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International Group for the Psychology of Mathematics Education (Vol. 3, pp. 3-9). Umeå, Sweden: PME. 

FRAMING THE SOCIAL DYNAMICS OF SMALL 

GROUP WORK IN ADOLESCENCE AS PEER CULTURES 

OF EFFORT AND ACHIEVEMENT 

Jill V. Hamm1, Abigail S. Hoffman1, Kerrilyn Lambert1, and Daniel J. Heck2 

1University of North Carolina at Chapel Hill and 2Horizon Research, Inc. 

 

This study applies the concept of peer cultures, which involve the values and concerns, 

habits and routines, and roles that students develop through sustained interaction with 

one another, to characterize the social dynamics of mathematics small group work. 

Each dimension was coded in time sample intervals in 30 small group audio- re-

cordings from 27 American 6th-9th grade classrooms. The major dimensions of peer 

cultures could be reliably coded in mathematics small groups, and variations in fre-

quency and quality of each dimension were evident. Coding of 23 more groups will 

occur; analyses will continue to document the frequency and quality of these dimen-

sions, as well as co-occurrences of the dimensions within small groups. Results inform 

understanding of and supports for productive small groups for adolescents.  

SMALL GROUPS AS PEER CULTURES 

Small group work is intended to create peer-to-peer interactions in which students use 

one another as resources for learning. It is a popular and prevalent instructional format 

in middle and secondary mathematics classrooms in the U.S. & internationally 

(Fulkerson, 2013; U.S. Department of Education, National Center for Education Sta-

tistics, 2003). In small group work, students must negotiate social as well as structural 

and cognitive demands of a task (Barron, 2003), but for adolescent students, the social 

dynamics can fully undermine productive small group experiences (i.e., McFarland, 

2001). The field lacks a unifying framework that captures common and influential 

social dynamics; such a framework would extend theorizing about small group 

learning as well as guide educators’ support of productive small group work.  

We apply Corsaro and Eder’s (1990) concept of a peer culture to characterize key 

dimensions and processes of the social dynamics of small groups. Teachers set the 

group membership, task, and expectations for mathematical work and social interac-

tion, but students appropriate the work through interpretive reproduction, taking what 

the teacher provides (i.e., task demands and expectations for working together) and 

aligning it with their own needs and interests (Corsaro & Eder, 1990). A peer culture, 

or the “stable set of activities or routines, artifacts, values, and concerns that children 

produce and share in interaction with peers” (p. 197) emerges, governed by values and 

concerns, routines and habits; and roles of its student members.  

Studies of American, Australian, and Dutch youth show that in general, adolescents’ 

values and concerns favor classroom disruption and disregard for effort over academic 
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engagement (Galvan, Juvonen & Spatzier, 2011; deBruyn & Cillessen, 2006), which 

may undermine group functioning (McFarland, 2001). However, small group experi-

ences may lead students to renegotiate values to favor cooperation and respect of 

classmates (Gilles & Boyle, 2005). Work practices and helping behaviors are promi-

nent habits and routines that occur within small groups. Small groupwork in Canada 

featured individualistic and collaborative work habits (Esmonde, Brodie, Dookie, & 

Takeuchi, 2009) as well as socializing and resistant work habits in American class-

rooms (McFarland, 2001). Peer helping can be adaptive (i.e., expansive, informative, 

and explanatory), expedient (involving the correct answer without explanation), or 

avoidant (ignored, neglected) (Ryan & Shim, 2012). Roles are the status positions 

assumed as students negotiate the academic demands and expectations of the task as 

presented by the teacher within the peer culture. Studies of Canadian and American 

teens suggest that roles include social loafers, turn-sharks, facilitators, experts, and 

socially dominant students (Barron, 2003; Esmonde et al., 2009; Linnenbrink-Garcia 

et al., 2011). When focused on effort and achievement, these dimensions of peer cul-

tures bear significant influence over adolescents’ academic outcomes (Hamm, Hoff-

man, & Farmer, 2012).  

In the proposed study, we describe and report an iterative process and preliminary 

findings for formally capturing the key dimensions of small group peer cultures in mid-

dle and secondary math classes. Our research questions were: 1) To what extent and in 

what ways can the concept and dimensions of a peer culture be applied to the social 

dynamics of mathematics small groupwork?, and 2) Are there meaningful differences 

in frequencies and qualities of key dimensions of peer cultures across small groups?  

METHOD AND ANALYTIC PLAN 

Eleven middle and high school teachers from one rural and low-resourced, and one 

municipal and well-resourced school district in the American Southeast participated. 

Teachers identified specific class periods for observation, in which they used small 

groupwork of their own planning. In total, 3 6th, 6 7th, 12 8th, and 6 9th grade class-

rooms serving African American, Asian American, Latino, and White students, as well 

as a small number of students whose families had recently immigrated to the U.S., 

participated. Across classrooms, 161 small groups were observed and audio recorded 

by two researchers; group size ranged from 2 - 5 students (56.5% mixed gender).  

All observed lessons followed the teacher’s lesson plan without intervention by the 

research team. Student groups worked on a variety tasks appropriate to the grade level 

and content focus and sequence of their courses. Tasks included, for example: (1) 

finding areas and perimeters of circular and rectangular parts of a stained glass win-

dow, (2) finding the volume and surface area of a cylinder and a tube, (3) finding 

missing angle measures in various kinds of triangles, (4) analyzing central tendency 

and spread of data distributions, (5) analyzing quantities in two-way frequency tables 

and Venn diagrams, (6) modelling situations with linear relationships, and (7) com-

paring different representations of linear relationships. 
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We randomly assigned the 161 small group recordings to one of three distinct cod-

ing/analytic phases; this proposal involves analysis of the first phase of 54 groups 

(coding/analysis of these groups will completed prior to presentation). The complete 

enactment of small group work in each classroom was analyzed. The relative and 

absolute time allocated to small group work in the observed classrooms varied ac-

cording to teachers’ lesson plans, ranging from about a third of the class period to 

nearly the entire length of the class period. Since the length of class periods varied 

considerably (most either 47 or 85 minutes) and available time for group work also 

varied (13 to 82 minutes), we present results in terms of percentage of minutes of 

available group work time in the class period. 

We used time sampling (1-min intervals within the identified groupwork time) proce-

dures to capture the presence and prevalence of each peer culture dimension during 

small groupwork. Based on theory and empirical studies, the first 3 authors created an 

initial code list and working definitions: Values and concerns (i.e., statements about 

effort and achievement, as well as affect); habits and routines (i.e., adaptive, expedi-

ent, and avoidant helping; collaborative, individualistic, and socializing work prac-

tices); and roles (e.g., socially dominant, entertainer, social loafer, facilitator). The 

team independently coded three audio-recordings in Atlas-TI v8.1; calculated in-

ter-rater agreement; and refined codes and code definitions. The team independently 

applied these codes to another audio-recording and assessed inter-rater reliability. 

Following strong inter-rater agreement and additional discussion, the team coded 

group recordings independently, calculating reliability after every 9 independent 

codings. This approach generated both frequency and narrative data for analysis. 

PRELIMINARY RESULTS 

To date, the team has coded 30 of the 54 audio recordings. For Research Question 1, 

the applicability of the concept and dimensions of peer cultures to small groups in 

mathematics, our preliminary results reveal a) refinement of the a priori peer culture 

codes; b) reliable coding of the three primary dimensions, as well as some 

sub-dimensions of peer cultures.  

For finding a) we will briefly present an overview of the refined codes to capture the 

three dimensions and sub-dimensions of peer cultures, with illustrations from group 

recordings. 
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Dimension Code Definition Group Example 

Values/Concerns 

• Peers’ ability 

(not smart) 

 

Statements positioning self, 

groupmate, or group as not as ca-

pable or as smart as others. 

 

Two is easier than one, 

that’s why we gave it 

[problem] to you! (group 

laughs) 

Habits and Routines 

• Expedient 

Help-Seeking/Pr

oviding 

 

• Collaborative 

Work Habit 

 

Requests for and provisions of 

answers or procedures for getting 

the right answer. 

 

Multiple students contribute to joint 

problem solving. Group members 

interactively attend to the task, each 

other, and strategies, and solutions. 

Speakers and listeners have con-

sequential roles. 

 

S1: Wait, are the slopes the 

same? 

S2: Yes. 

 

S1: Wait, so if you find the 

perimeter of each rectangle, 

can you just times it that 

way, and then like, … 

S2: I feel like we should 

find the perimeter of just 

one full circle and multiply 

it by 10 … 

S3: Perimeter is 8.14, since 

each diameter is 1… 

S2: No, that’s area, that’s 

radius, remember? 

S3: S that’s still … 

In unison: … 8.14…. 

 

Roles 

• Facilitator 

 

One member who helps group 

make progress on the task, i.e., by 

getting the group started, back on 

task, or by seeking input from oth-

ers. Affirming statements alone are 

insufficient; statements must move 

the group forward. 

 

[following intervals of so-

cializing among all group 

members] OK, we gotta 

write something down! 

[and group re-engages]  

Table 1: Excerpt from coding dictionary and coding illustrations from groups. 
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For finding b), early in the coding process, we have established reliable coding of the 

primary dimensions and some sub-dimensions. For values and concerns and roles, this 

phase has involved identifying the presence or absence of this dimension, prior to 

formally coding for distinctions within the dimension. Specifically, for values and 

concerns, coding has focused on detecting indicators of values and concerns about 

effort and achievement through group members’ statements and affect, with a code 

assigned if a statement reflective of values and concerns was present. Thus far, coders 

agreed 84% of the time that a statement reflecting values and concerns was present in 

an interval. For roles, coding has focused on identification that a student within the 

group has assumed a role. Coders agreed 76% of the time that a student within a group 

assumed a role. Quotations associated with the values and concerns, and roles codes 

will be generated for further differentiation of each dimension in the next phase of 

coding/analysis. Finally, we can reliably differentiate within two sub-dimensions of 

habits and routines: work habits (collaborative, individualistic, and socializing, with 

78%, 87%, and 78% inter-observer agreement, respectively), and helping practices 

(providing and seeking, with 89% and 88% inter-observer agreement, respectively).  

With respect to Research Question 2, variations in the frequencies and qualities of each 

dimension, our preliminary results suggest that all dimensions are present in groups but 

range significantly in both quantity and quality of occurrence. Descriptive statistics of 

frequency counts revealed that statements that referred to group members’ values and 

concerns about effort and achievement occurred infrequently, on average in 19.08% of 

intervals (SD = 18.72). Preliminary review of the quotations associated with the values 

and concerns code suggest that these statements tended to focus on group members’ 

ability; the need to be correct; the desire to finish quickly; and about the ease of the 

task. With respect to roles, an individual student assumed a role in roughly one-fourth 

of small group work time (M = 25.82, SD = 15.19). Preliminary review of the quota-

tions associated with this code suggested that students acted as facilitators, entertain-

ers, or were socially dominant.  

With respect to habits and routines, helping behaviors of any form occurred relatively 

infrequently, present in only 9% of intervals on average (SD = 11.01), and included 

both adaptive and expedient helping. Work habits (i.e., collaborative, individualistic, 

and socializing) were coded at over 95% of all intervals. Early in this first phase of 

coding, we attained a high level of inter-observer agreement for specific types of work 

habits, and thus can report actual percentages of their occurrence. The work habits of 

groups tended to be collaborative, constituting 56.81% of small group work time (SD = 

28.69). In contrast, group work habits were characterized as individualistic in 22.69% 

of intervals (SD = 20.59) and socializing characterized groups’ work habits in 20.04% 

of intervals (SD = 21.04). Thus, groups were engaging in the task together for the 

majority of small group time, although significant amounts of time within small groups 

did not involve collaboration, and were actually off-task.  

Preliminary examination of the quotations associated with collaborative work habits in 

particular suggests important nuances to consider in subsequent phases of cod-
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ing/analysis. Specifically, collaboration may reflect a co-regulated process, in which 

multiple students participate, and group members maintain joint attention to the task, 

each other, strategies, and solutions. But students may also collaborate in a competitive 

fashion, characterized by domination of problem solving by multiple members, and 

resistance to taking up, extending, or encouraging other ideas reflecting an effort to 

own rather than share the problem solving process. Collaboration may also be assy-

metrical, with group members deferring to one or two members, in a hierarchical 

manner. Finally, uncoordinated or disjointed collaboration may occur, in which mul-

tiple group members are engaged with the task but in parallel, without tracking, lis-

tening to, taking up or extending peers’ ideas. We have begun formal analyses of the 

quotations associated with the collaboration code that will enable us to determine 

formal codes to apply in the next phase of coding and analysis.  

CONCLUSIONS 

Systematic study and characterization of the social dynamics of small group work lays 

a critical foundation for understanding how students take up the cognitive and dis-

course demands of small group work, and provides a basis for developing tools to help 

teachers create and support productive social dynamics in small groups. The results of 

the proposed study reveal how an established framework for understanding peer social 

dynamics can be applied to understand the highly variable and influential nature of 

small group social dynamics in adolescence.  

The literature on small group work provided a sufficient background to map dimen-

sions of peer cultures on to small group social dynamics, but distinctions within the 

values and concerns of groups, and the roles enacted by students proved difficult to 

code reliably in the first round of coding. Efforts instead focused on reliably capturing 

these broad dimensions, and identifying a diverse corpus of quotations from which to 

establish more nuanced codes in the second phase of the study. Dimensions of habits 

and routines (i.e., helping behaviors and work habits) proved to be readily and reliably 

codeable, in part likely reflecting the well-established literature on helping, and on 

collaboration more generally. Differentiated coding of the broad dimension of habits 

and routines in the first phase will support more differentiated characterization of this 

aspect of peer cultures. 

Very preliminary analyses of the descriptive statistics for each code revealed consid-

erable variability in the prevalence of each dimension of peer culture. Qualitative 

analysis of the students’ dialogue reveals additional variability and richness in how 

these dimensions are realized as students engage with a mathematics task. Future 

analyses will focus on the co-occurrences of these dimensions, in an effort to profile 

peer cultures that vary in their productive orientation toward successful small group 

work.  
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WHICH IS SMALLER…? 

PARTIAL UNDERSTANDINGS AND MISCONCEPTIONS  

ABOUT MULTIPLICATION AND DIVISION BY FRACTIONS 

Pircha Hamo 1 , Bat Sheva Ilany 2 , and Meir Buzaglo 3  

1 Efrata College, 2 Hemdat Hadarom College, 3 The Hebrew University, Israel 

 

This study addresses difficulties students in grades 6 and 8 have in extending the 

meaning of multiplication and division from whole numbers to fractions. A research 

questionnaire and student interviews revealed various partial understandings of mul-

tiplication and division by fractions. Using matched pairs of modelling tasks, we 

compared how students interpret and apply different models of multiplication and 

division in tasks involving fractions. This enabled us to evaluate the sophistication of 

their conceptions and uncover their misconceptions. In particular, we uncovered a 

misconception that seems unique to rational numbers expressed as fractions: students 

conflated multiplication and division when modeling “part of”. 

INTRODUCTION 

When Michael, in grade 6, wrote the symbol “>” to complete the mathematical ex-

pression (MEX) 3 3
72 72 :

4 4
 , we were convinced that he was holding the miscon-

ception multiplication makes bigger and division makes smaller, but our theory was 

not supported by Michael’s explanation: “In both the multiplication and division ex-

ercises, the result will be less than 72, but the division will decrease [it] more”. This 

explanation, which is partially correct, seems to involve conceptions of order. It led us 

to wonder how Michael’s sense of how multiplication makes smaller differs from his 

sense of how division makes smaller. 

BACKGROUND LITERATURE AND RESEARCH FRAMEWORK 

Research on the extension of mathematical operations involves both semantic 

(Buzaglo, 2002) and psychological dimensions. In discussing students’ partial under-

standings of multiplication and division, we begin with the known gap between un-

derstanding of multiplication and division of integers and understanding of these 

concepts in the context of rational numbers. This gap reflects the difficulty that stu-

dents have in extending the meaning of these operations. Initial studies addressed ex-

tensions to decimals. In choice-of-operation tasks for multiplication word problems, 

students correctly solved problems when the multiplier was greater than one (in par-

ticular, an integer) more frequently than those with a multiplier less than one. The 

influence of the magnitude of the multiplier is referred to as the multiplier effect. In-

terviews with students revealed that they did not see a connection between problems 
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even when the interviewer tried to draw their attention to the similarity (Bell, Swan, & 

Taylor, 1981). 

The phenomenon of choosing different operations for similar word problems was la-

beled by Greer (1987) as nonconservation of operations in the sense of Piaget. Divi-

sion was the incorrect operation chosen most frequently to model multiplication word 

problems with decimal multiplier less than one. The reason given for this choice was: 

“the result must be smaller (than the multiplicand)”. Similarly, Graeber & Tirosh 

(1989) found that preservice teachers incorrectly chose multiplication for division 

word problems with decimal divisor less than one “because the result must be greater 

(than the dividend)”. In other words, the misconception that multiplication makes 

bigger and division makes smaller influences student choice of operation in word 

problems.  

The theoretical framework of conceptual change has been used to explore students’ 

difficulties in assimilating new scientific and mathematical concepts and to predict 

difficulties that might arise when new knowledge seems incompatible with what was 

learned previously. According to this approach,  

… understanding of scientific and mathematical notions that are not compatible with what 

the individual already knows is not an “all or nothing” situation; rather, there are inter-

mediate states of understanding wherein elements of the prior knowledge are combined 

with elements of the incoming, incompatible, information to produce synthetic conception 

(Vamvakoussi, Vosniadou, & Van Dooren, 2013, p. 308). 

Using this approach, Vamvakoussi and Vosniadou (2004) identified intermediate 

levels of understanding the concept “density of rational numbers”. For example, some 

students correctly stated that there are infinite numbers between two numbers when the 

numbers were represented as decimals, yet did not make this claim with two fractions. 

Prediger (2008a, 2008b) examined knowledge of multiplication of fractions combining 

the framework of conceptual change with theories from mathematics education re-

search. She suggested that formal, algorithmic and intuitive components of this 

knowledge express levels of understanding and emphasized the utility of this view for 

determining the depth and causes of obstacles to understanding. She also found that 

mental models of multiplication that seamlessly expand from the natural numbers to 

fractions present fewer obstacles. For example, in an acting-across model of multi-

plication, one quantity is a rate which acts on the second quantity (such as viewing the 

cost of a tank of gas as the price per liter acting across the volume). This model extends 

naturally to situations involving fractions. In contrast, the part-of model which has no 

parallel in the natural numbers is more difficult to assimilate. 

Following Prediger, our analysis integrated data from multiple tasks; expanding her 

work, our data included both multiplication and division tasks. Tasks were designed to 

uncover students’ models of multiplication and division of fractions. In addition, tasks 

were purposefully constructed in pairs so that correctly answering only one in the pair 
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would reveal nuances in the sophistication of their mental models and shed light on the 

nature of their partial understandings. 

METHOD 

Research goal 

Our primary goal was to determine how sixth-grade students construe multiplication 

and division with fractions, focusing on misunderstandings specific to rational num-

bers expressed as fractions. We hypothesized that some misconceptions of multipli-

cation and division of rational numbers are unique to their expressions as fractions and 

the contexts in which they appear; as such, one might conjecture that these miscon-

ceptions would not occur with decimal representations. We also evaluated 

eighth-grade students’ understandings of operations with fractions and compared these 

results with the results for sixth grade students.  

Participants  

The population in this study was Israeli students in grades six and eight: 213 

sixth-grade students, evaluated after they had studied multiplication and division of 

fractions, and 267 eighth-grade students. For each grade level students came from ten 

different mathematics classes — two classes at each of five different schools. 

Research instruments 

The research instruments included a questionnaire administered to students from both 

grades and in-depth interviews with the sixth-grade students after they had completed 

the questionnaire. The questionnaire contained 31 items assessing conceptual under-

standing of multiplication and division, rather than procedural knowledge. Some of the 

word problems in the questionnaire were similar to those that students encounter in the 

initial stages of extending multiplication and division from whole numbers to frac-

tions. Here we present four pairs of items that each includes an integer and a fraction 

less than 1.  

Items 1-2: Determining a MEX for a multiplication word problem (multiplier < 1). 

Write the appropriate MEX for the problem. The numbers in the problem must appear 

in your MEX.  

(1) One meter of fabric costs 30 shekels. What is the price of ⅗ of a meter of fabric? 

(2) Rina has 30 shekels. She bought a pencil case with ⅗ of her money. How much did 

the pencil case cost?  

Items 3-4: Writing a word problem for a given MEX.  

(3) Write a word problem where the answer will be the solution for the MEX 
2

40
5

 . 
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(4) Below is the beginning of a word problem. Complete the problem in any way you 

like so that the solution will be the answer for the MEX 2
60

3
 .  

Question: Ronen has 60 shekels ... ______________________________.  

Items 5-6: Estimating results. 

(5) Circle: The answer to 73:63  is a) greater than 63, b) less than 63, c) equal to 63.  

(6) Circle: The answer to 85x96  is a) greater than 96, b) less than 96, c) equal to 96. 

Items 7-8: Determining a MEX for a division word problem (divisor < 1). (Same in-

structions as for items 1-2.) 

(7) It takes ¾ of an hour to bake a cake. How many cakes can you bake in 24 hours if 

you bake one immediately after the other? 

(8) 24 whole pizzas were brought to a party. Each child ate ¾ of a pizza. How many 

children ate pizza if all the pizza was eaten?  

RESULTS 

The findings below illustrate students’ partial understandings of the operations, evi-

denced by answering only one of the two items in the pair correctly. 

Items 1-2: Determining a MEX for a multiplication word problem (multiplier 

< 1). Item 1 is an acting-across problem and item 2 is a part-of problem.  

Our results were as follows: (a) 39% of sixth graders and 24% of eighth graders wrote 

different MEXs for the two problems; (b) 27% of sixth graders and 24% of eighth 

graders used multiplication for the first problem but not for the second, illustrating 

their difficulty seeing a part-of problem as a multiplication model. Of these students, 

21% in grade 6 and 6% in grade 8 chose multiplication for problem 1 and division for 

problem 2; (c) Some used subtraction: with sixth graders 14% and 1% for problems 2 

and 1, respectively; with eighth graders 23% and 5%, respectively. 

The most common explanation for using division was “we need to find a part of 30”. 

The interviews clarified their thinking: 53:30  is intended to calculate “⅗ of 30”; they 

computed 53:30  via a series of operations with whole numbers, namely 3x5:30  (di-

vide by 5, then multiply by 3). This method is commonly used in grades 4 and 5 to find 

part of a quantity. In contrast to arguments that deal with rules of size, e.g., “because 

division makes smaller”, this argument gives meaning, albeit incorrect, to the entire 

expression. 

In the following interview, Yael explains why she chose multiplication for problem 1 

but division for problem 2: 

Because ⅗ is the length, and that times the price of the whole fabric, and that multiplies the 

other, and this gives a smaller number because this is a smaller fraction, and that simply 

shows you how much it costs. Here [item 1], 30 is how much a meter of fabric costs, it’s 

not how much money she has and how much she bought……I think the only difference 
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[between items 1 and 2] is that here [item 2] it is ⅗ of her money, from her money – and 

here [item 1], we want to know how much the fabric costs [sic]. 

As with acting-across problems with integers, problem 1 gives the value per unit and 

asks to find the value of x  units. Problem 2 is a part-of problem; it is distinct from 

multiplication word problem with integers. Yael ascribes to the number “30” different 

roles in the two problems: In problem 1, “30” is the value corresponding to 1 meter of 

fabric, while in problem 2, “30” is the amount that needs to be divided. Yael did not 

consider problem 1 to be a problem where one needs to calculate ⅗ of 30. Semanti-

cally, problem 1 is static, asking “how much it cost”, while problem 2 is dynamic, 

seeking “how much money she has” and then “how much she bought”. The process of 

finding a portion of a quantity, emphasized in problem 2, is active. Problem 1 en-

courages proportional reasoning through the use of two units--meters and shek-

els--while problem 2 encourages thinking about a direct operation between the two 

numbers given in the problem.  

We will briefly discuss the choice of subtraction for problem 2. The most common 

reason for this error was that students saw this problem as similar to dynamic sub-

traction problems with integers and sought “how much money Rina had left". Alt-

hough they wrote 5330− , interviews revealed that they intended “30 minus ⅗ of 30”. 

Selecting subtraction to calculate "how much remains" was instinctive, and many 

changed their decisions during their interviews. Problem 1, as previously stated, has a 

static semantic structure.  

Items 3-4: Writing a word problem for a given MEX. The difficulty in writing word 

problems is well known and includes basic writing skills, e.g., formulating an appli-

cable question from information found within a story. In problems with fractions, it is 

important to properly ascertain the “whole” of which the fraction is a part.  

We found that 15% of sixth graders and 24% of eighth graders wrote clear one- or 

two-stage multiplication word problems for both multiplication and division exercises 

with a fraction as an operator acting on an integer. Most of the word problems were 

part-of problems. For example: In a class of 40 students, how many went on a trip if ⅖ 

of the class participated?; Ronen had 60 shekels and bought a shirt with ⅔ of his 

money. How much did it cost? It is possible that the opening offered for the multipli-

cation problem naturally led them to write a part-of problem. Nevertheless, writing 

such a word problem also for division by fraction indicates a lack of complete under-

standing of both operations.  

Items 5-6: Estimating results. Twenty-two percent of sixth graders and 31% of 

eighth graders selected answer b (the result is “less than …”) for both items. 

Items 7-8: Determining a MEX for a division word problem (divisor < 1). Thir-

ty-three percent of sixth graders and 27% of eighth graders wrote different MEXs for 

the two problems. Of them, 26% of sixth graders and 22% of eighth graders correctly 

used division for problem 8 but multiplication for problem 7.  
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This error appears (e.g., Graeber & Tirosh, 1989) because the answer to the problem is 

expected to be greater than the dividend, and because multiplication makes bigger. 

Yet, even though in both problems the answer is expected to be greater than 24, almost 

one quarter of the students in each grade choses multiplication for problem 7 but not 

for problem 8. Furthermore, during the interviews, no one suggested “multiplication 

because the answer must be more than 24”.  

Two-thirds of the interviewees who used multiplication in problem 7 understood the 

context correctly, that is “one needs to find how many times ¾ goes into 24", yet in-

sisted on multiplication because “you need ¾ plus ¾ plus ¾ plus .... i.e., you need to 

multiply”. To them, multiplication is the repeated addition of ¾. They used the strategy 

of “building up” from the divisor until the dividend is reached, which is a strategy 

found in studies regarding division of integers (Mulligan, 1992). In contrast, in prob-

lem 8, “the pizzas are divided up”, division is appropriate.  

Another student’s explanation for this error is the perceived difference between the 

two: “In 7 they are baking (making = multiplication) and in 8 they are eating (cutting = 

division)". The act of division in 8 is clear: begin with the dividend and divide it into 

parts; the fact that the divisor is a fraction played no role in their correct choice. Sim-

ilarly, the fraction did not influence their erroneous choice of multiplication for prob-

lem 7.  

Success in choosing a division MEX for item 8 did not necessarily indicate a complete 

grasp of division exercises. To wit: about a quarter of the students in both grades wrote 

the correct exercise ( 43:24 ) in problem 8, but incorrectly reasoned that the resulting 

number of  73:63  would be less than 63 (item 5). In addition, 43% of the student in 

both grades wrote the correct division exercise for item 8, yet could not successfully 

reverse their thinking; these students were unable to write a word problem modeled by 

the division exercise 52:40 (item 3). 

DISCUSSION & CONCLUSIONS 

We found different levels of understanding of the concepts of multiplication and di-

vision by fractions. There was considerable evidence of inconsistency in thinking (and 

performance), along with the students’ inability to recognize these inconsistencies. 

Using the conceptual change approach allowed us to interpret these inconsistencies as 

intermediate stages in the change process: understanding multiplication and division 

by fractions is a gradual process where older elements of knowledge are improperly 

integrated with newer ones.  

With respect to writing different MEXs for two word problems with identical math-

ematical structures and numbers, students who wrote the correct MEX for only one of 

the problems indicate a partial understanding of the operations. The explanations that 

students gave for their choice of operation also pointed to partial understanding: for 

example, a student might explain that multiplication is appropriate for one problem 

“because it gives a smaller result” (indicating a change in the perception that multi-
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plication always makes bigger), yet not give this explanation for the second problem, 

even though the solution is also smaller. 

For one of the quotative-division problems (item 7), they explained the (incorrect) 

choice of multiplication because “one must find how many times ¾ is contained in 24”, 

yet they did not ask such a question with item 8. Students correctly answered only one 

of the division problems did not totally understand the quotative-division model. It 

appears that at intermediate levels, students are influenced by different characteristics 

of word problems and do not successfully identify the mathematical structure that is 

common to both. Students who successfully answered both multiplication problems 

(items 1 & 2), probably understood multiplication by fractions in the concept of 

meaning (part-of) and not only in the concept of order (multiplication makes smaller).  

We found older calculation strategies mixed into choice of operation for the word 

problems. Students who incorrectly used division for a part-of problem were influ-

enced by the familiar method from grade four to find a part of a whole: division by the 

denominator of the fraction and multiplication by its numerator. One can say that they 

incorporated into their knowledge expansion their previous knowledge about finding a 

portion of a quantity and not just awareness that division as something “that reduces”. 

Students who used multiplication for division problem by explaining “we have to find 

how many times ¾ goes into 24” were influenced by the “building-up” strategy used in 

division problems with whole numbers. In both cases they had difficulty applying 

these strategies correctly using the numbers in the problem.  

We found an intermediate level of understanding with respect to the misconceptions 

multiplication makes bigger and division makes smaller. Some students stated that 

multiplication by a fraction leads to “less than" but also claimed this in the case of 

division by a fraction. Students at this intermediate level appear to be locked into only 

one of the two misconceptions. Like Michael, whom we presented in the introduction, 

they also believe that both of the mathematical operations “make smaller”. The varied 

results presented above suggest that some students hold the conception that multipli-

cation by a fraction decreases and the misconception that division by a fraction finds a 

part of.  

Other examples of an intermediate level of understanding were shown in the writing of 

word problems. Some students wrote part-of problems for both multiplication and 

division by a fraction. Conflating the meanings of the operations was not found in 

studies of decimals, indicating that this misconception could be attributed to the special 

way that fractions are written and to the unique part-of model associated with frac-

tions.  

As mentioned, when a student writes different MEXs for paired word problems, he has 

failed to attain full multiplicative reasoning. Harel (1995) claimed that being in this 

“naive-interpretist” stage for word problems is an inevitable interim stage in devel-

oping the concept of multiplicativity, yet once a child acquires multiplicative thinking, 

he recognizes identical mathematical structure in ostensibly different word problems. 
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We are convinced that teachers must discuss the meanings of the operations to help 

students through the “naive-interpretist” stage. Furthermore, it is essential to give 

students practice exercises with both operations, to eliminate confusion and sharpen 

their understanding of the meaning of each and the difference between them.  

In summary, this study adds to the understanding of the conceptual change required to 

extend multiplication and division to fractions. It also provides questionnaire items and 

analysis methods for discerning obstacles to extending these operations that are unique 

to fractions. In addition, conflation of multiplication and division specific to fractions 

indicates that further study is needed. 
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DOCTORAL PROGRAMS’ CONTRIBUTION TO BECOMING A 

MATHEMATICS EDUCATION RESEARCHER  

Çiğdem Haser 

Middle East Technical University, Ankara, Turkey 

 

The knowledge and skills that a mathematics education (MathEd) researcher should 

have and to what extent doctoral programs (DPs) contribute to this researcher were 

explored through the written responses of 37 doctoral students studying in the field of 

MathEd in Turkish, European and North American DPs to an open-ended survey. 

Findings addressed that doctoral students prioritized research and MathEd related 

knowledge and skills the most. Generic skills, career skills, critical research skills and 

habits of mind were stated the least. Participants evaluated their knowledge and skills 

and DPs’ contribution to them as mostly sufficient. However, more courses and ex-

periences were needed. Scholarly climate and human resources were the strongest 

aspects of DPs. Research opportunities for doctoral students needed improvement.  

KNOWLEGDE AND SKILLS IN DOCTORAL PROGRAMS  

The aim of doctoral education is to provide knowledge and skills to doctoral students 

in a specific field of study that they will become scholars and independent researchers 

(Mendoza & Gardner, 2010). Mathematics education (MathEd) researchers are ex-

pected to have several types of knowledge and skills to pursue a wide range of roles 

and duties in multiple contexts such as university, schools, classrooms, and national 

and international research communities (Hiebert, Lambdin, & Williams, 2008). On the 

other hand, disciplinary cultures of knowledge production with emphasis on appren-

ticeship in doctoral programs (DPs) have evolved to newer cultures and practices 

prioritizing capabilities, dispositions, and other ways of knowledge production equally 

important as expertise and knowledge (Lee & Boud, 2009). The recent global focus on 

the future of doctoral degree addresses that doctorates should also have generic and 

global capabilities (Cumming, 2010) including networking, collaboration, communi-

cation and problem solving (Hopwood, 2010).  

The purpose of doctoral education in the field of education has been debated without a 

conclusion often through what one becomes at the end of the doctoral education 

(Gardner, Hayes, & Neider, 2007). There are multiple and often conflicting views of 

preparing doctoral students MathEd field which might be better explored by focusing 

on DP practices (Ferrini-Mundy, 2008). Such an investigation can take place at three 

levels from local (doctoral students) to intermediate (doctoral institutions), to more 

abstract level (Lee & Boud, 2009). DPs in the field of MathEd (including DPs such as, 

Teacher Education) have mostly been investigated in terms of number and content of 

available courses (Ferrini-Mundy, 2008). However, preparation of doctoral students 



Haser 

  

3 – 20 PME 42 – 2018 

for being competent MathEd researchers requires scholarly contexts where students 

are encouraged to develop and integrate several skills and critical perspectives by 

being involved in scholarly communities (Haser, 2017; Middleton & Dougherty, 

2008), which cannot be explored by focusing only on courses. 

Studies have shown that doctorates are expected to have several competencies; yet, to 

what extent doctoral education can provide these competencies is questionable 

(Mowbray & Halse, 2010). Knowledge and skills associated with one’s field of study 

are considered as one aspect of these competencies along with dispositions and be-

haviours (Durette, Fournier, & Lafon, 2016). Such competencies may also include a 

more comprehensive and integrated set of dispositions, habits of mind which are “in-

tangible attitudes, values, and characteristics that cannot be seen or casually observed”, 

and “more tangible and observable” skills and abilities for research practice and 

communication (Gardner, et al., 2007, p. 294). Sinclair, Barnacle and Cuthbert (2014) 

have explored studies about doctoral education to document the factors that may con-

tribute to doctoral students’ becoming active researchers. They found that active and 

productive supervisor, active research culture and department, sense of becoming a 

peer or independent, development of collaborative capacities, conceptualization of 

success in doctorate across contexts, socialization into research practice and emotional 

engagement with one’s research studies were important in becoming an active re-

searcher. Their findings suggested that when the conceptions of the purpose of the 

doctorate among the students, faculty, and institutions were similar, the students were 

likely to become active researchers.  

The recent global focus on doctoral practices (Lee & Boud,2009) addresses that there 

is a need to explore how DPs prepare doctoral students for the knowledge and skills of 

conducting MathEd research (Ferrini-Mundy, 2008). Therefore, this study explored 

how doctoral students studying in the MathEd field identify knowledge and skills that a 

MathEd researcher should have, to what extent they have these knowledge and skills, 

and their views about how DPs contribute these knowledge and skills through an 

open-ended survey. The aim was to provide doctoral students’ perspectives to the 

improvement of DPs. The findings can further be compared to the views of DPs’ fac-

ulty and administrators and crosschecked with the content of the courses to evaluate 

the effectiveness of DPs and to increase DPs’ contribution to becoming a researcher.  

METHOD 

The study was designed as a qualitative survey study in which doctoral students 

working in the field of MathEd were asked six questions about the knowledge and 

skills that a MathEd researcher should have, and to what extent they had and DPs 

contributed these knowledge and skills. 

Participants 

The participants of the study were a total of 37 doctoral students from Turkish DPs (21 

participants) and international (non-Turkish) DPs (16 participants). Thirteen of the 
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international students were in North American DPs and the rest were in European DPs. 

Turkish participants were reached through e-mails that were sent to graduate assistants 

and professors (to be forwarded to the doctoral students) working at DPs focusing on 

MathEd at Turkish universities. International participants were reached through the 

e-mails that were sent to their professors, who were conveniently known to the re-

searcher, and through an online platform. The participants were at different stages of 

their doctoral studies (before dissertation or focus on dissertation). Table 1 summarizes 

participants’ stages in their DPs for Turkish and international doctoral students. 

 Turkish International  Total  

Stage in the 

Program 

Focus on Disst.-17 

Before Disst.-4 

Focus on Disst.-11 

Before Disst.-5 

Focus on Disst.-28 

Before Disst.-9 

Table 1: Participants’ status in the program. 

Comparisons between DPs in different countries or among doctoral students were not 

the purposes of the study. Therefore, findings were presented without reference to the 

countries or participants’ stage in the DPs.  

Data Collection and Analysis 

Data of the study were collected by a qualitative open-ended survey. The first part of 

the survey had 10 demographic questions about participants’ DPs, status in the DPs 

and scholarly activities. The second part had six questions asking their ideas about (1) 

the knowledge and skills a MathEd researcher should have; whether and how their DPs 

(2) were supporting these skills (3) or not (with references to the specific experiences); 

(4) self-evaluation of their knowledge and skills; (5) their supervisors’ expectations; 

and (6) the strengths and needs-improvement aspects of DPs (three for each). The 

survey and the consent form was first sent to a small group of Turkish doctoral students 

as a text file via e-mail to respond and to reflect on the comprehensiveness and 

wording. The responses were received mostly via e-mail to the researcher as a digital 

text file and a small number of them were received as printed. These responses and 

reflections did not result in any change in the survey and it was sent to a larger group of 

doctoral students and professors in Turkey via e-mail. Professors were kindly asked to 

forward the survey to the MathEd doctoral students in their institutions. Filled-out 

surveys were received as digital text files via e-mail directly from the participants.  

The English translation of the survey and the consent form was sent to international 

doctoral students via (i) e-mail asking the conveniently reached professors to forward 

and (ii) a digital survey tool which was announced to the students through the social 

media outlet of an association of European MathEd doctoral students and researchers. 

One of the professors revised the demographic questions to address the doctoral stu-

dents’ stage in the DPs in a specific European context and the survey was distributed to 

the students in that context with revised demographic questions.  
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The wording of the questions in the survey intentionally asked participants to identify 

knowledge and skills, not capabilities or competencies because knowledge and skills 

would not probably require further explanation. Identifiers such as, dispositions and 

values, would probably need further explanation as they have different meanings for 

individuals. However, asking knowledge and skills might have limited participants’ 

responses and caused them not to consider certain competencies.  

The thematic analysis (Braun & Clarke, 2006) was employed to analyse the data in the 

second part of the survey. First, responses to the first question were read several times 

and initial codes were generated. Then, data were coded by these codes and codes were 

grouped in eight potential themes (some from the literature) almost simultaneously, 

resulting in theme-code-coded data clusters. This helped to clarify the meaning of the 

themes and see if the themes reflected the set of codes addressing the same concept. 

Responses to questions (2) and (3) were analysed in terms of DP experiences that the 

participants expressed for the knowledge and skills they identified and responses to 

question (6) were analysed in terms of participants’ evaluations of the strengths and 

needs-improvement aspects of the DPs by using analysis steps described above. 

FINDINGS 

Doctoral students identified eight major types of knowledge and skills that a MathEd 

researcher should have: Knowledge of the MathEd field, research knowledge and 

skills, knowledge of teaching and learning process, communication skills, career skills, 

critical research skills, habits of mind, and generic skills. DPs contributed to these 

knowledge and skills through courses, implementations and projects, and program 

culture in terms of support, interactions and role models. Yet, many participants ex-

pressed that more courses and/or project experiences were needed to improve MathEd 

researcher traits. Doctoral students evaluated the extent of their knowledge and skills 

as they had it, they had it to some degree and still working on improving, or they did 

not have it. Doctoral students’ views about knowledge and skills that a MathEd re-

searcher should have, whether DPs contributed to these knowledge and skills, whether 

or to what extent they had these knowledge and skills, and their views about their 

supervisors’ expectations (expecting or not expecting) from them were reported to-

gether for each type of knowledge and skills. Then, their views about DPs’ strengths 

and needs-improvement aspects were presented.  

Knowledge, Skills and Doctoral Programs 

Doctoral students most frequently expressed that a MathEd researcher should have 

knowledge of the MathEd field (N=34, f=70) which included mathematics knowledge 

especially in the field of expertise, knowledge of mathematics curriculum, theories and 

trends of MathEd research, pedagogical content knowledge, and technological pedago-

gical content knowledge. DPs contributed to this knowledge mostly through courses 

and projects, and supervisors expected them to have it. However, participants stated 

that they would like to have more courses in DPs addressing these components. Al-
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though many doctoral students expressed that they either had or were improving this 

knowledge, several of them stated that they did not have all components sufficiently.  

Research knowledge and skills (N=32, f=59) was the second most frequent category 

which addressed knowledge and skills of research designs and data analysis methods 

in quantitative and qualitative trends, searching literature and identifying research 

problems. DPs contributed to this category mostly through courses, and less with pro-

jects. However, more courses and experiences were needed. Participants stated that 

they either had or were improving research knowledge; however, many also expressed 

that they did not have these knowledge and skills sufficiently. Supervisors were per-

ceived as they expected these from doctoral students to a considerable degree.  

Knowledge of teaching and learning process (N=23, f=36) was important for the 

participants. Knowledge of schools and classrooms, contexts, knowledge of teaching 

demands and students, and knowledge of theories were in this category. DP courses 

and projects helped participants to gain or improve this knowledge. They did not state 

much about what their programs lacked in this aspect. Supervisors were also not per-

ceived that they would expect this knowledge from the students.  

Communication skills (N=24, f=35) including communication of research outputs or 

process to all interested parties, contacting or finding scholarly communities, and at-

tending conferences were important for participants. DPs did not contribute much to 

these skills. Some participants expressed that courses or DP culture should be more 

supportive to improve these skills. They mostly stated that they had or were improving 

communication skills and their supervisors expected them to have these skills.  

Career skills (N=19, f=24) addressed skills such as writing for publications and grants, 

evaluating the quality of the journals and conferences, project management, and col-

laboration. However, DPs did not help students to improve these skills much and they 

expressed they needed more experiences or rather a DP culture to improve these skills. 

They mostly expressed that they had or were improving career skills. Supervisors were 

perceived that they would expect participants to have these skills.  

Critical research skills (N=11, f=17) were not stated much frequently. Some partici-

pants expressed evaluating the significance of a study, developing perspectives for a 

research problem or implications of a study, and critical evaluation of literature as 

important skills of being a MathEd researcher. These participants stated that courses 

were useful for these skills and that they had or were improving these skills. These 

skills, however, were not perceived as expected by the supervisors much.  

Habits of mind (N=10, f=18) such as, perseverance, patience, curiosity, and motiva-

tion, were expressed by some participants. This was rather seen as a personal trait that 

could be improved by personal efforts. Those who expressed these habits also indica-

ted that they mostly had or were improving them. Supervisors were perceived as they 

expected the participants to have these habits. 



Haser 

  

3 – 24 PME 42 – 2018 

Generic skills (N=5, f=9) included time management, balancing between professional 

and personal life, and motivating other people. Doctoral students’ competence in these 

skills varied and they perceived their supervisors expected them to have these skills. 

They did not state DPs’ contribution to these skills much.  

Strengths and Needs-Improvement Aspects of Doctoral Programs 

Doctoral students evaluated DPs’ strengths and the aspects of the DPs that needed 

improvement in ten major categories: Scholarly climate, human resources, research 

opportunities, program structure, courses, MathEd specific experiences, connections, 

collaboration, teaching opportunities and communication. Scholarly climate and hu-

man resources were identified as strengths of the DPs. Courses in the DP, research 

opportunities, MathEd specific experiences and DP structure were identified as both 

strengths and needs-improvement aspects. Collaboration, communication and teaching 

opportunities in the programs were identified as aspects to be improved.  

The strongest aspect of DPs was the scholarly climate (N=21, f=30) they provided. 

Doctoral students expressed that new approaches and ideas were welcomed in the DPs 

and they received constructive feedback and support for independent research. DPs 

had scholarly communities where scholarly activities were supported, and students 

gained perspectives and increased their motivation. Such strength was also perceived 

in human resources (N=18, f=20) where faculty members’ experiences and support for 

students made DPs more valuable. Other students strengthened DPs by attending 

scholarly activities. DPs provided connections (N=9, f=9) for students to international 

collaborators, networks and other fields to improve their knowledge and skills.  

Certain features of the program structure (N=12, f=18) such as, being able to select 

one’s supervisor, courses, and research topic, were considered among the strengths of 

DPs. Doctoral comprehensive examination (in some of the DPs), was a strength when 

it prepared the students for their further studies. The variety and the content of the 

courses (N=12, f=13) in the DPs were satisfactory and beneficial for many partici-

pants. Research opportunities (N=15, f=17) such as, research knowledge and practices 

of different designs, data analyses, project writing, and being able to work in projects 

provided considerable learning opportunities. Part of the strength was about the 

MathEd specific experiences (N=9, f=11) such as, MathEd research projects, courses, 

and researchers which were supporting participants’ studies.  

However, program structure (N=21, f=16) needed improvement to provide more 

funding opportunities, specific supports for international students (in non-Turkish 

DPs), and manageable work load. Course (N=11, f=14) availability was an important 

drawback for some of the participants that there were times they could not find courses 

for their needs or MathEd specific courses (N=7, f=7) on important concepts. They 

specifically indicated that research preparation (N=14, f=22) should start earlier with 

introductory courses and there should be support for scholarly language improvement 

and publication. Collaboration (N=9, f=11) and communication (N=7, f=8) between 

the faculty members and doctoral students, and among doctoral students needed im-
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provement in order to provide students better DP experiences. Insufficient teaching 

opportunities (N=8, f=8) in schools and at university level courses were addressed as 

important issues to be improved.  

CONCLUSIONS AND DISCUSSIONS  

Findings showed that doctoral students in the field of MathEd prioritized knowledge 

and skills of research methods, MathEd specific issues, teaching and learning process, 

and communication for a MathEd researcher. These categories mostly included com-

ponents which could be learned through courses and resources, or observed in schol-

arly activities such as conferences. On the other hand, generic skills, career skills, criti-

cal research skills and habits of mind were not stated much by the doctoral students 

despite their importance for DPs (Cumming, 2010). These skills included skills that are 

not easily observed or qualifications that are developed over time and experience. 

Doctoral students’ evaluation of DPs showed that they seemed to consider courses as 

the major DP experience and focused on their learning in the courses. The related 

questions in the survey asked to indicate courses and other experiences in the DPs in 

relation to the knowledge and skills they listed. Although most of the participants were 

focusing on their dissertation studies, they did not mention about the contribution of 

this experience, or of working with their supervisors during this process to their 

knowledge and skills.   

Interestingly, participants criticized DPs for not providing better research opportunities, 

communication and career skills with emphasis on collaboration, which are important 

factors for becoming an active researcher (Sinclair, et al., 2014). These skills could 

have been perceived more positively within encouragingly perceived scholarly climate 

and human resources of DPs. Yet, they needed DP contexts providing more research 

opportunities with effective collaboration with professors and other doctoral students, 

and sharing of research processes and outcomes through more structured workshops 

and meetings. Indeed, being a part of a research study (other than the dissertation study) 

was found to be a key experience in becoming an independent researcher for MathEd 

doctoral students (Haser, 2017). 

These findings showed that the focus on content and number of courses in MathEd DPs 

does not provide a better picture of the nature of DPs’ practices and the types of 

competencies they address (Ferrini-Mundy, 2008; Middleton & Doughtery, 2008). 

Exploring these practices and competencies through the views of doctoral students, 

supervisors, and DP administrators might provide more grounded improvements in 

MathEd DPs to support becoming an active MathEd researcher.   
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In this paper, we focus on the development of a theoretical instrument based on the 

interactive-cooperative-active-passive-framework to analyse dyads’ communication 

processes in collaborative face-to-face learning scenarios. We can show that the 

adaption of this framework to the analysis of time-sampled video recordings is suc-

cessful and that a dependency between dyads’ communicational behaviours and their 

learning outcome may be present.   

THE MAMDIM-PROJECT 

The transition from secondary to tertiary education is known as a complex problem 

area, especially in mathematics (Gueudet, 2008). Within this context, the use of new 

instructional media like video tutorials, podcasts or commented presentations is ex-

panding (Bausch et al., 2014), whereas at the same time a lack of research in this field 

is stated (Biehler, Fischer, Hochmuth, & Wassong, 2014). The mamdim–project 

(learning mathematics with digital media during the transition from secondary to ter-

tiary education) explores the usage and benefit of different digital instructional media 

focusing on descriptive statistics in cooperation with four German universities (Uni-

versity of Applied Sciences Pforzheim, Offenburg University of Applied Sciences, 

Bielefeld University and Brandenburg University of Technology Cottbus-Senften-

berg). We conducted a pilot study to improve the study design (pre-test | intervention | 

post-test) and the test items at two universities in 2015, for first results see Salle, 

Schumacher, & Hattermann (2016). In this paper, we take our data from the main study 

that took place in 2016 and 2017 with about 300 students. 

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS 

The role of language has been an important issue in mathematics education for a long 

time (Austin & Howson, 1979), a broad overview about contemporary research is 

given in Morgan, Craig, Schuette, & Wagner (2014). Students’ learning of mathema-

tics evolves in interaction and is enclosed in language and communication (Steinbring, 

2015). Therefore, communication processes including sharing ideas verbally or in 

writing processes play a fundamental role in learning mathematics from a construc-

tivist point of view. There is a significant number of studies showing that collaborative 

learning in small groups does not necessarily yield greater learning outcomes (Barron, 

2003), whereas other researchers stress the advantages of working collaboratively to 

promote learning (Dillenbourg, Baker, Blaye, & O’Malley, 1996). At first sight, these 

results seem to be contradictory, but can be explained with the help of the 
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CAP-framework by Chi & Menekse (2015), see also Menekse, Stump, Krause, & Chi 

(2013) for the origins of this framework. We will use this framework in an adapted 

manner to analyse our data. 

The Interactive-Constructive-Active-Passive (ICAP)-framework 

The ICAP-framework explains what type of interaction is most effective in collabo-

rative learning situations. To develop this framework, a first step consists of identi-

fying observables that characterise individual’s learning, called engagement activities. 

Regarding their benefit of learning, these activities can be classified and rank ordered 

in passive engagement, active engagement and constructive engagement (Chi & 

Wylie, 2014). To give an example, passive reading means reading silently without 

trying to integrate the text in present knowledge. Active reading is characterised by 

reading aloud in certain passages and by highlighting specific words or information. 

An activity such as self-explaining, taking notes or making drawings defines a con-

structive engagement while reading (Chi & Menekse, 2015). Different cognitive pro-

cesses are triggered by different forms of engagement. The CAP-hypothesis claims 

that constructive engagement is superior to active engagement, in which active en-

gagement dominates passive engagement with respect to greater learning outcomes. 

Many studies support the CAP-hypothesis, for an overview see Chi and Wylie (2014). 

With the help of the CAP-framework, it is possible to explain the mentioned contra-

dictory research results. For example, a single active learner will only learn more in a 

dyad if his partner is an active learner or a constructive learner. A constructive learner 

will profit from group learning only, if his partner is at least an active learner and there 

will be no benefit if his partner is only a passive learner (Chi & Menekse, 2015). To 

understand better how dyads learn, it is possible to classify each individual’s utterances 

as passive, active or constructive and to widen the CAP-framework to the 

ICAP-framework, in which the fourth engagement category interactive occurs, only 

making sense in collaborative learning scenarios. Interactive learning meets two cri-

teria: a) both partners’ utterances must be primarily constructive, and b) a sufficient 

degree of turn taking must occur (Chi and Wylie, 2014). In this respect, interactive 

learning is beneficial to both constructive learners. To assess each dyad’s commu-

nicational behaviour, Chi and Menekse (2015) calculate a so-called dialogue pattern 

score, i.e. a rational number between 1 and 3. Dyads whose communication is mainly 

driven by utterances of a single learner, while the other partner remains passive, are 

classified with a score close to 1. At the other end of the spectrum, dyads whose 

communication is shaped by a high degree of constructive interaction between the 

learners, will be given a dialogue pattern score close to 3. 

Based on the ICAP-framework, we will develop a theoretical instrument to analyse 

dyads’ communication processes regarding their interactivity while working with di-

gital instructional material.  

The following research questions will be considered:  
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• In which way is the ICAP-framework applicable to analyse dyads’ commu-

nication processes, which learn with a digital instructional medium? 

• Are there dependencies between the interactivity of the face-to-face commu-

nication as measured by the dialogue pattern score and students’ learning 

outcome in a pre-post-test-scenario?  

STUDY DESIGN 

11 pairs of electrical engineering or economics students at the University of Applied 

Sciences Pforzheim worked with a digital script (comparable to an interactive-pdf-file) 

as instructional medium in a moodle-environment. The material – dealing with mea-

sures of central tendency (e.g. arithmetic mean, median, harmonic mean) as the object 

of learning – encompassed 21 slides, containing definitions, formulas, explanations, 

examples and short multiple-choice questions.  

As an example, the slide in figure 1 deals with the harmonic mean. The slide is follo-

wed by two examples illustrating the difference between the arithmetic and harmonic 

mean. In the first example, a car is driven the same amount of time on five distinct days 

with different average speeds and in the second example, a car is driven the same 

distance with different average speeds five times a week. The total average speed is 

calculated using the arithmetic mean in the first and the harmonic mean in the second 

example. 

 
Figure 1: Slide from the instruction material (translation by authors) 

Subsequently the students were asked to answer the following multiple-choice ques-

tion regarding the difference between the harmonic and arithmetic mean: 

A garden centre creates a substrate by blending same masses of four different soils. 

These soils are known to have the following densities: Soil A: 710 kg/m³; Soil B: 920 

kg/m³; Soil C: 830 kg/m³ and Soil D: 1000 kg/m³. Calculate the average density of the 

substrate. 
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Possible answers were 851 kg/m³, 865 kg/m³ and 857 kg/m³ with the first one being the 

correct answer (calculated using the harmonic mean). The second (wrong) answer is 

calculated using the arithmetic mean of the four values and acts as a distractor. After 

answering the question, students got a direct feedback whether their calculation was 

correct or not, which is the main difference to a paper-and-pencil environment. Since 

the ICAP-framework, on which our analysis is based, originated from the analysis of 

paper-and-pencil situations, this moodle-environment acts as a logical first choice to 

adapt the framework to the analysis of computer-environment situations before using it 

in situations like learning with video tutorials.  

Before and after the digital media intervention students had to take a test consisting of 

both multiple-choice items and open questions regarding the overarching topic (de-

scriptive statistics). For a detailed overview of the test items used, see Salle, Schuma-

cher & Hattermann (in prep).  

Methodology 

The students’ computer screens were captured and the utterances and the image of the 

two learners were videotaped. To analyse the recordings, the time-sampling method by 

Bakeman and Gottman (1997) was used, in which each video was organised into 

segments of 10 seconds. After that, all segments in which the students communicated 

(verbally) for at least five seconds about the mathematical aspects relevant to the ma-

terial at hand were identified. We will call this type of communication meaningful in 

the following.  

We decided to restrict our analysis of the data we collected to the students’ commu-

nication processes taking place while they focus on the material that deals with the 

harmonic mean that we described above. Compared with other measures of central 

tendency, the relative difficulty of the topic provides a richer source for possible stu-

dent interaction and thus a suitable area of focus. 

Following Chi and Menekse (2015), we regard a student as “active” if he or she repeats 

or restates ideas from either his partner or the material at hand while a “constructive” 

learner elaborates on ideas, raises questions or explains something in response to a 

question. To adapt the ICAP-framework to our situation (time-sampled videos of dy-

ads in a collaborative learning situation), we derived the following coding scheme: For 

each 10-second-segment that contains meaningful verbal communication we decided 

for each student individually whether this student took an active, a constructive or a 

passive part in the conversation.  

The following quote where both partners act as constructive learners is taken from 

dyad 114 by working on the “car-example”, described in the study design: 

Student 1: So, why do I need to use the harmonic mean in one case and the arithmetic 

mean in the other case? 
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Student 2: Here (while pointing at the screen) he drives the car always the same 

amount of time and there (points to the other example) he drives the car 

always the same distance, but needs a different amount of time. 

Here, the first student raises a question with regard to the material at hand while the 

second student directly picks up on this question and tries to explain the mathematical 

content with respect to the learning material. 

Based on this analysis, every 10-second-segment containing meaningful mathematical 

conversation is now rated on an ordinal scale ranging from a score of 1 to 3. Table 1 

gives a summary of the definitions of these scores which resemble the definitions by 

Chi and Menekse (2015). 

score Description 

Student communication in this 10 second segment… 

1 … is dominated by one student. 

 (active-passive or constructive-passive) 

2 … is driven by both partners, but not interactively. 

 (active-active, constructive-active, constructive-constructive) 

3 … has two constructive partners contributing interactively to it. 

(constructive-constructive and interactive) 

Table 1: Coding scheme of communication interactivity 

We adapt the dialogue pattern score as described in the theoretical background by Chi 

and Menekse (2015) to analyse the 10-seconds-segments in the following way. The 

number of times each score occurred is counted for every dyad and the dialogue pattern 

score is calculated by taking the weighted average of the occurrences: For example, the 

communication of dyad 001 (see table 2) included in total 23 coded segments with 

meaningful communication. 5 of those segments were score 1 segments, 7 of them 

reached score 2 and the remaining 11 of them got a score of 3. From this, we can 

calculate their dialogue pattern score as 

 

Therefore, the communication of dyads with a dialogue pattern score close to 1 is af-

fected predominantly by single student contributions without interaction between the 

partners while higher scores represent a higher level of verbal interaction. 
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RESULTS 

Counting all segments with a given code and calculating the dialogue pattern scores for 

each individual dyad yields the following table 2: 

Table 2: Dyads’ dialogue pattern and normalised gain scores 

In total, three of the 11 pairs (001, 115, 117) achieved a dialogue pattern score above 

(or exactly) 2.0 while the score of two dyads (002, 004) is close to (or exactly) 1.0. The 

median of all scores is 1.56 with 5 dyads scoring below it. 

To explore possible dependencies between the dialogue pattern score and the learning 

outcome of the dyads, we calculated the so-called normalised gain score for each dyad 

which relates pre- and post-test results using the following formula exactly as pre-

sented in Chi and Menekse (2015): 

 

Here post- and pre-test results are the averages of both partners’ results as percentage 

figures. For an individual learner this number relates the percentage points he or she 

actually gained between pre- und post-test to the percentage points he or she could 

have gained. For example, a student scoring 25 % in the pre-test and 50 % in the 

post-test achieved a gain score of 0.33 (he gained 25 percentage points out of 75 per-

centage points he could have gained). 

 # of segments with score …   

Dyad … 1 … 2 … 3 dialogue 

pattern 

score 

normalised 

gain score 

001 5 7 11 2.26 0.34 

002 5 1 0 1.17 0.20 

003 3 2 0 1.40 0.27 

004 4 0 0 1.00 0.28 

005 11 1 4 1.56 0.65 

006 2 2 0 1.50 0.41 

112 16 7 2 1.44 0.13 

113 15 12 3 1.60 0.43 

114 5 3 2 1.70 0.46 

115 0 9 1 2.10 0.41 

117 0 5 0 2.00 0.56 
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According to the ICAP hypothesis a higher dialogue pattern score should on average 

be an advantage for dyads with respect to their learning outcome. To test this hy-

pothesis and answer our second research question, we took the average normalised 

gain score of the dyads with a dialogue pattern score of at most 1.5 and of those with a 

dialogue pattern score of above 1.5 respectively. We chose this threshold because at 

this score dialogues in which both partners are verbally active become dominant. The 

results are presented in the following figure: 

 

Figure 2: average normalised gain scores with standard deviation. 

The normalised gain score of those dyads with a lower dialogue pattern score is 

M = 0.26 (SD = 0.10). This average rises to M = 0.48 (SD = 0.11) for those dyads with 

a higher dialogue pattern score. The difference in means is significant, t = -3.325, p = 

0.009. 

CONCLUSION AND PERSPECTIVES 

The ICAP-framework has been adapted to analyse time-sampled recordings of dyads 

learning with a digital instructional medium. Using this method, the predicted results 

from the ICAP hypothesis – dyads communicating in a constructive manner benefit 

with respect to their learning outcome – could be replicated. In our ongoing research, 

we will validate our adaption of the ICAP-framework in the context of students wor-

king with different digital instructional media like video tutorials which comprise more 

of the unique features of a computer-environment. If this undertaking succeeds, our 

approach will be used to identify those digital instructional media that promote inter-

active constructive communication between students and that influence the learning 

outcome in a positive way. Additionally, this method can be used to investigate the 

benefit of collaborative learning in computer environments compared to single learners 

in more detail. 
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STRIVING FOR EQUITY: HOW POLICY SHAPES OUR 

UNDERSTANDING OF RACE IN MATH CLASS 

Michelle Hawks 

University of Alberta, Canada 

 

The purpose of this research is to present initial findings related to how federal edu-

cation legislation in the United States frames racialized students in mathematics. By 

relying on Critical Race Theory and governmentality, I am able to highlight how race 

is considered in both extant mathematics education literature and current legislation. 

This allows for a discussion regarding how the use of race in policy actually impacts 

the types of research completed and how teachers perceive their students in class. To 

conclude, I join the calls of other mathematics educators who suggest that in order to 

attain equity, teachers and researchers must first actively work to counteract deficit 

narratives about racialized students. 

STATEMENT OF PURPOSE 

K-12 mathematics classes exist amongst a myriad of policy documents that influence 

the focus on particular topics within our classrooms. Many of these policy documents, 

including the Principles and Standards for School Mathematics (NCTM, 2000), the 

Common Core State Standards for Mathematics (The Common Core State Standards 

Initiative [CCSSI], 2015), and current federal education legislation in the United States 

(U.S.), all purport to be working towards equitable educational goals. In particular, 

there is a focus on the existence of achievement gaps in mathematics education be-

tween racialized students and their white peers. However, while these policies aim for 

equity, ideals of racial justice are often missing from the implementation of policies. 

To that end, this paper explores my initial findings from U.S. federal education legis-

lation to show how racialized students are framed within the legislation. I conclude 

with a look at how this framing currently impacts our mathematics teaching, education, 

and research while also looking beyond current policy to call for changes in how we 

address race as a way to encourage a positive and lasting impression on racialized 

students in our mathematics classes.  

This research stems from a desire to ensure that all students have equitable access to 

mathematics by articulating how the U.S. accountability system shapes a societal un-

derstanding of achievement in mathematics. Through knowing and understanding how 

federal legislation limits the practice of mathematics education, there is an increased 

ability for mathematics educators, researchers, and teachers to create space for 

meaningful and creative mathematics in classrooms. More specifically, my research 

aims to explore how achievement and accountability narratives prompt particular 

deficit narratives around the mathematical ability of racialized students, which adds to 
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the master-narrative that racialized students cannot succeed in mathematics (Nasir, 

Atukpawu, O’Conner, Davis, Wischnia, & Tsang, 2009). The importance of focusing 

on racialized students and mathematics is derived from the mandatory requirements for 

mathematics, the prominence of mathematics within the curriculum, as well as the 

impact of gate-keeping that mathematics can have on students’ future life choices. My 

pointed focus on African American students in particular is based on the fact that in the 

most recent NAEP data available (U.S. Department of Education, 2015), Black stu-

dents once again had the lowest percentage of students able to gain a proficient status 

on the assessment which is meant to gauge the overall national competency of twelfth 

grade students in mathematics. 

THEORETICAL FRAMEWORK 

To provide my research with a rationale as well as a focus for my literature review, the 

types of questions I have asked, the choice of methods, and analysis, I rely on Critical 

Race Theory (CRT) and governmentality. The goal of CRT is to eliminate racial op-

pression as part of the larger project of eradicating all subordination in society (Berry, 

2008; Gutiérrez, 2013; Taylor, Gillborn, & Ladson-Billings, 2016). CRT is used in 

education research to recognize and illustrate how race, racism, and the process of 

racialization have played a substantial role in education research, teaching, policy, and 

legislation (Taylor, Gillborn, & Ladson-Billings, 2016). The application of CRT in 

mathematics education, more specifically, involves acknowledging “how tracking 

practices, teacher expectations, intelligence testing, and other curricular practices have 

subordinated people of color” (Berry, 2008). The second part of my theoretical 

framework is governmentality, which according to Foucault (1991) relies on history to 

show how the governmentalization of the state occurred. In particular, this requires the 

use of a selective or partial history chosen specifically to follow a path of ideas and 

how they are defined over time in particular ways (Foucault, 1991). Taken together 

CRT and governmentality allow for a way to look at how government structures have 

been able to define how race is related to the goal of equity in mathematics education. 

Together these two frameworks establish a way to center race as a main element 

shaping the experiences of students and teachers within the K-12 school system, while 

also providing the conditions to look beyond current policies to encourage an increased 

potential to achieve equity in mathematics education. 

REVIEW OF THE LITERATURE 

Currently, there is limited research in mathematics education that deals explicitly with 

how racialized students and their experiences are conceptualized in mathematics 

classes. More often, the reference to race in many studies is directly related to the re-

porting of data, which includes observations addressing disaggregated data (Carroll, 

1997; Dorn, 2007; Wei, 2012), or determining if policy mandates can be feasibly met 

(Koyama, 2012; Stiefel, Schwartz, & Chellman, 2007). However, this process of 

centering the disaggregating of data in research limits the ways in which race and ra-

cialization can be considered in the analysis of data. The disaggregation process is 
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limiting because it ignores structural impediments and sociopolitical context. These 

barriers and the sociopolitical environment are disregarded when the experiences of all 

Black students are summed into a single number, i.e. the average score.  

Some notable exceptions to the trend of relying solely on disaggregated data to explain 

racialized experiences in mathematics are Gutstein (2007), Gutiérrez (2000, 2008), 

Berry (2004), and Martin (2009a). These authors often work within equity or social 

justice as a way of framing their research with an explicit focus on race in mathematics 

education. One way that researchers use this lens to center race is to highlight a par-

ticular teacher or mathematics department that is successfully working to help racial-

ized students achieve in mathematics (Gutiérrez, 2000; Martin, 2009a). Additionally, 

there are researchers who look at how racialized students interact with mathematics 

(Davis et al., 2007; Gutstein, 2007; Moses & Cobb, 2001). A second way that re-

searchers look at how students interact with mathematics is to look at the larger 

structure of schooling and how racialized students are placed within that structure. This 

research involves highlighting historical and cultural mechanisms that continue to 

impact the perception of racialized students within the school system. The goal of this 

research is to alter historical patterns of disenfranchisement and create spaces for ra-

cialized students to succeed in mathematics education, work that is exemplified by the 

Algebra Project (Davis, et al., 2007; Moses & Cobb, 2001; Solόrzano & Ornelas, 

2002). 

Another area of mathematics education research that deals explicitly with race, works 

in relation to teacher bias. This research deals with the structure of schooling by 

highlighting elements of the hierarchy that exists in mathematics education and is 

established through the teacher nomination process. Researchers observing this phe-

nomenon want to determine how teachers are directly or indirectly influencing student 

promotion and achievement through the mathematical hierarchy (Berry, 2004, 2008; 

Faulkner, Stiff, Marshall, Nietfield, & Crossland, 2014; Riegle-Crumb, 2006; 

Riegle-Crumb & Humphries, 2012). One of the ways that researchers have looked at 

the indirect contribution to racialized students placement in mathematics is through 

teacher perceptions of which students belong at a particular level of the mathematical 

hierarchy (Berry, 2004, 2008; Riegle-Crumb & Humphries, 2012). This indirect in-

fluence of teachers is important to acknowledge because if teachers work within the 

master-narrative that racialized students cannot achieve in mathematics the teachers 

will bring that implicit bias to student recommendations, further influencing the life 

choices of racialized students. 

The importance of this research cannot be overstated, however, when taking CRT and 

governmentality into consideration, there is a missing discussion of how structural 

elements outside of K-12 also play a role in delineating how racialized students are 

seen in mathematics education. In particular, I believe that a closer look at how ra-

cialized students are framed within U.S. federal education legislation can provide in-

sight into how equity is conceived of in mathematics education research, and how it 

can be altered going forward. To that end, this research explores data that I have col-
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lected while completing my PhD research to answer the questions: How are racialized 

students positioned in accountability policies? And what does this mean for mathe-

matics educators and researchers? 

METHOD AND DATA SOURCES 

The method used is Critical Discourse Analysis (CDA) which allows for a way to 

search for and analyze the underlying ideology inherent in education discourse (Fair-

clough, 2010). More specifically for this research, CDA works within CRT and gov-

ernmentality to recognize and elaborate on the existence of race and racial terminology 

used in governing documents which then influence action that occurs in K-12 class-

rooms. As a way to explore how racialized students are framed within federal educa-

tion legislation in the U.S. I chose to look at the Elementary and Secondary Education 

Act of 1965 (ESEA) and its subsequent reauthorizations through to the present version, 

the Every Student Succeeds Act of 2015 (ESSA). My choice of federal legislation is 

based on the fact that it exists at the same policy level as both the NCTM (2000) 

Standards and the Common Core Standards (CCSSI, 2010) which both function at a 

national level to outline potential standards for teaching and learning in mathematics. 

Additionally, since its original inception, ESEA through reauthorizations such as the 

No Child Left Behind Act of 2002 has had an increasingly direct impact on mathe-

matics classrooms and the potential perceptions of students therein. Using these 

documents allowed me to search through publicly available policy for words that were 

both explicit in their reference to race, such as race, racial, color, Negro, black, and 

African American, and those words that might be considered implicit or coded refer-

ences to race, such as minority, diversity, segregation, desegregation, and integration. 

The engagement with both past and present federal education legislation allows me to 

extract an overall understanding of how racial references have shifted over time, while 

also elaborating on how current framing allows for mathematics educators to engage 

with race more explicitly. 

OBSERVATIONS 

After gathering the information from all of the reauthorizations of ESEA, there 

emerged four temporal shifts based in the amount of both explicit and inferred racial 

language used within the legislation, presented in Table 1 below. 

 1965-1970 1972-1978 1981-1988 1994-present 

Pieces of legislation 4 4 3 3 

Average use of ra-

cial terminology 
0.75 70.5 14 62.3 

Table 1: Breakdown of racial terminology within U.S. federal education legislation  

The shifts in time and vocabulary also outline the fluctuating importance of race and 

racial terminology since ESEA was initially passed in 1965. The next few paragraphs 
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outline important events which have occurred in the political landscape that help to 

explain why particular language changed, ending with a short outline of the themes 

present within the current reauthorization of ESEA. 

During the first time period, from 1965-1970, federal education legislation mentioned 

race exactly three times. The number of occurrences is so small largely because the 

legislation and the Johnson administration relied on the Civil Rights Act of 1964 to 

prevent federal funding from going to racially segregated schools. This tactic of using 

the Civil Rights Act was meant to counteract Jim Crow Laws in the South and allow 

for more funding to go to economically deprived school districts all while keeping 

explicit references to race out of the legislation (Jennings, 2015). The drastic increase 

in racial terminology that presented itself in the 1972-1978 time period was a direct 

result of introducing the Emergency School Aid Act of 1972 to the legislation. This 

money was meant as a way to eliminate minority group isolation through the funding 

of magnet school initiatives and was meant as the main way for the federal government 

to encourage desegregated schools. Relatedly, racial terminology was almost exclu-

sively kept to sections that dealt with desegregation. And while there were initiatives 

mentioned to increase access to mathematics at this time, none of these sections ref-

erenced race in either explicit or inferred terminology.  

The 1980s saw President Reagan change tactics and attempt to completely eliminate 

federal responsibility for education generally and desegregation more specifically 

(Jennings, 2015). Thus there is a drastic decrease in the use of racial terminology, as 

well as the elimination of the Emergency School Aid Act from the reauthorizations of 

ESEA during the Reagan years. Finally, the time period from 1994 to the present saw 

the reestablishment of the Emergency School Aid Act maintaining connections to 

magnet schools and desegregation, but also saw an increase in racial terminology 

beyond those sections that was not present in earlier reauthorizations. For example, 

with increased language around accountability and achievement there came specific 

requirements for districts and states to outline how programs would have an impact on 

racialized students in particular. 

When looking at ESSA on its own, there are four themes that emerge from the use of 

racial terminology which are mentions related to mathematics, reporting and data, 

teachers, and desegregation language. The theme of mathematics is associated with the 

use of explicit racial terminology twice, where both sections acknowledge that ra-

cialized students are underrepresented in mathematics classes. Reporting and data on 

the other hand, which had seven occurrences of racial language over three and a half 

sections, specify reporting requirements and categories for data disaggregation that 

mention race as one of the categories needed to receive funding. The two sections that 

deal with teachers indicate that money is to be used to increase and address who is 

teaching racialized students. Finally, the 37 mentions in eight sections that relate to 

desegregation, outline the importance of magnet schools to desegregation efforts, as 

well as priority guidelines to give more money to schools that increase racial diversity. 
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DISCUSSION 

The ways in which racial terminology is used throughout the reauthorizations of 

ESEA, but especially in present legislation, outlines some of the ways in which mathe-

matics education research and teaching can begin to reconceptualize the relationship 

between racialized students and mathematics. First, is the importance of being able to 

meaningfully link mathematics teaching and learning with race, especially within 

policy. Both of the sections that mention mathematics, do so to outline ways that states 

and local educational agencies can apply for money to help underrepresented groups 

receive a well-rounded education, which specifically links racialized students and 

mathematics. For K-12 mathematics teachers this is particularly important since the 

stated purpose of ESSA is “to close educational achievement gaps” (2015, p. 8), and 

one of the largest achievement gaps exists between black and white students in 

mathematics (NAEP, 2015). That being said, in order to move beyond perpetuating 

deficit narratives around the achievement gap, and instead taking the sociopolitical 

turn that Gutiérrez (2013) suggests, research associated with linking racialized stu-

dents and mathematics should take into consideration larger societal discussions of 

race. For mathematics this would include looking beyond test scores to links between 

housing, income or wealth patterns, teacher turnover, and implicit bias as ways of 

acknowledging how systemic and structural issues related to race play out in test 

scores. 

Second, while maintaining statistical information about who is teaching racialized 

students and how racialized students are performing on assessments, these reporting 

mechanisms need to go farther. By only collecting particular types of data, this process 

limits the ways in which mathematics education teachers and researchers can then 

engage with their students, because they are hyper focused on test scores. This is not to 

say that all teachers do this, but that research and policy give this impression when it is 

so often repeated. 

Finally, given that an overwhelming majority of racial terminology continues to target 

desegregation suggests that despite almost 50 years of explicit attempts to integrate 

educational facilities in the U.S. segregation is still a problem. Therefore, while a bit 

beyond what can be achieved in the realm of this study, this finding highlights the need 

for future research in educational policy around desegregation and its impact on 

mathematics education. 

CONCLUSION 

It is easy to call for the end of achievement gaps and to work towards equitable edu-

cational goals, however as Rochelle Gutiérrez (2013) suggests, when research and 

policy becomes detached from issues around power, it becomes much more difficult to 

actually make the changes being sought after. Therefore, as mathematics educators, 

practitioners, researchers, and policymakers striving for equity there needs to be more 

acknowledgement of how students are framed in legislation as a way to alter our pre-

conceptions of racialized students in mathematics classrooms. This research joins the 
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calls for a continued explicit discussion of race and its varied, but very real, impact on 

racialized students in our mathematics classrooms emphasized by some researchers 

(Gutiérrez, 2008, 2013; Martin, 2009b). Furthermore, the discussion highlights the 

need to discover alternative ways to discuss students’ mathematical knowledge so that 

the master-narrative that racialized students, and black students in particular, are in-

capable of doing mathematics is not continually reinforced. 
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The purpose of this study is to identify and empirically corroborate a fundamental 

situation (Brousseau, 1997) for constructing “proof by contradiction.” We identified 

the four elements of a fundamental situation: i) obtaining strong conviction; ii) ne-

gating the given proposition naturally without being aware of the assumption; iii) 

finding a contradiction easily; and iv) noticing the origin of the contradiction. Based 

on this study, a new research question arises: How can students construct “proof by 

contradiction” using teacher support? 

INTRODUCTION 

“Proof by contradiction” (PbC) is one of the most valuable types of reasoning in 

mathematics and mathematics education. However, students have specific cognitive 

and didactic difficulties in negating propositions and using laws such as the excluded 

middle (Antonini & Mariotti, 2008). Thus, although some authors have proposed di-

dactic suggestions to help students overcome PbC difficulties (e.g., Wu Yu Lin & Lee, 

2003; Antonini & Mariotti, 2008), in our opinion, many students are still unable to 

resolve these difficulties. One possible reason for this may be an overlooked compo-

nent in the studies of students. In other words, almost all students who are analyzed in 

studies of PbC are either supplied PbC by their teachers before they engage in con-

structing PbC for the first time, or they have already been taught PbC before they 

engage in research. 

In contrast, we believe that in order to understand a concept, students must construct 

knowledge by themselves (with their teacher’s support). We assume that students 

cannot fully understand a concept if teachers or others tell them about it beforehand. 

Therefore, suggestions provided by the previous studies are inadequate as they are 

derived from observations of students whose understanding of PbC is not sufficient. In 

clarifying the conditions that enable students to construct PbC by themselves with their 

teacher’s support, findings of previous studies become more meaningful, paving the 

way for elaboration and further research. Thus, our study aims to do the following: 

P1: To identify a fundamental situation (Brousseau, 1997) for constructing PbC 

P2: To corroborate the identified fundamental situation empirically 
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THEORETICAL BACKGROUND AND METHODOLOGY 

The theoretical background for this study is based on the Theory of Didactical Situa-

tions (TDS; Brousseau, 1997), and the methodology adopted is didactical engineering, 

particularly a priori and a posteriori analysis (Artigue, 1992) within the framework of 

TDS. We used TDS because it is one of the most scientific theories in the discipline. 

Learning is defined in TDS as follows: “The student learns by adapting herself to a 

milieu which generates contradictions, difficulties and disequilibria, rather as human 

society does. This knowledge, the result of the student’s adaptation, manifests itself by 

new responses which provide evidence of learning” (Brousseau, 1997, p. 30, italics in 

the original). This definition aligns with our assumption that students must construct 

knowledge by themselves. 

TDS assumes that students construct mathematical knowledge in didactical or adidac-

tical situations. Since any mathematical knowledge has been historically incubated in 

some situation, there always exist situations wherein it can be constructed. Because not 

all situations are replicable in educational settings, TDS assumes that all mathematical 

knowledge has at least one fundamental situation (FS) that can become a didactical 

situation (Brousseau, 1997, p. 30). However, FSs are not always easily identified by 

mathematics educators, and PbC does not typically employ constructive reasoning (in 

the sense of intuitionism). Thus, an FS for constructing PbC has not yet been identified. 

In TDS, on identifying an FS based on theory, we corroborate it through a priori and a 

posteriori analyses: first, by designing a didactical situation based on the FS (a priori 

analysis); second, by trying to realize this situation in an actual mathematics class-

room; and third, by corroborating our hypothesis about the FS underlying the design. 

FUNDAMENTAL SITUATION OF PROOF BY CONTRADICTION 

Indirect argumentation seems to be a natural way of thinking (Freudenthal, 1973, p. 

629). Thus, an FS for constructing PbC should enable students to employ indirect argu-

mentation and develop this into a PbC. However, previous research suggests that rup-

tures between indirect argumentation and PbC may occur. Mathematicians and ma-

thematics educators have pointed out the specific difficulties of PbC (e.g., Wu Yu Lin 

& Lee, 2003; Antonini & Mariotti, 2008); we distinguish between three types here in 

order to identify our FS. 

D-I: Difficulties in considering PbC as an option and in carrying out the method 

of PbC 

When students try to prove a proposition, they usually do not consider using indirect 

proof, including PbC, as an option. Although they may consider PbC suitable for pro-

ving a given proposition, they often give up constructing PbC mid-way. Several diffi-

culties in the process have been reported: negating the proposition, formalizing and 

interpreting the negation (Wu Yu, Lin & Lee, 2003), finding a contradiction, and so on.  
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D-II: Difficulties in accepting the result of a PbC 

Even if one is able to prove a proposition using PbC, the result may not seem ac-

ceptable: “I think this is one source of frustration, of the feeling that we have been 

cheated, that nothing has been really proved, that it is merely some sort of a trick—a 

sorcery—that has been played on us” (Leron 1985, p. 323). 

D-III: Difficulties in grasping the very structure of PbC 

PbC has a specific structure, that is, when one assumes the negation of a true proposi-

tion P, a contradiction comes into being implying that the negation is false and P is 

true. Thus, one needs to know the theory and the meta-theory (Antonini & Mariotti, 

2008) of PbC. 

In Japan, students engage in PbC in mathematics when they are in the 9th grade and 

learn that the square root of 2 is irrational. However, since they have not been intro-

duced to PbC until then, they face D-I, D-II, and D-III all at once. This confuses them. 

Additionally, knowing the structure of PbC is necessary for overcoming D-I and D-II, 

that is, students must have already overcome D-III to resolve D-I and D-II. Therefore, 

before students engage in PbC, they should engage in PbC in FSs in which they are 

required to face and overcome only D-III.  

In this study, we focus on an insight from Dawkins & Karunakaran (2016), according 

to which, research on student learning of mathematical proofs should pay greater at-

tention to the role of mathematical content. Thus, in order to avoid D-II, FSs for PbC 

should enable students to surmise that the proposition to be proved is true. For exam-

ple, students who have already accepted that the square root of 2 is irrational have less 

trouble accepting the PbC in order to prove it (Antonini & Mariotti, 2008, p.407). In 

addition, in order to avoid the emergence of D-I, an FS should enable students to ne-

gate the sentence naturally and formalize the proposition to be proved. Such situations 

enable students to find a contradiction easily because they autonomously begin to 

enquire into what statements can hold in the false world. Items (i) – (iii) (Figure 1) are 

a summary of the above consideration.  

A fundamental situation (FS) for constructing proof by contradiction is one in which 

students must do the following four things: 

(i) Be strongly convinced that the proposition to be proved is true  

(ii) In investigating the milieu, they must construct a false world by naturally assuming 

the negation of the proposition (without being aware of the assumption). 

(iii) Easily find a contradiction in the false world 

(iv) Notice that they make the assumption themselves and that this is the origin of the 

contradiction 

Figure 1: A fundamental situation for constructing proof by contradiction. 
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However, even if a student is able to find the contradiction and conclude that a prop-

osition is true, s/he may still reason this using indirect argumentation rather than in-

direct proof. Because the core of PbC lies explicitly in assuming the negation of a true 

proposition, students must make such assumptions after they negate and formalize 

propositions. In order to do this, students must identify the origins of a contradiction. 

Thus, we have added (iv) to Figure 1. 

Figure 1 is our proposal for a possible fundamental situation for constructing PbC. In 

the next section, we corroborate this by a priori and a posteriori analysis. 

DESIGN AND A PRIORI ANALYSIS 

The subjects of our analysis are 9th grade students who come across PbC for the first 

time (as mentioned earlier). These students have already learned basic direct proofs in 

geometry and algebra, algebraic skills and concepts, and the notion of irrational num-

bers. They have also learned—but not proven—that the square root of 2 cannot be 

represented as p/q (where p and q are disjointed integers and q is not equal to 0). In 

their textbook, PbC is introduced in order to prove this. We thus designed a mathe-

matics lesson as shown in Figure 3. The teaching protocol employed in this lesson 

followed the “problem-solving lesson” model presented in Figure 2.  

Our experimental lesson was conducted in June 2016 in a junior high school attached 

to a national university. This experiment was conducted during one lesson (50 minu-

tes) on 40 students (20 males/20 females). The teacher was the students’ regular ma-

thematics teacher, and is one of the authors of this study as well. We did not investigate 

students’ pre-conceptions, because such an investigation may affect students’ perfor-

mance in the study. However, our reflection on the experiment revealed that none of 

the students seemed to know PbC well before the experiment; even after students 

found a contradiction, they did not to try to construct PbC by themselves. Instead, they 

all needed the teacher’s support to shift from indirect argumentation to indirect proof.  

 

Figure 2: Lesson model (Mizoguchi, 2015, p. 627; reprinted with permission). 
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Figure 3: Lesson designed to corroborate the FS identified in this study1. 

RESULTS AND A POSTERIORI ANALYSIS 

In the lesson, the teacher posed the problem to the students and shared with them the 

property that the square root of 2 cannot be represented as a common fraction. We 

obtained data from video recordings and the students’ worksheets. Only the problem 

and name fields are written in their worksheets. We banned eraser use so that we could 

examine all the ideas that students produced. During the “individual solving process” 

phase (Figure 2), students tried to solve the problem on their worksheets, and the 

teacher supported them verbally and individually, following the plan in Figure 3. The 

teacher was careful to align his support appropriately in keeping with the students’ 

levels of progress. In the “refining and elaborating solutions” phase, the teacher picked 
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students to present their own solutions (in the order of the mathematical activities C, 

B-1, B-2, and A) and all the students refined and elaborated their own solutions 

through discussion involving the entire class.  

Figure 4: Male student Y’s worksheet (translated into English by the authors, under-

lined by the student; (a), (b), and (c) added by the authors for convenience). 

In the experimental lesson, all the students completed mathematical activity C success-

fully, and almost all the students completed B-1 or B-2 successfully in the first phase, 

that is, they found a contradiction (although some students described it as “strange”). 

Student Y (male) is one of the students who successfully constructed PbC. Figures 4 is 

an example of students’ answers (translated here from their native language). In this 

example, the teacher supported him in constructing PbC (activity A), but PbC seemed 

difficult for him. In the “refining and elaborating solutions” phase, Student Y’s 

presentation was mathematically sound and hence was accepted by the other students 

(See Figure 4 (c)). Next, the teacher presented: “When we need to prove a supposition, 

if we assume the opposite to be true and derive a contradiction, then, the initial sup-

position to be proved is considered true. We call this method ‘proof by contradiction.’” 

Here, let us focus on Student Y’s problem-solving process. As soon as the “individual 

problem-solving process” phase began, Student Y thought the answer was only (a, b) = 

(0,0) and that 
 
was contradictive. To indicate this, he wrote (a), as shown in 

Figure 4. However, he was puzzled by the contradiction and wrote, “Both a and b are 

rational numbers…” Thus, the teacher supported him by following TS-1 for B-2 in 

(a) When we solve , 

, then 
 

Both  and  are rational numbers… 

 

(b) If there are any  and  that satisfy 
 

When we solve , 

 

 
Both  and   are rational numbers. So 

 is a rational number too. Thus,  

is a rational number too; however this 

contradicts the fact that  is an irra-

tional number, so there are no  and   

that satisfy  

 

(c) If there are any  and  that satisfy 

 ( ) 

When we solve , 

 

           

Both  and  are rational numbers. 

So  is a rational number too. Thus,  

is a rational number too; however this 

contradicts the fact that  is an irrational 

number, so there are no  and  that sat-

isfy  when . 

Next, I insert  into , so . 

Thus, , so . 

From this result, if we insert  into 

, it becomes  too. 

For above reasons, the answer is only 

. 
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Figure 3. Five minutes later, he finished writing indirect argumentation (b). Although it 

was a persuasive argument, he did not pay attention to his implicit assumption that 

( ). Hence, the teacher supported him by following TS-2 for B-2 in Figure 3. 

Ten minutes later, he finished writing a mathematically acceptable PbC (c). While in 

the “refining and elaborating solutions” phase, Student Y explained (c) to the other 

students after another student had explained B-2. However, some students could not 

find the essential difference between these two explanations. Thus, the teacher asked 

all the students, “The explanation by Y is very similar to another explanation (B-2). 

What is the important difference between them?” and asked Student Y to explain it. 

Student Y said, “Umm…  , oh, sorry. Well… there is  in my explanation, 

well… we cannot divide 
 
by b” (the original was spoken in his native language), 

and Student Y pointed out that the assumption  is important. This showed that he 

noticed the importance of assuming negation of the proposition to be proved. 

Student Y’s problem-solving process (shown by (a), (b) and (c)) was in accordance 

with our design. Three observations support this claim: first, in (a), he surmised that the 

solution was only (a, b) = (0,0) and found a contradiction in a false world, where the 

negation of the proposition to be proved was assumed; second, he made an indirect 

argument (b); and finally, he developed (b) into (c), that is, PbC, by detecting the origin 

of the contradiction and noticing that the negation of the true proposition was implic-

itly assumed. Thus, these empirical observations corroborate the fact that our designed 

lesson can produce a didactical situation and that our proposed situation in Figure 1 is 

an FS for constructing PbC. 

IMPLICATION 

The purpose of this study was not to design a “good” lesson, but to identify an FS for 

constructing PbC, and to corroborate it. Therefore, although not all the students were 

able to construct PbC by themselves in this lesson, the value of our findings cannot be 

undermined. Given the fact that Student Y (and some other students) constructed PbC 

by themselves (with the teacher’s support), we may conclude that Figure 1 is valid as 

an FS. Designing a “good” lesson according to Figure 1 is thus a future task for 

mathematics teachers rather than for researchers. Our findings also imply a new re-

search question: How can students construct PbC by themselves with their teacher’s 

support? Future researchers investigating students’ cognitive and didactical difficulties 

with PbC should expand their foci to the processes of construction of PbC by learners. 

Researchers should also investigate the differences between the processes underlying 

success and failure in constructing PbC.  

We have three future tasks. First, we must investigate the processes of students who 

construct PbC by themselves, especially to examine whether or not they are able to use 

PbC by themselves, with their teacher’s support (D-I), and whether or not they accept 

the results of PbC (D-II). Second, we must identify fundamental situations for over-

coming D-I and D-II. In other words, we must design curriculum for understanding 
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PbC. Third, we must investigate the effects of applying previous studies’ didactical 

suggestions to our teaching practices. 

Notes 

1 They do not know that 
 
is irrational. Thus, when students solved it in accord-

ance with B-1, we supported their shift to B-2. 
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This study of secondary classrooms examined students’ mathematics discourse in 

small group learning environments. Audio-recorded conversations from naturalistic 

observations of classrooms provided data for investigating the learning environments 

students created and experienced in their small groups. The discourse framework and 

related coding scheme we utilized revealed key differences in the frequency and quality 

of students’ explaining and questioning. 

FOCUS OF THE STUDY 

Small group learning environments promote opportunities for conceptual learning and 

powerful mathematical work (e.g., Mercer, 2005; Veenman, Denessen, vanden Akker, 

& van der Rijt, 2005). Facilitating students’ group work presents challenges for 

teachers because their influence on what transpires is indirect. In this paper we report 

on foundational work of the Peers Engaged as Resources for Learning study of small 

group learning environments in secondary mathematics classrooms, addressing the 

research question: How can mathematics discourse among students working in small 

groups be characterized to reveal differences in the frequency and quality of their ex-

plaining and questioning about the mathematical work? 

CONCEPTUAL FRAMING AND RELATED LITERATURE 

We conceptualize the small group learning environment to comprise three major el-

ements: the mathematics task (Stein, Grover, & Henningsen, 1996), the discourse re-

lated to the mathematics content (Sztajn, Heck, & Malzahn, 2013), and the social peer 

dynamics among the group members (Hamm & Hoffman, 2016). In this sense, we are 

broadly interested in what Ryve (2011) distinguishes as Discourse (the culture), in that 

the small group learning environment is a micro-culture in the classroom. It is shaped 

by and, in turn, shapes these three elements to constitute the opportunities students 

have to learn mathematics by engaging with content and with one another. The focus in 

this investigation, though, is the mathematics discourse (the conversation), so that our 

attention here, using Ryve’s descriptors, is first on discourse as Such, because we seek 

to describe the frequency and quality of explanations and questions that occur in 

conversations among students working in small groups. We reiterate, however, that our 

attention to mathematics discourse always pertains its role in shaping students’ en-

gagement and opportunities; that is, we investigate discourse because it is one of the 

vital factors that forms the learning environment in each small group. In this sense, our 

study also examines discourse as Constitutive of small group learning environments. 
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Our operational definition of discourse includes four dimensions: explaining, ques-

tioning, listening, and using multiple modes of communication (Sztajn, Heck, & Mal-

zahn, 2013). We are interested in how working in small groups promotes, hinders, or 

otherwise influences the expression, exploration, interrogation, and representation of 

mathematics ideas among students through their communication. Here we focus on 

communication in speech, so we limit our attention to explaining and questioning.  

Explaining is declarative speech, which may be tentative or definitive, through which 

students state an idea. We accept speech that is specifically intended to share the idea 

with other students or speech that may essentially be a student talking to her/himself, 

because in either case the act of speech allows other students access to the idea. Ex-

plaining can take many forms in terms of its mathematical content. Students may 

simply state a mathematical result or answer (e.g., The area is 10.). With or without 

providing a specific result, a student may name or describe a mathematical procedure 

or may voice the procedure as it is being applied in the course of working on the task 

(e.g., I found the average.). In explaining, a student may share a mathematical justify-

cation for an answer or a procedure (e.g., The range will increase because we added an 

outlier.). Noting or describing mathematical comparisons or connections, among dif-

ferent answers/procedures or between an answer/procedure and the context of the task, 

or a context used as an analogy or example, (e.g., My multiplication and your addition 

account for the same parts.) are also forms of explaining. 

Questioning is interrogative speech, which may be asked of another group member, or 

oneself, or may essentially be undirected. Questioning can represent uncertainty or 

doubt on the part of the speaker, who may be expressing uncertainty about her/his own 

thinking or about another student’s idea. It may also represent a general or specific 

invitation for another student to respond. Questioning takes various forms, parallel to 

explaining, in terms of mathematical content. That is, a question may ask for an answer 

or procedure, which can be in closed form (e.g., What does x equal? Should we mul-

tiply?) or open form (e.g., How did you find x?). Questioning may also seek justifica-

tion for an answer or procedure (e.g., Why did you multiply?), or may ask for a con-

nection (e.g., How does dividing relate to the problem?). 

Working on mathematics in small groups creates a unique learning environment for 

students. In it, they are able to share their own thinking and have access to the thinking 

of peers. By sharing their ideas, students can refine their thinking in terms of precision, 

justification, and meaning making (Barron, 2003; O’Donnell, 2006; Webb & Palin-

scar, 1996). The small group learning environment also shapes the experience of 

mathematics itself. In this environment, communication becomes an essential part of 

knowing and doing mathematics (Sfard & McClain, 2002). Attending to explaining 

and questioning in students’ conversations provides a window on their engagement 

with the mathematics content and with mathematics communication among peers 

(Moschkovich, 2007), offering insights into the learning opportunities the small group 

learning environment affords (Zahner and Moschovich, 2010). 
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METHODS 

Data for the study were taken from the naturalistic phase of a multi-year study, when 

6th, 7th, 8th, and 9th grade mathematics teachers and their students were observed and 

audiorecorded as they engaged in small group work as part of each teacher’s own 

lesson plans. Qualitative analysis of audiorecords utilized a codebook for capturing the 

presence and prevalence of various kinds of student talk, but 1-minute intervals, that 

occurred in the small group setting. Quantitative results consider the frequency and 

patterns of talk for various student groups.  

Sample and context. 

Study participants included eleven volunteer middle and high school teachers from one 

rural and low-resourced, and one municipal and well-resourced school district in the 

Southeastern US. Each teacher identified one to three classrooms in which they used 

small group work, resulting in three 6th, six 7th, twelve 8th, and six 9th grade classrooms 

engaged in the study. These classrooms served a mixture of African-, Asian-, Latino-, 

and White-American students, and a few students who recently immigrated to the US. 

In one class period in each classroom, the entire class period was observed by two re-

searchers and audiorecorded using one recorder for each small group of students and 

one recorder that the teacher wore. Across classrooms, 161 small groups were ob-

served and recorded; group size ranged from 2 - 5 students. About half of the groups 

(56.5%) were mixed gender. 

All observed lessons followed the teacher’s lesson plan without intervention on the 

part of the research team. Accordingly, student groups worked on a variety tasks ap-

propriate to the grade level and content focus and sequence of their courses. Tasks 

included, for example: (1) finding areas and perimeters of circular and rectangular 

parts of a stained glass window, (2) finding the volume and surface area of a cylinder 

and a tube, (3) finding missing angle measures in various kinds of triangles, (4) ana-

lyzing central tendency and spread of data distributions, (5) analyzing quantities in 

two-way frequency tables and Venn diagrams, (6) modelling situations with linear 

relationships, and (7) comparing different representations of linear relationships. 

We assigned the 161 group recordings, stratified by classroom, to one of three coding 

and analytic phases. To address the research question for this study, we analyzed 26 of 

the 54 recordings assigned to the first phase (to be completed for presentation), which 

is designed to establish coding definitions for a priori codes suggested by theo-

ry/research and to identify and define potential emergent codes. We used time sam-

pling (1-min intervals) to capture the frequency of occurrence of each code. 

Analysis. 

Analysis of small group episode recordings drew on a coding scheme adapted from the 

Mathematics Discourse Matrix (Sztajn, Heck, & Malzahn, 2013), which provides in-

dicators of student talk that characterize types of explaining and questioning. 
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The explaining category includes six codes for capturing ways students might share 

their mathematical thinking or work in the small group context. “Explaining: Ans-

wers,” applies when students share or simply acknowledge/verify answers, correct 

others’ answers or express a value judgment about other students’ mathematical contri-

butions without elaboration. “Explaining: Procedures” indicates when students name 

or describe their methods, procedures, or procedural ideas, including restating or 

building upon a solution method that was already shared. “Explaining: Justifications” 

is used for statements providing a reason or rationale for an answer, procedure, or 

broader idea, including restating justifications made by others. “Explaining: Connec-

tions to students’ work” applies when students make mathematical connections across 

their own and/or others’ explanations, state generalizations, or compare work to iden-

tify similarities or differences, including resolving differences. “Explaining: Con-

nections to context” indicates when students make a connection between their work 

and the context of the problem or use an analogy or a context, or another mathematics 

idea, to make sense of a problem. When students share an explanation that is difficult 

to follow or has an unclear purpose, “Explaining: Ambiguous” is used. 

The questioning category similarly provides six codes for questions that could be ob-

served during small group work. “Questioning: Short-response,” describes questions 

designed to establish correctness of an answer, procedure, or idea, to lead to correct an-

swers, or to verify steps in a procedure. This code also applies when students ask 

questions to clarify term(s) used in a solution method or idea that another student 

shared. “Questioning: Open-ended,” applies to questions that invite elaboration about 

answers, procedures, or other ideas. “Questioning: For justifications,” applies to 

questions designed to elicit reasons or rationale for answers, procedures, or other ideas. 

“Questioning: For connections to students’ work,” is applied to questions related to 

connecting/comparing across the group’s mathematical ideas, including identifying 

similarities and resolving differences. “Questioning: For connections to context,” ap-

plies to questions intended to relate ideas to the context of the problem, seek or consi-

der an analogy, or connect to other mathematics ideas. Questions that do not have a 

clear purpose, or whose meaning is not clear, are coded “Questioning: Ambiguous.” 

Students’ talk in small groups often includes not only explanations and questions, but 

also statements/questions relating to the requirements of the mathematical task as an 

assignment. Three codes were added to identify comments students make to manage 

the mathematics task in the small group: “Managing: Reading the task” (verbatim) 

“Managing: Restating the task” (in own terms) and “Managing: Reporting progress” 

(what is complete or still to do, what is understood or not understood).  

Students in small groups also engage in non-mathematical, or “off –task”, talk. The oc-

currence of such talk is very frequent; the majority of one minute intervals included an 

instance of non-mathematical talk. Periods of silence or uninterpretable utterances are 

also frequent. The codes “Non-mathematical talk” and “No talk” were limited to only 

minutes in which no Explaining, Questioning, or Managing talk was evident.  
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The resulting Small Group Discourse Codebook was developed and revised by a team 

of three researchers to address the study’s research question. The researchers collecti-

vely tested the codebook with four randomly selected recordings from another part of 

the study to develop common understandings of a priori codes, inform revisions and 

additions, and identify illustrative examples for each code. 

After establishing codes for observable talk that were consistently interpreted across 

researchers, randomly selected recordings were coded by pairs of researchers. The 

team met to reconcile coding and further refine the codebook to strengthen consistency 

of interpretation. Average agreement was 75.3% in round 1 and 90.2% in round 3 of 

the training, which completed coding for 8 recordings (4 per district). Given the high 

level of agreement, further coding proceeded by randomly assigning recordings to 

individual researchers, with 20% being double coded to ensure continued reliability. 

Agreement on double-coded recordings ranged from 75% to 81%. The data reported 

here come from coding of 26 recordings, 13 from each district, with one excluded 

because the recorder had been turned off early in the class period.  

RESULTS 

The complete episode of small group work in each classroom was treated as the unit of 

investigation, divided into single minutes for coding. The relative time devoted to 

small group work varied according to teachers’ lesson plans, ranging from about a 

third to nearly the entire length of the class period. Since the length of class periods 

varied considerably (28 to 85 minutes, most either 47 or 85 minutes) and available time 

for group work also varied (27 to 57 minutes), we present results as percentages of 

available group work time in the class period that received each code of interest. 

Across all recordings, students were engaged in talk about their assigned task 87% of 

the available time, on average, ranging from 40% to 100%. Considering the broadest 

categories, an average of 65% (ranging from 14% to 100%) of the available time in-

cluded talk coded as explaining. An average of 43% of the time included talk coded as 

questioning (from 12% to 89%). An average of 30% of the time included talk coded as 

managing the task (from 0% to 81%). 

In terms of explaining, providing only answers (58%) or procedures (31%) were the 

most frequently occurring types. Offering justifications occurred, on average, 18% of 

the time, ranging from 0% to 59%. Identifying connections among students’ work oc-

curred an average of just 6% of the time, ranging from 0% to 43%; and connections to 

a broader context, on average only 2% of the time, ranging from 0% to 19%.  

Considering students’ questioning, the most frequently occurring types were short-ans-

wer (an average of 32% of the time, ranging from 12% to 73%) and open-ended 

questions (average 9%, from 0% to 25%) that called for only answers or procedures in 

response. Questions seeking justification occurred on average just 5%, with a range 

from 0% to 30%, of the available time. No questions in any group called for a response 

involving connections among students’ ideas or to a broader context. 
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Examining the full episodes of group work to identify differences in the frequency and 

nature of talk among groups, several notable patterns emerged. These patterns are 

distinguished by the percent of available time in which explanations and questions in-

volved either justification or connection (among student ideas or to a broader context 

of the problem), which we considered deeper instances of talk because they engage 

students in thinking beyond answers and procedures. Examining these deeper in-

stances led to five patterns identified among the 25 group episodes (also see Table 1). 

In 5 episodes both explaining and questioning occurred in 59% or more of the available 

time; deeper instances were found at least fairly often in both explaining and questio-

ning, 12% to 59% of the available time. These episodes provided Very Frequent Op-

portunities for deeper learning through talk. 

In 3 episodes both explaining and questioning occurred at least 40% of the time, and 

deeper instances, almost all involving justification rather than connection, were found 

fairly often, 17% to 38% of the available time, in either questioning or explaining, but 

occurred on only limited occasions in the other category. These episodes provided 

Frequent Opportunities for deeper learning through talk. 

In 5 episodes explaining and questioning occurred at least 24% of the time, and deeper 

instances were found either fairly often in one category but not at all in the other, or 

were found in limited instances in both categories. These episodes provided Occasio-

nal Opportunities for deeper learning through talk. 

In 7 episodes both explaining and questioning occurred at least 14% of the time; deeper 

instances were identified in limited cases in one or the other category, but not in both. 

These episodes provided Limited Opportunities for deeper learning through talk.  

In the remaining 5 episodes both explaining and questioning occurred at least 12% of 

the time, but deeper instances were almost entirely absent from both categories. These 

episodes provided essentially No Opportunities for deeper learning through talk. 

Opportunities N Explaining Deeper Ex-

plaining 

Questioning Deeper 

Questioning 

Very Frequent 5 82 to 100 23 to 59 59 to 89 12 to 30 

Frequent 3 61 to 76 14 to 38 42 to 48 3 to 17 

Occasional 5 55 to 81 11 to 39 24 to 59 0 to 4 

Limited 7 28 to 96 2 to 21 14 to 67 0 to 7 

No 5 14 to 67 3 to 4 13 to 46 0 

Table 1: Percent of available time groups engaged in each type of talk to provide op-

portunities for deeper learning.  
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CONCLUSIONS AND IMPLICATIONS 

Mathematics discourse plays a central role in the learning environment that students 

create and experience during small group instruction. Investigating the frequency and 

nature of students’ talk for explaining and questioning about mathematics content 

during episodes of group instruction revealed differences in the opportunities these 

episodes offered for students to engage with the mathematics content of the tasks as-

signed for group work, and with one another’s thinking about the mathematics of the 

tasks. The opportunities provided in these episodes were particularly distinguished by 

the frequency with which instances of explaining or questioning involved deeper 

mathematical purposes, either justification for an answer or procedure, or connection 

among students’ contributions, to the context of the problem, or to other mathematical 

ideas. Accordingly, the analytic approach we employed addressed our research ques-

tion, because we were able to detect important differences in mathematics discourse 

among episodes of small group work. We assert that these differences distinguish 

various small group learning environments in terms of the frequency of opportunities 

they provide students for deeper mathematics learning. 

Our conclusion is that attending to specific aspects of discourse in terms of conver-

sation, focusing on both frequency of occurrence and depth of purpose, aids in under-

standing how mathematics discourse among students constitutes a particular learning 

environment (Ryve, 2011) within an episode of small group instruction. The signify-

cance of this result, in our broader work and to the field, is that this approach to ana-

lyzing small group work provides a means to quantify and categorize the frequency 

and quality of mathematics discourse occurring during small group instruction. With 

this approach, investigations, including large scale studies, of at least four types of 

questions about small scale learning environments can be supported.  

First, studies of supports for students that directly aim to improve mathematics dis-

course occurring in small group learning environments could use this approach to trace 

changes in the frequency and quality of resulting discourse.  

Second, research into other factors that shape the small group learning environment 

can incorporate these measures of mathematics discourse. Studies of task design and 

implementation, including teaching actions, as well as peer-to-peer social dynamics, 

could be use this approach to examine the mathematics discourse that transpires under 

different conditions.  

Third, studies that consider multiple factors, such as those above, alongside discourse, 

as constituting the small group learning environment, can adopt this approach to 

measure mathematics discourse. Such studies, then, can relate experiences in small 

group learning environments to various outcomes of interest—conceptual learning, 

orientations to mathematics, and views of peers as mathematical resources.  

Fourth, studies of small group discourse can use the same approach to look beyond the 

frequency and depth of purpose occurring in the discourse to examine the flow of in-

stances within episodes and specific student interactions that produce variations in the 
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learning environment and the opportunities for engagement and learning it provides to 

each student. 
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THE RELATION OF CHILDREN’S PERFORMANCES IN SPATIAL 

TASKS AT TWO DIFFERENT SCALES OF SPACE 

Cathleen Heil 

Leuphana University Lüneburg, Germany 

 

This study investigates the relation between performances of fourth-graders in spatial 

tasks with depictive material in the classroom and orientation tasks in real space. The 

children completed a paper and pencil test and a map-based orientation test on cam-

pus. A correlational analysis revealed that the children’s performances in small-scale 

spatial tasks are related to their performances in large-scale spatial tasks. Moreover, 

classes of small-scale tasks that require mental transformations concerning the self 

and concerning objects are related to large-scale tasks that involve the update of the 

self-to-landmark relations in real space and the map-environment relation, respec-

tively. Both classes contributed to the prediction of performances in map-based ori-

entation tasks that require a constant update of map-self-landmark relations. 

INTRODUCTION 

Solving spatial tasks is recommended in geometry classes in primary school since 

doing so helps children to “grasping space”, i.e. it contributes to a child’s thoughtful 

interaction with the three-dimensional space in which they live, play and move 

(Freudenthal, 1973). The demands on spatial tasks in geometry education are therefore 

twofold: on the one hand, they should foster a child’s ability to interact successfully 

with space. On the other hand, spatial tasks should allow a child to integrate and enrich 

individual spatial experiences while solving them. In order to accomplish both goals, 

spatial tasks should ideally be introduced into geometry classes in both ab-

stract-depictive spatial settings in the classroom and in concrete-navigational spatial 

settings in real space (OECD, 2004, p.36).  

Current studies in mathematics education emphasize the importance of spatial tasks in 

both contexts but typically investigate those in settings that include only written or 

small material (e.g. Logan et al., 2017). Researcher may do so because they assume 

that the performances in spatial tasks in depictive settings equal the performances in 

navigational settings in real space. However, empirical evidence on whether and to 

which extent performances in both contexts are related has never been provided. This 

study addresses that gap at a conceptual and empirical level. 

THEORETICAL BACKGROUND 

Cognitive psychologists conceptualize spatial tasks with depictive material, such as 

paper and pencil tests, as small-scale spatial tasks, since they rely on a stimulus that 

can be perceived from one single vantage point. They conceptually contrast them to 
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large-scale spatial tasks that require the locomotion of the subject towards multiple 

viewing points in order to be completed and may require the successful interpretation 

of a spatial representation such as a map (Montello, 1993, Hegarty et al., 2006).  

In order to comply spatial tasks at both scales of space, children typically need to un-

derstand the interplay between different spatial positions in space and the visual appea-

rance of object configurations. Hereby, the child needs to be able to encode and men-

tally manipulate three changing relations between the different objects, the self, and 

the environment: object-to-environment relations, self-to-object relations and 

self-to-environment relations (e.g. Hegarty et al., 2006).  

Small-scale spatial tasks can be differentiated according to two classes of mental trans-

formations demands that are necessary in order to solve them: (1) tasks that require 

object-based transformations, i.e. tasks that require the mental movement of a set of 

objects in the environment (OB), and (2) tasks that require egocentric perspective 

transformations, i.e. tasks that require the mental movement of the own point of view 

in relation to a set of objects (EGO). Both classes have been found to be distinct not 

only on the conceptual level, but also on an empirical level (e.g. Kozhevnikov et al., 

2006). 

Large-scale spatial tasks can also be conceptualized in a differentiated way according 

to different task demands. The memorizing of landmarks (important recognizable 

“objects”) without providing maps has been studied under the perspective of individual 

differences in the performance to keep track of changing self-to-landmark relations in 

the environment that enable the formation of a cognitive map (e.g. Hegarty et al., 

2006). Static map use, that focuses on aligning a map with the environment in order to 

draw directional inferences from it while not moving in space has been studied with 

respect to individual differences in the performance of recognizing and correcting 

misaligned relations between the map and the environment (e.g. Shepard & Hurwitz, 

1984). Finally, dynamic map use, that requires the subject to keep track of the 

self-location and orientation on the map while moving in space or to navigate to 

landmarks, has been investigated with respect to individual differences in the perfor-

mance to update self-to-map, self-to-environment, and map-to-environment relations 

(e.g. Liben et al., 2008). Although it has been highlighted that large-scale spatial tasks 

need to be conceptualized in a differentiated way (e.g. Kozhevnikov et al., 2006), the 

distinction of the classes outlined above is less studied from an empirical point of view. 

Divergent results have been reported concerning the relation between performances of 

children in small- and large-scale spatial tasks. Those have been shown to be either 

totally dissociated (Quaiser-Pohl et al., 2004) or partially related (Liben et al., 2013). 

The latter study as well as similar studies with adults (Liben et al., 2008, Kozhevnikov 

et al., 2006) highlighted the potential role of single OB and EGO tasks as common and 

unique predictors of diverse large-scale spatial tasks.  
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PURPOSE OF THE STUDY 

The goal of this study was to investigate the relation between the performances in 

small-scale spatial tasks and the performances in large-scale spatial tasks of primary 

school children. We aimed to examine whether classes of paper and pencil tasks were 

reliable and unique predictors of different of map-based orientation tasks. Moreover, 

we intended to assess whether patterns of unique prediction where generalizable for 

classes of map-based orientation tasks. 

METHOD 

Participants and stimuli 

240 (111 m, 129 f) fourth graders from the north of Germany participated in the study 

on the campus of our university. The children were aged between 9 and 12 years 

(m=10.29, SD=.48). Each child completed a paper and pencil test in a group and a 

map-based orientation test in large-scale space individually at the same day with a 

break of at least 20min for cognitive recover.  

Paper and Pencil Test 

The Paper and Pencil Test consisted of eight small-scale spatial tasks, four of them 

measuring performances in tasks that require egocentric (EGO) transformations and 

four of them measuring performances in tasks that require object-based (OB) trans-

formations. We developed EGO tasks mostly from the scratch and designed tasks that 

require the children to relate field views of various object configurations to the cor-

responding positions in plan views. One task was an adoption of the Guilford-Zim-

mermann-Boat test for children. The OB tasks consisted of an adoption of Ekstrom’s 

Card Rotation Test, an adoption of the Vandenberg Mental Rotation Test, and adoption 

of the Paper Folding Test for children. We further designed a task that requires the 

children to imagine going along a path on a map and decide on each crossing whether 

they turned left or right. 

We tested the quality of our tasks in a pilot study with N=222 children, making sure 

that our self-developed test has acceptable psychometrical characteristics and is con-

struct-valid (EGO tasks are empirically separable from OB tasks).  

Map-based orientation test 

The map-based test consisted of eight tasks with three items each that were integrated 

in a treasure hunt on the campus (Table 1). One task was performed at the starting 

location in the beginning (Rot) and two at the end (MDisk, MFlag) of the treasure hunt. 

For all other tasks, we subsequently led the children to three flags (Dots, Dir, HP, 

Read) and finally encouraged them to place the disks on the campus (Disks). During 

the whole test, the children were not allowed to turn their map. 

The test consisted of tasks that operationalized cognitive mapping processes (CM), the 

performance of mentally aligning a map in space in order to draw inferences from it 

while being static (MapUse) and the performance of keeping the orientation on where 
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they are on a map while moving in space (MapOrtn). Those tasks represented the 

underlying construct in the large-scale test. 

Task Description Measure 

MFlags 

/MDisks 

(CM) 

Requires the child to point to the locations of 

the flags/disks without using a map. 
Correctness of the di-

rections was measured 

with the help of an ar-

row and circle device 

that served as help for 

indicating directions. 

 

Rot 

(MapUse) 

Requires the child to indicate directions of 

landmarks on the map while taking different 

canonical viewing directions in the real space. 

Read 

(MapUse) 

Requires the child to indicate directions of 

landmarks on the map while standing next to a 

flag. 

HP (Ma-

pUse) 

Requires the child to point to the starting 

point. 

Dir 

(MapOrtn) 

Requires the child to indicate the viewing di-

rection once arrived at a flag. 

Dots 

(MapOrtn) 

Requires the child to indicate the location of 

the current position with a coloured sticker on 

the map after walking from flag to flag. 

Deviations of the stick-

ers. 

Disks 

(MapOrtn) 

Requires the child to put a disk in the envi-

ronment according to the location marked in 

the map. 

Deviation of the disk. 

Table 1: Large-scale spatial tasks in the map-based orientation test. 

Data treatment 

We encoded our data and analysed patterns of missing values in the map-based orien-

tation test. We ensured that missing values are at least MAR and applied multiple 

imputations before further analysis. We computed 30 multiple imputations according 

to Si & Reiter’s method (2013) using the R package NPBayesImpute, computed sum 

scores for all tasks and finally pooled the data sets using the R package semtools, which 

allowed us to extract one single empirical correlation matrix. 

RESULTS  

To investigate the relation of classes of small-scale tasks with the map-based orienta-

tion tasks, we computed the factor scores for EGO and OB. Both factor scores corre-

lated with r=.64 (p<0.001). The result demonstrates that they indeed share a conside-

rable amount of variance that will be considered further in our correlation analysis. 
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Relations between classes of small-scale tasks and single large-scale tasks 

In a first step, we computed the pairwise correlations between the factor scores of the 

two classes of small-scale tasks and the set of large-scale tasks. As shown in Table 2, 

both classes correlate significantly with performances in the large-scale tasks. Only the 

performances in pointing towards the memorized locations of the flags did not corre-

late with either of two classes of small-scale tasks. 

 MDisk MFlag Disks Dir Dots Read HP Rot 

EGO .24** .12 .41** .28** .43** .38** .20** .20** 

OB .17** .10 .42** .29** .45** .40** .23** .26** 

Residual EGO-OB .18** .07 .19** .11 .19** .16* .06 .04 

Residual OB-EGO .01 .02 .21** .15* .22** .21** .14* .18** 

*  two-tailed p< 0.05   ** two-tailed p<0.01 

Table 2: Correlations and semipartial correlations for the task wise analysis. 

To examine whether performances in EGO or in OB tasks predicted unique variance in 

the large-scale measures, we computed semipartial correlations (see also Table 2). 

After partialling out the shared variance between performances in EGO and OB tasks, 

for some large-scale tasks, only one of the two classes of small-scale task became 

significant, indicating that they predicted unique variance in the respective task. For 

instance, only the semipartial correlation between EGO and the performances in me-

morizing the locations of the disks became significant. Thus, cognitive resources that 

are unique to EGO tasks – performing egocentric transformations – appeared to have 

affected performances in the task MDisk, which requires updating of self-to-environ-

ment relations.  

In two other cases, only the semipartial correlation with OB became significant. For 

those tasks, cognitive resources that are unique to OB tasks – performing object-based 

transformations while keeping the self-to-environment relation constant – affected the 

performances. OB tasks predicted therefore unique variance in two tasks that required 

the correct alignment of a map in space (HP and Rot). In the case of the task Dir, the 

semipartial correlation of EGO was also almost significant (p=0.07). For this reason, 

we did not interpret OB tasks to be unique sources of variance in this task. For the tasks 

Disks, Dots, and perhaps Dir, for both classes of small-scale tasks the semipartial 

correlations became significant. Thus, processing resources that are unique to OB tasks 

and unique to EGO tasks appeared to have affected the performance in those tasks that 

require keeping oriented after moving in space.  

Relations between classes of small-scale tasks and classes of large-scale tasks 

To further analyze the initial results at the broader level of classes of large-scale tasks, 

we performed a CFA using R lavaan in order to show that our tasks loaded on the 

factors that we derived from the literature. For the sake of shortness, we do not present 
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the full analysis here. For each of the 30 data sets, the fit indices revealed a CFI>.99, a 

TLI>.98, RMSEA<0.05, and a non-significant chi-squared test showed that the model 

did not derive essentially from the data (see Hu & Bentler, 1999). We conjectured that 

the tasks in our map-based orientation test are clustered in accordance with the classes 

that we conceptualized from the literature. We then computed the corresponding factor 

scores and calculated correlations. 

 Factor CM: 

Cognitive Mapping 

Factor MapUse: 

Static Map Use 

Factor 3 MapOrtn: 

Dynamic Map Use 

EGO .22** .35** .49** 

OB .15* .41** .50** 

Residual EGO-OB .15* .11 .21** 

Residual OB-EGO .02 .25** .25** 

*  two-tailed p< 0.05   ** two-tailed p<0.01 

Table 4: Correlations and semipartial correlations between the performances in EGO 

and OB and the three classes of map-based orientation tasks. 

As we show in Table 4, the correlation between EGO and OB with the class of cogniti-

ve mapping tasks was significant (p = 0.001 and p=0.02, respectively). In order to de-

termine whether one of them predicted unique variance in tasks of cognitive mapping, 

we computed semipartial correlations. Once the shared variance of OB and EGO was 

partialled out, only the semipartial correlation between EGO and the first factor of 

large-scale tasks was significant (p=0.01), whereas the semipartial correlation between 

OB and the factor was not. Cognitive resources that are unique to EGO tasks, in par-

ticular egocentric mental transformations appear to have affected the performances in 

this self-to-environment representation factor. Similarly, correlations between EGO 

and OB with the class of static map use tasks, were highly significant (p<0.001). Once 

the shared variance between EGO and OB was partialled out, the semipartial correla-

tion between OB and the second class was still significant (p<0.001), whereas the 

semipartial correlation to EGO was not (p=0.09). Thus, cognitive resources that are 

unique for object-based transformations, in particular the correct mental update of 

relations between objects and the environment, appear to have affected the perfor-

mances in this map alignment factor. Finally, an analysis of the correlations between 

EGO and OB with the class of dynamic map use tasks revealed highly significant 

correlations (p<0.001). Even after partialling out the shared variance, both EGO and 

OB were still significant predictors when it came to dynamic mapping (p=0.001 and 

p<0.001, respectively). Thus, cognitive resources that are unique to EGO and to OB 

tasks, egocentric and object-based transformations, appear to have both affected the 

performances in this map-based orientation factor. 

In summary, our empirical findings provide evidence that the children’s performances 

in small-scale spatial tasks are related to the performances in large-scale spatial tasks. 
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The two classes of small-scale spatial tasks, EGO and OB both predicted the per-

formance of large-scale spatial tasks at the level of single tasks and classes of them. 

After partialling out shared variance between EGO and OB tasks, however, we iden-

tified EGO tasks to be the only reliable predictor of cognitive mapping tasks and OB 

the only reliable predictor of static map use tasks. However, both classes are reliable 

predictors of dynamic map use tasks. 

DISCUSSION 

The results described above support the idea that spatial tasks should be used in a diffe-

rentiated way in mathematics education. Our findings provide evidence that the per-

formances of small-scale tasks are partially, but not fully related to performances in 

large-scale tasks. One possible explanation might be related to the underlying spatial 

abilities that enable solving those tasks with a certain performance. They probably rely 

on common cognitive processes that allow for the processing of small- and large-scale 

information such as the encoding of the spatial information and the representation in 

working memory (cf. Hegarty et al., 2006). Investigating these processes might be an 

important next step in mathematics education research. Our findings highlight, that 

large-scale tasks should be conceptualized in a differentiated way. Furthermore, the 

patterns of correlation reported within this study suggest a taxonomic classification of 

large-scale tasks that is analogous to one classification of small-scale spatial tasks. 

Indeed, tasks that demand egocentric mental transformations in small-scale space find 

their analogue on tasks that rely on a correct update of the self-to-landmark and 

self-to-environment relations, which can be interpreted as egocentric transformations 

in large-scale space (e.g. Kozhevnikov et al., 2006). Tasks that demand object-based 

transformations in small-scale space find their analogue in tasks that rely on updating 

processes between the map and the environment that can be interpreted as object-based 

transformations in large-scale space (e.g. Shepard & Hurwitz, 1984). Finally, dynamic 

map use tasks seem to be determined by a subsequent composition of egocentric 

transformations that allow to update self-to-map and self-to-landmark relations in the 

environment, and object-based transformations that allow to mentally updates the re-

lation between the map and the environment while moving. This finding is in line with 

previous suggestions that dynamic map use requires two sets of mental transformations 

(Aretz & Wickens, 1992). 

In future research, the relation between performances in small- and large-scale spatial 

tasks could be investigated not only at the level of classes of small-scale tasks, but also 

at the level of single tasks. This could point towards a set of good spatial tasks for 

practices in classroom and beyond. Furthermore, the relation could be studied at the 

latent level of the assumed underlying spatial abilities as well. Shifting the empirical 

investigations from the manifest to the latent level would result in an explicit mo-

delling of measurement errors that probably allows for computing measurement er-

ror-free correlations. 
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Measurement estimation skills are of significant importance for everyday life. In the 

last decades a lot of research results were generated describing students’ estimation 

skills and strategies. Surprisingly, little attention has been paid to the basic question 

which types of situations are relevant for a valid conceptualization and operatio-

nalization of measurement estimation skills. Some studies refer to the basic structure of 

estimation conditions described by Bright (1976) whereas others ignore this question, 

though it is central to ensure validity of the empirical data. Following validity criteria 

and based on existing empirical findings on estimation strategies, we developed a 

comprehensive model of measurement estimation situations. This model provides a 

basis for the development of valid tests on measurement estimation skills as well as for 

the development of learning environments. 

THEORETICAL BACKGROUND 

Skills to estimate the attributes of objects (e.g., length, area) are of significant im-

portance for everyday life as well as for professional expertise in various professions 

(Jones, Taylor, & Broadwell, 2009) and can be considered as a basis of measurement 

skills (Joram, Subrahmanyam, & Gelman, 1998). To date, research provides a lot of 

information on individuals’ measurement estimation process, strategies and perfor-

mance (e.g., Siegel, Goldsmith, & Madson, 1982; Joram et al., 2005). Moreover, em-

pirical findings show that the teaching of estimation strategies is possible (e.g., Hil-

dreth, 1983) and improves the accuracy in students’ measurement estimation (e.g., 

Joram et al., 2005; Jones et al., 2009).  

Most of the empirical studies used items representing specific estimation situations to 

collect data on estimation skills or strategies. Surprisingly, many studies did not ad-

dress the question which types of estimation situations are relevant to elicit the skills or 

strategies aimed for from the considered students or adults. Ignoring the choice of 

estimation situations might result in a serious threat of validity of empirical data and its 

interpretations. We elaborate on this problem and suggest a comprehensive model of 

measurement estimation situations which satisfies validity criteria and integrates cur-

rent research results on measurement estimation skills. For reasons of simplicity, we 

restrict our presentation on length estimation, though our model can probably be 

adopted for other attributes like area and volume as well. 
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Measurement estimation and measurement estimation strategies 

In the sense of Bright (1976) and other researchers, we consider measurement esti-

mation as a mental process of determining a measurement for an attribute of an object 

without the aid of measurement tools. Central to this process is that the use of measure 

units happens mentally while other aids like benchmarks or body parts might be used 

as additional tools (e.g., estimate the length of a pencil in cm as a benchmark and then 

determine the width of the table by repeated use of the pencil as a tool). 

Empirical research yields that children and adults mostly show a poor measurement 

estimation performance, that individual length estimation is in general more accurate 

than the estimation of area, volume, or weight and that estimation performance of 

students increase with grade (e.g., Siegel et al., 1982; Sowder, 1992; Joram et al., 

1998). In order to understand estimation performance, Siegel et al. (1982) analyzed 

students’ estimation processes and developed a process model describing the indi-

vidual estimation process. This model particularly emphasizes the role of different 

estimation strategies in the estimation process and subsequent research provided evi-

dence that the use of strategies predicts estimation performance (Joram et al., 2005; 

Jones et al., 2009; Huang, 2015). The most important estimation strategies (e.g., Siegel 

et al., 1982; Hildreth, 1983; Joram et al., 1998) are  

• unit iteration as a mentally conducted measurement by a segmentation of the 

to-be-estimated object (TBEO) based on a given standard or non-standard 

unit and subsequent counting of the segments; 

• benchmark comparison (or reference-point strategy) as a mental comparison 

of the TBEO with a distance represented by a benchmark or the sequence of 

the same benchmarks where the length of the benchmark is known or can be 

estimated; 

• decomposition/recomposition as a process of mental decomposition of the 

TBEO into smaller parts, estimation of the length of each part by using one of 

the previously mentioned strategies and adding the estimates of all parts. 

In addition to the estimation strategies, research points to further components of es-

timation skills. As the descriptions of the strategies make clear, domain-specific 

knowledge obviously plays an important role. This encompasses, for example, meas-

urement knowledge related to the standards units (i.e., mm, cm, m, km and their in-

terrelations in case of the metric system) as well as knowledge on benchmarks in a 

twofold way (e.g., knowledge on the approximate width of an A4 sheet which is given 

as a possible benchmark; knowledge of a suitable object that can be used as a 

benchmark for 10 cm). Besides these knowledge components, specific cognitive abil-

ities contribute significantly to estimation performance. Models of estimation pro-

cesses from cognitive psychology assume that (1) the TBEO is represented in the 

working memory, (2) this representation is estimated based on estimation strategies 

and information retrieved from the long-term memory and (3) the estimated length is 

finally checked in a monitoring process (e.g., D’Aniello, Castelnuovo, & Scarpina, 

2015). From this follows that beyond knowledge on measurement, benchmarks and 



Heinze, Weiher, Huang, & Ruwisch 

 

PME 42 – 2018 3 – 69 

estimation strategies (stored as information in the long-term memory) individual 

working memory capacities play an important role. 

As we already mentioned before, the relevant knowledge for the estimation process 

can be acquired in effective learning environments. This means in particular that stu-

dents educated in different learning environments based on different curricula might 

possess different knowledge (e.g., different estimation strategies). Such differences 

become obvious when we consider students from two countries with different cultures, 

educational traditions and curricula. Differences in the learning context probably result 

in different benchmark knowledge since benchmarks are influenced by the cultural 

context. Differences might also occur in how students learn to implement estimation 

strategies. For example, some curricula emphasize the use of body parts as benchmarks 

for touchable TBEOs as suggested in Jones et al. (2009), other curricula may empha-

size the strictly mental use of benchmarks to estimate imagined TBEOs. 

Measurement estimation situations as a basis for research on estimation skills 

In general, measurement estimation skills are inferred from the performance of an 

individual generating an accurate estimate for a required measurement of a given at-

tribute of an object. To assess these estimation skills, individuals are asked to solve 

various estimation items. Such items represent estimation situations which can differ 

substantially and therefore might influence the estimation performance. For example, 

Pike and Forrester (1997) administered items representing estimation situations in a 

story context (ladybirds amidst a rainfall) and in a stereotypical mathematics textbook 

context. –It turned out that students’ estimation performance was better in the math-

ematics textbook context – a phenomenon which is probably caused by the specific 

type of mathematical tasks and activities implemented in mathematics textbooks and 

the mathematics classroom. However, even when restricting items to one specific 

context (e.g., real life context), in each estimation situation there are characteristics 

which must be understood by students before performing an estimation process and 

which thus might influence the item difficulty. Accordingly, a thorough analysis of 

estimation situations implemented in test or interview items is necessary to ensure 

validity of the empirical data and inferred results. Surprisingly, in many published 

studies this challenge is addressed neither explicitly nor implicitly. In the following we 

shortly present three examples retrieved from the literature: first, the model of Bright 

(1976) who explicitly addressed this question and to which other articles refer (e.g., 

Sowder, 1992) and then the descriptions from the studies of Jones et al. (2009) and 

Siegel et al. (1982). 

Model of Bright (1976) 

In Bright (1976), eight types of estimation situations are described each as combination 

of three independent characteristics: (1) the object or the measurement is specified, (2) 

the TBEO is physically present/given or not, and (3) the unit of measurement is given 

or not. The eight situation types are divided into two parts, first the situation types 

where the object is specified (A) and second the types where the measurement is 

specified (B). The four situation types of class A are the usual estimation situations 
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where students have to estimate a measurement for an attribute of an object, whereas 

the four situation types of class B are mainly interesting for instructional purposes (to 

support students in generating benchmark knowledge). It is mentioned (Bright, 1976, 

p. 90) that further subdivisions of the situation types could be made.  

Structure in Siegel, Goldsmith, and Madson (1982) 

In their article, Siegel and colleagues present an estimation process model based on 

findings of an interview study. The study relies on specific items suggesting the use of 

specific estimation strategies in order to elicit the cognitive processes of interest. 

Hence, there is an implicit model of different types of estimation situations structured 

by estimation strategies. Siegel et al. (1982) distinguish two problem types related to 

length measurement: benchmark problems and decomposition problems. However, in 

this case benchmark problems do not explicitly ask for the use of a benchmark or ex-

plicitly mention a benchmark. Instead, it is assumed that problems like “How long is a 

piece of manuscript paper?” are solved by the benchmark strategy. In contrast, the pre-

sented decomposition items explicitly describe decompositions ("If you took these 

cooking utensils and laid them end to end, how far would they reach?”). For both 

problem types the TBEOs were presented physically or by photographs. From the 

article it does not become clear whether the children and adults were allowed to touch 

the TBEOs during the estimation process. 

Model of Jones, Taylor, and Broadwell (2009) 

The article of Jones and colleagues on the use of body parts in the estimation process 

describes the Linear Measurement Assessment (LMA) which they used to test linear 

measurement estimation skills. The LMA is based on a model with five dimensions 

representing different types of length estimation situations (Jones et al., 2009, p. 1502): 

(1) estimating the length of an object while viewing the object; (2) naming an object 

from memory for different metric sizes; (3) estimating the lengths of large objects like 

a building; (4) metric estimation of objects that students can touch or distances they 

can pace; (5) using body parts as an aid to measure different objects. Analyzing the 

types of estimation situations, it turns out that different aspects like size or presence of 

the TBEO as well as the option to touch the TBEO are varied. Moreover, the situation 

type (2) is similar to one of those in Bright’s (1976) situation types of class B. 

Summarizing the state of the art, it turns out that many studies in the field of meas-

urement estimation skills do not explicitly elaborate on the choice of estimation situ-

ations for their data collections. Some studies refer to the model of Bright (1976), 

others provide own criteria for structuring the estimation situations. As Bright (1976) 

mentioned, his model can be refined and analyzing the other existing models, it turns 

out that specific types of estimation situations are not distinguished (e.g., situations in 

which a touchable benchmark is given or a representation of the TBEO’s length can be 

constructed by drawing a line). However, it is not clear what grain-size is relevant for 

research and educational practice in the field of length estimation skills. 
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RESEARCH GOAL AND RESEARCH APPROACH 

Based on the previously presented theoretical background, we elaborate on the que-

stion what types of estimation situations are relevant for the assessment of estimation 

skills. As mentioned in the beginning, we restrict our presentation to length estimation. 

Our goal is to develop a comprehensive model on types of length estimation situations 

which ensures validity in case of assessments of length estimation skills. To establish 

validity, we follow the Standards for Educational and Psychological Testing (AERA, 

APA, & NCME, 2014). In chapter 1, the standards provide five sources of evidence 

which can contribute to validity: evidence based on (1) content, (2) response processes, 

(3) internal structure, (4) relations to other variables, and (5) consequences of the in-

terpretation of results. 

As presented in the previous section, empirical research yields that the following as-

pects are relevant factors for length estimation skills: knowledge in estimation strate-

gies, measurement knowledge, benchmark knowledge, working memory capacity as 

well as context factors like culture (influences which estimation strategies are empha-

sized in the mathematics classroom) and characteristics of estimation situation in real 

life (in contrast to estimation situations in mathematics textbooks). These factors for 

length estimation skills contribute to the five sources of evidence for validity as fol-

lows (cf. AERA, APA, & NCME, 2014): 

1. Evidence based on content asks for the relation between the construct (length 

estimation skill) and the requirements in the estimation situations. Hence, the 

situations must cover all relevant aspects of estimation situations in real life. 

2. Evidence based on response processes asks for a fit between the construct 

(length estimation skill) and the observed performance in estimation situations. 

It must be ensured that the performance of mastering the estimation situations is 

based on the components (knowledge, working memory capacity) of estimation 

skills. 

3. Evidence based on the internal structure asks for a fit between the structure of 

the construct (length estimation skill) and the performance in different types of 

estimation situations. Here, the influence of culture, educational traditions and 

curricula might play a role because the teaching of different estimation strategies 

can yield different performance profiles provided suitable estimation situations 

are represented by the items. 

4. Evidence based on relations to other variables asks for correlations between the 

estimation performance and other variables. For example, performance should 

improve with the increase of benchmark knowledge or the grade of the students. 

5. Evidence based on consequences of the interpretation of results means in par-

ticular to exclude unintended interpretations of the empirical results caused by 

construct irrelevant components or by construct underrepresentation. For ex-

ample, culture might influence benchmark knowledge so that estimation situa-
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tions with given benchmarks can be problematic in cross-cultural studies. Con-

struct underrepresentation might occur if estimation situations are restricted to 

certain types (e.g. only touchable TBEOs) so that specific components of esti-

mation skills are not required. 

RESULTS 

Based on the framework described by the criteria 1-5 in the previous section and ex-

isting models of estimation situations presented in the theoretical background, we 

identified six characteristics of estimation situations. The six characteristics are mostly 

pairwise independent; however, some combinations do not make sense in real life or 

even cannot occur so that these situations are excluded. Figure 1 gives an overview of 

the 72 estimation situations as compact tree diagram. It should be mentioned that there 

is a seventh characteristic which is not displayed in the tree diagram and which is re-

lated to the magnitude of the TBEO. Since length estimation of large objects is more 

challenging than length estimation of small objects (e.g., Jones et al., 2009), each es-

timation situation should be considered for small, medium, large, and huge objects. 

There are manifold relations of the presented characteristics of estimation situations to 

the five validity criteria 1-5 developed in the previous section. Due to space limita-

tions, we cannot explain and argue in detail how each characteristic of our model is 

related to the five criteria so that we restrict to some exemplary aspects.  

The seven characteristics represent relevant aspects of estimation situations in real life 

and thus contribute to the first criterion (content validity). In real life, the TBEOs can 

be (i) physically present or not and (ii) touchable or not, (iii) there might be the op-

portunity to construct a representation of the same length (e.g., by drawing a line) and 

(iv) it can happen that no benchmark is given or that a specific benchmark (or more 

than one) is mentioned, is visible in real size, or is even visible in real size and 

touchable. Moreover, there are situations which (v) ask for estimates in standard units 

(e.g. metric units like cm) or in non-standard units (e.g., room width in number of floor 

tiles). If a benchmark is given, it can happen that (vi) its length is provided or not. 

Finally, (vii) in real life the TBEOs can vary in their length from small to huge. 

In addition to the first criterion, the characteristics satisfy the other four criteria of 

validity. For example, it makes a strong difference for the cognitive load of the wor-

king memory if a TBEO is touchable or not or if a benchmark is visible in real size or 

not. Estimation processes are more challenging if individuals must imagine the TBEO 

and the benchmark because external representations are not available. Due to the high 

cognitive load, it can happen that only efficient estimation strategies can be processed 

and persons who only know complex strategies will show a lower performance in these 

situations. Hence, taking into account these characteristics of estimation situations 

contributes to validity corresponding to criteria 2-5 because varying performance in 

different types of estimation situations can be distinguished. As a second example, we 

want to mention that the seven characteristics allow the distinction of estimation situ-

ations which do or do not support specific estimation strategies. If a TBEO is toucha-
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ble, the benchmark comparison strategy is much easier because a person can directly or 

indirectly use body parts as benchmarks (Jones et al., 2009). If representations can be 

constructed (e.g., by drawing a line of the length of the TBEO), this might support the 

decomposition strategy in case of medium sized TBEOs. The application of estimation 

strategies is associated with different knowledge components that depend on previous 

learning experiences. Hence, the seven characteristics allow distinguishing estimation 

situations which ensure on the one hand that persons with different knowledge on 

estimation strategies show different estimation performances (relevant for criteria 2-4) 

and avoid on the other hand that the construct length estimation skill is not un-

derrepresented in the assessment (relevant for criterion 5). 

Figure 1: Model of 72 types of length estimation situations (12 types for cases A-F). 

DISCUSSION 

In this contribution we argued that in empirical research on measurement estimation 

skills, the choice of estimation situations is of great importance when collecting data. A 

low variation in the characteristics of estimation situations might result in a serious 

threat of validity of empirical data and the interpretations of the results. Surprisingly, 

many articles of empirical studies do not explicitly report how they have chosen the 

estimation situations for their assessment instruments and a reconstruction of this in-
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formation is not possible. Only some studies refer to the existing basic model of Bright 

(1976) or give an explicit or implicit description of an own model. 

For our analysis we adopted aspects of validity from AERA, APA, and NCME (2014) 

and combined these with the current state of research on relevant aspects of length 

estimation skills. The resulting five criteria for validity allowed developing a compre-

hensive model of types of estimation situations (Figure 1). In comparison to the models 

of Bright (1976), Siegel et al. (1982) and Jones et al. (2009), our model is much more 

detailed. It allows distinguishing more types of estimation situations and therefore 

gives opportunities for a more detailed analysis of estimation skills. 

Currently, our arguments are purely theoretical. Hence, it is an empirical question how 

fine-grained the estimation situations must be mirrored by items in empirical studies. 

Depending on the respective research goal and the kind of data that should be col-

lected, a coarser model with fewer estimation situations might be sufficient to assess 

length estimation skills. In such cases the model of types of estimation situations in 

Figure 1 can serve as an ideal to check for validity. 
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In this paper, I present the process of developing a framework for analysing verbal 

metacommunications, in the context of a new mathematics teacher educator working 

with in-service teachers of mathematics. The interest in analysing verbal Metacom-

munication arises from reflecting on the process of becoming a mathematics teacher 

educator, as I am learning how to respond in-the-moment to teachers of mathematics 

as they talk about teaching. Responding to teachers with verbal metacommunication 

appears to be significant in terms of supporting teachers in their own learning. There 

is currently no existing framework, within the mathematics education literature, for 

making systematic distinctions between types of verbal metacommunications in sup-

porting group discussion.  

BECOMING A MATHEMATICS TEACHER EDUCATOR 

As a secondary school teacher of mathematics, I worked hard to set up a culture in my 

classroom where an overall aim of the year was linked to “being a mathematician”. 

Over years of teaching the same tasks, I became attuned to hearing comments and 

observing actions linked to this aim. A powerful mechanism for building this culture 

was an ongoing commentary from me that went alongside the doing of the mathema-

tics and in response to what the children were saying or doing. For example, a com-

ment in response to a student who said, “I’ve noticed it’s going up in twos” could im-

aginably have been “one thing mathematicians do is look for patterns” or “write that 

down as a conjecture to work on”. As a teacher of mathematics, my teaching was 

“constantly organized by meta-comments” (Pimm, 1994, p.165) such that “the utter-

ances made by students are seen as appropriate items for comment themselves” 

(p.165). Meta-commenting provided me with an alternative to evaluating student ut-

terances, or responding directly to what was being uttered. Another purpose for com-

menting about the students’ comments, was to create an image of a way of working 

that supported the students in their approach to working on mathematics, to establish a 

culture where students were motivated through asking their own questions and work-

ing on their own conjectures. 

Almost two years ago I moved from secondary school mathematics teaching to a 

university, as a mathematics teacher educator working alongside a group of pre-service 

teachers of mathematics. In reflecting on sessions with the group of pre-service tea-

chers, one issue that arose for me was around hearing and responding. Having been 
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attuned to hear and respond to comments in a mathematics classroom, I was able to 

respond as a mathematics teacher but was not yet able to respond as a mathematics 

teacher educator. From this awareness developed a motivation to research how I am 

becoming a mathematics teacher educator and a research project commenced.  

Within the field of mathematics education there is a distinction made between what is 

termed the education of mathematics teacher educators where the focus is on teacher 

educators learning through formal courses and the mathematics teacher educator as 

learner where the emphasis is on “teacher educators’ autonomous efforts to learn, in 

particular, through reflection and research on their practice” (Krainer, Chapman & 

Zaslavsky, 2014, p.432). My study aligns with the second of these terms and concerns 

how I am learning to respond in becoming a mathematics teacher educator. Specifi-

cally, how to respond in-the-moment to pre-service teachers of mathematics and what, 

in addition to my classroom-attuned responses, I could be metacommenting upon. 

VERBAL METACOMMUNICATION 

The term metacommunication was introduced by Ruesch and Bateson (1951), where 

the concept was developed from detailed study of animal behaviour. Described as “an 

entirely new order of communication” (p.209) and defined as “communication about 

communication” (p.209), this new order of communication allowed Ruesch and Bate-

son (1951) to explain some complex and paradoxical attributes of social interaction. 

Any instance of interpersonal communication will consist of a “report” (p.179) aspect, 

synonymous with the content or data of the message, and a “command” (p.179) aspect, 

referring to the relationship between the communicants. According to Watzlawick et 

al. (1967), the report aspect of a message conveys information whereas the command 

aspect concerns how the communication is to be taken and therefore ultimately to the 

“relationship between the communicants” (p.33). It is the relationship aspect of 

communication, being a communication about a communication, that is, according to 

Watzlawick et al. (1967), “identical with the concept of metacommunication” (p.34).  

Rossiter (1974) distinguished between two types of metacommunication: “that which 

is an ever-present aspect of all transactions and; that which constitutes additional 

commentary about communicative transactions” (p.36). The former type consists 

primarily of non-verbal cues, for example, tone of voice, body language or gesture, 

which can indicate whether the person communicating is, for example, serious or 

joking. These metacommunicational cues can provide information about how a mes-

sage is to be interpreted “by indicating something about intentions and feelings of the 

message generator” (p.37). The latter type of metacommunication, which constitutes 

additional commentary, could be understood as simply ‘talking about talking’ and 

occurs whenever verbal and/or nonverbal communication becomes the topic of com-

munication itself. The focus for this paper is on my verbal metacommunication 

in-the-moment of a discussion. 

In terms of verbal communication, metacommunicational clues may be highly am-

biguous and can be easily interpreted in entirely different ways. It follows that the 
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ability to metacommunicate appropriately “is not only the condition sine qua non of 

successful communication, but is intimately linked with the enormous problem of 

awareness of self and others” (Watzlawick et al., 1967, p.34). The position, that it is the 

ability to metacommunicate appropriately that is essential for successful communica-

tion, provides a further rationale for my study. In particular, how do I use verbal met-

acommunication when responding to pre-service teachers talking about teaching? 

Furthermore, what is the process of learning to respond in-the-moment in a metacom-

municative way?  

I have also found myself reflecting on my responses when working with in-service 

teachers of mathematics. I am currently working alongside a group of ten secondary 

school mathematics teachers working and learning through collaboration to develop 

the mathematical reasoning of the children in their classrooms and in their wider de-

partments. Between each meeting of the collaborative group, the mathematics teachers 

try out ways of working in their classrooms and work with other mathematics teachers 

in their departments to do the same. My role in the group is to support a discussion 

where the teachers share ideas and stories and learn from one another through re-

flecting on what they have been doing in school. It is in this setting where I began to 

develop a methodology for researching my learning as a mathematics teacher educator 

through paying attention to what I was noticing. 

THE DISCIPLINE OF NOTICING AS A METHODOLOGY 

In the context of my research, the connection between self-awareness; awareness of 

others and; my own ability to respond with metacomments, has become a meaningful 

one. Having audio-recorded the first of my discussions with the group of mathematics 

teachers, it was in the slow transcription of this discussion that I became aware of a 

shift in my attention at particular moments of a teacher speaking. In feeling this reac-

tion in-the-moment of hearing the audio-recordings, I was “noticing” (Mason, 2002), 

making a distinction by distinguishing “some ‘thing’ from its surroundings” (p.33).  

Mason’s (2002) description of the Discipline of Noticing as four “interconnected ac-

tions”, specifically: “Systematic Reflection”; “Recognising”; “Preparing and Notic-

ing” and; “Validating with Others” (p.95), offers me a framework for my research 

methodology. In attending to what I notice in a systematic way as I transcribe the au-

dio-recorded discussions, I am able to “mark” (Mason, 2002, p.33) so that I can 

“re-mark upon it later to others” (p.33). This marking seems to manifest itself as an un-

comfortable feeling, or a sense of surprise or confusion and signifies when a moment 

has salience. In “recording” (p.33) these salient moments they have become available 

for further evaluation. 

Based on the idea that something may be salient because of “some hidden assumption 

or bias” (Mason, 2002, p.248), I wanted to minimise this issue by utilising multiple 

perspectives and by practising “being in question” (p.248) through “seeking resonance 

with others in an ever-expanding community’” (p.248). In sharing these salient mo-

ments with others in the mathematics education community, I was “creating the con-
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ditions for the emergence of the as-yet unimagined rather than […] perpetuating en-

trenched habits of interpretation” (Davis, 2004, p.184). Through the process of 

self-reflecting and considering multiple perspectives, I began to understand learning to 

respond as a “recursively elaborative process of opening up new spaces of possibility 

by exploring current spaces” (p.184).  

This process of sensitising myself to notice the types of comments that may prompt a 

metacommunicative response has been significant in terms of supporting me to con-

sider possible ways of acting differently in the future, that is, becoming a mathematics 

teacher educator. Having worked for some time on developing these awarenesses 

through the slow transcription of the discussions with the group of teachers, and from 

the position that an ability to metacommunicate appropriately is essential for success-

ful communication in supporting groups of teachers working collaboratively, my atten-

tion has now turned to analysing how I am responding at a metacommunicative level. 

FRAMEWORKS FOR ANALYSIS OF VERBAL METACOMMUNICATION 

Studies of the use of verbal metacommunication exist most predominantly within re-

search on psychotherapy where the focus is on the relationship between the therapist 

and the client, and in research about the role of children’s social pretend play. From 

literature related to more formal educational settings, I present two frameworks for 

analysis of verbal metacommunicative responses. 

Firstly, Rossiter (1974) argues that to improve the ability to communicate at an in-

terpersonal level, it is key to master the capacity to metacommunicate. In his paper 

(Rossiter, 1974), which concerns the instruction of “courses which focus on interperso-

nal communication” (p.36) based on the concept of metacommunication, Rossiter of-

fers four functions (see Table 1) of “oral verbal communication about face-to-face in-

terpersonal communication that is in process” (p.37). 

More recently, Baltzersen (2013) contended that any metacommunicative utterance 

can be analysed in relation to all three of the following basic dimensions: What, how 

and when you metacommunicate. He originally investigated the impact of Metacom-

munication in the supervision process in higher education in Norway through linking 

survey questions to the “metacommunication concept” (p.128). Though initially 

methods appear limited in terms of the conceptualisation of this metacommunicational 

concept (specifically, indicators of metacommunication are linked to: discussing the 

supervision process and; clarification of tasks and roles in supervisions) his study does 

suggest that “metacommunication may have a substantial positive effect on the quality 

of communication in thesis supervision” (p.130). Based on these findings, Baltzersen 

goes on to ask the question, “What kind of metacommunication is important to create 

good supervision in higher education?” (p.130). Baltzersen’s exclusive focus on verbal 

metacommunication enables him to develop a framework that, though not exhaustive, 

allows review of different definitions and examples of verbal metacommunication 

used in a one-one supervision context. Baltzersen (2013), as with Rossiter (1974), also 

offers four functions of verbal metacommunication (see Table 1).  
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The functions of metacommunication, described by both Rossiter (1974) and Baltz-

ersen (2013), are presented in Table 1 in a way that demonstrates the parallels that I 

have drawn out from the two sets.  

 Rossiter (1974, p.37)  Baltzersen (2013) 

(1) To focus conscious attention 

on the process of interaction 

 To create and establish a working 

alliance (p.133, p.135) 

(2) To clarify vague feelings 

about what is going on 

 To talk about intentions (p.133) 

(3) To determine if perceptions of 

what is happening coincide 

 To pose clarifying questions (p.135) 

(4) To provide direct feedback 

about speaker’s communica-

tion behaviour 

 To evaluate some aspect of the re-

lationship between the persons in-

teracting (pp.133-134) 

Table 1: Functions of verbal metacommunication presented in parallel (adapted from 

Rossiter, 1974, p.37; Baltzersen, 2013, pp.133-135). 

To offer some further elaboration, I explore each pair of functions from Table 1 in turn. 

Firstly, Rossiter (1974) begins with what he describes as the “most important function 

of metacommunication […] that it focuses conscious attention on the process of in-

teraction” (p.37). This attention to the process allows participants in the conversation 

to take a step back from the interaction itself and look at how the communication 

system is functioning. In the same sense, Baltzersen (2013) describes the need to create 

and establish a working alliance through agreeing on specific tasks; agreeing on goals; 

and identifying possible strains in the relationship between participants (p.133). Sec-

ondly, Baltzersen’s suggestion that verbal metacommunication can function to com-

municate intentions through talking about what the speaker has said, or through dis-

closing or asking for opinions about the conversation, closely resembles Rossiter’s 

clarifying “vague feelings about what is going on” (p.37) in that verbal metacommu-

nication of this form can suggest how participants in the conversation arrived at their 

present state through paying attention to the process factors that influence emotional 

responses to the interaction itself. Thirdly, Rossiter’s purpose of determining whether 

perceptions of what is happening coincide (p.37) concerns the need for perceptions to 

be made as explicit as possible so that other participants in the conversation know how 

to respond to them. In a similar vein, Baltzersen describes posing clarifying questions 

through clarifying the speaker’s own prior opinion or another speaker’s opinion; 

paraphrasing; repeating something said earlier; commenting on language use; and 

regulating others (p.135). Finally, Baltzersen suggests evaluating some aspect of the 

relationship between the persons interacting through explicating disagreement and 

highlighting one’s own role or another person’s role in the relationship (pp.133-134). 

Similarly, Rossiter recommends verbal metacommunication in order to draw attention 

to how a speaker is communicating through providing direct feedback about the 
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speaker’s communication behaviour. These pairs of functions form a framework with 

which some of my responses from discussions with the collaborative group of 

mathematics teachers are now analysed in the next section. 

ANALYSING RESPONSES 

Before using the framework (Table 1) for analysing my responses as verbal meta-

communications, I needed to consider which responses could be fundamentally con-

sidered as verbal metacommunications (a communication about a communication), or 

alternatively, as a communication in direct response at the level of the discussion. In 

order to exemplify this distinction, consider the following two vignettes. Each vignette 

comprises a short extract of transcription taken from audio-recorded discussions with 

the group of mathematics teachers. Both vignettes provide a different paradigmatic 

example that are representative of a set of similar responses. 

Vignette 1: 

Teacher: I was just thinking of a time a couple of weeks ago when I was doing 

conversions and um, we were doing area and volume conversions, but part 

of the starter was just simple conversions and a kid from a top set was 

convinced that to get from millimetres to centimetres, you times by ten and 

even putting examples up he still was convinced no it was times by ten so 

even though he knows there are ten millimetres in one centimetre he still 

was convinced you times by ten so I don’t really understand how to… 

Tracy: Well it is, isn’t it, you kind of are timsing by ten, it’s ten times bigger, I 

guess maybe that’s where that’s coming from. 

Vignette 2: 

Teacher: I was just thinking back to a session I went to… and a lot of what we are 

discussing now here is very talk based, and is there almost a case with some 

of the things we are modelling to promote reasoning, we say a lot less, just 

show them, break it down into manageable steps, so I did this, linking area 

of rectangle to area of triangle, I taught that normally last term, it didn’t go 

down very well. 

Tracy: What do you mean by normally?  

In vignette 1, the teacher is describing an issue with a student who was converting 

millimetres to centimetres. My response, “Well it is, isn’t it, you kind of are timsing by 

ten, it’s ten times bigger, I guess maybe that’s where that’s coming from”, which I do 

not consider to be a verbal metacommunication, was a direct response at the level of 

the original communication. I was suggesting an explanation for the situation being 

described.  

In vignette 2, the teacher is describing a lesson where he presented to the students, in 

silence, a series of images linking the area of a rectangle to the area of a triangle as an 

alternative to an approach he had used previously to teach the concept. He describes 

this previous approach as being taught “normally” to which I respond immediately 
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with “What do you mean by normally?” In relation to the functions presented in Table 

1, I would argue that the purpose of this response was “to determine if perceptions of 

what is happening coincide” through posing clarifying questions. Working on an ac-

count of the notion of “normally”, allows others to create an image of this teacher's 

classroom that might otherwise not be possible. 

I now present one further vignette comprising of another short extract from a discus-

sion with the group of mathematics teachers. I have chosen this final extract as a 

paradigmatic example of a response that I understand to be a verbal metacommunica-

tion but that becomes problematic when trying to describe it using the functions pre-

sented in Table 1. For context, the extract from vignette 3 follows on shortly from the 

extract from vignette 2 and is the same teacher speaking. Having described using the 

set of images for areas of rectangles and triangles, the teacher goes on to describe of-

fering the students a problem, involving finding rectangles with equal area and pe-

rimeter. In the comment from vignette 3, the teacher is reflecting about having noticed 

a change in the energy of the students compared with previous lessons. 

Vignette 3: 

Teacher: Um, yeah, from what I thought would be kind of do and review of some-

thing at quite a low level and I’d have to really go over here’s how you do 

area, here’s how you do perimeter, actually it then turned into they did it all 

themselves, and you know in the class you get hands up all the time, it 

wasn’t sir help me, it was sir look at this, look at this, look at this I did it! 

Tracy: Oh, that’s nice, so the difference was in hands. 

In isolation, “Oh, that’s nice” is ambiguous. However, the second part of the response, 

“so the difference was in hands” offers an indication as to what I was valuing in that 

moment, using “so” as the link would suggest the “nice” was in recognition of the 

previous speaker’s acknowledgement of an observed difference, in this case, a dif-

ferent reason for hands going up. Is this communication about communication? Having 

made the comment myself, I do of course have an insider perspective. One awareness 

that I know I have is when a teacher talks about a change in their behaviour or that of 

their students. When this happens, I often find myself highlighting that a difference has 

been noticed and how this difference has been observed. One function of doing this is 

to direct the attention of others; to invite others to consider differences in their own 

classrooms and; to emphasise the importance of these types of observations as a 

classroom teacher working on their teaching. This function seems to me to be in a 

difference place to those in existing frameworks. 

REFLECTING ON THE PROCESS OF LEARNING TO RESPOND 

There is a motto of noticing which Mason (2002) alerts us to that is “I cannot change 

others, I can work at changing myself” (p.248). As a mathematics teacher, my con-

viction came from having an image of what teaching could look like and I worked hard 

to establish a verbal metacommentary that went alongside my students working on ma-
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thematics. In becoming a mathematics teacher educator through the process of sensi-

tising myself to notice when a verbal metacommunication may be appropriate, and for 

what purpose, I am learning how to support and enable teachers working and learning 

through collaboration. 

As I continue researching how I am learning to respond as a mathematics teacher ed-

ucator, it is inevitable that further categorisations of verbal metacommunicative re-

sponses will emerge. One contribution to the field of mathematics education and, in 

particular, to mathematics teacher education and teacher educator learning might be a 

framework for systematically categorising verbal metacommunicative responses when 

working with teachers of mathematics. The classifications that emerge will principally 

be of value to me as a researcher of my own learning who is immersed in the process of 

developing this framework. By making these categorisations or distinctions, I am 

supporting further possibility of responding differently both now and in the future and 

I am reminded to return to an image of learning from Davis (2004) as a “recursively 

elaborative process of opening up new spaces of possibility by exploring current 

spaces” (p.184). 
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THE ROLE OF FINGER GNOSIS IN THE  

DEVELOPMENT OF EARLY NUMBER SKILLS 
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The role of fingers in the development of early number skills has often been the focus of 

discussion in mathematics education, psychology and neuroscience. This study de-

scribes the findings of a longitudinal exploration of the mathematical development of 

children with Apert syndrome. Children with Apert syndrome are born with their fin-

gers fused and even after surgery to separate them, do not often use their fingers 

spontaneously in activities involving number. Through observations over a 2 year 

period, the role of fingers in supporting learning and activities in numerical aspects of 

mathematics was seen to be complex and requiring good finger awareness and finger 

mobility. The findings suggest a possible explanation for the observation that some 

children who are low-attaining in mathematics are over-dependent on finger-use. 

WHAT CAN CHILDREN WITH APERT SYNDROME TELL US ABOUT THE 

ROLE OF FINGERS IN THE DEVELOPMENT OF EARLY NUMBER 

SKILLS 

The work discussed here describes the findings of a longitudinal 2-year study on the 

mathematical development of 10 children with Apert syndrome, between the ages of 4 

and 9 years at the beginning of the study (Hilton, 2017). Apert syndrome is a rare 

syndrome which was first described by Wheaton in 1894, and investigated further by 

Apert in 1906 (Patton, Goodship, Hayward and Lansdown, 1988). There is an esti-

mated a birth prevalence of Apert syndrome of approximately 1 in 65000, in North 

America and Europe (Cohen et al., 1992; Tolorova, Harris, Ordway and Vargervik, 

1997). Children with Apert syndrome are born with complex fusions of their fingers 

and although they usually have surgery to release their fingers, they do not always gain 

five fingers (digits including thumbs) on both hands. In addition, children with Apert 

syndrome usually have limited mobility in their fingers, as the interphalangeal joints 

do not work properly. Although there is only limited literature on the mathematical 

development of children with Apert syndrome, the literature that does exist suggests 

that for these children, numerical activities are a particularly area of difficulty 

(Sarimski, 1997; Fearon and Podner, 2013). The present study shines a new light on the 

mathematical development of children with Apert syndrome and especially on the role 

of fingers in the development of early number concepts and early arithmetic. It also 

highlights the complex nature of the relationship between the use of fingers and 

problem solving in numerical calculations. 
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The original research explored the strategies children with Apert syndrome use to help 

them solve numerical problems in mathematics and whether the children’s hand 

anomalies impacted the range of strategies available to them. 

THE THEORETICAL FRAMEWORK 

The theoretical framework for the process of data collection was informed by con-

structivist grounded theory (Charmaz and Bryant, 2011) as it allowed for the possi-

bility of unexpected and unanticipated findings. For the process of data analysis, the 

methods used were drawn from discursive analysis and thematic analysis. In order to 

collect data, a case study approach was adopted. 

LITERATURE REVIEW 

There have been a number of studies that have explored the link between finger gnosis 

and skills in arithmetic. It has been shown that touching objects when counting helps 

pre-school 4 year old children to count correctly (Alibali and DiRusso, 1999). This can 

help children to understand one-to-one correspondence and can relieve the pressure on 

working memory. Fingers can also help when trying to keep track of items and during 

calculations. With practice, children learn to map particular patterns on to particular 

numbers (Morrissey, Liu, Kang, Hallett and Wang, 2016). In other words, through 

repetition and practice, fingers can provide a sensorimotor embodied mapping of 

number patterns and their associated numerical relationships (Rinaldi, Di Luca, Henik 

and Girelli, 2016). 

For these mappings to be effective requires an awareness of one’s own fingers, or 

“finger sense”, otherwise known as finger gnosis (Gerstmann, 1940) and finger mo-

bility (Berteletti and Booth, 2015). Without this finger sense, it may be hard to identify 

one’s own fingers in response to touch and request; make individual finger move-

ments; and mirror the finger actions of others (Gerstmann, 1940). 

In typically-developing children, finger gnosis develops quickly up to the age of 6 

years and then continues to develop more slowly up to the age of 12 years (Strauss, 

Sherman and Spreen, 2006). Berteletti and Booth (2015) argue that the embodied ac-

tions of moving fingers as well as finger gnosis are significant in determining the role 

of fingers in early arithmetic. In addition, fingers are useful to keep track of items in a 

count (Andres, Seron and Olivier, 2007) or compare numbers presented symbolically 

(Sato, Cattaneo, Rizzolatti and Gallese, 2007). This evidence supports the findings 

from observational studies such as those by Hughes (1986) and Jordan, Huttenlocher 

and Levine (1992). However, this should be viewed within the context of finger-use in 

arithmetic being a learned, and not a spontaneous, activity (Crollen, Seron and Noel, 

2011).  

While there are cultural differences in the ways that children learn and are taught to use 

their fingers (Di Luca and Pesenti, 2011), it has also been suggested that “personal 

finger-counting habits influence the way numerical information is mentally repre-

sented and processed” (Berteletti and Booth, 2015, p.111) and stored in long-term 
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memory (Di Luca and Pesenti, 2008). It seems likely that if fingers are used as a tool to 

support numerical calculations, the most significant factor is whether children learn to 

use their fingers rather than how they use them. 

Jordan, Kaplan, Ramineni and Locuniak (2008) found that in kindergarten, children 

who used their fingers in calculations provided more accurate answers to questions. 

However, by the end of Year 3, those children who tended to be more accurate, used 

their fingers less frequently than those who made more calculation errors. As in the 

earlier study, Jordan et al. (2008) found that children from low-income families started 

kindergarten with less confident finger-use than their middle-income peers. Conse-

quently, as the children from middle-income families were beginning to use their 

fingers less, children from low-income fingers continued to depend on their fingers for 

performing calculations. This suggests that it takes a considerable amount of time (in 

the region of 2 to 3 years) for children to transition from relying on fingers to help with 

arithmetic calculations to confidently using known facts and other strategies to support 

work with numbers. 

Kaufmann et al. (2008), in a study involving 8 year old children and adults, used brain 

imaging techniques to explore the areas of the brain that are recruited when performing 

simple tasks involving number. In tasks involving non-symbolic representations of 

number, they found that although the children and the adults were able to complete the 

tasks successfully, children took longer. To explain this, the authors suggest that when 

making numerical comparisons using images of hands showing differing numbers of 

fingers, the children (but not the adults) recruited additional areas of the brain normally 

used for fingers. The authors suggest that fingers are an important stepping stone in the 

development of an abstract understanding of number. 

Finger gnosis and fine motor skills have also been implicated in supporting the de-

velopment of arithmetic and mathematical skills (Noel, 2005; Gracia-Bafalluy and 

Noel, 2008). Noel (2005) carried out assessments of finger gnosis with 41 children in 

Grade 1 and compared this with an assessment of their skills in mathematics one year 

later. A correlation was found between the children’s level of finger gnosis in Grade 1 

and their achievements in tasks involving number identification and simple arithmetic 

one year later. In fact, the relationship between finger gnosis and their achievement in 

mathematics was stronger than the relationship between tests of general cognitive 

ability and achievement in mathematics between Grades 1 and 2. This was followed up 

with an intervention study in which children were provided with a finger-differentia-

tion intervention, twice a week for a period of 8 weeks. The children’s finger gnosis 

and their numerical skills both improved, when compared to a control group (Gra-

cia-Bafalluy and Noel, 2008). 

Subitising, counting and the approximate number system 

When children learn to make sense of numbers, there are many aspects of number that 

they need to come to understand. Subitising refers to the ability to enumerate small 

groups of objects without counting (Fuson, 1988). By the age of 3 years, children can 
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usually subitise up to three objects. For adults, the maximum number is usually four 

(Hughes, 1986). Beyond subitising, it has been argued that there is a distinction be-

tween the ability to count and the ability to compare quantities (Dehaene, 2011).  

Learning to count is no trivial task (Fuson, 1988) and all the principles of arithmetic 

that children learn at school are underpinned by an understanding of counting. The 

ability to count, though, is a human creation while the ability to compare quantities is a 

matter of survival (Dehaene, 2011). When we compare quantities we use our approxi-

mate number system (ANS) - a nonverbal mechanism for estimating the number of 

items in a set (Dehaene, 2011). This capacity is one that we also share with animals and 

must be distinguished from any symbolic or verbal representational system requiring 

accuracy. It has been suggested that there is a relationship between children’s ANS and 

their attainment in mathematics (Halberda, Mazzocco and Feigenson, 2008) and that 

children who struggle with mathematics are more likely to have a poor ANS (Maz-

zocco, Feigenson, and Halberda, 2011). 

RESEARCH METHODS 

Semi-structured interviews and clinical interviews (Ginsburg, 1981) were used to-

gether with in-class observations of the children. The semi-structured interviews were 

designed to assess number knowledge, arithmetic skills and mathematical under-

standing. 

Six or seven school visits were made to each of the children over the 2 year period of 

the study. When interviewing the children, the clinical interview approach made it 

possible to gain more in-depth understanding of the children’s thinking. The interviews 

were audio recorded and later transcribed.  

For the purpose of reliability, the mathematics-focused questions were based on ex-

isting assessments that had been reported in the literature. Due to the age range and 

developmental range within the children studied, a range of assessments was used. The 

assessments selected focused on number system knowledge, skills in arithmetic and 

strategies used for solving problems.  

The children’s Approximate Number System (ANS) was explored using “Panamath” 

(Halberda, Mazzocco and Feigenson, 2008), in order to establish whether there was a 

relationship between children’s skills in this area and their knowledge and under-

standing in work on number and arithmetic.  

The children’s working memory was assessed, as this has been implicated as a poten-

tial reason for children’s low attainment in mathematics (Raghubar, Barnes and Hecht, 

2010). This was done with the “Working Memory Test Battery for Children 

(WMTB-C)” (Gathercole and Pickering, 2001) 

Finally, the children’s finger gnosis was assessed, as this was likely to be delayed in 

children with Apert syndrome and has been associated with knowledge and skills in 

number and arithmetic. For this an assessment of finger gnosis based on Gra-

cia-Bafalluy and Noël (2008) was used. 
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FINDINGS  

In the study group there was no relationship between ANS and attainment in mathe-

matics. One of the lowest attaining children had the highest ANS scores. The children 

displayed a range of strengths and weaknesses in their working memory assessments, 

but an area of strength for all the children was the area of visuospatial skills. In terms of 

the mathematics assessments, there was enormous variation, but the focus for the 

purpose of this discussion will be on the use of fingers to support calculation.  

Only one of the 10 children began to use his fingers without prompting and even he 

started very late (at 9 years of age). Initially school staff said that they did not en-

courage children to use their fingers because the children found it hard to move their 

fingers. The consequence of this was that when calculations took them beyond their 

working memory capacities, they were often unable to complete the activities. Joe, 

aged 7 years (who had four fingers on his left hand and five fingers on his right hand 

and good working memory skills) provides a good example of this: 

Caroline:  Right, which number is closer to seven, is it four or nine? [using visual 

array] 

[9 second pause and then Joe points to the 9] 

Caroline:  Nine is closer. Why? 

Joe:  Because...ummm…nine minus two is seven 

Caroline:  Yep and what about the four? 

Joe:  Four…plus three 

Caroline:  So is that why nine is closer? [Joe nods] 

Having seen this confidence the next example was a surprise: 

Caroline:  OK, how much is two plus four? [Joe is still for 5 secs] you can use your 

fingers, or I can give you some counters. How much is two plus four? 

[pause] 

Caroline:  Do you know what it would look like? Should I write it down for you? 

Joe:  Yeah [I write 2+4 on a piece of paper] 

Caroline:  Do you know how to do it? 

Joe:  No 

Joe had a good working memory in most areas and he seemed to rely on this very 

heavily when doing numerical calculations. However when his working memory 

failed, he had no strategy to fall back on. He did eventually do this particular calcula-

tion with counters, but he needed prompting in order to see that this was a possible 

means of solving the problem. 

Compare this with Emily, also aged 7 years (who had five fingers on her left hand and 

four fingers on her right hand) who had been doing finger gnosis training for at least 4 

months and had then continued to use her fingers for mathematical calculations: 
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Caroline:  Can you work out thirteen add 39? You can write it down if it helps… 

thirteen add thirty nine [spoken slowly as Emily writes 13+39] [pause] 

Caroline:  Do you know what it will be? 

Emily:  No I don’t know what the answer is because…the trouble is the 

twelve….and I’ve got to add another ten on 

Caroline:  Yeah so what do you think this might be? [as I point to the calculation that 

Emily has written down] [pause] What’s the strategy you could use to work 

it out? 

Emily:  Umm...nine and three...nine, ten, eleven, twelve [using fingers]. Now… 

fifty add two is fifty two [writes = 52] 

For Emily fingers were a tool that she could use effectively to support with her calcula-

tion and to enable her to offload some of the work away from her working memory. 

This flexible use of fingers, as one tool among many, enabled Emily to complete the 

calculation quickly and efficiently. 

CONCLUSIONS 

Fingers seem to have a particular role to play in the development of children’s early 

number skills. This study provides a new perspective because of the opportunity it pro-

vided to observe the implications on children’s mathematical development when fin-

gers were not used as a means of accessing and supporting numerical activities.  When 

they were used, fingers provided a more reliable model than tools such as counters.  

As the children in the study began to “know” their fingers, they could use them as tools 

to access the mathematical problems they sought to solve. This method was more re-

liable and easier than asking children to count out a given number of counters, espe-

cially as once children “know” their fingers, they do not need to count and so do not 

make the errors that often occur when counters, or similar tools, are used to help with 

solving numerical problems.   

This study highlights in great detail, the special role that fingers can play in supporting 

children with arithmetic calculations. It identifies the need for practice in using fingers 

and specifically in developing finger gnosis at an early age in order to support sen-

sorimotor development and to optimise the opportunities for children to develop 

mathematical confidence and competence.  

The present study also suggests that if finger gnosis is not well-developed, children can 

experience a mismatch between their visual finger representations and the sen-

sorimotor experience. If children’s finger gnosis is poorly developed, it seem likely 

that their fine motor skills will also be affected, as they will find it hard to identify 

individual fingers. This is an area that deserves further exploration as a potential ex-

planation for the observation that some children fail to use their fingers to help with 

mathematics, while others become over-dependent on the visual representation with-

out a genuine “feel” for the numbers that their fingers represent. 
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Teacher’s knowledge about student’s cognition is important in order to recognize the 

deficits of the students, to analyse them and to give appropriate support (Kunter et al. 

2013). Thus, the presented DiMaS-net project focus on the professionalisation of 

prospective teachers regarding their diagnostic competence. A specific seminar for 

becoming secondary teachers was developed and with a pre-post Design the increase 

of teachers’ diagnostic competence was investigated. In this paper we will describe the 

teacher training and present first results concerning the improvement of the perceived 

self-efficacy. 

THEORETICAL BACKGROUND 

Research projects on professional knowledge of teachers 

The basis of quality teaching is the knowledge and skills acquired in the training in 

theoretical and practical phases of teacher training (Bromme, 2008), whereby Shul-

man´s taxonomy forms the basic framework for describing teachers’ professional 

knowledge. He distinguishes between the four knowledge dimensions of general ped-

agogical knowledge (GPK), content knowledge (CK), curricular knowledge (CK) and 

pedagogical content knowledge (PCK) (Shulman, 1986; 1987). Shulman characterises 

the latter as a “special amalgam of content and pedagogy that is uniquely the province 

of teachers, their own special form of professional understanding” (Shulman 1987, p. 

8). 

This taxonomy is well known in teacher education research and is contained in many 

review articles (e.g. Baumert et al., 2010; Ball et al., 2008). It often forms the basis for 

various models, including those in research projects such as COACTIV, TEDS-M and 

the Michigan Group. Kunter et al. (2013) have developed a model for the professional 

competence of teachers that also includes the professional knowledge of teachers. It is 

subdivided into the competence areas of content knowledge, pedagogical content 

knowledge, pedagogical/psychological knowledge, organizational knowledge and 

counseling knowledge. Particularly relevant for the DiMaSnet project is the pedago-

gical content knowledge which in this model is subdivided into knowledge about the 

didactic and diagnostic potential of tasks as well as their cognitive requirements, 

knowledge about the mathematical thinking and the conceptions of pupils, and know-

ledge about various explanatory possibilities (Kunter et al., 2013). The study COAC-

TIV thus placed a special focus on the knowledge of teachers (not students) about 

mathematical student cognitions. 
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The research group around Ball and Hill also sees the "knowledge of content and 

students" as a part of mathematical knowledge for teaching and refers to the "know-

ledge of common student conceptions and misconceptions about particular mathema-

tical content" (Ball et al., 2008, p. 401). The dissertation by Heinrichs (2015) lays a 

special focus on the process of error detection, identification of causes and subsequent 

handling of the error under the generic term diagnostic competence. 

Diagnostic competence  

Horstkemper (2006) describes diagnostic competence "as the basic qualification of all 

teachers" (p. 4, translation of the author), as it has, among other things, a great signi-

ficance for dealing with heterogeneity, individual advancement and the support of lear-

ning processes (Bos & Hovenga, 2010). However, this is not a universal, but rather an 

area-specific ability, which according to Heinrichs' findings cannot be transferred from 

one mathematical content to another (Heinrichs, 2015; Spinath, 2005). Already 

Ginsburg (1977) recognized "the child´s failure is often the result of a procedure, 

which is organized and has sensible origins" (p. 49). If the teachers or trainee teachers 

receive knowledge about various misconceptions, it is easier for them to identify 

mistakes in a lesson (Reiss & Hammer, 2013). Misconceptions can be revealed by 

appropriate diagnostic tools and methods, and the prospective teacher can help the 

learner to correct the error (Lorenz, 1984). 

Within our project we have set ourselves the aim to train prospective teachers in analy-

sing and interpreting students’ thinking processes and misconceptions that lead to 

mistakes in mathematics lessons. We aim at drawing their attention to the fact that faul-

ty student cognitions are the cause of typical student errors and difficulties (Kunter et 

al., 2013).  

The following definition clarifies the construct and the goal of the project DiMaS-net: 

Cognitive-diagnostic competence includes the teachers' conceptual mathematical content 

knowledge and knowledge of preferred ways of learners working and their thinking about 

mathematical topics that are explored using a variety of diagnostic methods.  

If the prospective teacher is able to recognize, analyse and classify a student’s mis-

conception in a concept, then he or she has the possibility to design an insightful 

learning process as a learning opportunity (Kunter et al., 2013). In addition, practical 

experience (such as a diagnostic interview) can be a useful learning environment for 

developing diagnostic competence (Hascher, 2008).  

Perceived self-efficacy 

Another construct that we used within the framework of our study is the perceived 

self-efficacy regarding the recognition of thought and misconceptions. It refers to the 

social-cognitive theory of Bandura (1997) and for him “perceived self-efficacy is 

concerned not with the number of skills you have, but with what you believe you can 

do with what you have under a variety of circumstances” (p. 37). The perceived self-ef-

ficacy can be distinguished by its degree into generality, specificity and area specific-
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ity, whereby the teacher's perceived self-efficacy is a good example of the area speci-

ficity. Accordingly, individual statements include "the convictions of teachers to 

successfully master difficult demands of their professional life even under adverse 

conditions" (Schwarzer & Jerusalem, 2002, p.40, translation of the author). Teachers 

with a high perceived self-efficacy conceive a challenging teaching concept and show 

more patience in dealing with students having learning difficulties (Schwarzer & Je-

rusalem, 2002). In addition, literature shows a positive correlation between perceived 

self-efficacy and performance, which could possibly indicate a positive relationship 

between perceived self-efficacy and the recognition of thought and misconceptions 

(Schoreit, 2016). 

RESEARCH QUESTIONS 

The desiderata that are attempted to be clarified within our project arose from the 

theoretical background knowledge research. 

1) How does cognitive diagnostic competence change in specific mathematical subject 

areas after prospective teachers of mathematics have participated in a diagnostic 

seminar? 

2) What influence do diagnostic interviews have on the development of cognitive diag-

nostic competence? 

3) What influence does dealing with known errors in literature have on the develop-

ment of cognitive diagnostic competence? 

4) How does the perceived self-efficacy of mathematics prospective teachers change 

regarding cognitive diagnostic competence by participation in the diagnostic seminar? 

Only the last research question will be discussed in more detail within this paper. 

DESIGN OF THE STUDY  

The study described above was carried out as part of the DiMaS-net project (diagnosis 

and individual promotion of mathematics teaching in secondary schools through 

networking teacher education and training), which was financed by the “Quality Ini-

tiative for Teacher Education” programme of the Federal Ministry of Education and 

Research in Germany. Within the study, a four-hour block seminar of 180 minutes 

each, as intervention and data collection material were developed and piloted in winter 

term 2015/16 and summer term 2016. The seminar was held under the theme "diag-

nosis and support in teaching mathematics in secondary schools" and was aimed at 

prospective teachers for secondary schools. Subsequently, a revision took place, as 

well as the main study in winter term 2016/2017 and summer term 2017. Thematically, 

the arithmetic topics of "whole numbers and percentages" were in the focus of both 

diagnosis and support. 124 prospective secondary school teachers took part in the in-

tervention and were divided into four experimental conditions.  

The first experimental group (EG1) visited the complete seminar and also conducted a 

diagnostic interview between the third and fourth seminar. The second experimental 
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group (EG2) also participated in the complete seminar, but did not conduct a diag-

nostic interview. The third experimental group (EG3) received only a 90-minute input 

on errors and associated notions and misconceptions in the field of whole numbers, and 

the fourth experimental group (EG4) is a waiting group that instead attended a seminar 

about media in mathematic lessons. 

CONTENT OF THE SEMINAR  

In the first seminar session, the prospective teachers dealt with general topics related to 

diagnosis. Terms such as competence, professional competence and diagnostic com-

petence were defined, and examples were given of how process- and product-oriented 

diagnosis can take place in mathematics lessons. As a process-oriented diagnostic 

option, the diagnostic interview was intensively examined.  

The second seminar session covered typical mistakes and associated thinking proces-

ses in the subject areas of whole numbers and percentages. They were collected and re-

corded in a mind map by analysing tasks with the corresponding incorrect student solu-

tions. The student solution considerations were based on a certain scheme. It is based 

on the general mathematical competences of the educational standards in Germany and 

was clarified in a process diagram within the study. Accordingly, each student solution 

is examined according to the following points: 

• K6 - comprehending the given task 

• K2 - devising solution strategies 

• K3 - writing down necessary equations as mathematical models (if the task  

  was contextual) 

• K5 - working technically, calculating 

• K3 - translating the solution back into the given context 

The following task is typical of the tasks discussed. 

At a construction site, a large hole is being dug, which will later become the basement 

of a detached house. Construction workers dig a 3-meter-deep hole. After consultation 

with the site supervisor, the hole must be dug out by another 2 meters in depth.  

How deep must the hole be dug in total? 

Student solution: 

 

A total of 5 m must be dug deep.  

First of all, the prospective teacher asks himself whether the student (whose solution is 

considered) was able to grasp the content of the task. For example, if he/she has not 

been able to extract all important information from the task text or if he/she has mis-

understood the task text, then this mistake is based on a “K6-deficit”.  

Afterwards it is checked whether the student is able to identify a helpful solution strate-

gy. Through the scheme, the prospective teacher can examine the student solution step 
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by step and thus give a differentiated statement about possible deficits and underlying 

thought processes.  

The third seminar session allowed prospective teachers to work with the FIMS (Failure 

Diagnostic Interviews in Maths lessons of secondary schools) developed within the 

project. Video excerpts were analysed which show prospective teachers during the 

interview. Based on the interview situation, the prospective teacher receives detailed 

information about the mathematical competences of the student and an insight into the 

thought processes, procedures and solutions. 

Depending on the examination conditions, some participants conducted a diagnostic 

interview with a pupil of their choice between the third and fourth seminar. During the 

fourth seminar session the prospective teachers discussed this interview situation and 

reported about their experiences. The rest of the fourth seminar session was devoted to 

the topic of necessary support for errors and faulty ideas in the fields of whole numbers 

and percentages. 

The seminar design took into account the sources for the development of perceived 

self-efficacy in order to influence them. If a person achieves his or her own successes, 

this has the strongest effect on perceived self-efficacy due to his or her own efforts and 

performance. Since the prospective teachers themselves conducted a diagnostic inter-

view, this first source of perceived self-efficacy was taken into account in the seminar. 

The second-largest impact has "vicarious experiences through observations of be-

havioural models" (Schwarzer & Jerusalem 2002, p. 42 translation of the author). In 

the third seminar, participants worked with video sequences, observed other students 

during the interview and learned from their mistakes if necessary. In addition, lin-

guistic motivations such as "You can do this" and their own emotional arousal, such as 

fear, can also have an influence on perceived self-efficacy. 

METHODOLOGY  

The present study has a quasi-experimental design to check hypothesis. For quan-

titative data collection within a pre- and post-questionnaire, a performance test was 

used to determine the diagnostic competence and a questionnaire with 16 items was ad-

ministered that recorded the constructs motivation and perceived self-efficacy.  

The instrument for investigating perceived self-efficacy 

At the beginning and the end of the seminar, the participants answered an identical 

questionnaire (quest.) on perceived self-efficacy averaged in 8 minutes, in which they 

assessed themselves about the recognition of students’ thought processes and miscon-

ceptions in the subject areas whole numbers and percentages. The scales used in our 

study were adapted from existing scales. The perceived self-efficacy construct con-

sisted of 7 items and had a reliability of α = .87 within the piloting. Reliability in the 

main inspection is also satisfactory: α_Pre= .851 and α_Post= .874.  

On a unipolar rating scale with the six verbal levels False (1), Mostly false (2), More 

false than true (3), More true than false (4), Mostly true (5) and True (6), the prospec-
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tive teacher could give a positive or negative answer. The following example is rep-

resentative of the raised scale of perceived self-efficacy: 

I trust myself to diagnose the thoughts and misconceptions of my students.  

The discriminatory power of the items is bigger than .500 in the pre-questionnaire and 

bigger than .552 in the post-questionnaire. To examine the change in perceived self-ef-

ficacy caused by the complete intervention (experimental condition 1 (EG1)), de-

scriptive values are first presented and with the help of a t-test, it is examined whether 

the pre- and post-questionnaire differ significantly. The individual experimental con-

ditions are then evaluated by an analysis of variance (ANOVA).  

RESULTS 

The first table present descriptive dates from the experimental condition 1 (EG 1). 

 N m SD emp. min.  emp. max.  

pre-quest. 34 3,634 0,7763 2,3 5,6 

post-quest. 33 4,377 0,6027 2,4 5,3 

t(30)=4.628, p< .01, d=0.748 

Table 1: descriptive dates from the EG1  

Analysis by means of a t-test for dependent samples shows a significant difference 

with a medium effect (effect size Cohen´s d= 0.748) in the mean values between the 

pre- and post-questionnaire. Through the intervention, prospective teachers of EG1 

have raised their perceived self-efficacy regarding the recognition of thinking and mis-

conceptions. Now the different experimental conditions are compared with each other. 

Perceived 

self-efficacy N 
EG1 EG2 EG3 EG4 

pre-quest. 34 23 40 23 

post-quest. 33 23 36 20 

Table 2: Number of participants in the experimental conditions 

Perceived 

self-efficacy 
EG1 EG2 EG3 EG4 

pre m/SD 3,634 0,7763 4,100 0,7556 3,651 0,9005 3,765 0,5157 

post m/SD 4,377 0,6027 4,503 0,4871 3,889 0,8239 3,757 0,6938 

Table 3: Mean value and standard deviation within the pre- and post- questionnaire 

When comparing the individual experimental conditions, differences can already be 

found regarding the mean difference. For example, the experimental group 4 (EG4) 

shows no changes and the difference in group EG1, which has carried out the whole 
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intervention including diagnostic interviews, is biggest compared to the other mean 

differences. 

An analysis of variance (ANOVA) with measurement repetition taking into account 

the experimental condition as covariate shows a significant interaction effect between 

the independent variables time of the questionnaires and the experimental condition  

(F(1,041) = 3,551; p = 0,017; partial η² = 0.095). The experimental condition thus has a 

medium effect on the perceived self-efficacy. Furthermore, it will be investigated be-

tween which experimental conditions the changes between pre- and post-questionnaire 

are significantly different. 

 EG1/ EG3 
EG1/ 

EG4 

EG1/ 

EG2 

EG2/ 

EG3 

EG2/ 

EG4 

EG3/ 

EG4 

F-value 5,710 7,947 2,465 0,247 1,828 1,294 

p-value 0.020* 0.007** 0.123 0.621 0.184 0.261 

partial η² 0.083 0.142 0.046 0.005 0.045 0.025 

selectivity 0.653 0.789 0.338 0.078 0.261 0.200 

Table 4: Significant differences between the experimental conditions 

Significances only occur in one pair of experimental conditions. The group (EG1) 

which took part in the total intervention differs significantly from groups EG3 (group 

with 90-minute whole numbers) and EG4 (waiting group). However, there is a big 

effect (effect size partial η²= 0.142) regarding EG4, and only a medium effect (effect 

size partial η²= 0.083) regarding EG3. Hence there are only significant differences 

between EG1 and EG3 and also EG1 and EG4. In particular, the significant difference 

between EG1 and EG4 shows that the complete intervention has an impact on per-

ceived self-efficacy. 

SUMMARY AND OUTLOOK 

The evaluation of the data shows that an increase in perceived self-efficacy is possible 

through the intervention (EG1). The comparison of the different experimental con-

ditions also shows an influence on the perceived self-efficacy. On the one hand, this 

can have a positive effect on teaching, as prospective teachers will try to understand the 

students' thinking and misconceptions more intensively. On the other hand, the in-

creased perceived self-efficacy could indicate an increased diagnostic competence 

through intervention, since it is known from the literature that performance and per-

ceived self-efficacy are related. This will be evaluated in the next phase of our project. 
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WHAT DO MATHEMATICIANS WISH TO TEACH  

TEACHERS IN SECONDARY SCHOOL ABOUT MATHEMATICS? 

Anna Hoffmann and Ruhama Even 

Weizmann Institute of Science 

 

This study investigates what mathematicians wish to teach teachers about what 

mathematics is. Data source included interviews with five research mathematicians 

who taught advanced mathematics courses to practicing secondary school teachers. 

Analysis revealed that expanding teachers' knowledge about what mathematics is was 

one of the main objectives of the interviewees. They referred to three aspects: (1) the 

essence of mathematics, (2) doing mathematics, and (3) the worth of mathematics. This 

paper characterizes and illustrates each aspect.  

INTRODUCTION 

In many countries, the education of secondary school mathematics teachers tradition-

ally includes a strong emphasis on advanced mathematics courses at the college or 

university level, taught by mathematicians. This tradition has been reconsidered in 

recent years, and the relevance of academic studies of mathematics to secondary 

school mathematics teaching is being debated (e.g., Dreher, Lindmeier, & Heinze, 

2016; Even, 2011; Murray et al., 2015; Wu, 2011). As part of a comprehensive study 

that examines what might be the relevance and contribution of academic mathematics 

courses, taught by research mathematicians, to teaching mathematics in secondary 

schools, the current study examines what mathematicians who teach such courses wish 

to teach teachers about what mathematics is. 

THEORTICAL BACKGROUND 

The empirical research literature on the relevance and contribution of academic studies 

of mathematics to teaching secondary school mathematics suggests a potential con-

tribution at two levels of subject-matter knowledge. One level concerns knowledge of 

specific contents (e.g., Even, 2011; Zazkis & Leikin, 2010). For example, when in-

terviewed about the contribution of their academic studies of mathematics to their 

teaching in secondary school, some mathematics teachers reported that they used the 

knowledge of specific topics they acquired to respond to students’ questions or to en-

rich topics they taught. Yet, most studies reported on contribution at a more general 

epistemological level of knowledge about the nature of mathematics, about what 

mathematics is (e.g., Adler et al., 2014; Even, 2011; Zazkis & Leikin, 2010). For 

example, teachers reported that academic mathematical studies expanded their 

knowledge in aspects, such as, doing mathematics as problem solving, the role of in-

tuition in doing mathematics, and the use of mathematics in other disciplines. These 
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new understandings enabled them to better represent the discipline of mathematics in 

their teaching.  

As learning is shaped by teaching, a question arises: What do mathematicians, who 

teach academic mathematics courses to teachers, wish to teach teachers about the na-

ture of mathematics? The existing literature concerning mathematicians’ positions 

regarding academic mathematics studies of teachers is rather limited. It mainly com-

prises forewords appearing in mathematics textbooks intended for teachers (Klein, 

1933/2016) and position papers written by a number of mathematicians who publish 

on educational topics (e.g., Wu, 2011; Ziegler & Loos, 2014). In most of these publi-

cations the mathematicians address the level of the nature of mathematics, emphasiz-

ing the importance of narrowing the gap between “what (research) mathematicians 

take for granted as mathematics and what teachers and educators perceive to be 

mathematics” (Wu, 2011, p. 382). Yet, different mathematicians suggest attending to 

different aspects. For example, Howe (Howe & Ma, 1999) stresses the characteristic of 

coherence and connectedness of mathematics: 

I would like to highlight the concern ... for the connectedness of mathematics, the desire to 

make sure that students see mathematics as a coherent whole. … A teacher who is blind to 

the coherence of mathematics cannot help students see it. (p. 885) 

Wu (2011) emphasizes the importance of the fundamental principles of mathematics 

(e.g., definitions provide the basis for logical deductions), while Ziegler and Loos 

(2014) aim at broadening teachers' view of mathematics: 

…give them [teachers] a panoramic view on mathematics: …an overview of the subject, 

how mathematics is done, who has been and is doing it, including a sketch of main de-

velopments over the last few centuries up to the present (p. 9). 

As seen, teachers report that academic mathematics studies contributed to their 

knowledge about the nature of mathematics, which mathematicians view as an im-

portant component of teachers' knowledge. Yet, our review of the literature reveals the 

deficiency of conceptual frameworks that could be used to examine what knowledge 

about the nature of mathematics mean. Moreover, empirical research that examines 

what mathematicians wish to teach teachers about the nature of mathematics is lacking. 

Our study addresses both these shortcomings of current research.  

METHODS 

Setting and Participants 

The study was situated in a master’s program, designed for practicing Israeli secondary 

school teachers of science and mathematics. A bachelor’s degree in mathematics or in 

a mathematics-related field is required for admission to the mathematics strand of the 

program. A major component of this strand comprises eight academic mathematics 

courses, designed and taught by research mathematicians. Four of these courses deal 

with topics in the school curriculum at an advanced level: algebra, analysis, geometry, 

and probability and statistics. Three courses deal with the use and application of 
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mathematics in other domains: computer science, natural sciences (applied mathe-

matics), social sciences and everyday technologies. One course appraises the history 

and philosophy of mathematics. In addition, a final project that involves an inde-

pendent study of an unfamiliar mathematical topic is carried out under the guidance of 

a mathematician.  

Five of the seven mathematicians who teach in the mathematics strand of the program 

participated in the study. All are prominent research mathematicians, who usually 

teach only mathematics master and doctoral students. The five participating mathe-

maticians teach all the mathematics courses in the program but two: algebra and the 

use of mathematics in computer science.  

Data Collection and Analysis 

The main data source included individual semi-structured in-depth interviews with the 

participating mathematicians. The aim was to learn what the mathematicians seek to 

teach teachers about mathematics and to reveal their views regarding the relevance and 

contribution of academic mathematics studies to secondary school mathematics 

teaching. The interviews included two main questions. The first focused on the general 

teaching goals of the mathematicians in the program. The second question focused 

explicitly on their teaching goals regarding what mathematics is. The interviews took 

about an hour and were recorded in audio. Additional data sources were participant 

observations in three courses: geometry, analysis, and the history and philosophy of 

mathematics, documented by field notes. The aim was to strengthen the internal va-

lidity of the study.  

Data were analysed qualitatively. First, a full transcript of the interviews was made, 

followed by open coding and categorization in an iterative and comparative process. 

The aim was to identify what, if at all, the mathematicians wished to teach teachers 

about the nature of mathematics. In addition to the authors, three graduate students in 

the field of mathematics education participated in the coding process of about 20% of 

the data. All disagreements were resolved by discussion, so a consensus was reached.  

FINDINGS 

Analysis revealed that enriching, expanding and deepening teachers' knowledge about 

what mathematics is was a central goal of all the participating mathematicians. This 

became apparent at an early stage of all interviews, when the mathematicians were 

asked about their teaching goals in the program, before the topic of the nature of 

mathematics was explicitly raised by the interviewer. All the mathematicians stated at 

this point that knowledge about what mathematics is was as a major teaching objective. 

For instance (to ensure confidentiality, all the participating mathematicians are re-

ferred to as males, denoted as M1-M5), 

Interviewer: You teach the course... and advise students [in their final project]. What are 

your main objectives when you do these things? 

M2: The main objective is to explain what mathematics is... 
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All the interviewees mentioned also that they wished to enrich teachers' knowledge of 

specific mathematical contents. However, they attributed less importance to this goal. 

For example, M5 said, "This is actually what I think we need the entire program to 

concentrate on... to teach the mathematical method ... it is possible to teach it almost 

through any topic." Three mathematicians (M2, M3, M5) explicitly said that it was 

most likely that teachers would forget the specific contents they learned in the pro-

gram. Thus, what they wished for was that teachers would remember different aspects 

of knowledge about mathematics: 

In my opinion, most of the material we teach will be lost, because they [the teachers] will 

forget it within half a year... But what we want to remain is the ability to understand, the 

ability to use the mathematical method... to have logic in what they do (M5). 

Analysis of the interviews generated three aspects of the nature of mathematics that the 

participating mathematicians wanted to teach teachers: (1) the essence of mathematics, 

(2) doing mathematics, and (3) the worth of mathematics. Each of these aspects com-

prises two or three characteristics. In the following we describe and illustrate the 

characteristics of each aspect.  

The essence of mathematics 

The aspect essence of mathematics deals with the question: What is this discipline 

called mathematics? Data analysis revealed three main characteristics of the discipline 

of mathematics that the interviewees wished to teach teachers: (1) wide and varied (2) 

rich in connections (3) structured deductively.  

Wide and varied  

According to the participating mathematicians, teachers need to know that mathe-

matics is a wide and varied discipline, which has many domains and many facets. For 

example, "I wish that what would happen to the teacher in the program… that the 

teacher would come and discover that there are many worlds in mathematics" (M4). 

The mathematicians stressed that teachers should be "introduced to different aspects of 

modern mathematics” (M1) and understand that mathematics continues to develop 

towards new and varied directions. M4 exemplified it: "… my last two lectures are 

always on chaos. The purpose of it, first, is to show them that mathematics is a science 

of the 21st century."  

The mathematicians added that it is important for teachers to know that even areas that 

are familiar to them, such as, probability and algebra, are much broader than they 

commonly envision. That there exists mathematical knowledge in these areas 

–unfamiliar to most teachers – that helps to answer mathematical questions that the 

teachers' limited current knowledge cannot answer. 

Rich in connections 

All the mathematicians said that it was important for teachers to know that mathe-

matics is rich in connections and that in order to properly understand mathematics one 

must be familiar with these connections. For example, M3 said that teachers need to be 
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aware that there should not be disconnected fragments of knowledge in mathematics, 

and M1 emphasized "internal connections among the mathematical concepts and 

topics”. M1 demonstrated this type of connections, using the concepts of circle and 

ellipse. He argued that the connection between these two concepts is often misunder-

stood as if ellipse is a degenerate circle. However, the contrary is true because a circle 

is a degenerate ellipse. 

Deductive structure 

All the mathematicians said that teachers need to understand the deductive structure of 

mathematics. They referred to general characteristics and to elements of the deductive 

structure. General characteristics concerned with mathematics as a consistent science 

that is based on the laws of logic, its foundation lies on universal truths, and thus 

mathematics is not arbitrary: everything has a reason. For example, M2 said that one of 

his goals was: 

…to show that in mathematics, proofs and definitions, it is not that someone in the Min-

istry of Education determined those things, that it should be done this way and not another 

way. That it comes from natural and long-term attempts to understand things (M2). 

With regard to the elements of the deductive structure, the mathematicians spoke of the 

need to understand in depth the roles of axioms, definitions, theorems and proofs. For 

example, three mathematicians mentioned the key role a successful definition could 

have and what a good definition is: "[The teachers should know] that in order to give 

definition one must be able to answer the question why this word stands here and what 

it signifies" (M5).  

Doing mathematics  

The aspect doing mathematics deals with the question: How is mathematics done? 

Data analysis revealed three main characteristics of mathematical activity that the 

mathematicians wished to convey to teachers: (1) asking questions, (2) thinking and 

understanding, and (3) using intuition and formalism. 

Asking questions 

The mathematicians argued that teachers need to know that a fundamental part of 

doing mathematics is asking questions. For example, "Questions are more important 

than answers. Once one is able to ask questions, a giant step forward has been taken" 

(M2). Two types of questions were mentioned. One type is questions arising from the 

mathematics itself. For example, "Also, one should inspect, for each mathematical 

theorem, what it offers, what the outcome would be if I change the conditions a little 

bit" (M1). The other type is questions arising from outside of mathematics. For ex-

ample, "Why do planes flying to New York from Tel-Aviv fly over Canada?" (M1), 

and "Why does the time of sunset in spring and autumn change quickly but in winter 

and summer it hardly changes?" (M3). 
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Thinking and understanding 

All the mathematicians emphasized the centrality of thinking and understanding in 

doing mathematics. For example, one said: "One of the primary goals was to show that 

there is mathematics beyond that [the technique] – also the thinking features…" (M1). 

And another, "I hope very much that they will not forget the main idea that in math-

ematics things need to be explained…" (M2). The mathematicians emphasized that 

understanding in mathematics involves understanding the purposes and meanings of 

what one does: "…when they do something, they have to be able to formulate exactly 

what they are doing, why they are doing that, what they could do differently" (M5). 

They added that thinking is difficult, and one must make an effort in order to do that, 

stressing that thinking should not necessarily be done quickly. 

Using intuition and formalism 

The mathematicians emphasized that teachers need to know that using intuition is an 

integral part of doing mathematics, especially at the initial stage of problem solving. 

Precision and formal representation come at a later step and they do not reflect the 

process in which mathematics done. For example: 

…we [mathematicians] often develop things intuitively. You think that one thing is true 

but once you try to prove it you realise that you need to slightly change the phrasing… 

Generalizations come at the end, not at the beginning. It's not that we understand the whole 

theorem at the beginning. We usually develop something small and gradually realize that 

there is a bigger picture, and at the end we give a big beautiful picture. (M4) 

The worth of mathematics 

The aspect worth of mathematics deals with the question: What good is it to engage in 

mathematics? Data analysis revealed two main characteristics: (1) the practical worth 

of mathematics, and (2) the worth of mathematics per se.  

The practical worth of mathematics 

All the mathematicians emphasized the need for teachers to know that solving practical 

problems is, and has always been, an important motivation to engage in mathematics; 

that mathematics is not just a theoretical science disconnected from the physical world, 

but rather a tool for solving real life problems. For example: "[Mathematics] is things 

related to life, to usages…" (M3). They explained that through its uniform language 

and its modeling possibilities, mathematics helps to solve problems that arise in dif-

ferent disciplines, contributing to fields, such as navigation, geography, physics, bi-

ology, economics, technology, astronomy, medicine, computers, and more. The 

mathematicians stressed that teachers need to understand "how [historically] people 

arrived at certain things" (M1). For example, "In my view, it is simply unacceptable 

that they will talk about derivatives without knowing why Newton developed this 

topic" (M4).  
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The worth of mathematics per se 

The mathematicians spoke also about the need for teachers to be aware of the worth of 

engaging in mathematics per se. Yet, this characteristic was less stressed. In this re-

gard, they spoke about the engagement in mathematics as a challenging and creative 

activity, which develops rational and logical thought. They added that the beauty and 

aesthetics of mathematics gives much joy.  

CONCLUDING REMARKS 

Our study provides important information regarding an issue that has been hardly 

studied, namely, what mathematicians wish to teach secondary school teachers about 

mathematics. As shown, the mathematicians who participated in our study aimed at 

enriching, expanding and deepening teachers' knowledge about what mathematics is. 

These findings are in line with teachers' reports about the contribution of academic 

studies of mathematics to teaching secondary school mathematics (e.g., Even, 2011; 

Zazkis & Leikin, 2010). However, in contrast to those studies, our study provides de-

tailed information about what knowledge about the nature of mathematics might mean 

to mathematicians. Analysis of the responses of the mathematicians who participated 

in our study generated three aspects, each comprises two or three characteristics, that 

together could serve as a conceptual framework for analysing teacher knowledge and 

practice related to the general epistemological level of knowledge about the nature of 

mathematics. This framework is presented in Figure 1. 

 

Figure 1: What mathematicians wish to teach teachers about the nature of mathematics. 

Follow-up research is needed in order to examine the usefulness of this framework for 

the much-needed research on the contribution of academic mathematical studies to 

secondary school teachers' knowledge and practice. For example: How applicable is 

this framework for capturing what secondary school teachers learn about the nature of 

mathematics during their academic studies of mathematics? To what extent is this 

framework related to cultural and societal factors? 
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GESTURES AS EMBODIMENTS OF VARIABLES  

AND ALGEBRAIC EXPRESSIONS 

Mirjana Hotomski 

Tufts University, Medford MA, USA 

 

Researchers have investigated how students may represent indeterminate quantities 

(variables or unknowns) through expressions in natural language, non-numerical 

symbols, and external representations, implicitly treating indeterminate quantities 

much as if they were known quantities (Radford, 2011). Here I will focus on the 

following research question: How do sixth graders’ gestures reflect their work with 

indeterminate quantities and the ways in which they operate on those quantities? 

Specifically, the present study provides evidence that:  1) sixth graders used gestures 

as visual representations of indeterminate quantities; and 2) students combined 

gestures into embodied forms of algebraic expressions. 

INTRODUCTION 

The present study aims to address the role of gestures in the development of students’ 

algebraic thinking concerning the use of variables and algebraic expressions. This is an 

underexplored area, which in this study I will focus on by addressing the following 

research question: How do sixth graders’ gestures reflect their work with 

indeterminate quantities and the ways in which they operate on these quantities? 

Gestures observed in the present study can be defined as spontaneous motion of hands 

and arms that co-occur with speech (McNeill, 1992).  

Radford (2011) describes algebraic thinking as follows: “What characterizes thinking 

as algebraic is that it deals with indeterminate quantities conceived of in analytic 

ways.  In other words, you consider the indeterminate quantities (e.g. unknowns or 

variables) as if they were known and carry out calculations with them as you do with 

known numbers” (p. 310). The author demonstrated this by using an example of a 

second grader working on extending a geometric pattern, in which an element at 

position n consisted of a row of n white squares plus one shaded square placed on top 

of another row of n white squares. The pattern corresponded to the function y = 2n+1, 

where n denoted the position in the ordered sequence and y denoted the number of 

squares in the pattern. The student extended the pattern to the 25th position by saying, 

“What is 25 plus 25? After that you add 1!” In this example the second grader operated 

on an instance of an independent variable n=25 (as indeterminate quantity) by carrying 

out calculation (25+25)+1. Although she struggled to find the sum 25+25, she 

described the element at the 25th position as a rule (in analytic ways) rather than as a 

value of 51. Whereas Radford (2011) finds indeterminate quantities in students’ 

linguistic referents to “instances of the independent variable” (p. 310) and Brizuela 
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(2016) in a student’s non-numerical inscription “?” to represent the unknown number 

of candy in a candy box, Cooper and Warren (2011) find them in external 

representations as points on a number line representing an unknown value. The present 

study makes a contribution to the body of literature on students work with 

indeterminate quantities in analytic ways (Cooper & Warren, 2011; Brizuela, 2016; 

Radford, 2011), by providing evidence that students do so through gestures. 

Specifically, in the present study I claim that 1) sixth graders used gestures as visual 

representations of indeterminate quantities; and 2) students combined gestures into 

embodied forms of algebraic expressions.  

METHOD 

Data 

Data were selected from a collection of 378 classroom videos of 64 mathematics 

teachers in grades 5-9 from 9 districts, participating in a 3-semester long graduate-level 

professional development program aimed at improving teaching of mathematics, be-

tween the years 2011 and 2013. All participating teachers were asked, but not required, 

to allow researchers to videotape in their classrooms both at the beginning of their 

participation and at several points during the three semesters. Data used in this study 

are two 38-minute long video recordings of a single sixth grade mathematics lesson. At 

the time of this lesson, the teacher was nearing the end of her second semester of 

participation.  The analysis presented here focuses on students’ gestures at a single 

time point, and not on the teacher's change throughout the program. Each of the two 

videos was made by one of the two program researchers who recorded different aspects 

of the same lesson while also engaging with students and asking them to explain their 

thinking. Data were selected because of the prominent use of gestures among nearly 

half of the students.  

Participants 

Participants were thirteen sixth grade students arranged in four groups in a public 

school in New England, engaged in algebraic generalizations of a geometric pattern. 

Six of the students from three different groups used gestures to explain their thinking. 

Out of those I selected two students for analysis, Theo and Sophia, not from the same 

group, who used gestures to describe a geometric pattern in a general case, not specific 

to any particular position in the geometric pattern.  

Methodology 

I selected and transcribed the video episodes in which students’ gestures co-occurred 

with their speech, here referred to as gesture-speech pairs. As the conceptual frame-

work for this paper, I drew on literature that views gestures as semiotic resources 

(Arzarello, Paola, Robutti, & Sabena, 2009; Sabena, Radford, & Bardini, 2005; 

Radford, 2014) and, as such, convey information that closely relates to accompanying 

speech (Goldin-Meadow, 1999; McNeil, 1992). With this framework in mind, I first 

made interpretations about the information conveyed in speech and then analyzed 
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students’ gestures and made interpretations about the information they conveyed 

related to the context found in speech. Finally, I looked into students’ gestures for 

evidence of use of indeterminate quantities in analytic ways. 

Task and Lesson Flow 

The teacher introduced the task as a real-life scenario asking students to make 

predictions for the number of tiles needed to enclose a garden of a varying length and 

constant width of one. During a whole-class discussion, for each of the first three 

elements of the geometric pattern (see Figure 1 left), the teacher, under a document 

camera, laid down the green tiles representing the garden spaces and then asked 

students to make predictions for the number of tiles needed to enclose it. Following 

students’ predictions, she enclosed the garden with tiles and moved to the next 

element. Lastly, she asked students, “What patterns have you started to notice?” The 

first student to respond immediately took a covariation approach (Confrey & Smith, 

1995) when he said, “You add a square foot to the garden, and it increases by two tiles 

on the outside.” Another student noticed that three tiles were needed at each end to 

enclose any garden of the constant width of one, ”one side is always three tiles.” The 

teacher then announced that she would refer to the sides as “ends” (Figure 1 left depicts 

teacher placing two fingers on each “end”). Soon after the teacher physically separated 

the “ends” (Figure 1 right), Theo rephrased the first student’s statement while using the 

terminology “top” for the top row of tiles, and “bottom” for the bottom row of tiles, 

“'Cause since you add more green tiles (garden spaces), you had one more on the top 

and one more on the bottom.” This classroom discussion prompted students to 

visualize the four corner tiles as parts of the “ends” and not of the “top” or the 

“bottom”. Such visualization corresponded to the function y=2n+6, where y 

represented the number of tiles needed to enclose a garden of length n. 

  

Figure 1: First three elements of the geometric pattern. 

After the initial whole-class discussion, students were given blocks (instead of tiles) 

and a handout and were sent off to work in their small groups. While students worked 

in groups, the teacher and the two program researchers circulated around the classroom 

and worked with each group.  

The handout consisted of a table with two columns: “Length of Garden” prefilled with 

values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 30, 100, 1000, n (left column), and “Number of 
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Tiles” (right column) left blank for students to fill in. To the right of the table was extra 

space designated by the teacher for students to record their observations and patterns 

they notice. The bottom of the page contained the following prompts: “How can you 

find the number of tiles for any garden length?” and “Write the rule”. 

RESULTS AND CLAIMS 

Episodes 1 and 2 in Figure 2 summarize the gesture-speech pairs used by Theo and 

Sophia to describe the general term. Gesture-speech pairs are labeled alphabetically 

with letters “a” through “e”, speech fragments co-occurring with gesture are 

underlined, and student speech is presented in bold. 

Episode 1 – Theo describes the general case 

a    b    c  

Teacher (in response to another student who wrote down “tiles times two”): And why do you 

need to multiply this (pulls her thumb and index finger close together and 

briefly sets them on the table) times two? What is that going to give you? 

Theo: The top a (gestures so that his arm is aligned with the length of the blocks) and the 

bottom b (same gesture on the other side of the blocks). 

Teacher: The top and the bottom. So the two is coming from needing a top and a bottom. 

Theo: (nods)  

Teacher: And what's the other part? 

Theo: You have two sides c (aligns the pencil with one end). 

Teacher: The ends, good. And how many do you need for the ends? 

Theo: Three 

Teacher: Three on one side, and what else do you need? 

Theo: Three on the other side 

Teacher: A three on the other side. Perfect. And how many is that total? 

Theo: Six. 
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Episode 2 – Sophia describes the general case 

d    e    f  

Sophia: I kind of noticed something - you always need like three on the side. You always 

need three on the side (pauses then gestures two sides with each hand)d. But - 

and you need - however many f(eet) - however long your um, plant , your, 

the length of your garden is that's how many tiles you need  (starts gesturing 

by forming two open palms pointing at each other, then stands up so that the 

camera can see her) on tope (moves her hand formation forward away from her) 

and the bottomf (moves her hand formation backwards towards her). 

Figure 2: Theo and Sophia’s gesture-speech pairs. 

Claim 1. Sixth graders used gestures as visual representations of indeterminate 

quantities 

In what follows, I will argue that Theo’s gestures (a and b) and Sophia’s gestures (e and 

f) were visual representations of indeterminate quantities, the “top” and the “bottom”.   

Prior to Episode 1, Theo synchronized gesture and speech to explain that 46 tiles were 

needed to enclose a garden length 20, “Cause we did the twenty (places the pencil 

above the blocks at the left end) for the top (moves the pencil alongside the blocks to 

the right end) and twenty (places the pencil below the blocks at the left end) for the 

bottom (moves the pencil alongside to the right end) and the three (moves the pencil 

alongside the right end) on each side (moves the pencil alongside the left end) which 

equals forty-six”. Evidently, Theo in an embodied way represented the equation 

20+20+3+3=46. In Episode 1, the teacher posed a question (“And why do you need to 

multiply this times two?”) to another student at Theo’s table in response to his writing 

“tiles times two” on his paper. Theo offered an answer to her question by 

synchronizing utterances, “The top a”, and “the bottom b”, with the two identical 

open-palm gestures each on a different side of the row of blocks (garden spaces). Theo 

used these two identical open-palm gestures as visual representations of two identical 

entities, the two imaginary physical rows of tiles enclosing the garden from the top and 

the bottom. His gestures provided spatial orientation for each row of tiles as running 

parallel to the garden spaces from one end of the blocks to another. These gestures 

were also visual representations of two equal quantities, the number of tiles in each 

row, which added together demonstrated multiplication by two. Whereas in the 

specific case of garden length 20 Theo used the first two gestures as a visual 
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representation of two rows of 20 tiles, the top and the bottom, the two gestures he used 

in Episode 1 (a and b in Figure 2) represented a general case as they had no reference to 

the number of tiles in the top and the bottom row. The quantities represented by these 

gestures (a and b) were thus unknown yet equal. This serves as evidence that Theo used 

gestures as visual representations of indeterminate quantities.  

In Episode 2, without a prompt, Sophia started sharing her observations with students 

at her table “I kind of noticed”. She described the general case in which she explicitly 

referred to the length of the garden as an unknown quantity, “however many f(eet) – 

however long your um, plant, your, the length of your garden is,” and then used that to 

quantify how long the “top” and the “bottom” rows should be, “that’s how many tiles 

you need on top e and the bottom f”. She used two identical hand gestures, e and f, to 

visually represent two identical rows of tiles running parallel to the garden spaces. 

Besides spatial information, her gestures also conveyed quantitative information. 

Namely, for Sophia, the number of tiles was a property of the physical row of tiles as 

evident in her gesture-speech pairs, “that’s how many tiles you need on top e and the 

bottom f”. Although Sophia stated that the number of tiles in the top and the bottom row 

was unknown, “however many”, at the same time she stated that they contained the 

same number of tiles “that’s how many tiles you need on top e and the bottom f”. The 

notion of equality is also supported by the two identical hand gestures. In summary, 

Sophia’s gestures (e and f) were visual representations of two equal indeterminate 

quantities.  

Claim 2. Students combined gestures into embodied forms of algebraic 

expressions 

To provide evidence for Claim 2, I will now discuss the ways in which Theo and 

Sophia combined gestures as evidence that they were working with indeterminate 

quantities represented by those gestures as if they were known quantities, thus in 

analytic ways (Radford, 2011), and that these were embodied ways of representing 

algebraic expressions. 

As argued in Claim 1, Theo’s open-palm gestures (a and b) in Episode 1, for the “top” 

and “bottom” were visual representations of two equal indeterminate quantities. Theo 

used the conjunction “and” (“the top and the bottom”) synchronized with repositioning 

of the hand, to combine the two indeterminate quantities represented by gestures, equal 

in size. This, I argue, is an embodied way of showing the algebraic expressions n+n. 

However, this was his response to teacher’s question on why multiplication by two was 

needed, which means that Theo’s two gestures were simultaneously embodiments of 

the equivalent expression 2n, showing multiplication by two as a repeated addition of 

two equal indeterminate quantities.  

Theo went along with teacher’s linguistic bid “and” to connect the “top” and “bottom” 

to the “ends” (“And what's the other part?”) and described the “ends” with another 

gesture-speech pair (c),  “You have two sides c (aligns the pencil with one end)”. His 

pencil gesture c served as a visual representation of two equal fixed quantities which he 
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immediately following the gesture described as “Three” on one side, “Three on the 

other side”, totaling “Six”. Theo, thus, combined the indeterminate quantities visually 

represented by the two gestures (a, b) in analytic ways as if they were known by adding 

6 to their sum. This was his embodied way of showing the algebraic expression 2n + 6, 

which he eventually stated more explicitly when prompted to fill in the last row in the 

table for n number of tiles: 

Teacher:  So what are you going to do with the n now? 

Theo:  n times two plus six. 

In Claim 1, I argued that Sophia’s gestures (e and f in Episode 2), just like Theo’s, were 

visual representations of two equal indeterminate quantities (“top” and “bottom”). 

Sophia used the word “and” in her speech, “on top e and on the bottom f”, synchronized 

with alternating her hand formation, forward (e) then backward (f) to show the top and 

the bottom, and therefore connected her two gestures into an embodied representation 

of the algebraic expression n+n. She represented the “ends” with another 

gesture-speech pair (d), “three on each side d”, a value that “always” stays the 

same.  She used the word “but” synchronized with the repositioning of the hands, as a 

way to combine the “ends” (each of fixed length 3), with the “top” and “bottom” (each 

of an unknown length). The way she combined gestures in Episode 2 is an embodied 

way of showing the algebraic expression 3+3+n+n and evidence that Sophia worked 

with two equal indeterminate quantities in analytic ways as if they were known by 

adding their combined sum to the sum of the “ends”. 

SUMMARY 

In this paper I presented evidence and argued that sixth graders used gestures as visual 

representations of indeterminate quantities (Claim 1), and that students combined these 

gestures into embodied forms of algebraic expression (Claim 2).  

To support Claim 1, I argued that Theo’s and Sophia’s gestures besides spatial also 

contained information which quantitatively characterized the top and the bottom row. 

In Theo’s case I contrasted the gestures he used in a specific case of garden length 20 to 

gestures he used in a general case described in Episode 1. Namely, Theo’s two gestures 

prior to Episode 1, as he faithfully retraced the 20 blocks from one end to another, at 

the top and at the bottom, were visual representations of the same fixed quantity of 20 

tiles. In contrast to that, the two gestures (a and b) he used in Episode 1 were 

representations of two equal quantities without a regard to the number of tiles. In 

Sophia’s case I found evidence in her gesture-speech pairs (e and f) that the number of 

tiles at the top and at the bottom she thought of each as a property of a physical row of 

tiles, thus as evidence that each of her gestures (e and f) besides spatial orientation also 

reflected a notion of quantity, unknown yet the same. 

To support Claim 2 I looked for transitions in speech and gestures as evidence that stu-

dents combined gestures to represent addition, and multiplication as repeated addition, 

and by doing so operated in analytic yet embodied ways on the indeterminate quan-



Hotomski 

  

3 – 114 PME 42 – 2018 

tities represented by those gestures. This in turn was an embodied way in which stu-

dents represented algebraic expressions. 

My findings complement those by Radford (2011), Brizuela (2016), and Cooper & 

Warren (2011) by providing evidence that students use indeterminate quantities and 

operate on them in analytic ways through gestures. This is a growing body of litera-ture 

on the development of algebraic thinking in ways other than the manipulation of 

symbols written in standard algebraic notation. Implications of the present study for 

research and instruction involve taking students’ gestures into account when looking 

into students’ algebraic thinking.  
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SOLVING COMBINATORIAL COUNTING PROBLEMS: 

PRIMARY CHILDREN’S RECURSIVE STRATEGIES  

Karina Höveler 

University of Münster, Germany  

 

The idea of recurrence is of fundamental importance in different areas of mathematics. 

One of these is the field of combinatorics, which provides many problems to introduce 

the idea of recurrence at an early stage of students’ mathematical thinking. So far, 

there is still insufficient knowledge regarding the use of recursive strategies for 

combinatorial counting problems in primary schools. This paper therefore presents 

the results of a qualitative study with primary children of the third grade who solved 

analogous combinatorial problems by recursive strategies.  

THEORETICAL BACKGROUND 

The recurrence principle and its importance in solving combinatorial counting 

problems 

The field of combinatorics is described as the art of enumerating and counting all the 

possible ways in which a given number of objects may be mixed and combined to 

make sure not missing any possible result (Bernoulli, 1713 German translation 

Haussner, 1899). From a mathematical perspective there are three approaches to solve 

combinatorial counting problems: systematic listing, counting principles and 

combinatorial operations (Schrage, 1996). Systematic listing and counting strategies 

can already be applied in primary school with so far developed knowledge and skills. 

The consideration of counting strategies in primary school is fundamental since these 

are forming the bridge between listing strategies and combinatorial operations 

(Höveler, 2018). 

One of these central counting principles is the principle of recurrence. This principle is 

based on the mathematical idea of a recurrence relation which in general describes a 

way to “define a function by an expression involving the same function” (Schrage 

1996, p. 194). More detailed it may be understood as the following rule which defines 

a(n) in terms of a(1), a(2), …a(n-1):  

“Let a(1), a(2), …be a finite or infinite sequence of numbers. If some initial values a(1), 

a(2), … a(k) are known and if for all nk there is a rule which defines a in terms of a(1), 

a(2), … a(n-1), then every element of the sequence can be calculated according to this 

rule.” (Schrage 1996, p. 194) 

The recurrence principle is as well as the multiplication principle and further counting 

principles of particular importance as almost any counting problem can be solved by 

their skillful application. In addition, combinatorial operations can be derived from 

these principles (Schrage, 1996). Thus, based on a recursive solution of a combination 
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problem without repetition with four objects, then with five and with six objects, each 

time choosing two of them, a general recursive formula for n given objects for 

combinations without repetition can be obtained (for details see Höveler, 2014). 

Likewise, general formulas can also be developed for other combinatorial operations 

based on small problems by recursive considerations (Schrage, 1996). 

Current state of research on children’s recursive strategies in solving 

combinatorial counting problems 

Previous studies, dealing with the application of counting strategies and possible oc-

curring mistakes, focused primarily on the multiplication principle (e.g. Lockwood, 

2010, Lockwood & Caughman, 2016). Concrete information about children’s recursi-

ve strategies in the context of combinatorial problems are rare. Early investigations of 

Piaget and Inhelder (1975) give hints that children at elementary school age already 

use the idea of recurrence instead of counting all units particularly. Later studies also 

indicate the use of recursive strategies (e.g. Lack, 2009). But so far little is known 

about these counting strategies, as most studies with primary students (e.g. English, 

1991, 1993; Maher & Martino, 1996; Maher, 2005) generally focused on solving 

combinatorial enumeration problems (“Which outcomes are possible?”) and students 

listing strategies. There are also indications that children in secondary school solve 

combinatorial problems with recursive approaches: Shin and Steffe (2009) for exam-

ple, investigated in a yearlong teaching experiment with two 7th grade students, how 

these students dealt with enumerative combinatorial problems. The results show that 

besides additive and multiplicative enumeration they also used recursive multiplicative 

enumeration. Further concretizations of these recursive strategies or the occurrence of 

systematic errors are missing. 

These studies show that learners of different ages use recursive strategies to solve com-

binatorial counting problems. Although this is known and furthermore the conside-

rable importance for the development of combinatorial thinking is obvious with regard 

to its subject matter, primary children’s recursive strategies have not been studied so 

far. 

THE STUDY  

Aim of the study 

Due to the afore mentioned importance of counting principles in general and the recur-

rence principle in particular, one main focus of a qualitative study on third graders stra-

tegies in solving combinatorial counting problems was, to answer the following re-

search question: Which counting strategies do third graders use to solve combinatorial 

counting problems and what is the relationship between primary children’s strategies 

and the conventional mathematical approaches? One aim was to find out if and, if so, 

which recursive strategies learners use and what difficulties they encounter. 
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Data collection and tasks 

Information was gathered from individual, clinical interviews (Ginsburg, 1997) lasting 

30 to 45 minutes. Overall 63 third graders from different schools were divided 

randomly in three groups. Every group of children got one set of combinatorial 

problems (set 1: combinations without repetition, set 2: combinations with repetition 

and set 3: arrangement without repetition). Each set of problems contained two 

isomorphic combinatorial problems in different contexts to find out, if primary 

children identify isomorphic structures and how they use these when solving the 

problems. To investigate children’s recursive strategies each problem consisted of a 

basic and an extended task in which the number of elements of the basic task 

successively increased (see table 1, for further tasks see Höveler, 2018). 

Basic task Four teams want to play a soccer tournament. Each team plays once 

against each other team. How many games are there in total? 

Extended 

task 

How many games are there in total, when five (six, seven, ten) 

teams take part and each team place once against each other? 

Table 1: Basic and extended task exemplified by the soccer problem 

Unlike most of the previous studies the question “How many outcomes are possible?” 

was posed, instead of asking “Which outcomes are possible?” This question offered 

the opportunity to solve the stated problems by listing and counting strategies. 

Data analysis 

The interviews were video-recorded and transcribed, afterwards analyzed in two steps 

by central elements of the Grounded Theory (Glaser and Strauss 1967): First, classes 

of children’s strategies were built. Afterwards relationships between their strategies, 

including the underlying concepts, and mathematical principles were identified by 

constant comparison. In this article, the identified strategies are described and it is 

named if and when these strategies lead to a correct result. 

RESULTS 

Children’s recursive combinatorial counting strategies  

In total the four recursive strategies “assumption of proportionality”, “extension of 

groups”, “forming new groups” and a combination of “extension of groups” and 

“forming new groups” were reconstructed. These strategies will be illustrated by an 

example below. Afterwards, it will be considered to what extent the desired number of 

solutions has been determined by means of these strategies. 

“Assumption of proportionality” 

Learners whose approach is based on the "assumption of proportionality" focus on how 

many outcomes with a fixed object appear in the set of outcomes. The solutions are 

created in many cases purely mentally in a few exceptional cases, the learners also 

create the number of solutions. 
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Situation: Leon has already determined the amount of soccer matches of four teams. 
Afterwards he is asked to determine the amount of matches with 5 teams and suggests 
that there are 9 matches in total. 

1 I:  Aha, why nine? (...) How did you get that out? 

2  L: Since [points to the notes from the first task note] three are added to the six 
from the tournament with four teams. 

3 I:  Mm and why three? 

4  L: Because each team plays three times, just like the teams before [tapping the 
blue pennant]. 

As the example shows, the value from the previous task which corresponds to the 

number of objects with a fixed element is added to the determined number of the 

previous task (“Three are added to the six from the tournament with four teams”). 

Children assume that the number of outcomes with this fixed element remains constant 

compared to the task already solved and transfer this to the new element (“Because 

each team plays three times, just like the teams before”). In previous investigations on 

combinatorial counting problems, there are no explicit findings that represent an 

existence of the "assumption of proportionality". But this strategy is named in the 

context of the generalization of patterns. For example, Akinwunmi (2012) describes 

that sequences of patterns, in addition to recursive and explicit structuring, are solved 

by assuming that a proportionate growth of the sequence.  

“Extension of groups” 

Within the “Extension of groups” in most cases the newly added objects are created. 

The strategy is exemplified by Lara’s solution of the ice-cream problem (“Here are 

four different flavors of ice cream. How many different sundaes with two scoops are 

possible, if the order of scoops does not matter?”): 

Situation: Lara has solved the basic ice cream problem and structured her solutions. She 
then finds out how many outcomes are possible with five different ice cream flavors 
under the same conditions (blueberry, which is colored in blue is added) and creates a 
total of 14 solutions. 

1 L:  Because we already had some [points to the solutions of the basic task] and 
the 10 were and then still 4 are added [taps on the four solutions with a blue 
tile], would be 14. 

2 I:  Can you explain why there are 4 new solutions? 

3  L: Because then there are 4 blues again [again she points to the four solutions 
with blue tiles] because there are four different colors. Yellow and blue 
[taps on the corresponding ice cream cones], green and blue [taps on the 
corresponding ice cream cones], red and blue [taps the corresponding ice 
cream cones] and black and blue [taps on the corresponding ice cream 
cone]. 

As evidenced by Lara’s actions and statements, children expand each of the already 

formed classes by an outcome which contains the new object ("Because then there are 

four more blue ones [again pointing to the four solutions with blue tiles] because there 

are four different colors"). 
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“Forming new groups” 

The strategy “Forming new groups” was used independently of the previous structu-

ring strategies to determine the number of all figures with the new element. The newly 

added objects are also created in most cases.  

Situation: Jasmina has already solved the basic two-digit task (arrangement without 
repetition), then she is asked to find out how many two-digits numbers there are with 5 
different digits under the same conditions. 

1  J: Um, wait now, 12 plus the ones with fifty… 51, 52, 53, 54, … plus 4. 
Means 4 solutions with every digit, 16 in total. 

 

The example shows that the task is again solved by adding the new objects with the 

new element to the already determined number of objects (“12 plus […] plus 4”). In 

this case a new group is formed for the newly added elements (“plus the ones with 

fifty”). 

The assumption about the completeness of the new objects in the new group differs 

among the learners:  

• a) the number of created objects with the new element matches with the 

number of previously created figures in a fixed class (assumption of propor-

tionality). 

• b) the new element must be combined with all other elements in all possible 

ways. 

In most cases, the desired number of outcomes was created with the underlying con-

sideration in b) and only in a few cases on the basis of the assumption of proportiona-

lity (see a). 

Combination “extension of groups” and “forming new groups” 

This recursive strategy is a combination of the strategies “Extension of groups” and 

“Forming new groups”.  

Situation: Sara has solved the basic ice cream problem and structured her solutions. She 
then finds out how many outcomes are possible with five different ice cream flavors 
under the same conditions (blueberry, which is colored in blue is added) and creates a 
total of 15 solutions. 

1 S.:  Then I do not need to write them down anymore. 

2 I.:  Aha? 

3 S.: Then all I need is to add the ice-cream. with blueberry. 

4 I.:  Do you know how many of these there would be? 
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5 S .: Four I think. Oh no, its five. Every group has one more [points to the four 
classes], and blueberry-blueberry has to be added. 

The example of Sara shows that children using this strategy add an object with the new 

element to each created class (“Every group has one more”) and create a class which 

contains all missing outcomes (“with the new element and blueberry-blueberry has to 

be added”). 

Recursive strategies and number of outcomes  

As stated in the previous section learners determine the number of outcomes for the 

extension of the problems by four different recursive strategies. For the further 

development of combinatorial thinking it is of interest to figure out if these strategies 

ensure that the required amount of outcomes is created and counted. Related results are 

presented in table 2. It has to be taken into account that the number of determined 

solutions to the basic task does not in every case match with the required number of the 

basic task. Therefore a distinction is made between the requested number (a(n-1)) and 

the individually determined number (a*(n-1)) in the basic task.  

  Combination 

without 

repetition 

Combination 

with 

repetition: 

Arrangement 

without 

repetition: 

Requested number (n=5, k=2)  a(n-1) + 4 a(n-1) + 5 a(n-1) + 8 

Determined 

number by  

“Assumption of 

proportionality” 

a*(n-1) + 3 a*(n-1) + 4 a*(n-1) + 6 

“Extension of 

groups” 

a*(n-1) + 3 a*(n-1) + 4 a*(n-1) + 6 

“Forming new 

groups” 

a) a*(n-1) + 3 

b) a*(n-1) + 4  

a) a*(n-1) + 4 

b) a*(n-1) + 5  

a) a*(n-1) + 6 

b) a*(n-1) + 8 

Combination 

“extension of 

groups” and 

“forming new 

groups” 

a*(n-1) + 4 a*(n-1) + 5 a*(n-1) + 8 

Table 2: Comparison of the required number of new objects and the number of new 

objects determined by the respective strategy  

Results show that despite the consistent application of different systematic approaches, 

the learners do not determine the required amount of figures (table 2). The “assumption 

of proportionality” was, as well as the “extension of groups”, observed across all 

combinatorial problems. Regardless of whether the amount of outcomes was 

calculated or counted. This strategy was identified independently of the previous 
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approach for the basic task. The “extension of groups” on the other hand, only occurred 

when the odometer strategy (see English, 1993 for details) was used to solve the basic 

task. Both strategies systematically produced a result that was in the case of 

combinations with and without repetition one less and in the case of arrangements 

without repetition exactly two less than the requested number (see table 2). “Forming 

new groups” was the most frequently used recursive strategy. It was also identified in 

the solution of all tasks and used regardless of the previous strategy. As stated before, 

in some cases children’s assumptions about the completeness of the number of 

solutions in the new group were based on the assumption of proportionality (see 

previous section). In this case (see table 2, “forming new groups a)) the determined 

number was less than the requested. Otherwise, however, the correct number of 

solutions has been determined based on this strategy (see table 2, “forming new groups 

b)). The combination of “extension of groups” and “forming new groups” was used 

across all combinatorial figures, but only if the odometer strategy was used in advance 

for structuring. In all cases the requested number of outcomes was found. 

DISCUSSION AND CONCLUSION  

The results of this study indicate that third graders already use different recursive 

counting strategies to solve combinatorial problems. The four recursive strategies 

outlined in the previous section have been applied to all extended tasks regardless of 

the implicit combinatorial operation and context. At the same time, the results show 

that some systematic errors can be observed in third graders’ recursive approaches. 

This applies in particular to the strategies “assumption of proportionality” and 

“extension of groups” which in no case led to a complete solution.  

Which conclusions can be drawn from these results and which further investigations 

are necessary?  

The results provide important information for diagnosis in the context of combinatorial 

problems and for individual support of learners: The results show that learners do not 

come to a wrong result by accidentally forgetting a solution. This result is based on one 

of three recursive strategies where the assumption of proportionality or the addition of 

groups leads to an incorrect number. Since many learners systematically determined an 

incorrect number of outcomes using a recursive procedure, an explicit discussion of 

recursive strategies and possible systematic mistakes should be made in the classroom. 

The study was conducted with third-graders solving three different combinatorial 

counting problems in two contexts. In this respect, additional studies are needed to 

identify further strategies and to make generalizations. It is to examine to what extent 

the identified strategies are general recursive strategies which are also used to solve 

other combinatorial problems and furthermore if these are typical for primary children 

without prior knowledge or used regardless of learner's age and prior knowledge. 
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PRE-SERVICE MATHEMATICS TEACHERS’  

WHOLE-CLASS DIALOGS DURING FIELD PRACTICE  

Siri-Malén Høynes, Torunn Klemp, and Vivi Nilssen 

Norwegian University of Science and Technology (NTNU) 

 

This paper is based upon an intervention study where pre-service teachers plan 

whole-class mathematical dialogs together with their mentor and lecturer. Learning to 

conduct dialogs is increasingly in focus in teacher education, and in this paper, we 

examine one whole-class dialog to learn more about its nature. We show that the 

pre-service teacher fails to involve several pupils in the dialog at the same time, 

leading to a series of shorter dialogs with one pupil at a time. In the dialog, the 

communication often ends up being teacher-dominated. 

INTRODUCTION AND BACKGROUND 

Mathematical reasoning is important for children’s later achievement in mathematics 

(Nunes, Bryant, Sylva, & Barros, 2009). Differences in pupils’ mathematical thinking 

and reasoning could be attributed to the type of questions teachers ask (Kazemi & 

Stipek, 2001). However, questions posed within mathematics classrooms across the 

world typically fail to provide pupils with opportunities to reason about mathematical 

concepts or to explore mathematical connections (Hiebert al., 2003). Asking questions 

that probe pupils’ thinking is a complex skill that requires thoughtful planning 

(Manouchehri & Lapp, 2003). According to Henning and Lockhart (2003) prospective 

teachers pose questions quickly with few follow-ups, giving little time for the pupils to 

expand their answers. Leading whole-class conversations includes asking questions or 

posing problems to begin a discussion, monitoring pupil participation during discus-

sion, and responding to pupil ideas. Grossman, Hammerness and McDonald (2009a) 

argue that “each of these is critical to the practice as a whole and represents practices 

that novice teachers can begin to develop in teacher education and the early years of 

teaching” (p. 281). Thus orchestrating whole-class conversations in mathematics are 

pointed to as an example of core practices in teacher education (Grossman et al., 

2009a; Lampert et al., 2013). 

Ghousseini and Herbst (2016) argue that different pedagogies need to be implemented 

in teacher education to prepare pre-service teachers for doing complex work of 

teaching like leading classroom mathematics (2016, p. 79). They show that by using 

representations of practice, decomposition of practice and approximation of practice 

(as introduced by Grossman et al. (2009b)), the pre-service teachers were given dif-

ferent opportunities to learn. The pre-service teachers in this study conducted a 

whole-class dialog in their field placement as an approximation to practice. We are 

interested in learning more about the nature of such whole-class dialogs conducted by 
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pre-service teachers. Learning more about what features are prominent in these dialogs 

will help us inform how we teach this complex skill in teacher education. In this paper, 

we set out to investigate one dialog conducted by a pre-service teacher by combining 

two analytical frameworks. 

THEORETICAL FRAMEWORK  

To analyze the whole-class dialogs we use two frameworks by Drageset to code the 

teacher actions (2014) and the pupil comments (2015). The first framework provides 

13 types of teacher actions, falling into three superordinate categories (Drageset, 

2014). The first of the superordinate categories is redirecting actions; actions where 

the teacher redirects the pupils’ attention by either asking a correcting question, ad-

vising a new strategy or putting aside a pupil’s comment. The second category is 

progressing actions, in which teachers’ different ways of moving the lesson forward is 

included. The actions simplification and closed progress detail are used to simplify the 

problem or to ask a specific question (typically with only one correct answer) to move 

the pupils one-step ahead in the solution. Open progress initiatives are, on the other 

hand, questions that does not limit the possible responses, and a demonstration is when 

the teacher takes over and solves the problem by himself. The third category is fo-

cusing actions, actions the teacher’s uses to put emphasis on certain things. This cat-

egory is itself divided in two; request for pupil input and pointing out. The teacher can 

request pupil input by asking them to enlighten details, asking for justification or to 

apply to a similar problem. He can also request assessment from other pupils. The 

teacher points out either by recapping at the end of the dialog or by making the pupils 

notice something during the dialog (Drageset, 2014, p. 297-298).  

The second framework has 21 initial categories of pupil comments grouped into five 

superordinate categories (Drageset, 2015). The superordinate categories are explana-

tions, pupil initiatives, partial answers, teacher-led responses and unexplained an-

swers. Responses from explanations and teacher-led responses were most prominent 

in the data material analyzed in this paper. Therefore, we present these two superor-

dinate categories with subcategories in detail. For the remaining categories we refer to 

Drageset (2015, p. 38). The superordinate category explanations distinguish between 

three different kinds of explanations the pupils make:  Explaining what they are doing 

and how (explain action), explaining why something is true (explain reason) or ex-

plaining a concept (explain concept). There are a number of different teacher-led re-

sponses, and typically, these comments were correct responses to basic tasks and arose 

as a result of the teacher reducing complexity (Drageset, 2015, p. 37). The five dif-

ferent kinds of teacher-led responses were: Correct as a response to closed progress 

details, correct as a response to simplification, confirm or reject teacher suggestion, 

quote teacher and off track. Combined, the frameworks give detailed information 

about the communication in the whole-class dialog, and allow us to look for emerging 

patterns. 
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METHODS 

Context 

The project is situated within Norwegian initial teacher education for primary school, 

which at the time of the study was a four-year long integrated program. Each year the 

pre-service teachers have 5-7 weeks of field practice as well as parallel studies in ed-

ucation and different subject matters. The pre-service teachers have their field practice 

in groups of four.  

Official documents (KD, 2009) states that field practice and theoretical studies are 

equal arenas for learning and professional development, and mentors in contracted 

schools are regarded as teacher educators. The mentors are paid, and allotted time, for 

mentoring the pre-service teachers two hours daily. The mentor in this study holds a 

master’s degree in mathematics education. Due to the project, the lecturer in mathe-

matics is part of the planning and post-lesson mentoring.  

Participants and data collection 

A group of four pre-service teachers were voluntarily recruited from a program with 

special emphasis on science and mathematics. They have their field practice with 

third-graders. At the time of the study the pre-service teachers are in their third year, 

taking courses in mathematics and education. Mathematical dialogs with pupils is a 

substantial part of the mathematics courses, focused both in the course literature and in 

lectures where video of professional teaching is watched and analyzed. As an inter-

vention, the pre-service teachers were asked to conduct whole-class dialogs in field 

practice, and videos of their teaching was used as a tool in the mentoring. The 

pre-service teachers, together with the mentor and lecturer, planned for productive 

mathematical whole-class dialogs understood as dialogs where pupils can reason in 

mathematics and develop a deep understanding for mathematical concepts. Our un-

derstanding builds on Sfard & Kieran’s (2001) definition of productivity:  

The term productivity (...) refers to discourse which can be proved to have some concrete 

lasting effect: the discourse has led to the solution of a problem, it influenced participants’ 

thinking and ways of communication, it changed their mutual positioning, it became richer 

in rules and concepts (p. 50).  

The whole-class dialog analyzed in this paper was “Hannah’s” dialog on a string of 

addition problems (36+40, 36+43, 36+46, 63+20 and 63+29). This is one of six in-

structional activities also used by Lampert et al. (2013) when they work with novice 

teachers. They claim that such activities enable the mentors to better predict the chal-

lenges the pre-service teachers will encounter in the classroom, making the pre-service 

teachers well prepared before conducting the dialog. The whole class dialog lasted for 

28 minutes, and was videotaped. During the dialog the third-grade pupils were all 

seated at the front of the classroom and had no access to individual writing materials. 

We therefore found it sufficient to capture the dialog using only one video camera 

pointed at the pre-service teacher and the white board. This captured well the utter-

ances of both the pupils and the pre-service teacher. 
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Data analysis 

To answer the research question, we analyzed the video using the data analysis soft-

ware Studiocode. We first coded all utterances in the dialogs, directly on the video, 

using predefined codes from the two frameworks from Drageset (2014, 2015). This 

generates a timeline where each code is given a row as seen in Figure 1. The rectangles 

we see correspond to utterances coded with the different codes. E.g. the rectangle la-

beled 18 on the line “explain action” means that from 00:21:57 to 00:22:15 a pupil was 

explaining what or how to do something, and this was the 18th time so far in the dialog 

that a pupil had explained an action.  

 

Figure 1: Part of the timeline from Hannah’s dialog with Knuth about his solution to 

63+29. The first three rows are teacher actions, the last three are pupil comments. 

In this process, we also kept track of, and coded, which pupil made each utterance and 

the time provided to think after a question was posed. To manage the large number of 

utterances, we then partitioned the dialog into five segments, according to the five 

different addition problems. By visually examining the timelines, we found that the 

dialog segments showed a recurring pattern of teacher dominated communication. In 

the timeline in Figure 1 we see this pattern, particularly in the last part of the segment. 

To better understand the dynamics of the communication, we chose to transcribe the 

dialog and at the same time coding with the same codes as the video. The analysis 

developed going back and forth between the coded video and the coded transcripts, 

asking questions to the data. The question “who got to speak?” revealed that many 

pupils were given time to speak, but the dialog mainly consisted of shorter dialogs 

between the teacher and one pupil at a time. This led to a refined partition of the 

whole-class dialog into 11 segments, where each segment contains the dialog about 

one pupil’s solution to an addition problem. The next step was to analyze these 11 

segments to understand what characterizes these shorter dialogs. This involved looking 

closer at the mathematical content of the dialogs, and to each of the segments we 

asked: “What is the strategy used by the pupil?”, “How is this strategy articulated by 

the pupil?”, “How does the teacher handle the utterance? E.g. are other pupils engaged 

in interpreting the utterance and how is the strategy represented on the board?”, “What 

was the communication pattern?” We used tables to identify patterns or similari-

ties/differences in the segments.  

Concerning ethics, we adhered to guidance from the Norwegian Research Committee 

(NESH). All names are pseudonyms.  
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RESULTS 

As already alluded to in the methods, the analysis of the whole-class dialog shows that 

the dialog consists of a series of shorter dialogs between the pre-service teacher and 

one pupil, sometimes involving a few other pupils. The analysis also shows that the 

pupils are given a lot of time to think after questions have been posed, wait time is used 

13 times, often lasting more than 30 seconds.   

Further, the shorter dialogs often follow a similar pattern. The pre-service teacher asks 

a pupil to share how they found an answer to an addition problem. When the pupil has 

shared his strategy, the teacher is interested in learning more about the solution, but 

this part of the dialog becomes teacher dominated. The teacher often repeats every step 

of the pupil’s explanation, occasionally stopping to ask for a closed progress detail or 

to ask the pupil to confirm that the teachers’ interpretation was correct. This is often 

done by repeating something the pupil says. Such pointing out actions done during a 

dialog is coded as notice, rather than recap which according to Drageset is when the 

teachers sum up the dialog and moves on to something new. We illustrate this finding 

with the following excerpt from Hannah’s dialog with Knuth about 63+29. We go into 

the dialog after Knuth has established that 60+20 is 80. How each utterance is coded is 

written in bold italics at the end of every utterance.  

Hannah: Can you tell me again? Justification (Justification 9 in Figure 1.) 

Knuth: I added. Behind 8 I added 9, and then I added 3 more afterwards. (…) So it 

was 92. Explain action 

Hannah: I think I understand. You started with this number [83]? Notice 

Knuth: Yes. Confirm or reject teacher suggestion 

Hannah: But you took away the 3 (covers the 3 on the board)? Notice 

Knuth: Yes. Confirm or reject teacher suggestion 

Hannah: Because you thought it was a bit easier to just work with 80 first (writes 80 

on the board)? Notice 

Knuth: Mm. Confirm or reject teacher suggestion 

Hannah: And then you added that 9 (points to 9 in 29, writes +9 after 80 on the 

board)? Notice 

Knuth: Yes. Confirm or reject teacher suggestion 

Hannah: And then you had to remember to add that 3 you had (points to 3 in 83)? 

Notice 

Knuth: Yes. Confirm or reject teacher suggestion 

Hannah: Was it like that? Closed progress detail 

Knuth: Mm. Confirm or reject teacher suggestion 

Hannah: And then you got that 80+9 is 89 (points to the board)? Notice 
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Knuth: Yes. Confirm or reject teacher suggestion 

Hannah: Plus 3 is? Closed progress detail 

Knuth: 92. Correct as a response to closed progress detail 

Hannah: 92 (writes =92). That was a clever way. Notice 

The communication pattern that arises here is a dialog where the teacher either uses a 

pointing out action like notice or a closed progress detail question. Knuth responds 

with a teacher-led response. These pupil responses are typically very short, often just 

one word, allowing the teacher to take over the responsibility to articulate the strategy. 

We see in this dialog that Knuth is often just saying “yes” to confirm what the teacher 

said. This is typical for all the dialog segments. There is a total of 142 pupil utterances 

in this dialog, 42 of them fall into the category confirm or reject teacher suggestion, 

meaning the pupil is saying “yes”, “no” or “mm” (a confirming sound). The reason this 

teacher-led pattern occurs might be that the pre-service teacher wants to make sure that 

the strategy was articulated in such a way that all the pupils were able to follow. 

However, this over-use of pointing out-actions may make these actions lose their fo-

cusing ability, since everything is highlighted.  

In Table 1 we give an overview of how frequently the different categories of teacher 

actions and pupil comments were used. We see here that the teachers pointing out 

actions account for the majority of the focusing actions. 

Teacher actions Number 

of in-

stances  

Pupil comments Number 

of in-

stances 

Redirecting actions 9 Explanations 33 

Progressing actions 62 Pupil initiatives 2 

Focusing actions (total) 63 Partial answers 9 

– request for pupil input 18 Teacher-led responses 68 

– pointing out 45 Unexplained answers 11 

Table 1: Total number of teacher actions and pupil comments in the different catego-

ries in the dialog. 

In Table 1 we also see that the dialog contains almost no utterances that Drageset de-

fines as redirecting actions, only nine times during the dialog. The redirecting actions 

are the teachers’ tools to control the direction the dialog takes, and are used to advise 

strategies, dismiss pupil solutions or correct pupil responses. This lack could indicate 

that it is more important for pre-service teachers to allow a majority of the pupils to 

share their strategy than to keep a short and focused dialog.  

The analysis of the mathematical content in the dialog segments shows that many 

strategies shared in the different dialogs are similar. In fact, only three different 

strategies are shared in the 11 segments; adding tens and ones separately, using pre-
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viously known answers (e.g. 46 is 3 more than 43 so 36+46 must be 3 more than 

36+43) and making equivalent addition problems (e.g. 63+29=60+32). Even so, there 

is little difference in the attention given to each pupil regardless of how many times 

that strategy has been discussed beforehand. This emphasis on strategies that have 

previously been presented might also confuse pupils who identify that the strategies are 

the same. As mentioned above, the pre-service teacher hardly ever used redirecting 

actions in the dialog, losing the ability to move quickly past strategies previously 

shared. One reason to discuss the same strategies several times could be to make the 

pupils compare and discuss why the strategy always works. However, the pre-service 

teacher writes little or nothing on the board that represents the pupils’ strategies, and 

accordingly this would have been difficult to carry out.  

DISCUSSION 

Our study is carried out in an authentic context in an ordinary elementary class. We 

show that, unlike in the study by Henning and Lockhart (2003), the pre-service teacher 

took time posing questions and asked follow-up questions to give pupils time to ex-

pand their answers. Despite this, we reveal that the dialog is not without problems. 

Pupils are mainly talking to the teacher, and the teacher is taking too much of the re-

sponsibility to articulate the pupils’ explanations.  

We argue that the overall nature of the dialog is that the pre-service teacher attempts to 

balance the challenge of hearing strategies from many pupils, and at the same time 

make all these strategies understood by the rest of the class. The lack of redirecting 

actions is compatible with the desire to let many pupils explain their strategy, normally 

the redirecting actions are used to put aside suggestions that the teacher does not want 

to pursue in the dialog. This repeating of strategies results in little progress in the di-

alog as a whole and the pupils are not engaged in each-others thinking. Hence, the 

dialog is not a productive whole-class dialog as defined by Sfard and Kieran (2001).  

Our study sustains what previous research has shown, that conducting whole-class 

dialogs is a challenging task. The pre-service teachers had read a lot about conducting 

such dialogs, and had attempted it in previous years of their teacher education program. 

They were also well prepared for their discussions, after having planned together with 

peers and two mentors. Ball and Forzani (2009) argue that if there is an unknown to 

questions posed in classrooms, it is what pupils’ responses will be. The mentors can 

anticipate many challenges that the pupils will encounter, but they cannot prepare them 

for every possible challenge. This shows the importance of incorporating practice on 

core practices in real teaching situation in teacher education programs. Our study also 

successfully shows that the two frameworks developed by Drageset (2014, 2015) can 

be combined to give an overall picture of the classroom interaction. It would be in-

teresting to continue analyzing several pre-service teachers’ dialogs using the same 

approach to see if they follow the same pattern, or if there are a number of different 

patterns that appear in pre-service teachers’ dialogs. Another possibility would be to 

examine differences and similarities between novices and experienced teachers.  
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In this paper, we report findings from a pilot study investigating school students’ 

epistemologies of mathematics by using novel mathematics definitions. Students aged 

17 and 18-year-old in Italy and the UK were asked to complete a worksheet that used a 

numerical approach to determine the sizes of infinite sets and were, then, invited to 

attend focus group interviews about their experience with the material. Thematic 

analysis of the interviews reveals that this approach is useful to distinguish between 

naïve and advanced epistemologies and using unseen mathematical definitions can 

help enrich our understanding of epistemologies held by students of school age.  

BACKGROUND TO THE STUDY 

Students’ beliefs about mathematics have often been connected to their engagement 

with the subject (Muis, 2004), their behaviour as problem solvers (Schoenfeld, 1989; 

Muis et al. 2015) and their self-regulation strategies (Muis, 2007). However, under-

standing what these beliefs are and how to best measure them has generated a lively 

methodological debate in the epistemological beliefs literature (see for example 

Limon, 2006). Many (e.g. Muis et al. 2014) find the most common questionnaires used 

so far, and in general quantitative methods alone, to be unsuitable for such investiga-

tions. Criticisms to the use of large scale surveys include the inability to ascertain that 

there is a shared meaning of key words between the researchers designing the surveys 

and the students filling them in (Muis et al. 2014), and doubts have been recently raised 

that large scale questionnaires cannot be used across diverse cultural contexts (Mo-

gashana et al. 2012). In this pilot study, we tested a qualitative methodology for the 

investigation of school students’ epistemological beliefs. We hypothesised that, by 

documenting the reactions of secondary school students when asked to work with a 

definition of infinity (a concept that they would have encountered at this point in their 

education) very different from the one they have been used to, we may gain insight into 

their epistemology of mathematics. We report preliminary findings from this pilot 

study and we suggest some directions for future research.  

STUDENTS’ EPISTEMOLOGIES OF MATHEMATICS 

Francisco (2013) makes a strong argument for the need of more studies investigating 

secondary school students’ epistemological beliefs about mathematics and observes 

that many findings regarding school students are assumed to be true only because  
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they are found to be true for university students and not because they originate from 

empirical research involving school-age students. For example, Perry (1970) found 

that college students are likely to hold naïve epistemologies when they start their 

university studies and many researchers have therefore assumed this would be the case 

for school students too. Francisco (2013) also notices the disagreement on what are 

considered to be epistemological beliefs and how these can be studied. For the scope of 

our study, we adopt the definition of epistemological beliefs found in Hofer (2001): 

these are beliefs about knowledge and knowing, including:  

. . . the definition of knowledge, how knowledge is constructed, how knowledge is evalu-

ated, where knowledge resides, and how knowing occurs. (Hofer 2001, p. 355)  

This definition is only deceivingly simple, but it is one that has drawn widespread 

agreement amongst researchers in this field (Limon, 2006). A comprehensive review 

of the literature regarding epistemological beliefs about mathematics by Muis (2004) 

finds, among its main results, that epistemological beliefs about mathematics hinder 

rather than help students learning and that these beliefs have a clear impact on the 

students’ academic progress. The author also reviews the evidence of the impact of 

such beliefs on problem solving activities and mathematics learning more in general 

and finds that, amongst the most non-availing beliefs school student hold, are that in 

mathematics there always exist one right answer and that every problem has one right 

answer only. A subsequent review of the literature by Depaepe et al. (2016) found 

similar results but noticed that in the years since Muis’s (2004) review there has been 

much variety of methodologies employed to study students’ epistemological beliefs 

well beyond the use of large scale quantitative surveys. This finding reflects the 

methodological issues raised at the start of this paper. Given that school students’ 

epistemological beliefs about mathematics have been linked to many aspects of their 

engagement with the subject e.g. to problem solving habits (Schoenfeld, 1989), mathe-

matical achievement and conceptual change (Mason, 2003), it seems important to have 

solid methodologies to investigate such beliefs. Hence, we ask the following research 

question: 

RQ: What can the students’ reactions to the introduction of an alternative approach to 

a familiar but difficult mathematical concept tell us about their epistemological beliefs 

about mathematics?  

As familiar concept we selected infinity and we suggested an alternative definition of 

the measure of an infinite set as this definition is in stark contrast to what students 

would have encountered during their studies. Similar methods could however have 

been employed by choosing to use definitions from non-standard analysis, or by using 

the superreal number system proposed by Tall (1980). In the following paragraph, we 

summarise some research on students’ understanding of infinity as some of these 

findings will also be reflected in our data. 
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STUDENTS AND INFINITY 

Mathematics education has been preoccupied with the way in which students make 

sense of infinity because this concept is crucial both for the way in which it underpins 

several ideas from analysis and calculus; and for the understanding of set theory and 

the concept of cardinality. Many approaches have been used to make sense of students’ 

understanding of infinity and, while it is beyond the scope of this paper to offer a 

comprehensive review of this literature, we will just mention a few ideas which will be 

useful for our analysis later on. Monaghan (2001) observes that students often perceive 

infinity as a process (the process of counting without ending, or a process that goes on 

and on – also defined as potential infinity, see also Kidron and Tall, 2015) while an 

object view of infinity would require students to regard infinite sets as completed to-

talities. Monaghan (2001) also points out that a process view of infinity is at odds with 

the classical concept of cardinality (actual infinity) and creates conflict when students 

encounter Cantorian set theory. In this setting students prove that a proper subset of a 

set and the set itself have the same cardinality if the two sets are countable and infinite. 

This creates conflict as it is obviously not the case for finite sets. Paradoxes are also 

used to elicit students’ understanding of infinity. For example, Mamolo and Zazkis 

(2008) report that most difficulties with paradoxes concerning infinity are caused by 

the conflict of a potentialist (infinity perceived as a process that may go on forever such 

as counting) and an actualist (an object perceived in its entirety which has infinite size, 

such as the natural numbers) interpretation of infinity. They also notice that the expe-

rience that the students have of reality often gets in the way of the understanding of 

paradoxes.  

MATERIALS  

To construct materials for our investigation we introduced students to a numerical 

treatment of infinity due to Yaroslav Sergeyev (see Sergeyev (2003)). The basics of 

this treatment can be developed within a conservative extension of Peano Arithmetic, 

as shown in Lolli (2015). The intuitive idea behind Lolli's theory is that, within a model 

of arithmetic that contains infinitely large numbers, one may identify a cut-off point for 

N, the set of natural numbers. A new arithmetical term  (read: gross-one) is used to 

denote this cut-off point. Suitable axioms then enable the construction of a theory of 

numerical measures of infinite parts of N. For instance, in view of these axioms, the 

initial segment of a model that is bounded by  is such that any two subsets in bijec-

tive correspondence are assigned the same measure, which is smaller than . In par-

ticular, even and odd numbers are assigned the same measure, smaller than  and 

denoted by /2. Thus, the whole part relation typical of finite collections is preserved 

for infinitely large ones.  

METHODS 

The study was carried out at two sites, in Italy and in the UK. At the first site partici-

pants were Year 11 to 13 students (aged between 16 and 18) in a private school in the 
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South of England. We first held a 90-minute session where they were asked to work in 

groups of 4 or 5 on the worksheet we designed. The worksheet guided them through 

five exercises involving grossone including: doing field arithmetic with ; computing 

the sum of geometric progressions with an infinitely large number of terms as a 

strategy to study geometric series and investigating the Thomson lamp paradox 

(Berresford, 1981) without appealing to  or by appealing to . After the session, we 

held 2 focus group interviews with nine participants. At the second site participants 

were students in 6 classes of fourth and fifth year of high school (aged between 17 and 

19) attending 2 secondary schools in the south of Italy. There were 77 and 12 students 

who took part in sessions designed as the previous ones using the same worksheet, 

which had been translated by the second author of this paper. After the sessions, we 

held 6 focus group interviews (structured this time as class discussions and thus in-

volving all students who had taken part in the activities). Altogether we collected 8 

focus group interviews and observed 6 sessions. The focus group interviews were 

audio recorded. Thematic analysis (supported by analysis of the field notes taken 

during the observations) was carried out on the interviews transcripts with focus on the 

evidence of students’ difficulties with the concept of infinity and hints of their epis-

temological beliefs concerning mathematics. The project was approved by the Re-

search Ethics Committee of the institution where the second and third authors work. 

THE DATA 

The data were analysed both to investigate misconceptions that students hold about 

infinity (mainly through discussion of the Thompson Lamp task) and to look for in-

dications of their epistemological beliefs about mathematics. During the analysis of the 

interview data we found agreement with many previous studies regarding students’ 

understanding of infinity. For example, concerning the discussion on the Thompson 

lamp paradox, we observed how students’ concrete intuitions interfered with the 

formulation and handling of the paradox, just as Mamolo and Zazkis (2008) found in 

their study. When a UK student was asked about her thoughts on the solution of the 

Thompson Lamp paradox she replied: 

Student (UK): The person would die before the end of the process!  

We also observed evidence regarding students’ tendency to reason in terms of potential 

(infinite counting) rather than actual infinity, in accordance to what Monaghan, (2001) 

found.  

Student (UK): Since infinity, there is no actual number for infinity, if you think there 

will always be 1 more… 

Some of the students stated that using the new definition could remove some of what 

they perceived to be incongruences in the Cantorian approach, such as for example that 

in the case of infinite countable sets, a set and one of its proper subsets can have the 

same size. 
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Student (IT): It is a strange idea [having various sizes of infinity] but very intuitive. It 

allows us to understand a new concept of infinity. Before this we thought 

that infinity minus a quantity was infinity. Now we can see this better – 

that an infinity can be smaller than another infinity.  

Therefore, students seem to engage in a meaningful way with this concept.  Regarding 

students’ epistemologies about mathematics we observed two distinct approaches 

amongst the students we interviewed: that of rejection of the new formulation of in-

finity or acceptance of this formulation. We argue here that these two stances are 

linked to students’ views of knowledge and knowing in mathematics. 

Rejection: I think this is a contradiction… 

During the observations of the sessions with the students we noticed how all students 

engaged with the material and worked together through the exercises. However, the 

follow up interviews revealed that some of the students could not accept that there 

would be a different definition of a concept they had already encountered. The extract 

below is from one of the focus group interviews with the Italian students:  

Student 1: I think this [the definition of ] is a contradiction - it is a concept which I 

cannot make mine because it is in contradiction to what I know…  

Interviewer: … contradictory because it has both characteristics of infinity and charac-

teristics of finite numbers?  

Student 1: Yes ...  

Student 2: If you consider it as an infinite big number it is not contradictory because in 

the end this is not [the] infinity  

Student 3: It is one of the characteristics of grossone… continuously increasing… 

(IT focus group interview)  

From this extract emerges a distinct sense of unease on the part of the students and 

especially of Student 1. They seem to be torn between being able to use formally a 

definition that they have been given (analysis of the written work produced during the 

group work sessions revealed that many students managed to find a solution for the 

Thompson Lamp using grossone) but being unable to accommodate this definition in 

their beliefs about mathematics. The quote below (collected in a separate focus group) 

can also be interpreted as manifestation of this unease. 

Student (IT): I can’t think of subtracting an infinitely large number from an infinitely 

large number - where do I get to? I don’t get to zero for sure . . . 

In this case we may argue that, for these students, mathematics is either right or wrong 

and that an alternative definition of a familiar concept cannot be accommodated be-

cause it appears to be in contradiction to what they have studied and taken to be right.  
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Acceptance: It does kind of work as i… 

Unlike the previous group, other students not only appear able to accommodate this 

new concept in their knowledge about mathematics but could work with it without 

perceiving it as incompatible with what they already knew: 

Student (UK): It does kind of work as i, that you have your real part and your imaginary 

part and ...like i
2 
would be minus one . . .  

Or: 

Student (IT): It is like i - you don’t know what is i but you know that i
2 

is -1.  

Indeed, the parallel that these students draw with the imaginary unit i is revealing. We 

know from the history of mathematics and Cauchy’s famous remark that ‘We com-

pletely repudiate the symbol √−1, abandoning it without regret because we do not 

know what this alleged symbolism signifies nor what meaning to give to it’ (Nahin, 

2010) that the mathematics community took much time to accept this new mathe-

matical object especially because it contradicted (or seemed to contradict) much of the 

mathematics known before. We interpret this ability to see the similarities between 

these objects, i and grossone, as evidence of an advanced view of what mathematics is. 

Moreover, another student remarked: 

Student (UK): Because […] I mean they say infinity isn’t a number but then […] there is an 

argument for and against that.  

In this extract, we can infer that this student is considering that perhaps there may be 

different ways of defining mathematical concepts and perhaps more than one inter-

pretation is possible. This may be an indication of a more advanced mathematics 

epistemology, one where not every statement is true or false and that recognises 

mathematics as the product of a social construction.    

DISCUSSION   

The aim of this study was to test a novel qualitative methodology to investigate stu-

dents’ epistemological beliefs about mathematics. We tested whether asking secondary 

school students to work through a worksheet introducing a new conceptualisation of 

infinity, unseen and somewhat incompatible with some of their existing knowledge, 

could provide a strategy suitable to expose secondary school students’ epistemological 

beliefs. We chose an alternative view of infinity and how to measure the size of infinite 

sets as this approach is in contrast to the way in which students have been exposed to 

the concept of infinity in their studies. How to understand and measure school stu-

dents’ epistemological beliefs about mathematics is an important topic as these beliefs 

impact on most aspects of their learning and engagement with the subject (Muis, 

2004). Indeed, both Muis (2004) and Depaepe et al. (2016) found in their reviews that 

the beliefs held by students regarding mathematics were hindering rather than facili-

tating their learning, making the issue of measuring these beliefs (and eventually in-

fluencing them) all the more important. Through thematic analysis of the focus group 
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interviews held after the class activities we found that we could distinguish at least two 

separate understandings of how mathematics is structured and operates, i.e. two dif-

ferent mathematics epistemologies held by the students participating in the study. 

Some students held a naïve view close to an absolutist position, according to which 

mathematics is perceived as a fixed body of knowledge that cannot change (Depaepe et 

a. 2016). This view manifested itself in the unease felt by the students who were able to 

work formally through the definitions and concepts given but could not accommodate 

those in their understanding of infinity because they perceived them to be in stark 

contrast with what they already knew. Other students held a more advanced view in 

line with a fallibilist view of mathematics, which perceives this subject as socially 

constructed hence open to revisions and changes. This view manifested itself in the 

parallel that some students drew between the introduction of grossone and the intro-

duction of the imaginary unit i. These students were able to accommodate the idea that 

some mathematical definitions may change and that different (even contrasting) defi-

nitions of the same concept may exist in mathematics. Therefore the call for caution 

voiced by Francisco (2013) that not all school students hold naïve epistemologies of 

mathematics seems to be justified. This finding partially answers our research question 

by showing that such methods can potentially elicit students’ epistemological beliefs 

and can help understanding their structure. Moreover, following the idea that episte-

mological beliefs impact on conceptual change and that more sophisticated episte-

mologies such as those related to fallibilist views of mathematics promote conceptual 

change (Pintrich, 1999), we would argue that our methodology can not only elicit such 

epistemologies but also stimulate re-thinking of previously held beliefs by kindling 

cognitive conflict in the students. More extensive data collection and testing the use of 

other concepts (such as the superreals, Tall, 1980) could refine this methodology and 

contribute to our understanding of students’ epistemologies but also could potentially 

help students refine their own epistemologies of mathematics.   
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WATCHING MATHEMATICIANS READ MATHEMATICS 

Matthew Inglis and Lara Alcock 

Mathematics Education Centre, Loughborough University, UK 

 

This report contributes to the debate about whether expert mathematicians skim-read 

mathematical proofs before engaging in detailed line-by-line reading. It reviews the 

conflicting introspective and behavioural evidence, then reports a new study of expert 

mathematicians' eye movements as they read both entire research-level mathematics 

papers and individual proofs within those papers. Our analysis reveals no evidence of 

skimming, and we discuss the implications of this for research and pedagogy. 

INTRODUCTION 

Proof is central to mathematical practice, so understanding proof and proving is an 

important goal of most mathematical curricula (Hanna, 2007). Furthermore, at least in 

advanced mathematics courses, students spend considerable time learning mathema-

tics by studying proofs (Selden & Selden, 2003). Consequently, several research 

groups have investigated the processes by which students engage with written proofs 

(Inglis & Alcock, 2012; Ko & Knuth, 2013; Mejía-Ramos & Weber, 2014). 

A complementary approach is to examine expert mathematical practice, with resear-

chers arguing that if we want students to develop expert-like behaviours, we require 

accurate understanding of those behaviours (RAND, 2003; Weber, 2008; Wilker-

son-Jerde & Wilensky, 2011). In this report, we address an unresolved issue from 

studies on expert reading (Inglis & Alcock, 2012, 2013; Mejía-Ramos & Weber, 2014; 

Weber, 2008; Weber & Mejía-Ramos, 2011, 2013): that of whether mathematicians 

skim-read mathematical texts before carefully reading line by line.  

The skimming hypothesis was generated when Weber (2008) interviewed eight mathe-

maticians about their behaviour while validating research-level proofs. Many ex-

plained that they would often skim-read before reading line by line. For example, one 

described “first try[ing] to understand the structure of the proof, to get an overview of 

the argument that’s being used” (p.441); another described first reading through the 

proof “to get the flow of it” and then going back to “get the details” (p.441). 

Inglis and Alcock (2012) investigated this hypothesis by asking mathematicians and 

undergraduates to validate purported proofs and recording their eye movements as they 

did so. They found no evidence of initial skimming—participants typically did not 

fixate on the last lines of purported proofs until approximately half way through their 

reading attempts. Citing earlier methodological work (e.g., Nisbett & Wilson, 1977), 

Inglis and Alcock therefore suggested that introspective evidence about mathematical 

practice should be regarded with caution. Weber and Mejía-Ramos (2013), however, 

criticised this argument, in part because the proofs Inglis and Alcock used were too 
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short to give meaningful results about expert practice. Inglis and Alcock (2013) con-

curred that their purported proofs were considerably shorter than those encountered in 

mathematical research (largely because their expert/novice research design required 

proofs that were accessible to first-year undergraduates).  

Certainly mathematicians believe that they skim-read: Mejía-Ramos and Weber 

(2014) reported that 92% of mathematicians responding to a large-scale survey agreed 

with the statement “When I read a proof in a respected journal, it is not uncommon that 

I skim the proof first to comprehend the main ideas of the proof, prior to reading the 

proof line-by-line”. They also asked participants about their reading behaviour when 

refereeing; again, large majorities of participants claimed to skim-read and check for 

validity in this context. They therefore suggested that it would be strange if Alcock and 

Inglis’s (2012) failure to find such behaviour reflected actual mathematical practice. 

But whether mathematicians actually skim-read remains an open question and, in this 

report, we investigate whether skimming is evident in mathematicians’ eye movements 

when they read research-level mathematics. 

METHODS 

Participants, apparatus and procedure. 

To determine whether mathematicians skim-read before reading line by line, we rec-

orded mathematicians’ eye movements while they read research papers drawn from 

their own fields. Participants were ten permanent members of staff (assistant professor 

level or above) from a UK University. All had doctorates and numerous published 

academic papers. Five were applied mathematicians, four were pure mathematicians, 

and one was a statistician. Eight different nationalities were represented. 

Each participant was asked to select a research paper that they planned to read but had 

not yet begun; these papers were forwarded to the researchers prior to the experimental 

session. To protect the anonymity of participants, we do not report which papers were 

chosen. However, they included published journal articles, pre-prints from the arXiv, 

and a short monograph. Topics included Bessel functions, algebraic geometry, group 

theory, and the modelling of physical and biological phenomena. The papers varied in 

length: the shortest was 4 pages and the longest 53. 

Each participant took part individually in a quiet room. Eye movements were recorded 

with a Tobii T120 Eye-Tracker, set to sample at 60Hz. The T120 is a remote 

eye-tracker with two binocular infrared cameras under a 17” TFT monitor; it typically 

achieves eye-position tracking accuracy of 0.5. Stimuli were displayed on a screen 

that participants viewed (without head restriction) from a distance of approximately 

60cm. For each participant, the eye-tracker was calibrated with a 9-point display. 

Participants were told that they would be shown their paper and that they should read it 

as if intending to write a review for MathSciNet, an online database of short reviews of 

published mathematical papers. All participants were familiar with the guidelines for 

MathSciNet, which state:  
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In most cases the review should state the main results, together with enough notation to 

make the statements comprehensible to someone already familiar with the field. The main 

ideas of the proof should be sketched when this is feasible. 

This instruction was designed to ensure that all participants would read for compre-

hension rather than some other purpose (such as checking validity). We believed that if 

skim reading were a common feature of mathematicians' reading behaviour, then these 

instructions would be likely to reveal it. 

After the instructions were displayed and explained verbally by the experimenter, the 

first page of the participant’s research paper was displayed and the experimenter left 

the room. Participants could move sequentially through the pages of their papers using 

cursor keys, and were provided with pen and paper to make notes if they wished. On 

completing the task, they stopped the recording and called the experimenter. There was 

no time restriction, and participants’ reading times varied between 17 and 65 minutes. 

Data analysis. 

Our analysis uses the fact that, when viewing a static image, eye movements consist of 

fixations (short stationary periods, usually lasting 150-500ms) and saccades (rapid mo-

vements between fixations). During saccades, no information can be processed (e.g., 

Matin, 1974), so fixation locations suffice to determine the path of a participant's at-

tention (for a substantial review of eye-movement research see Rayner, 2009). Our 

strategy was to create, for each participant, a scatter plot with time on the x-axis and 

paragraph in the paper on the y-axis. Because eye-movement data are noisy (blinks or 

random head movements can cause single fixations away from the location of attention 

(Inglis & Alcock, 2013), we then fitted curves to these plots using LOESS regression 

(also known as “locally weighted scatterplot smoothing”). This technique fits con-

nected quadratics to local sections of a scatterplot (e.g., Cleveland, 1979), and permits 

fitting a curve to data without making a priori assumptions about the shape of the 

curve. If participants adopted initial skim strategies, we would expect their fixation 

plots to look like that shown in Figure 1.  

 

Figure 1: The type of fixation plot and LOESS curve we would expect if a participant 

had adopted an initial skimming strategy. 

We operationalised this by evaluating whether each participant's LOESS curve entered 

the light grey box in the top left of Figure 1: if the focus of attention entered the last 

third of the reading material within the first third of their reading attempt, we coded 

this as a skim (cf. Weber & Mejía-Ramos, 2013). 
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RESULTS 

We first examine global reading behaviour, reporting on each participant’s reading of 

their entire paper. We take this approach because, in research-level mathematics, 

proofs cannot normally be read in isolation: papers typically introduce novel defini-

tions, ideas and techniques before presenting a proof. We then examine local reading 

behaviour, illustrating participants’ reading of their papers’ first self-contained argu-

ments. This allows us to compare more directly with earlier discussions of skim rea-

ding (Inglis & Alcock, 2012; Inglis & Alcock, 2013; Mejía-Ramos & Weber, 2013; 

Weber & Mejía-Ramos, 2013), which have typically involved single proofs. 

Global reading behaviour. 

Figure 2 shows individual paragraph-by-time fixation plots for all ten participants. 

There appeared to be three broad categories of attention movement. Some participants 

(1, 2, 4, 5, and 7) read in an approximately linear order, beginning at the start of the 

paper and progressing to the end with few moves to non-adjacent paragraphs. Others 

(8, 9, and 10) moved their attention in a piecewise linear fashion: they started with a 

linear approach, then re-read certain sections in detail, again linearly. Finally, two 

participants (3 and 6) appeared to adopt different approaches. In the post-experiment 

debrief, Mathematician 3 reported that he had not understood the introduction to his 

paper and had therefore failed to make substantial progress beyond the first few pages. 

This is consistent with his eye movements, which include a series of linear attention 

moves within the first 30 paragraphs. Mathematician 6 had relatively few fixations (in 

any location) in the latter half of his reading attempt. He made a large number of notes, 

so we attributed this to his eyes being largely off screen during this time. 

Despite this variety in reading behaviour, no mathematician used a skimming strategy: 

in no case did the LOESS curve enter the last third of the paper in the first third of the 

reading time. Some graphs (1, 4, 6, 7 and 8) did show a small number of single fixa-

tions in the key area, but these were so few that we attributed them to participants 

scrolling forward to the reference sections of their papers (they had to view each page 

in turn, explaining the “trails” of fixations leading up to the reference sections in plots 

4, 6 and 8). Even for participants who read in a piecewise linear fashion, reading be-

haviour can be distinguished from the skimming strategy detailed by Weber (2007), 

because the second and third reading attempts did not involve the whole text and/or 

took place at a substantially faster rate than the initial reading attempt.  

If initial skimming were a common feature of mathematicians’ reading behaviour, it is 

extremely unlikely that we would have found no skims in our data. A skimming rate of 

zero out of ten is significantly lower than 50%, sign test p = .002, and significantly 

lower than the 92% figure found by Mejía-Ramos & Weber (2013), binomial test p = 

1.0310-11. Of course, it is possible that our operationalisation of skimming was faulty, 

and we consider this possibility in the next section and the discussion. 
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Figure 2: Paragraph Number by Time fixation plots for each participant, together with 

associated LOESS curves (second order, smoothing parameter 0.3). 

Local reading behaviour. 

We found no evidence of skimming in participants’ attention while they read entire 

papers. But each of their papers included multiple shorter arguments, some of which 

formed self-contained paragraphs. Because our global analysis focused on between- 

paragraph eye movements, it is therefore possible that we missed the skimming beha-

viour hypothesised by Mejía-Ramos and Weber (2013) because this takes place within 

paragraphs. To investigate this possibility, we identified the first self-contained argu-

ment in each paper (typically a proof of a lemma or proposition, or the derivation of a 

model of a physical/biological process), and conducted a line-by-line analysis of the 

corresponding participant’s attention for this argument. 

Two illustrative fixation plots are shown in Figure 3. The wide graph shows every 

fixation on the relevant areas of each paper, although it is clear that many of these 

fixations did not contribute to genuine reading attempts (single fixations were probably 
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due to random eye-movements or to flicking through the pages). Because of this we 

have magnified the sections of the plots that we judged to be the first attempt to read 

through the self-contained arguments, and plotted the associated LOESS curves. In our 

judgement, neither these participants nor any others could be said to have used a 

skimming approach — the full set of these plots (one for each participant) can be in-

spected at: https://doi.org/10.6084/m9.figshare.5733510.v1. 

 

Figure 3: Line Number by Time fixation plots for the first argument in the paper for 

Mathematicians 1 and 2. The first clear-cut reading attempt is been magnified, together 

with its associated LOESS curve (second order, smoothing parameter 0.3). 

DISCUSSION 

Mejía-Ramos and Weber (2013) found that 92% of mathematicians claimed to un-

derstand the structures of proofs by skimming them before reading in detail. We have 

no reason to believe that our sample was unrepresentative of expert mathemati-

cians—our participants worked in various areas of pure and applied mathematics and 

statistics, and were from eight different countries—yet we found no evidence of 

skimming in our data. The probability of this occurring if the introspective accounts 

are correct is vanishingly small, so we think it unlikely that skimming as operational-

ised in our study is fundamental to mathematicians’ behaviour. 

We briefly discuss two possible accounts for this finding, drawing out the implications 

of each. One account is that mathematicians simply do not skim. This would raise 

methodological concerns: where introspective claims are inconsistent with behavioural 
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evidence, we must decide how to interpret the results of methodologically distinct 

studies. In such a situation, one might argue that introspective evidence should simply 

be ignored (e.g., Lyons, 1986; Nisbett & Wilson, 1977). Alternatively, however, it 

could be that we incorrectly operationalised what it means to skim when reading 

mathematics. When 92% of participants agreed that they would often “skim [a] proof 

to comprehend the main ideas…prior to reading [it] line-by-line'”, perhaps they were 

referring to a much longer process than either we or Weber and Mejía-Ramos (2013) 

believed. Perhaps, for instance, the entire reading attempts we recorded in this ex-

periment (which lasted up to an hour) should be classified as skim-reads. Perhaps it is 

only after a relatively long “skim” that mathematicians go back and re-read mathe-

matical arguments line by line, or perhaps in normal circumstances mathematicians 

only skim and line-by-line reading is relatively rare. We suggest that disentangling 

these possibilities requires ethnographic studies of mathematical practice (cf. Greiff-

enhagen & Sharoock, 2011). Such studies would form a worthwhile contribution to the 

literature on mathematicians’ reading behaviour. 

In the meantime, we can comment on a broader issue. Our data revealed considerable 

variety in mathematicians’ reading behaviours, as is apparent in Figure 2. It thus con-

tributes to a growing body of evidence on diversity in expert mathematical behaviour 

(e.g., Inglis, Mejía-Ramos, Weber & Alcock, 2013; Weber, Inglis & Mejía-Ramos, 

2014). We do not yet know what causes these differences. Is behaviour driven by in-

dividual differences among mathematicians? Or perhaps by the mathematical content 

or structures of papers or proofs? What prompts a decision to re-read a section, or to 

skip ahead? However, we can observe that such findings complicate arguments that we 

should teach students expert-like behaviours (e.g., RAND, 2003; Wilkerson- Jerde & 

Wilensky, 2011). If expert behaviour is heterogeneous, as suggested by this study and 

others, then basing instruction upon it is a non-trivial task. 
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Since noticing has been identified as a critical component of teaching expertise, re-

searchers have tried to identify contexts to its development. These studies assume that 

growth in teachers’ noticing expertise can be inferred from their professional dis-

course. Prior research has also shown that teachers’ noticing development in teacher 

education programs is challenging if no framework or guide to support pre-service 

teachers in their noticing is provided. In our study, 29 pre-service teachers used a 

hypothetical learning trajectory as a guide to interpret students’ fractional thinking. 

Results show that the use of a hypothetical learning trajectory improves pre-service 

teachers’ professional discourse on students’ mathematical thinking and then, en-

hances noticing. 

THEORETICAL BACKGROUND 

Teacher noticing, a critical component of teaching expertise, can be seen as a “move-

ment or shift of attention” (Mason, 2011, p. 45), or a set of three inter-related skills: at-

tending, interpreting, and deciding to respond (Jacobs, Lamb, & Philipp, 2010). Al-

though many researchers have understood noticing in terms of these three skills, it is 

useful to think about noticing at a fine-grained level. Mason (2011, p. 47) highlights 

that people can notice different things at different times in different ways, and sees 

these fine-grained processes as holding wholes, discerning details, recognising rela-

tionships, perceiving properties, and reasoning on the basis of agreed properties. 

These micro-level processes can be seen as the mechanisms behind the three in-

ter-related skills of noticing. For example, when teachers attend to students’ strategies, 

they are discerning the details of students’ thinking. Similarly, teachers often interpret 

students’ mathematical thinking by taking into account the details discerned, which 

requires them to recognise relationships between the identified mathematical details 

and the characteristics of students’ mathematical thinking.  

Examining teacher noticing hence hinges on how researchers investigate the mic-

ro-structure of attention. With the aim of developing and honing teachers’ noticing of 

students’ mathematical thinking, mathematics educators have studied noticing in many 

different contexts—video clubs (van Es, & Sherin, 2008), lesson study (Lee, & Choy, 

2017; Amador, & Carter, 2018), written students’ answers (Sánchez- Matamoros, 

Fernández, & Llinares, 2015), mentoring conversations (Seto & Loh, 2015), or narra-

tives (Ivars, & Fernández, 2018). A common important assumption underlies them all: 
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growth in teachers’ noticing expertise is inferred from their professional discourse. In 

other words, the development of noticing, perceived as a shift from general strategy 

descriptions to descriptions that included teachers’ reasoning based on mathematically 

relevant details of students’ mathematical thinking, can be seen from how teachers 

discuss mathematical thinking. Consequently, changes in pre-service primary teach-

ers’ discourse on students’ mathematical thinking indicate changes in their noticing 

expertise.  

According to recent research, developing teachers’ noticing of students’ mathematical 

thinking without a guide or focus that supports pre-service teachers learning (Wilson, 

Mojica, & Confrey, 2013) is challenging. This begs the question of the type of foci 

needed to support teachers when developing their noticing expertise. Here, we see 

student’s hypothetical learning trajectory as a potential support for teachers when they 

try to identify learning goals, interpret students’ mathematical thinking, and respond 

with appropriate instruction. More importantly, hypothetical learning trajectories 

provide pre-service teachers with a specific language to describe students’ thinking 

(Edgington, Wilson, Sztajn, & Webb, 2016). In this context, we hypothesise that pro-

viding pre-service teachers with a student’s hypothetical learning trajectory (HLT) will 

help them elaborate a more detailed discourse on students’ mathematical thinking, and 

therefore, enhance their skill of noticing. Our research question is: Does the use of a 

HLT help pre-service teachers elaborate a detailed discourse on students’ mathemat-

ical thinking?  

METHOD 

Participants and context 

Twenty-nine pre-service teachers (PTs) participated in this research. They were at-

tending a course on the teaching and learning of elementary mathematics as part of 

their degree to become a primary school teacher. As part of this course, these PTs 

participated in a learning environment aimed at developing their noticing of students’ 

fractional thinking. The emphasis on fractional thinking is partly motivated by the 

part-whole meaning of fractions, one of the most problematic concepts in elementary 

school maths. Seeing a HLT as a useful means “for teaching concepts whose learning 

is problematic generally” (Simon & Tzur, 2004, p.101), we designed a HLT of the 

part-whole meaning of fraction to guide PTs in noticing students’ fractional thinking. 

Simon’s (1995) conceptualisation of a hypothetical learning trajectory includes three 

components: (i) a learning goal, (ii) a hypothetical learning process (hypothetical 

learning trajectory proficiency levels of thinking) and (iii) a set of learning activities. 

The learning goal is to understand the part-whole meaning of the fraction concept. 

Following a literature review on how students’ thinking about the part-whole concept 

of fraction develops over time (Battista, 2012; Steffe, & Olive, 2009), we considered 

three different levels of students’ mathematical thinking (hypothetical learning tra-

jectory proficiency levels; Figure 1). We also included a set of learning activities to 

help students move through different levels of thinking (proficiency levels): activities 
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of identifying and representing a fraction given a whole, activities of identifying and 

representing a whole given a part and, activities of comparing fractions (using con-

tinuous and discrete contexts, and proper and improper fractions). 

               
Figure 1: Proficiency levels of the HLT. 

PTs participated in a learning environment that was organised around six sessions 

lasting two hours each. The first two sessions focused on mathematical elements rela-

ted to the part-whole concept of fraction, and provided PTs opportunities to work on 

fraction activities and analyse video-clips of primary school students solving the same 

fraction activities. In the last four sessions, the HLT was introduced and, PTs had to 

complete three tasks (Task A, Task B, and Task C), in which they have to use the HLT 

to notice students’ mathematical thinking. 

The tasks  

The three tasks have the same structure: one or two primary school activities, the 

answers of three primary school students (or pair of students) to these activities with 

different proficiency levels, and the following four questions: Q1) Describe the pri-

mary school activity taking into account the learning objective: what mathematical 

elements does the student need to know to solve it? Q2) Describe how each pair of 

students has solved the activity identifying how they have used the mathematical el-

ements involved and the difficulties they have had with them. Q3) What are the 

characteristics of students’ thinking (related to the proficiency levels of the HLT) that 

can be inferred from their responses? Explain your answer. Q4) How could you re-

spond to these students? Propose a learning objective and a new activity to help stu-

dents progress in their thinking. 

In Task A, three pairs of primary school students’ answers to an activity of identifying 

a proper fraction were presented (Figure 2, adapted from Battista, 2012).  

            
Figure 2: Activity of identifying a proper fraction (Task A). 

The three pairs of students’ answers show different characteristics of the HLT profi-

ciency levels (Table1). 
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                        Primary School Students           

 

Mathematical Elements 

Víctor & 

Xavi 

(Level 1) 

Joan & 

Tere 

(Level 2) 

Félix & Ál-

varo 

(Level 3) 

The parts of a whole must be congruent   No* Yes Yes 

A part can be divided into other parts No No Yes 

* No means that the pair of students have difficulties with the mathematical element and Yes means that they 

used properly the mathematical element 

Table 1: Characteristics of the three pairs of primary school students answers in Task A 

The primary school activity in Task B consists in comparing proper fractions (Activity: 

Which is greater 4/5 or 3/4? Explain it with a picture or words). Three pair of students’ 

answers were presented showing different characteristics of the HLT proficiency lev-

els (Table 2). 

                          Primary School Students        

 

Mathematical Elements 

Marta & 

Vicent  

(Level 1) 

Ana & 

Iván 

(Level 2) 

Louis & 

Núria 

(Level 3) 

The wholes must be the same to compare No Yes Yes 

Inverse relationship between the number 

of the parts and the size of each part 
No No Yes 

Table 2: Characteristics of the three pairs of primary school students answers in Task B 

Task C includes the answers of three 

students to two activities (Figure 3): 

in activity 1, a proper fraction has to 

be identified and in activity 2, the 

whole has to be reconstructed when a 

fractional part is given, in this case, 

an improper fraction.                                 

 Figure 3: Activities of Task C. 

Table 3 shows the characteristics of the three students’ answer to these activities. 

  Student 1 

(Level 1) 

Student 2 

(Level 2) 

Student 3 

(Level 3) 

Mathematical Elements Activity 1 2 1 2 1 2 

The parts of a whole must be congruent No No Yes Yes Yes Yes 

A part can be divided into other parts No  No  Yes  

Use a part (unit fraction) as an iterative unit 

to reconstruct the whole 
 No  No  Yes 

Table 3: Characteristics of the three primary school students answers in Task C. 
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Analysis  

Data of this research are PTs’ answers to questions Q2 and Q3 of the three tasks. We 

carried out an inductive analysis considering if PTs had (i) identified the mathematical 

elements in the students’ answers (discerning details); and (ii) interpreted the students’ 

thinking relating the mathematical elements identified in the students’ answers to the 

different proficiency levels (recognising relationships between the mathematical ele-

ments identified and the HLT proficiency levels). Initially, a subset of PTs’ answers 

was independently analysed by three researchers regarding the above two foci. Next, 

we compared our results discussing the discrepancies until we reached an agreement. 

Afterwards, we carried out the complete analysis constantly revising our categories. At 

the end of this analytical process, two main categories emerged: (i) Interpreting 

through the three tasks: PTs who interpreted students’ mathematical thinking relating 

the mathematical elements with the proficiency levels in the three tasks and (ii) Dif-

ficulties in at least one task: PTs who had difficulties using the mathematical elements 

to interpret students’ mathematical thinking at least in one of the tasks.  

For each of the latter categories, three subcategories emerged regarding the pre-service 

teachers’ professional discourse. These subcategories differ on PTs’ capacity to focus 

their attention on the relevant mathematical details of students’ answers: i) Evidencers: 

PTs who interpreted students’ thinking providing details from students’ answers ii) 

Non-evidencers: PTs who interpreted students’ thinking but did not provide details 

from students’ answers iii) Adders: PTs who interpreted students’ thinking providing 

details from students’ answers but adding unnecessary information. Through the three 

tasks, PTs were classified as consistently Evidencer (PTs classified as Evidencer in the 

three tasks), consistently Non-evidencer (PTs classified as Non-evidencer in the three 

tasks) and progress from Non-evidencer or Adder to Evidencer (PTs who shifted from 

of the Non-evidencer or Adder group to the Evidencer group). 

RESULTS 

Five different pre-service teachers’ profiles emerged from the analysis of the data re-

garding how they interpreted students’ mathematical thinking and the discourse pro-

vided (Table 4).  

 
Discourse provided 

Ways of interpreting students’ 

mathematical thinking 

From 

Non-evidencer 

or Adder to 

Evidencer 

Consistently 

Evidencer 
Consistently 

Non-evidencer 
TOTAL 

Interpreting through the three tasks 7 8 
 

15 

Difficulties in at least one task 4 9 1 14 

TOTAL 11 17 1 29 

Table 4: Profiles of PTs regarding how they interpreted and the discourse provided. 
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Twenty-eight out of the 29 PTs interpreted students’ mathematical thinking providing 

details from students’ answers in the last task. Seventeen out of them provided details 

from students’ answers in the three tasks (consistently Evidencers). Eleven PTs in-

terpreted students’ answers providing a less detailed discourse in task A and Task B 

(without providing details from students answers or adding unnecessary information- 

groups of Non-evidencers and Adders, respectively) but in task C, they used a more 

detailed discourse providing details from students’ answers to support their inferences. 

Next, we show through excerpts of answers given by the PT25, how these 11 PTs 

improved their discourse (in the sense of giving a more detailed discourse) from task A 

to task C. This PT25, in Task A, interpreted students’ mathematical thinking relating 

the mathematical elements identified in students’ answers with the HLT proficiency 

levels. However, she did not provide details from students’ answers to support her 

inferences (Non-evidencer). For instance, she wrote: 

Joan and Tere recognise that the parts of the whole must be congruent. They identify 

fractions in continuous contexts but they have difficulties in discrete contexts. They do not 

recognise that a part can be divided into other parts. This pair of students is at Level 2. 

This PT25, in Task B, started to provide details from students’ answers to support her 

interpretation of students’ mathematical thinking (Evidencer; emphasis is added in the 

details): 

Louis and Núria (Pair 3) have acquired the mathematical element inverse relationship 

since they notice that 4/5 needs 1/5 to build the unit and 3/4 needs 1/4 to build the unit. 

Then, as 1/5 is shorter than ¼, they know that 4/5 is greater. They are at level 3. 

The excerpt above shows how PT25, in Task B, used some details from students’ 

answers to support her claims. For instance, when she said “4/5 needs 1/5 to build the 

unit and 3/4 needs 1/4 to build the unit. Then, as 1/5 is shorter than ¼, they know that 

4/5 is greater” and related it with the mathematical element “inverse relationship” 

showing an improvement in the professional discourse used to interpret students’ 

thinking. In Task C, she interpreted students’ mathematical thinking providing also 

details from students’ answers (Evidencer; emphasis is added in the details): 

Student 2→In the activity 1, he has acquired the mathematical element the parts of a whole 

must be congruent since he answers that figures A and B do not represent 3/8 and figure F 

is 3/8. Furthermore, he claims that Figure D is 6/16 and does not recognise Figures C and E 

as fractions. Therefore, he does not have acquired the element a part can be divided into 

other parts. In activity 2, he does not know how to solve the activity since he thinks that the 

figure given is the unit (3/3). Although he splits the figure in congruent parts using 1/3 as 

an iterative unit, he does not know how to work with improper fractions. This student is at 

level 2 since he understands that the parts of a whole must be congruent, he uses the unit 

fraction as iterative unit but he has difficulties with the mathematical element a part can be 

divided into other parts and has difficulties with improper fractions in discrete contexts.  
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DISCUSSION AND CONCLUSIONS 

The fact that 28 out of the 29 PTs provided, at least in the last task, a more detailed 

discourse including details from students’ answers to support their claims suggests that 

the HLT helps PTs improve their professional discourse and, this can be seen evidence 

of noticing enhancement. In fact, 11 out of the 29 PTs improved their discourse 

through the three tasks. This improvement let them to progress from elaborating a less 

detailed discourse (adding unnecessary information or not providing details from 

students’ answers), to entering a more detailed discourse providing details from stu-

dents’ answers. Progress in their discourse was evidenced by the amount of details 

provided. Therefore, progress in their discourse is a sign of improving the way they 

noticed students’ mathematical thinking since they were able to focus their attention on 

the mathematical details of students’ answers. At the same time, they also provided 

evidence from students’ answers, which could be understood as an increase in sensi-

tivity to the details of the learning situations (Mason, 2011).  

In this sense, enhancing noticing can be understood as a virtuous circle in teacher ed-

ucation programs in which the HLT is a critical element. Whether noticing is displayed 

by discourse, introducing a HLT as a guide can improve PTs’ professional discourse 

since it helped them focus on details, and enhance their noticing skill. In other words, 

HLT “may assist teachers in leveraging students’ existing understandings” (Wilson, 

Sztajn, Edgington, Webb, & Myers, 2017; p 571), providing them with a structure that 

facilitates the generation of a professional discourse, which includes interpretations 

based on evidence (on details of students’ answers).  

Our study provides teacher educators with types of tasks that they can use to help 

pre-service teachers enter in a more detailed professional discourse to attend to the 

details of students’ answers and their different mathematical levels of thinking. Nev-

ertheless, more research is needed to examine whether improvements in professional 

discourse can help pre-service teachers make instructional decisions based on students’ 

mathematical thinking. 
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USING EQUATIONS TO DEVELOP A COHERENT APPROACH 

TO MULTIPLICATION AND MEASUREMENT 
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We explicate connections between multiplication and measurement that hold promise 

for developing a more coherent approach to core topics in the K-12 mathematics curri-

culum. Within research on multiplication, there has been an ongoing conversation 

about the extent to which topics in the multiplicative conceptual field (Vergnaud, 1983, 

1988) should or should not be unified under a single meaning for multiplication. 

Within research on measurement, specific types of quantities (e.g., length, area, volu-

me, and angle measure) have often been treated as separate topics (e.g., Smith & 

Barrett, 2017). We start with notion of equal-sized units that are the basis for both mul-

tiplication and measurement and develop an approach for integrating these two core 

strands of school mathematics into a more coherent whole.  

INTRODUCTION 

Both the operation of multiplication as a model of problem situations and the 

measurement of quantities rely on equal-sized units. As a consequence, multiplication 

and measurement are intertwined throughout a central swathe of school mathematics 

from whole-number multiplication to linear equations and beyond. Although learners 

may experience the wide range of topics related to multiplication and measurement as 

initially disjoint, developing a coherent view of such topics is a desirable educational 

goal both because it can support and reinforce an interconnected knowledge base and 

because seeking and identifying common structure across diverse situations reflects a 

core value of the mathematics community.  

We are by no means the first to point out connections between multiplication and 

measurement of quantities but, we will argue, the extant theoretical research on both 

topics falls short of the coherent perspective for which mathematics education should 

strive. In response, we examine how an equation of the form N • M = P can be inter-

preted in a consistent way across diverse situations that contain measured quantities. 

After identifying some key limits of current perspectives on connections between 

multiplication and measurement, we will explicate how we coordinate perspectives on 

measurement and equations to achieve greater consistency. Although our presentation 

is theoretical, we emphasize that it is informed by our experience helping future 

teachers achieve a coherent view of topics that span elementary, middle, and secondary 

grades.  
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BACKGROUND 

We begin by positioning our contribution with respect to strands of research on 

multiplication, measurement, and equations.  

Meanings for Multiplication 

One strand of research on multiplication has sought to identify psychological primiti-

ves that provide the conceptual basis for the arithmetic operation. As examples, resear-

chers have proposed repeated addition (e.g., Fischbein Deri, Nello, & Marino, 1985), 

splitting (e.g., Confrey, 1994; Confrey & Smith, 1995), and units coordination (e.g., 

Steffe, 1988, 1994). These perspectives have not emphasized equations or addressed 

directly interpretations of the equal sign.  

Other strand of research has employed at least two perspectives on multiplication to 

analyze reasoning with measured quantities (e.g., Schwartz, 1988; Thompson & 

Saldanha, 2003). In the first perspective, a multiplicative comparison is established 

between a measurement unit and some attribute that is segmented or partitioned by that 

unit. The magnitude of the attribute is so many times that of measurement unit (e.g., the 

length of a wooden plank is 4 times the length of a 1-meter plank). In the second 

perspective, a new quantity is formed through a multiplicative composition of two 

already established quantities. Schwartz characterized multiplication in such cases as a 

referent transforming operation, while Thompson and Saldanha discussed a new 

measurement unit formed by the product of the two initial units––for instance, a unit of 

area is formed by the product of two units of length. In our reading, these researchers 

do not attempt to reconcile the two perspectives on multiplication, one in which units 

are preserved and one in which units are transformed. From our point of view, this is an 

important limitation if coherence across contexts is a primary goal.  

Still other perspectives on multiplication (e.g., Boulet, 1998; Davydov, 1992) have 

characterize connections between multiplication and measured quantities not in terms 

of transforming units but rather in terms of coordinating measurement with two diffe-

rent units. In particular, Davydov argued that multiplication situations are characteri-

zed by combining smaller into larger units and then coordinating measurement with 

the smaller and larger units. Thus, one could have the ultimate goal of measuring a 

given volume of liquid in terms of cups but first use gallons to obtain an intermediate 

measure which could then be converted into cups. The perspective we present builds 

most directly on that of Davydov’s. 

Diverse or Unified Interpretations of Multiplication?  

Vergnaud’s (1983, 1988) construct of the multiplicative conceptual field (MCF) 

highlighted the diverse range of topics and problem situations that are related to 

multiplication. Recognizing that a wide range of topics and problem situations in 

school mathematics are related to multiplication raises the following fundamental 

question: Can such a range be brought together under a single, consistent meaning for 

multiplication?  
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Researchers have taken different perspectives on the extent to which multiplication can 

(or should) be viewed in a unified or consistent way across situations (e.g., Anghileri, 

1989; Boulet, 1998; Greer, 1992). Anghileri and Greer have emphasized distinctions 

among situations. To illustrate, Greer argued that equal-group and rate situations can 

be conceived in similar terms with clear asymmetry between the multiplier and 

multiplicand, but that Cartesian products and rectangular areas lack such asymmetry: 

One can interchange the role of the length and the width of a rectangle when computing 

its area. In response, Boulet extended Davydov’s (1992) notion of combining smaller 

into larger units; argued for consistent application of the distinction between the 

multiplier and multiplicand across positive integers, negative integers, and positive 

rational numbers; and demonstrated how this distinction could be applied across the 

range of situations discussed by Greer. In our reading, Boulet identifies multiplication 

with iterating and division with partitioning. We agree with Boulet’s goal of achieving 

a consistent interpretation for multiplication, but (as explained below) rely on 

identifying multiplication and division with questions asked about situations that 

contain equal-sized groups of units.  

Diverse or Unified Approaches to Measurement?  

Past research and curricular approaches to measurement have often treated different 

types of quantities (e.g., length, area, volume, and angle measure) as separate topics 

(e.g., Smith & Barrett, 2017). Smith and Barrett argued for a coherent approach to 

measurement of all quantities based on seven principles that include using a smaller 

unit to partition a larger quantity into equal-sized parts, using smaller units to exhaust 

(tile) a larger quantity, and subdividing or grouping units to create hierarchical 

structures. These researchers also echoed the perspective discussed above that new 

quantities can be created through multiplicative composition of already established 

quantities, but did not articulate a specific meaning for multiplication or consider the 

role that meanings for equations play in interpreting multiplication.  

Meanings for the Equal Sign 

Research on algebra (e.g., Stephens, Ellis, Blanton, & Brizuela, 2017) contains 

numerous reports that students often struggle with meanings for the equal sign. When 

using the operational meaning, students interpret the equal sign as an indication to 

compute an answer. When using the relational meaning, students interpret the equal 

sign as a statement of equivalence between two quantities or expressions (p. 389). 

From our perspective, the distinction between operational and relational interpretations 

of the equal sign does not address issues of measurement squarely.  

MULTIPLICATION AS COORDINATED MEASUREMENT 

Figure 1 shows our quantitative definition of multiplication based in measurement. It 

applies to situations in which there is a quantity (the product amount) that is 

simultaneously measured with two different measurement units. For this reason, we 
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characterize our perspective as one of coordinated measurement. Here is the 

connection to Davydov’s (1992) work discussed above. We make five initial points.  

N • M = P 

How many base 

units make one 

group exactly?  

 How many groups 

make the product 

amount exactly?  

 How many base 

units make the 

product amount 

exactly?  

Figure 1: A quantitative meaning for multiplication based in measurement 

First, we use the terms “base units” and “groups” as generic terms, and each new 

problem situation requires identifying what is 1 base unit and what is 1 group. N, M, 

and P are numbers, each of which is the answer to a measurement question. P describes 

the measure of the product amount in terms of base units, and M describes the measure 

of the product amount in terms of groups. N describes how base units and groups, the 

two approaches to measuring the product amount, are related.  

Second, whereas Davydov (1992) concentrated on whole numbers, we include 

fractions using a definition based in measurement. In that definition, the unit fraction 

1/b is defined by partitioning a quantity formed by 1 part into b equal-sized parts. The 

measurement perspective comes in by asking how many of the original 1 part makes 

any one of the b equal-sized parts exactly. The fraction a/b is the quantity formed by 

any a copies of 1/b. (see also National Governors Association Center for Best Practices 

& Council of Chief State School Officers, 2010; Thompson & Saldanha, 2003). This 

meaning for fractions can be applied either at the level of base units when applied to N 

or to P or at the level of groups when applied to M.  

Third, division is characterized as multiplication with an unknown factor (Beckmann 

& Izsák, 2015). What makes a situation a division situation, given the use of base units 

and groups to measure a product amount, is either a question about the measure of 1 

group in terms of base units, a question about the value of N, or a question about the 

measure of the product amount in terms of groups, a question about the value of M. The 

former is often referred to as partitive or sharing division, and the latter is often 

referred to as quotitive or measurement division (e.g., Greer, 1992). Notice that, 

whereas sharing is often associated with partitive division and measuring is often 

associated with quotitive division, in our discussion measuring is associated with both 

types of division. The distinction between partitive and quotitive division lies in what 

is being measured––1 group or the product amount––and what is being used as a unit 

of measure––1 base unit or 1 group. 

Fourth, the definition is stated as an equation, which requires interpreting the equal 

sign. The equal sign is not interpreted using the operational meaning. The discussion of 

division above underscores this point as what is unknown could be N or M. At the same 

time, the equal sign does not state a relationship among quantities directly. Rather, the 

equation states a relationship among numbers derived from measurement.  
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Fifth, in contrast to Greer’s (1992) discussion of contexts in which multiplication is 

asymmetric and contexts in which the operation is symmetric, N and M cannot be 

interchanged. Each has a distinct role in measurement. Put another way, multiplication 

is commutative when calculating but not when modelling problem situations (e.g., 3 

cookies on each of 7 plates is not the same as 7 cookies on each of 3 plates).  

EXAMPLES 

We present three examples to demonstrate how the perspective on multiplication 

summarized in Figure 1 addresses limits of past research identified above.  

Example 1: Measuring length 

Consider once more the 4-meter plank of wood. One can view the plank as segmented 

into four separate lengths each of which is 1 meter, and one can make a multiplicative 

comparison in which the plank is 4 times as long as the 1-meter unit. Following the 

meaning of multiplication in Figure 1, this situation can be captured by the following 

equation: 1 • 4 = 4. Here, because the value of N is 1, there is 1 base unit (1 meter in this 

case) in 1 group. The answer to the measurement question how many base units make 

the product amount exactly is 4 because four 1-meter units make the length of the 

plank. The answer to the measurement question how many groups make the product 

amount exactly is also 4 because 4 groups make the length of the plank. There is 

nothing special about using a whole number in this example. If the plank were 4/5 

meters, the equation 1 • 4/5 = 4/5 could be interpreted similarly using the measurement 

sense of fractions discussed above. Furthermore, there is nothing special about lengths, 

our meaning of multiplication applies to any multiplicative comparison between the 

magnitude of an attribute and a specified unit.  

Example 2: Measuring rectangular area 

Now consider the area of a 3 meter by 4 meter rectangle. One can interpret the equation 

3 • 4 = 12 through the meaning of multiplication shown in Figure 1 as follows. In 

Figure 2a, 1 base unit is one mini-square, 1 group is one column (shaded), and the 

product amount is outlined in bold. Then, the value of N is 3, because 3 base units make 

1 group exactly, and the value of M is 4, because 4 groups make the product amount 

exactly.  

Notice that N and M do not refer to units of length and that, in contrast to prior accounts 

discussed above, there is no transformation of referents and no multiplicative 

composition of two units of length to create a new unit of area. The reason that the 

familiar length • width = length formula gives correct answers is that measures of 

lengths and widths, in this case in terms of 1-meter units, have the same values as 

numbers of base units in 1 group and numbers of groups in the product amount. Once 

again, there is nothing special about using whole numbers. If the dimensions of the 

rectangle were 3/7 meters and 4/5 meters, the equation 3/7 • 4/5 = 12/35 could be 

interpreted similarly using the measurement sense of fractions discussed above. In 

Figure 2b, 1 base unit is the large square, one group is three rows (shaded) where each 
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row is 1/7 of the base unit, and the product amount is outlined in bold where each 

column is 1/5 of the group. Furthermore, there is nothing special about squares as base 

units for area: One could take a base unit to be a rectangle with the dimensions 1 

centimeter by 1 meter.  

Notice also that we have used the same meaning of multiplication to measure both 

lengths in example 1 and rectangular areas in example 2. This is in contrast to past 

research on reasoning with measured quantities in which, as discussed above, at least 

two distinct perspectives on the meaning of multiplication have been used. Thus, taken 

together, these two examples are one demonstration of how our perspective affords a 

more coherent approach to multiplication and measurement of quantities.  

          
          
          

          
          
          
          

(a)                                      (b) 

Figure 2: (a) Measuring area with whole numbers. (b) Measuring area with fractions.  

Example 3: Measuring angles 

We have chosen angle measure as our final example to demonstrate how our 

perspective on multiplication can handle topics typical of secondary school, at least in 

the United States. In this case, we want to see how the formula for arclength, r •  = s, 

is a particular case of our N • M = P equation. Figure 3 shows two concentric circles. 

Circle 1 has radius 1 centimeter, and Circle 2 has radius r centimeters. In this case, 1 

base unit is 1 centimeter, one group is the radius of Circle 2, r plays the role of N 

because it gives how many centimeters make the radius of Circle 2 exactly, and   

plays the role of M because it gives how many radii (i.e., groups) make the arclength 

(i.e., the product amount) exactly. If one imagines that Circle 1 remains fixed and that 

Circle 2 dilates, either increasing or decreasing in size, the value of r will vary but the 

number of radii that make the product amount exactly, , will remain fixed. In this 

case, our N • M = P equation expresses a constraint on the measures of the radius and 

arclength on Circle 2 as they covary.  

CONCLUSION 

Our conjecture, to be pursued in future research, is that the coordination of 

multiplication and measurement we describe can be extended across most if not all of 

the diverse topics and situations that Vergnaud (1983, 1988) included in the MCF. If 

our conjecture is borne out, then the field will have a theoretical lens that unifies a large 

swathe of important mathematics to a greater extent than has been accomplished 
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currently. This would then make possible approaches to mathematics education in 

which an explicit, quantitative meaning of multiplication is applied consistently across 

topics and across grades. A main implication for instruction is designing experiences in 

which students (and teachers) are supported as they seek affordances in problem 

situations for measuring in base units and in groups and for interpreting equations in 

terms of values derived from such measurement. Exactly how such experiences might 

be effectively sequenced is an open question and one which are currently investigating 

with future mathematics teachers.   

 

Figure 3: Measuring angles in radians.  
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Bingqian Wei, Xin Wang, and Alan Davis 
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We examine a written, large-scale assessment that assessors can use to infer and 

measure gradations in students’ scheme for whole number multiplicative reasoning. 

To design such an instrument we drew on Tzur’s notion of fine grain assessment, which 

is used to distinguish two stages in the construction of a scheme: participatory and 

anticipatory. We briefly present the assessment items, the validation process, and re-

liability statistics–Cronbach’s alpha, Rasch modeling, and student response patterns 

from students (N=492) in grades 3 and 4 (~ages 8-10), including distinctions in item 

difficulty levels. We discuss implications for large-scale assessment design and im-

plementation. 

In this study, we extend two recent studies from our large research project investiga-

ting elementary students’ development of multiplicative reasoning (Hodkowski, 

Hornbein, Gardner, Jorgensen, Johnson, & Tzur, 2016)1. We report on a written assess-

ment designed and implemented to infer into students’ multiplicative reasoning. Such 

an assessment faces the challenge of finding an adequate alternative to the la-

bor-intensive method of interviewing students. Whereas task-based, cognitive inter-

views afford inferring students’ reasoning from their interactions with assessors, a 

large-scale assessment must allow valid and reliable inferences based solely on student 

responses. To face this challenge, we built on Norton and Wilkins’ (2009) use of 

quantitative methods to measure students’ reasoning based on models researchers ob-

tained through interviews with small numbers of students. We expand the work of 

Norton and Wilkins by focusing on conceptual gradations that Tzur and colleagues 

(Tzur & Simon, 2004; Tzur, 2007) have postulated within students’ reasoning—the 

participatory and anticipatory stages. 

Researchers across the world have been studying students’ challenges with whole 

numbers multiplicative reasoning (Lamon, 2007). In our work, we stress that such 

reasoning involves more than knowing multiplication facts and/or developing proce-

dural skills. It includes students’ meanings for multiplication (Steffe & Cobb, 1998), 

their insights into multiplicative relationships between numbers (Bakker, van den 

Heuvel-Panhuizen, & Robitzch, 2015), and their coordination of different kinds of 

units to form new units (Tzur, Johnson, McClintock, Xin, Si, Woodward, Hord, & Jin, 

2013). In this study, we address the following problem: How can a written, large-scale 

assessment be used, in place of interviews, to infer gradations in students’ scheme for 

whole number multiplicative reasoning? 
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THEORETICAL AND CONCEPTUAL FRAMEWORK 

Assessing assimilation (schemes) 

As humans, we cannot directly observe the reasoning of others. Through interviewing 

or written methods, researchers can make inferences about others’ reasoning. We draw 

on Piaget’s (1985) core notion of assimilation—a cognitive intermediary between 

observable “stimuli” and “responses”—as a lens to make such inferences. Von Gla-

sersfeld (1995) explained that assimilation, and reasoning, are made possible by a 

three-part cognitive building-block—a scheme. Schemes comprise: (1) a recognition 

template (situation) that triggers one’s goal; (2) an activity to accomplish that goal; and 

(3) an effect that one mentally anticipates, or notices retroactively, to ensue from that 

goal-directed activity. We designed our assessment to measure gradations in students’ 

mental use of schemes for multiplicative reasoning.   

Schemes for whole number multiplicative reasoning 

Researchers explicitly distinguished multiplicative reasoning from successfully deter-

mining answers to multiplication problems (Bakker et al., 2015; Tzur et al., 2013). We 

infer that students engaging in multiplicative reasoning can use schemes to keep track 

of and coordinate different kinds of units. For example, consider this task: “Julia has 6 

towers, each made from 3 stacking cubes. How many cubes did Julia use to make the 

towers?” A student may draw all cubes and correctly count them one-by-one. In con-

trast, a student engaging in multiplicative reasoning with an assimilatory scheme 

would coordinate three kinds of units: composite units (e.g., towers), the magnitude of 

each unit (e.g., cubes per tower), and units of 1 (e.g., total of individual cubes). 

Tzur et al. (2013) identified six schemes for multiplicative reasoning. Our study fo-

cuses on assessing the first one, termed multiplicative double counting (mDC), which 

marks the shift from additive to multiplicative reasoning. A student having the mDC 

scheme could recognize a situation as consisting of two different kinds of units, set the 

goal to find the total of 1s in them, trigger the activity of simultaneously distributing 

and counting (keeping track of) accrual of 1s and of composite units (e.g., 1 tower is 3, 

2 towers are 6, 3 towers are 9, … 6 towers are 18), and anticipate a new kind of unit as 

a result of her activity. 

Gradations in students’ schemes 

When assessing students’ reasoning, we do not mean that having a scheme is like 

flipping an “on-off” light switch. Rather, we distinguish gradations in schemes through 

Simon and Tzur’s (2004) constructs of participatory and anticipatory stages, which 

differentiate a student’s ability to bring forth a scheme. In the anticipatory stage, a 

student can independently, and spontaneously, do so. In the participatory stage, a 

student needs prompting to bring forth a goal-directed activity and its effect of an 

emerging scheme. We acknowledge that prompting can take different forms. In this 

paper, we focus on prompting involving additional supports, provided to a student 

through her sensory perception. For example, in the task involving Julia and the 6 
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towers, a hint could be a picture showing one completed tower and just a single cube 

for each of the remaining towers. If a student is at a participatory stage, such a hint may 

bring forth her activity of counting 1s and composite units, and thus may enable her to 

engage in multiplicative reasoning and to provide a correct response. 

Fine grain assessment 

To measure participatory-anticipatory gradations in students’ mDC scheme, we adap-

ted Tzur’s (2007) fine grain assessment. In fine grain assessment, assessors begin with 

tasks that include no hints, then move to subsequent tasks including increasing levels 

of hints. We stress that the purpose of hints is not to funnel students to a certain solu-

tion method and/or correct answer. Rather, the purpose of hints is to provide students 

with opportunities to bring forth existing schemes. Including a hint-free task prior to 

other tasks allows assessors to infer the stage of a student’s assimilatory scheme based 

on her or his solutions to tasks—first without and then with hints. 

METHODS 

We report on our methods to develop and implement a written assessment that targets 

gradations in a foundational scheme that indicates students’ emerging multiplicative 

reasoning: multiplicative double counting (mDC). To design the assessment, we drew 

on the expertise of our large, diverse project team, which includes mathematics edu-

cators, a mathematician, research methodologists, and language experts. 

The mDC assessment: Problems, items, and sub-items 

The mDC assessment we developed contains five word problems. The first problem 

served as a screener problem (1-digit addition, 8+7), to foster initial success. The next 

four problems, together, allow inferring the stage of a student’s mDC scheme (see 

multiplicative reasoning problems #2-5 below). To assess participatory-anticipatory 

gradations, each problem comprises at least three items. We designed the first item to 

be “hint-free.” The subsequent items included increasing levels of hints. With each 

increasing level of hint, we intended to provide students opportunities to bring forth 

their mDC scheme. Therefore, hints provided increasingly specific information about 

the different kinds of units in the situation. Furthermore, to assess students’ text com-

prehension, in each problem we included sub-items for which students filled in blanks 

with information given in a problem statement. For example, in Problem #3, students 

filled in this blank: “Alex put __ towers in the box.” (see Figure 1). 

In Problem #2, we focused on students’ iteration of a composite unit (e.g., a tower of 3 

cubes) to determine if it could constitute a larger composite unit (e.g., a tower of 24 

cubes). In Problem #3, we intended for students to distribute items of one composite 

unit (3 cubes per tower) over another unit (6 towers) to find the total number of 1s in 

the compilation of composite units (total of 18 cubes). In Problem #4, we intended 

students to keep track of composite units (4 teams of 5 players each). We asked them to 

determine the correctness of a hypothetical student’s (Joy) statement that, through 

“skip-counting: by 5, she found there were 35 players in all. In Problem #5, given a 
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total number of items (28 cookies), we intended for students to segment this total by 

iterating a given composite unit (4 cookies per bag) to determine the total number of 

composite units (bags) that constitute the total.  

In this paper, we focus on Problem #3. Figure 1 shows the first, “hint-free” item.  

 

Figure 1: mDC Assessment Problem #3, Item 1; Hint-free. 

The second and third items of Problem #3 followed the same format as the first item. 

These items included increasing levels of hints. Figure 3 shows level 1 and level 2 hints 

for items 2 and 3, respectively. The level 1 hint included additional diagrammatic in-

formation about the activity of iterating a unit of “tower.” The level 2 hint included 

additional diagrammatic information about the units composing the towers to be iter-

ated, the “cubes per tower.” 

 

Figure 2: Problem #3, Items 2 and 3: Hint level 1 at left; Hint level 2 at right. 

Validity and Reliability 

We addressed construct validity through a five-phase process. Initially, Tzur created an 

expert draft for each problem. Second, he shared the draft with a content expert who 

gave feedback, with changes. Third, the project team worked on that version, leading 

to more revisions of language and diagrams. Fourth, this version went through an 

expert panel review. We gave this version to three experts in the field, who evaluated 

the problems and items, responding by: “keep,” “change as follows,” or “omit.” The 

experts suggested a few revisions, but not any omissions. Fifth, Tzur conducted indi-

vidual, cognitive interviews with five children to check the entire assessment. Issues 

arising from those interviews led our team to make further, finer revisions. 

We addressed construct validity along three lenses: language, potential gender or cul-

tural biases, and mathematical consistency with the multiplicative reasoning we in-

tended to measure (Hodkowski et al., 2016). The mathematics educators and mathema-

tician worked closely to address mathematical consistency. We drew on the language 

and literacy experts on our project team to develop word problem statements appro-
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priate for students learning English as an additional language. In addition, we included 

situations familiar to the student population with whom we worked. 

Tzur conducted cognitive interviews with 26 fourth-graders to determine the extent to 

which their responses to items on the mDC assessment and additional tasks he posed 

correlate with his inference into their mDC scheme. To determine if the mDC as-

sessment could actually serve as a proxy for students’ reasoning, as opposed to just the 

child’s ability to correctly solve each item, we used the Kendall’s Tau-b statistics to 

calculate agreement between Tzur’s inferences and the score obtained from the written 

assessment items (Ktb=0.883, 2-tailed p<.0005). Thus, we claim the data of students’ 

performance on items on the mDC items indicate students’ engagement in multiplica-

tive reasoning (mDC scheme). 

Student population, student numbers, and assessment administration dates 

Students participating in our study were from three different elementary schools in one 

small and one large public school district. Both districts were in the metropolitan area 

of a large US city. About 85% of the students in our study identified as students of 

color, and 70% were learning English as an additional language.  

We report results from three administrations of the mDC assessment to students in 3rd 

and 4th grades: Spring 2016, Fall 2016, and Spring 2017. We report results from a total 

of 492 student assessments, produced by 404 unique students (some assessed twice or 

three times). Table 1 disaggregates the assessment totals by student grade and admin-

istration date. We analyzed data from all 492 available assessments, because they re-

flect students’ assimilation (or lack thereof) of the problems into their mDC scheme in 

far-apart administrations. This larger number allowed us to further investigate grada-

tions in students’ reasoning. 

Grade Spring 16 Fall 16 Spring 17 Total 

3 81 146 117 344 

4 26 83 39 148 

Total 107 229 156 492 

Table 1: Numbers of students taking the mDC assessment by grade and date.   

Like researchers across the world (e.g., Bakker et al., 2015), we experienced chal-

lenges implementing this large-scale study with students in schools. One challenge 

included obtaining student and parent consent, which impacted our data analyses on 

sets of disaggregated data. To address challenges, we worked with teachers and school 

personnel to determine protocols and times beneficial to both parties. 

Data entry 

Six graduate research assistants (GRA) were trained to enter the student responses to 

the mDC assessments. To increase reliability, one GRA read the student’s responses 

out loud and the other entered those into a spreadsheet as is. The first GRA could see 
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and was asked to verify that responses entered correctly for every student. We coded 

no response as “9999” and an unreadable or incoherent answer as “5555.” 

Analysis: Cronbach’s alpha, Rasch modeling, Student response patterns 

To calculate overall item consistency of all four multiplicative reasoning problems 

(#2-5), we used the Cronbach’s Alpha statistics for all items and sub-items. Moreover, 

we employed the principal component method of exploratory factor analysis to con-

firm that all items loaded onto a single principal component (here, the construct of 

mDC scheme), and that no additional factors could be extracted.  

We conducted Rasch analysis to determine item difficulties and person measures. We 

tested if students who did not bring forth the mDC scheme on a hint-free item could do 

so on items containing hints. We used Rasch modeling with hint-free items and with 

items containing any form of hint (both level-1 and level-2 hints). Students bringing 

forth the mDC scheme on hint-free items would have an anticipatory stage of the 

scheme. Students having the participatory stage of the mDC scheme would bring forth 

the scheme after receiving the diagrammatic hints. We hypothesized that Rasch anal-

ysis would indicate items containing hints to be consistently less difficult than hint-free 

items. Next, we examined a Wright map, which organizes both persons and items by 

logits ranging from -3 to +3. Ideally, in a Wright map, the distribution of items should 

show a wide range of item difficulties, with more items in the middle than at the ex-

tremes, and each item on a unique difficulty level. 

Besides Rasch modeling, we also examined students’ response patterns for hint-free 

items and items containing hints. We grouped the data into four response patterns: (1) 

Hint-free Correct, Hint Correct; (2) Hint-free Correct, Hint Incorrect; (3) Hint-free 

Incorrect, Hint Correct; (4) Hint-free Incorrect, Hint Incorrect. We coded “correct” for 

items containing hints if students provided a correct response for any level of hint. 

RESULTS 

mDC assessment consistency and factor analysis 

Chronbach’s alpha for the 8 items in the mDC assessment (263 cases = 53.5% of all 

492), 4 hint-free items and 4 items with hint, is 0.907. This value reflects excellent 

inter-item consistency. Rasch item analysis indicated a very high consistency (0.98). 

Rasch modeling and Wright map 

Our Wright map showed item difficulties ranging from -2.3 to 1.3 logit scores. In a few 

cases, two or three items had the same logit score. For three of the four problems, 

analysis of our Wright map showed that the hint-free items were more difficult than the 

items containing hints. The most difficult item was the hint-free sub-item C on Prob-

lem #3 (logit score = 1.3); second to it was the sub-item C on Problem #3 that con-

tained a hint (logit score = 1.15). Although these logit scores were fairly close, our 

analysis confirms the hint-free item to be more difficult. Furthermore, the Rasch item 
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reliability to be 0.98 indicates that items have a hierarchy of difficulty. We found more 

distinct results for Problems 3, 4, and 5. 

Students’ response patterns 

For each of Problems 2-5, we compared the four groups of student response patterns in 

respect to students’ overall performance on the remaining assessment. Table 2 shows 

students’ response patterns to sub-item C of Problem #3 (See Figure 1). As expected, 

for each item, students’ average scores in the Correct-Correct group (N=169) were 

highest, and students’ average scores in the Incorrect-Incorrect group (N=264) were 

lowest. For the other two groups, Correct-Incorrect (N=20) and Incorrect-Correct 

(N=39), students’ average scores were between the two extremes. 

 Hint-Free Correct Hint-Free Incorrect Total 

Hint Correct 169 39 208 

Hint Incorrect 20 264 284 

Total 189 303 492 

Table 2: Students’ response pattern to Situation 2, sub-item C.  

These results suggest we can measure gradations in students’ multiplicative reasoning. 

Yet, gradations were not entirely clear-cut. Some students responded correctly to a 

hint-free item, then incorrectly to an item containing a hint (Correct-Incorrect, N=20). 

This seems to run counter to our conjecture that hints could provide students oppor-

tunities to bring forth their schemes. Despite this seeming discrepancy, the Cor-

rect-Incorrect group (N=20) scored lower on the overall mDC assessment than the 

Incorrect-Correct group (N=39), who responded incorrectly to the hint-free item. We 

infer that other factors, such as guessing, accounted for this result. 

DISCUSSION 

Based on our results, assessors can use the mDC assessment to measure gradations in 

students’ mDC scheme for whole number multiplicative reasoning. Gradations include 

two stages, anticipatory and participatory, indicated by whether students demonstrated 

evidence of bringing forth a scheme before or after being given a hint. 

To date, researchers have used small scale, labor intensive interview methods to dis-

tinguish students’ anticipatory and participatory stages of conceptual development 

(e.g., Simon et al., 2016; Simon & Tzur, 2004). Our mDC assessment is a step toward 

measuring gradations in students’ reasoning on a large scale. Although researchers 

have identified finer grained distinctions at the participatory and anticipatory stages 

(e.g., Simon et al., 2016), currently our assessment is only sensitive enough for re-

searchers to use to measure distinctions between anticipatory and participatory stages. 

We would need further refinement to make more nuanced distinctions. 

Distinguishing between anticipatory and participatory stages is useful for explaining a 

challenge common to teachers, termed “the next day phenomenon.” For example, a 
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student at a participatory stage may bring forth her mDC scheme to determine a total 

number of cubes, given 6 towers with 3 cubes in each. Yet, the same student may not 

bring forth her mDC scheme on a seemingly similar task. Students’ participatory stage 

is a crucial and vulnerable stage in learning, and can explain, in part, why students may 

not yet be able to engage in multiplicative reasoning without additional support. 
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The paper at hand presents a systematic analysis of theoretical backgrounds in articles 

about mathematical creativity over the period of 2007 – 20016. Due to the multifaceted 

concept of creativity, various keywords were used for the literature study. Those 

keywords were identified in a search in relevant literature and ten years of PME 

proceedings. The coding of the articles as well as the inductively created category 

system is presented. As a result, we see that most authors refer to a multitude of de-

scriptions to examine creativity. With this approach we were able to shed light to the 

characteristics of conceptualizations of creativity which are discussed. 

INTRODUCTION 

Creativity – also among students – is increasingly being explored – since it is also seen 

as a central component of modern technology in society (Leikin & Pitta-Pantazi, 

2013). There are very different views about what creativity is and, accordingly, dif-

ferent approaches how creativity is examined – and different trends become apparent. 

We therefore see the need to get a clearer and systematic picture of the theoretical basis 

on which current research in this field is based. For this purpose, we conducted a 

configurative literature study (similar to Nilsson, Schindler, & Bakker, 2018) (see 

Gough, Oliver, & Thomas, 2013), where – in a first step – we systematically searched 

for adequate keywords in the proceedings of ten years of PME and – in a second step – 

developed a categorization system for the analysis of the articles. One result is that 

seven other words for the term creativity are used synonymously. In addition, the 

analysis shows that only one third 

of the considered articles define 

creativity, and the majority of arti-

cles indicate many different de-

scriptions of creativity. 

BACKGROUND 

Mathematical creativity as a re-

search topic is gaining increasing 

interest in recent years (cf. Singer, 

Sheffield, & Leikin, 2017). For 

example, a PsychINFO® keyword 

search for “math” combined with 

Figure 1: Number of articles found in the data-

base PsycINFO® with the keywords math* and 

creativity-related keywords. In total, 723 articles 

were found. 



Joklitschke, Rott, & Schindler 

  

3 – 172 PME 42 – 2018 

“creativ*”, “innovat*” and similar expressions (see below for more details) reveals a 

doubling of the number of articles related to the topic in the last 10 years (see Figure 1).  

For this interest in creativity and its importance, there are many reasons. To name a 

few, creativity is considered to be important in problem solving, making innovations, 

and being a responsible citizen (Kim, Roh, & Cho, 2016). Barak summarizes:  

“It is evident that creative thinking skills, openness to change, flexibility, and the ability to 

cope with challenging tasks are essential for integration in today’s society and workplace, 

whereas specific skills and knowledge are rapidly becoming obsolete and new fields are 

emerging every few years.” (Barak, 2009, p. 345) 

However, there is no single, universally accepted definition for creativity (Treffinger et 

al., 2002). The definitions that are used are often vague like “[creativity can be defined] 

as the process of producing something that is both original and worthwhile” (Sternberg 

& Sternberg, 2011, p. 479). For research, however, it is important to have well-defined 

terms and concepts (Rhodes, 1961). Therefore, vague concepts need to be discussed 

and sharpened. This is especially true for research on subject-specific creativity, and it 

is appropriate to conduct a thorough review to record which definitions and theories 

are used in research on mathematical creativity. 

In this article, the preparation and implementation of a configurative literature study is 

presented. The first part deals with the selection of keywords to conduct the review. 

The second part presents the results of a descriptive analysis of our review. 

RESEARCH QUESTIONS 

It is of interest to find out how elements such as theories, models or – more generally– 

conceptualizations on the subject of mathematical creativity are used in contemporary 

research. This raises the following research questions: 

1. Which words are used synonymously for creativity and thus result in a keyword 

for a configurative literature search? 

2. How is creativity in contemporary research conceptualized?  

METHODOLOGY 

In order to analyze the theories, models, and other elements which are mentioned in the 

theoretical parts of papers about mathematical creativity, we conducted a configurative 

literature study, similar to Nilsson et al. (2018) who based their research on Gough et 

al. (2013). For our purpose, we adopted this approach because we not only wanted to 

extract theories but also include smaller remarks, which do not have the claim of a 

theory.  

Searching for keywords and articles 

There is no accepted definition of creativity and there are many different conceptual-

izations of the term (Treffinger, Young, Selby, & Shepardson, 2002). Therefore, it is 

important to be aware that there might be other signal words than “creativ*”, which 

describe/conceptualize creativity. To create a list of appropriate search terms aiming at 
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finding articles for review, a systematic screening of conference and handbook articles 

was conducted. For this screening, all PME proceedings from 2007 to 2016 were in-

cluded as well as several handbooks like Encyclopedia of creativity, invention, inno-

vation and entrepreneurship edited by Carayannis (2013), Sternberg's (1999) Hand-

book of creativity, or handbooks that are specific for mathematics education, e.g. 

Gutiérrez, Leder, and Boero's (2016) The second handbook of research on the psy-

chology of mathematics education. In these proceedings and handbooks, all articles 

with “creativ*” in their title were browsed for their keywords to find expressions that 

are used synonymously for creativity. For our list (see results Section), we omitted 

terms that describe components of creativity; for example. Lerman (2014) described 

mathematical creativity as a combination of fluency, flexibility, originality, and elab-

oration. These words were not included in the list of keywords, because these words 

are too everyday-linguistic and not do not have sufficient specificity.  

To search for articles, PsycINFO® has been chosen as a database which is one of the 

most frequently used databases for behavioral and science research (American Psy-

chological Association, 2017). As this database covers many different journals from 

different fields, we combined our keywords with math*. As another restriction, only 

those articles are included which are published in a journal listed in the Web of Science 

(WoS) (with a focus on “education & educational research”, “education, scientific 

disciplines”, and “education, special”). This decision was made as an objective crite-

rion to ensure a certain quality of the articles. However, this prerequisite to use only 

journals listed in the WoS leads to the exclusion of some journals that are relevant to 

mathematics education, like ZDM – Mathematics Education (see Discussion). 

We have decided to search within the last ten years for appropriate articles. To make 

sure not to miss any articles because of infrequently updated databases, we chose the 

ten-year period from 2007 to 2016. 

Screening the articles: focus on titles, abstracts, and keywords (criteria for in-

clusion of articles) 

Only articles with creativity as a central topic (compared to, e.g., “creative methods to 

draw graphs”) should be included in the review. Therefore, titles, abstracts, and key-

words were scanned. Articles that could not be clearly included or excluded were 

discussed in an expert discussion and included in the case of doubt. 

Coding the Articles: Analysis of the theoretical parts  

For the remaining articles, we focused on theoretical parts similar to Nilsson et al. 

(2018). If no theoretical part was labelled in an article, everything up to the research 

question(s) and methods was analyzed. This step is the last to exclude articles, which 

did not focus on creativity. 

To compare the conceptualizations of creativity and the ways in which theories or 

other concepts on creativity are used in the selected articles, inductive categories were 

developed through a qualitative content analysis (see Mayring, 2015, for details). For 
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better readability, we call a phrase with a reference to literature a “statement” which 

built the analysis unit for our research. In consequence, if there was a phrase which did 

not have any reference to other literature, it was not referred to be a statement. We 

clustered the statements from each article and then built categories according to the 

emerging clusters. 

RESULTS  

Extraction of keywords and articles 

The extraction of keywords that are used synonymously to creativity was done for two 

different data types: more than 10 different handbooks from the fields of creativity and 

mathematics education and the PME proceedings from 2007 to 2016. 

For the handbooks, we were able to extract a list 

of four central keywords (Table 1; first column). 

When searching for keywords in the PME pro-

ceedings, we found eight keywords (Table 1; 

second column) which are representative in 

several contributions. 

We see that there is an overlap in both of the data 

types and that the list extracted from the hand-

books is completely included in the list emerged 

from the PME proceedings. The latter seem to 

give a more varied picture of possible synonyms 

of or concepts related to creativity. For the 

search in PsycINFO®, all eight keywords are 

used. 

Figure 2 summarizes the steps within the search 

procedure and the number of articles that were 

found and that remained after each step. 

Initially, 723 articles that fit the search terms were found in the database. After the 

alignment with the list of journals in the WoS, 182 articles were selected. The titles, 

  

Keywords 

from hand-

books 

Keywords from 

PME 

Creativ* Creativ* 

Innovat* Innovat* 

Invent* Invent* 

Divergent 

think* 

Divergent think* 

 Illuminat* 

 Bisociat* 

 Overcom*fixation 

 Aha* 

Table 1: Keywords extracted from 

handbooks and from pro PME 

proceedings 2007 – 2016. 

Figure 1: Schematic search procedure and inclusion criteria. 
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abstracts, and keywords of these articles 

were scanned, resulting in a selection of 

26 articles of which the theoretical part 

was read (see methodology section). Of 

those 26 articles, however, only 15 ar-

ticles were on topic and reviewed. Thus, 

in total, 8 % (15 of 182) of the articles 

using keywords from our list and being 

published in journals that are listed in 

the WoS actually dealt with research on 

creativity and were included in the fur-

ther analysis. Table 2 shows the num-

bers of articles sorted by the journals in 

which they have been published. 

Thinking Skills and Creativity is most 

often represented – half of the articles 

were published here. 

Coding the articles: Analysis of the theoretical parts 

Seven different categories of references arose inductively from the statements in the 

articles: (1) Definition: Statements, which are clearly labeled with an expression like 

“defined as”. (2) Components: Statements, which provide a closed list of properties to 

describe creativity. (3) Description: Statements, which 

describe creativity but do not refer to a closed list (as 

components). (4) Development: Statements, which hint 

either at special programs or trainings to foster creativity; 

or statements, which describe developments of creativity 

in e.g. students. (5) Integration: Statements, which show 

that the mentioned aspect is seen as an aspect of a bigger 

construct (e.g., giftedness). (6) Relation: Statements, 

which show a link to another construct and are not an 

integration (e.g., achievement). (7) Assessment: State-

ments, which deal with the assessment of creativity. Table 

3 shows the numbers of articles, which include at least 

one statement indicating each category.  

Definition. It is striking that in only four articles, statements referring to definition were 

found. For example, Daugherty and White (2008) refer to Torrance and write: “Tor-

rance (1965, 1988) defined creativity as sensing gaps in information, formulating so-

lutions that complete the information, testing these solutions, and communicating the 

results” (p. 31). Ayas and Sak (2014) commit the statement: “creativity usually is de-

fined as the ability to generate ideas or products that are novel and useful (Boden, 

2004; Cropley, 1999; Mayer, 1999; Piffer, 2012; Plucker, Beghetto, & Dow, 2004; 

Sak, 2004; Sternberg & Lubart,1995)” (p. 195) and refer thereby to more authors. We 

Journal # articles 

Thinking Skills and Creativity 7 

Asia Pacific Education Review 2 

Gifted Child Quarterly 2 

Educational Psychology  1 

High Ability Studies 1 

Innovations in Education and 

Teaching International 

1 

Technology, Pedagogy and 

Education 

1 

Total 15 

Table 2: The number of articles that were 

finally included into the analysis and the 

journals in which they have been published. 

Categories # articles 

Definition 4 

Components 4 

Description 14 

Development 9 

Integration 6 

Relation 14 

Assessment 7 

Total 58 

Table 3: Number of arti-

cles, with statements in 

the listed categories. 
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see – also with the inclusion of the other two statements which refer to the category 

definition – that the authors show different emphasis: The spectrum ranges from a 

feeling (Daugherty & White, 2008) to specific abilities (Ayas & Sak, 2014) to the 

properties of products (Ayas & Sak, 2014; Barak, 2009; Kim et al., 2016).  

When analyzing categories description and components, we see (Table 4) that the 

majority of the articles presents at least four statements assigning to these categories. 

To get a more detailed insight, we will now focus on one particular article which 

presents a broad variety of statements: Ayas and Sak's (2014) “Objective measure of 

scientific creativity”. In addition to the above stated definition, the authors also provide 

statements assigned to the categories components or description. With the following 

quote Ayas and Sak compose scientific creativity as a process of three stages “These 

three processes [referring to Scientific Discovery as Dual Search; SDDS] guide the 

entire process of scientific creativity from formulation of hypotheses, through ex-

perimental evaluations to decisions to accept or reject hypotheses” (ibid., p. 197). 

Additionally, the authors describe a variety of aspects of creativity and cover different 

scopes of application. They refer, for example, to the domain-specificity of creativity: 

“The evidence for domain specificity of creativity is found both in broadly defined 

cognitive domains (e.g., mathematical, linguistic, and musical) and in narrowly de-

fined tasks or content domains (e.g., poetry writing, story writing, and collage making) 

(Baer, 1998)” (ibid., p. 196). In other parts, further statements are presented, partly 

with contrary conclusions. The focus in the authors’ study is a computer based As-

sessment of Creativity, which is why many assessment statements are made. In total, 

Ayas and Sak (2014) cover all categories. 

Overall, this shows which categories are covered in a theoretical part of an article and 

whether assumptions are based on definitions or rather on descriptions. It is also pos-

sible to reconstruct the extent to which research is conducted either within creativity or 

whether the focus is on linking to other constructs, such as SDDS and computer-based 

assessment and how these elements are characterized. 

DISCUSSION AND OUTLOOK 

The aim of this article was to analyze how creativity is described and conceptualized in 

contemporary research. A two-step procedure was conducted: In the first step, the 

review was preceded by systematically searching for synonyms of creativity. This step 

was necessary because there is no uniform definition for the subject area and, there-

fore, a large number of views and descriptions exist in parallel. We found eight key-

words which were used for the research: creativ*, divergent think*, innovat*, illumi-

nat*, invent*, aha*, bisociat*, and overcom* fixation. These words are seen as central 

to creativity in the considered sources and are often used synonymously. The lack of a 

clear definition (Singer et al., 2017) and a high number of definitions (Treffinger et al., 

2002) is espoused by other researchers as well. After the hit list was filtered, only about 

8% (26 out of 182) of the total articles remained for analysis. This was due to the fact 

that some keywords appear in other contexts (e.g., “the paper illuminates the research 
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question”). Further, creativity also appears to be used as an umbrella term for many 

different approaches to research.  

In the second step, the selected articles were carefully read. It was possible to create 

inductive categories that were used for sorting statements from the articles. These 

categories are definition, components, description, development, integration, relation, 

and assessment of creativity. With these categories, it is possible to analyze the con-

tents of theoretical parts of the articles included and to obtain essential information: It 

is noticeable that although there are so many different existing definitions, only in a 

few articles, statements could be assigned to the category definition. Rather, a large 

number of descriptions and components were used to contour creativity. As with the 

search for keywords, the analysis of the theoretical parts also shows that many dif-

ferent concepts are described and composed within individual articles. However, this 

multiplicity makes it difficult to grasp the authors’ emphasis. In order to meet this 

challenge, the following refinements are suggested: 

First, the list of journals included in the review should be extended by adding journals 

that are renowned in mathematics education research but are not listed in the WoS. 

Second, the categories presented here could possibly be further specified. Third, the 

assignment of statements to categories should be used to present the considered articles 

in networks with the aim of exploring the inherent meta structure of articles on 

mathematical creativity. Fourth, with the networks constructed in this way, it might be 

possible to recognize larger connections and to grasp different theories on the subject 

of mathematical creativity. This approach could already be pursued in the field of 

statistics education research (Nilsson et al., 2018). Fifth, current research could be 

examined even more closely: It would be very interesting to see to what extent the 

assumptions used in theoretical parts are empirically implemented in methodological 

parts in recent articles and to analyze which limitations or extensions exist.  

With the aim of categorizing and systematizing research in a very broad field such as 

creativity, another step has been taken to focus better on different approaches. Since 

precise theoretical basics are central to research (Bikner-Ahsbahs, Knipping, & Pres-

meg, 2015), we suggest concentrating on clearly outlined assumptions, even though 

there is no uniform definition of creativity, in order to be able to further decode mathe-

matical creativity and ensure a joint discussion. 
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20 YEARS OF MATHEMATICS MOTIVATION MIRRORED 

THROUGH TIMSS: EXAMPLE OF NORWAY 

Hege Kaarstein, Jelena Radišić, and Trude Nilsen 

Department of Teacher Education and School Research, University of Oslo 

 

Student motivation is important for recruitment to further STEM education and car-

rier. Over the last decades, Norway has allocated many resources for recruitment to 

STEM, especially for girls, making it important to explore how students’ motivation 

has changed across time. Using data from TIMSS, this paper explores the changes in 

Norwegian students’ motivation in mathematics across time (N= 43 366), including 

differences across grades (4 and 8) and gender over the past 20 years. Measurement 

invariance analysis and multi-group CFA was conducted in Mplus. Findings indicate 

an increase in motivation (self-concept, intrinsic and extrinsic) across time for both 

grades, and higher motivation in favour of boys. These findings have implications for 

policy making and teaching practices in mathematics classrooms in Norway. 

INTRODUCTION 

In the past 20 years the International large-scale study, Trends in International 

Mathematics and Science Study (TIMSS), has gathered information about students' 

motivation in mathematics (and science). Since its inception in 1995, Norway has 

participated in the Survey, thus allowing for a unique opportunity to follow whether 

and how students’ motivation for mathematics has changed over the years. While the 

data allow us to examine students’ motivation across gender and grades (i.e., grades 4 

and 8), so far it has not been investigated whether students’ perception of motivation 

has been constant across different TIMSS cycles. Using data from 1995 to date, the 

paper investigates this issue, focusing on the mathematics domain.  

MOTIVATION 

Over the past decades students’ motivational beliefs have been regarded as the driving 

force behind their learning and academic success (Wigfield, Tonks & Klauda, 2009), 

even in those situations when students are challenged by difficult and demanding tasks 

(Skaalvik & Skaalvik, 2009). At the same time the driving force we conceptualise as 

motivation can be observed through an array of both internal and external dimensions. 

Basic concepts 

When observing students’ motivation to learn, much of the educational research draws 

on the distinction introduced by Deci and Ryan (1985), within the scope of their 

Self-Determination Theory (SDT). The basic concepts described are those of intrinsic 

and extrinsic motivation (Deci & Ryan, 1985; Ryan & Deci, 2000; Deci & Ryan 2008). 

The former is defined as the inherent tendency to seek out novelty and challenges, to 
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explore, and to learn. The construct itself describes person’s natural inclination toward 

spontaneous interest, and exploration that is so vital to cognitive and social develop-

ment of every human being (Csikszentmihalyi & Rathunde, 1993). In the context of the 

school and learning of mathematics, students who are intrinsically motivated to learn 

mathematics find the subject to be interesting and enjoyable (Deci & Ryan, 1985).  

The latter construct, extrinsic motivation, refers to the drive that comes from external 

rewards (i.e., praise, career success) and the performance of an activity so as to achieve 

some separable outcome (Ryan & Deci, 2000). SDT suggests that extrinsic motivation 

can largely fluctuate and vary it its nature (Ryan & Connell, 1989). It can be personally 

endorsed (e.g., a student practicing mathematics due to the fact s(he) recognizes value 

of the activity for later career choice) or by compliance with an external regulator (e.g., 

a student is practicing mathematics as to adhere to parents’ control).  

In their later work Deci and Ryan (2008) focused their attention on the separation 

between autonomous motivation and controlled motivation. Autonomous motivation 

encompasses intrinsic motivation and the types of extrinsic motivation in which people 

have identified with an activity’s value, making their actions very much self-endorsed. 

Controlled motivation, on the other hand, entails external and introjected regulation. 

Since in the TIMSS 2015 framework clear reference is given to the concepts of in-

trinsic and extrinsic motivation (Hooper, Mullis, & Martin, 2013), in the remaining 

part of the text we use this terminology.  

Motivation and achievement across age and gender 

A number of studies have found an association between motivation and achievement 

(Bøe & Henriksen, 2013; Froiland & Davison, 2016). Furthermore, research steadily 

shows that intrinsic motivation is more closely related to achievement (Becker, 

McElvany, & Kortenbruck, 2010) and external rewards to be diminishing students’ 

intrinsic motivation (Deci, Koestner, & Ryan, 1999). At the same time we may easily 

argue that students are not intrinsically inclined to all subjects, so fostering motivation 

through extrinsic rewards may be essential for some teachers and parents. Nonetheless, 

studies also show that successful students may easily internalize their extrinsic moti-

vation to increase performance, especially in an environment that promotes value of 

competence and autonomy (Ryan & Deci, 2000).  

Much of the research also focuses on the relationship between motivation and age and 

motivation and gender. What studies show is that students’ motivation to learn ma-

thematics decline with age, especially in the context of their intrinsic interest to be in-

volved with mathematics (Gottfried, Fleming, & Gottfried, 2001; Wendelborg, Røe, 

Federici, & Caspersen, 2015), while associations with achievement grow stronger 

(Kaarstein, 2017). Gender differences relative to both motivational patterns and 

achievement in mathematics are widely reported (Lazarides, Rubach, & Ittel, 2017). In 

addition, studies show that students’ high motivation for a particular domain like ma-

thematics is also accompanied with their high self-concept in the domain (i.e., per-

ceived competence in mathematics; Seaton, Parker, Marsh, Craven, &Yeung, 2014) 
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Research focus 

Departing from the TIMSS framework depicting students’ motivation to learn mathe-

matics and students’ subject specific self-concept (Hooper, Mullis, & Martin, 2013), 

we examine whether Norwegian students’ perception of motivation in mathematics has 

been constant across different TIMSS cycles including differences across grades (4 

and 8) and gender over the past 20 years. 

METHOD 

Sample 

In this paper we use data from grades 4 and 8, including all TIMSS surveys Norway 

has participated in. These include; TIMSS 1995 (N = 10 212 students), TIMSS 2003 

(N = 8 475 students), TIMSS 2007 (N = 8 735 students), TIMSS 2011 (N = 6 983 

students), and TIMSS 2015 (N = 8 959 students). Norway did not participate in the 

TIMSS 1999 round. 

Constructs 

In the development of the items that are included in the student questionnaires on 

motivation, TIMSS has grounded its constructs into the work of Deci and Ryan’s 

(1985) concepts of intrinsic and extrinsic motivation, accompanied with the students’ 

self-concept (Hooper et al., 2013). All analyses in this paper use that same division.  

Notably TIMSS framework constantly keeps up with the developments that take place 

in society, school and research as to ensure consistent measurement quality of the 

concepts included in the student background questionnaire, while at the same time 

ensuring that these changes are minimal for the comparison purposes across the cycles. 

Students’ motivation is measured by asking the students how much they agree with the 

statements, as shown for example in Table 1. For each statement, students may choose 

between four options: agree a lot, agree a little, disagree a little and disagree a lot. As 

we are examining students motivation for mathematics across the span of 20 years, 

items that were chosen to be included in the analyses of both intrinsic and extrinsic 

motivation and self-concept are grounded on four criteria: 1) at least three items must 

be included in each construct, 2) the statements selected should have been included in 

at least four cycles of TIMSS, 3) the items included have been the same in all the cy-

cles, and 4) the items must be present in contextual questionnaire for both grades. 

Example of items pertaining to intrinsic motivation is given in Table 1. Extrinsic mo-

tivation, which TIMSS only included in grade 8, is put together by statements like: I 

need to do well in mathematics to get the job I want, I need to do well in mathematics to 

get into the of my choice, I think learning mathematics will help me in my daily life 

and I need mathematics to learn other school subjects. 

Self-concept items investigate whether child perceives that (s)he is usually doing well 

in mathematics, is good in mathematics, observes mathematics as more difficult for 

him(her) than other peers in the class and learns mathematics quickly. 
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Items TIMSS cycles 

 1995 2003 2007 2011 2015 

I enjoy learning mathematics      

I wish I did not have to study mathematics      

Mathematics is boring      

I learn many interesting things in mathe-

matics 

     

I like mathematics      

I like any schoolwork that involves numbers      

I like to solve mathematics problems      

I look forward to mathematics lessons      

Mathematics is one of my favourite subjects      

Table 1: Example items in grade 4 on intrinsic motivation. A comparison is made 

relative to the 2015 cycle. An area is shaded if an item has been used in the cycle.  

The way we have defined the constructs in the study allows us to examine students' 

intrinsic motivation in all cycles except the one in 2003. Self-concept and external 

motivation can be investigated from TIMSS 2003 and for all subsequent cycles. 

Analyses 

Preparation of the data included reversing the negative items and transforming the 

scale by assigning 0 to the “disagree a lot” choice and a 3 to the “agree a lot” choice. 

Missing data were treated with Robust maximum likelihood (MLR), an option within 

the Mplus.  

All the analyses were done in Mplus 8 (Muthen & Muthen, 1998-2017) using a mul-

ti-group approach (i.e., several groups can be analyzed in the same model). The hier-

archical structure of the TIMSS data (i.e., students belong to classes belonging to 

schools) was taken into account using the option type = Complex in Mplus. In this 

study students are grouped according to 1) cycles, 2) grades, and 3) gender. The pur-

pose of running multi-group analyzes is to check whether the differences between the 

groups (i.e., cycle, grade and gender) are significant. Confirmatory factor analysis 

(CFA) for each construct was calculated for all groups and latent means for each 

construct were estimated. In order to investigate whether different groups have the 

same perception of the construct, Measurement Invariance analyses (MI) were used. 

Where results indicate the same understanding of the concept by different groups, a 

comparison can be made. 
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RESULTS 

Measurement invariance 

The results from the MI analyses show that all constructs were scalar invariant across 

the examined cycles. Scalar invariance implies that the means of a construct are 

comparable. 

 

Constructs ΔCFI ΔTLI ΔRMSEA ΔSRMR 

Intrinsic motivation (4) -0.007 -0.005 0.019 0.008 

Intrinsic motivation (8) -0.007 0.002 -0.002 0.003 

Extrinsic motivation (8) -0.027 -0.030 0.049 0.020 

Self-Concept (4) -0.020 -0.019 0.029 0.016 

Self-Concept (8) -0.003 -0.004 0.021 0.008 

Table 2: Results of the measurement invariance models across the cycle  

(cut off points are: ΔCFI < 0.01, ΔTLI < 0.01, ΔRMSEA < 0.02, ΔSRMR < 0.015). 

All constructs were scalar invariant across gender in grade 4. In grade 8, scalar in-

variance was found for intrinsic motivation (except in 1995) and extrinsic motivation 

(except 2011). No scalar invariance was found for self-concept in grade 8.  

We could not establish scalar invariance for any of the constructs across grades.  

Changes over time 

Figure 1 shows the trend in changes across the cycles for each motivational aspects and 

each grade respectively. A horizontal axis represents different TIMSS cycles (e.g., T95 

refers to TIMSS 1995 cycle all the way to T15 representing TIMSS 2015). The vertical 

axis shows the latent means (standardized). 

After a significant decrease in students’ intrinsic motivation from 1995 to 2007 in 

grades 4 and 8, a steady increase is visible for the period 2007 to 2015. From 2003 to 

2011 in grade 8 we can also observe a significant increase in students’ extrinsic mo-

tivation, keeping this high plateau in 2015 as well. No significant differences are vis-

ible between values for 2011 and 2015 cycles for extrinsic motivation. 

Finally, when it comes to self-concept in mathematics students in grade 4, there is a 

steady increase during the period from 2003 to 2011. Although somewhat lower values 

are visible in 2015 there are no significant differences between this and the previous 

cycle. A steady and significant incline is also visible for the period 2003 to 2015 when 

observing students’ self-concept in grade 8, but the changes are not as steep and are 

insignificant when comparing adjunct cycles (e.g., 2003 with 2007 and 2011 with 

2015).  
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Concept Intrinsic motivation Self-concept Extrinsic motivation 

Grade 4 

  

The contruct is not 

measued in grade 4. 

Grade 8 

   

Figure 1: Changes in the observed constructs across the TIMSS cycles (1995-2015). 

Differences between boys and girls  

When observing the gender differences, across the cycles, boys seem to be more mo-

tivated to do mathematics. For extrinsic motivation (grade 8), this gap seems to di-

minish and disappear. In grade 4 on the other hand the gap seems to increase for 

self-concept. 

Constructs 1995 2003 2007 2011 2015 

Intrinsic motivation (4) -0.086 - -0.100* 0.049 -0.066 

Intrinsic motivation (8) noMI - -0.031 0.013 0.138* 

Extrinsic motivation (8) - 0.272* 0.123* noMI 0.030 

Self-Concept (4) - 0.082 0.023 0.163* 0.139* 

Self-Concept (8) - noMI noMI noMI noMI 

Table 3: Gender differences across cycles (*denotes significance, if bold in favour of 

boys; noMI denotes scalar invariance was not established). 

CONCLUSION AND DICUSSION 

The results clearly indicate scalar invariance for all constructs across the TIMSS cycles 

from 1995 to 2015. This means that the students’ perception of motivation has not 

changed over time and that for students who participated in TIMSS in 1995 the 

meaning of intrinsic motivation, for example, was the same as for the students par-

ticipating in TIMSS 2015. 
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At the same time we have not established scalar invariance across grades, indicating 

that we cannot draw the conclusion that students’ motivation is lower in grade 8 than in 

grade 4 as indicated in multiple international reports for most countries (e.g. Mullis, 

Martin, & Loveless, 2016). However, our results point to caution when interpreting 

this result, as these constructs may not be invariant across grades in other countries as 

well. Finally, with respect to the construct related to self-concept in grade 8, its 

meaning is problematic across all examined cycles when comparing boys and girls. 

The lack of construct invariance gives little grounds for any meaningful comparison.  

When observing changes over time an important finding for the Norwegian school 

system and mathematics teaching is an increase in students’ motivation. Although this 

increase is steeper in grade 4 than in grade 8, it is consistent across the cycles and is not 

in line with the major results reported for other European countries; that students’ 

recruitment and hence motivation for mathematics is in decline (OECD, 2016).  

Given the amount of resources invested in the Norwegian education system in pro-

moting STEM choices for girls it is interesting to observe that boys still seem to be 

more motivated for mathematics than the girls. Although we do not claim causal links 

between these two processes, it is notable that in a society with such a clear focus on 

equity between the sexes, such clear differences still exist and that the gap between 

boys and girls in perceiving own competence related to mathematics even exist in 

grade 4. At this point it remains to be seen if the trend will be kept in 2019, with the 

new TIMSS round, or whether a shift in how boys and girls go about mathematics will 

occur. In any case, these will set the course on how teachers, teacher’ educators and 

policy makers plan their programs and actions in promoting student agency and career 

choice in STEM. 
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CRITERIA FOR KNOWING A GEOMETRICAL OBJECT: 

THE ENACTIVIST PERSPECTIVE 

Kazuya Kageyama 

Hiroshima University 

 

This article proposes several criteria for students to know a geometrical object and 

identifies the trigger for evolving interactions between the teacher, the students, and 

the learning environment from an enactivist perspective. This article focuses on the 

identification of the key concept of bringing forth a world to interpret students’ geo-

metrical behaviors. Based on a qualitative research methodology, a theory for gen-

erating geometrical objects was suggested and exemplified through the analysis of 

third-grade mathematics lesson, from which three criteria; (I) theoretical, (II) possible, 

and (III) actual; were identified. It was observed that an important trigger for the 

evolving interactions was that the students were able to engage physically and theo-

retically in an open situation. 

INTRODUCTION 

Mathematics education research based on enactivism has taken various directions 

since it was first examined (Varela, Thompson, & Rosch, 1991; Marurana & Varela, 

1992). Enactivists believe that knowing is a dynamic action and have sought to un-

derstand the nature of this action in learners. As the Enactivist theory deals with the 

various rich and complex interactions involved in knowing as action, it could be used 

as a conceptual tool to explain mathematical, cognitive phenomena. 

Mathematics education research could be advanced by comparing key concepts such 

that the viability interpretation in constructivism leads to bringing forth the distinct 

worlds of significance inherent in enactivism (Proulx & Simmit, 2013, 2016). The 

latter is a key concept as it suggests that a mathematical object could be generated by 

associating it with the appropriate world (Kieren & Simmt, 2009), thereby making the 

students’ actions more meaningful. To examine this more closely, this article focuses 

on the criteria needed by students to come to know a geometrical object through their 

actions and to be able to analyze and explain the phenomena in class, which also allows 

for an analysis of the students’ mathematical behaviors. 

This article seeks answers to the following research questions: 

RO1: What criteria do students adopt to generate an object and determine whether it is 

geometrical or not? 

RO2: What factors are important to initiate and evolve the interactions between the 

teacher, the students, and the learning environment? 
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THEORETICAL CONSIDERATIONS 

Key ideas behind enactivism: Focusing on knowing a geometrical object 

Enactivism’s theoretical foundation is that knowing is a biological phenomenon 

(Maturana & Varela, 1992; Varela, 1992); that is, knowing has biologically evolved as 

effective action through environmental effects and the human actions in that envi-

ronment (Maturana & Varela, 1992, pp.173-181). Therefore, as a series of effective 

actions develops the significant world in which an individual exists and lives, under-

standing environmental factors is critical to mathematical knowing research as it is 

necessary to understand the world the individual is within because this determines 

which objects can emerge in the individual’s known environment and which objects 

the individual can generate in this world. 

Maturana and Varela (1992) claimed that knowing an object involved being able to 

distinguish it: 

The act of indicating any being, object, thing, or unity involves making an act of distinc-

tion which distinguishes what has been indicated as separate from its background. Each 

time we refer to anything explicitly or implicitly, we are specifying a criterion of distinc-

tion, which indicates what we are talking about and specifies its properties as being, unity, 

or object. (p. 40) 

This statement claims that to know a concrete object in an environment, it needs to be 

distinguished from all other objects so that others know what is being talked about. 

Therefore, to know a geometrical object that has both figural and conceptual charac-

teristics (Fischbein, 1993), it is necessary to clarify its criterion of distinction visually 

and in language (Simmt & Kieren, 2015, p. 311). As a geometrical object has an in-

ter-objective nature, which could be seen as a social dimension that is consensual with 

others, these aspects need to be considered when discussing geometrical objects 

(Simmt & Kieren, 2015, pp. 310-313). However, these comprehensive approaches do 

not always provide answers to the process associated with the emergence of appro-

priate geometrical inter-objects or what methods are used to bring this forward (Simmt 

& Kieren, 2015, p. 313) if the geometrical nature and the critical actions required to 

form them are unknown. 

When knowing a geometrical object, a possible distinction criterion is recognizing the 

isomorphism (Greer & Harel, 1998) inherent in the distinct worlds that emerge through 

the evolutionary process. For example, a triangle can be represented through drawing, 

constructing, or describing; however, even though its nature depends on the method 

used to make it, it is possible to recognize the uniformity; that is, the isomorphism or 

invariance between all triangles as they are structurally the same regardless of position, 

magnitude, or material attributes. When seeking to bring forth a geometric world 

through classroom communication, even though multimodal factors affect students’ 

geometrical conceptions, learners need to be able to observe the significant properties 

rather than the attributes, and see them as the main theme. 
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What worlds are brought forth to know a geometrical object? 

Classrooms are complex environments made up of artifacts with educational intention, 

concrete models that represent concepts or matters, noticeboards for learning history, 

relationships between teachers and students, and feedback from learning with others. 

However, the significance of these aspects depends on each learner. When manipu-

lating materials such as concrete objects or diagrams, we draw on knowledge from not 

only the physical world in which such concrete objects could exist, but also the geo-

metrical world, which is mediated by theoretically thinking about the creation of the 

object as a model (cf. de Freitas & Sinclair, 2014, pp. 200-224). Therefore, bringing 

the world forth is complex in the classroom environment. 

Proulx and Simmt (2013) claimed that thinking differences between the pairs are often 

related to either the physical or geometric world; therefore, the method for knowing 

and acting is highly dependent on the world that is brought forth. Further, when cre-

ating visual images of parts that cannot be directly perceived in the physical world such 

as a concrete object from various viewpoints, and then experimentally transforming, 

disposing, and reconstructing them, these visual images always have a possibility to 

transcend reality; therefore there is a co-defining relationship between cognition as 

action and bringing a world forth. 

This co-defining that results in updating or revising has been referred to as a learner’s 

engagement in a problematic situation; the dynamics of understanding mathematics as 

a change in the method for knowing objects. Pirie and Kieren (1994) claimed that a 

complementarity in the actions and expressions leads to subsequent actions, with the 

meaning of the actions differing from the meaning of the expressions dependent on the 

level of understanding; therefore, problems as enacted objects could vary because of 

the differences in meaning. Ideally, experience needs to be applied through abstrac-

tion/concretization and generalization/specialization rather than from within the same 

world where the knowledge becomes stable and transmittable. 

Although Pirie and Kieren (1994) described bringing worlds forth as a recursive model 

process, this article examines the dynamics of the students’ actions. To do this, a 

method of thinking in each world was employed based on virtuality or possibility. 

METHODOLOGY 

This article focused on a third-grade mathematics lesson that was collaboratively de-

signed by the author, student teachers, and another practicing teacher. As the objective 

of this research was to examine the processes behind the bringing forth of distinct 

worlds, a qualitative research methodology was adopted (Flick, 2009). 

The main focus of the lesson was to develop triangles using several methods, with the 

objective being to motivate the students to geometrically and logically perceive the 

figures through a range of learning activities. The main activities were focused on (1) 

developing the figures and (2) geometrically and logically demonstrating the figures. 

First, the teacher gave the definition for a point as the intersection of a line and a curve, 
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and then demonstrated that any line could be constructed by connecting two points. 

Students were then asked to position a line, a circle, an isosceles triangle, and a regular 

triangle within a given figure (Fig. 2). 

The lesson activities, which involved the entire class, were recorded on cameras at the 

back and front of the classroom by two prior research collaborators. While one video 

recording focused on student interactions, the other filmed the entire class, both of 

which were supported by the researchers’ individual field notes. By referring to the 

student worksheets and the researcher field notes, after the lesson, there were discus-

sions on the students’ thinking processes and action intentions. These descriptions and 

transcripts as well as the teacher and student actions, tool usage, and the various ex-

pressions on the whiteboard were analyzed. By focusing on the various teacher, stu-

dents, and learning environment interactions such as the concrete model and diagram 

on the whiteboard, the criteria for the knowing of geometrical objects were identified. 

RESULTS 

First, the teacher asked the students to watch the process 

of connecting the same-length sides to construct a con-

crete equilateral triangle (Fig. 1); while expressing the 

definition, the student attempted to touch hidden parts of 

the object to confirm that it was a regular triangle. The 

students used geometrical terms and expressions that 

differed from everyday language, such as “regardless of 

congruence of all edges, I am not sure that this angle is 

same as this one because this is hidden by the teachers’ 

hands”, which indicated that they were bringing forth their 

own worlds based on the lesson content; the perceptual figures drawn on the white-

board, the manipulatives, a task to find any regular or isosceles triangles, and the use of 

tools such as rulers and a compass. 

Following four steps; (a) drawing a certain line, (b) drawing a large circle by placing 

the compass needle on any position on a given line, (c) confirming that two points were 

generated as intersections of a line and a circle, and (d) drawing a small circle by 

placing a compass needle on the right-hand point; the 

teacher drew a figure on the whiteboard using a ruler and 

compass, and established six points actually by placing a 

red mark on each point (Fig. 2). 

Because the point was a small, filled circle drawn in the 

third-grade mathematics textbook, no points initially ex-

isted on Fig. 2, as it was supposed to exist theoretically in 

a world in which the rule for making figures differed. The 

students’ statements of “now I see” and “I can see some 

points” implied that they did not appear to have difficulty 

understanding that the methods for a figure’s existence 

 

Fig. 1: Touch gesture by a 

student. 

 

Fig. 2: Embodied points on 

a figure. 
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can change depending on its construction rule. However, when the red marks with the 

position and magnitude were marked on the whiteboard, it became a certain, possibly 

existing object for the students. 

This lesson’s main objective was to find regular or isosceles triangles within Fig. 2. As 

described above, although there are various criteria for a triangle, no triangle existed 

actually or theoretically in Fig. 2; therefore, as they needed to generate triangles so as 

to be able to discuss any triangle in the same way as the point (Fig. 3), the final activity 

was to generate and demonstrate a triangle. 

Fig. 3 altered the structure previously created by the students, as it shifted from a 

closed structure in which two circles with their centers on a given line intersected with 

each other to an open structure which allowed the students to generate other figures by 

connecting the points with defined positions. The discussion gradually shifted to the 

generation of possible triangles as students connected the points and decided whether 

the triangles were or were not isosceles. For example, the following transcript was 

student S’s explanation that the drawn, special triangle was an isosceles triangle. 

Teacher: Why, in the middle of our discussion, 

could S see that it was an isosceles tri-

angle? 

Some Students: Because he could see! 

Student S: All radii have the same length. Well, two 

parts are connected [pointing to radius of 

a small circle on the whiteboard], and the 

exterior connected parts are the same, so 

this is an isosceles triangle. 

Although this demonstration was theoretical as the 

students use some figural properties to assess whether the triangle was isosceles, it was 

inadequate as established mathematical proof. Some students identified the two sides 

student S mentioned as the radii of a small circle; however, few were able to accept the 

statement that “all radii were equal” as the rationale for the demonstration. 

Following this communication, another student demonstrated that the triangle was not 

regular by measuring each side (Fig. 4); they measured the length of side CA by 

placing the compass needle at one end and rotating it to CB to check whether the two 

sides were equal (Fig. 4; left). Then, they compared the length of CA (CB) to the third 

side, BA, by placing the compass needle on B. The transcript of this student’s state-

ment was as follows: 

Student Y: The length of this reaches here [pointing to point on BA in Fig.4; right], 

and the black one is left, so it is an isosceles triangle. 

Student Y:  I don’t think that it is a regular triangle. 

Teacher:  What do you think? 

 

Fig. 3: Generating a possible 

triangle. 
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Teacher:  Raise your hands if you think it is an isosceles triangle. 

(All students raised their hands.) 

Strictly speaking, rather than actually measuring with a ruler, student Y only compared 

one side with another using a compass. After the teacher’s questioning, all students 

accepted the method and the results that this was an isosceles triangle and not a regular 

triangle. 

When drawing the figure on the whiteboard, the teacher deliberately omitted any 

specification of the length, which meant that only the relative position of each figure 

was able to be determined. Therefore, the positions for points A, B, and C (Fig. 4) 

could change depending on the circle drawn by the teacher; the shape of the triangle 

and the lengths of its sides could also then change. While measuring or comparing 

actions according to criteria (III) is effective and accepted in the real world; however, 

in the mathematical and geometrical world it is not. After this demonstration, students 

generated some triangles by combining and connecting six points, and concluded that 

while some isosceles triangles could theoretically exist, regular triangles could not 

exist on this special, given figure. 

DISCUSSION AND CONCLUSION 

Three criteria for knowing geometrical objects 

The students’ real knowing actions were not necessarily simple during the lesson. 

During a post-discussion about the students’ actions, at least three criteria were iden-

tified to determine whether a triangle was regular: (I) if the triangle fulfills the defini-

tion; (II) if students were able to construct the same kind of triangles based on the given 

construction procedure and definitions; and (III) if the students could perceive and 

manipulate the constructed figure as a concrete object. 

Criterion (I) is focused on theoretical knowing as it depends on the technical language 

(see student S’s statement), and criterion (II) is focused on possible knowing, as the 

definition implies a method for generating possible, special objects (see student actions 

in Figs. 2 and 3); therefore, both are acceptable in the mathematical world. Criterion 

(III), however is related to actual knowing because body movements and physical 

 

Fig. 4: Demonstration by measuring and comparing. 
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sensations are preferred (see the touch gesture in Fig.1 and student Y’s demonstration) 

and accepted in the physical world. Each criterion’s effectiveness was determined by 

the students as participants in the classroom conversations. 

In the sequence of activities to identify the figure as a geometrical object, criteria (I), 

(II), and (III) assisted the students to determine whether the triangle was isosceles, 

regular, or neither. As was seen, the theoretical demonstration based on geometrical 

properties by student S in Fig. 3 and the measuring and comparing by student Y in Fig. 

4 were acceptable effective methods. Rather than going forward or folding back be-

yond these distinct worlds, as implied in Pirie and Kieren (1994), the students appeared 

to inhabit both distinct worlds to know the objects and change their problem generation 

and solution priorities. When the third graders came to know the geometrical object, 

they were able to apply several effective criteria from these distinct worlds; therefore, 

any object could be seen as mathematical if the criteria applied. 

In particular, criterion (III) demands that students apprehend the figures through bodily 

actions and sensations such as touch and gesture, (II) demands that they purposely 

generate the objects according to the endorsed procedure and in reference to the ge-

ometrical definition, and (I) demands that all generated objects be accepted if they 

fulfill the definition and the students can generate other objects based on these defini-

tions. An endorsed procedure could be equated to an algorithm, such as the four steps 

followed to create the figure in Fig. 2, which is different from constructing an object to 

fulfill a certain definition. For third graders, these objects were dealt by applying the 

various criteria to identify the isomorphic relationships. 

An open situation as the trigger for evolving interactions 

The endorsement of the object’s existence based on the several identified criteria was 

an effective and collective action for the third graders, enabled them to distinguish 

objects from the background, and to convince themselves that the geometrical must 

exist. This endorsement of existence made the students pay attention to the background 

of the object; that is, in the lesson, the individual triangle was known from its rela-

tionships with the given line and circles, which was realized based on the specific 

geometrical definitions and properties in the geometrical world, and was actualized by 

drawing and constructing it in the physical world, all of which evolved through the 

interactions between the object and its background. 

In the lesson, a trigger for the modification of the criteria priorities and the evolving 

interactions between the students and the figure, as exemplified in Figs. 2 and 3, were 

conducted in an open situation that allowed the students to act both physically and 

theoretically as they adopted another rule to generate the figure. All students physically 

generated the geometrical object, and then attempted to demonstrate its existence 

theoretically, and vice versa. The tangled methods concerning the existence of an ob-

ject initially confused the students; however, they gradually determined their own 

actions and defined rules within their own created worlds. 
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MICRO-EVOLUTION OF DOCUMENTATIONAL WORK IN THE 

TEACHING OF THE VOLUME OF REVOLUTION 

Lina Kayali and Irene Biza 

University of East Anglia, UK 

 

In this paper, we draw on the documentational approach to analyse the evolution of 

one experienced secondary teacher’s work towards the teaching of the topic of 

“volume of revolution”. He used a range of paper and computer based resources in-

cluding the software Autograph. Data were collected in observations of three lessons 

on this topic taught to two different groups of 16-18 years old students and a follow up 

interview with the teacher where he was asked to reflect on his choices in these lessons. 

The findings illustrate teacher’s documentational work with the used resources, and 

his schemes of use – aims, rules of actions, operational invariants and inferences – and 

identify the micro-evolution, namely the small changes and the rationale behind these 

changes, of these schemes across the lessons.  

INTRODUCTION  

Teaching is a complex profession that requires teachers to interact with, and promptly 

respond to, a range of factors in their teaching environment. As a result, teachers’ 

practices are not merely a reflection of their plans and beliefs. Other factors also come 

into play, such as teachers’ and students’ personalities and epistemologies, institutional 

constraints, unexpected circumstances, time issues and available materials (Nardi, 

Biza, & Zachariades, 2012). These factors should be taken into account when studying 

teachers’ practices (Herbst & Chazan, 2003). Indeed, Lerman (2013) suggested that 

research should avoid “implied telos about ‘good teaching’ [… and] study what hap-

pens in practice and offer multiple stories of that practice” (p. 623). In this paper, we 

report findings from Kayali’s PhD study that investigates mathematics teachers’ ways 

of tuning the different elements in their working environment, especially when using 

mathematics-education software (i.e. software designed for mathematics teaching and 

learning purposes). Specifically, we look at teachers’ ‘live’ practices within specific 

contexts and examine consistencies and potential gaps between intended and actual 

practices (Kayali & Biza, 2017). Here, we draw on the documentational approach 

(Gueudet & Trouche, 2009) to analyse data of three video-recorded lesson observa-

tions of one teacher’s work on the topic of “the volume of revolution”, and a follow up 

audio-recorded interview with him where incidents from the observation were dis-

cussed in order to respond the research question: “How does teacher’s documenta-

tional work change across lessons, if it changes, and why?”. 
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THE DOCUMENTATIONAL APPROACH 

The documentational approach (Gueudet & Trouche, 2009) explores teachers’ work 

with resources. The term resource here has a wider definition; it can be an artefact, a 

teaching material, a social interaction or anything that influences a teacher’s activity 

(ibid.). This approach, also, refers to Adler’s definition of resource “as the verb 

re-source, to source again or differently” (2000, p. 207). According to the documen-

tational approach, teachers while interacting with resources develop schemes of use. A 

scheme of use adopts a set of resources to be used across different situations according 

to specific procedures (Gueudet, 2017). It consists of the aim of the teaching activity 

(e.g. to teach about the volume of revolution); rules of action, which represent teacher 

actions (e.g. solving past-exam questions on the volume of revolution); operational 

invariants, which are the reasons adopted by a teacher to justify her stable actions in a 

range of similar situations (e.g. it is useful to use Autograph and the textbook to in-

troduce the formula); and, inferences (e.g. it would work better if I present the image 

from the textbook first). A teacher develops a document when she associates a set of 

resources with the scheme of use of these resources (ibid.). Document can be “thought 

of as the verb document: to support something (here the teacher’s professional activity) 

with documents” (Gueudet & Trouche, 2009, p.205, italics in original). A teacher’s 

documentational work includes the set of resources encountered, collected, amended 

or developed by that teacher for a specific goal (ibid.). The documentational approach 

offers lenses for exploring the evolution of a teacher’s documents, which in turn 

“contributes to the study of her professional evolution. Naturally, such a study must not 

be limited to the material aspect of documents, but must also investigate the evolution 

of usages […] and operational invariants” (ibid., p. 211). In this study, we aim to ex-

plore the characteristics of one teacher’s document by investigating his set of resources 

and schemes of use during the teaching of three lessons on the volume of revolution, 

taking into account the justifications he made during the lessons and in the follow-up 

interview. 

METHODOLOGY 

This paper reports outcomes from a PhD project conducted in the UK by the first au-

thor. The study looks at upper secondary mathematics teachers’ documentational 

work, specifically schemes of use that also concern mathematics-education software. It 

employs qualitative analysis based on an interpretative research methodology (Stake, 

2010). In this paper, we discuss three video-recorded lesson observations and the 

follow-up interview of one participant, George. At the time of the data collection, 

George had 15 years of teaching experience mostly in upper secondary education (ages 

16-19). The follow up interview was conducted after the initial analysis of the three 

video-recorded observations. The interview questions focused on the teacher’s main 

steps and choices that were identified during this initial analysis. In the interview, 

George was invited to reflect and comment on these specific choices (e.g. the use of 

Autograph). The follow up analysis of George’s responses in the interview and actions 

during the lessons was performed by using the documentational approach. Specifi-
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cally, the analysis identified the used resources as well as the schemes of use: aims of 

the teaching activity, rules of actions, operational invariants and inferences in the 

context of the observed lesson and summarised them in a documentational work table, 

similar to the one used by Gueudet (2017) in her analysis of university teachers’ work. 

Here, a simplified version of this table was produced (Table 1), summarizing the rules 

of actions and operational invariants related to the aims of teaching about volume of 

revolution and preparing students for exams, in the first lesson. Any changes to the 

rules of actions or operational invariants in the second or third lessons are discussed in 

the data analysis section, where we also address the used resources and inferences. 

THE VOLUME OF REVOLUTION: THE THREE LESSONS 

The data presented here are from three lesson observations. Each lesson was 50-minute 

long and taught to two mixed gender groups (here G1 and G2) of Year 13 students 

(17-18 years old). George was teaching the same topic, “volume of revolution”, to G1 

(first and third lessons) and G2 (second lesson). In the first lesson to G1, George started 

by asking the students about the formula for the area of a circle. He, then, used Auto-

graph (a dynamic environment with visualising graphs affordances, see 

http://www.autograph-maths.com) to show the graph of y=x(x-3), which he had 

pre-prepared. George rotated the graph to show the students that it was done in 3D 

mode. After that, he applied trapezium rule (which the students had seen before) on the 

area between the graph and the x-axis. He used a small number of divisions to show 

how the trapezium rule gives an underestimate of the area. Then, he used Simpson’s 

rule (not known to the students at that time) to shade the area between the graph and the 

x-axis. He commented that this rule was more accurate and that the students were going 

to learn more about it in the next lessons. Afterwards, he rotated the shaded area around 

the x-axis, and he got a shape which he described as a “pointy sphere”, a “Pacman”, or 

a “smarty”. Then, George opened another graph, also pre-prepared, this time of y=x, 

and showed the students the rotation of the area between this graph and the x-axis, 

around the x-axis. After that, he tried to use Autograph to show the students slices of 

the solid on the screen and to lead them to the formula of the volume of revolution. 

After trying a few commands in the software, the demonstration was not clear and 

George did not seem satisfied, but he still kept trying to illustrate how the formula can 

be explained by using the graph on Autograph. Then, he moved to talking about who 

came up with the integration notations and explained that integration is like “sum”, that 

was why the symbol for integration (ʃ) is like an (s) shape. His next step was to invite 

students to practice on questions from the textbook (Wiseman & Searle, 2005) when he 

spotted an illustration of the formula (Figure 1, ibid, p. 108). He asked his students to 

look at this illustration and he explained the formula again by using the image. Having 

done that, he started solving textbook questions on the board, explaining that he was 

starting with an “easy example” (Figure 2). Then, he displayed the formula sheet on the 

interactive whiteboard, which seemed to have reminded him that he had not explained 

the formula of the volume of revolution for rotations around the y-axis. So, he went 

quickly through this formula by advising the students to replace y by x and the dx by dy 

http://www.autograph-maths.com/
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in the initial formula. Next, he showed the students some past-exam questions and 

started solving one on the board. He also answered students’ questions on the topic. At 

the end of the lesson, George gave the students paper copies of the formula sheet. 

During the second lesson, to G2 this time, George followed similar steps to introduce 

the volume of revolution. However, in this lesson, instead of using Autograph to ex-

plain the formula for the volume of revolution, he did so by displaying on the board a 

pre- scanned copy of the textbook illustration (Figure 1). Another difference is that, in 

this lesson, he solved two examples from the textbook, the one he solved in the first 

lesson and another one. As a result, he did not have the time to solve past exam ques-

tions within the lesson, although he mentioned that students should solve some of 

these. A third difference was the additional example of y = sin(ax+b)+c he presented 

on Autograph. With this example, he used a, b and c to transform the graph; the rota-

tion of which gave different shapes that seemed very impressive to the students. 

During this lesson, George recalled two questions asked by students in the first lesson 

and answered them. Towards the end of the lesson, he pointed out some questions in 

the textbook which were too difficult and exceeded exam requirement. 

The third lesson was again for G1 where George devoted some time to quickly review 

the idea and formula of volume of revolution. He showed the same example used in the 

previous two lessons y=x(x-3), and, then, used the textbook illustration to explain how 

the formula was deduced. He also used cards to remind the students of the formulae. 

He mentioned that there were two types of questions: “easy ones” (Figure 2) and “more 

difficult” ones (Figure 3). Then, he proceeded with a past-exam question solution and a 

presentation of its mark scheme. After that, he gave the students some time to solve 

questions independently until the end of the lesson. 

In an interview conducted four months later, George was invited to reflect on his way 

of teaching the volume of revolution. He said that he found the textbook diagram better 

than anything he could do on Autograph. He added that he liked using both the soft-

ware and the textbook. He said that the software enabled him to show different shapes 

and added “fun” to the lessons. When using Autograph, he mentioned that he used 

familiar functions to reinforce students’ previous knowledge. Specifically, he used y = 

sin(ax+b)+c to reinforce students’ previous knowledge about transformations. He 

added that the use of past exam questions came in response to students’ requests and 

needs to practice for the exam. 

   

Figure 1: Textbook illustration (Wiseman & 

Searle, 2005, p.108) and the formula for 

volume of revolution. 

Figure 2: An 

“easy” ques-

tion. 

Figure 3: A “more 

difficult” question. 
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DATA ANALYSIS 

The resources George used in these three lessons were: interactive white board; board, 

curriculum of year 13; textbooks; past exam questions and mark schemes; past 

teaching-experience; students’ previous knowledge; calculators; notebooks; Auto-

graph and pre-prepared graphs; formulae sheet; personal website; school website; and, 

formulae cards. Although the formula cards were on display next to the board all the 

time and shown to the students only in the second and third lessons while the formulae 

sheet was used in the first and second lessons, we would say that the resources stayed 

almost the same across the three lessons. 

The schemes of use George followed during all three lessons had the same aims: a spe-

cific aim “teach students about the volume of revolution”, and a more general one “to 

prepare students for the exams”. In Table 1, we have summarised two elements of his 

scheme of use during the first lesson: rules of actions (numbered R1, R2… in the first 

column following the order of events during the first lesson), and operational invariant 

(numbered O1, O2… in the second column not in chronological order). In the second 

and third lessons, during which George introduced the volume of revolution to G2 and 

continued working on the topic with G1, the operational invariants stayed the same. 

Although, most of the rules of actions remained the same, we observed some differ-

ences in their appearance in George’s teaching and in their order. In the rest of our 

analysis we focus on these differences in the rules of actions by making references to 

the R1-R20 in Table 1. We also discuss the inferences in George’s scheme of use as 

those were identified in the three observations and the follow-up interview. 

In the second lesson, George started by R15 (Table 1): “Use the formula sheet to show 

the formula”, and then showed the textbook diagram (Figure 1) on the interactive 

whiteboard. After that, he followed R2-R8 by showing graphs of function and rotations 

of areas on Autograph, in a way similar to the way he followed in the first lesson. Then, 

he proceeded with R12: “Use the textbook diagram to explain the formula” without 

attempting to do R9 “Introduce the formula for volume of revolution using Auto-

graph”. Next, he followed R13-R19. In the third lesson, with G1, George continued 

working on the volume of revolution topic by quickly going though R2-R7, then 

moved to R12 followed by R19. In the last two lessons, R9 “Introduce the formula for 

volume of revolution using Autograph” was not a rule of action. In the interview, 

George commented on this by saying that the textbook diagram “show[ed] it cut up a 

little bit easier […] and [was] better than anything [he] could do on Autograph” (O5). 

As a result, George’s first inference from the three lessons is that he found the textbook 

diagram more helpful in explaining the formulae. He added that he found it useful to 

have “both Autograph and the textbook”. This leads us to his other inference: it is 

useful to use both Autograph and the textbook as resources. Another inference is re-

lated to the functions entered on Autograph and how these were chosen to expand and 

build on students’ previous knowledge (O3).  
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Table 1: Rules of actions and operational invariants for the first lesson’s scheme  

George commented during the interview on his choice of functions to graph on Au-

tograph, and specifically his use of the sine function during the second lesson: 

Partly from using that in previous lessons. So, knowing that that is going to give an in-

teresting shape, and from playing around with sine graphs and things like that in previous 

lessons. So, using functions that they were aware of […] So, a transformation of the sine 

curve I think, we were doing that with it. What I’m also doing there I am also reinforcing or 

going back over making sure that they know about their transformations. So, I’m kind of 

Rules of action Operational invariants 

R1. Remind students of the formula of circle’s area  

R2. Use Autograph to show the students the graph of  
 y=x(x-3) drawn in 3D  

R3. Connect new ideas with students’ previous knowledge  

R4. Use trapezium rule and Simpson’s rule on Autograph  

R5. Explain that Simpson’s rule is more accurate than tra-

pezium rule in this case  

R6. Rotate the shaded area around the x-axis  

R7. Show the students different positions and rotations of the 

shaded area  

R8. Show another example prepared previously for the graph 

of y=x  

R9. Introduce the formula for volume of revolution using 

Autograph  

R10. Give an idea about the history of integration notation  

R11. Explain why integration is used to find the volume of 

revolution  

R12. Use the textbook diagram to explain the formula  

R13. Solve an example from the textbook  

R14. Start with an “easy” question  

R15. Use the formula sheet to show the formula  

R16. Explain the formula for rotations around the y-axis  

R17. Give tips to the students  

R18. Answer students’ questions  

R19. Use past exam questions to give students idea about how 

they are tested on the formula of revolution  

R20. Give hard copies of the formula sheet 

O1. Autograph helps 

students visualise 

the volume of rev-

olution in 3D  

O2. With Autograph we 

“can make weird 

shapes and have 

fun”  

O3. Using a familiar 

graph helps “rein-

force previous 

knowledge”  

O4. Using pre-prepared 

graphs helps in fo-

cusing on the new 

topic and saves time 

O5. The textbook dia-

gram works better 

than Autograph in 

terms of explaining 

the formula  

O6. The use of ex-

am-style questions 

is in response to 

students’ needs, and 

to give them some 

practice for the 

exam 
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teaching two topics at once. So, although we are doing this volume of revolution, I am also 

reminding them of what they do when they do their transformations because I know they 

are going to get asked about that one 

George also thought that using the sine function is “more interesting than using poly-

nomials”. However, he only showed the sine function in the second lesson and not in 

the first or third. It was not clear from the data collected whether he showed the sine 

function to the G1 in a different lesson, or whether he chose not to show it to them for 

any reason. However, in the interview he admitted explicitly that what he did with the 

sine function on Autograph was a good choice for the volume of revolution topic. In 

terms of the use of past-exam questions, George used these after solving one example 

from the textbook in the first lesson (R19). In the second lesson, he mentioned he was 

going to solve past-exam questions, but the lesson finished before he did. In the third 

lesson, he solved a past-exam question and explained its mark-scheme on the board. 

When asked about these choices, George mentioned that it was in response to students’ 

needs that he now used past-exam questions frequently (O6). He added that students 

felt that not all textbook questions were exam-style questions, and some were even 

“more difficult” than exam questions (which is something he pointed to in the second 

lesson). It was also because he wanted to give his students some practice for the exam. 

As a result, he chose to use past-exam questions for every topic he taught. Finally, we 

noted that George did not have the time to solve past exam questions in the second 

lesson, maybe because he chose to solve two textbook examples although this was not 

evident in the data, which do not indicate the warrant of this choice. 

DISCUSSION 

The resources George used stayed the same throughout the three lessons. However, we 

noticed differences in the way these resources were used. George’s experience with 

Autograph in the first lesson, led him to amend the way he used it in the next lessons by 

deciding to use it for visualization of the concept of volume of revolution, but not to 

explain the formula. Hence, based on the experience of the first lesson which became a 

resource for George in the following lessons, we noticed his inference in relation to the 

textbook diagram (Figure 1) being preferred for the purpose of explaining the formula 

for the volume of revolution. Also, we observed some variation in the order of the rules 

of actions between the three lessons, reflecting the interplay between Autograph and 

the textbook. In terms of the use of past-exam questions, George considered these an 

important resource for every topic. During the interview, it was not possible to focus 

on every change or difference from one lesson to another (e.g. not using the sine 

function in the first and third lessons) because the interview was done a few months 

after the observations and this is one of the limitations of this study. In general, from 

the data collected and by using the documentational approach we explored how 

George’s practices evolved, how he reflected on that, how he re-sourced his experi-

ences, and what inferences he adopted during and after teaching these three lessons. 

Findings from our analysis demonstrate the potencies of the documentational approach 

in our insight into teachers’ ‘live’ work by capturing also the dynamic nature of this 
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work. Observations of lessons supported by further evidence from interviews and re-

flections from the teachers can explore the micro-evolution, namely the small changes 

and the rationale behind these changes, of teachers’ documents from one lesson to 

another. We consider this micro-evolution in this instance as re-scheming from one 

lesson to another, implying that the teacher was scheming “again or differently” (Ad-

ler, 2000, p. 207) or recycling his scheme from one lesson to another. 
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The purpose of this paper is to discuss the factors influencing preservice teachers’ 

in-the-moment noticing that emerged from a research on noticing skills.  We set up an 

environment where preservice teachers worked with a group of students on 

mathematical tasks for 24 weeks. We focused on the mathematical opportunities 

occurred during task implementations and how preservice teachers respond to those 

opportunities as an indicator of their noticing skills. We analysed their interactions 

with students and coded their responding actions according to our coding scheme. We 

recognized that not only preservice teachers’ knowledge or noticing skills but other 

factors such as research setting, students’ prior knowledge and tasks were likely to 

influence how they responded to students’ mathematics. 

INTRODUCTION 

As parallel to studies on improving quality of education, training programs for both 

in-service and preservice teachers (PSTs) are reformed to justify such needs of current 

system (Cochran-Smith & Villegas, 2015). Because teachers’ knowledge and skills 

have an impact on students’ achievement, which in turn influence the quality 

(Campbell et al., 2014), scholars investigate for effective ways of improving PSTs’ 

professional knowledge and skills. Recently, many studies are conducted on teachers’ 

noticing skills not only because there is a mutual relationship between noticing and 

teachers’ pedagogical content knowledge (PCK) (van Zoest et al., 2017) but also it 

refers to the “guidance” or “facilitator” role of a teacher in a student-centred classroom 

environment such that she tries to elicit students’ thinking and support their 

understanding (van Zoest et al., 2017).  

The studies on noticing are mostly based on analysis of own or others’ videos of 

teaching in terms of oral or written reflections (e.g., Barnhart & van Es, 2015).  As 

different from such studies, in this study we arranged an environment that enabled us to 

collect data about PSTs’ in-the-moment noticing while they were working with a 

group of four students on the tasks prepared by the research team. We videotaped each 

PST’s interactions with students and analysed PSTs’ actions according to our coding 

scheme. We also asked PSTs to reflect on each task implementation both orally and 

written. We attempted to triangulate all data to understand the nature of PSTs’ noticing 

skills. In this paper, we will discuss some issues which were likely to influence PSTs’ 

in-the-moment noticing. 
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THEORETICAL FRAMEWORK 

In this study we used Jacobs and his colleagues’ (Jacobs, Lamp, & Philipp, 2010) 

definition of professional noticing of students’ thinking to describe PSTs’ noticing 

skills. They defined noticing as having three interrelated components as attending to 

students’ strategies, interpreting their understanding and deciding how to respond to 

students. Although these components can be easily differentiated in oral or written re-

flections of teachers, it is hard to make such a distinction while analysing in-the-mo-

ment noticing. Because interpreting students’ understanding is a mental process, it may 

not be identified explicitly unless the teacher interprets students’ strategies aloud 

during the instruction. Therefore, we assessed PSTs’ interpretation of students’ 

understanding within their responding actions. 

Although Jacobs and his colleagues’ (Jacobs, et al., 2010) definition provides an idea 

of what noticing involves in, it is difficult to decide what is noteworthy to attend in 

students’ strategies or thinking. Leatham and his colleagues (Leatham, Peterson, 

Stockero, & van Zoest, 2015) defined Mathematically Significant Pedagogical Op-

portunity to Build on Student Thinking (MOST) to address such difficulty in noticing 

studies. They described a MOST instance as a composition of three sequential com-

ponents such that it should be emerged from student’s mathematical thinking, be ma-

thematically significant and be a pedagogical opportunity. They noted that students’ 

misconceptions or incomplete reasoning might be a MOST instance as well as their 

correct answers based on use of different strategies or approaches. However, such 

correct or incorrect answer of a student should be in the context of that particular lesson 

and have a potential to support other students’ understanding of the current subject. 

Because MOST provides more tangible impetus for the initial step of noticing, in this 

study, we analysed PSTs’ in-the-moment noticing in terms of how they noticed the 

MOST instances occurred during task implementation. Therefore, we first identified 

MOST instances occurred in each video and then we analysed whether the PST 

attended to that instance or not and if she did, how she responded to that instance.  

METHODOLOGY 

Participants 

A total of 10 preservice mathematics teachers participated in this study in 2016-2017 

academic year. Seven of them attended to study for two semesters while others 

attended only one semester. They were all undergraduate students such that four of 

them were sophomore (Asya, Aydan, Ayla, Aysun) four were junior (Bahar, Berna, 

Beste, Burak) and others were senior (Ceren, Ceyda) students. Although the number of 

courses they took was varying, they had already taken some core mathematics and 

pedagogy courses such as calculus and educational psychology.  

Research Setting 

The study was conducted under a university-school collaboration program between a 

large university in Turkey and a local middle school in the neighbourhood of the 
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university. In the line of the collaboration, as the research team, we took the responsi-

bility of administration of an elective mathematics course offered for the seventh grade 

students in the school. We also offered an elective course for PSTs in the university 

such that PSTs were expected to implement mathematical tasks in that elective course.  

At the beginning of the semester, we talked about tasks, task design and implementa-

tion, students’ common misconceptions, and effective ways of understanding and 

supporting students’ mathematical thinking. We discussed these issues via some 

sample videos and student work that we had in our repertoire from our earlier studies. 

After one-month preparation period, we assigned a group of four students for each PST 

that they would work with in the school for a year. We attempted to make 

heterogeneous groups based on the test results we administered to students. 

In the school, we followed a 3-step process for task implementation. At first, PSTs 

introduced the task to their groups and let them work on the task individually 

approximately for 20 minutes. The PSTs were not allowed to intervene but take some 

notes about students’ work at this step. After individual work, students were asked to 

discuss their answers as a group. They were allowed to change their answers during the 

group discussion. As a final step, after group discussion, PSTs began to interact with 

students. They were supposed to address issues that they noted during the individual 

work or group discussion. They were told not to explain the correct solution 

immediately but allow students to figure out or convince each other about the correct 

answer. As students were discussing their answers with PSTs, they were not allowed to 

change their answers but write their new solution to a separate piece of paper. Each 

task implementation process was videotaped and students’ worksheets and extra sheets 

were collected at the end. 

After each task implementation, we immediately met with PSTs for oral reflection and 

talked about how the implementation went, how students performed on the task, 

whether they had been some unexpected events, how they addressed to students’ 

mistakes or misconceptions. Then we asked them to write a reflection based on their 

videos and students’ worksheets. Two days after the implementation we met with PSTs 

to discuss the following week’s tasks.  

As the research team, we prepared 20 tasks such that 5 of them were about numbers, 7 

of them were algebra, 5 of them were geometry and 3 of them were data and statistics. 

We also asked PSTs to prepare at least one task for each content area for their own 

groups and implement them. We used 2 lesson hours (approx. 80 min.) for each task 

implementation and we spent a total of 24 weeks in the school. 

Data Collection and Analysis 

We collected data through videos, written documents, achievement tests, and belief 

scales. We videotaped all PST-student interactions and reflection sessions. We applied 

a PCK test to PSTs and a mathematics achievement test to the students. We attempted 

to learn about students’ beliefs about mathematics and also PSTs’ beliefs about 
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teaching mathematics through Likert-type scales. We also collected PSTs’ written 

reflections, their assignments and students’ written work on tasks. 

We used videos of task implementations to describe PSTs’ in-the-moment noticing. 

However for a comprehensive evaluation of PSTs’ noticing skills, we also used PSTs’ 

oral and written reflections, their assignments and their PCK-test results. We 

developed a coding scheme to analyse PSTs’ noticing. As similar to coding 

frameworks suggested in the literature (e.g., van Es & Sherin, 2002; Barnhart & van 

Es, 2015) we paid attention to the level of sophistication in PSTs’ reflections and 

actions. However, we classified PSTs’ in-the-moment responding actions under two 

categories as answer-focused and understanding-focused such that PSTs’ attempts to 

explain the solution or orient students towards to correct answer through questioning 

are classified under answer-focused while their attempts to explore or elaborate 

students’ thinking and understanding are classified under understanding-focused. We 

shared the responsibility of analysing each PST’s data and then we met in weekly basis 

and discussed our coding. Thus, we justified agreement on coding of each PST’s data.  

As a part of our analysis we also paid attention to some factors which were likely to 

influence PSTs’ in-the-moment noticing. Because there are not much studies on 

in-the-moment noticing, we decided to discuss these factors to shed light on further 

studies as well as interpret our findings in the line of such constraints.  

FINDINGS 

The overall aim of our research was to investigate the nature of PSTs’ noticing skills. 

As we were trying to understand PSTs’ noticing skills we also looked for what were 

likely to influence their noticing as well as how it would affect students’ learning and 

understanding. We have already analysed the tests and the scales given to PSTs and 

students however we completed the analysis of videos and written reflections of 10 

tasks implemented during the first semester. We recognized that some factors related 

to PSTs, students, tasks, and implementation process were likely to influence PSTs’ 

noticing and responding actions. 

Preservice Teachers’ Knowledge and Skills 

The participant PSTs were varying in terms of number of mathematical and 

pedagogical courses they took so far as well as their teaching experiences in the form 

of tutoring. Indeed, PSTs’ ability to recognize MOST instances, decide how to act and 

manage a group work are related to their PCK (van Zoest et al., 2017). Because they 

had not taken much courses that would feed their PCK it was not surprising that they 

differed in terms of MOST instances they attended and their responding actions as well 

as test scores. In Table 1, PSTs’ pre and post test scores and the frequencies of how 

they attended to MOST instances are given. 

As a quantitative measure, we developed and administered a 21-item PCK test to PSTs 

at the beginning and at the end of the study. At the beginning of the study, out of 47 

points, and amongst whom attended two semesters, Aydan got the lowest score as 20 
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and Bahar got the highest score as 28. Aydan was a sophomore where Bahar was a 

junior student. Bahar had one-year tutoring experience whereas Aydan did not have 

any. At the end of the study, we obtained an improvement in PSTs’ PCK scores such 

that Wilcoxon signed rank test revealed that the difference between tests was 

significant at level .005 (p=.018).  

   

MOST 

PST Pre Post Missed 

Attended 

Answer-focused 

Attended 

Understanding-focused 

Asya 24.5 26.5 3 21 1 

Aydan 20 34.5 5 14 

 Ayla 27.5 33.5 4 19 

 Aysun 22.5 35.5 3 16 1 

Bahar 28 34.5 
 

25 2 

Berna 24.5 34.5 3 19 

 Beste 25.5 30 
 

22 

 Ceren 26 30 5 22 1 

Ceyda* 34.5 35.5 -- -- -- 

Burak* 26.5 29.5 -- -- -- 

Table 1: PSTs’ test scores and distribution of MOST instances. *They participated in 

the study during the second semester. 

As a qualitative measure we analysed PSTs’ implementations and reflections. We 

identified a total of 186 MOST instances during the first semester. PSTs missed 23 of 

them such that Aydan missed 5 of her MOST instances while Bahar did not miss any of 

her MOSTs. We recognized that sophomore and junior PSTs paid more attention to 

make students learn from each other instead of intervening their discussions. Out of 

163 MOST instances attended, in 158 of them PST used answered-focused responding 

actions rather than using probing questions to elicit students’ thinking. There were 

cases where one of the students gave the correct answer and others unquestionably 

accepted it. For instance, in one of the tasks about integers some students did the 

following -180-90=-90 while others calculated the correct answer as -270. The 

students convinced their peers by saying that “when there are two minus signs then 

they would add the numbers.” The PSTs did not force those students to explain their 

reasoning for -90 neither during group discussions nor during interactions. When they 

began to interact with students they mostly attempted to make students to figure out 

correct answer by giving reference to that group discussion.  

Another issue related with PSTs’ PCK as well as their noticing was having tutoring 

experience or not. Except Aydan, Ayla and Ceren, all PSTs had some sort of tutoring 

experiences with a single student or a large group of students. Such an experience 

contributed to their repertoire of students’ difficulties and misconceptions in mathe-
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matics which was likely to influence their ability of attending to the MOSTs. For in-

stance, as noted above, Bahar had one-year tutoring experience and she did not miss 

any of her MOSTs. However, while tutoring, the PSTs’ major concern was to explain 

the content and solve the problems rather than support students’ conceptual under-

standing. Because they were used to interact with students in that way, their reactions 

to MOST instance were likely to be in answer-focused fashion. For instance, out of her 

27 MOST instances in 25 of them, Bahar attempted to either guide students to correct 

answers through questioning or she explained the solution of the task.  

Students’ Prior Knowledge 

Students’ prior knowledge was one of the determinants of both occurrence of MOST 

instances and also style of PST-student interaction. Students’ misconceptions and 

incorrect procedures are source of MOST instances as well as their alternative 

solutions for given problems (van Zoest et al, 2017). The achievement level of the 

students that participated in this study was not high as inferred from the test results and 

students’ work. Out of 50 points, the mean of pre-test was 9.28 and of post-test was 

23.98. Therefore, almost all MOST instances (183 instances out of 186) we identified 

emerged from student’s misconceptions or incomplete knowledge and thinking. 

Students’ such lack of knowledge shaped PSTs’ responding actions for MOST 

instances. Because students did not know the basis of the content that had been 

discussing nor its connections with other concepts, they failed to find the correct 

answer or explain their reasoning for their answers. Thus, PSTs’ attempts for exploring 

and elaborating students’ mathematical understanding did not work for many students 

when the MOST instance was based on students’ misconceptions. Then, PSTs gave up 

asking for probing questions but make students to figure out or understand the correct 

answer or solution. That is, although PSTs wanted to address students’ conceptual 

understanding as well as their procedural knowledge, because of students’ lack of 

knowledge, they displayed one of the answer-focused responding actions instead of 

understanding-focused actions, as seen in Table 1. 

Nature of Tasks 

In this study, we used tasks as a medium for PST-student interactions such that we 

analysed PSTs’ noticing in terms of the MOST instances occurred during the imple-

mentation of these tasks. We prepared the tasks in aligned with mathematics 

curriculum to provide students an opportunity to apply and explore the concepts that 

they had learned in their regular mathematics lessons. Therefore, the source and the 

number of MOST instances that we observed varied. For instance, in one of the integer 

tasks we made students to step up and down on stairs and then write the operations 

mathematically because we aimed to make students to discover operations with 

integers by relating them with real life situations. We observed that some of the 

students wrote -1-(-2)=-3 to represent “As getting 2 steps down from step #-1 you will 

reach step #-3.” Although they recognized that the answer would be -3, they placed “-” 

sign for 2 because problem says “steps down”. Indeed, it was one of the MOST 

instances that we expected to be occurred in this task. Thus, the PSTs attempted to 
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respond such MOST instances during their interactions with students. In some of the 

tasks, we wanted students to make practice of some mathematical principles and 

procedures. For instance, in geometry tasks we asked students to calculate the area of 

given geometric figures. Because they needed to apply correct formula, we did not 

observe so many MOST instances in such tasks. In parallel to such differences in the 

nature of the tasks, PSTs’ responding actions for those MOST instances also varied. 

For instance, for the integer task they tried to support students’ conceptual 

understanding of integers but for geometry task their focus was to make students to 

apply correct procedure and find the answer. 

Task Implementation Procedure 

As mentioned above we asked PSTs to follow a 3-step implementation process: 

individual work, group discussion and PST-students interaction. We also asked them 

not to intervene during the individual work or group discussion but monitor students 

and encourage them to join in group discussion. The purpose of group discussion was 

to support students’ collaborative work and peer learning. However, in some cases, 

students addressed to MOST instances during group discussions such that one of the 

students explained the procedures or told about the correct answers. Then, PSTs either 

preferred to ask students to repeat the correct answer or make a summary of what was 

discussed in the group or announce that it was discussed in the group so skipped to 

another instance. There were a few cases where PSTs asked for students’ thinking 

about the MOST instance occurred before the group discussion but was corrected by 

the student then. Even though it was the case, the student did not want to tell much 

about their earlier thoughts but explained the correct answer.  

Furthermore, there were some cases where PSTs could not manage the group such that 

they devoted too much time for group discussion. Then, either there was no room for 

PST-students interactions or PSTs could not discuss all MOST instances. We 

recognized that they were aware of those instances, since in their reflections they noted 

that they could not respond to some instances because time was up. Out of 23 missed 

MOSTs, they mentioned 9 of them in their written reports. 

CONCLUSION 

To increase the quality of education we need to equip teachers with various knowledge 

and skills that enable them to create rich learning environment for their students and 

also support their understanding and thinking (Campbell et al., 2014). In this study, we 

focused on PSTs’ in-the-moment noticing skills such that we tried to understand the 

nature of their noticing in terms of whether or not they attended to the MOST instances 

and if so, how they responded to those instances. Although we tried to provide similar 

conditions for PSTs, we recognized that their academic background and experiences, 

the tasks used during the implementations, students’ performances on tasks and the 

implementation procedure were likely to influence their noticing and responding 

actions. A variety in PSTs’ background is acceptable and might be required to 

understand the nature of PSTs’ noticing skills. However, students’ lack of knowledge 
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was an inhibitor for rich PST-student interactions such that PSTs were unable to 

encourage students to explain their thinking and reasoning. Thus, they mostly 

responded to students in terms of having them to figure out the correct procedures and 

solution. Furthermore, some tasks were procedural such that there was a little room for 

potential MOST instances and also PST-student interactions. Therefore, rich tasks 

should be used to investigate the nature of PSTs’ noticing. Finally, to evaluate how a 

PST responded to a student when a MOST instance was observed in her work, other 

students should not be let to intervene. Otherwise, the student gave up explaining her 

reasoning or solution. Briefly, while setting up an environment for investigating 

noticing skills, the students, the tasks and the procedure should be determined 

cautiously.   
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CORE MATHEMATICAL TEACHING PRACTICES IN 

ALGEBRAIC AND FUNCTIONAL RELATIONS  
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Teaching and learning algebra in school mathematics is challenging. The purpose of 

this study is to explore the core classroom practices that support students’ develop-

ment of algebraic thinking. By analysing 5 video-taped lessons of two middle school 

mathematics teachers who were in different career stages in Korea, we began identify-

ing the essential aspects of classroom practices that create rich learning opportunities 

for algebraic thinking and that support students’ access to those learning opportu-

nities. Our findings also discuss what to consider for Korean mathematics teachers to 

support their students to develop agency, authority and identity in learning middle 

school levels of algebra.  

INTRODUCTION  

What classroom practices are more effective to promote students’ conceptual deve-

lopment in algebra and algebraic thinking? Algebra has been characterized as a gate-

way to higher mathematical learning and success in the 21st century (NCTM, 2000). 

However, teaching and learning algebra in school mathematics is challenging. Al-

though curriculum developers and educational researchers are beginning to explore the 

kinds of mathematical experiences that elementary and middle school students need in 

order to prepare them for the formal study of algebra in later grades (Carpenter, 

Franke, & Levi, 2003), there remains a noticeable disconnect between the research on 

the learning of school algebra and the research on the teaching of algebra; researchers 

still know relatively little about algebra teaching (Kieran, 2007). It’s not yet clear how 

teachers can promote students’ conceptual development, especially on the topic of 

algebra. The purpose of this study is to explore the core classroom practices that 

support students’ development of algebraic thinking by looking at two expert teachers’ 

lessons. Knowledge of instructional practices in one country may help teachers in 

another country ability to address the issues and challenges that hinder their students’ 

learning of mathematics. Our study addresses the following research questions: (1) 

what are the characteristics of classroom practices for promoting students’ de-

velopment of algebraic concepts and practices in a Korean context?; (2) what kinds of 

learning opportunities are provided to support the students’ development of algebraic 

concepts and practices?; and (3) how are students supported to access to those learning 

opportunities?  
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THEORETICAL FRAMEWORK 

Teaching and Learning Algebraic Thinking  

While algebra has been considered as a gateway to higher mathematical learning and 

success in the advanced learning, national assessments have discovered that many 

students struggle with higher level algebraic problems. They often have difficulties 

with translating from verbal to symbolic, communicating their reasoning, and justi-

fying their methods. The importance of algebraic thinking is related to mathematical 

practices. Two types of teaching algebraic thinking that need to develop include: (1) 

engaging in algebraic representations with concreteness fading strategy, and (2) 

modelling from contextual algebraic problems. 

First, the present study is driven by a concreteness fading method by focusing on al-

gebraic representations. Concreteness fading is built based on Piaget’s (1952) and Bru-

ner’s (1966) learning theories that emphasize the notion of transition from concrete to 

abstract representations. Both Piaget and Bruner suggest that students need to begin 

learning with concrete materials or visual representations and then proceed with 

abstract representations. Goldston and Son (2005) defined concreteness fading as the 

process of successively decreasing the concreteness of a simulation with the intent of 

eventually attaining a relatively idealized and decontextualized representation that is 

still clearly connected to the physical situation that it models. The previous research 

has proved this concreteness fading to be an effective method for learning scientific 

principles and mathematical rules (McNeil & Fyfe, 2012).  

We also look at contextual algebraic problems building on Schoenfeld and the Tea-

ching for Robust Understanding Project (2016). Schoenfeld and his colleagues articu-

late “robustness criteria” for contextual algebraic tasks that include: (1) reading and in-

terpreting text, and understanding the contexts describe in problem statements; (2) 

identifying salient quantities in a problem and articulating relationships between them 

(3) Using algebraic representations of relationships; (4) Executing algebraic procedu-

res and checking solutions; and (5) Explaining and justifying reasoning. While algebra 

is commonly defined as simply a form of “doing” instead of a “way of thinking”, it is 

important to examine the opportunities to engage in these algebraic practices with the 

aforementioned criteria.  

The Essential Aspects of Mathematics Teaching: Focusing on Student Learning 

Opportunities  

There has been significant research and discussions on what makes good mathematics 

teaching and how we can characterize it internationally. There are various ways and 

factors that teachers make good mathematics teaching, as seen in many studies with 

various foci, such as teacher knowledge (e.g., Ball, Thames, & Phelps, 2008) or tea-

ching practice (e.g., Mathematical Quality of Instruction, MQI: University of Michi-

gan, 2006). These kinds of research have contributed to our understanding on the es-

sential aspects of teacher knowledge and the act of teaching. However, teaching is a 

cultural activity (Stigler & Hiebert, 1999) so that the act of teaching may not be con-



Kim & Son 

 

PME 42 – 2018 3 – 213 

sidered as absolute. There are many different moves and ways to make good tea-

ching—which is, guiding students to learn. Thus we attempt to explore the opportuni-

ties to learn for students to develop algebraic concepts and to engage in mathematical 

practices particularly of algebraic thinking. To do so, we use Teaching for Robust 

Understanding of Mathematics (TRU Math) framework (Schoenfeld & the Teaching 

for Robust Understanding Project, 2016) as the TRU Math framework provides es-

sential perspectives on students’ learning opportunities (Schoenfeld, 2018) and how 

students access those opportunities. Also, as our data in this study is from Korean 

classrooms, TRU Math was successfully applied to see the essential features of lear-

ning opportunities in Korean classroom culture in the previous study (Kim, 2017).  

TRU Math framework provides five dimensions: (1) the mathematics—the extent to 

which classroom activity structures provide opportunities for students to become 

knowledgeable, flexible, and resourceful disciplinary thinkers; (2) cognitive 

demand—the extent to which students have opportunities to grapple with and make 

sense of important disciplinary ideas and their use; (3) equitable access to content—the 

extent to which classroom activity structures invite and support the active engagement 

of all of the students in the classroom with the core disciplinary content being 

addressed by the class; (4) agency, ownership, and identify—the extent to which 

students are provided opportunities to “walk the walk and talk the talk” to contribute to 

conversations about disciplinary ideas, to build on others’ ideas and have others build 

on theirs, in ways that contribute to their development of agency, ownership, and the 

positive identities as thinkers and learners; and (5) formative assessment—the extent to 

which classroom activities elicit student thinking and subsequent interactions respond 

to those ideas, building on productive beginnings and addressing emerging 

misunderstandings. We basically follow these five dimensions as our perspectives on 

seeing learning opportunities in our classroom observation data, but we particularly 

focus on algebraic thinking in more details when we see the first dimension, the 

mathematics.  

METHODS  

Research Contexts, Participants and Data Collection 

This study is drawn upon a larger funded cross-cultural project. The purpose of the 

project is to identify the core mathematical knowledge and practice for teaching alge-

braic and functional relations. In this article, we focus on two teachers’ classrooms. 

The first participant (Ms. L) was a 7th grade math teacher (15 years of middle school 

teaching experience) in the first author’s University affiliated middle school and was 

recommended to participate in this study by her school principal. The second partici-

pant (Mr. K), a 7th grade teacher (31 years of middle school teaching), was a master 

teacher in Seoul, Korea and he was well-known in his school district. He used an 

alternative textbook that his textbook development team created. According to his 

team, the goals of the alternative textbook aimed at exploring which textbook supports 

student mathematical thinking and mathematical practices rather than pieces of 
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knowledge, and helps students’ self-discovery or self-invention of mathematical 

concepts. The teachers were interviewed and their everyday teaching and researched 

lesson teaching were observed and videotaped.  

Main data sources for the study were 5 video-taped lessons: two lessons from Ms. L 

(the very first algebra introductory unit—introducing letters to represent variables—, 

and the very last unit of linear equations) and three lessons of linear functions unit from 

Mr. K. Teacher interviews were used as supplemental in this study.  

Analysis  

All the video-taped lessons were transcribed and chunked as episodes to be analysed. 

We firstly identified each teacher’s focused algebra specific topic(s) and algebra speci-

fic learning opportunities. Here, we provide algebra specific learning opportunities 

from Mr. K’s lessons as he used contextually rich algebra textbooks. We, then, charac-

terized their classroom practices to describe how the learning opportunities were 

accessed with respect to TRU Math framework (see Schoenfeld et al., 2016 for more 

detailed information). 

FINDINGS 

We found that two teachers provided cognitively demanding learning opportunities by 

using contextually rich algebraic tasks. Most of classroom activities supported mea-

ningful connections between procedures and concepts by allowing students to explain 

their ideas and reasoning. We also observed that two teachers structured classroom 

activities by emphasizing concreteness fading. In this section, we firstly describe the 

learning opportunities from contextually rich algebraic textbooks from Mr. K’s cases. 

Then, we characterize both teachers’ classroom practices with foci of similarities and 

differences in terms of the five essential aspects of mathematics teaching using TRU 

Math framework to describe how students in each classroom were supported to access 

to those learning opportunities. Due to the page limits, we provide the descriptions of 

two teachers’ classrooms, but we will provide actual video data as the evidence for our 

analytical descriptions at the PME 42 session. The following subheadings are 

represented the core classroom practices of two Korean teachers. 

Algebra Specific Learning Opportunities   

The topic of Mr. K’s observed lessons focused on a linear function, and he used the 

alternative textbook consisting of various contexts for development concepts and 

mathematical thinking process. Mr. K created and provided learning opportunities 

using the contextual problems in the textbook as follows.  

First, Mr. K facilitated students to interpret and understand contexts by analysing the 

contextual situations and helping them link the contextual scenario to linear relation-

ships. At the beginning unit of a linear function, Mr. K provided a contextually rich 

task which was a part of news article describing the relationships between heat waves 

and the number of deaths. Mr. K analysed the article to help students understand what 

the article said and helped students link the contextual scenario to linear relationships. 
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For example, he elicited students to seek how they could anticipate the number of 

deaths several years later when we assumed that the heat waves increased every year in 

a constant rate. Students started to discuss what they noticed and how they interpreted 

with regards to the rate of change. Second, Mr. K provided opportunities students to 

identify quantities from the contextual scenario and to articulate relationships between 

them by making students discuss the quantities and their relationships. He firstly asked 

students to write down what they found from the analysis of contextual problems, then 

asked them to talk about the relationships between the quantities and variables. For 

example, students were asked to articulate the rate of change of one variable when 

another variable changes constantly. Third, Mr. K helped students generate algebraic 

representations of the relationships between quantities using variable notations of x 

and y. Students had opportunities to discuss the algebraic notations of linear functions 

using x and y based on what they learned from the lesson unit of linear equations. Mr. 

K also provided another algebraic notion of a function, y=f(x). Last, Mr. K supported 

students to make connections between representations and concepts. Students had 

opportunities to link concepts between prior concept of direct proportion and the 

current concept of linear function. They also had opportunities to talk about how the 

different algebraic notions and concepts of functions such as y=ax+b, y=f(x), and 

functions as correspondence and as relationships. He used concreteness fading strategy 

to support students’ conceptual development. He started with careful explanations of 

contextual situations and helped students to analyse the situations with their own 

words. He helped students create number line and a coordinate plane, which are visual 

representations, then students had opportunities to make connections among those 

representations and to introduce and create abstract algebraic notions.  

Meaningful Mathematics Learning Opportunity  

Both teachers’ classroom activities were very focused on the targeted mathematical 

ideas and concepts. Korean mathematics lessons usually began with the review of 

previous lesson concepts, and this activity provided students opportunities to build on 

their prior knowledge and to make connection between procedures, concepts and con-

texts. Mr. K and Ms. L also provided this opportunity at the beginning of the lessons. 

During the main body of lesson, Mr. K’s lesson structure had mostly whole class 

discussion but he also used small group activities when he thought students need to 

discuss around the tasks and questions he asked, particularly when students’ thinking 

needed more elicited and their talks needed to be elaborated. Ms. L planed small group 

activity structure and she followed her lesson plan as she usually used group work 

tasks that she created and reorganized textbooks and lesson materials. In any structure, 

the main mathematical activities of both teachers’ lessons and the tasks that they used 

were very focused and students had opportunities to think conceptually and to discuss 

the focused concepts in the tasks and in teacher questionings. Students also engaged in 

procedural process types of problems and this activity was also very focused around 

the concepts.  



Kim & Son 

  

3 – 216 PME 42 – 2018 

High Levels of Cognitive Demands 

For this dimension, Mr. K’s lessons mostly maintained high levels of cognitive de-

mands while Ms. L’s lessons showed different degrees of richness across episodes. Mr. 

K continuously supported students to engage in productive struggles with his team’s 

invented textbook materials that contained a lot of contextual concepts and problems. 

His questioning pushed students to think further around the concepts and to reason 

abstractly based on the concrete contexts. On the other hand, some of Ms. L’s lessons 

maintained high cognitive demands levels, but others showed middle or even low 

levels. For example, her group work tasks required students to create a poster using 16 

cards (8 problem cards, and 8 solution cards) as a review of linear equation unit and 

they provided opportunities students to engage in productive struggles. Students were 

required to solve the equation problems and to match the cards with the solution cards, 

and to present and explain what they did. However, the teacher’s guidance somewhat 

removed students’ productive struggles by asking procedural process types of 

questions or just explaining what she thought rather than asking thinkable questions. 

However, we found that most tasks that both teachers provided students contained high 

level of cognitive demands for conceptual development, but the questioning strategies 

were shown differently across two teachers.  

Structured Access to Mathematical Contents  

Both teachers supported all students to engage in meaningful mathematical activities 

and to participate in learning opportunities. Both teachers’ classroom norms were 

established as all students to engage in the mathematical discursive activity. Although 

there were uneven participations during whole class structure, Mr. K gestured or called 

unengaged students in a comfortable atmosphere to participate in classroom activities 

and discussions. Ms. L’s classroom norms were more established as all students who 

were in different understanding levels shared their ideas. In particular, students were in 

low level of understandings asked their peers what they didn’t understand during small 

group works. We thus coded most of the two teachers’ lessons as level 3.  

Limited Degrees of Students’ Agency, Authority and Identity  

Both teachers seemed to encourage students to discuss the targeted topics. However, 

Mr. K’s lesson episodes were coded mostly as medium levels and sometimes high le-

vels, while Ms. L’s lesson episodes were coded mostly as low levels and sometimes 

medium levels. Both teachers’ classrooms were not yet a very productive discourse 

community as the discursive interactions were more likely teacher initiated and stu-

dents answered and they did not have opportunities to build on each other’s ideas. 

However, Mr. K provided students more chances to elaborate that they thought so that 

they had opportunities to explain their ideas and reasoning. It helped students have 

sense of mathematical doers and thinkers, and form positive mathematical identities.  
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Limited Use of Formative Assessment  

Mr. K’s lessons were coded mostly as medium levels and sometimes high levels while 

Ms. L’s lessons were coded mostly as low levels and sometimes medium levels. Ms. L 

quickly fixed the students’ errors and misunderstandings when they were raised and 

her feedbacks were very directly rather than having a room for students to think 

further. On the other hand, Mr. K asked students to notice their errors and partial 

understandings with persistent questions when they were raised.  

CONCLUSION AND DISCUSSION 

As the beginning of investigating the big research agenda—what are the core class-

room practices supporting students’ algebraic conceptual development—, we charac-

terized the two Korean middle school teachers’ algebra classrooms with a focus on the 

quality of learning opportunities and how the opportunities were accessed. We also 

began identifying the learning opportunities to develop algebraic concepts and al-

gebraic thinking using Mr. K’s algebraically context rich classrooms as a case study. 

He provided rich opportunities students to investigate the contextualized scenarios and 

to understand the basic concepts of functions and linear relationships at the beginning 

of the lesson units. Mr. K had students fully engaged in understanding of the basic 

concepts and objects by providing opportunities students to analyse the situations, to 

identify the quantities to use, to articulate the relationships between quantities, notions 

and concepts, and to link the concepts and representations. These opportunities for 

algebraic concepts and practices were analysed as high levels of contents and cognitive 

demands. Most students were also encouraged to access these rich opportunities in 

both teachers, but students in Mr. K’s classroom had more opportunities to develop 

their agency, authority and identity. Our findings imply that Korean teachers had 

already strong knowledge of mathematics and competency of reorganizing contents to 

teach and guide students appropriately. Now, it is time for them to have more 

opportunities to consider and discuss their students to develop their positive identity as 

mathematical thinkers and doers so that they can see themselves as having ideas worth 

to listen by others and being able to contribute to the mathematical learning in a 

classroom. 
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TEACHER CAPACITY FOR PRODUCTIVE RESOURCES USE 

Ok-Kyeong Kim 

Western Michigan University 

 

By compiling the analyses of the data from elementary teachers using a range of 

mathematics curriculum programs in the United States, this paper elaborates teacher 

capacity needed for productive resource use. The capacity elaborated in this paper 

includes (1) articulating mathematical points of the lesson and steering instruction 

toward the mathematical points, (2) recognizing affordances and constraints of the 

resource, (3) using the affordances of the resources, and (4) filling in the holes and 

gaps in the resources. Each of these aspects is explained along with examples from the 

data and related literature. This paper also discusses the need of nurturing proper 

operational invariants in teacher education (teacher preparation and professional 

development) and the role of resources in increasing teacher capacity. 

INTRODUCTION  

In this paper, I describe teacher capacity needed for using existing resources produc-

tively, based on a set of analyses of the data gathered in the Curriculum Use for Better 

Teaching (ICUBiT) project. In fact, the goals of the project were to identify compo-

nents of the capacity that Brown (2009) calls Pedagogical Design Capacity (PDC, i.e., 

“a teacher’s ability to perceive and mobilize existing curricular resources” in order to 

design instruction) and to develop tools to measure PDC. The data were drawn from 25 

elementary teachers in grades 3–5 in the United States. These teachers were using five 

different curriculum programs (each program includes resources for students and 

teachers for daily lessons), ranging from commercially-developed to reform-oriented. 

Analyzing the content and pedagogical support of the five curriculum programs and 

analyzing how each teacher using their curriculum program to teach everyday lessons 

from various perspectives shed light on teacher capacity needed for effective use of 

existing resources. Specific aspects of the teacher capacity are described along with 

examples for the ICUBiT project and related literature in this paper. Eventually, this 

paper attempts to answer to the following question: What are the components of 

teacher capacity for productive resource use? 

THEORETICAL BACKGROUND  

I set teachers’ work of using existing resources in a broad research context, although I 

use Brown’s (2009) notion of PDC to conceptualize the capacity for using existing 

resources productively. This capacity is critical in teachers’ documentation work and 

documentation system (Gueudet & Trouche, 2009). According to Gueudet and Trou-

che, teachers are engaged in documentation work, such as looking for resources and se-

lecting tasks, and in this process they build documentation systems. They distinguish 
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between resources and documents. Resources are a range of artifacts for teaching, such 

as textbooks, software, and discussions with a peer teacher, whereas documents are 

evolving products of teachers’ documentation work, which include resources, usage 

(action rules), and operational invariants (cognitive structure guiding resource use). 

How teachers use the resources is observable; in contrast, operational invariants are 

often invisible but can be interpreted from how they use the resources. In my analyses 

to explore teacher capacity for productive resource use, first I focus on teachers’ usage, 

i.e., how teachers read, adapt, and use existing resources to teach mathematics lessons. 

Then, I infer teachers’ operational invariants to make sense of the ways in which they 

used the resources. Examining teachers’ use of resources along with their operational 

invariants supports the inquiry of teacher capacity needed for resource use. 

I consider teacher decision making around using existing resources as pedagogical 

reasoning and action by Shulman (1987) and aspects of using knowledge in teaching 

practice as elaborated in Rowland, Huckstep, and Thwaites’ (2005) notion of knowled-

ge quartet. Both Shulman’s notion of pedagogical reasoning and action and Rowland 

et al.’s notion of knowledge quartet include teaching practice that Remillard (1999) 

calls improvisation, or “on-the-spot curriculum construction” (p. 331), which indicates 

teacher moves that are not specified in the written lessons. Examining teachers’ deci-

sions on how to use resources to design instruction and their improvisations is even-

tually digging deeper into teachers’ reasoning and knowledge in use, which helps ex-

plore teacher capacity for productive resource use.  

The productiveness of using existing resources depends on the opportunity for students 

to learn during instruction. When the resources are used productively, enacted lessons 

must create opportunities for students to learn the mathematical points of the lessons 

with sufficient cognitive demand on the students (Kim, 2018). Students need to ex-

plore, reason about, and understand the target mathematics of the lessons. Therefore, 

teacher capacity for productive resource use should be examined in terms of whether 

the resource use supports students’ learning of the mathematical points of the lessons, 

and what aspects of resource use support or do not support student learning. 

Finally, I insist that exploring teacher capacity of productive resource use is based on 

the participatory relationship between teachers and resources (Remillard, 2005). Using 

notions of instrumentation and instrumentalization, Gueudet and Trouche (2009) also 

illustrate the mutual interaction between a teacher and resources in documentation 

work and documentation system. Teacher capacity needed for using resources pro-

ductively is grounded in such bilateral influences that shape both parties. This rela-

tionship generates the research context that examines not only the components of the 

teacher capacity needed for using resources productively, but also the role of the re-

sources in supporting teachers to develop such a capacity. 

DATA SOURCES  

In order to explore the capacity needed for productive use of existing resources, I drew 

on data gathered from 25 teachers in grades 3–5 in the Improving Curriculum Use for 
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Better Teaching (ICUBiT) project. These teachers were using five different curriculum 

programs (5 teachers per curriculum program), ranging from reform-oriented to 

commercially developed. The teachers were (1) asked to keep a Curriculum Reading 

Log (i.e., indicating parts they read, parts they planned for instruction, and parts in-

fluenced their planning on a copy of written lessons), (2) observed in three consecutive 

lessons in each of two rounds, and (3) interviewed after each round of observations. All 

observations were video-taped and all interviews were audio-taped. Then, both video- 

and audio-taped data were transcribed for analysis. Scrutinizing teacher capacity for 

productive resource use, this paper drew on a range of analyses on various aspects of 

resource use by the teachers, such as sequencing lessons, using intervention resources, 

and deciding whether to follow guidance in the written lessons (e.g., Kim, 2015, 2018, 

under review). In doing so, I documented patterns of the teachers’ resource use, their 

effectiveness in terms of the mathematical points of the lessons, and teachers’ rationale 

for their decisions. Searching for patterns in these analyses revealed critical compo-

nents of teacher capacity for productive resource use. I also drew on literature related 

to teacher capacity and resource use. 

TEACHER CAPACITY FOR PRODUCTIVE RESOURCE USE 

Teachers made various decisions regarding how to use their curriculum program. 

Some decisions impacted enacted lessons positively toward students’ learning of the 

mathematics they were supposed to; others did not. Although a lot of support features 

are provided in the written lessons, it is evident that teacher improvisations occurred 

quite often regardless of programs used (Kim, under review). Various teacher deci-

sions on resource use, kinds of improvisations, and teachers’ reasoning behind their 

decisions revealed different aspects of resource use and teacher capacity needed. Be-

low, four specific aspects of teacher capacity for productive resource use are described 

along with brief examples from the data in the ICUBiT project. Although I describe 

them individually, they are interrelated components of teacher capacity, rather than 

mutually exclusive.  

Articulating mathematical points and steering lessons toward mathematical 

points  

Using existing resources to teach mathematics, teachers first read and make sense of 

the written lessons. In doing so, they need to identify the mathematical points of the 

lessons and evaluate how well the lesson activities, tasks, and problems support stu-

dents’ learning of the mathematical points (Remillard & Kim, 2017; Sleep, 2009). 

Then, they need to organize lesson activities toward the mathematical points in in-

struction (Brown, Pitvorec, Ditto, & Kelso, 2009). Failing to articulate the mathe-

matical points of the lessons, teachers orchestrate lessons activities away from the 

mathematical points (Kim, 2015, 2018, under review). In other cases, teachers identi-

fied the mathematical points properly and yet had hard time steering instruction toward 

the mathematical points, when challenged by students’ difficulty understanding the 

mathematical idea (Kim, 2018).  
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One third-grade teacher in the ICUBiT project considered identifying and using 

keywords as the goal of the lessons on creating and solving multiplication and division 

story problems, and emphasized keywords instead of the meaning of multiplication 

and division in instruction (Kim, under review). Moreover, the teacher altered or 

omitted important lesson components that had a great potential to support students’ 

understanding of multiplication and division. For example, she omitted a lesson com-

ponent that asked students in pairs to come up with story problems for two related ex-

pressions (i.e., 6 × 3 and 18 ÷ 3) so that students could see the differences between 

multiplication and division contexts. Instead of this task, the teacher asked students to 

generate a list of keywords for each of the two operations. The teacher made comments 

as students offered some expressions as keywords, whether each suggested word 

would be acceptable for each operation. In doing so, she lost an opportunity to high-

light characteristics of multiplication and division in relation to each other. The loss of 

meaning continued in the following lesson when students were creating multiplication 

and division story problems. While focusing on keywords, such as in all, and share 

equally, the teacher did not use the important terms, such as number of groups, number 

in each group, and equal groups, to explain the characteristics of and differences 

between multiplication and division. As a result, after spending two days of generating 

multiplication and division story problems, still more than half of her students were not 

able to complete the task. On the third day of classroom observation, there was a range 

of student-generated story problems. Some students had stories but no questions; some 

students did not have multiplication or division contexts (addition or subtraction in-

stead); some students had numbers that do not work well (34 things divided equally 

into 3 or 4 groups); some students had only one type of story problems (all multipli-

cation or all division)  

Articulating mathematical points and steering lessons toward the mathematical points 

are not limited to within individual lessons. Teachers need to articulate mathematical 

points of a series of lessons (an entire unit or a set of consecutive lessons) and teach 

students through a proper mathematical pathway so that the students can understand 

the connections and relationships in the mathematical points and develop a coherent 

mathematical storyline, or “a deliberate progression of mathematical ideas” (Sleep 

2012, p. 954) across lessons. Teachers need to see how mathematical ideas are de-

veloped over a series of lessons, and sequence tasks and lessons according to this 

progression. Otherwise, students may have difficulty develop a proper understanding 

of the complete ideas across lessons. For example, sequencing tasks and lessons in a 

way that eased up on the first two days and then enacted a series of important explo-

rations on one single day, a fifth-grade teacher forced students to make sense of 

common fractions (1/4, ¾, 1/8, 3/8, 1/3, 2/3, 1/6, etc.) and their percent equivalences in 

one day. 

Recognizing affordances and constraints of the resources in use 

As teachers read and make sense of the resources and identify the mathematical points 

of the lessons/activities/tasks, they can also recognize aspects/components of the les-
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sons/activities/tasks that support or do not support students’ learning of the mathema-

tical points. In order to use existing resources productively, teachers need to recognize 

affordances and constraints of the resources they use, with respect to their students’ 

learning of the mathematical points (Atanga, 2014; Choppin, 2011; Kim, 2015, 2018, 

under review; Kim & Son, 2017). Teachers who were not able to recognize the af-

fordances may not use them in instruction. Also, teachers who do not recognize the 

constraints hardly try to make up the limitations. Depending on their evaluation of the 

affordances and constraints along with their students’ need, teachers can decide 

whether they use, change, or omit components of lessons/activities/tasks, or add new 

elements to enact lessons (Kim, under review). Therefore, recognizing affordances and 

constraints is critical to use the existing resources productively.  

For example, not seeing the usefulness of representations provided in the resources for 

subtracting a fraction from a whole number, one third-grade teacher totally dismissed 

the need for the representations (fraction circles or pictures, bars, and number line) in 

supporting students’ conceptual understanding of the procedure for subtracting a 

fraction from a whole number (Kim, 2018). Even when students suggesting to use a 

representation, the teacher refused to use any. Mentioning that the representations were 

too simplified and tended to confuse students, the teacher did not recognize the af-

fordances of the representations that support students’ conceptual understanding of the 

procedure. As a result, for three days of listening to the teachers’ explanations and 

using the procedure, the students in this class still had difficulty understanding why 

they did the way they did. 

Using affordances 

Recognizing the affordances of existing resources is important; so is using those af-

fordances in instruction. Brown’s (2009) definition of PDC includes both “perceive 

and mobilize” the existing resources. In particular, using those resources together as a 

coherent set seems critical in using the existing resources well (Atanga, 2014). Various 

components of the resources are designed to support students’ learning of the mathe-

matical points. Resources as a set rather than separate elements indicate the synergy 

that they can generate in supporting teachers to steer instruction toward the mathema-

tical points. In the ICUBiT project, when using resources productively to teach lessons, 

teachers were using a range of elements provided in the resources toward the mathema-

tical points of the lessons. Otherwise, as seen in the earlier example of the teacher 

focusing on keywords, teachers altered or omitted useful, important resources (e.g., 

representations and tasks), sometimes in place of additional elements they chose to do 

instead. In other cases, teachers used the affordances unproductively. 

The fifth-grade teacher mentioned above recognized the usefulness of 1010 grids to 

relate fractions and their percent equivalences (e.g., ¾ = 75%). But, the teacher used 

the grids not very effectively in the second observed lesson, by asking students to 

shade their own grids and write the fraction and the percent that each of their grids 

represented. Students shaded their grids randomly and wrote a fraction and percent pair 
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only by counting the number of squares shaded (e.g., 79 squared shaded, so the grid 

represents 79/100 = 79%) without much focus on the relationship between fractions 

and percents. This was problematic because the mathematical point of the lessons was 

not about determining fraction-percent pairs of 1010 grids shaded randomly. The 

written lessons were deliberately focusing on using the grids to relate common frac-

tions and their percent equivalences, moving from easy fractions (e.g., 1/2 = 50%) to 

harder fractions (1/4 = 25%) and finally to more complex fractions (e.g., 1/3 = 

0.33 %). 

Filling in holes and gaps properly 

Recognizing constraints of the existing resources does not necessarily lead to produc-

tive ways of overcoming them, which is another important aspect of the capacity 

needed for effective use of existing resources. In the ICUBiT project, teachers tended 

to add new elements to the written lessons to enact them (Kim, under review). Some 

were intentionally added as planned; some were improvised in response to students. 

Whether these new elements are planned in advance or improvised during instruction, 

they have to support students’ learning of the mathematical points of the lesson. Es-

pecially, those intended to overcome the constraints of the written lessons or improve 

the written lessons must be prepared carefully to increase the opportunity for students 

to learn the mathematical points of the lessons.  

One teacher using a curriculum program whose individual lessons were designed for 

multiple class periods so that students could explore related mathematical ideas in 

depth over 2–3 days (Kim & Atanga, 2013, Kim, under review). In a lesson for 3 esti-

mated days, students were asked to use base-ten pieces to measure the area of a coat, 

and compare and order large numbers. This lesson was designed for geometrical and 

numerical explorations combined. The students were using the concept of symmetry to 

effectively measure the area of a coat (only measuring a half of the area and doubling 

the number found) and making sense of the large numbers as the areas would be in 

thousands of one’s pieces. As the lesson was complex in nature, detailed guidance was 

provided for teachers. However, there were still room for improvisations as the teacher 

enacted the lesson. Noticing that her students needed a review on symmetry before 

starting a task of finding the area of a coat, one teacher asked students questions about 

symmetry, which effectively supported students’ work on the task.  

One fourth-grade teacher, using a written lesson on mean that was focusing on only the 

procedure to find the mean of a set of numbers, asked students to use cubes to deter-

mine the mean of four different numbers in the introduction of the lesson. This, how-

ever, was not productive because using cubes were not supporting students to under-

stand what mean really means. Basically representing the procedure of “add/combine 

them all and divide by four” by using the cubes, the teacher did not highlight the con-

ceptual nature of mean, i.e., what the mean of the four numbers really represents.  

There are no perfect curriculum resources that fit in any classroom situation; proper 

change, omission, or addition is needed as teachers are engaged in documentation 
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work. Yet, the way teachers fill in the holes and gaps in the existing resources should 

be determined toward students’ engagement with mathematical points. 

SUPPORTING TEACHER CAPACITY DEVELOPMENT 

Various approaches can be taken to support teachers to develop their capacity for 

productive use of existing resources. Two particular approaches are highlighted in this 

paper.  

The data used for this paper revealed that the teachers in the ICUBiT project had cer-

tain operational invariants (cognitive structure guiding resource use) that Gueudet and 

Trouche (2009) explained as part of teacher documentation system. Unproductive use 

of existing resources is often rooted in operational invariants that are not appropriate 

(Kim, under review). For example, the teacher emphasizing keywords in multipli-

cation and division story problems believed keywords helped students’ learning of 

operations and solving story problems. Also, the teacher, not using representations in 

the lessons on operations with fractions, believed that representations were not helpful, 

but confusing students’ thinking. Therefore, in order to support teachers to develop the 

capacity needed for productive use of existing resources, teacher education (i.e., 

teacher preparation and professional development) need to support teachers to examine 

their own operational invariants and generate such opportunities in individual teachers’ 

documentation work and documentation system. 

In addition, the role of curriculum resources in increasing teacher capacity is funda-

mental. Educative features in the resources support teacher learning (Davis & Krajcik, 

2005). Above all, it is recommended that curriculum resources be designed to support 

teachers to clearly see the mathematical points of lessons, activities, and tasks. As 

evident in the teachers of the ICUBiT project, teachers may or may not recognize the 

mathematical points of the lesson as they read or glance at the guidance in the curric-

ulum resources. Also, it is recommended that curriculum resources provide guides to 

make proper decisions, especially on various options teachers can choose from and in 

the case for improvisations in response to students. As in the ICUBiT project, teachers 

often make changes, omit lessons and lesson components, and add new elements. 

Proper guidance for these adaptations is critical for steering instruction toward the 

mathematical points of the lesson. 
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Research on the reading of proofs is an important area of proof research in mathe-

matics education. As one aspect of the reading of proofs, we focus on ‘proof appraisal’ 

by students (that is, students’ judgements about given proofs) and explore how students 

appraise different proofs of an identical statement. Using a simple proof and a gen-

eralisable proof of a statement, we analysed the results of a questionnaire completed 

by 39 Grade 8 secondary school students (13–14 years old). We show aspects of each 

proof that were appraised by the students, such as simplicity, and the relativeness of 

their proof appraisals. An implication is a possible ‘gap’ between the ‘mathematical 

value’ appreciated by students and that by researchers and teachers. 

INTRODUCTION 

Research on the reading of proofs has recently gained more attention in the mathe-

matics education community, and there have been several types of recent studies in this 

research area (Komatsu et al., 2017). One type relates to students’ comprehension of 

given correct proofs, such as whether students can understand key terms and state-

ments in the proofs and illustrate a sequence of inferences with a specific example (e.g. 

Mejia-Ramos et al., 2012). Another type of study is of proof validation with students 

asked to determine the validity/invalidity of the purported deductive proofs (e.g. Inglis 

& Alcock, 2012). In this paper, we focus on another type of research in the reading of 

proofs, namely proof appraisal. We use this term to refer to students explaining their 

reasons for preferring a particular given proof. 

Some existing studies have examined whether students appreciate certain aspects of 

proofs, such as verifying that statements are true and explaining why statements are 

true (e.g. Healy & Hoyles, 2000; Segal, 1999). However, research on the functions of 

proofs shows that the power of proofs is not only in the verification and explanation of 

statements (de Villiers, 1990; Hanna & Barbeau, 2008). Recently, Inglis and Aberdein 

(2014, 2016) have classified mathematicians’ appraisals of proofs into four dimen-

sions: aesthetics, intricacy, precision, and utility. Although mathematicians and stu-

dents are different in various ways, such as mathematical maturity and interest in ma-

thematics, it is anticipated that students’ proof appraisals are also likely to be diverse.  

To this end, we consider a specific setting where students are given multiple valid 

proofs of an identical statement and are asked to judge these proofs. This setting is 

different from those of existing studies that have contrasted valid proofs with insuffi-
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cient arguments (e.g. empirical arguments) and with purported deductive proofs that 

actually include errors (e.g. Healy & Hoyles, 2000; Inglis & Alcock, 2012). We use 

multiple valid proofs of an identical statement because the given multiple proofs have 

in common the capability of verifying that the statement is true, and thus we expect it to 

be possible to elicit students’ appraisals of various aspects of proofs other than the 

verification of the statement. Hence, in this paper, we address the following research 

question: How do students appraise different proofs of an identical statement? 

FRAMEWORK: COHERENCE AND GENERALISABILITY OF PROOF 

As a framework for classifying proofs that are different in terms of how they draw the 

conclusion of the statement, we employ the notions of direct fit and familial fit sug-

gested by Raman-Sundström and Öhman (in press). Direct fit here refers to the rela-

tionship between a statement and a proof, while familial fit refers to the relationship 

between a proof and a family of proofs. In this paper, we focus on the notion of co-

herence, one aspect of direct fit, and that of generalisability, one aspect of familial fit. 

A proof is regarded as coherent if the proof is stated in the same terms as the statement 

that the proof addresses. A proof is regarded as generalisable if the idea of the proof 

can be used for a larger class of statements. 

We explicate these notions by taking a statement as an example: the sum of the interior 

angles of a star octagon is 720° (this statement was also used in our questionnaire 

whose data are examined in this paper). Here, a star polygon is defined as a polygon 

constructed by connecting vertices while skipping the adjacent vertex. Figure 1 shows 

a star heptagon. Star polygons where the numbers of the vertices are odd (hereafter, 

star-odd polygons) can be drawn in one stroke, whereas star polygons where the 

numbers of the vertices are even (star-even polygons) cannot, but can be drawn by a 

combination of two polygons. Figure 2 shows two different proofs of the statement that 

the sum of the interior angles of a star octagon is 720°. 

 

 

Figure 1: Star hep-

tagon 

Figure 2: Two proofs of the identical statement 
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Proof A can be regarded as coherent because it uses only interior angles that are stated 

in the statement, whereas Proof B lacks coherence because it introduces the concept of 

exterior angles, which is not mentioned in the statement. With respect to generalisa-

bility, Proof B is generalisable because the idea of this proof (based on the constancy 

of the sum of exterior angles in any polygon) can be applied to all star polygons. For 

example, it is possible to prove that the sum of the interior angles of a star heptagon is 

540° by calculating ‘180  7 – 360  2’. On the other hand, Proof A relatively lacks 

generalisability because the idea of this proof is not applicable to the star-odd polygon 

case. Note that the discussion here is just an example; some proofs may have both 

coherence and generalisability, and other proofs may have neither. 

METHODS 

Background 

The study reported in this paper consisted of two parts; one part involved designing 

and implementing a series of proof tasks related to star polygons over four 50-minute 

lessons in a secondary school classroom (Komatsu et al., in press), and the other part 

involved conducting a questionnaire after the lessons to investigate how the students 

appraised two proofs of the aforementioned statement about the star octagon case. This 

paper presents the results of the second part. In a later section, we briefly describe the 

implemented lessons because the results of the questionnaire would be influenced by 

the features of those lessons. 

Questionnaire and participants 

We produced a questionnaire presenting two proofs almost identical to Proof A and 

Proof B shown in Figure 2 and then asking, “Which method do you use for finding the 

sum of the interior angles of a star octagon, Proof A or Proof B? Describe the reason 

for your choice”. We decided to ask such a question because we expected that if stu-

dents were requested to select either of the two proofs with explaining the reasons for 

their choices, they would express their appraisal of the advantages of the two proofs 

more explicitly.  

This questionnaire was implemented with 39 eighth-grade students (13–14 years old) 

in a Japanese lower secondary school affiliated with a national university. The 

mathematical capabilities of the students were above average for Japan according to 

their teacher (the fifth author of this paper). The students had covered in class the 

knowledge necessary to understand the two proofs (e.g. the interior/exterior angle sum 

theorems of polygons). 

Procedure of data analysis 

Although our questionnaire was based on a single task, we obtained rich data where the 

students fully explained the reasons why they preferred one proof to the other proof. 

Hence, we analysed the students’ responses in a qualitative way, coding their responses 

and then counting the number of students referring to each code in order to investigate 

what aspects of each proof tended to be appraised by the students. Our coding proce-



Komatsu, Yamazaki, Fujita, Jones, & Sue 

  

3 – 230 PME 42 – 2018 

dure was as follows. The first author split each of the students’ descriptions of their 

proof appraisals into several segments; there were 97 segments in total for the 39 

students (which shows the richness of our data). Temporal codes were then devised to 

denote these segments. After that, if certain codes were found to be similar, they were 

unified into a single code. The second author then checked the appropriateness of the 

coding, and any discrepancies were discussed until the authors reached a consensus 

(see Tables 2 and 3 for identified codes and their distributions). 

Lessons implemented before the questionnaire 

As mentioned earlier, our questionnaire was conducted after the implementation of a 

series of tasks about star polygons over four lessons. Because space here is limited, we 

give only a brief summary of the implemented lessons, in Table 1 (for more details, see 

Komatsu et al., in press). The students explored the sums of the interior angles of 

various star polygons in the lessons. As shown in Table 1, they had had the experience 

of constructing both Proof A and Proof B before the questionnaire. In particular, in the 

fourth lesson, they had recognised the generalisability of Proof B, where they found 

that this proof idea could be applied to all the star polygons. They also invented an 

algebraic expression for the interior angle sum of a star polygon: 180n – 720 = 180(n – 

4) (where n is the number of the vertices of the star polygon). 

Lesson Star polygons investigated in each lesson 

1st lesson Star pentagon 

2nd lesson Star-even polygons (e.g. constructing Proof A for a star octagon) 

3rd lesson Star-odd polygons (considering ‘outside triangles’ and ‘inside 

polygons’ like Proof B) 

4th lesson Star-even polygons revisited (e.g. constructing Proof B for a star 

octagon) and then star polygons in general 

Table 1: Summary of the implemented lessons 

RESULTS 

In the questionnaire, 27 students selected Proof A and 12 students selected Proof B. As 

a result of coding their proof appraisals, we found that most of the codes could be 

divided into two types. The first type showed what aspects of each proof the students 

appraised, while the second type represented the relativeness of the students’ proof 

appraisals (e.g. whether they thought that their proof choices depended on situations). 

Below, we show the obtained results by type. English translations of the students’ 

responses are rendered from the original Japanese by the authors. 

Students’ reasons for their proof appraisals 

Table 2 shows our classification for the first type of codes, showing what aspects of 

each proof the students appraised and how many students referred to those aspects. For 

each proof, the sum of the numbers for all codes is larger than the number of students 
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who selected the proof because there were cases where the proof appraisal by a given 

student was related to multiple codes. 

 

Code 

Selecting Proof A (n = 27) Selecting Proof B (n = 12) 

# % in Proof A # % in Proof B 

Simple 20 74% 2 17% 

Brief 6 22% 1 8% 

Understandable 4 15% 2 17% 

Free from error 4 15% 0 0% 

Immediate 3 11% 0 0% 

Generalisable 0 0% 8 67% 

Advantage of formula 0 0% 4 33% 

Table 2: Students’ reasons for their proof appraisals 

For the selection of Proof A, the most frequent code is simple (indicating that the de-

scription of the proof is mathematically simple). This code is also related to other 

codes, such as brief (which means that the proof requires only a single calculation). 

Below are examples of students’ responses for each of these (we use parentheses to 

show codes assigned to each response): 

S1: Because there are two polygons, if the sums of the interior angles of these polygons 

can be found, it can be easily solved. (simple) 

S2: Proof A does not require complicated calculations, and the answer can be found with 

a single calculation. (simple and brief) 

As can be seen above, students selecting Proof A considered this proof to be simple 

and brief because it required only a property well-known by the students (the interior 

angle sum of a quadrilateral) and a single calculation. These students focused on a 

specific case mentioned in the questionnaire (the star octagon). 

Students choosing Proof B had a different viewpoint, in which they took other star 

polygons into consideration; the most common reason for the selection of this proof is 

thus represented by the code generalisable. This code is also related to the code ad-

vantage of formula: 

S3: If we know that the sum of the interior angles of a triangle is 180°, calculate 180  8 

since 180  star octagon. Because the sum of exterior angles is always 360°, this method 

can be used for all cases. (generalisable) 

S4: 180(n – 4) -> 180  4 = 720. The formula is easy. It has applicability, it can be used 

for odd cases, and if we use the formula, other problems can be solved as well. Dividing 

into odd and even cases is bothering. (advantage of formula, generalisable, and simple) 

As shown earlier, the idea represented in Proof B can be generalised to all star poly-

gons, and students choosing this proof appreciated this generalisability. In the lessons 
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implemented before the questionnaire, the students found that the sum of the interior 

angles of a star polygon can be expressed as 180(n – 4) (see the methods section). So-

me students, such as S4, mentioned the advantage of using this algebraic expression. 

Relativeness of students’ proof appraisal 

The second type of codes, which represent the relativeness of the students’ appraisals 

of the two proofs, is summarised in Table 3. 

 

Code 

Selecting Proof A (n = 27) Selecting Proof B (n = 12) 

# % in Proof A # % in Proof B 

Depending on situation 9 33% 1 8% 

Appreciation of the 

other proof 

3 11% 1 8% 

Limitation of the se-

lected proof 

2 7% 0 0% 

Criticism of the other 

proof 

2 7% 6 50% 

Table 3: Relativeness of students’ proof appraisals 

One code in this type is depending on situation: nine students selecting Proof A stated 

that they would choose Proof B if the number of the vertices of the star polygon had 

been different. Other relevant codes are appreciation of the other proof and limitation 

of the selected proof: some students choosing Proof A mentioned the value of Proof B 

as well as the limitations of Proof A: 

S5: When finding the sum of the interior angles of a star polygon in future, I will use 

Proof A in the case where the number of vertices is even, and Proof B in the odd case. 

(depending on situation) 

S6: When finding the sum of the interior angles of a star polygon, I feel that Proof B is 

good as it can be used for odd and even cases. For the even case where it is obvious that 

polygons overlap, I want to use Proof A. (appreciation of the other proof) 

S7: Although Proof A can be used only for the case where the number of vertices is even, 

it is simple, and thinking and calculation are easy. (limitation of the selected proof and 

simple) 

Students can be regarded as relatively appraising Proof A if they referred to the code 

depending on situation, appreciation of the other proof, or limitation of the selected 

proof. This is because these students not only appraised Proof A, but also recognised 

the limitations of Proof A and the advantage of Proof B. In the questionnaire, 13 stu-

dents selecting Proof A (48% of that group) appraised it relatively. 

On the other hand, half of the students selecting Proof B explicitly criticised Proof A, 

making criticism of the other proof a common code for Proof B but not Proof A: 
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S8: The star octagon case can be solved with the method of Proof A, but the star heptagon 

case etc. cannot be solved with the method of Proof A. The method of Proof B can be 

commonly used for all of star polygons, so I will use the method of Proof B. (criticism of 

the other proof and generalisable) 

In relation to this, only one student referred to the code depending on situation for 

Proof B, and the same is the case for appreciation of the other proof. Thus, students 

selecting Proof B tended to appraise this proof absolutely rather than relatively.  

DISCUSSION 

In this paper, we have examined how secondary school students appraised two dif-

ferent proofs of the same statement. To this end, we employed Raman-Sundström and 

Öhman’s (in press) notions of direct fit and familial fit to prepare two contrasting 

proofs. In the implemented questionnaire, the most common reasons for selecting 

Proof A and Proof B were respectively simplicity and generalisablity. Although more 

students preferred Proof A to Proof B, proof appraisals by almost half of the students 

selecting Proof A were relative, indicating that they recognised the limitations of Proof 

A and the value of Proof B in terms of generalisability. 

Our findings may raise an issue for mathematics teachers and mathematics education 

researchers. Proof B can be generalised to all star polygons, and generalisation is much 

appreciated in the mathematics education community (e.g. Mason, 2002). General-

isable proofs, or proofs that can be used for different purposes, are highly evaluated in 

mathematicians’ practice as well (Hanna & Barbeau, 2008; Weber & Mejia-Ramos, 

2011). However, in our study, when asked to select either the simple proof or the 

generalisable proof, the students tended to prefer the former. This may relate to stu-

dents’ emerging mathematical values (Seah, 2016). It may be that there is a ‘gap’ 

between the type of mathematical value appreciated by students aged 13–14 years old 

and that by teachers and researchers (mathematics education researchers and mathe-

maticians).  

That said, a note of caution is that this ‘gap’ may have arisen from the specificity of our 

questionnaire where the students were shown a single case (the star octagon) and were 

asked to select a proof only for this case. In fact, as mentioned above, there were stu-

dents who preferred the simple proof (Proof A) and, at the same time, appreciated the 

generalisability of Proof B. Hence, it would be necessary to explore further the gap 

found in this study by asking different types of questions and adopting different 

methodologies. 

While our questionnaire was based on a single task and implemented with only a re-

latively small number of students, and, as such, we do not intend to assert the genera-

lisability of all our results, several of the codes that we devised for representing stu-

dents’ proof appraisals may be useful beyond our study. Inglis and Aberdein (2014, 

2016) classified mathematicians’ proof appraisals, and intricacy (its opposite) and 

utility in their classification are respectively related to simplicity and generalisability 

among our codes. Given that simplicity and utility are observed in studies involving 
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different groups (students and mathematicians), these codes, on the one hand, may 

likely be employed to represent proof appraisals in general. On the other hand, other 

codes used here (e.g. depending on situation and appreciation of the other proof) are 

probably best considered as being specific to our study, derived from the specific 

question in our questionnaire where the students were shown multiple valid proofs of a 

statement and were asked to show their preferences. Thus, these codes may be useful 

for capturing students’ proof appraisals in similar contexts. 
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LEARNING MATHEMATICS THROUGH ONLINE FORUMS:  

A CASE OF LINEAR ALGEBRA 

Igor’ Kontorovich 

The University of Auckland  

 

The aim of the study reported in this paper was to explore online interactions of twenty 

five high-school students in an asynchronous forum that accompanied a face-to-face 

course in linear algebra. The forum generated a considerable number of mathematical 

post-exchanges, the vast majority of which came from a small group of six students. 

The data analysis revealed a positive correlation between thread-initiation and 

achievements of students in the course. Students’ activity in their self-initiated threads 

correlated with their activity in the threads initiated by their peers, which attests to the 

collaborative nature of the forum. In about half of the threads students sought verifi-

cations for their solutions to the assigned problems. The paper ends with a discussion 

on what one’s online activity might indicate in terms of her course learning. 

INTRODUCTION 

In recent years, online asynchronous forums have become a common occurrence in 

university education. Explanations for this trend can be found in the evolvement of 

educational theories and practices. Indeed, social constructivism, that seems to dom-

inate in our field, calls for a radical shift in our approach to teaching and learning, when 

technology is positioned as a powerful tool for facilitating this shift. From a practical 

perspective, online forums allow for more sharing, reflecting and retaining of ideas 

produced by learners than in a typical face-to-face instruction.  

Online asynchronous forums (OAFs) seem particularly advantageous in undergraduate 

courses, where syllabi are dense, learning is mostly lecturer-centered and hundreds of 

students with different mathematical backgrounds are enrolled. Moreover, freshmen 

frequently lack the necessary skills for learning mathematics in a new academic set-

ting. Accordingly, OAFs become a possible venue for mathematical interactions, in 

which these skills can be shaped (e.g., Jacob & Sam, 2008; Perkins & Murphy, 2006). 

In many universities online forums accompany face-to-face courses in undergraduate 

mathematics. Some of these course accompanying online asynchronous forums 

(CAOAFs) mainly serve the course staff in making organizational announcements, 

while others comprise multiple threads with rich mathematical discussions where stu-

dents seek and provide help with course materials to one another. The study reported in 

this paper is a part of a larger ongoing project on the mathematics learning that occurs 

in CAOAFs (see Kontorovich, 2018 for a first report). The data for this study comes 

from a particularly replete forum that accompanied a face-to-face course in linear al-

gebra for high-school students. 
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BACKGROUND AND CONCEPTUAL FRAMEWORK 

Mathematical OAFs 

Research in mathematics education has been mainly concerned with rewarding and 

open OAFs. By rewarding, I refer to the learning settings where a percentage of a final 

grade is assigned to students’ participation in online discussions (e.g., Jacob & Sam, 

2008). Accordingly, a rewarding interaction is structured by the assignment that was 

given to the learners and their participation is monitored and assessed by course in-

structors. While rewarding interactions occur in specially developed platforms, such as 

Canvas, HighLearn, Piazza, Moodle etc., open interactions take place in the World 

Wide Web. In open forums the participation is voluntary, anonymous, and not restric-

ted to any particular course and theme. Van de Sande (2011) described open inter-

actions as a mathematical help exchange between seekers and providers. Table 1 

shows that some characteristics of CAOAFs are similar to rewarding forums while 

others are in common with open forums. 

Types of participation in OAFs 

Educational research has been concerned with various aspects of learners’ participa-

tion in OAFs. Perkins and Murphy (2006) explored individual engagement in a re-

warding OAF in the context of education. The categories that the researchers used for 

classifying participants’ posts consisted of: clarification, which refers to all aspects of 

stating, clarifying and defining the discussed issues; assessment, which is concerned 

with evaluation of the argumentation in the discussion; inference, which is concerned 

with making generalizations and drawing connections; and strategies, which account 

for discussing possible actions and predictions of their outcomes. Perkins and Murphy 

(2006) found that the majority of students’ posts were concerned with clarification and 

assessment. 

In the context of a mathematical open OAF, van de Sande (2011) suggested that the 

posted queries are mostly concerned with textbook problems, and that the participants 

seek help with construction of a solution, verification of a solution constructed by 

them, and construction of an explanation for a solution taken from another source. In 

her study, van de Sande examined the mathematical activity of a help-seeker and as-

sociated it with a publication of full or partial solutions. As a result of the analysis, the 

researcher found out that help-seekers were active in nearly 60% of their posts. 

Other studies identified patterns in learners’ posts and used them for constructing parti-

cipants’ online profiles. For instance, in a course on programming languages, Shaw 

(2012) distinguished among four profiles: askers who mostly asked questions about 

the course contents and problems but avoided participating in discussions initiated by 

other learners; repliers who tended to enrich the discussions with solutions; watchers 

who browsed questions and solutions of other participants but the number of their posts 

was small; and no action who did not follow forum discussions. A statistically signi-

ficant correlation was found between learner’s participation type and their achieve-
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ment. Specifically, repliers scored higher than askers, who scored higher than wat-

chers, who scored higher than no action type.  

Characteristics Open OAFs CAOAFs Rewarding OAFs 

Participants registered members learners who study the course 

Participants’ 

identity 
anonymous usually a full name is displayed 

Participation driven by participants interests and needs  
driven by course 

assignments 

Relevance of 

online discus-

sions 

relevant to participants 

with similar interests 

and needs 

usually relevant to all 

students in the course 

depends on the 

assignment 

Table 1: Similarities and differences of OAFs 

The intensity of participation in OAFs has been also addressed (Jacob & Sam, 2008). 

For example, van de Sande (2011) distinguished between core participants of the fo-

rum who post frequently and peripheral participants who post occasionally. 

RESEARCH GOAL 

The goal of the study reported in this paper was to explore students’ interactions in an 

online asynchronous forum and their relations to achievements in the face-to-face 

course in linear algebra. The three questions that instigated the investigation were: (1) 

How does students’ posting intensity correlate with their achievements in the course? 

(2) How do posting intensity in self-initiated and peer-initiated threads correlate? (3) 

What kind of help did the students seek and provide in their post-exchanges?    

METHOD 

Setting and data collection 

As a part of a larger project, twenty-five ninth-graders were selected to participate in a 

prestigious three-year program at the renowned technological university in Israel. The 

selection was made based on students’ interest in undergraduate education, recommen-

dations of their teachers, and school achievements. The program was aimed at pre-

paring for and engaging high-school students in undergraduate education in parallel 

with their regular school studies. The data for the present study was collected during 

the first program year in a preparatory course for linear algebra.  

The course consisted of twenty-one weekly lessons, each of which lasted for two and a 

half hours. The course syllabus encompassed three central topics: (i) polynomials, (ii) 

matrices and equation systems, and (iii) vector spaces. After each lesson the course 

teacher provided students with a list of problems to solve at home. The solutions were 

not intended for submission, but variations of some of the problems appeared in a quiz 

in the following lesson. At the end of the course the final exam was assigned. Ac-
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cordingly, the data on students’ achievements came from the weekly quizzes and the 

final exam. 

A CAOAF was opened in a popular social networking site in order to provide students 

with a platform for collaboration on homework assignments. The students came from 

different schools situated in different parts of Israel, and it was expected that a con-

siderable portion of students’ discussions would take place in the forum. The students 

were encouraged to use the forum for sharing and addressing each other questions and 

difficulties regarding the learned topics. The published posts comprised the data on 

students’ online interactions.     

Data analysis 

The data was approached with a computer-mediated data analysis (CMDA) method to 

researching online behaviors. The method operationalizes the phenomena under con-

sideration (in this case, students’ online interactions) by creating coding catego-ries 

and exploring the relations between them with statistical means. Opposed to other 

studies where the explored number of posts was rather small (Jacob & Sam, 2008; Van 

de Sande, 2011), the forum under discussion contained thousands of posts-exchanges, 

a comprehensive analysis of which is still ongoing. In this study, Questions (1) and (3) 

were associated with thread-initiation, question (2) was explored in the Polynomials 

Unit. Overall, the analysis was conducted with posts in which the students explicitly 

addressed the mathematical content of the course.   

In Questions (1) and (2) the correlations were examined in the IBM SPSS STATIS-

TICS 23 software with Spearman’s rho coefficient. The test is useful for analyzing a 

relation between ordinal variables, such as the number of initiated threads and achieve-

ments. Content analysis was used in Question (3) for revealing the type of help that 

students sought and provided in their thread-initiating posts. The analysis was ap-

proached with partially predefined categories that were presented in the second section 

of the paper (Krippendorff, 1980).  

FINDINGS 

Thread-initiation and course achievements 

The explored CAOAF consisted of 334 mathematical threads. The average number of 

thread-initiating posts was 14.13 per course student (SD=25.09). A large SD indicates 

considerable differences in students’ posting behaviors. Six students who posted the 

most intensively can be addressed as core participants of the forum, and together they 

initiated about 85% of all threads (see Table 2). Table 2 also shows that the 

thread-initiation intensity of almost all the course students was relatively stable during 

the year. For example, S2 and S3 were the most active in all the three units of the 

course; the participants that were peripheral in the first unit of the course remained in 

this status until the end of the course. Overall, the core group outperformed the pe-

ripheral group in the quizzes and in the final exam. 
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 S1 S2 S3 S4 S5 S6 Total 

Polynomials Unit 13.6% 18.6% 22% 17% 6.8% 3.4% 81.4% 

Matrices and Equation 

Systems Unit 
9.8% 24.8% 25.6% 15% 5.3% 7.5% 88% 

Vector Spaces Unit 9% 37.6% 24.8% 0.8% 6.8% 5.3% 84.3% 

Course total 10.2% 28.9% 24.6% 9.5% 6.2% 5.8% 85.2% 

Table 2: Proportions of threads initiated by core participants in the course 

A strong and positive correlation was found between the total number of threads ini-

tiated by a student in the course and her achievements in the final exam (see Table 3). 

In the Vector Space Unit the correlation between the initiated threads and weekly 

quizzes was positive and moderate, and in the Matrices Unit it was positive and strong. 

In the Polynomial Unit the correlation was insignificant. The number of threads gen-

erated by the students in each unit moderately correlated with their achievements in the 

final exam.   

Thread-initiating posts Quizzes 
Final Exam 

(range of scores: 15%-100%) 

Polynomials Unit 
 

(range of scores: 43%-90%) 
 

Matrices Unit 
 

(range of scores: 25%-98%) 
 

Vector Spaces Unit 

 

(range of scores: 

33%-100%) 

 

Total course account   

Table 3: Correlations between students’ thread-initiation and course achievements 

Thread-initiation and participation in peer-initiated threads 

The relations between students’ thread-initiation and participation in each other’s 

threads were explored in the Polynomials Unit. The findings are summarized in Table 

4 and they show a moderately strong and positive correlation between the number of 

threads initiated by a course student (w) and the number of her peers’ threads in which 

she participated (x). Also a moderately strong positive correlation was indicated be-

tween the number of students’ posts in their self-initiated threads (y) and in the threads 

initiated by other students (z). In the other words, the more active a student was in her 

own threads the more actively she participated in the threads initiated by her peers. 

This finding indicates the collaborative nature of students’ interactions in the CAOAF 

under scrutiny. 
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  - - 

   - 

    

Table 4: Correlations between students’ posting behaviors   

Help sought and provided in the threads 

The content analysis of thread-initiating posts resulted in seven categories:  

(1) Problem formulations – where thread-initiators sought for clarifications on formu-

lations of homework problems (e.g., “In question 1 it says that ( ) ( )|q x p x . What does 

this | mean?”) 

(2) Full solutions – where thread-initiators sought for help with problems without ac-

tive contribution to their solution (e.g., “Did anyone solve Question 2? I can’t think of 

anything.”) 

(3) Partial solutions – where thread-initiators provided some ideas for problem solu-

tions and sought for help with their development (e.g., “I found that  is a root of 

 with the multiplicity of 6. How do I find the remaining two roots?”). 

(4) Verification of full solutions – where complete solutions were posted by thread-ini-

tiators (e.g., “Hey, guys! Here are my answers. If you find any mistakes, please let me 

know”). 

(5) Clarification on classroom material – where thread-initiators sought for explana-

tions of the material discussed in the class (e.g., “Can you explain the Rank-nullity 

theorem to me again? I didn’t get it in the lesson”). 

(6) Problem-solving strategies – where thread-initiators sought for strategies that are 

applicable to sets of problems (e.g., “How should I approach problems asking to 

construct a mapping when the image of the base is given?”). 

(7) Inference – where thread-initiators shared their conjectures that were not discussed 

in the classroom (e.g., “I think that complex numbers are neither positive or negative, I 

think that they are sign-less.”  

In the case of core participants, the proportions of the threads in each category are 

shown in Table 5. Two remarks can be made on the table: First, nearly half of their 

thread-initiating posts were concerned with verification of complete solutions. Con-

sidering this category together with (3) and (7), it can be suggested that core partici-

pants of the forum were mathematically active (in the sense of van de Sande, 2011) in 

at least two thirds of their threads. Second, the posting profiles of students S4 and S6 

are similar and they can be addressed as solution verifiers, as about 90% of their 

thread-initiation posts belonged to this category. The profiles of S1 and S3 are also 

similar, but their posting behaviors were spread among various categories. 
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 S1 S2 S3 S4 S5 S6 Total 

(1) Problem formulations 6% 9.6% 12.5% 3.2% 20% 5.3% 9.5% 

(2) Full solutions 6% 6.4% 10% 9.7% 20% 0% 8.6% 

(3) Partial solutions 15.2% 10.6% 10% 0% 15% 5.3% 9.2% 

(4) Verification of full 

solutions 
33.3% 68.1% 36.3% 87% 25% 89.4% 52% 

(5) Clarification of 

classroom material 
12.1% 1% 13.8% 0% 5% 0% 7.7% 

(6) Problem-solving 

strategies 
18.2% 1% 5% 0% 15% 0% 6.5% 

(7) Inference 9% 3.2% 12.5% 0% 0% 0% 6.5% 

Table 5: Categorization of thread-initiating posts 

SUMMARY AND DISCUSSION 

A hand full of studies have been concerned with online mathematical interactions (e.g., 

van de Sande, 2011). This study contributes to the emerging body of knowledge by 

focusing on a forum that accompanied a face-to-face course in linear algebra for 

high-school students. The data showed that the forum generated a considerable amount 

of mathematical post-exchanges between the students, when the vast majority of posts 

came from a small group of six students. Notably, in the study of Jacob and Sam 

(2008), who explored rewarding OAFs with hundreds of participants, the number of 

core participants was also around ten. Hence, comes the question “what does an in-

tensive participation in an online discussion indicate in terms of one’s learning?  

While the reported findings are limited by the specificity of the explored setting, they 

allow making conjectures for investigations in further research. The technological plat-

form that contained the explored forum, indicated that the posted threads were attended 

by all the course students. In informal conversations, peripheral participants indicated 

that they regularly read online discussions and the discussions were rich enough to 

fulfil their academic needs; consequently, they did not initiate threads of their own. 

This argumentation is typical to the ‘lurking’ participants of online communities 

(Preece, Nonnecke, & Andrews, 2004). On the one hand, the idea that an online in-

teraction that occurs between a small group of core participants suffices for the whole 

course seems reasonable and entails practical recommendations. On the other hand, a 

positive correlation was found between the number of students’ posts and their course 

achievements. Also, core participants outperformed their peripheral peers in quizzes 

and the final exam. This finding is also in line with Shaw (2012), who revealed in the 

context of language programming that the achievements of core participants were 

higher that the achievements of peripheral ones.  
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A possible interpretation for the achievement gap can be based on Moore and Kears-

ley’s (1996) notion of transaction distance that was introduced for capturing students’ 

involvement in distance courses. The researchers argued that more dialogue between a 

student and instructor indicated a smaller transaction distance, which is a signal of 

students’ greater involvement. In our case, the dialogue occurred between the students, 

but it still seems to indicate an engagement with the course contents.  

Another interpretation for the achievement gap can be based on the considerable body 

of knowledge on students’ interactions in collaborative learning settings. The connec-

tions of online interactions to this body of knowledge can be illustrated with Leikin and 

Zaslavsky (1997) who found that when divided into small groups, students helped one 

another with mathematical explanations and error detection. The students in this study 

also sought and provided help of a similar type. The positive relations between 

providing face-to-face help and achievements has been well-documented. The re-

searchers explain that help-providing necessitates students to recall, reorganize and 

articulate the learned material in the new ways, which contribute not only to the 

help-seekers but also to help-providers. Possibly, help-providers go through similar 

processes when the call for help comes from online. The question that remains, is what 

makes some students answer such a call. 
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ACTIVATION AND MONITORING OF PRIOR MATHEMATICAL 

KNOWLEDGE IN MODELLING PROCESSES 

Janina Krawitz Stanislaw Schukajlow 

University of Münster, Germany University of Münster, Germany 

 

In a qualitative study with eighth to tenth graders (N=18), we investigated whether the 

activation of prior mathematical knowledge would promote or interfere with solution 

processes as students solved modelling problems. In addition, we analyzed the role of 

metacognitive monitoring of knowledge activation. Participants with different prior 

mathematical knowledge solved modelling problems in which multiple solution 

approaches were possible. We found that the activation of inappropriate prior 

mathematical knowledge negatively impacted modelling. Negative effects of prior 

knowledge also occurred if a second solution for a problem was required because 

learners stuck to the prior knowledge of their first approach. Monitoring of knowledge 

activation was rarely found, even when it would have been helpful. 

INTRODUCTION 

Building a mental model of a real-world situation is particularly important for solving 

modelling problems (Leiss, Schukajlow, Blum, Messner, & Pekrun, 2010). To build a 

mental model, students have to structure and simplify the information presented in the 

problem statement. To decide what information is important, they need to have at least 

a rough idea of a corresponding mathematical model in mind. Thus, students have to 

activate prior mathematical knowledge at the very beginning of the solution process. 

However, an initial strong focus on mathematical issues might occur at the expense of 

the development of a situational understanding and could lead to solutions that are not 

adequate from a realistic perspective. Metacognitive monitoring of the activated prior 

knowledge is considered to play an important role in the decision to either use or ignore 

the activated prior knowledge. The present article investigates the interplay between 

prior mathematical knowledge, modelling activities, and monitoring of knowledge 

activation, with the aim to better understand under what circumstances the activation 

of mathematical knowledge promotes or interferes with modelling processes. 

THEORETICAL BACKROUND AND RESEARCH QUESTIONS 

Effects of Prior Knowledge and Monitoring of Prior Knowledge on Performance 

Prior knowledge is considered to be an important predictor of performance (Dochy, 

Segers, & Buehl, 1999). But under certain circumstances, the activation of prior 

knowledge can have negative effects, as the activation of inappropriate knowledge 

while solving mathematical problems can lead to a search in the wrong part of the 

problem space (Kaplan & Simon, 1990). Certain mathematical contents seem to trigger 
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inappropriate activation of prior mathematical knowledge. Students were previously 

found to activate knowledge of proportional relations even when this knowledge was 

not suitable for the problem at hand. Reasons are seen in the dominant role linearity 

plays in classrooms and everyday contexts (Van Dooren, De Bock, Hessels, Janssens, 

& Verschaffel, 2005). Further, it can be hypothesized that knowledge about the topic 

that was taught most recently is often activated regardless of its appropriateness 

because, in most classroom situations, this knowledge is typically needed to solve 

exercises and to succeed on tests. Metacognitive monitoring of knowledge activation 

was found to be helpful to avoid negative effects of prior knowledge on performance 

(Stillman, 2011; Stillman & Galbraith, 1998; Van Dooren & Matthew, 2015). 

Role of Prior Knowledge for Mathematical Modelling 

The translation of a real-world situation into a mathematical model is at the core of 

mathematical modelling. The translation process requires initial modelling activities 

such as understanding, structuring, and simplifying the real-world situation in order to 

transfer it into an adequate mental model of the situation that can be further 

mathematized (Blum, 2015). Modelling problems often contain superfluous 

information, and identifying the important information becomes part of the activities of 

structuring and simplifying. Prior mathematical knowledge can be considered 

necessary to identify the information that is required to develop a mathematical model. 

Hence, anticipations of mathematical knowledge might be needed to successfully carry 

out initial modelling activities. On the other hand, impulsively activated mathematical 

knowledge has been suggested to promote superficial solutions in which situational 

constraints are neglected, especially if no metacognitive activities to monitor the 

activation of knowledge are conducted (Stillman & Galbraith, 1998). Cue salience and 

its interaction with prior knowledge is thereby seen as particularly important because it 

can trigger the activation of inappropriate knowledge. Activation of inappropriate prior 

mathematical knowledge and a lack of metacognitive activities devoted to monitoring 

knowledge activation might account for why students have trouble solving modelling 

problems, but little is known about the interplay between these factors and students’ 

solution processes. 

Research Questions 

These considerations led us to pose the following research questions: 

1. To what extent does the activation of prior mathematical knowledge promote or 

interfere with modelling processes?  

2. Is metacognitive monitoring used to determine the appropriateness of the 

activated mathematical knowledge? 

METHOD 

Participants and Data Collection 

The sample involved 18 eighth to tenth graders (9 girls and 9 boys between the ages of 

14 and 16) from four middle-track classes (German Realschule) from two different 
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schools. We selected participants by following the principle of maximum variation 

sampling (Patton, 2015, p. 283). As selection criteria, we focused on the background 

variables mathematical ability, reading comprehension, and prior mathematical 

knowledge. Mathematical ability was estimated with math grades and reading 

comprehension via a general standardized test (Leiss et al., 2010). Mathematical 

knowledge about circles could help or inhibit problem solving. Thus, we chose eight 

students who had not yet covered this topic in their mathematics classes and ten 

students who had studied this topic before participating in the investigation. The 

interviews were conducted individually. First, each participant worked on the 

problems “Wind turbine” and “Ferris wheel” using the think-aloud method to verbalize 

his or her approach (Figures 1 and 2). Second, a stimulated recall interview was 

conducted in which the participant watched the problem solving videos along with the 

interviewer and commented on his or her own (i.e. the student’s) actions spontaneously 

or when requested to do so by the interviewer. At the end of the stimulated recall 

interview, students were asked to find a second solution for the “Wind turbine” 

problem. 

“Wind turbine” problem 

Wind energy is the fourth largest type of energy in Germany and is therefore an 

important part of energy production. Because wind turbines are very large, they are 

also called wind giants. Overall, a wind turbine is about 150 meters high. The radius of 

the windmill is 45 meters. This is exactly the length of one of the blades. The three 

blades are mounted at a height of about 95 meters on a so-called nacelle. The nacelle is 

rotatable so that the blades of the wind turbine can align themselves with the wind 

direction. The speed at which the blade tip rotates is about 40 meters per second at an 

average wind speed. If the wind blows too hard, the system switches off. At a medium 

wind speed, a blade will return to its initial position after 6 seconds.  

How many meters will the blade tip cover in one turn of the wind turbine? 

Figure 1: “Wind turbine” problem 

“Ferris wheel” problem 

The London Eye is the third largest Ferris wheel in the world. It stands directly on the 

banks of the Thames. Overall, the Ferris wheel is 140 meters high and has a huge 

diameter of 125 meters. From the highest point of the Ferris wheel, you can see for 40 

km. For passengers to board and exit, the wheel does not have to stop because it turns 

very slowly. The speed is only 10 meters per minute. A ride on the Ferris wheel is 

expensive. It costs 25 euros but also takes 40 minutes. 

At what altitude above the water level will a person be 10 minutes after boarding? 

Figure 2: “Ferris wheel” problem 

To stimulate the activation of different prior knowledge, we decided to use problems to 

which different solution approaches could be applied. The first problem “Wind 
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turbine” can be solved by either calculating the circumference of the circle 

(C=2·π·45m≈283m) or using the proportional relation of time and travel distance 

(d=40m*6=240m). For the “Ferris wheel” problem, constructing an adequate mental 

model of the situation and recognizing that the position of the gondola after 10 minutes 

is a quarter of one rotation are crucial to applying an appropriate solution method. The 

result can be calculated by adding up the length of the radius and the height of the base 

(125:2+140-125=77.5 m). The problem can also be solved with other approaches (e.g. 

trigonometric functions), but other approaches did not come up in the interviews. 

Data Analysis 

The problem solving and stimulated recall interviews were transcribed and sequenced. 

Sequences of the stimulated recall interviews were assigned to the related problem 

solving sequences in order to collect more indications of whether prior knowledge was 

activated. The transcripts were analyzed using qualitative content analysis (Mayring, 

2014). A category scheme was used to code the sequences with regard to modelling 

activities, prior mathematical knowledge, metacognitive monitoring of knowledge 

activation, and the appropriateness of the solution. More specifically, the modelling 

activities were divided into initial modelling activities (understanding/structuring the 

problem) and later modelling activities. Prior mathematical knowledge was 

categorized into subcategories referring to different mathematical contents (e.g. circle 

calculation or proportional relations). The occurrence of metacognitive monitoring of 

knowledge activation was recorded. Different solution qualities (correct, partial, 

incorrect and processing canceled) and different qualities of the mental model of the 

situation (adequate, not adequate) were distinguished. Content-analytical quality 

criteria such as the stability and reproducibility of the analysis were tested by 

calculating intra- and inter-coder reliability for more than a quarter of the material with 

satisfactory agreement (Cohen’s kappa calculated for each dimension ranged between 

.691 ≤ κ ≤ .878). Disagreements about the coding were discussed and validated 

consensually. 

RESULTS 

Because of space limitations, we present only the most important results and 

exemplarily sketch two examples of solutions to the “Ferris wheel” problem in which 

aspects of prior mathematical knowledge were found to promote or interfere with 

problem solving. 

For the first research question, we analyzed what kind of prior mathematical 

knowledge was activated and how this knowledge interacted with the modelling 

processes. Learners who had prior knowledge of circle calculation often activated this 

knowledge (“Wind turbine” problem: 6 of 10 students; “Ferris wheel”: 6 of 10 

students). For the “Wind turbine” problem, they activated this knowledge even more 

often than knowledge that referred to proportional relations, although the approach of 

calculating the circumference of the circle is more difficult and prone to errors (circle 

calculation: 6 of 10 students; proportional relations: 2 of 10 students). This was found 
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despite the fact that these learners also had prior knowledge of proportional relations, 

which was verified in the interviews. Learners without prior knowledge of circle 

calculation usually used prior knowledge of proportional relations (“Wind turbine” 

problem: 6 of 8 students; “Ferris wheel”: 5 of 8 students). Regarding the supporting or 

interfering effect of the activated knowledge, we found a big difference between the 

problems. For the “Wind turbine” problem, in one third of the solution processes, 

knowledge of circle calculation or proportional relations was already activated in the 

initial modelling activities of understanding and structuring. In the largest number of 

cases (12 of 18 students), the activation of knowledge of circle calculation or 

proportional relations led to appropriate approaches and correct solutions. But after 

applying one approach, most learners had trouble applying a second approach. They 

tried to apply their prior knowledge of their first approach again, but they did not step 

back and activate their prior knowledge of other mathematical contents. The transcript 

below illustrates this difficulty as described by one of the learners. 

29:25 158 Ella: So this problem, the first one [“Wind turbine”], I thought was 

relatively easy because, as I said before, you only had to calculate the 

circumference here. But the first solutions are always easy, but then to 

come up with the second … because then you are so fixated on one 

calculation and then you also think that it is now the only one. It’s just 

difficult then to still be open to another way. 

In the “Ferris wheel” problem, activation of knowledge about circle calculation or 

proportional relations in initial modelling activities was often found to be accompanied 

by inadequate mental models of the situation (15 of 18). For example, students who 

activated prior knowledge of circle calculations in initial modelling activities (5 of 10) 

figured out that this was not fruitful and either applied a second approach (3 of 10) or 

canceled their processing (2 of 10). On the other hand, the activation of prior 

knowledge of proportional relations (10 of 18) typically led to a single attempt in 

which the learners used this knowledge to calculate the distance traveled instead of the 

height above the water level as requested and reported the distance traveled as a result 

(10 min·10 m/min=100 m). Hence, in almost all cases, the activation of prior 

knowledge of proportional relations resulted in incorrect solutions.   

The second research question was about the use of monitoring activities to control the 

activation of prior mathematical knowledge. Monitoring of knowledge activation was 

found only very rarely (“Wind turbine” problem: 2 of 18; “Ferris wheel” problem: 1 of 

18). In particular, for initial modelling activities, no metacognitive monitoring was 

found at all. Moreover, there were no differences between the “Wind turbine” and 

“Ferris wheel” problems, even though for the “Ferris wheel” problem, it was essential 

to monitor one’s knowledge activation in order to recognize the inappropriateness of 

certain prior knowledge. Moreover, we found indications that even if students 

identified contradictions in the solution, they did not change their solution. The case of 

Pia presented below exemplifies this issue.  
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In the following, two solutions to the “Ferris wheel” problem are sketched. In the first 

case, Tabea is a learner with high reading comprehension skills and high mathematical 

performance. Her solution process is characterized by a long period in which she 

engages in the initial modelling activities of understanding and structuring. Although 

Tabea has no prior knowledge of circle calculation, she activates such knowledge and 

mentions that “hopefully this has nothing to do with π.” She later explains that she 

knows about π because of a poster in her classroom. Her first idea is to calculate the 

circumference of the circle and divide the result, but she does not know how to do it. 

She mentions that “there must be something else that I have overlooked” and starts to 

read the problem statement again and transfers important information into a sketch 

(Figure 3). The sketch and her prior knowledge of fractions help her to recognize that 

10 minutes corresponds to a quarter rotation. She calculates the length of the radius and 

interprets it as equal to the height she was searching for. However, her solution fails to 

take into account the base of the Ferris wheel. 

 

Figure 3: Tabea’s solution to the “Ferris wheel” problem 

The second case is Pia, a student with rather weak reading comprehension skills and 

weak mathematical performance. Like Tabea, her process of solving the “Ferris 

wheel” problem begins with a long period in which she engages in initial modelling 

activities. She reads the problem statement several times and also sketches the 

situation. Pia uses prior knowledge of proportional relations to interpret the speed of 10 

m per minute as “in one minute, I am ten meters high” and to create a table to calculate 

the distance traveled after ten minutes (Figure 4, left). In the sequences presented 

below, she writes down and comments on her solution.  

18:06 37 [pause] So, I am not 

one hundred percent 

sure, but um. 

I: Are you at least satisfied with your solution? 

P: No, not really, actually this is not right.  

I: Okay, what is wrong? 

P: That, if you are 100 meters high, you have 

actually only gone this far [draws a sketch 

(Figure 4, right) to explain the difference 

between the distance traveled and the altitude]. 

18:10 38 [writes] After ten 

minutes, it is located at 

a height of 100 meters. 

Okay, I’m done. 

In the stimulated recall interview, Pia is able to explain that she is aware of the 

discrepancy between her solution, which presents the distance traveled, and the height 

she was searching for (Figure 4, right).  
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Figure 4: Pia’s solution and the sketch in which Pia explains the discrepancy between 

her solution and the question  

In summary, Tabea is one of the rare examples where the activation of inappropriate 

prior knowledge did not lead to an incorrect solution to the “Ferris wheel” problem 

(Tabea’s solution was categorized as partially correct). On the other hand, in Pia’s 

case, her prior knowledge of proportional relations was used to come up with a 

superficial solution, and even her recognition of discrepancies did not lead her to 

search for appropriate prior knowledge. 

SUMMARY AND DISCUSSION 

In the present study, we investigated whether the activation of prior mathematical 

knowledge would promote or interfere with solution processes in solving modelling 

problems. The positive or negative impact of the activated prior mathematical 

knowledge depended on the appropriateness of the knowledge. Students tended to 

activate inappropriate knowledge if some information in the problem statement looked 

promising at first glance but did not match the problem’s demands. In these cases, 

especially the activation of prior mathematical knowledge in initial modelling 

activities was accompanied by inadequate mental models of the situation and incorrect 

solutions. This can be considered an indication that supports the hypothesis that 

impulsively activated mathematical knowledge can promote superficial solutions 

(Stillman & Galbraith, 1998). Prior knowledge of proportional relations and circle 

calculation were both activated frequently, even if these types of knowledge were not 

appropriate for solving the problem at hand. The inappropriate activation of knowledge 

of proportional relations is in line with previous research that demonstrated that 

students tend to overgeneralize proportional relations (Van Dooren et al., 2005). 

Students’ frequent activation of prior knowledge of circle calculation indicates that the 

most recently learned subject is an important although unexplored factor that should be 

addressed in future studies. Further, it was found that learners had trouble finding a 

second solution because they stuck to the prior knowledge they had activated for the 

first solution. This indicates that a first solution impedes the search for a second 

solution, and this should be considered an aggravating factor when multiple solutions 

are required. A low occurrence of metacognitive monitoring was found, although in 

some of the solution processes, metacognitive activities could have helped students 

recognize the inappropriateness of the activated knowledge and might have stimulated 

a search for prior knowledge that was more appropriate. Therefore, a lack of 

metacognitive monitoring can also be considered as one reason for students’ low 
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success in solving the modelling problems (Stillman & Galbraith, 1998). Teaching 

methods that were found to stimulate monitoring activities such as prompting each 

student from the very beginning to find two solutions (Schukajlow & Krug, 2013) 

might help students recognize the inappropriateness of prior knowledge.  

Despite methodological limitations such as the limited number of participants, our 

findings can contribute to a better understanding of the role that prior mathematical 

knowledge plays in modelling processes and might inspire further studies. 
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PRIMARY STUDENT’S DATA-BASED ARGUMENTATION 

 – AN EMPIRICAL REANALYSIS 

Jens Krummenauer and Sebastian Kuntze 

Ludwigsburg University of Education 

 

Despite its importance for informed citizenship, empirical research into student’s 

abilities in developing data-based argumentations is relatively scarce and needs to be 

broadened, in particular as far as primary students are concerned. In a reanalysis of 

data from more than 380 primary students, this research need is addressed. The study 

describes key elements of data-based argumentation in the intersection domain of 

statistical thinking and critical thinking, drawing on a framework focused on scientific 

reasoning. A corresponding coding affords insight into primary student’s approach to 

data-based argumentation, both into their strengths and difficulties. 

INTRODUCTION 

Dealing with data has developed to be a standard curricular element in the primary 

mathematics classroom in many countries and learning goals aiming at student’s sta-

tistical literacy receive growing emphasis. Among other, statistical literacy should 

enable learners to critically evaluate whether and how claims which express specific 

interpretations of data are supported by the data. Evaluating such claims often requires 

data-based argumentation. However, the base of empirical evidence about student’s 

abilities related to developing and evaluating data-based arguments is still scarce and 

needs to be broadened, including a need for conceptualisations of how data-based 

argumentation interdepends with statistical thinking and critical thinking. In particular, 

relatively little is known whether already primary students are able to generate da-

ta-based arguments and what difficulties they may encounter.  

This paper consequently addresses this research need. Based on a theoretical perspec-

tive which links theories related to statistical thinking and approaches to critical 

thinking, key requirements of data-based argumentation are described. The connecting 

framework affords the development of a coding which identifies key aspects of suc-

cessful data-based argumentation. The results of the coding suggest that it is generally 

possible for primary students to successfully generate data-based arguments. Further, 

the analysis yields insight into potential difficulties of the learners.  

The following first section introduces the theoretical framework for the analysis and 

leads to the research questions. We then report on sample and methods, present results, 

and discuss them in a concluding section.  
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THEORETICAL BACKGROUND  

Can primary students develop data-based argumentations? What obstacles may they 

encounter? – Figure 1 gives an overview of relevant aspects that may play a role for the 

development of data-based arguments: Firstly, primary students might struggle with 

requirements of statistical thinking (Kuntze, Aizikovitsh-Udi & Clarke, 2017, cf. 

Shaughnessy, 2007; Wild & Pfannkuch, 1999). For instance, students might not be 

able to read data from a diagram (Reading, 2002), or to deal appropriately with statis-

tical variation (Watson & Callingham, 2003) – a requirement which appears often 

when working with statistical data. Wild and Pfannkuch (1999, cf. Gal, 2002) fur-

thermore mention critical thinking skills or a critical stance as a necessary component 

of statistical thinking. However, they hardly explain in detail how statistical thinking 

elements may interact with critical thinking strategies. In particular, a link with the 

large body of existing theories about critical thinking is hardly made in Wild and 

Pfannkuch’s model. This is why Figure 1 shows critical thinking (CT) as a second 

relevant area: When having to generate data-based argumentations, students may lack 

of CT strategies, e.g. they might not question given interpretations of data, be open 

towards alternative interpretations of data, search for potential contradictions with 

available data, etc. Approaches to CT have developed catalogues of strategies and 

dispositions related to CT on a non-content-specific level. For example, Ennis (1987) 

defined CT as “reasonable, reflective thinking that is focused on deciding what to 

believe and do” (p. 10). He distinguished dispositions, such as a critical spirit and 

being open-minded, from skills, which include questioning interpretations (own as 

well as those from other sources) and tacit assumptions (Ennis, 1989). However, be-

yond Ennis’ work, there is a variety of different approaches to CT and a variety of CT 

definitions. Content-domain-related considerations related to statistical thinking have 

hardly been elaborated in these approaches. 

 

Figure 1: Interplay of statistical thinking/statistical literacy, critical thinking as well as 

knowledge and views about the context (cf. Kuntze, 2016). 
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We would like to add that the arrows shown in Figure 1 are meant to have intersections 

and to interact: For example, students’ views about a situation context may hinder or 

support them in questioning interpretations of data about this situation context, i.e. to 

apply CT strategies. CT may support or even be part of statistical thinking (e.g. 

Aizikovitsh-Udi, Kuntze & Clarke, 2013), but CT elements may also be so dominant, 

that they impede statistical thinking (ibid.).  

In line with the theoretical background developed in more detail in Kuntze, Aiziko-

vitsh-Udi and Clarke (2017), we choose a scientific reasoning perspective (e.g. Bull-

ock & Ziegler, 1999; Klahr & Dunbar, 1989; Kuhn, 2010; Kuhn, Amsel & 

O’Loughlin, 1988; Kuntze, 2004) in order to have a base for a simultaneous focus on 

CT and ST. This perspective affords describing key requirements of data-based ar-

gumentation. The key issue of this perspective is a clear distinction between data 

(playing the role of evidence in scientific reasoning) and interpretations of data 

(playing the role of hypotheses or theory in scientific reasoning). If evidence contra-

dicts the theory in scientific reasoning, the theory/hypothesis has to be rejected and 

new hypotheses have to be developed that are consistent with the evidence. For da-

ta-based argumentation, this means that a contradiction between a claim or an inter-

pretation of data (theory) and the data (evidence) is an appropriate argument for a 

negative evaluation of the claim/the interpretation.  

In the example given in Figure 2 below, the doctor’s claim can be rejected as the data 

given in the lower part of the diagram shows that not all persons who have been cured 

with tablet 2 have recovered earlier than the persons in the tablet 1 subgroup.  

Accordingly, data-based argumentation requires linking a claim/an interpretation of 

data with relevant available data and drawing a conclusion for the claim/for an inter-

pretation. Following Toulmin’s (2003) terminology, the link with the available data 

warrants this conclusion. Describing data-based argumentation in Toulmin’s frame-

work also helps to deal with the situation that when working with statistical data, 

contradicting but appropriate data-based argumentations can be developed even on the 

base of the same data set (see example in Figure 2).  

Studies have shown that even primary students are already able to apply strategies of 

scientific reasoning and that improving such skills of primary students is possible (cf. 

Bullock & Ziegler, 1999; Sodian, 2008). Nevertheless, these and further studies also 

show that children often seek for confirming evidence only and tend to accept inter-

pretations too hastily. It has also been observed that children rather use experimental 

evidence for illustrating and confirming existing theories than for challenging them 

(Kuhn et al., 1988; Bullock & Ziegler, 1999; Klahr & Dunbar, 1989). In contrast, as 

laid out above, an important skill for dealing with data is to challenge data-related 

claims actively by seeking for counter-evidence in data (Kuntze et al., 2013). When 

primary students have to generate arguments on the base of data, we thus expect that 

seeking for counter-evidence could be an obstacle for some children. 
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RESEARCH INTEREST 

Empirical research about primary student’s data-based argumentation is needed, in 

particular under the theoretical scope described in the previous section. Consequently, 

the core aim of this study is to provide answers to the following questions: 

(1) Is it possible for primary students to generate data-based arguments?   

(2) Is it possible to detect specific difficulties primary students encounter when they 

develop data-based arguments?  

DESIGN AND SAMPLE 

The reported study is based on a reanalysis of data from an earlier project (e.g. Kuntze, 

Martignon, Vargas & Engel, 2015). We analysed answers from N=385 German year 

four primary students (191 female, 193 male; average age M=10.0, SD=0.61). The task 

the students had to answer (see Figure 2) presents a diagram on recovery times of two 

sorts of tablets against headache. The students were asked to find arguments in favour 

and against a given claim by a doctor, who prefers the second tablet. 

 

Figure 2: Task the students had to answer (Kuntze et al., 2015, p. 11). 

In a first step of analysis, we used a top-down coding derived from the theoretical 

background introduced above. According to the requirements expressed in the task, a 

successful answer (Code A) can be expected to contain at least one complete argument 

in favour and one argument against the given claim. Each argument has to refer to 

given data, which means, that a relevant and consistent connection with the given data 

has to be made supporting resp. contradicting the doctor’s claim.  

Moreover, we expected that there might be partial answers containing only one da-

ta-based argument in favour or against the claim. Such answers were coded as well 

(code B); it was coded in addition whether the student’s argumentation was in favour 

or against the given statement. All answers, which did not fulfill the requirements of 

code A or B were assigned to code C. This code thus contains answers without suc-

cessful arguments, including cases with blank response fields. The overall measured 

inter-rater reliability of the top-down coding was satisfying (κ=.853). In all cases of 
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initial disagreement, agreement among the raters about the code assignment could be 

reached in subsequent criteria-based discussion.  

For answering the second research question on potential difficulties, we subjected the 

answers, which were in the top-down coding assigned to code C, to a bottom-up 

analysis. Following Mayring’s (2015) approach of qualitative content analysis, we 

developed a set of distinct categories. The reliability of the resulting coding was en-

sured by a follow-up top-down-rating of all answers: In this rating, the answers were 

assigned to the categories which had emerged from the bottom-up analysis. The coding 

by two raters reached an inter-rater reliability of κCohen=.964. 

RESULTS 

The top-down coding shows that almost 17% of the primary students were able to 

generate data-based arguments in favour and against the given claim as required (code 

A). Figure 3 shows a sample answer. This answer first states that “more people re-

covered faster with tablet 2”, which refers to a comparison of the two accumulations of 

cases shown in the diagram in Figure 2. The second statement in the answer is a con-

sideration of single cases shown in the diagram (“there was nobody”) which supports a 

negative evaluation of the doctor’s statement, even if a direct reference to the doctor’s 

statement is not made. With the word “but” the student indicates that now the per-

spective changes from supporting to challenging the doctor’s claim.  

 

Figure 3: Answer assigned to code A.  

Further 11,9% of the primary students were able to generate at least one reasonable 

argument based on data in favour or against the given claim (code B). The remaining 

cases (71.2%) did not fulfil the requi-

rements of data-based arguments de-

scribed above (code C).  

The second research question focused 

on evidence about student’s difficul-

ties. We start with the partial answers 

(code B). The data in Figure 4 suggest 

that more children generated arguments 

which support the given claim rather 

than identifying evidence against it 

(9.8% vs. 2.1%). This means that more 

students who generated only one ar-

gument referred to confirming evidence 
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than to counter-evidence in the given data. 

The bottom-up analysis of the code C answers offers a more detailed view of different 

types of potential difficulties of the primary students. We identified several 

sub-categories of code C. 19.2% of the whole sample did not answer at all. Another 

19.2% of the answers could not be evaluated as they were unreadable or the content of 

the student’s answers could not be reconstructed in the context of the task. 10.4% just 

mentioned a claim but did not substantiate it in any way (e.g. “Tablet 2 is better than 

tablet 1.”). 1.6% of the student’s answers showed operations of counting or calculating 

which had to be coded as irrelevant for solving the task. These students, for example, 

counted the points of the given diagrams or divided any numbers. In 3.4% of the an-

alysed answers data were mentioned, but there was no evidence of any implication 

being drawn by the student in favour or against the given claim. 11.5% of the answers 

formally contained data-based arguments, but these references to data were based on 

inconsistent interpretations of the given data. For example, such students interpreted 

the data points as the number of tablets which have to be taken depending on time.  

In further 5.9% of the sample, views or knowledge about the context played a major 

role. We were also able to differentiate these answers into two distinct categories. In 

3.6% of the answers, views or knowledge about the context was so dominant that da-

ta-based arguments were absent (see for example answer presented in Fig. 5).  

 

Figure 5: Example of an unsuccessful answer based on views about the context. 

The remaining of 2.3% generated elements of data-based argumentation which were 

however dominated or rendered invalid by additional contradicting statements based 

on views or knowledge about the context. 

DISCUSSION AND CONCLUSIONS 

The results show that already primary students can be able to generate data-based ar-

guments. In our study, almost 17% of the primary students were able to generate ar-

guments both in favour and against the given claim. This shows that these students 

were in particular able to evaluate the given claim negatively after successfully having 

found counter-evidence in the given data. Further 11.9% of the primary students de-

veloped at least one argument, which means that at least more than a quarter of the 

primary students showed abilities of entering in data-based argumentation. 

Among the students who gave only one argument, a majority developed arguments, 

which were confirming to the given claim. These students hence did not mention ev-

idence contradicting the given claim. These students should be fostered with respect to 

CT strategies with relevance for scientific reasoning, so that their awareness of seeking 

for counter-evidence may increase. The findings thus inform follow-up research: po-
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tential effects of corresponding learning environments will be examined in future 

studies. 

The findings also indicate that knowledge and views about the context can play an 

ambivalent role for generating data-based arguments. On the one hand, it is basically 

needed to interpret the given data against the background of the context they refer to. It 

can be assumed that those students who were able to generate an answer rated with 

code A or B, would not have been able to do so, if they had not successfully used 

context knowledge about medicine and headache. On the other hand, some students 

restricted their data-based arguments by inconsistent context-related statements. 

Around 4% students also did not even mention the given data and instead used rather 

speculative ideas based on views about the context.  

Also beyond these specific groups of students, learning environments focused in da-

ta-based argumentation could improve primary student’s corresponding abilities: 

Knowledge about the status of data-related claims/interpretations on the one hand and 

data on the other according to a scientific reasoning perspective might help students to 

succeed in data-related argumentation tasks. We expect that such interventions will 

reduce the frequency of blank answers and at the same time help students to focus also 

on data even if they have strong knowledge and views about the context. In this sense, 

meta-knowledge about data-based argumentation could be a key for the learners.  
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This paper investigates how Finnish primary teachers talk about their interaction with 

curriculum materials, especially the additional facilities that digitalisation and tech-

nology provide to mathematics education. Digital curriculum materials are seen as 

part of available resources for teaching and learning mathematics. The data of this 

qualitative study consists of semi-structured interviews with seven primary teachers. 

Six thematic categories emerge in the data illustrating the elements that teachers 

consider crucial in evaluating and using the curriculum resources. The Finnish 

teachers prove to be critical and strategic consumers who understand the potential of 

the digital curriculum materials but make decisions about the use primarily in terms of 

enhancing student learning. 

INTRODUCTION 

Digital resources, theorizing the character of them and research on how they transform 

educational processes and practices have been recently under elaboration (Pepin, 

Choppin, Ruthven & Sinclair, 2017). While we know relatively much about teachers’ 

interaction with printed curriculum resources (e.g. Brown, 2009; Remillard, 2005), 

research on the interaction with digital resources has yet to be fully explored. There has 

been a concern about how teachers manage to choose among the rapidly changing and 

easily available digital tools for mathematics learning (Hollebrands, 2017), and if they 

tend to seek for new resources in the first place (Tanhua-Piiroinen, Viteli, Syvänen, 

Vuorio, Hintikka & Sairanen, 2016). This paper reports an exploratory study that sets a 

ground for a larger scale cross-cultural research aiming to increase our understanding 

of the capacity required for teachers to use these resources well and the factors that 

influence it. We need to fill the gap in our knowledge about, on the one hand, how the 

growing supply of digital curriculum resources impact teachers’ classroom practices 

and, on the other hand, how teachers perceive the ongoing change and expectations to 

be met. 

Finnish teachers have great autonomy in making decisions about the supply of cur-

riculum resources and the way they wish to utilise such materials in their mathematics 

classes. Still, the development of mathematics curriculum materials and teacher guides 

in particular have had an important role in enhancing new ways of teaching mathe-

matics in Finland (Pehkonen, 2004). Finnish curriculum materials are commercially 
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produced with no national inspection of them. Information of upcoming curriculum 

reforms is available in public that enables publishers to produce materials that are in 

line with the current national core curriculum setting the outline for school education.  

This paper focuses on teachers’ stance towards digital curriculum materials as part of 

various resources available for teaching and learning mathematics. Earlier research has 

often focused on the use of either traditional or digital curriculum materials but instead, 

our approach is to consider the curriculum resources to comprise a whole package 

despite the source or the form of the material (Ruthven, 2014; cf. Pepin et al., 2017). 

Especially, the aspects characterising teachers’ perception of the curriculum materials 

and thus serving the basis for choosing and using particular resources are at the core of 

the study. The research question is how the Finnish teachers perceive digital curricu-

lum material in their mathematics teaching. 

THEORETICAL FRAMEWORK 

There is a need for understanding the foundations for change and potential when ap-

plying digital curriculum resources in mathematics classroom (e.g. Pepin et al., 2017). 

The globalization of the curriculum publishing industry and the fact that digital re-

sources are available to teachers throughout much of the world generate a new setting 

for studies on curriculum use. Recently, it has been argued that the research field 

should focus on digitalization from a teacher’s perspective, building on the knowledge 

of teachers’ use of print resources, and taking into account features that are unique to 

digital resources. The demands placed on teachers and potential to support them should 

be considered in such research (e.g., Hoyles & Lagrange, 2010), particularly since 

there is evidence to suggest that particular characteristics of digital resources put dif-

ferent demands on the teacher (Remillard, 2016). 

One theoretical perspective proposed by Remillard (2005) conceptualizes teachers’ 

curriculum use as a dynamic interplay between the teacher and the curriculum re-

source, and thus, it views the curriculum use as a participatory process rather than a 

passive process of implementation. Along this line, a construct frequently referred to is 

Pedagogical Design Capacity (PDC) (Brown, 2009). PDC refers to “an individual 

teachers’ capacity to perceive and mobilize existing resources in order to craft in-

structional episodes” (p. 29). This capacity includes the skill required to perceive and 

interpret the affordances of curricular resources and make decisions about how to de-

ploy them to planning for instruction. Still needed is research on teachers’ PDC in 

relation to digital resources. 

Teachers seem to face a challenge when applying new digital resources in the class-

room. Ruthven (2014) discusses the role of teaching expertise underpinning the suc-

cessful use of digital technology in the mathematics classroom. In his framework, the 

tension arises from trying to apply new digital resources in line with existing elements, 

such as textbooks and traditional facilities. Hollebrands (2017) brings about the chal-

lenge of educating future teachers to be competent and willing to choose critically from 

the available curriculum resources in order to enhance student learning. For example, 
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prospective teachers’ stance towards digital curriculum resources are found to be 

characterised by the aspects related to surface features of the software and providing a 

motivational tool, for example, fun in mathematics classroom rather than deeper en-

gagement with enhancing mathematical understanding (Johnson and Suh, 2009; 

Smith, Shin & Kim, 2017). Contrary to these findings, Pepin et al (2017) highlight 

three features that make the use of digital curriculum resources beneficial for teachers: 

1) flexibility in terms of adaptation and redesign when applying the resource and po-

tentially work in social and professional environment; 2) potential for differentiation 

and personalisation when addressing the needs of individual students; and 3) tools for 

assessment, namely access to pupil learning and potential for monitoring the progress. 

METHOD 

This qualitative case study (Bryman, 2012) is based on insights emerging in the in-

terviews with seven Finnish primary teachers in autumn 2017. Since the aim was to 

understand various approaches into the use of curriculum resources and the way 

teachers evaluate mathematics curriculum materials as part of their work, we invited 

primary teachers representing different grade levels (1-6) and teaching experience, 

different schools, school regions and school size to participate in the study. The data 

consists of one-hour semi-structured interviews based on the themes related to 1) 

teacher background and school environment, 2) the curriculum resources in use, 3) 

views on curriculum material usage, and 4) views of teaching and learning mathe-

matics. The interview took place in the classroom of each teacher that allowed the 

researcher to see the environment and look at the curriculum materials during the in-

terview if needed. 

The analysis started with transcribing the recorded data and identifying the three as-

pects that Pepin et al. (2017) associate with the beneficial use of digital curriculum 

resources. Three additional themes, i.e. supplementary facilities of realization, con-

tribution to teaching and learning mathematics, and practical aspects, emerged from 

the data along the analysis. The trustworthiness of the study is strengthened by a pilot 

study for testing the original interview protocol in spring 2017. Furthermore, the 

analysis was carried out in several cycles parallel by two first authors that helped to 

ensure a consistent and trustworthy manner of the analysis. (cf. Bryman, 2012) 

RESULTS 

Teachers consider six emerging features when reflecting on their relation with digital 

resources as part of the available mathematics curriculum material and the use of them 

in teaching mathematics. 

Flexibility in terms of adaption 

The most usual way to utilize the flexibility of the digital materials is to modify the 

available tests that are included in teachers’ curriculum material. The teachers stated 

that they select the test items in accordance with what they have taught and what stu-

dents could possibly manage. 
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…I actually try to select such tasks that I assume my students to understand. Not neces-

sarily that easy but similar to assignments that we’ve done in the class (Teacher 3) 

Teachers found that the flexibility of available digital materials varies. On the one 

hand, the conveyance tools of the curriculum resource (Dick & Hollebrands, 2011) are 

seen stiff, not flexible.  If the content and the logic of animations are not in line with 

teachers own thinking, it is found as a hindrance for fully adapting the material into 

teaching. 

If you don’t go through them [animations] well beforehand it’s likely to be surprised what 

happens when you click the arrow forward [for the next step] ] …then the timing of in-

structional speech is sometimes wrong. It’s inconvenient. And sometimes it takes several 

rounds to understand the logic behind. (Teacher 4) 

On the other hand, some teachers prefer the same resources particularly as it is 

time-consuming to develop flexible digital materials to suit one’s own ideas. Teachers 

rely on traditional working methods and, for example, the use of concrete materials 

because they know well how to adapt such implementation smoothly in their teaching. 

the digital material of the textbook series is something like you still need to add a lot of 

elements yourself… if I need to invent something by myself I prefer to draw or use mac-

arons or do arts and crafts… (Teacher 7) 

Surprisingly, no teacher brought about the flexibility of the digital resources in terms 

of designing lessons collectively, creating professional development sessions or 

working distance (cf. Pepin et al., 2017).  

Personalization and differentiation 

All Finnish teachers in our study seem to seek for such tools that allow them to take 

account of different learners, for example, high-achievers, students with learning 

disabilities or the ones speaking Finnish as a second language. This overlaps with the 

previous category when designing tests suitable for different learners. Teachers ap-

preciate the possibilities of personalization and differentiation in general when using 

the curriculum materials. The personalization can be obtained by a variety of digital 

tasks that the teacher can choose from or by an application that vary the difficulty of 

tasks according to prior performance. 

You don’t need to indicate the same [tasks] for everyone as there’re plenty of them, as 

many as you feel up to do… low-performing students had some tasks that repeated really 

the basics instead of doing average level tasks… (Teacher 1) 

Teachers provide their students possibilities to choose from various additional activi-

ties after completing the basic level tasks of the textbook. Teachers appreciate also that 

the digital materials allow students to work at home online.  

Logging in with personal identification made it easy to continue working at home and it 

[assignment] was completed on the Internet (Teacher 1) 

Yet, teachers reflected on the meaning of knowing the available material thoroughly in 

order to utilize it efficiently. Teachers highlighted the meaning of special introduction 
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training when starting to use a new resource in order to understand the underlying idea 

and to picture up the supply of tasks to be used with students. 

I’d like to participate also myself if the training was available. The problem is to find time 

for becoming familiar with such a broad supply… that you’d know who benefits from 

which tasks (Teacher 5) 

Assessment and monitoring student learning 

Teachers hardly reflected on the possibility to develop assessment procedures and 

tools for summative or formative assessment in order to monitor student learning. Only 

one teacher mentioned the benefits provided by digital materials that allow easy access 

to witness student progress and direct the pathway that an individual student takes. 

It’s easy for a teacher to monitor and download new assignments weekly and then check 

who had completed them all (Teacher 1) 

Supplementary facilities of realization 

Teachers paid attention to supplementary facilities that digital resources potentially 

provide if compared to printed ones, namely, ready-made exact drawings and illustra-

tion presented with animated digital manipulatives. 

The biggest change when digital materials appeared in the market… it was a huge thing to 

replace multi-links and manipulatives and such material… because it’s really clear in my 

opinion that you can show them on the board and pause and go back and forth (Teacher 1) 

One teacher highlighted the importance of making mathematical process visible. He 

found it easier to accomplish such demand with the traditional blackboard instead of 

digital presentations. The meaning of using concrete materials, for example, ten base 

manipulatives divided the teachers. On the one hand, possibility to work with concrete 

materials and laboratory work comprise the ground for learning mathematics, i.e. 

embodied activities and tactile experience serve the basis for the learning process of 

the students. 

I use a lot of laboratory work and I have certain materials available. At the moment, ten 

base manipulatives have served the ground for expanding the number area… it’s the corner 

stone of the autumn term. (Teacher 6) 

On the other hand, teachers discussed the expectation from digital curriculum material 

to provide additional facilities, namely something new. 

It seems that digital extra material is just like doing tasks similar to the ones our textbook 

includes but doing them without a pen… it’d be better to have different than the textbook 

tasks by nature (Teacher 5) 

However, digital curriculum materials seem to provide poorly an overall package for 

mathematics classes, and thus, textbooks still play a central role in schoolwork. The 

printed material was found sometimes more convenient to access, for example, when 

flipping through the provided curriculum elements and picturing up the overall idea of 

a particular lesson. Still, teachers found single activities such as games and interactive 

tasks an important additional affordance in learning mathematics. 
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View of teaching and learning mathematics 

Teachers appear to be critical consumers of all kind of curriculum material but espe-

cially of digital materials that are to open up new sceneries in mathematics classrooms. 

They evaluate the curriculum material in terms of whether they support student 

learning and achieving learning objectives. Hence, these teachers appreciate materials 

that include various kinds of tasks, not only training calculation skills. Mathematical 

thinking emerged as a core theme. 

It’s about encouraging students to think, communicate and apply mathematics. The idea 

isn’t to learn through repeating things but instead using own head (Teacher 7) 

Curriculum material should be mathematically correct and clear in order to avoid 

confusing children by an unfamiliar task form or unclear assignment. 

The assignment is about which numbers you find between two given numbers [in the 

number line] but it says nothing about dealing with whole numbers... if you just use it 

straightforward, well-performing students are lost (Teacher 4) 

Although the teachers strive to make mathematics meaningful for students, they 

stressed that the aim of using digital material is not just to entertain students or making 

mathematics fun. They understand their role to be responsible for choosing such cur-

riculum resources that push towards reaching good learning outcomes. Teachers seem 

to work with curriculum materials in a way that it suits their views of teaching and 

learning mathematics and personal readiness for utilizing various resources. 

Practical aspects 

Various practical issues emerge especially when utilising digital materials. Technical 

problems make teachers frustrated when applying digital resources and technology. 

It’s extremely frustrating to see that digital materials have worked poorly during the recent 

years, it’s my opinion. It’s the reason why I’ve kept some old [mathematics] textbooks in 

my cupboard. It makes it possible to find at least some types of tasks and use them by 

putting something together myself, even have photocopies (Teacher 4) 

Starting to use new digital materials is seen demanding and many times the user in-

terface seems to be unclear or too complicated for both students and a teacher. The 

prevailing habit to use traditional textbooks in mathematics classes is strong still 

nowadays. A challenge is to diversify the way mathematics curriculum materials are 

used. 

Some students questioned it also, like why they need to use computers all the time… we’ve 

done some other projects with them… I think we do all sort of things with computers and I 

felt that I don’t need to promote digitalisation especially in mathematics if I don’t feel like 

it (Teacher 6) 

One teacher discussed about the challenges caused by students being unfamiliar with 

the user interface of a particular application. Thus, a great deal of valuable lesson time 

might be lost for solving practical problems. Moreover, teachers feel that practical 

arrangements take sometimes too much time and effort if compared to gained benefits. 



Krzywacki, Hemmi, Remillard, & Van Steenbrugge 

 

PME 42 – 2018 3 – 265 

For example, last time when I’d booked the laptops for my class and I got them, then we 

couldn’t log in. It took almost the whole lesson. I think we did some three assignments 

before starting the lesson break… and we’re supposed to rehearse for the test and the 

whole session was a disaster (Teacher 3) 

A practical hindrance is that it is time-consuming to find high-quality material on the 

Internet and getting familiar with the supply of digital curriculum material. 

DISCUSSION 

Our study shows that the Finnish teachers seem to be critical consumers of the digital 

curriculum materials. They choose carefully the resources and especially in which 

ways to utilize them in mathematics teaching. However, teachers seem to expect that 

the curriculum material provides augmenting facilities and the use of the material is 

worth the effort; for example, that the digital material enables them to work more ef-

ficiently than before or provides new approaches to mathematics teaching. Digital 

curriculum materials serve to be a purposeful resource only if the teachers recognize a 

clear contribution to student progress and a help in schoolwork (cf. Pepin et al, 2017). 

Teachers see the curriculum resources as an overall package and they utilize the re-

sources in their classrooms firstly for enhancing student learning and improving the 

quality of their own work. 

We found hardly evidence about teachers to prioritise either making mathematics fun 

or other issues related ‘edutainment’ when evaluating the potential curriculum mate-

rial. The surface level features of the curriculum material hardly guide the deci-

sion-making and the use of the digital curriculum material (cf. Johnson and Suh, 2009; 

Smith, Shin & Kim, 2017). The novelty of digital curriculum materials and technology 

serve no additional value without a clear contribution to the quality of teaching and 

learning mathematics. Teachers have high expectations. 

The Finnish teachers are principally willing to apply new resources in their classroom 

and see the potential of the modern resources. Recent concern has focused on the 

quantity of using digital and technological resources (e.g. Tanhua-Piiroinen et al., 

2016). Instead of blaming the school system or reluctant teachers, the focus should be 

on developing such curriculum resources that provide a meaningful addition to exist-

ing supply and in which pedagogical aspects would be of a primary concern. The tra-

ditional approach to curriculum materials seems to outperform still in the beginning of 

the 21st century. 
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In this paper we report on results from an eight-month intervention with preschool 

teachers aiming to enhance five-year-olds’ learning of basic arithmetic skills. The 

purpose of this study is to investigate how the children’s learning developed through 

participation in the theoretically driven intervention, which was based on the idea of 

experiencing numbers and their part-whole relationships. We report on an analysis of 

task-based interviews with 103 children before and after the intervention. Our findings 

show that the learning outcomes of the intervention group were significantly higher 

compared to those of the control group after the intervention, and that differences 

between the groups remained a year after the intervention. 

INTRODUCTION 

In Swedish preschools, Mathematics is not usually taught in a formalized way. While 

there are goals for mathematics learning in the curriculum, they are general rather than 

specific and are taught informally during the children’s play. This means that, prior to 

formal schooling, preschool children show great differences in knowledge of numbers 

and arithmetic skills. International research from the past three decades has given us a 

comprehensive picture of general learning trajectories of arithmetic skills (e.g., 

Baroody, 2016; Clements & Sarama, 2009), but we still find it puzzling how different 

ways of perceiving numbers affect children’s opportunities to benefit from teaching 

activities and develop their skills towards successful arithmetic strategies.  

The aim of our project (FASETT) is to investigate preschool children’s conceptions of 

numbers and early arithmetic skills, and how these can be developed through partici-

pation in a theoretically driven pedagogical approach. The purpose of this paper is to 

analyze the learning outcomes from the intervention. The current study is based on 

task-based interviews with 103 children, from both the intervention and control 

groups, to establish their knowledge of numbers and arithmetic tasks. Our research 

questions are: How did children’s learning of arithmetic tasks in the intervention group 

develop? How does the development appear in comparison to a control group? 

CHILDREN’S EXPERIENCES OF NUMBERS AND EARLY ARITHMETIC  

There is an extensive body of research on children’s development of number 

knowledge and early arithmetic skills (see Baroody, Lai, & Mix, 2006; Carpenter & 

Moser, 1984; Fuson, 1992, for overviews). Already in infancy children show an ability 

to discriminate small quantities, which develops into number concepts used in arith-
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metic operations during childhood (Wynn, 1998). These abilities are found in all cul-

tures, but how they are shaped and expressed is culturally influenced, not least by 

different base systems and linguistic structures. Nevertheless, there seem to be some 

basic fundaments that are necessary to learn in order to understand and use numbers in 

arithmetic tasks, such as ordinality in the counting sequence, numbers’ cardinality, and 

structuring numbers as part-whole relations (Baroody, 2016; Fuson, 1992).  

“Very young children typically see a quantity as an aggregate of single units, and thus 

they need to count when finding the total” (Murata & Fuson, 2006, p. 432). However, it 

has been suggested that children’s numerical concepts can likely be developed through 

activities that do not necessarily involve sequential counting (Wright, 1994). An 

overemphasis on counting strategies may even delay children’s development of more 

advanced mathematical skills, since “preschool children who receive continuous en-

couragement when using counting strategies are reluctant to try the new more ad-

vanced decomposition strategy” (Cheng, 2011, p. 30).  

Moeller et al. (2011) summarized neuro-scientific studies and concluded that suc-

cessful finger-based counting and arithmetic serve as building blocks for later nu-

merical and arithmetical development. This is likely due to the structure of numbers 

that finger-pattern sets can give the child. Moreover, Neuman (1987) suggests that 

children who use their fingers to represent numbers’ part-part-whole relationships are 

more likely to develop successful strategies for solving arithmetic problems. Neuman 

(1987, 2013) argues that a lack of recognizing numbers as part-part-whole relations 

may be a cause for not learning number facts, which leads to the need for cumbersome 

strategies, such as double-counting of single units. Similarly, Gray, Pitta and Tall 

(2000) found that children who are less able to solve arithmetic problems relied ex-

tensively on counting procedures.  

Based on the findings described above, we adopted the use of fingers to represent num-

bers, and particularly to develop finger patterns as a means to discern numbers’ 

part-part-whole relations. We conjecture that this facilitates a conceptual under-

standing of numbers rather than a procedural use of fingers as countables. Since 

counting has long been regarded as the dominating path to development, less is known 

about how five-year-olds learn arithmetic skills through experiences of numbers’ 

part-part-whole relations.  

METHOD AND THEORETICAL FRAMEWORK 

The intervention program was designed in accordance with the variation theory of 

learning (Marton, 2015), and was built on Neuman’s conjecture suggesting that in 

order to learn to solve arithmetic tasks one needs to discern and experience numbers’ 

“manyness” and part-part-whole relationships. As previously stated, finger patterns 

can be used to do this. To experience “manyness” means to embrace the idea that a 

group of objects may be seen as a quantity (whose cardinality can be determined by 

counting or estimating), and experience this quantity as comprised of units that form a 

composite whole.  
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A total of 103 children participated in the study, of whom 65 attended five preschools 

involved in the intervention program and 38 attended four preschools that did not re-

ceive any particular guidance.  

Written consent was given by all parents/legal guardians of the children before par-

ticipation. All children were interviewed three times with the same tasks: at the be-

ginning of their last year in preschool (as 4-5-year-olds), after the intervention period, 

and a year after the intervention. In the year after the intervention, no special treatment 

was given to either group. However, this year the children attended new schools with 

new teachers and the groups were mixed with other children. 

The interviews 

Each individual interview lasted about 15-20 minutes and was comprised of mathe-

matical tasks within the number range 1-10. The tasks were given verbally. During the 

interviews no numerals were shown, and no manipulatives such as counters or similar 

objects were available to be used for calculation. The interviews were video-recorded, 

with the exception of a few cases in which we only had permission to observe and 

audiotape. In this paper we report on only eight arithmetic tasks in the interview. The 

tasks’ context as well as type differed (see Figure 2); for example, “If you have ten 

candies and eat six of them, how many are left?” (10-6=_) and “You have three glasses, 

but are going to set the table for eight people; how many more glasses do you need?” 

(3+_=8). In another task, inspired by Neuman (1987), the child was asked to count 

seven marbles lined up on a table. The interviewer told the child she was going to hide 

the seven marbles in her two hands. Thereafter, the child was asked how many marbles 

there could be in the left and right hands (7=_+_). After this the interviewer opened one 

hand, and the child was asked to find the other part (7=4+_).  

The interviews were coded for correct or incorrect answers, giving a maximum score 

of eight points. When no answer was given, either because the child did not provide an 

answer or because she had previously given two subsequent incorrect answers to easier 

tasks and thus the interviewer did not ask any new questions, this was coded as in-

correct. We analyzed correct answers to tasks and used ANOVA to analyze differ-

rences in means between the intervention and control groups in order to study the ef-

fects of the intervention. 

The intervention 

The teachers worked in an iterative process in collaboration with the research group, 

whereby designed activities were enacted with the children, documented with video, 

and used as a basis for investigating the children’s understanding and how to develop 

the activities even more. Four activities were designed and enacted during a period of 

eight months, October-May: a) the statement game, b) the five- and ten-snake game, c) 

finger patterns, and d) arithmetic context tasks. The activities were enacted repeatedly, 

and in line with the variation theory of learning. The primary goal was for the children 

to learn to use their fingers to represent numbers, and particularly develop finger pat-

terns as a means to discern and make use of numbers’ part-part-whole relationships. 
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The statement game (October-November): The aim of the statement game was to 

highlight that numbers can be represented differently with fingers (Sensevy, Quilio, & 

Mercier, 2015). When playing, the children were to show how the number on a die 

could be represented on two hands, and in different ways compared to the other chil-

dren participating in the game. This would facilitate the children’s development of a 

structural approach to arithmetic tasks by using their fingers as representations of 

numbers in a part-whole structure. 

Five-snake and ten-snake (December-March): The five- and ten-snake game was 

conducted with a string of beads (five in one color and five in another color, grouped 

together). The teacher would hide some of the beads under her hand, leaving the rest of 

the beads visible. During the game the child modeled the whole (five or ten) with her 

fingers and thereafter modeled the visible part and was asked to figure out how many 

the teacher had hidden under her hand. The child was able to see the missing part, 

usually without counting. The game emphasized the part-part-whole structure of 

numbers as a fundament for later work with arithmetic tasks involving similar 

part-part-whole structures to find a missing part.  

Finger patterns (April): In order to direct attention to the structural aspect of numbers, 

the teachers used finger patterns to extend the children’s conceptual subitizing range 

(recognizing finger patterns that included an undivided five). The children were also 

asked, for instance, how many fingers should be put down to make a seven pattern 

from a nine pattern, and the reverse. In this manner, the relationship between seven, 

two and nine was brought to the foreground and visualized as finger patterns, whereby 

the whole was not static like in the snake game.  

Arithmetic context tasks (March-May): Arithmetic tasks were developed that included 

change or comparison in quantities up to ten, such as “Five bears were walking in the 

woods and three ran off; how many were left?” and “Eight tired bears came to a cot-

tage, but there were only six beds; how many bears did not get a bed to rest in?”. The 

children were encouraged to model the task on their fingers in the same way as in the 

snake game.  

RESULTS 

We found that the learning outcomes for the intervention group (Figure 1) were higher 

compared to those of the control group after the intervention. The mean for the inter-

vention group increased from 1.69 (max. 8) in the pre-interview to 4.97 (SD 2.27) in 

post-interview 1, and 6.32 (SD 1.84) in post-interview 2 (12 months after post-inter-

view 1). The mean for the control group was 1.61 (SD 1.82) in the pre-interview, 3.18 

(SD 2.09) in post-interview 1, and 5.42 (SD 2.26) in post-interview 2.  
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Figure 1. Mean results for the intervention and control group at pre-interview, 

post-interview 1, and post-interview 2. 

A mixed design ANOVA was conducted, with Group (Intervention, Control) as a be-

tween-subjects factor and Test occasion (Pre-Interview, Post-Interview.1 and Post-In-

terview.2) as within-subjects factor. Mauchly’s test indicated that the assumption of 

sphericity had not been violated (χ2(2)=1.147, p=.564), and Levene’s tests revealed no 

violation of assumption of homogeneity of variance between groups on all three test 

occasions (FPre-int.(1,101)=.021, p=.885, FPost-int1(1,101)=.769, p=.383, 

FPost-int2(1,101)=2.165, p=.144). As expected, the main effects for both Test occa-

sion (F(2,202)=221.517, p=.000, ηp2=.687) and Group (F(1,101)=7.404, p=.008, 

ηp
2=.068) were significant, suggesting that, on average, the children’s mean scores 

increased from one test occasion to the next, and that the intervention group had better 

overall performance than the control group. 

Most importantly, confirming our main hypothesis, the analysis confirms significant 

interaction between Group and Test occasion (F(2,202)=8.890, p=.000, ηp
2=.081), 

suggesting that the increase in learning outcome was different for the intervention and 

control groups. We see in Figure 1 that, while the intervention and control groups 

started off with the same average results (pre-interview), the intervention group 

achieved higher scores at post-interview 1 and remained more successful after a year 

(post-interview 2). The difference between means in the intervention and control 

groups is almost two points after the intervention (post-interview 1, Figure 1). The 

difference between groups at post-interview 2 was smaller than immediately after the 

intervention, but still remained at almost 1 point. 

Analysis on task-level 

The results show that the intervention group scored higher on all items compared to the 

control group in both post-interviews 1 and 2 (see Figure 2). The increase shown in 

post-interview 1 compared to the pre-interview was higher on particular items, e.g. 
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tasks C (+47%), D (+55%), and F (+52%) for the intervention group compared to the 

control group (34%, 45%, and +24% points, respectively). These tasks have similar 

features that may explain their standing out as an outcome of the intervention: they all 

start with a known whole, and one or neither of the parts is known. Task A is of similar 

type. However, in this case the semantic nature of the task “You and your friend col-

lected five shells together. You collected four of them; how many did your friend 

collect?” made it seemingly difficult to comprehend. We draw this conclusion as many 

children in both groups answered “five” on this task. Task C, about finding two un-

known parts, shows a great difference between the groups, with an increase in correct 

answers from 19% to 66% (an increase of 47% points) for the children in the inter-

vention group, and from 16% to 34% (an increase of 18%) for those in the control 

group. In this case, it seems as if the activities involving identifying one part of the 

part-part-whole relations during the intervention also help the children learn to identify 

two interrelated parts of a given whole. We can see that the children in the intervention 

group also improved more than those in the control group on tasks involving addition 

(tasks E and G). The children in the control group improved on all tasks, improving the 

most on tasks involving addition, e.g. task G (+27%). 

 

Figure 2. Comparison of correct answers in percent on tasks in pre-interview, 

post-interviews 1 and 2 in the intervention (interv.), and control group.  

The results from post-interview 2, 12 months after the intervention, show that there 

was only a small difference between the groups on tasks E and F (2+5 and 10-6), two 

seemingly straightforward addition and subtraction tasks (intervention group 89% and 

89%, control group 87% and 87% correct answers). A greater difference between the 

groups is found in the other types of tasks, for instance tasks A, C and D, in which the 
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whole is known and one or neither of the parts is known. The greatest difference is on 

tasks A and H, which require a comprehensive understanding of the relational structure 

of the whole and the parts involved. 

CONCLUSION AND DISCUSSION 

This study adds to previous research by showing how the use of finger patterns to 

structure part-part-whole relations can help preschool children develop arithmetic 

skills without having to rely on strategies of counting single units (cf. Murata & Fuson, 

2006). The results show that the intervention group, compared to a control group, in-

creased their performance significantly, and on all tasks. They especially became 

better at tasks involving partitioning a whole into two parts or finding one part when 

the whole and the other part are known. The activities in the intervention program 

encouraging the children to use their fingers to structure numbers as part-whole rela-

tions, we suggest, benefitted the intervention group and influenced their performance, 

even in more complex arithmetic context tasks (see tasks A and H).  

What does having discerned the structure of part-part-whole relations entail for future 

learning in school? We cannot say. However, our study shows that there was a sig-

nificant difference between the intervention and control groups a year after the inter-

vention, when the children had completed their first year of formal mathematics edu-

cation in school (preschool class, post-interview 2). It has been argued that the 

counting strategies children use for early arithmetic have a tendency to be used later as 

well, even though more advanced methods have been introduced (Cheng, 2011). We 

thus believe it is important which strategies are taught in early arithmetic and suggest 

further research on how the strategies affect future learning. Our study focused on 

incorrect and correct answers only, not taking into account the methods the children 

used for calculation. The next step will be to analyze children’s solution methods and 

reasoning in order to give a more fine-grained analysis. 
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TEACHERS’ CRITERION AWARENESS AND  

THEIR ANALYSIS OF CLASSROOM SITUATIONS 

Sebastian Kuntze and Marita Friesen 

Ludwigsburg University of Education  

 

Mathematics teachers’ noticing and their analysis of classroom situations is conside-

red as a key component of teacher expertise in a growing body of empirical research. 

However, research into what dispositions may direct teachers’ noticing and their cri-

teria-based analysis is still scarce. In this study, we use the notion of teaches’ criterion 

awareness for exploring interdependencies between teachers’ analysis of classroom 

situations and their awareness. Building on our prior research, the study concentrates 

on awareness criteria related to dealing with representations in the mathematics 

classroom. The findings suggest interdependencies of the teachers’ reported aware-

ness with the teachers’ analysis scores, and encourage the development of further 

indicators.  

INTRODUCTION 

The short formula “you can only see what you know” points to the influence of ob-

servers’ cognitions when they notice or analyse aspects of context situations. It can be 

assumed that such an interaction takes also place when mathematics teachers are 

confronted with classroom situations. It is therefore highly probable that the awareness 

of specific criteria can make a difference for teachers’ noticing and their analysing of 

classroom situations. We describe such interdependencies in a theoretical model by 

considering criterion awareness as a set of experience-based cognitions which facili-

tate access to specific professional knowledge when teachers are being faced with 

situation contexts: Through corresponding awareness teachers can analyse these situ-

ation contexts against the corresponding criteria. However, little is known empirically 

about the potential influence of criterion awareness on teachers’ competence of ana-

lysing classroom situations, especially as far as criteria in the field of dealing with 

representations in the classroom are concerned. To our knowledge, this is consequently 

the first paper approaching this research need. Based on a definition of criterion 

awareness and on a corresponding model of its potential influence on teachers’ anal-

ysis, the design of a first indicator instrument is described, which affords analysing 

profiles of criterion awareness within a set of different criteria. The empirical results 

show interdependencies between different awareness profiles and the competence of 

analysing. 

In the following, we introduce the theoretical framework of the study (1), which leads 

to the paper’s research interest (2). We then report on sample and methods (3), before 

presenting results (4). The results will then be discussed in the concluding section (5). 
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THEORETICAL BACKGROUND 

Recent approaches to describing mathematics teachers’ expertise focus less on whether 

teachers possess specific professional knowledge (Shulman, 1986; Kuntze, 2012) and 

more on how teachers make use of their professional knowledge in situation contexts 

(e.g. Kersting et al., 2012; Sherin et al., 2011). In these approaches, notions such as 

“Noticing” in the sense of “selective attention and knowledge-based reasoning” 

(Sherin et al., 2011) or “Usable Knowledge” (Kersting et al., 2012) are used to em-

phasise a phenomenological perspective which concentrates on describing what 

teachers actually notice or what knowledge they use when analysing a classroom sit-

uation. The approaches assume that the teachers’ professional knowledge might be 

more extensive than the knowledge they use in the specific noticing or analysing 

process. A key question arising from this assumption is how processes of noticing or 

analysing, which connect observations to specific elements of professional knowledge, 

are started, and what guides and triggers these processes of noticing or analysing. 

Consequently, there is a need for models which can explain the use of professional 

knowledge in these processes.  

For responding to this need, we concentrate on teachers’ analysing (Kuntze, Dreher & 

Friesen, 2015; Friesen & Kuntze, 2014; cf. Seidel et al., 2011; Schneider et al., 2016). 

This notion encompasses core elements of the above-mentioned approaches (Kersting 

et al., 2012; Sherin et al., 2011; Berliner, 1991; Sherin et al., 2011; Dreher & Kuntze, 

2015) and is understood as “an awareness-driven, knowledge-based process which 

connects the subject of analysis with relevant criterion knowledge and is marked by 

criteria-based explanation and argumentation” (Kuntze et al., 2015, p. 3214). Class-

room situations can be subjects of analysis in the sense of this definition. In our model 

of the process of analysing classroom situations (see Fig. 1), a circular structure 

comparable to the modelling cycle (e.g., Blum & Leiss, 2005) is used to describe the 

process of generating (1) a situation model (“real model”) of the classroom situation 

which can then be interpreted based on criteria (2): Professional knowledge (including 

teachers’ views, see model described in Kuntze, 2012) is the background which pro-

vides the analysing teacher with models for describing observations—and on this base, 

it affords drawing conclusions (3). The explanatory power of these conclusions can 

then be validated against the situation model of the classroom situation (4). Compa-

rable to findings for the modelling cycle (Borromeo-Ferri, 2006), it makes sense to 

assert that jumps between the phases shown in Figure 1 may occur. Parts of the process 

may take place unconsciously, before entering in a more intense, explicit know-

ledge-based analysis process (e.g., with repeated cycles). Finally, we consider the 

process as awareness-driven. This means that (possibly simultaneous) awareness for 

(possibly different) specific criteria continuously supports the possible criteria-based 

interpretation, connection with professional knowledge and validation. In short, crite-

rion awareness keeps the cycle moving, comparable to a computer stand-by, which 

fully activates the corresponding explicit knowledge-based analysis cycle in case a 

criterion appears as useful for describing a relevant situation aspect. 
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Figure 1: Model of the process of analysing (Kuntze & Friesen, 2016) 

Criterion awareness (Kuntze & Dreher, 2015, p. 298) has been described as “a part of 

professional knowledge which influences the readiness and ability of teachers to use 

this professional knowledge element in instruction-related contexts”. In this way, cri-

terion awareness makes professional knowledge accessible, so that it can be used in the 

process of analysing classroom situations.  

As multiple criteria (including individual criteria based on teachers’ views) can be 

used for analysing classroom situations (e.g. Clausen, Reusser & Klieme, 2003), it is 

likely that criterion awareness related to different criteria coexist in a competing rela-

tionship. For example, it might happen that a teacher’s criterion awareness for stu-

dents’ motivation turns out to be predominant over criterion awareness for students’ 

understanding of mathematical representations and it might hence impede teachers’ 

corresponding analysis (cf. qualitative findings in Kuntze & Dreher, 2015).  

This competing relationship is a challenge, as research designs should be able to 

identify the relative predominance of specific awareness criteria within multiple crite-

ria. For this reason, we selected a focus criterion domain (use of representations), 

which will be considered as competing with other reference awareness criteria. 

Teachers’ awareness and analysis related to dealing with representations 

In prior research, we have investigated teachers’ analysis of how representations of 

mathematical objects are dealt with in classroom situations (e.g., Friesen & Kuntze, 

2016). As dealing with representations is a key aspect of learning and hence also a key 

quality aspect of learning opportunities in the mathematics classroom, teachers’ cor-

responding criteria-based analysis is an important component of their expertise. Using 

a corresponding vignette-based instrument, we were able to measure teachers’ com-

petence of analysing in this domain and found that it can be described in a 

one-dimensional Rasch model (e.g., Friesen & Kuntze, 2016; Kuntze & Friesen, 

2016). Teachers’ awareness related to how representations are being dealt with has, 

however, not been in the focus of our research so far. In particular, the reported awa-

reness for the use of representations in comparison with other, less specific criteria 

such as students’ motivation, attention or prior knowledge has not been explored yet.  

 “                     ” 
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RESEARCH INTEREST 

As discussed in the section above, there is a need for exploring teachers’ criterion awa-

reness empirically and its potential interrelatedness with their analysis of classroom 

situations. Since teachers’ competence of analysing the use of representations in 

mathematics classrooms can be measured with an existing vignette-based instrument 

(e.g., Friesen & Kuntze, 2016), a first indicator instrument for teachers’ criterion 

awareness had to be developed. As testing time is often restricted, the focus on the 

teachers’ self-reported criterion awareness may be used as an indicator in this first app-

roach. Profiles of criterion awareness with respect to a set of criteria might be of high 

interest, as different criteria might concur with each other.  

Consequently, the study aims at answering the following research questions: 

(1) Is it possible to implement reliable indicators for criterion awareness in a corre-

sponding questionnaire?  

(2) What profiles of criterion awareness can be observed?  

(3) Do the indicator scales or the profiles interdepend with the analysis score (related 

to the competence of analysing the use of representations in classroom situations)?  

DESIGN AND SAMPLE 

The sample of this study consists of N=125 German mathematics teachers at the begin-

ning of their induction phase at secondary schools (81 female, 44 male, mean age 26.9 

years; SD=4.1 years). These teachers’ competence of analysing the use of represen-

tations was assessed with a test comprising of eight vignettes, in which the teachers had 

to analyse the use of representations in eight classroom situations (cf. Friesen & 

Kuntze, 2016, with subtests specific for the content domains of fractions and func-

tions). Core parts of the instrument (for the domain of fractions) have been presented in 

prior papers, including a PME research report, to which we would like to refer in order 

to meet space limitations (Friesen & Kuntze, 2016; cf. also Kuntze & Friesen, 2016).  

For this study, in addition to the competence test, the beginning teachers were asked 

about their awareness related to four different criteria: students’ motivation, students’ 

attention, representations, students’ prior knowledge. A corresponding rating-scale 

instrument used the indicator scales presented in Figure 2 (4-point Likert scales). The 

items express what criteria teachers might activate when observing that students have 

difficulties in the process of solving a task. 

RESULTS 

The first research question focused on the implementability in reliable indicator 

scales. Reliability values of the scales are displayed in Figure 2. Given the low number 

of items per scale, the reliability values range from good to still satisfactory. It was thus 

possible to implement sufficiently reliable indicators for self-reported criterion 

awareness in the questionnaire. 
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Figure 2: Indicator scales for awareness related to different criteria 

There are significant correlations between the scales: awareness of students’ motiva-

tion (M=2.51; SD=.64) correlates (rpearson=.52; p< .01) with awareness of students’ 

attention (M=2.24; SD= .70) and interdepends slightly (rpearson= .18; p< .05) with 

awareness of students’ prior knowledge (M=3.02; SD=.66); awareness of the use of 

representations (M=3.02; SD=.64) correlates (rpearson=.42; p<0.01) with awareness of 

students’ prior knowledge.  

The second research question concentrates on profiles of criterion awareness. For 

exploring these, a cluster analysis (Ward method) was carried out on the base of the 

four variables shown in Figure 2. The cluster analysis yielded two clusters of teachers 

with comparable size. Figure 3 presents the mean scale values of the two clusters.  

 

 

 

 

 

 

 

 

 

Figure 3: Results from cluster analysis (means and their standard errors) 

The clusters shown in Figure 3 do not differ with respect to their criterion awareness 

related to the use of representations and prior knowledge, however the beginning 

teachers in the two clusters answered differently regarding their awareness of the 

students’ motivation and attention. Whereas the teachers in cluster 1 evaluated their 

awareness regarding the criteria of motivation and attention on average negatively, 

their counterparts in cluster 2 gave rather positive ratings for all awareness criteria. 
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Indicator scale for 
awareness 
related to… 

Sample item Number 
of items 

α 
(Cron-
bach) 

…motivation 
If a student does not advance with a task, I check whether s/he 
is currently not very motivated. 

2 .67 

…attention 
If a student does not advance with a task, I check whether s/he 
is thinking of something which does not have to do with the 
mathematics classroom. 

2 .85 

…representations 
If a student does not advance with a task, I check whether s/he 
is unable to link different representations. 

2 .76 

…prior knowledge 
If a student does not advance with a task, I check whether s/he 
lacks prior knowledge about mathematical concepts. 

2 .79 
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Both clusters’ ratings related to the students’ prior knowledge were close to each other. 

If the awareness of different criteria is seen as being in potential competition with each 

other, then the teachers in cluster 1 rather concentrate on criteria related to represen-

tations and prior knowledge according to their self-reports. In contrast, the teachers in 

cluster 2 reported simultaneous awareness of all criteria. 

The third research question addresses potential interdependencies of the indicator 

scales or the profiles with the analysis score regarding the use of representations in 

classroom situations. The analysis score (Friesen & Kuntze, 2016) was calculated on 

the base of rating scale answers of the teachers for eight classroom situations (four 

situations each for the content domains of fractions and functions). The theoretical 

score maximum was 4 points, the average score was 1.26 (SD=0.63).  

As far as interdependencies between single indicator scales for criterion awareness and 

the analysis score is concerned, we did not observe any significant correlations be-

tween these variables and the analysis score.  

However, considering the mean 

analysis scores for the two clusters 

reveals differences: Figure 4 dis-

plays the mean competence scores 

for the two clusters, also as far as 

the distinction between the content 

domains (fractions and functions) 

is concerned. There is a significant 

difference between clusters for the 

over-all competence score 

(T=2.33; df=123; p= .02; 

d=0.42), which results above all 

from the significant difference in 

the competence score related to 

the content domain of functions 

(T=2.60; df=123; p= .01; 

d=0.47). Cluster 1 with the less 

concurring awareness criteria 

(with the awareness of represen-

tations) reached on average better 

analysing results. 

DISCUSSION AND CONCLUSIONS 

The findings suggest that the short scales used in the questionnaire were sufficiently 

reliable. This means that the instrument can yield indicators for the teacher’s aware-

ness of different criterion domains in follow-up studies. The analysis related to the 

second research question suggests that there were two correlated pairs of awareness 

variables, namely motivation/attention and representation/prior knowledge. The fur-
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lysing the use of representations for the two 

clusters (means and their standard errors) 
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ther analysis revealed two clusters with similar mean ratings for representations and 

prior knowledge. The differences between clusters in reported awareness regarding 

students’ motivation and attention—which are criteria less specific for mathematics 

instruction—may indicate that teachers in cluster 1 are more disposed to concentrate 

their analysis on criteria related to dealing with representations, in particular. In rela-

tion with the awareness of the set of the other criteria, the teachers in cluster 1 have on 

average the higher relative criterion awareness for representations.  

This higher relative criterion awareness appears to make a difference for the teachers’ 

competence of analysing: The teachers in cluster 1 scored higher. This was the case 

especially in the analysis subtest related to the domain of functions, as the subtest 

scores for the content domain of fractions showed only a non-significant tendency. We 

would like to recall that the cluster analysis had been carried out only on the base of the 

reported awareness questionnaire, so that the observation of competence differences 

supports the hypothesized role of awareness for the analysis cycle (Fig. 1).  

The evidence should be interpreted with care, given that the findings should be replica-

ted and that the sample is non-representative. However, the evidence encourages the 

further empirical examination of criterion awareness also with differrent instruments 

which may then rely less on teachers’ self-reports. The relatively positive awareness 

self-reports in all the sample suggest that teachers’ self-reported answers as captured 

by the present instrument might have a positive bias and should be complemented by 

other indicators which might then correlate directly with the analysis score. 

There is a spectrum of follow-up questions: Can criterion awareness be fostered and 

how? Does criterion awareness develop with teachers’ experience growth? Does the 

awareness of different criteria always impede each other or is it possible to observe 

also mutual support of different awareness criteria? How much professional know-

ledge is necessary for criterion awareness? How do teachers from different cultu-

res/school cultures differ in their profiles of criterion awareness? Is criterion awareness 

interrelated with teachers’ instruction-related views or beliefs? etc. In our next research 

steps, we aim to explore some of these follow-up questions.  
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Despite the importance of geometry in mathematics curriculum, the trend in reduction 

of geometry in school mathematics is ongoing. This raises the question concerning 

geometry competencies students acquire in school mathematics. The goal of this ex-

ploratory study was to analyze grade 3-6 students’ understanding of geometry by using 

drawings, and through it to gain insight into school geometry nowadays. The results 

show that students have a rather narrow understanding of geometry. While funda-

mental idea of elementary geometric forms and their construction dominated in the 

students’ drawings, fundamental ideas of geometric patterns, coordinates, and geom-

etrization were minimally present. Based on the data, the results are discussed with 

regard to their theoretical and practical implications. 

INTRODUCTION 

In the past several decades, geometry seems to have lost its central position in 

mathematics teaching with the overall amount of geometry being reduced in many 

national curricula (e.g., Backe-Neuwald, 2000; Mammana & Villani, 1998). The 

reason for the reduction was the temptation to increase the coverage of other mathe-

matical disciplines in school mathematics, such as algebra, and data analysis and 

probability (Jones, 2000). Due to ICME-7 resolution in Québec concerning geometry 

curricula, and reassessment of the role of geometry with respect to perspectives on the 

teaching of geometry for the 21st century, trends have begun to counteract this ten-

dency (Mammana & Villani, 1998). Nevertheless, to what extent these trends found 

their way into the geometry classrooms, and what meanings students assign to geom-

etry remain open. In order to gain insight into young students’ understanding of ge-

ometry, and through it better understand how geometry is taught nowadays, viable and 

age-appropriate methods are paramount. Recent research (e.g., Halverscheid & Rolka, 

2006; Laine et al., 2015; Pehkonen, Ahtee, & Laine, 2016; Rolka & Halverscheid, 

2011) showed that the use of drawings provides a multi-dimensional and a holistic 

view of students’ latent experiences in mathematics classroom. As such they allowed 

children – in a unique and holistic manner – to better recall, and express in more detail 

events and phenomena in focus.  

In this sense, we used drawings to gain insight into grade 3-6 students’ understanding 

of geometry through their lenses by using drawings. The following research questions 

guided the study: What fundamental ideas of geometry can be seen in the primary 

grade students’ drawings? What similarities and differences exist between primary 

grade students’ fundamental ideas of geometry? 
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THEORETICAL PERSPECTIVE 

For many years, the geometry curriculum worldwide has been somewhat an eclectic 

mix of activities, which contributed to increased coverage of other mathematical ideas 

at the expense of geometry (Van de Walle & Lovin, 2006). One of trends to counteract 

the fading of geometry in school mathematics focuses on the construction of the ge-

ometry curriculum organized around fundamental ideas as a means for curriculum 

development. This term can be interpreted in many different ways (Rezat, Hattermann, 

& Peter-Koop, 2014). Winter (1976) defined fundamental ideas as ideas that have 

strong references to reality and can be used to create different aspects and approaches 

to mathematics. In addition, they are characterized by a high degree of inner richness 

of relationships, and by gradual and continuous development in every grade (Rezat et 

al., 2014; Van de Walle & Lovin, 2006). For instance, Principle and Standards for 

School Mathematics have provided a content framework for geometry organized 

around shapes and properties, transformation, location, and visualization (Van de 
 

Fundamental idea Description 

geometric forms and 

their construction 

Understanding the structural framework of elementary geometric 

forms as a three-dimensional space, which is composed of 0-di-

mensional points, 1-dimensional lines, 2-dimensional surfaces, 

and 3-dimensional solids. They can be constructed in a variety of 

ways (e.g., drawing tools, material) through which their proper-

ties are imprinted. 

operations with forms Understanding possible operations with geometric forms (e.g., 

translation, rotation, point symmetry, axial symmetry shearing, 

composing/decomposing), and how these influence the proper-

ties of the forms being operated on. 

coordinates Understanding how position of different geometric forms can be 

described using a coordinate system.  

measurement Understanding that geometric forms can be qualitatively and 

quantitatively described (e.g., length, perimeter, surface area, 

volume, angle measurement).  

geometric patterns Understanding that there are many possibilities to relate points, 

lines, surfaces, and solids in such a way that geometric patterns 

emerge (e.g., polyhedral formula). 

geometric forms in the 

environment 

Understanding that real objects, operations on and with them as 

well as relations between them can be described with the help of 

geometric forms. 

geometrization Understanding that plane and spatial geometric facts, properties, 

and problems can be translated into the language of geometry.  

Table 1: Wittmann’s fundamental ideas of geometry (1999). 
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Walle & Lovin, 2006). Similarly, Wittmann (1999) proposed that school geometry be 

organized around the following seven fundamental ideas: geometric forms and their 

construction, operations with forms, coordinates, measurement, geometric patterns, 

geometric forms in the environment, and geometrization (see Table 1). 

Wittmann’s (1999) fundamental ideas are aligned with ICMI study recommendations 

for the new geometry curricula (Mammana & Villani, 1998), which have been adopted 

by many national curricula. For instance, in the German curriculum (RLP, 2015) all 

seven fundamental ideas are present. Thus, the German curriculum reflects the mul-

ti-dimensional view of geometry, but the extent of this focus differs. The fundamental 

ideas of geometric forms and their construction, and measurement dominate the ge-

ometry content from early grades on, whilst the fundamental ideas of coordinates, and 

geometric patterns little attention is given. What influence this, however, may have on 

the meanings students assign to geometry, and if they recognize the mul-

ti-dimensionality of geometry and to what degree, remains open. 

Research with young students normally uses observations, interviews, and/or ques-

tionnaires, which have shown not to be always reliable due to their young age (e.g., 

Einarsdóttir, 2007; Pehkonen et al., 2016). Drawings have been recognized as an al-

ternative form of expression for children. Barlow, Jolley, and Hallam (2011) reported 

that free hand drawings tent to facilitate the recalling of events that are unique, inter-

esting to students and can help students better recall and express more details about 

events they depicted. In that manner, drawings open a holistic way into children’s lived 

experiences, conceptions of mathematics and on teaching (e.g., Einarsdóttir, 2007). In 

the recent years, researchers (e.g., Halverscheid & Rolka, 2006; Laine et al., 2015; 

Pehkonen et al., 2016; Rolka & Halverscheid, 2011) successfully used drawings to 

access and study students’ views of mathematics. However, they focused on mathe-

matics in general, and not on a specific mathematical content, such as geometry. 

RESEARCH PROCESS 

For this study, an explorative qualitative research design was chosen. The study par-

ticipants were grade 3-6 students. This age group was optimal for the purposes of the 

study as this is an important period for the development of geometric thinking 

(Mamanna & Villani, 1998). In total 114 students from several urban schools in the 

federal state of Brandenburg (Germany) participated in the project (see Table 2). A 

purposeful sampling strategy was utilized as a way of collecting rich and in-depth data. 

Grade level Grade 3 Grade 4 Grade 5 Grade 6 

Number of subjects 25 33 28 28 

Table 2: Participant sample. 

Main sources of data were student work and semi-structured interview. Student work 

was based on an adaptation of the instrument from the work of Rolka and Halverscheid 

(2011), and Halverscheid and Rolka (2006) focusing on Wittmann’s fundamental ideas 
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of geometry (1999). The research data were collected in one-to-one setting between a 

student and the first author of the paper. The students were given a piece of paper with 

the following assignment: “Imagine that you are an artist. A good friend asks you what 

geometry is. Draw a picture in which you explain to him/her what geometry is for you. 

Be creative in your ideas.” In addition, the students answered the following three 

questions:  

• In what way is geometry included in your drawing? 

• Why did you choose these elements in your drawing? Why did you choose 

this kind of representation? 

• Is there anything you did not draw but still want to say about geometry? 

Based on the age of the student, these questions were answered orally or in written. 

When this was done orally, the data were audio-taped, otherwise the students wrote 

down their answers. After the student was done drawing, the semi-structured interview 

started. In the semi-structured interview, the students were asked to describe what they 

have drawn. Multiple data sources were used to assess the consistency of the results, 

and to increase the validity of the instruments. 

The analysis of drawings is understood as interpreting meanings that students have 

given to situations and objects which they presented. These meanings influence stu-

dents’ actions (Blumer, 1986), and what they draw. Data analysis involved the first and 

the third author of the paper coding the data independently, and identifying themes, 

which were then validated through an iterative process, and constant comparison. The 

analysis contained the following steps: (1) analysis of drawings with respect to the 

framework of Wittmann (1999), (2) confirmation of the interpretation by content 

analysis of the three questions, (3) coding of other subconceptions included in the 

student oral/written data. Different representations of fundamental ideas of geometry 

were first assigned one of the Wittmann’s (1999) categories (see Table 1), before as-

signing a specific subcategory. If descriptor was not given, then both researchers 

discussed together the nature of the fundamental idea before developing a new sub-

code, and extended the coding manual. The fundamental ideas that were revealed 

through the questions only, were also included in the analysis. The interrater reliability 

was high (89% agreement). Afterwards we made adjustments to our coding and the 

coding manual, after which the interrater reliability was at 100%. 

RESULTS 

Table 3 shows the absolute and relative frequencies of grade 3-6 students’ fundamental 

ideas of geometry. The fundamental idea of geometric forms and their construction 

(F1) was the most often coded fundamental idea of geometry (73.8%), which was 

independent of the grade level, with almost all students’ drawings pertaining one as-

pect regarding this idea. The second most often coded fundamental idea was geometric 

forms in the environment (F6) with 10.2%. This was followed by the fundamental ideas 

of measurement (F4), and operations with forms (F2), with 6.2% and 5.8%, respec-

tively. The fundamental ideas of coordinates (F3), geometrization (F7), and geometric 
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patterns (F5) were the three least coded fundamental ideas with 2.2%, 1.1%, and 0.8%, 

respectively.  

Table 3: Absolute and relative frequencies of fundamental ideas of geometry. 

The drawings of grade 3-6 students showed both similarities and differences (see 

Figure 1 and Table 3). With respect to F1 no increase in knowledge is discernible. 

However, there were some patterns in students’ answers pertaining to different aspects 

of this fundamental idea. In all grades, different plane surfaces dominated in the 

drawings, ranging from 41% in both grades 5 and 6, to 59.1% and 55.8% in grades 4 

and 3, respectively. The second most often depicted aspect were solids, which again 

were most often seen in grade 4 student drawings. In all other grades, the range was 

between 15.9% (grade 5) and 26.4% (grade 3). Different drawing tools (e.g., drawing 

stencil, ruler, protractor, compass) were the third most often coded aspect of F1 

ranging from 6.4% in grade 3 to 17.1% in grade 6. Most notably students differed with 

respect to mentioned properties of geometric forms. This aspect was only seen in grade 

4-6 student drawings. However, this aspect was coded in 3.1% (grade 4) and 7.7% 

(grade 6) of cases, whereas in grade 5 in 21.8% of cases. Thus, properties of geometric 

forms gain on importance as primary grade students progress into higher grades. 

F2 does not show a linear increase from grades 3-6, as this fundamental idea was most 

often coded in grade 3 and least coded in grade 6. Interestingly, about 24% of the grade 

3 and 4 students drew some aspect pertaining to this fundamental idea, whereas in 

grade 5 39% and in grade 6 only 25% of the students drew an aspect attributed to this 

fundamental idea. Not all operations with forms were present in all grades. For in-

stance, translation and dilation were only present in grade 4, and point reflection in 

grade 5 student drawings. On the other hand, axial symmetry dominated in the drawing 

of grade 3-6 students, with the highest frequency in grade 3 (69.2%).  

Grade Absolute and relative frequencies of fundamental idea 

 F1 F2 F3 F4 F5 F6 F7 

Gr. 3 110 

(73.3%) 

13 

(8.7%) 

12 

(8%) 

2 

(1.3%) 

2 

(1.3%) 

11 

(7.3%) 

0 

(0%) 

Gr. 4 224 

(77.8%) 

13 

(4.5%) 

3 

(1.0%) 

13 

(4.5%) 

2 

(0.7%) 

31 

(10.8%) 

2  

(0.7%) 

Gr. 5 174 

(67.7%) 

16 

(8.2%) 

2 

(1.0%) 

10 

(5.1%) 

2 

(1.0%) 

31 

(16.4%) 

1  

(0.5%) 

Gr. 6 181 

(74.2%) 

9 

(3.7%) 

2 

(0.8%) 

29 

(11.9%) 

1 

(0.4%) 

15 

(6.2%) 

7  

(2.9%) 

Total 647 51 19 54 7 89 10 
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Figure 1: Examples of grade 3-6 students’ drawings. 

With respect to F3, a rapid decrease from lower into higher grades is observable. 

Moreover, lower grade students used prepositions (e.g., right, left, below) to describe 

the position of geometric forms, while upper grade students used coordinate system for 

it. On the other hand, student drawings portray an increase from lower grades (1.3%) 

into higher grades (11.9%) with respect to F4. Thus, students show an understanding of 

qualitative and quantitative attributes assigned to geometric forms at a progressive rate. 

While in grade 3 student drawings only length of segments is addressed, in grade 6 five 

different measurements were addressed, namely length, perimeter, surface area, 

volume, and angle measurement. Very few students think of patterns (F5), when 

thinking about geometry. Except from grade 5 where two student drawings revealed 

this aspect, only one student per grade level portrayed this understanding of geometry. 

F6 shows an increase from grade 3 to grade 5, but a decrease in grade 6. Concretely, 

this fundamental idea was drawn by every second grade 5 student and every fifth grade 

6 student. F7 is the most abstract fundamental idea, which can explain few codes 

pertaining to this fundamental idea. However, an increase is visible, reaching its 

maximum in grade 6 with only 2.9% of drawing revealing an aspect aligned with F7. 

CONCLUSIONS 

The study results show that primary grade students have a rather narrow understanding 

of geometry, albeit all fundamental ideas being covered by the curriculum (RLP, 

2015). Majority of the students drew either one or two fundamental ideas in their 

drawings. Rarely student drawings and interviews revealed an understanding of ge-

ometry containing three or four fundamental ideas of geometry. Independent of the 

grade level, the fundamental idea of geometric forms and their construction dominated 

in the student drawings. This focus is not surprising as this fundamental idea dominates 

in the German mathematics curriculum (RLP, 2015). However, it is astonishing that 

students mainly associated geometric forms with plane surfaces and solids, even 

though 0- and 1-dimensional objects are covered in every grade in the German cur-

riculum (RLP, 2015). The results showed that these aspects decreased from lower into 

higher grades. This might mean, that with time students associate geometry with 2- and 

3-dimensional forms, which may be due to the fact that surface area and volume cal-

culations are added to measurement of distances in higher grades. In addition, it seems 
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that properties of geometrical objects are not internalized, and students mainly operate 

on the level of visualization (van Hiele, 1985). Peculiarly, students associated geom-

etry more with geometric forms in the environment than with measurement, though the 

former is addressed only once per grade level in the curriculum, whilst the latter 

dominates throughout the curriculum (RLP, 2015). Moreover, the fundamental idea of 

geometric forms in the environment showed an increase from grade 3 to grade 5, whilst 

it decreased in grade 6. This can possibly be attributed to contents of the respective 

grade level. Geometry curriculum in grades 3 to 5 deals explicitly with objects from the 

environment; they are searched for, described and sorted by properties (RLP, 2015), 

while in grade 6 this content is no longer primarily part of the curriculum, and the focus 

shifts onto a more deductive approach to geometry. Accordingly, an increase from 

grade 3 to grade 5 can be expected. This may also explain an increase of drawings 

addressing the fundamental idea of geometrization. The fundamental idea of meas-

urement was hard for students to draw, instead, concepts pertaining to measurement 

(e.g., perimeter, surface area, volume) were presented in the drawings as words, for-

mulae or added in the interview. The fundamental idea of coordinates has not been 

often found in the students’ drawings, even though this topic and its different aspects 

are relevant from early grades on.  Since the coordinate systems are part of the cur-

riculum for grades 5 and 6 (RLP, 2015), it is, however, very surprising that this content 

has been primarily addressed by grade 3 students at a basic level by using prepositions, 

and that there is no increase in grades 5 and 6. The low results with respect to the 

fundamental idea of geometric patterns suggests that this content either does not seem 

to be directly linked to geometry lessons or it is rarely discussed (Backe-Neuwald, 

2000). Although student drawings revealed all fundamental ideas, the fundamental 

ideas of geometric objects and their construction, and measurement prevailed. How-

ever, these are just two fundamental ideas of geometry, and its sole focus may resolve 

in students developing a rather narrow view of geometry. Thus, it would be necessary 

to re-question the curriculum requirements regarding the multi-dimensional nature of 

geometry.  

Drawings opened a new way to gain insight into student understanding of geometry 

going beyond the purely cognitive, and it might have a potential as a starting point for a 

discussion in the classrooms (Halverscheid & Rolka, 2006). Nevertheless, drawbacks 

occurred; some children had difficulties drawing, some do not like to draw, some drew 

objects which they found easy to illustrate (e.g., forms). Other aspects (e.g., meas-

urement, geometrization) have shown to be hard to draw. Here additional data sources 

(e.g., post-interviews) were necessary. In this sense, the search for alternative research 

methods, that would provide a holistic understanding of this multi-faceted phenomena, 

is an issue of concern, and remains an ongoing research area. 
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CONNECTED WORKING SPACES: DESIGNING AND 

EVALUATING MODELLING-BASED TEACHING SITUATIONS 

Jean-baptiste Lagrange 

LDAR, University Paris-Diderot, France 

 

This contribution focuses on modelling at upper secondary level. Modelling is con-

sidered as a work on various models of a reality, belonging to different scientific fields, 

with varied mathematizations. The framework of Connected Working Spaces is chosen 

in order to describe the work on each model, and the connections made along the 

modelling process. The hypothesis is that these choices allow designing and evaluating 

situations that help students to understand comprehensively concepts taught at upper 

secondary level and enable them to appreciate how diverse fields contribute to a sci-

entific perception of the sensible world. This hypothesis is tested by way of an ex-

periment in realistic school settings. 

MODELLING IN MATHEMATICS EDUCATION. WHAT FOR AND HOW? 

Teaching/learning at upper secondary level should give meaning to mathematics as a 

tool for understanding the sensible world, and that is why modelling based teaching 

situations are often proposed. However, curricula and resources often reduce model-

ling to “translation” between reality and mathematics. Ideas brought by research like 

the “modelling cycle”, have the advantage of distinguishing models of different na-

tures and of characterizing the type of activity involved in the transition from one to the 

other (English, Ärlebäck & Mousoulides 2016). This paper aims to build critically 

upon these ideas. A starting point is that the “modelling cycle” sharply separates “re-

ality” and mathematics. I take an example from Blum & Ferri (2009, p. 48): it is asked 

to find the distance of a navigator to a lighthouse when the navigator perceives its light 

exactly on the horizon. The authors consider mainly two models: a "situation model" 

(in reality) and “the mathematical model”. Both models assume that the navigator is at 

sea level. I offer to consider here three alternative models (figure 1). 

A “navigational science” model:  

d the distance in nautical miles, h and H  

the heights respectively of the eye of the 

observer and of the light in meters.  

A “geometrical-algebraic” model:  

R the earth radius      

An “analytical model”:  

Figure 1: Three models for the distance to a lighthouse problem.  
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The first model considers actual navigation conditions, the navigator above sea level, 

and exploits empiric observations. Then, on the one hand, this model is more realistic 

than Blum & Ferri’s "situation model". On the other hand, it is a scientific model since 

it belongs to “navigation”, a science taught in naval schools. The two other models are 

mathematical models; they differ in the way they take into account the "preponderan-

ce" of the earth radius over the heights of the objects.  

This simple example illustrates multifaceted links between reality and mathematics in 

modelling: for a given phenomenon, different scientific fields bring different models, 

each involving some aspects of reality and some mathematization. Each model also 

involves a specific type of work. For instance, the “geometrical-algebraic” model in-

volves the identification of relevant geometrical relationship and calculations based on 

the Pythagorean Theorem, whereas the "analytical" model implies reasoning on ap-

proximation, using equivalence in a neighborhood. As for the “navigational science” 

model, the work implies considering and generalizing empirical data. Additionally, the 

example shows the possibility of multiple to-ings and fro-ings between models. These 

to-ings and fro-ings are necessary for confronting models: in the example, discussing 

the discrepancy between the “navigational science” and the “analytical” models and 

identifying refraction of the air as the origin. They also give meaning to the concepts 

involved in the different models by the connections to which they lead. 

CONNECTED WORKING SPACES  

Considering modelling as an activity involving models in different scientific fields and 

branches of mathematics, a theoretical framework is necessary to describe the work in 

each model. The framework of the Mathematical Working Spaces (MWS) allows 

characterizing the way the concepts make sense in a given work context. According to 

Kuzniak & Richard (2013) a MWS is an abstract space organized to ensure the 

mathematical work in an educational setting, based on the articulation of two funda-

mental levels: an epistemological level related to mathematical organization and tasks 

to perform, and a cognitive level related to individuals’ activity and task enactment. 

The epistemological level associates a "representamen", that is to say a representation 

of the object on which one works (here a model), the artefacts relevant for this work 

and a theoretical framework of reference. The cognitive level associates three pro-

cesses: visualization making use of material and mental representations, construction 

using “instruments” (i.e. internalized artefacts), and a discursive process consisting in 

reasoning and proof. This epistemological plan is connected to a cognitive plane by 

three types of genesis: (1) the semiotic genesis that gives the representamen its ma-

thematical status of representation for visualization, (2) the instrumental genesis 

transforming artifacts into instruments for the construction process and (3) the dis-

cursive genesis that gives meaning to the frame of reference by mobilizing it for the 

discursive process.  

Modelling, as we understand it, involves several models, and for each of these models, 

a working space. Minh & Lagrange (2016) built on the MWS framework to introduce 
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the idea of "connected working spaces" to give account of how connections between 

WMS bring meaning to the concepts involved. Here, this framework is expected to 

allow designing and evaluating teaching situations where students go back and forth 

between different models of a real world setting and make connections between 

working spaces, and help identifying geneses at work through these connections. In the 

following section, I will test this hypothesis by way of an experiment.  

AN EXPERIMENT 

I report here about the design and experimentation of a situation for 12th grade students. 

It deals with the modelling of suspension bridges, aiming to make students discover a 

function modelling the main cable by way of a study of tensions. Inspired by the 

framework defined in the previous section this section presents first briefly four 

models and then the associated working spaces and a classroom implementation. 

Suspension bridges: four models 

a) A physical model of tensions along the cable. 

 

b) A model of the cable in coordinate geometry. 

 

c) An algorithmic model of the cable 

 

d) A continuous model of the cable 

 

Figure 2: Models of a suspension bridge. 

A suspension bridge is a type of bridge in which the deck (generally a roadway) is hung 

below main cables by vertical suspensors equally spaced. The weight of the deck ap-
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plied via the suspensors results in a tension along the main cables. The central question 

is to find models of a main cable, allowing solving technical questions like the value of 

the tension for given data characterizing the bridge. 

In a first model a main cable is represented by a physical mockup, i.e. weights equally 

spaced horizontally and suspended to a line. The static equilibrium law allows studying 

the sequence of tensions  in the line between the suspension points: the horizontal 

component Hi has the same value H in all segments and the sequence of values of the 

vertical component (Vi) is in arithmetic progression (figure 2a). The second model is a 

broken line in coordinate geometry. The slope of each segment is the ratio of the ver-

tical by the horizontal components of the tension in this segment, and therefore is also 

in arithmetical progression. It is then possible to compute the sequence of the coor-

dinates of the points (figure 2b). The third model systematizes the construction of the 

second model by way of an algorithm defining a piece wise linear function. Animating 

the global variables n (number of segments) and H (horizontal component of the ten-

sion) allows visualizing their influence (figure 2c). The fourth model is the curve of a 

mathematical function depending on a parameter H that can be also animated: the 

derivative is calculated as a limit of the slopes of segments in the broken line and the 

function is obtained by integration (figure 2d). The third and fourth models involve a 

software environment: functions are created by formula and domain, and also by an 

algorithm; graphs can be obtained and animated by way of sliders. The software 

Casyopée was used for the experiment (http://casyopee.eu). 

Potentialities, constraints and general design 

The brief presentation above shows that studying a suspension bridge implies con-

sidering data in the real world as well as a number of interrelated concepts in physics 

and calculus: tension, static equilibrium of forces, projection of vectors, slope of 

segments and gradient of curves, arithmetic progression and linear function, integra-

tion, discrete and continuous models, limits and integration… All these contents are 

taught in secondary curricula, thus the goal for students is not to "reinvent" each of 

them in isolation, but rather to recognize how modelling a real world situation involves 

understanding these concepts operationally and in interaction. In the French curricu-

lum, the study of a suspension bridge can be carried out in the last year of the secon-

dary scientific stream (12th grade, Terminale). The framework of connected working 

spaces was used to design a classroom situation exploiting the potential of the study of 

a suspension bridge. I consider four working spaces, each related to one of the four 

models. In each space, I characterize briefly the epistemological plane.  

In the first working space, the representamen is the mockup with posts, line and 

weights, and the rules are the static equilibrium law and the properties of arithmetic 

progressions. Artefacts are concrete measurement devices used in physics and mathe-

matics, dynamometers, protractor, and also more "abstract" tools like the decomposi-

tion of tensions in vertical and horizontal components. We name this space, the static 

systems working space, or shortly, the statics working space. In the second working 
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space the representamen is a broken line. The main rule is the analytical definition of a 

segment: students have to compute the coordinates of the end point, knowing the co-

ordinates of the other point, the slope and the difference between abscissas. We name 

this space, the coordinate geometry working space. In the third working space the 

representamen is the graph of a continuous piecewise function and an important arte-

fact is the programming module in the software environment that allows computing the 

series of points defining the function by way of a simple iterative treatment and ani-

mating global variables. We name this space, the algorithmics working space. Finally, 

the representamen in the fourth space is a function governed by classical rules in cal-

culus. This is the mathematical functions working space. An important artefact is the 

software environment that can be used to get a curve of this model, compare to a pic-

ture of the bridge and to the curve of the algorithmic model’s piecewise function, and 

animate the parameter H in order that the three models fit.  

IMPLEMENTATION 

In order to be feasible in the context of a French 12th grade class a few weeks before the 

baccalaureate, the implementation is limited to three and a half hours and organized in 

four phases. The first phase is one hour long and has been prepared with the physics 

teacher. It aims first to introduce students to questions related to bridges, particularly 

suspension bridges. They are invited to consult a dedicated website 

(http://structurae.info/ouvrages/ponts-et-viaducs), to select and sketch four bridges of 

different types, to look at a video illustrating the idea of tension along a horizontal rope 

and the fact that, whatever the tension, the rope is no more a straight line, as soon as 

force is applied vertically on a point, and to answer questions about suspension 

bridges. Also in this first phase, the students have to build apparatus combining dy-

namometers and weights, compute the horizontal and the vertical components of ten-

sions and verify the static equilibrium of forces. 

The second phase is 50 min long. At the beginning, the data related to the Golden Gate 

Bridge is presented to the whole class. Students also look at a physical mockup where 

the cable is a succession of dynamometers allowing observing the evolution of ten-

sions along the cable. Then students are split into groups of four. Each group has one 

task, A or B, C or D. Task A is related to the statics working space: inspired by the 

work in the first phase, students have to consider the sequence of horizontal and ver-

tical components of tensions at the connection points, recognize that the horizontal 

component is constant and compute a formula for the series of vertical components. 

Task B is related to the coordinate geometry working space. A formula for the value of 

the slope of each segment in a discrete model of the main cable is given to the students, 

depending on a parameter H, and on the number n of segments. Students have to 

compute the series of x and y-coordinates of the suspension points for a small value of 

n and a given value of H. Task C is related to the algorithmics working space. An 

algorithm like in figure 2c is given to students; they have to enter and execute the al-

gorithm, interpret the parameter n, and adjust the parameter H in order that the model 

given by the algorithm conforms to the shape of the cable. Task D is related to the 

http://structurae.info/ouvrages/ponts-et-viaducs
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mathematical functions working space. Students have to search for a function f whose 

curve models a main cable. They are informed that the horizontal component of the 

tension in the cable is a constant H and of a linear formula for the vertical component 

of the tension at a point of given x-coordinate. They have to find a formula for the 

derivative of f, taking into account that the tension is in the direction of the tangent to 

the curve. Then, using the software environment, they have to find a formula for f and 

adjust the parameter H in order that the curve of the function f conforms to the cable. 

The third phase is also 50 min long. In this phase, the students are expected to develop 

connections between the working spaces of the second phase. They form new groups. 

Each of these new groups is made in order to bring together one or two students of each 

of the previous groups respectively doing task A, B, C and D. Students are invited to 

share their findings and to write a report emphasizing the important points of the study. 

The fourth phase (30 min long) is a collective synthesis led by the teacher. 

Observation and evaluation 

This implementation was observed in a class of 35 students by the end of March. The 

students were mostly average achievers. The contents at stake in physics and mathe-

matics had been taught to students in previous lessons. The phases have been video 

recorded. In the first phase, most students sketched a suspension bridge without sus-

pensors. They understood from the video that the weight of the deck "bends" the cable, 

but they did not link the shape of the cable with the uniform repartition of the weight, 

thanks to the suspensors. In the rest of the phase, the students correctly recorded angles 

and intensity of forces and recognized the static equilibrium law. 

For the group work in phases 2 and 3, I report on a series of four groups observed doing 

each task in phase 2, and on one group in phase 3 bringing together students observed 

in phase 2. In phase 2, students doing task A mainly succeeded, while difficulties were 

observed for students doing other tasks. Students doing task B started by sketching a 

bridge with a lot of suspensors, not allowing to consider segments. They were 

prompted by the teacher to limit to 4 suspensors. They took time to find the coordinates 

of the anchoring point and had difficulties to use the formula given for the slope of the 

segments and the distance between suspensors, in order to calculate the coordinates of 

the next point. Students doing task C took time to enter the algorithm in the software. 

Nothing or a wrong display appeared on the screen, because of small mistakes. They 

corrected when the teacher helped them to analyze the algorithm. They identified the 

parameter n as related to the number of suspensors and proposed the value 83 (the 

number of suspensors in the Golden Gate Bridge). They considered that this value is 

"close to infinity" and that is why the curve did not appear as a broken line, in contrast 

to small values of n. Students doing task D found a formula for the vertical tension but 

had difficulty to interpret the fact that the tension is in the direction of the tangent.  

In the group of phase 3, each student explained her task and her work in the preceding 

phase. Other students listened attentively and asked for further explanation. The pa-

rameter H was identified by students as playing a role in each task; for instance when a 
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student who did task C did not remember the effect of increasing H, confusing with the 

"height of the cable", the student who did task A corrected him, saying that it is a 

tension and then increasing should "straighten" rather than "slacken" the cable. The 

same student helped to overcome the difficulty met by the student who did task D to 

find the direction of the tangent to the curve and then the derivative of the function, 

saying "you just integrate the quotient of V and H".  

To further evaluate the connections students made between working spaces during the 

group work, I report on interviews with 3 students after phase 3. Each interview was 20 

min long. The students were first questioned on their impression about the tasks and 

then they were invited to summarize their findings. They stressed that the situation was 

more complex than usually and that they were "not used to mix physic and mathe-

matics". Commenting the first phase, they showed how their awareness of the structure 

of a bridge progressed, mentioning correctly the role of the suspensors. They still had 

difficulties in considering the slopes of the segments in task B in order to find the co-

ordinates of the suspension points. They correctly interpreted the algorithm of task C, 

and were able to connect the evolution of H, and x and y respectively to task A and B. 

They did not show clear awareness that the function of task D was a limit of the con-

tinuous piecewise function of Task C. From graphical evidence they thought that it was 

more or less the same function for big values of n. The observer asked to explain why 

the gradient in a point of the curve is the quotient of V and H. The expected answer was 

that the tension has the direction of the tangent, but the students simply wrote f '(x) = 

y/x = V(x)/ H. The first equality is common in the physics course, and the second 

derives from the definition of the components in task A. Thus, students made a con-

nection between the statics space and the mathematical function space without explicit 

consideration of a limit. 

 

Figure 3: Connections made by students. 

The figure 3 (left) summarizes the connections between models made by students. On 

the right, each connection is interpreted as connecting working spaces and participat-

ing in geneses. When students interpreted the evolution of the variables x and y in the 

algorithm, by connecting the body of the loop with the recurrence law of the coordi-

nates in the geometrical model, it participates in a discursive validation of an instru-

mental object. The animation of parameters (an instrumental activity) within the 
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software environment supports visualization (a semiotic activity). The discursive ex-

planation that students gave of the value of the gradient of the curve of the mathe-

matical function is inspired by the semiotic notations of derivatives in physics. Each 

connection sheds light on concepts at stake: recurrence and iterative treatment, pa-

rameters in a function, tension, discrete and continuous models, gradient and deriva-

tive. Kuzniak, Tanguay, & Elia (2016, p. 728) name “vertical planes” the two by two 

combinations of geneses and depict them as “valuable tools for describing the evolu-

tion of the mathematical work in the solving process”. They especially warn that “ac-

tivities with a strong constructivist feature” have to be designed in order to “avoid to be 

imprisoned in the Semiotic Instrumental plane”. Figure 3 shows that, in students’ ac-

tivity, this plane is complemented by the two other planes, involving validation. 

CONCLUSION 

The experiment indicates benefits of a design inspired by the connected working 

spaces framework. The framework allows thinking of modelling as involving several 

models, each of them making reality and mathematics interact in different ways. This 

allows seeing models close to reality as belonging to scientific domains (physical or 

nautical science…) rather than to common sense and modelling as active appropriation 

of models of varied natures for a given reality rather than a “translation” between re-

ality and mathematics. By considering several models and characterizing activity on 

each model as a work in a specific working space the framework helped to organize 

effective group work in realistic classroom settings. Developing modelling interdis-

ciplinary activities for students is encouraged by curricula, but rarely achieved; the 

framework and the organization proposed here could be means to overcome imple-

mentation difficulties. In spite of the complexity of the situation, students made sense 

of the main aspects of the models and connections between them. These connections 

enabled them, through specific geneses including validation as well as visualization, to 

understand more comprehensively concepts taught at upper secondary level. Moreo-

ver, they could appreciate how mathematics and experimental sciences contribute 

together to understanding the sensible world. 
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THE INFLUENCE OF SALIENCY IN INTUITIVE REASONING 

Stephanie Lem and Wim Van Dooren 

Centre for Instructional Psychology and Technology, KU Leuven, Belgium 

 

Intuitions play an important role in mathematical reasoning. Stavy and Tirosh pro-

posed the intuitive rules theory and showed how various tasks are incorrectly solved 

on the basis of intuitive rules triggered by salient task characteristics. In this study we 

wanted to replicate and extend the results of Stavy and Tirosh. Furthermore, we 

wanted to test two different ways of making intuitive reasoning more likely (textual and 

graphical saliency). We found that all tasks tested in this study showed similar patterns 

of accuracy rates and reaction times as in the studies of Stavy and colleagues. How-

ever, we were not able to replicate the result that more salient task elements lead to 

more intuitive reasoning. We propose explanations for these different results and 

discuss implications for further research and educational practice. 

INTRODUCTION 

Intuitions play an important role in mathematical reasoning (Fischbein, 1987; Stavy & 

Tirosh, 2000). It is argued that many errors that occur in a variety of mathematical 

tasks can be explained by the occurrence of intuitive reasoning processes. In this paper 

we apply the intuitive rules theory (Stavy & Tirosh, 2000) to five different tasks that 

were administered to secondary school students. 

Stavy and Tirosh (2000) have formulated the intuitive rules theory, which describes 

three different intuitive rules that they argue are often applied to problems in the field 

of science and mathematics. First, the ‘Same A – Same B’ rule leads people to reason 

that when two objects are the same with respect to quantity A, they are also the same 

with respect to quantity B, even when quantity A and B are unrelated. Second, the 

‘More A – More B’ rule means that a person reasons that a perceptual quantity A in a 

task is related to the queried quantity B, while in fact a larger quantity of A does not in 

all cases mean that the quantity of B also increases. Third, the ‘everything can be di-

vided’ rule refers to the incorrect generalization of this rule, which may be correct for 

theoretical questions, to real-life situations wherein it no longer applies. The theory 

further states that the application of these rules is often based on irrelevant but salient 

characteristics of the task. When a person is confronted with these salient task char-

acteristics, the use of an intuitive rule is triggered.  

Various studies have provided evidence for the occurrence of the first two intuitive 

rules in different tasks. For example, the ‘More A – More B’ rule has been studied in 

geometry (Babai, Nattiv, & Stavy, 2016; Babai, Zilber, Stavy, & Tirosh, 2010; Stavy 

& Tirosh, 2000) and probabilistic reasoning (Babai, Brecher, Stavy, & Tirosh, 2006), 
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and the ‘Same A – Same B’ rule in trigonometry (Stavy & Tirosh, 2000) and physics 

(Van Dooren, De Bock, Weyers, & Verschaffel, 2004). 

The methods used in studies on intuitive rules are largely based on methods used in 

research on the dual process theory, a framework from cognitive psychology that has 

in recent years also been applied to mathematics education (e.g., Gillard, Van Dooren, 

Schaeken, & Verschaffel, 2009). According to this theory (Evans, 2006), people can 

use two reasoning systems: an intuitive one (often also called heuristic) and an analytic 

one. Intuitive processing is initiated when confronted with a task, leading to a fast 

response. In many cases this intuitive response is correct, but this is not always the 

case, making it necessary for analytic reasoning to intervene. This is slower and more 

effortful, making it possible to empirically validate whether people use intuitive or 

analytic reasoning when solving a certain task by looking at accuracy rate and reaction 

time patterns on two different item types. In congruent items the intuition under study 

leads to the correct response, while incongruent items require analytic reasoning in 

order to achieve a correct answer. Congruent items are hence expected to be solved 

quickly and correctly, as only fast intuitive processing is necessary. Incongruent items, 

on the other hand, are expected to be solved less accurately, and when a correct re-

sponse is given it is expected that this response is slower than a correct response to a 

congruent item as more time-consuming analytic reasoning is necessary to find this 

correct response. 

A well-studied task in the intuitive rules literature is the so-called polygon task, which 

is presented in Figure 1. In this task two polygons are presented with a different area 

and the student has to compare the area of the polygons. It has been found that in-

congruent items are solved less accurate and slower than congruent items (Stavy & 

Tirosh, 2000). Furthermore, it was shown that when the area of the polygon is made 

more salient, fewer correct responses are given (Stavy, Goel, Critchley, & Dolan, 

2006). This suggests that the reasoning of participants was indeed led by the area that 

gets bigger or smaller, without looking at other characteristics of the polygons. 

The goal of the current study was three-fold. First, we wanted to replicate the results of 

Stavy and Tirosh (2000), Babai et al. (2006) and Stavy et al. (2006) with respect to the 

effect of congruency and saliency on two ‘More A – More B’ tasks. Second, we wanted 

to generalize the findings of Stavy et al. (2006), Babai et al. (2006) and Stavy and 

Tirosh (2000) to other tasks, which elicit other intuitions than the ‘More A – More B’ 

intuitive rule. Finally, we wanted to test whether saliency can be manipulated in a 

different way than Stavy et al. (2006) did. More specifically, Stavy et al. (2006) used a 

visual way to make the items more salient, namely by shading the polygons appearing 

in the task. This is a task-specific operationalization of saliency that cannot be applied 

to all tasks. Hence, instead of this visual manipulation, we used a textual way of 

making a task more salient, namely by adding part of the anticipated intuitive rule to 

the task. 
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Figure 1: The polygon task: is the perimeter of the right polygon larger or smaller than 

that of the left polygon? 

METHOD 

Participants were 123 pupils from a secondary school in Flanders, Belgium. About half 

of the participants (n = 65) were in the fourth grade, while the other half (n = 58) were 

in the fifth grade. We used five tasks in which the application of different intuitive 

rules could be tested. We only present two of them here in figures because of space 

restrictions. First, there were two ‘More A – More B’ tasks: the polygon task used by 

Stavy et al. (2006; see Figure 1) and a probability task from Babai and colleagues 

(2006). These two tasks were included to replicate the results of Stavy and Tirosh 

(2000), Stavy et al. (2006), and Babai et al. (2006), which was the first goal of the 

study. The third task was a ‘Same A – Same B’ task involving rectangles (see Figure 2). 

This task was created by the authors and was included to be able to generalize previous 

findings to other tasks, which was the second goal of the study. Finally, there were two 

proportional reasoning tasks, one about triangles and one about cylinders. These tasks 

cannot be included in this paper due to length restrictions. As with the third task, these 

two tasks were included to generalize previous results to new tasks. 

For each of the five tasks, three items were created: one congruent and two incongruent 

items. This means that there were five times three items to be solved by every partic-

ipant (= 15; 5 congruent items and 10 incongruent items). Of each item, a salient and a 

non-salient version were created to constitute two conditions: saliency was varied 

between subjects. In the non-salient version, the item was administered without any 

special cues. In the salient version, however, a sentence was added that stressed the fact 

that one of the elements was the same or different, making it more likely that people 

would indeed use this element to (incorrectly) base their reasoning on. Participants 

were randomly assigned to either the salient or the non-salient condition. Of the pol-

ygon task, we also used a second type of saliency that was tested next to the textual 

type of saliency used for all tasks. We filled the polygons to draw more attention to the 

area of the polygons, just like Stavy et al. (2006) did. This way we could compare these 
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two types of saliency, which was the third goal of the study. For the other four tasks it 

turned out impossible to make the tasks more salient in a similar, visual, way.  

 

A 

 

 

 

 

B 

 

 

 

 

Figure 2: Rectangle task. Does the perimeter change when part of the figure is moved? 

A: Congruent item, non-salient. B: Incongruent item, salient (English translation: “The 

area remains the same”). The only difference between the non-salient and the salient 

items is the presence of the text in the second image 

Participants were randomly assigned to one of two conditions: non-salient or salient. 

The experiment was done individually on a computer, in groups of five to ten pupils at 

a time. In each item, two situations had to be compared. Participants were asked to 

work at a steady pace, without working so fast that they would be prone to making 

errors. The first situation was first presented for two seconds, after which the second 

situation was presented next to the first situation. After another two seconds, three 

answer alternatives were presented simultaneously and the participant could answer by 

pressing the number on the keyboard corresponding to their answer. The reaction time 

measurement started only when the answer alternatives were presented and stopped as 

soon as a response was given. 

RESULTS 

Effect of congruency 

For each of the tasks, we tested whether congruent items were solved more accurately 

than incongruent items. This was the case for all tasks (Table 1). These results suggest 

that intuitive reasoning lies at the basis of most participants’ reasoning. 

For the reaction times, we tested for each of the tasks whether accurate responses to 

incongruent items had longer reaction times than accurate responses to congruent 

items. As is shown in Table 2, this was always the case. This is a second type of evi-

dence that intuitive reasoning lies on the basis of the responses, and needs to be 

overcome in incongruent items. 
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 Accuracy con-

gruent      items 

Accuracy in-

congruent 

items 

χ2 df p 

Polygon task 96.67 57.08 34.46 1 < .001 

Probability task 96.67 72.50 20.57 1 < .001 

Rectangle task 92.50 20.42 102.90 1 < .001 

Triangle task 95.00 22.92 86.85 1 < .001 

Cylinder task 80.83 21.25 96.05 1 < .001 

Table 1: Main effect of congruency on accuracy (in %), per task 

 

 RT congru-

ent items 

RT incongru-

ent items 

F df p 

Polygon task 3287 7302 23.83 1, 249 < .001 

Probability task 9952 12376 10.56 1, 288 .001 

Rectangle task 6949 13860 71.67 1, 158 < .001 

Triangle task 8133 13066 40.57 1, 165 < .001 

Cylinder task 10743 14225 10.11 1, 145 .002 

Table 2: Main effect of congruency on reaction times (in ms) of accurate responses, per 

task 

Effect of saliency 

As explained above, for the polygon task we used two types of saliency: graphical (like 

in the study of Stavy et al., 2006), and textual (like in the other items). This was done to 

test whether both types of saliency would be equally effective in influencing the 

number of intuitive responses. Before analyzing the effect of saliency for the other 

items, we needed to know whether there was a difference between these two types of 

saliency. A logistic regression analysis did not show an interaction effect on accuracy 

of type of saliency and congruency, Wald χ2(1) = 0.00, p = 1.00.  The same result was 

found when we used the number of intuitive responses as the dependent variable. 

There was also no effect of type of saliency on the reaction times of accurate responses, 

F(1,56) = 0.91, p = .344. These results suggest that both types of saliency for the 

polygon task had the same effect on the extent to which intuitive reasoning was trig-

gered and applied. This also means that in the analyses that follow we did not need to 

distinguish both saliency types and coded both types of saliency as ‘salient’. 

To study the effect of saliency we looked at the number of intuitive responses to the 

incongruent items of all tasks separately for both the salient and the non-salient items 

(Table 3). For none of the tasks we found a significant main effect of saliency on the 
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number of intuitive responses, which does not follow our hypothesis that salient items 

would lead to more intuitive reasoning than the non-salient items. 

 NS S Wald χ2 df p 

Polygon task 21.67 33.33 1.83 1 .177 

Probability task 15.00 14.17 0.02 1 .900 

Rectangle task 70.83 79.17 0.56 1 .456 

Triangle task 70.00 74.17 0.14 1 .709 

Cylinder task 71.67 66.67 .20 1 .654 

Table 3: Main effect of saliency on the percentage of intuitive responses for the in-

congruent items, per task (NS = non-salient condition, S = salient condition, numbers 

are percentage of intuitive responses) 

For the reaction times of intuitive responses to incongruent items we expected faster 

responses for the salient items than for the non-salient items: Saliency makes that the 

intuitive response is triggered. Table 4 shows the results of these analyses. Only for the 

polygon task a significant main effect of saliency on reaction time was found, but the 

effect was in the opposite direction than what we hypothesized. 

 NS S F df p 

Polygon task 5136 7628 4.47 1,236 .036 

Probability task 14827 16554 0.03 1,238 .856 

Rectangle task 9673 10875 2.34 1,237 .127 

Triangle task 10465 11625 0.88 1,236 .350 

Cylinder task 12123 12011 0.88 1,237 .349 

Table 4: Main effect of saliency on reaction times for the intuitive responses to in-

congruent items, per task (NS = non-salient condition, S = salient condition, numbers 

are the reaction times in ms) 

DISCUSSION AND CONCLUSION 

In this study we wanted to replicate, generalize, and extend results found by Stavy and 

Tirosh (2000), Babai et al. (2006) and Stavy et al. (2006) concerning the use of intui-

tive rules. First, we looked for effects of congruency on accuracy and reaction times. 

For all five tasks included in the study we found that congruent items were solved 

significantly better than incongruent items, which suggests that participants indeed 

applied the anticipated intuitive rule. Also when looking at the reaction times of ac-

curate responses we found evidence that points in this direction. With these results, we 

met our first and second research goal concerning replication of the effect of congru-

ency on accuracy and reaction time, and the extension to other tasks than the ‘More A – 

More B’ tasks used so far. Second, we looked for effects of saliency. We did not find an 
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effect of the type of saliency (graphical versus textual) for the polygon items. This 

means that we were able to do the rest of the analyses concerning saliency without 

making a distinction between both types of saliency. For none of the items we obtained 

a main effect of saliency on accuracy. This means that we were not able to replicate the 

results of Stavy et al. (2006) concerning saliency, and also that we were not able to 

generalize their results to other tasks. Furthermore, saliency only had an effect on the 

reaction times of intuitive responses for one task, namely the polygon task. The effect 

was, however, in the opposite direction of the effect that Stavy et al. (2006) found: We 

found that intuitive responses to salient items took longer than intuitive responses to 

non-salient items.  

Various factors could play a role in explaining the different results concerning sali-

ency. First, our participants were younger than those of Stavy et al. (2006). It has al-

ready been shown that the ‘More A – More B’ rule tends to become less influential with 

age (Stavy & Tirosh, 2000). It is hence possible that in our sample the rule was still 

very strongly present in the non-salient condition, meaning that the salient condition 

was not able to add to this effect. A second possibility lies in the long reaction times 

found in our study as compared to the study of Stavy et al. (2006). It is possible that our 

participants were reflecting on their responses to a much larger extent. This, in its turn, 

may be due to the fact that we used a variation of tasks, while Stavy et al. (2006) of-

fered a longer series of identical items to their participants.  

The results of this study have various implications for future research and theory. An 

important challenge for future research is to study where the differences in findings 

between our study and the studies of by Stavy and Tirosh (2000), Babai et al. (2006) 

and Stavy et al. (2006) come from. Possibilities to include are the age of the partici-

pants, as mentioned before, but also the previous education of participants, differences 

in the instructions given to the participants, etc. Another challenge is to create other 

ways than the two types of saliency included in the current study to change accuracy. 

This will not only increase our understanding of how intuitive reasoning works in the 

brain, but also opens possibilities to reduce the tendency towards inaccurate intuitive 

reasoning. A possibility that was recently tested to improve the intuitive interpretation 

of box plots was refutational text (Lem, Onghena, Verschaffel, & Van Dooren, 2016). 

Refutational text is a text that explicitly states and refutes a misconception or intuition. 

It was shown that this can indeed help to remediate intuitions. A final reflection we can 

make is that both dual process theory and the intuitive rules theory are very general 

theories about reasoning and that subject specific knowledge, for example on mathe-

matics (education), is necessary to apply these theories to mathematical reasoning. We 

have tried doing this by looking at salient features of the tasks that are most likely to 

elicit incorrect intuitive reasoning. Future research could try to look more into the 

conceptual features of the tasks in order to find new approaches to both studying the 

occurrence of intuitive reasoning in specific tasks and finding ways of improving this 

reasoning. 
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The results of this study are important for teachers as they show that intuitive reasoning 

is very common and can occur in different tasks. Teachers should be aware that 

common mistakes can be caused by these intuitions and are hence not so easy to 

change. Teachers can use this knowledge to construct exercises and exam questions 

that can help them diagnose difficulties students have. Also, they can try to use tech-

niques that can help their students to achieve conceptual change, like the earlier men-

tioned refutational text (Lem et al., 2016), in order to overcome their incorrect intui-

tions and replace them with correct intuitions. 
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IS MATHEMATICAL CREATIVITY RELATED TO 

MATHEMATICAL EXCELLENCE? TEACHERS’ BELIEFS 

Esther S. Levenson 

Tel Aviv University 

 

This study investigates mathematics teachers’ beliefs regarding the relationship be-

tween mathematical creativity and mathematical excellence. Written responses to an 

open question regarding this relationship led to six types of relationships. Findings 

indicated that most teachers believed that mathematical creativity can lead to excel-

lence, with a few believing no relationship exists. Teachers’ implicit beliefs regarding 

creativity were also analysed. It was found that the same implicit beliefs about crea-

tivity may be held by teachers with different beliefs regarding the relationship between 

mathematical creativity and excellence. 

INTRODUCTION 

Promoting mathematical creativity is seen as one of the aims of mathematics educa-

tion. According to Silver (1997), mathematical creativity is “an orientation or dispo-

sition toward mathematical activity that can be fostered broadly in the general school 

population” (p. 75). Several researchers agree and have found that hallmarks of crea-

tivity, such as fluency, flexibility, and originality can be observed in elementary school 

mathematics classrooms (e.g., Levenson, 2011), as well as in secondary mathematics 

classrooms (e.g., Tabach & Friedlander, 2017).  

The teacher has a prominent role in promoting mathematical creativity. It is up to her 

or him to choose tasks that may occasion mathematical creativity, create a supportive 

environment, and adjust planned lessons according to student responses (Leikin & 

Dinur, 2007; Levenson, 2011). Yet, research has also found that some teachers confuse 

characteristics of giftedness with creativeness, claiming that a creative student is of 

high intelligence, verbal ability, and intrinsic motivation (Aljughaiman & Mow-

rer-Reynolds, 2005). Other teachers claim that only high achievers can be creative. 

Such beliefs may affect if, when, and how mathematical creativity is promoted in the 

classroom. For example, teachers who believed that only high achievers are capable of 

creativity, also believed that it was not their responsibility to foster creativity among all 

students (Aljughaiman & Mowrer-Reynolds, 2005). If we wish to encourage teachers 

to promote mathematical creativity among all students, not only among the highest 

mathematics achievers, then it is important to first investigate teachers’ beliefs re-

garding this issue. Previous studies have investigated mathematics teachers’ general 

conceptions of mathematical creativity (e.g., Bolden, Harries, & Newton, 2010). This 

study focuses on mathematics teachers’ beliefs regarding the relationship between 

mathematical creativity and mathematical excellence.  
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TEACHERS’ BELIEFS RELATED TO CREATIVITY  

Studies of teachers’ beliefs related to creativity in general, and mathematical creativity 

specifically, have found several issues related to these beliefs. To begin with, there is 

the mathematics and how teachers view this content area. Some prospective teachers 

believe mathematics to be a closed field, with little room for independence and crea-

tivity (Bolden et al., 2010, Shriki, 2010). Those teachers claim that art, music, and 

language, and not necessarily mathematics, are contexts that occasion creativity 

(Bolden et al. 2010). In fact, Sheffield (2017) claimed that one of the most dangerous 

myths held by teachers and students alike is that mathematics is not a creative field. 

These beliefs may change with appropriate professional development, leading to a 

view of mathematics as a subject full of beauty and surprise, where students can de-

velop their own creativity (Shriki, 2010). 

Who can be creative and under what circumstances creativity arises, are also related 

beliefs. In one study, mathematics teachers from seven different countries agreed that a 

creative person is born that way (Leikin et al. 2013). In other studies, however, 

mathematics teachers, as well as other teachers, claimed that creativity can be devel-

oped (Bolden et al., 2010; de Souza Fleith, 2000), and that all students should have 

access to tasks that can promote creativity (Levenson, 2013). Some teachers claim that 

classroom environments, such as whether or not students share ideas or are given 

choices, may enhance or inhibit creativity (de Souza Fleith, 2000).  

Regarding the characteristics of creative students, some teachers, not necessarily ma-

thematics teachers, characterize a creative person as imaginative, willing to take risks, 

independent, a high-achiever, intelligent, and open-minded (Aljughaiman & Mow-

rer-Reynolds, 2005; Diakidoy & Phtiaka, 2002). To that list, mathematics teachers add 

that a creative mathematics student is motivated, curious, and enjoys mathematics 

(Leikin et al., 2013; Shriki, 2010). Some prospective mathematics teachers characte-

rize creative students as those who ask challenging questions (Emre-Akdoğn & 

Yazagan-Sağ, 2015). 

Also relevant is how teachers identify evidence of creativity and mathematical crea-

tivity. For example, coming up with unique solutions or ideas was mentioned by 

teachers of different ages and different subjects in several studies (e.g., Aljughaiman & 

Mowrer-Reynolds, 2005; Leikin et al., 2013). Specifically related to mathematics, 

some teachers claim that evidence of creativity may be seen when students propose 

different solutions and approaches to solving problems and when they associate 

mathematics with other subjects (Emre-Akdoğan & Yazgan-Sağ, 2015). Bolden et al. 

(2010) found that prospective elementary school teachers associate mathematical 

creativity with undertaking investigations and computational flexibility.  

To summarize this section, some beliefs are related to what may be called creative 

processes, such as proposing different approaches to problem solving, while others 

relate to the product of creativity, such as unique ideas. A third set of beliefs is related 

to the nature of creativity, including who can be creative and what factors may influ-
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ence creativity. Finally, affective aspects, such as enjoyment, were also mentioned. 

This study focuses on perceptions regarding the relationship between mathematical 

creativity and mathematical excellence and asks the following questions: (1) Do 

teachers believe that there is a relationship between mathematical creativity and 

mathematical excellence, and if so, what types of relationships do they believe exist? 

(2) What implicit beliefs regarding mathematical creativity surface, as teachers de-

scribe the relationship between mathematical creativity and excellence? (3) Are dif-

ferent implicit beliefs regarding creativity associated with different beliefs regarding 

the relationship between mathematical creativity and excellence? 

METHODOLOGY 

Participants and tool 

Participants in this study were 45 graduate students in Israel working toward a Mas-

ter’s degree in Mathematics Education. Some of the graduate students had no teaching 

experience and were concurrently studying toward their teaching degree while others 

were experienced teachers, the most having 25 years teaching experience. None of the 

participants had previously taken a formal course related to creativity. 

The research tool was an assignment given to each participant that began with the 

following request: Choose a task or activity from a mathematics text book that in your 

opinion promotes mathematical creativity, and explain why this task has the potential 

to promote mathematical creativity. Results of this part of the assignment were re-

ported in (Levenson, 2013) and showed that most teachers associated creativity with 

being different and unusual. The second part of the assignment contained a contro-

versial statement followed by a request for a response. The statement was: “There are 

those who say that mathematical creativity is related to excellence in mathematics. 

What is your opinion?” The word “excellence” was chosen, as opposed to “gifted”, 

because teachers in this study did not teach in a program for gifted students, nor was it 

the intention of this study to focus on teachers’ conceptions of gifted mathematics 

students. Rather, the term “excellent” is a commonly used term amongst teachers when 

describing students who have high grades in mathematics. 

Data Analysis 

To begin with, a grounded theory approach was used to analyse the data. The initial 

reading categorized participants’ responses into “yes, excellence in mathematics is 

related to creativity,” “no, there is no relationship,” and “undecided.” Further readings 

led to a finer categorization scheme based on the type of relationship teachers claimed 

to exist between mathematical creativity and mathematical excellence (e.g., that one 

was a prerequisite for the other). This led to six basic categories, described in the next 

section. The author and another mathematics education researcher independently 

categorized all participants’ responses. Where there was disagreement, a discussion 

ensued until agreement was reached. A third mathematics education researcher then 

categorized 20% of the responses, ending in 90% agreement between researchers.  
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After completing the basic categorization, a second analysis investigated implicit be-

liefs related to creativity. Due to the interpretive nature of the data, a qualitative 

analysis was carried out based on creativity-related beliefs found in previous studies, 

and described in the background. Inferred beliefs were assigned to one of four cate-

gories: beliefs related to (1) creative processes, (2) the product of creativity, (3) the 

nature of creativity, including how creativity might be affected by the environment 

(e.g., opportunities afforded in some classroom), and (4) affective issues.  

RESULTS 

This section presents the six main categories that resulted from the data analysis. For 

each category examples from participants’ responses are given, showing the reasoning 

behind those beliefs and shedding further light on participants’ implicit beliefs. Ex-

amples were chosen to reflect the various implicit beliefs that came to light. The sec-

tion ends with a summary and an overview of general trends and frequencies. 

Category A: Mathematical excellence precedes mathematical creativity  

In general, this category includes responses that claim mathematics excellence in some 

way promotes mathematical creativity. For some participants, it is the deep mathe-

matical knowledge of an excellent student that allows creativity to emerge. For ex-

ample, T22 wrote: “Creativity is the ability to break down a problem and re-build it 

with mathematical knowledge from different areas. In order to do this, you need to 

know mathematics, to think mathematically, and be fluent in various mathematical 

topics.” Similarly, T1 wrote: “Excellence in mathematics promotes creativity because 

a deep understanding of mathematics causes you to think out of the box.” Other par-

ticipants hinted at affective issues related to being excellent in mathematics, that in 

turn may affect creativity. For example, T37 related to the motivation of excellent 

mathematics students: “Being excellent in mathematics drives you to being creative in 

mathematics.” T21 related to self-confidence: “When a student is good at mathematics, 

his self-confidence rises, which causes him to dare more and to try different solution 

methods without fear of failure.” Finally, some participants attributed environmental 

factors such as opportunities provided especially for excellent mathematics students. 

T9 wrote: “Excellent students are exposed to problems that require high-order reaso-

ning and can be solved in multiple ways, thus promoting creativity.”   

In the above examples, we find implicit beliefs related to creative processes, such as 

being able to break down a problem (T22), thinking out of the box (T1), and trying 

different solutions (T21). Beliefs related to creative products were not mentioned. The 

nature of creativity was hinted at by mentioning that the environment, in the way of 

opportunities offered, can promote creativity (T9). Affective issues (e.g., not fearing 

failure) were raised by T21.   

Category B: Mathematical creativity precedes mathematics excellence 

Responses in this category inferred that mathematical creativity can promote excel-

lence in mathematics. Some teachers attributed this to what they considered as char-
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acteristics of a creative person. For example, T3 wrote: “Creativity comes from having 

an open mind, solving problems in many different ways, which leads to excellence.” 

T38 wrote: “Creativity means using various thinking processes that lead to a mean-

ingful product such as a problem solution, idea, or concept, which in turn leads to 

excellence.” T15 wrote: “Creativity means producing unconventional and valued 

products.” Affective issues were also raised in this category. For example, T13 wrote: 

“creativity in mathematics contributes to enjoyment, which contributes to excellence.” 

One teacher (T16) referred to the nature of creativity:  

Mathematical creativity promotes excellence in mathematics because it allows a student 

to think of unusual solutions, and then the student can excel in mathematics. However, 

excellence in mathematics does not promote creativity because creativity is genetic and 

cannot be acquired. By the way, weaker mathematics students can also be creative, but 

may have some problem such as a short attention span, which affects their grade in 

mathematics. 

Implicit beliefs found in the above examples include those related to creative pro-

cesses, such as solving problems in different ways (T3) and using various thinking 

processes (T38). Creative products mentioned were meaningful and unconventional 

(T38 and T15). The nature of creativity was referred to by T16 who claimed that cre-

ativity is an innate trait. Finally, there was an affective connection relating enjoyment 

to creativity (T13). 

Category C: Creativity and excellence in mathematics are reciprocally related 

Some participants believed that mathematical creativity can influence excellence and 

that mathematical excellence can contribute to creativity. T40 wrote the following: 

Mathematical creativity is about thinking out of the box. Creativity and excellence go 

hand in hand, but I cannot decide which leads to which. On the one hand, thinking out of 

the box leads to finding interesting … solutions, which can lead to excellence. On the 

other hand, excelling in mathematics leads to expertise that can broaden one’s thinking, 

leading to creativity. 

In the above, “thinking out of the box” implies a creative process, while an “interest-

ing” solution hints at the product of creativity. Another teacher (T33) specifically re-

lated to students who learn mathematics at different levels:  

In the weaker mathematics classes, students are only interested in learning procedures… 

In the stronger mathematics classes, there is discourse and the students … are not afraid 

of making mistakes. The relationship between creativity and excellence is two-way. 

While it may be that stronger mathematics students exhibit more mathematical creativity, 

if teachers promote creativity among the weaker students, they will become stronger in 

mathematics.  

T33 relates to the nature of creativity. The statement above suggests a belief that cre-

ativity can be developed and that the environment, (e.g., opportunities provided in 

different classes), can have a strong impact on students’ mathematical creativity. 
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Category D: There is a non-influential relationship between mathematical crea-

tivity and excellence 

Included in this category were two participants who believed that a relationship be-

tween creativity and excellence exists, but one does not preclude or influence the other. 

For example, T18 simply wrote: “There is a relationship between mathematical crea-

tivity and mathematical excellence, but one is not a sufficient condition for the other.” 

The second participant (T42) wrote: “Mathematical creativity and excellence are re-

lated, ... Creativity is one characteristic of mathematical excellence, but it is not suf-

ficient.” Implicit beliefs related to creativity did not arise.  

Category E: Mathematical creativity and excellence are not related 

Three participants claimed that no relationship exists between mathematical creativity 

and excellence, basing their belief on their experience as mathematics teachers of all 

levels. T36 wrote: 

As a teacher, I see many students, some excellent in mathematics (when it comes to tests), 

but when I sit with them while solving a problem, they limit themselves to using formulas 

learned in class. But, I also teach weak mathematics students, and they think differently. 

If I give those students the same problem I gave high achieving students, I think I would 

get more creative solutions from the weaker students. 

One participant (T12) focused on the teacher’s role in developing mathematical crea-

tivity and claimed: “Creativity in mathematics can be developed and acquired, even 

among lower achieving mathematics students. It is dependent mostly on a supportive 

environment of which the teacher is responsible.”  

An implicit belief related to the creative process was hinted at by the term “thinking 

differently (T36). Regarding the nature of creativity. Both teachers imply that the en-

vironment has a role in supporting mathematical creativity, that the weaker student 

could solve the same problem given to stronger students, if only given the chance.  

Category F: Undecided 

One participant in this category wrote that she was undecided because it depends on 

how one defines excellence in mathematics (she did not mention defining creativity). 

Two additional participants were also categorized as undecided. For example, T41 

wrote: “There is a relationship between mathematical creativity and mathematical 

excellence…. We see students who are mathematically creative but not mathemati-

cally excellent and the other way around.” Although T41 initially claims there is a 

relationship, she goes on to describe a situation where mathematical creativity and 

excellence are unrelated.  

Summarizing the quantitative data 

Table 1 presents the frequencies of participants’ responses according to the type of 

relationship they believed to exist or not exist. We first note that 84% of the partici-

pants believed that some relationship between mathematical creativity and mathe-

matical excellence exists. In addition, considering all those who believed that math-
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ematical creativity can promote mathematical excellence, including those that believed 

the relationship to be mutual, we find that half of the participants believed mathe-

matical creativity to have some influence on mathematical excellence. 

Category A B C D E F 

Frequency (%)  13 (29) 19 (42) 4 (9) 2 (4) 4 (9) 3 (7) 

Table 1: Frequencies (in %) of the number of participants’ statements per category 

DISCUSSION 

The main finding of this study is that most mathematics teachers believed that 

mathematical creativity and mathematical excellence are related, with approximately 

half believing that creativity can lead to excellence in mathematics. This belief can be a 

first stepping stone when encouraging teachers to promote creativity in their class-

room; if they think that creativity can lead to excellence, they may be more interested 

in learning how to promote mathematical creativity. In general, professional devel-

opment should take into consideration, not only teachers’ knowledge, but also their 

related beliefs (Beswick, 2012). 

Yet, not all teachers who believed that creativity can lead to mathematical excellence 

expressed a belief that creativity can be promoted. As was shown above, one teacher 

believed that mathematical creativity leads to excellence, and explicitly stated that 

creativity is an innate trait. Interestingly, a different teacher also stated that creativity is 

innate, and yet expressed that mathematical excellence can lead to mathematical cre-

ativity. In general, answering the second research question, implicit beliefs found in 

this study were aligned with previous studies of teachers' conceptions of creativity, 

such as mathematically creative people are open-minded (Aljughaiman & Mow-

rer-Reynolds, 2005), come up with unique solutions (Leikin et al., 2013), and propose 

different approaches to solving problems (Emre-Akdoğan & Yazgan-Sağ, 2015). On a 

positive note, none of the participants in this study claimed that mathematics is a closed 

subject with no room for creativity.  

As to the third research question, findings indicated that the same implicit beliefs about 

creativity were held by participants with opposing beliefs regarding the relationship 

between excellence and creativity. One possible reason for this, is that beliefs are not 

isolated entities, but part of a system of beliefs with complex relationships (Green, 

1971). Thus, for example, a belief that the environment is a factor in promoting 

mathematical creativity, may lead one teacher to claim that excellence (because of 

opportunities given to excellent students) leads to mathematical creativity, while an-

other teacher claims that since it is up to the environment, mathematical creativity and 

excellence are unrelated. A second possible reason is that participants’ various 

teaching experiences might have affected the variety of belief interactions. Beswick 

(2012) found that teaching experience can have a great influence on one’s beliefs, 

including beliefs about mathematics as a school subject. This in turn might affect 

teachers’ beliefs regarding what it means to excel in mathematics. This needs further 
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investigation. A future study might build on this study, by aiming to investigate not 

only specific beliefs related to teachers’ conceptions of creativity, but the complex 

interactions that might underlie those beliefs.  
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Mathematical reasoning is a complex skill and as such requires coherent cumulative 

learning experiences. Although there is a strong research base on mathematical rea-

soning at the secondary level, it is hardly investigated in early mathematics education 

so far. There is a lack of theoretical conceptions of early mathematical reasoning as 

well as of empirical findings concerning prerequisites and forms of mathematical 

reasoning of young children. In this contribution we first discuss the nature of early 

mathematical reasoning and characterize it along the dimensions knowledge, repre-

sentations and formulation from a theoretical perspective. This results in a description 

of facets of early mathematical reasoning processes. Second, we sketch the develop-

ment of task to assess early mathematical reasoning and provide first empirical find-

ings. The contribution hence provides an approach to further research on early 

mathematical reasoning with the aim of better understanding an allegedly important 

root of advanced mathematical thinking. 

INTRODUCTION 

Mathematical reasoning is an important aim of mathematics education and therefore a 

key standard of school mathematics (e.g. CCSSI, 2012; NCTM, 2000): Mathematics 

instruction should enable students to reason mathematically, including to investigate 

conjectures, develop, and evaluate arguments or proofs. They should distinguish cor-

rect logic from flawed, and use related skills to communicate mathematically. These 

goals are pursued in formal mathematics instruction that starts with preK-level (age 5, 

e.g., USA, Switzerland) or first grade (age 6, e.g., Germany, Italy). 

Although these descriptions from curricular documents suggest that mathematical 

reasoning is well-understood, research still struggles to attain a shared understanding. 

The discourse is traditionally stronger in respect to the function and nature of math-

ematical proof, the rigorous form of mathematical reasoning especially relevant for 

secondary education (e.g., Hanna, 2007). Conceptions of mathematical reasoning that 

are aiming at elementary and early mathematics are recently emerging (Jeanotte, & 

Kieran, 2017; Nunes et al., 2012; Stylianides, 2007). 

However, reasoning mathematically is unanimously understood as requiring complex 

abilities. As early skills are usually found to have a relevant influence on the later 

acquisition of mathematics (e.g., Watts et al., 2014), it would be reasonable to foster 

mathematical reasoning in an age-adequate way already before first grade. But so far, a 
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concise and shared understanding of early mathematical reasoning is missing. Ac-

cordingly, evidence about corresponding abilities of young children that could inform 

age-adequate instructional practices is lacking as well.  

The aim of this paper is to present the rationale of an approach to early mathematical 

reasoning abilities of young children (age 5-6) that might not be exposed to formal 

mathematics instruction. After a review of theoretical foundations, we propose a 

framework, and exemplify the development of a standardized interview to assess the 

early mathematical reasoning abilities. Findings from an exploratory study provide 

first evidence for the validity of the approach and illustrate that mathematical rea-

soning occurs in a variety of different forms. The findings support that early mathe-

matical reasoning can be understood as a distinct area of early mathematical. 

MATHEMATICAL REASONING IN EARLY MATHEMATICS 

Mathematical reasoning in a narrow sense can be understood as mathematical proving 

in a more or less rigorous way (Hanna, 2007). From an educational perspective, it is 

interesting to trace mathematical reasoning down to the start of organized mathemat-

ical learning. It is obvious that early mathematical reasoning processes, especially if 

they occur in informal settings, are less formal, less complex, and can only build on the 

available set of early mathematical knowledge. Nonetheless, early mathematical rea-

soning should ideally lay the ground for the later development of more formal and 

complex forms. 

What is early mathematical reasoning? 

Contemporary conceptions emphasize procedural aspects and the explanatory function 

of mathematical reasoning to a greater extent. Additionally, they take the social and 

discursive nature of mathematical reasoning into account (Hanna, 2007; Jeanotte & 

Kieran, 2017). Mathematical reasoning then refers to processes where relations be-

tween mathematical structures are used to change the epistemic value of a proposition, 

statement, or observation (cf. Duval, 2007). As such, mathematical reasoning might 

take different forms and cover different processes. Precursory skills and more ex-

perimental activities, like comprehending arguments and making connections, can be 

subsumed. Stylianides (2007) suggested four dimensions to conceptualize more spe-

cifically what can be understood as mathematical reasoning in certain contexts. They 

refer to (1) the mathematical foundation, (2) the representation, (3) the formulation, 

and (4) the social dimension. In essence, mathematical reasoning can be understood as 

reasoning in mathematical situations. It therefore requires the use of mathematical 

resources (1) and is related to typical structural characteristics or means of reasoning 

(3), what refers to the dimension of formulation. These structural aspects (e.g., is a 

reasoning deductive or inductive) and procedural aspects (i.e., what kind of reasoning 

processes occur) surface also in a broader analysis by Jeanotte and Kieran (2017) as 

central features of mathematical reasoning. As subject of communication, mathemat-

ical reasoning has to be further represented in a way that conforms to a common un-

derstanding (2). This social nature of mathematical reasoning is mirrored also in a need 
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of interpersonal relevance (4) in the context it occurs. We finally step on and describe 

early mathematical reasoning along the first three of the four dimensions. The fourth 

dimension, as a social dimension, has to be postponed at the moment, as it requires first 

a deeper understanding of theoretical aspects of early mathematical reasoning. 

First, early mathematical reasoning occurs on the ground of early (1) mathematical 

knowledge. Research showed, that the mathematical development before school age is 

impressive and an essential part of the cognitive development (Ginsburg et al., 2008). 

Children acquire a base of important mathematical concepts from different areas, in-

cluding numerical and geometrical skills. As the body of knowledge is large and well 

documented, we refer to the literature here (e.g., Clements et al., 2004).  

However, young children acquire these mathematical knowledge first and foremost in 

informal, everyday contexts. As a consequence, this knowledge is by nature often 

contextualized and bound to situations (e.g., Sophian, 1999). Early mathematical 

reasoning hence depends on apt (2) representations of this knowledge. Young children 

do not dispose of abstract, transferable mathematical objects and in order to 

(re-)structure their mathematical knowledge in reasoning processes, children need 

contexts and familiar representations. It is important to note, that the way knowledge is 

represented depends on the cultural practices children encounter as well as aspects of 

general cognitive development (Schliemann & Carraher, 2002). Specific characteris-

tics of early cognitive development, like the development of executive functions and 

language skills limit the range of representations suited for early mathematical rea-

soning (cf. Nunes et al., 2007; Watts et al., 2005). 

Further, characterizing early mathematical reasoning faces the challenge what are 

possible (3) formulations of early mathematical reasoning. As mentioned above we 

apply a broader understanding of mathematical reasoning, which includes for example 

experimental activities. But even in a broader understanding, there is still a need for 

rigor of thinking (but not of formalism). Hanna motivates this aspect of formulation by 

the social functions of reasoning: “Rigor is a question of degree in any case. In the 

classroom one need provide not absolute rigor, but enough rigor to achieve under-

standing and to convince” (Hanna, 1997). Following this line of argument, it needs to 

be delineated what formulations of reasoning processes are pertinent for early math-

ematical reasoning. Especially, there is the need to make explicit how mathematical 

reasoning differs from an everyday logic although it is expected to occur in familiar 

contexts (Schliemann & Carraher, 2002). Mathematical reasoning is in need of a log-

ically consistent argumentation, cogent reasoning and uses reasoning processes spe-

cific for mathematics, even if it is represented in a less formal way, e.g., in an everyday 

language. Jeanotte and Kieran (2017) provide an extensive synthesis of such processes 

of mathematical reasoning, for example generalizing, or justifying. They propose that 

these processes fall into two categories that relate to (i) the search for similarities and 

differences and (ii) validating in the sense that the latter processes can lead to changes 

in epistemic values. 
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These categories can be understood being related to a more rigid understanding of 

mathematical reasoning (ii) and a more broad and experimental understanding of 

mathematical reasoning (i). They are to a certain extent hierarchical, as the processes 

of validation often use results from processes of category (i). This distinction can help 

to further differentiate facets of the formulation-dimension for early mathematical 

reasoning. We will explain this in detail, as it plays a central point in our endeavour to 

characterize early mathematical reasoning (see Tab. 1). 

First, due to the informal nature of early mathematical knowledge, children need to be 

able to access relevant mathematical knowledge for reasoning processes. They have to 

identify mathematical structures that are relevant for the reasoning situation. Accessi-

bility of knowledge is a question of identification as well as representing, as children 

have to use the relevant structures in the reasoning process. They have to find a way of 

externalizing their thinking, maybe even translate between modes of representation, 

for example through manipulating the objects in a situation or giving a verbal expla-

nation. This reasoning process shows that the dimension of formulation has a strong 

connection to the dimension of representation. Compared to the categories according 

to Jeanotte and Kieran, these processes can be understood as belonging to the first 

category. We speak more specifically of an early mathematical reasoning facet that 

refers to accessing relevant mathematical structures (see Tab. 1). 

Second, early mathematical reasoning can also occur as process relevant to a change in 

epistemic value. According to the literature, we see the explanation of mathematical 

relations through mathematical structures as the most important aspect of early 

mathematical reasoning that affects epistemic value (Stylianides, 2007). As explained 

above, early mathematical reasoning is not expected to be restricted to the construction 

of argumentations, but has to be related to discursive processes and its communicative 

functions. As such, processes like evaluating a given mathematical reasoning or jus-

tifying a claim can be seen as characteristics of early mathematical reasoning as well. 

In line with the informal nature of early learning processes, also reconstructive or re-

productive processes can be seen as indicative of early mathematical reasoning as they 

can be a source for intuitive knowledge about mathematical reasoning. Comparing to 

the categories according to Jeanotte and Kieran, these processes can be understood as 

belonging to the second category, processes of validation. We speak more specifically 

of an early mathematical reasoning facet that refers to explaining mathematical rela-

tions through mathematical structures (see Tab. 1). 

Assessing early mathematical reasoning 

To sum up, we characterized early mathematical reasoning above along the dimensions 

(1) knowledge, (2) representations, and (3) formulation. The latter led to a more con-

cise description of two facets of early mathematical reasoning through processes that 

make relevant mathematical structures accessible (i) and processes that contribute to 

the explanation of mathematical relations through mathematical structures (ii) as 

summarized in Tab. 1. 
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Early mathematical rea-

soning facets 

Associated processes 

(i) Accessing relevant 

mathematical structures  
• Recognizing relevant mathematical structures 

• Representing relevant mathematical structures 

(ii) Explaining mathemati-

cal relations through 

mathematical structures 

• Constructing an argumentation 

• Evaluating and justifying given reasons 

• Reconstructing and reproducing mathematical rea-

soning 

Table 1: Mathematical reasoning facets as clusters of associated mathematical rea-

soning processes 

Having attained a first draft of early mathematical reasoning, the framework was in the 

following used to design a first set of 14 problems in order to empirically investigate 

the relevance of the framework. Figure 1 display an exemplary reasoning problem as 

part of a standardized interview with children of pre-school age.  

Materials: Hand puppets Ben and Lisa, foam sheet chocolate bars 

(F1, F2, F3 was added for purpose of this publication) 

This is about chocolate. Here, we have a whole bar (interviewer 

I. points to F1). This is the left-over of Ben (I. points to F2) and 

this is Lisa’s (I. points to F3). Ben (I. plays hand puppet) looks 

what’s left for Lisa and says: “I have more left than you, Lisa!”. 

 

(I. addresses the child) What do you think? Why? 
 

Figure 1: Sample problem “Chocolate” 

The sample problem illustrates the construction principles applied for the development 

of early mathematical reasoning processes. They are mostly direct applications of the 

theoretical considerations detailed above. First, the problem is situated in a context that 

refers to shared experiences of young children in our cultural context. The situation can 

be seen as personally relevant for children. Second, Ben’s claim occurs as unsubstan-

tiated within the context and refers to a comparison of the chocolate left-overs. But due 

to the structure of the material, the claim can be refuted by using mathematical 

knowledge, in this case knowledge of measuring in geometrical contexts. Therefore, a 

child has to identify (i) the knowledge, evaluate (ii) Ben’s claim, construct an argument 

(ii) to support or refute the claim and – in the latter case – produce a new claim that is 

supported by the reasoning process. And third, the hand puppets in our interviews 

serve as discursive partners, mirroring the social nature of mathematical reasoning. In 

the sample item, two puppets interact, in other items the hand puppets even interact 

with the child. Finally, the context and materials do not only serve as a way to present 

the mathematical reasoning problem, but provide means for the children to represent 

their own mathematical reasoning, as they are allowed to manipulate the materials, for 

example to compare the figures directly. 
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EVIDENCE FOR THE ACCURACY OF OUR APPROACH 

With the delineation of early mathematical reasoning as given above and the devel-

opment of a test instrument as sketched, we set the ground for empirical investigations 

concerning the viability of the approach. As our considerations show, children have to 

dispose of mathematical knowledge, as well as general cognitive skills in order the 

reason mathematically. In a first quantitative study (cf. Lindmeier, Grüssing & Heinze, 

2015), we investigated the relations between such prerequisites and early mathematical 

reasoning with a sample of N = 120 children (age M = 5.2 years; SD = 0.5). The results 

showed that mathematical reasoning (Cronbach’s  = .69, M = .29, SD = .19) and 

mathematical knowledge (aligned to the mathematical reasoning test,  = .68, M = .58, 

SD = .16) are related, but empirically separable (r = .58, p < .01). What remains open 

in this first investigation is the question, if this is a meaningful differentiation. For 

example, the approach is blind to the range of mathematical reasoning processes that 

children apply. The aim of subsequent in-depth analyses is to substantiate the quanti-

tative findings and get further insight to early mathematical reasoning processes. The 

research question was accordingly specified as follows: What kind of early mathe-

matical reasoning can be observed?  

Methods and results 

We applied an inductive coding to find types of early mathematical reasoning in the 

children’s responses. As this endeavour is very content-specific, the analysis was 

conducted on item level. Due to place limitations, the following report is restricted to 

the geometry sample task portrayed in Figure 1 and the available 111 responses. Tab. 2 

provides an overview of the different types of early mathematical reasoning that could 

be distinguished. 

Label Mathematical reasoning 
Half of the bar Both kids’ left-over are of the same size, as each ate/has left 

HALF of the whole bar (F1) 

Decomposing the bar The whole bar (F1) can be HALVED in two different ways, 

what results in the different left-over shapes (of the same size) 

Doubling the bar Both left-overs can be DOUBLED and then built a whole bar in 

each case, so they have the same size 

Completing the bar 

through re-structuring  

One left-over (e.g. F2) can be completed to a whole bar by 

RE-STRUCTURING (e.g. break apart) the other left-over (e.g. 

F3). So the left-overs can be seen as a fair share. 

Re-structuring to 

show congruence 

One left-over (e.g. F2) can be RE-STRUCTURED (e.g. break 

apart) to be congruent to the other left-over (e.g. F3) 

Table 2: Types of observed early mathematical reasoning with the chocolate-task 

The first three categories use the mathematical concepts of half, halving, or doubling 

and construct transitive arguments that relate the left-overs to the whole bar of choc-

olate without making a direct connection between the left-overs. The other two cate-

gories rely stronger on the restructuring of the given situation to relate the two different 



Lindmeier, Brunner, & Grüßing 

 

PME 42 – 2018 3 – 321 

left-overs directly to each other. Of course, the argument also relies on the property of 

the left-overs being half of the whole bar, but this remains mostly implicit. All five 

different types could be observed in connection with a successful or unsuccessful 

reasoning process in terms of correctness. The observation of mathematical reasoning 

that relies on restructuring of the left-overs occurs dominantly (2/3 of classified an-

swers), so that restructuring seems to be easier than the transitive reasoning processes 

that relate the left-overs to the whole bar. 

The categorization of early mathematical reasoning processes for the sample item 

hence gives evidence that young children (age 5-6) already can engage in demanding 

reasoning problems. Some children are able to provide complex argumentations that 

use transitive arguments. More children use approaches of re-structuring, that can be 

interpreted as representing a reasoning that is more grounded in context and concrete 

operations. Not all children that use the classified approaches succeed in refuting the 

(wrong) claim or proposing an alternate correct claim.  

DISCUSSION AND OUTLOOK 

The aim of this paper was, first, to present the rationale of an approach to early 

mathematical reasoning abilities of young children that might not be exposed to formal 

mathematics instruction. The suggested characterization is specific for the targeted 

context, as it takes into account the very nature of early mathematics. Especially, it 

highlights the importance of identifying and representing relevant mathematical 

structures as basic processes of mathematical reasoning. The theoretical analysis led to 

a framework that proved to be applicable for the development of early reasoning task. 

First empirical results indicate that early mathematical reasoning might be distinct 

from mathematical knowledge. An in-depth analysis and classification of children’s 

mathematical reasoning in the sample tasks shows, that various reasoning processes 

can indeed be identified. We want to stress, that the children in the sample were not 

involved in formal mathematical instruction on early mathematical reasoning, so that 

the richness of the occurring evidence of mathematical reasoning is rather astonishing, 

given that mathematical reasoning is usually considered to be complex by nature. 

Nonetheless, the limitations of our study so far are obvious. The investigations re-

ported can still be understood as exploratory in nature. In order to better understand 

early mathematical reasoning, its prerequisites and development, it is necessary to 

subject the preliminary findings to more rigid research. Especially, the development of 

cognitive functions, and the exposure to formal mathematical instruction should be 

investigated in greater detail in order to attain a sound understanding of early mathe-

matical reasoning. Due to the restrictions to one sample item, our findings in this ar-

ticle are bound to the topic of this sample item (measurement in geometry). It is evident 

that early mathematical reasoning is highly content specific. Finally, we want to stress 

that our work at the moment does not reflect the social discursive dimension of 

mathematical reasoning in an appropriate way. This is partly due to the research ap-

proach taken, that starts from a standardized interview situation, where no 
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co-constructive processes are pursued. However, through the operational trick to in-

volve hand puppets as peers, communicative aspects of early mathematical reasoning 

are mirrored to a certain extent. To sum up, this research advances a theoretical 

foundation of early mathematical reasoning and lays the ground for subsequent re-

search based on that understanding. For example, the given characterizations can serve 

as the theoretical framework for an intervention that investigates the effect of instruc-

tion on early mathematical reasoning. 
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HOW DRAGGING MEDIATES A DISCOURSE  

ABOUT FUNCTIONS 

Giulia Lisarelli 

University of Florence 

 

Assuming that the dynamic features of dynamic algebra and geometry environments 

may provide a basic representation of both covariation and functional dependency and 

taking a commognitive perspective, a teaching experiment has been designed for in-

troducing students to functions. This paper points to the crucial role that the Dragging 

tool can play as communicational mediator for discourse on functions. In particular, 

the episodes we are presenting here show that three different phases of dragging me-

diated discourse can occur when students are asked to work on activities involving 

both a dynamic and the traditional static environment. 

INTRODUCTION AND THEORETICAL BACKGROUND 

While many students still struggle with calculus, several studies have shown instances 

of positive effects on calculus learning made possible by technology. In particular, the 

introduction of dynamic geometry and algebra environments has given rise to new 

ways of teaching and representing calculus (Hitt & González-Martin, 2016).  

Goldenberg et al. (1992) designed a new representation of functions, called dynagraph, 

which has also been implemented in other studies (Sinclair et al., 2009; Lisarelli, 

2017). This representation is made up of two horizontal, parallel axes and two points, 

one for each line, which move according to two different types of motion: the point 

representing the independent variable can always be dragged and it causes the indirect 

motion of the other point, which cannot be directly dragged. The movement of the 

dependent variable, bounded to its line, depends on the choice of the function.  

As is clear from the short description, dynagraphs need a dynamic environment to be 

realised and, in particular, the dragging tool offered by these software enables the user 

to interact with parameters in embodied ways and to observe changes dynamically, 

experiencing the covariation of the two variables. A rich literature investigates the role 

of dragging in students' cognitive processes involved in explorations within a dynamic 

geometry environment (Arzarello et al., 2002; Baccaglini-Frank & Mariotti, 2010). In 

the matter of the teaching and learning process of calculus, Falcade, Laborde and 

Mariotti (2007) showed how a dynamic environment can help high school students 

grasp the notion of function; they focused on the potentialities of the trace tool as se-

miotic mediator that can introduce the two-fold meaning of trajectory, both global and 

local. 
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The current study examines students’ discourse about functions, introduced through 

their dynagraph and then represented both in a dynamic and in the traditional static 

environment, focusing on the role played by the dragging tool. Although Sfard’s 

communicational framework (2008) does not pay particular attention to the role of 

digital tools in mathematical thinking, we adopted her commognitive lens sharing the 

assumption that the use of symbolic tools and other artifacts in the process of learning 

has long-term effects on mathematical thinking, which can be observed in the char-

acteristic discursive patterns produced through their use. 

As the term commognition suggests, Sfard unifies cognition and communication by 

defining thinking as “an individualised version of interpersonal communication”. Here 

the word communication is made to include all forms of communication, not just 

verbal. More precisely, it is defined as a collectively performed patterned activity in 

which one action of an individual is followed by a re-action of another individual. 

Within this approach, the term discourse is to be understood as a “special type of 

communication made distinct by its repertoire of admissible actions and the way these 

actions are paired with re-actions”. This means that a discourse, being any act of 

communication, encompasses all forms of communication, verbal or not, with others 

or with oneself (Sfard & Lavie, 2005). According to this theory, communicational 

mediators are perceptually accessible objects with the help of which the actor performs 

her prompting action and the re-actor is being prompted. Mediators are often artifacts 

produced specially for the sake of communication and they can have auditory, visual, 

or even tactile effects on individuals.  

Although Sfard considers both gestures and diagrams as forms of visual mediators, her 

view of visual mediation does not distinguish between the static and the dynamic. 

Significant work in this direction has been conducted by Ng (2016), who uses a 

commognitive approach to analyse calculus students’ thinking in two environments. 

She extends Sfard’s communicational theory by distinguishing between dynamic and 

static visual mediators, in an effort to highlight the importance of temporality in 

mathematical discourse. In particular, her analysis suggests that dragging actions may 

not only be selecting and moving objects on a computer screen, but also gestural 

communications, to communicate the dynamic features and properties of the sketch in 

the very moment of dragging. She defines dragsturing as an action subsuming both 

dragging and gesturing characteristics: it both induces movement on an object and it 

fulfils a communicational function. 

THE STUDY 

This study comes from a greater research project in which we investigate the role of 

dragging in students' discourse about covariation, both in terms of its semiotic potential 

(Bartolini Bussi & Mariotti, 2008) and its place for the student.  

We designed nine lessons to introduce students to functions through dynagraphs and 

we implemented them in a 10th grade Italian class. Students worked in pairs on 
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pre-designed interactive files with open tasks aimed at promoting their discourses. 

Each lesson has been video-recorded by three cameras and a screen capturing software.  

From the analysis of these videos, carried out to study the role of dragging in students’ 

discourse on covariation in this context, we noticed that students' discourse is, indeed, 

heavily mediated by dragging (here a mediator is intended according to the theory of 

commognition, as explained in the previous section). In particular, the videotapes were 

transcribed and for each transcript the following was coded: whether the dragging tool 

is physically used during the speaking, whether the dragging blends with a gesture 

becoming an act of dragsturing, whether the subject is a person or an object, whether 

mathematical objects are considered, which verb tense is used. 

The analysis of students’ discourse, led by this coding scheme, brought us to identify 

different phases in which dragging seems to mediate their discourse; in this paper we 

will characterise and provide examples of each phase. In order to obtain the same 

classification when giving a set of episodes to different people and asking them to 

decide which phase that examples belong to, it’s important to be provided with a de-

tailed description of each phase. This test has been done for several excerpts, all taken 

from the sequence of lessons just described, and then we selected for this paper the 

examples that resulted to be more appropriate as models. 

DRAGGING MEDIATED DISCOURSE 

During the analysis of the videos we focused on possible modification and extension of 

students’ discourse and the first thing we noticed is that, when working with dyna-

graphs, students’ discourse is rich in references to movement, time and space (Colac-

icco, Lisarelli & Antonini, 2017). Almost all the activities that we designed involve the 

use of the software GeoGebra and, especially thanks to the dragging tool, activated 

through the mouse, students can experience the dependence relation that links a point 

to the one that is directly dragged. Thanks to the possibility of dragging they can also 

visualise the movements of the two variables and the relation between these variations, 

that is the covariation. Indeed, this representation of the function brings the aspect of 

time into play, in contrast with the static Cartesian graph where it is completely re-

moved.  

Gestures and dragging can be used both repeatedly to define a discursive pattern and as 

a mediator to complement word use. Investigating their role as mediators, we identi-

fied three different types of what we call dragging mediated discourse: a passive 

phase, an active phase and a detached phase. 

Passive Phase. The dragging tool is physically used. The discourse is about dragging, it 

is a description of the direct action of the dragging tool on an object, while there are no 

mathematical objects considered. In this first phase of dragging mediated discourse the 

subject is a person, the user, and the focus is on the objects upon which s/he acts 

through dragging. The user does not seem to be in control of all the movements hap-

pening on the screen, indeed s/he may be surprised by what s/he sees. The verb tense 
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used within this discourse is the present simple and some typical expressions or words 

that characterise it are: “I can(not) move it”, “you can(not) move it”, “drag it”, “move 

it” [in Italian: “(non) lo posso muovere”, “(non) lo puoi muovere”, “trascinalo”, 

“spostalo”]. 

Active Phase. The dragging tool is physically used. The discourse is about the effects 

of dragging that are visible on the computer screen, it is a description of the perceived 

relations between the moving objects. The focus of this dragging mediated discourse is 

on the mathematical objects, while the action of dragging is not explicitly depicted and 

so the description looks as if it was independent from the person. The user seems to 

control over what happens on the screen as if s/he could decide what to move and how 

to move it. The verb tense used within this discourse is the present simple and some 

typical expressions or words that characterise it are: “if x… f(x)…”, “when x… 

f(x)…”, “as x… f(x)…” [in Italian: “se x… f(x)…”, “quando x… f(x)…”, “man mano 

che x… f(x)…”. 

Detached Phase. The dragging tool is not physically used. The structure and the con-

tents of the discourse are very similar to those in the active phase: the focus is on the 

relation between movements, but the dragging tool is not used to act upon any objects, 

so these movements are only envisioned/imagined. Within this discourse, verbs can be 

in the present tense, but also in the future tense or expressed in the “-ing” form; typical 

expressions that characterise it are: “I imagine to drag”, “by dragging x... f(x) will 

move...” [in Italian: “immagino di trascinare”, “trascinando x… f(x) si muoverà…”. 

In order to get a better idea of the characteristics of each phase and to highlight the 

differences between them, now we are going to analyse three different episodes, all 

chosen from the sequence of lessons that we designed. They have been selected be-

cause we consider them as representative examples of the three phases of dragging 

mediated discourse just described. 

Example of dragging mediated discourse from the Passive Phase 

This dialogue is taken from the beginning of the third lesson. Andrea and Nico explore 

the dynagraph of a function, with Nico handling the mouse, and they describe which 

the possible or impossible movements are. The independent variable is labelled A, the 

dependent one is labelled B and the function is not defined in x=3, where it has a ver-

tical asymptote. 

1  Andrea: Drag A... This fact irritates me, move it to 3. 

2 Nico: It does not go there (now he uses the arrows of the keyboard to drag). 

3 Andrea: Yes it goes there, you have to move it and then you can drag it. Look now if 
you drag it, it goes by one. 

4 Nico: (He drags A forward and backward close to 3) 

5 [...] 

6 Nico: (He tries to drag B) 

7 Andrea: A is the only point that we can drag! 
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First of all, Nico uses the dragging tool in two different ways: through the mouse (line 

1), through the arrows of the keyboard (line 2) and through the mouse again (line 4 and 

line 6). For this reason, he obtains two different qualities of motion of the independent 

variable, because the mouse causes a “continuous” movement (it depends on how they 

move it but, generally, it is quite uniform), while the arrows of the keyboard make the 

point jump by one. Andrea seems to notice this fact and he suggests Nico to use the 

mouse when he says “you have to move it” (line 3). 

In general, the focus of this discourse is what students can or cannot move on the 

screen. Indeed, the dialogue starts with Andrea asking to Nico to drag A and move it 

(line 1), then the subject of the action becomes A for a while (line 2 and the beginning 

of line 3), until Andrea resumes the structure of the discourse with himself or Nico 

being the subject and expressing what and how they can move (line 3). 

The dragging mediates their discourse so significantly that in two lines of this short 

excerpt Nico substitutes the dragging for words (lines 4 and 6), because he doesn’t 

speak aloud but by dragging he succeeds in communicating with Andrea, who replies. 

They do not seem to have the situation completely under control, especially Nico who, 

at the end, experiences impossible dragging (line 6) because he tries to drag B which 

cannot be directly moved; but immediately Andrea, irritated at him, stresses that A is 

the only object they can drag (line 7). 

Example of dragging mediated discourse from the Active Phase 

In the following excerpt from the seventh lesson a student explores the dynagraph 

(with perpendicular axes) of a function and he has to draw its Cartesian graph on a 

sheet of paper. He describes the file while he is manipulating it. 

Andrea: From here, from minus one to minus two it moves more or less by one but 

from minus five to minus six…mm…….it moves, from minus five to mi-

nus six no let's do from minus four to minus five it moves by less than one, 

so as x decreases, that is, also the relationship existing between f(x) and x 

changes and so it cannot be like this (with gestures he simulates a peak) but 

it is a…that is to say it is not a broken line (then he draws a smooth curve). 

Andrea refers mainly to motion, as we can see from his frequent use of the verb “to 

move”, but the focus of his discourse is the search for a possible relation between 

movements, more than the movement itself. The subject is always a variable and not 

Andrea himself; initially it is unexpressed but then Andrea says “as x...”. This happens 

at the end where he describes changing in ratio of f(x) to x in relation to the dragging of 

x. This is a very representative example of dragging mediated discourse from the ac-

tive phase. Indeed, he acts on the file by dragging x to the left and at the same time his 

discourse focuses on the relationship between movements that he observes happening 

on the screen. So, it differs from the previous example because the object of this dis-

course is not the action of dragging, it is just mediated by it. 
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At the very beginning of this excerpt, there appears to be an example of dragsturing: 

when he says “from here” he uses the mediation of dragging also as a gesture, because 

he indicates what he intends for here but he does not directly describe this action. 

Example of dragging mediated discourse from the Detached Phase 

In this short excerpt from the eighth lesson, a student is working on a task within the 

static paper and pencil context. In particular, by looking at the trace left by the point (x, 

f(x)) (that is, a bit of the Cartesian graph of a function) she has to mark on the same 

Cartesian plane, drawn on a sheet of paper, the trace that f(x) would have left. Here she 

explores the graph just for positive abscissas. 

Maria: But wait, no no...x you have to move it inevitably towards here, because 

you do like this, you do like this because it has to stay perpendicular... while 

over here, here you do like that, it comes back up, yes...so there are some 

parts that are more marked in double quotation marks, yet, not here but here 

since it does...did you understand? 

Figure 1: Maria’s gestures in her discourse. 

By analysing the video, we notice that, while speaking aloud, Maria moves her fingers 

on the sheet of paper in this way: the left hand from the origin to the right along the 

x-axis, the right hand from up to down and then from down to up along the y-axis (see 

Figure 1). Moreover, her discourse is rich in references to space such as “towards 

here”, “over here”, “up”, which are understandable thanks to the dragging mediation, 

that is actually an example of dragsturing, and at the end of the excerpt this dragging 

mediation even replaces words, when she doesn’t explicit what “it does” by words but 

she moves her fingers on the graph to communicate it to her companion (during the 

pause indicated by the suspension dots). 

On the one hand this excerpt could be seen as an example from the passive phase be-

cause the subject of her discourse is a person and she describes the direct action of 

dragging on the objects. On the other hand, we notice several differences with the first 

example illustrated above. First of all, in this case the dragging tool is not physically 

used but a dragging action of the two variables re-created within the static context 

plays the role of mediator in Maria’s discourse; she also seems to have covariation 

under control, since she is able to evoke their movements with her body. Finally, she 
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closes with “there are some more marked parts” that suggests her focus to be on finding 

an answer to the task, that is, discovering how to mark the trace of f(x); so her dis-

course is about mathematical objects, too. These elements are all characterizing of the 

detached phase only. 

DISCUSSION 

The evolution in digital technology has influenced our thinking, learning and modes of 

interaction with mathematics. The invention of graphing and dynamic geometry 

software has offered new ways of doing mathematics and representing mathematical 

objects (Healy & Sinclair, 2007).  

The one-dimensional representation of a function, called dynagraph, is made possible 

by the use of a dynamic environment and, in particular, by the Dragging tool. Indeed, 

the student can experience the asymmetric relation that links the two variables thanks 

to the possibility of dragging one of the two points and to the impossibility of dragging 

the other one. For this reason, dragging has a two-fold role: it allows to speak and it 

even becomes necessary to speak about covariation. Its close connection with the 

temporal aspect can enter the discourse within the static context as well. The last 

example shows this; moreover, we observed many other instances of students’ dis-

course still rich in references to movement, time and space also when they were asked 

to work on activities without the use of GeoGebra. This finding seems to be in contrast 

with that of Ng (2016), according to which participants communicated about the 

fundamental calculus ideas differently within different types of environments.  

In this paper, we described three different phases of dragging mediated discourse and 

showed three representative examples. These examples come from a sequence of 

lessons that we designed to introduce students to functions. We used the term “phase” 

because it suggests a sort of temporal evolution from the first one to the third one. 

There is a need for further research in this regard but, with respect to our sequence of 

nine lessons, we found most instances of the passive phase from the first to the third 

lesson, of the active phase from the second to the ninth lesson and of the detached 

phase from the seventh to the ninth lesson. We are tempted to consider this temporal 

evolution also as a development of students’ discourse towards a discourse closer to 

that of an expert mathematician. For example, the students in the first dialogue sub-

stitute the dragging for words and Nico explores the file trying to discover possible and 

impossible movements, which he does not seem to be aware of. Differently, Maria in 

the third excerpt evokes temporal and dynamic aspects in the static representation of 

the function, showing a good control over the covariation of the two variables, 

bounded to the Cartesian axes. This seems to be a very interesting aspect with respect 

to the study of students’ cognitive processes that should be looked into more deeply. 

The commognitive assumption that learning mathematics involves building mathe-

matical communicative competence is important in this study because it establishes a 

strong link between mathematics learning and communication. In line with Falcade, 

Laborde and Mariotti (2007), students seem to have exploited the functionalities of the 
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dragging tool to communicate covariation. The dynamic environment, the design of 

the sketches and the tasks promoting students’ explorations and communication, all 

played a role in promoting dynamic and temporal thinking in calculus. 

 

References 

Arzarello, F., Olivero, F., Paola, D., & Robutti, O., (2002). A cognitive analysis of dragging 

practises in Cabri environments. ZDM, 34(3), 66-72. 

Baccaglini-Frank, A., & Mariotti, M. A., (2010). Generating Conjectures in Dynamic Ge-

ometry: the Maintaining Dragging Model. International Journal of Computers for 

Mathematical Learning, 15(3), 225-253. 

Bartolini Bussi, M. G., & Mariotti, M. A., (2008). Semiotic mediation in the mathematics 

classroom: Artifacts and signs after a Vygotskian perspective. In L. English et al. (Eds.), 

Handbook of International Research in Mathematics Education, second edition, (pp. 

746-783). New York and London: Routledge. 

Colacicco, G., Lisarelli, G., & Antonini, S., (2017). Funzioni e grafici in ambienti digitali 

dinamici. Didattica della Matematica: dalla ricerca alle pratiche d’aula, 2, 7-25.  

Falcade, R., Laborde, C., & Mariotti, M. A., (2007). Approaching functions: Cabri tools as 

instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317-333.  

Goldenberg, E. P., Lewis, P., & O’Keefe, J., (1992). Dynamic representation and the de-

velopment of an understanding of functions. In G. Harel & E. Dubinsky (Eds.), The 

Concept of Function: Aspects of Epistemology and Pedagogy, 25. MAA Notes. 

Healy, L., & Sinclair, N., (2007). If this is your mathematics, what are your stories? Inter-

national Journal of Computers for Mathematics Learning. 

Hitt, F., & González-Martin, A. S., (2016). Generalization, Covariation, Functions and Cal-

culus. In A. Gutierrez, G. Leder, & P. Boero (Eds.), The Second Handbook of Research on 

the Psychology of Mathematics Education, (pp. 3-38). Sense Publishers.  

Lisarelli, G., (2017). Exploiting potentials of dynamic representations of functions with par-

allel axes. In Proc. 13th Int. Conf. on Technology in Mathematics Teaching (Vol. 1, pp. 

144-150). Lyon, France: ICTMT. 

Ng, O., (2016). Comparing calculus communication across static and dynamic environments 

using a multimodal approach. Digital Experiences in Mathematics Education, 2(2), 

115-141. 

Sfard, A., & Lavie, I., (2005). Why Cannot Children See as the Same What Grown-ups 

Cannot See as Different? Early Numerical Thinking Revisited. Cognition and Instruction, 

23(2), 237-309. 

Sfard, A., (2008). Thinking as communicating: Human development, the growth of dis-

courses, and mathematizing. Cambridge: Cambridge University Press. 

Sinclair, N., Healy, L., & Reis Sales, C., (2009). Time for telling stories: Narrative thinking 

with Dynamic Geometry. ZDM, 41, 441-452. 



 

 

 3 – 331  
2018. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the 

International Group for the Psychology of Mathematics Education (Vol. 3, pp. 331-338). Umeå, Sweden: PME. 

MATHEMATICS TEACHERS’ IDENTITY DEVELOPMENT IN 

THE CONTEXT OF PROFESSIONAL MASTER’S DEGREES 

Leticia Losano and Dario Fiorentini 

University of Campinas, Brazil 

 

Considering that participation in teacher education initiatives usually involves nego-

tiating new ways of being and projecting into the teaching profession, this article de-

velops an interpretative case study focused on a mathematics teacher’s identity de-

velopment from his participation in a professional master’s degree. Conceptualizing 

identity as a shifting entity that involves constructing and reconstructing meaning over 

multiple and conflicting discourses, the article analyzes how the mathematics teacher 

orchestrates voices and discourses coming from the professional master’s degree and 

from his teaching practice to create self-understandings as a mathematics teacher.  

INTRODUCTION 

Currently, in-service teacher education initiatives are considered key opportunities for 

promoting teachers’ change. Studies focused on teachers’ professional development 

have reported on the impact of different initiatives, some of them leading to small 

changes while others lead to significant transformation in teaching practice (Chapman, 

2017). We consider that a teacher’s change, originated from participation educational 

initiatives, is a complex, fragile, and uncertainty-ridden process (Chronaki & Matos, 

2014) which involves experimenting with tensions concerning herself and her practice. 

Therefore, participation in teacher education initiatives frequently involves identity 

development.  

This article reports results from a wider research project focused on a specific initia-

tive: Professional Master’s Degrees (PMDs) directed to mathematics teachers. This 

special modality of Master’s Degrees–that have gained momentum over the last years 

in Brazil–is intended to train qualified professionals, promoting opportunities for ar-

ticulating knowledge, methodological approaches, and application to the professional 

field (Brazil, 2009). In this direction, the master’s thesis is a central opportunity for 

connecting the PMD with teaching practice since it usually involves the elaboration 

and implementation of classroom activities based on the pedagogical perspectives 

introduced during the program. In this context, our research project aims at under-

standing how participation in PMDs contributes to the development of mathematics 

teachers’ professional identities. 

In the last years, identity has been used as a theoretical lens to address the relationships 

between mathematics teachers, the institutions where they work, and the societies 

where they live (Darragh, 2016; Losano & Cyrino, 2016). In this direction, several 

authors conceptualized professional identity as a shifting, unfixed, and unending entity 
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that involves the reconstruction of meaning over space and time (e.g., Chronaki & 

Matos, 2014; Neumayer-Depiper, 2013). Considering in-service teachers, this involves 

exploring how they negotiate professional identity as they struggle for meaning over 

multiple and sometimes conflicting discourses. Such discourses can come from dif-

ferent spaces (the schools where they work, PMDs, etc.) and times (present, past, and 

envisioned futures about teaching mathematics). This article approaches this topic by 

developing an interpretative case study centered on an in-service mathematics teacher 

who graduated from a PMD of national scope. On these bases, and using the work of 

Holland, Skinner, Lachicotte, and Cain (1998) as a theoretical perspective for con-

ceptualizing identity, the paper addresses the following research question: How did a 

mathematics teacher orchestrate discourses and voices coming from a PMD and from 

his teaching practice to create self-understandings as a mathematics teacher?  

THEORETICAL BACKGROUND 

Drawing on Holland et al. (1998) we conceptualize a teacher’s professional identity as:  

a set of self-understandings related to ways of being, living, and projecting into the 

teaching profession, facing the voices, demands, and social and political conditions of the 

teaching practice (Losano, Fiorentini, & Villarreal, 2017, p. 5). 

These self-understandings are socially and historically constructed with other partic-

ipants of the world of teaching. From this perspective, identity is a notion that articu-

lates the personal and the social worlds (Holland et al., 1998). Thus, a mathematics 

teacher’s professional identity is dialogically developed in an interface between her 

intimate terrain and the practices and discourses to which she is exposed in the present.  

Two notions are relevant for capturing this interplay between the personal and the 

social dimensions of identity. The first is the notion of figured worlds (FWs), which 

refers to realms of interpretation and performance that are socially and culturally 

constructed. A PMD can be understood as a FW since it develops practices and dis-

courses concerning mathematics education, offers a set of roles to its participants, and 

values some results more than others. In-service teachers enrolled in a PMD are also 

participants of the FW of teaching mathematics in the school, a world historically 

developed through the daily participation of students, principals, and themselves. As 

participants of these FWs, mathematics teachers become familiar with the practices 

and discourses created and allowed in these settings. In some cases, such practices and 

discourses become resources for them to understand their emerging sense of them-

selves as teachers (Horn et al., 2008). Thus, considered as FWs, the PMDs supply the 

context of meaning for some of the understandings that mathematics teachers come to 

make of themselves (Holland et al., 1998).  

Second, the notion of space of authoring emphasizes that a person is continuously 

being addressed by different voices charged with social intentions and meanings about 

her identity. In the case of mathematics teachers, these voices can come from the PMD, 

from members of the school community, and from the teacher’s own past experiences. 

A person is constantly involved in a dialogical process of responding to these voices 
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and producing meanings for them. Whereas a novice surrenders to the authority voice, 

a more experienced person begins to re-orchestrate different voices, filling them with 

her own intentions and accents. Through this orchestration process, the teacher con-

structs her own voice; she authors herself. In this way, the space of authoring is defined 

by the interrelationship of different voices in the social world (Holland et al., 1998). 

This notion emphasizes that identity is multi-vocal, being tied up in the present and 

past discourses in which a person participates (Gutiérrez, 2010). 

PROJECT OVERVIEW AND RESEARCH METHODOLOGY 

This study reports results from a large ongoing research project aiming at describing 

the FWs constructed around four PMDs in Brazil as well as developing case studies 

focused on the identity development of mathematics teachers who graduated from such 

programs. In this article, we present an interpretative case study centered on one par-

ticipant of our research, whom we will call Andrew, a mathematics teacher who 

graduated from a PMD that we will call Redemat.  

Educational context and research participant 

Redemat is a two-year large-scale program that combines face-to-face and distance 

learning. It is coordinated by a mathematicians’ national association and is aimed at 

in-service mathematics teachers, especially the ones who teach in public schools. The 

program’s main goal is to provide “a solid mathematics education, relevant for 

teaching mathematics in Secondary Education” (Redemat, 2014, § 2). To achieve this 

objective, the FW of Redemat offers subject matter courses centered on the funda-

mentals of the mathematics topics included in the secondary education national cur-

riculum and on a revision of the advanced mathematics already studied during 

pre-service education (Algebra and Calculus courses). Thus, Redemat is organized 

around the hypothesis that teachers need to know whatever mathematics is in the cur-

riculum, but «deeper». In this FW, most of the teacher educators are mathematicians, 

and the use of the history of mathematics in teaching is one of the pedagogical re-

sources more discussed and valued. Therefore, this FW is focused mainly on disci-

plinary content knowledge structured and presented using the practices and discourses 

developed and legitimated by the mathematicians’ community. Several reasons justify 

choosing Redemat for this study: its importance at the national level, its scope–at 

present, more than 3,500 teachers have graduated from the program all over the 

country–and the important public investments directed toward its conception and im-

plementation.  

In this article we present the case of Andrew, a mathematics teacher with 28 years of 

experience. He enrolled in Redemat in 2012 and won a fellowship that allowed him to 

reduce his teaching load to 20 hours per week during the two years the degree lasted. 

Before that he was a full-time teacher (teaching 30-40 hours per week) at public and 

private schools. After he graduated, Andrew continued teaching (30 hours per week) 

only at a public school. This professional trajectory justifies choosing Andrew’s case 

for this study since it seemed to be an interesting case for analyzing how an experi-
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enced teacher orchestrated voices coming from Redemat with those coming from his 

teaching practice to author himself as a mathematics teacher.  

Data collection and analytical procedures 

Concerning Andrew’s case, our source of data is an in-depth semi-structured interview 

carried out in November 2017, two years after his graduation. The interview revolved 

around his professional experience and teaching practice, the contributions of the PMD 

to his professional development (focusing mainly on the courses and the master’s de-

gree thesis), and on the possible links between Redemat and his teaching practice. 

Other important complementary data was his master’s thesis.  

We developed the data analysis in the form of a narrative analysis (Riessman, 2005).  

First, we transcribed the interview’s audiotape, read the transcript, and selected a set of 

episodes in which Andrew resorted to discourses coming from Redemat for developing 

understandings of himself as a mathematics teacher. Second, we developed a per-

formative narrative analysis (Riessman, 2005) of each episode, considering both its 

content and form (Kaasila, 2007). 

According to Clandinin and Connelly (2000), a “good narrative inquiry” (p. 185) 

should satisfy criteria of authenticity, adequacy, and plausibility, as well as explana-

tory and invitational quality. To meet these criteria, we described each episode in de-

tail, looking for the teacher’s voice to be sufficiently «raised», we emphasized the 

ability of the narrative to explain (Kaasila, 2007), we used his master’s thesis for 

complementing our analysis, and we shared a preliminary version of the analysis with 

Andrew to determine whether he recognized himself in the narratives.  

NARRATIVE ANALYSIS 

During the interview, Andrew began to narrate his trajectory as a teacher by posi-

tioning himself regarding two different mathematics: “There is some polarization 

between pure mathematics and mathematics from the pedagogical point of view, and I 

always was halfway between them” In his speech, Andrew understood himself as 

engaged in two FWs, the FW of mathematics and the FW of teaching mathematics in 

the school. He wove discourses coming from these FW for producing 

self-understandings as a teacher: he values mathematics as a field of study as well as 

mathematics as a subject to teach. He also resorted to discourses from these FWs to 

express his expectations about Redemat: 

I expected it to be directed to the things I can speak in the classroom but mathematics there 

is deeper. But you cannot just say, “Because of that the mathematics isn’t oriented toward 

the classroom,” because it is. Because it provides a basis for the teacher, so he can feel 

more confident about what he is going to speak, to transmit. 

In this episode, Andrew seemed to take up a discourse that pervades the FW of 

mathematics at Redemat for authoring himself as a teacher: a sound understanding of 

the mathematical domain is the principal foundation for his speech in the classroom, 

reassuring him and making him feel more secure. Andrew also revealed that language 
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plays an important role in his professional identity. In this episode he seemed to or-

chestrate, without major conflicts, voices and discourses coming from the FW of 

mathematics at Redemat and from the FW of teaching mathematics in the school for 

producing understandings about himself as a mathematics teacher.  

According to Andrew, the most significant piece of all the “deep mathematics” he 

learned at Redemat was the knowledge of the history of mathematics. When we asked 

him to expand this idea, he told us that the history of mathematics had been “one of my 

interests for a long time,” an interest he began to cultivate in his adolescence, reading 

books devoted to this topic. For Andrew, those opportunities were openings to the FW 

of mathematics and once he decided to become a teacher, he began to wonder, “What 

part of all this can I transport to the classroom?”. With this previous experience, “it was 

natural that I identified myself with this area” of Redemat. Thus, the FW of mathe-

matics at Redemat allowed Andrew to recover some previous interests that motivated 

him to join the teaching profession. 

This identification was a key factor when Andrew formulated the main goal of his 

master’s degree thesis: “to propose classroom activities that, in the light of the History 

of Mathematics, help the teacher to show the challenges confronted and the success 

achieved by ancient Greeks”. The thesis is based on a valued book inside Redemat: 

Euclid’s Elements. Resorting to this artifact, Andrew presented and formally demon-

strated, throughout many pages, several geometrical constructions, from the squaring 

of different polygons to the estimation of π. This process involved a change in the way 

he positioned himself concerning Euclid’s book:  

[Before] I was afraid of looking at it. During the Master’s Degree I began tackling it in 

another way. I even began to think in the future […] to translate at least the first book that 

contains the basic notions to popular language, to people’s language […] If I could 

translate it to the students’ language and they could understand it it’d be great. 

Andrew brought the experiences lived during Redemat to his narrative and used them 

for positioning and projecting himself into the future as a mathematics teacher who 

serves as a translator between Euclid’s work and his students. The emphasis placed on 

the translation seemed to highlight the distance between the FW of mathematics at 

Redemat and the FW of teaching mathematics in the school–a distance that, in An-

drew’s speech, seemed to be linguistic: his intention is to translate Euclid’s work to 

popular or students’ language. In our opinion, the emphasis placed on the translation 

also reflected Andrew’s efforts at filling the discourses from Redemat with his own 

intentions, strongly related to the teaching and learning of mathematics in the school. 

The classroom activities Andrew designed for his thesis can be regarded as a result of 

his translation efforts. Each one of them includes a set of detailed procedures that 

students must follow step by step to carry out a geometrical construction and some 

questions focused on reflecting about the procedure performed, involving the devel-

opment of “demonstrations” or “reasonings”. The structure of the activities seems 

inspired by Euclid’s work and follows a constructive logic: the geometric construction 
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studied in an activity involves using knowledge and procedures acquired in previous 

ones. Andrew described the process of elaborating these activities as “painful” and 

highlighted: 

The process was painful because I had to consider the students, their difficulties, and 

transport them to the academics’ language. The academy is rigorous and is far away from 

the classroom. When I made this [he refers to his thesis] I was supervised by Professor 

Olive, who is well versed in this area, and she demanded that I use a rigorous vocabulary. 

And I had difficulties doing that [...] because sometimes I used a word that my students and 

I understand but that, from the formal mathematical point of view, was criticized.  

In this episode, Andrew seemed immersed in an intense struggle, trying to orchestrate 

the contradictory voices and discourses coming from the two FWs. Inside the FW of 

teaching mathematics in the school, Andrew understood himself as a teacher con-

cerned about presenting mathematical knowledge using a language understandable by 

his students. In his speech Andrew introduced the voice of Olive, his supervisor, to 

highlight that inside the FW of Redemat the legitimated practices and discourses are 

those of formal mathematics. In introducing his adviser’s voice, Andrew underlined 

that this FW did not seem overly flexible in terms of language. We consider that Ol-

ive’s voce functioned as an authoritative discourse, i.e., a discourse associated with the 

authority that “demands that we acknowledge it, that we make it our own; it binds us” 

(Bakhtin, 2011, p. 81). Thus, it is particularly difficult to introduce modifications in 

such authoritative discourses, to fill them with one’s own accents and intentions. In this 

way, the language he had to adopt for elaborating the classroom activities resonated as 

a foreign voice for Andrew, since his own teaching intentions and proposals were not 

completely considered by it. This process involves great conflict because it requires the 

development of classroom activities, setting aside important aspects of his professional 

identity to meet the requirements of the FW of Redemat. Andrew ended the interview 

stating that “a more effective dialogue between the academy and the teacher should be 

established”. With his words he highlighted that the possibility of approaching these 

two distant FWs depends, to a great extent, on the development of a common language 

in which the daily classroom concerns could be expressed, analyzed and attended. 

DISCUSSION AND CONCLUSION 

While being a program focused on mathematics, Redemat provides more than disci-

plinary knowledge. Concerning teacher education initiatives, there are always strong 

ties between the construction of mathematics and the construction and negotiation of 

identities for teachers (Ma & Singer-Gabella, 2011). Throughout its discourses and 

practices the FW of Redemat also constructs, legitimates, and affords understandings 

about what it is to do, to teach, and to learn mathematics. Orchestrating these dis-

courses and the ones coming from the figured world of teaching mathematics in the 

school, Andrew developed self-understandings as a mathematics teacher. 

Regarding Andrew’s case, some of the discourses coming from the FW of Redemat 

became self-understandings that helped him to organize part of his professional iden-
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tity. In this way, he orchestrated discourses and voices coming from this FW to un-

derstand himself as a teacher with a solid and deep disciplinary knowledge, high-

lighting that this is the first and fundamental requirement for teaching mathematics. In 

participating in Redemat, Andrew could also retrieve part of his interests–particularly 

the knowledge of the history of mathematics–that have long motivated him. This fact 

allowed Andrew to identify himself with this FW. On other occasions, Redemat ap-

peared in Andrew’s speech as a FW populated by conflicting voices. In some of the 

episodes we reported, Andrew surrendered to authoritative discourses, trying to adapt 

his own practices and discourses to its demands. 

The narrative analysis revealed that orchestrating voices and discourses coming from 

Redemat and from his teaching practice for developing self-understandings as a 

teacher was also a conflictive and complex process for Andrew. In our opinion, much 

of Andrew’s effort in this direction is encapsulated in his attempt to develop transla-

tions between the Redemat’s language and the language of the FW of teaching 

mathematics in the school. Strong tensions emerged when Redemat, represented by his 

adviser’s voice, demanded that its language should be adopted inside the figured world 

of teaching mathematics in the school, dismissing knowledge, norms and values An-

drew learned in teaching practice. This demand engaged Andrew in a process full of 

risk and ambivalence, revealing that the differences in the languages adopted and af-

forded inside these FW were not only a matter of using a different vocabulary. Those 

languages encapsulated diverse and, in some cases, opposing norms and values related 

to mathematics, its teaching and learning. Throughout the episodes, Andrew seemed 

immersed in a struggle to establish an authorial stance, that is, “a voice that over time 

speaks categorically and/or orchestrates the different voices in roughly comparable 

ways” (Holland et al., 1998, p. 182). Those voices came from different figured worlds, 

figured worlds that he valued and in which he was considered a legitimate participant.  

Many researchers in the mathematics education field have already stressed that teacher 

education initiatives organized around the needs and demands stemming from the 

teaching practice have more potential for promoting teachers’ change (e.g., Kieran, 

Krainer, & Shaughnessy, 2013). The interpretative case study developed in this paper 

shows that a teacher education initiative organized around scholarly ways of under-

standing mathematics remote from the classroom could help teachers become more 

confident about their disciplinary knowledge, but it also engages teachers in intense 

struggles concerning their professional identity. Such struggles derive from the diffi-

culty of building bridges between the identities promoted by the teacher education 

initiative and the ones teachers developed from their teaching practice in the schools.  
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CHANGES IN ATTITUDES REVEALED THROUGH  

STUDENTS’ WRITING ABOUT MATHEMATICS 

Wes Maciejewski 

San José State University, United States of America 

 

The ways in which a student relates to mathematics is known to affect how they learn 

and perform in mathematics: anxiety may be compensated with avoidance; enjoyment 

with engagement. Therefore, there is a need to understand students’ relationships with 

mathematics and to see how these are affected by mathematics education. This paper 

presents results from the early stages of a mixed-methods study aimed at assessing 

changes in students’ attitudes towards mathematics as revealed in their writings about 

mathematics. In contrast to existing survey instruments on attitudes towards mathe-

matics, the methods and discussion presented here have the potential to inform the 

analysis of more idiosyncratic, personal, and diverse relationships with mathematics 

in authentic, large-scale educational settings.    

INTRODUCTION 

Learning and performing in mathematics is seldom strictly about knowledge of ma-

thematics. In particular, a students’ beliefs, attitudes, and emotions can affect the way 

the student (dis)engages with mathematics. However, what constitutes “beliefs, atti-

tudes, and emotions”, how best to conceptualize and operationalize these terms, and 

how these might interact with mathematics learning and performance are evolving, 

contemporary issues in the mathematics education research literature. A number of 

thorough literature reviews, monographs, and working groups have emerged over the 

recent years in an effort to coordinate and clarify the plethora of diverse research and 

perspectives on beliefs, attitudes, and emotions in relation to mathematics education 

(Hannula, 2012; Pepin and Roesken-Winter, 2015; Goldin, et al., 2016). The current 

work considers the issue of observing change in students’ attitudes towards mathe-

matics, conceptualized below, over the course of an educational program. The inten-

tion with this work is to highlight the need for educational practitioners to assess the 

effects education has on their students’ attitudes towards mathematics and identify 

challenges in this endeavour.   

Attitude towards mathematics 

In an effort to clarify constructs in the literature on attitudes towards mathematics, Di 

Martino and Zan (2010) created the Three-dimensional Model for Attitude (TMA). In 

this model, the construct attitude exists along three dimensions: Emotional, Vision of 

Mathematics, and Perceived Competence. Each of these dimensions are rich, encom-

passing arrays of potential student/mathematics relationships. To improve parsimony 

of the model, the authors suggest the Emotional dimension be conceived as comprising 
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positive and negative emotions, the Vision dimension to be, following (Skemp, 1976), 

comprised of relational and instrumental views of mathematics, and the Competence 

dimension to be high/low. I follow these suggestions here in an application of the TMA 

model, being mindful that these dichotomous scales are one possible way of refining 

the TMA model. Even with this simple refinement, the TMA elaborates the attitude 

construct, realising its true multi-facetness. 

Further research on attitude (Hannula, 2012) has related affect – a construct that subsu-

mes beliefs, motivation, values, moods, etc., but also in particular, attitudes – to em-

bodied and enactivist theories of learning. In so doing, a metatheory of affect is created 

with i) cognitive, motivational, emotional; ii) ephemeral and stable; and iii) social, psy-

chological, and physiological dimensions. These dimensions emphasize that attitudes 

are not strictly individual, static traits, but maleable and socially emergent. An implica-

tion of this perspective is that attitudes can potentially be changed through education. 

Though the overall causal nature of attitudes on performance in mathematics has been 

reported as equivocal – see (Di Martino and Zan, 2010;  Goldin, et al., 2016) for re-

views of this literature – strongly negative attitudes likely result in poor engagement 

with mathematics (Maciejewski and Tortora, under review) and so “improving” these 

attitudes ought to be the focus of an education in mathematics, especially for at-risk 

populations.  

The current study utilizes the TMA framework of Di Martino and Zan (2010) as a way 

of observing changes in students’ attitudes towards mathematics over a Summer uni-

versity preparatory course. Equally as important as the results reported here is the 

discussion of implementation and feasibility issues that follows the results section.  

METHODS 

The data for this study comes from students enrolled in a 5-week Summer pre-universi-

ty preparation program at San José State University (SJSU). Students in this program 

were admitted to SJSU, but failed an entry-level mathematics test and required to en-

roll in developmental courses during their first year of university. Students were in-

vited, based on financial and academic need (ie. deficient academic background), to 

attend the Summer program, which is intended to smooth the students’ transitions to 

university and improve their overall chances of success.  

The Summer program consisted primarily of courses in elementary mathematics and 

English, but also included a series of sessions conducted by the university’s counseling 

services that targeted students’ attitudes towards mathematics. Specifically, the ses-

sions focused on mindfulness, fostering a positive attitude, self-esteem and confidence 

in relation to performance, academic skills, stereotype threat, and relaxation. The in-

clusion of these counseling sessions was intended to target and improve the develop-

mental students’ attitudes towards mathematics, as developmental students are known, 

in general, to have less favourable attitudes towards mathematics than their 

non-developmental counterparts and that this significantly hinders their progression 

through university (Maciejewski and Tortora, under review). The content of the 
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Summer program is not the focus of the current paper. Rather, I seek to observe 

changes in students’ attitudes towards mathematics as revealed in their writing about 

mathematics.  

Specifically, students in the Summer program were invited at the start and end of the 

program to write a short response to the prompt:  

Tell us about a personal experience you’ve had with math. Try to write at least 200 words. 

This prompt was chosen to be as open as possible and to not narrow responses to be 

specifically about attitude or approaches to mathematics, etc. The intention here is for 

the student to recall a memory of their own interactions with mathematics; such 

memories are known to have associated emotional content, which is often articulated 

(Maciejewski, 2017).  

Start-of-program essays (N = 134) were matched with end-of-program essays (N = 

134) to form the dataset (N = 116 start/end matched essay pairs) for this study. Each 

essay was scored by the author according to the TMA framework of Di Martino and 

Zan (2010) according to the following chart: 

TMA Dimension Possible Score 

Emotional Disposition N/A Positive (+) Negative (-) 

Vision of Mathematics N/A Relational (r) Instrumental (i) 

Perceived Competence N/A High (h) Low (l) 

Table 1: TMA dimensions and accompanying scores, in parentheses. 

Scores for each essay in each category were assigned by the author – acting as edu-

cator/researcher – with the specific criteria for the categories within the TMA 

framework emerging through the reading of the essays. The criteria are as follows. 

• Emotional: explicit mention of emotional states or feelings towards mathe-

matics or mathematical activity. Specific emotional words or phrases are: 

o Positive: feel good, love math, proud, favourite subject, enjoyment, 

etc. 

o Negative: upset, fear, nervous, scared, afraid, frustration, hate, etc. 

• Vision of Mathematics:  

o Instrumental: equating understanding in mathematics with assessment 

outcome (“I understand math because I got a B”); memorization 

without understanding; practicing formulas.  

o Relational: more than one way to do a problem; interconnectedness; 

focus on understanding rather than correct answers.  

• Competence: indication of the student’s perceived ability to perform in 

mathematics. High/low competence was determined as: 

o High: explicit admission of high ability; attributing successful per-

formance or ability in mathematics to ones’ self; a recognition that 

performance and ability can improve through effort. 
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o Low: explicit admission of low ability; attributing performance in 

mathematics to a teacher or an external entity; mathematical ability as 

fixed. 

Considering the essay prompt was general, a student’s response may not contain 

writing related to any one of these dimensions, which would warrant an N/A score on 

that dimension.   

By way of a sample scoring, consider the following essay. 

I've never been good with math. If I do learn something, I usually forget it not too long 

after. I almost always have a hard time understanding math or even just the point to all the 

extra formulas or ideas about it. Also since I get really mad and irritated easily when I don't 

understand a problem it doesn't help me or anyone else. 

This was assigned a “negative” on the Emotional scale (for the text “...I get really mad 

and irritated...”), an “instrumental” on the Vision scale (“...all the extra formulas...”), 

and a “low” on the competence scale (“I’ve never been good with math”).  

After each essay was scored, the aggregate scores were assessed using χ2 and z tests to 

test for statistically-significant differences between start- and end-of-term essays. As 

will be discussed, there is not a singular best way to analyse the aggregate score data. 

An analysis is then performed on individual-level essays.   

RESULTS 

In aggregate, end-of-program essays revealed more positive and less negative emo-

tions associated with mathematics, a greater relational and lower instrumental under-

standing of mathematics, and higher student competence; see Table 2. Note that the 

N/A scores were higher in the start-of-program essays than those at the end, which left 

open the possibility of increased positive/relational/high attitude score counts without 

a corresponding decrease in negative/instrumental/low attitude scores. However, this 

was not observed. 

At this stage of the analysis, a question emerges which deserves to be presented in 

itself as a result of this study: 

How best to determine if a change of attitudes occurred? 

A naïve application of a statistical test – for example, a χ2 test – on the start/end posi-

tive/relational/high or the negative/instrumental/low scores reveals no statistically 

significant differences at the 0.05 level for all categories.  

However, as noted above, the N/A scores are different for start and end, so a more 

appropriate measure of aggregate attitude change may be to compare the proportion of 

positive/relational/high to total number of non-N/A scores using a z-test. This yields a 

statistically significant difference in start/end Competence (p < 0.01) and Emotional 

scores (p = 0.04), but non-significant results for the Vision category.  

 



Maciejewski 

 

PME 42 – 2018 3 – 343 

 Pos./rel./high Neg./ins./low N/A 

 Start End Start End Start End 

Emotional 30 44 49 41 37 31 

Vision 10 12 63 53 43 51 

Competence 32 53 76 56 8 7 

Table 2: Results of a TMA analysis of the student essays. 

Another approach is to consider changes in the proportion of positive/relational/high or 

negative/instrumental/low scores out of the total number of essays. Again, a z-test 

reveals a significant change for the Competence and Emotional scores (p < 0.01).  

As noted in (Di Martino and Zan, 2010), a change in any category can be taken as a 

change in attitude. Therefore – and again at the program level – the net number of 

students whose essays scored as negative/instrumental/low at start-of-program then 

scored as positive/relational/high at end-of-term may be of interest. These are 6 for 

Emotional, 1 for Vision, and 16 for Competence. There were, however, shifts in atti-

tudes from the positive/relational/high categories to negative/instrumental/low from 

start to end: 9 for Emotional, 3 for Vision, and 13 for Competence.  

As a final perspective on how changes in attitude might be assessed, I shift focus to 

changes exhibited in the writing of individual students.  

Changes in individual students’ attitudes 

Shifting to individual students, but still maintaining a focus on broader trends in the 

program, the number of essays that received the “least favourable” combination of 

scores, negative/instrumental/low, went from 30 at the start to 17 at the end. The cor-

responding numbers of essays receiving the “most favourable” combination of posi-

tive/relational/high scores went from 5 at the start to 6 at the end.  

In terms of trends at the individual level, no one student had an essay categorized as 

negative/instrumental/low at the start and a corresponding positive/relational/high at 

the end. This is likely because relatively few essays had relational scores in the Vision 

category at either the start or end of program.  

In terms of a particular student’s change in attitude consider the following. At the start 

of the program, the student writes: 

My personal experience with math was great at the beginning I loved math but when senior 

year came around and I took trig it become my worst subject and I was not so great at it 

anymore.  

This was rated negative on Emotion (for the past tense “loved”), N/A for Vision, and 

low for Competence (“not so great at it...”). At the end of the program, they write: 

The experience I have had with math went from being really good. Freshman year through 

junior year math was my favorite subject and I was so good at it. Once senior year hit math 
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got really difficult and I started to become less interested in math. Coming into this pro-

gram I got a good review and understanding of what I learned in my past years. I really 

liked it because I received help from my tutors which was very helpful and convenient. I 

learned how to solve problems I had a hard time with and finally I don't anymore. I also 

learned to find math fun again even though it can be challenging at times I can say I like 

math again. 

This was rated positive, N/A, and high. The writing clearly indicates, to this re-

searcher/educator, an “improvement” – a construct to be returned to in the discussion – 

in the student’s attitude.  

However, change is not always apparent. Consider the student who writes at the start of 

term (negative/instrumental/low): 

I usually prepare for a test by doing a pratice test with sample questions. However, I could 

never get a good grade on a test because when the test comes, my mind freezes. The 

problem feels completely different and more difficult. Even though sometimes the dif-

ference in the problem was just a few numbers. I try to get through the problem by thinking 

hard about the pratice test and writing all the formulas down. 

And the student’s essay at the end of term: 

Math is very entertaining! I love solving math problems only when I know it. If you have a 

good teacher then you will learn to understand math. Sometimes I get angry when I get 

stuck on a problem, everyone can solve. Overall, I love being good at math. It makes me 

feel smart when I solved for a problem. 

The student’s writing is contradictory in spots and is difficult to categorize. Ultimately, 

it was rated positive/instrumental/high, but the question emerges, did the student’s 

attitude improve? 

DISCUSSION AND FUTURE DIRECTIONS 

The TMA framework was originally intended to aid in clarifying and strengthening 

theoretical constructs in the mathematics education literature around students’ atti-

tudes. The framework was used here to assess and categorise students’ attitudes to-

wards mathematics as revealed through their writing about mathematics. Generally, it 

was useful in helping parse the essays, but was limited in its ability to reveal changes in 

students’ attitudes, for at least two reasons. The first stems from the elaboration of the 

three TMA categories in (di Martino and Zan, 2010). For example, emotions are not 

always conveniently placed in a dichotomy – a student may love proving and despise 

computation, or enjoy mathematical modelling and fear examinations. It would seem, 

then, that “emotional disposition” toward mathematics is too broad a category in which 

simple, dichotomous changes can be observed. As for “Views of Mathematics,” the 

instrumental/relational dichotomy is only one of many possible ways of conceptual-

izing a view of mathematics; Sfard (1991) proposes, for example, the structur-

al/operational conceptualization and argues that this is not a dichotomous view of 

mathematics.  
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Issues with the TMA framework aside, once a satisfactory – to the researcher/educator 

– categorization of the essays was reached a second major unresolved issue emerged: 

how might the application of the TMA framework reveal changes in students’ attitudes 

towards mathematics? The analysis performed here explored this question using a 

variety of quantitative methods. These methods and the ensuing results should not be 

interpreted as authoritative. Rather, the message of this research is in the methods and 

analysis: even with a rigorous framework for the conceptualization of students’ atti-

tudes towards mathematics, the issue of how best to observe change – or even to define 

“change” – in these attitudes remains. This is especially true in larger-scale educational 

settings where individual interviews or essay analyses are impractical. For example, 

the program in this study had a total enrollment of 134, and these students fed into a 

program of enrollment approximately 970. There is a tension: we as research-

er-educators desire to understand students’ idiosynchratic relationships with mathe-

matics and simultaneously desire they transform productively through the education 

we offer, yet there are often so many students that meaningful one-on-one interactions 

are impractical. 

Another, inescapable issue related to the above is the notion of “improvement” in 

students’ attitudes. It is a plausible expectation that educators desire improvements in 

students’ attitudes towards mathematics, but what might constitute an “improvement”, 

and who determines that? In the final sample essay given in the results section, the 

student writes that they “love being good at math” but also that they “get angry when 

[they] get stuck on a problem…”. Having a “positive” emotion (love) associated with 

performance and a “negative” emotion (anger) associated with a natural state of being 

stuck on math is likely not the type of emotional relationship with mathematics an 

educator desires for their students. One approach to this issue, and working towards an 

operationalization of the notion of improvement, is to refine and narrow the categories 

in the TMA and scales, positive/negative or otherwise, to each. However, this is akin to 

the development of the surveys that initiated research in this domain, which are not 

without their shortcomings.  

In terms of survey instruments designed to assess aspects of attitudes towards math-

ematics, Di Martino and Zan (2010) raise genuine concern over their development and 

continued use. In particular: how are survey items chosen, their scales assigned, and 

can they describe something as multidimensional as attitude? However, some re-

searchers have considered these specific issues in the design, construction, and re-

finement of their Likert-based instruments. For example, the Mathematics Attitudes 

and Perceptions Survey (MAPS; Code, et al., 2016) traces the genesis of its survey 

items in students’ authentic writing and talking about learning and performing in 

STEM fields. Moreover, the MAPS instrument avoids the issue of creating normalized 

scales for each category it reports on by assigning scores relative to expert consensus. 

This, in a sense, makes for a more versatile, holistic instrument – there isn’t a universal 

definition of “interest”, for example, but mathematics experts have a consensus on 

“interest” which can act as a relative, community-defined datum for the students’ 
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“interest”. Further, studies with MAPS have analysed interactions between the MAPS 

categories (Code, et al., 2016). The criticisms of Di Martino and Zan (2010) remain 

quite valid, however, and a future study will compare a TMA analysis of students’ 

attitudes towards mathematics present in their writings with their attitudes as revealed 

by a multi-dimensional survey instrument, such as the MAPS (Code, et al., 2016). This 

can further address the challenge of scale, mentioned above.  

One of the important points of this current work is that observing changes in attitudes is 

not a straight-forward endeavor. Assessing individual students for attitudinal changes, 

through interviews or through their writing, can lend insights into that particular stu-

dent’s relationship with mathematics. However, educators are often faced with the task 

of evaluating the effectiveness of an entire program, which often enrolls large numbers 

of students, in transforming students’ atitudes. The TMA framework (Di Martino and 

Zan, 2010) clarifies what is meant by “attitude” towards mathematics; the next step is 

to clarify “change” and “improvement” in attitudes.  
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The paper focuses on student learning experiences during large-group undergraduate 

Calculus tutorials. We identify eight types of Key Memorable Events – emotionally 

loaded events that are meaningful for the learning process in class from a student 

perspective. The findings are predominantly based on stimulated-recall interviews 

with 36 students, corresponding to 7 filmed lessons. Implications are drawn in relation 

to both the learning and teaching in the undergraduate mathematics classroom.  

INTRODUCTION  

In recent years, the teaching and learning of undergraduate mathematics has become an 

emerging topic in the field of mathematics education research (Nardi, Biza, Gonzá-

lez-Martín, Gueudet, & Winsløw, 2014). Nonetheless, the topic is still considered 

under-researched, and calls for further research have been made (e.g., Lew, Fuka-

wa-Connelly, Mejia-Ramos, & Weber, 2016). A survey of the literature reveals that 

most of the existing research has focused on the learning and teaching in lectures, 

while relatively little research has examined these aspects in context of large-group 

tutorials – lessons presenting problems accompanying the theoretical material of the 

lectures, usually taught in a frontal teaching style, and typically attended by several 

dozens of students. More specifically, while emotions have long been recognized to 

take an integral part in mathematical activity (McLeod & Adams, 1989), we have 

found virtually no existing published research on the role affect plays in student 

learning during large-group undergraduate tutorials. This paper focuses on student 

learning experiences in Calculus tutorials, and is situated within a growing body of 

research that addresses learning in light of the instructional context in which it occurs. 

THEORETICAL BACKGROUND 

In order to examine student learning experiences during undergraduate mathematics 

tutorials, a theoretical lens would need to address the changing and flowing cognitive 

and affective states students may go through during the course of a lesson. It is 

therefore appropriate to use Goldin’s (2000) approach on local affect as contextual-

ly-rooted emotions that take part while engaging in mathematical problem-solving 

activity. Goldin defines emotional states as “the rapidly changing (and possibly very 

subtle) states of feeling that occur during problem solving” (p. 210). Furthermore, 

Goldin distinguishes between traits and states, where traits are relatively stable affec-

tive characteristics of individuals, and states (i.e. emotional states) relate to “in the 

moment” mathematical behavior. In context of undergraduate mathematics, Mar-
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tínez-Sierra and García-González (2016) have recently classified different emotional 

experiences of students in Linear Algebra courses, while linking these emotions to the 

classroom situations that triggered them. They considered the reported emotions as 

trait emotions, and called for further research that would identify emotional states 

experienced in undergraduate courses by methodological means such as stimulat-

ed-recall interviews, a call we pursue in this paper.  

However, not all emotional states are of equal significance, and some may be more 

meaningful than others. Rodd (2003) claimed that “undergraduate learning is fre-

quently triggered by those unique events which contribute to an individual’s agency or 

self-motivation” (p. 20). In line with this claim, Weber (2008) demonstrated how a 

single and strong positive experience of success may have a considerable effect on a 

student’s success in a challenging real analysis course, by altering the student’s attitude 

and type of engagement with the material for the continuation of the course. 

As a lens focusing on those strong affective moments during a lesson, Marmur (2017; 

accepted) has proposed the theoretical construct of Key Memorable Events (KMEs) – 

classroom events that are perceived by many students as memorable and meaningful in 

support of their learning, and typically accompanied by strong emotions, either posi-

tive or negative. Marmur suggested that by focusing on those memorable “snapshots” 

of a lesson from a student perspective, it is possible to gain insight into the learning 

process and related affective aspects that occur, as well as utilize the gained under-

standing for the design of tutorials in support of a positive learning-experience. Ac-

cordingly, we have pursued the following research questions: (a) What are tutorial 

events that serve as KMEs for students? (b) What are the possibilities for student 

learning afforded by these KMEs? (c) How do these KMEs relate to the teaching that 

takes place? Due to the scope of this paper, the findings herein primarily address the 

first question, whereas the second and third questions serve as contextual background. 

METHOD: DATA COLLECTION AND ANALYSIS 

The research took place in first year undergraduate Calculus tutorials attended by 

computer science and electrical engineering students of a highly-ranked research 

university. The main corpus of data came from stimulated-recall interviews with 36 

volunteering students in regard to 7 filmed lessons: three taught by the first author, and 

the others by four experienced instructors. The stimulated recall methodology was 

chosen as it can aid students in re-experiencing a lesson, and consequently supplies 

insight into the students’ thought-process during its course (e.g., Calderhead, 1981). 

Additional data included observation notes, pre- and post interviews and communica-

tions with the instructors, and lesson-notes taken by the interviewed students. 

At the beginning of the interview, the students were given explanations on its general 

goal as an inquiry into student learning during tutorials, how it would be conducted, 

and what lesson and problem it would focus on. This allowed the students an oppor-

tunity to unsolicitedly share their memories, thoughts, and emotions regarding the 

problem or entire lesson, if they so chose to (as was mostly the case). Subsequently, the 
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students were presented with a 15-20 minute excerpt of the filmed lesson, and were 

asked to stop the playback whenever they had a particular recollection of what they 

thought or felt at that moment. When students stopped the video to share their memory 

of that moment in class, they were often asked clarifying questions, mainly in the form 

of: “can you explain why you thought/felt this way at that moment?” At the end of the 

interview, the students were asked several follow-up questions regarding themes that 

came up during earlier stages of the interview. The interviews were concluded with the 

following questions regarding the problem, lesson, and course: a) Was the problem 

memorable for you, and if so, in what way? b) What were you pleased and displeased 

with during the lesson? and c) What is your general attitude towards the course? The 

interviews were conducted in the immediate days following the lesson, and were 30-65 

minutes long, though mostly around 50 minutes.  

The analysis utilized a general inductive approach (Thomas, 2006), as this method-

ology supports the coordination of extensive data into a brief summary that addresses 

the “underlying structure of experiences or processes” (p. 238) most apparent in the 

data. The analysis consisted of the following stages: (a) Dividing each lesson into a list 

of consecutive events over time, and refining it based on the students’ accounts; (b) 

Identifying memorable events for each student based on unsolicited supplied details of 

thoughts or feelings regarding the events; and (c) Identifying KMEs – for identifying 

the events with the potential of being memorable and meaningful to many, we con-

centrated on those events addressed by all 4-6 students interviewed on a given lesson 

(with the exception of one at most) around a common theme. Within these, we looked 

for those events where strong student emotion could be inferred. This included 

statements such as “I loved/hated this”, “it was beautiful/horrible”, etc. Additionally, 

we looked for students’ use of intensifying adverbs (e.g., “I really loved it”) and re-

peated unsolicited statements on the event throughout the interview (e.g., before, 

during, and after watching the event). Consequently, these KMEs were examined in 

relation to the learning and teaching in class. As validation we examined other col-

lected data for further supporting evidence, as well as alternative interpretations of the 

findings. 

FINDINGS 

Eight KMEs were identified and categorized as a result of the analysis process: Sur-

prise; Heuristic-didactic discourse; Suspense; Bridging; Engaging questions; Undi-

gested symbols; Leaving theoretical loose ends; and Overarching connections. Each 

lesson included 2-3 KMEs, except for one lesson in which 5 KMEs were identified. In 

the following we explain and elaborate on the different KMEs. 

Surprise 

The evocation of surprise was identified as a KME in two lessons in relation to three 

instructor actions: (a) Reaching a dead-end in the solution (not declared in advance); 

(b) Presenting an unexpected non-routine solution; and (c) Reaching an unexpected 

result. The student interviews supplied further evidence to previous research claims on 
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surprise serving as a factor that supports student learning by raising curiosity, interest, 

enjoyment, and mathematical aesthetic experience (Marmur & Koichu, 2016; 

Movshovits-Hadar, 1988). This is exemplified by the following excerpts: 

“I thought the instructor would simply make some kind of change and we would move on. 

That there will be some small nuance the instructor will use and we’ll be able to continue. 

But here it was extremely dramatic. The instructor just erased it all! [the solution on the 

board] […] This raised my concentration because I became more interested to see what 

was going to happen.” [regarding a surprising event of category (a)] 

“Wow! What a beautiful problem! […] It’s kind of beautiful when I’m surprised that it’s 

not what I thought at first glance. […] I personally really love it when the instructor brings 

problems that are unexpected. […] it’s also the most memorable. […] I don’t remember 

any of the other problems […] in that lesson, but this problem I remember till now. [...] 

What a lesson this was! It really excites me!” [regarding a surprising event of category (c)] 

Heuristic-didactic discourse 

In three lessons we identified KMEs that involved a meta-level discourse focused on 

how to approach a challenging problem – a type of discourse referred to by Marmur 

and Koichu (in press) as heuristic-didactic discourse. These events corresponded to 

any of the following: a) Discussing aspects of the problem before solving it; b) 

“Playing” with the problem (as opposed to directly solving it); c) Utilizing a student 

method for the solution and/or highlighting possible student mistakes; d) Presenting an 

expert (yet approachable) way to address the problem; and e) Including an undeclared 

teacher’s goal (along with the declared goal of solving the problem). As illustrated by 

the following excerpts: 

“I really love it when they [instructors] write a problem and immediately afterwards talk to 

the class with the following approach: ok, I’m a student now, I got this problem, how do I 

approach it? […] Where do I begin? Like, let’s start playing with it, let’s see what’s going 

on here. I really appreciate it when a teacher doesn’t immediately ‘toss’ the solution on the 

board, […] but rather puts himself through our eyes while looking at the problem.”  

“After the instructor spoke about ‘first think, before you just start writing’, […] the in-

structor showed two edge cases. It really helps to think about a problem in its two ex-

tremes, and then see where this [problem] lies. [...] It gives a certain direction and a certain 

line of thought, it helps in getting a feeling for the problem. And […] it really helps in 

knowing whether [I am] in the right direction or not.” 

Suspense 

Events of suspense were identified as KMEs in two lessons in relation to three in-

structor actions: (a) Presenting a solution where students did not know whether it was 

correct or incorrect in advance, yet were made aware both options were possible; (b) 

Starting a solution after having allocated time for students to independently think about 

the problem; (c) Supplying conflicting information. The following excerpts illustrate 

the utility of suspense in evoking independent and critical thinking on a given solution: 
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“It keeps you alert. Let’s see, let’s see if this time the instructor is tricking us or not. [...] 

This way everyone is involved in the lesson. [...] It also helped me understand better. 

Because then you put more attention on why this is correct, why that is incorrect. And 

through this process you get deeper into the material and understand it better.” [regarding 

an event of category (a) of suspense] 

“I remember that here I was in suspense to see what the instructor was going to do. I was 

really nervous. I told myself: Did I succeed? Did I not succeed? Was I in the right direc-

tion? In the wrong direction?” [regarding an event of category (b) of suspense] 

Bridging 

By bridging we refer to the meaning ascribed by Ejersbo, Leron, and Arcavi (2014) as 

helping students bridge the gap between intuitive and analytic thinking. A bridging 

KME was identified in one lesson in which the bridging was stimulated by a 

three-dimensional visual aid that helped reconcile an unintuitive analytic result. The 

student excitement of the event, as well as its role in supporting their understanding, 

are illustrated in the following excerpts: 

“Already in the first time the instructor did this rotation, we could see the thing [the lines]. 

I remember I told myself: Wow! Like, I was convinced. I knew it was true because the 

instructor had solved the problem earlier and I believed him, but like – something in me 

was convinced.” 

“Let’s say that if the instructor hadn’t brought this thing [model], I still wouldn’t have 

believed him there are two lines. [...] No matter how much he would have tried to force me. 

[...] it also changed a bit my perception on how this shape really looks like, and not how we 

draw it approximately. [...] This lesson was really meaningful, because it changed my 

perception.” 

Engaging questions 

By KMEs of engaging questions we refer to events where an instructor’s question 

managed to actively engage the students in mathematical thought or activity. While the 

act of question posing by instructors was found in all the observed lessons, it is inter-

esting to note that this was identified as a KME in one lesson only. A comparison 

between the different lessons suggests that in this particular lesson there was a smaller 

amount of teacher questions, though more selective and focused (see also Almeida, 

2012). As such, the questions evoked engagement and participation, even in cases 

where students were uncertain of the correctness of their answer: 

“I love it that the instructor sometimes asks questions where you’re not sure. [...] My first 

thought was: take a parameterization of a circle […] and find y from the intersection with 

the plane. And this is really what you do. But at that moment you suddenly think [...]: 

Could it be that she’s asking this because this is not the answer? Because it’s not the ob-

vious thing?”  

Undigested symbols 

A KME of undigested symbols refers to a classroom event where students’ symbol 

sense (Arcavi, 1994), or lack thereof, becomes the center of student attention. Such a 
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KME was identified in two lessons. In the first, the KME supported a positive learning 

experience around the different meanings of the dot symbol within the topic of vectors. 

In the second, however, the KME indicated an unresolved issue for student learning on 

the relation between index symbols and subsequences. In the first case, the KME 

seemed to additionally impact the students’ note-taking actions during the lesson, 

which included formulating elaborated explanations that were not written on the board: 

“When we deliberated whether the solution was correct or incorrect, then the instructor 

really emphasized the issue that here there is a scalar that you multiply with a vector. And 

we all got confused because of the mess of ‘when is it a multiplication between a scalar and 

a vector?’, and ‘when is it a scalar product?’ […] this was really a very very [good] em-

phasis that I really took, and during the next solution I was still writing it to myself.” 

Leaving theoretical loose ends 

This KME was identified in one lesson in which the instructor left a supporting claim 

to be independently proven by students at home. Even though the instructor had ex-

plained in class that this activity would be beneficial for the students’ learning, the 

interviewed students claimed they did not understand the reasoning behind this, and 

referred to the event with emotions of frustration, which included statements such as 

“it’s really stressing me out”. The following excerpt supplies further illustration: 

“Something that I really don’t like is when a claim is presented [...] and then there’s a 

supporting claim. [...] this kind of hocus-pocus, ‘there’s a supporting claim’ – do it by 

yourself. […] I feel like [...] information is being withheld from us. [...] To get to this, you 

have to prove this [supporting] claim. So regarding this [supporting] claim – I ask why?! 

[...] Why can’t you tie up loose ends? [...] For me personally, it ruins the way of thinking.” 

Overarching connections 

A KME of overarching connections was identified in three lessons, and refers to the 

use of solution methods or theoretical material presented earlier in the course. By 

making such connections, previous topics are put in new or generalized context, which 

subsequently may support a unified understanding of the course (see Bergsten, 2007, 

on ‘connections’ as a characteristic of high-quality undergraduate teaching). This 

KME was accompanied by two opposing types of responses. On the one hand, some 

students expressed enthusiasm evoked by the presented connections, as well as in-

creased motivation to refresh their memory on past topics as a result of the event. On 

the other hand, other students were anxiously wondering how they were supposed to 

come up with such ideas on their own. As illustrated by the following: 

“It was beautiful. It’s an eye opener. I mean, I loved it. [...] Even though I knew the 

one-variable [Riemann] function, I never thought of transferring it to two variables.” 

“And then everything connects. It’s really fun when it happens in the lesson.” 

“After this lesson I decided – it’s about time I prepare this summary page [of theorems]” 

“Why do people even remember this function? What did they do that I didn’t?” 

“At this stage I thought to myself I would never in my life be able to come up with this.” 
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DISCUSSION 

The above identification and categorization of KMEs possess potential implications re-

garding both the learning and teaching in the undergraduate classroom. From the per-

spective of learning, the identified KMEs were associated with learning opportunities 

such as heuristics on how to approach a challenging problem; evaluating the cor-

rectness of a given solution; sense-making of mathematical symbols; connecting be-

tween analytic and intuitive modes of thinking; problem-solving behaviors including 

failed attempts; exposure to common mistakes; creating connections between different 

mathematical topics; and enhancing memorability of the material. Furthermore, the 

learning in the KMEs was typically via problem solving (see Schroeder & Lester, 

1989), concentrated on thought-processes and knowledge that could be generalized for 

future problems, rather than merely focused on a solution-oriented end result. 

From the perspective of teaching, lesson designs in the considered lessons generally 

went through 1-2 initial KMEs that created tension, followed by raised student en-

gagement and anticipation, and concluded with a KME that generated resolution. This 

tension-resolution mechanism created two foci that emerged from the interviews: a 

first on affect and a subsequent on mathematical content. The KMEs that created ten-

sion evoked strong emotional responses (even “negative” ones, such as anger due to a 

surprising failed solution), whereas the resolution KME was centered around a 

mathematical goal (such as making overarching connections). As such, the ten-

sion-resolution combination of KMEs served as an effective method to promote stu-

dent learning via affective routes. 

Indeed, lessons following this KME combination were considered “successful” not 

only based on positive student evaluations, but also since the identified KMEs were 

characterized by heightened engagement, whether expressed by verbal participation, 

raised interest, elaborated self-formulated notes (cf. Lew et al., 2016), or independent 

work on a problem. Especially when considering the established norm of teach-

er-focused instruction in Calculus tutorials, these findings suggest that even within the 

“boundaries” of this norm, the utilization of KMEs by instructors can aid students in 

becoming actively engaged learners in class. 
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This is part of a bigger and ongoing empirical research study that uses the commog-

nitive framework in order to characterize how university students (that are also 

pre-service teachers) define 3D geometrical figures. We consider that the process of 

defining plays an important role in the generation of a mathematic knowledge specific 

for teaching, which future teachers must acquire. With the purpose of understanding 

this process, we designed a task with open questions and used as data sources audio 

recordings of one-hour sessions (and their transcripts) and written answers of four 

groups of students when they solved the task. We have identified different routines that 

appear during the process of defining as indicators of students’ knowledge. 

INTRODUCTION  

Research on teaching and learning mathematics at university level is an important field 

in mathematics education that has been addressed from different approaches and in 

different contexts (Biza, Giraldo, Hochmuth, Khakbaz & Rasmussen, 2016; Holton, 

2001). On the other hand, Heyd-Metzyuyanim et al. (2013) point out that  

in recent years educational researchers’ interest in human communication has been stead-

ily growing, and today, discourse is the main focus of many, if not most, of educational 

studies (p. 155). 

Among the various theoretical frameworks that can be considered, here we will focus 

on the commognitive one, which has proved useful for studying mathematics educa-

tion at university level (Nardi, Ryve, Stadler & Viirman, 2014; Tabach & Nachlieli, 

2015). 

According to the commognitive approach (Sfard, 2008), teaching and learning is a 

sociocultural activity. For Sfard (2008), commognition (‘communication’ and ‘cogni-

tion’) is not a mere replacement of cognition with another different theory. Indeed, 

Sfard (2008) states that “commognitive research differs from both its predecessors, 

behaviorism and cognitivism, in its epistemology, ontology, and methods” (p. 275) and 

that “the choice of discourse as the principal object of attention is what sets this ap-

proach apart from other types of participationists’ research” (p. 275).  The discourse 

that is the object of study in the commognitive framework has four discursive char-

acteristics for Sfard (2008): word use, visual mediators, endorsed narratives and rou-

tines, which will be described in the following section. 
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Several studies have used this commognitive approach to study learning and teaching 

of mathematics at university level. In particular, Nardi et al. (2014) focused on the 

discursive shifts of university students when they study calculus; Tabach and Nachlieli 

(2015) studied how university students (that are also prospective teachers) used defi-

nitions of functions; Thoma and Nardi (2016) investigated the discourse of 

closed-book examinations; and Biza (2017) focused on the substantiations of narra-

tives about the tangent line in university mathematics students’ discourses. 

In this work, we will investigate the mathematical practice of defining among univer-

sity students in the context of 3D geometry when they describe geometrical figures and 

when they construct mathematical definitions. These students are also primary 

pre-service teachers, so this study has a double implication. On the one hand, it informs 

the university teachers of these students about their actual knowledge, in order to help 

them construct their mathematical knowledge. On the other hand, this mathematical 

knowledge will be the base that allows students to construct the knowledge for their 

future teaching.  

When we study this practice of defining, we consider it a process, in which the defi-

nition itself is the final product. In particular, we will consider the process of defining 

as the one that begins with the description of objects and ends with a formal mathe-

matical definition, with the intermediate steps of proposing preliminary definitions and 

deciding how many details are needed. We focus on this process because it plays an 

important role in the generation of a mathematic knowledge specific for teaching, 

which future teachers must acquire. 

THEORETICAL FRAMEWORK 

Since we will use as theoretical framework the theory of commognition of Sfard 

(2008), we will present here the main characteristics of this approach that sustain our 

work.  First of all, according to Sfard (2008), discourses are 

different types of communication, set apart by their objects, the kinds of mediators used, 

and the rules followed by participants and thus defining different communities of com-

municating actors (p. 93). 

She also states that “seemingly the most natural way to distinguish discourses from one 

another is to specify their respective objects” (p. 129). Therefore, mathematics is a 

discourse that can be described by four characteristics: word use (which include both 

mathematical terms like ‘polygon’ and ordinary words used in a mathematical context, 

like ‘edge’ of a figure), visual mediators (like drawings of geometrical figures, graphs, 

symbols), endorsed narratives (description of objects, definitions, etc.) and routines 

(practices like ‘defining’ or ‘proving’, as well as any other regularly employed prac-

tices that are used).  

Among the different discursive characteristics mentioned above, we will focus on the 

last one: the routines. Sfard (2008) characterizes the routines as “a set of metarules that 
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describe a repetitive discursive action” (p. 208), where a metarule is a “rule that defines 

patterns in the activity of the discursants” (p. 299).  

In particular, in this study we aim to provide information about the process of defining 

of pre-service teachers through the identification of different types of routines that 

appear during that process. Among other things, we have considered routines because 

they are the characteristic that best informs about the procedural actions of these stu-

dents when they construct definitions. 

METHODOLOGY 

Participants and context  

The data of this study come from a wider study concerned with identifying and clas-

sifying metarules and routines of university students. In the part of the study that we 

present here, we focus on students of the undergraduate degree of primary education of 

a big public university in Spain. As part of their undergraduate degree, these students 

have a compulsory course on mathematics on their first year. Once a week, they work 

in mixed-gender groups of four to six students while they strive to solve different 

proposed mathematical problems and tasks.  

The participants of this study were 4 of these groups (called G1, G2, G3 and G4) 

during one-hour sessions. The great majority of the students were in the 18-21 years 

old range.  

Instrument 

We are interested in the discourse of students, thus we designed a task with a series of 

open questions with the aim of promoting discussions among them.  

Since we did not want to alter the normal sessions of the mathematics course that the 

students were taking, we chose for the task one of the topics that they would study: 

3-dimensional geometry. At the time of this session, all these students had already been 

taught about 2-dimensional geometry but not yet about 3-dimensional geometry.  

The task had a brief explanation in the first page concerning the aim of the study and 

thanking the students for their help. Then there were pictures of three prisms: a cube, a 

parallelepiped that was not a cube, and a prism with a concave base. Then, some 

questions were asked. Examples of these questions were:  

• Basic elements as faces, vertices, edges, etc. can be identified in these figures. 

What properties or characteristics of these elements can you observe in each 

figure? 

• Can you identify any property among the previous ones that only two figures 

have in common?  

• Can you identify any property that the three figures have in common? 

• Define each of these figures. 

• Can you give another definition of any of the figures? 
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• Is one of your definitions valid for another figure too? For example, is the 

definition of figure 1 also valid for figures 2 or 3?  

Each of the groups of students were provided with a copy of the task and were in-

structed to verbalize their answers to each question as much as possible (which we 

audio recorded) and reach an agreement (which they had to write down).  

Data collection 

Audio recordings of one-hour sessions (and their transcripts) and written answers of 

four groups of students when they solve the task were our data sources. The first source 

is crucial because it permits us to access the discussion and negotiation in the process 

of solving the task. We consider the discourse of the whole group as a unit of analysis, 

without making distinctions among the students. The second source is important be-

cause students reflect in their written answers their agreements as to what constitutes a 

correct answer. In this way, they validate explicitly their achieved agreements.  

ANALYSIS  

Once we transcribed the recordings from the four groups into written text, we analyzed 

our data in two different steps. In the first one, we identified Sfard’s (2008) four dis-

cursive characteristics using the transcripts and the written answers. In the part of the 

study presented here, in order to identify routines, we analyzed the mathematical 

words and narratives used by the students searching for patterns in the discourse, from 

which we inferred routines. In a second step, we analyzed the routines to determine if it 

is possible to identify some characteristics of the students’ process of defining.  

We will now show a small example of our analysis using group G1 (with students S1, 

S2, S3, S4).  

First step 

For instance, when the students answered the question “how would you define figure 

1”, they had the following discussion (translated from Spanish), where we show the 

narratives in italics and the mathematical words in bold: 

219: S1:  first the name  

220: S2:  a cube, right?  

221: S3:  yes 

222: S2:  a cube is… a solid  

223: S4:  which are all prisms because they are formed by several polygons  

224: S1:  polygons of 6 faces  

225: S2:  of 6 faces… that are equal [writing] 

226: S4:  with a square basis  

227: S2:  [repeats while writing] 

228: S1:  it is a hexahedron, that is the first thing [they did not include this in the 
written answer to the task] 



Martín-Molina, Toscano, González-Regaña, Fernández-León, & Gavilán-Izquierdo 

 

PME 42 – 2018 3 – 359 

In line 223, “they are formed by polygons” is our way of translating from Spanish a 

mistake that the group commits, not a mistranslation. 

The showed transcript begins and ends with narratives that express the same idea (lines 

219 and 228): in order to construct a definition, students say that it is necessary to first 

give a name and then follow it by the properties of the figure. This idea is present 

several times in narratives of the students of this group (both in their written answers 

and their oral discussions), so we infer a routine that we will name “Defining is label-

ling and describing the properties of a figure”. 

Second step 

In this step, we analyzed all the routines found in the first step looking for possible 

relations with the students’ process of defining. For example, the routine “Defining is 

labelling and describing the properties of a figure” indicates an initial procedure during 

the process of defining that can affect its development. 

RESULTS 

We will now show types of routines that we have identified. In order to improve the 

validity of our study, we will focus only on the four routines that appear in more than 

one group. We will first label and describe the routines and then give examples of their 

use that have been translated from the transcripts in Spanish. 

Counting when describing and, if possible, adding a relation or adjective. This routine 

is inferred from the narratives of students when they try to identify properties of an 

element and it means that students count how many times the element appears and, if 

possible, they add an adjective that describes it or they describe its relation with other 

elements. We differentiate between two types of counting: one by one, which we call 

additive counting (present in G1, G3, G4), or counting how many times a group ap-

pears, called multiplicative counting (G1, G3). Group G2 also counts the elements but 

not aloud, thus we do not have evidence of what type of counting they used.  

An example of this routine can be identified when students of group G3 use both ad-

ditive counting and multiplicative counting when describing faces, edges and vertices: 

8: S3: Figure 1, faces. They are these, aren’t they?  

9: S2: 1, 2, 3, 4, 5, 6, yes. 

10: S3: 1, 2, 3, 4, 5, 6. Let’s see, vertices and edges. 

11: S2: 1, 2, 3, 4, 5, 6, 7, 8.  

12: S1: Four times six, … no, wait. 

13: S2: No because there are edges in common. 

14: S3: 1, 2, 3, 4, 5, 6, 7, 8. 8 vertices, right? And I don’t know what edges are. 

15: S2: Edges are these lines.  

16: S1: So there are some here … no because they coincide…. 

17: S3: 1, 2, 3, 4, right? 
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18: S2: No, 1, 2, 3, 4, 5, 6, 7… and 11 and 12 

Defining is labelling and describing the properties of a figure. This second routine is 

identified in G1, G2, G3, G4 and is used by the students when defining a figure. It 

describes a very common pattern: the students first label the figure and then describe 

its mathematical properties, which are often the number of faces, edges and vertices 

that they had obtained before by using the previous routine.  

A representative example of this routine can be seen when group G2 defines a figure: 

61: S1: A cube, a figure with volume, right? That occupies a space. 

62: S3: But that is true for all of them, isn’t it? 

63: S1: Yes but now we have to say that one is regular, another one has… every-
thing that we said before. […] 

Resorting to 2D to solve 3D problems (groups G2, G3, G4). This routine is not ex-

clusive to the practice of defining, but rather reflects a return to simpler problems when 

facing an unknown situation. This way, students turn to their knowledge of 2D as a 

way to bolster their (scant) knowledge of 3D geometry. For instance, group G2 uses 

this routine when they discuss if the definition of a figure is valid for another one: 

134: S3: This is like with the triangles and the rhombi and all those, the squares are 
inside the rhombus, so maybe this definition is inside this other one but not 
necessarily. 

135: S1: Yes but it’s like…we don’t know how it is. I don’t know which definition. 
And this is more complicated. Are all three of them prisms? 

Finally, the last routine is called Searching for information in external sources and it 

appears in the groups G1, G2, G4 when the students ask the teacher for help, search in 

their class notes or on the internet. This routine is not exclusively mathematical (alt-

hough this information is sometimes related to mathematical content) but has a social 

nature. For example, the students of group G1 use this routine several times: 

28: S3: [asking the teacher] But…, we have to define in the first part, like..., what is 
a vertex, what is a face…Then, what do we have to say, like…, how many 
faces they have, how many vertices are there? 

[…] 

59: S2: Look that up on the internet. 

Later, S1 searched her class notes to recall some definitions. 

CONCLUSIONS 

In our work, the routines that we have identified inform us about the characteristics of 

the mathematical process of defining of the university students that participated in this 

study.  

The first routine, Counting when describing and, if possible, adding a relation or ad-

jective, tells us about the first stage of the process: the description of objects. Of all the 

possibilities that exist when describing a solid, like describing the shape of its faces, 

the parallelism between them, etc., all the groups chose to describe a solid by first 
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counting how many vertices, edges and faces it has. The fact that this routine is 

common to all groups is for us an indicator of its importance.  

The second routine, Defining is labelling and describing the properties of a figure, 

reflects what all groups consider a definition to be. This characterizes a later stage of 

the process of construction of definitions.  

These two routines contrast with the situation found in 2D geometry by previous re-

searchers interested in the construction of definitions, like Gavilán-Izquierdo, 

Sánchez-Matamoros and Escudero (2014). Indeed, these authors found that when 

students define the square, rhombus or rectangle, they use primarily qualitative prop-

erties like the parallelism of their sides or if the sides are equal in length or not.  

The last two routines, Resorting to 2D to solve 3D problems and Searching for in-

formation in external sources, can come from the school culture. In the Spanish cur-

ricula, 2D geometry is studied more in depth that 3D geometry, so this can be the 

reason why students resort to the more familiar 2D geometry. The last routine is not 

specific of mathematics and it may be shared by other subject matters.  

This study has allowed us to identify routines that may affect the process of defining of  

groups of students. This way, we have enlarged the existing literature with the study of 

the mathematical process of defining from a commognitive approach. This approach 

has been useful because, through the routines, it has permitted us to identify procedures 

that may affect the process of defining. These procedures may have remained hidden 

when using other approaches. Of course, this study can be continued by considering 

other discursive characteristics, other students and other tasks. This can provide us 

with a more holistic vision of the mathematical practice of defining from a sociocul-

tural approach. 

We acknowledge that a limitation of the work presented here is the number of groups 

of participants that we have considered. However, this is part of a wider study with 

more tasks and more groups of participants (to whom we are very grateful for their 

participation), which we will present in future works.  

Finally, we would like to point out that, with this qualitative-interpretative study, we 

have tried to initiate a way that allows us to obtain valuable information for us, both as 

researchers and teachers.  
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LINKING INFORMAL AND FORMAL  

MATHEMATICAL REASONING:  

TWO DIRECTIONS ACROSS THE SAME BRIDGE? 
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What do students need to do in order to use their formal mathematical knowledge in 

everyday informal situations? How can informal everyday mathematical reasoning be 

used as a foundation for developing new mathematical knowledge? Are these two 

directions on the same bridge – that which lies between informal and formal mathe-

matical reasoning? Herein we argue that connections between the informal mathe-

matics of everyday life and formal mathematical instruction must be encouraged and 

supported throughout the mathematical curriculum, including also in late primary and 

lower secondary school. We argue that there are crucial mental processes that un-

derlie both and that these processes may be keys to developing all students’ abilities to 

connect their informal and formal mathematical reasoning. 

BRIDGING INFORMAL AND FORMAL MATHEMATICS 

Providing students with the skills needed to use their formal mathematical knowledge 

in everyday situations is a stated goal of many mathematical curricula around the world 

(Common Core State Standards Initiative, 2010). However, this may take too limited a 

perspective on the relation between informal and formal mathematics. Certainly, stu-

dents need to be able to reason about their everyday worlds in mathematical ways. But 

just as important, instructional practices can also draw upon students’ informal 

mathematical reasoning in order to develop formal mathematical knowledge. In fact, 

this bootstrapping of informal mathematical reasoning into formal mathematical 

knowledge is already apparent in much of the early-years of mathematical develop-

ment (Purpura, Baroody, & Lonigan, 2013). Everyday intuitive understanding of 

concepts relating to the magnitude of natural numbers, arithmetic relations between 

whole numbers, and spatial-numerical connections are easily accessed and drawn upon 

in the first years of mathematical instruction. However, as mathematical topics begin 

to expand into more culturally constrained topics, such as non-natural numbers and 

algebra, the direct connection between everyday reasoning and formal mathematics 

seems to dissipate within the mathematics classroom.  

It is crucial for instruction to help students construct a more stable bridge between their 

informal and formal mathematical reasoning, both in and out of the classroom. A pure 

mathematical form with no connections to reality only upholds part of the power of 

mathematics. Likewise, mathematics only framed as a practical enterprise inspires 

little exploration and will lead to stagnation and irrelevance in the field. Thus, it is 

critical that students be able to apply their mathematical knowledge in everyday situ-
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ations. As well, their informal reasoning about mathematical aspects of everyday sit-

uations should also be used to support learning complex mathematical topics. If these 

goals are explicitly addressed it is often through the use of word problems. However, 

traditional word problems often do not require any actual mathematical model of the 

situation, and if such a model is actually needed, many students fail to use one and 

instead rely only on superficial features to solve the task (Verschaffel, Greer, & De 

Corte, 2000). Moreover, there is little evidence of the widespread use of students’ 

informal, intuitive mathematical reasoning in supporting their formal mathematical 

learning.   

Students and learners of all types are constantly surrounded by opportunities and ex-

periences to use informal and formal mathematical reasoning in their everyday life. 

Informal experiences with mathematical reasoning in everyday life can be also used to 

provide strong foundations for new formal mathematical development (Resnick, 1986) 

and applying formal mathematical knowledge in informal situations may support 

further matheatical development (Lehtinen & Hannula, 2006). The question then 

arises, are there mechanisms that could be employed in the mathematical curriculum 

for supporting (a) the bootstrapping of intuitive, informal mathematical reasoning in 

everyday situations into new formal mathematical knowledge and (b) the flexible and 

fluid application of formal mathematics in making meaning of everyday life. These 

two processes can be described as the anchors of the bridge between the informal and 

formal mathematics that students encounter. In the present manuscript, we argue that 

there are underlying processes that are core to crossing the bridge in either direction 

between the informal and formal mathematics, which may be crucial for supporting 

such connections among all students. 

BRIDGING THE INFORMAL AND FORMAL: BOUNDARY EXAMPLES 

We aim to explore the potential bridge between the informal reasoning that occurs in 

everyday life and formal mathematics by exploring the meaning making processes 

involved in two examples of mathematical reasoning in everyday situations.  

The first example involves a young child using his informal reasoning to develop new 

formal mathematical knowledge in order to solve a problem puzzling him: how do you 

take larger numbers away from smaller numbers in subtraction (i.e. 3 minus 4)? In  this 

case, the second author’s young child (roughly age 8) began to discuss the “under-

ground numbers” that were in the elevators in their French apartment building. These 

were, of course, negative numbers, which he identified as similar to whole positive 

numbers, but which also had novel features. In this case, the child used his intuitive 

reasoning about the nature of these underground numbers and recognized that they 

were a potential solution for the formal mathematical problem that had been puzzling 

him. Upon his informal model of what the underground numbers was, he was able to 

construct a formal mathematical model that solved the problem of subtraction a larger 

number from a smaller. 

We draw from the literature for the second example, provided by Lave and colleagues 
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(Lave, Murtaugh, & de la Rocha, 1984), of a shopper considering the unit price of 

spaghetti in making their grocery choices. In this example, the shopper is able to ne-

gotiate a mathematical solution to an informal everyday problem (in contrast to the 

informal everyday solution to the mathematical problem in the underground numbers 

examples). The shopper is able to apply her formal mathematical knowledge to an 

informal situation, which does not necessarily require a mathematical solution. In this 

case, after considering their previous, less frugal choice of macaroni options (chosen 

because of space constraints), the shopper begins to discuss the best option for a spa-

ghetti purchase, “But this one, you don’t save a thing. Here’s three pounds for a dollar 

79, and there’s one pound for 59…No, I’m sorry, that’s 12 ounces. No, it’s a savings” 

(Lave et al., pg. 87). Lave and colleagues, note the multiple calculations embedded 

within this short moment, which involve estimation and inverse proportional reason-

ing. For instance, once the shopper recognizes that 12 ounces is less than one pound, 

they immediately note that there is a savings (for the bigger bag), as the price per unit is 

higher for the smaller bag.  

 

Figure 1: A model bridging informal and formal mathematical reasoning. 

We argue that within both cases there are core mathematical processes that occur 

which support bridging between informal and formal mathematics within the situa-

tions, as outlined in Figure 1. First, in both instances the individual must be made 

aware of the mathematics embedded in the situations. Despite numerical qualities 

present in both situations, it is not guaranteed that all individuals will sufficiently 

recognize the mathematics embedded in these situations. As well, the individuals must 

also recognize what are the most relevant and useful mathematics. There are often 

competing features of the environment, including multiple mathematical features, and 

an individual must make a choice in determining which of these aspects their focus and 

reasoning will most closely consider. Additionally, the individual must also make a 

connection between the situation and their existing formal mathematical knowledge. 

This connection to existing mathematical knowledge may take the form of acting as the 

basis for new informal reasoning (as in the case of the underground numbers) or as the 

application of this formal knowledge in the informal situation (in the case of the spa-

ghetti purchase).  
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When is math relevant? 

The mathematics embedded in the everyday world is not similarly noticed by all in-

dividuals. Instead, there are substantial individual differences in the tendency to pay 

attention to mathematical aspects in and out of the classroom. These individual dif-

ferences are positively related to mathematical development from early childhood 

through secondary school (Hannula-Sormunen, Lehtinen, & Räsänen, 2015; 

McMullen, Hannula-Sormunen, & Lehtinen, 2017). We argue that in both examples 

described in the present study, the individual needed to recognize on their own the 

relevance of mathematics in the situations. 

For the young child examining and considering the different labels for the floors in the 

building, it is entirely possible that these labels (the negative numbers) could be seen as 

nominal markers that merely represent a way of distinguishing the floors, in particular 

that they differentiate between the above- and below-ground floors using a “dash”. 

However, this child made an explicit connection between the numbers and symbols 

used to denote the floors in the elevator and his knowledge of the formal counting 

system. Crucially, he extended this connection and recognition of the relevance of 

mathematical thinking to include new forms of numbers, in this case the negative 

numbers. In this way, he recognized that there was some explicit mathematical content 

in these notations that deserved consideration; something that many children of his age 

might not always do. 

In the supermarket example, the mathematical nature of the situation may be more 

readily recognized due to practical importance of prices. However, as Lave and col-

leagues show, every individual does not always note the mathematics involved in 

making purchases as they often consider other factors. In fact, we often ignore the 

mathematical realities of shopping situations in making our purchasing choices, often 

for good reasons, such as space constraints. We argue that it was through the own 

individuals self-initiated actions that mathematics was introduced into their reasoning 

about the situation. 

Our research has shown that those children and students who more readily spontane-

ously pay attention to mathematical aspects of everyday situations do better with 

learning formal mathematics (Hannula-Sormunen et al. 2015; McMullen et al., 2017). 

Crucially, this advantage is not entirely explained by skills with reasoning in informal 

situations, and appears to truly be about the student’s tendency to notice when 

mathematics is relevant. Importantly, such tendencies to spontaneously focus on 

mathematical aspects can be enhanced through social interaction and explicit instruc-

tion (Hannula, Mattinen, & Lehtinen, 2005; McMullen, Hannula-Sormunen, 

Kainulainen, Kiili, & Lehtinen, 2017), suggesting that supporting these tendency can 

be a positive step in building better bridges between the informal and formal mathe-

matics in and out of the classroom. 

Which math is relevant? 

Not only do students need to be able to recognize that mathematical aspects are rele-
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vant for a situation, they also need to be able to determine which are the most relevant 

mathematical features. While the first process deals with separating the mathematical 

aspects from the non-mathematical aspects of everyday situations, once it is estab-

lished that the is math involved in the situation an individual still often needs to ne-

gotiate between competing mathematical features. Importantly these different math-

ematical aspects may have (a) differing levels of relevance (Degrande, Verschaffel, & 

Van Dooren, 2017) and/or (b) conflicting roles, often involving maladaptive intuitions 

(Boyer, Levine, & Huttenlocher, 2008). 

In the case of our young child exploring what the underground numbers represent, one 

crucial component of this invention was his recognition that this new number type was 

similar to, but still was novel from, the whole numbers he was already aware. In un-

derstanding that these underground numbers were connected to the continuum of the 

aboveground numbers in a meaningful way, he also needed to realize that he could not 

just treat them exactly the same. He needed to inhibit his potential reaction of treating 

these new numbers exactly the same as the old and recognize that, for example, with 

underground numbers bigger numbers do not mean a larger magnitude and that with 

them you can now subtract a larger number from a smaller. In effect, no one told him 

that the dashes before the numbers had special significance, or that the reverse ordering 

of the numbers was also important. These new features needed to be identified as core 

to the situation by himself. 

The issue of conflicting mathematical features is even more clear when examining the 

use of the unit price, and the proportional reasoning that goes along with it, in the 

example of the shopper’s spaghetti choices. There is a very obvious competing 

mathematical idea, namely the overall price. In order to find the most frugal and cost 

efficient choice of spaghetti, the individual needed to recognize that it was comparing 

the prices per unit, and not the overall prices, that was the correct approach to deter-

mining the best buy. While this may seem obvious to many frugal shoppers, an 

abundance of research suggests that many students do not recognize this, even after 

explicit instruction on relevant topics such as proportions (Van Dooren, De Bock, & 

Verschaffel, 2010).  

Being able to distinguish between multiple competing mathematical features of a sin-

gle situation may often be a core aspect of bridging the informal and formal mathe-

matics in and out of the classroom. This suggests that mathematics instruction should 

not simply provide students with mathematical problems that contain features and 

require reasoning with only a single mathematical skill or type of knowledge, but also 

present students with tasks that require them to recognize the crucial and most relevant 

mathematical aspects of a situation.  

How is math relevant? 

Crucial to the whole endeavor of bridging the formal and informal mathematical 

worlds, is making an explicit connection with existing formal mathematics knowledge. 

This involves either drawing on prior knowledge that can be built upon when building 
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up intuitive reasoning (as in the case of the underground numbers) or using the formal 

mathematical tools that are necessary to solve the informal situation and transcribing 

this formal mathematical knowledge into action and/or informal reasoning (as in the 

case of the supermarket). In order to successfully apply their formal mathematical 

knowledge in novel situations students must still identify which formal skills to apply, 

especially when formations do not align with traditional mathematical tasks. 

In the case of the underground numbers, in order to develop his intuitive reasoning 

about the underground numbers and their role in subtraction there were two aspects of 

formal mathematics that the child needed to translate into the situations. First, he 

needed to explicitly attach his prior knowledge about whole numbers to the floor-level 

numbers, including knowledge such as the fixed order to the counting sequence and the 

relation between the order of numbers and their relative magnitudes. Most crucially, 

the child needed to represent the extant, but problematic, constraint imposed by posi-

tive whole numbers – one cannot subtract a larger number from a smaller one. In both 

cases, this prior knowledge was called upon to create the intuitive understanding that 

the underground numbers were potential solutions to these bigger minus smaller 

problems. 

In the case of the shopping example, the transcription of formal mathematics onto the 

everyday situation is precisely the key feature of this activity. It was the act of applying 

their formal mathematical knowledge in an informal context that is core to this situa-

tion. However, it should be noted while the individual in this case was successful in 

their attempt to model this situation mathematically, this may not always be the case. 

The crucial feature of the proportional reasoning involved in the situation is that after 

the individual recognized that the overall size of the 12 ounce package was not one 

pound, but indeed less than that, the cost per unit actually went up and therefore made 

the smaller package less frugal. This inverse relation was recognized immediately, but 

was still founded in a the formal mathematics of inverse proportional relations.  

This inverse proportional relation is a complex interaction that many students struggle 

with in the mathematical classroom context, but can be fluidly dealt with by many 

without much formal mathematical instruction when embedded in everyday contexts 

(Nunes, Schliemann, & Carraher, 1993). More explicit instruction involving mathe-

matical word problems that include the messiness and realistic considerations involved 

in using formal mathematics in everyday life may help support the bridge between the 

informal and formal mathematics. 

EDUCATIONAL IMPLICATIONS AND FUTURE DIRECTIONS 

Instructional contexts that aim to bridge students’ informal and intuitive understanding 

of mathematical concepts and formal mathematics are often limited to trivial word 

problems, which most of the time only superficially place the most recently taught 

mathematical procedures in highly stylized contexts (Verschaffel et al., 2000). In 

contrast, the early years of mathematical development offer much more robust op-

portunities for children to negotiate between formal and informal mathematical rea-
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soning, as the topics are more in line with basic structures of human cognition (e.g. 

magnitude, natural numbers).  

As an alternative to the highly structured and superficial approach of traditional world 

problems, students may be better served by more rich opportunities to bridge their 

informal and formal reasoning also in later grades. Mathematics instruction may be 

able to offer tools to support bootstrapping intuitive reasoning into formal mathemat-

ical reasoning and may also be developed to support taking formal mathematical 

knowledge back out into students’ everyday lives, where they can gain the required 

experiences needed to build up strong conceptual structures. Putting students in situa-

tions where informal mathematical reasoning is needed in order identify and solve 

everyday problems is crucial for building these connections.  

Any potential boon for supporting the bridge between informal and formal mathe-

matical reasoning must be able to account for at least some of three aspects of this 

dynamic relation as described above: recognizing the relevance of mathematics in the 

situation, recognizing the most relevant mathematics, and applying the relevant formal 

mathematical knowledge in the situation. Others have found success in promoting the 

recognition of mathematics in non-explicitly mathematical situations (e.g. Hannula et 

al., 2005), and our research has shown that it is also possible to do so when there are 

conflicting mathematical features, such as recognizing multiplicative relations when 

exact number is a foil (McMullen et al., 2017a). Serious mathematical games involving 

novel, complex, and open problems may prove valuable to fostering the application of 

prior and relevant formal mathematical knowledge to informal and novel situations 

(Devlin, 2011).   

Examining the connection between informal and formal mathematical reasoning is not 

a novel pursuit. However, the present study provides a new perspective on the potential 

for building an accumulative curriculum for mathematics that is strongly supported by 

this two-way connection between informal and formal mathematical reasoning. It is 

possible that by supporting applying formal mathematics in everyday informal con-

texts through explicit instruction, this also leads to better opportunities to bootstrap 

informal reasoning in the creation of new formal mathematical knowledge. Likewise, 

supporting the creation of new formal mathematical knowledge by means of informal 

exploration may lead to better applicability of formal mathematical knowledge in 

everyday life. Such a positive, iterative, feedback loop could have long-term positive 

outcomes for all students’ mathematical development.  
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STUDENTS’ SENSE OF BELONGING TO MATHEMATICS  

IN THE SECONDARY-TERTIARY TRANSITION 

Maria Meehan, Emma Howard, and Aoibhinn Ní Shúilleabháin 

University College Dublin 

 

A “sense of belonging to math” (SBM) scale has been shown to predict undergraduate 

mathematics students’ intent to study mathematics in the future. In this study, we use 

the scale to examine the impact of the transition from secondary school to university on 

33 first year undergraduate students’ SBM. Using a cluster analysis, we identify three 

clusters: students in both Cluster 1 (n=21) and Cluster 2 (n=9) display a strong SBM 

at secondary school. Following the transition, those in Cluster 1 exhibit a decrease in 

SBM, while those in Cluster 2 show only a marginal decrease. Students in Cluster 3 

(n=3) show a strong increase in their SBM, but they started with the lowest SBM ini-

tially. From an analysis of interviews with seven of the students, factors that might 

impact students’ SBM during the transition are discussed. 

INTRODUCTION 

A “sense of belonging to math” (SBM) scale has been shown to predict undergraduate 

students’ intent to study mathematics in the future (Good, Rattan, & Dweck, 2011). A 

person’s SBM relates to whether one feels a member of a mathematical community, 

and feels valued and accepted by that community. Other factors influencing one’s 

SBM are: affect - the feelings and emotions surrounding learning mathematics; trust 

that members of the community have one’s best interests at heart; and, a willingness to 

actively participate in the community (Good et al., 2012).  

In this paper, we focus on examining the impact that the transition from secondary 

school to university mathematics has on students’ SBM. The students in this study are 

first-year undergraduates enrolled to a Science programme at a university in Ireland. 

They are “high-achievers” in mathematics in that most have taken higher level 

mathematics at school, and have chosen first year university subjects which make them 

eligible to pursue a mathematics (or related) degree. The structure of the Science 

programme means that they do not commit to a major until the end of second year - 

consequently, they can opt out of mathematics at the end of first or second year. Given 

the emphasis in Ireland on increasing capacity in the mathematics pipeline (Depart-

ment of Education and Science, 2017), it is important to investigate the effect that the 

transition to university mathematics has on students’ SBM, the factors which may 

impact it, and in turn, affect a student’s decision to continue pursuing mathematics. We 

address the following research question: 

• How does the transition from secondary mathematics to university mathe-

matics, affect high-achieving students’ SBM? 
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LITERATURE REVIEW 

Good et al. (2011) conceptualise SBM as involving “one’s personal feelings of 

membership and acceptance in an academic community in which positive affect, trust 

levels, and willingness to engage remain high” (p. 3). They created and validated a 

28-item SBM scale containing five subscales. Two of these relate to feelings of 

membership of, and acceptance by, one’s mathematical community. As positive emo-

tions towards a subject are likely to be linked to a feeling of belonging, the third sub-

scale relates to affect. The final two subscales relate to trust and a desire to fade. 

Trusting that peers and teachers/professors in the mathematical community have your 

best interests at heart, and wanting to actively participate in the community, are likely 

to contribute to a positive SBM. In a study of undergraduate mathematics students, 

Good et al. (2011) showed that SBM reliably predicted one’s intention to study 

mathematics in the future.  

Given the ability of the SBM scale to predict one’s intention to study further mathe-

matics, it is important to examine factors that build, or erode, one’s SBM. In a longi-

tudinal study of Calculus students, Good et al. (2011) examined the effect that stu-

dents’ perceptions of two messages from the environment had on their SBM. The 

message that mathematical ability is fixed, together with a stereotype message that 

men have higher ability than women in mathematics, was found to adversely affect the 

SBM of women over the semester but not men. However, female students who inter-

nally believed that mathematical ability could be improved with work, seemed immune 

to the stereotype message and their SBM remained high.  

A person who believes that ability is something you cannot change, is said to have a 

fixed mindset, or an entity theory of intelligence, while someone who believes that 

ability is malleable is said to have a growth mindset, or an incremental theory of in-

telligence (Dweck, 2006). Implicit theories of intelligence and their impact on 

achievement, learning, motivation, and resilience have been studied extensively by 

Dweck and colleagues (see for example Dweck, 2006). One particular study examined 

how implicit theories of intelligence impacted seventh grade students’ mathematical 

transition to middle school (Blackwell, Trzesniewski, & Dweck, 2007). It is common 

for seventh grade students’ mathematics grades to drop, and this was observed in the 

control group. However, in the group of who received the incremental theory inter-

vention, the decrease in results was reversed and by the end of the year had almost 

returned to the levels reported at the beginning. A growth mindset seemed to provide 

students with the resilience to navigate this mathematical transition. 

SBM is a complex construct and implicit theories of intelligence are just one of many 

factors that may affect a student’s SBM at the secondary or university level. For ex-

ample, Boaler (2002) argues that the mathematical practices students engage in, shape 

not only their mathematical identity, but the “disciplinary relationships” (p. 119) they 

develop. The mathematical transition from secondary to university mathematics is 

similarly complex and multi-faceted, involving transitions at the individual, so-

cio-cultural, and institutional levels, with students facing difficulties in many areas 
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from how they think about, and communicate, the subject, to grappling with the dif-

ferent didactical contracts of school and university (Gueudot, 2008).  

Mathematical community on the SBM scale is described as “the broad group of people 

involved in that field, including the students in a math course” and participants are 

informed that they could consider themselves a member “by virtue of having taken 

many math courses, both in highschool and/or [university]” (Good et al., p.18). At 

university, one would expect to find a community of practice of mathematicians 

(Wenger, 1998) and ideally the undergraduate mathematics student should be a le-

gitimate peripheral participant of this community (Lave and Wenger, 1992). In a study 

of twelve first year mathematics undergraduates, Solomon (2007) found that a student 

identity of apprentice to this community of practice was rare. Experiencing mathe-

matics as rules to be followed without understanding, not feeling ownership over the 

mathematical knowledge, and feeling vulnerable to failure due to fixed-ability beliefs 

about mathematics, all contributed to feelings of not belonging. 

METHODOLOGY 

The students in this study were enrolled to the first year of a Science degree pro-

gramme at a university in Ireland in 2014-15. In first year, students are free to pursue 

modules in their area(s) of interest, for example, in biology, chemistry, mathematical 

sciences, physics, and/or mathematics education. In second year, they choose more 

specialist modules, and at the end of this year they commit to one of twenty-six degree 

majors. Students registered to the first-year mathematics education module (n=40) 

were invited to take part in the study and 33 participated, of which 20 were female and 

13 were male. All but three of these were enrolled to modules that made them eligible 

to continue the study of mathematics in second year if they wished.  

In Ireland, for the final two years at secondary school (17-19 years), students study the 

Leaving Certificate Curriculum and sit the terminal state examination in six to eight 

subjects. These examinations are high-stakes as the total number of “points” received 

for a maximum of six subjects determines students’ entry to university. Almost all 

students take mathematics which is offered at three levels: Foundation, Ordinary and 

Higher. In this study, 31 students had taken higher level mathematics, with the re-

maining two entering university via a different route. For this reason, the majority can 

be considered as “high-achievers” in mathematics. 

A survey was administered in class towards the end of their first year. Students were 

asked to complete the SBM scale found in Good et al. (2012) twice – first as it related 

to when they were “in a maths setting at school”, and secondly, as it related to when 

they “are in a maths setting at university”, and state what subjects they intended to 

purse in Stage 2. They were also invited to participate in follow-up interviews. Seven 

students (four female and three male) agreed and these were conducted a few weeks 

later. The interviews were aimed at gaining more insight into the factors impacting a 

students’ SBM. In relation to both school and university mathematics, students were 
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asked about their experiences of studying mathematics, how confident they felt, and 

whether they felt a sense of belonging to the mathematics community.  

The SBM scale contains both negatively and positively worded items on a 5-point 

Likert scale (1=strongly disagree; 5=strongly agree). For the purpose of quantitative 

analysis, the negative items were reversed and the internal consistency of the SBM 

scale was investigated for each factor (membership, acceptance, affect, desire to fade 

and trust) as well as the composite SBM. As in Good et al. (2012), the composite SBM 

was created through developing subscale averages for each of the five factors and then 

averaging them to achieve an overall SBM score at both levels. SBM achieved a 

Cronbach alpha of=0.83 for school and α=0.87 for university.  

To analyze the change in students’ SBM in the transition from secondary to university, 

students’ subscale averages for each factor for both secondary school and university 

were clustered using mixed-model clustering (Scrucca et al., 2016). mclust is more 

flexible than K-means clustering as it allows for varying volume, orientation, and 

shape of clusters. Cluster analysis, based on the Bayesian Information Criterion, 

identified a three-cluster solution as the optimal solution. 

Finally, the interview audio-recordings were transcribed and analyzed thematically 

(Braun & Clarke, 2006).  

RESULTS 

On analyzing the change in students’ SBM from secondary school to university, cluster 

analysis identified a three-cluster solution as optimal. Each cluster can be discussed in 

terms of the change in students’ SBM over the transition (see Figure 1).  

 

Figure 1: Boxplot of students’ composite sense of belonging for each cluster and for 

secondary school and university 
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Students in the first cluster (n=21) display a strong SBM at secondary school that de-

creases following the transition. In comparison, students in the second cluster (n=9) 

have a strong SBM at school, however, this marginally decreases following the tran-

sition. Students in the third cluster (n=3) show a strong increase in their SBM, but these 

students started with the weakest SBM initially. In addition, two of these students had 

chosen subjects which made them ineligible to study mathematics in second year. 

In the following academic year 2015-16, 8 of the 9 students in Cluster 2 and 10 of the 

21 students in Cluster 1 were studying mathematics modules. No-one from Cluster 3 

studied mathematics in Stage 2.  

Of the seven students interviewed, four were from Cluster 1 (Grace, Joe, Julie and 

Lucy), two from Cluster 2 (Kate and Sean), and one was from Cluster 3 (Charlie). 

Grace, Lucy, Kate and Sean all continued to study mathematics in second year. 

(Pseudonames were assigned to the participants.)  

DISCUSSION AND CONCLUSION 

The secondary-tertiary transition is complex and involves many types of transitions. 

For this reason, Gueudot (2008) suggests that research dealing with issues faced by 

students in the last two years of school, and the first two years of university, may all 

contribute to our effort to better understand the transition. SBM is also complex, 

comprising of one’s feelings of membership and acceptance by a mathematical 

community, trust that the community has your best interests at heart, affect, and one’s 

willingness to activity participate in the community (Good et al., 2012). Even the no-

tion of community is complex, as students may belong to several, and sometimes 

conflicting, local communities of practice (Solomon, 2002). It is with this backdrop 

that we discuss our findings, and attempt to gain some insight into factors that may 

affect mathematical high-achievers’ SBM in the secondary-tertiary transition. 

In terms of Cluster 3, two of the students were enrolled to two, core “general” 

mathematics modules which made them ineligible to study mathematics in second 

year. The third had not taken the Irish Leaving Certificate. None continued to study 

mathematics in second year. It is interesting to examine Charlie’s experience of stud-

ying higher level mathematics at school, which ultimately turned him away from the 

subject. He described his teacher as “absolutely disastrous” and said: “he didn’t know 

any of our names, even in sixth year”. In his final year, he, along with “half my class”, 

had to pay for private tuition. Therefore, while his SBM did exhibit the largest overall 

increase in going from school to university, he was starting from a very low base and at 

university, just wanted to do the core mathematics “to get it out of the way”. It is not 

surprising that he did not wish to study mathematics at university. 

In relation to Clusters 1 and 2, it is not surprising that students’ SBM at secondary 

school was high. Most of these students had studied higher level mathematics, had 

gained entry to a highly competitive science programme, and 29 of the 30 had volun-

tarily chosen higher level mathematics modules in their first year at university, making 
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them eligible to study mathematics in second year. From the interviews of the six 

students from Clusters 1 and 2, a picture of successful, top-set students emerges. They 

came from schools where teachers knew them well and knew what they were capable 

of, and on occasions motivated them to do better. Most described themselves as being 

in the top higher mathematics class, and being confident at mathematics.  

When asked about their experiences of studying mathematics at university most men-

tion: the impersonal large lecture setting and adapting to the resulting teaching style; 

the increased level of difficulty of mathematics; and, working independently. One 

could see how these factors might erode a student’s SBM as they progress through first 

year, which makes the cases of Kate and Sean interesting. Despite experiencing these 

challenges their SBM decreased only marginally. Due to space constraints, we will 

briefly highlight two possible contributory factors in the case of Sean. 

Sean was the only student, who when asked about a sense of community at university, 

said there “is definitely” a “maths community” and gave a description most closely 

resembling that of a community of practice of mathematicians (Wenger, 1998). He 

explained that there are “so many more lecturers” compared to only three or four 

mathematics teachers at school. He is a member of the student Maths Society and has 

been to some of their events. In terms of participation, he said he has been settling in 

and has been a “bit quiet” but is “determined to get more involved next year”. He has 

also “chatted” to one of his lecturers a few times after class, and visited another in his 

office a few times. Sean’s recognition of the community of mathematicians, and desire 

to become more involved, suggests an identity of legitimate peripheral participant, 

which can be rare among first year mathematics undergraduates (Solomon, 2002). 

Secondly, Sean exhibits a growth mindset (Dweck, 2006). At school, he embraced 

challenging problems: “I actually love to sit there and like even if it took two hours, 

just to sit there and try and get my head around doing it”. At university, despite 

struggling to understand some of the mathematical concepts, and feeling “confused” 

and “frustrated”, his reaction is to acknowledge that it is all new, seek help, and put in 

the work. When speaking about Analysis he admitted “for the first time ever in a maths 

exam, I am genuinely one hundred percent frightened”. However, he explains that he is 

“just not used to” Analysis and has actively sought help from the university Maths 

Support Centre and looked up videos on Khan Academy. He acknowledged the amount 

of independent work he was putting in: “There has been an awful lot more of my own 

work going in” but he felt that was “natural” at university. His growth mindset seems 

to have given him the resilience to persist through challenges (Yeager & Dweck, 2012) 

and help him navigate the difficult mathematical transition (Blackwell et al., 2007). 

In conclusion, we have used the SBM scale (Good et al., 2011) to examine the impact 

of the secondary-tertiary transition on students’ SBM. Further qualitative analysis and 

research is required to better understand the many factors that might erode, or protect, a 

students’ SBM during this transition. 
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THE PROFESSIONAL, PEDAGOGICAL LANGUAGE OF 

MATHEMATICS TEACHERS: A CULTURAL ARTEFACT OF 

SIGNIFICANT VALUE TO THE MATHEMATICS COMMUNITY  

Carmel Mesiti and David Clarke 

University of Melbourne, Australia 

 

This paper draws on a project involving nine mathematics communities internationally 

that set out to identify the familiar, professional, pedagogical vocabulary in use by 

middle school mathematics teachers. The national research teams comprise both ac-

ademic researchers and experienced teachers and each lexicon identified the actual 

terms that teachers use when describing the phenomenon of the middle school 

mathematics classroom. Each such lexicon can be thought of as a cultural artefact of 

the mathematics teaching community in which its practitioners name the valued, 

pedagogical practices in their respective world. The documentation of these lexicons 

has significant practical value to each participating community and can also be used 

for the study and promotion of reflective practice of teachers. 

INTRODUCTION 

Researchers and mathematics teachers in teaching communities of Australia, Chile, 

China, Czech Republic, Finland, France, Germany, Japan and the USA set out to 

document the lexicons employed in nine countries for the description of middle school 

mathematics as part of the International Classroom Lexicon Project. These are the 

actual terms by which students, teachers and researchers name the objects in their res-

pective worlds and constitute empirical rather than theoretical frameworks through 

which phenomena of the mathematics classroom can be described. These assemblages 

of local terms (in the original language), used to identify classroom practices, reflect 

the well-established pedagogical traditions by which each of the participating com-

munities describes the activities of the mathematical classroom. In this paper, we will 

give an overview of the English-language lexicon of Australian teachers, as an exam-

ple, and reflect on its significance as a cultural artefact for its teaching community. We 

will also show, with illustrative examples from other non-English languages, that these 

lexicons can be viewed as indicative of forms of conventionalised practice; products of 

the pedagogical history of each community; and, tools for the study and promotion of 

reflective practice. 

THE PROFESSIONAL VOCABULARY OF TEACHERS 

The “English-language” professional lexicon available to teaching communities in the 

USA (and Australia) has been contrasted unfavourably with what is considered a 

well-articulated pedagogical naming system in China and with the strong traditions in 
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Japan of educators and teachers discussing research lessons (Lesson Study) (Lampert, 

2000).  

In their cross-professional study of clergy, teachers and clinical psychologists, Gross-

man and her colleagues found that  

“among our trio of professions, this language of practice seems particularly well-develo-

ped in clinical psychology but less developed in teaching” (Grossman, Compton, Igra, 

Ronfelt, Shahan & Williamson, 2009, p. 2075).  

Lortie’s much earlier observation, in his social portrait of the ‘Schoolteacher’ reported 

a lack of ‘technical language’ in teaching (Lortie, 1975). Whilst Lampert’s later ob-

servation also concurred that “no professional language for describing and analysing 

[teaching] practice has developed in the United States” (Lampert, 2000, p. 90). The 

absence of a “grammar of practice” (Grossman et al., p. 2069) has implications for the 

preparation of professions. Without the existence of a language and structure for de-

scribing pedagogical practice the provision of learning opportunities for novices is 

limited (p. 2075). Yet teachers do talk about their practice and this project set out to 

document the lexicon in current use by each community and to compare them. 

The lexicons documented for this international study were purposefully chosen to 

initiate cross-cultural dialogue in part to make amends for some of the less beneficial 

consequences of the internationalisation of English. The consequence of the function 

of English as the preferred speech of the international community includes the ampli-

fication of constructs and theories articulated in English to the exclusion of constructs 

only available in other languages. The International Classroom Lexicon Project seeks 

to correct this restriction of linguistic resources and the associated limiting of our ca-

pacity to identify, recognise and conceptualise pedagogical and didactical phenomena 

by expanding the lexical terms available to educators internationally, and thereby of-

fering new possibilities for practice and access to ideas and approaches. One key point 

must be made: the intention was (and is) to document existing professional lexicons in 

use by different communities of mathematics teachers, not to construct a single hybrid 

lexicon. We would contest the viability of a single international composite lexicon as 

inevitably discarding much of the associative richness only available separately to each 

language group. But we would argue that much can be learned from the comparison of 

the emphases and structure of the various lexicons. 

Of all the tools for cultural and pedagogical intervention in human development and lear-

ning, talk is the most pervasive in its use and powerful in its possibilities (Alexander, p. 

92).  

THE RESEARCH DESIGN FOR DOCUMENTING THE LEXICONS 

The research teams were tasked with addressing the question: What are the terms that 

teachers use to describe the phenomena of the middle school mathematics classroom? 

In order to do so a project-wide stimulus package of nine middle school mathematics 

lessons, a key catalyst for data generation, was compiled to include a lesson from each 
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participating community (see Figure 1). This collection of lessons, presenting a variety 

of instructional approaches and classroom settings, served to stimulate thinking about 

the terms used by teachers to describe the phenomena of the middle school mathe-

matics classroom. 

 

Figure 1. An example of the video material included in the stimulus package 

The very general prompt “What do you see that you can name?” was crafted to help 

stimulate thought about the video and to not place restrictions on what could be named. 

The use of video excerpts of classroom practice in very different school settings in 

different countries was intended to stimulate thinking about possible terms for inclu-

sion in the lexicon whether the term (activity, characteristic) was present in the video 

or not. The essential intention was to record words or short phrases that were familiar 

and in use by teachers within each participating community with a consistent and 

agreed meaning. 

Operational definitions were developed for the initial set of candidate terms. The es-

sential set of elements included: the named term (in the original language), a descrip-

tion, examples, and non-examples (in the original language and in English). The terms 

and operational definitions of the proposed lexicons were subjected to a local valida-

tion process by each national team. This process assisted in investigating the extent to 

which the local community of mathematics education researchers (and, in some cases, 

their educational colleagues) would endorse the listed terms and any emergent organ-

isational structure, as well as the descriptions, examples and non-examples.  

Following local validation, national surveys were subsequently developed to collect 

information about teachers’ level of familiarity with each of the terms, the extent to 

which they endorsed the descriptions, examples and non-examples, and the frequency 

with which they used the terms (or phrases) in conversation with their colleagues. 

Opportunities for commenting on the clarity and appropriateness of the descriptions 

and the examples and non-examples for each term were also provided. 
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THE AUSTRALIAN LEXICON 

The Australian National Lexicon consists of 61 terms that are considered familiar by 

teachers in the mathematics education community (See Figure 2 for a sample). 

Guiding

The teacher offers advice or suggestions in the 

form of questions or comments to assist 

students in completing and solving tasks.

For example:

• A teacher asks, “What else might you do?”

Non-example:

• “Try multiplying.”

• The teacher gives step by step instructions.

Justifying

An activity undertaken by the teacher or 

students that involves expressing why particular 

mathematical processes, solutions or theories 

work and providing evidence.

For example:

• The teacher encourages students to explain why a mathematical 

generalisation holds true.

Non-example:

• The teacher makes a statement about how a particular 

mathematical idea is true in all cases but gives no explanation 

related to how or why this is so.

Practising

The activity of repeating a procedure for the 

purpose of improving efficiency or accuracy in 

its use.

For example:

• A student solves ten consecutive tasks all involving the addition 

of fractions.

• A student works through the problems on past exam papers.

Non-example:

• A student attempts to make use of the property of similar 

triangles in a real-world context for the first time.  

Figure 2. A sample of terms and operational definitions from the Australian Lexicon 

The terms are distributed across five categories as follows: Administration (8 terms); 

Assessment (10 terms); Classroom Management (5 terms); Learning Strategies (27 

terms) and Teaching Strategies (49 terms). Some of the terms appeared in more than 

one category; 23 terms belong to both the Learning and Teaching Strategies categories 

(see Figure 3 for a sample). 

 

Figure 3. A sample of operational definitions organised by category 

An interesting feature of the lexicon is that few terms reveal a singular pedagogical 

intention or purpose for engaging in the particular instructional practice. For example, 

the term Questioning might be used to review a homework task, elicit prior knowledge 

or collect student approaches for solving a worded problem. This attribute of many of 

the terms of the Australian Lexicon might be seen either as inclusiveness or as lack of 

precision. Another feature of the Australian Lexicon is the high prevalence of gerunds 

(noun/verbs) (Correcting, Guiding, Practising, Justifying, Guiding, Questioning, Re-

flecting). Such terms give a sort of dynamism to the Australian Lexicon. 
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The results of the national survey indicated high familiarity with the term names. 

However, there appear pairs of terms with similar meanings that teachers found more 

difficult to distinguish one from the other. These include, for example, the terms 

Guiding and Scaffolding as well as the terms Recapping and Reviewing. This insight 

into teachers’ familiarity, use and understanding would assist the community in de-

veloping a more precise and practical understanding not only of the language but the 

practices themselves. 

In documenting the Australian Lexicon public recognition is given to the professional 

vocabulary by which the community of mathematics teachers conceive, implement and 

reflect on their teaching. The structure of each lexicon offers insights into the way in 

which the teaching community conceptualizes and organizes its practice and is a sig-

nificant and valuable resource for the promotion of reflective practice by teachers. 

LEXICONS AS FRAMEWORKS 

The lexicons documented in this project constitute empirical rather than theoretical 

frameworks through which phenomena of the mathematics classroom can be de-

scribed. In the following section we will show how these lexicons can be viewed as: a) 

indicative of forms of conventionalised practice; b) products of the pedagogical history 

of each community; and c) tools for the study and promotion of reflective practice 

among teachers. As such, there is great potential for insight into the evolution of 

mathematics classroom practice in several distinct cultures (as articulated in the asso-

ciated languages). 

A. Indicative of forms of conventionalised practice 

The nomenclature of classroom phenomena, documented by the lexicon, identifies 

practices that have become conventionalised. That is, the practice named by a partic-

ular lexical item is familiar to teachers and appears well-understood within that 

community without the need of a formalised description. However, what is considered 

a conventionalised and thus a named practice in one community might be unnamed in 

another. Consider the following examples: 

i. Kikan-Shido 

One of the most immediately familiar events in mathematics classrooms around the 

world is that moment when the teacher walks around the room after having set student 

work. The Japanese community refers to this classroom event as Kikan-Shido, literally 

translated as Between Desks Instruction.  

Our use of ‘Kikan-Shido’ honours the existence in one language of an established term that 

succinctly encapsulates an activity that could only be described in English by an extended 

phrase or lengthy definition. The utilisation of such terms conforms to a tradition that has 

seen ‘déjà vu’ and ‘Schadenfreude’ assimilated into English usage for precisely the same 

reasons. (O’Keefe, Clarke & Xu, 2006, p. 76) 

Whilst the form of this practice is familiar, it remains unnamed in the Australian na-

tional lexicon, for example. 
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ii. Warm-up 

In an earlier analysis of data from the Learner’s Perspective Study (LPS), Mesiti and 

Clarke (2006) examined the beginnings of lessons with respect to form and function in 

eight classrooms from the USA, Australia, Japan and Sweden. This phase of the lesson 

involved the first ten minutes and was made up of a sequence of activities of which 

some were customary in all classrooms whilst others were particularly prevalent in one 

teaching community only. In this previous study, we found the focusing activity re-

ferred to as warm-up as particularly prevalent in the US classrooms. This named ac-

tivity was familiar and the lexical term warm-up was used by both teachers and pupils, 

to the extent that if the activity were omitted, some students inquired “We’re not doing 

our warm-up?” (US1-L02. Every such named activity is reflective of local pedagogical 

history, and can be thought of as having arisen as meeting some instructional need. For 

example, an evident consequence of the use of warm up was the students’ immediate 

engagement in lesson-relevant activity. Minimum teacher direction was required for 

students to begin working: “Okay guys let’s go ahead and get started on today’s 

warm-up,” (US1-L01). 

iii. Bansho 

Considered, by Japanese teachers, to be an essential and important technique was 

Bansho, or the effective use of the chalkboard (Shimizu, 2007). Underlying this activ-

ity, is the purpose of maintaining on the board the written progression of the entire 

lesson. That is, by minimising the need to erase anything that was recorded at the 

board, students and teachers alike have access to a visible record suitable for reflection 

concerning the mathematical progression of the lesson. Anticipated in teachers’ lesson 

plans, the board is usually entirely filled with a structured array of problems, student 

solutions and teacher notes about their solutions. 

B. Products of the pedagogical history of each community 

The language by which teachers name the practices they orchestrate also reflects cul-

tural-historical origins. Let’s consider two terms, the Japanese term Matome and the 

Australian term Differentiating: 

i. Matome 

Matome refers to a teacher-orchestrated discussion that draws together the major 

conceptual threads of a lesson or extended activity, most commonly a summative ac-

tivity at the end of the lesson (Shimizu, 2006). This term names an activity that has 

been refined and elaborated over time as an essential component of accomplished 

practice and is an essential element of a professional vocabulary of teachers. The term 

Matome is also the name given to the last line of a haiku poem, where it serves the 

same synthetic purpose: the bringing together of key points into a crystallised whole. 

ii. Differentiating 

The lexical term Differentiating (in this context, the instructional accommodation of 

student difference) was proposed and endorsed as a legitimate term for inclusion in the 

Australian lexicon. However, one of the team members remarked that this practice was 
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once referred to as “catering for student individual differences.” It appears that this 

term, in the Australian lexicon, has come to replace the previous term. It is interesting 

to speculate what difference in pedagogical orientation is encapsulated in the shift 

from “catering for difference” to Differentiating. While the more contemporary term 

may sound more concerned with distinguishing between students with different needs 

than with meeting those needs, it appears that the spirit of its use is highly similar to the 

original form. Noting how and when a term makes the leap from the teachers’ staf-

froom to more formal curriculum and policy documents might help us identify 

mechanisms by which an educational reform might be more effectively and efficiently 

implemented. 

C. Tools for the study and promotion of reflective practice 

Consider the professional language of French teachers. Included are two constructs, 

Mise en commun and Bilan that both relate to the lesson phase of summative whole 

class discussion. Mise en commun can be described as “a whole-class activity in which 

the teacher elicits student solutions for the purpose of drawing on the contrasting ap-

proaches to synthesise and highlight targeted key concepts” (Clarke, 2010, p. 6) whilst 

Bilan, similarly, is also a whole-class discussion that identifies and synthesises the 

main points of the mathematical activity of the lesson. The distinguishing feature is 

whether the discussion synthesis was orchestrated by the students (Mise en commun) 

or by the teacher (Bilan). These two constructs in the French lexicon equip the teacher 

to reflect on these discussion practices because it makes the distinction between stu-

dent summative synthesis from teacher summative synthesis. These constructs operate 

as reflective tools and are unavailable to teachers whose lexicon fail to recognise this 

distinction. 

CONCLUSION 

The primary intention of the International Classroom Lexicon Project was to document 

the national lexicons of middle school mathematics teachers from Australia, Chile, 

China, Czech Republic, Finland, France, Japan and the USA. These national lexicons 

represent the familiar constructs that make up the professional vocabulary used by 

teachers, in discussion with others in relation to their classroom practice. 

One local intention of the Australian research team was to provide insight into the 

naming system employed by Australian mathematics teachers in relation to their 

classroom practice. From this foundation, we hope to inform efforts to better equip 

contemporary mathematics teachers with a sophisticated lexicon to shape their pro-

fessional practice. 

The focus of this paper has been on the implications of such lexicons as cultural arte-

facts and, potentially, as empirically-constituted bases for analytical frameworks. The 

detailed discussion of individual lexical terms is intended to illustrate how these lex-

icons can serve as representative of forms of conventionalised pedagogical practice 

with cultural and historical characteristics. The documentation of these lexicons has 
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significant practical value to each participating community, to the international 

mathematics education community for the access then encapsulated wisdom of 

centuries of pedagogical history and can also be used for the study and promotion 

of reflective practice of teachers. 
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YOU SEE (MOSTLY) WHAT YOU PREDICT:  

THE POWER OF GEOMETRIC PREDICTION 

Elisa Miragliotta* and Anna Baccaglini-Frank** 
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We consider geometric prediction (GP), as a mental process through which a figure is 

manipulated, and its change imagined, while certain properties are maintained in-

variant. In this report on a recent study, we concentrate: 1) on capturing processes of 

GP before explorations are carried out in a dynamic geometry environment (DGE), to 

gain insight into possible characteristics of such processes; 2) on possible implications 

it can have in a subsequent process of dynamic exploration of a DGE figure, in par-

ticular in the solver’s interpretation of feedback from the DGE. 

INTRODUCTION AND THEORETICAL GROUNDING 

As mathematics students, it has probably happened to many of us to listen to our 

professors quickly reason about a geometric configuration, reaching an “obvious” 

conclusion that could “clearly be seen” on the paper or the board in front of them. With 

uneasiness, and some embarrassment, we would nod and run to our room to try to see 

what was supposedly so clear, and maybe then try and prove it.  

In this paper, we focus on geometric prediction (GP), a mental process through which 

a figure is manipulated, and its change imagined, while certain properties are main-

tained invariant (Miragliotta, Baccaglini-Frank & Tomasi, 2017; Mariotti & Bac-

caglini-Frank, in press). In the vignette above, the expert geometry professors (for the 

sake of this paper let us think of Euclidean Geometry) are so skillful in carrying out 

GPs that they conceive new configurations or geometrical objects that others cannot 

even see. We are interested in gaining insight into processes through which GPs are 

accomplished, and how these predictions might condition subsequent explorations. 

Indeed, on the one hand, mathematics educators have recognized the importance of 

helping students learn to think like mathematicians; for example, Cuoco, Goldenberg 

and Mark have proposed to organize curriculum around mathematical habits of mind. 

Among these, we find “visualizing” and “tinkering” (Cuoco, Goldenberg & Mark, 

1996). Within the types of visualization discussed, the researchers include:  

reasoning about simple subsets of plane or three-dimensional space with or without the aid 

of drawings and pictures. […] Visualizing change. Seeing how a phenomenon varies 

continuously is one of the most useful habits of classical mathematics. Sometimes the 

phenomenon simply moves between states […]. Other times one thing blends into another 

[…]. This habit cuts across many of the others […] (ibid, pp. 382-383). 

These seem to be well aligned with Presmeg’s description (2006), which is  
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taken to include processes of constructing and transforming both visual mental imagery 

and all of the inscriptions of a spatial nature that may be implicated in doing mathematics 

(ibid, p. 206). 

Tinkering is described as being “at the heart of mathematical research” and it consists 

in “taking ideas apart and putting them back together”, and asking “what happens if…” 

(Cuoco et al., 1996, p. 379). Our notion of GP seems to have a lot in common both with 

the forms of visualization described and with the idea of tinkering, which justify its 

educational significance.  

On the other hand, studying GP and its relationships with dynamic geometry envi-

ronments (DGEs) seems especially important since this sort of technology can affect 

conceptualization and problem solving processes in Mathematics (e.g., Arcavi & 

Hadas, 2000). We believe GP to be key in geometrical problem solving, and we believe 

it can be trained, possibly using the support of a DGE (Mariotti & Baccaglini-Frank, in 

press). Moreover, we conjecture that once a GP is carried out, it can affect the sub-

sequent process of dynamic exploration in a DGE, influencing what the solver can or 

cannot “see”. Exploring this conjecture has particular educational significance. 

In the study we report on here, we concentrate firstly on capturing processes of GP 

before dynamic explorations are carried out, to gain insight into possible characteris-

tics of such processes; and, secondly, on possible implications it can have in a sub-

sequent process of dynamic exploration of a DGE figure, in particular on the solver’s 

interpretation of feedback from the DGE. 

RESEARCH QUESTIONS AND METHODOLOGY 

The data we present are part of a doctoral research project on geometric prediction for 

which 15 geometrical problems were designed and proposed to 18 Italian high school 

students (ages 14-18), undergraduates and graduate students majoring in mathematics 

(ages 19-33), during the months of November and December 2017. The problems were 

designed to elicit processes of GP and they were used within clinical interviews con-

ducted by the first author of this paper. Although all data has not yet been thoroughly 

analyzed we wish to use some of it to present a preliminary report on the following 

questions: 1) When GP is used (either spontaneously or prompted by the interviewer), 

by what kinds of verbal or gestural descriptions is it accompanied? 2) Once a GP is 

advanced and the student is given the opportunity to interact with a DGE figure cor-

responding to the configuration reasoned upon, how does the student interpret the 

feedback from the DGE? Does such feedback lead him/her to change the GP? 

All interviews were carried out in a quiet room and each student spent 60 minutes with 

the interviewer and worked through as many interview problems as they could. 

The “locus of P” problem 

The following task is a variation of a geometric problem described by De Finetti 

(1967). The task used in this study is composed of two parts. The first one is: 
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“Read and perform the following step-by-step construction: fix two points A and B; 

connect them with a segment AB; choose a point P on the plane; connect A and P with 

a segment AP; construct M as the midpoint of AP; construct the segment MB. Imagine 

moving the point P. If the length of the segment MB must always be constant, what can 

you say about the point P?” 

The step-by-step construction could be accomplished with paper and pencil (obtaining 

a construction like that in Fig. 1a); the question about P one was proposed first men-

tally, then solvers were offered the possibility of drawing ideas on paper. 

Once a construction was made in a DGE (GeoGebra) and the solver had proposed a 

solution or stated that s/he was not able to find one, part two of the task was given. The 

interviewer would ask the solver to move P in the DGE figure, consistently with her/his 

prediction, or else to explore the dynamic figure to help reach a solution. 

a) b)  

Figure 1: a) Configuration obtained from part 1; b) loci of M and P. 

To solve the task, the following mathematical facts are important to note: 1) M is the 

midpoint of AP, so AM is always equal to 1/2 of AP; 2) MB must always have the 

same length, the locus of M is a circle with center in B and radius BM.    

Solvers can reason in different ways; here, we describe a few possible steps leading to 

a solution. The discursive element “MB must always be constant” may foster recol-

lection of the definition of circle, leading to immediate recognition of the locus of M. It 

is also possible to recognize such locus when looking for “good positions” of P, that is, 

positions for which the length of MB remains constant. The solver can imagine moving 

M along the circle, or draw it, and observe different positions of P, discovering that 

also P lies on a circle. Using the relationship AP = 2AM, s/he can view the locus of P as 

the circle corresponding to the locus of M through a homogenous dilation of factor 2. 

This theoretical consideration may also help the solver find the center and radius of the 

locus of P: the center is a point O on the line through A and B, satisfying the rela-

tionship AO = 2AB; the radius has length 2MB (Fig. 1b).       

We conjectured that the task would foster various processes of GP, in particular for the 

loci of P and of M; indeed, recognizing the locus of M seemed a likely stepping stone. 

In the second part of the task, we expected the solver to use several dragging modalities 

(Arzarello, Olivero, Paola, & Robutti, 2002) and, in particular, maintaining dragging 

(MD) (Baccaglini-Frank & Mariotti, 2010) to maintain certain predicted properties.   



Miragliotta & Baccaglini-Frank 

  

3 – 390 PME 42 – 2018 

STUDENTS’ ANSWERS 

In light of our research questions, we analyzed the videos and transcripts of all stu-

dents’ interviews in the following way. We searched for and coded all excerpts con-

taining use of GP (spontaneous or in response to interviewer prompts), marking its 

being mathematically correct or not, and whether it was accompanied by explanations 

or not (whether they were mathematically correct or not). We also labelled all verbal or 

gestural descriptions by which these were accompanied. We then identified the ex-

cerpts in which the solvers explored the constructed DGE figure, and marked: whether 

the students spoke about new or contradictory properties (changing the product of their 

GP), whether the solvers seemed surprised by the feedback from the DGE, and whether 

they eventually reached a correct solution to the problem. 

Here we report on the analyses of the interviews of the eight students who were as-

signed the “locus of P problem”. Each of them uses different words and gestures. We 

will give more detail on two of the interviews in the next section. Table 1 summarizes 

results of the analyses of the outcomes of the most common of these students’ GPs: P is 

fixed (predicted by 5 students); M on a circle (predicted by 2 students); P on a circle 

(predicted by 3 students).  

GP Student Explained New 

ideas 

Surprise Correct 

solution 

P is fixed (GP1) S2 Yes No No No 

 S3 Yes Yes Yes No 

 S4 Yes No No No 

 S5 Yes No Yes No 

 S6 No Yes No No 

 S8 Yes Yes No Yes 

M on a circle (GP2) S1 No Yes No Yes 

 S2 Yes No No Yes 

P on a circle (GP3) S1 No Yes No Yes 

 S2 No Yes No No 

 S7 Yes Yes Yes Yes 

Table 1: Analyses of the outcomes of 8 students’ GPs on the “locus of P” problem 

Only 2 of the 8 students (S1, S7) find that the locus of P is a circumference; S2 declares 

this possibility, but then suddenly discards it. No student succeeds in correctly pre-

dicting the center or radius of the circle: some predict the center to be B. The solution 

processes of S1 and S7 have in common that the locus of M is made explicit, either 

verbally or by a drawing. As predicted, a process of GP leading to the locus of M seems 

to be essential in reaching a GP of the locus of P. Other common aspects of these 
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students’ processes of GP are: the GP on the locus of M is supported by the discursive 

element “constant/invariant length” of MB; the GP on the locus of P is accompanied 

by visual-spatial considerations that do not seem to have strong theoretical grounding. 

Indeed, S1 does not explain why she imagines a circle; while S7 describes the motion 

of P very well, but he does not refer to any theoretical elements supporting his GP. This 

lack of theoretical grounding of the GPs could explain the difficulties of both students 

in defining the circle’s center and radius.  

Another interesting consideration is that in all cases in which the incorrect GP “P is 

fixed” (GP1) is made explicit, it becomes dominant in the problem solving process and 

it impedes to find other “good positions” for P. In particular, 4 out of the 5 students 

who make GP1 and never reach the correct solution of the problem try to explain why 

they see P as fixed. Although 2 of these get new ideas from the DGE exploration, 

leading them to partially change their mind, none are able to generate and interpret the 

feedback in a way that allows them to reach the correct locus of P. Moreover, only 2 of 

these students seem surprised by the DGE feedback. These data support the hypothesis 

that students who succeed in explaining (incorrectly) their GPs have more difficulty in 

grasping DGE feedback in contradiction with them. 

On the other hand, S1, who fails to explain why the locus of P is a circle, and S7, who 

merely refers to spatial elements, seem more prepared to recognize and possibly 

modify some characteristics of the locus they had imagined. In particular, S1, in her 

dynamic exploration, looks for its center and radius; and S7 approximates the locus of 

P first with “a curve” then with “an ellipse” and finally with “a circle”. 

In general, it seems that all (correct and incorrect) GPs, produced before the DGE 

exploration – and more so when accompanied by explanations – strongly influence the 

subsequent exploration, conditioning how students interpret the DGE feedback. In 

particular, in the case of (mathematically) incorrect outcomes of processes of GP 

produced before a dynamic exploration, the DGE feedback in general does not help 

students to completely change their minds and recognizing a new contradictory geo-

metrical property. In the case of (mathematically) correct outcomes of processes of GP 

produced before a dynamic exploration, the DGE feedback does help students refine 

the outcomes of their GPs. We now present to more detailed analyses of excerpts of 

two students’ interviews. 

S1: unexplained semi-correct GP and proper interpretation of DGE feedback 

Shortly after reading the problem and having seen the configuration on the computer 

screen, but before dragging anything, the student S1 said: 

1  S1: The length of MB has to be constant…so I… so instinctively I would an-
swer that P has to move on a circle […] 

2  S1: I’m not…I’m not that sure it is a circle. I mean, intuitively I imagine it, but 
I wouldn’t actually know what center and what radius, I can’t imagine it. 

S1 immediately describes the product of a GP: the locus of P as a circle (GP3 in Table 

1). GP3 is identified seemingly quite rapidly (line 1) without passing through the locus 
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of M. However, GP3 is not completely clear to S1, who realizes she has not identified 

some of its characterizing features (line 2). The outcome of the GP is strong enough to 

allow S1 to trace the circle with her finger (Fig. 2a, 2b).  

a)    b)    c)  

Figure 2: a, b) S1 traces GP3 with her finger on the screen; c) S1 traces the locus of M 

(GP2) using her fingers as a compass. 

Then S1 tries to predict the center and radius of GP3. To do this she predicts the locus 

of M (GP2 in Table 1), using her fingers as a compass (Fig. 2c): 

3  S1: For this [MB] to be constant… 

4  S1: [she places the thumb in B and index of her right hand on M and rotates her 
index around the thumb] Yes, P should…maybe moves along a cir-
cle…with center at B. 

At this point S1 has produced a verbal and gestural description of GP3 and a gestural 

description of GP2. When she is asked to check her answers using the DGE figure. 

Initially S1 moves P continuously but only along a short arc of a circle, the one she had 

predicted. Doing this, she focuses on M and she verbally describes its locus: 

5  S1: So, yes, in order for MB to always have the same length, it is fundamental 
for M to move on a circle with center at B and…if M moves along a circle 
with center at B…also P will move on a circle. 

S1 uses MD expressing her intention of having MB “always have the same length”. 

This seems to lead her to perceive a relationship between the two predicted circles, 

expressed in the form “if …, also…” which seems logically close to the conditional 

form “if…, then…”. The interviewer asks for additional information on the locus of P: 

6  Int.: Can you say anything else about this circle? 

7  S1: Eh, I am asking myself if its radius is…if its center is B, but I don’t think so. 

As S1 answers (line 7) she keeps on using MD, making bigger movements along a 

predicted circle, which leads her to reject her initial conjecture for the center of the 

locus of P.  

a)    b)  

Figure 3: a) initial configuration from which S1 starts using MD to maintain the length 

of MB constant; b) P describes a circle as it is dragged using MD. 
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Finally, in light of her new GP supported by the DGE feedback (lines 5, 7), S1 decides 

to use MD on P trying to maintain M (Fig. 3b) on a constructed circle centered in B 

with a given radius (in Fig. 3 she chose point C randomly on the plane). 

This convinces S1 that P moves along a circle, but definitely not with center at B. So 

S1 seems to have a very constructive interaction with the DGE, using the feedback to 

support and refine her GPs. 

S2: explained incorrect GP and improper interpretation of DGE feedback 

Student S2 starts working in a paper and pencil environment, and quickly predicts that 

P has to be fixed: 

1  S2: If I move this [her finger runs along BM] it [M] moves but this distance 
[length of BM] increases…I would say that P is univocally determined, 
once A, B and m are fixed. 

This GP (GP1 in Table 1) seems to arise because of the possible movement imagined 

for M and P: whenever S2 speaks of moving P she moves her index or the tip of a pen 

in the direction of PA, as it is drawn, without ever changing its inclination. This GP 

seems closely related to the kind of movement imagined for M: it is only possible to 

stretch or shrink MB, but not to move M maintaining constant m, the length of BM. 

Moreover, at times, there seems to be ambiguity between “m” (the length of BM) and 

point “M”, leading to the idea that M must be fixed. Therefore, S2 predicts that, at 

most, A and P can move “coming closer and farther, to M in a proportional manner”. 

With this in mind, once she realizes that A is fixed, S2 is sure that P must also be fixed. 

The strength of her GP seems to inhibit S2’s ability to constructively interpret the 

feedback obtained from the DGE. Indeed, when asked to explore the dynamic figure, at 

first S2 tries to move P maintaining m = 2: 

2  S2: Ok, let’s put 2, even though I will never be able to make it 2. I don’t know. 

Although at least to positions in which m = 2 appear on the screen, S2 does not seem to 

notice them, and she puts P back in the original position, an instance in which m = 3.  

3  S2: Ehm, let’s put this one. I can move P, let’s activate the trace, maybe. 

As she moves P, S2 mentions the possibility of P moving on a circle, but she seems 

unsure and rapidly discards that possibility, even though a few good positions for M 

had appeared on the screen (Fig. 4). Instead, S2 continues to speak about the “fixed-

ness” of m that necessarily determines a single good position for P. 

 

Figure 4: S2’s attempts to drag P maintaing m = 3. 
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We see this as a case in which an incorrect GP with an explanation that seems to be 

very convincing for the student does not allow the student to generate and interpret 

constructively the feedback from the DGE. Indeed, although the DGE exploration 

makes use of MD, the student appears to be “blinded” by her original GP, to the extent 

that she cannot see any “good positions” for P other than the original configuration. 

CONCLUSION 

The analyses of students’ videos and transcripts revealed that processes of GP (or at 

least the description of their outcomes) tend to be accompanied by verbal or gestural 

explanations: for the GPs considered in this study 7 out of 11 times these explanations 

were present. The verbal and gestural forms varied from student to student. Moreover, 

our data suggests that once a GP is advanced and the student is given the opportunity to 

interact with a DGE figure corresponding to the configuration reasoned upon, the GP 

has influence on the DGE exploration. In particular, if the students are quite convinced 

by their (correct or incorrect) GP, the exploration only serves to refine or confirm the 

predictions, and there seem to rarely be instances of surprise in the exploration. This 

phenomenon, that we refer to as “power of the GP”, is particularly striking in cases in 

which the GP is incorrect and still drives the solver to see on the screen only what s/he 

has predicted and is, therefore, prepared to see.  
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In this paper, we discuss a teaching intervention utilising a two-faceted didactical tool 

that draws upon Toulmin’s scheme in order to introduce high school students to 

mathematical proof. An experimental research design was implemented. The results of 

the conducted analyses suggest that the proposed tool helped the students in discern-

ing and differentiating data from claims in a geometry proving problem, whilst they 

obtained appropriate overview of the structure of a valid proof, including their de-

veloping a need for including only necessary arguments in a proof. 

INTRODUCTION 

Proof and proving have been at the focus of extensive mathematics education research 

project identifying the students’ difficulties to experience the various functions of 

proof and, inescapably, an internal need for proof (Balachef, 1988; Hanna, Jahnke & 

Pulte, 2010; Harel, 2013; Herbst, 2002; Moutsios-Rentzos & Spyrou, 2014; Zaslavsky, 

Nickerson, Stylianides, Kidron & Winicki-Landman, 2012). These difficulties have 

been linked with the students’ limited opportunities to be engaged with the proof 

process in the textbooks and everyday classroom teaching practices (Alibert & 

Thomas, 1991; Thompson, Senk, & Johnson, 2012). To address these issues, re-

searchers have suggested ways of presenting and organising proofs —including Ler-

on’s (1983) structural approach, the two-column proof writing format (Herbst, 2002), 

self-explanations (Hodds, Alcock & Inglis, 2014), generic proofs (Leron & Zaslavsky, 

2013). The plethora of proof-related research projects is in contrast with the lack of 

research-based interventions (stressed in the 2017 special issue of Educational Studies 

in Mathematics, edited by Gabriel Stylianides and Andreas Stylianides). Conse-

quently, in this paper, we discuss aspects of a broader study about the utilisation of 

Toulmin’s theory and scheme in teaching interventions in high school geometry proof 

and proving. Focussing on the triadic relationship ‘data-warrant-claim’, we present a 

two-faceted didactical tool designed to facilitate the students’ gaining deeper under-

standing about the local and broader functions of these three elements, as implemented 

in a teaching intervention in a high school geometry class. 

TOULMIN’S SCHEME IN MATHEMATICS EDUCATION 

Toulmin’s (2003) theory of argumentation and his scheme concerns to all argument 

types and by adopting his perspective we essentially adopt the perspective of proof as a 

special case of argument, or a series of arguments (cf. Aberdein & Dove, 2013). 

Toulmin (2003) considers the argument as an organism, which “has both a gross, an-



Moutsios-Rentzos & Micha 

  

3 – 396 PME 42 – 2018 

atomical structure and a finer, as-it-were physiological one” (p. 87). He schematically 

organises five functional elements in the argument structure (Data, Warrant, Backing, 

Qualifier, Rebuttal, Claim). Mathematics educators, starting with Krummheuer (1995) 

have implemented Toulmin’s scheme initially in its restricted version (Da-

ta-Warrant-Claim; for example, Martinez & Pedemonte, 2014) and later in its full 

version (for example, Inglis, Mejia-Ramos, & Simpson, 2007) to analyse the students 

mathematical proof and proving. The case for the utilisation of the full Toulmin 

scheme goes beyond the scope of this paper, since in our intervention we employed a 

restricted version of this scheme, including the triad Data-Warrant-Claim. 

It is argued that Toulmin’s scheme may act as an accessible, attractive way of pre-

senting and organising the mathematical proof, helping the students to avoid common 

mistakes and to gain deeper understanding in the various components of proof. Fur-

thermore, Toulmin’s scheme may be utilised to facilitate the students’ realising that the 

links between data and claims are crucially dependent on the link itself: the warrant. 

For example, the same datum may be linked through different warrants with different 

claims, different data may be linked through different warrants with the same claim, 

whilst the same datum may be linked through different warrants with the same claim. 

Importantly, the scheme may be employed to reveal the local nature of these labels 

within an argument. For example, an intermediate claim is usually used as datum in a 

subsequent argument. In line with these ideas, Hein and Prediger (2017) drew upon 

Toulmin’s ideas to design an educational material combining an expansion of Toul-

min’s scheme with structural scaffolding aiming to facilitate the students’ formal 

reasoning through their explicit experiencing and becoming aware of the elements of 

the utilised arguments and their functions. 

A TWO-FACETED TOOL FOR TEACHING PROOF IN GEOMETRY 

Following these, Toulmin’s scheme may be used as the basis of didactical tools that 

visually differentiate seemingly similar, yet logically distinct cases, which may be 

otherwise didactically conflated, thus supporting the students’ gaining access to the 

inner structure of the proof construction. A didactical tool was designed comprised of 

two complementary parts and was implemented in a teaching intervention investigat-

ing the effects on the students’ understanding of proof. We focussed on two aspects of 

the validity of a proof: a) micro-local validity; each argument needs to constitute an 

appropriate data-warrant-claim triad, b) macro-local validity; each proof needs to be 

founded on a series of such arguments. The two complementary parts of the didactical 

tool were the DWC (Data-Warrant-Claim) Table tool (Figure 1; left) and the Proof 

bearing structure tool (Figure 1; right). The DWC Table tool is designed to facilitate 

the students experiencing the local DWC relationships in the arguments that constitute 

the building blocks of the proof. It consists of three main (plus two auxiliary) columns 

entitled respectively ‘Data’, ‘Why?’, ‘Conclusions’ in line with the language estab-

lished in everyday pedagogy and with Toulmin’s respectively Data, Warrant, Claims. 

Each line of the table constitutes a mathematically valid argument. In the ‘Data’ 

column, the students fill in with the appropriate text (including mathematical formulae, 
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natural language etc), characterised in an auxiliary column either as ‘Hi’ (referring to 

‘Hypothesis’, in the sense that it was given to hold true in the particular problem or a 

known geometrical fact) or with ‘Ci’ (referring to an already proven ‘Claim’). In the 

‘Conclusions’ labelled column, the students would fill in the particular claim argued in 

the specific line, characterised in an auxiliary column either as ‘Ci’ or as ‘A’ (what is 

asked to be proved in the particular problem). The ‘Why?’ column is filled with the 

warrant that links a particular ‘Hi’ with a ‘Ci’ (or ‘A’). The proof would be concluded 

in the case that a Ci is the same with the statement asked to be proved, thus denoted 

with ‘A’. Subsequently, the Proof Bearing Structure tool was utilised to create a 

DWC-framed structure of proof, following a building metaphor. The foundations of 

the proof frame should be Hi. Note that, ‘Hi’ are denoted with boxes, ‘Ci’ (or ‘A’) with 

ellipses and warrants with arrows. The proof is ‘vertically’ developed in levels, with 

each ‘higher’ level (claim) requiring ‘pillars’ (warrants) founding them on the ‘lower’ 

levels (data). A level may be at the same time be founded on another lever or act as the 

base of another level, thus embodying the potential synchronous data-claim nature of a 

statement. The highest level of the structure is ‘A’. These ideas are schematically 

outlined in Figure 1 and exemplified in Figure 2. 
 

DWC (Data-Warrant-Claim) Table tool Proof bearing structure tool 
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Figure 1: The two-faceted didactical tool 

The triangle ΑΒΓ is isosceles. Let Δ and Ε points on its base so that ΒΔ=ΕΓ. 

Prove that the triangles ΑΒΔ and ΑΓΕ are congruent. 
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H3 ΒΔ=ΕΓ  

SAS 

   Δ         Δ 

ΑΒΔ=ΑΓΕ 

 

A 

 
C2 ! ="  

C1 ΑΒ=ΑΓ 

  

Figure 2: An example of the implementation of the tool 

Following these, a study was conducted to investigate the educational implications of a 

teaching design incorporating the abovementioned two-faceted proof construction 

tool. In this paper, two aspects of the broader study are discussed the students’: a) 

understanding and differentiation of what is ‘given’ and what is ‘asked’ in a geomet-

rical proving problem, and b) ability to evaluate proof structures. 
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METHODS AND PROCEDURES 

The participating system: the students, the teacher and the curriculum 

The students attending two classes in the first grade of Lykeio (16 years old) in Greece 

participated in the experimental design of the study: the class that the intervention was 

implemented (‘intervention’ class; NINT=23) and the class taught as usual 

(‘non-intervention’ class; NNINT=24). The grade was purposefully chosen, as in Greece 

the students are introduced to deductive proof in the Geometry course taught in this 

grade (two 40-minute ‘class hours’ per week). The curriculum explicitly mentions that 

the teaching of Geometry at this grade should focus on mathematical proof, facilitating 

the transition from the empirical and inductive reasoning to the formal and deductive 

reasoning, as means for securing the mathematical ideas and claims. Hence, the stu-

dents participating in the study are expected to be in their introduction to mathematical 

proof stage. Both classes were taught by the same teacher: an experienced mathema-

tician with a masters degree in mathematics education. Informal interviews were 

conducted to identify her usual proof teaching practices. Though in line with the Greek 

curriculum, she would choose different approaches when her experience and education 

would advise her otherwise. When presenting a geometrical proving problem, she 

emphasises the distinction between what is ‘Given’ and what is ‘Asked’, using a 

two-column table, filled in with parts of the text included in the problem wording, thus 

transforming it to a more functional format for a proof construction (according to the 

teacher). Considering the students that participated in the study, she argued that the 

majority held negative views of the course, not being able to see its usefulness, whilst 

many students could not differentiate proof from observation. She stressed that her 

students had insufficient knowledge of terminology and definitions and they faced 

difficulties with the Data-Claims distinction. 

The research design 

A five-phase research design was adopted, consisting of the intervention (audio rec-

orded, spread in three class hours) and the pre-/post-intervention testing (pa-

per-and-pencil, two class hours): a) Pre-intervention test (both classes, 40 min.; in-

cluding data-claim differentiation and proof evaluation), b) Introduction of the 

two-faceted tool (intervention class, 30 min.), c) Proof structure evaluation (interven-

tion class, 20 min.), d) Proof construction (intervention class, 40 minutes), e) 

Post-intervention test (both classes, 40 min.; similar to the Pre-intervention test, in-

cluding Proof bearing structure questions only for the intervention class). 

Considering the content and the procedures of the intervention, the teacher was in-

formed about the two-faceted tool after the aforementioned interview and sufficient 

time was dedicated in her ‘training’ to appropriately utilise the tool, emphasising the 

need to consistently use specific terms and phrases, as well the way she would respond 

to various scenarios. This process was a crucial part of our design, as we wished for our 

intervention to be the least intervening in the pedagogical contract established in the 

class system. For example, the choice of the words ‘Why?’ and ‘Conclusion’ were 



Moutsios-Rentzos & Micha 

 

PME 42 – 2018 3 – 399 

selected as best fit with her everyday teaching. This was especially important in the 

‘Introduction of the two-faceted tool’ phase, where the students first filled in a ‘DWC 

Table’ for a given proof and, subsequently they constructed the respective ‘Proof 

bearing structure’. Emphasis was given in making explicit of the non-bijective rela-

tionship between a datum and a conclusion, thus requiring appropriate linking to 

specify the specific bond that secures the specific data-claim relationship as a valid 

mathematical argument. Furthermore, the building-construction metaphor was evident 

in various wordings and representations, in an effort to mobilise appropriate embodied 

metaphors, which have been found to be appropriate in the teaching of geometry 

(Moutsios-Rentzos et al, 2013). In the ‘Proof evaluation phase’, the students were 

asked to utilise these experiences in their evaluation of given proof bearing structures. 

Finally, in the ‘Proof construction phase’, the students were asked to fill in an empty 

‘DWC Table’ using proof excerpts given to them and to appropriately signify them (by 

using ‘Ci’, ‘Hi’ and ‘A’). Subsequently, they were asked to construct the respective 

‘Proof bearing structure’. In the last part of this phase, the students fill in the ‘DWC 

Table’ and to construct the respective ‘Proof bearing structure’ for a given proof. 

Finally, all the audio recordings and the digitised tests were submitted to both quan-

titative and qualitative analysis. In this study, we focus on two questions of 

post-intervention test, drawing upon comparisons between intervention and 

non-intervention class in a ‘Given’-‘Asked’ differentiation question (Figure 3), com-

plemented with qualitative analysis of the intervention class responses in proof bearing 

structures evaluation questions (Figure 4). 

RESULTS 

In this paper, we discuss only two aspects of the study: the distinctness between 

‘Given’ and ‘Asked’ in the wording of a geometrical proving problem and the evalu-

ation of proof bearing structures. In the pre-intervention testing, no statistically sig-

nificant differences were found between the two classes with respect to their ability to 

identify and differentiate ‘Given’ from ‘Asked’. Subsequently, we compared the stu-

dents’ responses in the ‘Given’-‘Asked’ distinction post-intervention testing question 

(Figure 3). The Fisher’s exact test revealed that the intervention class scored statisti-

cally significantly higher than the non-intervention class only in the first item in the 

‘Given’ column “ΑΔ bisector of the angles Α and Δ” P=0.020; respectively 7/23 and 

1/24 correct), implying that the students of the intervention class were more successful 

in the ‘Given’-‘Asked’ distinction. In order to gain deeper understanding of this 

finding, we considered the fact that the same statement was used in the sixth item in the 

‘Asked’ column to investigate whether it would be classified as being both ‘Given’ and 

‘Asked’. No students of the intervention class made this mistake. That is, even the 

students who were unsuccessful in correctly identifying this statement as ‘Given’ or 

‘Asked’ did not assign to it a dual, logically impossible, status. In contrast, in the 

non-intervention class 4 out of 24 students made this mistake. Thus, it is argued that the 

intervention design helped the students to overcome this difficulty more successfully 

than those taught in the usual approach of the particular teacher. 
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For each of the following statements, choose ‘T’ (true) when they contain all the Given or all the 

Asked of the following statements. Otherwise choose ‘F’ (false). 

In two isosceles triangles with common base ΒΓ, ΑΔ is the common bisector 
of the angles Α and Δ.  
Given Asked 

1. ΑΔ bisector of the angles Α and Δ T F 4. ΑΒ=ΑΓ και ΒΔ=ΓΔ T F 

2. Triangles ΑΒΓ and ΒΓΔ isosceles 

ΒΓ base of ΑΒΓ and ΒΓΔ 

T F 5. Triangles ΑΒΓ, ΒΓΔ isosceles T F 

3. ΑΒ=ΑΓ, ΒΔ=ΓΔ and ΒΓ common T F 6. ΑΔ bisector of the angles Α and Δ T F 

Δ 

Γ B 

A 

 
Figure 3: ‘Given’ – ‘Asked’ distinction (both classes)  

 

Study carefully the following proof bearing structures. Choose ‘T’ if you think 

the structure is correct and ‘F’ if not. In the case you think it is incorrect, please 

note on the structure which part(s) of the structure is/are incorrect and provide a 

short explanation about the mistakes you noticed. 

 T F (explanation) 

1. 

 

  

3. 

 

  

 

 

 

 

 H1 H3  H2 

C1 C2 

 C3 

 H4 

 A 

  H1 

 

  H2 

 

  C1 

 

   C2 

 

  A 

  H3 

  
Figure 4: Two Proof bearing structure evaluations (intervention class only) 

With respect to the ability of the students of the intervention class to evaluate proof 

bearing structures, the analysis of the students’ evaluations and justifications in a series 

of seven proof bearing structures (PBS) questions, two of which are discussed in this 

paper (PBS1, PBS3; Figure 4) revealed that most of the students realised the necessity 

that each claim should stem from another, already founded claim (‘given’ or proved). 

For example, in PBS1 (Figure 4, ‘up’) 19 students (out of 23) correctly identified that 

this structure as impossible. 17 out of the 19 provided explanations, all of which also 

correctly noted that C1 is not supported by a valid claim. For example, the students 

wrote “C1 is not supported”, “C1 is not linked with any hypothesis” and “C1 does not 

lean on anything”. Thus, it seems that the students build on the building metaphor to 

justify their decision, which is evident by their adopting the corresponding wordings. 

Nevertheless, it was unclear only from these responses whether their expressed need 

for support was local –in the sense of the existence or not of immediate supporting 

pillars– or was extended to cover the whole proof bearing structure.  

Furthermore, an interesting finding was revealed in the students’ justifications. In 

PBS3 (Figure 4) 8 out of the 23 students characterised the structure as impossible. This 

structure has elements that though not micro-locally invalid, they are not necessary for 

the macro-local validity of the proof. 6 out of the 8 students who provided justifications 
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stressed that PBS3 was not correct as “C1 is not linked with A” or “C2 does not support 

anything”. It appears that the two-faceted tool helped the students to develop a need for 

economy in proving, in the sense that a mathematical proof should contain only nec-

essary building blocks. Such a view may be linked with the mathematicians’ perspec-

tive of proof who would choose to produce a proof containing only logically necessary 

parts. A proof containing logically abundant parts may be characterised as not ‘ele-

gant’ or maybe ‘didactically helpful’, but would not be classified as an invalid proof. 

Importantly, it is argued that these answers may be didactically utilised to discuss 

delicate matters such as logical necessity and mathematical validity. 

CONCLUDING REMARKS 

In this study, we discussed aspects of a broader study about the implementation of a 

two-faceted didactical tool, designed to facilitate the students’ producing and evalu-

ating proofs in high school geometry. We drew upon Toulmin’s restricted scheme to 

design a tool that explicitly links two distinct proof validity levels: the micro-local 

level of the arguments employed and the macro-local level of a proof bearing structure. 

We discussed the short-term effects on the students’ ability to discern and differentiate 

what is given and what is asked in a geometrical proving problem, as well as their proof 

bearing structures evaluations. The conducted analyses revealed that the intervention 

class statistically significantly outperformed the non-intervention class in the ‘Giv-

en’-‘Asked’ task, whilst no student of the intervention class characterised a statement 

both as ‘given’ and as ‘asked’. It is argued that the proposed two-faceted tool seems to 

enjoy the benefits reported in similar designs (such as the two-column proof format). 

This may be also linked with the students’ active engagement with the multiple 

re-organisations of a proof (Hein & Prediger, 2007), which facilitated their gaining a 

deeper understanding of the triadic link amongst data-warrant-claim in a proof. 

Though further research is being conducted to investigate the temporal stability and the 

long-term effects of the utilisation of the proposed tool in everyday teaching, it is 

stressed that the building representation metaphor accompanied with embodied verbal 

metaphors in the teaching (both in the representation and the wording choices) seemed 

to have a broader effect to some students that transformed the need for appropriate 

support to a need for appropriate necessary support. It is posited that such an effect 

may be didactically utilised to help the student’s view of proof as an anthropological, 

accessible to them, construction (cf. Hersh, 1997), thus facilitating their experiencing 

internal needs for proof (cf. Moutsios-Rentzos & Spyrou, 2013). 
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STUDENTS’ PATHWAYS FOR SOLVING 

PROBABILITY PROBLEMS 
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To produce mathematics knowledge for teaching probability, this study explored 

students’ representations and associated errors as they solved probability tasks. Sfard 

(2007)’s argument of mathematics as discourse and, Chaput, Girard and Henry 

(2011)’s three probability learning modelling processes guide the study. Data from 

sixteen grade 10 students aged between 15 and 17 years showed that students regarded 

representations as thoroughfares that mediate task solution, but most students could 

not construct correct representations. Further, interviews showed that some students 

had little faith in their constructed representations and suggested better task solutions 

independent of their representations. Probing of students’ visual representations in 

interviews helped them to get better insight for solving the probability problems. 

INTRODUCTION 

This article aims to contribute to mathematical knowledge for teaching probability 

through the study of the errors and misconceptions grade 10 students have when 

solving probability problems through their visual representations of the probability 

problems. Polya (2014) suggested that to be able to solve a problem, the first thing 

needed is to understand the problem. The second stage is to devise a plan or strategy of 

how to tackle the problem, before actually implementing and executing the plan. One 

of the problem solving strategies that Polya proposed among others was to draw a 

picture; that could be a visual or a model to represent known information so that 

relationships between variables can be analysed in greater detail. Written down 

representations give rise to visually mediated cognition. As probability problems are 

often abstract to students, Borovcnik (2014) argues that students’ use of probability 

models is essential to conceptualise the inner-working of probability and inference. In 

the same way Pfannkuch and Ziedins (2014) suggest that “…although they [models] 

are only approximations to what happens in the real world, these approximations can 

help us better understand the behaviour in the real world” (p. 103). Once models are 

understood, they can be generalised to a class of problems (Lee & Doerr, 2016), so that 

new knowledge in the real world problems is gained. 

THEORETICAL FRAMEWORK 

Engaging mathematics tasks is seen as participating in a mathematics discourse (Sfard, 

2007). According to Sfard (2007, p.571) “visual mediators are means with which 

participants of discourses identify the object of their talk and co-ordinate their 

communication”. It is envisaged that when students engage with new mathematical 
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tasks such as probability, they begin that through the platform of old discourses, which 

discourses may not be sufficient. As they work with more knowledgeable others, they 

learn new discourses and thus gain knowledge. Errors and misconceptions in 

probability mean that the students will still be using old discourses incommensurate 

with new knowledge. Further, Sfard regards all mathematical activity as visually 

mediated in some way or another.  

Brodie and Berger (2010) have suggested a class of errors that researchers may see in 

students’ work. The first is the error due to procedure; the “halting signal” error 

(described by Sfard 2008, p. 214). This occurs when a learner gets an answer to a 

question and believes that it is the final answer not realizing that they need to process it 

further as they are only ‘half-way’ through. Thus, a halting signal triggers premature 

closure of a routine. In this case an incomplete answer, a pre-mature one is taken as 

final. The second type of error proposed by Brodie and Berger (2010) is a ‘keyword 

trigger’. A particular word in a probability question may evoke a learner to use a 

particular routine over and above others. The third is the error of signifiers. A learner 

might have used certain terminology successfully in the past and when they encounter 

new situations, they fail detach themselves from past meanings. The fourth error is that 

of ‘familiarity’. The fifth is the ‘visual mediation error’. This occurs when students fail 

to represent information given in a probability task using representations such as tree 

diagram or contingency table. This also occurs if a learner, having drawn a good 

representation fails to encode it, to re-interpret it so that they can obtain the answer 

befitting to the original probability question.  

Chaput, Girard and Henry (2011) suggest that a probability learning modelling process 

has three levels. The first is translating the contextual problem presented into a 

pseudo-concrete/visual working model. This comes through decoding what the 

question says and representing it visually by a sort of representation most often through 

paper and pencil. They argue that the second stage is mathematising the model and 

working with the model to investigate the nature of the original contextual problem. 

The third stage involves checking whether the model fits with the empirical data and 

re-interpreting the model with the original probability task if needed. This inductive 

work is very important as it usually results in students discovering patterns for 

answering particular types of probability tasks. This results in probability laws such as 

the binomial random variable, the uniform random variables and so on. It is within this 

framework that we studied the student errors and misconceptions when answering 

probability questions with the mediations of visual representations.  

In this article the research questions are: 

• What errors and misconceptions exhibit in student’s visual representations as 

they solve probability problems? and; 

• What explanations can we propose for the errors and misconceptions as a 

result of the students’ visual representations?  
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METHOD 

Kvale (1996) argues that qualitative interviews seek to factually describe participants’ 

thinking in vivo; and also fathom participants’ meanings on the unit(s) of analysis of 

the study. In this study the unit of analysis of the study concern the errors and 

misconceptions associated with learners’ probability solutions. The study was carried 

out on a class of 16 grade 10 boys and girls in a Johannesburg, Soweto Township 

School, South Africa. These are students who are in their third year in high school. The 

students were aged between 15 and 17 years. The tasks were constructed in accordance 

to the current curriculum. This was done mainly for ethical reasons so that students 

would engage in learning activities that would also help them in their current studies 

and not only for research purposes. At first, a set of grade 10 level probability tasks 

were collected from the mathematics curriculum assessments. The tasks were 

validated by other three grade 10 mathematics teachers and piloted with five grade 10 

students from a different school in Soweto and adjustments made.  

RESULTS AND DISCUSSION 

The unit of analysis was students’ representations of probability problems which act as 

visual mediators of mathematics discourse (Sfard, 2007). Students used these to 

communicate with themselves as they solved the probability tasks.  

Item 1 

What is the probability of getting two 3s if a six-sided die is tossed two times? Show all 

your work with a diagram.  

Most learners who attempted it failed to realise that the tree diagram ought to have six 

branches, one for each number in the dice or respectively two branches one for a 3 and 

the other for a not 3. Two students who got the correct answer for the item drew 

incorrect tree diagrams.  

Prisca’s tree diagram which was a typical example of the tree diagrams drawn by other 

students. This representation shows learners’ counterintuitive ideas and paradoxes in 

solving probability problems. We called Prisca to an interview in which we ensured 

that she like all other interviewees was relaxed and felt secure. Below is an excerpt of 

the interview with Prisca: 

Researcher:  Prisca, tell me how you used this diagram to find the probability of 

obtaining two 3s when a six sided die is tossed two times? 

Prisca:  when the die is tossed, getting a 3 I wrote here (pointing to the top 3) 

Researcher:  … and the other 3s you wrote… what do they represent? 

Prisca:  the second 3 (pointing to the bottom 3) is the second 3 that is obtained 

Researcher:  What about that other 3 and the  

Prisca:  The  is the probability of getting the first 3 
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Researcher:  What then is the final answer to the question? 

Prisca:  I think  and  which gives  

Researcher:  Do you think your answer is correct Prisca? 

Prisca:  I am not sure it is correct 

Researcher:  Why do you have two branches for each toss? 

Prisca:  When we did tree diagrams for tossing a coin we had two branches, one for 

head, the other for tail… 

Researcher:  Is that the reason why you had two? 

Prisca:  Yeah 

We were not sure that the student could notice that there were two outcomes in a coin, so 

we got further. 

Researcher:  In tossing a coin what are the possibilities the coin can fall? 

Prisca:  A head or a tail 

Researcher:  Which is, how many possibilities? 

Prisca:  Two 

Researcher:  In a die? 

Prisca:  Six 

Researcher:  Which are those? 

Prisca:  1, 2, 3, 4, 5 and 6 

Researcher:  So how many branches must you have on each throw 

Prisca:  Six ma’am. I realize my mistake! 

Researcher:  … and the 3x3? 

Prisca:  I just multiplied 

Researcher:  Why? 

Prisca:  I don’t know 

We had expected 6 branches on each toss given the student was not advanced enough 

to analyse at that level. The student’s response confirmed our assumption that the two 

branches for each toss did not mean a “3”’ and “not a 3” which could have been an 

acceptable representation for the problem. This signified a fixation on a familiar type 

of representation; of tossing a coin that has two outcomes, a head and a tail, and 

therefore the corresponding tree diagram also has two branches. We interpret this as an 

error of familiarity (Brodie & Berger, 2010), of wrongly assimilating unknown into the 

known. This may also be seen as the natural error of using old discourses in new 

situations where new discourses must be learnt (Sfard, 2007). Although the tree 

diagram is one of the most helpful representations, though not the most economic for 

this problem, with this example we realize that often a representation can become a 
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problem if it is not carefully constructed and interpreted as in Prisca’s case. This was a 

‘visual mediation error’; failure to properly encode variables in the question in a 

representation. From another angle we presume that the first stage of Polya (2014) 

problem solving approach was not understood. If a student does not understand the 

problem, then any success in producing a model to solve it is greatly compromised as 

in this Prisca’s case.  

A very common incorrect response to item was  , the chance of getting a 3 on just one 

roll. This is an example of a ‘halting signal error’. Students felt no further need to do 

any more working. The fact that some students did not attempt the item at all was 

intriguing. Janine was one such learner. The authors became interested to know why 

she did not attempt the item.  

This interview suggested that Janine did not attempt the question because she had no 

plan where or how to start. In other words she did not know what discourse to engage 

(Sfard, 2007). Janine’s response shows that she did not comprehend the task (Zahner & 

Corter, 2010), the first stage to solve a probability task. After a researcher had 

explained the problem in simpler terms for her, Janine said “Oh, ok. I was supposed to 

use that tree diagram” whereupon she drew a tree with two branches and got stuck in 

assigning outcomes. She went on to draw a tree diagram with two branches meant for 

tossing a coin. This suggests that she chose a familiar representation (Brodie & Berger, 

2010) but was unable to adapt it to the new problem. So this was an error of familiarity. 

Item 2 

In a class of 33 students, 6 of the 15 boys are left-handed and 5 of the 18 girls are 

left-handed. 

a. Draw a suitable diagram to represent the given information  

b. Find the probability that a girl chosen at random will be left-handed 

Most students answered this item correctly and attempted to solve both parts of the 

item. Ten students constructed contingency tables, three drew other type of tables and 

three drew Venn diagrams.  

We next analyse Tongai’s answer (Figure 1). 

 

Figure 1. Tongai’s Initial Venn diagram 
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Tongai drew a ‘Venn diagram’ rather than a contingency table. The following excerpt 

captures the interview with him.  

Researcher:  Tell me Tongai, did you use this diagram to answer these questions 

(pointing to the item)? 

Tongai:  Yes maám. 

Researcher:  Show me how. 

Tongai:  Maám, the totals for boys and girls are shown here and those who are 

left-handed are also shown. I could have drawn a normal graph but I chose 

to draw a Venn diagram because there are 33 students in the class… 

(silence)…Eish, I don’t know why I put the 33 in the middle there. Eish 

maám, can I start over. (Evidence that he could have started off using the 

diagram but abandoned it later). 

Researcher:  Yes, feel free (offering pen and paper). 

Through the inducement of the interview, Tongai felt he could re-do his representation. 

His response shows that he was aware that a representation can be refined to make it 

more accurate. 

Although he claimed to have used the diagram, the interview helped him realise that a 

better Euler diagram could be more helpful in solving the problem. He was one not to 

give up. This excerpt shows that students can learn through their misconceptions. This 

example suggests that students do not always stick to their representations if they think 

they are not helpful. Therefore we may assert that, if students encounter problems with 

their visual constructions they abandon them to pursue other strategies to help them 

solve the problem. 

This study focused on exploring students’ errors when they solve probability problems 

using visual representations. Sfard (2008) argues that students’ misconceptions are a 

result of using old discourses in cases where new discourses must be learnt by 

modifying old ones. Similarly, Michelet, Adam and Luengo (2007) see miscon-

ceptions as conceptions having a domain of validity. For example Sara was using a two 

branch tree for a tossing a die problem reminiscence of tossing a coin. She needed to 

slightly modify the discourse of tossing an item with two to one with six equi-probable 

events. Sometimes students did not have any representations to probability problems, 

for example Janine. This means that they could not carry out any mathematical 

discourse, even on the platform of an old inappropriate one. It could be a case that they 

did not understand the problem in first place (Polya, 2014). An important finding is 

that often students disregarded the representations they initially drew to mediate their 

solutions. Whenever they felt these were not helpful enough they overrode them. For 

example, two students obtained correct answers for Item 1 despite their wrong 

representations, while Prisca openly said she did not use their representations in their 

answers. One error that seemed common was the “halting signal” error (Sfard 2008, p. 

214), in that once most obtained an answer of  on Item 1, they felt that was sufficient. 
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For Prisca, even though they avoided their representations, their other methods did not 

yield correct answers. This could be so as Nascimento, Morais and Martins (2016) 

argued that internal representations are aided through external representations (Goldin, 

2002). Since some students often disregarded their external representations they could 

not be expected to come up with correct answers. However, others managed to get 

correct answers despite their incorrect representations (see Tongai transcript). Some 

like Sara managed also without a diagram.  

CONCLUSION 

A main finding is that in the most, the representations constructed were not accurate. 

These were modelling errors (Chaput, Girard & Henry, 2011). The tree diagram 

representations were very popular but when these were made they often had two 

branches (even if the task was on tossing a six sided die, though two branches are also 

correct for someone experienced on the topic). This was in reminiscence to tossing 

coins; the first probability experiments they met in an earlier grade. To Sfard they were 

using the discourse of tossing a coin on that of a die. What was required was to slightly 

modify the discourse. In the interviews most students did not have faith in their 

representations and used other reasoning independent of the representations to come 

up with their answers. It was clear that they felt representations such as tree diagrams 

can help them to make sense of the tasks (Sedlmeier & Gigerenzer, 2001) but they felt 

that they were not yet good at constructing them. In other cases students made 

reasonable progress when they used partially completed tree diagrams. But they often 

failed to take advantage of the partially filled and completely filled tree diagrams to 

obtain correct answers. In this case, students were often not sure of what the questions 

required them to do despite their good representations. 
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THE MATHEMATICS TEXTBOOK FOR RURAL POPULATION IN 

BRAZIL: LEARNING TO BE A MODERNIZED FARMER  
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The Brazilian National Textbook Program has evaluated and distributed textbooks for 

rural population in mathematics. From a Foucaultian perspective, textbooks are 

conceived as a technology that governs. Through a discourse analysis, statements 

about the modernization of peasants’ practices with and through mathematics are 

identified. The results show that textbooks use images and texts of good traditional 

rural lifestyle to contextualize mathematical activities. But at the same time, the idea 

that mathematics is necessary for the modernization of rural work to become effective 

and industrialized is constructed. School mathematics, as articulated in the textbooks, 

plays an important role in peasant subjectivation processes, being a powerful valida-

tion for the need to adopt modern and economically effective production. 

INTRODUCTION 

In 1985 the Brazilian government created the Nacional Textbook Program (PNLD), 

which monitors the elaboration of authorized textbooks for different compulsory 

school subjects to be used in all public schools. In 2013, the government opened for the 

creation of textbooks designed for rural primary schools. The textbooks should fulfill a 

pedagogical function adjusting information and concepts to the rural population; and a 

social function preserving a conception of rural forms of life as cultural spaces where 

knowledge is produced and where development can take place sustainably (Brasil, 

2013, p. 27; Brasil, 2016, p. 41). The formulation of textbooks particularly designed 

for rural population is the result of the struggles of social movements such as The 

Landless Movement, fighting for regaining the right to ownership of land by poor rural 

population who have been displaced from small farms by large landowners. They 

understand education as “a key element for the social justice project they are at-

tempting to build” (Knijnik, 2012). The political and educational principles in this 

movement are linked to the notions on how to improve peasants’ life and work con-

ditions, where collectivity, social justice, traditional farming techniques, familiar ag-

riculture, agroecology, land reform, and others are important. 

Two textbook collections were approved and produced. Each collection has five 

textbooks, since the primary school in Brazil goes from the first grade to fifth grade. 

The textbooks are very important for education in the country side since access to 

knowledge resources is limited. The textbooks are massively distributed, and each 

child gets a book for the school year. Therefore, these books play a central role in 

building ideas of the mathematical content and its purpose in the life of peasants. 
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Following the socio-cultural-political axes developed in PME (Planas & Valero, 

2016), we examine how mathematics textbooks for the rural population produce effects 

of subjectivation on how to be a competent farmer. The analysis interrogates the dis-

cursive formations that emerge in textbooks were notions of competence in mathe-

matics intertwine with notions of what characterizes a good, desirable peasant. 

MATHEMATICS TEXTBOOKS AND SUBJECTIVATION 

Since World War II, mathematics plays an important role in the development of a 

narrative of economic progress and development for the individual and society. Yolcu 

(2017) and Valero (2017) have showed that the development of mathematical skills in 

children has been an important technology of government for modernity and mod-

ernization: “Math skills are proven to be fundamental to a person not only as a skilled 

workforce, but also as a citizen”, to achieve “social progress, economic growth, and 

citizenship” (Valero, 2017, p. 123). Research on the cultural politics of mathematics 

education adopts the view that the teaching and learning of mathematics are not only 

cognitive or pedagogical processes. They are significant cultural spaces for making 

types of people through the objectivation of knowledge and the subjectivation of the 

individual - a key assumption of socio - cultural research (Radford, 2008). Researchers 

investigate the entanglement of school mathematics as part of the school curriculum 

and the processes of governing of the population to become good, competent citizens 

(Walkerdine, 1995). In other words, school mathematics, its teaching and learning are 

fundamental for the creation and maintenance of modern forms of life” (Valero & 

Knijnik, 2016, p. 1). This means that in classrooms and schools “we do not only teach 

mathematical concepts. The school disciplines people in very peculiar ways” (Silva, 

2016, p. 51), and the textbook is an important technology of governmentality in this 

process. 

Textbooks are a powerful technology to conduct the conduct of individuals because 

they mobilize “practices of representation” (Hall, 1997, p. 10) such as knowledge to-

gether with behaviors, patterns, habits and notions about what is appropriated in soci-

ety: “Few instruments shape children’s and young people’s minds more powerfully 

than the teaching and learning materials used in schools. Textbooks convey not only 

knowledge but also social values and political identities, and an understanding of 

history and the world”. (UNESCO, 2016, p. 1). In this way, when used as part of 

pedagogical processes, textbooks contribute to the creation of the learner’s subjectiv-

ities and their sense of who they are meant to be and how the appropriation of school 

knowledge is meant to transform them into desired types of people. 

Despite the assumptions of neutrality linked with school mathematics and science 

(Valero & Orlander, 2017), the process of subjectivation in particular directions is 

evident in textbooks. Spinik (2005) shows how in textbooks in Afghanistan between 

1986 to 1992 “some Mujahideen groups developed maths exercises with examples of 

how to divide ammunition to maximize Soviet fatalities”. In this case, the exercises 

both confirm and naturalize war practices, to create a sense of national identity by 
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installing national values and ideals. The question about the effects of subjectivation 

produced in rural mathematics textbooks remains. Which images and text about what 

is better and necessary to be a good citizen and a competent farmer are present in rural 

mathematics textbooks? 

THEORICAL-METHODOLOGICAL TOOLS 

In order to preserve the work, we chose to nominate de two collections as “Collection 

A” and “Collection B”. We conducted a discourse analysis of the ten textbooks and we 

also included the guidelines for teachers, which gives access to the orientations that 

publishers give to improve the teaching objectives. For Foucault, “discourses are more 

than ways of giving meaning to the world; they imply forms of social organization and 

social practices which structure institutions and constitute individuals as thinking, 

feeling and acting subjects” (Walshaw, 2016, p. 47). In this sense, we have identified 

the statements that constitute the discourse. Such statements are formed in discursive 

and non-discursive practices. They are mirror of a time and a place, and they relate to 

other statements to portrait desirable practices (Foucault, 1972).  

For the data analysis mathematics tasks, exercises, examples, images, texts, and other 

strata are used to help us in the understanding of the ideas presented on how to be a 

competent farmer. The textbooks are made for primary schools, so images, characters 

and cartoons are very common in this textbook with the purpose of illustrating both the 

activities and contents. Therefore, the images are very important in our analysis pro-

cess because they send messages about the practices and truths in the society, espe-

cially for the target audience of these textbooks. Collange, Almeida and Amorim 

(2014) argue that the materiality in the images allow to explore the systems of quali-

fication set in operation in texts and thus create ideas of the content and how it should 

act in culture.  

ANALYSIS 

The images below belong to different textbooks and they illustrate mathematical ex-

ercises on estimation, counting and spatial localization as they are the mathematical 

content for primary school level (Brasil, 1997). In addition, these drawings show a 

rural context that appears to be a harmonic, simple and happy rural lifestyle. The 

drawings show the rural lifestyle like a good and healthy lifestyle: “To be a child is 

very good. To play in the countryside is very fun” (Figure 3). Teachers let students 

colour and count the objects so that they see mathematics in their every day. 

                

Figure 1         Figure 2            Figure 3 
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The figures 1 and 2 are from “Collection A” while figure 3 is from “Collection B”. In 

five textbooks of one of the collections, the aims of the collection and its ideological 

approaches were made explicit: “As part of current debates, the books strengthen 

peoples’ identity in their land, through production, meaning-making and systematiza-

tion of school basic knowledge, in dialogue with the knowledge of the community 

where they are” (Collection A). In excerpts like this, the relation between rural lifestyle 

defended by The Landless Movement and the textbook is evidenced. In the three im-

ages above the farms are small, the territory is occupied by several houses located close 

to each other; different children with different skin colour live in these places. There 

are different types of crops and there are many animals scattered freely in large areas. 

These images promote the idea that the rural work with its traditional practices are 

good, a trend that has been commercially exploited to sell products through concepts 

such as “organic produce”, “happy meat” and meet from “animal welfare” (see Cole, 

2011). The images in the textbooks are about rural lifestyle and work practices related 

to familiar agriculture, in other words, the drawings show us the notions about tradi-

tional farming techniques, agroecological and organic practices, land reform, and other 

very important concepts for the Brazilian Landless Movement. In these mathematics is 

an element present in the peasants’ everyday life. These images show us one specific 

type of spatial occupation that is totally opposite of the monocultural practices, often 

linked to the agrobusiness practices. In such a way, the textbooks are apparently in line 

with the principles of public policy in Brazil “related to the guarantee of rights and 

citizenship of the rural peoples understood in their identities and ways of life, as op-

posed to other projects related to the rural world or agribusiness” (Collection A p. 206). 

However, throughout the textbooks other notions also appear. For example, in the first 

grade it is necessary to work with notions of grouping and estimation. In the curricular 

orientations in Brazil there is an explicit mention to this: “Organization in groupings to 

facilitate counting and comparison between large collections” (Brasil, 1997, p. 50). In 

one of the textbooks analysed this idea appears as follows: 

 

Figure 4              Figure 5 

The figures 4 and 5 are from “Collection A”. In the forty figure the activity invites to 

estimate how many animals there are in this farm without counting. The cattle are 



Neto & Valero 

 

PME 42 – 2018 3 – 415 

scattered, and all animals are free in the farm. The animals seem to live harmoniously 

with other species, such as shown above in figures 1, 2 and 3. However, in the 5th 

situation (Figure 5), the animals are counted, classified according to their species, 

separated in different fencing, and they are aligned. The activity leaves the children to 

understand that after estimation, counting means and optimization that organizes and 

separates the species. The optimization of estimation in counting is best because it can 

be done in less time and more accurately, as question B in figure 5 suggests: “Was it 

easier to count the animals in the farm São João [in figure 4] or in the farm São Pedro? 

We interpret that the figure 5 shows us the model of “factory farming” aligned with an 

economic rationality of efficiency and agro-industry. This can be observed in the ob-

jectives found in one of the textbooks, as an expression of new forms of knowing and 

acting that peasants needs now: 

It happens that social life and productive organization have been changing and demanding 

workers who, in addition to knowing how to perform their tasks, also plan and be creative. 

These changes are due to the economic reorganization of the capitalist countries, the dis-

semination of information and technological advances. (Collection A) 

In other words, the work practices of peasants need to be modernized. And this idea is 

linked with increasing productivity, lower costs, optimizing work practices, space, 

time and human work force. That is, the peasants need to understand and to practice a 

different rationality of work. The necessity of modernization in rural forms of life is 

illustrated in Brown’s (2015) discussion of neoliberalism as a rationality of govern-

ment in rural areas: “with the promise of giant crop yields and an end to struggling with 

pests, the agribusiness giants aim to convert farmers across the developing world from 

“traditional” to “modern” techniques, materials, and markets (p. 142). Brown show 

how in 2003, Iraqi farmers were “lured into the new agricultural techniques” (p. 145) 

by big corporations that stopped traditional practices and brought new elements with 

the argument of increasing Iraqi agricultural production. However, “the problem is that 

farming in general is uniquely vulnerable to fluctuations in nature, such as draughts 

and floods, and farming for export is also vulnerable to fluctuations in world markets” 

(p. 146). The new elements disregarded local specificities so, after a period of much 

losses because of production and the world market, the consequences were dramatic 

and ended in “an epidemic of farmer suicides” (p. 146). This example is extreme, it to 

illustrates the effects of the ideas mobilized in the order of discourse of which these 

mathematics textbooks are part. 

In the textbooks, there is also an explicit valorization of the peasants’ practices. The 

goal of this exercise is to teach “percentages” in “problem solving”, in the of egg 

production. In the text that introduces an exercise, the “organic chicken” is constructed 

as healthier than the chicken that spend its life in big agrobusiness farms.  
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The traditional hen “caipira” pro-

duces 50 to 80 eggs a year and is in 

more than 80% of farms. The hens 

have improved families’ nutrition 

and economy. Therefore, they are 

valued because they are more nutri-

tious than chicken raised in big 

farms. Birds that can produce 

270-300 eggs per year are selected. 

Nutrition, the environment for their 

growth and hygiene are important. 

Figure 6 

The questions of the problem below: 

 

In a report, a caipira hen can 

produce 50 to 80 eggs a year. 

Complete the sentences based 

on the information: 

Two hens produce from ___  

to ___ eggs a year. 

Three hens produce ___  

Four hens produce ____… 

Figure 7 

This exercise creates the idea that the eggs are produced as an industrial product, even 

though the hens are of the “organic” type. The estimative about the egg production 

increase with in same proportion as the amount of chickens. The production increases 

in a linear relationship to the number of hens. This is in line with the notion of “animal 

machines” (see Colle, 2011) and against notions of organic production. In sum, in 

addition to the estimative ignore that the animals cannot produce as machines, that is, 

the linear proportion cannot be used in this case, the notion about increasing produc-

tion and profits remains around mathematic exercise. 

The conflict between the appeal to the goodness of traditional countryside lifestyle, 

and the need of modernization and profitable optimization of production were illus-

trated above. The way in which mathematics appears in traditional settings but allows 

the peasant to act to better transform life into a modernized form of life is also recurrent 

in the textbooks. Both these ideas are intertwined in the discourse of the rural math-

ematics textbooks, and appear systematically in the illustrations as well as in the ex-

planations and problems. In the textbook, the statement about the necessity of learning 

mathematics for the modernization of peasants’ practices is mobilized in the discourse 

not only through their repetition, but also through other elements in the texts. The 
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analysis of the images, the contents and the mathematics explores the uniqueness of the 

discourse mobilized in the textbooks, and give us the possibility of recognizing “the 

general form of a sentence, a meaning, a proposition” (Foucault, 1972, p. 101), through 

which notions of the desired mathematically competent peasant are put forward for 

learners. 

CONCLUSION 

The aim in this paper was not to identify a fixed or stable truth about what is means to 

be a mathematically competent peasant. After all, what is better or worse, what are the 

desirable identities of peasants are always in change in historically and situationally 

articulated discourses. These may sometimes be contradictory, as shown in the analy-

sis above.  

Despite the apparent contradiction between the four first figures and the fifth, we can 

claim that there is no contradiction. Instead the misfit evidences that the mathematics 

textbooks for rural population embody a project of people formation, in this case, a 

project of modernization of peasants’ practices. Mathematics education, with the 

technologies that make part of its practices, fabricate types of people. Popkewtiz 

(2004) has pointed to the governing effect of mathematics in the making of children’s 

subjectivity. This project is in full development, sending ideas about the competent, 

productive, and modernized peasant. The analysis helps us to highlight the regularities 

about peasants’ practices and the role of school mathematics in the validation, repro-

duction and propagation of a type of mathematically competent child that will turn into 

the subject who can change production in more profitable ways; that is, becoming 

neoliberal in themselves. As Foucault reminds us, discourse and subjectivity are en-

tangled: 

I shall abandon any attempt, therefore, to see discourse as a phenomenon of expression 

- the verbal translation of a previously established synthesis; instead, I shall look for a 

field of regularity for various positions of subjectivity. Thus conceived, discourse is 

not the majestically unfolding manifestation of a thinking, knowing, speaking subject, 

but, on the contrary, a totality, in which the dispersion of the subject and his discon-

tinuity with himself may be determined. (Foucault, 1972, p. 55) 

Therefore, we can claim that mathematics education through textbooks have an im-

portant role in the subjectivation process, because it is used as a tool to validate and to 

produce the statements that we had identified in this article.  
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Research studies have shown that to develop conceptual understanding of mathema-

tics, practice needs to that focus this skill. In this study, the aim is to examine how 

different practice tasks, which promotes either imitative or creative mathematical 

reasoning, can influence which variables (i.e., cognitive abilities, mathematics grade, 

and gender) that are important for task completion. Two earlier studies show that cog-

nitive abilities are more important in the test situation when students have practiced 

with imitative tasks. The result from this study indicate that although cognitive abilities 

are important when practicing with creative tasks, the influence of cognition is only 

implicit during the test. Since students often practice imitatively with given solution 

methods, this study suggests that a substantial part of what we test in school could be 

cognitive abilities rather than mathematics. 

INTRODUCTION 

Many studies have shown the inefficiency of rote-learning that transpires without 

understanding (e.g., Hiebert, 2003). Hiebert and Grouws (2007) argue that students 

need to struggle with important mathematical concepts or properties in order to get a 

deeper understanding of mathematics. This positive productive struggle could occur if 

the task involves some desirable difficulties that forces the student to regard the 

mathematical properties of the task. Bjork and Bjork (2011) argue that desirable dif-

ficulties are important whatever you are trying to learn, and can, while not as efficient 

at first, be more efficient in the long run (Fyfe & Rittle-Johnson, 2016). It is however 

important that the imposed difficulty should be surmountable and relate to the subject 

or skill you are about to learn (Bjork & Bjork, 2011). Otherwise it would be enough to 

just turn out the lights to create difficulty in the mathematics classroom. But since this 

has nothing to do with mathematics it would be an obstruction rather than a desirable 

difficulty. Desirable difficulties can however induce some amount of failure during 

task solving, but this might not necessarily be a bad thing. In a number of studies Kapur 

explored productive failure as an instructional design, and found that it can be effective 

for developing conceptual understanding of mathematics (e.g., Kapur, 2010; Kapur, 

2015). 

Studies of mathematics textbooks have shown that most textbook tasks lack the dif-

ficulties and struggle that Bjork and Bjork (2011) and Hiebert and Grouws (2007) are 

arguing for. Most textbook tasks are procedural and can mostly be solved by provided 
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solution methods or by looking at worked examples (e.g., Jäder, Lithner, & Sidenvall, 

2015; Newton & Newton, 2007; Shield & Dole, 2013). Jäder et al. (2015) concluded in 

their cross-national study of textbooks from twelve countries that only 9% of the tasks 

required more extensive conceptual knowledge and justification, while 79% of the 

tasks could be solved completely by imitating or following given instructions. The 

textbooks also contain more tasks than what is reasonable for a student to solve during 

a course, and the more demanding tasks are commonly located to the last part of each 

section. This implies that many students have to select which tasks to solve. Since they 

tend to choose the basic tasks first they will often not reach the more demanding tasks 

at the end of the section (Sidenvall, Lithner, & Jäder, 2015). Bergqvist and Lithner 

(2012) observed that teacher presentations also are dominated by procedure and that 

most presentations consider how tasks should be solved rather than the concepts or 

properties behind the procedures. Conceptual instruction has proven to be more bene-

ficial than procedural instruction when trying to promote a more thorough under-

standing of procedures and concepts (Rittle-Johnson, Fyfe, & Loehr 2016). Hence, 

more conceptual tasks seem to be needed in both teacher instruction and textbooks. 

FRAMEWORK 

Lithner (2008) proposed a research framework for mathematical reasoning where he 

concludes that there are two main types of reasoning that can occur while solving ma-

thematical tasks, imitative and creative. Imitative algorithmic reasoning (AR) occurs 

where a solution method is already known or presented in close proximity to the task, 

so that the student can imitate or recall a solution method. An understanding of the 

concepts or mathematical properties is not imperative for this type of reasoning to 

solve the task at hand. The second type, creative mathematically founded reasoning 

(CMR), concerns student reasoning where no solution method is available. Not giving 

a solution method in advance force the students to consider mathematical properties 

when constructing a valid solution method. There is of course an effort involved in this 

process which is not necessary when solving a task imitatively and this effort, or 

struggle if you will, is close to what Hiebert and Grouws (2007) argued for. However, 

as most textbooks provide procedural solution methods, imitative reasoning is normal 

practice for most students in school.  

From a theoretical perspective, Brousseau (1997) states that it is imperative for stu-

dents to take responsibility for their own solution process. Brousseau argues that for 

this to happen, the teacher has to hand over responsibility to the students after construc-

ting a well-designed task where the students can, with some work and arguments, 

construct the solution by themselves. When students work with tasks where they can 

imitate a given solution method, this argumentation and construction will not take 

place. Brousseau denotes the activity where the students work alone to solve the task 

an adidactical situation. In a study where students practice solution methods by either 

imitative or creative reasoning, Jonsson, Norqvist, Liljekvist, and Lithner (2014) uti-

lized this adidactical situation to study the effectiveness of the different practice tasks 

(AR or CMR). The study showed that practicing with tasks that promote CMR is more 
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effective with regard to test scores than practicing with AR-tasks. Two additional 

studies have confirmed this result (Norqvist, 2018; Wirebring et al., 2015).  

Studies have also shown that students’ cognitive abilities is important for mathematical 

achievement (e.g., Primi, Ferrão, & Almeida, 2010; Swanson & Alloway, 2012). For 

example, working memory (i.e., the ability to store information whilst processing other 

information) is highly correlated to mathematical achievement (Swanson & Alloway, 

2012) and has been shown to be predictive of mathematics learning in the early school 

years (Passolunghi, Vercelloni & Schadee, 2007). Another cognitive ability that is 

closely related to mathematics is fluid reasoning, which is related to faster mathe-

matical learning (Primi et al., 2010). 

Jonsson et al. (2014) also showed that cognitive abilities (i.e., working memory and 

fluid reasoning) are important for test scores, especially for students that practice by 

AR. To rule out that this was not contributed to similarities between CMR-practice 

tasks and the test tasks that were used, a follow-up study was made. Here trans-

fer-appropriate processing was contrasted to productive struggle to see if the higher 

test performance could be attributed to similarities in task design (Jonsson, Kulaksiz, 

& Lithner, 2016). The results showed that transfer appropriate processing accounted 

for only a minor part of the efficiency of the CMR-group. However, since Jonsson et 

al. (2014) and Norqvist (2018) did focus on test scores and the efficiency of AR and 

CMR, neither of the studies gave much notice to the practice scores and which varia-

bles that were important for the two practice conditions. A study of this could help us 

understand why CMR seems to be more efficient and at the same time give us a clue to 

why AR appears to be efficient during practice but not when it comes to the post-test.  

AIM AND RESEARCH QUESTIONS 

In the previous studies (Jonsson et al., 2014; Norqvist, 2018), there are strong indica-

tions that cognition play an important role for solving test tasks, especially for students 

that have practiced by AR. Jonsson et al. (2016) also showed that the difference in 

test-scores between the two practice groups (AR and CMR) was not attributed to 

similarities between practice- and test-task, so called transfer appropriate processing. 

However, the practice session could also help us understand why CMR-practice has 

proven to be more efficient as measured by test scores. The aim of this study is 

therefore to examine which of the measured variables (i.e., mathematics grade, gender, 

and cognitive abilities) influence students task solving during practice, depending on 

what type of reasoning the students utilize during practice. It is also interesting to 

examine if there is any difference between practice and test, regarding taxation on 

cognitive abilities, since this could be of importance for teaching. 

1. How will the combined sample affect earlier results of the importance of cognitive 

abilities for the to test-scores?  

2. How does the practice condition, AR or CMR, affect which variables (i.e., mathema-

tics grade, gender, and cognitive abilities) that are most influential on students’ com-

pletion of the given practice tasks? 
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METHOD 

Participants 

The present study utilize data gathered in two earlier studies where the efficiency of 

different mathematics tasks was in focus.  The samples in (Jonsson et al., 2014) and 

(Norqvist, 2018) comprised a total of 252 students in the natural science program in 

Swedish upper secondary school (16-17 y.o.). 44 students were excluded due to attri-

tion. Before the analysis the practice and test data was scanned for outliers, and to 

compensate for eventual ceiling or floor effects participants that had the maximum 

score, or that scored lower than 10%, during practice where removed from the sample. 

This control excluded 13 participants from the sample. Also, in Norqvist (2018) 38 

students were practicing with a third task type, and these students were also excluded 

from this study. Finally, 157 participants remained in the sample. In both studies, the 

participating students were divided into matched practice groups based on cognitive 

abilities (i.e., working memory and fluid reasoning), mathematics grade, and gender.  

When squares are put in a row it looks like the 

figure to the right. 13 matches are needed for 

four squares. 

If x is the number of squares, then the number of 

matches y can be calculated by the function 

                       y=3x+1 

Example: If 4 squares are put in a row, then 

y=3x+1=3·4+1=13 matches are needed. 

How many matches are needed to get 20 squares 

in a row? 

 

Figure 1: Example of an AR practice-task. The text written in italics is 

absent in the corresponding CMR-task. 

Practice and test 

The data collection was partly designed to mimic a common situation in school, where 

students often practice by solving textbook tasks of an AR-type, and often meet more 

complex tasks in a test. The students practiced 14 solution methods (i.e., formulas) by 

either AR- or CMR-tasks depending on the group (see example in Figure 1). During 

practice the teacher did not intervene and the students were instructed not to talk to 

each other. Since each AR-task is faster to complete than the corresponding CMR-task, 

the AR-group did more tasks for each solution method to get a comparable practice 

time. A computer software recorded solution frequencies and the time the students 

spent on each task.  

One week later the students took a test where each solution method was tested with 

three tasks. The first asked for the formula used during practice while the second and 
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third task asked for a numerical answer. The first two test-tasks were limited to 30 

seconds each so that no (re)construction could take place, while the last task was lim-

ited to 5 minutes. In this study, cognitive data, mathematics grade, gender, prac-

tice-scores (i.e., the proportion of correct answers to the practice-tasks), and test-scores 

(i.e., the proportion of correct answers to the test-tasks) from the mentioned studies are 

analyzed to find answers to the research questions.  

Analysis method 

Results from the cognitive tests (i.e., Operation span that tests working memory and 

Raven’s progressive matrices which is a test for fluid reasoning) were standardized and 

used to calculate a cognitive index. The practice-score was transformed to compensate 

for skewness (-3.66) and kurtosis (18.3) of the practice-score for the AR-group. This 

transformed practice-score was later used in the following analyses.  

Two separate analyses were conducted on each of the practice-groups. First, a regres-

sion analysis, with test-score as the dependent variable and practice-score, CPI, gen-

der, and mathematics grade as independent variables, was performed. This was done to 

control that the results presented in Jonsson et al. (2014) and Norqvist (2018) were 

valid for the combined sample as well (i.e., that cognitive abilities influenced the 

test-scores to a higher extent in the AR-group than in the CMR-group). Secondly, 

another regression analysis was performed, with practice-score as the dependent var-

iable, to see to what degree the independent variables (i.e., cognitive index, mathe-

matics grade, and gender) did influence students’ completion of the given prac-

tice-tasks. All statistical analyses were made in SPSS 24. 

RESULT 

 AR  CMR 

Variables B  SE B  ß  B  SE B  ß 

  Cognitive index .504  .359  .359**  .117  .099  .104  

  Mathematics grade .115  .308  .308**  .021  .027  .074  

  Practice score .411  .175  .175     .836  .127  .665* 

  Gender .067  .046  .046     .048  .143  .027  

  F total   8.057*        22.681*     

  Adjusted R2   .284      .543   
*p < .001, **p < .01. 

Table 1: Regression Analysis Summary for Variables Predicting Test Score. 

The first regression analysis showed that the previous results, regarding the difference 

in relation between cognitive abilities and test-scores for the different practice groups, 

were valid for the combined sample. Cognitive index and mathematics grade were 

highly predictive of test-score in the AR-group while practice-score did predict the 

test-score in the CMR-group (see Table 1). 
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The second regression analysis showed that none of the included variables were pre-

dictive of the practice-score for the AR-group, while the CMR-practice score is highly 

dependent on cognitive index and mathematics grade (see Table 2).  

 AR  CMR 

Variables B  SE B  ß  B  SE B  ß 

  Cognitive index .201  .119  .208  .301  .086  .366* 

  Mathematics grade .043  .032  .167  .107  .022  .468* 

  Gender -.022   .188  -.014   .044  .134  .031  

  F total   2.432       14.555*     

  Adjusted R2   .057      .358   
*p < .001. 

Table 2: Regression Analysis Summary for Variables Predicting Practice Score. 

DISCUSSION AND CONCLUSION 

Introducing CMR-practice as an alternative has been shown to be more efficient than 

the procedural AR-tasks that constitutes the main part of textbook tasks (Jonsson et al., 

2014; Norqvist, 2018). The results from the regression analyses confirm, as indicated 

in (Jonsson et al., 2014), that students that practice by AR are more dependent on 

cognitive abilities during the test situation than students practicing by CMR. This does 

not seem to be attributed to transfer-appropriate processing but rather to the productive 

struggle that the CMR-participants meet during practice (Jonsson et al., 2016). The 

results from the regression analysis on practice-scores show that CMR-practice is more 

taxing on cognitive abilities than AR-practice. This confirms that CMR-tasks are cre-

ating some struggle for the students and, as Hiebert and Grouws (2007) argued, this 

would then yield higher test scores. The desirable difficulties that CMR-tasks provides 

will not only help students to focus the important mathematical properties, but could 

actually force them to take these properties into account. AR-practice lacks the de-

sirable difficulty that CMR-practice provides and the difficulty will therefore emerge 

during the test instead. Hence, the higher strain on cognitive abilities. 

The importance of the practice-score for later test-performance in the CMR-group 

would indicate that successful CMR-practice leads to a deeper processing of the 

learning material, which in turn leads to easier retrieval during the test. The importance 

of a good practice-score for the CMR-students could of course be problematic for 

students with lower cognitive abilities or lesser mathematical skills, but this is where 

the teacher comes in. If the teacher (or maybe the author of the textbook) has designed 

the tasks well, so that the task will help students to consider the important mathemat-

ical properties, the teacher can support student learning by asking questions aimed at 

these properties. The difficulty could hereby be reduced but not removed completely, 

and it would still concern the important mathematics. 
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During AR-practice there are less difficulties for the students since they can use the 

given solution method to solve the task. Also, if a student would have difficulties with 

an AR-task, the focus would most likely be on how to use the given information (e.g., 

arithmetic difficulties when calculating the answer or how to exchange a variable with 

a number), and not mainly on the intrinsic mathematical properties in the task.  

If the ability to solve novel problems or solve tasks that require transfer of knowledge 

is something that students are supposed to show during a test, they should have had the 

opportunity to practice these skills during lessons. Practicing with mainly AR-tasks 

gives an impression that tasks are standardized and short where the solution method is 

known (e.g., all tasks in the section can be solved by setting up and solving a linear 

equation). This can be preferable if the aim is to develop computational fluency but not 

if the aim is to develop conceptual understanding (Hiebert & Grouws, 2007). Students 

that only meet computational difficulties and never have to give any thought on why a 

solution method works will not be prepared to find new methods or solve novel tasks, 

neither during the upcoming test nor in their future working life. It would therefore be 

important to have textbooks and teacher presentations that include more tasks that 

compel students to consider mathematical properties to overcome the desirable diffi-

culties of the task. Otherwise, there is a risk that the upcoming test will measure cog-

nitive abilities rather than mathematical knowledge. 
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When people compare simple fractions, the natural number components can interfere 

with processing of fraction magnitudes (“natural number bias”). There is conflicting 

evidence about whether this also occurs for complex fraction comparisons. We asked 

107 university students to solve complex fraction comparison problems. Fractions 

varied in their relative positions to benchmarks (i.e., reference numbers such as 0, ¼, 

½, ¾, or 1), which may help people activate fraction magnitudes. We found a “smaller 

components—larger fraction” bias in participants with lower mathematical experien-

ce and a reduced bias in participants with more experience. The benchmarks 0 and 1 

facilitated performance and reduced the bias; effects of other benchmarks were small. 

The study highlights the variability of the natural number bias. 

THEORETICAL BACKGROUND 

Many people struggle with fractions (Lortie-Forgues, Tian, & Siegler, 2015; Van 

Dooren et al., 2016). One source of difficulties with fractions is people’s overreliance 

on natural number reasoning in fraction problems. When people have to choose the 

larger of two fractions, the fractions’ natural number components can interfere with 

their reasoning about the overall fraction magnitudes, resulting in “natural number 

bias” (Ni & Zhou, 2005). Studies document that students and adults are more accurate 

and faster on simple comparison problems that are congruent (larger fraction has larger 

component, e.g., 3/5 > 2/5) rather than incongruent (larger fraction has smaller compo-

nent, e.g., 1/3 > 1/4) with natural number reasoning (Vamvakoussi, Van Dooren, & 

Verschaffel, 2012; Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). 

To account for the finding that even older students and adults who have developed 

sound concepts of fractions still show a natural number bias, researchers used 

dual-process theories to describe the cognitive mechanisms that may underlie the bias 

(Gillard, Van Dooren, Schaeken, & Verschaffel, 2009; Vamvakoussi et al., 2012, Van 

Hoof et al., 2013). According to dual-process theories, fraction processing may trigger 

fast and intuitive System 1 processes, namely the automatic activation of natural 

number magnitudes. In fact, cognitive research shows that people process magnitudes 

of natural number symbols automatically even when doing so is irrelevant for the task 

(Hubbard, Piazza, Pinel, & Dehaene, 2005). These System 1 processes may interfere 

with slower and analytic System 2 processes, namely the more effortful activation of 

overall (holistic) fraction magnitudes. 
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Although previous empirical evidence is in line with the dual-process account, an 

important limitation is that many studies on the natural number bias have used fraction 

pairs with common numerators or common denominators (see examples above), or 

pairs with very familiar fractions (e.g., ¾). Studying these special cases of fraction 

comparison problems limits our understanding of the natural number bias because in 

comparisons with common components, there is no need to actually reason about the 

overall fraction magnitudes. Thus, performance differences may be due to the different 

strategies people use for different problem types, rather than due to the interference of 

natural number magnitudes with fraction magnitudes. When comparing fractions with 

common components, people rely largely on comparing the unequal components 

rather than the fraction magnitudes (Obersteiner & Tumpek, 2016; Obersteiner, Van 

Dooren, Van Hoof, & Verschaffel, 2013). For familiar fractions, on the other hand, 

activating magnitudes may be strongly automated. It is, therefore, unclear how 

component magnitudes may interfere with fraction magnitudes in fraction comparison 

problems that are more complex. 

Few studies have explored the natural number bias in more complex comparisons of 

unfamiliar fractions without common components (e.g., 19/24 vs. 25/36), and the 

results of these studies are inconclusive. Obersteiner, Van Hoof, and Verschaffel 

(2013) found no natural number bias in academic mathematicians. However, DeWolf 

and Vosniadou (2011) did find a natural number bias (better performance on congruent 

rather than incongruent comparison problems) in a sample of university students. Yet 

other studies with university students found a “reverse” bias (better performance on 

incongruent rather than congruent problems) (Barraza, Avaria, & Leiva, 2017; DeWolf 

& Vosniadou, 2015). One explanation for these conflicting findings could be that the 

occurrence and strength of the natural number bias depends on the interaction of a 

number of factors, such as problem types, mathematical ability or experience, and 

strategy use. People may be less biased if they focus more strongly on fraction 

magnitudes rather than on fraction components, and whether they activate fraction 

magnitudes may depend on their mathematical ability or experience (Alibali & Sidney, 

2015). Following this assumption, supporting people to reason about fraction 

magnitudes in complex problems (those in which relying on component strategies only 

is not efficient) may help them overcome a potential bias. 

One potential way to activate fraction magnitudes is to use “benchmarks” (Liu, 2017). 

Benchmarks are common numbers that serve as references. They allow easy access to 

approximate fraction magnitudes, which are often sufficient for solving fraction 

comparison problems. For example, to decide that 19/24 > 25/36, one can use 3/4 as a 

benchmark: 19/24 > 3/4 while 25/36 < 3/4, hence 19/24 > 25/36 (Clarke & Roche, 

2009; Fazio, DeWolf, & Siegler, 2016). Because benchmark strategies include 

reasoning about (approximate) overall fraction magnitudes, using such strategies may 

allow people to avoid comparing fractions componentially. Therefore, problems that 

can be solved by such benchmark strategies may be less prone to the natural number 

bias than problems in which no common benchmarks are available. 
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AIMS AND RESEARCH QUESTIONS 

The aim of this study is to investigate how various factors influence the occurrence of 

the natural number bias in complex fraction comparison. We address three questions: 

1) Do university students with lower and higher mathematical experience show a 

natural number bias in complex fraction comparison? 2) Does the occurrence of the 

natural number bias depend on whether problems can be solved with benchmark 

strategies? 3) Does encouraging people to use benchmarks enhance their performance 

and reduce the natural number bias? 

We expected to find a natural number bias, particularly in participants with less 

mathematical experience, and we expected that this bias would be stronger for 

problems that could not be solved by benchmark strategies than for problems that 

afforded benchmark strategies. We also expected that encouraging people to use 

benchmarks would lead to better performance and a reduced bias, and that this effect 

would depend on how well people were able to spontaneously adapt their strategies to 

the affordances of the problems. 

METHODS 

Participants 

Participants were 107 university students (48 male, 59 female; mean age = 20.0 years) 

in the United States. Participants were divided into two groups on the basis of their 

mathematics course work, a lower-experience group (less than 2 semesters of calculus; 

n = 53) and a higher-experience group (two semesters of calculus or more; n = 54). As 

part of the instructions for the experiment, about half of the participants (n = 57) 

received a tip that using benchmarks such as ½, ¼, or ¾ can be helpful in solving 

fraction comparison problems. The example “5/8 vs. 3/7” with 5/8 > 1/2 and 3/7 < 1/2 

was provided to illustrate the benchmark strategy. 

Procedure  

Participants were asked to solve 56 fraction comparison problems on a computer as 

quickly and accurately as possible. On each trial, two fractions appeared on the screen 

next to each other, and participants indicated the larger fraction by pressing the left 

(“f”) or right (“j”) key on a regular keyboard. Response times and accuracy were 

recorded using E-Prime software. 

Comparison Problems  

None of the fraction pairs included common components. All fractions were smaller 

than 1, and most fraction components were two digits. Half of the problems were 

congruent and half were incongruent. Within the congruent and incongruent problem 

subsets, there were three categories depending on the fraction magnitudes relative to 

the potential benchmarks 0, ¼, ½, ¾, and 1: In “straddling” problems, one fraction was 

smaller and the other larger than ¼, ½, or ¾ (thus “straddling” a benchmark). In 

“in-between” problems, both fractions were in between two adjacent benchmarks. A 
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special case of “in-between” problems, and therefore a separate category, were 

problems in which fractions were both smaller than ¼ or both larger than ¾, because in 

these problems, one fraction was close to 0 or 1 (“0-1” problems), and 0 and 1 may be 

especially salient benchmarks. A number of factors were controlled across problem 

types, most notably the average numerical difference between fractions. Across 

problem types, the average differences ranged from 0.12 to 0.15. The problems were 

presented to the participants in random order. 

RESULTS 

We analysed the data using a general estimation equation (GEE) procedure to account 

for correlated measures within participants (Nussbaum, 2015). Accuracy data was 

analysed using binary logistic regression, and response time data was analysed using a 

linear regression model with a logarithmic link function. For the analysis of response 

times, we excluded incorrectly solved problems and problems for which response 

times were more than two standard deviations from the individual participant’s mean.  

In each analysis, the within-subject factors were congruency (congruent/incongruent) 

and benchmark (0-1/straddling/in-between); between-subject factors were tip (yes/no) 

and mathematical experience (lower/higher). Table 1 presents Wald statistics for 

analyses of accuracy and response times.  

Participants with higher mathematical experience scored higher overall than 

participants with lower mathematical experience (Estimated Marginal Means and 

Standard Errors for accuracy: MEM = 88%, SE = 1.3, vs. MEM = 82%, SE = 1.6), but 

participants in both experience groups had similar response times (MEM = 3.81 sec, 

SE = 0.24, vs. MEM = 3.61 sec, SE = 0.20). Participants who received the tip were less 

accurate, on average, than those who did not receive the tip (MEM = 83%, SE = 1.8, vs. 

MEM = 87%, SE = 1.2), but participants in both conditions had similar response times 

(MEM = 3.74 sec, SE = 0.24, vs. MEM = 3.67 sec, SE = 0.20). 

For both accuracy and response times, there was a significant main effect of 

congruency, with better overall performance on incongruent rather than congruent 

problems (MEM = 89%, SE = 1.1, vs. MEM = 81%, SE = 1.4 for accuracy; MEM = 3.59 

sec, SE = 0.15, vs. MEM = 3.82 sec, SE = 0.17 for response times), indicating a “smaller 

components—larger fraction” bias. There was also a main effect of benchmark, such 

that participants were most accurate and fastest on “0-1” problems (MEM = 87%, 

SE = 1.2, and MEM = 3.32 sec, SE = 0.15), followed by “straddling” problems 

(MEM = 85%, SE = 1.3, and MEM = 3.91 sec, SE = 0.17) and “in-between” problems 

(MEM = 83%, SE = 1.2, and MEM = 3.93 sec, SE = 0.17); the difference between the 

latter two problem types was not significant, either for accuracy or response times. For 

response times, these main effects were qualified by a congruency x benchmark 

interaction, such that the (reverse) natural number bias was observed for “in-between” 

problems (MEM = 3.74 sec, SE = 0.16 for incongruent, vs. MEM = 4.12 sec, SE = 0.20 for 

congruent) and “straddling” problems (MEM = 3.76 sec, SE = 0.17 vs. MEM = 4.07 sec, 

SE = 0.18) but not for “0–1” problems (MEM = 3.30 sec, SE = 0.15 vs. MEM = 3.33 sec, 
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SE = 0.16). This two-way interaction in turn was qualified by a three-way 

congruency x benchmark x math experience interaction, such that the congruency x 

benchmark interaction was present only for participants with lower mathematical 

experience and not for those with higher mathematical experience (see Figure 1). Post 

hoc comparisons revealed that for participants with higher mathematical experience, 

the differences between congruent and incongruent problems were not significant for 

any of the benchmark types. No other main effects or interactions were significant. 

 Accuracy Response Time 

Source Wald X2 df p Wald X2 df p 

Math Experience 6.83 1 .009 0.41 1 .520 

Tip 4.16 1 .041 0.05 1 .819 

Benchmark 11.68 2 .003 80.83 2 <.001 

Congruency 26.34 1 <.001 7.87 1 .005 

Math Experience x Tip 0.20 1 .652 2.38 1 .123 

Math Experience x Benchmark 0.49 2 .783 4.88 2 .087 

Math Experience x Congruency 0.00 1 .988 0.87 1 .351 

Tip x Benchmark 0.34 2 .842 1.42 2 .492 

Tip x Congruency 0.22 1 .637 0.13 1 .716 

Benchmark x Congruency 1.78 2 .410 7.44 2 .024 

Math Experience x Tip x Bench- 

mark 

2.66 2 .265 3.51 2 .173 

Math Experience x Tip x Con- 

gruency 

0.01 1 .940 0.17 1 .680 

Math Experience x Benchmark x 

Congruency 

1.44 2 .487 6.51 2 .039 

Tip x Benchmark x Congruency 1.53 2 .466 0.04 2 .981 

Math Experience x Tip x Bench- 

mark x Congruency 

5.16 2 .076 0.19 2 .910 

Table 1: Effects of the GEE estimation procedure (significant effects in bold). 

DISCUSSION 

This study shows that for complex fraction comparison problems that cannot be solved 

by using 0 and 1 as benchmarks, adults show a “smaller components—larger fractions” 

bias, and this reverse natural number bias is more pronounced in adults with less 

mathematical experience (at least for response times). One explanation is that people 

with less mathematical experience “overgeneralize” their understanding that large 

fractions can be composed of small natural numbers. Rinne, Ye, and Jordan (2017) 

identified such an understanding as a typical intermediate step in children’s learning, 

which occurs before they reach a full understanding of fraction magnitudes. 

Considering that percentage correct was very high overall, however, it seems unlikely 
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that the participants in this study had a limited understanding of fraction concepts 

comparable to young children. 

Another potential explanation is that participants, particularly those with less 

mathematical experience, may rely on specific strategies that are more successful in 

incongruent than in congruent comparison problems, such as “gap thinking” (Clarke & 

Roche, 2009, Fazio et al., 2016). Gap thinking involves reasoning about the differences 

(rather than the quotients) between the numerator and the denominator of each 

fraction, and choosing the fraction with the smaller difference as the larger fraction 

(e.g., 19/24 > 25/36 because 24 – 19 = 5, which is smaller than 36 – 25 = 11). Although 

this strategy is mathematically incorrect, it leads—by definition of our problem 

types—to correct responses for all incongruent problems but not for all congruent 

problems. Participants’ individual preferences to use specific strategies may also 

explain the negative effect of providing a tip about using benchmarks on accuracy. To 

learn more about the effects of individual strategies on performance, we are currently 

analyzing verbal reports of strategy use on the same fraction comparison problems in 

another sample of participants. 

 

Figure 1: Response times for the lower (left) and higher (right) math experience 

groups, for congruent and incongruent problems, as a function of benchmark type. 

Note: **p < .001 

This study further suggests that 0 and 1 are especially salient benchmarks that people 

use to solve fraction comparison problems when they are available. Activating these 

magnitudes enables people to overcome the natural number bias. This conclusion is in 

line with the more general claim that holistic reasoning about fraction magnitudes is an 

important aspect of understanding fraction concepts, as it can reduce the influence of 

quickly available magnitudes of the fraction natural number components (Siegler & 

Lortie-Forgues, 2014). 

In conclusion, this study highlights variability in the natural number bias in fraction 

comparison problems. Our findings suggest that the occurrence of the bias depends on 
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problem type and individual mathematical experience. Together with previous 

research, our study suggests that the fractions’ natural number components can bias 

people in different directions (towards “larger components—larger fraction”, or the 

opposite), depending on their experience and on their available strategies. 

This conclusion is relevant for mathematics education: When teaching fractions, 

teachers may wish to make students aware of their potential implicit biases (Van Hoof, 

Vamvakoussi, Van Dooren, & Verschaffel, 2017). Furthermore, they may offer ways 

to “escape” the natural number bias. One way to do so could be to encourage students 

to reason about fraction magnitudes rather than their components by using 

benchmarks. For example, a productive exercise could be sorting comparison 

problems into categories depending on whether the two fractions are close to 

benchmarks or straddle a benchmark that may help in comparing their magnitudes. 

Another productive exercise could be discussing various strategies that can be used to 

compare fraction magnitudes. These exercises require reasoning about core concepts 

of fraction magnitude rather than only about procedures. As such, they may enhance 

students’ fraction number sense and reduce natural number bias. 
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SECOND-GRADERS’ PREDICTIVE REASONING STRATEGIES 

Gabrielle Oslington 

Macquarie University, Sydney, Australia 

 

This paper reports predictive reasoning strategies used by ten second-graders in a 

classroom design study. A modelling activity based upon real data required students to 

predict maximum monthly temperatures for the current year using the natural varia-

tion provided by readings from the previous six years. The development of reasoning 

strategies was documented throughout the lesson sequence by analysis of responses to 

written prompts, videos of interviews and student drawn graphs. Student predictions 

reflected an emerging understanding variability, clusters and mean. Reasoning 

strategies became increasingly sophisticated using TinkerPlots, and with repeated 

opportunities for students to observe, represent, reflect upon trends in data.  

STATISTICAL UNDERSTANDING IN THE ELEMENTARY YEARS  

Recognising variability, grouping data according to attributes, and creation and rep-

resentation of data sets are key competencies required for the development of statistical 

literacy in young students (English, 2012). However, it is widely understood that the 

development of statistical reasoning is a complex and not necessarily linear process, 

which is heavily reliant upon students’ real-life experiences. Recent research suggests 

that young students draw upon personal context as well as the actual data values 

(Ben-Zvi & Aridor-Berger, 2016). Using data sets as evidence from which to make 

inferences proves a challenging process for young students, with many typically over 

generalising, or relying upon data such as very small sample sizes (Makar, 2016). 

Studies conducted in inquiry-based classrooms, where students have the opportunity to 

develop statistical investigations in a low stakes environment, allows exposure to data 

analysis strategies prior to formal instruction in statistics (English, 2012). By 

intentionally providing ambigious predictive tasks with multiple possible solutions, 

students can engage in meaningful statistical investigations and form predictions 

through a process of making sense of the information provided (Makar, Bakker, & 

Ben-Zvi , 2011).  

Traditionally, predictive tasks for young students have centred on random response 

generators such as dice and spinners (Falk, Yedilevich-Assouline, & Elstein, 2012). 

However, prediction in ‘real life’ usually encompass both a degree of randomness 

alongside predictable, causal variation. Exposure to complex modelling activities in-

cluding both these elements provides opportunities for developing reasoning skills in 

young students, alongside challenging their deterministic thinking and encouraging 

their observations of long-term trends. Examples of such tasks include modelling plant 

growth (Lehrer & Schauble, 2004; Mulligan, 2015) making predictions from picture 

books (English, 2012), examining first-graders’ shoe size (Makar, 2016), and using 
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children’s self-portraits to predict the age of the artist (Oslington, Mulligan, & Van 

Bergen, 2018). Natural phenomena such as weather and tides also provide rich op-

portunities for predicting and modelling variability (English, Fox, & Watters, 2005).  

Konold and Pollatsek (2002) argue that data analysis from a student’s perspective is 

fundamentally one of recognising a signal in a noisy environment, and this concept is 

accessible to students perhaps as early as the age of eight. The visual representations 

provided by TinkerPlots (Konold & Miller, 2005) software—an analytical tool de-

signed to support students statistical reasoning —allows students to recognise both 

signal and noise for a given population. Through physically creating representations 

through drag and pull manipulations the software supports the development of infor-

mal statistical inference in the student. In the present study TinkerPlots was utilised 

with young children. 

PURPOSE OF STUDY 

The study reported is drawn from a larger design study incorporating four, multi-lesson 

instructional sequences examining students’ development of reasoning skills and 

generalisation using TinkerPlots. The analysis presented here examines students’ in-

terpretation of a two-way table of data, and the strategies used for predicting missing 

values. The research questions were: 

1. How do students use variability in given values to predict an unknown value? 

2. What strategies are students using to justify their data choice? 

3. How are students’ interpretation of data reflected through their use of probabilistic 

language?  

METHOD 

Student participants 

High achievers were selected from a cohort of 42 mixed ability second-graders at-

tending an independent school in Sydney, Australia, through an assessment-based 

interview focused on pattern and structure (Mulligan, Mitchelmore, & Stephanou, 

2015). Ten students (mean age 7 years 10 months) were withdrawn from the classroom 

for four weekly lessons using a design-based approach (Gravemeijer & van Eerde, 

2009) with the researcher acting as teacher. The students had had previously exposure 

to TinkerPlots and were familiar with saving files, entering data and creating plots.  

Design and Procedure 

For the four-lesson sequence described here, students used variable natural data in the 

form of maximum temperature readings sourced from the Australian Bureau of Me-

teorology as a scaffold for predicting, representing and explaining their understanding 

of variability. During Lesson 1 students were provided with a data table containing 

maximum monthly Sydney temperatures for 2010-2016. A final row, labelled 2017 

was left blank. Students worked in teacher-selected pairs to determine preferred val-
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ues, with one pair of students videoed during the process. Once completed, they re-

sponded to the prompt “Write down anything you noticed about the numbers” and then 

individually represented the table data through tables or drawings. After completion of 

the representations, eight students participated in semi-structured video interviews 

explaining their representations. In Lesson 2, students responded to three written 

prompts “Is there anything you noticed about the data?” “How did you decide to 

choose these numbers?” and “How certain are you that the numbers you have chosen 

are accurate?” Students were then shown a graph of the data in TinkerPlots, and re-

sponded to the prompt “What patterns do you notice?” In Lesson 3, students added 

their predicted values to the Lesson 2 TinkerPlots graph. In Lesson 4 students used 

their own TinkerPlots graphs to respond to the following prompts “What do you notice 

about your data?”, “Do you want to change any of your numbers?” and “Why or why 

not?” Nine students then participated in individual semi-structured interviews. At all 

points within the lesson cycle, students were free to reflect upon and refine their data 

choices, thus providing the opportunity for the development of their own explicit 

mathematical interpretation (Mulligan, 2015). 

Data sources and analysis 

There were three data sources: student-constructed data sets and responses to written 

prompts (written), transcripts (oral) from Lesson 1 and 4 semi-structured interviews 

and the transcripts of two videoed interviews in Lesson 1, and representational 

(hand-drawn graphs from Lesson 1 and TinkerPlots graphs from Lesson 3). In this 

preliminary report, an overview of emerging reasoning for each student is described as 

three levels of statistical reasoning: idiosyncratic, transitional and quantitative (Leavy, 

2008). 

Student-constructed data sets were coded on a three-point scale according to awareness 

of seasonal patterns and proximity of predictions to existing data set (no awareness, 

some awareness, close approximation). Student responses to written prompts (Lessons 

1, 2a 2b and 4) were coded on a five-point scale of increasing generalised thinking, 

(nil/idiosyncratic response, individual scores observations only, observing differences 

between months, generalised comment about shape of data, generalised comment 

combined with awareness of mean, range or outliers). Oral responses from Lesson 1 

were coded as for written prompts. Thematic coding was developed from the transcript 

of the videos from Lesson 1 and the semi-structured interviews in Lesson 4 (Flick, 

2014). Hand-drawn graphs were coded according to levels of structural development, 

namely pre-structural, emergent, partial, structural and advanced structural (Mulligan, 

Hodge, Mitchelmore, & English, 2013). TinkerPlots graphs mirrored the data tables, 

and the same coding applied. Given the diversity of data sources, a range of analysis 

was used for trial purposes, with preliminary results only presented here.  
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RESULTS 

Student predictions 

The monthly predictions created by the five student pairs all showed at least some 

awareness of seasonality and the idea of range (Table 1). For pairs 1, 3 and 5, the 

seasonal pattern was distinct and the predicted values fell within or very close to the 

range of the data. Pair 2 showed a slight seasonal dip, however the predictions were 

well outside the range, by as much as 10oC in the case of July. Similarly, Pair 4’s 

winter dip was only apparent in June and August with other values outside the range.  

Pair Jan Feb Mar April May Jun July Aug Sept Oct Nov Dec 

1 43 40 36 32 29 25 27 28 31 35 38 40 

2 45 40 39 35 32 31 36 42 42 43 43 45 

3 

4 

5 

38 

47 

35 

36 

41 

41 

29 

31 

30 

26 

30 

31 

23 

27 

26 

21 

24 

22 

24 

29 

21 

27 

20 

22 

30 

32 

24 

36 

39 

27 

39 

41 

32 

41 

42 

39 

Table 1: Student pairs predict monthly maximum temperatures for 2017 

In their responses to “Write down anything you notice” (Lesson 1) six students referred 

to data shape (Pairs 1, 5) and identification of seasons (Pair 3) thus interpreting the 

table as representing one unit of information. In contrast, Pair 2 focused on individual 

data points. For example, “The hottest numbers were 46, 41, 42, 39 and 38” (Ashley) 

and “The hottest temperatures were all forties and thirties” (Julian). This difference in 

understanding was apparent in their representations: Fritz (Pair 1) and Lanni and Rhys 

(Pair 2) produced structural or advanced structural representations, showing awareness 

of equal spacing, partitioning, structured counting, shape and alignment and se-

quencing as described by Mulligan et. al. (2013). Rhys and Fritz’s representations were 

presented as line graphs, showing their understanding of the data as a continuous se-

quence. Although these students were experienced in reading two-way tables, this task 

required interpretation of 72 data points, which could be viewed in rows (years) or 

columns (months), as well as a global set of repeating cycles. Most student pairs ‘read’ 

the table from top to bottom, with emphasis upon seasonality, using range, proximity 

to other values and seasonal knowledge to assist. Julian and Ashley, in contrast, high-

lighted individual data points with Julian tabulating each temperature, with the number 

of occurrences written below it and Ashley selecting and colour coding temperatures 

for each year. When prompted at interview, Julian was unable to identify seasonal 

patterns. Ashley focused upon rows (i.e. calendar years) rather than columns (months) 

of data, stating that “in 2016 there were two hot temperatures”.  

Students’ reasoning behind predictions 

All three data sources show students used personal experience, knowledge of seasons 

and the data table to make predictions. Although not all students could correctly name 
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the months belonging to each season, these could be deduced from the table. Joseph for 

example, explained “Well, I found out that were (sic) the season are, so in the middle it 

is winter and then it heats up on the sides”. Students’ drew on memories of hot days of 

the year, weather reports and specific events, such as birthdays to link months and 

temperatures. Completing the table on a rather cold day at the end of August was 

complicated by students experiencing a relative heatwave the previous week. Rose 

wrote: “2017 was a very hot year. Winter felt like summer.” 

The most powerful predictor for most students was the data itself. Students’ used the 

table to demonstrate an understanding of variability and emerging generalisations. 

Joseph and Stuart (Pair 3) reflected explicitly about their process: “I started with the 

middle and ceep (sic) going up by 2-3 degrees and on the left side going down by 3-2 

degree” (Joseph) and “I started at June which divides the year in half, because I knew it 

would be cold then I did January and December which would be the hottest and I went 

in” (Stuart). Caden and Aaron (Pair 4) both describe selecting numbers around the 

other numbers. The transcript from Pair 5 reveals explicit discussion of range (March 

and April), months being “all in the 20s” (May), November as “like summer”, and June 

being cold. This pair then observed an annual cycle by adjusting their December figure 

in line with the one they had produced for January.  

Use of TinkerPlots  

Figure 1 Maximum Sydney temperatures plotted using TinkerPlots software (left) and 

values including a student’s estimations (right) 

Transferring the data from a table to TinkerPlots format (Figure 1) assisted all students 

to recognise seasonality, and to display increasingly sophisticated statistical reasoning. 

Eight students interpreted the data spread as greater for warmer months: for example, 

Joseph responded, “It looks like the hotter the temperature is, the more spread out they 

are, like January or November, and the colder it is the more together they are like 

June”. Caden described January as having a “big range, while June has a small, tight 

range”. When working only from the table, Aaron wrote: “I notice no patterns”, but 

after viewing the data graphically (Figure 3a) his response was “I see January is high 

and it gets lower and higher again.” When compared with Leavy’s (2008) three levels 
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of statistical reasoning, eight of the ten students’ explanations moved to a higher level 

after using TinkerPlots and five were at the third (quantitative) level, usually charac-

teristic of students in grades 3 and above. The students’ familiarity with the software 

potentially gave them access to concepts such as range and average, previously inac-

cessible for grade 2 students (Table 2).  

 

Lesson Fritz Rose Julian Ashley Joe Stuart Aaron Cadel Rhys Lanni 

1 trans trans trans idio trans quan trans trans trans trans 

2a idio idio trans idio idio idio idio trans # # 

2b 

4 

quan 

quan 

trans 

quan 

quan 

quan 

trans 

idio 

quan 

quan 

trans 

trans 

quan 

trans 

quan 

trans 

trans 

trans 

idio 

# 

Table 2: Levels of second-graders statistical reasoning over four lesson sequence: 

idiosyncratic, transitional and quantitative    # missing data 

After plotting their own data against the table temperature (see sample Figure 2), 

students justified their data choice. Student explanations included “reasonableness” 

(Fritz), global warming (Julian), match to TinkerPlots data (six students), data located 

in the ‘hat” (Fritz, Rose, Joseph), similarity to table figures (Rose, Caden) and sea-

sonality (Stuart). When discussing their data, students either directly used or implied 

the following terms: outliers, clusters, spread, range, hats and quartiles, data shape, 

levels of certainty of prediction and discrepancies between their chosen values and the 

provided data table (Table 3).  

Lesson Fritz Rose Julian Joe Stuart Aaron Cadel Rhys  

Outliers *     *    

Clusters * *    *    

Spread 

Range 

Hats  

Data shape 

Uncertainty 

Certainty 

Discrepancies 

* 

* 

* 

 

* 

 

 

* 

 

 

* 

 

 

* 

 

* 

 

* 

 

 

* 

 

* 

* 

 

 

* 

* 

* 

* 

 

 

 

 

 

* 

* 

* 

 

 

 

 

* 

* 

* 

* 

* 

* 

 

Table 3: Terms expressed by second-grade students when describing data variability      

DISCUSSION 

The task described here required students to predict temperatures for current and future 

dates by interpreting a two-way table data set. By using relevant data which involves 
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natural variation, students could use their developing data-analysis strategies while 

simultaneously attending to other features relevant to them. These included recent 

experiences, knowledge of the seasons and weather reports. As in other studies 

(English, 2012), the data table itself formed the foundation for predictions, specifically 

student observations of maximums, minimums and range. When justifying their 

temperature figures, the TinkerPlots representation featured prominently in explana-

tions, with students describing their data as “reasonable”, “looking right” or located in 

the TinkerPlots hat. Previous studies (Ben-Zvi & Aridor-Berger, 2016) show that 

young students move between the content i.e. the provided data and their personal 

context when developing inferential reasoning skills. Early efforts at data modelling 

typically show a disconnect between the two worlds, with integration emerging over 

time and modelling experiences. In the study presented here, students integrated the 

content and the context appropriately. However, this process is still in development, as 

some students over generalised about climate change or linked a whole month from a 

single remembered day. Makar (2016) argues that repeated exposure to such predicting 

and organising activities provides a positive experience with informal statistics and a 

growing awareness of both variability and generalisation. 

The language used by the students included specific statistical concepts such as hats, 

quartiles, spread, range, clusters and outliers. The complexity and ambiguity of the task 

along with visual accessibility provided by TinkerPlots, supported student reasoning at 

level unexpected for such young students. According to Makar et al. (2011) inferential 

reasoning requires a statement of generalisation beyond the data, using data to support 

the generalisation and recognition of uncertainty. Through their generalisations about 

temperature cycles and the use of a data table as a principal resource for predicting, and 

through balancing certainty and uncertainty, these students are well on the way to 

meeting these criteria. Prolonged and focused activities, to which these students had 

had previous exposure, greatly supported their statistical reasoning. Multiple studies 

have reported on the development of students’ data analysis strategies in the early 

school years (English, 2012; Leavy, 2008; Mulligan, 2015, Oslington et al., 2018). 

This study extends this research by demonstrating the potential of TinkerPlots as a 

viable tool for developing data analysis strategies by students as young as the sec-

ond-grade. 

CONCLUSION 

This study affirms previous research with young students demonstrating their capacity 

to utilise a data table to predict missing values and to use context to support their 

predictions. TinkerPlots allowed students to increase their level of statistical reasoning. 

This is a small, specialised study conducted with capable students, and thus the results 

cannot be generalised to all second-grade students. Nevertheless, they suggest that 

TinkerPlots can be used as a viable tool for data analysis by second-grade students, and 

the study confirms the feasibility of providing rich modelling tasks for developing 

statistical reasoning in young students.  
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PRODUCTIVE WAYS OF ORGANISING PRACTICUM –  

WHAT DO WE KNOW? A SYSTEMATIC REVIEW 

Lisa Österling and Iben Maj Christiansen 

Department of Mathematics and Science Education, Stockholm University 

 

The starting point for this review are questions on the empirical base for the organi-

zation of practicum. Selecting peer reviewed, empirically based articles for 2001- 

2017, with a focus on mathematics teacher education and the practicum, resulted in 

the inclusion of 51 articles for review. Exploring the outcomes and student teachers’ 

experiences of practicum suggested that responsibility for teaching together with 

support from mentors, university lecturers, university coursework, peers or prompts to 

use a theoretical framework improves learning outcomes in practicum, and the length 

of time in a school context does not do so on its own. 

INTRODUCTION 

This paper presents a systematic review of empirical studies about mathematics stu-

dent teachers’ practicum. There is widespread agreement that practicum is an im-

portant part of teacher education (cf. Cochran-Smith & Zeichner, 2005; Grossman & 

McDonald, 2008), for future teachers of all levels and disciplines. However, a review 

of empirical research concludes that the reviewed articles give a “cloudy view of 

student teaching’s contribution” (Anderson & Stillman, 2013, p. 36) in relation to 

desired outcomes from practicum. As teacher educators and researchers, we seek a 

better understanding of what existing research can, and cannot, tell us about the role 

and contribution of the practicum in teacher education. The purpose of this paper is to 

systematically synthesize and map findings from the empirically based knowledge 

related to practicum for pre-service mathematics teachers on what has been found to be 

productive ways of organizing practicum. 

An earlier review of research on teacher education found more research within 

mathematics teacher education compared to other content areas of teacher education 

(Cochran-Smith & Zeichner, 2005). A systematic review on research on mathematics 

teacher education revealed a large number of studies focusing researchers’ own prac-

tice, including efforts to demonstrate that a particular program works (Adler, Ball, 

Krainer, Lin & Novotna, 2005). They also found the majority of studies to have a 

narrow scope, and that few studies addressed student teachers’ learning from experien-

ce beside the different reform contexts. Furthermore, few discussed the possibility of 

scaling up locally developed programs to multiple sites in new contexts.  

We are deeply engaged in the practice of mathematics teacher education, and thus are 

interested in results which can inform practice. What comes to count as a productive 

organization of practicum must relate to the desired outcomes. In earlier research, it 

has been described how different kinds of knowledge is seen as important in the two 
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contexts, sometimes imposing a gap between theoretical and practical knowledge (see 

for instance Lampert, 2010, Zeichner, 2010). Our position is that a productive practi-

cum allows transfers and integration of knowledge from both contexts. The term rea-

soned judgement is used by Rusznyak and Bertram (2015) to describe the specialised 

knowledge, content knowledge as well as general pedagogic and contextual know-

ledge teachers draw on when motivating decisions in the classroom. We have found a 

similar position on the image of the desired teacher knowledge can be traced in several 

of the reviewed articles (see Christiansen & Österling, 2018). We assume that the po-

sition taken on what counts as a desired learning outcome will also affect what counts 

as a productive way of organizing practicum. 

It is currently challenging to get an overview of what research findings can tell us about 

the contribution of practicum to mathematics teacher education, and we make this 

review in order to learn from existing research how the organisation of practicum is 

related to desired outcomes, and the specificity, if it exists, with respect to mathematics 

student teachers. This gives rise to the following research questions: 

• What are productive ways of organizing mathematics teacher education 

around practicum? 

• Are there specific elements or characteristics of practicum in Mathematics, 

and if so, what are they? 

The organization and role of practicum differ internationally, and go by different 

names. In this paper, we will use practicum to describe the phenomena of teacher ed-

ucation taking place in a school context in all its forms.  

There are also various terms used for the prospective teachers, the practicing teachers 

who mentor them in schools, and the university staff who engage with the practicum 

element. We have chosen to use the terms student teacher, or student for short, for the 

prospective teachers during their education; learner for the pupils or school students, 

mentor for the practicing teachers, and lecturer for the academic university staff. 

METHOD 

Our first decision was to include only peer reviewed journal articles. We limited the 

search to 15 years, searching articles published 2001-June 2017. The journal Pytha-

goras was however only electronically available to us from 2004. The majority of 

papers were published in the last ten years. Once the potentially relevant articles were 

selected within each journal, resulting in a total of 107 articles, we checked that the 

article did indeed concern mathematics teacher education and practicum; that it re-

ported on empirical research; and that it had to do with mathematics teaching; hence, 

these were our inclusion criteria. In addition, we decided not to include single case 

studies (exclusion criterion). This process resulted in a dataset of 51 articles. Using 

each article as the unit of analysis, we summarized it according to country of the data, 

aspect of practicum in focus, scope, type of participants, methods, and theoretical 

perspectives. In the present paper, only results concerning the posed research questions 

are summoned. 
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RESULTS 

Productive ways of organising practicum 

Researching the effects of duration of practicum, it appears that it is quality, not 

quantity that matters. Chinese student teachers’ MKT was affected by the completion 

of courses and responsibility for teaching during practicum, not the length of student 

teaching or number of mathematics courses in university (Youngs and Quian, 2013). 

No relations between the length of practicum and the outcome was found in a study in 

an analysis of secondary data from 1044 respondents (Jacobson, 2017); instead, 

providing early practicum with possibilities to teach, together with corresponding 

campus courses, had effects on students’ mathematical knowledge, and on their beliefs 

about active learning and maths-as-inquiry. Several other outcomes were found to be 

related to support from lecturers or mentors, as a higher perceived ability to carry out 

instructional tasks, attention and noticing in teaching, an interconnectedness between 

efficacy in teaching mathematics and managing the classroom, related to an ability to 

engage learners’ thinking more and using less whole class instruction.  

Several qualitative studies aimed at providing an understanding of when and how 

learning in practicum takes place. These studies all concluded that mentoring or 

other prompting support is important for the different learning outcomes from practi-

cum. A number of studies from the USA revealed how student teacher developed their 

engagement with learners’ participation or mathematical thinking. In a Turkish case 

study, the use of number patterns in school algebra was used to explore the contri-

bution of practicum to student teachers’ pedagogical content knowledge (PCK) (Ye-

şildere İmre & Akkoç, 2012). They found that students develop PCK conditional to the 

cooperating teacher displaying the necessary PCK. Positive changes were found in 142 

elementary student teachers’ attitudes towards mathematics after their student teach-

ing, however, the previous mathematics methods course was the most important reason 

for students reporting negative attitude (Jong & Hodges, 2015).  Four studies used a 

lesson-study intervention, and all reached the conclusion that lesson study supported a 

development of students’ attention to learners’ mathematical thinking. Five studies 

investigated interventions where students analysed the teaching of others. All such 

interventions were found to result in improved reflections, in terms of theorizing, at-

tention to learners, questioning, use of research, or analysis of teaching.  

Eight studies used interventions where students engaged in specified techniques, 

such as inquiry based mathematics, statistical investigations, integration of literature in 

mathematics, pedagogical difficulties, a bulletin board community, action research or 

Learning Bridges thematic practicum. Most studies reported positive results, but some 

unwanted outcomes were found. Heaton and Mickelson (2002) found US students 

unable to transfer their statistical PCK to teaching; Karp (2010) reported remaining 

difficulties with insufficient knowledge of curriculum materials after the intervention; 

and students found it difficult to define their own “tender spot” as a starting point for 

action research (Amir, Mandler, Hauptman & Gorev; 2017). Using concept mappings, 

interviews and journal writing of 51 secondary mathematics and physics student 
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teachers, the teacher centered approach was found to be regarded as easier to perform 

and difficult to challenge (Özgün-Koca & Sen, 2006). 

We found few studies on perspectives of teacher professional identity and positio-

ning. These studies demonstrate how timing of theory and practice, good examples of 

collaborating practice and possibilities to participate in a professional conversation 

with peers, mentors or lecturers was important to student teachers’ learning and iden-

tity formation (Kaasila & Laurila, 2011; Hodges & Hodge, 2015).  

Reflections in relation to teaching could be regarded as a means for learning to teach, 

however, in the reviewed studies, reflections are regarded as a learning outcome, and it 

has not been explored how reflections assists students to develop their teaching. What 

constitutes reflections vary, so does the context of reflecting, and therefore different 

results are reported. Studies focusing refections as a learning outcome categorises 

reflections according to quality, breadth or depth. Another focus is the content and 

argument in reflections, including the use of theoretical or professional language. 

Contextual factors found to improve reflections are mentoring conversations, work-

ing with peers or integrating coursework in reflections on practicum, with an increased 

use of theories in reflections. Some results were more complex, where an evaluative 

approach in mentoring conversations was found to be in conflict with the reflective 

approach (Johnsson & Højnes, 2009), or a lesson-study intervention found that re-

flections on mathematics lessons did not follow the pattern of other subjects, focusing 

less on mathematics and more on learners after the intervention (Helgevold, Næs-

heim-Bjørkvik & Østrem, 2015). Studies also combine the contextual explanations 

with theoretical aspects, as when Kaasila and Lauriala (2012) found that the depth of 

reflections to a large extent depended on the experience of the Finnish student teachers, 

but could be improved through the reading of research articles. Improved areas were 

level of reflection, tendency to ground reflections in evidence, the way students ana-

lyzed learner thinking, and their use of pedagogy and learner thinking as bases for 

analyzing teaching. Also, Bieda, Sela and Chazan (2015) demonstrated a difference in 

reflections between early and late practicums, where mentors focusing on the obliga-

tions in the classroom were an important factor in the change of students’ justifications 

of their teaching. An opposite result was found when Simpson, Vondrová and Žalská 

(2017) investigated whether students’ attention on aspects of mathematics teaching 

increased after one, two or three blocks of practicum, and found that it did not. Others 

looked for reflections that include a specified theoretical content, most often PCK or 

mathematical knowledge for teaching (MKT), which we will return to below. 

The included intervention studies engage different approaches to improve learning 

from practicum. Lesson study-interventions was found, in four studies, to have a po-

tential for developing knowledge of planning and teaching. The studies of students 

observing others were all found to result in improved reflections, in terms of theori-

zing, attention to learners, questioning, use of research or evidence in analysis of 

teaching, whereas only one study reported improvements in reflections on students’ 

teaching. Other successful interventions were mentoring conversations with both 
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mentor and lecturer, an online bulletin board, literature integration in teaching, and a 

course which integrated elements from practicum, allowing students to try out course 

content in practice. In a few studies, unwanted outcomes were mentioned, but overall 

the interventions appeared to be considered successful by the authors. 

The synthesis of all studies that explored the learning outcomes from practicum sug-

gests that responsibility for teaching together with support from mentors, coursework 

or other resources is more important for the outcome of practicum than the length or 

number of periods spent in a school context. These studies reveal how spending time in 

school is not enough to achieve a learning outcome for mathematics teachers. From 

this we learn, not surprisingly, that students need preparation in terms of content 

knowledge, PCK, theoretical models etc., but also that it takes systematic and focused 

prompts from mentors, peers or teacher educators to learn to transfer this theoretical 

knowledge to reflections on classroom teaching.  

Studies on what characterizes practicum in mathematics in particular 

Out of the 51 reviewed articles, only eight explored the specificity, if it exists, of lear-

ning to teach mathematics in particular from practicum. Helgevold et al. (2015) saw 

that reflections on mathematics teaching seems to differ compared to other subjects. 

Before a lesson study intervention, mathematics mentoring conversations focused the 

subject and the student teachers’ actions more than in other subjects. After the inter-

vention, the focus on learners was increased. The mathematics mentoring conversa-

tions had very little focus on general concerns, compared to other subjects.  

Two studies engaged attitudes and beliefs of prospective teachers in relation to 

mathematics teaching. Jong and Hoges (2015) found that several factors needed to be 

taken into account, where previous attitudes were the strongest predictor, but also 

mathematics methods environment and experiences from school, while only 3% was 

explained by student teaching experiences. The relationship between the instructional 

practices and the student teachers’ beliefs about their efficacy to teach was investigated 

in another US study (Lee, Walkowiak, & Nietfeld, 2017). Their findings indicate that 

prospective teachers with higher levels of mathematics teaching efficacy beliefs taught 

lessons characterized by higher cognitive demand, extended learner explanations, 

learner-to-learner discourse and explicit connection between representations, whereas 

the lessons by those with lower levels were characterized by whole-class instructions.  

A few studies explored the impact of practicum on the development of specific 

mathematics PCK or specifically MKT. The development of MKT was found to im-

prove by instructional responsibility during practicum, together with the completion of 

and exposure to certain topics and learning experiences in mathematics courses and in 

general pedagogy courses. Several studies analysed the different aspects of MKT re-

vealed in written reflections, and found that specific frameworks or tools could im-

prove the presence of MKT in reflections. As an example, van den Kieboom (2013) 

found several examples of ‘common content knowledge’, fewer of ‘specialised content 

knowledge’, and very few of ‘knowledge of content and students [learners]’, leading 
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the author to conclude that content knowledge is essential, yet finding that providing 

students with an analytic tool facilitated the development of MKT from practicum.  

The studies focusing the specificity for teaching mathematics highlights the impor-

tance of content knowledge together with PCK. However, students have been found to 

improve their PCK during practicum when provided an analytical tool. In addition, two 

studies addressed students’ beliefs or attitudes in relation to teaching mathematics, and 

one study found that the focus on learners was more challenging in learning to teach 

mathematics compared to learning to teach other subjects. 

DISCUSSION 

Despite the fact that practicum is differently organised, and the learning focus vary, we 

have found some consistencies. The strongest synthesis from this review is that the 

learning from practicum is improved by feedback, prompts or guidance from teacher 

educators, mentors or peers. We have been able to demonstrate some convergence in 

results when it comes to the importance of prompting students to make use of theories 

in relation to practice, where for example video analysis, mentoring or written reflec-

tions turned out to be successful contexts. The desired learning outcomes ranges over a 

large number of perspectives, as increased mathematical knowledge or PCK, con-

structivist teaching approaches with active learners, often focusing improved use of 

theory in reflections, and the student teachers implementation of instructional tasks. In 

this review, we found some studies focusing attitudes and identity development, 

whereas no study took a position of learning as completely contextually situated. This 

result is encouraging in relation to our own position, where we see teachers as en-

gaging in reasoned judgement (Rusznyak & Bertram, 2015), providing theoretical as 

well as subject specific arguments for their choices and actions in teaching.  

Yet, the reliability and transferability of this result are affected since so many of the 

studies are reports on the researchers’ own practice, and may be impacted by the re-

searchers’ positions. We see a risk of research reinforcing existing practices, without 

problematising the purpose or rationale in relation to the different images of a desired 

teacher. Few studies reported negative or even surprising results. Also, this study re-

ports on empirical studies predominantly from the Anglophone countries, a majority 

from USA. In addition, the intervention studies would more often use students reported 

learning, for example written reflections, than classrooms observations of performed 

teaching. Therefore, we limit our conclusions to find it demonstrated that when stu-

dents are engaged in lesson study, a theoretical analysis of teaching or a specified 

teaching technique, that is what they will do and learn. The different studies generally 

appear to us as isolated islands of research; more studies aligning with the same project 

or model was rare, and most literature reviews focuses the chosen theoreti-

cal/methodological perspective rather than previous knowledge on outcomes from 

practicum. Our sense is that the focus of many studies is not on the construction of 

cumulative knowledge, but rather on developing own practices. 
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Such practices most likely rely on the pre-existing image of the desired teacher, and 

our review indeed does demonstrate different perspectives on the desired teacher 

(Christiansen & Österling, 2018). In our view, it is important for teacher education to 

engage more critically with its practices, wherefore we suggest initiatives of re-

searching each others’ practicum; developing more coherent research programs; using 

secondary data to compare and contrast; and testing results through follow-up studies 

on the same participants. Such initiatives would improve reliability, further ge-

neralisability/transferability, and challenge any taken-for-granted assumptions or 

values in researchers’ own practice. Furthermore, we recommend putting more as-

sumptions to the test, rather than reporting on how successful one’s preferred practices 

are. This would also mean sharing results of interventions that did not have the ex-

pected or desired outcomes. 
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In this paper, the influence of the written format of an arithmetical expression on the 

way the students evaluate this expression, as well as a possible connection between 

this way of evaluation and an understanding of structure, are examined. Students from 

two countries evaluated a small number of rational expressions. The findings show 

that the rational form guided the students in their evaluation, temporarily leaving 

aside the rules for the order of operation. Instead, they used ‘mental’ brackets that 

mask a possible, or actual, structure sense.  

INTRODUCTION  

Brackets in arithmetic can be used by students in a manner that is either procedural or 

conceptual. The former is related to the rules for the order of operations in an arith-

metic expression, indicating priority in the order of operations. For example in 

12/(4+2) brackets are a signal to “do this first”. The latter considers brackets as structu-

ral elements, which determine the relation between the different parts of an expression. 

For example, in ( ) ( )3546
35

46
++=

+

+
 brackets are used to preserve the structure of 

the rational expression and determine the relation between the two terms of the frac-

tion. Many studies show that students exhibit both a poor procedural knowledge and a 

lack of an understanding of structure (Kieran, 1989; Linchevski & Livneh, 1999). For 

structural understanding, it is important for the student to be able to parse the expres-

sion correctly and identify the relation between the constituent parts as well as between 

the parts and the whole. In this paper, we examine the possible connection between the 

way students evaluate a rational expression and an understanding of structure given.  

THEORETICAL BACKGROUND 

Typically, brackets are introduced to the students alongside with the rules for the order 

of operations, suggesting what should be calculated first. However, they can also be 

necessary to preserve an expression’s mathematical structure (for example when a 

rational expression is rewritten horizontally) since they show how terms are grouped. 

Hence, students’ use of brackets can reveal their understanding of mathematical 

structure (Linchevski & Livneh, 1999). Hoch and Dreyfus (2004), working with stu-

dents in the context of solving equations, found that students react differently to the 

presence or absence of brackets. More specifically, they found that the presence of 
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brackets, by giving a clue of where to look and by focusing the students’ attention, 

affected positively the students’ structure sense. Brackets help students ‘looking’ befo-

re ‘doing’, which is a feature of using structure sense. Brackets focus the students’ 

attention to recognize relationships between the parts of the expression as well as to 

consider a compound term as a single entity. They ‘close’ an expression by indicating 

its total, and therefore certain parts of the expression are considered as a whole, which 

is important for obtaining structure sense (Marchini & Papadopoulos, 2011). Despite 

the importance of understanding brackets in structure of arithmetic expressions, stu-

dents seem to face difficulties in comprehending their role. Sometimes they ignore 

them, thus violating the priority of the involved operations. In their study, Blando, 

Kelly, Schneider, and Sleeman (1989), working with grade 7 students from a middle 

school, found that in the item ( )428 +−  some students calculated this as 

1046 =+ which means that they ignored the set of brackets and calculated first the 

subtraction  28− . Hewitt (2005) found that students, when reading written mathema-

tical expressions with brackets, ignored the mathematical structure and the intended 

meaning of the expressions. Linchevski and Livneh (1999) claim that this lack of struc-

ture sense could result in that students focus on the numbers rather than on the structure 

or the operations. They explain that when the students have to deal with expressions of 

the form cba  , it is necessary to make them detach the middle number (b) from the 

preceding addition/subtraction. They suggest that the use of brackets can resolve this 

issue, i.e.,  ( )cb . Finally, another way to make students focus on the structure of an 

expression is the use of ‘useless’ brackets to help students see algebraic structure 

(Hoch & Dreyfus, 2004) and to increase success rates in arithmetic expressions 

(Marchini & Papadopoulos, 2011). However, there are instances where useless 

brackets could cause impediment for the learning of the order of operations (Gun-

narsson, Sönnerhed & Hernell, 2016).  

In this study, our interest lies on the use of ‘mental’ brackets when rational expressions 

are written horizontally. ‘Mental’ brackets were introduced in the work of Linchevski 

and Livneh (1999). They noticed that some of their students, in their effort to solve the 

equation ?167167926 =+− , put ‘mental’ brackets around 167167+ . It seems that 

students imagined these brackets (not physically present) and view the equation as 

( )167167926 +− . Additionally, 37% of their students put ‘mental’ brackets around 

the multiplicative terms in the expression 2324  in contradiction to the order of 

operations. Hence, Linchevski and Livneh (1999) successfully could understand stu-

dents’ behaviour by introducing the concept of ‘mental’ brackets. Therefore, we intend 

to apply this concept to study a different but adjacent topic. The influence of the 

written form of an expression upon how the same expression is evaluated, is a topic 

that so far has been less explored, but where research is needed. So, in this setting, our 

research questions are: How do the written form of an expression govern the way 

students evaluate arithmetic expressions? Is the interpretation of the written form re-

lated to the structural understanding of these expressions? 
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SETTING OF THE STUDY 

The study took place in Sweden and Greece. The participants (11-12 years old) were 

112 grade-6 students from Greece and 123 grade-5 students from Sweden. All the 

students had been taught the rules for the order of operations. A collection of groups of 

activities was designed aiming to reveal how the students understand the role and use 

of brackets while evaluating arithmetic expressions. In this paper, we examine the 

results from one group of activities. All the activities in this group invite students to 

initially re-write a rational (fractional) expression in horizontal form and then to 

evaluate this horizontal expression (Fig. 1). The aim of this group is to shed light on 

whether there is a connection between the format of the written expression and the way 

the students evaluate them. 

 

Figure 1: Rational expressions used in the study 

A pilot study was conducted, and the findings were used to refine and decide the final 

form of the activities. The process was the same in both countries: sufficient time (no 

time limit) and same instructions. The students’ worksheets constituted our data and 

the analysis took place in two levels: qualitative and quantitative. The qualitative part 

was based on content analysis (Mayring, 2014), aiming at organizing the students’ 

answers in categories based on the solution strategies used for the expressions’ eval-

uation. Each activity was examined separately, and the data were post-coded inde-

pendently by the two authors. The coding results were compared, codes were clarified, 

and some data were recoded until agreement. The quantitative part is limited to the 

frequencies of the answers that belong in each solution strategy. 

RESULTS 

The re-writing of the rational expressions horizontally needs the use of brackets to 

preserve the structure of the rational expression and ensure that both the numerator and 

the denominator will be evaluated separately. For example, the 3rd activity must be 
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written as ( ) ( )23128 ++  to be considered mathematically correct. The analysis re-

sulted in nine categories of answers. Four of them correspond to correct answers and 

they are (i) correct result using brackets (C-brackets), (ii) correct result without 

brackets (C-No brackets), (iii) correct result in the second step since the students make 

the necessary calculations on the fraction’s terms before the horizontal re-writing 

(C-2nd step), and (iv) correct result based on the knowledge of operations of fractions 

(C-fraction operations). The distribution of the students' answers into these four cate-

gories can be seen in Table 1. (Data represent absolute number of answers and the 

sums in each column do not add up to 123 (Swe) and 112 (Gre), because wrong or 

blank answers are not included.) 

 Activity-1 Activity-2 Activity-3 Activity-4 Activity-5 

 Swe Gre Swe Gre Swe Gre Swe Gre Swe Gre 

C-brackets 0 3 2 5 3 7 3 10 1 6 

C-No brack 62 52 33 82 32 76 28 54 31 56 

C-2nd step 15 8 73 6 73 9 59 15 69 12 

C-fr. oper. 0 9 0 0 0 1 0 1 0 0 

Table 1: Arithmetical data of correct answers across the four categories 

The wrong answers (not included in Table 1) have been divided into three categories, 

but it is out of the scope of this paper to present them in detail. In brief, the reasons for 

these wrong answers were miscalculations, left-to-right calculations, and lack of 

knowledge of the concept of fraction. There was also one category for the unanswered 

items and one for items that were not codable. 

The ‘C-brackets’ strategy 

This strategy refers to the correct use of the necessary brackets in the horizontal ex-

pression to preserve the structure of the rational expression. An example of students’ 

answers based on this strategy can be seen in Fig. 2. It is interesting that the specific 

student used brackets for all the items except for the first one. 

 

Figure 2: Answers that use brackets and preserve structure 
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The reason was that any pair of brackets around the division 412   would be ‘useless’ 

since the rules for the order of operation do not violate the structure of the given ex-

pression. Division must be done first, and this is in alignment with the structure of the 

rational expression. However, as it can be seen in Table 1, very few students found the 

correct answer using the necessary brackets (C-brackets row) in the horizontal form. 

An average (over all items) of 1.8 Swedish students and 6.2 Greek students used 

necessary brackets, thus preserving the structure of the given rational expression. 

The ‘C-No brackets’ strategy 

The students who applied this strategy found the correct arithmetic result without the 

use of brackets. Their evaluation of the horizontal expression is mathematically in-

correct since it violates the order of operations. However, they manage to get the cor-

rect result (Fig. 3). A large number of students in both countries found the correct an-

swers without the use of brackets. An average of 37 and 64 Swedish and Greek stu-

dents, respectively, used this strategy. 

 

   

 

Figure 3: Correct result, but incorrect process 

More specifically, the students wrote the horizontal expression without brackets. 

Therefore, it seems that structure is not preserved in the written form, but the result is 

correct. The first interesting thing to notice is that the first two items in their horizontal 

form are identical. However, the first one is evaluated as 5 while the second one as 2. 

As it is evident from the specific student’s calculations, in the first item, the expression 

2412 +  was evaluated as 23+  whereas in the second as 612 . The student seems 

to feel comfortable with these two expressions that look the same but give different 

results. Both final answers show an alignment with the structure of the initial rational 

expression of these items. In the third item, if one follows the rules for the order of 

operations, the result is 1424823128 =++=++ . However, it seems that the stu-

dent calculated separately the sums 128+  and 23+  (i.e., the terms of the fraction), 

before making the division 4520 = . In a similar way, the fourth item included op-

erations of the same priority. As it is written, the conventions are that the expression 

should be evaluated from left to right, resulting in 5.2252420 == , instead of 

10. The last item is the most demanding, since its numerator included an arithmetic 
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expression which needs the knowledge of the precedence rules for its evaluation. The 

result is again correct (6 and not 14, as it should be according to a formally correct 

evaluation of the horizontal expression, i.e., 14212361233212 =+=+=+ ). 

The ‘C-2nd step’ strategy 

This strategy, as well as the next one, is not fully aligned with the task’s instruction. A 

large number of the Swedish students (an average of 57.8 students over all items) ini-

tially made the necessary calculation either on numerator or denominator before 

writing the fraction horizontally (Fig. 4). The corresponding average for the Greek 

students was 10 students. 

 

Figure 4: Correct answer with an intermediate calculation in the 2nd step 

The fact is that by initially doing the calculation for either one of the terms or both, the 

horizontal form does not pose a dilemma to the students. For example, in Figure 4, 

second item, the student calculated initially the sum 624 =+  and therefore the hori-

zontal form was simply asking for the division 612 . Similarly, in the third item, the 

student made initially the calculation for each one of the terms and therefore the hor-

izontal form is a simple division. 

The ‘C-fraction operations’ strategy 

This strategy was applied only by a very small number of Greek student who ignored 

the instructions of the tasks and worked out the tasks using their knowledge about the 

operations of fractions (Fig. 5). So, in the first example (Fig.5, left), the student made 

equivalent fractions with common denominator to perform the addition. In the second 

example (Fig. 5, right), the student follows a rule about the simplification of a whole 

number over a fraction (complex fractions) that is usually taught in Greek classrooms 

(and this rather explains why only Greek students applied this strategy). 

 
 

Figure 5: Correct answers based on operations of fractions 

DISCUSSION 

Our main interest lies in the ‘C-No Brackets’ category. The students’ preference to this 

strategy is connected rather to the fact that the expressions were presented in rational 

form and this guided their evaluation. The students’ conceptual understanding of 

fractions makes their evaluation of the expression straightforward as they seem to 
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translate 
b

a
 is translated into ba  . So, in this case, the students write 23128 ++  

(third item), but they evaluate the expression in a way that reflects an implicit presence 

of brackets that preserve the structure of the initial expression. We believe that in this 

case, the students use ‘mental’ brackets around the two sums as a kind of grouping 

mechanism. The same can be said for all the items of the group. The first two items 

were designed intentionally to contrast similar expressions in their horizontal form, 

2412 + . So, it can be said that in the first case the ‘mental’ brackets are used around 

the division 412  whereas in the second around the sum 24 + .  

This raises the question: Is the use of the ‘C-No Brackets’ strategy a mere consequence 

of the influence of the expressions’ written format, thus indicating a lack of knowledge 

about the precedence rules? The knowledge of fractions is sufficient to correctly 

evaluate the first four items without necessarily knowing the precedence rules. Indeed, 

the rational form of the expression imposes the separate calculation of each term of the 

fraction, and given that these terms in the first four items include only one operation, it 

is easy to obtain the correct result. However, this knowledge is not sufficient for the 

last item. Its numerator includes an expression that demands an understanding of the 

rules for the order of operations. The fact that 31 and 56 Swedish and Greek students, 

respectively, used this strategy and found the correct result, is an indication that this 

cannot be attributed to the sole impact of the expression’s written format. Therefore, it 

would useful to follow the students who did not use brackets in the first four items of 

the group, and correlate that with their answers in the fifth one. So, from the 31 Swe-

dish students who solved correctly the fifth item, 28 did not use brackets in the first 

four items. The corresponding numbers for the Greek students were 51 students out of 

56. But, if these students know the rules for the order of operations, how could their 

unorthodox behavior of the use of the ‘C-No Brackets’ strategy then be explained? 

We argue that the rational form of the arithmetic expression imposes the way it is 

perceived and evaluated. The students respect the form and do not check the mathe-

matical accuracy of their evaluation. Therefore, in the ‘C-No brackets’ strategy they 

are guided by the fractional form. So, by using mental brackets, they perceive the ex-

pressions as they should be perceived, but their writing does not preserve the structure 

of the initial expression. The students’ understanding of the precedence rules are of 

minor importance in the first four tasks, because their format seem to trigger a correct 

evaluation accompanied by a rewriting that is not in agreement with the conventions. 

The students, however, who rely only on the fractional form of the expression, fail to 

succeed when the written format include more complex terms, such as the fifth item 

does, and that requires an understanding of the order of operations. Our data shows that 

there are students who used the ‘C-No Brackets’ strategy in the first four activities but 

were able to turn to the precedence rules when necessary (i.e., in the fifth expression). 

For these students, the written expressions were apparently violating the order of op-

erations, but we believe that they mentally put brackets in the expressions when they 

evaluated them. Hence, the mental brackets made the students find the results of the 
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calculations before figuring out how to write the horizontal expression. We conjecture, 

that in some way they see the writing as obsolete and therefore do not reflect on the 

structure of the expression in relation to the results of the calculation. However, even if 

they do so, they can turn to the precedence rules when the knowledge provoked by the 

format (fractions) is not sufficient for evaluating the whole expression. 

CONCLUSIONS 

The use of brackets is considered important for evaluating arithmetic expressions and 

exhibiting a structure sense (Linchevski & Livneh, 1999). We argue that this does not 

necessarily mean that the absence of these necessary brackets shows lack of structural 

understanding. Our data give evidence that when students write rational expressions in 

horizontal form, they do not use the brackets in the written form (to preserve the formal 

structure of the expression) but add the brackets mentally, in their own evaluation of 

the expression. Indeed, this can be interpreted as lack of structure sense. But, we argue 

that the way the students evaluate these horizontal expressions, even though they fol-

low a seemingly unorthodox process that violates the order of operations, show that the 

structure is preserved through the use of ‘mental’ brackets. 
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MAKING MATHEMATICAL LEARNING LONG-TERMED  

AND EFFECTIVE USING INTERLEAVED PRACTICES 

Stella Pede, Rita Borromeo Ferri, and Frank Lipowsky 

University of Kassel, Germany 

 

While most educational approaches focus on improving learning through making 

things easier, the approach of desirable difficulties is to make the learning process 

more difficult, but long-termed. Within cognitive psychology several of those desirable 

difficulties could be identified, for example the interleaved practices. In the presented 

empirical classroom study the focus lies on the investigation of effects of interleaving 

practices in contrast to blocked learning with seventh Graders. Most students learn 

mathematics in the blocked way: they deal first with one topic and after it is completed, 

they start to learn the next one. Learning in this way is easier than learning several 

topics at the same time, which is called interleaved practice. The study and some of its 

results will be presented in this report. 

THEORETICAL BACKGROUND 

There are different techniques to make learning successful. But even if the learning 

success is reached, many students forget the contents that they have learned very 

quickly. As soon as they start to learn a new topic, most of the contents that they have 

learned before move into the background. How can the learning be made not only 

successful but also long-termed? This question has always been of great importance 

for most of the teachers. As it is known from cognitive psychology, the sustainability 

of the learning success can be reached if learning becomes more difficult (Bjork, 

2011). This recognition sounds paradoxical and is in contrast to most didactical con-

cepts that purposefully strive a simplification of learning. However, many studies 

showed that making learning more complicated in a certain way leads to a long-termed 

success.  

Desirable difficulties of learning 

There are some techniques, that make the learning more difficult and long-termed 

successful. They are known as “desirable difficulties” (Bjork, 1994). The term “de-

sirable difficulties” comes from cognitive psychology and includes such popular 

techniques as the testing effect, the distributed learning, the generating effect, and the 

interleaving practice.  

The testing effect, also known as retrieval practice, uses testing as an opportunity to 

recall the information, which has to be learned (e.g., Karpicke, & Roediger, 2008).  
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The distributed learning is used, when learners divide their learning time into shorter 

learning units with a time delay in between (e.g., Cepeda, Pashler, Vul, Wixted, & 

Rohrer, 2006). 

The generating effect appears, when the information is generated from own knowledge 

(e.g., McDaniel, Waddill, & Einstein, 1988).  

Finally, the interleaving practice means that several related topics or skills are learned 

simultaneously (e.g., Rohrer, & Taylor, 2007).  

Common to all of these techniques is that they might slow down the learning process 

due to a higher cognitive effort, but they enhance remembering learning contents in the 

long term. 

Interleaved practice 

Our working group deals particularly with the effects of the interleaved practice. To 

give more insight into this type of desirable difficulties, one can explain it through the 

comparison to the so-called blocked learning, which is often used at many learning 

institutions and which is often suggested in many textbooks.  

We learn in the blocked way, when we learn each topic until the end, before we start 

with a next one. For instance, if we divide a topic, that has to be learned, into smaller 

subtopics A, B, and C, then we start to learn the topic A, then, after the topic A is 

finished, we begin to learn the topic B and so on. The learning contents are structured 

according to the model “AAA BBB CCC”. This learning technique is very popular 

because the concentration of the learners is completely focused on a particular topic.  

The interleaving practice is in contrast to the blocked learning. When we learn in the 

interleaved mode, we learn all the subtopics A, B, and C at the same time. The ar-

rangement of the learning contents can be illustrated by the model “ABC ABC ABC” 

(e.g., Rohrer & Taylor, 2007). In this case, the learners have to concentrate on different 

topics at the same time. Because of this fact, their cognitive effort increases, and 

learning becomes more difficult. But the learners have generally a long-lasting re-

membrance of the learned contents in contrast to persons that learn in the blocked 

mode (e.g., Rohrer & Taylor, 2007).  

The longer memorizing of the learned contents after the interleaving learning can be 

explained with the help of the New Theory of Disuse by Bjork. He describes two types 

of processing the incoming information in the human brain. The first type of pro-

cessing is the “saving” of the information like a medium. In this case the storage 

strength is responsible for the amount of information, which the brain can notice and 

“record” additionally to the information, which already exists in the memory. If the 

“saved” information is not used for a long time, the memorization of it becomes more 

difficult. The second type of information processing is the recalling of it from the 

memory. In this case the retrieval strength is responsible for the quantity and com-

pleteness of the recalling information (Bjork & Bjork, 1992). The activation of the 

retrieval strength increases during the interleaved practice because the learners have to 
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recall the learned information of the interleaved topics more often than the learners that 

learn the topics in the blocked way. This leads to the long-termed memorizing of the 

learned contents. 

State of research on the interleaved practice 

Compared to the other types of desirable difficulties, the interleaved practice is still 

little researched (Dunlosky et al., 2013). There were some empirical studies that sho-

wed benefits of the interleaving learning, particularly that the interleaved practice led 

to a long-termed learning success (Dunlosky et al., 2013; Rohrer & Taylor, 2007). 

Most of them were conducted with adults, but not with younger students. Furthermore, 

many studies were carried out in the laboratory (Rau, Aleven, & Rummel, 2013; 

Dobson, 2011; Rohrer & Taylor, 2007). So far, the investigation of the effects of the 

interleaved practice in the classroom is lacking. 

 

Research questions 

As mentioned above, the effects of the interleaved practice in the classroom remain a 

research gap. It is necessary to investigate, if the benefits of the interleaved practice 

also appear at schools. If that is confirmed, the education at schools could become 

more effective. Therefore, two main research questions are deduced for this report: 

1. Does the interleaved practice lead to a higher learning success in the classroom 

than the blocked learning? 

2. Does the learning become long-termed in the classroom, if the students learn in 

the interleaved manner? 

 

Methodology 

In September 2015 – February 2016 our working group carried out a study at German 

schools to compare the learning performance of 7th grade students in math, who 

learned in the interleaved way, to the performance of those, who learned in the blocked 

manner. The study consisted of an eight-hour lesson unit in both the blocked and the 

interleaved way, and of four math tests a 45 minutes: pre-test, post-test, follow-up test 

1 and follow-up test 2, which were the same for all students. The post-test was per-

formed immediately after the treatment. The follow-up test 1 took place three weeks 

and the follow-up test 2 ten weeks after the post-test. Additionally, there were two 

questionnaires of 45 minutes before and after the treatment. The topic of the lessons 

and of the tests was “Direct and inverse proportionality”. 

Altogether 124 students participated in the study. They were divided into two groups 

of equal size. The sample was randomized in both groups.  

There was a difference between the arrangements of the learning contents in each 

group. One group learned in the blocked way: first, the students had to learn about 

direct proportional relationships until the end, before the second topic about the inverse 



Pede, Ferri, & Lipowsky 

  

3 – 462 PME 42 – 2018 

proportionality started. After the end of the second topic they had to learn about other 

relationships that are neither directly proportional nor inversely proportional. The 

other group learned in the interleaved way: the students had to learn about all types of 

relationships simultaneously. But the learning contents and the tasks were the same in 

both groups. 

Furthermore, the lesson unit was carried out by two instructed teachers from the wor-

king group. To avoid the influence of the teacher on the performance of the students, 

both teachers changed the group during the treatment after half of the lessons. 

 

To examine the performance development of both groups between pre-test, post-test, 

and follow-up tests, it was determined, how well the learners solved the anchoring 

tasks, which were included in all the tests. The anchoring tasks that connected the 

pre-test and the post-test, were set up in such a way, that they could be processed 

without knowledge about proportionality and anti-proportionality. The tasks required 

the learners to calculate unknown variables or answer comprehension questions from a 

context that did not contain explicit specifications of direct or inverse proportionality. 

Therefore, these tasks could also be used in the pre-test. In the anchoring tasks of the 

post-test and follow-up tests, the learners were required to decide on the basis of given 

graphs and value tables, what kind of the relationship is shown, and to justify their 

decision. For each correctly solved task 1 point was awarded, incorrectly solved or 

incompletely processed tasks were evaluated with 0 points. The analysis of the test 

data was performed with the help of the repeated measures ANOVA (analysis of var-

iance) with class attendance as covariate. 

 

Results and discussion 

The descriptive analysis of the development of the performance between pre-test and 

post-test is shown in Table 1. 

 

Learning condi-

tion 

Pre-test 

(max. 18 points) 

Post-test 

(max. 18 points) 

blocked M = 5.28, SD = 2.86 M = 6.28, SD = 3.46 

interleaved M = 4.82, SD = 2.48 M = 5.56, SD = 2.75 

Table 1: Descriptive statistics of the performance development of students between the 

pre-test and post-test.  

 

The repeated measures ANOVA did not result in a statistically significant interaction 

effect between time and learning condition regarding the development of the perfor-

mance between pre-test and post-test, i.e. the both groups developed in a comparable 

manner during this period (F(1,109) = .380, p = .539, η2 = .003).  
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As shown in Table 2, in the period between the post-test and follow-up-test 1 the 

performance of the students who learned in the interleaved mode increased slightly, 

while the performance of the students who learned in the blocked way decreased.  

 

Learning condi-

tion 

Post-test 

(max. 26 points) 

Follow-up 1 

(max. 26 points) 

blocked M = 6.76, SD = 4.43 M = 5.35, SD = 4.57 

interleaved M = 5.35, SD = 3.18 M = 5.72, SD = 4.64 

Table 2: Descriptive statistics of the performance development of students between the 

post-test and follow-up test 1.  

 

There was a significant interaction effect between time and learning condition with 

F(1,97) = 4.228, p = .042, η2 = .042.  

Table 3 illustrates the performance development between the post-test and fol-

low-up-test 2. 

 

Learning condi-

tion 

Post-test 

(max. 19 points) 

Follow-up 2 

(max. 26 points) 

blocked M = 5.32, SD = 2.92 M = 4.37, SD = 3.31 

interleaved M = 4.89, SD = 2.70 M = 4.22, SD = 3.02 

Table 3: Descriptive statistics of the performance development of students between the 

post-test and follow-up test 2.  

 

As it shown in Table 3, in the time period of ten weeks the performance of the students 

in both groups decreased slightly. 

There was no significant interaction effect between time and learning condition, i.e. the 

performance of both groups decreased in a similar way (F(1,108) = .267, p = .606, η2 = 

.002). 

In conclusion, we could only find a significant interaction effect between post-test and 

follow-up-test 1, i.e. the long-termed learning effect of the interleaved practice in the 

time period of three weeks could be also noticed in the classroom. However, there was 

no significant interaction effect between time and learning condition directly after the 

lesson unit. This result was similar to the findings of other studies, which also showed 

that the advantage of the interleaved practice is often not noticeable immediately after 

the treatment. The long-lasting effect of the interleaved learning in the time period of 

ten weeks was also not identified. It is important to mention that many participants 

didn´t take tasks of the last test seriously. This resulted in many missing data of each 
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group. Would the evaluation of the test data without missing information show the 

long-termed effect of the interleaved practice even ten weeks after the post-test? This 

question remains open. 
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AND PROBLEM SOLVING  

Juan Luis Piñeiro, Elena Castro-Rodríguez, and Enrique Castro 

University of Granada 

 

Prospective primary teachers’ understanding of problem solving and the concept of 

what constitutes a mathematical problem were analysed. The exercise involved defi-

ning three fundamentals: characterisation of what a problem is, the problem-solving 

process and the willingness to undertake problem solution. That served as the basis for 

formulating a questionnaire responded to by 51 future teachers near the end of their 

pre-service training. The findings were uneven, for whereas participants exhibited 

knowledge in accordance with the literature on problem solving, contradictions were 

detected. For instance, while attaching importance to solvers’ consideration, that 

notion was not taken into attention in practical examples. 

TEACHERS’ PROBLEM-SOLVING KNOWLEDGE 

Problem solving (PS) has evolved into an essential tool for full participation in today’s 

society. Despite the importance of PS proficiency, students have experienced difficulty 

in developing that skill, and teaching it to them has proven complex and elusive 

(Lester, 2013). One of the factors contributing to that situation has been the emphasis 

on the problem solver and the PS process to the detriment of the teacher’s role. The 

knowledge teachers need to teach PS needs to be explored (Lester, 2013). Carpenter, 

Fennema, Peterson, and Carey (1988), deepen the pedagogical knowledge of school 

teachers on arithmetic word problems. Their results shows that teachers know the 

different types of arithmetic problems, but they have troubles in explaining how these 

differences affect the difficulty of the problem. Likewise, they have difficulties to 

identify differences between resolution strategies and, therefore, they are not able to 

predict the possible paths that students could use. The work of these authors highlights 

the existence of a particular knowledge for teachers about PS, closer to the nature of 

the process than the mathematical concepts involved in it. 

It is generally agreed that teacher quality is a key to student performance. One indicator 

of such quality is their knowledge, for their classroom delivery depends largely on 

such professional acquis (Kilpatrick, Swafford, & Findell, 2001). Lester (2013) notes 

that to teach PS, teachers need to know what to do, when to do it and the implications 

of their actions. In this same vein, Chapman (2015) proposed a model for the know-

ledge required to teach PS. Her model addresses teachers’ PS proficiency, affects and 

beliefs, content knowledge (of problems, PS and problem posing) and pedagogical 

knowledge (of students as problem solvers and instructional practices). While im-
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portant, like the skills proposed by Lester (2013), it is recent and insufficiently re-

searched to determine its utility in identifying teachers’ PS knowledge in detail. 

The present study aims to shed some light on that complex scenario, specifically by 

analyzing the elements that comprise the teachers' knowledge about PS proficiency. 

PS PROFICIENCY AND TEACHER KNOWLEDGE 

Based on theories on mathematical (e.g. Kilpatrick, et al, 2001; Rico, 2007) and PS 

(Chapman, 2015; OECD, 2014) proficiency, this construct is here understood to mean 

the actions adopted by a subject who identifies a situation as problematic, is favorably 

disposed to solve the problem and proceeds to do so by deploying a strategy in a series 

of not necessarily linear steps. Three theoretical elements that should form part of 

teachers’ content knowledge can be identified in that definition. The first is related to 

problem characterization (the notion of what a problem is) and the second to PS, while 

the third element is non-cognitive.  

In problem characterization, identification is imperative to the existence of the concept 

(Agre, 1982). This is not necessarily the intended context in references to school 

mathematical problems, however. Teachers who know their students can assign them 

tasks which while not regarded as problems per se, are in that context. While it is the 

problem solver who labels problems as such (Mason, 2016), classroom mathematical 

problems can be read at two levels, the student’s and the teacher’s. Teachers are the 

first to realize when their students are confronted with what they regard as a problem. 

That perception, which may be based on structural elements, i.e., formulation, context, 

the set of acceptable solutions or the methods for broaching them (Borasi, 1986), in 

itself characterizes/differentiates tasks regarded as problematic from those that are not. 

The problematic task is subsequently assigned to students, who must devise a formula 

to solve it. It is up to them to formulate and successively reformulate to perform the 

task by mobilizing a series of cognitive (knowledge and metacognition) and 

non-cognitive (affects and beliefs) aspects that are not predetermined by a prior 

knowledge of the process (Mayer & Wittrock, 2006). Such engagement generally 

stems from the absence of a known procedure to solve the problem. A problem is 

therefore understood to mean tasks which problem solvers feel committed to solving 

but for which they have no predetermined PS procedure.  

Another factor to be borne in mind in this regard is the differentiation/characterization 

postulated by Borasi (1986). From their perspective the existence of different tasks that 

can be called problems can be inferred. While no full consensus has been reached 

around any of the several classifications in place, researchers concur on the accepta-

bility of certain dichotomies, such as: exercises/ problems, routine/non-routine, and 

open/closed. Dichotomized problem types by Holmes (1985), was adopted for this 

paper. It establishes four categories (routine, non-routine, applied and not applied) that 

give rise to six types of problems—because non-routine problems can be open or 

closed. 
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In this approach to what is meant by a problem, the personal, guided and procedural 

process is conducted by stages. Historically, problem solvers have been seen to pro-

ceed as described by Pólya (1945). Similar ideas have been suggested in later research 

as variations on that scheme with more or less detailed descriptions and from a number 

of perspectives. The common denominator in all is their assumption that the process is 

cognitive, personal, not directly observable (Mayer & Wittrock, 2006) and (im-

portantly) non-linear. As Wilson et al. (1993) note, the activity is flexible, accom-

modating motion both back and forth. Moreover, elements such as basic knowledge, 

metacognition and affects and beliefs play an essential role, governing and controlling 

the process (Schoenfeld, 1992). PS is consequently understood here as the process 

implemented in flexible, non-linear stages, in which the heuristic knowledge and 

strategies deployed are governed by non-cognitive factors and metacognition. 

Lastly, disposition is vital, knowing how to solve problems is important, but wanting to 

is essential. The importance of non-cognitive factors in PS has been widely studied and 

it is generally agreed that depending on the suitability of the challenge posed, students 

become emotionally engaged (affect), with the concomitant impact on the mobilization 

of their intellect (Mason, 2016). That engagement is imperative in PS proficiency, for 

it drives the entire process. Table 1 synthesizes the descriptors associated with each 

component of teacher’s professional PS knowledge.  

Component Knowledge 

Problem characteriza-

tion 

Task with no known solving procedure 

Problem solver’s consideration 

Type of tasks posed as problems 

Problem solving PS stages and their characterization 

Strategies 

Metacognition 

Non-cognitive factors 

Disposition Acceptance of the PS challenge 

Table 1: Components of teachers’ content knowledge on PS  

 

This paper draws on three key aspects for the analysis of the teachers knowledge on a 

nature of mathematical PS (Table 1). Our goal is to describe the knowledge of pro-

spective primary teachers about PS, based on the identified components.  
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METHOD 

Participants  

The 51 participants were fourth-year pre-service teacher trainees enrolled at the Uni-

versity of Granada’s Faculty of Education. All subjects had taken the elective class 

‘Mathematical Skills in Primary Education’ which contained a lesson on PS in which 

students were introduced to strategies and heuristics, problem posing and PS teaching 

strategies. 

Instrument 

The data were collected by means of a two-part questionnaire, one with 24 and the 

other with 42 closed, dichotomous questions. That procedure was chosen in pursuit of 

answers that would denote the presence or absence of subjects’ knowledge of PS but 

not the meaning they attributed to the notion. The first part referred to the concept per 

se of what constitutes a problem, and the second to PS-related issues. 

The questionnaire was designed to the type of knowledge involved. The first, con-

ceptual part was divided into three sections addressing: a) task with no known solving 

procedure, b) problem solver’s consideration, and c) the type of tasks that constitute 

problems.  

The second part, consisted in two sections, one on PS process, further sub-divided into 

three units: a) the identification and characterisation of PS stages covering, for in-

stance, PS is a dynamic process in which the solver may go back to find the solution; b) 

metacognition and the extent to which awareness of one’s knowledge helps choose the 

most suitable PS strategy; and c) non-cognitive factors, such as whether a problem can 

be successfully solved in the absence of motivation. The other section targeted specific 

strategies. Both main parts of the questionnaire included questions on willingness.  

Analytical procedure 

Two analyses were conducted of future teachers’ replies. In the first, the answers were 

grouped further to dimensional scaling multivariate analysis with ALSCAL (SPSS) 

software, defining the dimensions to be agreement, disagreement and contradictions. 

The second was a descriptive exercise, in which responses were reviewed in terms of 

the ideas defended in the literature. For reasons of brevity, only the latter is addressed 

here. 

RESULTS  

The sections below discuss the replies organised in accordance with the theoretical 

pre-analysis and the dimensional scaling findings, which clustered around two key 

considerations: future teachers’ majority agreement or disagreement with item word-

ing. 
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Task with no known solving procedure 

Agreement was greatest in the answers to the items on conceptualisation of classroom 

tasks with no known solving procedure as mathematical problems: 74.5% of the future 

teachers disagreed with the premise that for a problem to be regarded as such, the 

solving procedure should not be known. Nonetheless, 86.3% deemed that tasks solv-

able only with previously learnt procedures should not be regarded as problems, while 

98% replied that students must have acquired mathematical concepts to be able to 

establish a solving procedure.  

Problem solver’s consideration 

Agreement, disagreement and even contradictions were identified in the responses to 

this set of questions. Subjects’ tendency to regard only their own labelling of what 

constitutes a problem, disregarding students’ labelling, may explain those discrepan-

cies.  

A direct question about the importance of the problem solver’s role, for instance, was 

answered affirmatively by 50% of the respondents, whereas only one-third were able 

to identify such importance in a specific classroom situation. Moreover, 90.2% of the 

future teachers agreed that a given problem is not necessarily such for all students, for 

year of schooling and age must also be taken into consideration. There was no common 

understanding, however, about whether labelling a problem as such should depend on 

the solver’s experience, with a 51% / 49% split between agreement and disagreement 

with that premise.  

Type of tasks posed as problems 

Tasks were regarded by participants as problems when they were: routine and applied 

(98%), non-routine, applied and closed (100%), non-routine, non-applied and closed 

(80.4%), or non-routine, non-applied and open (70.6%). Agreement was lowest in 

connection with non-routine, applied and open (54.0%) and routine, non-applied 

(21.6%) tasks.  

These future teachers’ knowledge of what constitutes a good problem concurred with 

the definition found in the literature, namely that it should accommodate more than one 

solution or more than one procedure to find the solution (Lester, 2013). For instance, 

68.6% of the future teachers replied that word problems requiring no more than 

arithmetic calculation are not problems, whilst 100% agreed that a problem should be 

solvable in more than one way and 76.5% that it should have more than one solution. 

Certain contradictions were observed, however, when the items on types of tasks were 

analysed jointly with possible characteristics of problems. The inclusion of all the 

information required in the wording was defined as a characteristic by 59%. Of these, 

half replied that mathematical investigation-type open situations are problems. In 

contrast, one-fourth of the respondents who deemed that a problem need not contain all 

the necessary information did not regard open problems as such. 
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PS stages and their characterization 

PS process and stages characterisation elicited high levels of agreement. Around 95% 

of the teachers in training could identify the stages involved in a specific solved 

problem and 98% characterised the process as flexible. The utility of representations to 

understand problems was acknowledged by 100% and of diagrams by 98%. Re-

spondents also agreed (98%) that problems should not be solved unless they are un-

derstood. Review of and reflection on the tasks performed was likewise acknowledged 

to be recommended: by inventing similar problems (92%), seeking alternative path-

ways (91%) or generalising problem structure (98%). Ninety-eight per cent deemed 

that PS involves more than finding the correct answer. 

Metacognition 

Although most of the responses to the metacognitive questions were manifested in 

agreements, a number of interesting disagreements were expressed. The question at 

issue dealt with the reasons underlying calculation errors in solutions to problems. 

Whilst 87% recognised the error, nearly half attributed it to a lack of comprehension. 

Non-cognitive factors 

Most of the subjects agreed that if the challenge to solve a problem is assumed, the 

intellect will be induced by affective factors to find the solution. Some disagreement 

was also expressed, however. Although 96% of the future teachers deemed that moti-

vation is important to tackling a problem, only 50% believed it to be instrumental to a 

successful outcome. 

Strategies 

The findings showed that the strategies with which the future teachers were most fa-

miliar included: operating (93.6%), draw a diagram (87.2%), work backwards (83%), 

look for a pattern (80.9%), building a table (72.3%), and guess and check (40.4%). 

Interestingly, a fairly large percentage of the teachers in training confounded guess and 

check with look for a pattern (29.8%) or building a table (21.3%). 

Disposition 

A total of 94.1% of the future teachers agreed that the PS challenge must be accepted 

for a problem to be so regarded. In addition, 96% deemed that successful PS depends 

not only on an understanding of mathematical concepts, but also on engagement. 

DISCUSSION AND CONCLUSION 

Teachers’ PS knowledge has been scantly researched. Most studies exploring their role 

in PS instruction are confined primarily to their beliefs with little or no reference to 

their knowledge. The subject knowledge associated with PS as reinterpreted here 

identified three components (Table 1) related to the nature of PS that proved to be 

useful to study that knowledge. 
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One component builds on three elements. In the first, the solving procedure, re-

spondents’ ideas were observed to be aligned with the present conceptualisation of 

what constitutes a problem (Lester & Cai, 2016). However, the replies around the 

problem solver’s consideration were heterogeneous and even contradictory. That may 

be because in classroom contexts, problem labelling is a two-stage process in which 

teachers first decide whether a given problem is suitable for some of their students, 

who then label the task as a problem or otherwise in accordance with their own expe-

rience. Whilst some of the responses around the knowledge of tasks posed as problems 

were aligned with the notions set out in the literature (Lester & Cai, 2016), more par-

ticipants agreed that the tasks commonly found in textbooks were problems (Zhu & 

Fan, 2006). Unfortunately, such problems tend to be very routine. Participants’ un-

derstanding of the characteristics that determine the existence of a problem was not 

consistent with their choice of sample problems. Although they knew, for instance, that 

problems can be solved by more than one pathway, they lacked the knowledge needed 

to recognise problems that would afford students that choice. 

The second component, related to a knowledge of PS process, is structured around the 

understanding of four conceits: identification and characterisation of PS stages, met-

acognition, non-cognitive factors, and strategies. Some responses respecting PS stages 

and characterisation were consistent with a dynamic, cyclical and genuine interpreta-

tion of the phases defined by Pólya (Wilson et al., 1993). Nonetheless, further to the 

replies to the questions dealing with strategies, future teachers’ classroom practice still 

proved to be quite linear. That inference was drawn from the fact that trial and error, 

the strategy they were least familiar with, is the one best suited to a cyclical, dynamic 

process. 

In connection with the third component, willingness, future teachers agreed that where 

the PS challenge is assumed, affective factors induce the intellect to find the solution. 

Futures teachers’ knowledge was found to be complex, globally speaking, with con-

tradictions that would have an adverse effect on students’ learning. That disparity in 

the conceptual understanding of problems and their solution may be the result of a 

number of factors, including conceptions and beliefs (Lester, 2013). One promising 

finding was these trainees’ realisation that inherent in the assumption of the challenge 

to solve a problem is the role of affective factors in inducing the intellect to seek the 

solution (e.g. Mason, 2016). 
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“I ALWAYS WISHED THAT I HAD A MATHEMATICAL MIND”: 

MATHEMATICAL ABILITY AND OTHER STORIES 

Dionysia Pitsili-Chatzi 

University of Ottawa, Canada 

 

Research on mathematics and gender suggests that mathematics, far from being a 

neutral discipline, is actually a masculine field. This perspective has significant im-

plications in understanding girls' relationships with mathematics. In this report, I use 

a Foucauldian discourse analysis methodology to examine the mathematical identities 

constructed by two female high school students in relation to the discourse about 

mathematical ability. Although the discourses around mathematics, ability and gender 

prevent the students from identifying as “good at maths”, the students actively nego-

tiate their identities by challenging the discourses within which they act. 

GENDER AND MATHEMATICS 

During the last decades, gender has been a recurring theme in mathematics education 

literature, studied from various epistemological and ontological standpoints (Chronaki 

& Pechtelidis, 2012). A big body of research has focused on identifying the gender 

differences that affect girls' and boys' mathematical skills and abilities (Walkerdine, 

1998). This perspective has been strongly criticized in that it treats girls as the problem 

and reinforces the “truth” that girls are deficient in mathematics (Walshaw, 2007). 

Following a different path, other researchers turn their attention to the ways that stu-

dents construct their mathematical identities within discourses about mathematics and 

gender. The idea that the female (or male) identity entails essential features is rejected 

and it is instead proposed that gender identities are constructed within various socio-

political contexts and power relations (Chronaki & Pechtelidis, 2012). At the same 

time, mathematics is viewed as a discursively constructed, masculine discipline and its 

consideration as a neutral, socially important and rational field is challenged (Mendick, 

2006). The association of mathematics with intelligence and the idea that only some 

students can do well in mathematics are rejected, but there is limited research ad-

dressing the effects of this discourse on students' subjectifications. In this report, I 

examine how two female students construct their mathematical identities in relation to 

discourses about mathematical ability. 

DISCOURSES AND IDENTITIES 

The starting point of all discourse theories is that our access to reality is mediated by 

language, in a way that through language not only is a pre-existing reality reflected, but 

also reality itself is constructed (Jørgensen & Phillips, 2011).  Discourses specify what 

is possible to be said, done, and thought, at a particular time; they have real, material 

effects on people’s lives, both by formulating institutions and by constituting subjec-
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tivities (Chronaki & Pechtelidis, 2012). Therefore, talking about “talented”, “charis-

matic” or “struggling” students is not just a usage of terms or words; it actually forms 

the limits within which students are allowed to experience learning (Walshaw, 2007). 

Foucault (1972) proposes that discourses should be treated as practices that form the 

objects to which they refer. Working on Foucault's conceptualization of discourse, 

Doxiadis (2011) identifies four fundamental properties that every discourse has. Every 

discourse has the property of referentiality which means that the discourse points to 

something outside itself, which would exist even if the discourse did not exist; the 

property of subjectivity which is related to the discourse's conditions of enunciation; 

the property of knowledge which has to do with the concepts produced by the dis-

course; and lastly the property of ideology which emphasizes the political dimension of 

the discourse and its relation to issues of power. 

Contrary to the standard Western understanding of subjects as autonomous entities, the 

Foucauldian subject is constituted within discourse. The subject is then decentered 

(Jørgensen & Phillips, 2011) and identities are multiple, fluid and unstable (Walshaw, 

2013). This idea does not imply that identities are in constant flux. On the contrary, in 

specific situations, they can be quite inflexible (Jørgensen & Phillips, 2011). However, 

the Foucauldian idea that people construct themselves as subjects in-between many 

different and contradictory discourses embraces the possibility for the coexistence of 

contradictory identities and it provides a framework through which we can understand 

changes in one's identities. In order to study students' subjectification in relation to 

mathematics under this perspective, we should focus on the negotiation of discourses 

and the instability of mathematical identities. 

RESEARCH QUESTIONS, METHODS AND METHODOLOGY 

The data presented here is part of a larger study in which I interviewed eight students 

about their perceptions of the notion of mathematical ability and their mathematical 

identities as constructed in relation to this notion (Pitsili-Chatzi, 2015). In this report, I 

present the analysis of two semi-structured interviews with two female students, Ismini 

and Matina, who are in a process of negotiating their mathematical identities. Ismini 

and Matina challenge the very same discourses within which they act, thus opening up 

new possibilities for subjectifying themselves. In order to explore how Ismini and 

Matina form their mathematical identities in relation to the discourse of mathematical 

ability, I attempt to answer the following research questions: What discourses do the 

students form around mathematics and mathematical ability? How do they construct 

their identities through these discourses? 

With regards to the data analysis, I have used a Foucault inspired methodology in-

troduced by Doxiadis (2011). This tool orients the discourse analysis task along four 

axes, which correspond to the four fundamental properties of a discourse (presented in 

the previous section): a) The axis of objects: the discourse’s relation to what is outside 

of it is investigated. The focus is on the objects to which the discourse refers and which 

it constructs. For this axis, I focused on students' references to mathematics, discourses 
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about mathematics, and students' past experiences. b) The axis of enunciative modes: 

the discourse’s relation to itself is investigated and two parts are identified. The first 

part is concerned with the external conditions of enunciation, the conditions within 

which the discourse is produced, such as its origin and address. In this part, my main 

focus was the students' positionality. The second part of this axis is the internal con-

ditions of enunciation, which refer to the ways in which the subjects are involved in the 

discourse. For this part, I was interested in the ways in which the students talk about 

themselves, their teachers and other individuals who have played a role in forming 

their current relationships with mathematics. c) The axis of concepts: the discourse’s 

relation to other discourses is investigated. The focus is on the construction of con-

cepts, which is the main product of the discursive practice. Within this axis, I focused 

on the ways that mathematics and mathematical ability were constructed as concepts. 

d) The axis of thematics: the discourse’s relation to power and the antagonism ex-

pressed within the discourse and as a result of the discourse are investigated. For this 

axis, I examined the ways in which the students capture their own as well as other 

individuals' possibilities for action. My focus was on understanding how students act 

as agents who exercise or resist power. 

THE CASE OF ISMINI 

With regards to the external conditions of enunciation, Ismini was a student in a high 

school in Egypt, which follows the curriculum of the Greek Ministry of Education. She 

was born in Greece and her mother tongue is Greek. At the time of the interview, Is-

mini had been living in Egypt for eight years, but her interactions with Egyptian so-

ciety were limited. She was 14 years old and had just graduated from the 3rd year of 

Gymnasium (9th Grade). During the school-year, I had been her mathematics teacher. 

As far as the first research question is concerned, Ismini refers to everyday situations, 

including economic obligations and quantities described by numbers (axis of objects). 

She maintains that “mathematics is everywhere” and, thus her discourse captures 

mathematics as extremely important (axis of concepts). Mathematics is described as 

brief, accurate and simple in the presentation of its results. Ismini also refers to (axis of 

objects) and at the same time creates (axis of concepts) a series of dichotomies: “dif-

ficult maths” - “simple maths”, “understand” - “use”, “theory” - “practice”, “mathe-

matical thinking” - “theoretical thinking”, “mathematical mind” - “hard work”. Being 

strongly associated with these dipoles, mathematical ability is captured as a person's 

natural characteristic which can be enhanced through work: 

Dionysia: Do you believe that everyone can do well in maths? 

Ismini: Well, I think if they have help and attention, the way everybody needs it 

[yes], because I don’t think that someone could be totally incapable of 

doing maths. Just with a certain amount of help and if somebody practices 

on the areas they need. Because somebody might be very good, have a 

mathematical mind, whereas somebody else might not. I believe that even 

the person who isn’t very good, can get better and learn some things. Well, 
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I don’t believe that they're going to be exactly like someone who's gonna 

work and have a mathematical mind, but they're going to improve. 

The role of the mathematics teacher is crucial in enabling what students learn (internal 

conditions of enunciation). In this sense, the learning process is mostly captured as a 

dependent process, in which the students as subjects are not considered autonomous. 

Their learning is guided by the teacher who communicates the knowledge, ideally in a 

way that would not require much more effort on the part of the students. In Ismini's 

words, for mathematics teaching to be a successful process: 

Ismini: I think that if the teacher can engage all students and if he could transmit it 

in a way that all students can -in that way- understand it. Not in a very 

difficult way so that they'd need a lot of effort to understand it. But if 

generally they understand it in class, so that they can practice afterwards. 

With regards to the axis of thematics, the dichotomies drawn by Ismini frame the 

possible actions of a mathematics classroom's protagonists. The student's role is to try 

and study hard, while the teacher's role is to effectively transfer the knowledge. These 

stem from the neoliberal perspective that an individual's success in mathematics 

mostly depends on their genes, although hard work can enhance the outcome. 

With regards to the second research question and the discourse's internal conditions of 

enunciation, Ismini refers to individuals who have played an important role in the 

construction of her mathematical identities, through a series of experiences to which 

she refers (axis of objects). These individuals have played a crucial role in identifying 

her twin brother Gerasimos as an exemplar of a mathematical mind. 

Ismini: So, by comparing and saying “Gerasimos is very good at maths”, 

“Gerasimos is a star in maths”; they didn’t say something about me. Let’s 

say: “Well done Ismini”, “Ismini is very good at maths”. So, I believed that 

I wasn’t good at maths. [...] It was always there. The “Ah! Gerasimos is 

very good at maths. He got that from your grandfather” for instance, as they 

always told me. And generally, they made this comparison. Although not in 

a bad way. They didn’t say “You are not good at maths”. They just said 

“Gerasimos is very good at maths. Ismini, you are very good at writing, at 

the way you talk, your vocabulary.”. 

Ismini constructs her mathematical identities through a durable process of comparing 

and contrasting herself to her brother. Her ability in mathematics and humanities, can 

be summarised in her own words as follows: 

Ismini: Since primary school, I have been better in humanities. That is to say, I was 

one of the first kids who were able to do certain things. […] And maths… 

it’s not that I didn’t understand it, I did, it’s just that I've always been better 

at theory in maths. The theory, I read it once or twice and then I knew it. 

And I generally believe that mathematical thinking has more to do with 

practice, with solving exercises. So, when I saw that I wasn’t so good at the 

exercises we had as homework and that I needed more help and more 
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practice, it was then that I understood that I wasn’t… that I didn’t have a 

mathematical way of thinking. 

In the above quotation, Ismini’s ability in both theoretical subjects and mathematics 

are captured as natural (axis of concepts). Ismini is constructing her identities, while 

these are to some extent already predetermined by her environment and by discourses 

which maintain that mathematical ability is transferred from grandfather to grandson. 

Although she believes that she is good in understanding the theory in mathematics, she 

conceptualizes this skill as not valuable in mathematical practice. 

However, Ismini also negotiates her mathematical identities by participating in dis-

cursive practices that are contrary to the discourses within which she acts. Indeed, 

Ismini’s preference for independent studying, can be understood as an effort to be the 

person in control of her own learning. She says: “When I hear somebody telling me all 

this [a lesson of any subject], unless I somehow do it practically or unless I study it 

alone, I don’t learn it.” Moreover, Ismini refers to (axis of objects) her engagement 

with mathematics in a way through which, she aims to prove something to herself 

(Mendick, 2006). As she states, re-solving an exercise makes her feel important and 

proves to her that she has the ability to do it. 

Ismini:  Sometimes I sit and I solve the same exercise over and over again and 

[when I do that] I feel that I am important in a way. That there is something 

in maths which I can do. Generally, I would like it if I understood maths. 

And I always wished that I had a mathematical mind. And somehow my 

brother’s mind, so that I could solve exercises more easily. Because I like 

maths. I just do not think that I am good enough or that I am self-confident 

enough to solve it. 

Although Ismini acts within discourses which prevent her from identifying as good at 

mathematics, she desires the position of “having a mathematical mind” and being 

successful in mathematics makes her feel important. By re-solving exercises or trying 

to be in control of her own learning, Ismini shows a form of agency which aims at her 

occupying an advantaged position in relation to mathematics (Walshaw, 2007). 

THE CASE OF MATINA 

Regarding the external conditions of enunciation, Matina was a student in the same 

school as Ismini. Matina came to the school in the middle of the school-year. She did 

not speak Arabic and, thus, her socialization was mainly within the Greek community. 

At the time of the interview, Matina was 16 years old and had graduated from the 2nd 

year of Lyceum (11th Grade), following the social sciences direction. During the 

school-year, I had not been her teacher. 

Matina refers to the mathematics needed on an everyday basis and the mathematics 

taught at school (axis of objects). She constructs these categories as opposing and she 

maintains that not everybody needs to learn the mathematics taught at school (axis of 

concepts). With regards to the internal conditions of enunciation, Matina talks about 

the role of mathematics teachers. She proposes that a teacher needs to be able to engage 



Pitsili-Chatzi 

  

3 – 478 PME 42 – 2018 

their students so that the students can “love and feel mathematics”. In the axis of 

thematics, she describes an ideal mathematics education, which is concerned with the 

knowledge needed in “real life”. In Matina's words: 

Matina: [Maths] is an everyday thing. Because you come across it everywhere. 

When you go to a supermarket to buy something, when you go anywhere. 

[…] I, for example, everyday, come across subtraction, division, multi-

plication and addition, all of those. But I don't come across equations, ex-

cept for at school. […] It's not necessary, with regards to maths, to learn 

everything. For example, it would be more practical for students to learn 

life's lessons, like taxes, one thing or the other. 

In the axis of concepts, two binary oppositions are central: good at maths/bad at maths 

and smart/dumb. Matina discusses both of these oppositions and describes them as 

related within dominant discourses. However, she maintains the belief that these two 

skills are independently developed. 

Matina: If from a young age I teach you something, and then you don't give it up, I 

believe you're always going to become better. And this is not just for maths; 

it's everywhere. […] I believe that being smart and being good at maths are 

two different paths. But maths helps you practice your mind, that is, it helps 

you to constantly practice your mind. But it doesn't prove that you are 

smart. 

Matina rejects the correlation between intelligence and mathematical ability, as ex-

pressed in dominant discourses. Instead, she captures mathematical ability as a matter 

of mere practice. Introducing this discursive distinction is important for Matina's sense 

of agency, since she can position herself in different ways within the two oppositions. 

Regarding the second research question and the internal conditions of enunciation, 

Matina argues that she always loved maths, but she could never understand it. She 

describes herself as a constant outsider in mathematics class and as a problem for her 

teachers. 

Matina: Everyday [maths] was a problem. I was going inside [the classroom] and 

even if I wanted I couldn't understand what the teacher was saying. No 

matter how much I tried, I couldn't. Because I didn't have the previous 

knowledge. […] My teacher left me, he used to say “Ok, you're in Grade 6, 

you're in Grade 5, you'll go to the Gymnasium and they'll deal with you”. 

He passed a problem over to another school. When I went to the Gymna-

sium, the teacher went crazy. He says “She knows nothing, what can I do 

with her?” Essentially, I was always a problem for every teacher. 

Matina also refers to her past experiences (axis of objects) in which mathematics was 

an element of her socialization. She recalls that some of her peers were doing math-

ematical calculations as a mental game. Not being able to do well at this game, Matina 

experienced discrimination, since she was considered to be dumb. 

Matina: For example, when a student said “Tell me! How much is this plus that?” 

and I needed to think, because indeed I hadn't practiced maths a lot, so I had 
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to think “this plus that, minus this, plus the other”. And before I found the 

answer, he has found it himself. And essentially this... it's as if it shows that 

she knows nothing, she's the dumb one, let's say. They have created this 

picture, that someone who doesn't know maths is dumb. 

Although Matina accepts the identity of “not good at mathematics”, she rejects the 

association of this identity with that of not being smart. This process of negotiation is a 

form of agency which aims at a more advantaged position: that of being clever. 

Matina: [E]very day, for some years, I was thinking. I was saying, I might indeed be 

dumb. I might indeed have a problem, let's say, in my brain and indeed I 

cannot understand maths. But when somebody was sitting with me […] and 

gave me an exercise and I was working on it, I could solve it. And I was 

saying: Look! Since I can solve it if I think, if I work on it, then why do I 

believe that I'm dumb? And this picture came to my mind: that I do not need 

to know maths to be smart. 

Matina perceives herself as smart, albeit not good at mathematics. Interestingly, 

however, she managed to occupy the position of being smart through her success in 

maths. Although this may seem contradictory, this tension highlights the deep discur-

sive connection between mathematical capacity and intelligence. 

DISCUSSION AND CONCLUSIONS 

From a poststructural perspective, subjects are not pregiven, but are rather constituted 

within discourse (Walshaw, 2007). Given the dominance of discourses which associate 

mathematical ability with cleverness and masculinity, self-identifying as “good at 

math” is a rare positioning, especially among girls (Mendick, 2006). In this sense, it 

becomes important to challenge the discourses about mathematics which exclude 

students on the basis of gender or “ability”. Exploring the ways in which students 

negotiate discourses about mathematics and their identities can be a powerful tool 

towards making mathematics education a more equitable sphere. 

Although doing mathematics can be a form of doing masculinity (Mendick, 2006), 

girls are not completely trapped in the discourses about mathematics and gender, since 

they can have either an advantaged or a disadvantaged position in the emerging power 

relations (Walshaw, 2007). This paper aims to add on the existing literature by offering 

the examples of two female students who actively negotiate their identities, aiming to 

occupy an advantaged position. 

The discourses about mathematics and ability within which Matina and Ismini act both 

constrain and enable their identities. Ismini accepts the tenets of the mathematics ed-

ucation which she experiences, but she occupies positions through which she learns 

independently from the school process. Although she does not consider herself as 

having a mathematical mind, she uses mathematics in order to achieve the advantaged 

position of “being important in a way”. In other words, Ismini negotiates the tension 

between her belief that she is not good at maths and her desire to have had a mathe-

matical mind by negotiating her mathematical identities. Matina, on the other hand, 
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defends her identity of being smart, although not good at mathematics. She acts within 

the discourse that mathematics is important, as is evident by the fact that she accounts 

for the coexistence of her two identities, by stating that she has been successful at 

maths. However, Matina challenges the regime of mathematics education, by doubting 

the importance of what is taught and by neglecting the dominant interrelation between 

being good at maths and being smart. 

Finally, the Foucauldian perspective has been instrumental in providing an interpretive 

framework for the seemingly contradictory identities occupied by the two students. 

Doxiadis' (2011) four axes methodology was a useful tool for implementing Fou-

cauldian ideas. Being both flexible and simple, it can be used in mathematics education 

for the analysis of any discourse. Its focus on the social aspect rather than the linguistic 

makes the tool explicitly helpful for examining students' and teachers' discourses. 

Having tried to make my analysis as transparent as possible, I hope that this paper 

serves as a useful example of the way that the four axes methodology can be used in 

mathematics education research. 
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