahl (2010) reports on teachers’ “rapid and profound change”, but 
acknowledges that instances of such change are rare. Design research has produced 
encouraging results from the collaboration between teachers and mathematics 
educators (Cobb & Gravemeijer, 2008). However, problems arise as carefully thought 
out designs become adapted to the practice of teachers who have not been part of the 
design process (Artigue, 2009). Developing teaching through establishing 
communities of inquiry is an approach that is intended to draw teachers into the 
developmental process so that they become co-learners in partnership with 
didacticians. The approach is thus sensitive to the knowledge resources of teachers and 
didacticians, and is intended to ensure sustained teaching development. However, 
Jaworski (1998) has reported that teachers’ adoption of a research stance within their 
practice is jerky and ‘evolutionary’. Two workshops, about 18 months into the project, 
lead to critical reflection on founding principles of the project. This report contributes 
to understanding approaches to mathematics teaching development. 
TEACHING DEVELOPMENT FROM CPT AND AT PERSPECTIVES 
A principled account of development can be worked out within CPT from the “modes 
of belonging” described by Wenger. 

To make sense of these processes of identity formation and learning, it is useful to consider 
three distinct modes of belonging: (1) engagement – active involvement in mutual 
processes of negotiation of meaning (2) imagination – creating images of the world and 
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seeing connections through time and space by extrapolating from our own experience (3) 
alignment – coordinating our energy and activities in order to fit within broader structures 
and contribute to broader enterprises. (Wenger, 1998, pp. 173-174)  

From this perspective teaching development rests on teachers being actively engaged 
and involved in making sense of their practice: its constitution, goals, conditions, 
constraints, opportunities, etc. Teachers may move beyond their own immediate 
experience by imagining how practice is in other teachers’ classes, and what this might 
mean for their own practice. Teachers align themselves to their practice by accepting, 
understanding and working within the culture, customs, rules, regulations, norms and 
requirements of their practice. 
The introduction of inquiry into teachers’ practice entails a significant development of 
CPT. Jaworski (2006) argues that inquiry transforms alignment into critical alignment, 
through which teachers are empowered to examine critically the tensions, 
contradictions and constraints of their practice, and actively seek changes to overcome 
them. I have argued elsewhere (Goodchild, 2011) that the introduction of inquiry as a 
developmental tool constitutes a paradigm shift and that the resulting developmental 
research founded on communities of inquiry belongs to a critical research paradigm. 
This shift is accompanied by the need for an alternative theory to conceptualise 
development because imagination and extrapolating from experience do not account 
for goal directed actions motivated by a desire to improve practice. Engeström’s 
(2001) explanation of expansive learning within an AT frame provides an alternative 
conceptualisation. Briefly, expansive learning runs in cycles of successive phases of 
internalisation and externalisation. Participation begins with internalisation of the 
norms, routines, actions and operations of culturally established activity. This is 
followed by a period when the tensions and contradictions inherent in activity become 
apparent and give rise to individual innovations; this is a phase of externalisation. 
Within a community of inquiry, inquiry is the catalyst, tool and mechanism of the 
externalisation phase. Innovations become accepted by the community and a new 
phase of internalisation begins as they are accommodated within the activity. 
Concepts in the analysis of events arise from these two theoretical perspectives, from 
CPT: engagement, imagination, extrapolating, and alignment; from AT: tensions, 
contradictions, and expansion; in addition, inquiry and critical alignment are used. 
DEVELOPMENT AND RESEARCH METHODOLOGIES 
Briefly, teachers were invited to join the project with the intention of establishing 
school teams as inquiring communities embraced within the whole project community. 
Project activities included school team meetings, and six workshops each year, which 
included all project participants. Didacticians visited schools and observed lessons 
when invited by teachers. In workshops, teachers reported activity with their classes, 
engaged in discussions about mathematics and didactical issues, and planned for 
classroom activity. Didacticians planned workshop programmes responding to 
teachers’ wishes and feedback. Didacticians also presented ‘inquiry’ as a cycle of 
planning and implementing, observing and reflecting, and feeding back into fresh 
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planning. The developmental activity was based upon a number of fundamental 
principles, for example: teachers have substantial knowledge and experience that must 
be recognised and shared; teachers have the authority for what happens in their 
classrooms; the inquiry cycle is an effective approach to developing teaching and 
learning mathematics; and teachers take the lead in preparing for their own classes, 
with support and fresh ideas offered by didacticians. Thus, didacticians would suggest 
starting points for planning, but designs for classroom activity would be the result of 
teachers’ collaborative planning activity. 
Research focused on development in learning mathematics, teaching mathematics, and 
the developmental process. Data were generated by video- or audio- recording every 
project event; including school-based activities when a didactician was present. Also, 
documentary evidence and the textual productions from group sessions in workshops 
were collected. The data are naturalistic in that they were gathered from 
development-inspired events rather than actions motivated by the research. Data are 
analysed from a symbolic interactionist perspective in which teachers’ meanings 
emerge in their interaction with each other, their students and didacticians. An 
abductive approach (Meyer, 2010) to interpret the evidence is taken. 
AN EPISODE EXPLORED 
The episode used in this report was originally chosen to provide an example of 
(effective) activity within the project. However, the initial stages of analysis revealed 
the episode to be disappointing because it appeared to contradict claims for 
effectiveness. Reflection on the episode led to the realisation that it held useful lessons 
about effective engagement of didacticians with teachers in developmental research. 
Thus the episode was analysed to address the question: What interferes with creative 
innovation in teaching mathematics? 
The data includes about three hours of recordings of discussions that took place 
between teachers from two upper secondary schools and didacticians in ‘group’ and 
‘plenary’ sessions that occurred within two consecutive workshops. Two extracts 
taken from within the first five minutes of the first session in the first workshop are 
reproduced below. These introduce the discussions that took place over the two 
workshops, and illustrate the analytic process. Extracts are translated into English and 
paraphrased to make better sense for the purpose of reporting. Analysis takes place in 
the original language, transcripts support work with the raw data, in this case video 
recordings and some documents prepared for the workshops. 
At the end of the first year of the project, at the teachers’ request, it was agreed that 
workshops would be based on explicit curriculum themes. Moreover, it was agreed that 
a substantial amount of time in workshops would be spent within groups working at 
similar grades preparing for classroom activity. During the autumn preceding the 
episode examined here, workshops had focused on probability and geometry. In the 
spring semester the three workshops focused on teaching and learning algebra, the 
episode here is based on the first two ‘algebra’ workshops. 
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Some days before the first ‘algebra’ workshop, tasks had been sent out to schools with 
the request that school teams discuss the task amongst themselves in preparation for 
the workshop. The tasks were based on the theme of addition triangles (see figure 1) 
that were presented at a variety of levels of demand that might be adapted to meet the 
learning needs of students at most grades. When the teachers from the upper secondary 
classes (grades 11-13) met they had discussed the tasks in school teams as requested, 
but rather than engaging with the tasks they came with their own, alternative, proposal 
for their group discussion.  

 
Fig. 1: Example of ‘addition triangle’ task. 

Extracts from the first group session 
Olav: But I just thought about typical problems, or errors, that I have observed lately 

in tests and such. For example, if it stands two x divided by x, they have, two x 
over x, so they say we have two x on top, we take away one x, and so we have x 
left. Or if there is x plus four over x, but here it is OK to shorten, we cancel that 
(x) and that (x), isn’t it? For example, Paul (a colleague) and I had a task, they 
(students) should make a quadratic equation, we were focusing on quadratic 
equations. We have one side (draws a rectangle and writes x) which is x, and 
that (side, points and writes) is x minus two, isn’t it, it is two less than the other 
side. They (students), the area is given, should make a quadratic equation. So 
we set it up like this, x times x minus two is equal to fifteen, for example. And 
so we get, obviously, x squared minus two. This (points to x-2) we set in 
parentheses. It is such things that repeat. And it repeats in first class (grade 11), 
and again in the second class (grade 12), and it persists, we can see it still in the 
third class (grade 13). No matter what we do so it appears that we cannot get rid 
of it. 

Summary of errors described: 

 
Osvald:  It was a thought, as we were all together, that then, possibly could arise some 

good ideas, THAT (emphasised) I have good experience with. So another could 
say oh no, THAT I have good experience with. And I believe we feel that we 
fight (struggle) and many of us will come a little bit further. It is the same things 
that we have problems with every year, and then we have not been good 
enough. 
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Major themes embedded in these extracts 
The teachers had spent time in their school teams discussing the tasks sent out in 
advance but the tasks did not meet the teachers’ needs or expectations and did not 
motivate their engagement. The teachers perceived the workshop as providing an 
opportunity for them to work together with teachers from another school on issues that 
they experienced as ‘meaningful’ in their practice. Their shared concerns about 
teaching and learning algebra are the errors made by their students. These errors have 
been observed for many years, they are recognised by all the teachers present, they 
appear to be resistant to correction as the students repeat them in every grade at upper 
secondary level. The teachers accept that they are challenged to find new ideas and 
improve the effectiveness of their teaching and they look to each other to share and 
generate fresh approaches. 
Teachers were engaged with the project’s activities, both within their school team and 
participation in the workshop. Their alignment to the project’s goals is ambiguous, 
they were ready to discuss, but on themes of their own choosing. The belief that they 
could learn by sharing and developing experiences with each other reveals the potential 
of imagination that might enable them to develop (extrapolate) their practice. The 
acknowledgement of the recurrent resistant errors, which they felt unable to address 
effectively, indicates tension within their practice, between their repertoire of teaching 
approaches and desired outcomes. 
About three hours of recordings is analysed, the outcome is summarised in table 1. 
Alignment 
Teachers’ are subject to many interacting ‘forces’ including: the curriculum, time, 
textbook, examinations, order of content within and through grades, and student 
expectations.  
Responsibility for mathematics education is shared across institutions – primary 
school, lower secondary, upper secondary and university-each dependent on the 
former.  
Students’ conceptual understanding of algebra is the responsibility of lower sec. 
school. 
Imagination 
Experience leads to deeply rooted belief: algebra requires “drill” and must be 
memorized.  
Ideas are distributed by sharing with other teachers who have experiences ‘similar to 
ours’.  
Didacticians’ ideas not relevant to ‘our’ practice, tasks not usable, suited for other 
grades.  
Developing conceptual understanding takes time, which is not available (cf. 
alignment).  
Learning algebra can be supported through applications, such as in geometrical tasks. 
Students can be supported in working on algebraic tasks by reducing ambiguity in the 
presentation of expressions (such as enclosing ‘x-2’ within parentheses: ‘(x-2)’).  
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Replacing letters with numbers can help students to spot their errors. 
Engagement 
Teachers want to work on tasks that they can see are usable in their own classes.  
Teaching mathematics follows well-established routines and is informed by beliefs 
about mathematics and mathematical competencies.  
Tensions 
Curriculum goals do not fit with students’ competencies.  
Students enter the grade level without the understanding that should be developed 
earlier.  
Students lack conceptual understanding, there is no time to develop it (cf. alignment). 
Algebra requires mastery of techniques incompatible with an inquiry stance.  
Quick repetition does not have a lasting impact but shortage of time prevents longer 
engagement with under-developed concepts.  
Students seek ‘rules’, use the textbook to find ‘rules’, this undermines inquiry 
approaches.  
New content is added to the curriculum such as ‘experimental geometry’ which is 
interesting and well-adapted to inquiry – but the examination questions are 
unpredictable and the topic is placed at the end of the textbook, too late to influence 
students’ attitudes. 

Table 1. Summary of main points from the analysis 
Didacticians responded by sending out four tasks as preparation for the second algebra 
workshop, these are shown in figure 2. When these fresh tasks were considered, the 
teachers were unenthusiastic. The first task they felt was appropriate for lower 
secondary classes. The second task came in for the strongest reaction: 

Stefan: … I will advise most strongly against using that task with my students … I will 
never have used that in a lesson … 

The third task was dismissed; possibly because, as it became evident later, at these 
upper secondary schools mixed numbers (whole part + fraction) are excluded from 
students’ experience - from classes and their textbooks - because it is believed mixed 
numbers are confused as algebraic expressions (whole part X fraction). The fourth was 
a development of a geometry task that had been discussed in a previous workshop, and 
this was the only task that the teachers would admit to being usable in their classes, and 
agreed to discuss further in the group. 
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Fig. 2 Tasks sent out before the second algebra workshop (format changed) 

DISCUSSION 
It is questionable how realistic the notion of critical alignment is for the teachers 
described in this paper. Their alignment to practice is maintained by many forces that 
appear to resist innovation. On the surface there appears to be a significant 
contradiction in teachers’ behaviour. They have observed the same errors in students’ 
algebraic reasoning over decades, and their attempts to address the errors appear 
ineffective, they seek new ideas. Nevertheless, they are dismissive of novel approaches 
suggested by didacticians and remain convinced that the approaches that have 
consistently failed (drill and memorising) are essential. The teachers claim that they 
want new ideas but appear to reject them when they are offered. However, these two 
positions may not be contradictory if the new ideas they seek are about ‘better ways’ to 
do drill and technical skill development, which appear to be the only options given the 
conditions of the practice in which they are engaged. 
Didacticians approached the teachers’ challenge with tasks that were intended to 
stimulate discussion and initiate teachers’ design activity, and enter into an inquiry 
cycle to explore fresh approaches to teaching algebra. However, the teachers did not 
see the suggestions as relevant or applicable in their classrooms. One explanation for 
the teachers’ response can be inferred from the very opening statements reproduced 
above; the teachers were seeking fresh ideas grounded in experience to which they 
could relate. The exercise of imagination entails, in Wenger’s words ‘extrapolating 
from (their) own experience’ (1998, p. 173). This explanation leads to the conclusion 
that teaching development within communities of inquiry (for these teachers) must 
attend to more than developing a principled understanding of inquiry. New ideas need 
to be more than starting points for discussion and design, they have to be embedded in 
classroom practice that is meaningful within the teachers’ experience. 
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GOING BEYOND TEACHING MATHEMATICS TO IMMIGRANT 
STUDENTS: TEACHERS BECOMING SOCIAL RESOURCES IN 

THEIR TRANSITION PROCESS1 
Núria Gorgorió, Montserrat Prat 

Universitat Autònoma de Barcelona, Catalonia, Spain 
 
Starting from the constructs ‘transitions’ and ‘mathematical identities’, and using data 
from our empirical research to support our arguments, we present a theoretical 
discussion on how the concept of ‘social resource’ may explain the teachers’ role in 
immigrant students’ transition processes and construction of identities. The narratives 
of immigrant students about their own experiences and expectations in relation to their 
learning of mathematics help us to illustrate how students ascribe a role to their 
teachers that goes beyond merely teaching mathematics. Teachers become social 
resources, playing a significant role both in meaning-making and in the reconstruction 
of identity processes. 
TRANSITIONS 
In the field of mathematics education, the concept of transition has often been linked to 
the learning processes taking place when students move from one academic level to the 
next, having to face more complex mathematics concepts. However, this is only one of 
the many particular meanings attributed to a general construct. 
In our research, and from a socio-cultural perspective, transitions result from the fact 
that people live in multiple contexts of practice and experience multiple ruptures, since 
what may be taken for granted in one context may no longer be valid in another. As in 
Abreu, Bishop and Presmeg (2002), we regard the transition process as part of a 
dynamic relationship between the learner and the contexts between which s/he 
transitions; a process, multiple in itself, that involves inputs from both the individuals 
and the socio-cultural structures in which they act and interact, where individual 
agency goes along with the social dynamics, and where the individual is constantly 
negotiating with the context.  
Gorgorió, together with her colleagues, participated in the project lead by Abreu, 
Bishop and Presmeg that resulted in the above-mentioned publication. In Gorgorió, 
Planas and Vilella (2002), we reported on the socio-cultural conflicts that immigrant 
students experience in their mathematics lessons as well as the teachers’ understanding 
of those conflicts. Our analysis was of transitions being negotiated at a face-to-face 
interaction level and our data came, essentially, from classroom observation. Our focus 
was on conflict as the externalization of the discrepancies between the different 
meanings attached, by teachers and students, to the various learning situations which 
take place in the classroom.  
Our interpretation of transition was: 

We understand the construct ‘transition’ not as a moment of change but as the experience 
of changing, of living the discontinuities between the different contexts, and in particular 
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between different school cultures and different mathematics classroom cultures (…) 
Transitions arise from the individual’s need to live, cope and participate in different 
contexts, to face different challenges, to take profit from the advantages of the new 
situation arising from the change. Transitions include the process of adapting to new social 
and cultural experiences, and students need to be helped to understand the meanings of the 
new experiences and to reinterpret them and construct new ones based on their own 
individual meanings and values. (Gorgorió, Planas and Vilella, op.cit., p. 24) 

Since our first approach to transitions, the group EMiCS2 has been doing research on 
the processes of teaching and learning mathematics of immigrant students. One decade 
later, we revisit the construct transitions with a different perspective –that of the 
students– and with a slightly different focus –meanings as related to identities. 
Individual meanings arising from, and together with, socio-cultural meanings during 
transition processes influence the construction of the identities of those involved, by 
shaping what counts as knowledge and making available certain types of knowledge.  
Transitions originate as a consequence of ruptures resulting from changes of contexts 
of social practice, changes within the person itself, or changes in the relations between 
persons and objects (Zittoun, 2007). Transitions require processes of adjustment to 
new life circumstances and involve multiple changes in reference frames and meanings 
and in relationships with people. These changes require people to modify routines and 
interpretations, explore new possibilities, and develop new ways of acting and 
interacting. According to Zittoun (2008), transitions include learning, identity change, 
and meaning-making processes; they also imply the reconstruction of identities and 
require new forms of knowledge and skills as they bring about the need to engage in 
meaning-making to confer sense to what is happening to the person.  
We approach the processes of mathematics learning by immigrant students as 
transition processes, since they involve new contexts of mathematical practice, 
different relationships with both people and knowledge, and different ways of 
understanding actions and interactions in the classroom. In school transitions, students’ 
difficulties are often related to processes of attribution of meaning to the learning 
situation, and to processes of identity reconstruction. As Meaney and Lange (2012), we 
consider the impact of transitioning between contexts, in which mathematical 
knowledge and ways of interacting around it are perceived differently, to be an issue of 
social justice.  
CONSTRUCTING MATHEMATICAL IDENTITIES 
According to Nasir (2002), the development of identities is tied to human activity, 
affiliation and meaning systems. We consider identity as located in cultural and social 
practices, which can vary between different institutions and different societies. 
However, we do not preclude identity as having an internal component, despite being 
crucially linked to the social and cultural practices. Joining Holland, Lachicotte, 
Skinner & Cain (1998), we claim that identity construction is a cultural and social 
process, where nonetheless the individual has agency. Identities are not only 
constituted by labels that people place on themselves. Identity is about how people 
become who they are, and how they come to figure out who they are, through the 
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worlds they participate in and through their relationship to others within and outside 
these worlds. Martin (2007) establishes that mathematics identity (as he calls it) 
encompasses the dispositions and deeply held beliefs that individuals develop about 
their ability to participate and perform effectively in mathematical contexts and to use 
mathematics to change their living conditions. A mathematics identity involves, in a 
constant negotiation, a person’s self-understanding as well as how s/he is constructed 
by others in the context of doing mathematics.  
By the students’ “mathematical identity” we mean the academic identity that they 
develop as mathematics learners and users. This way, mathematical identities include 
how students view their own aptitude for mathematics and how they see themselves as 
users of mathematical knowledge, both in school and beyond. Students develop their 
mathematical identity through their participation in mathematical activities, their 
interpretation of their own experience as mathematics learners, their expectations 
about future (mathematics) education and about their uses of mathematics both in 
school and outside. Students’ mathematical identities also include their sense of 
affiliation with the mathematical practices in their particular lessons and their 
identification with the norms and values regulating it. The development of 
mathematical identities is shaped by students’ social positions in the mathematics 
classroom, their construction of mathematical knowledge and how students understand 
their experiences as mathematics learners.  
Students’ mathematical identities are dynamic rather than static, and are bound up in 
other social or cultural identities they may develop. Students’ mathematical identities 
are constantly being reconstructed around students’ perceptions of themselves as 
mathematics learners and how they are seen by significant others involved in 
mathematical activities. How students see themselves as mathematics learners, 
however, is as important as how they are defined by others, especially their 
mathematics teachers. Immigrant students’ transitions have the potential to change the 
ways in which they interpret themselves and their roles both in school and outside. The 
ways in which they experience and have experienced their learning of mathematics in 
different contexts and how they interpret these experiences impact on their practices 
and on the identities they develop. Identities are constantly reconstructed by engaging 
in a practice and belonging to a group, but also by wanting to engage in real or 
imagined practices and belong to real or imagined worlds. 
TEACHERS’ ROLES IN TRANSITION PROCESSES 
Transition processes need to be understood not only in terms of the experience of the 
person in transition, but also considering other people related to him/her that may share 
the experience in more or less direct ways. In Gorgorió et al. (op.cit), we claim that 
transitions do not depend solely on the individual experiencing them, since they are 
shaped by social representations, valorisations and expectations about the role, success 
and skills of each of the persons involved. In the context of school mathematics 
practice, transition processes are co-constructed. Together, the various classroom 
participants reconstruct the meanings attributed to different persons, situations and 
mathematical objects. Besides the students themselves, other significant persons are 
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involved, among them teachers and parents. Teachers, both as individuals or 
representing the educational institution, are frames which are likely to facilitate or 
constrain transition processes. Mulat and Arcavi (2009), in their study of success in 
mathematics of students of Ethiopian origin in Israel, identify three key elements 
perceived by the students as a contribution to their achievement in mathematics, by 
shaping their identities. Among the key elements is the immediate environment 
consisting of students’ mathematics learning experience and the role played by their 
teachers and parents.  
The purpose of this theoretical essay is to shed light on what has been until now an 
unexplored area: we are in search of a construct that will help to describe teachers’ 
roles in immigrant students’ transition processes as perceived by the students 
themselves. The data we use here to exemplify our ideas come from a broader ongoing 
study aimed at understanding the transition processes of immigrant students learning 
mathematics in Catalan schools (for more details, see Costanzi, Gorgorió, and Prat, 
2012).  The examples come from the narratives obtained in semi-structured interviews 
where we explicitly ask immigrant students about their past and present experiences 
and their expectations about the future, with relation to mathematics learning.  
When analyzing the interviews, in each student’s narrative, we identify elements that 
may be considered as an evidence of a rupture in their lives as students –e.g. moving to 
Catalonia, changing teachers or schools, moving from primary to secondary schools, 
etc.– regardless of whether they explicitly talk about it as a changing reference frame 
or not. We also identify the ruptures that they explicitly refer to but that we couldn’t 
have anticipated –e.g. a parent losing a job, the death of someone in the family. Once 
the ruptures are identified, we look for descriptions within the narratives which the 
students use to explain their trajectories as mathematics learners and the situations 
where teachers may have played a significant role.  
Students’ explanations are very illuminating in the way that they highlight how 
teachers may play a significant role. Nevertheless, we don’t ignore the fact that 
students’ cultural backgrounds contribute to highlighting particular aspects of their 
experiences. Neither do we ignore that each individual story is a co-construction of the 
interviewer, the researchers as analysts, and the student as narrator. Therefore, in terms 
of understanding the dynamics of the transition process, we also have to take into 
account the teachers’ perspective and the actual practices in the classroom (e.g. 
Gorgorió and Prat, 2009 and 2011). This is the reason why we interview their teachers 
and observe some of their mathematics lessons in order to obtain complementary data. 
When analysing the narratives, we identify which are the ruptures and key moments to 
change trajectories in ways that are significant for the students, and understand how 
students’ identities grow. Trying to make sense of how students explain their teachers’ 
role in their development as mathematics students, we see how teachers are regarded as 
important characters in their story, as important persons in the transitions out of 
ruptures. Thus, teachers appear in students’ narratives as potential social resources 
(Zittoun, 2007), as people in the students’ social networks that can be asked for, or who 
may offer, expert or relational support.  
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Thus Hina, a Pakistani girl, has told us: “they [the teachers] helped us to connect with 
the way that we had learned in Pakistan as these teachers had taught Pakistani students 
before”. When asked for a further explanation, she added: “they were aware of what 
kinds of the difficulties would Pakistani children face when they were here at the 
school”. Later on, when talking about the mathematics teacher she insisted on the fact 
that “teacher was aware of the way we learned mathematics in Pakistan, because before 
us the school had Pakistani children”. These short quotes illustrate how Hina refers to 
her teachers as social resources, both in singular and plural, as a result of their expert 
knowledge. 
Hina also refers to her teachers as providers of relational support. She tells us: “Since I 
know the teachers well, I explained to the teachers about the reason of the low 
achievement of my sister”. She has also negotiated with them: “and I shared with them 
that the level of the other school had not been good. I told the teachers that we [Hina 
and her family members] would work closely with her so that she could improve her 
section”. In general, the teacher is the one offering help, support or advice, thus taking 
the role of meaning dealer, in the sense of someone that initiates the negotiation in 
order to include the student in the process. This meaning concerns social norms, 
socio-mathematical norms, norms of the mathematical practice and actual 
mathematical content.  
Most often, it is the teacher who initiates the process and this has to do with personal 
traits of both actors and the status of “being an authority” that teachers have in many 
cultural groups, often reinforced because the student belongs to a minority and/or to a 
socially deprived group. In all cases, the interactions between teachers and students are 
mediated by representations that students and teachers have of teaching and learning of 
mathematics, representations that differ according to their cultural backgrounds. Less 
often, students seek help from teachers, but only when they feel familiar with them, as 
in Hina’s case. Felipe, a boy from Chile, provides us with another example. He tells us: 
“if you met him [the teacher] two days ago, it's difficult to get close to him in a way 
where he'd help you with something you don't understand or don't know”. In Felipe’s 
case the teacher is only a potential resource, since Felipe never asked for help.  
We use the term potential when characterizing teachers as social resources not only 
because some students never ask for support, but also because in some narratives 
teachers are referred to as constraining the student’s opportunities. The examples 
provided until now only show teachers described as social resources who play a 
positive role. However, there also are narratives where the students consider that 
teachers have had a negative role in their transitions; in all of them the term “teachers” 
does not refer to individual teachers, but to the institution they represent. For example, 
when Paola, a Colombian girl, explains her experience when she arrived in Barcelona, 
she says: “when I arrived they held me back one year because of Catalan”. “They” 
refers to the teachers of her school, who cannot decide by themselves, and are only 
agents of the educational institution that regulates the adscription of students to groups. 
In transition processes, current experiences as mathematics learners are interpreted on 
the basis of meanings and representations acquired in previous situations. Often 
students refer to teachers they have had in their previous schooling, before coming to 
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Barcelona. For instance, Hina tells us that she never leaves things unexplained because 
this impedes her further learning: “I always seek clarity from my teachers. They like me 
asking. (...) I have developed [this strategy] with thanks of my mathematics teacher Mr. 
Zulfiquar from Pakistan”. Zittoun (op.cit.) establishes “that people can also draw upon 
social knowledge to determine how to act with people in certain situations” (p. 199) 
and considers that kind of mobilizations to also constitute social resources. Therefore, 
we see that teachers may be referred to as social resources also at an intra-personal 
level.  
We have already mentioned that teachers may be described as having a negative role in 
students’ transitions. However, sometimes, even when students account for their 
teachers to have been of great help to them, when considering the student’s trajectory 
as a whole, what we see is that the teacher limits the student’s real opportunities to 
learn. Ronnie, a boy from Ecuador, tells us: “since I’m not good enough at math, I 
won’t be able to pass the entrance exam to go to university”. However, he describes his 
mathematics teachers as having been of great help to him since he arrived. Ronnie is 
one of the cases that illustrate how identities are made available to students through 
classroom practices, by leading them to construct a limited mathematical knowledge, 
constraining their future possibilities. Her teacher tells us that, with an honest intention 
to make them feel that they succeed, she only proposes routine exercises, because of 
her perception of immigrant students to be low achievers.  
Besides being social resources, teachers also play an important role in their attribution 
of different mathematical identities and in providing different opportunities for 
participation and access to knowledge to immigrant students. Therefore, teachers’ role 
in students’ transitions, even if perceived as positive by the student, may result in a 
limited construction of his/her mathematical identity. Teachers, both as individuals and 
as members of institutions, through the different models of school mathematics that 
they provide to their students, and through the different positioning of these students in 
their practices, open different spaces for students’ construction of identities in their 
transition processes.  
As an end note, we stress that although the mathematics teacher’s main purpose is to 
teach mathematics, his/her role as a social resource is by no means a negligible one. 
The word mathematics could be replaced in the entirety of this article by the word 
history and the paper would still make sense. However, the fact that the above 
statement would make sense for a history teacher does not imply it would not apply to 
a mathematics teacher as well. Moreover, in mathematics and history this role should 
be interpreted in different ways, since mathematics education has a specific social 
purpose. Often immigrant students are unsuccessful in mathematics when the teacher 
fails to go beyond exclusively teaching the content of the subject or when they don’t 
realize that their teacher may become a social resource for them. 
FINAL REMARKS 
In Catalonia, immigrant students are allocated to a group level on arrival usually 
according to their age.  Some schools are positioned differently from others in terms of 
the students they provide for. There are teachers working at institutions with a high 
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number of immigrant students per group, while there are others working with only a 
very limited number. There are several constraints in the practice of teachers having 
students from many nationalities, but at the same time, there is the risk that they 
become invisible when there are only a few immigrant students in a class. Therefore, 
the individual and institutional role of the teacher cannot be separated. Moreover, both 
teachers and institutions are impregnated with social representations and valorisations 
that shape their practices and their pedagogical models.  
In conclusion we claim that mathematics teachers when acting as social resources not 
only may help the student to bridge the gap between the students’ different reference 
frames, and therefore have a role in their reconstruction of meanings, but may also play 
a role in their reconstruction of identities. In their narratives, immigrant students 
account for their teachers as being a significant other in processes of meaning-making 
and reconstruction of identities, both crucial for their transition processes.  
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DEVELOPING ONE-TO-ONE TEACHER-STUDENT 
INTERACTION IN POST-16 MATHEMATICS INSTRUCTION 

Clarissa Grandia,b , Tim Rowlandb 
aThurston Community College, Suffolk, UK; bUniversity of Cambridge, UK 

 
Recent developments in mathematics education emphasise the role of teacher-student 
interaction in developing students’ conceptual understanding and knowledge 
construction, with a corresponding de-emphasis on the use of ‘telling’: the stating of 
facts and demonstration of procedures. This action research study investigated 
teacher-student dialogue during one-to-one interactions in one teacher’s post-16 
mathematics classroom. Four students volunteered to participate. Data sources 
included clinical interviews, student feedback interviews and an analytical log. The 
findings indicate that, although the teacher utilised more ‘telling’ than ‘questioning’ 
interventions, often these ‘telling’ actions served useful and necessary functions. 
Findings also indicate that the teacher’s scaffolding skills developed during the project. 
INTRODUCTION 
Current reforms in mathematics education, influenced by a social constructivist view 
of learning, place dialogue at the heart of the development of conceptual understanding 
and mathematical thinking skills. Teachers are now seen as ‘facilitators of learning’ 
(Smith, 1996; Lobato, Clarke and Ellis, 2005) who manage discussion within a 
student’s Zone of Proximal Development by employing suitable scaffolding and 
fading techniques (Wood, Bruner and Ross, 1976; Vygotsky, 1978). Underlying these 
ideas is a strong criticism of transmissive teaching styles, often referred to as ‘teaching 
by telling’. However, there is very little in terms of specific guidance for teachers about 
how best to achieve these reform aims (Chazan and Ball, 1995; Smith, 1996; Baxter 
and Williams, 2010). This has led to what Baxter and Williams describe as the 
“dilemma of telling: how to facilitate students coming to certain understandings 
without directly telling them what they need to know or do” (p. 8).  
This paper reports an exploratory action research study into this issue in the context of 
a 13-18 state-funded comprehensive (all-ability) school in England.  
LITERATURE REVIEW AND THEORETICAL FRAMEWORK 
In their systematic review, Kyriacou and Issitt (2008) note that research on 
teacher-student dialogue in the UK is scant, especially at the level of one-to-one 
interaction. What research there is into whole-class teaching generally reveals a 
prevalence of transmissive ‘teaching by telling’, and little evidence of effective 
scaffolding that might effect a shift towards student independence (Myhill and Warren, 
2005; Kyriacou and Issitt, 2008). Reasons proposed for the prevalence of the 
transmission model include acknowledgement that scaffolding can be a difficult and 
uncomfortable task, carried out in a pressured environment; and that teachers’ beliefs 
about the nature of mathematics, as well as their own schooling, can affect their 
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competence at scaffolding (Schoenfeld, 1992; Myhill and Warren, 2005). When 
effective scaffolding was observed, teachers were seen to hold back from telling, 
instead eliciting student thinking through the use of probing questions, along with 
carefully tailored questions and prompts that provided just enough guidance for 
breakthrough (Tanner and Jones, 2000; Goos, 2004; Cheeseman, 2009; Ferguson and 
McDonough, 2010). With reference to data on instruction in elementary arithmetic and 
geometry, Anghileri (2002) has identified several scaffolding strategies with particular 
reference to mathematics learning. 
But it is simplistic to suppose that achieving effective teacher-student dialogue in 
mathematics teaching, and enhanced scaffolding behaviours, can be achieved by the 
effort to eliminate an ingrained habit of telling. Chazan and Ball (1995) propose that a 
blanket exhortation to avoid telling is inadequate because it ignores the importance of 
context. Lobato, Clarke and Ellis (2005) point out that many kinds of telling perform 
useful functions in the development of conceptual understanding, and can be 
reconciled with a constructivist viewpoint. These two sets of researchers, along with 
Baxter and Williams (2010), suggest that it is important to gain further understanding 
of the function of teacher actions through analysis of the intentions behind their 
scaffolding decisions. 
METHODS 
The motivation for the study arose from one teacher’s sense of a mismatch between her 
pedagogical ideals and teaching practices. This teacher-researcher, the first author, had 
been teaching mathematics for two years at the beginning of the project. Her graduate 
pre-service teacher education programme had promoted the notion of 
teacher-as-facilitator, which she then aspired to realise in the classroom. However, 
once in post, she was troubled by an awareness that she was inclined to be too 
‘helpful’, resolving her students’ difficulties too directly (in the light of her own ideals) 
rather than scaffolding their own problem resolutions. She felt especially dissatisfied 
with her management of one-to-one interactions with students taking ‘A-level’, a 
post-compulsory advanced course normally required for university entrance. She 
therefore set out to improve the quality of the teacher-student dialogue with these 
students. With reference to her professional goals, and to the literature reviewed above, 
she framed the following research questions (stated in the first person). RQ1: What 
would a critical analysis of the form and function of my utterances reveal about the 
nature of my scaffolding strategies? RQ2: Can the form and function of my scaffolding 
interventions be changed as a consequence of investigation on my part?  RQ3: What 
aspects of the scaffolding strategies employed are valued by the students? 
These formalised RQs, with their emphasis on critical analysis and change, aligned 
with an interpretive stance, suggested an action research methodology. The time-frame 
available limited the number of action research cycles to two. After outlining her 
research aims to the 12 students in her Year 13 (student age 17-18) mathematics class, 
six male students volunteered to participate, from whom four were selected, partly in 
order to reflect different attainments within the class. 
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Clinical Interviews 
In order to address RQ1 and RQ2, the teacher was audio-recorded interacting with 
single students in a one-to-one situation slightly removed from the bustle of the 
classroom – ‘in vitro’ rather than ‘in vivo’. Each of these dyadic interchanges took the 
form of a clinical, task-based interview, in which the interviewer’s responses are 
contingent on the subject’s reactions to the task (Ginsburg, 1997). This means of 
eliciting student thinking by contingent prompting and probing is a similar discourse 
model to that involved in the type of local level on-the-fly scaffolding (van Lier, 1996; 
Brush and Saye, 2002) that the teacher aimed to develop in her own practice, and 
therefore provided a rich means of analysing her performance. These interviews took 
place during those lessons when a space adjacent to the classroom was available for the 
one-to-one interaction. In order to maintain further links with a familiar setting, each 
clinical interview was initiated by a task/question from the class ‘A-level’ textbook. 
Two questions judged to be sufficiently demanding for the participants to require 
assistance were selected for each cycle of intervention. Each interview was transcribed 
verbatim, along with paralinguistic aspects (pauses, interruptions and heavily stressed 
words), soon afterwards.  
Student Feedback Interviews 
In order to address RQ3, the four students took part in a semi-structured interview 
immediately after their clinical interview, using the same recording method. The 
following open questions were devised to enable the participant to reply without 
constraint, and to allow the teacher-researcher to probe for meaning as she judged 
appropriate: 

Q1 Did you find any aspect of the teacher input helpful? 
Q2 Was there anything that wasn’t helpful? 
Q3 Is there anything that might have been more helpful for me to do? 
Q4 Is there anything you would like to add? 

 Analytical Log 
In order to carry out the process of critical reflection inherent in the two action research 
cycles, the teacher used an analytical log in which to record her own evaluation of the 
clinical interviews. She also recorded thoughts, feelings and insights that arose during 
the process of analysing the feedback interview transcripts. As a result, the log had a 
narrative quality more characteristic of a journal of reflection. In this way the teacher’s 
own reflexivity contributed to the analytical process, with a view to accessing the 
intentionality behind her utterances. 
Data Analysis 
Clinical interviews: First, the transcripts were coded to indicate the form of the 
teacher’s dialogic interventions, distinguishing between questioning and telling. Next, 
following Lobato et al (2005), codes were added to identify the function of her 
utterances. Initially, six scaffolding categories were used, taken from Anghileri (2002): 
Checking, Convention, Demonstrating, Explaining, Focusing, Probing. These were 
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eventually supplemented with six further emergent categories: Confirming, Directing, 
Funnelling, Parallel modelling, Prompting and Rephrasing. A brief description of these 
codes is given in Table 1.  
Student feedback: Likewise, transcripts from the student feedback interviews were 
coded in the first instance according to the participant’s perception of the ‘helpfulness’ 
or otherwise of a particular scaffolding intervention. Secondly, the function codes 
above were then assigned. 
The analytical log was coded according to whether, in her reflective evaluation of the 
clinical interviews, the teacher had approved or been critical of each scaffolding 
intervention, and both the form and function codes were applied accordingly. 
Function Description 
Checking 
Confirming 
Convention 
Demonstrating  
Directing 
Explaining  
Focussing 
Funnelling  
 
Parallel modelling  
Probing 
Prompting 
Rephrasing  

Checking for understanding 
Indicating the correctness of a student answer 
Discussing a conventional norm (arbitrary knowledge) 
Showing, outlining a procedure  
Providing instructions, advice or suggestions 
Conceptual content - saying ‘why’ 
Highlighting an important concept/idea 
Leading student to a correct answer through a constraining series 
of questions and prompts 
Modelling the solution to a similar, related problem 
Drawing out student thinking 
Providing a hint to direct student’s attention 
Rephrasing or summarising a student’s utterance 

Table 1: The 12 codes used in the analysis of function of teacher interventions 
FINDINGS 
The findings are now discussed with reference to each of the research questions. 
RQ1: What did critical analysis of the form and function of my utterances reveal about 
the nature of my scaffolding strategies? 
Analysis of the form of the teacher’s scaffolding interactions in the first cycle 
suggested that she relied overwhelmingly on telling (113 out of 170, with the 
remaining 57 coded as questions). However, analysis of their function revealed that a 
large proportion of the telling actions were simple confirmations of the rightness or 
wrongness of student ideas, e.g. 

Jack: Do you want it in the exact form? 
Teacher: Yes, always leave it in the exact form unless you’re asked not to. 

Other than confirming, the most common telling categories were explaining 
conceptual content; demonstrating a procedure; directing by providing instructions, 
advice or suggestions; and outlining a mathematical or cultural convention, e.g. 
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Teacher: Yes, but you have to set it out right. You have to start by saying that you’re 
finding the integral between two x-values. 

Analysis of the self-critical content of the teacher’s analytical log revealed that she was 
dissatisfied with instances where she employed telling to demonstrate, direct, explain 
or funnel; and also where she used questioning in order to funnel, e.g. 

Teacher: What have you just found? 
Jack: The x value. 
Teacher: And what were you asked for?  

In cases where a student was unable to recall a procedure, she reflected that parallel 
modelling (where a solution to a similar, often simpler, problem is modelled) would 
have been a more useful strategy than demonstrating using the question itself. In the 
cases where she was critical of her explaining interventions, she believed (on 
reflection) that it would have been more beneficial to have assisted the student with 
guidance involving probing (drawing out thinking) and prompting (with hints to allow 
the student to make a conceptual link). She also noted that there was a controlling 
element to her directing, sometimes due to lack of confidence (for example, when 
exploring a novel method). With regard to the funnelling instances, she reflected that 
she seemed to be hurrying the student towards the answer instead of allowing him 
more time to respond to her questioning. 
Analysis of the ‘approving’ content of her analytical log revealed that she was more 
satisfied with instances when she had employed telling to confirm, discuss convention, 
and parallel model; and when she used questioning to probe, e.g. 

Teacher: Could you have double-checked it in a different way? 
Connor: My domain and range? 
Teacher: Yes. Because your graph was wrong, how else could you have checked 

your range? 
Connor: By confirming with the domain of the other one?  

and to prompt, e.g.  
Jack: You know when minus e to the u is differentiated? Does that become minus 

ue to the… 
Teacher: Ah! What’s the differential of e to the x? 
Jack: Oh, does it stay the same? 
Teacher: Yes, it does.   

The teacher felt that confirming was a necessary part of her scaffolding strategy. She 
also judged that ‘telling to share a convention’ was the only way to impart arbitrary 
mathematical knowledge, or socio-cultural norms, and hence was a necessary 
intervention. Thus, she approved of an instance in which she directed the student on 
how to ‘set out’ his work, as this involved the sharing of a conventional norm. She 
noted that probing questions revealed student thinking, and, in the case of one 
individual, elicited his longest responses. Finally, she reflected that prompting 
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questions enabled the student to work through problems more independently, whilst 
also allowing for the possibility of internalisation and transfer for future independent 
use. 
RQ2: Can the form and function of my scaffolding interventions be changed as a 
consequence of investigation on my part? 
Analysis of the form of the teacher’s scaffolding utterances in the second cycle of 
clinical interviews revealed that she used a greater proportion of questioning 
interventions than pre-investigation (telling accounted for 79 out of 134 coded 
utterances, with the remaining 55 coded as questions). There were some notable 
changes in the function of her scaffolding interventions that may have resulted from 
the action-research investigation. In the second cycle she demonstrated and explained 
considerably less, having been critical of her use of those interventions previously. She 
parallel modelled more often, and also probed more often and more directly. The final 
observed change was that she was now utilising indirect prompts – a form of fading – 
which she had not done in the first cycle of clinical interviews. 
Analysis of the ‘self-critical’ content of the second cycle analytical log revealed that 
she was dissatisfied with instances when she used questioning to focus, funnel, probe 
and prompt. A common theme can be detected in these criticisms: the observation that 
she was not giving the students sufficient time to think. The teacher finally noted that 
her lack of confidence with using an untried method had caused her to intervene and 
change the way one student was approaching a particular question. 
Analysis of the ‘approving’ content of her analytical log indicated that the teacher was 
satisfied with many more of her scaffolding interventions than previously: specifically, 
instances where she employed telling to discuss convention, direct (when procedural 
content was involved), focus, parallel model and probe; and where she used 
questioning to focus, parallel model, probe and prompt. She also approved her use of 
indirect fading prompts, as the following log extract shows:  

He was still unsure of what to do, so I prompted him indirectly on what it might be a good 
idea to do now. It worked: he realised it would help to draw a diagram (a prompt I had been 
using previously during lessons). I think this is an example of ‘fading’ – replacing direct 
prompts with increasingly indirect ones in order that the student internalises the original 
prompt. He was then able to proceed without further intervention from me. I am pleased 
with this: it felt right. 

RQ3: What aspects of the scaffolding strategies employed are valued by the students? 
Analysis of the feedback interview responses from the first cycle of clinical interviews 
revealed that discussing a conventional norm, explaining and prompting were valued 
strategies. One student made the suggestion that parallel modelling would have helped 
him more – consistent with the teacher’s own reflective evaluation. 
Analysis of student responses from the second cycle of clinical interviews revealed that 
prompting, parallel modelling and confirming were valued scaffolding strategies. One 
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student also suggested that more use of demonstrating would have helped him, 
specifically the use of diagrams to enable him to visualise the situation more easily. 
CONCLUSION 
From the analysis of this teacher’s utterances it becomes apparent that this one-to-one 
teacher-pupil pedagogical interaction is far more complex than the commonly-held 
view, cited in Baxter and Williams (2010, p. 8), that “teachers should not lecture, 
demonstrate or ‘tell’”. These findings are consistent with Chazan and Ball’s (1995) 
argument that context is all-important, and is a crucial consideration in the 
management of the dilemma of telling. This finding, coupled with the 
teacher-researcher’s realisation that she had, indeed, been able to modify and develop 
her scaffolding strategies – to tell more selectively and question more skilfully – added 
to her confidence as an instructor. Moreover, she continues to use her coding 
framework as a reflective tool. 
Such is the paucity of research into mathematics teacher-student dialogue (Kyriacou 
and Issitt, 2008), particularly at secondary level, that there is abundant scope for 
teacher-researchers to undertake related studies into ‘contingent’ (Rowland, Thwaites 
and Jared, 2011) interactions in their classrooms. With this purpose in mind, the coding 
framework devised and applied in this study would be a useful tool for other teachers 
wishing to examine and develop their scaffolding strategies. Furthermore, the impact 
of classroom pressures (such as classroom management, curriculum and testing) on 
teachers’ scaffolding strategies – something that policy makers often seem to overlook 
– also merits further investigation. 
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In arithmetics education, two instructional approaches are suggested to teach children 
adaptive strategy use. The explicit approach encompasses the explicit teaching and 
practicing of selected strategies, whereas the problem-solving approach emphasizes 
the analysis of task characteristics and the individual generation of strategies. In a 
one-week intervention study with 79 3rd-graders from 17 school classes, we compared 
these instructional approaches. Results from post- and follow-up tests did not yield 
significant differences between the two approaches in adaptive strategy use or in 
accuracy. In comparison to a control group (consisting of the 162 classmates), the 
combined experimental groups showed a sustainable better achievement for adaptive 
strategy use whereas there was no significant difference concerning accuracy.  
1 INTRODUCTION 
In the last decades, mathematics educators called for a change in elementary arithmetic 
education by questioning the exclusive role of the standard (written) algorithms for the 
basic arithmetic operations. In particular, the acquisition of adaptive expertise, i.e. the 
ability of individuals to solve arithmetic computation tasks efficiently by flexibly 
choosing an appropriate strategy, is attached a more prominent role. Although adaptive 
strategy use for multi-digit computations is considered as an important skill, empirical 
studies revealed unsatisfactory results for primary school students (e.g. Selter, 2001; 
Torbeyns, Verschaffel, & Ghesquière, 2006). Accordingly, it seems that specific 
instructional approaches are necessary to organize effective learning opportunities for 
students. Unfortunately, hardly any empirical studies examining the effectiveness of 
instructional approaches to foster students’ adaptive strategy use exist so far. 
2 ARITHMETIC COMPUTATION STRATEGIES 
There are various ways of categorizing computation strategies for multi-digit addition 
and subtraction (e.g. Threlfall, 2002, pp. 33ff.). We use a categorization with five 
idealized strategies for addition and subtraction problems which is described in 
prominent mathematics education books in Germany (cf. Table 1). We want to 
emphasize that these strategies are idealized strategies. Children obviously use more 
strategies, especially by combining two or sometimes three of these idealized 
strategies. The jump and the split strategy are universal strategies which can be applied 
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for all addition and subtraction problems1. The other three strategies are advantageous 
only for specific problems and cannot be applied efficiently in general.  
 

Jump strategy Split strategy Compensation 
strategy 

Simplifying 
strategy 

Indirect 
addition2 

123 + 456 = 579 
123 + 400 = 523 
523 + 50   = 573 
573 + 6     = 579 

123 + 456 = 579 
100 + 400 = 500 
20 +  50  = 70 
3  +   6   = 9 

527 + 398 = 925 
527 + 400 = 927 
927 –    2  = 925 

527 + 398 = 925 
525 + 400 = 925 

701 - 698 = 3 
698 + 3 = 701 

 

Table 1: Idealized computation strategies. 
2.1 Adaptive strategy use of primary school children 
For examining children's skills of adaptive strategy use - which means children's skills 
of solving arithmetic computation tasks efficiently - we firstly have to describe what 
we understand by an “efficient” solution. We consider two dimensions: (1) For a given 
arithmetic task, one can check from a mathematical perspective which strategy (or 
strategies) need(s) the smallest number of solution steps. (2) There is a student 
performing these solution steps. From a psychological perspective, one can ask how 
much cognitive effort different solution steps require, which obviously depends on the 
knowledge and skills the individual has acquired so far (probably biased by affective 
variables like self-efficacy). Moreover, it is the question in which context an individual 
solves a task. In particular in school, it may happen that students follow a reference 
framework which is different from the mathematical perspective mentioned above (cf. 
socio-mathematical norms, Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009).  
In empirical studies using assessment tests, it has to be defined normatively which 
strategies are considered as efficient for a given arithmetic task and which are not. The 
simplest way to do this is to restrict the criteria to properties of the given task. 
However, as done in many studies (e.g., Klein, Beishuizen, & Treffers, 1998), 
individual characteristics like knowledge and skills also have to be taken into account. 
In our research with 3rd-graders, we first identify the range of strategies which can be 
expected by the group of students under investigation (i.e., strategy repertoire in the 
sense of declarative knowledge as well as the fluent and accurate application of these 
strategies with low cognitive effort in the sense of procedural knowledge). Then for 
these strategies we analyze how they fit to the characteristics of a given task and, thus, 
provide a short solution (normative mathematical perspective). 
As already mentioned in the introduction, empirical findings reveal an unsatisfactory 
proficiency of primary school students concerning the adaptive strategy use. Before 
they learn the standard algorithms, many students have a favourite strategy which they 
                                           
1 It is an open discussion how to deal with the split strategy in case of subtraction problems with regrouping. Some of the 
German textbooks introduce this strategy but avoid the notation of intermediate (negative) results. 
2 The indirect addition strategy is for subtraction problems only. 
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use as a standard procedure ignoring number characteristics of the given tasks (German 
students frequently prefer the jump strategy for subtraction tasks and the split strategy 
for addition tasks, Heinze, Marschick, & Lipowsky, 2009). Moreover, most students 
solely use the standard algorithms after they have been introduced (e.g., Selter, 2001).  
2.2 Influence of the instructional approach 
The unsatisfactory results concerning students’ adaptive strategy use points to the role 
of mathematics instruction. Based on a literature review, we distinguish three idealized 
instructional approaches denoted as routine approach, explicit approach and 
problem-solving approach (see Heinze et al., 2009 for details). The routine approach is 
a traditional approach which follows the idea of “one strategy first”. This means, that 
firstly only one strategy – in general, the jump strategy – is learned and practiced by the 
students so that it can be applied accurately as a routine procedure. After that other 
strategies and their adaptive use are presented in a sense that there exist so-called 
„computation tricks” or „advantageous computations” which are sometimes helpful. 
The explicit approach is a reform-oriented approach which emphasizes the adaptive 
strategy use from the beginning. In an introductory phase, students invent their own 
strategies. After that it is up to the teacher to reduce the diversity of invented strategies 
to a set of main strategies (cf. Table 1) which are successively introduced and practiced 
by the students. By solving tasks and discussing different solutions, the latter follows 
two goals: the acquisition of routine expertise in strategy execution and of experience 
in adaptive strategy use. An example for an implementation of this approach is the 
realistic program design as implemented in the study by Klein et al. (1998). 
The problem-solving approach has a stronger constructivist character than the explicit 
approach. It rejects the assumption that individuals “select” a strategy from an strategy 
repertoire (cf. Threlfall, 2002). Instead, each arithmetic task is considered as a new 
problem and, accordingly, students generate a specific solution strategy for this 
problem (based on their knowledge and experience and on the task characteristics). 
Hence, the teacher does not introduce any “official” strategy but continuously gives 
opportunities to analyze task characteristics, to solve problems and to discuss the 
efficiency of the students’ solution strategies. Based on their experiences, students will 
accumulate knowledge on task characteristics and on skills in applying and judging 
individual strategies so that they will optimize their adaptive strategy use step by step. 
There exist only a few empirical studies that investigated the influence of instructional 
approaches. For example, Klein et al. (1998) in a one-year quasi-experimental study 
with 2nd-graders showed that students' adaptive strategy is improved more by an 
explicit approach than by a routine approach emphasizing one main strategy. Heinze et 
al. (2009) compared 3rd-graders who were taught by textbooks following the routine, 
the explicit and the problem-solving approach respectively. They found an advantage 
for students taught by textbooks with the explicit and the problem-solving approach. 
However, for high achieving students there was no significant difference between the 
three groups. The latter result is in line with results from Torbeyns, De Smedt, 
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Ghesquière, and Verschaffel (2009) showing that high achieving students taught by the 
routine approach can reach a high level of adaptive expertise. 
3 RESEARCH QUESTION AND METHODOLOGY 
Only a small number of empirical studies have investigated the influence of 
instructional approaches on the acquisition of adaptive expertise. Moreover, it is an 
open question whether the reform-oriented approaches (explicit and problem-solving 
approach) differ in their effectiveness. Accordingly, we conducted a strictly controlled 
experimental study addressing the overall research question on the effectiveness of the 
explicit approach and the problem-solving approach on students’ adaptive strategy use 
and students’ accuracy when solving arithmetic computation tasks. Implementing a 
one week intervention as a holiday course, we investigated specifically: 

• Are there sustainable effects of a one-week teaching intervention on adaptive 
strategy use (in comparison to a control group)? 

• Are there differences in the short-term and long-term effects of the instruction 
based on the explicit and the problem-solving approach respectively? 

3.1 Sample, design and instruments 
We focus on 3rd-graders (9-10 years old) because in Germany in the first half of the 3rd 
grade, the number domain is extended up to 1000. Hence, students learn addition and 
subtraction strategies for three-digit numbers. In the second half of grade 3, the 
standard algorithms are introduced. The sample for the intervention comprises 79 
randomly chosen 3rd-graders from 17 classes of German primary schools. In principle, 
the children were randomly allocated to one of the two instructional approaches 
(randomization was controlled for general cognitive abilities, general mathematics 
achievement and socio-economic status). The control group encompasses the 162 
classmates of the children who participated in the intervention. The intervention was 
organized as a one-week course at our research institute during fall holidays in October 
2011. The overall intervention time was equivalent to 16 schools lessons (45 min) and 
accompanied by breaks for playing games and lunch. The lessons were taught by two 
trained research assistants following ideal-typical teaching scripts of the explicit and 
the problem-solving approach (a short overview is given in Table 2, scripts and 
material were approved by expert ratings). To limit the group size, we had two student 
groups for each approach (one group was taught in the first and one in the second 
holiday week). To control for teacher effects, both teachers taught each approach once. 
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Table 2: Content of the one-week holiday course for both approaches 
Data for adaptive and accurate strategy use was collected by trained university 
assistants with a pre-test 2 weeks before the intervention (T1), an immediate post-test 
(T2) and two follow-up tests after 3 months (T3, January 2012) and after 8 months (T4, 
June 2012). The tests at T4 were administered after the students learned the standard 
algorithms for addition and subtraction. The control group participated only in the 
testing at T1, T3 and T4 because the post-test at T2 was during holidays. Each test 
consisted of 8 multi-digit addition and subtraction tasks suggesting specific strategies 
as efficient solutions (e.g. compensation, simplifying or indirect addition, see Table 1). 
The four tests were linked by anchor items: consecutive tests had 6 common items and 
a core of 4 anchor items was part of all tests (403-396, 1000-991, 398+441, 502+399).  
The item solutions were rated two times: firstly as correct or incorrect and secondly by 
the efficiency of the strategy for the given task. For the latter, we used a bottom-up 
procedure to develop a category system. The strategy efficiency was judged 
independently by two persons with an acceptable inter-rater reliability (κ > .70). For 
the results presented in this paper, we assigned 0, 1 or 2 points to each category 
depending on a normative rating whether the used strategy was efficient (2 points), not 
efficient (0 points) or “partly efficient” (1 point). The one-point category encompasses, 
for example, mixtures from efficient and inefficient strategies or inefficient strategies 
where a single simple step is processed mentally. These strategies are not inefficient 
but also not really efficient. For the statistical analysis, we scaled the raw data 
independently for accuracy and adaptivity using the IRT-based Rasch model (software 
ConQuest). This procedure allowed a mapping of the data of different tests on two 

                                           
3 “Easy tasks” can be solved immediately (e.g., 150 + 230), “smart tasks” easily by a specific strategy (e.g., 329 + 141). 
Obviously, the allocation of tasks depends on the individual. 
4 We also conducted interviews which are not discussed in this paper. 

Day Explicit approach Problem-solving approach 

1 Repetition of numbers up to 1000 and small group discussions 

2 
Discovery & practice of jump and split 
strategy, small group discussions of 
individual solutions  

Distance of given numbers, decomposing 
numbers, categorizing tasks in easy, 
smart3 and other tasks  

3 
Discovery & practice of indirect addition, 
compensation & simplifying  

Categorizing tasks, generation  
of easy and smart tasks 

Solving tasks and comparing solutions in small group discussions 

4 
Repetition of all strategies Categorizing tasks and discussing 

individual criteria for categorization 

Solving tasks and comparing solutions in small group discussions 

5 Post-tests and interviews4, closing session 
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uni-dimensional scales (for adaptivity and for accuracy). We conducted the scaling 
twice: once for T1, T3 and T4 comparing the effects of the intervention with control 
group conditions (the control group did not participate in T2) and once for T1-T4 to 
compare the two intervention groups. For all scales, we obtained good item fits and the 
EA/PV reliability at each of the measurement points was satisfying (adaptivity: .74-.90 
and accuracy: .68-.88). Due to the IRT modeling, the measurement units of the scales 
are logits and not absolute values. To give an idea about students’ absolute accuracy 
performance, we can report a rate of correct solutions between 58% at T1 and 70% at 
T4 (although these values are not directly comparable between the different tests). 
4 RESULTS 
4.1 Effects of the teaching intervention in comparison to a control group 
To analyze the effects of the one-week intervention, we compare the results of the 
children who participated in the intervention with those of their classmates for the 
pre-test (T1) and the follow-up tests (T3, T4). The comparison indicates whether the 
one-week intervention has specific sustainable effects in addition to the regular 
mathematics class. Since the results for all tests are allocated on the same scale, we use 
an ANOVA with repeated measurement (see Figure 1). 

 
Figure 1: Development of adaptive and accurate strategy use of the children from the 
intervention (both groups combined) and their classmates (control group). For both 

scales, units of measurement are logits and not absolute values. 
Regarding students’ adaptive strategy use, the main effect “time” is not significant 
(F(2,478) = 1.28, p = .28) but we get a significant interaction effect “time*group” 
(F(2,478) = 5.69, p < .01, partial η² = .03). The latter can be traced back to the 
difference at T3 between the children who participated in the intervention and their 
classmates in the control group (F(1,239) = 11.36, p < .001, partial η² = .04). In case of 
accuracy performance, we get a main effect “time” (F(2,478) = 15.12, p < .001, partial 
η² = .06) but no interaction effect “time*group” (F(2,478) = 1.10, p = .33). As 
displayed in Figure 1, the accuracy performance of both groups increases similarly. 
4.2 Effects of the instructional approach 
For the comparison of the two reform-oriented instructional approaches, we use an 
ANCOVA with repeated measurement for T1-T4. Since we have data on general 
cognitive abilities for the children who participated in the intervention, we include this 
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as a covariate. For students’ adaptive strategy use, it turns out that we get significant 
main effects “time” for adaptivity (F(3,228) = 4.32, p < .01, partial η² = .05) and 
accuracy (F(3,228) = 3.35, p < .05, partial η² = .04). The interaction effects 
“time*group” for adaptivity (F(3,228) = .79, p = .50) and for accuracy (F(3,228) = .60, 
p = .62) are not significant (see Figure 2 for an illustration of the adjusted mean values; 
the values of Figures 1 and 2 are not comparable since we scaled two times, see 3.1). 

 
Figure 2: Development of adaptive and accurate strategy use of students taught by the 
explicit and the problem-solving approach (covariate: general cognitive abilities). For 

both scales, units of measurement are logits and not absolute values. 
5 DISCUSSION 
The findings presented in 4.1 indicate that the one-week intervention was successful in 
the sense that the participating students specifically improved their adaptive strategy 
use compared to their classmates. Even after 3 months, students who attended the 
intervention still show a better adaptivity in their strategy choice. After 8 months, when 
the students learned the dominant standard algorithms in their mathematics class, the 
difference regarding the adaptive strategy use becomes smaller (and is not significant 
anymore) which is in line with findings from other studies (see 2.1). However, it seems 
that for a certain time the comparatively short intervention “protects” the students 
against an unreflected application of routine procedures. Furthermore, the results show 
that the intervention, which aimed at a flexible and task specific application of 
different strategies, had no negative effects on students’ accuracy. This result is 
interesting because it is a plausible assumption that students make more mistakes when 
they have to learn and to apply more than one strategy. Here, in contrast, it turns out 
that an increase in adaptivity is not to the disadvantage of accuracy. Summarizing the 
results of 4.1, we can state that the one-week intervention yielded a specific and 
sustainable intervention effect on students’ ability for adaptive strategy use. 
Comparing the explicit and the problem-solving approach, we cannot report significant 
differences in adaptivity or in accuracy (see 4.2). Although Figure 2 suggests a 
difference between the groups, we cannot report an adequate level of significance. At 
this stage, we are cautious with far reaching interpretations because different 
explanations are possible. For example, it is indeed a possibility that both approaches 
have more or less the same effect on a group level. Then we would conclude that it 
does not matter which approach a teacher follows. Since we only consider aggregated 
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values on a group level in our statistical analysis, another explanation could be a 
compensation of positive and negative effects of each approach. So, it is possible that 
high achieving and low achieving students benefit in a different way from the two 
approaches. We collected a lot of additional data during the intervention by interviews 
on numerical knowledge, perceived socio-mathematical norms etc. In the following 
months, we will conduct further in-depth analyses to examine whether there are 
specific effects of the different approaches.  
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PROBING STUDENT EXPLANATION 
Markus Hähkiöniemi 

University of Jyväskylä 
 
Previous studies have produced several typologies of teacher questions. Often probing 
questions that require students to explain are included into the types of questions. 
However, studies that have created subtypes for probing questions are rare. The aim of 
this study is to elaborate on different ways of asking students to explain in 
mathematics. Altogether, 29 pre-service teachers’ lessons were videotaped. The 
videotapes were coded for teachers’ probing questions. After this, I used the grounded 
theory approach to create categories for types of probing questions: probing solution 
method, probing reasoning, probing argument, probing reason for something, probing 
meaning, probing extension, and unfocused probing questions. The types of probing 
questions are discussed in the paper. 
INTRODUCTION 
Several studies highlight the importance of asking students to explain. There is 
evidence that student explanation has a positive effect on learning and strengthens 
students’ understanding (Rittle-Johnson, 2006; Wong et al., 2002). Explanations also 
make students’ thinking visible and allow the teacher to proceed accordingly 
(Ruiz-Primo, 2011). Furthermore, asking students to explain is important in supporting 
dialogic interaction (McNeill & Pimentel, 2009) and in creating learning possibilities 
for other students too. According to Kazemi and Stipek (2001), teachers’ ways of 
asking questions affect students’ explanation behaviour. Hunter (2008) reported that 
students also learned to ask explanations from each others. 
Traditionally good teachers are considered as good explainers. However, nowadays 
more emphasis is placed on getting the students to explain. In particular, inquiry-based 
mathematics teaching highlights the importance of student explanation (e.g., Kazemi 
& Stipek, 2001). In this study, inquiry-based mathematics teaching means that students 
work alone or in small groups to solve non-standard mathematical problems designed 
to potentially bring forth mathematical ideas related to the topic at hand while the 
teacher supports students’ reasoning and orchestrates classroom discussion. In line 
with Stein, Engle, Smith, and Hughes (2008), inquiry-based mathematics teaching 
consists of launch, explore, and discuss and summarize phases. The teacher introduces 
the problems in the launch phase. Then, students work in small groups during the 
explore phase. Finally, students’ solutions are discussed in the discus and summarize 
phase. The main idea of inquiry-based mathematics teaching is that a teacher has a 
crucial role in activating students to reason more and more mathematically and to build 
mathematical explanations for their findings (Hähkiöniemi & Leppäaho, 2012). 
Questions that ask students to explain are usually considered higher order questions. 
For example, Kawanaka and Stigler (1999) consider higher order questions requesting 
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an explanation or description of a mathematical object, solution method, or a reason 
why something is true or not true. They found that 9.6 % of German, 22 % of Japanese, 
and 1 % of U.S. eight-grade teachers’ questions were higher order questions. The rest 
of the questions asked for a yes or no answer or to state a fact. Also other studies have 
found that the proportion of questions that ask for explanation is relatively small (e.g., 
Myhill & Dunkin, 2005; Sahin & Kulm, 2008).  
Sahin and Kulm (2008) consider three types of mathematics teachers’ questions: 
factual, guiding, and probing questions. Factual questions request a known fact, 
guiding questions give hints or scaffold solution, and probing questions ask for 
elaboration, explanation or justification (Sahin & Kulm, 2008).  Sahin and Kulm used 
the following three criteria for identifying probing questions: (1) ask students to 
explain or elaborate their thinking, (2) ask students to use prior knowledge and apply it 
to a current problem or idea, (3) ask students to justify or prove their ideas. They found 
that the two sixth-grade teachers’ use of probing questions varied from 17 % to 42 %. 
Despite several classification schemes of teacher questions, studies that suggest 
different subcategories for questions that ask for explanation are rare. One such study 
is Kawanaka and Stigler’s (1999) study. According to them, higher order questions 
may request (1) analysis, synthesis, conjecture or evaluation, (2) how to proceed in 
solving a problem, (3) methods that were used to solve the problem, (4) reasons why 
something is true, why something works or why something is done, or (5) other 
information. Kawanaka and Stigler (1999) found that the teachers in the three countries 
asked different kinds of higher order questions. 
The aim of this study is to further elaborate on different ways of asking students to 
explain in mathematics. Particularly, I construct subcategories for different types of 
probing questions that request explanation. The subcategories help us to understand the 
complexity of explanation asking. The following research question guided the data 
analysis: In what ways do teachers ask probing questions that invite students to 
explain? 
METHODS 
Data collection 
The data of this study is a part of a larger study on pre-service teachers’ 
implementation of inquiry-based mathematics teaching. 29 pre-service teachers 
participated to an inquiry-based mathematics teaching unit. The unit included nine 90 
minutes group work sessions about the ideas of inquiry-based mathematics teaching. 
For example, the pre-service teachers practiced how to guide students in hypothetical 
teaching situations (see, Hähkiöniemi & Leppäaho, 2012). Then, each pre-service 
teacher implemented one inquiry mathematics lesson in grades 7–12. All the lessons 
were structured in the launch, explore, and discus and summarize phases. Students 
used GeoGebra to solve problems in 17 lessons. 
The lessons were videotaped and audio recorded with a wireless microphone attached 
to the teacher. The video camera followed the teacher as he or she moved around the 
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classroom. When the teacher discussed with a student pair, the camera was positioned 
so that students’ notebooks or computer screens could be seen. Students written notes 
were collected after each lesson. Additional data, which is not used in this paper, 
includes video recorded debriefing sessions, audio recorded stimulated recall 
interviews of the teachers, and video recorded work of focus students with additional 
camera. 
Data analysis 
Data was analysed using Atlas.ti video analysis software. All the teachers’ subject 
related questions were coded to probing, guiding, and factual questions. The 
definitions for these codes were constructed on the basis of Sahin and Kulm’s (2008) 
definitions. All teacher utterances which requested students to explain or examine their 
thinking, solution method or a mathematical idea were coded as probing questions. A 
teacher utterance was considered as a question if it invited the students to give an oral 
response. For example, utterances such as “explain” were considered as questions even 
though grammatically they are not questions. On the other hand, grammatical 
questions were not coded as questions if the teacher did not give the students a 
possibility to answer the question. 
After this, all the probing questions were further analysed. The grounded theory 
(Glaser & Strauss, 1967) approach was applied. First I viewed to the probing questions 
several times to become familiar with them. Then, I clustered the probing questions 
into categories. I constructed the categories by interpreting what the teacher asks 
students to explain. I used the method of constant comparison (Glaser & Strauss, 1967) 
as I compared each coded question to the other questions coded to the same category. 
In addition, I compared how each question would fit to the other categories. After 
creating the categories, I examined the properties of the categories by viewing 
repeatedly the questions of a certain category. I also compared the categories to each 
other and explored relations between them. Through this process I organised the 
categories into main categories (see Table 1). Due to space limitations, only the main 
categories are discussed in this paper. 
RESULTS 
Altogether, the pre-service teachers asked 345 probing questions that is 25 % of all the 
subject related questions. The categories of probing questions are presented in Table 1. 
Below, I elaborate on the different types of probing questions that the pre-service 
teachers asked.  
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Type of a probing question Frequency Percentages 
Probing solution method  96 28 % 
Probing reasoning  70 20 % 
Probing argument  37 11 % 
Probing reason for something  61 18 % 
Probing meaning  46 13 % 
Probing extension  14 4 % 
Unfocused probing questions 21 6 % 

Table 1: The types of probing questions asked by the pre-service teachers’ (n = 29). 
Probing solution method 
In these kinds of probing questions, a teacher asked students to explain how they 
solved a problem or what they did. For example, in an 8th grade lesson about 
percentages, a pair of students was solving how much juice can be made of 1.5 litres of 
concentrate when 30 % of the juice has to be concentrate. The students had solved the 
problem as shown in Figure 1, when the teacher came to talk with the students: 

Teacher:  Explain a little what you have done here [invites oral response]. 
Student:  We took first 10 % which is this 0.5. Then we multiplied it by 7 to get 70 %. 

Then we added the 30 % to 70 %. 

 
Fig. 1. Students’ solution of how much juice can be made of 1.5 litres of concentrate 

when 30 % of the juice has to be concentrate. 
The teacher’s utterance was a question in a sense that it invited an oral response from 
the students. The question explicitly asked the students to explain what they did 
encouraging the students to explain how they solved the problem. 
This category includes also questions that ask how students reached a solution without 
clearly expressing whether students should explain what they did or how they 
reasoned. For example, the teacher discussed with another student pair about the same 
task as above: 

Teacher: Where did you get that kind of an equation [ 5.130.0 =⋅x ]? 
Student: Well, you need 30 % concentrate. So. This is 30 %. So, when x is multiplied 

by it we get 30 % of x which is 1.5. 

In this case, the student actually responded by explaining the reasoning behind the 
equation.  
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Probing reasoning 
This category includes questions in which a teacher asked students to explain what 
they are thinking, how they reasoned something, how something could be reasoned, 
how they invented something, or what kind of problem they have in their thinking. The 
difference to the previous category is that a teacher explicitly asked to explain 
reasoning or thinking. For example, in a 10th grade lesson about the contingence angle 
of two tangents to a circle, a student claimed that the sum of the central angle and the 
angle of contingence is 180° (see Fig. 2). Then, the teacher asked her to explain how 
she reasoned it: 

Teacher:  From which did you conclude it? 
Student:  Because the two other angles are 90, it becomes 180 [sum of the angles C 

and D], and because this is quadrangle, it is 360 [sum of the angles A, B, C, 
and D]. 

 
Fig. 2. GeoGebra applet for investigating the sum of the contingence angle and central 

angle. 
In this case, the student responded by explaining her reasoning. However, sometimes 
students explained what they did even though the teacher asked about reasoning. 
Probing argument 
In these kinds of probing questions, a teacher asked students to give arguments by 
requesting justification, how students know something, or whether something really is 
as students claim. For example, in an 11th grade lesson about logarithm included the 
following whole class discussion about log216: 

Student:  We got 4. 
Teacher:  Yeah. What would be the argument? 
Student:  Because 2 to 4 equals 16. Isn’t it? 4 to 2. I don’t know. 

In this case, the teacher asked the student to justify his answer but the student was not 
sure about the justification. 
Probing reason for something 
When probing reason for something the teachers asked students to explain reason why 
something is as it is or why the students did something. For example, in a 9th grade 
lesson about divisibility rules, a student claimed that a number is divisible by two if the 
last digit is even. Then, the following discussion occurred: 
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Teacher:  What is the reason, could you..? 
Student:  Because they are divisible by two. […]  
Teacher:  Why is it enough to look at the last digit? 
Student:  Because if the last one would by odd, then the number could not be 

divisible by two. […] 
Teacher:  What is the reason that you can divide the whole number by two? I can see 

that you can divide four [by two]. 
Student:  They are round thousands, round hundreds, round tens, to which only the 

digit in the end is added to. So it is the one digit which matters instead of the 
whole number. […]They are complete thousands, hundreds, and tens, 
which all are divisible by two, and therefore, the whole number is divisible 
by two if the last one is not odd. 

In this episode, the teacher repeatedly asked the student to explain the reason for the 
divisibility rule noticed by the student. At first, the student seemed not to understand 
what kind of reason is asked for, but finally, when the teacher kept on asking, the 
student formulated mathematical explanation for the divisibility rule. 
Probing meaning 
This category includes questions in which a teacher asked students to explain the 
meaning of something. For example, in a 7th grade lesson about the concept of 
variable, the teacher asked about the formula that a student pair had constructed to 
describe a certain phenomenon: 

Teacher:  Tell about this. What does this mean [the students’ formula h∙5 + 2]? 
Student:  Every hour costs 5 Euros plus the 2 Euros entrance fee. 

Often, the pre-service teachers did not explicitly ask for meaning as above but, for 
example, “what happens here?” In the latter case, students are still expected to explain 
what they mean by something. This category includes also questions that encourage 
students to explain more, and thus, clarify what they mean. For example, a teacher 
encouraged a student to explain the meaning of a figure by asking “What do you have 
in the figure?” 
Probing extension 
In these kinds of probing questions, a teacher asked students to explain how their 
solution method would work in a slightly different situation or how the problem could 
be solved differently. These questions invite to explain how a solution could be 
extended to a new direction. For example, a teacher asked this kind of question in an 
11th grade lesson about continuity when a group of students said that a certain 
piecewise function is continuous because the graphs given by the calculator overlap: 

Teacher:  If you calculated it, what would happen? […] How could you calculate 
whether the graphs overlap without drawing the graphs? 

Student:  Is it possible to calculate the intersection points? If you substitute x = 1, it 
will not be possible. 
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In the above episode, the teacher’s questions steered the students to consider using the 
equation of the function in addition to the graph of the function. The question also 
invited students to explain how they could do this. Thus, the question was a probing 
question which asked students to extend their solution to a new direction. The 
difference to guiding question is that students are invited to examine their solution in 
relation to the potential extension suggested by the teacher. In contrast, guiding 
questions help students to solve the problem in first place.  
Unfocused probing questions 
Unfocused probing questions invite students to explain but it is not expressed what 
should be explained. For example, this category includes the following questions: 
“Would you like to say something [about the solution of a problem]?” and “Do you 
have an idea?” 
DISCUSSION 
The results of this study show that there are several different types of probing 
questions. Although all probing questions request explanation, different things are 
asked to be explained. Previous studies have proposed several questioning typologies 
which often include questions that ask for explanation (e.g., Kawanaka & Stigler, 
1999; Myhill & Dunkin, 2005; Sahin & Kulm, 2008). This study created subtypes for 
probing questions: probing solution method, probing reasoning, probing argument, 
probing reason for something, probing meaning, probing new idea, and unfocused 
probing questions. 
Some of the categories of probing questions resemble those of previous studies. The 
category of probing solution method is similar to Kawanaka and Stigler’s (1999) 
question types asking for how to proceed in solving a problem and methods that were 
used to solve a problem. The other question types of Kawanaka and Stigler (1999) do 
not have such a clear correspondence. For example, reasons are asked in the categories 
of probing reasoning, probing argument, and probing reason for something. When 
compared to Sahin and Kulm’s (2008) three criteria of probing questions, the 
justification criteria is similar to probing argument and the criteria of applying previous 
knowledge resembles slightly the category of probing extension. 
A relatively big proportion of the pre-service teachers’ questions were probing 
questions when compared to previous studies (Kawanaka & Stigler, 1999; Myhill & 
Dunkin, 2005; Sahin & Kulm, 2008). Thus, it seems that pre-service teachers are 
prepared to ask probing questions. However, a large proportion (28 %) of the probing 
questions requested students to explain how they solved a problem. Kawanaka and 
Stigler (1999) reported even larger proportion of this kind of questions. Thus, teachers 
need to be aware of what they ask students to explain and ensure that students engage 
also in explaining their reasoning (cf. Kazemi & Stipek, 2001). However, students do 
not always explain their reasoning even though asked for. Thus, teacher needs to keep 
on asking reasoning with slightly different words as illustrated in the results (probing 
reason for something). In future research, it would be interesting to study how the types 
of probing questions are related to types of students’ explanations. 
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WHEN VISUAL AND VERBAL REPRESENTATIONS MEET 
THE CASE OF GEOMETRICAL FIGURES  

Aehsan Haj Yahya, Rina Hershkowitz 
Tel Aviv University,Weizmann Institute of Science 

 
We present the first stage of a "study in progress" whose aim is to link visualization, 
students’ construction of geometrical concepts and their definition, and students’ 
ability to prove. We exemplify this stage in our research (visualization and concept 
formation), by means of paradigmatic examples, which reveal visual and verbal 
processes related to construction processes of geometric figures and inclusion 
relationships between figures and their attributes. Our results confirm known findings 
(e. g., the position of a shape affects its identification and the related inclusion 
relationships) and point to findings in a new direction, like the effect of the question's 
representation on students’ responses concerning the inclusion relationships. 
INTRODUCTION AND BACKGROUND 
Quite many studies investigated the effect of visualization on the construction of basic 
geometrical concepts (e.g. Fischbein, 1993; Fujita & Jones, 2007; Hershkowitz et al., 
1990; Vinner & Hershkowitz, 1980). Many other studies focused on proofs in 
geometry and reported on many difficulties students face in the process of proving and 
in the understanding of its meaning (e.g. Martin et al., 2005). There is definitely less 
research attempting to link these two trends of research with the aim of considering 
findings and insights from one trend as a vehicle for understanding and interpreting 
difficulties which were found in the other. This is quite surprising, considering the fact 
that the accepted way to teach geometry in school in most countries is a hierarchical 
division of contents and teaching approaches from intuitive to formal along the school 
years as if it is clear theoretically and practically that figural, intuitive and visual 
geometrical knowledge is a necessary condition for construction deductive 
geometrical knowledge. For example, the US NCTM curriculum standards (1989) 
claim that "the study of geometry in grades 5-8 links the informal explorations, begun 
in K-4, to the more formalized processes studied in grades 9-12" (p.112). This accepted 
way of teaching is justified by the hierarchical level structure of the van-Hiele theory 
(1958), which is the most comprehensive theory concerning teaching and learning 
geometry. This research report is part of "a study in progress" aimed at linking 
visualization, students' construction of geometrical concepts and their definitions, and 
students' ability to prove. Figure 1 is a schematic presentation of the overall goal of the 
research. In this RR, we exemplify the first stage of the study, visualization and 
concept formation, by means of a few paradigmatic examples, which reveal visual 
processes related to construction processes of geometric concepts. 
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Figure 1: The aim of the research as a whole 

Vinner & Hershkowitz (1980) and Tall & Vinner (1981), focused on the cognitive 
construction of mathematical concepts, and proposed a model of two components: the 
concept definition - the verbal description of the mathematical concept, which 
characterizes the concept mathematically, and the concept image - the cognitive 
structure that includes all the examples and the processes related to the concept in the 
learner's mind. Geometric concepts have a special status: Fischbein (1993) coined the 
term "figurative concepts" and explained that in our thinking the geometric shape is not 
only related to the formal definition, but are also linked to images. 
Vinner & Hershkowitz (1983) and Hershkowitz et al. (1990), found that for each 
geometric concept there is at least one prototypical example. For example the square is 
a prototypical example of the quadrilaterals group. The prototypical examples are 
acquired first, and are therefore found in the concept image of most learners. 
Prototypical examples are usually a subset of the concept's examples with the longest 
"list" of attributes, the critical attributes of the concept and some attributes that are 
specific to that subset but are non-critical. These non-critical attributes have dominant 
visual properties, which have an effect on the construction of geometric concepts, and 
affect the classification and identification abilities, construction, and judgment 
concerning basic geometrical concepts. This phenomenon is in agreement with 
construction of concepts in everyday life (Rosch & Mervis, 1975). Hershkowitz et al. 
(1990) mentioned several ways to judge geometric shapes as examples of a concept: (i) 
Visual judgment: The student relies on the prototype as a visual frame of reference. For 
example, the prototype of altitude of a triangle is an altitude inside the triangle. This 
classification and identification level fits the first van Hiele level (visualization). (ii) 
Judgment by prototype attributes: Classification into examples and non-examples by 
checking the existence and non-existence of the special attribute of the prototype. This 
wrong judgement fits the second van Hiele level. (iii) Analytical classification: 
Students rely on the critical attributes of the concept as they appear in its mathematical 
definition. This correct judgment fits the second/third van Hiele levels. 
The definition implies inclusion relationships between groups of the concepts' 
examples on the one hand, and groups of attributes of the same concepts on the other. 
These inclusion relations have opposite directions (Hershkowitz et al., 1990). For 
example, the squares are included in the parallelograms, but the group of critical 
attributes of the squares contains the group of critical attributes of the parallelograms. 
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THE STUDY (FIRST STAGE) 
The goals of this stage: As mentioned above the overall goal is to investigate 
relationships between visualization and concept formation in relation to definitions and 
proofs. Here we will focus only on the role of visualization and definitions in processes 
of geometrical concept formation. The findings from this stage will be used as a basis 
for (i) defining the knowledge level of the research population in relation to 
populations in other similar research work, and for (ii) the next and more advanced 
stages in our study. 
Population: The participants in the study are 112 tenth grade students from one 
regional high school in the Arab sector in the centre of Israel. The students learn with 
different teachers in three parallel classes, which are considered to be at the highest 
mathematical level among the seven parallel classes in this school. The teachers have a 
first degree in mathematics from the universities in the country and have more than ten 
years of experience in mathematics teaching.  
Methodology: The tools of the three-stage research include three questionnaires, 
distributed at time intervals sufficient for analysing the results of each questionnaire 
and use its findings in the design of the next questionnaire. In the present RR only 
questionnaire 1 is relevant. It deals with visualization (related to quadrilaterals), 
identification and construction of definitions, and the inclusion relationships between 
groups of quadrilaterals. After administering the questionnaire and analysing its 
results, 10 students were interviewed.   
DATA COLLECTION AND FINDINGS  
The data of the first stage were collected in 2012. Questionnaire 1 was administered to 
participants at the end of the first semester. We focus here on data that emerged from 
two tasks in this questionnaire, regarding the inclusion relationships between various 
groups of quadrilaterals, which was investigated in two different ways: visually 
(Figure 2) in the first task and verbally (Figure 3) in the second. 
Data analysis from Task 1 (Figure 2): In Tables 1 & 2, we present only data 
concerning the squares (Figure 2, shapes 1 & 8), and their analysis. We relate 
quantitatively to students' knowledge about the inclusion relationships of squares in 
various other groups of quadrilaterals. This knowledge is investigated within a visual 
presentation and in two different positions of the squares. Table 1 shows that when the 
square is presented in an upright position, almost all students (98%) recognize the 
shape as a square, but 43% recognize it only as square without any inclusion 
relationships, whereas 18% consider the square as rectangle, rhombus and 
parallelogram, and another 7% also see it as a kite. In addition we can see that it is 
easier for students to see the square as a parallelogram (45%) than as rhombus (38%) or 
rectangle (32%) or kite (7%). 
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Figure 2: Task 1 (following NCTM, 1989) 

 
Signed as:  Square Rectangle       Rhombus Parallelogram  Kite   Total   

       48 (43%) 
       1 (1%) 
       1 (1%) 
        2 (2%) 
        8 (7%) 
        12 (11%) 
         1 (1%) 
         6 (5%) 
         5 (4%) 
         1 (1%) 
          20 (18%) 
           7 (6%) 

Total 98% 32% 38% 45% 7% 100% 

Table 1: Inclusion of an upright square in other groups of quadrilaterals 
When we move from shape 1 to shape 8, in which the square is standing on its vertex, 
some results remain similar but others change dramatically (Table 2). Still, most 
students (90%) identify the shape as a square, but 21% consider it ONLY as a square, 
without any inclusion relationships. Another dramatic change is that many more 
students accept that this tilted square (shape 8) is rhombus (66% in comparison to 38% 
concerning the up-right square). All other data do not change appreciably from one 
position of the square to the other. These findings strengthen findings from other 
studies on the effect of the figure's position on its identification. It is worth to mention 
that these difficulties remain and can be found even within groups of teachers and 
teachers-students (Hershkowitz et al., 1990). 

Task 1: Here we have the following shapes! 

 
Write the numbers of all the shapes that are parallelograms__________ 
Write the numbers of all the shapes that are rectangles _____________ 
Write the numbers of all the shapes that are rhombuses____________ 
Write the numbers of all the shapes that are squares______________ 
Write the numbers of all the shapes that are kites  



Haj Yahya, Hershkowitz 

 

PME 37 - 2013 2 - 413 

Signed as Square Rectangle       Rhombus Parallelogram  Kite Total 

 

      24 
(21%) 

       7 (6%) 
       2 (2%) 
        1 (1%) 

 

       28 
(25%) 

        8 (7%) 

        1 (1%) 
         3 (3%) 
         10 (9%) 

          1 (1%) 
          20 

(18%) 
          1 (1%) 
           6 (5%) 

Total 90% 29% 66% 46% 7% 100% 

Table 2: Inclusion of a tilted square in other groups of quadrilaterals 
Data analysis from Task 2 (Figure 3): Like in Task 1, the kite is the most 
"problematic" figure - only 38% of the students identified the rhombus as a kite, and 
only about 20% identified the square as a kite. In addition, only 59% identified the 
square as a rectangle, 68% identified the square and the rhombus as parallelograms and 
70% identified the square as a rhombus. 

 
Figure 3: Task 2 in questionnaire 1 (following Fujita & Jones, 2007). 

As Task 2 investigates verbally what was investigated visually in Task 1, it is 
interesting to compare the results. In Table 3 we present a comparison between the 
findings from Tasks 1 and 2 concerning the parallel items. It is interesting to realize in 
Table 3 that students better identified inclusion relationship verbally, when no 
drawings of the figures were given (Task 2), than when using the drawings (Task 1). 
We can interpret this result as follows: When asked about an inclusion relationship 
based on drawings, students tend to judge visually (van Hiele level 1), without 
worrying if the critical attributes of one figure contain the critical attributes of the 

Task 2. Answer the following questions (Circle the answer which 
seems as correct to you), and briefly explain your answers. 
Is a square a rectangle?   Yes/no          Explanation__________ 
Is a square a parallelogram? Yes/no     Explanation__________ 
Is a square a rhombus? Yes/no             Explanation__________ 
Is a kite a parallelogram? Yes/no          Explanation__________ 
Is a square a kite? Yes/no                      Explanation_________ 
Is a rhombus a parallelogram? Yes/no   Explanation________ 
Is a rhombus a kite? Yes/no                    Explanation_________ 
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other. On the other hand, when are asked verbally about the same inclusion 
relationship, they are pushed to rely on the critical attributes (van Hiele levels 2/3).  
Concerning the reasons that students give for justifying their claims in Task 2, 25% to 
32% give no reasons or reasons that are not geometrical, while 33% to 56% used the 
critical attributes of the included group (e. g., squares), rather than the critical attributes 
of the containing group (e. g., parallelograms). We consider this as prototypical 
reasoning. As the percentage of the prototypical reasoning increases, the number of 
correct answers concerning the inclusion relationship decreases. Only 13% to 42% of 
the participants use the critical attribute of the containing group, for justifying the 
inclusion relationships (e. g., the squares are parallelograms because they have one pair 
of opposite sides which are equal and parallel). 
Task 2: Positive answer Task 1: A correct identification 
Is a rhombus a 
parallelogram? 

69% 58% marked rhombus (shape 2) as parallelogram 

Is a rhombus a kite?  39% 17% marked rhombus (shape 2) as a kite.  

Is a rectangle a 
parallelogram? 

77% 53% marked rectangle (shape 5) as parallelogram  

Is a square a 
rectangle?  

59% 33% -30% marked square (shapes 1 & 8) as 
rectangle. 

Is a square a 
parallelogram? 

68% 47% marked square as parallelogram.  

Is a square a 
rhombus? 

70% 38% marked a square (shape 1) as rhombus and 66% 
marked it for the tilted square (shape 8)  

Is a square a kite ? 17% 7%-8% among the students that identify the shapes 1 
and 8 as square identified it as a kite. 

Table 3: Comparison between the results of parallel items in Tasks 1 and 2 
Examples from interviews  
The purpose of the interviews was to further explore issues that were revealed by the 
analysis of the questionnaire. We present two episodes concerning the issue 
investigated in Tasks 1 and 2:  
Episode 1 (I – interviewer; A – Aseel, a student: discussing Task 1) 

1 I: Determine which shapes are kites. 
2 A: 2, 9. 
3 I: 2, 9 that's all? But, before you said that the square is a kite, you     

remember? 
4 A: Yes. 
5 I: You said that this shape is square, why you don’t say that it is a kite? 
6 A: Because it doesn't have the kite attributes.  
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7 I: A few minutes ago you said that a square is a kite. 
8 A: (silent) 
9 I: What's the problem with the square. 
10 A: That the sides are equal. 
11 I: And the kite? 
12 A: Only the upper sides are equal and the bottom sides are equal. 

Aseel presents a clearly prototypical judgment concerning the kite: Only shapes 2 and 
9 are kites, because they are prototypical kites – they "stand" on a vertex and have two 
different pairs of adjacent equal sides. For Aseel, the square is not a kite, because it has 
this special attribute of the equality of all four sides, which prevents it from being an 
example of a kite, and this in spite of the interviewer’s clear hint (line 7). 
Episode 2 (I – interviewer; R – Raya, a student: discussing Task 1) 

1 I: A few minutes ago you said the square is rectangle. 
2 R: Yes. 
3 I: But here you mark shape no 1 as square but you don’t mark it as rectangle? 
4 R: (silent). 
5 I: Why you don’t mark it, what's its problem? 
6 R: The way it looks! 
7 I: So? 
8 R: I want to change my answer. 
9 I: What would you like to change? 
10 R: "Is the square a rectangle?" before, I said yes. 
11 I: And now? 
12 R: No. 

Raya uses a visual judgment: the square does not look like a rectangle. This fits the first 
van Hiele level. Raya uses a prototypical rectangle, which is in her concept image as a 
visual pattern (how it looks), she doesn't use any attributes.   
CONCLUDING REMARKS 
Our results confirm the findings of earlier studies concerning the effect of visual 
elements on the students’ geometrical concept formation. The source of these effects is 
the existence of prototype examples. It is surprising that when statements were given to 
the students verbally without visual dimension more students identified the inclusion 
relationships accurately and even knew how to explain them. In many cases the strong 
visual properties affect the students’ judgment and the classifications they make. When 
the task is represented verbally, these properties are hidden, but when the task is 
represented visually these properties become active. In summary, we have found that 
many students know the formal definition but do not make use of it when faced with a 
visual task representation. 
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STUDYING MATH AT THE UNIVERSITY: IS DROPOUT 
PREDICTABLE? 

Stefan Halverscheid, Kolja Pustelnik 
Georg-August-University Goettingen, Germany 

 
At German Universities, math course dropouts present a serious problem and have not 
been reduced significantly over the last several years. This makes a diagnostic test for 
high school students desirable, which helps advise students on their needs at the 
beginning of their studies. In the framework of a prep course for beginners in studies of 
math and physics, a test was developed to find out whether the beginners have a big 
gap of knowledge in relevant topics concerning high school mathematics. After the 
first six months, the individual performances in the test were compared to the students’ 
exam results in mathematics. The predictions of the new test turn out to be significantly 
better than the predictions of the school examination marks. 
INTRODUCTION 
Dropout 
Recent research on the dropout quota for Germany (Dieter, 2012) shows an 
approximate quota of 60% dropout for the studies in mathematics and mathematics 
teacher studies. We will refer to “dropout” in the sense that a student does not continue 
her or his studies in mathematics, but perhaps in a different subject. This dropout 
proved significantly higher than that in other subjects, like computer science and 
economics. Over the last decade, the quota has changed very little and continues to 
maintain this level.  
This project was started under the hypothesis that the first year of high school studies 
needs a special focus. In the first two semesters, there is a dropout rate of about 40%. 
Afterwards, the portion of new cases of dropout decreases strongly from year to year. 
A significant gender difference is being observed in the dropout quota. In the first year, 
the dropout rate for men is about 10% smaller than for women, at 45%. This difference 
decreases over the years of study and loses significance after the third year. 
German math courses 
Since the transition from high school to universities concerns many details that are 
nationally specific, parts of this report may appear quite German. We hope to provide 
better insight into the situation, which may be interesting for the situations in other 
countries, too. The dropout rate is especially high at the beginning of the studies. 
Various reasons for the problems at the beginning are named, based on personal 
characteristics (e.g., Reason, 2004), as well as on institutional characteristics (e.g., 
Chen, 2012): The density of information is much higher at universities than it is at high 
school. Furthermore, the requirement for procedural competencies increases strongly; 
in particular, there is a high degree of deductive reasoning that was not learned in 
school. Math courses at German Universities are traditionally theoretical and 
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proof-oriented and start with calculus and linear algebra in the first year. The situation 
concerning linear algebra is similar to that in France, see Dorier (2009). 
THEORETICAL BACKGROUND 
What is dropout? 
The Organisation for Economic Co-operation and Development defines dropout as 
leaving the system of higher education without achieving a degree. These dropout 
quotas are not specific for a subject of study. Rather, it measures the overall 
effectiveness of the higher education system. To evaluate the success of a specific 
course of study, changes of subjects have to be taken into account. Therefore, a dropout 
quota of a specific course of studies can be defined as the percentage of students 
earning a degree in this course from all students having begun this course. This quota 
considers those students who start their studies in mathematics but earn a degree in 
another subject. The quota gives information about one specific subject rather than the 
higher education system. 
Test Concept 
The students were tested one month before their actual studies started in the framework 
of a prep course. Students in mathematics, physics, and pre-service teachers who want 
to teach mathematics at high school take these courses. 
The aim of the test and the course was to decrease the difficulties of the beginning of 
university courses. Therefore, important fields of knowledge were identified, which 
are normally assumed to be known after school and necessary for the algebra and 
calculus courses. To find these fields, the school curricula were compared to the 
content of the university courses. As a result, the following themes were examined in 
the test: differential and integral calculus, trigonometrics, exponential and polynomial 
functions as well as systems of equations and inequalities, vector analysis, and 
foundations of algebra. 
The formulated items asked for declarative knowledge, so procedural knowledge was 
not in the focus. The reason for this decision was the use of computers for an automatic 
evaluation. This made it possible to use the results for determining homogeneous 
seminar groups. The response formats included single and multiple-choice questions, 
as well as numeric answers. The test was scheduled for 90 minutes and was held at the 
beginning of the prep course. The one parameter Rasch Model was used to analyse the 
test, so to each person one person parameter was assigned to describe the test 
performance.  
The test is divided into eight parts, described below, and for each part, one example is 
given. 
Foundations of algebra 
The first section deals with the different types of numbers, the domain of roots, 
fractions, and linear equations in one variable. 
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Example item: Choose the equivalent equations to  with x and y being real 
numbers. 

     

      

Equations and inequalities 
Systems of linear equations with up to three variables and quadratic equations, as well 
as their graphical representation, are treated. 

Example item: Find the solution set of . 
      
     

Polynomials 
The items on polynomials include computations of zeros, symmetry, images, and 
graphs. Rational functions and their domain, symmetry, and limits are also part of this 
section. 

Example item:  How many roots do the following functions have? 
 has         roots. 
 has         roots. 

Exponential and logarithmic functions 
This section deals with the calculation rules of exponentials and logarithms. 
Characteristics of the graphs, like monotony domain, image, and limits are also 
addressed. 
Example item: Which of the following statements are true? 

- The domain of definition of the function  is the set of the real numbers. 
- The domain of definition of the function  is the set of the real number. 
- The image of the function  is the set of real numbers. 
- The image of the function  is the set of real numbers. 

Trigonometric functions 
Definitions on triangles and the unit circle, the periodicity zeros, maxima and minima, 
intersects, and the inverses of the trigonometric functions are treated. 
Example item:  Which of the following statements are true? 

- The graph of the sine function and the graph of the cosine function intersect at . 

- The sine function has a local minimum at . 

- The set of all roots of the cosine function is . 
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Vector geometry 
The items on vector geometry deal with lines, planes, their intersects, and distances 
from points. Computation rules for matrixes are also addressed. 
Example item:  Do the points P(1/1/1), Q(2/3/4) and R(3/5/7) lie on one line? 

Differential calculus 
This section deals with derivatives of elementary function, differentiation rules, and 
the computations of maxima and minima, inflection, and saddle points. 

Example item:  Choose the derivative function of . 

      

     

     

Integral calculus 
Antiderivatives of elementary functions, integration rules, and computation of areas 
are treated in this section. 
Example item:  Choose an antiderivative of the function . 

     

      

      

RESEARCH QUESTIONS 
The official school leaving examination mark is the most frequently used criterion for 
awarding university places in Germany. Even though the quality of this mark has some 
deficiencies, it has proven to be a good predictor for marks at the university (Burton & 
Ramist, 2012) especially in Germany (Trapmann et al., 2007). Therefore, the 
implemented test only makes sense if its prediction of marks is higher than the 
prediction of the school leaving examination.  
Concerning the gender differences in the dropout quota discussed above, it would be 
interesting whether this difference remains when controlled for in the test performance 
at the beginning of studies.  
Last year, the school system in the Western federal states of Germany completed its 
transition from 13 years of school attendance to 12 years. In the last two years, both 
generations of students (13 and 12 years of attendance) entered the universities in the 
federal state of the university where this study was carried out. The different 
performances are another main interest of our study. 
The following research questions are addressed: 

• Is the newly developed test a better predictor for students’ performances than the 
school leaving examination? 
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• Do female students perform in a different way from male students when they 
show the same test results at the beginning of their studies?  

• Is there a difference in university exam grades depending on the time of school 
attendance? 

METHODOLOGY 
The regression analysis is based on a total of N=149 students for the calculus course 
and N=145 students for the algebra course. The students’ exam results in a course as 
the dependent variable was predicted with six different independent variables. Exam 
results are graded from 1 (very good) to 5 (failed); the mark 4 (sufficient) is still a pass. 
The independent variables include the following: 

• School leaving examination marks (SchEx) 
• School leaving examination marks in mathematics (SchExMa) 
• Person parameters of the diagnostic test (PerPar) 
• Gender (Gen) 
• Duration of school attendance (SchDur) 
• Distance between leaving school and starting studies (SchDis) 

School leaving examination marks are graded from 1 to 6, like the exam marks. The 
last three variables are dichotomous: in (Gen), (SchDur) and (SchDis) the value 0 
stands for female, 12 years of attendance, and direct start of the studies after school 
resp., and the value 1 for, male, 13 years and a break of at least a year resp. 
With the six independent variables, a multiple linear analysis of regression has been 
performed to predict separately the results of the exams. Therefore, the independent 
variables have been selected and included step-by-step into the model. In each step, the 
independent variable with the most significant correlation to the dependent variables is 
chosen and added to the regression model, as long as such a variable exists. It is also 
controlled for whether an already included variable loses significance because of 
newly included variables. When all variables adding prediction to the dependent 
variables are included and all other variables are excluded from the model, the 
procedure stops. 
RESULTS 
Results are presented according to the two main tests at the end of the first semester in 
the areas of calculus and linear algebra. 
Calculus 
First, the correlation among the calculus exam results and the independent variables 
has to be investigated. Since the highest correlation is between the person parameter of 
the test and the exam results, it is included in the model. Afterwards, the distance 
between leaving school and starting studies, as well as the duration of school 
attendance, was included in the model in the next two steps. None of the last three 
independent variables has a significant influence on the model and therefore, none of 
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these variables has been included. In addition, none of the included variables has to be 
excluded due to becoming insignificant. The final model can be seen in Table 1. 
Independent 
variable 

R^2 b β T Sig T 

PerPar 0.437 -1.088 -0.695 -10.453 0.000 
SchDis 0.461 -0.650 -0.213 -2.988 0.003 
SchDur 0.480 0.198 0.147 2.071 0.040 

Table 1: Stepwise multiple linear analysis of regression for the calculus exam 
The first column in Table 1 shows the included variables of the model. Here, R^2 
denotes the proportion of variance in the exam results, which can be explained by the 
independent variables included in this step. Therefore, it grows with each included 
variable. The variable “b” denotes the regression coefficients; the regression equation 
model for the prediction of the calculus exam results, including the constant, is thus:  
Calculuspredict.=5.042-1.088*PerPar-0.650*SchDis+0.198*SchDur. 
The variable “β” denotes the standardized regression coefficients. The standardized 
coefficients are those that are obtained when all variables are standardized before 
performing the regression analyses. With the standardized coefficients, the effects of 
the different variables can be compared on one scale. A higher standardized coefficient 
means a higher influence on the dependent variable. The last two columns show a 
T-test on the significance of the parameters being different from 0. With a p-value 
lower than 0.05, a variable is included into the model. 
First, the analyses of regressions show that the diagnostic test possesses a higher 
prediction on the calculus exam results than the school leaving examination marks or 
the mathematics marks on the final school exam. This is why these examination marks 
are not included in the model. This is also reflected in the correlation indexes. The 
index for the diagnostic test is -0.591, higher than the overall school mark of 0.38 or the 
mathematics mark of 0.246. They do not provide any more information after including 
the diagnostic test results. However, this is not surprising, since the three variables all 
measure performances before the beginning of the studies. 
The last variable not included is gender. Gender does not have an extra impact on the 
calculus exam after knowing the three included parameters. However, that does not 
mean there is no gender influence, because the influence might be hidden in the 
included parameters.  
The standardized regression coefficients can also be compared. The quotient of two of 
these coefficients reflects the relative importance of the variable. The test parameter is 
by far the most important variable since it is more than three times greater than the 
parameter of the distance between leaving school and starting studies, and nearly five 
times greater than the parameters of the variable duration of school attendance. This is 



Halverscheid, Pustelnik 

 

PME 37 - 2013 2 - 423 

also reflected in the R^2, which is increased only a little bit by including these 
variables. 
Linear algebra 
Similar to the calculus exam results, the algebra results are predicted mostly by the 
diagnostic test results. However, in the algebra exam there are no further variables 
included in the model. The final model is a simple linear regression: 
Algebrapredict.=5.235-0.836*PerPar. 
While the algebra exam results correlate higher with the school marks (overall: 0.454 
and math: 0.310) the correlation with the diagnostic test (-0.603) is still higher and 
therefore used in the regression model. 
To compare the two exams, a second regression analysis was executed. This time the 
three variables included in the calculus exam were implemented “by force” into the 
model. This model can be seen in Table 2. 
Independent 
variable 

R^2 b β T Sig T 

PerPar 0.411 -0.860 -0.660 -10.056 0.000 
SchDis 0.419 -0.303 -0.118 -1.686 0.094 
SchDur 0.425 0.194 0.083 1.191 0.236 

Table 2: Stepwise multiple linear analysis of regression for the algebra exam 
As expected, the parameters for the two excluded variables are not significantly 
different from 0. Note that the b-coefficient of the diagnostic test results is smaller than 
for the calculus exam. Therefore, the influence is not as strong as for the calculus 
exam. This is also true for the distance between school leaving and starting the studies 
but not for the school attendance duration. However, they are also not significant.  
DISCUSSION 
It is well known that results involving regression models have to be interpreted very 
carefully. An example of this is the comparison of the group of students before the 
reform with 13 years of regular school attendance with the group of students with 12 
years of regular school attendance. For this, quotients of beta values are considered. 
Assuming the same level of proficiency in the class test, the students with 12 years of 
school achieved better results in differential calculus than those with 13 years. The 
difference is significant, but it is not a strong effect, as the b-coefficient is at 0.2. This 
might be an indication that a difference is measurable, but usually is made up during 
the first months.  
Those students who do not enter their studies in the same year when they left school 
clearly perform better (up to b=-0.65). However, there is a clear difference in the test 
performances of these two groups, even though not significant (p=0.065). This 
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indicates that students who enter their studies not in the year they left school can make 
up the difference in the first six months of studies. 
Interestingly, these results only concern differential calculus. In the area of linear 
algebra, the differences are not significant. This could underline that the character of 
linear algebra builds less intensively on knowledge required in school. Processes of 
abstraction and proof are more important than techniques needed for analysis, which 
are to some extent prepared at school. 
Even though the dropout rate of female students is higher than that of their male peers, 
no gender effects could be deduced from the data. It must be concluded that there was 
no further gender effect when controlled for the other variables. 
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CONFLICTING GOALS AND DECISION MAKING: 
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Teaching, at any level, is a very complex activity and at university new lecturers are 
often left to unravel it themselves. Pedagogical goals are an intrinsic part of the 
process and the decisions a teacher makes are crucial in determining whether they are 
met. In this paper we use Schoenfeld’s “Resources, Orientations and Goals” 
framework to shed light on a new university lecturer's resolution of conflicts between 
competing goals in two areas. We find that the framework has efficacy in analysing this 
resolution and the results have implications for the professional development of new 
lecturers. 
BACKGROUND 
In this paper we use Schoenfeld’s framework (2010), that presents goal-oriented 
teaching as a decision making process, to examine the influences on the pedagogical 
practice of a lecturer in her first university position. The primary thrust of Schoenfeld’s 
ideas is that decisions in teaching are made in order to meet goals (G) that the teacher 
has conceived. In turn, these goals are established and prioritised on the basis of the 
teacher’s beliefs, values, dispositions, etc, called their orientations (O). Finally, during 
practice, resources (R) such as knowledge and physical entities are marshalled to help 
attain the goals. A teacher’s resources, orientations and goals for a particular teaching 
scenario will be designated their ROG. Originally conceived as applying to school 
teaching, where it has been employed in research (Aguirre & Speer, 2000; Thomas & 
Yoon, 2011; Törner, Rolke, Rösken, & Sririman, 2010), it is becoming clear that it also 
has applicability to university teaching (Hannah, Stewart & Thomas, 2011; Paterson, 
Thomas & Taylor, 2011). 
One area that this theoretical perspective can illuminate is the resolution of conflict 
between competing orientations and goals. Examples include the teaching of Ben, 
described by Jaworski (2006), whose conflict of orientations was between his belief in 
giving students freedom of choice and his control over their actions. In a similar vein, 
Thomas and Yoon (2011) analysed the resolution of conflicting goals by Adam. They 
showed how his goals to respect cultural influences on his students' learning and to 
meet the requirements of curriculum, time, and assessment led him to keep his primary 
goal to prepare students for future success at the expense of his goal to emphasise 
student-centred learning. At the university level, Paterson, Thomas and Taylor’s 
(2011) study found that two experienced mathematics lecturers faced a conflict 
between their beliefs and goals as mathematicians and as teachers. In one case the 
teacher side won out and in the other the mathematician.  
In order to investigate a teacher’s ROG and its influence on practice it is important to 
build a supportive group around the practice. A key principle underpinning this is that 
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of co-learning (Jaworski, 2001), where both the researchers (mathematics educators) 
and practitioner (university lecturer) view themselves as learners engaged in action and 
reflection. By studying the teaching practice, and reflecting on it critically, these 
co-learners become a community of inquiry (Wells, 1999; Jaworski, 2003). In this 
study all the authors are both mathematics education researchers and practitioners in 
university mathematics departments, with previous experience together of cooperative 
engagement in research based on a community of inquiry (Hannah, Stewart & Thomas, 
2011). One aspect of this that we all subscribe to is the critical alignment of Jaworski 
(2006) where all the participants align with aspects of practice but can play the role of 
critical questioner to move practice forward. In this context we examined the role of 
the second author’s ROG as she sought to resolve conflicts between competing goals 
during the first semester of her first university position. 
METHOD 
The case study described here involves Sepideh, a mathematics lecturer, starting a new 
position at a mathematics department in a research university in August 2012. Her 
teaching duties included two sections of a standard first course in linear algebra. 
Although she already had experience in teaching linear algebra, this was her first full 
time academic appointment, and the first time she had been given full responsibility for 
a course. The 45 students enrolled in each class were mainly engineering students 
together with some mathematics majors. The participants in the study were the new 
mathematics lecturer and two researchers who also had experience of teaching linear 
algebra. The data for this research comes from the new lecturer’s diaries, recording 
major events that happened in her classes, her thoughts prior to teaching a topic, her 
reflections after the end of the course, and also from email correspondence, in the form 
of questions and answers exploring the lecturer's goals and orientations. 
Data analysis was carried out using directed-content coding and analysis of the data, 
based on Schoenfeld’s framework of Resources, Orientations and Goals (ROGs). 
RESULTS 
In this section we present two areas where the lecturer experienced conflicting goals. 
We analyse these conflicts in terms of her ROGs (see Figure 1 for the aspects of the 
ROG relevant to our discussion) and describe how these were resolved. 
Conflict 1: Which order to teach? 
Three of Sepideh’s goals relate the issue of order of presentation of material. 
Goal 1: To cover the syllabus within the allocated time. 
This is, of course, an implicit goal of all teaching (R1, R2). Sepideh says, “In the 
beginning I basically taught very closely to the book. [R4]” This had the advantage of 
preserving the formal structure of the syllabus: “I know at least two other instructors 
that didn’t cover transition matrices. How did they cope teaching this section then, if 
students didn’t know what a transition matrix was?” On the other hand, she had the 
freedom (R3) to try different ways of presenting the material: “One of the 
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mathematicians said: you need to feel your audience, if they are not really up to much 
formal ideas (namely the engineers) you can make it less proof orientated. [O7]” 
Goal 2: To introduce every topic with a picture. 
Goal 3: To show the importance of being able to understand the formal world. 
These two goals both stem from Sepideh’s beliefs (O1, O2 and O3) about the 
usefulness of Tall’s theory of Three Worlds (Tall, 2004, 2008, 2010) as a way of 
understanding students’ learning of mathematics.  
Resources (knowledge, experience) 

1. Knowledge of syllabus to be covered. 
2. Knowledge of time constraints, both 
in the classroom (for covering the 
syllabus) and outside the classroom (for 
preparing teaching resources). 
3. Freedom to adopt her own approach to 
the subject, bringing her research to the 
lectures. 
4. Text-book set down for the course. 
5. Other texts covering the same 
material in different ways. 
6. Blackboard (especially for pictures). 

7. PowerPoint slides 
8. Data projector and document camera. 
9. D2L online system. 
10. Experience that students struggle with 
definitions and proofs in Tall’s formal world. 
11. Experience that students feel comfortable 
carrying out routine calculations in Tall’s 
symbolic world. 
12. Experience that students sometimes 
struggle to interpret diagrams or to connect 
them to the symbolic world. 

Orientations (beliefs)  
1. Belief that students learn by sampling 
Tall’s three worlds and building their 
concept images as they go. 
2. Belief that students should progress 
from the embodied world on to the 
symbolic world and finally to the formal 
world. (Modified during our 
discussions.) 
3. Belief that, for full understanding, 
students need to grasp a concept in all 
three worlds. 
4. Belief that although the text-book has 
some nice examples, it adheres too 
closely to a definition-theorem-proof 
style of exposition. 
5. Belief that her exposition should 
proceed from easy material to harder 
material. 

6. Belief that students should be interested in 
and engaged with a topic as soon as possible in 
order to promote understanding. 
7. Belief that students in service courses will 
not be interested in definitions and proofs. 
8. Belief that traditionally mathematicians use 
a written form of presentation, with students 
copying. 
9. Belief that as many resources as possible 
should be made available online. 
10. Belief that providing good, clear notes on 
PowerPoint slides has value for student 
engagement and understanding. 
11. Belief that students should see the 
usefulness of mathematics. 

Figure 1: The lecturer’s resources and orientations related to the areas of conflict. 
This theory is based on three mental worlds of mathematics: embodied, symbolic, and 
formal. The embodied world is where we think about the physical world, using “…not 
only our mental perceptions of real-world objects, but also our internal conceptions 
that involve visuo-spatial imagery” (Tall, 2004, p. 30). The symbolic world is where 
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actions, processes and their corresponding objects are realized and symbolized. The 
formal world comprises defined objects, presented in terms of their properties, with 
new properties deduced by formal proof. These worlds describe qualitatively different 
ways of thinking that individuals develop as new conceptions are compressed into 
more thinkable concepts (Tall, 2008). All three worlds are available to, and used by, 
individuals as they engage with mathematical thinking, and they interact so that “three 
interrelated sequences of development blend together to build a full range of thinking” 
(Tall, 2008, p. 3). Tall observes that “Although embodiment starts earlier than 
operational symbolism, and formalism occurs much later still, when all three 
possibilities are available at university level, the framework says nothing about the 
sequence in which teaching should occur” (Tall, 2010, p. 22). For example, Tall claims 
that many students learning mathematical analysis would be happy to think and operate 
entirely in the formal world, whereas others may prefer to think in terms of thought 
experiments and concept imagery. Hence, no single approach is privileged over 
another and decisions can be based on the objective of each course so we do not “inflict 
formal subtleties on students who are better served by a meaningful blend of 
embodiment and symbolism” (Tall, 2010, p. 25]. 
Despite this last remark, Sepideh prefers to follow the ‘natural’ sequence of 
development: first embodied, then symbolic, and finally formal. Hence her desire to 
start every topic with a picture: “I wanted to start from the embodied world (whenever 
possible),” even if experience is forcing her to modify her views: 

The more I teach and get experienced … the more I think about the same question of the 
progression of the worlds and the sequence in which they should be taught. I know I 
wouldn’t start from the formal world (especially with abstract notations) as I don’t achieve 
anything there [R10, O6, O7]. This leaves me with the embodied and symbolic worlds.  I 
believe in the flow of easy to hard [O5], but I don’t say the embodied is necessarily easier 
for students. I don’t see that many overjoyed faces when I draw pictures for linear 
combinations of two vectors [R6], but I do see more pleasing responses when they see two 
vectors are scalar multiplied and added (using numbers and vectors) [R11]. I know some of 
my [pictures] are a bit confusing. 

Hence also her desire to aim for the formal world: “I wanted them not to be afraid of 
[or] avoid the theorems and definitions that were in the book and see their usefulness,” 
even though she knows (R10) that some students struggle in the formal world: “One 
student] said he failed linear algebra last semester because the instructor only did 
proofs and [theorems] with hardly any examples that students could do.” 
Trying to meet these goals simultaneously was fraught with difficulty: 

I went to the library and found the book by Lay and have been using it. The textbook for 
this course by Kalman and Hill is very proof orientated – I am not stressing the proofs as 
such. I also got the book by Poole which I am going to use teaching vectors (it has many 
[pictures] and I am planning to use them in my teaching).  

Thus, initially, driven by the need to cover the syllabus (G1), she followed the 
text-book (R4) but found (O4) the book too close to the formal world as a starting point 
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(R10, O2). This drove her to seek other texts (R5). But deviating from the text-book 
comes at a cost: 

I spent a lot of time [R2] thinking about how to introduce my material and make everything 
interesting to capture my audience (the math majors and engineers) [G5, see below]. … I 
was constantly trying to make decisions about how to introduce the lesson [O6], which 
[pictures] to use [G2], which definitions would be useful [G3] and at the same time  
containing  all the major points, which examples to use to back up my arguments, which 
theories and proofs to include.  

Conflict 2: Presentation style 
The second area of conflict that we present concerns decisions around the presentation 
style that Sepideh would use in lectures. It arose from two pairs of goals, goals 1 (see 
above) and 4, and goals 5 and 6. 
Goal 4: To be the best possible teacher of mathematics.  
Goal 1 was introduced in Conflict 1, and Goal 2 is a natural consequence of being a 
new lecturer in a mathematics department.  She sees herself as a mathematician, 
stating:  

I am a mathematician—I don’t need real life examples to make me interested in 
mathematics or make me interested in teaching mathematics. I love maths for the sake of 
maths—but my students are not like that, so I am prepared to change to meet their needs.   

These two goals came into pedagogical conflict with the following two goals. 
Goal 5: To make the presentation interesting and engaging for students to capture her 
audience. 
Goal 6: To provide on-line for students as many of the notes and other resources as 
possible. 
The conflict is confirmed by her response to a question we put to her “Going against 
my own beliefs [O6, O9] was also a conflict for me. I know writing on the board [R6] is 
not going to help but I still did it [O8]. By that I mean writing too many proofs and 
theorems and definitions [R10, O7] to the point of drowning everyone”. We see 
through a series of four decision points in the lectures how the conflict is managed and 
the presentation style is gradually refined in an attempt to resolve the conflict. The first 
decision lasted through the opening lectures of the course. After a few weeks she notes 
the presentation conflict, or struggle, in these words: 

I feel like I answer all their questions quickly and write a lot on the board [R6], like a good 
mathematician does [O8, G4], and of course they copy. I tried making slides [R7], but it 
takes so long—I tried to summarise things and then put it on slides that seems to be more 
effective [G5]. Still struggle to present in the best way possible [Conflict 2]. 

We see the tension between the time it takes (G1) to do the examples live (Sepideh 
copied the examples from the textbook and wrote them on the board live. Later she 
typed them into her lecture slides and thus made them available online), like a 
mathematician (O8, G4), and using pre-prepared PowerPoint slides (R7). The initial 
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compromise, likely fuelled by Goal 6, is to make summary slides, but to continue with 
hand written examples on the board (R6) as a prominent part of the lectures. Within 
another week or so the strong Goals 5 and 6 seem to be having more of an influence on 
the presentation style. She comments in her diary on her presentation style and its 
effect on students: 

I did some geometrical and algebraic examples on the board [G2]. Then showed more 
geometrical representations of subspaces on slides [O2, R7]. This time I made slides and 
put all the definitions, theories and some [pictures] on the PowerPoint slides [O11]. I think 
students got something out of my efforts as they started asking questions [O6]. I think that 
is a good sign, meaning that they can understand enough to see what is going on and ask 
questions [G5]. 

Hence, at this point, although there are still worked examples done by hand on the 
board (G4), there has been a move towards putting examples on the slides, along with 
‘definitions, theories and pictures’. Finding the balance is difficult, since as she notes 
in response to a question “I know having too many slides is not going to be effective 
[O6] but I still fell into the trap and did it.” The following comment on student 
understanding indicates the growing presence of the goal to build understanding 
through engaging students in lectures (G5). By week 8 of the course we begin to see 
recognition of the influence of resource provision (G6) on her practice. 

I did two examples [R6, G4] one to find a basis for the row space where I reduced the 
matrix and read off a basis from the reduced matrix. I did another example and reduced the 
matrix but read a basis corresponding to the leading 1’s columns from the original matrix. 
This worked much better…I found a nice summary from Poole in finding null space, row 
space and column space which I wrote on the board [R6, G4] and later posted them with 
my slides up on the server [R7, O9, O10, G6]. 

Some 9 weeks into the course we see a small move away from writing on the board in 
favour of a different resource. The diary entry makes it clear that the motivation here is 
to engage the students mentally (O6, G5) rather than have them copying all the time. In 
addition it facilitates the goal of putting the material online (O9, G6). 

I felt that the book didn’t have many good examples about orthonormal vectors, so at the 
beginning of the class I put 3-4 examples on orthogonality, orthonormal vectors and 
showing inner products (using the 4 criteria) on the document camera [R8] and went 
through them. I told them not to copy and just listen [O6, G5] because I was going to scan 
those and make them available online [O9, G6]. We have a system called D2L (Desire to 
Learn) [R9] to post all of our resources there)…I try to make my classes as interactive as 
possible–I don’t like it when I am writing and they just copy [O6, G5]. 

Overall the goal to write examples remains throughout but it has been moderated 
somewhat by the very strong goal to interest and engage the students [O6, G5]; to have 
them listen and think and not just be copying. Since she wants to provide copies of the 
examples to students, but doesn’t want them to copy and it is not possible to provide 
them with electronic versions of notes written on the board (R6), Sepideh has found a 
way around this by using the document camera resource (R8).  
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DISCUSSION 
Teaching at any level is a very complex practice and this study provides some further 
support for the view that Schoenfeld’s (2010) framework is a useful vehicle for 
describing and analysing issues, such as conflicting goals, related to the complexity of 
university teaching. In this case study we have highlighted the trials of a young 
researcher, eager to bring her research into the classroom and as we described, at times 
this was not a straight forward task and was causing conflicts. We also have examined 
the difficulties of decisions in balancing competing goals. Furthermore, the lecturer 
facing this complexity was provided with no resources other than a textbook. As she 
says “That’s ok if you only want to use the chalk and talk—but it is no way going to 
work if you have so many ideas for making your lectures better.” Hence her efforts in 
producing new resources that were fresh and interesting, based on a new book, a new 
audience and her beliefs in what teaching should be, were very time consuming. She 
valued the freedom to choose that she was given and did not necessarily want a 
collection of prepared slides that might not have suited her beliefs and teaching style.  
So what would have helped her to deal with difficult decisions about the order of 
presentation of the material and to encourage her natural teaching style? Our study 
suggests two ways forward. Firstly, it is clear that an increase in preparation time for 
new lecturers would have assisted. Allied to this would be systems by which resource 
ideas could be shared with new colleagues, reducing the preparation time pressures.    
Secondly, it appears that as part of her professional development the new lecturer 
should be provided with the opportunity to discuss issues with colleagues. One way to 
provide this would be in the form of a department mentor, an experienced colleague 
who provides the opportunity for a reflective discussion of teaching issues. 
Mathematicians have a reputation for not being good communicators. As Byers (2007, 
p. 7) declares: “Many mathematicians usually don’t talk about mathematics because 
talking is not their thing-their thing is “doing” of mathematics”.  However, as Sepideh 
comments, while “Talking and confronting things is not easy, you discover things 
about yourself that you didn’t know before” and so she described this project, and its 
formation of community of co-learners, as a great way of getting someone to talk about 
your teaching.  
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The article presents results from a cross-cultural comparison of mathematics teachers’ 
beliefs. We report the differences in Estonian, Latvian and Finnish mathematics 
teachers’ self-reported constructivist teaching practices. Additionally, we explore how 
much of these differences can be explained by teachers’ beliefs and their schools’ 
micro-cultures. Results indicate that teachers’ beliefs and cultural context explain 15 
% of the variation in constructivist teaching practice of mathematics teachers while 
the school micro-culture does not provide a significant additional effect. 
TEACHERS’ BELIEFS AND PRACTICES IN CONTEXT 
Extensive research on teachers’ beliefs has been inspired by assumption about the 
significant influence of teachers’ beliefs on classroom practice. Lately such simplified 
view has been challenged by studies indicating complex and dialectical nature of 
relationships between teacher’s beliefs and practice (Handal & Herrington, 2003) 
instigating the studies that put more emphasis on contextual factors. The presented 
study is based on the theoretical framework reflecting the role of culture, school 
micro-culture, and teacher beliefs in the formation of actual classroom practices. Our 
results of a cross-cultural survey of mathematics teachers’ beliefs in Estonia, Latvia, 
and Finland show how beliefs and context are influencing teaching practices in these 
countries. 
The latest research shows that only a contexture of manifold individual and contextual 
factors can help to elucidate the observed differences in teaching practices. Quite often, 
though, the educational research focuses on relationships between single internal or 
external factor and effective teaching practice, more seldom the larger number of 
variables are explored. This study is based on the theoretical framework (see Figure 1) 
including both individual factors of teachers, i.e. their teaching beliefs, and contextual 
factors on two different levels considering the interactive nature of internal and 
external circumstances.  
Individual factor: teachers’ beliefs 
Based on the studies showing that beliefs shape teachers’ decisions (Schoenfeld, 
1998), it is evident that contextual factors impacting learning achievements, are 
mediated by the teachers. Teachers’ beliefs about mathematics and its teaching and 
learning play a significant role in shaping teachers’ instructional behaviour 
(Thompson, 1992). In this study beliefs are understood broadly as conceptions, views 
and personal ideologies that shape teaching practice. Currently educational community 
widely assumes that teachers’ beliefs about the nature of teaching and learning include 
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both “direct transmission beliefs about learning and instruction” or, so called, 
“traditional beliefs” and “constructivist beliefs about learning and instruction” (OECD, 
2009). 
Belief research in mathematics education has focussed on how teachers view the nature 
of mathematics, its learning and teaching, and teaching in general. What the teacher 
considers essential in mathematics as a discipline, would also influence the teaching 
methods they apply (Dionne, 1984; Ernest, 1991). 

 
Figure 1. The theoretical framework for the study. 

The results of our previous study (Hannula, Lepik, Pipere, & Tuohilampi, 2013) show 
that the mathematics teachers’ general teaching beliefs were related to their beliefs on 
mathematics teaching. Teachers who believed more strongly in constructivist ideas 
also supported the process aspect of mathematics more, while those who held a more 
traditional view of teaching emphasized the toolbox aspect of mathematics. Yet, it is 
important to notice that there was no negative correlation either between 
constructivism and toolbox aspect or between traditional view and process aspect. 
Contextual factors: culture and school micro-culture 
Teaching does not happen in a social vacuum – at least two principal levels of 
contextual factors should be acknowledged in educational research by analogy with the 
interaction of microsystem, exosystem, macrosystem, and chronosystem described in 
Ecological Systems Theory (Bronfenbrenner, 1994). More comprehensive level of 
contextual factors is the overall cultural milieu manifesting in both official and 
unofficial aspects. Well-discerned official aspects include, for instance, the 
economical and social situation in the country, and national educational policy. The 
unofficial aspects of the culture do not always follow the national borders. They impact 
schooling through the values of education and the teacher-student relationships. 
The teachers’ actions are also constrained at the more specific level of contextual 
factors. The local micro-culture, i.e. shared vision, values, goals, beliefs, and faith in 
school organization (Deal & Peterson, 2009; Fullan, 2005) is reflected in the school 
rules and norms and in the way teachers collaborate. On the other hand, the teacher is 
an important actor of this micro-culture and may influence its development over time. 
The importance of school micro-culture has been found repeatedly in intervention 
studies. For example, in an evaluation of one large professional development program 
within mathematics education (Bobis, Clarke, Clarke et al., 2005), the aspects that 
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were considered most effective were the practical resources and activities, the 
assessment process, the influence of significant people, classroom support, and the 
opportunity to share ideas. 
Associations between the individual background, the school context, teachers’ beliefs 
and practices and the learning environment are consistently found in a large number of 
countries (OECD, 2009). However, in different countries the content, scope and 
interaction of these variables considerably differ. So far, a few studies have compared 
teachers’ beliefs across countries (e.g., Andrews, 2007; Andrews & Hatch, 2000; 
Felbrich, Kaiser, & Schmotz, 2012). Cultural differences determined, for instance, by 
religion or language within country may also relate to teachers’ beliefs and practices. 
As the review on variables of mathematics education in high-performing countries has 
shown (Askew, Hodgen, Hossain, & Bretscher, 2010), high achievement of students 
could not be so much connected with specific mathematic teaching practice as to the 
cultural values. When cultural minorities are educated in their own schools, the 
different cultural values might also contribute to differences in approaches to teaching 
mathematics.   
Focus on Finland, Estonia and Latvia: similarities and differences 
The countries participating in presented study are geographical neighbours, though 
with different historical, economical, and social background. Finland, Estonia, and 
Latvia have similar school systems in several aspects. Pupils start school at the age of 
six or seven years, and compulsory school lasts nine years in each country. In 
compulsory school, pupils most often study in mixed-ability groups as there is no 
tracking. In Estonia and Latvia mathematical rigor, exact use of language, deductive 
approaches and reasoning were stressed under the Soviet system until the 1991. Later, 
the constructivist teaching approaches have been actively promoted, although not 
always embodied similarly strongly on all school stages (Pipere, 2005) or not always 
fully dismissing the transmission way of teaching mathematics (Lepik, 2005). In 
Finland student-centred approaches have been dominating and the national policy have 
emphasised mathematics and sciences since the 1990th.  In all three countries teachers 
are trained at the university level. Currently about 25% of students in Latvia and 19% 
of students in Estonia attend schools with Russian language of instruction. 
Our previous study (Hannula, Lepik, Pipere & Tuohilampi, 2013) indicates that 
Latvian mathematics teachers emphasize the constructivist teaching beliefs most, 
while Estonians are the strongest supporters for the traditional beliefs. In general, 
Finish teachers agree the least with both of these approaches. As to the differences 
within Estonia and Latvia according to the language of teaching, Russian speaking 
teachers put more emphasis on proofs. The school micro-culture – as reflected in 
teachers’ perception of collaboration and recognition at their school – seemed to have a 
clear connection to constructivist practices in both Latvian subsamples and in Estonian 
speaking sample from Estonia but not in the other groups. 
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RESEARCH QUESTIONS 
Based on the review of the literature, we consider our model (Figure 1) to capture the 
main factors explaining the differences in approaches to teaching practices. Drawing 
from the previous analysis, the cultural factors can be viewed as bearing influence not 
only on the local school micro-culture and teacher beliefs apart but also on how school 
micro-culture and teacher beliefs relate to each other (Hannula et al., 2013).  
Therefore, in this paper we will explore the following research questions: 1) What kind 
of differences in mathematics teachers’ support for constructivist approach in their 
teaching practice can be identified between the teachers from following cultural groups 
– Finnish, Estonian speaking Estonian, Russian speaking Estonian, Latvian, and 
Russian speaking Latvian, and 2) how much of the cross-cultural variation in teaching 
practice can be attributed to local micro-cultures and individual teachers’ beliefs? 
METHODS 
Participants 
In total the data was collected from 815 7-9th grade mathematics teachers in Estonia 
(n=333), Latvia (n=390), and Finland (n=92). A subsample of teachers from Russian 
speaking schools was collected in Estonia (n=99) and Latvia (n=96). The Estonian 
teachers’ length of service of ranged from 1 to 59 years (M=22), the Latvian teachers’ 
length of service of ranged from 1 to 44 years (M=23), and the Finnish teachers’ length 
of service of ranged from 1 to 35 years (M=14). The data collection has been 
completed between 2010 and 2012. 
Instrument 
A seven-module questionnaire was devised to explore aspects of mathematics 
teachers’ beliefs on mathematics teaching and their classroom practice. In this paper, 
we focus on four modules about teachers’ (1) overall job satisfaction; (2) general 
beliefs on teaching and learning; (3) beliefs on mathematics teaching and learning and 
(4) self-reported teaching practices. Teachers responded to items in modules (1) to (3) 
using a 5-point Likert-scale from strongly agree to strongly disagree and to items in 
module (5) using a 4-point Likert-scale (from never to (almost) every lesson). 
Based on the factor analyses of three modules we computed following sum variables: 
School micro-culture: Collaboration and recognition (α = .696; 5 items); General 
teaching beliefs: Constructivist approach (α = .726; 12 items), Traditional approach (α 
= .575; 4 items); Mathematics teaching beliefs: Process (α = .731; 9 items), Toolbox (α 
= .676; 6 items), Proofs (α = .592; 4 items). The sum variable for teaching practice was 
represented by Constructivist practices (α = .623; 5 items). 
Theoretical background, development and structure of the questionnaire as well as the 
sample items for first three modules are described more thoroughly in the previous 
papers (Lepik & Pipere, 2011; Hannula et al., 2013). 
The last module measuring self-reported teaching practices consisted of eight items on 
how often teachers ask their students to engage in certain classroom practices, e.g. 
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“Decide on their own procedures for solving complex problems”. Based on a factor 
analysis we identified three dimensions: Facts and routines, Constructivist practices 
and Use of computers. Because only the Constructivist practices formed a reasonably 
reliable scale, we will focus our analysis on this dimension.  
Analysis 
A one-way between subjects ANOVA was conducted to compare the effect of culture 
on teachers’ self-reported use of constructivist teaching methods. The five different 
cultural contexts of our study were determined by the country, but in Estonia and 
Latvia also by the language of instruction at school. 
We compared four different models for analysing the effect of different variables on 
constructivist teaching practices. The GLM univariate analysis used in this study 
allowed for analysis of the effects of both continuous and categorical variables. The 
first model included only the teacher beliefs (Constructivist approach, Traditional 
approach, Process, Toolbox, and Proofs) as independent variables. The following 
models included stepwise also the school micro-culture (Collaboration and 
recognition), the country (Finland, Estonia, Latvia), and the language (i.e. the 
Russian-speaking minorities). Through this analysis we can assess how much 
additional information we gain including the cultural context in the model. 
RESULTS 
The analysis of variance indicated a 
statistically significant effect of 
context on teachers’ use of 
constructivist teaching for the five 
cultural contexts [F(4, 801) = 6.211, p 
= 0.000]. More specifically, Estonian 
speaking Estonian teachers and 
Finnish teachers indicate less frequent 
use of these methods than the other 
three groups (Table 1). The post hoc 
analysis (Tamhane) indicated that 
Estonian speaking Estonian group 
differed statistically significantly 
from Russian speaking Estonian 
teachers (p=.009) and both Latvian 
groups (Russian-speaking: p = .025; Latvian-speaking: p = .004).  
The next level of analysis was to test the hypothesis that the cultural variation is 
mediated through the local micro-culture of the school and teachers' beliefs. The first 
model included only teachers general teaching beliefs (constructivist or traditional) 
and their view of mathematics (Process, Toolbox, Proofs) as independent variables. 
The model gives a statistically very significant prediction explaining over ten percent 
of the variation (partial eta squared = 0.129). The more detailed models increased the 
effect size only a little (Table 2). 

Cultural context N Mean Std. 
Deviation 

Latvian 294 2.40 .369 
Latvian Russian 95 2.43 .391 
Estonian 232 2.28 .387 
Estonian Russian 91 2.46 .440 
Finnish 94 2.27 .495 
Total 806 2.36 .406 

Table 1. The mean and standard deviation 
for teachers’ reported use of constructivist 

methods in the five cultural contexts studied. 
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 Model I 
(Teacher 
beliefs) 

Model II 
(Model I + 
micro-culture) 

Model III 
(Model II + 
country) 

Model IV 
(Model III + 
language) 

Source Sig. Partial η2 Sig. Partial η2 Sig. Partial η2 Sig. Partial η2 

Corrected Model .000 .129 .000 .133 .000 .143 .000 .150 

Intercept .000 .047 .000 .037 .000 .035 .000 .039 

General teaching 
beliefs: 

        

Constructivist .000 .022 .016 .018 .001 .016 .001 .017 

Traditional .049 .005 .063 .005 .072 .005 .082 .004 

Mathematics 
teaching beliefs: 

        

Process .001 .016 .000 .018 .000 .019 .000 .018 

Toolbox .655 .000 .579 .000 .394 .001 .377 .001 

Proof .024 .007 .037 .006 .024 .007 .079 .004 

Collaboration 
and recognition 

  .162 .003 .216 .002 .229 .002 

Country     .014 .012 .173 .005 

Language       .088 .004 

Country x  
Language 

      .072 .005 

Table 2. Statistical significances and effect sizes of dependent variables on teachers’ 
preference for constructivist teaching practices. Results of four alternative GLM 

Univariate models. 
The two most important variables to predict use of constructivist methods were the 
teachers overall constructivist beliefs and their perception of mathematics as a process, 
which together predicted 3.5 percent of the variation in the final model. Independent 
from those also emphasis on proofs and overall traditional teaching beliefs had an 
influence in the teaching practices. However, these effects lost their statistical 
significances when country and language were added into the model.  
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Our preliminary analysis indicated a statistically significant correlation between the 
local micro-culture and teaching practice. The GLM univariate analysis reveals that the 
effect was fully mediated by teachers’ beliefs.  
Country had an effect on teaching practices (p<.05; partial eta squared = .012) that was 
independent from the teachers’ beliefs. When the language was added into the model, 
the statistical significance was lost. These results indicate that the observed effect of 
the country is intertwined with the language of education. 
DISCUSSION AND CONCLUSIONS 
Our data indicated that the cultural context (country and language) of education   
influences mathematics teachers’ preference for constructivist teaching methods. We 
found that teachers’ beliefs were an important predictor for teaching preferences, while 
the local micro-culture had no effect independent from teachers’ beliefs. Previous 
research has provided strong evidence for the importance of local micro-culture in 
teacher professional development. Our results are not in conflict with those results, but 
rather indicating that the influence of local micro-culture is realized through teachers’ 
beliefs. 
We also found that the country had an influence that could not be attributed to teacher 
beliefs only. This suggests that some contextual influences may influence practice 
while not influencing teachers’ beliefs. An interesting observation was that the 
influence of some teacher beliefs was partially overlapping with cultural factors. 
Before including language in the model, teachers’ emphasis on proof was statistically 
significant factor influencing teaching practices. When the language was included into 
the model, this effect was decreased. Such finding indicates that some observed 
influences of teacher beliefs on teaching practices may, in fact, be cultural influences.  
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