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FRAMING THE SOCIAL DYNAMICS OF SMALL
GROUP WORK IN ADOLESCENCE AS PEER CULTURES
OF EFFORT AND ACHIEVEMENT

Jill V. Hamm?, Abigail S. Hoffman?!, Kerrilyn Lambert!, and Daniel J. Heck?
YUniversity of North Carolina at Chapel Hill and ?Horizon Research, Inc.

This study applies the concept of peer cultures, which involve the values and concerns,
habits and routines, and roles that students develop through sustained interaction with
one another, to characterize the social dynamics of mathematics small group work.
Each dimension was coded in time sample intervals in 30 small group audio- re-
cordings from 27 American 6-9" grade classrooms. The major dimensions of peer
cultures could be reliably coded in mathematics small groups, and variations in fre-
guency and quality of each dimension were evident. Coding of 23 more groups will
occur; analyses will continue to document the frequency and quality of these dimen-
sions, as well as co-occurrences of the dimensions within small groups. Results inform
understanding of and supports for productive small groups for adolescents.

SMALL GROUPS AS PEER CULTURES

Small group work is intended to create peer-to-peer interactions in which students use
one another as resources for learning. It is a popular and prevalent instructional format
in middle and secondary mathematics classrooms in the U.S. & internationally
(Fulkerson, 2013; U.S. Department of Education, National Center for Education Sta-
tistics, 2003). In small group work, students must negotiate social as well as structural
and cognitive demands of a task (Barron, 2003), but for adolescent students, the social
dynamics can fully undermine productive small group experiences (i.e., McFarland,
2001). The field lacks a unifying framework that captures common and influential
social dynamics; such a framework would extend theorizing about small group
learning as well as guide educators’ support of productive small group work.

We apply Corsaro and Eder’s (1990) concept of a peer culture to characterize key
dimensions and processes of the social dynamics of small groups. Teachers set the
group membership, task, and expectations for mathematical work and social interac-
tion, but students appropriate the work through interpretive reproduction, taking what
the teacher provides (i.e., task demands and expectations for working together) and
aligning it with their own needs and interests (Corsaro & Eder, 1990). A peer culture,
or the “stable set of activities or routines, artifacts, values, and concerns that children
produce and share in interaction with peers” (p. 197) emerges, governed by values and
concerns, routines and habits; and roles of its student members.

Studies of American, Australian, and Dutch youth show that in general, adolescents’
values and concerns favor classroom disruption and disregard for effort over academic

3-3
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engagement (Galvan, Juvonen & Spatzier, 2011; deBruyn & Cillessen, 2006), which
may undermine group functioning (McFarland, 2001). However, small group experi-
ences may lead students to renegotiate values to favor cooperation and respect of
classmates (Gilles & Boyle, 2005). Work practices and helping behaviors are promi-
nent habits and routines that occur within small groups. Small groupwork in Canada
featured individualistic and collaborative work habits (Esmonde, Brodie, Dookie, &
Takeuchi, 2009) as well as socializing and resistant work habits in American class-
rooms (McFarland, 2001). Peer helping can be adaptive (i.e., expansive, informative,
and explanatory), expedient (involving the correct answer without explanation), or
avoidant (ignored, neglected) (Ryan & Shim, 2012). Roles are the status positions
assumed as students negotiate the academic demands and expectations of the task as
presented by the teacher within the peer culture. Studies of Canadian and American
teens suggest that roles include social loafers, turn-sharks, facilitators, experts, and
socially dominant students (Barron, 2003; Esmonde et al., 2009; Linnenbrink-Garcia
et al., 2011). When focused on effort and achievement, these dimensions of peer cul-
tures bear significant influence over adolescents’ academic outcomes (Hamm, Hoff-
man, & Farmer, 2012).

In the proposed study, we describe and report an iterative process and preliminary
findings for formally capturing the key dimensions of small group peer cultures in mid-
dle and secondary math classes. Our research questions were: 1) To what extent and in
what ways can the concept and dimensions of a peer culture be applied to the social
dynamics of mathematics small groupwork?, and 2) Are there meaningful differences
in frequencies and qualities of key dimensions of peer cultures across small groups?

METHOD AND ANALYTIC PLAN

Eleven middle and high school teachers from one rural and low-resourced, and one
municipal and well-resourced school district in the American Southeast participated.
Teachers identified specific class periods for observation, in which they used small
groupwork of their own planning. In total, 3 6th, 6 7th, 12 8th, and 6 9th grade class-
rooms serving African American, Asian American, Latino, and White students, as well
as a small number of students whose families had recently immigrated to the U.S.,
participated. Across classrooms, 161 small groups were observed and audio recorded
by two researchers; group size ranged from 2 - 5 students (56.5% mixed gender).

All observed lessons followed the teacher’s lesson plan without intervention by the
research team. Student groups worked on a variety tasks appropriate to the grade level
and content focus and sequence of their courses. Tasks included, for example: (1)
finding areas and perimeters of circular and rectangular parts of a stained glass win-
dow, (2) finding the volume and surface area of a cylinder and a tube, (3) finding
missing angle measures in various kinds of triangles, (4) analyzing central tendency
and spread of data distributions, (5) analyzing quantities in two-way frequency tables
and Venn diagrams, (6) modelling situations with linear relationships, and (7) com-
paring different representations of linear relationships.

3-4 PME 42 — 2018
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We randomly assigned the 161 small group recordings to one of three distinct cod-
ing/analytic phases; this proposal involves analysis of the first phase of 54 groups
(coding/analysis of these groups will completed prior to presentation). The complete
enactment of small group work in each classroom was analyzed. The relative and
absolute time allocated to small group work in the observed classrooms varied ac-
cording to teachers’ lesson plans, ranging from about a third of the class period to
nearly the entire length of the class period. Since the length of class periods varied
considerably (most either 47 or 85 minutes) and available time for group work also
varied (13 to 82 minutes), we present results in terms of percentage of minutes of
available group work time in the class period.

We used time sampling (1-min intervals within the identified groupwork time) proce-
dures to capture the presence and prevalence of each peer culture dimension during
small groupwork. Based on theory and empirical studies, the first 3 authors created an
initial code list and working definitions: Values and concerns (i.e., statements about
effort and achievement, as well as affect); habits and routines (i.e., adaptive, expedi-
ent, and avoidant helping; collaborative, individualistic, and socializing work prac-
tices); and roles (e.g., socially dominant, entertainer, social loafer, facilitator). The
team independently coded three audio-recordings in Atlas-Tl v8.1; calculated in-
ter-rater agreement; and refined codes and code definitions. The team independently
applied these codes to another audio-recording and assessed inter-rater reliability.
Following strong inter-rater agreement and additional discussion, the team coded
group recordings independently, calculating reliability after every 9 independent
codings. This approach generated both frequency and narrative data for analysis.

PRELIMINARY RESULTS

To date, the team has coded 30 of the 54 audio recordings. For Research Question 1,
the applicability of the concept and dimensions of peer cultures to small groups in
mathematics, our preliminary results reveal a) refinement of the a priori peer culture
codes; b) reliable coding of the three primary dimensions, as well as some
sub-dimensions of peer cultures.

For finding a) we will briefly present an overview of the refined codes to capture the
three dimensions and sub-dimensions of peer cultures, with illustrations from group
recordings.

PME 42 — 2018 3-5
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Dimension Code Definition Group Example

Values/Concerns

e  Peers’ ability Statements positioning self, Two is easier than one,

(not smart) groupmate, or group as not as ca-  that’s why we gave it
pable or as smart as others. [problem] to you! (group
laughs)

Habits and Routines

e  Expedient Requests for and provisions of S1: Wait, are the slopes the
Help-Seeking/Pr answers or procedures for getting ~ same?
oviding the right answer. $2: Yes

e  Collaborative Multiple students contribute to joint  S1: Wait, so if you find the
Work Habit problem solving. Group members  perimeter of each rectangle,
interactively attend to the task, each can you just times it that
other, and strategies, and solutions. way, and then like, ...
Speakers and listeners have con- $2- | feel like we should

sequential roles. find the perimeter of just

one full circle and multiply
itby 10 ...

S3: Perimeter is 8.14, since
each diameteris 1...

S2: No, that’s area, that’s
radius, remember?

S3: S that’s still ...

In unison: ... 8.14....

Roles

e  Facilitator One member who helps group [following intervals of so-
make progress on the task, i.e., by  cializing among all group
getting the group started, back on  members] OK, we gotta
task, or by seeking input from oth-  write something down!
ers. Affirming statements alone are  [and group re-engages]
insufficient; statements must move
the group forward.

Table 1: Excerpt from coding dictionary and coding illustrations from groups.
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For finding b), early in the coding process, we have established reliable coding of the
primary dimensions and some sub-dimensions. For values and concerns and roles, this
phase has involved identifying the presence or absence of this dimension, prior to
formally coding for distinctions within the dimension. Specifically, for values and
concerns, coding has focused on detecting indicators of values and concerns about
effort and achievement through group members’ statements and affect, with a code
assigned if a statement reflective of values and concerns was present. Thus far, coders
agreed 84% of the time that a statement reflecting values and concerns was present in
an interval. For roles, coding has focused on identification that a student within the
group has assumed a role. Coders agreed 76% of the time that a student within a group
assumed a role. Quotations associated with the values and concerns, and roles codes
will be generated for further differentiation of each dimension in the next phase of
coding/analysis. Finally, we can reliably differentiate within two sub-dimensions of
habits and routines: work habits (collaborative, individualistic, and socializing, with
78%, 87%, and 78% inter-observer agreement, respectively), and helping practices
(providing and seeking, with 89% and 88% inter-observer agreement, respectively).

With respect to Research Question 2, variations in the frequencies and qualities of each
dimension, our preliminary results suggest that all dimensions are present in groups but
range significantly in both quantity and quality of occurrence. Descriptive statistics of
frequency counts revealed that statements that referred to group members’ values and
concerns about effort and achievement occurred infrequently, on average in 19.08% of
intervals (SD = 18.72). Preliminary review of the quotations associated with the values
and concerns code suggest that these statements tended to focus on group members’
ability; the need to be correct; the desire to finish quickly; and about the ease of the
task. With respect to roles, an individual student assumed a role in roughly one-fourth
of small group work time (M = 25.82, SD = 15.19). Preliminary review of the quota-
tions associated with this code suggested that students acted as facilitators, entertain-
ers, or were socially dominant.

With respect to habits and routines, helping behaviors of any form occurred relatively
infrequently, present in only 9% of intervals on average (SD = 11.01), and included
both adaptive and expedient helping. Work habits (i.e., collaborative, individualistic,
and socializing) were coded at over 95% of all intervals. Early in this first phase of
coding, we attained a high level of inter-observer agreement for specific types of work
habits, and thus can report actual percentages of their occurrence. The work habits of
groups tended to be collaborative, constituting 56.81% of small group work time (SD =
28.69). In contrast, group work habits were characterized as individualistic in 22.69%
of intervals (SD = 20.59) and socializing characterized groups’ work habits in 20.04%
of intervals (SD = 21.04). Thus, groups were engaging in the task together for the
majority of small group time, although significant amounts of time within small groups
did not involve collaboration, and were actually off-task.

Preliminary examination of the quotations associated with collaborative work habits in
particular suggests important nuances to consider in subsequent phases of cod-
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ing/analysis. Specifically, collaboration may reflect a co-regulated process, in which
multiple students participate, and group members maintain joint attention to the task,
each other, strategies, and solutions. But students may also collaborate in a competitive
fashion, characterized by domination of problem solving by multiple members, and
resistance to taking up, extending, or encouraging other ideas reflecting an effort to
own rather than share the problem solving process. Collaboration may also be assy-
metrical, with group members deferring to one or two members, in a hierarchical
manner. Finally, uncoordinated or disjointed collaboration may occur, in which mul-
tiple group members are engaged with the task but in parallel, without tracking, lis-
tening to, taking up or extending peers’ ideas. We have begun formal analyses of the
guotations associated with the collaboration code that will enable us to determine
formal codes to apply in the next phase of coding and analysis.

CONCLUSIONS

Systematic study and characterization of the social dynamics of small group work lays
a critical foundation for understanding how students take up the cognitive and dis-
course demands of small group work, and provides a basis for developing tools to help
teachers create and support productive social dynamics in small groups. The results of
the proposed study reveal how an established framework for understanding peer social
dynamics can be applied to understand the highly variable and influential nature of
small group social dynamics in adolescence.

The literature on small group work provided a sufficient background to map dimen-
sions of peer cultures on to small group social dynamics, but distinctions within the
values and concerns of groups, and the roles enacted by students proved difficult to
code reliably in the first round of coding. Efforts instead focused on reliably capturing
these broad dimensions, and identifying a diverse corpus of quotations from which to
establish more nuanced codes in the second phase of the study. Dimensions of habits
and routines (i.e., helping behaviors and work habits) proved to be readily and reliably
codeable, in part likely reflecting the well-established literature on helping, and on
collaboration more generally. Differentiated coding of the broad dimension of habits
and routines in the first phase will support more differentiated characterization of this
aspect of peer cultures.

Very preliminary analyses of the descriptive statistics for each code revealed consid-
erable variability in the prevalence of each dimension of peer culture. Qualitative
analysis of the students’ dialogue reveals additional variability and richness in how
these dimensions are realized as students engage with a mathematics task. Future
analyses will focus on the co-occurrences of these dimensions, in an effort to profile
peer cultures that vary in their productive orientation toward successful small group
work.
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WHICH IS SMALLER...?
PARTIAL UNDERSTANDINGS AND MISCONCEPTIONS
ABOUT MULTIPLICATION AND DIVISION BY FRACTIONS

Pircha Hamo*, Bat Sheva llany?, and Meir Buzaglo®

*Efrata College, ?Hemdat Hadarom College, *The Hebrew University, Israel

This study addresses difficulties students in grades 6 and 8 have in extending the
meaning of multiplication and division from whole numbers to fractions. A research
guestionnaire and student interviews revealed various partial understandings of mul-
tiplication and division by fractions. Using matched pairs of modelling tasks, we
compared how students interpret and apply different models of multiplication and
division in tasks involving fractions. This enabled us to evaluate the sophistication of
their conceptions and uncover their misconceptions. In particular, we uncovered a
misconception that seems unique to rational numbers expressed as fractions: students
conflated multiplication and division when modeling “part of”.

INTRODUCTION

When Michael, in grade 6, wrote the symbol “>" to complete the mathematical ex-
pression (MEX) 72x§ [] 72;%, we were convinced that he was holding the miscon-

ception multiplication makes bigger and division makes smaller, but our theory was
not supported by Michael’s explanation: “In both the multiplication and division ex-
ercises, the result will be less than 72, but the division will decrease [it] more”. This
explanation, which is partially correct, seems to involve conceptions of order. It led us
to wonder how Michael’s sense of how multiplication makes smaller differs from his
sense of how division makes smaller.

BACKGROUND LITERATURE AND RESEARCH FRAMEWORK

Research on the extension of mathematical operations involves both semantic
(Buzaglo, 2002) and psychological dimensions. In discussing students’ partial under-
standings of multiplication and division, we begin with the known gap between un-
derstanding of multiplication and division of integers and understanding of these
concepts in the context of rational numbers. This gap reflects the difficulty that stu-
dents have in extending the meaning of these operations. Initial studies addressed ex-
tensions to decimals. In choice-of-operation tasks for multiplication word problems,
students correctly solved problems when the multiplier was greater than one (in par-
ticular, an integer) more frequently than those with a multiplier less than one. The
influence of the magnitude of the multiplier is referred to as the multiplier effect. In-
terviews with students revealed that they did not see a connection between problems
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even when the interviewer tried to draw their attention to the similarity (Bell, Swan, &
Taylor, 1981).

The phenomenon of choosing different operations for similar word problems was la-
beled by Greer (1987) as nonconservation of operations in the sense of Piaget. Divi-
sion was the incorrect operation chosen most frequently to model multiplication word
problems with decimal multiplier less than one. The reason given for this choice was:
“the result must be smaller (than the multiplicand)”. Similarly, Graeber & Tirosh
(1989) found that preservice teachers incorrectly chose multiplication for division
word problems with decimal divisor less than one “because the result must be greater
(than the dividend)”. In other words, the misconception that multiplication makes
bigger and division makes smaller influences student choice of operation in word
problems.

The theoretical framework of conceptual change has been used to explore students’
difficulties in assimilating new scientific and mathematical concepts and to predict
difficulties that might arise when new knowledge seems incompatible with what was
learned previously. According to this approach,

... understanding of scientific and mathematical notions that are not compatible with what
the individual already knows is not an “all or nothing™ situation; rather, there are inter-
mediate states of understanding wherein elements of the prior knowledge are combined
with elements of the incoming, incompatible, information to produce synthetic conception
(Vamvakoussi, Vosniadou, & Van Dooren, 2013, p. 308).

Using this approach, Vamvakoussi and Vosniadou (2004) identified intermediate
levels of understanding the concept “density of rational numbers ”. For example, some
students correctly stated that there are infinite numbers between two numbers when the
numbers were represented as decimals, yet did not make this claim with two fractions.

Prediger (2008a, 2008b) examined knowledge of multiplication of fractions combining
the framework of conceptual change with theories from mathematics education re-
search. She suggested that formal, algorithmic and intuitive components of this
knowledge express levels of understanding and emphasized the utility of this view for
determining the depth and causes of obstacles to understanding. She also found that
mental models of multiplication that seamlessly expand from the natural numbers to
fractions present fewer obstacles. For example, in an acting-across model of multi-
plication, one quantity is a rate which acts on the second quantity (such as viewing the
cost of a tank of gas as the price per liter acting across the volume). This model extends
naturally to situations involving fractions. In contrast, the part-of model which has no
parallel in the natural numbers is more difficult to assimilate.

Following Prediger, our analysis integrated data from multiple tasks; expanding her
work, our data included both multiplication and division tasks. Tasks were designed to
uncover students’ models of multiplication and division of fractions. In addition, tasks
were purposefully constructed in pairs so that correctly answering only one in the pair
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would reveal nuances in the sophistication of their mental models and shed light on the
nature of their partial understandings.

METHOD
Research goal

Our primary goal was to determine how sixth-grade students construe multiplication
and division with fractions, focusing on misunderstandings specific to rational num-
bers expressed as fractions. We hypothesized that some misconceptions of multipli-
cation and division of rational numbers are unique to their expressions as fractions and
the contexts in which they appear; as such, one might conjecture that these miscon-
ceptions would not occur with decimal representations. We also evaluated
eighth-grade students’ understandings of operations with fractions and compared these
results with the results for sixth grade students.

Participants

The population in this study was lIsraeli students in grades six and eight: 213
sixth-grade students, evaluated after they had studied multiplication and division of
fractions, and 267 eighth-grade students. For each grade level students came from ten
different mathematics classes — two classes at each of five different schools.

Research instruments

The research instruments included a questionnaire administered to students from both
grades and in-depth interviews with the sixth-grade students after they had completed
the questionnaire. The questionnaire contained 31 items assessing conceptual under-
standing of multiplication and division, rather than procedural knowledge. Some of the
word problems in the questionnaire were similar to those that students encounter in the
initial stages of extending multiplication and division from whole numbers to frac-
tions. Here we present four pairs of items that each includes an integer and a fraction
less than 1.

Items 1-2: Determining a MEX for a multiplication word problem (multiplier < 1).

Write the appropriate MEX for the problem. The numbers in the problem must appear
in your MEX.

(1) One meter of fabric costs 30 shekels. What is the price of 35 of a meter of fabric?

(2) Rina has 30 shekels. She bought a pencil case with % of her money. How much did
the pencil case cost?

Items 3-4: Writing a word problem for a given MEX.

. i . 2
(3) Write a word problem where the answer will be the solution for the MEX 4O+§'
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(4) Below is the beginning of a word problem. Complete the problem in any way you
like so that the solution will be the answer for the MEXEX 60 -

Question: Ronen has 60 shekels ...

Items 5-6: Estimating results.
(5) Circle: The answer to 63:3/7 is a) greater than 63, b) less than 63, c) equal to 63.

(6) Circle: The answer to 96x5/8 is a) greater than 96, b) less than 96, c) equal to 96.

Items 7-8: Determining a MEX for a division word problem (divisor < 1). (Same in-
structions as for items 1-2.)

(7) It takes % of an hour to bake a cake. How many cakes can you bake in 24 hours if
you bake one immediately after the other?

(8) 24 whole pizzas were brought to a party. Each child ate % of a pizza. How many
children ate pizza if all the pizza was eaten?

RESULTS

The findings below illustrate students’ partial understandings of the operations, evi-
denced by answering only one of the two items in the pair correctly.

Items 1-2: Determining a MEX for a multiplication word problem (multiplier
< 1). Item 1 is an acting-across problem and item 2 is a part-of problem.

Our results were as follows: (a) 39% of sixth graders and 24% of eighth graders wrote
different MEXs for the two problems; (b) 27% of sixth graders and 24% of eighth
graders used multiplication for the first problem but not for the second, illustrating
their difficulty seeing a part-of problem as a multiplication model. Of these students,
21% in grade 6 and 6% in grade 8 chose multiplication for problem 1 and division for
problem 2; (c) Some used subtraction: with sixth graders 14% and 1% for problems 2
and 1, respectively; with eighth graders 23% and 5%, respectively.

The most common explanation for using division was “we need to find a part of 30”.
The interviews clarified their thinking: 30:3/5 is intended to calculate ‘35 of 30”; they

computed 30:3/5 via a series of operations with whole numbers, namely 30:5x3 (di-

vide by 5, then multiply by 3). This method is commonly used in grades 4 and 5 to find
part of a quantity. In contrast to arguments that deal with rules of size, e.g., “because
division makes smaller”, this argument gives meaning, albeit incorrect, to the entire
expression.

In the following interview, Yael explains why she chose multiplication for problem 1
but division for problem 2:

Because 34 is the length, and that times the price of the whole fabric, and that multiplies the
other, and this gives a smaller number because this is a smaller fraction, and that simply
shows you how much it costs. Here [item 1], 30 is how much a meter of fabric costs, it’s
not how much money she has and how much she bought...... I think the only difference
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[between items 1 and 2] is that here [item 2] it is 34 of her money, from her money — and
here [item 1], we want to know how much the fabric costs [sic].

As with acting-across problems with integers, problem 1 gives the value per unit and
asks to find the value of x units. Problem 2 is a part-of problem; it is distinct from
multiplication word problem with integers. Yael ascribes to the number “30” different
roles in the two problems: In problem 1, “30” is the value corresponding to 1 meter of
fabric, while in problem 2, “30” is the amount that needs to be divided. Yael did not
consider problem 1 to be a problem where one needs to calculate 35 of 30. Semanti-
cally, problem 1 is static, asking “how much it cost”, while problem 2 is dynamic,
seeking “how much money she has” and then “how much she bought”. The process of
finding a portion of a quantity, emphasized in problem 2, is active. Problem 1 en-
courages proportional reasoning through the use of two units--meters and shek-
els--while problem 2 encourages thinking about a direct operation between the two
numbers given in the problem.

We will briefly discuss the choice of subtraction for problem 2. The most common
reason for this error was that students saw this problem as similar to dynamic sub-
traction problems with integers and sought “how much money Rina had left". Alt-
hough they wrote 30—3/5, interviews revealed that they intended “30 minus ¥ of 30”.

Selecting subtraction to calculate "how much remains™ was instinctive, and many
changed their decisions during their interviews. Problem 1, as previously stated, has a
static semantic structure.

Items 3-4: Writing a word problem for a given MEX. The difficulty in writing word
problems is well known and includes basic writing skills, e.g., formulating an appli-
cable question from information found within a story. In problems with fractions, it is
important to properly ascertain the “whole” of which the fraction is a part.

We found that 15% of sixth graders and 24% of eighth graders wrote clear one- or
two-stage multiplication word problems for both multiplication and division exercises
with a fraction as an operator acting on an integer. Most of the word problems were
part-of problems. For example: In a class of 40 students, how many went on a trip if %
of the class participated?; Ronen had 60 shekels and bought a shirt with % of his
money. How much did it cost? It is possible that the opening offered for the multipli-
cation problem naturally led them to write a part-of problem. Nevertheless, writing
such a word problem also for division by fraction indicates a lack of complete under-
standing of both operations.

Items 5-6: Estimating results. Twenty-two percent of sixth graders and 31% of
eighth graders selected answer b (the result is “less than ...”) for both items.

Items 7-8: Determining a MEX for a division word problem (divisor < 1)._Thir-
ty-three percent of sixth graders and 27% of eighth graders wrote different MEXs for
the two problems. Of them, 26% of sixth graders and 22% of eighth graders correctly
used division for problem 8 but multiplication for problem 7.

PME 42 — 2018 3-15



Hamo, llany, & Buzaglo

This error appears (e.g., Graeber & Tirosh, 1989) because the answer to the problem is
expected to be greater than the dividend, and because multiplication makes bigger.
Yet, even though in both problems the answer is expected to be greater than 24, almost
one quarter of the students in each grade choses multiplication for problem 7 but not
for problem 8. Furthermore, during the interviews, no one suggested “multiplication
because the answer must be more than 24”.

Two-thirds of the interviewees who used multiplication in problem 7 understood the
context correctly, that is “one needs to find how many times % goes into 24", yet in-
sisted on multiplication because “you need % plus % plus % plus .... i.e., you need to
multiply”. To them, multiplication is the repeated addition of %4. They used the strategy
of “building up” from the divisor until the dividend is reached, which is a strategy
found in studies regarding division of integers (Mulligan, 1992). In contrast, in prob-
lem 8, “the pizzas are divided up”, division is appropriate.

Another student’s explanation for this error is the perceived difference between the
two: “In 7 they are baking (making = multiplication) and in 8 they are eating (cutting =
division)". The act of division in 8 is clear: begin with the dividend and divide it into
parts; the fact that the divisor is a fraction played no role in their correct choice. Sim-
ilarly, the fraction did not influence their erroneous choice of multiplication for prob-
lem 7.

Success in choosing a division MEX for item 8 did not necessarily indicate a complete
grasp of division exercises. To wit: about a quarter of the students in both grades wrote
the correct exercise (24:3/4) in problem 8, but incorrectly reasoned that the resulting

number of 63:3/7 would be less than 63 (item 5). In addition, 43% of the student in

both grades wrote the correct division exercise for item 8, yet could not successfully
reverse their thinking; these students were unable to write a word problem modeled by
the division exercise 40:2/5(item 3).

DISCUSSION & CONCLUSIONS

We found different levels of understanding of the concepts of multiplication and di-
vision by fractions. There was considerable evidence of inconsistency in thinking (and
performance), along with the students’ inability to recognize these inconsistencies.
Using the conceptual change approach allowed us to interpret these inconsistencies as
intermediate stages in the change process: understanding multiplication and division
by fractions is a gradual process where older elements of knowledge are improperly
integrated with newer ones.

With respect to writing different MEXs for two word problems with identical math-
ematical structures and numbers, students who wrote the correct MEX for only one of
the problems indicate a partial understanding of the operations. The explanations that
students gave for their choice of operation also pointed to partial understanding: for
example, a student might explain that multiplication is appropriate for one problem
“because it gives a smaller result” (indicating a change in the perception that multi-
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plication always makes bigger), yet not give this explanation for the second problem,
even though the solution is also smaller.

For one of the quotative-division problems (item 7), they explained the (incorrect)
choice of multiplication because “one must find how many times % is contained in 24”,
yet they did not ask such a question with item 8. Students correctly answered only one
of the division problems did not totally understand the quotative-division model. It
appears that at intermediate levels, students are influenced by different characteristics
of word problems and do not successfully identify the mathematical structure that is
common to both. Students who successfully answered both multiplication problems
(items 1 & 2), probably understood multiplication by fractions in the concept of
meaning (part-of) and not only in the concept of order (multiplication makes smaller).

We found older calculation strategies mixed into choice of operation for the word
problems. Students who incorrectly used division for a part-of problem were influ-
enced by the familiar method from grade four to find a part of a whole: division by the
denominator of the fraction and multiplication by its numerator. One can say that they
incorporated into their knowledge expansion their previous knowledge about finding a
portion of a quantity and not just awareness that division as something “that reduces”.
Students who used multiplication for division problem by explaining “we have to find
how many times % goes into 24" were influenced by the “building-up” strategy used in
division problems with whole numbers. In both cases they had difficulty applying
these strategies correctly using the numbers in the problem.

We found an intermediate level of understanding with respect to the misconceptions
multiplication makes bigger and division makes smaller. Some students stated that
multiplication by a fraction leads to “less than" but also claimed this in the case of
division by a fraction. Students at this intermediate level appear to be locked into only
one of the two misconceptions. Like Michael, whom we presented in the introduction,
they also believe that both of the mathematical operations “make smaller”. The varied
results presented above suggest that some students hold the conception that multipli-
cation by a fraction decreases and the misconception that division by a fraction finds a
part of.

Other examples of an intermediate level of understanding were shown in the writing of
word problems. Some students wrote part-of problems for both multiplication and
division by a fraction. Conflating the meanings of the operations was not found in
studies of decimals, indicating that this misconception could be attributed to the special
way that fractions are written and to the unique part-of model associated with frac-
tions.

As mentioned, when a student writes different MEXs for paired word problems, he has
failed to attain full multiplicative reasoning. Harel (1995) claimed that being in this
“naive-interpretist” stage for word problems is an inevitable interim stage in devel-
oping the concept of multiplicativity, yet once a child acquires multiplicative thinking,
he recognizes identical mathematical structure in ostensibly different word problems.
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We are convinced that teachers must discuss the meanings of the operations to help
students through the “naive-interpretist” stage. Furthermore, it is essential to give
students practice exercises with both operations, to eliminate confusion and sharpen
their understanding of the meaning of each and the difference between them.

In summary, this study adds to the understanding of the conceptual change required to
extend multiplication and division to fractions. It also provides questionnaire items and
analysis methods for discerning obstacles to extending these operations that are unique
to fractions. In addition, conflation of multiplication and division specific to fractions
indicates that further study is needed.
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DOCTORAL PROGRAMS’ CONTRIBUTION TO BECOMING A
MATHEMATICS EDUCATION RESEARCHER

Cigdem Haser

Middle East Technical University, Ankara, Turkey

The knowledge and skills that a mathematics education (MathEd) researcher should
have and to what extent doctoral programs (DPs) contribute to this researcher were
explored through the written responses of 37 doctoral students studying in the field of
MathEd in Turkish, European and North American DPs to an open-ended survey.
Findings addressed that doctoral students prioritized research and MathEd related
knowledge and skills the most. Generic skills, career skills, critical research skills and
habits of mind were stated the least. Participants evaluated their knowledge and skills
and DPs’ contribution to them as mostly sufficient. However, more courses and ex-
periences were needed. Scholarly climate and human resources were the strongest
aspects of DPs. Research opportunities for doctoral students needed improvement.

KNOWLEGDE AND SKILLS IN DOCTORAL PROGRAMS

The aim of doctoral education is to provide knowledge and skills to doctoral students
in a specific field of study that they will become scholars and independent researchers
(Mendoza & Gardner, 2010). Mathematics education (MathEd) researchers are ex-
pected to have several types of knowledge and skills to pursue a wide range of roles
and duties in multiple contexts such as university, schools, classrooms, and national
and international research communities (Hiebert, Lambdin, & Williams, 2008). On the
other hand, disciplinary cultures of knowledge production with emphasis on appren-
ticeship in doctoral programs (DPs) have evolved to newer cultures and practices
prioritizing capabilities, dispositions, and other ways of knowledge production equally
important as expertise and knowledge (Lee & Boud, 2009). The recent global focus on
the future of doctoral degree addresses that doctorates should also have generic and
global capabilities (Cumming, 2010) including networking, collaboration, communi-
cation and problem solving (Hopwood, 2010).

The purpose of doctoral education in the field of education has been debated without a
conclusion often through what one becomes at the end of the doctoral education
(Gardner, Hayes, & Neider, 2007). There are multiple and often conflicting views of
preparing doctoral students MathEd field which might be better explored by focusing
on DP practices (Ferrini-Mundy, 2008). Such an investigation can take place at three
levels from local (doctoral students) to intermediate (doctoral institutions), to more
abstract level (Lee & Boud, 2009). DPs in the field of MathEd (including DPs such as,
Teacher Education) have mostly been investigated in terms of number and content of
available courses (Ferrini-Mundy, 2008). However, preparation of doctoral students
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for being competent MathEd researchers requires scholarly contexts where students
are encouraged to develop and integrate several skills and critical perspectives by
being involved in scholarly communities (Haser, 2017; Middleton & Dougherty,
2008), which cannot be explored by focusing only on courses.

Studies have shown that doctorates are expected to have several competencies; yet, to
what extent doctoral education can provide these competencies is questionable
(Mowbray & Halse, 2010). Knowledge and skills associated with one’s field of study
are considered as one aspect of these competencies along with dispositions and be-
haviours (Durette, Fournier, & Lafon, 2016). Such competencies may also include a
more comprehensive and integrated set of dispositions, habits of mind which are “in-
tangible attitudes, values, and characteristics that cannot be seen or casually observed”,
and “more tangible and observable” skills and abilities for research practice and
communication (Gardner, et al., 2007, p. 294). Sinclair, Barnacle and Cuthbert (2014)
have explored studies about doctoral education to document the factors that may con-
tribute to doctoral students’ becoming active researchers. They found that active and
productive supervisor, active research culture and department, sense of becoming a
peer or independent, development of collaborative capacities, conceptualization of
success in doctorate across contexts, socialization into research practice and emotional
engagement with one’s research studies were important in becoming an active re-
searcher. Their findings suggested that when the conceptions of the purpose of the
doctorate among the students, faculty, and institutions were similar, the students were
likely to become active researchers.

The recent global focus on doctoral practices (Lee & Boud,2009) addresses that there
is a need to explore how DPs prepare doctoral students for the knowledge and skills of
conducting MathEd research (Ferrini-Mundy, 2008). Therefore, this study explored
how doctoral students studying in the MathEd field identify knowledge and skills that a
MathEd researcher should have, to what extent they have these knowledge and skills,
and their views about how DPs contribute these knowledge and skills through an
open-ended survey. The aim was to provide doctoral students’ perspectives to the
improvement of DPs. The findings can further be compared to the views of DPs’ fac-
ulty and administrators and crosschecked with the content of the courses to evaluate
the effectiveness of DPs and to increase DPs’ contribution to becoming a researcher.

METHOD

The study was designed as a qualitative survey study in which doctoral students
working in the field of MathEd were asked six questions about the knowledge and
skills that a MathEd researcher should have, and to what extent they had and DPs
contributed these knowledge and skills.

Participants

The participants of the study were a total of 37 doctoral students from Turkish DPs (21
participants) and international (non-Turkish) DPs (16 participants). Thirteen of the
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international students were in North American DPs and the rest were in European DPs.
Turkish participants were reached through e-mails that were sent to graduate assistants
and professors (to be forwarded to the doctoral students) working at DPs focusing on
MathEd at Turkish universities. International participants were reached through the
e-mails that were sent to their professors, who were conveniently known to the re-
searcher, and through an online platform. The participants were at different stages of
their doctoral studies (before dissertation or focus on dissertation). Table 1 summarizes
participants’ stages in their DPs for Turkish and international doctoral students.

Turkish International Total

Stage inthe Focus on Disst.-17  Focus on Disst.-11 ~ Focus on Disst.-28
Program  gefore Disst.-4 Before Disst.-5 Before Disst.-9

Table 1: Participants’ status in the program.

Comparisons between DPs in different countries or among doctoral students were not
the purposes of the study. Therefore, findings were presented without reference to the
countries or participants’ stage in the DPs.

Data Collection and Analysis

Data of the study were collected by a qualitative open-ended survey. The first part of
the survey had 10 demographic questions about participants’ DPs, status in the DPs
and scholarly activities. The second part had six questions asking their ideas about (1)
the knowledge and skills a MathEd researcher should have; whether and how their DPs
(2) were supporting these skills (3) or not (with references to the specific experiences);
(4) self-evaluation of their knowledge and skills; (5) their supervisors’ expectations;
and (6) the strengths and needs-improvement aspects of DPs (three for each). The
survey and the consent form was first sent to a small group of Turkish doctoral students
as a text file via e-mail to respond and to reflect on the comprehensiveness and
wording. The responses were received mostly via e-mail to the researcher as a digital
text file and a small number of them were received as printed. These responses and
reflections did not result in any change in the survey and it was sent to a larger group of
doctoral students and professors in Turkey via e-mail. Professors were kindly asked to
forward the survey to the MathEd doctoral students in their institutions. Filled-out
surveys were received as digital text files via e-mail directly from the participants.

The English translation of the survey and the consent form was sent to international
doctoral students via (i) e-mail asking the conveniently reached professors to forward
and (ii) a digital survey tool which was announced to the students through the social
media outlet of an association of European MathEd doctoral students and researchers.
One of the professors revised the demographic questions to address the doctoral stu-
dents’ stage in the DPs in a specific European context and the survey was distributed to
the students in that context with revised demographic questions.
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The wording of the questions in the survey intentionally asked participants to identify
knowledge and skills, not capabilities or competencies because knowledge and skills
would not probably require further explanation. Identifiers such as, dispositions and
values, would probably need further explanation as they have different meanings for
individuals. However, asking knowledge and skills might have limited participants’
responses and caused them not to consider certain competencies.

The thematic analysis (Braun & Clarke, 2006) was employed to analyse the data in the
second part of the survey. First, responses to the first question were read several times
and initial codes were generated. Then, data were coded by these codes and codes were
grouped in eight potential themes (some from the literature) almost simultaneously,
resulting in theme-code-coded data clusters. This helped to clarify the meaning of the
themes and see if the themes reflected the set of codes addressing the same concept.
Responses to questions (2) and (3) were analysed in terms of DP experiences that the
participants expressed for the knowledge and skills they identified and responses to
question (6) were analysed in terms of participants’ evaluations of the strengths and
needs-improvement aspects of the DPs by using analysis steps described above.

FINDINGS

Doctoral students identified eight major types of knowledge and skills that a MathEd
researcher should have: Knowledge of the MathEd field, research knowledge and
skills, knowledge of teaching and learning process, communication skills, career skills,
critical research skills, habits of mind, and generic skills. DPs contributed to these
knowledge and skills through courses, implementations and projects, and program
culture in terms of support, interactions and role models. Yet, many participants ex-
pressed that more courses and/or project experiences were needed to improve MathEd
researcher traits. Doctoral students evaluated the extent of their knowledge and skills
as they had it, they had it to some degree and still working on improving, or they did
not have it. Doctoral students’ views about knowledge and skills that a MathEd re-
searcher should have, whether DPs contributed to these knowledge and skills, whether
or to what extent they had these knowledge and skills, and their views about their
supervisors’ expectations (expecting or not expecting) from them were reported to-
gether for each type of knowledge and skills. Then, their views about DPs’ strengths
and needs-improvement aspects were presented.

Knowledge, Skills and Doctoral Programs

Doctoral students most frequently expressed that a MathEd researcher should have
knowledge of the MathEd field (N=34, f=70) which included mathematics knowledge
especially in the field of expertise, knowledge of mathematics curriculum, theories and
trends of MathEd research, pedagogical content knowledge, and technological pedago-
gical content knowledge. DPs contributed to this knowledge mostly through courses
and projects, and supervisors expected them to have it. However, participants stated
that they would like to have more courses in DPs addressing these components. Al-
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though many doctoral students expressed that they either had or were improving this
knowledge, several of them stated that they did not have all components sufficiently.

Research knowledge and skills (N=32, f=59) was the second most frequent category
which addressed knowledge and skills of research designs and data analysis methods
In quantitative and qualitative trends, searching literature and identifying research
problems. DPs contributed to this category mostly through courses, and less with pro-
jects. However, more courses and experiences were needed. Participants stated that
they either had or were improving research knowledge; however, many also expressed
that they did not have these knowledge and skills sufficiently. Supervisors were per-
ceived as they expected these from doctoral students to a considerable degree.

Knowledge of teaching and learning process (N=23, f=36) was important for the
participants. Knowledge of schools and classrooms, contexts, knowledge of teaching
demands and students, and knowledge of theories were in this category. DP courses
and projects helped participants to gain or improve this knowledge. They did not state
much about what their programs lacked in this aspect. Supervisors were also not per-
ceived that they would expect this knowledge from the students.

Communication skills (N=24, f=35) including communication of research outputs or
process to all interested parties, contacting or finding scholarly communities, and at-
tending conferences were important for participants. DPs did not contribute much to
these skills. Some participants expressed that courses or DP culture should be more
supportive to improve these skills. They mostly stated that they had or were improving
communication skills and their supervisors expected them to have these skills.

Career skills (N=19, f=24) addressed skills such as writing for publications and grants,
evaluating the quality of the journals and conferences, project management, and col-
laboration. However, DPs did not help students to improve these skills much and they
expressed they needed more experiences or rather a DP culture to improve these skills.
They mostly expressed that they had or were improving career skills. Supervisors were
perceived that they would expect participants to have these skills.

Critical research skills (N=11, f=17) were not stated much frequently. Some partici-
pants expressed evaluating the significance of a study, developing perspectives for a
research problem or implications of a study, and critical evaluation of literature as
important skills of being a MathEd researcher. These participants stated that courses
were useful for these skills and that they had or were improving these skills. These
skills, however, were not perceived as expected by the supervisors much.

Habits of mind (N=10, f=18) such as, perseverance, patience, curiosity, and motiva-
tion, were expressed by some participants. This was rather seen as a personal trait that
could be improved by personal efforts. Those who expressed these habits also indica-
ted that they mostly had or were improving them. Supervisors were perceived as they
expected the participants to have these habits.
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Generic skills (N=5, f=9) included time management, balancing between professional
and personal life, and motivating other people. Doctoral students’ competence in these
skills varied and they perceived their supervisors expected them to have these skills.
They did not state DPs’ contribution to these skills much.

Strengths and Needs-Improvement Aspects of Doctoral Programs

Doctoral students evaluated DPs’ strengths and the aspects of the DPs that needed
Improvement in ten major categories: Scholarly climate, human resources, research
opportunities, program structure, courses, MathEd specific experiences, connections,
collaboration, teaching opportunities and communication. Scholarly climate and hu-
man resources were identified as strengths of the DPs. Courses in the DP, research
opportunities, MathEd specific experiences and DP structure were identified as both
strengths and needs-improvement aspects. Collaboration, communication and teaching
opportunities in the programs were identified as aspects to be improved.

The strongest aspect of DPs was the scholarly climate (N=21, f=30) they provided.
Doctoral students expressed that new approaches and ideas were welcomed in the DPs
and they received constructive feedback and support for independent research. DPs
had scholarly communities where scholarly activities were supported, and students
gained perspectives and increased their motivation. Such strength was also perceived
in human resources (N=18, f=20) where faculty members’ experiences and support for
students made DPs more valuable. Other students strengthened DPs by attending
scholarly activities. DPs provided connections (N=9, f=9) for students to international
collaborators, networks and other fields to improve their knowledge and skills.

Certain features of the program structure (N=12, f=18) such as, being able to select
one’s supervisor, courses, and research topic, were considered among the strengths of
DPs. Doctoral comprehensive examination (in some of the DPs), was a strength when
it prepared the students for their further studies. The variety and the content of the
courses (N=12, f=13) in the DPs were satisfactory and beneficial for many partici-
pants. Research opportunities (N=15, f=17) such as, research knowledge and practices
of different designs, data analyses, project writing, and being able to work in projects
provided considerable learning opportunities. Part of the strength was about the
MathEd specific experiences (N=9, f=11) such as, MathEd research projects, courses,
and researchers which were supporting participants’ studies.

However, program structure (N=21, f=16) needed improvement to provide more
funding opportunities, specific supports for international students (in non-Turkish
DPs), and manageable work load. Course (N=11, f=14) availability was an important
drawback for some of the participants that there were times they could not find courses
for their needs or MathEd specific courses (N=7, f=7) on important concepts. They
specifically indicated that research preparation (N=14, f=22) should start earlier with
introductory courses and there should be support for scholarly language improvement
and publication. Collaboration (N=9, f=11) and communication (N=7, f=8) between
the faculty members and doctoral students, and among doctoral students needed im-
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provement in order to provide students better DP experiences. Insufficient teaching
opportunities (N=8, f=8) in schools and at university level courses were addressed as
Important issues to be improved.

CONCLUSIONS AND DISCUSSIONS

Findings showed that doctoral students in the field of MathEd prioritized knowledge
and skills of research methods, MathEd specific issues, teaching and learning process,
and communication for a MathEd researcher. These categories mostly included com-
ponents which could be learned through courses and resources, or observed in schol-
arly activities such as conferences. On the other hand, generic skills, career skills, criti-
cal research skills and habits of mind were not stated much by the doctoral students
despite their importance for DPs (Cumming, 2010). These skills included skills that are
not easily observed or qualifications that are developed over time and experience.
Doctoral students’ evaluation of DPs showed that they seemed to consider courses as
the major DP experience and focused on their learning in the courses. The related
questions in the survey asked to indicate courses and other experiences in the DPs in
relation to the knowledge and skills they listed. Although most of the participants were
focusing on their dissertation studies, they did not mention about the contribution of
this experience, or of working with their supervisors during this process to their
knowledge and skills.

Interestingly, participants criticized DPs for not providing better research opportunities,
communication and career skills with emphasis on collaboration, which are important
factors for becoming an active researcher (Sinclair, et al., 2014). These skills could

have been perceived more positively within encouragingly perceived scholarly climate

and human resources of DPs. Yet, they needed DP contexts providing more research

opportunities with effective collaboration with professors and other doctoral students,

and sharing of research processes and outcomes through more structured workshops

and meetings. Indeed, being a part of a research study (other than the dissertation study)
was found to be a key experience in becoming an independent researcher for MathEd

doctoral students (Haser, 2017).

These findings showed that the focus on content and number of courses in MathEd DPs
does not provide a better picture of the nature of DPs’ practices and the types of
competencies they address (Ferrini-Mundy, 2008; Middleton & Doughtery, 2008).
Exploring these practices and competencies through the views of doctoral students,
supervisors, and DP administrators might provide more grounded improvements in
MathEd DPs to support becoming an active MathEd researcher.
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INSTRUMENT TO ANALYSE DYADS’
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In this paper, we focus on the development of a theoretical instrument based on the
interactive-cooperative-active-passive-framework to analyse dyads’ communication
processes in collaborative face-to-face learning scenarios. We can show that the
adaption of this framework to the analysis of time-sampled video recordings is suc-
cessful and that a dependency between dyads’ communicational behaviours and their
learning outcome may be present.

THE MAMDIM-PROJECT

The transition from secondary to tertiary education is known as a complex problem
area, especially in mathematics (Gueudet, 2008). Within this context, the use of new
instructional media like video tutorials, podcasts or commented presentations is ex-
panding (Bausch et al., 2014), whereas at the same time a lack of research in this field
is stated (Biehler, Fischer, Hochmuth, & Wassong, 2014). The mamdim—project
(learning mathematics with digital media during the transition from secondary to ter-
tiary education) explores the usage and benefit of different digital instructional media
focusing on descriptive statistics in cooperation with four German universities (Uni-
versity of Applied Sciences Pforzheim, Offenburg University of Applied Sciences,
Bielefeld University and Brandenburg University of Technology Cottbus-Senften-
berg). We conducted a pilot study to improve the study design (pre-test | intervention |
post-test) and the test items at two universities in 2015, for first results see Salle,
Schumacher, & Hattermann (2016). In this paper, we take our data from the main study
that took place in 2016 and 2017 with about 300 students.

THEORETICAL BACKGROUND AND RESEARCH QUESTIONS

The role of language has been an important issue in mathematics education for a long
time (Austin & Howson, 1979), a broad overview about contemporary research is
given in Morgan, Craig, Schuette, & Wagner (2014). Students’ learning of mathema-
tics evolves in interaction and is enclosed in language and communication (Steinbring,
2015). Therefore, communication processes including sharing ideas verbally or in
writing processes play a fundamental role in learning mathematics from a construc-
tivist point of view. There is a significant number of studies showing that collaborative
learning in small groups does not necessarily yield greater learning outcomes (Barron,
2003), whereas other researchers stress the advantages of working collaboratively to
promote learning (Dillenbourg, Baker, Blaye, & O’Malley, 1996). At first sight, these
results seem to be contradictory, but can be explained with the help of the
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CAP-framework by Chi & Menekse (2015), see also Menekse, Stump, Krause, & Chi
(2013) for the origins of this framework. We will use this framework in an adapted
manner to analyse our data.

The Interactive-Constructive-Active-Passive (ICAP)-framework

The ICAP-framework explains what type of interaction is most effective in collabo-
rative learning situations. To develop this framework, a first step consists of identi-
fying observables that characterise individual’s learning, called engagement activities.
Regarding their benefit of learning, these activities can be classified and rank ordered
In passive engagement, active engagement and constructive engagement (Chi &
Wylie, 2014). To give an example, passive reading means reading silently without
trying to integrate the text in present knowledge. Active reading is characterised by
reading aloud in certain passages and by highlighting specific words or information.
An activity such as self-explaining, taking notes or making drawings defines a con-
structive engagement while reading (Chi & Menekse, 2015). Different cognitive pro-
cesses are triggered by different forms of engagement. The CAP-hypothesis claims
that constructive engagement is superior to active engagement, in which active en-
gagement dominates passive engagement with respect to greater learning outcomes.
Many studies support the CAP-hypothesis, for an overview see Chi and Wylie (2014).
With the help of the CAP-framework, it is possible to explain the mentioned contra-
dictory research results. For example, a single active learner will only learn more in a
dyad if his partner is an active learner or a constructive learner. A constructive learner
will profit from group learning only, if his partner is at least an active learner and there
will be no benefit if his partner is only a passive learner (Chi & Menekse, 2015). To
understand better how dyads learn, it is possible to classify each individual’s utterances
as passive, active or constructive and to widen the CAP-framework to the
ICAP-framework, in which the fourth engagement category interactive occurs, only
making sense in collaborative learning scenarios. Interactive learning meets two cri-
teria: a) both partners’ utterances must be primarily constructive, and b) a sufficient
degree of turn taking must occur (Chi and Wylie, 2014). In this respect, interactive
learning is beneficial to both constructive learners. To assess each dyad’s commu-
nicational behaviour, Chi and Menekse (2015) calculate a so-called dialogue pattern
score, i.e. a rational number between 1 and 3. Dyads whose communication is mainly
driven by utterances of a single learner, while the other partner remains passive, are
classified with a score close to 1. At the other end of the spectrum, dyads whose
communication is shaped by a high degree of constructive interaction between the
learners, will be given a dialogue pattern score close to 3.

Based on the ICAP-framework, we will develop a theoretical instrument to analyse
dyads’ communication processes regarding their interactivity while working with di-
gital instructional material.

The following research questions will be considered:
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e In which way is the ICAP-framework applicable to analyse dyads’ commu-
nication processes, which learn with a digital instructional medium?

e Are there dependencies between the interactivity of the face-to-face commu-
nication as measured by the dialogue pattern score and students’ learning
outcome in a pre-post-test-scenario?

STUDY DESIGN

11 pairs of electrical engineering or economics students at the University of Applied
Sciences Pforzheim worked with a digital script (comparable to an interactive-pdf-file)
as instructional medium in a moodle-environment. The material — dealing with mea-
sures of central tendency (e.g. arithmetic mean, median, harmonic mean) as the object
of learning — encompassed 21 slides, containing definitions, formulas, explanations,
examples and short multiple-choice questions.

As an example, the slide in figure 1 deals with the harmonic mean. The slide is follo-
wed by two examples illustrating the difference between the arithmetic and harmonic
mean. In the first example, a car is driven the same amount of time on five distinct days
with different average speeds and in the second example, a car is driven the same
distance with different average speeds five times a week. The total average speed is
calculated using the arithmetic mean in the first and the harmonic mean in the second
example.

Measures of central tendency
The harmonic mean

The harmonic mean of n numbers x4, X, ..., X, is defined by

— n

f,=1xi

The question arises in which situation the harmonic mean has to be used to calculate the average. The answer is given in the
following.

If the values in question x; are given as ratios, e.g. speeds (= length/time), it is crucial whether the data in the data set is
referring to the length (nominator) or time (denominator). If the data refer to the time, i.e. the denominator, the average speed
is calculated using the arithmetic mean; but if the data refer to the length, i.e. the , the has to be
used.

This is illustrated in the following example:

Figure 1: Slide from the instruction material (translation by authors)

Subsequently the students were asked to answer the following multiple-choice ques-
tion regarding the difference between the harmonic and arithmetic mean:

A garden centre creates a substrate by blending same masses of four different soils.
These soils are known to have the following densities: Soil A: 710 kg/m?; Soil B: 920
kg/m3; Soil C: 830 kg/m? and Soil D: 1000 kg/m3. Calculate the average density of the
substrate.
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Possible answers were 851 kg/m3, 865 kg/m?3 and 857 kg/m3 with the first one being the
correct answer (calculated using the harmonic mean). The second (wrong) answer is
calculated using the arithmetic mean of the four values and acts as a distractor. After
answering the question, students got a direct feedback whether their calculation was
correct or not, which is the main difference to a paper-and-pencil environment. Since
the ICAP-framework, on which our analysis is based, originated from the analysis of
paper-and-pencil situations, this moodle-environment acts as a logical first choice to
adapt the framework to the analysis of computer-environment situations before using it
in situations like learning with video tutorials.

Before and after the digital media intervention students had to take a test consisting of
both multiple-choice items and open questions regarding the overarching topic (de-
scriptive statistics). For a detailed overview of the test items used, see Salle, Schuma-
cher & Hattermann (in prep).

Methodology

The students’ computer screens were captured and the utterances and the image of the
two learners were videotaped. To analyse the recordings, the time-sampling method by
Bakeman and Gottman (1997) was used, in which each video was organised into
segments of 10 seconds. After that, all segments in which the students communicated
(verbally) for at least five seconds about the mathematical aspects relevant to the ma-
terial at hand were identified. We will call this type of communication meaningful in
the following.

We decided to restrict our analysis of the data we collected to the students’ commu-
nication processes taking place while they focus on the material that deals with the
harmonic mean that we described above. Compared with other measures of central
tendency, the relative difficulty of the topic provides a richer source for possible stu-
dent interaction and thus a suitable area of focus.

Following Chi and Menekse (2015), we regard a student as “active” if he or she repeats
or restates ideas from either his partner or the material at hand while a “constructive”
learner elaborates on ideas, raises questions or explains something in response to a
guestion. To adapt the ICAP-framework to our situation (time-sampled videos of dy-
ads in a collaborative learning situation), we derived the following coding scheme: For
each 10-second-segment that contains meaningful verbal communication we decided
for each student individually whether this student took an active, a constructive or a
passive part in the conversation.

The following quote where both partners act as constructive learners is taken from
dyad 114 by working on the “car-example”, described in the study design:

Student 1:  So, why do I need to use the harmonic mean in one case and the arithmetic
mean in the other case?
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Student 2:  Here (while pointing at the screen) he drives the car always the same
amount of time and there (points to the other example) he drives the car
always the same distance, but needs a different amount of time.

Here, the first student raises a question with regard to the material at hand while the
second student directly picks up on this question and tries to explain the mathematical
content with respect to the learning material.

Based on this analysis, every 10-second-segment containing meaningful mathematical
conversation is now rated on an ordinal scale ranging from a score of 1 to 3. Table 1
gives a summary of the definitions of these scores which resemble the definitions by
Chi and Menekse (2015).

score Description

Student communication in this 10 second segment...

1 ... 1s dominated by one student.
(active-passive or constructive-passive)

2 ... 1s driven by both partners, but not interactively.
(active-active, constructive-active, constructive-constructive)

3 ... has two constructive partners contributing interactively to it.
(constructive-constructive and interactive)

Table 1: Coding scheme of communication interactivity

We adapt the dialogue pattern score as described in the theoretical background by Chi
and Menekse (2015) to analyse the 10-seconds-segments in the following way. The
number of times each score occurred is counted for every dyad and the dialogue pattern
score is calculated by taking the weighted average of the occurrences: For example, the
communication of dyad 001 (see table 2) included in total 23 coded segments with
meaningful communication. 5 of those segments were score 1 segments, 7 of them
reached score 2 and the remaining 11 of them got a score of 3. From this, we can
calculate their dialogue pattern score as

1-5+2-7+3-11

~ 2.26.
23

Therefore, the communication of dyads with a dialogue pattern score close to 1 is af-
fected predominantly by single student contributions without interaction between the
partners while higher scores represent a higher level of verbal interaction.
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RESULTS

Counting all segments with a given code and calculating the dialogue pattern scores for
each individual dyad yields the following table 2:

# of segments with score ...

Dyad a1 .2 .3 dialogue  normalised
pattern gain score
score
001 5 7 11 2.26 0.34
002 5 1 0 1.17 0.20
003 3 2 0 1.40 0.27
004 4 0 0 1.00 0.28
005 11 1 4 1.56 0.65
006 2 2 0 1.50 0.41
112 16 7 2 1.44 0.13
113 15 12 3 1.60 0.43
114 5 2 1.70 0.46
115 0 1 2.10 0.41
117 0 0 2.00 0.56

Table 2: Dyads’ dialogue pattern and normalised gain scores

In total, three of the 11 pairs (001, 115, 117) achieved a dialogue pattern score above
(or exactly) 2.0 while the score of two dyads (002, 004) is close to (or exactly) 1.0. The
median of all scores is 1.56 with 5 dyads scoring below it.

To explore possible dependencies between the dialogue pattern score and the learning
outcome of the dyads, we calculated the so-called normalised gain score for each dyad
which relates pre- and post-test results using the following formula exactly as pre-
sented in Chi and Menekse (2015):

posttest %-pretest %
100 % — pretest %

Here post- and pre-test results are the averages of both partners’ results as percentage
figures. For an individual learner this number relates the percentage points he or she
actually gained between pre- und post-test to the percentage points he or she could
have gained. For example, a student scoring 25 % in the pre-test and 50 % in the
post-test achieved a gain score of 0.33 (he gained 25 percentage points out of 75 per-
centage points he could have gained).

normalised gain score :=
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According to the ICAP hypothesis a higher dialogue pattern score should on average
be an advantage for dyads with respect to their learning outcome. To test this hy-
pothesis and answer our second research question, we took the average normalised
gain score of the dyads with a dialogue pattern score of at most 1.5 and of those with a
dialogue pattern score of above 1.5 respectively. We chose this threshold because at
this score dialogues in which both partners are verbally active become dominant. The
results are presented in the following figure:

average normalised gain scores with respect
o to dialogue pattern score
0,50
0,40

0,30

0,20

normalised gain score

0,10

0,00

B Dyads with dialogue patternscore at most 1.5
m Dyads with dialogue patternscorelargerthan1.5

Figure 2: average normalised gain scores with standard deviation.

The normalised gain score of those dyads with a lower dialogue pattern score is
M =0.26 (SD = 0.10). This average rises to M = 0.48 (SD = 0.11) for those dyads with
a higher dialogue pattern score. The difference in means is significant, t = -3.325, p =
0.009.

CONCLUSION AND PERSPECTIVES

The ICAP-framework has been adapted to analyse time-sampled recordings of dyads
learning with a digital instructional medium. Using this method, the predicted results
from the ICAP hypothesis — dyads communicating in a constructive manner benefit
with respect to their learning outcome — could be replicated. In our ongoing research,
we will validate our adaption of the ICAP-framework in the context of students wor-
king with different digital instructional media like video tutorials which comprise more
of the unique features of a computer-environment. If this undertaking succeeds, our
approach will be used to identify those digital instructional media that promote inter-
active constructive communication between students and that influence the learning
outcome in a positive way. Additionally, this method can be used to investigate the
benefit of collaborative learning in computer environments compared to single learners
in more detail.

Acknowledgements: The project xxx is funded by the German Federal Ministry of
Education and Research BMBF (grant 01PB14011).
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STRIVING FOR EQUITY: HOW POLICY SHAPES OUR
UNDERSTANDING OF RACE IN MATH CLASS

Michelle Hawks
University of Alberta, Canada

The purpose of this research is to present initial findings related to how federal edu-
cation legislation in the United States frames racialized students in mathematics. By
relying on Critical Race Theory and governmentality, | am able to highlight how race
Is considered in both extant mathematics education literature and current legislation.
This allows for a discussion regarding how the use of race in policy actually impacts
the types of research completed and how teachers perceive their students in class. To
conclude, I join the calls of other mathematics educators who suggest that in order to
attain equity, teachers and researchers must first actively work to counteract deficit
narratives about racialized students.

STATEMENT OF PURPOSE

K-12 mathematics classes exist amongst a myriad of policy documents that influence
the focus on particular topics within our classrooms. Many of these policy documents,
including the Principles and Standards for School Mathematics (NCTM, 2000), the
Common Core State Standards for Mathematics (The Common Core State Standards
Initiative [CCSSI], 2015), and current federal education legislation in the United States
(U.S.), all purport to be working towards equitable educational goals. In particular,
there is a focus on the existence of achievement gaps in mathematics education be-
tween racialized students and their white peers. However, while these policies aim for
equity, ideals of racial justice are often missing from the implementation of policies.
To that end, this paper explores my initial findings from U.S. federal education legis-
lation to show how racialized students are framed within the legislation. I conclude
with a look at how this framing currently impacts our mathematics teaching, education,
and research while also looking beyond current policy to call for changes in how we
address race as a way to encourage a positive and lasting impression on racialized
students in our mathematics classes.

This research stems from a desire to ensure that all students have equitable access to
mathematics by articulating how the U.S. accountability system shapes a societal un-
derstanding of achievement in mathematics. Through knowing and understanding how
federal legislation limits the practice of mathematics education, there is an increased
ability for mathematics educators, researchers, and teachers to create space for
meaningful and creative mathematics in classrooms. More specifically, my research
aims to explore how achievement and accountability narratives prompt particular
deficit narratives around the mathematical ability of racialized students, which adds to
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the master-narrative that racialized students cannot succeed in mathematics (Nasir,
Atukpawu, O’Conner, Davis, Wischnia, & Tsang, 2009). The importance of focusing
on racialized students and mathematics is derived from the mandatory requirements for
mathematics, the prominence of mathematics within the curriculum, as well as the
Impact of gate-keeping that mathematics can have on students’ future life choices. My
pointed focus on African American students in particular is based on the fact that in the
most recent NAEP data available (U.S. Department of Education, 2015), Black stu-
dents once again had the lowest percentage of students able to gain a proficient status
on the assessment which is meant to gauge the overall national competency of twelfth
grade students in mathematics.

THEORETICAL FRAMEWORK

To provide my research with a rationale as well as a focus for my literature review, the
types of questions | have asked, the choice of methods, and analysis, | rely on Critical
Race Theory (CRT) and governmentality. The goal of CRT is to eliminate racial op-
pression as part of the larger project of eradicating all subordination in society (Berry,
2008; Gutiérrez, 2013; Taylor, Gillborn, & Ladson-Billings, 2016). CRT is used in
education research to recognize and illustrate how race, racism, and the process of
racialization have played a substantial role in education research, teaching, policy, and
legislation (Taylor, Gillborn, & Ladson-Billings, 2016). The application of CRT in
mathematics education, more specifically, involves acknowledging “how tracking
practices, teacher expectations, intelligence testing, and other curricular practices have
subordinated people of color” (Berry, 2008). The second part of my theoretical
framework is governmentality, which according to Foucault (1991) relies on history to
show how the governmentalization of the state occurred. In particular, this requires the
use of a selective or partial history chosen specifically to follow a path of ideas and
how they are defined over time in particular ways (Foucault, 1991). Taken together
CRT and governmentality allow for a way to look at how government structures have
been able to define how race is related to the goal of equity in mathematics education.
Together these two frameworks establish a way to center race as a main element
shaping the experiences of students and teachers within the K-12 school system, while
also providing the conditions to look beyond current policies to encourage an increased
potential to achieve equity in mathematics education.

REVIEW OF THE LITERATURE

Currently, there is limited research in mathematics education that deals explicitly with
how racialized students and their experiences are conceptualized in mathematics
classes. More often, the reference to race in many studies is directly related to the re-
porting of data, which includes observations addressing disaggregated data (Carroll,
1997; Dorn, 2007; Wei, 2012), or determining if policy mandates can be feasibly met
(Koyama, 2012; Stiefel, Schwartz, & Chellman, 2007). However, this process of
centering the disaggregating of data in research limits the ways in which race and ra-
cialization can be considered in the analysis of data. The disaggregation process is
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limiting because it ignores structural impediments and sociopolitical context. These
barriers and the sociopolitical environment are disregarded when the experiences of all
Black students are summed into a single number, i.e. the average score.

Some notable exceptions to the trend of relying solely on disaggregated data to explain
racialized experiences in mathematics are Gutstein (2007), Gutiérrez (2000, 2008),
Berry (2004), and Martin (2009a). These authors often work within equity or social
justice as a way of framing their research with an explicit focus on race in mathematics
education. One way that researchers use this lens to center race is to highlight a par-
ticular teacher or mathematics department that is successfully working to help racial-
ized students achieve in mathematics (Gutiérrez, 2000; Martin, 2009a). Additionally,
there are researchers who look at how racialized students interact with mathematics
(Davis et al., 2007; Gutstein, 2007; Moses & Cobb, 2001). A second way that re-
searchers look at how students interact with mathematics is to look at the larger
structure of schooling and how racialized students are placed within that structure. This
research involves highlighting historical and cultural mechanisms that continue to
impact the perception of racialized students within the school system. The goal of this
research is to alter historical patterns of disenfranchisement and create spaces for ra-
cialized students to succeed in mathematics education, work that is exemplified by the
Algebra Project (Davis, et al., 2007; Moses & Cobb, 2001; Solérzano & Ornelas,
2002).

Another area of mathematics education research that deals explicitly with race, works
in relation to teacher bias. This research deals with the structure of schooling by
highlighting elements of the hierarchy that exists in mathematics education and is
established through the teacher nomination process. Researchers observing this phe-
nomenon want to determine how teachers are directly or indirectly influencing student
promotion and achievement through the mathematical hierarchy (Berry, 2004, 2008;
Faulkner, Stiff, Marshall, Nietfield, & Crossland, 2014; Riegle-Crumb, 2006;
Riegle-Crumb & Humphries, 2012). One of the ways that researchers have looked at
the indirect contribution to racialized students placement in mathematics is through
teacher perceptions of which students belong at a particular level of the mathematical
hierarchy (Berry, 2004, 2008; Riegle-Crumb & Humphries, 2012). This indirect in-
fluence of teachers is important to acknowledge because if teachers work within the
master-narrative that racialized students cannot achieve in mathematics the teachers
will bring that implicit bias to student recommendations, further influencing the life
choices of racialized students.

The importance of this research cannot be overstated, however, when taking CRT and
governmentality into consideration, there is a missing discussion of how structural
elements outside of K-12 also play a role in delineating how racialized students are
seen in mathematics education. In particular, I believe that a closer look at how ra-
cialized students are framed within U.S. federal education legislation can provide in-
sight into how equity is conceived of in mathematics education research, and how it
can be altered going forward. To that end, this research explores data that | have col-
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lected while completing my PhD research to answer the questions: How are racialized
students positioned in accountability policies? And what does this mean for mathe-
matics educators and researchers?

METHOD AND DATA SOURCES

The method used is Critical Discourse Analysis (CDA) which allows for a way to
search for and analyze the underlying ideology inherent in education discourse (Fair-
clough, 2010). More specifically for this research, CDA works within CRT and gov-
ernmentality to recognize and elaborate on the existence of race and racial terminology
used in governing documents which then influence action that occurs in K-12 class-
rooms. As a way to explore how racialized students are framed within federal educa-
tion legislation in the U.S. | chose to look at the Elementary and Secondary Education
Act of 1965 (ESEA) and its subsequent reauthorizations through to the present version,
the Every Student Succeeds Act of 2015 (ESSA). My choice of federal legislation is
based on the fact that it exists at the same policy level as both the NCTM (2000)
Standards and the Common Core Standards (CCSSI, 2010) which both function at a
national level to outline potential standards for teaching and learning in mathematics.
Additionally, since its original inception, ESEA through reauthorizations such as the
No Child Left Behind Act of 2002 has had an increasingly direct impact on mathe-
matics classrooms and the potential perceptions of students therein. Using these
documents allowed me to search through publicly available policy for words that were
both explicit in their reference to race, such as race, racial, color, Negro, black, and
African American, and those words that might be considered implicit or coded refer-
ences to race, such as minority, diversity, segregation, desegregation, and integration.
The engagement with both past and present federal education legislation allows me to
extract an overall understanding of how racial references have shifted over time, while
also elaborating on how current framing allows for mathematics educators to engage
with race more explicitly.

OBSERVATIONS

After gathering the information from all of the reauthorizations of ESEA, there
emerged four temporal shifts based in the amount of both explicit and inferred racial
language used within the legislation, presented in Table 1 below.

1965-1970 1972-1978 1981-1988  1994-present
Pieces of legislation 4 4 3 3

Average use of ra-

: : 0.75 70.5 14 62.3
cial terminology

Table 1: Breakdown of racial terminology within U.S. federal education legislation

The shifts in time and vocabulary also outline the fluctuating importance of race and
racial terminology since ESEA was initially passed in 1965. The next few paragraphs

3-38 PME 42 — 2018



Hawks

outline important events which have occurred in the political landscape that help to
explain why particular language changed, ending with a short outline of the themes
present within the current reauthorization of ESEA.

During the first time period, from 1965-1970, federal education legislation mentioned
race exactly three times. The number of occurrences is so small largely because the
legislation and the Johnson administration relied on the Civil Rights Act of 1964 to
prevent federal funding from going to racially segregated schools. This tactic of using
the Civil Rights Act was meant to counteract Jim Crow Laws in the South and allow
for more funding to go to economically deprived school districts all while keeping
explicit references to race out of the legislation (Jennings, 2015). The drastic increase
in racial terminology that presented itself in the 1972-1978 time period was a direct
result of introducing the Emergency School Aid Act of 1972 to the legislation. This
money was meant as a way to eliminate minority group isolation through the funding
of magnet school initiatives and was meant as the main way for the federal government
to encourage desegregated schools. Relatedly, racial terminology was almost exclu-
sively kept to sections that dealt with desegregation. And while there were initiatives
mentioned to increase access to mathematics at this time, none of these sections ref-
erenced race in either explicit or inferred terminology.

The 1980s saw President Reagan change tactics and attempt to completely eliminate
federal responsibility for education generally and desegregation more specifically
(Jennings, 2015). Thus there is a drastic decrease in the use of racial terminology, as
well as the elimination of the Emergency School Aid Act from the reauthorizations of
ESEA during the Reagan years. Finally, the time period from 1994 to the present saw
the reestablishment of the Emergency School Aid Act maintaining connections to
magnet schools and desegregation, but also saw an increase in racial terminology
beyond those sections that was not present in earlier reauthorizations. For example,
with increased language around accountability and achievement there came specific
requirements for districts and states to outline how programs would have an impact on
racialized students in particular.

When looking at ESSA on its own, there are four themes that emerge from the use of
racial terminology which are mentions related to mathematics, reporting and data,
teachers, and desegregation language. The theme of mathematics is associated with the
use of explicit racial terminology twice, where both sections acknowledge that ra-
cialized students are underrepresented in mathematics classes. Reporting and data on
the other hand, which had seven occurrences of racial language over three and a half
sections, specify reporting requirements and categories for data disaggregation that
mention race as one of the categories needed to receive funding. The two sections that
deal with teachers indicate that money is to be used to increase and address who is
teaching racialized students. Finally, the 37 mentions in eight sections that relate to
desegregation, outline the importance of magnet schools to desegregation efforts, as
well as priority guidelines to give more money to schools that increase racial diversity.
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DISCUSSION

The ways in which racial terminology is used throughout the reauthorizations of
ESEA, but especially in present legislation, outlines some of the ways in which mathe-
matics education research and teaching can begin to reconceptualize the relationship
between racialized students and mathematics. First, is the importance of being able to
meaningfully link mathematics teaching and learning with race, especially within
policy. Both of the sections that mention mathematics, do so to outline ways that states
and local educational agencies can apply for money to help underrepresented groups
receive a well-rounded education, which specifically links racialized students and
mathematics. For K-12 mathematics teachers this is particularly important since the
stated purpose of ESSA is “to close educational achievement gaps” (2015, p. 8), and
one of the largest achievement gaps exists between black and white students in
mathematics (NAEP, 2015). That being said, in order to move beyond perpetuating
deficit narratives around the achievement gap, and instead taking the sociopolitical
turn that Gutiérrez (2013) suggests, research associated with linking racialized stu-
dents and mathematics should take into consideration larger societal discussions of
race. For mathematics this would include looking beyond test scores to links between
housing, income or wealth patterns, teacher turnover, and implicit bias as ways of
acknowledging how systemic and structural issues related to race play out in test
scores.

Second, while maintaining statistical information about who is teaching racialized
students and how racialized students are performing on assessments, these reporting
mechanisms need to go farther. By only collecting particular types of data, this process
limits the ways in which mathematics education teachers and researchers can then
engage with their students, because they are hyper focused on test scores. This is not to
say that all teachers do this, but that research and policy give this impression when it is
so often repeated.

Finally, given that an overwhelming majority of racial terminology continues to target
desegregation suggests that despite almost 50 years of explicit attempts to integrate
educational facilities in the U.S. segregation is still a problem. Therefore, while a bit
beyond what can be achieved in the realm of this study, this finding highlights the need
for future research in educational policy around desegregation and its impact on
mathematics education.

CONCLUSION

It is easy to call for the end of achievement gaps and to work towards equitable edu-
cational goals, however as Rochelle Gutiérrez (2013) suggests, when research and
policy becomes detached from issues around power, it becomes much more difficult to
actually make the changes being sought after. Therefore, as mathematics educators,
practitioners, researchers, and policymakers striving for equity there needs to be more
acknowledgement of how students are framed in legislation as a way to alter our pre-
conceptions of racialized students in mathematics classrooms. This research joins the
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calls for a continued explicit discussion of race and its varied, but very real, impact on
racialized students in our mathematics classrooms emphasized by some researchers
(Gutierrez, 2008, 2013; Martin, 2009b). Furthermore, the discussion highlights the
need to discover alternative ways to discuss students’ mathematical knowledge so that
the master-narrative that racialized students, and black students in particular, are in-
capable of doing mathematics is not continually reinforced.
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The purpose of this study is to identify and empirically corroborate a fundamental
situation (Brousseau, 1997) for constructing “proof by contradiction> \We identified
the four elements of a fundamental situation: i) obtaining strong conviction; ii) ne-
gating the given proposition naturally without being aware of the assumption; iii)
finding a contradiction easily; and iv) noticing the origin of the contradiction. Based
on this study, a new research question arises: How can students construct “proof by
contradiction” using teacher support?

INTRODUCTION

“Proof by contradiction” (PbC) is one of the most valuable types of reasoning in
mathematics and mathematics education. However, students have specific cognitive
and didactic difficulties in negating propositions and using laws such as the excluded
middle (Antonini & Mariotti, 2008). Thus, although some authors have proposed di-
dactic suggestions to help students overcome PbC difficulties (e.g., Wu Yu Lin & Lee,
2003; Antonini & Mariotti, 2008), in our opinion, many students are still unable to
resolve these difficulties. One possible reason for this may be an overlooked compo-
nent in the studies of students. In other words, almost all students who are analyzed in
studies of PbC are either supplied PbC by their teachers before they engage in con-
structing PbC for the first time, or they have already been taught PbC before they
engage in research.

In contrast, we believe that in order to understand a concept, students must construct
knowledge by themselves (with their teacher’s support). We assume that students
cannot fully understand a concept if teachers or others tell them about it beforehand.
Therefore, suggestions provided by the previous studies are inadequate as they are
derived from observations of students whose understanding of PbC is not sufficient. In
clarifying the conditions that enable students to construct PbC by themselves with their
teacher’s support, findings of previous studies become more meaningful, paving the
way for elaboration and further research. Thus, our study aims to do the following:

P1: To identify a fundamental situation (Brousseau, 1997) for constructing PbC
P2: To corroborate the identified fundamental situation empirically
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THEORETICAL BACKGROUND AND METHODOLOGY

The theoretical background for this study is based on the Theory of Didactical Situa-
tions (TDS; Brousseau, 1997), and the methodology adopted is didactical engineering,
particularly a priori and a posteriori analysis (Artigue, 1992) within the framework of
TDS. We used TDS because it is one of the most scientific theories in the discipline.
Learning is defined in TDS as follows: “The student learns by adapting herself to a
milieu which generates contradictions, difficulties and disequilibria, rather as human
society does. This knowledge, the result of the student’s adaptation, manifests itself by
new responses which provide evidence of learning” (Brousseau, 1997, p. 30, italics in
the original). This definition aligns with our assumption that students must construct
knowledge by themselves.

TDS assumes that students construct mathematical knowledge in didactical or adidac-
tical situations. Since any mathematical knowledge has been historically incubated in
some situation, there always exist situations wherein it can be constructed. Because not
all situations are replicable in educational settings, TDS assumes that all mathematical
knowledge has at least one fundamental situation (FS) that can become a didactical
situation (Brousseau, 1997, p. 30). However, FSs are not always easily identified by
mathematics educators, and PbC does not typically employ constructive reasoning (in
the sense of intuitionism). Thus, an FS for constructing PbC has not yet been identified.
In TDS, on identifying an FS based on theory, we corroborate it through a priori and a
posteriori analyses: first, by designing a didactical situation based on the FS (a priori
analysis); second, by trying to realize this situation in an actual mathematics class-
room; and third, by corroborating our hypothesis about the FS underlying the design.

FUNDAMENTAL SITUATION OF PROOF BY CONTRADICTION

Indirect argumentation seems to be a natural way of thinking (Freudenthal, 1973, p.
629). Thus, an FS for constructing PbC should enable students to employ indirect argu-
mentation and develop this into a PbC. However, previous research suggests that rup-
tures between indirect argumentation and PbC may occur. Mathematicians and ma-
thematics educators have pointed out the specific difficulties of PbC (e.g., Wu Yu Lin
& Lee, 2003; Antonini & Mariotti, 2008); we distinguish between three types here in
order to identify our FS.

D-I: Difficulties in considering PbC as an option and in carrying out the method
of PbC

When students try to prove a proposition, they usually do not consider using indirect
proof, including PbC, as an option. Although they may consider PbC suitable for pro-
ving a given proposition, they often give up constructing PbC mid-way. Several diffi-
culties in the process have been reported: negating the proposition, formalizing and
interpreting the negation (Wu Yu, Lin & Lee, 2003), finding a contradiction, and so on.
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D-11: Difficulties in accepting the result of a PbC

Even if one is able to prove a proposition using PbC, the result may not seem ac-
ceptable: “I think this is one source of frustration, of the feeling that we have been
cheated, that nothing has been really proved, that it is merely some sort of a trick—a
sorcery—that has been played on us” (Leron 1985, p. 323).

D-I111: Difficulties in grasping the very structure of PbC

PbC has a specific structure, that is, when one assumes the negation of a true proposi-
tion P, a contradiction comes into being implying that the negation is false and P is
true. Thus, one needs to know the theory and the meta-theory (Antonini & Mariotti,
2008) of PbC.

In Japan, students engage in PbC in mathematics when they are in the 9" grade and
learn that the square root of 2 is irrational. However, since they have not been intro-
duced to PbC until then, they face D-I, D-11, and D-I1I all at once. This confuses them.
Additionally, knowing the structure of PbC is necessary for overcoming D-1 and D-II,
that is, students must have already overcome D-I11 to resolve D-I and D-II. Therefore,
before students engage in PbC, they should engage in PbC in FSs in which they are
required to face and overcome only D-I1I.

In this study, we focus on an insight from Dawkins & Karunakaran (2016), according
to which, research on student learning of mathematical proofs should pay greater at-
tention to the role of mathematical content. Thus, in order to avoid D-II, FSs for PbC
should enable students to surmise that the proposition to be proved is true. For exam-
ple, students who have already accepted that the square root of 2 is irrational have less
trouble accepting the PbC in order to prove it (Antonini & Mariotti, 2008, p.407). In
addition, in order to avoid the emergence of D-I, an FS should enable students to ne-
gate the sentence naturally and formalize the proposition to be proved. Such situations
enable students to find a contradiction easily because they autonomously begin to
enguire into what statements can hold in the false world. Items (i) — (iii) (Figure 1) are
a summary of the above consideration.

A fundamental situation (FS) for constructing proof by contradiction is one in which
students must do the following four things:

(i) Be strongly convinced that the proposition to be proved is true

(i) In investigating the milieu, they must construct a false world by naturally assuming
the negation of the proposition (without being aware of the assumption).

(iii) Easily find a contradiction in the false world

(iv) Notice that they make the assumption themselves and that this is the origin of the
contradiction

Figure 1. A fundamental situation for constructing proof by contradiction.
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However, even if a student is able to find the contradiction and conclude that a prop-
osition is true, s/he may still reason this using indirect argumentation rather than in-
direct proof. Because the core of PbC lies explicitly in assuming the negation of a true
proposition, students must make such assumptions after they negate and formalize
propositions. In order to do this, students must identify the origins of a contradiction.
Thus, we have added (iv) to Figure 1.

Figure 1 is our proposal for a possible fundamental situation for constructing PbC. In
the next section, we corroborate this by a priori and a posteriori analysis.

DESIGN AND A PRIORI ANALYSIS

The subjects of our analysis are 9" grade students who come across PbC for the first
time (as mentioned earlier). These students have already learned basic direct proofs in
geometry and algebra, algebraic skills and concepts, and the notion of irrational num-
bers. They have also learned—Dbut not proven—that the square root of 2 cannot be
represented as p/q (where p and g are disjointed integers and g is not equal to 0). In
their textbook, PbC is introduced in order to prove this. We thus designed a mathe-
matics lesson as shown in Figure 3. The teaching protocol employed in this lesson
followed the “problem-solving lesson” model presented in Figure 2.

Our experimental lesson was conducted in June 2016 in a junior high school attached
to a national university. This experiment was conducted during one lesson (50 minu-
tes) on 40 students (20 males/20 females). The teacher was the students’ regular ma-
thematics teacher, and is one of the authors of this study as well. We did not investigate
students’ pre-conceptions, because such an investigation may affect students’ perfor-
mance in the study. However, our reflection on the experiment revealed that none of
the students seemed to know PbC well before the experiment; even after students
found a contradiction, they did not to try to construct PbC by themselves. Instead, they
all needed the teacher’s support to shift from indirect argumentation to indirect proof.

e N

PROBLEM POSING /COMPREHENSION

\. vy

(INDIVISUAL SOLVING PROCESS)[’ REFINING & ELABORATING SOLUTIONS )
[sic]

¢

Task a |[<—»| Mathematical Activity B

Mathematical Activity A

<—»| Mathematical Activity C

Mathematical Activity B

Generalization/Extension /Formalization

Tasky J«—>{ Mathematical Activity N |
Mathematical Activity C | | )
- ~

"

REFLECTION /EVALUATION /MORE ADVANCED

\. VAN J

1

Figure 2: Lesson model (Mizoguchi, 2015, p. 627; reprinted with permission).
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TS: Teacher’s support

Problem

Let a,b be rational numbers. Do there exist a,b such that a+bv2=07? If these do

exist, show all a,b and explain why there are no other. If these do not exist,

explain the reason. (It is known that+2 is irrational number.)

Mathematical Activity C
Students infer the answer is only e=b=0 by inserting any value into a,b.

TS1: Is it just that you cannot find it?
TSZ: Can you explain the reason ?

Mathematical Activity B—1 Mathematical Activity B-2
Students observe a=-bv2, and Students observe 7%: 2, and they

they become aware of the fact that
the right side is a rational number,

become curious about the fact that

and the left side is an irrational the right side is a rational number,

number l and the left side is an irrational

number.

TS1: Can you explain your
curiousness around the inference?
TS2: Can you find the root of the
curiousness?

TS1: Can you show that —»/2 is
irrational number ?

TS2: If =0, so? Can you use
known knowledge by using

TS3: If a=b=0, ci btai
deformation of the formula? “ 0, can you obtam

_a_a?
b

Mathematical Activity A
Students become aware that, if one assumes » # 0, there appears the

curiousness. For this reason, they conclude that the assumption is not
correct thus the answer is only a=5=0.
TS1: Can you explain why the answer is only a=p=07

TSZ: What is the structure of your explanation?

Figure 3: Lesson designed to corroborate the FS identified in this study?.

RESULTS AND A POSTERIORI ANALYSIS

In the lesson, the teacher posed the problem to the students and shared with them the
property that the square root of 2 cannot be represented as a common fraction. We
obtained data from video recordings and the students’ worksheets. Only the problem
and name fields are written in their worksheets. We banned eraser use so that we could
examine all the ideas that students produced. During the “individual solving process”
phase (Figure 2), students tried to solve the problem on their worksheets, and the
teacher supported them verbally and individually, following the plan in Figure 3. The
teacher was careful to align his support appropriately in keeping with the students’
levels of progress. In the “refining and elaborating solutions” phase, the teacher picked
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students to present their own solutions (in the order of the mathematical activities C,
B-1, B-2, and A) and all the students refined and elaborated their own solutions
through discussion involving the entire class.

(a) When we solve a +5+/2,
bV2=-a, then v2=-=

Both « and » are rational numbers...

(b) If there are any « and b that satisfy
a+by/2

When we solve a +»+/2,
b\/_:—a
Vi=-2

b

(c) If there are any « and b that satisfy
a+by2 (a #0b #0)

When we solve a +5+/2,
by2=-a

st

Both « and » are rational numbers.
So —% is a rational number too. Thus, /2

is a rational number too; however this
contradicts the fact that v/2 is an irrational

If b = 0, I can not divide both sides,
then \/_ =— % by b, so I assume b _# 0.

Both a and » are rational numbers. So
—% is a rational number too. Thus, /2

Is a rational number too; however this
contradicts the fact that v/2 is an irra-
tional number, so there are no a and »
that satisfy « +b+/2

(a,b) = (0,0)

number, so there are no « and » that sat-
isfy a +bv2 when a #0.b #0.

Next, | insert a = 0 intoa +b+/2, SO0 +b+/2.
Thus, »v/2 =0, S0_b =0.

From this result, if we insert » =0 into
a +b+/2, it becomes (a, b) = (0,0) t0O.

For above reasons, the answer is only
(a,b)=(0,0),

Figure 4: Male student Y’s worksheet (translated into English by the authors, under-
lined by the student; (a), (b), and (c) added by the authors for convenience).

In the experimental lesson, all the students completed mathematical activity C success-
fully, and almost all the students completed B-1 or B-2 successfully in the first phase,
that is, they found a contradiction (although some students described it as “strange”).
Student Y (male) is one of the students who successfully constructed PbC. Figures 4 is
an example of students’ answers (translated here from their native language). In this
example, the teacher supported him in constructing PbC (activity A), but PbC seemed
difficult for him. In the “refining and elaborating solutions” phase, Student Y’s
presentation was mathematically sound and hence was accepted by the other students
(See Figure 4 (c)). Next, the teacher presented: “When we need to prove a supposition,
If we assume the opposite to be true and derive a contradiction, then, the initial sup-
position to be proved is considered true. We call this method ‘proof by contradiction.””

Here, let us focus on Student Y’s problem-solving process. As soon as the “individual
problem-solving process” phase began, Student Y thought the answer was only (a, b) =
(0,0) and that 2 = —%Was contradictive. To indicate this, he wrote (a), as shown in

Figure 4. However, he was puzzled by the contradiction and wrote, “Both a and b are
rational numbers...” Thus, the teacher supported him by following TS-1 for B-2 in
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Figure 3. Five minutes later, he finished writing indirect argumentation (b). Although it
was a persuasive argument, he did not pay attention to his implicit assumption that
(a # 0,6 #0). Hence, the teacher supported him by following TS-2 for B-2 in Figure 3.
Ten minutes later, he finished writing a mathematically acceptable PbC (c). While in
the “refining and elaborating solutions” phase, Student Y explained (c) to the other
students after another student had explained B-2. However, some students could not
find the essential difference between these two explanations. Thus, the teacher asked
all the students, “The explanation by Y is very similar to another explanation (B-2).
What is the important difference between them?”” and asked Student Y to explain it.
Student Y said, “Umm... —% , oh, sorry. Well... there is /2 = —a in my explanation,

well... we cannot divide »+/2 by b” (the original was spoken in his native language),

and Student Y pointed out that the assumption » # 0 is important. This showed that he
noticed the importance of assuming negation of the proposition to be proved.

Student Y’s problem-solving process (shown by (a), (b) and (c)) was in accordance
with our design. Three observations support this claim: first, in (a), he surmised that the
solution was only (a, b) = (0,0) and found a contradiction in a false world, where the
negation of the proposition to be proved was assumed; second, he made an indirect
argument (b); and finally, he developed (b) into (c), that is, PbC, by detecting the origin
of the contradiction and noticing that the negation of the true proposition was implic-
itly assumed. Thus, these empirical observations corroborate the fact that our designed
lesson can produce a didactical situation and that our proposed situation in Figure 1 is
an FS for constructing PbC.

IMPLICATION

The purpose of this study was not to design a “good” lesson, but to identify an FS for
constructing PbC, and to corroborate it. Therefore, although not all the students were
able to construct PbC by themselves in this lesson, the value of our findings cannot be
undermined. Given the fact that Student Y (and some other students) constructed PbC
by themselves (with the teacher’s support), we may conclude that Figure 1 is valid as
an FS. Designing a “good” lesson according to Figure 1 is thus a future task for
mathematics teachers rather than for researchers. Our findings also imply a new re-
search question: How can students construct PbC by themselves with their teacher’s
support? Future researchers investigating students’ cognitive and didactical difficulties
with PbC should expand their foci to the processes of construction of PbC by learners.
Researchers should also investigate the differences between the processes underlying
success and failure in constructing PbC.

We have three future tasks. First, we must investigate the processes of students who
construct PbC by themselves, especially to examine whether or not they are able to use
PbC by themselves, with their teacher’s support (D-1), and whether or not they accept
the results of PbC (D-I1). Second, we must identify fundamental situations for over-
coming D-I and D-II. In other words, we must design curriculum for understanding
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PbC. Third, we must investigate the effects of applying previous studies’ didactical
suggestions to our teaching practices.

Notes

! They do not know that —5+/2 is irrational. Thus, when students solved it in accord-
ance with B-1, we supported their shift to B-2.
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MATHEMATICS DISCOURSE IN SMALL GROUPS
Daniel J. Heck?, Pippa Hoover?, Jessica Porter!, and Jill V. Hamm?
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This study of secondary classrooms examined students’ mathematics discourse in
small group learning environments. Audio-recorded conversations from naturalistic
observations of classrooms provided data for investigating the learning environments
students created and experienced in their small groups. The discourse framework and
related coding scheme we utilized revealed key differences in the frequency and quality
of students’ explaining and questioning.

FOCUS OF THE STUDY

Small group learning environments promote opportunities for conceptual learning and
powerful mathematical work (e.g., Mercer, 2005; Veenman, Denessen, vanden Akker,
& van der Rijt, 2005). Facilitating students’ group work presents challenges for
teachers because their influence on what transpires is indirect. In this paper we report
on foundational work of the Peers Engaged as Resources for Learning study of small
group learning environments in secondary mathematics classrooms, addressing the
research question: How can mathematics discourse among students working in small
groups be characterized to reveal differences in the frequency and quality of their ex-
plaining and questioning about the mathematical work?

CONCEPTUAL FRAMING AND RELATED LITERATURE

We conceptualize the small group learning environment to comprise three major el-
ements: the mathematics task (Stein, Grover, & Henningsen, 1996), the discourse re-
lated to the mathematics content (Sztajn, Heck, & Malzahn, 2013), and the social peer
dynamics among the group members (Hamm & Hoffman, 2016). In this sense, we are
broadly interested in what Ryve (2011) distinguishes as Discourse (the culture), in that
the small group learning environment is a micro-culture in the classroom. It is shaped
by and, in turn, shapes these three elements to constitute the opportunities students
have to learn mathematics by engaging with content and with one another. The focus in
this investigation, though, is the mathematics discourse (the conversation), so that our
attention here, using Ryve’s descriptors, is first on discourse as Such, because we seek
to describe the frequency and quality of explanations and questions that occur in
conversations among students working in small groups. We reiterate, however, that our
attention to mathematics discourse always pertains its role in shaping students’ en-
gagement and opportunities; that is, we investigate discourse because it is one of the
vital factors that forms the learning environment in each small group. In this sense, our
study also examines discourse as Constitutive of small group learning environments.

3-51
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Our operational definition of discourse includes four dimensions: explaining, ques-
tioning, listening, and using multiple modes of communication (Sztajn, Heck, & Mal-
zahn, 2013). We are interested in how working in small groups promotes, hinders, or
otherwise influences the expression, exploration, interrogation, and representation of
mathematics ideas among students through their communication. Here we focus on
communication in speech, so we limit our attention to explaining and questioning.

Explaining is declarative speech, which may be tentative or definitive, through which
students state an idea. We accept speech that is specifically intended to share the idea
with other students or speech that may essentially be a student talking to her/himself,
because in either case the act of speech allows other students access to the idea. Ex-
plaining can take many forms in terms of its mathematical content. Students may
simply state a mathematical result or answer (e.g., The area is 10.). With or without
providing a specific result, a student may name or describe a mathematical procedure
or may voice the procedure as it is being applied in the course of working on the task
(e.g., | found the average.). In explaining, a student may share a mathematical justify-
cation for an answer or a procedure (e.g., The range will increase because we added an
outlier.). Noting or describing mathematical comparisons or connections, among dif-
ferent answers/procedures or between an answer/procedure and the context of the task,
or a context used as an analogy or example, (e.g., My multiplication and your addition
account for the same parts.) are also forms of explaining.

Questioning is interrogative speech, which may be asked of another group member, or
oneself, or may essentially be undirected. Questioning can represent uncertainty or
doubt on the part of the speaker, who may be expressing uncertainty about her/his own
thinking or about another student’s idea. It may also represent a general or specific
invitation for another student to respond. Questioning takes various forms, parallel to
explaining, in terms of mathematical content. That is, a question may ask for an answer
or procedure, which can be in closed form (e.g., What does x equal? Should we mul-
tiply?) or open form (e.g., How did you find x?). Questioning may also seek justifica-
tion for an answer or procedure (e.g., Why did you multiply?), or may ask for a con-
nection (e.g., How does dividing relate to the problem?).

Working on mathematics in small groups creates a unique learning environment for
students. In it, they are able to share their own thinking and have access to the thinking
of peers. By sharing their ideas, students can refine their thinking in terms of precision,
justification, and meaning making (Barron, 2003; O’Donnell, 2006; Webb & Palin-
scar, 1996). The small group learning environment also shapes the experience of
mathematics itself. In this environment, communication becomes an essential part of
knowing and doing mathematics (Sfard & McClain, 2002). Attending to explaining
and questioning in students’ conversations provides a window on their engagement
with the mathematics content and with mathematics communication among peers
(Moschkovich, 2007), offering insights into the learning opportunities the small group
learning environment affords (Zahner and Moschovich, 2010).
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METHODS

Data for the study were taken from the naturalistic phase of a multi-year study, when
6th, 7th, 8th, and 9th grade mathematics teachers and their students were observed and
audiorecorded as they engaged in small group work as part of each teacher’s own
lesson plans. Qualitative analysis of audiorecords utilized a codebook for capturing the
presence and prevalence of various kinds of student talk, but 1-minute intervals, that
occurred in the small group setting. Quantitative results consider the frequency and
patterns of talk for various student groups.

Sample and context.

Study participants included eleven volunteer middle and high school teachers from one
rural and low-resourced, and one municipal and well-resourced school district in the
Southeastern US. Each teacher identified one to three classrooms in which they used
small group work, resulting in three 6™, six 7", twelve 8", and six 9" grade classrooms
engaged in the study. These classrooms served a mixture of African-, Asian-, Latino-,
and White-American students, and a few students who recently immigrated to the US.

In one class period in each classroom, the entire class period was observed by two re-
searchers and audiorecorded using one recorder for each small group of students and
one recorder that the teacher wore. Across classrooms, 161 small groups were ob-
served and recorded; group size ranged from 2 - 5 students. About half of the groups
(56.5%) were mixed gender.

All observed lessons followed the teacher’s lesson plan without intervention on the
part of the research team. Accordingly, student groups worked on a variety tasks ap-
propriate to the grade level and content focus and sequence of their courses. Tasks
included, for example: (1) finding areas and perimeters of circular and rectangular
parts of a stained glass window, (2) finding the volume and surface area of a cylinder
and a tube, (3) finding missing angle measures in various kinds of triangles, (4) ana-
lyzing central tendency and spread of data distributions, (5) analyzing quantities in
two-way frequency tables and Venn diagrams, (6) modelling situations with linear
relationships, and (7) comparing different representations of linear relationships.

We assigned the 161 group recordings, stratified by classroom, to one of three coding
and analytic phases. To address the research question for this study, we analyzed 26 of
the 54 recordings assigned to the first phase (to be completed for presentation), which
is designed to establish coding definitions for a priori codes suggested by theo-
ry/research and to identify and define potential emergent codes. We used time sam-
pling (1-min intervals) to capture the frequency of occurrence of each code.

Analysis.

Analysis of small group episode recordings drew on a coding scheme adapted from the
Mathematics Discourse Matrix (Sztajn, Heck, & Malzahn, 2013), which provides in-
dicators of student talk that characterize types of explaining and questioning.
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The explaining category includes six codes for capturing ways students might share
their mathematical thinking or work in the small group context. “Explaining: Ans-
wers,” applies when students share or simply acknowledge/verify answers, correct
others’ answers Or express a value judgment about other students’ mathematical contri-
butions without elaboration. “Explaining: Procedures” indicates when students name
or describe their methods, procedures, or procedural ideas, including restating or
building upon a solution method that was already shared. “Explaining: Justifications”
Is used for statements providing a reason or rationale for an answer, procedure, or
broader idea, including restating justifications made by others. “Explaining: Connec-
tions to students’ work” applies when students make mathematical connections across
their own and/or others’ explanations, state generalizations, or compare work to iden-
tify similarities or differences, including resolving differences. “Explaining: Con-
nections to context” indicates when students make a connection between their work
and the context of the problem or use an analogy or a context, or another mathematics
idea, to make sense of a problem. When students share an explanation that is difficult
to follow or has an unclear purpose, “Explaining: Ambiguous” is used.

The questioning category similarly provides six codes for questions that could be ob-
served during small group work. “Questioning: Short-response,” describes questions
designed to establish correctness of an answer, procedure, or idea, to lead to correct an-
swers, or to verify steps in a procedure. This code also applies when students ask
questions to clarify term(s) used in a solution method or idea that another student
shared. “Questioning: Open-ended,” applies to questions that invite elaboration about
answers, procedures, or other ideas. “Questioning: For justifications,” applies to
questions designed to elicit reasons or rationale for answers, procedures, or other ideas.
“Questioning: For connections t0 students’ work,” is applied to questions related to
connecting/comparing across the group’s mathematical ideas, including identifying
similarities and resolving differences. “Questioning: For connections to context,” ap-
plies to questions intended to relate ideas to the context of the problem, seek or consi-
der an analogy, or connect to other mathematics ideas. Questions that do not have a
clear purpose, or whose meaning is not clear, are coded “Questioning: Ambiguous.”

Students’ talk in small groups often includes not only explanations and questions, but
also statements/questions relating to the requirements of the mathematical task as an
assignment. Three codes were added to identify comments students make to manage
the mathematics task in the small group: “Managing: Reading the task” (verbatim)
“Managing: Restating the task” (in own terms) and ‘“Managing: Reporting progress”
(what is complete or still to do, what is understood or not understood).

Students in small groups also engage in non-mathematical, or “off —task™, talk. The oc-
currence of such talk is very frequent; the majority of one minute intervals included an
instance of non-mathematical talk. Periods of silence or uninterpretable utterances are
also frequent. The codes “Non-mathematical talk” and “No talk” were limited to only
minutes in which no Explaining, Questioning, or Managing talk was evident.
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The resulting Small Group Discourse Codebook was developed and revised by a team
of three researchers to address the study’s research question. The researchers collecti-
vely tested the codebook with four randomly selected recordings from another part of
the study to develop common understandings of a priori codes, inform revisions and
additions, and identify illustrative examples for each code.

After establishing codes for observable talk that were consistently interpreted across
researchers, randomly selected recordings were coded by pairs of researchers. The
team met to reconcile coding and further refine the codebook to strengthen consistency
of interpretation. Average agreement was 75.3% in round 1 and 90.2% in round 3 of
the training, which completed coding for 8 recordings (4 per district). Given the high
level of agreement, further coding proceeded by randomly assigning recordings to
individual researchers, with 20% being double coded to ensure continued reliability.
Agreement on double-coded recordings ranged from 75% to 81%. The data reported
here come from coding of 26 recordings, 13 from each district, with one excluded
because the recorder had been turned off early in the class period.

RESULTS

The complete episode of small group work in each classroom was treated as the unit of
investigation, divided into single minutes for coding. The relative time devoted to
small group work varied according to teachers’ lesson plans, ranging from about a
third to nearly the entire length of the class period. Since the length of class periods
varied considerably (28 to 85 minutes, most either 47 or 85 minutes) and available time
for group work also varied (27 to 57 minutes), we present results as percentages of
available group work time in the class period that received each code of interest.

Across all recordings, students were engaged in talk about their assigned task 87% of
the available time, on average, ranging from 40% to 100%. Considering the broadest
categories, an average of 65% (ranging from 14% to 100%) of the available time in-
cluded talk coded as explaining. An average of 43% of the time included talk coded as
questioning (from 12% to 89%). An average of 30% of the time included talk coded as
managing the task (from 0% to 81%).

In terms of explaining, providing only answers (58%) or procedures (31%) were the
most frequently occurring types. Offering justifications occurred, on average, 18% of
the time, ranging from 0% to 59%. Identifying connections among students’ work oc-
curred an average of just 6% of the time, ranging from 0% to 43%; and connections to
a broader context, on average only 2% of the time, ranging from 0% to 19%.

Considering students’ questioning, the most frequently occurring types were short-ans-
wer (an average of 32% of the time, ranging from 12% to 73%) and open-ended
questions (average 9%, from 0% to 25%) that called for only answers or procedures in
response. Questions seeking justification occurred on average just 5%, with a range
from 0% to 30%, of the available time. No questions in any group called for a response
involving connections among students’ ideas or to a broader context.
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Examining the full episodes of group work to identify differences in the frequency and
nature of talk among groups, several notable patterns emerged. These patterns are
distinguished by the percent of available time in which explanations and questions in-
volved either justification or connection (among student ideas or to a broader context
of the problem), which we considered deeper instances of talk because they engage
students in thinking beyond answers and procedures. Examining these deeper in-
stances led to five patterns identified among the 25 group episodes (also see Table 1).

In 5 episodes both explaining and questioning occurred in 59% or more of the available
time; deeper instances were found at least fairly often in both explaining and questio-
ning, 12% to 59% of the available time. These episodes provided Very Frequent Op-
portunities for deeper learning through talk.

In 3 episodes both explaining and questioning occurred at least 40% of the time, and
deeper instances, almost all involving justification rather than connection, were found
fairly often, 17% to 38% of the available time, in either questioning or explaining, but
occurred on only limited occasions in the other category. These episodes provided
Frequent Opportunities for deeper learning through talk.

In 5 episodes explaining and questioning occurred at least 24% of the time, and deeper
instances were found either fairly often in one category but not at all in the other, or
were found in limited instances in both categories. These episodes provided Occasio-
nal Opportunities for deeper learning through talk.

In 7 episodes both explaining and questioning occurred at least 14% of the time; deeper
instances were identified in limited cases in one or the other category, but not in both.
These episodes provided Limited Opportunities for deeper learning through talk.

In the remaining 5 episodes both explaining and questioning occurred at least 12% of
the time, but deeper instances were almost entirely absent from both categories. These
episodes provided essentially No Opportunities for deeper learning through talk.

Opportunities N Explaining Deeper Ex-  Questioning Deeper

plaining Questioning
Very Frequent 5 82 10 100 231059 59 to 89 1210 30
Frequent 3 61to 76 14 to 38 42 t0 48 3to 17
Occasional 5 55t0 81 11to0 39 24 10 59 Oto4
Limited 7 28 t0 96 2t0 21 14 to 67 Oto7
No 5 14 to 67 3to4 13t0 46 0

Table 1: Percent of available time groups engaged in each type of talk to provide op-
portunities for deeper learning.
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CONCLUSIONS AND IMPLICATIONS

Mathematics discourse plays a central role in the learning environment that students
create and experience during small group instruction. Investigating the frequency and
nature of students’ talk for explaining and questioning about mathematics content
during episodes of group instruction revealed differences in the opportunities these
episodes offered for students to engage with the mathematics content of the tasks as-
signed for group work, and with one another’s thinking about the mathematics of the
tasks. The opportunities provided in these episodes were particularly distinguished by
the frequency with which instances of explaining or questioning involved deeper
mathematical purposes, either justification for an answer or procedure, or connection
among students’ contributions, to the context of the problem, or to other mathematical
ideas. Accordingly, the analytic approach we employed addressed our research ques-
tion, because we were able to detect important differences in mathematics discourse
among episodes of small group work. We assert that these differences distinguish
various small group learning environments in terms of the frequency of opportunities
they provide students for deeper mathematics learning.

Our conclusion is that attending to specific aspects of discourse in terms of conver-
sation, focusing on both frequency of occurrence and depth of purpose, aids in under-
standing how mathematics discourse among students constitutes a particular learning
environment (Ryve, 2011) within an episode of small group instruction. The signify-
cance of this result, in our broader work and to the field, is that this approach to ana-
lyzing small group work provides a means to quantify and categorize the frequency
and quality of mathematics discourse occurring during small group instruction. With
this approach, investigations, including large scale studies, of at least four types of
questions about small scale learning environments can be supported.

First, studies of supports for students that directly aim to improve mathematics dis-
course occurring in small group learning environments could use this approach to trace
changes in the frequency and quality of resulting discourse.

Second, research into other factors that shape the small group learning environment
can incorporate these measures of mathematics discourse. Studies of task design and
implementation, including teaching actions, as well as peer-to-peer social dynamics,
could be use this approach to examine the mathematics discourse that transpires under
different conditions.

Third, studies that consider multiple factors, such as those above, alongside discourse,
as constituting the small group learning environment, can adopt this approach to
measure mathematics discourse. Such studies, then, can relate experiences in small
group learning environments to various outcomes of interest—conceptual learning,
orientations to mathematics, and views of peers as mathematical resources.

Fourth, studies of small group discourse can use the same approach to look beyond the
frequency and depth of purpose occurring in the discourse to examine the flow of in-
stances within episodes and specific student interactions that produce variations in the
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learning environment and the opportunities for engagement and learning it provides to
each student.
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THE RELATION OF CHILDREN’S PERFORMANCES IN SPATIAL
TASKS AT TWO DIFFERENT SCALES OF SPACE

Cathleen Heil
Leuphana University Lineburg, Germany

This study investigates the relation between performances of fourth-graders in spatial
tasks with depictive material in the classroom and orientation tasks in real space. The
children completed a paper and pencil test and a map-based orientation test on cam-
pus. A correlational analysis revealed that the children’s performances in small-scale
spatial tasks are related to their performances in large-scale spatial tasks. Moreover,
classes of small-scale tasks that require mental transformations concerning the self
and concerning objects are related to large-scale tasks that involve the update of the
self-to-landmark relations in real space and the map-environment relation, respec-
tively. Both classes contributed to the prediction of performances in map-based ori-
entation tasks that require a constant update of map-self-landmark relations.

INTRODUCTION

Solving spatial tasks is recommended in geometry classes in primary school since
doing so helps children to “grasping space”, i.e. it contributes to a child’s thoughtful
interaction with the three-dimensional space in which they live, play and move
(Freudenthal, 1973). The demands on spatial tasks in geometry education are therefore
twofold: on the one hand, they should foster a child’s ability to interact successfully
with space. On the other hand, spatial tasks should allow a child to integrate and enrich
individual spatial experiences while solving them. In order to accomplish both goals,
spatial tasks should ideally be introduced into geometry classes in both ab-
stract-depictive spatial settings in the classroom and in concrete-navigational spatial
settings in real space (OECD, 2004, p.36).

Current studies in mathematics education emphasize the importance of spatial tasks in
both contexts but typically investigate those in settings that include only written or
small material (e.g. Logan et al., 2017). Researcher may do so because they assume
that the performances in spatial tasks in depictive settings equal the performances in
navigational settings in real space. However, empirical evidence on whether and to
which extent performances in both contexts are related has never been provided. This
study addresses that gap at a conceptual and empirical level.

THEORETICAL BACKGROUND

Cognitive psychologists conceptualize spatial tasks with depictive material, such as
paper and pencil tests, as small-scale spatial tasks, since they rely on a stimulus that
can be perceived from one single vantage point. They conceptually contrast them to
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large-scale spatial tasks that require the locomotion of the subject towards multiple
viewing points in order to be completed and may require the successful interpretation
of a spatial representation such as a map (Montello, 1993, Hegarty et al., 2006).

In order to comply spatial tasks at both scales of space, children typically need to un-
derstand the interplay between different spatial positions in space and the visual appea-
rance of object configurations. Hereby, the child needs to be able to encode and men-
tally manipulate three changing relations between the different objects, the self, and
the environment: object-to-environment relations, self-to-object relations and
self-to-environment relations (e.g. Hegarty et al., 2006).

Small-scale spatial tasks can be differentiated according to two classes of mental trans-
formations demands that are necessary in order to solve them: (1) tasks that require
object-based transformations, i.e. tasks that require the mental movement of a set of
objects in the environment (OB), and (2) tasks that require egocentric perspective
transformations, i.e. tasks that require the mental movement of the own point of view
in relation to a set of objects (EGO). Both classes have been found to be distinct not
only on the conceptual level, but also on an empirical level (e.g. Kozhevnikov et al.,
2006).

Large-scale spatial tasks can also be conceptualized in a differentiated way according
to different task demands. The memorizing of landmarks (important recognizable
“objects”) without providing maps has been studied under the perspective of individual
differences in the performance to keep track of changing self-to-landmark relations in
the environment that enable the formation of a cognitive map (e.g. Hegarty et al.,
2006). Static map use, that focuses on aligning a map with the environment in order to
draw directional inferences from it while not moving in space has been studied with
respect to individual differences in the performance of recognizing and correcting
misaligned relations between the map and the environment (e.g. Shepard & Hurwitz,
1984). Finally, dynamic map use, that requires the subject to keep track of the
self-location and orientation on the map while moving in space or to navigate to
landmarks, has been investigated with respect to individual differences in the perfor-
mance to update self-to-map, self-to-environment, and map-to-environment relations
(e.g. Liben et al., 2008). Although it has been highlighted that large-scale spatial tasks
need to be conceptualized in a differentiated way (e.g. Kozhevnikov et al., 2006), the
distinction of the classes outlined above is less studied from an empirical point of view.

Divergent results have been reported concerning the relation between performances of
children in small- and large-scale spatial tasks. Those have been shown to be either
totally dissociated (Quaiser-Pohl et al., 2004) or partially related (Liben et al., 2013).
The latter study as well as similar studies with adults (Liben et al., 2008, Kozhevnikov
et al., 2006) highlighted the potential role of single OB and EGO tasks as common and
unique predictors of diverse large-scale spatial tasks.
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PURPOSE OF THE STUDY

The goal of this study was to investigate the relation between the performances in
small-scale spatial tasks and the performances in large-scale spatial tasks of primary
school children. We aimed to examine whether classes of paper and pencil tasks were
reliable and unique predictors of different of map-based orientation tasks. Moreover,
we intended to assess whether patterns of unique prediction where generalizable for
classes of map-based orientation tasks.

METHOD
Participants and stimuli

240 (111 m, 129 1) fourth graders from the north of Germany participated in the study
on the campus of our university. The children were aged between 9 and 12 years
(m=10.29, SD=.48). Each child completed a paper and pencil test in a group and a
map-based orientation test in large-scale space individually at the same day with a
break of at least 20min for cognitive recover.

Paper and Pencil Test

The Paper and Pencil Test consisted of eight small-scale spatial tasks, four of them
measuring performances in tasks that require egocentric (EGO) transformations and
four of them measuring performances in tasks that require object-based (OB) trans-
formations. We developed EGO tasks mostly from the scratch and designed tasks that
require the children to relate field views of various object configurations to the cor-
responding positions in plan views. One task was an adoption of the Guilford-Zim-
mermann-Boat test for children. The OB tasks consisted of an adoption of Ekstrom’s
Card Rotation Test, an adoption of the Vandenberg Mental Rotation Test, and adoption
of the Paper Folding Test for children. We further designed a task that requires the
children to imagine going along a path on a map and decide on each crossing whether
they turned left or right.

We tested the quality of our tasks in a pilot study with N=222 children, making sure
that our self-developed test has acceptable psychometrical characteristics and is con-
struct-valid (EGO tasks are empirically separable from OB tasks).

Map-based orientation test

The map-based test consisted of eight tasks with three items each that were integrated
in a treasure hunt on the campus (Table 1). One task was performed at the starting
location in the beginning (Rot) and two at the end (MDisk, MFlag) of the treasure hunt.
For all other tasks, we subsequently led the children to three flags (Dots, Dir, HP,
Read) and finally encouraged them to place the disks on the campus (Disks). During
the whole test, the children were not allowed to turn their map.

The test consisted of tasks that operationalized cognitive mapping processes (CM), the
performance of mentally aligning a map in space in order to draw inferences from it
while being static (MapUse) and the performance of keeping the orientation on where
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they are on a map while moving in space (MapOrtn). Those tasks represented the
underlying construct in the large-scale test.

Task Description Measure
MFlags : . . . .
: Requires the child to point to the locations of  Correctness of the di-
IMDisks . : : :
the flags/disks without using a map. rections was measured
(CM) _
with the help of an ar-
R Requires the child to indicate directions of row and circle device
ot i ) .
(MapUse) Iandm_arks on the map w_hlle t_akmg different  that served as help for
canonical viewing directions in the real space. indicating directions.
Requires the child to indicate directions of
Read : :
landmarks on the map while standing next to a
(MapUse)

flag.

HP (Ma-  Requires the child to point to the starting
pUse) point.

Dir Requires the child to indicate the viewing di-
(MapOrtn) rection once arrived at a flag.

Requires the child to indicate the location of

Dots n . ith | d stick Deviations of the stick-
(MapOrtn) the current position with a coloured sticker on
the map after walking from flag to flag.
. Requires the child to put a disk in the envi-
Disks : . . . .
ronment according to the location marked in  Deviation of the disk.
(MapOrtn)
the map.
Table 1: Large-scale spatial tasks in the map-based orientation test.
Data treatment

We encoded our data and analysed patterns of missing values in the map-based orien-
tation test. We ensured that missing values are at least MAR and applied multiple
imputations before further analysis. We computed 30 multiple imputations according
to Si & Reiter’s method (2013) using the R package NPBayesImpute, computed sum
scores for all tasks and finally pooled the data sets using the R package semtools, which
allowed us to extract one single empirical correlation matrix.

RESULTS

To investigate the relation of classes of small-scale tasks with the map-based orienta-
tion tasks, we computed the factor scores for EGO and OB. Both factor scores corre-
lated with r=.64 (p<0.001). The result demonstrates that they indeed share a conside-
rable amount of variance that will be considered further in our correlation analysis.
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Relations between classes of small-scale tasks and single large-scale tasks

In a first step, we computed the pairwise correlations between the factor scores of the
two classes of small-scale tasks and the set of large-scale tasks. As shown in Table 2,
both classes correlate significantly with performances in the large-scale tasks. Only the
performances in pointing towards the memorized locations of the flags did not corre-
late with either of two classes of small-scale tasks.

MDisk MFlag Disks Dir Dots Read HP  Rot

EGO 24%*% 12 AL1** 28**  A43**  38** 20** .20**

OB A7** 10 42%*%  20*%*  AG** 40** 23** | 26**

Residual EGO-OB  .18** .07 .19** 11 .19** .16* .06 .04

Residual OB-EGO .01 02 21** 15*% 22%* 21** 14* |18**
* two-tailed p< 0.05 ** two-tailed p<0.01

Table 2: Correlations and semipartial correlations for the task wise analysis.

To examine whether performances in EGO or in OB tasks predicted unique variance in
the large-scale measures, we computed semipartial correlations (see also Table 2).
After partialling out the shared variance between performances in EGO and OB tasks,
for some large-scale tasks, only one of the two classes of small-scale task became
significant, indicating that they predicted unique variance in the respective task. For
instance, only the semipartial correlation between EGO and the performances in me-
morizing the locations of the disks became significant. Thus, cognitive resources that
are unique to EGO tasks — performing egocentric transformations — appeared to have
affected performances in the task MDisk, which requires updating of self-to-environ-
ment relations.

In two other cases, only the semipartial correlation with OB became significant. For
those tasks, cognitive resources that are unique to OB tasks — performing object-based
transformations while keeping the self-to-environment relation constant — affected the
performances. OB tasks predicted therefore unique variance in two tasks that required
the correct alignment of a map in space (HP and Rot). In the case of the task Dir, the
semipartial correlation of EGO was also almost significant (p=0.07). For this reason,
we did not interpret OB tasks to be unique sources of variance in this task. For the tasks
Disks, Dots, and perhaps Dir, for both classes of small-scale tasks the semipartial
correlations became significant. Thus, processing resources that are unique to OB tasks
and unique to EGO tasks appeared to have affected the performance in those tasks that
require keeping oriented after moving in space.

Relations between classes of small-scale tasks and classes of large-scale tasks

To further analyze the initial results at the broader level of classes of large-scale tasks,
we performed a CFA using R lavaan in order to show that our tasks loaded on the
factors that we derived from the literature. For the sake of shortness, we do not present
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the full analysis here. For each of the 30 data sets, the fit indices revealed a CFI>.99, a
TLI>.98, RMSEA<0.05, and a non-significant chi-squared test showed that the model
did not derive essentially from the data (see Hu & Bentler, 1999). We conjectured that
the tasks in our map-based orientation test are clustered in accordance with the classes
that we conceptualized from the literature. We then computed the corresponding factor
scores and calculated correlations.

Factor CM: Factor MapUse: Factor 3 MapOrtn:

Cognitive Mapping  Static Map Use  Dynamic Map Use
EGO 22%* 35** 49**
OB 15* A41** 50**
Residual EGO-OB 15* 11 21*%*
Residual OB-EGO .02 25** 25**

* two-tailed p< 0.05 ** two-tailed p<0.01

Table 4: Correlations and semipartial correlations between the performances in EGO
and OB and the three classes of map-based orientation tasks.

As we show in Table 4, the correlation between EGO and OB with the class of cogniti-
ve mapping tasks was significant (p = 0.001 and p=0.02, respectively). In order to de-
termine whether one of them predicted unique variance in tasks of cognitive mapping,
we computed semipartial correlations. Once the shared variance of OB and EGO was
partialled out, only the semipartial correlation between EGO and the first factor of
large-scale tasks was significant (p=0.01), whereas the semipartial correlation between
OB and the factor was not. Cognitive resources that are unique to EGO tasks, in par-
ticular egocentric mental transformations appear to have affected the performances in
this self-to-environment representation factor. Similarly, correlations between EGO
and OB with the class of static map use tasks, were highly significant (p<0.001). Once
the shared variance between EGO and OB was partialled out, the semipartial correla-
tion between OB and the second class was still significant (p<0.001), whereas the
semipartial correlation to EGO was not (p=0.09). Thus, cognitive resources that are
unique for object-based transformations, in particular the correct mental update of
relations between objects and the environment, appear to have affected the perfor-
mances in this map alignment factor. Finally, an analysis of the correlations between
EGO and OB with the class of dynamic map use tasks revealed highly significant
correlations (p<0.001). Even after partialling out the shared variance, both EGO and
OB were still significant predictors when it came to dynamic mapping (p=0.001 and
p<0.001, respectively). Thus, cognitive resources that are unique to EGO and to OB
tasks, egocentric and object-based transformations, appear to have both affected the
performances in this map-based orientation factor.

In summary, our empirical findings provide evidence that the children’s performances
in small-scale spatial tasks are related to the performances in large-scale spatial tasks.
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The two classes of small-scale spatial tasks, EGO and OB both predicted the per-
formance of large-scale spatial tasks at the level of single tasks and classes of them.
After partialling out shared variance between EGO and OB tasks, however, we iden-
tified EGO tasks to be the only reliable predictor of cognitive mapping tasks and OB
the only reliable predictor of static map use tasks. However, both classes are reliable
predictors of dynamic map use tasks.

DISCUSSION

The results described above support the idea that spatial tasks should be used in a diffe-
rentiated way in mathematics education. Our findings provide evidence that the per-
formances of small-scale tasks are partially, but not fully related to performances in
large-scale tasks. One possible explanation might be related to the underlying spatial
abilities that enable solving those tasks with a certain performance. They probably rely
on common cognitive processes that allow for the processing of small- and large-scale
information such as the encoding of the spatial information and the representation in
working memory (cf. Hegarty et al., 2006). Investigating these processes might be an
important next step in mathematics education research. Our findings highlight, that
large-scale tasks should be conceptualized in a differentiated way. Furthermore, the
patterns of correlation reported within this study suggest a taxonomic classification of
large-scale tasks that is analogous to one classification of small-scale spatial tasks.
Indeed, tasks that demand egocentric mental transformations in small-scale space find
their analogue on tasks that rely on a correct update of the self-to-landmark and
self-to-environment relations, which can be interpreted as egocentric transformations
in large-scale space (e.g. Kozhevnikov et al., 2006). Tasks that demand object-based
transformations in small-scale space find their analogue in tasks that rely on updating
processes between the map and the environment that can be interpreted as object-based
transformations in large-scale space (e.g. Shepard & Hurwitz, 1984). Finally, dynamic
map use tasks seem to be determined by a subsequent composition of egocentric
transformations that allow to update self-to-map and self-to-landmark relations in the
environment, and object-based transformations that allow to mentally updates the re-
lation between the map and the environment while moving. This finding is in line with
previous suggestions that dynamic map use requires two sets of mental transformations
(Aretz & Wickens, 1992).

In future research, the relation between performances in small- and large-scale spatial
tasks could be investigated not only at the level of classes of small-scale tasks, but also
at the level of single tasks. This could point towards a set of good spatial tasks for
practices in classroom and beyond. Furthermore, the relation could be studied at the
latent level of the assumed underlying spatial abilities as well. Shifting the empirical
investigations from the manifest to the latent level would result in an explicit mo-
delling of measurement errors that probably allows for computing measurement er-
ror-free correlations.
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Measurement estimation skills are of significant importance for everyday life. In the
last decades a lot of research results were generated describing students’ estimation
skills and strategies. Surprisingly, little attention has been paid to the basic question
which types of situations are relevant for a valid conceptualization and operatio-
nalization of measurement estimation skills. Some studies refer to the basic structure of
estimation conditions described by Bright (1976) whereas others ignore this question,
though it is central to ensure validity of the empirical data. Following validity criteria
and based on existing empirical findings on estimation strategies, we developed a
comprehensive model of measurement estimation situations. This model provides a
basis for the development of valid tests on measurement estimation skills as well as for
the development of learning environments.

THEORETICAL BACKGROUND

Skills to estimate the attributes of objects (e.g., length, area) are of significant im-
portance for everyday life as well as for professional expertise in various professions
(Jones, Taylor, & Broadwell, 2009) and can be considered as a basis of measurement
skills (Joram, Subrahmanyam, & Gelman, 1998). To date, research provides a lot of
information on individuals’ measurement estimation process, strategies and perfor-
mance (e.g., Siegel, Goldsmith, & Madson, 1982; Joram et al., 2005). Moreover, em-
pirical findings show that the teaching of estimation strategies is possible (e.g., Hil-

dreth, 1983) and improves the accuracy in students’ measurement estimation (e.g.,
Joram et al., 2005; Jones et al., 2009).

Most of the empirical studies used items representing specific estimation situations to
collect data on estimation skills or strategies. Surprisingly, many studies did not ad-
dress the question which types of estimation situations are relevant to elicit the skills or
strategies aimed for from the considered students or adults. Ignoring the choice of
estimation situations might result in a serious threat of validity of empirical data and its
interpretations. We elaborate on this problem and suggest a comprehensive model of
measurement estimation situations which satisfies validity criteria and integrates cur-
rent research results on measurement estimation skills. For reasons of simplicity, we
restrict our presentation on length estimation, though our model can probably be
adopted for other attributes like area and volume as well.
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Measurement estimation and measurement estimation strategies

In the sense of Bright (1976) and other researchers, we consider measurement esti-
mation as a mental process of determining a measurement for an attribute of an object
without the aid of measurement tools. Central to this process is that the use of measure
units happens mentally while other aids like benchmarks or body parts might be used
as additional tools (e.g., estimate the length of a pencil in cm as a benchmark and then
determine the width of the table by repeated use of the pencil as a tool).

Empirical research yields that children and adults mostly show a poor measurement
estimation performance, that individual length estimation is in general more accurate
than the estimation of area, volume, or weight and that estimation performance of
students increase with grade (e.g., Siegel et al., 1982; Sowder, 1992; Joram et al.,
1998). In order to understand estimation performance, Siegel et al. (1982) analyzed
students’ estimation processes and developed a process model describing the indi-
vidual estimation process. This model particularly emphasizes the role of different
estimation strategies in the estimation process and subsequent research provided evi-
dence that the use of strategies predicts estimation performance (Joram et al., 2005;
Jones et al., 2009; Huang, 2015). The most important estimation strategies (e.g., Siegel
et al., 1982; Hildreth, 1983; Joram et al., 1998) are

e unititeration as a mentally conducted measurement by a segmentation of the
to-be-estimated object (TBEO) based on a given standard or non-standard
unit and subsequent counting of the segments;

e  benchmark comparison (or reference-point strategy) as a mental comparison
of the TBEO with a distance represented by a benchmark or the sequence of
the same benchmarks where the length of the benchmark is known or can be
estimated;

e decomposition/recomposition as a process of mental decomposition of the
TBEO into smaller parts, estimation of the length of each part by using one of
the previously mentioned strategies and adding the estimates of all parts.

In addition to the estimation strategies, research points to further components of es-
timation skills. As the descriptions of the strategies make clear, domain-specific
knowledge obviously plays an important role. This encompasses, for example, meas-
urement knowledge related to the standards units (i.e., mm, cm, m, km and their in-
terrelations in case of the metric system) as well as knowledge on benchmarks in a
twofold way (e.g., knowledge on the approximate width of an A4 sheet which is given
as a possible benchmark; knowledge of a suitable object that can be used as a
benchmark for 10 cm). Besides these knowledge components, specific cognitive abil-
ities contribute significantly to estimation performance. Models of estimation pro-
cesses from cognitive psychology assume that (1) the TBEO is represented in the
working memory, (2) this representation is estimated based on estimation strategies
and information retrieved from the long-term memory and (3) the estimated length is
finally checked in a monitoring process (e.g., D’Aniello, Castelnuovo, & Scarpina,
2015). From this follows that beyond knowledge on measurement, benchmarks and
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estimation strategies (stored as information in the long-term memory) individual
working memory capacities play an important role.

As we already mentioned before, the relevant knowledge for the estimation process
can be acquired in effective learning environments. This means in particular that stu-
dents educated in different learning environments based on different curricula might
possess different knowledge (e.g., different estimation strategies). Such differences
become obvious when we consider students from two countries with different cultures,
educational traditions and curricula. Differences in the learning context probably result
in different benchmark knowledge since benchmarks are influenced by the cultural
context. Differences might also occur in how students learn to implement estimation
strategies. For example, some curricula emphasize the use of body parts as benchmarks
for touchable TBEOs as suggested in Jones et al. (2009), other curricula may empha-
size the strictly mental use of benchmarks to estimate imagined TBEOs.

Measurement estimation situations as a basis for research on estimation skills

In general, measurement estimation skills are inferred from the performance of an
individual generating an accurate estimate for a required measurement of a given at-
tribute of an object. To assess these estimation skills, individuals are asked to solve
various estimation items. Such items represent estimation situations which can differ
substantially and therefore might influence the estimation performance. For example,
Pike and Forrester (1997) administered items representing estimation situations in a
story context (ladybirds amidst a rainfall) and in a stereotypical mathematics textbook
context. —It turned out that students’ estimation performance was better in the math-
ematics textbook context — a phenomenon which is probably caused by the specific
type of mathematical tasks and activities implemented in mathematics textbooks and
the mathematics classroom. However, even when restricting items to one specific
context (e.g., real life context), in each estimation situation there are characteristics
which must be understood by students before performing an estimation process and
which thus might influence the item difficulty. Accordingly, a thorough analysis of
estimation situations implemented in test or interview items is necessary to ensure
validity of the empirical data and inferred results. Surprisingly, in many published
studies this challenge is addressed neither explicitly nor implicitly. In the following we
shortly present three examples retrieved from the literature: first, the model of Bright
(1976) who explicitly addressed this question and to which other articles refer (e.g.,
Sowder, 1992) and then the descriptions from the studies of Jones et al. (2009) and
Siegel et al. (1982).

Model of Bright (1976)

In Bright (1976), eight types of estimation situations are described each as combination
of three independent characteristics: (1) the object or the measurement is specified, (2)
the TBEO is physically present/given or not, and (3) the unit of measurement is given
or not. The eight situation types are divided into two parts, first the situation types
where the object is specified (A) and second the types where the measurement is
specified (B). The four situation types of class A are the usual estimation situations
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where students have to estimate a measurement for an attribute of an object, whereas
the four situation types of class B are mainly interesting for instructional purposes (to
support students in generating benchmark knowledge). It is mentioned (Bright, 1976,
p. 90) that further subdivisions of the situation types could be made.

Structure in Siegel, Goldsmith, and Madson (1982)

In their article, Siegel and colleagues present an estimation process model based on
findings of an interview study. The study relies on specific items suggesting the use of
specific estimation strategies in order to elicit the cognitive processes of interest.
Hence, there is an implicit model of different types of estimation situations structured
by estimation strategies. Siegel et al. (1982) distinguish two problem types related to
length measurement: benchmark problems and decomposition problems. However, in
this case benchmark problems do not explicitly ask for the use of a benchmark or ex-
plicitly mention a benchmark. Instead, it is assumed that problems like “How long is a
piece of manuscript paper?” are solved by the benchmark strategy. In contrast, the pre-
sented decomposition items explicitly describe decompositions ("If you took these
cooking utensils and laid them end to end, how far would they reach?”’). For both
problem types the TBEOs were presented physically or by photographs. From the
article it does not become clear whether the children and adults were allowed to touch
the TBEOs during the estimation process.

Model of Jones, Taylor, and Broadwell (2009)

The article of Jones and colleagues on the use of body parts in the estimation process
describes the Linear Measurement Assessment (LMA) which they used to test linear
measurement estimation skills. The LMA is based on a model with five dimensions
representing different types of length estimation situations (Jones et al., 2009, p. 1502):
(1) estimating the length of an object while viewing the object; (2) naming an object
from memory for different metric sizes; (3) estimating the lengths of large objects like
a building; (4) metric estimation of objects that students can touch or distances they
can pace; (5) using body parts as an aid to measure different objects. Analyzing the
types of estimation situations, it turns out that different aspects like size or presence of
the TBEO as well as the option to touch the TBEO are varied. Moreover, the situation
type (2) is similar to one of those in Bright’s (1976) situation types of class B.

Summarizing the state of the art, it turns out that many studies in the field of meas-
urement estimation skills do not explicitly elaborate on the choice of estimation situ-
ations for their data collections. Some studies refer to the model of Bright (1976),
others provide own criteria for structuring the estimation situations. As Bright (1976)
mentioned, his model can be refined and analyzing the other existing models, it turns
out that specific types of estimation situations are not distinguished (e.g., situations in
which a touchable benchmark is given or a representation of the TBEO’s length can be
constructed by drawing a line). However, it is not clear what grain-size is relevant for
research and educational practice in the field of length estimation skills.
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RESEARCH GOAL AND RESEARCH APPROACH

Based on the previously presented theoretical background, we elaborate on the que-
stion what types of estimation situations are relevant for the assessment of estimation
skills. As mentioned in the beginning, we restrict our presentation to length estimation.
Our goal is to develop a comprehensive model on types of length estimation situations
which ensures validity in case of assessments of length estimation skills. To establish
validity, we follow the Standards for Educational and Psychological Testing (AERA,
APA, & NCME, 2014). In chapter 1, the standards provide five sources of evidence
which can contribute to validity: evidence based on (1) content, (2) response processes,
(3) internal structure, (4) relations to other variables, and (5) consequences of the in-
terpretation of results.

As presented in the previous section, empirical research yields that the following as-
pects are relevant factors for length estimation skills: knowledge in estimation strate-
gies, measurement knowledge, benchmark knowledge, working memory capacity as
well as context factors like culture (influences which estimation strategies are empha-
sized in the mathematics classroom) and characteristics of estimation situation in real
life (in contrast to estimation situations in mathematics textbooks). These factors for
length estimation skills contribute to the five sources of evidence for validity as fol-
lows (cf. AERA, APA, & NCME, 2014):

1. Evidence based on content asks for the relation between the construct (length
estimation skill) and the requirements in the estimation situations. Hence, the
situations must cover all relevant aspects of estimation situations in real life.

2. Evidence based on response processes asks for a fit between the construct
(Iength estimation skill) and the observed performance in estimation situations.
It must be ensured that the performance of mastering the estimation situations is
based on the components (knowledge, working memory capacity) of estimation
skills.

3. Evidence based on the internal structure asks for a fit between the structure of
the construct (length estimation skill) and the performance in different types of
estimation situations. Here, the influence of culture, educational traditions and
curricula might play a role because the teaching of different estimation strategies
can yield different performance profiles provided suitable estimation situations
are represented by the items.

4. Evidence based on relations to other variables asks for correlations between the
estimation performance and other variables. For example, performance should
improve with the increase of benchmark knowledge or the grade of the students.

5. Evidence based on consequences of the interpretation of results means in par-
ticular to exclude unintended interpretations of the empirical results caused by
construct irrelevant components or by construct underrepresentation. For ex-
ample, culture might influence benchmark knowledge so that estimation situa-
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tions with given benchmarks can be problematic in cross-cultural studies. Con-
struct underrepresentation might occur if estimation situations are restricted to
certain types (e.g. only touchable TBEOSs) so that specific components of esti-
mation skills are not required.

RESULTS

Based on the framework described by the criteria 1-5 in the previous section and ex-
isting models of estimation situations presented in the theoretical background, we
identified six characteristics of estimation situations. The six characteristics are mostly
pairwise independent; however, some combinations do not make sense in real life or
even cannot occur so that these situations are excluded. Figure 1 gives an overview of
the 72 estimation situations as compact tree diagram. It should be mentioned that there
IS a seventh characteristic which is not displayed in the tree diagram and which is re-
lated to the magnitude of the TBEO. Since length estimation of large objects is more
challenging than length estimation of small objects (e.g., Jones et al., 2009), each es-
timation situation should be considered for small, medium, large, and huge objects.

There are manifold relations of the presented characteristics of estimation situations to
the five validity criteria 1-5 developed in the previous section. Due to space limita-
tions, we cannot explain and argue in detail how each characteristic of our model is
related to the five criteria so that we restrict to some exemplary aspects.

The seven characteristics represent relevant aspects of estimation situations in real life
and thus contribute to the first criterion (content validity). In real life, the TBEOs can
be (i) physically present or not and (ii) touchable or not, (iii) there might be the op-
portunity to construct a representation of the same length (e.g., by drawing a line) and
(iv) it can happen that no benchmark is given or that a specific benchmark (or more
than one) is mentioned, is visible in real size, or is even visible in real size and
touchable. Moreover, there are situations which (v) ask for estimates in standard units
(e.g. metric units like cm) or in non-standard units (e.g., room width in number of floor
tiles). If a benchmark is given, it can happen that (vi) its length is provided or not.
Finally, (vii) in real life the TBEOSs can vary in their length from small to huge.

In addition to the first criterion, the characteristics satisfy the other four criteria of
validity. For example, it makes a strong difference for the cognitive load of the wor-
king memory if a TBEO is touchable or not or if a benchmark is visible in real size or
not. Estimation processes are more challenging if individuals must imagine the TBEO
and the benchmark because external representations are not available. Due to the high
cognitive load, it can happen that only efficient estimation strategies can be processed
and persons who only know complex strategies will show a lower performance in these
situations. Hence, taking into account these characteristics of estimation situations
contributes to validity corresponding to criteria 2-5 because varying performance in
different types of estimation situations can be distinguished. As a second example, we
want to mention that the seven characteristics allow the distinction of estimation situ-
ations which do or do not support specific estimation strategies. If a TBEO is toucha-
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ble, the benchmark comparison strategy is much easier because a person can directly or
indirectly use body parts as benchmarks (Jones et al., 2009). If representations can be
constructed (e.g., by drawing a line of the length of the TBEO), this might support the
decomposition strategy in case of medium sized TBEOs. The application of estimation
strategies is associated with different knowledge components that depend on previous
learning experiences. Hence, the seven characteristics allow distinguishing estimation
situations which ensure on the one hand that persons with different knowledge on
estimation strategies show different estimation performances (relevant for criteria 2-4)
and avoid on the other hand that the construct length estimation skill is not un-
derrepresented in the assessment (relevant for criterion 5).
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Figure 1. Model of 72 types of length estimation situations (12 types for cases A-F).
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DISCUSSION

In this contribution we argued that in empirical research on measurement estimation
skills, the choice of estimation situations is of great importance when collecting data. A
low variation in the characteristics of estimation situations might result in a serious
threat of validity of empirical data and the interpretations of the results. Surprisingly,
many articles of empirical studies do not explicitly report how they have chosen the
estimation situations for their assessment instruments and a reconstruction of this in-
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formation is not possible. Only some studies refer to the existing basic model of Bright
(1976) or give an explicit or implicit description of an own model.

For our analysis we adopted aspects of validity from AERA, APA, and NCME (2014)
and combined these with the current state of research on relevant aspects of length
estimation skills. The resulting five criteria for validity allowed developing a compre-
hensive model of types of estimation situations (Figure 1). In comparison to the models
of Bright (1976), Siegel et al. (1982) and Jones et al. (2009), our model is much more
detailed. It allows distinguishing more types of estimation situations and therefore
gives opportunities for a more detailed analysis of estimation skills.

Currently, our arguments are purely theoretical. Hence, it is an empirical question how
fine-grained the estimation situations must be mirrored by items in empirical studies.
Depending on the respective research goal and the kind of data that should be col-
lected, a coarser model with fewer estimation situations might be sufficient to assess
length estimation skills. In such cases the model of types of estimation situations in
Figure 1 can serve as an ideal to check for validity.
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RESPONDING TO TEACHERS: LEARNING HOW
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AS AMATHEMATICS TEACHER EDUCATOR
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In this paper, | present the process of developing a framework for analysing verbal
metacommunications, in the context of a new mathematics teacher educator working
with in-service teachers of mathematics. The interest in analysing verbal Metacom-
munication arises from reflecting on the process of becoming a mathematics teacher
educator, as | am learning how to respond in-the-moment to teachers of mathematics
as they talk about teaching. Responding to teachers with verbal metacommunication
appears to be significant in terms of supporting teachers in their own learning. There
Is currently no existing framework, within the mathematics education literature, for
making systematic distinctions between types of verbal metacommunications in sup-
porting group discussion.

BECOMING A MATHEMATICS TEACHER EDUCATOR

As a secondary school teacher of mathematics, | worked hard to set up a culture in my
classroom where an overall aim of the year was linked to “being a mathematician”.
Over years of teaching the same tasks, | became attuned to hearing comments and
observing actions linked to this aim. A powerful mechanism for building this culture
was an ongoing commentary from me that went alongside the doing of the mathema-
tics and in response to what the children were saying or doing. For example, a com-
ment in response to a student who said, “I’ve noticed it’s going up in twos” could im-
aginably have been “one thing mathematicians do is look for patterns” or “write that
down as a conjecture to work on”. As a teacher of mathematics, my teaching was
“constantly organized by meta-comments” (Pimm, 1994, p.165) such that “the utter-
ances made by students are seen as appropriate items for comment themselves”
(p.165). Meta-commenting provided me with an alternative to evaluating student ut-
terances, or responding directly to what was being uttered. Another purpose for com-
menting about the students’ comments, was to create an image of a way of working
that supported the students in their approach to working on mathematics, to establish a
culture where students were motivated through asking their own questions and work-
ing on their own conjectures.

Almost two years ago | moved from secondary school mathematics teaching to a
university, as a mathematics teacher educator working alongside a group of pre-service
teachers of mathematics. In reflecting on sessions with the group of pre-service tea-
chers, one issue that arose for me was around hearing and responding. Having been
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attuned to hear and respond to comments in a mathematics classroom, | was able to
respond as a mathematics teacher but was not yet able to respond as a mathematics
teacher educator. From this awareness developed a motivation to research how | am
becoming a mathematics teacher educator and a research project commenced.

Within the field of mathematics education there is a distinction made between what is
termed the education of mathematics teacher educators where the focus is on teacher
educators learning through formal courses and the mathematics teacher educator as
learner where the emphasis is on “teacher educators’ autonomous efforts to learn, in
particular, through reflection and research on their practice” (Krainer, Chapman &
Zaslavsky, 2014, p.432). My study aligns with the second of these terms and concerns
how | am learning to respond in becoming a mathematics teacher educator. Specifi-
cally, how to respond in-the-moment to pre-service teachers of mathematics and what,
in addition to my classroom-attuned responses, | could be metacommenting upon.

VERBAL METACOMMUNICATION

The term metacommunication was introduced by Ruesch and Bateson (1951), where
the concept was developed from detailed study of animal behaviour. Described as “an
entirely new order of communication” (p.209) and defined as “communication about
communication” (p.209), this new order of communication allowed Ruesch and Bate-
son (1951) to explain some complex and paradoxical attributes of social interaction.
Any instance of interpersonal communication will consist of a “report” (p.179) aspect,
synonymous with the content or data of the message, and a “command” (p.179) aspect,
referring to the relationship between the communicants. According to Watzlawick et
al. (1967), the report aspect of a message conveys information whereas the command
aspect concerns how the communication is to be taken and therefore ultimately to the
“relationship between the communicants” (p.33). It is the relationship aspect of
communication, being a communication about a communication, that is, according to
Watzlawick et al. (1967), “identical with the concept of metacommunication” (p.34).

Rossiter (1974) distinguished between two types of metacommunication: “that which
is an ever-present aspect of all transactions and; that which constitutes additional
commentary about communicative transactions” (p.36). The former type consists
primarily of non-verbal cues, for example, tone of voice, body language or gesture,
which can indicate whether the person communicating is, for example, serious or
joking. These metacommunicational cues can provide information about how a mes-
sage is to be interpreted “by indicating something about intentions and feelings of the
message generator” (p.37). The latter type of metacommunication, which constitutes
additional commentary, could be understood as simply ‘talking about talking’” and
occurs whenever verbal and/or nonverbal communication becomes the topic of com-
munication itself. The focus for this paper is on my verbal metacommunication
in-the-moment of a discussion.

In terms of verbal communication, metacommunicational clues may be highly am-
biguous and can be easily interpreted in entirely different ways. It follows that the
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ability to metacommunicate appropriately “is not only the condition sine qua non of
successful communication, but is intimately linked with the enormous problem of
awareness of self and others” (Watzlawick et al., 1967, p.34). The position, that it is the
ability to metacommunicate appropriately that is essential for successful communica-
tion, provides a further rationale for my study. In particular, how do | use verbal met-
acommunication when responding to pre-service teachers talking about teaching?
Furthermore, what is the process of learning to respond in-the-moment in a metacom-
municative way?

| have also found myself reflecting on my responses when working with in-service
teachers of mathematics. | am currently working alongside a group of ten secondary
school mathematics teachers working and learning through collaboration to develop
the mathematical reasoning of the children in their classrooms and in their wider de-
partments. Between each meeting of the collaborative group, the mathematics teachers
try out ways of working in their classrooms and work with other mathematics teachers
in their departments to do the same. My role in the group is to support a discussion
where the teachers share ideas and stories and learn from one another through re-
flecting on what they have been doing in school. It is in this setting where | began to
develop a methodology for researching my learning as a mathematics teacher educator
through paying attention to what | was noticing.

THE DISCIPLINE OF NOTICING AS A METHODOLOGY

In the context of my research, the connection between self-awareness; awareness of
others and; my own ability to respond with metacomments, has become a meaningful
one. Having audio-recorded the first of my discussions with the group of mathematics
teachers, it was in the slow transcription of this discussion that | became aware of a
shift in my attention at particular moments of a teacher speaking. In feeling this reac-
tion in-the-moment of hearing the audio-recordings, I was “noticing” (Mason, 2002),
making a distinction by distinguishing “some ‘thing’ from its surroundings” (p.33).

Mason’s (2002) description of the Discipline of Noticing as four “interconnected ac-
tions”, specifically: “Systematic Reflection”; “Recognising”; “Preparing and Notic-
ing” and; “Validating with Others” (p.95), offers me a framework for my research
methodology. In attending to what | notice in a systematic way as | transcribe the au-
dio-recorded discussions, | am able to “mark” (Mason, 2002, p.33) so that I can
“re-mark upon it later to others” (p.33). This marking seems to manifest itself as an un-
comfortable feeling, or a sense of surprise or confusion and signifies when a moment
has salience. In “recording” (p.33) these salient moments they have become available
for further evaluation.

Based on the idea that something may be salient because of “some hidden assumption
or bias” (Mason, 2002, p.248), | wanted to minimise this issue by utilising multiple
perspectives and by practising “being in question” (p.248) through “seeking resonance
with others in an ever-expanding community’” (p.248). In sharing these salient mo-
ments with others in the mathematics education community, I was “creating the con-
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ditions for the emergence of the as-yet unimagined rather than [...] perpetuating en-
trenched habits of interpretation” (Davis, 2004, p.184). Through the process of
self-reflecting and considering multiple perspectives, | began to understand learning to
respond as a “recursively elaborative process of opening up new spaces of possibility
by exploring current spaces” (p.184).

This process of sensitising myself to notice the types of comments that may prompt a
metacommunicative response has been significant in terms of supporting me to con-
sider possible ways of acting differently in the future, that is, becoming a mathematics
teacher educator. Having worked for some time on developing these awarenesses
through the slow transcription of the discussions with the group of teachers, and from
the position that an ability to metacommunicate appropriately is essential for success-
ful communication in supporting groups of teachers working collaboratively, my atten-
tion has now turned to analysing how I am responding at a metacommunicative level.

FRAMEWORKS FOR ANALYSIS OF VERBAL METACOMMUNICATION

Studies of the use of verbal metacommunication exist most predominantly within re-
search on psychotherapy where the focus is on the relationship between the therapist
and the client, and in research about the role of children’s social pretend play. From
literature related to more formal educational settings, | present two frameworks for
analysis of verbal metacommunicative responses.

Firstly, Rossiter (1974) argues that to improve the ability to communicate at an in-
terpersonal level, it is key to master the capacity to metacommunicate. In his paper
(Rossiter, 1974), which concerns the instruction of “courses which focus on interperso-
nal communication” (p.36) based on the concept of metacommunication, Rossiter of-
fers four functions (see Table 1) of “oral verbal communication about face-to-face in-
terpersonal communication that is in process” (p.37).

More recently, Baltzersen (2013) contended that any metacommunicative utterance
can be analysed in relation to all three of the following basic dimensions: What, how
and when you metacommunicate. He originally investigated the impact of Metacom-
munication in the supervision process in higher education in Norway through linking
survey questions to the “metacommunication concept” (p.128). Though initially
methods appear limited in terms of the conceptualisation of this metacommunicational
concept (specifically, indicators of metacommunication are linked to: discussing the
supervision process and; clarification of tasks and roles in supervisions) his study does
suggest that “metacommunication may have a substantial positive effect on the quality
of communication in thesis supervision” (p.130). Based on these findings, Baltzersen
goes on to ask the question, “What kind of metacommunication is important to create
good supervision in higher education?” (p.130). Baltzersen’s exclusive focus on verbal
metacommunication enables him to develop a framework that, though not exhaustive,
allows review of different definitions and examples of verbal metacommunication
used in a one-one supervision context. Baltzersen (2013), as with Rossiter (1974), also
offers four functions of verbal metacommunication (see Table 1).
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The functions of metacommunication, described by both Rossiter (1974) and Baltz-
ersen (2013), are presented in Table 1 in a way that demonstrates the parallels that |
have drawn out from the two sets.

Rossiter (1974, p.37) Baltzersen (2013)
(1) To focus conscious attention To create and establish a working
on the process of interaction alliance (p.133, p.135)
(2) To clarify vague feelings To talk about intentions (p.133)

about what is going on

(3) Todetermine if perceptionsof  To pose clarifying questions (p.135)
what is happening coincide

(4) To provide direct feedback To evaluate some aspect of the re-
about speaker’s communica- lationship between the persons in-
tion behaviour teracting (pp.133-134)

Table 1: Functions of verbal metacommunication presented in parallel (adapted from
Rossiter, 1974, p.37; Baltzersen, 2013, pp.133-135).

To offer some further elaboration, I explore each pair of functions from Table 1 in turn.
Firstly, Rossiter (1974) begins with what he describes as the “most important function
of metacommunication [...] that it focuses conscious attention on the process of in-
teraction” (p.37). This attention to the process allows participants in the conversation
to take a step back from the interaction itself and look at how the communication
system is functioning. In the same sense, Baltzersen (2013) describes the need to create
and establish a working alliance through agreeing on specific tasks; agreeing on goals;
and identifying possible strains in the relationship between participants (p.133). Sec-
ondly, Baltzersen’s suggestion that verbal metacommunication can function to com-
municate intentions through talking about what the speaker has said, or through dis-
closing or asking for opinions about the conversation, closely resembles Rossiter’s
clarifying “vague feelings about what is going on” (p.37) in that verbal metacommu-
nication of this form can suggest how participants in the conversation arrived at their
present state through paying attention to the process factors that influence emotional
responses to the interaction itself. Thirdly, Rossiter’s purpose of determining whether
perceptions of what is happening coincide (p.37) concerns the need for perceptions to
be made as explicit as possible so that other participants in the conversation know how
to respond to them. In a similar vein, Baltzersen describes posing clarifying questions
through clarifying the speaker’s own prior opinion or another speaker’s opinion;
paraphrasing; repeating something said earlier; commenting on language use; and
regulating others (p.135). Finally, Baltzersen suggests evaluating some aspect of the
relationship between the persons interacting through explicating disagreement and
highlighting one’s own role or another person’s role in the relationship (pp.133-134).
Similarly, Rossiter recommends verbal metacommunication in order to draw attention
to how a speaker is communicating through providing direct feedback about the
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speaker’s communication behaviour. These pairs of functions form a framework with
which some of my responses from discussions with the collaborative group of
mathematics teachers are now analysed in the next section.

ANALYSING RESPONSES

Before using the framework (Table 1) for analysing my responses as verbal meta-
communications, | needed to consider which responses could be fundamentally con-
sidered as verbal metacommunications (a communication about a communication), or
alternatively, as a communication in direct response at the level of the discussion. In
order to exemplify this distinction, consider the following two vignettes. Each vignette
comprises a short extract of transcription taken from audio-recorded discussions with
the group of mathematics teachers. Both vignettes provide a different paradigmatic
example that are representative of a set of similar responses.

Vignette 1:

Teacher: | was just thinking of a time a couple of weeks ago when | was doing
conversions and um, we were doing area and volume conversions, but part
of the starter was just simple conversions and a kid from a top set was
convinced that to get from millimetres to centimetres, you times by ten and
even putting examples up he still was convinced no it was times by ten so
even though he knows there are ten millimetres in one centimetre he still
was convinced you times by ten so I don’t really understand how to...

Tracy: Well it is, isn’t it, you kind of are timsing by ten, it’s ten times bigger, |
guess maybe that’s where that’s coming from.

Vignette 2:

Teacher: I was just thinking back to a session I went to... and a lot of what we are
discussing now here is very talk based, and is there almost a case with some
of the things we are modelling to promote reasoning, we say a lot less, just
show them, break it down into manageable steps, so | did this, linking area
of rectangle to area of triangle, | taught that normally last term, it didn’t go
down very well.

Tracy: What do you mean by normally?

In vignette 1, the teacher is describing an issue with a student who was converting
millimetres to centimetres. My response, “Well it is, isn’t it, you kind of are timsing by
ten, it’s ten times bigger, I guess maybe that’s where that’s coming from”, which I do
not consider to be a verbal metacommunication, was a direct response at the level of
the original communication. | was suggesting an explanation for the situation being
described.

In vignette 2, the teacher is describing a lesson where he presented to the students, in
silence, a series of images linking the area of a rectangle to the area of a triangle as an
alternative to an approach he had used previously to teach the concept. He describes
this previous approach as being taught “normally” to which I respond immediately
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with “What do you mean by normally?” In relation to the functions presented in Table
1, I would argue that the purpose of this response was “to determine if perceptions of
what is happening coincide” through posing clarifying questions. Working on an ac-
count of the notion of “normally”, allows others to create an image of this teacher's
classroom that might otherwise not be possible.

I now present one further vignette comprising of another short extract from a discus-
sion with the group of mathematics teachers. | have chosen this final extract as a
paradigmatic example of a response that | understand to be a verbal metacommunica-
tion but that becomes problematic when trying to describe it using the functions pre-
sented in Table 1. For context, the extract from vignette 3 follows on shortly from the
extract from vignette 2 and is the same teacher speaking. Having described using the
set of images for areas of rectangles and triangles, the teacher goes on to describe of-
fering the students a problem, involving finding rectangles with equal area and pe-
rimeter. In the comment from vignette 3, the teacher is reflecting about having noticed
a change in the energy of the students compared with previous lessons.

Vignette 3:

Teacher: Um, yeah, from what | thought would be kind of do and review of some-
thing at quite a low level and I’d have to really go over here’s how you do
area, here’s how you do perimeter, actually it then turned into they did it all
themselves, and you know in the class you get hands up all the time, it
wasn’t sir help me, it was sir look at this, look at this, look at this I did it!

Tracy: Oh, that’s nice, so the difference was in hands.

In isolation, “Oh, that’s nice” is ambiguous. However, the second part of the response,
“so the difference was in hands” offers an indication as to what I was valuing in that
moment, using “so” as the link would suggest the “nice” was in recognition of the
previous speaker’s acknowledgement of an observed difference, in this case, a dif-
ferent reason for hands going up. Is this communication about communication? Having
made the comment myself, | do of course have an insider perspective. One awareness
that | know | have is when a teacher talks about a change in their behaviour or that of
their students. When this happens, | often find myself highlighting that a difference has
been noticed and how this difference has been observed. One function of doing this is
to direct the attention of others; to invite others to consider differences in their own
classrooms and; to emphasise the importance of these types of observations as a
classroom teacher working on their teaching. This function seems to me to be in a
difference place to those in existing frameworks.

REFLECTING ON THE PROCESS OF LEARNING TO RESPOND

There is a motto of noticing which Mason (2002) alerts us to that is “I cannot change
others, I can work at changing myself” (p.248). As a mathematics teacher, my con-
viction came from having an image of what teaching could look like and | worked hard
to establish a verbal metacommentary that went alongside my students working on ma-
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thematics. In becoming a mathematics teacher educator through the process of sensi-
tising myself to notice when a verbal metacommunication may be appropriate, and for
what purpose, | am learning how to support and enable teachers working and learning
through collaboration.

As | continue researching how | am learning to respond as a mathematics teacher ed-
ucator, it is inevitable that further categorisations of verbal metacommunicative re-
sponses will emerge. One contribution to the field of mathematics education and, in
particular, to mathematics teacher education and teacher educator learning might be a
framework for systematically categorising verbal metacommunicative responses when
working with teachers of mathematics. The classifications that emerge will principally
be of value to me as a researcher of my own learning who is immersed in the process of
developing this framework. By making these categorisations or distinctions, | am
supporting further possibility of responding differently both now and in the future and
I am reminded to return to an image of learning from Davis (2004) as a “recursively
elaborative process of opening up new spaces of possibility by exploring current
spaces” (p.184).
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THE ROLE OF FINGER GNOSIS IN THE
DEVELOPMENT OF EARLY NUMBER SKILLS
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The role of fingers in the development of early number skills has often been the focus of
discussion in mathematics education, psychology and neuroscience. This study de-
scribes the findings of a longitudinal exploration of the mathematical development of
children with Apert syndrome. Children with Apert syndrome are born with their fin-
gers fused and even after surgery to separate them, do not often use their fingers
spontaneously in activities involving number. Through observations over a 2 year
period, the role of fingers in supporting learning and activities in numerical aspects of
mathematics was seen to be complex and requiring good finger awareness and finger
mobility. The findings suggest a possible explanation for the observation that some
children who are low-attaining in mathematics are over-dependent on finger-use.

WHAT CAN CHILDREN WITH APERT SYNDROME TELL US ABOUT THE
ROLE OF FINGERS IN THE DEVELOPMENT OF EARLY NUMBER
SKILLS

The work discussed here describes the findings of a longitudinal 2-year study on the
mathematical development of 10 children with Apert syndrome, between the ages of 4
and 9 years at the beginning of the study (Hilton, 2017). Apert syndrome is a rare
syndrome which was first described by Wheaton in 1894, and investigated further by
Apert in 1906 (Patton, Goodship, Hayward and Lansdown, 1988). There is an esti-
mated a birth prevalence of Apert syndrome of approximately 1 in 65000, in North
America and Europe (Cohen et al., 1992; Tolorova, Harris, Ordway and Vargervik,
1997). Children with Apert syndrome are born with complex fusions of their fingers
and although they usually have surgery to release their fingers, they do not always gain
five fingers (digits including thumbs) on both hands. In addition, children with Apert
syndrome usually have limited mobility in their fingers, as the interphalangeal joints
do not work properly. Although there is only limited literature on the mathematical
development of children with Apert syndrome, the literature that does exist suggests
that for these children, numerical activities are a particularly area of difficulty
(Sarimski, 1997; Fearon and Podner, 2013). The present study shines a new light on the
mathematical development of children with Apert syndrome and especially on the role
of fingers in the development of early number concepts and early arithmetic. It also
highlights the complex nature of the relationship between the use of fingers and
problem solving in numerical calculations.
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The original research explored the strategies children with Apert syndrome use to help
them solve numerical problems in mathematics and whether the children’s hand
anomalies impacted the range of strategies available to them.

THE THEORETICAL FRAMEWORK

The theoretical framework for the process of data collection was informed by con-
structivist grounded theory (Charmaz and Bryant, 2011) as it allowed for the possi-
bility of unexpected and unanticipated findings. For the process of data analysis, the
methods used were drawn from discursive analysis and thematic analysis. In order to
collect data, a case study approach was adopted.

LITERATURE REVIEW

There have been a number of studies that have explored the link between finger gnosis
and skills in arithmetic. It has been shown that touching objects when counting helps
pre-school 4 year old children to count correctly (Alibali and DiRusso, 1999). This can
help children to understand one-to-one correspondence and can relieve the pressure on
working memory. Fingers can also help when trying to keep track of items and during
calculations. With practice, children learn to map particular patterns on to particular
numbers (Morrissey, Liu, Kang, Hallett and Wang, 2016). In other words, through
repetition and practice, fingers can provide a sensorimotor embodied mapping of
number patterns and their associated numerical relationships (Rinaldi, Di Luca, Henik
and Girelli, 2016).

For these mappings to be effective requires an awareness of one’s own fingers, or
“finger sense”, otherwise known as finger gnosis (Gerstmann, 1940) and finger mo-
bility (Berteletti and Booth, 2015). Without this finger sense, it may be hard to identify
one’s own fingers in response to touch and request; make individual finger move-
ments; and mirror the finger actions of others (Gerstmann, 1940).

In typically-developing children, finger gnosis develops quickly up to the age of 6
years and then continues to develop more slowly up to the age of 12 years (Strauss,
Sherman and Spreen, 2006). Berteletti and Booth (2015) argue that the embodied ac-
tions of moving fingers as well as finger gnosis are significant in determining the role
of fingers in early arithmetic. In addition, fingers are useful to keep track of items in a
count (Andres, Seron and Olivier, 2007) or compare numbers presented symbolically
(Sato, Cattaneo, Rizzolatti and Gallese, 2007). This evidence supports the findings
from observational studies such as those by Hughes (1986) and Jordan, Huttenlocher
and Levine (1992). However, this should be viewed within the context of finger-use in
arithmetic being a learned, and not a spontaneous, activity (Crollen, Seron and Noel,
2011).

While there are cultural differences in the ways that children learn and are taught to use
their fingers (Di Luca and Pesenti, 2011), it has also been suggested that “personal
finger-counting habits influence the way numerical information is mentally repre-
sented and processed” (Berteletti and Booth, 2015, p.111) and stored in long-term
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memory (Di Luca and Pesenti, 2008). It seems likely that if fingers are used as a tool to
support numerical calculations, the most significant factor is whether children learn to
use their fingers rather than how they use them.

Jordan, Kaplan, Ramineni and Locuniak (2008) found that in kindergarten, children
who used their fingers in calculations provided more accurate answers to questions.
However, by the end of Year 3, those children who tended to be more accurate, used
their fingers less frequently than those who made more calculation errors. As in the
earlier study, Jordan et al. (2008) found that children from low-income families started
kindergarten with less confident finger-use than their middle-income peers. Conse-
quently, as the children from middle-income families were beginning to use their
fingers less, children from low-income fingers continued to depend on their fingers for
performing calculations. This suggests that it takes a considerable amount of time (in
the region of 2 to 3 years) for children to transition from relying on fingers to help with
arithmetic calculations to confidently using known facts and other strategies to support
work with numbers.

Kaufmann et al. (2008), in a study involving 8 year old children and adults, used brain
Imaging techniques to explore the areas of the brain that are recruited when performing
simple tasks involving number. In tasks involving non-symbolic representations of
number, they found that although the children and the adults were able to complete the
tasks successfully, children took longer. To explain this, the authors suggest that when
making numerical comparisons using images of hands showing differing numbers of
fingers, the children (but not the adults) recruited additional areas of the brain normally
used for fingers. The authors suggest that fingers are an important stepping stone in the
development of an abstract understanding of number.

Finger gnosis and fine motor skills have also been implicated in supporting the de-
velopment of arithmetic and mathematical skills (Noel, 2005; Gracia-Bafalluy and
Noel, 2008). Noel (2005) carried out assessments of finger gnosis with 41 children in
Grade 1 and compared this with an assessment of their skills in mathematics one year
later. A correlation was found between the children’s level of finger gnosis in Grade 1
and their achievements in tasks involving number identification and simple arithmetic
one year later. In fact, the relationship between finger gnosis and their achievement in
mathematics was stronger than the relationship between tests of general cognitive
ability and achievement in mathematics between Grades 1 and 2. This was followed up
with an intervention study in which children were provided with a finger-differentia-
tion intervention, twice a week for a period of 8 weeks. The children’s finger gnosis
and their numerical skills both improved, when compared to a control group (Gra-
cia-Bafalluy and Noel, 2008).

Subitising, counting and the approximate number system

When children learn to make sense of numbers, there are many aspects of number that
they need to come to understand. Subitising refers to the ability to enumerate small
groups of objects without counting (Fuson, 1988). By the age of 3 years, children can
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usually subitise up to three objects. For adults, the maximum number is usually four
(Hughes, 1986). Beyond subitising, it has been argued that there is a distinction be-
tween the ability to count and the ability to compare quantities (Dehaene, 2011).

Learning to count is no trivial task (Fuson, 1988) and all the principles of arithmetic
that children learn at school are underpinned by an understanding of counting. The
ability to count, though, is a human creation while the ability to compare quantities is a
matter of survival (Dehaene, 2011). When we compare quantities we use our approxi-
mate number system (ANS) - a nonverbal mechanism for estimating the number of
items in a set (Dehaene, 2011). This capacity is one that we also share with animals and
must be distinguished from any symbolic or verbal representational system requiring
accuracy. It has been suggested that there is a relationship between children’s ANS and
their attainment in mathematics (Halberda, Mazzocco and Feigenson, 2008) and that
children who struggle with mathematics are more likely to have a poor ANS (Maz-
zocco, Feigenson, and Halberda, 2011).

RESEARCH METHODS

Semi-structured interviews and clinical interviews (Ginsburg, 1981) were used to-
gether with in-class observations of the children. The semi-structured interviews were
designed to assess number knowledge, arithmetic skills and mathematical under-
standing.

Six or seven school visits were made to each of the children over the 2 year period of
the study. When interviewing the children, the clinical interview approach made it
possible to gain more in-depth understanding of the children’s thinking. The interviews
were audio recorded and later transcribed.

For the purpose of reliability, the mathematics-focused questions were based on ex-
isting assessments that had been reported in the literature. Due to the age range and
developmental range within the children studied, a range of assessments was used. The
assessments selected focused on number system knowledge, skills in arithmetic and
strategies used for solving problems.

The children’s Approximate Number System (ANS) was explored using ‘“Panamath”
(Halberda, Mazzocco and Feigenson, 2008), in order to establish whether there was a
relationship between children’s skills in this area and their knowledge and under-
standing in work on number and arithmetic.

The children’s working memory was assessed, as this has been implicated as a poten-
tial reason for children’s low attainment in mathematics (Raghubar, Barnes and Hecht,
2010). This was done with the “Working Memory Test Battery for Children
(WMTB-C)” (Gathercole and Pickering, 2001)

Finally, the children’s finger gnosis was assessed, as this was likely to be delayed in
children with Apert syndrome and has been associated with knowledge and skills in
number and arithmetic. For this an assessment of finger gnosis based on Gra-
cia-Bafalluy and Noél (2008) was used.
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FINDINGS

In the study group there was no relationship between ANS and attainment in mathe-
matics. One of the lowest attaining children had the highest ANS scores. The children
displayed a range of strengths and weaknesses in their working memory assessments,
but an area of strength for all the children was the area of visuospatial skills. In terms of
the mathematics assessments, there was enormous variation, but the focus for the
purpose of this discussion will be on the use of fingers to support calculation.

Only one of the 10 children began to use his fingers without prompting and even he
started very late (at 9 years of age). Initially school staff said that they did not en-
courage children to use their fingers because the children found it hard to move their
fingers. The consequence of this was that when calculations took them beyond their
working memory capacities, they were often unable to complete the activities. Joe,
aged 7 years (who had four fingers on his left hand and five fingers on his right hand
and good working memory skills) provides a good example of this:

Caroline: Right, which number is closer to seven, is it four or nine? [using visual
array]

[9 second pause and then Joe points to the 9]

Caroline: Nine is closer. Why?

Joe: Because...ummm...nine minus two is seven

Caroline: Yep and what about the four?

Joe: Four...plus three

Caroline: So is that why nine is closer? [Joe nods]
Having seen this confidence the next example was a surprise:

Caroline: OK, how much is two plus four? [Joe is still for 5 secs] you can use your
fingers, or | can give you some counters. How much is two plus four?
[pause]

Caroline: Do you know what it would look like? Should I write it down for you?
Joe: Yeah [I write 2+4 on a piece of paper]

Caroline: Do you know how to do it?

Joe: No

Joe had a good working memory in most areas and he seemed to rely on this very
heavily when doing numerical calculations. However when his working memory
failed, he had no strategy to fall back on. He did eventually do this particular calcula-
tion with counters, but he needed prompting in order to see that this was a possible
means of solving the problem.

Compare this with Emily, also aged 7 years (who had five fingers on her left hand and
four fingers on her right hand) who had been doing finger gnosis training for at least 4
months and had then continued to use her fingers for mathematical calculations:
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Caroline: Can you work out thirteen add 39? You can write it down if it helps...
thirteen add thirty nine [spoken slowly as Emily writes 13+39] [pause]

Caroline: Do you know what it will be?

Emily: No I don’t know what the answer is because...the trouble is the
twelve....and I’ve got to add another ten on

Caroline: Yeah so what do you think this might be? [as | point to the calculation that
Emily has written down] [pause] What’s the strategy you could use to work
it out?

Emily: Umm...nine and three...nine, ten, eleven, twelve [using fingers]. Now...
fifty add two is fifty two [writes = 52]

For Emily fingers were a tool that she could use effectively to support with her calcula-
tion and to enable her to offload some of the work away from her working memory.
This flexible use of fingers, as one tool among many, enabled Emily to complete the
calculation quickly and efficiently.

CONCLUSIONS

Fingers seem to have a particular role to play in the development of children’s early
number skills. This study provides a new perspective because of the opportunity it pro-
vided to observe the implications on children’s mathematical development when fin-
gers were not used as a means of accessing and supporting numerical activities. When
they were used, fingers provided a more reliable model than tools such as counters.

As the children in the study began to “know” their fingers, they could use them as tools
to access the mathematical problems they sought to solve. This method was more re-
liable and easier than asking children to count out a given number of counters, espe-
cially as once children “know” their fingers, they do not need to count and so do not
make the errors that often occur when counters, or similar tools, are used to help with
solving numerical problems.

This study highlights in great detail, the special role that fingers can play in supporting
children with arithmetic calculations. It identifies the need for practice in using fingers
and specifically in developing finger gnosis at an early age in order to support sen-
sorimotor development and to optimise the opportunities for children to develop
mathematical confidence and competence.

The present study also suggests that if finger gnosis is not well-developed, children can
experience a mismatch between their visual finger representations and the sen-
sorimotor experience. If children’s finger gnosis is poorly developed, it seem likely
that their fine motor skills will also be affected, as they will find it hard to identify
individual fingers. This is an area that deserves further exploration as a potential ex-
planation for the observation that some children fail to use their fingers to help with
mathematics, while others become over-dependent on the visual representation with-
out a genuine “feel” for the numbers that their fingers represent.
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PROFESSIONALISATION OF PROSPECTIVE TEACHERS
THROUGH THE PROMOTION OF
COGNITIVE DIAGNOSTIC COMPETENCE

Natalie Hock and Rita Borromeo Ferri

University of Kassel (Germany)

Teacher’s knowledge about student’s cognition is important in order t0 recognize the
deficits of the students, to analyse them and to give appropriate support (Kunter et al.
2013). Thus, the presented DiMaS-net project focus on the professionalisation of
prospective teachers regarding their diagnostic competence. A specific seminar for
becoming secondary teachers was developed and with a pre-post Design the increase
of teachers’ diagnostic competence was investigated. In this paper we will describe the
teacher training and present first results concerning the improvement of the perceived
self-efficacy.

THEORETICAL BACKGROUND
Research projects on professional knowledge of teachers

The basis of quality teaching is the knowledge and skills acquired in the training in
theoretical and practical phases of teacher training (Bromme, 2008), whereby Shul-
man’s taxonomy forms the basic framework for describing teachers’ professional
knowledge. He distinguishes between the four knowledge dimensions of general ped-
agogical knowledge (GPK), content knowledge (CK), curricular knowledge (CK) and
pedagogical content knowledge (PCK) (Shulman, 1986; 1987). Shulman characterises
the latter as a “special amalgam of content and pedagogy that is uniquely the province
of teachers, their own special form of professional understanding” (Shulman 1987, p.
8).

This taxonomy is well known in teacher education research and is contained in many
review articles (e.g. Baumert et al., 2010; Ball et al., 2008). It often forms the basis for
various models, including those in research projects such as COACTIV, TEDS-M and
the Michigan Group. Kunter et al. (2013) have developed a model for the professional
competence of teachers that also includes the professional knowledge of teachers. It is
subdivided into the competence areas of content knowledge, pedagogical content
knowledge, pedagogical/psychological knowledge, organizational knowledge and
counseling knowledge. Particularly relevant for the DiMaSnet project is the pedago-
gical content knowledge which in this model is subdivided into knowledge about the
didactic and diagnostic potential of tasks as well as their cognitive requirements,
knowledge about the mathematical thinking and the conceptions of pupils, and know-
ledge about various explanatory possibilities (Kunter et al., 2013). The study COAC-
TIV thus placed a special focus on the knowledge of teachers (not students) about
mathematical student cognitions.
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The research group around Ball and Hill also sees the "knowledge of content and
students™ as a part of mathematical knowledge for teaching and refers to the "know-
ledge of common student conceptions and misconceptions about particular mathema-
tical content” (Ball et al., 2008, p. 401). The dissertation by Heinrichs (2015) lays a
special focus on the process of error detection, identification of causes and subsequent
handling of the error under the generic term diagnostic competence.

Diagnostic competence

Horstkemper (2006) describes diagnostic competence "as the basic qualification of all
teachers" (p. 4, translation of the author), as it has, among other things, a great signi-
ficance for dealing with heterogeneity, individual advancement and the support of lear-
ning processes (Bos & Hovenga, 2010). However, this is not a universal, but rather an
area-specific ability, which according to Heinrichs' findings cannot be transferred from
one mathematical content to another (Heinrichs, 2015; Spinath, 2005). Already
Ginsburg (1977) recognized "the child’s failure is often the result of a procedure,
which is organized and has sensible origins” (p. 49). If the teachers or trainee teachers
receive knowledge about various misconceptions, it is easier for them to identify
mistakes in a lesson (Reiss & Hammer, 2013). Misconceptions can be revealed by
appropriate diagnostic tools and methods, and the prospective teacher can help the
learner to correct the error (Lorenz, 1984).

Within our project we have set ourselves the aim to train prospective teachers in analy-
sing and interpreting students’ thinking processes and misconceptions that lead to
mistakes in mathematics lessons. We aim at drawing their attention to the fact that faul-
ty student cognitions are the cause of typical student errors and difficulties (Kunter et
al., 2013).

The following definition clarifies the construct and the goal of the project DiMaS-net:

Cognitive-diagnostic competence includes the teachers' conceptual mathematical content
knowledge and knowledge of preferred ways of learners working and their thinking about
mathematical topics that are explored using a variety of diagnostic methods.

If the prospective teacher is able to recognize, analyse and classify a student’s mis-
conception in a concept, then he or she has the possibility to design an insightful
learning process as a learning opportunity (Kunter et al., 2013). In addition, practical
experience (such as a diagnostic interview) can be a useful learning environment for
developing diagnostic competence (Hascher, 2008).

Perceived self-efficacy

Another construct that we used within the framework of our study is the perceived
self-efficacy regarding the recognition of thought and misconceptions. It refers to the
social-cognitive theory of Bandura (1997) and for him “perceived self-efficacy is
concerned not with the number of skills you have, but with what you believe you can
do with what you have under a variety of circumstances” (p. 37). The perceived self-ef-
ficacy can be distinguished by its degree into generality, specificity and area specific-
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ity, whereby the teacher's perceived self-efficacy is a good example of the area speci-
ficity. Accordingly, individual statements include "the convictions of teachers to
successfully master difficult demands of their professional life even under adverse
conditions" (Schwarzer & Jerusalem, 2002, p.40, translation of the author). Teachers
with a high perceived self-efficacy conceive a challenging teaching concept and show
more patience in dealing with students having learning difficulties (Schwarzer & Je-
rusalem, 2002). In addition, literature shows a positive correlation between perceived
self-efficacy and performance, which could possibly indicate a positive relationship
between perceived self-efficacy and the recognition of thought and misconceptions
(Schoreit, 2016).

RESEARCH QUESTIONS

The desiderata that are attempted to be clarified within our project arose from the
theoretical background knowledge research.

1) How does cognitive diagnostic competence change in specific mathematical subject
areas after prospective teachers of mathematics have participated in a diagnostic
seminar?

2) What influence do diagnostic interviews have on the development of cognitive diag-
nostic competence?

3) What influence does dealing with known errors in literature have on the develop-
ment of cognitive diagnostic competence?

4) How does the perceived self-efficacy of mathematics prospective teachers change
regarding cognitive diagnostic competence by participation in the diagnostic seminar?

Only the last research question will be discussed in more detail within this paper.

DESIGN OF THE STUDY

The study described above was carried out as part of the DiMaS-net project (diagnosis
and individual promotion of mathematics teaching in secondary schools through
networking teacher education and training), which was financed by the “Quality Ini-
tiative for Teacher Education” programme of the Federal Ministry of Education and
Research in Germany. Within the study, a four-hour block seminar of 180 minutes
each, as intervention and data collection material were developed and piloted in winter
term 2015/16 and summer term 2016. The seminar was held under the theme "diag-
nosis and support in teaching mathematics in secondary schools" and was aimed at
prospective teachers for secondary schools. Subsequently, a revision took place, as
well as the main study in winter term 2016/2017 and summer term 2017. Thematically,
the arithmetic topics of "whole numbers and percentages"” were in the focus of both
diagnosis and support. 124 prospective secondary school teachers took part in the in-
tervention and were divided into four experimental  conditions.
The first experimental group (EG1) visited the complete seminar and also conducted a
diagnostic interview between the third and fourth seminar. The second experimental
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group (EG2) also participated in the complete seminar, but did not conduct a diag-
nostic interview. The third experimental group (EG3) received only a 90-minute input
on errors and associated notions and misconceptions in the field of whole numbers, and
the fourth experimental group (EG4) is a waiting group that instead attended a seminar
about media in mathematic lessons.

CONTENT OF THE SEMINAR

In the first seminar session, the prospective teachers dealt with general topics related to
diagnosis. Terms such as competence, professional competence and diagnostic com-
petence were defined, and examples were given of how process- and product-oriented
diagnosis can take place in mathematics lessons. As a process-oriented diagnostic
option, the diagnostic interview was intensively examined.

The second seminar session covered typical mistakes and associated thinking proces-
ses in the subject areas of whole numbers and percentages. They were collected and re-
corded in a mind map by analysing tasks with the corresponding incorrect student solu-
tions. The student solution considerations were based on a certain scheme. It is based
on the general mathematical competences of the educational standards in Germany and
was clarified in a process diagram within the study. Accordingly, each student solution
Is examined according to the following points:

e K6 - comprehending the given task

e K2 - devising solution strategies

e KB - writing down necessary equations as mathematical models (if the task
was contextual)

e K5 - working technically, calculating

e K3 - translating the solution back into the given context

The following task is typical of the tasks discussed.

At a construction site, a large hole is being dug, which will later become the basement
of a detached house. Construction workers dig a 3-meter-deep hole. After consultation
with the site supervisor, the hole must be dug out by another 2 meters in depth.
How deep must the hole be dug in total?

Student solution:
—3m—(—2m)=-3Im+2m= -bm
A total of 5 m must be dug deep.

First of all, the prospective teacher asks himself whether the student (whose solution is
considered) was able to grasp the content of the task. For example, if he/she has not
been able to extract all important information from the task text or if he/she has mis-
understood the task text, then this mistake is based on a “K6-deficit”.

Afterwards it is checked whether the student is able to identify a helpful solution strate-
gy. Through the scheme, the prospective teacher can examine the student solution step
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by step and thus give a differentiated statement about possible deficits and underlying
thought processes.

The third seminar session allowed prospective teachers to work with the FIMS (Failure
Diagnostic Interviews in Maths lessons of secondary schools) developed within the
project. Video excerpts were analysed which show prospective teachers during the
interview. Based on the interview situation, the prospective teacher receives detailed
information about the mathematical competences of the student and an insight into the
thought processes, procedures and solutions.

Depending on the examination conditions, some participants conducted a diagnostic
interview with a pupil of their choice between the third and fourth seminar. During the
fourth seminar session the prospective teachers discussed this interview situation and
reported about their experiences. The rest of the fourth seminar session was devoted to
the topic of necessary support for errors and faulty ideas in the fields of whole numbers
and percentages.

The seminar design took into account the sources for the development of perceived
self-efficacy in order to influence them. If a person achieves his or her own successes,
this has the strongest effect on perceived self-efficacy due to his or her own efforts and
performance. Since the prospective teachers themselves conducted a diagnostic inter-
view, this first source of perceived self-efficacy was taken into account in the seminar.
The second-largest impact has "vicarious experiences through observations of be-
havioural models™ (Schwarzer & Jerusalem 2002, p. 42 translation of the author). In
the third seminar, participants worked with video sequences, observed other students
during the interview and learned from their mistakes if necessary. In addition, lin-
guistic motivations such as "You can do this" and their own emotional arousal, such as
fear, can also have an influence on perceived self-efficacy.

METHODOLOGY

The present study has a quasi-experimental design to check hypothesis. For quan-
titative data collection within a pre- and post-questionnaire, a performance test was
used to determine the diagnostic competence and a questionnaire with 16 items was ad-
ministered that recorded the constructs motivation and perceived self-efficacy.

The instrument for investigating perceived self-efficacy

At the beginning and the end of the seminar, the participants answered an identical
questionnaire (quest.) on perceived self-efficacy averaged in 8 minutes, in which they
assessed themselves about the recognition of students’ thought processes and miscon-
ceptions in the subject areas whole numbers and percentages. The scales used in our
study were adapted from existing scales. The perceived self-efficacy construct con-
sisted of 7 items and had a reliability of o = .87 within the piloting. Reliability in the
main inspection is also satisfactory: o Pre=.851 and a_Post= .874.

On a unipolar rating scale with the six verbal levels False (1), Mostly false (2), More
false than true (3), More true than false (4), Mostly true (5) and True (6), the prospec-
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tive teacher could give a positive or negative answer. The following example is rep-
resentative of the raised scale of perceived self-efficacy:

| trust myself to diagnose the thoughts and misconceptions of my students.

The discriminatory power of the items is bigger than .500 in the pre-questionnaire and
bigger than .552 in the post-questionnaire. To examine the change in perceived self-ef-
ficacy caused by the complete intervention (experimental condition 1 (EG1)), de-
scriptive values are first presented and with the help of a t-test, it is examined whether
the pre- and post-questionnaire differ significantly. The individual experimental con-
ditions are then evaluated by an analysis of variance (ANOVA).

RESULTS
The first table present descriptive dates from the experimental condition 1 (EG 1).
N m SD emp. min.  emp. max.
pre-quest. 34 3,634 0,7763 2,3 5,6
post-quest. 33 4,377 0,6027 24 5,3

t(30)=4.628, p< .01, d=0.748
Table 1: descriptive dates from the EG1

Analysis by means of a t-test for dependent samples shows a significant difference
with a medium effect (effect size Cohen’s d= 0.748) in the mean values between the
pre- and post-questionnaire. Through the intervention, prospective teachers of EG1
have raised their perceived self-efficacy regarding the recognition of thinking and mis-
conceptions. Now the different experimental conditions are compared with each other.

Perceived

self-efficacy N =C1 EG2  EG3  EG4
pre-quest. 34 23 20 3
post-quest. 33 23 36 20

Table 2: Number of participants in the experimental conditions

Perceived

: EG1 EG2 EG3 EG4
self-efficacy

pre m/SD 3,634 0,7763 4,100 0,7556 3,651 0,9005 3,765 0,5157
post m/SD 4,377 0,6027 4,503 0,4871 3,889 0,8239 3,757 0,6938

Table 3: Mean value and standard deviation within the pre- and post- questionnaire

When comparing the individual experimental conditions, differences can already be
found regarding the mean difference. For example, the experimental group 4 (EG4)
shows no changes and the difference in group EG1, which has carried out the whole
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intervention including diagnostic interviews, is biggest compared to the other mean
differences.

An analysis of variance (ANOVA) with measurement repetition taking into account
the experimental condition as covariate shows a significant interaction effect between
the independent variables time of the questionnaires and the experimental condition
(F(1,041)=3,551; p=0,017; partial n*> = 0.095). The experimental condition thus has a
medium effect on the perceived self-efficacy. Furthermore, it will be investigated be-
tween which experimental conditions the changes between pre- and post-questionnaire
are significantly different.

EG1/ EG1/ EG2/ EG2/ EG3/

EGL/EG3 EG4 EG2 EG3 EG4 EG4
F-value 5,710 7,947 2,465 0,247 1,828 1,294
p-value 0.020* 0.007** 0.123 0.621 0.184 0.261
partial n? 0.083 0.142 0.046 0.005 0.045 0.025
selectivity 0.653 0.789 0.338 0.078 0.261 0.200

Table 4: Significant differences between the experimental conditions

Significances only occur in one pair of experimental conditions. The group (EG1)
which took part in the total intervention differs significantly from groups EG3 (group
with 90-minute whole numbers) and EG4 (waiting group). However, there is a big
effect (effect size partial n>= 0.142) regarding EG4, and only a medium effect (effect
size partial n?>= 0.083) regarding EG3. Hence there are only significant differences
between EG1 and EG3 and also EG1 and EG4. In particular, the significant difference
between EG1 and EG4 shows that the complete intervention has an impact on per-
ceived self-efficacy.

SUMMARY AND OUTLOOK

The evaluation of the data shows that an increase in perceived self-efficacy is possible
through the intervention (EG1). The comparison of the different experimental con-
ditions also shows an influence on the perceived self-efficacy. On the one hand, this
can have a positive effect on teaching, as prospective teachers will try to understand the
students' thinking and misconceptions more intensively. On the other hand, the in-
creased perceived self-efficacy could indicate an increased diagnostic competence
through intervention, since it is known from the literature that performance and per-
ceived self-efficacy are related. This will be evaluated in the next phase of our project.
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WHAT DO MATHEMATICIANS WISH TO TEACH
TEACHERS IN SECONDARY SCHOOL ABOUT MATHEMATICS?

Anna Hoffmann and Ruhama Even
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This study investigates what mathematicians wish to teach teachers about what
mathematics is. Data source included interviews with five research mathematicians
who taught advanced mathematics courses to practicing secondary school teachers.
Analysis revealed that expanding teachers' knowledge about what mathematics is was
one of the main objectives of the interviewees. They referred to three aspects: (1) the
essence of mathematics, (2) doing mathematics, and (3) the worth of mathematics. This
paper characterizes and illustrates each aspect.

INTRODUCTION

In many countries, the education of secondary school mathematics teachers tradition-
ally includes a strong emphasis on advanced mathematics courses at the college or
university level, taught by mathematicians. This tradition has been reconsidered in
recent years, and the relevance of academic studies of mathematics to secondary
school mathematics teaching is being debated (e.g., Dreher, Lindmeier, & Heinze,
2016; Even, 2011; Murray et al., 2015; Wu, 2011). As part of a comprehensive study
that examines what might be the relevance and contribution of academic mathematics
courses, taught by research mathematicians, to teaching mathematics in secondary
schools, the current study examines what mathematicians who teach such courses wish
to teach teachers about what mathematics is.

THEORTICAL BACKGROUND

The empirical research literature on the relevance and contribution of academic studies
of mathematics to teaching secondary school mathematics suggests a potential con-
tribution at two levels of subject-matter knowledge. One level concerns knowledge of
specific contents (e.g., Even, 2011; Zazkis & Leikin, 2010). For example, when in-
terviewed about the contribution of their academic studies of mathematics to their
teaching in secondary school, some mathematics teachers reported that they used the
knowledge of specific topics they acquired to respond to students’ questions or to en-
rich topics they taught. Yet, most studies reported on contribution at a more general
epistemological level of knowledge about the nature of mathematics, about what
mathematics is (e.g., Adler et al., 2014; Even, 2011; Zazkis & Leikin, 2010). For
example, teachers reported that academic mathematical studies expanded their
knowledge in aspects, such as, doing mathematics as problem solving, the role of in-
tuition in doing mathematics, and the use of mathematics in other disciplines. These
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new understandings enabled them to better represent the discipline of mathematics in
their teaching.

As learning is shaped by teaching, a question arises: What do mathematicians, who
teach academic mathematics courses to teachers, wish to teach teachers about the na-
ture of mathematics? The existing literature concerning mathematicians’ positions
regarding academic mathematics studies of teachers is rather limited. It mainly com-
prises forewords appearing in mathematics textbooks intended for teachers (Klein,
1933/2016) and position papers written by a number of mathematicians who publish
on educational topics (e.g., Wu, 2011; Ziegler & Loos, 2014). In most of these publi-
cations the mathematicians address the level of the nature of mathematics, emphasiz-
ing the importance of narrowing the gap between “what (research) mathematicians
take for granted as mathematics and what teachers and educators perceive to be
mathematics” (Wu, 2011, p. 382). Yet, different mathematicians suggest attending to
different aspects. For example, Howe (Howe & Ma, 1999) stresses the characteristic of
coherence and connectedness of mathematics:

I would like to highlight the concern ... for the connectedness of mathematics, the desire to
make sure that students see mathematics as a coherent whole. ... A teacher who is blind to
the coherence of mathematics cannot help students see it. (p. 885)

Wu (2011) emphasizes the importance of the fundamental principles of mathematics
(e.g., definitions provide the basis for logical deductions), while Ziegler and Loos
(2014) aim at broadening teachers' view of mathematics:

...give them [teachers] a panoramic view on mathematics: ...an overview of the subject,
how mathematics is done, who has been and is doing it, including a sketch of main de-
velopments over the last few centuries up to the present (p. 9).

As seen, teachers report that academic mathematics studies contributed to their
knowledge about the nature of mathematics, which mathematicians view as an im-
portant component of teachers' knowledge. Yet, our review of the literature reveals the
deficiency of conceptual frameworks that could be used to examine what knowledge
about the nature of mathematics mean. Moreover, empirical research that examines
what mathematicians wish to teach teachers about the nature of mathematics is lacking.
Our study addresses both these shortcomings of current research.

METHODS
Setting and Participants

The study was situated in a master’s program, designed for practicing Israeli secondary
school teachers of science and mathematics. A bachelor’s degree in mathematics or in
a mathematics-related field is required for admission to the mathematics strand of the
program. A major component of this strand comprises eight academic mathematics
courses, designed and taught by research mathematicians. Four of these courses deal
with topics in the school curriculum at an advanced level: algebra, analysis, geometry,
and probability and statistics. Three courses deal with the use and application of
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mathematics in other domains: computer science, natural sciences (applied mathe-
matics), social sciences and everyday technologies. One course appraises the history
and philosophy of mathematics. In addition, a final project that involves an inde-
pendent study of an unfamiliar mathematical topic is carried out under the guidance of
a mathematician.

Five of the seven mathematicians who teach in the mathematics strand of the program
participated in the study. All are prominent research mathematicians, who usually
teach only mathematics master and doctoral students. The five participating mathe-
maticians teach all the mathematics courses in the program but two: algebra and the
use of mathematics in computer science.

Data Collection and Analysis

The main data source included individual semi-structured in-depth interviews with the
participating mathematicians. The aim was to learn what the mathematicians seek to
teach teachers about mathematics and to reveal their views regarding the relevance and
contribution of academic mathematics studies to secondary school mathematics
teaching. The interviews included two main questions. The first focused on the general
teaching goals of the mathematicians in the program. The second question focused
explicitly on their teaching goals regarding what mathematics is. The interviews took
about an hour and were recorded in audio. Additional data sources were participant
observations in three courses: geometry, analysis, and the history and philosophy of
mathematics, documented by field notes. The aim was to strengthen the internal va-
lidity of the study.

Data were analysed qualitatively. First, a full transcript of the interviews was made,
followed by open coding and categorization in an iterative and comparative process.
The aim was to identify what, if at all, the mathematicians wished to teach teachers
about the nature of mathematics. In addition to the authors, three graduate students in
the field of mathematics education participated in the coding process of about 20% of
the data. All disagreements were resolved by discussion, so a consensus was reached.

FINDINGS

Analysis revealed that enriching, expanding and deepening teachers' knowledge about
what mathematics is was a central goal of all the participating mathematicians. This
became apparent at an early stage of all interviews, when the mathematicians were
asked about their teaching goals in the program, before the topic of the nature of
mathematics was explicitly raised by the interviewer. All the mathematicians stated at
this point that knowledge about what mathematics is was as a major teaching objective.
For instance (to ensure confidentiality, all the participating mathematicians are re-
ferred to as males, denoted as M1-M5),

Interviewer: You teach the course... and advise students [in their final project]. What are
your main objectives when you do these things?

M2: The main objective is to explain what mathematics is...
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All the interviewees mentioned also that they wished to enrich teachers' knowledge of
specific mathematical contents. However, they attributed less importance to this goal.
For example, M5 said, "This is actually what | think we need the entire program to
concentrate on... to teach the mathematical method ... it is possible to teach it almost
through any topic." Three mathematicians (M2, M3, M5) explicitly said that it was
most likely that teachers would forget the specific contents they learned in the pro-
gram. Thus, what they wished for was that teachers would remember different aspects
of knowledge about mathematics:

In my opinion, most of the material we teach will be lost, because they [the teachers] will
forget it within half a year... But what we want to remain is the ability to understand, the
ability to use the mathematical method... to have logic in what they do (M5).

Analysis of the interviews generated three aspects of the nature of mathematics that the
participating mathematicians wanted to teach teachers: (1) the essence of mathematics,
(2) doing mathematics, and (3) the worth of mathematics. Each of these aspects com-
prises two or three characteristics. In the following we describe and illustrate the
characteristics of each aspect.

The essence of mathematics

The aspect essence of mathematics deals with the question: What is this discipline
called mathematics? Data analysis revealed three main characteristics of the discipline
of mathematics that the interviewees wished to teach teachers: (1) wide and varied (2)
rich in connections (3) structured deductively.

Wide and varied

According to the participating mathematicians, teachers need to know that mathe-
matics is a wide and varied discipline, which has many domains and many facets. For
example, "I wish that what would happen to the teacher in the program... that the
teacher would come and discover that there are many worlds in mathematics"” (M4).
The mathematicians stressed that teachers should be "introduced to different aspects of
modern mathematics” (M1) and understand that mathematics continues to develop
towards new and varied directions. M4 exemplified it: "... my last two lectures are
always on chaos. The purpose of it, first, is to show them that mathematics is a science
of the 21% century."

The mathematicians added that it is important for teachers to know that even areas that
are familiar to them, such as, probability and algebra, are much broader than they
commonly envision. That there exists mathematical knowledge in these areas
—unfamiliar to most teachers — that helps to answer mathematical questions that the
teachers' limited current knowledge cannot answer.

Rich in connections

All the mathematicians said that it was important for teachers to know that mathe-
matics is rich in connections and that in order to properly understand mathematics one
must be familiar with these connections. For example, M3 said that teachers need to be
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aware that there should not be disconnected fragments of knowledge in mathematics,
and M1 emphasized "internal connections among the mathematical concepts and
topics”. M1 demonstrated this type of connections, using the concepts of circle and
ellipse. He argued that the connection between these two concepts is often misunder-
stood as if ellipse is a degenerate circle. However, the contrary is true because a circle
Is a degenerate ellipse.

Deductive structure

All the mathematicians said that teachers need to understand the deductive structure of
mathematics. They referred to general characteristics and to elements of the deductive
structure. General characteristics concerned with mathematics as a consistent science
that is based on the laws of logic, its foundation lies on universal truths, and thus
mathematics is not arbitrary: everything has a reason. For example, M2 said that one of
his goals was:

...to show that in mathematics, proofs and definitions, it is not that someone in the Min-
istry of Education determined those things, that it should be done this way and not another
way. That it comes from natural and long-term attempts to understand things (M2).

With regard to the elements of the deductive structure, the mathematicians spoke of the
need to understand in depth the roles of axioms, definitions, theorems and proofs. For
example, three mathematicians mentioned the key role a successful definition could
have and what a good definition is: "[The teachers should know] that in order to give
definition one must be able to answer the question why this word stands here and what
it signifies" (M5).

Doing mathematics

The aspect doing mathematics deals with the question: How is mathematics done?
Data analysis revealed three main characteristics of mathematical activity that the
mathematicians wished to convey to teachers: (1) asking questions, (2) thinking and
understanding, and (3) using intuition and formalism.

Asking questions

The mathematicians argued that teachers need to know that a fundamental part of
doing mathematics is asking questions. For example, "Questions are more important
than answers. Once one is able to ask questions, a giant step forward has been taken"
(M2). Two types of questions were mentioned. One type is questions arising from the
mathematics itself. For example, "Also, one should inspect, for each mathematical
theorem, what it offers, what the outcome would be if |1 change the conditions a little
bit" (M1). The other type is questions arising from outside of mathematics. For ex-
ample, "Why do planes flying to New York from Tel-Aviv fly over Canada?" (M1),
and "Why does the time of sunset in spring and autumn change quickly but in winter
and summer it hardly changes?" (M3).

PME 42 — 2018 3-103



Hoffmann & Even

Thinking and understanding

All the mathematicians emphasized the centrality of thinking and understanding in
doing mathematics. For example, one said: "One of the primary goals was to show that
there is mathematics beyond that [the technique] — also the thinking features..." (M1).
And another, "I hope very much that they will not forget the main idea that in math-
ematics things need to be explained..." (M2). The mathematicians emphasized that
understanding in mathematics involves understanding the purposes and meanings of
what one does: "...when they do something, they have to be able to formulate exactly
what they are doing, why they are doing that, what they could do differently" (M5).
They added that thinking is difficult, and one must make an effort in order to do that,
stressing that thinking should not necessarily be done quickly.

Using intuition and formalism

The mathematicians emphasized that teachers need to know that using intuition is an
integral part of doing mathematics, especially at the initial stage of problem solving.
Precision and formal representation come at a later step and they do not reflect the
process in which mathematics done. For example:

...we [mathematicians] often develop things intuitively. You think that one thing is true
but once you try to prove it you realise that you need to slightly change the phrasing...

Generalizations come at the end, not at the beginning. It's not that we understand the whole
theorem at the beginning. We usually develop something small and gradually realize that
there is a bigger picture, and at the end we give a big beautiful picture. (M4)

The worth of mathematics

The aspect worth of mathematics deals with the question: What good is it to engage in
mathematics? Data analysis revealed two main characteristics: (1) the practical worth
of mathematics, and (2) the worth of mathematics per se.

The practical worth of mathematics

All the mathematicians emphasized the need for teachers to know that solving practical
problems is, and has always been, an important motivation to engage in mathematics;
that mathematics is not just a theoretical science disconnected from the physical world,
but rather a tool for solving real life problems. For example: "[Mathematics] is things
related to life, to usages..." (M3). They explained that through its uniform language
and its modeling possibilities, mathematics helps to solve problems that arise in dif-
ferent disciplines, contributing to fields, such as navigation, geography, physics, bi-
ology, economics, technology, astronomy, medicine, computers, and more. The
mathematicians stressed that teachers need to understand "how [historically] people
arrived at certain things" (M1). For example, "In my view, it is simply unacceptable
that they will talk about derivatives without knowing why Newton developed this
topic" (M4).
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The worth of mathematics per se

The mathematicians spoke also about the need for teachers to be aware of the worth of
engaging in mathematics per se. Yet, this characteristic was less stressed. In this re-
gard, they spoke about the engagement in mathematics as a challenging and creative
activity, which develops rational and logical thought. They added that the beauty and
aesthetics of mathematics gives much joy.

CONCLUDING REMARKS

Our study provides important information regarding an issue that has been hardly
studied, namely, what mathematicians wish to teach secondary school teachers about
mathematics. As shown, the mathematicians who participated in our study aimed at
enriching, expanding and deepening teachers' knowledge about what mathematics is.
These findings are in line with teachers' reports about the contribution of academic
studies of mathematics to teaching secondary school mathematics (e.g., Even, 2011,
Zazkis & Leikin, 2010). However, in contrast to those studies, our study provides de-
tailed information about what knowledge about the nature of mathematics might mean
to mathematicians. Analysis of the responses of the mathematicians who participated
in our study generated three aspects, each comprises two or three characteristics, that
together could serve as a conceptual framework for analysing teacher knowledge and
practice related to the general epistemological level of knowledge about the nature of
mathematics. This framework is presented in Figure 1.

Essence Doing Worth
What is this discipline How is mathematics done? What good it is to engage

called mathematics? in mathematics?

—| Wide and varied —| Asking questions The practical H:’O?‘th
| of mathematics
. g, . Thinking and The worth of
|| Rich in connections | . G
J understanding mathematics per se
Structured Using intuition and
— deductievely | — formalism

Figure 1: What mathematicians wish to teach teachers about the nature of mathematics.

Follow-up research is needed in order to examine the usefulness of this framework for
the much-needed research on the contribution of academic mathematical studies to
secondary school teachers' knowledge and practice. For example: How applicable is
this framework for capturing what secondary school teachers learn about the nature of
mathematics during their academic studies of mathematics? To what extent is this
framework related to cultural and societal factors?
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GESTURES AS EMBODIMENTS OF VARIABLES
AND ALGEBRAIC EXPRESSIONS

Mirjana Hotomski
Tufts University, Medford MA, USA

Researchers have investigated how students may represent indeterminate quantities
(variables or unknowns) through expressions in natural language, non-numerical
symbols, and external representations, implicitly treating indeterminate quantities
much as if they were known quantities (Radford, 2011). Here | will focus on the
following research question: How do sixth graders’ gestures reflect their work with
indeterminate quantities and the ways in which they operate on those quantities?
Specifically, the present study provides evidence that: 1) sixth graders used gestures
as visual representations of indeterminate quantities; and 2) students combined
gestures into embodied forms of algebraic expressions.

INTRODUCTION

The present study aims to address the role of gestures in the development of students’
algebraic thinking concerning the use of variables and algebraic expressions. This is an
underexplored area, which in this study | will focus on by addressing the following
research question: How do sixth graders’ gestures reflecttheir work with
indeterminate quantities and the ways in which they operate on these quantities?
Gestures observed in the present study can be defined as spontaneous motion of hands
and arms that co-occur with speech (McNeill, 1992).

Radford (2011) describes algebraic thinking as follows: “What characterizes thinking
as algebraic is that it deals with indeterminate quantities conceived of in analytic
ways. In other words, you consider the indeterminate quantities (e.g. unknowns or
variables) as if they were known and carry out calculations with them as you do with
known numbers” (p. 310). The author demonstrated this by using an example of a
second grader working on extending a geometric pattern, in which an element at
position n consisted of a row of n white squares plus one shaded square placed on top
of another row of n white squares. The pattern corresponded to the function y = 2n+1,
where n denoted the position in the ordered sequence and y denoted the number of
squares in the pattern. The student extended the pattern to the 25™ position by saying,
“What is 25 plus 25? After that you add 1!” In this example the second grader operated
on an instance of an independent variable n=25 (as indeterminate quantity) by carrying
out calculation (25+25)+1. Although she struggled to find the sum 25+25, she
described the element at the 25™ position as a rule (in analytic ways) rather than as a
value of 51. Whereas Radford (2011) finds indeterminate quantities in students’
linguistic referents to “instances of the independent variable” (p. 310) and Brizuela
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(2016) in a student’s non-numerical inscription “?” to represent the unknown number
of candy in a candy box, Cooper and Warren (2011) find them in external
representations as points on a number line representing an unknown value. The present
study makes a contribution to the body of literature on students work with
indeterminate quantities in analytic ways (Cooper & Warren, 2011; Brizuela, 2016;
Radford, 2011), by providing evidence that students do so through gestures.
Specifically, in the present study | claim that 1) sixth graders used gestures as visual
representations of indeterminate quantities; and 2) students combined gestures into
embodied forms of algebraic expressions.

METHOD
Data

Data were selected from a collection of 378 classroom videos of 64 mathematics
teachers in grades 5-9 from 9 districts, participating in a 3-semester long graduate-level
professional development program aimed at improving teaching of mathematics, be-
tween the years 2011 and 2013. All participating teachers were asked, but not required,
to allow researchers to videotape in their classrooms both at the beginning of their
participation and at several points during the three semesters. Data used in this study
are two 38-minute long video recordings of a single sixth grade mathematics lesson. At
the time of this lesson, the teacher was nearing the end of her second semester of
participation. The analysis presented here focuses on students’ gestures at a single
time point, and not on the teacher's change throughout the program. Each of the two
videos was made by one of the two program researchers who recorded different aspects
of the same lesson while also engaging with students and asking them to explain their
thinking. Data were selected because of the prominent use of gestures among nearly
half of the students.

Participants

Participants were thirteen sixth grade students arranged in four groups in a public
school in New England, engaged in algebraic generalizations of a geometric pattern.
Six of the students from three different groups used gestures to explain their thinking.
Out of those | selected two students for analysis, Theo and Sophia, not from the same
group, who used gestures to describe a geometric pattern in a general case, not specific
to any particular position in the geometric pattern.

Methodology

| selected and transcribed the video episodes in which students’ gestures co-occurred
with their speech, here referred to as gesture-speech pairs. As the conceptual frame-
work for this paper, | drew on literature that views gestures as semiotic resources
(Arzarello, Paola, Robutti, & Sabena, 2009; Sabena, Radford, & Bardini, 2005;
Radford, 2014) and, as such, convey information that closely relates to accompanying
speech (Goldin-Meadow, 1999; McNeil, 1992). With this framework in mind, | first
made interpretations about the information conveyed in speech and then analyzed
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students’ gestures and made interpretations about the information they conveyed
related to the context found in speech. Finally, I looked into students’ gestures for
evidence of use of indeterminate quantities in analytic ways.

Task and Lesson Flow

The teacher introduced the task as a real-life scenario asking students to make
predictions for the number of tiles needed to enclose a garden of a varying length and
constant width of one. During a whole-class discussion, for each of the first three
elements of the geometric pattern (see Figure 1 left), the teacher, under a document
camera, laid down the green tiles representing the garden spaces and then asked
students to make predictions for the number of tiles needed to enclose it. Following
students’ predictions, she enclosed the garden with tiles and moved to the next
element. Lastly, she asked students, “What patterns have you started to notice?”” The
first student to respond immediately took a covariation approach (Confrey & Smith,
1995) when he said, “You add a square foot to the garden, and it increases by two tiles
on the outside.” Another student noticed that three tiles were needed at each end to
enclose any garden of the constant width of one, ~one side is always three tiles.” The
teacher then announced that she would refer to the sides as “ends” (Figure 1 left depicts
teacher placing two fingers on each “end”). Soon after the teacher physically separated
the “ends” (Figure 1 right), Theo rephrased the first student’s statement while using the
terminology “top” for the top row of tiles, and “bottom” for the bottom row of tiles,
““Cause since you add more green tiles (garden spaces), you had one more on the top
and one more on the bottom.” This classroom discussion prompted students to
visualize the four corner tiles as parts of the “ends” and not of the “top” or the
“bottom”. Such visualization corresponded to the function y=2n+6, where y
represented the number of tiles needed to enclose a garden of length n.

R
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Figure 1: First three elements of the geometric pattern.

After the initial whole-class discussion, students were given blocks (instead of tiles)
and a handout and were sent off to work in their small groups. While students worked
in groups, the teacher and the two program researchers circulated around the classroom
and worked with each group.

The handout consisted of a table with two columns: “Length of Garden” prefilled with
values 1,2,3,4,5,6,7,8,9,10, 20, 25, 30, 100, 1000, n (Ieft column), and “Number of
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Tiles” (right column) left blank for students to fill in. To the right of the table was extra
space designated by the teacher for students to record their observations and patterns
they notice. The bottom of the page contained the following prompts: “How can you
find the number of tiles for any garden length?”” and “Write the rule”.

RESULTS AND CLAIMS

Episodes 1 and 2 in Figure 2 summarize the gesture-speech pairs used by Theo and
Sophia to describe the general term. Gesture-speech pairs are labeled alphabetically
with letters “a” through “e¢”, speech fragments co-occurring with gesture are
underlined, and student speech is presented in bold.

Episode 1 — Theo describes the general case

Teacher (in response to another student who wrote down “tiles times two”): And why do you
need to multiply this (pulls her thumb and index finger close together and
briefly sets them on the table) times two? What is that going to give you?

Theo: The top @ (gestures so that his arm is aligned with the length of the blocks) and the
bottom P (same gesture on the other side of the blocks).

Teacher: The top and the bottom. So the two is coming from needing a top and a bottom.
Theo: (nods)

Teacher: And what's the other part?

Theo: You have two sides ° (aligns the pencil with one end).

Teacher: The ends, good. And how many do you need for the ends?

Theo: Three

Teacher: Three on one side, and what else do you need?

Theo: Three on the other side

Teacher: A three on the other side. Perfect. And how many is that total?

Theo: Six.
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Episode 2 — Sophia describes the general case

o .

d f

Sophia: I kind of noticed something - you always need like three on the side. You always
need three on the side (pauses then gestures two sides with each hand)¢. But -
and you need - however many f(eet) - however long your um, plant, your,
the length of your garden is that's how many tiles you need (starts gesturing
by forming two open palms pointing at each other, then stands up so that the
camera can see her) on top® (moves her hand formation forward away from her)
and the bottom’ (moves her hand formation backwards towards her).

Figure 2: Theo and Sophia’s gesture-speech pairs.

Claim 1. Sixth graders used gestures as visual representations of indeterminate
guantities

In what follows, I will argue that Theo’s gestures (a and b) and Sophia’s gestures (¢ and
f) were visual representations of indeterminate quantities, the “top” and the “bottom”.

Prior to Episode 1, Theo synchronized gesture and speech to explain that 46 tiles were
needed to enclose a garden length 20, “Cause we did the twenty (places the pencil
above the blocks at the left end) for the top (moves the pencil alongside the blocks to
the right end) and twenty (places the pencil below the blocks at the left end) for the
bottom (moves the pencil alongside to the right end) and the three (moves the pencil
alongside the right end) on each side (moves the pencil alongside the left end) which
equals forty-six”. Evidently, Theo in an embodied way represented the equation
20+20+3+3=46. In Episode 1, the teacher posed a question (“And why do you need to
multiply this times two?”) to another student at Theo’s table in response to his writing
“tiles times two” on his paper. Theo offered an answer to her question by
synchronizing utterances, “The top =”, and “the bottom »”’, with the two identical
open-palm gestures each on a different side of the row of blocks (garden spaces). Theo
used these two identical open-palm gestures as visual representations of two identical
entities, the two imaginary physical rows of tiles enclosing the garden from the top and
the bottom. His gestures provided spatial orientation for each row of tiles as running
parallel to the garden spaces from one end of the blocks to another. These gestures
were also visual representations of two equal quantities, the number of tiles in each
row, which added together demonstrated multiplication by two. Whereas in the
specific case of garden length 20 Theo used the first two gestures as a visual
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representation of two rows of 20 tiles, the top and the bottom, the two gestures he used
in Episode 1 (aand b in Figure 2) represented a general case as they had no reference to
the number of tiles in the top and the bottom row. The quantities represented by these
gestures (a and b) were thus unknown yet equal. This serves as evidence that Theo used
gestures as visual representations of indeterminate quantities.

In Episode 2, without a prompt, Sophia started sharing her observations with students
at her table “I kind of noticed”. She described the general case in which she explicitly
referred to the length of the garden as an unknown quantity, “however many f(eet) —
however long your um, plant, your, the length of your garden is,” and then used that to
quantify how long the “top” and the “bottom” rows should be, “that’s how many tiles
you need on top ¢ and the bottom . She used two identical hand gestures, e and f, to
visually represent two identical rows of tiles running parallel to the garden spaces.
Besides spatial information, her gestures also conveyed quantitative information.
Namely, for Sophia, the number of tiles was a property of the physical row of tiles as
evident in her gesture-speech pairs, “that’s how many tiles you need on top : and the
bottom . Although Sophia stated that the number of tiles in the top and the bottom row
was unknown, “however many”, at the same time she stated that they contained the
same number of tiles “that’s how many tiles you need on top : and the bottom . The
notion of equality is also supported by the two identical hand gestures. In summary,
Sophia’s gestures (e and f) were visual representations of two equal indeterminate
quantities.

Claim 2. Students combined gestures into embodied forms of algebraic
expressions

To provide evidence for Claim 2, I will now discuss the ways in which Theo and
Sophia combined gestures as evidence that they were working with indeterminate
guantities represented by those gestures as if they were known quantities, thus in
analytic ways (Radford, 2011), and that these were embodied ways of representing
algebraic expressions.

As argued in Claim 1, Theo’s open-palm gestures (a and b) in Episode 1, for the “top”
and “bottom” were visual representations of two equal indeterminate quantities. Theo
used the conjunction “and” (“the top and the bottom™) synchronized with repositioning
of the hand, to combine the two indeterminate quantities represented by gestures, equal
in size. This, | argue, is an embodied way of showing the algebraic expressions n+n.
However, this was his response to teacher’s question on why multiplication by two was
needed, which means that Theo’s two gestures were simultaneously embodiments of
the equivalent expression 2n, showing multiplication by two as a repeated addition of
two equal indeterminate quantities.

Theo went along with teacher’s linguistic bid “and” to connect the “top” and “bottom”
to the “ends” (“And what's the other part?”’) and described the “ends” with another
gesture-speech pair (c), “You have two sides ¢ (aligns the pencil with one end)”. His
pencil gesture ¢ served as a visual representation of two equal fixed quantities which he
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immediately following the gesture described as “Three” on one side, “Three on the
other side”, totaling “Six”. Theo, thus, combined the indeterminate quantities visually
represented by the two gestures (a, b) in analytic ways as if they were known by adding
6 to their sum. This was his embodied way of showing the algebraic expression 2n + 6,
which he eventually stated more explicitly when prompted to fill in the last row in the
table for n number of tiles:

Teacher: So what are you going to do with the n now?
Theo: n times two plus six.

In Claim 1, I argued that Sophia’s gestures (¢ and fin Episode 2), just like Theo’s, were
visual representations of two equal indeterminate quantities (“top” and “bottom”).
Sophia used the word “and” in her speech, “on top : and on the bottom *’, synchronized
with alternating her hand formation, forward (e) then backward (f) to show the top and
the bottom, and therefore connected her two gestures into an embodied representation
of the algebraic expression n+n. She represented the “ends” with another
gesture-speech pair (d), “three on each side ¢’, a value that “always” stays the
same. She used the word “but” synchronized with the repositioning of the hands, as a
way to combine the “ends” (each of fixed length 3), with the “top” and “bottom” (each
of an unknown length). The way she combined gestures in Episode 2 is an embodied
way of showing the algebraic expression 3+3+n+n and evidence that Sophia worked
with two equal indeterminate quantities in analytic ways as if they were known by
adding their combined sum to the sum of the “ends”.

SUMMARY

In this paper | presented evidence and argued that sixth graders used gestures as visual
representations of indeterminate quantities (Claim 1), and that students combined these
gestures into embodied forms of algebraic expression (Claim 2).

To support Claim 1, I argued that Theo’s and Sophia’s gestures besides spatial also
contained information which quantitatively characterized the top and the bottom row.
In Theo’s case I contrasted the gestures he used in a specific case of garden length 20 to
gestures he used in a general case described in Episode 1. Namely, Theo’s two gestures
prior to Episode 1, as he faithfully retraced the 20 blocks from one end to another, at
the top and at the bottom, were visual representations of the same fixed quantity of 20
tiles. In contrast to that, the two gestures (a and b) he used in Episode 1 were
representations of two equal quantities without a regard to the number of tiles. In
Sophia’s case I found evidence in her gesture-speech pairs (e and f) that the number of
tiles at the top and at the bottom she thought of each as a property of a physical row of
tiles, thus as evidence that each of her gestures (e and f) besides spatial orientation also
reflected a notion of quantity, unknown yet the same.

To support Claim 2 I looked for transitions in speech and gestures as evidence that stu-
dents combined gestures to represent addition, and multiplication as repeated addition,
and by doing so operated in analytic yet embodied ways on the indeterminate quan-
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tities represented by those gestures. This in turn was an embodied way in which stu-
dents represented algebraic expressions.

My findings complement those by Radford (2011), Brizuela (2016), and Cooper &
Warren (2011) by providing evidence that students use indeterminate quantities and
operate on them in analytic ways through gestures. This is a growing body of litera-ture
on the development of algebraic thinking in ways other than the manipulation of
symbols written in standard algebraic notation. Implications of the present study for
research and instruction involve taking students’ gestures into account when looking
into students’ algebraic thinking.
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SOLVING COMBINATORIAL COUNTING PROBLEMS:
PRIMARY CHILDREN’S RECURSIVE STRATEGIES

Karina Hoveler

University of Minster, Germany

The idea of recurrence is of fundamental importance in different areas of mathematics.
One of these is the field of combinatorics, which provides many problems to introduce
the idea of recurrence at an early stage of students’ mathematical thinking. So far,
there is still insufficient knowledge regarding the use of recursive strategies for
combinatorial counting problems in primary schools. This paper therefore presents
the results of a qualitative study with primary children of the third grade who solved
analogous combinatorial problems by recursive strategies.

THEORETICAL BACKGROUND

The recurrence principle and its importance in solving combinatorial counting
problems

The field of combinatorics is described as the art of enumerating and counting all the
possible ways in which a given number of objects may be mixed and combined to
make sure not missing any possible result (Bernoulli, 1713 German translation
Haussner, 1899). From a mathematical perspective there are three approaches to solve
combinatorial counting problems: systematic listing, counting principles and
combinatorial operations (Schrage, 1996). Systematic listing and counting strategies
can already be applied in primary school with so far developed knowledge and skills.
The consideration of counting strategies in primary school is fundamental since these
are forming the bridge between listing strategies and combinatorial operations
(Hoveler, 2018).

One of these central counting principles is the principle of recurrence. This principle is
based on the mathematical idea of a recurrence relation which in general describes a
way to “define a function by an expression involving the same function” (Schrage
1996, p. 194). More detailed it may be understood as the following rule which defines
a(n) in terms of a(1), a(2), ...a(n-1):

“Let a(1), a(2), ...be a finite or infinite sequence of numbers. If some initial values a(1),
a(2), ... a(k) are known and if for all n>k there is a rule which defines a in terms of a(1),
a(2), ... a(n-1), then every element of the sequence can be calculated according to this
rule.” (Schrage 1996, p. 194)

The recurrence principle is as well as the multiplication principle and further counting
principles of particular importance as almost any counting problem can be solved by
their skillful application. In addition, combinatorial operations can be derived from
these principles (Schrage, 1996). Thus, based on a recursive solution of a combination
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problem without repetition with four objects, then with five and with six objects, each
time choosing two of them, a general recursive formula for n given objects for
combinations without repetition can be obtained (for details see Hoveler, 2014).
Likewise, general formulas can also be developed for other combinatorial operations
based on small problems by recursive considerations (Schrage, 1996).

Current state of research on children’s recursive strategies in solving
combinatorial counting problems

Previous studies, dealing with the application of counting strategies and possible oc-
curring mistakes, focused primarily on the multiplication principle (e.g. Lockwood,
2010, Lockwood & Caughman, 2016). Concrete information about children’s recursi-
ve strategies in the context of combinatorial problems are rare. Early investigations of
Piaget and Inhelder (1975) give hints that children at elementary school age already
use the idea of recurrence instead of counting all units particularly. Later studies also
indicate the use of recursive strategies (e.g. Lack, 2009). But so far little is known
about these counting strategies, as most studies with primary students (e.g. English,
1991, 1993; Maher & Martino, 1996; Maher, 2005) generally focused on solving
combinatorial enumeration problems (“Which outcomes are possible?””) and students
listing strategies. There are also indications that children in secondary school solve
combinatorial problems with recursive approaches: Shin and Steffe (2009) for exam-
ple, investigated in a yearlong teaching experiment with two 7th grade students, how
these students dealt with enumerative combinatorial problems. The results show that
besides additive and multiplicative enumeration they also used recursive multiplicative
enumeration. Further concretizations of these recursive strategies or the occurrence of
systematic errors are missing.

These studies show that learners of different ages use recursive strategies to solve com-
binatorial counting problems. Although this is known and furthermore the conside-
rable importance for the development of combinatorial thinking is obvious with regard
to its subject matter, primary children’s recursive strategies have not been studied so
far.

THE STUDY
Aim of the study

Due to the afore mentioned importance of counting principles in general and the recur-
rence principle in particular, one main focus of a qualitative study on third graders stra-
tegies in solving combinatorial counting problems was, to answer the following re-
search question: Which counting strategies do third graders use to solve combinatorial
counting problems and what is the relationship between primary children’s strategies
and the conventional mathematical approaches? One aim was to find out if and, if so,
which recursive strategies learners use and what difficulties they encounter.
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Data collection and tasks

Information was gathered from individual, clinical interviews (Ginsburg, 1997) lasting
30 to 45 minutes. Overall 63 third graders from different schools were divided
randomly in three groups. Every group of children got one set of combinatorial
problems (set 1: combinations without repetition, set 2: combinations with repetition
and set 3: arrangement without repetition). Each set of problems contained two
isomorphic combinatorial problems in different contexts to find out, if primary
children identify isomorphic structures and how they use these when solving the
problems. To investigate children’s recursive strategies each problem consisted of a
basic and an extended task in which the number of elements of the basic task
successively increased (see table 1, for further tasks see Hoveler, 2018).

Basic task  Four teams want to play a soccer tournament. Each team plays once
against each other team. How many games are there in total?

Extended  How many games are there in total, when five (six, seven, ten)
task teams take part and each team place once against each other?

Table 1: Basic and extended task exemplified by the soccer problem

Unlike most of the previous studies the question “How many outcomes are possible?”
was posed, instead of asking “Which outcomes are possible?”” This question offered
the opportunity to solve the stated problems by listing and counting strategies.

Data analysis

The interviews were video-recorded and transcribed, afterwards analyzed in two steps
by central elements of the Grounded Theory (Glaser and Strauss 1967): First, classes
of children’s strategies were built. Afterwards relationships between their strategies,
including the underlying concepts, and mathematical principles were identified by
constant comparison. In this article, the identified strategies are described and it is
named if and when these strategies lead to a correct result.

RESULTS
Children’s recursive combinatorial counting strategies

In total the four recursive strategies “assumption of proportionality”, “extension of
groups”, “forming new groups” and a combination of “extension of groups” and
“forming new groups” were reconstructed. These strategies will be illustrated by an
example below. Afterwards, it will be considered to what extent the desired number of
solutions has been determined by means of these strategies.

“Assumption of proportionality”

Learners whose approach is based on the "assumption of proportionality"” focus on how
many outcomes with a fixed object appear in the set of outcomes. The solutions are
created in many cases purely mentally in a few exceptional cases, the learners also
create the number of solutions.
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Situation: Leon has already determined the amount of soccer matches of four teams.
Afterwards he is asked to determine the amount of matches with 5 teams and suggests
that there are 9 matches in total.

I Aha, why nine? (...) How did you get that out?

2 L Since [points to the notes from the first task note] three are added to the six
from the tournament with four teams.

3 L Mm and why three?

4 L Because each team plays three times, just like the teams before [tapping the

blue pennant].

As the example shows, the value from the previous task which corresponds to the
number of objects with a fixed element is added to the determined number of the
previous task (“Three are added to the six from the tournament with four teams”).
Children assume that the number of outcomes with this fixed element remains constant
compared to the task already solved and transfer this to the new element (“Because
each team plays three times, just like the teams before”). In previous investigations on
combinatorial counting problems, there are no explicit findings that represent an
existence of the "assumption of proportionality”. But this strategy is named in the
context of the generalization of patterns. For example, Akinwunmi (2012) describes
that sequences of patterns, in addition to recursive and explicit structuring, are solved
by assuming that a proportionate growth of the sequence.

“Extension of groups”

Within the “Extension of groups” in most cases the newly added objects are created.
The strategy is exemplified by Lara’s solution of the ice-cream problem (“Here are
four different flavors of ice cream. How many different sundaes with two scoops are
possible, if the order of scoops does not matter?”):
Situation: Lara has solved the basic ice cream problem and structured her solutions. She
then finds out how many outcomes are possible with five different ice cream flavors

under the same conditions (blueberry, which is colored in blue is added) and creates a
total of 14 solutions.

1 L Because we already had some [points to the solutions of the basic task] and
the 10 were and then still 4 are added [taps on the four solutions with a blue
tile], would be 14,

K Can you explain why there are 4 new solutions?

3 L Because then there are 4 blues again [again she points to the four solutions
with blue tiles] because there are four different colors. Yellow and blue
[taps on the corresponding ice cream cones], green and blue [taps on the
corresponding ice cream cones], red and blue [taps the corresponding ice
cream cones] and black and blue [taps on the corresponding ice cream
cone].

As evidenced by Lara’s actions and statements, children expand each of the already
formed classes by an outcome which contains the new object (*Because then there are
four more blue ones [again pointing to the four solutions with blue tiles] because there
are four different colors").
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“Forming new groups”

The strategy “Forming new groups” was used independently of the previous structu-
ring strategies to determine the number of all figures with the new element. The newly
added objects are also created in most cases.

Situation: Jasmina has already solved the basic two-digit task (arrangement without

repetition), then she is asked to find out how many two-digits numbers there are with 5
different digits under the same conditions.

1 Um, wait now, 12 plus the ones with fifty... 51, 52, 53, 54, ... plus 4.
Means 4 solutions with every digit, 16 in total.

ALY QA

ZL?“V’ D343 4,
1:42,( 5§23

25

The example shows that the task is again solved by adding the new objects with the
new element to the already determined number of objects (“12 plus [...] plus 4”). In

this case a new group is formed for the newly added elements (“plus the ones with
fifty”).

The assumption about the completeness of the new objects in the new group differs
among the learners:

e a) the number of created objects with the new element matches with the
number of previously created figures in a fixed class (assumption of propor-
tionality).

e D) the new element must be combined with all other elements in all possible
ways.

In most cases, the desired number of outcomes was created with the underlying con-
sideration in b) and only in a few cases on the basis of the assumption of proportiona-
lity (see a).

Combination “extension of groups” and “forming new groups”

This recursive strategy is a combination of the strategies “Extension of groups” and
“Forming new groups”.

Situation: Sara has solved the basic ice cream problem and structured her solutions. She
then finds out how many outcomes are possible with five different ice cream flavors
under the same conditions (blueberry, which is colored in blue is added) and creates a
total of 15 solutions.

1 S Then I do not need to write them down anymore.

2 L Aha?

3 S Then all I need is to add the ice-cream. with blueberry.
4 | Do you know how many of these there would be?
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5 S Four I think. Oh no, its five. Every group has one more [points to the four
classes], and blueberry-blueberry has to be added.

The example of Sara shows that children using this strategy add an object with the new
element to each created class (“Every group has one more”) and create a class which
contains all missing outcomes (“with the new element and blueberry-blueberry has to
be added”).

Recursive strategies and number of outcomes

As stated in the previous section learners determine the number of outcomes for the
extension of the problems by four different recursive strategies. For the further
development of combinatorial thinking it is of interest to figure out if these strategies
ensure that the required amount of outcomes is created and counted. Related results are
presented in table 2. It has to be taken into account that the number of determined
solutions to the basic task does not in every case match with the required number of the
basic task. Therefore a distinction is made between the requested number (a(-1)) and
the individually determined number (a*.-1)) in the basic task.

Combination | Combination | Arrangement

without with without
repetition repetition: repetition:
Requested number (n=5, k=2) | an-1) +4 an1 + 9 an-1) + 8
“Assumption of | @a*n-1) + 3 a*n1y +4 a*n1) +6
proportionality”
“Extension of a*n1 +3 a*mn +4 a*mn1 +6
groups”
Determined “Formingnew |a)a*np+3 |a)a*npy+t4 |a)a*nyt+6
number by ~ 9roups b) a*n.y+4 | b)a*ey+5 |b)a*my+8

Combination a*mny +4 a*mn1t+5 a*mn1 +8
“extension of
groups” and
“forming new
groups”

Table 2: Comparison of the required number of new objects and the number of new
objects determined by the respective strategy

Results show that despite the consistent application of different systematic approaches,
the learners do not determine the required amount of figures (table 2). The “assumption
of proportionality” was, as well as the “extension of groups”, observed across all
combinatorial problems. Regardless of whether the amount of outcomes was
calculated or counted. This strategy was identified independently of the previous
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approach for the basic task. The “extension of groups” on the other hand, only occurred
when the odometer strategy (see English, 1993 for details) was used to solve the basic
task. Both strategies systematically produced a result that was in the case of
combinations with and without repetition one less and in the case of arrangements
without repetition exactly two less than the requested number (see table 2). “Forming
new groups” was the most frequently used recursive strategy. It was also identified in
the solution of all tasks and used regardless of the previous strategy. As stated before,
in some cases children’s assumptions about the completeness of the number of
solutions in the new group were based on the assumption of proportionality (see
previous section). In this case (see table 2, “forming new groups a)) the determined
number was less than the requested. Otherwise, however, the correct number of
solutions has been determined based on this strategy (see table 2, “forming new groups
b)). The combination of “extension of groups” and “forming new groups” was used
across all combinatorial figures, but only if the odometer strategy was used in advance
for structuring. In all cases the requested number of outcomes was found.

DISCUSSION AND CONCLUSION

The results of this study indicate that third graders already use different recursive
counting strategies to solve combinatorial problems. The four recursive strategies
outlined in the previous section have been applied to all extended tasks regardless of
the implicit combinatorial operation and context. At the same time, the results show
that some systematic errors can be observed in third graders’ recursive approaches.
This applies in particular to the strategies “assumption of proportionality” and
“extension of groups” which in no case led to a complete solution.

Which conclusions can be drawn from these results and which further investigations
are necessary?

The results provide important information for diagnosis in the context of combinatorial
problems and for individual support of learners: The results show that learners do not
come to a wrong result by accidentally forgetting a solution. This result is based on one
of three recursive strategies where the assumption of proportionality or the addition of
groups leads to an incorrect number. Since many learners systematically determined an
incorrect number of outcomes using a recursive procedure, an explicit discussion of
recursive strategies and possible systematic mistakes should be made in the classroom.
The study was conducted with third-graders solving three different combinatorial
counting problems in two contexts. In this respect, additional studies are needed to
identify further strategies and to make generalizations. It is to examine to what extent
the identified strategies are general recursive strategies which are also used to solve
other combinatorial problems and furthermore if these are typical for primary children
without prior knowledge or used regardless of learner's age and prior knowledge.
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PRE-SERVICE MATHEMATICS TEACHERS’
WHOLE-CLASS DIALOGS DURING FIELD PRACTICE
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This paper is based upon an intervention study where pre-service teachers plan
whole-class mathematical dialogs together with their mentor and lecturer. Learning to
conduct dialogs is increasingly in focus in teacher education, and in this paper, we
examine one whole-class dialog to learn more about its nature. We show that the
pre-service teacher fails to involve several pupils in the dialog at the same time,
leading to a series of shorter dialogs with one pupil at a time. In the dialog, the
communication often ends up being teacher-dominated.

INTRODUCTION AND BACKGROUND

Mathematical reasoning is important for children’s later achievement in mathematics
(Nunes, Bryant, Sylva, & Barros, 2009). Differences in pupils’ mathematical thinking
and reasoning could be attributed to the type of questions teachers ask (Kazemi &
Stipek, 2001). However, questions posed within mathematics classrooms across the
world typically fail to provide pupils with opportunities to reason about mathematical
concepts or to explore mathematical connections (Hiebert al., 2003). Asking questions
that probe pupils’ thinking is a complex skill that requires thoughtful planning
(Manouchehri & Lapp, 2003). According to Henning and Lockhart (2003) prospective
teachers pose questions quickly with few follow-ups, giving little time for the pupils to
expand their answers. Leading whole-class conversations includes asking questions or
posing problems to begin a discussion, monitoring pupil participation during discus-
sion, and responding to pupil ideas. Grossman, Hammerness and McDonald (2009a)
argue that “each of these is critical to the practice as a whole and represents practices
that novice teachers can begin to develop in teacher education and the early years of
teaching” (p. 281). Thus orchestrating whole-class conversations in mathematics are
pointed to as an example of core practices in teacher education (Grossman et al.,
2009a; Lampert et al., 2013).

Ghousseini and Herbst (2016) argue that different pedagogies need to be implemented
in teacher education to prepare pre-service teachers for doing complex work of
teaching like leading classroom mathematics (2016, p. 79). They show that by using
representations of practice, decomposition of practice and approximation of practice
(as introduced by Grossman et al. (2009b)), the pre-service teachers were given dif-
ferent opportunities to learn. The pre-service teachers in this study conducted a
whole-class dialog in their field placement as an approximation to practice. We are
interested in learning more about the nature of such whole-class dialogs conducted by
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pre-service teachers. Learning more about what features are prominent in these dialogs
will help us inform how we teach this complex skill in teacher education. In this paper,
we set out to investigate one dialog conducted by a pre-service teacher by combining
two analytical frameworks.

THEORETICAL FRAMEWORK

To analyze the whole-class dialogs we use two frameworks by Drageset to code the
teacher actions (2014) and the pupil comments (2015). The first framework provides
13 types of teacher actions, falling into three superordinate categories (Drageset,
2014). The first of the superordinate categories is redirecting actions, actions where
the teacher redirects the pupils’ attention by either asking a correcting question, ad-
vising a new strategy or putting aside a pupil’s comment. The second category is
progressing actions, in which teachers’ different ways of moving the lesson forward is
included. The actions simplification and closed progress detail are used to simplify the
problem or to ask a specific question (typically with only one correct answer) to move
the pupils one-step ahead in the solution. Open progress initiatives are, on the other
hand, questions that does not limit the possible responses, and a demonstration 1s when
the teacher takes over and solves the problem by himself. The third category is fo-
cusing actions, actions the teacher’s uses to put emphasis on certain things. This cat-
egory is itself divided in two; request for pupil input and pointing out. The teacher can
request pupil input by asking them to enlighten details, asking for justification or to
apply to a similar problem. He can also request assessment from other pupils. The
teacher points out either by recapping at the end of the dialog or by making the pupils
notice something during the dialog (Drageset, 2014, p. 297-298).

The second framework has 21 initial categories of pupil comments grouped into five
superordinate categories (Drageset, 2015). The superordinate categories are explana-
tions, pupil initiatives, partial answers, teacher-led responses and unexplained an-
swers. Responses from explanations and teacher-led responses were most prominent
in the data material analyzed in this paper. Therefore, we present these two superor-
dinate categories with subcategories in detail. For the remaining categories we refer to
Drageset (2015, p. 38). The superordinate category explanations distinguish between
three different kinds of explanations the pupils make: Explaining what they are doing
and how (explain action), explaining why something is true (explain reason) or ex-
plaining a concept (explain concept). There are a number of different teacher-led re-
sponses, and typically, these comments were correct responses to basic tasks and arose
as a result of the teacher reducing complexity (Drageset, 2015, p. 37). The five dif-
ferent kinds of teacher-led responses were: Correct as a response to closed progress
details, correct as a response to simplification, confirm or reject teacher suggestion,
quote teacher and off track. Combined, the frameworks give detailed information
about the communication in the whole-class dialog, and allow us to look for emerging
patterns.
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METHODS
Context

The project is situated within Norwegian initial teacher education for primary school,
which at the time of the study was a four-year long integrated program. Each year the
pre-service teachers have 5-7 weeks of field practice as well as parallel studies in ed-
ucation and different subject matters. The pre-service teachers have their field practice
in groups of four.

Official documents (KD, 2009) states that field practice and theoretical studies are
equal arenas for learning and professional development, and mentors in contracted
schools are regarded as teacher educators. The mentors are paid, and allotted time, for
mentoring the pre-service teachers two hours daily. The mentor in this study holds a
master’s degree in mathematics education. Due to the project, the lecturer in mathe-
matics is part of the planning and post-lesson mentoring.

Participants and data collection

A group of four pre-service teachers were voluntarily recruited from a program with
special emphasis on science and mathematics. They have their field practice with
third-graders. At the time of the study the pre-service teachers are in their third year,
taking courses in mathematics and education. Mathematical dialogs with pupils is a
substantial part of the mathematics courses, focused both in the course literature and in
lectures where video of professional teaching is watched and analyzed. As an inter-
vention, the pre-service teachers were asked to conduct whole-class dialogs in field
practice, and videos of their teaching was used as a tool in the mentoring. The
pre-service teachers, together with the mentor and lecturer, planned for productive
mathematical whole-class dialogs understood as dialogs where pupils can reason in
mathematics and develop a deep understanding for mathematical concepts. Our un-
derstanding builds on Sfard & Kieran’s (2001) definition of productivity:

The term productivity (...) refers to discourse which can be proved to have some concrete
lasting effect: the discourse has led to the solution of a problem, it influenced participants’
thinking and ways of communication, it changed their mutual positioning, it became richer
in rules and concepts (p. 50).

The whole-class dialog analyzed in this paper was “Hannah’s” dialog on a string of
addition problems (36+40, 36+43, 36+46, 63+20 and 63+29). This is one of six in-
structional activities also used by Lampert et al. (2013) when they work with novice
teachers. They claim that such activities enable the mentors to better predict the chal-
lenges the pre-service teachers will encounter in the classroom, making the pre-service
teachers well prepared before conducting the dialog. The whole class dialog lasted for
28 minutes, and was videotaped. During the dialog the third-grade pupils were all
seated at the front of the classroom and had no access to individual writing materials.
We therefore found it sufficient to capture the dialog using only one video camera
pointed at the pre-service teacher and the white board. This captured well the utter-
ances of both the pupils and the pre-service teacher.
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Data analysis

To answer the research question, we analyzed the video using the data analysis soft-
ware Studiocode. We first coded all utterances in the dialogs, directly on the video,
using predefined codes from the two frameworks from Drageset (2014, 2015). This
generates a timeline where each code is given a row as seen in Figure 1. The rectangles
we see correspond to utterances coded with the different codes. E.g. the rectangle la-
beled 18 on the line “explain action” means that from 00:21:57 to 00:22:15 a pupil was
explaining what or how to do something, and this was the 18" time so far in the dialog
that a pupil had explained an action.

00:00:00:00 002210000 = 00221500 | 00:22:30.00 = 00:22:45.00 = 00:23100.00
Closed progress detail |
Justification [97]
| Notice 0[0] EOEEIEE (B
Explain action [18 | [18 ]
| Correct response to closed prog. det. |:|
| Confirm/reject teacher suggestion 0 10 1 ol 110 10 1 1

Figure 1: Part of the timeline from Hannah’s dialog with Knuth about his solution to
63+29. The first three rows are teacher actions, the last three are pupil comments.

In this process, we also kept track of, and coded, which pupil made each utterance and
the time provided to think after a question was posed. To manage the large number of
utterances, we then partitioned the dialog into five segments, according to the five
different addition problems. By visually examining the timelines, we found that the
dialog segments showed a recurring pattern of teacher dominated communication. In
the timeline in Figure 1 we see this pattern, particularly in the last part of the segment.

To better understand the dynamics of the communication, we chose to transcribe the
dialog and at the same time coding with the same codes as the video. The analysis
developed going back and forth between the coded video and the coded transcripts,
asking questions to the data. The question “who got to speak?” revealed that many
pupils were given time to speak, but the dialog mainly consisted of shorter dialogs
between the teacher and one pupil at a time. This led to a refined partition of the
whole-class dialog into 11 segments, where each segment contains the dialog about
one pupil’s solution to an addition problem. The next step was to analyze these 11
segments to understand what characterizes these shorter dialogs. This involved looking
closer at the mathematical content of the dialogs, and to each of the segments we
asked: “What is the strategy used by the pupil?”, “How is this strategy articulated by
the pupil?”, “How does the teacher handle the utterance? E.g. are other pupils engaged
in interpreting the utterance and how is the strategy represented on the board?”, “What
was the communication pattern?” We used tables to identify patterns or similari-
ties/differences in the segments.

Concerning ethics, we adhered to guidance from the Norwegian Research Committee
(NESH). All names are pseudonyms.
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RESULTS

As already alluded to in the methods, the analysis of the whole-class dialog shows that
the dialog consists of a series of shorter dialogs between the pre-service teacher and
one pupil, sometimes involving a few other pupils. The analysis also shows that the
pupils are given a lot of time to think after questions have been posed, wait time is used
13 times, often lasting more than 30 seconds.

Further, the shorter dialogs often follow a similar pattern. The pre-service teacher asks
a pupil to share how they found an answer to an addition problem. When the pupil has
shared his strategy, the teacher is interested in learning more about the solution, but
this part of the dialog becomes teacher dominated. The teacher often repeats every step
of the pupil’s explanation, occasionally stopping to ask for a closed progress detail or
to ask the pupil to confirm that the teachers’ interpretation was correct. This is often
done by repeating something the pupil says. Such pointing out actions done during a
dialog is coded as notice, rather than recap which according to Drageset is when the
teachers sum up the dialog and moves on to something new. We illustrate this finding
with the following excerpt from Hannah’s dialog with Knuth about 63+29. We go into
the dialog after Knuth has established that 60+20 is 80. How each utterance is coded is
written in bold italics at the end of every utterance.

Hannah: Can you tell me again? Justification (Justification 9 in Figure 1.)

Knuth: | added. Behind 8 | added 9, and then | added 3 more afterwards. (...) So it
was 92. Explain action

Hannah: | think I understand. You started with this number [83]? Notice

Knuth: Yes. Confirm or reject teacher suggestion

Hannah: But you took away the 3 (covers the 3 on the board)? Notice

Knuth: Yes. Confirm or reject teacher suggestion

Hannah: Because you thought it was a bit easier to just work with 80 first (writes 80
on the board)? Notice

Knuth: Mm. Confirm or reject teacher suggestion

Hannah: And then you added that 9 (points to 9 in 29, writes +9 after 80 on the
board)? Notice

Knuth: Yes. Confirm or reject teacher suggestion

Hannah: And then you had to remember to add that 3 you had (points to 3 in 83)?
Notice

Knuth: Yes. Confirm or reject teacher suggestion

Hannah: Was it like that? Closed progress detail
Knuth: Mm. Confirm or reject teacher suggestion
Hannah: And then you got that 80+9 is 89 (points to the board)? Notice
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Knuth: Yes. Confirm or reject teacher suggestion
Hannah: Plus 3 is? Closed progress detail

Knuth: 92. Correct as a response to closed progress detail
Hannah: 92 (writes =92). That was a clever way. Notice

The communication pattern that arises here is a dialog where the teacher either uses a
pointing out action like notice or a closed progress detail question. Knuth responds
with a teacher-led response. These pupil responses are typically very short, often just
one word, allowing the teacher to take over the responsibility to articulate the strategy.
We see in this dialog that Knuth is often just saying “yes” to confirm what the teacher
said. This is typical for all the dialog segments. There is a total of 142 pupil utterances
in this dialog, 42 of them fall into the category confirm or reject teacher suggestion,
meaning the pupil is saying “yes”, “no” or “mm” (a confirming sound). The reason this
teacher-led pattern occurs might be that the pre-service teacher wants to make sure that
the strategy was articulated in such a way that all the pupils were able to follow.
However, this over-use of pointing out-actions may make these actions lose their fo-
cusing ability, since everything is highlighted.

In Table 1 we give an overview of how frequently the different categories of teacher
actions and pupil comments were used. We see here that the teachers pointing out
actions account for the majority of the focusing actions.

Teacher actions Number Pupil comments Number
of in- of in-
stances stances

Redirecting actions 9 Explanations 33

Progressing actions 62 Pupil initiatives 2

Focusing actions (total) 63 Partial answers 9

— request for pupil input 18 Teacher-led responses 68

— pointing out 45 Unexplained answers 11

Table 1: Total number of teacher actions and pupil comments in the different catego-
ries in the dialog.

In Table 1 we also see that the dialog contains almost no utterances that Drageset de-
fines as redirecting actions, only nine times during the dialog. The redirecting actions
are the teachers’ tools to control the direction the dialog takes, and are used to advise
strategies, dismiss pupil solutions or correct pupil responses. This lack could indicate
that it is more important for pre-service teachers to allow a majority of the pupils to
share their strategy than to keep a short and focused dialog.

The analysis of the mathematical content in the dialog segments shows that many
strategies shared in the different dialogs are similar. In fact, only three different
strategies are shared in the 11 segments; adding tens and ones separately, using pre-
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viously known answers (e.g. 46 is 3 more than 43 so 36+46 must be 3 more than
36+43) and making equivalent addition problems (e.g. 63+29=60+32). Even so, there
is little difference in the attention given to each pupil regardless of how many times
that strategy has been discussed beforehand. This emphasis on strategies that have
previously been presented might also confuse pupils who identify that the strategies are
the same. As mentioned above, the pre-service teacher hardly ever used redirecting
actions in the dialog, losing the ability to move quickly past strategies previously
shared. One reason to discuss the same strategies several times could be to make the
pupils compare and discuss why the strategy always works. However, the pre-service
teacher writes little or nothing on the board that represents the pupils’ strategies, and
accordingly this would have been difficult to carry out.

DISCUSSION

Our study is carried out in an authentic context in an ordinary elementary class. We
show that, unlike in the study by Henning and Lockhart (2003), the pre-service teacher
took time posing questions and asked follow-up questions to give pupils time to ex-
pand their answers. Despite this, we reveal that the dialog is not without problems.
Pupils are mainly talking to the teacher, and the teacher is taking too much of the re-
sponsibility to articulate the pupils’ explanations.

We argue that the overall nature of the dialog is that the pre-service teacher attempts to
balance the challenge of hearing strategies from many pupils, and at the same time
make all these strategies understood by the rest of the class. The lack of redirecting
actions is compatible with the desire to let many pupils explain their strategy, normally
the redirecting actions are used to put aside suggestions that the teacher does not want
to pursue in the dialog. This repeating of strategies results in little progress in the di-
alog as a whole and the pupils are not engaged in each-others thinking. Hence, the
dialog is not a productive whole-class dialog as defined by Sfard and Kieran (2001).

Our study sustains what previous research has shown, that conducting whole-class
dialogs is a challenging task. The pre-service teachers had read a lot about conducting
such dialogs, and had attempted it in previous years of their teacher education program.
They were also well prepared for their discussions, after having planned together with
peers and two mentors. Ball and Forzani (2009) argue that if there is an unknown to
questions posed in classrooms, it is what pupils’ responses will be. The mentors can
anticipate many challenges that the pupils will encounter, but they cannot prepare them
for every possible challenge. This shows the importance of incorporating practice on
core practices in real teaching situation in teacher education programs. Our study also
successfully shows that the two frameworks developed by Drageset (2014, 2015) can
be combined to give an overall picture of the classroom interaction. It would be in-
teresting to continue analyzing several pre-service teachers’ dialogs using the same
approach to see if they follow the same pattern, or if there are a number of different
patterns that appear in pre-service teachers’ dialogs. Another possibility would be to
examine differences and similarities between novices and experienced teachers.
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In this paper, we report findings from a pilot study investigating school students’
epistemologies of mathematics by using novel mathematics definitions. Students aged
17 and 18-year-old in Italy and the UK were asked to complete a worksheet that used a
numerical approach to determine the sizes of infinite sets and were, then, invited to
attend focus group interviews about their experience with the material. Thematic
analysis of the interviews reveals that this approach is useful to distinguish between
naive and advanced epistemologies and using unseen mathematical definitions can
help enrich our understanding of epistemologies held by students of school age.

BACKGROUND TO THE STUDY

Students’ beliefs about mathematics have often been connected to their engagement
with the subject (Muis, 2004), their behaviour as problem solvers (Schoenfeld, 1989;
Muis et al. 2015) and their self-regulation strategies (Muis, 2007). However, under-
standing what these beliefs are and how to best measure them has generated a lively
methodological debate in the epistemological beliefs literature (see for example
Limon, 2006). Many (e.g. Muis et al. 2014) find the most common questionnaires used
so far, and in general quantitative methods alone, to be unsuitable for such investiga-
tions. Criticisms to the use of large scale surveys include the inability to ascertain that
there is a shared meaning of key words between the researchers designing the surveys
and the students filling them in (Muis et al. 2014), and doubts have been recently raised
that large scale questionnaires cannot be used across diverse cultural contexts (Mo-
gashana et al. 2012). In this pilot study, we tested a qualitative methodology for the
investigation of school students’ epistemological beliefs. We hypothesised that, by
documenting the reactions of secondary school students when asked to work with a
definition of infinity (a concept that they would have encountered at this point in their
education) very different from the one they have been used to, we may gain insight into
their epistemology of mathematics. We report preliminary findings from this pilot
study and we suggest some directions for future research.

STUDENTS’ EPISTEMOLOGIES OF MATHEMATICS

Francisco (2013) makes a strong argument for the need of more studies investigating
secondary school students’ epistemological beliefs about mathematics and observes
that many findings regarding school students are assumed to be true only because
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they are found to be true for university students and not because they originate from
empirical research involving school-age students. For example, Perry (1970) found
that college students are likely to hold naive epistemologies when they start their
university studies and many researchers have therefore assumed this would be the case
for school students too. Francisco (2013) also notices the disagreement on what are
considered to be epistemological beliefs and how these can be studied. For the scope of
our study, we adopt the definition of epistemological beliefs found in Hofer (2001):
these are beliefs about knowledge and knowing, including:

... the definition of knowledge, how knowledge is constructed, how knowledge is evalu-
ated, where knowledge resides, and how knowing occurs. (Hofer 2001, p. 355)

This definition is only deceivingly simple, but it is one that has drawn widespread
agreement amongst researchers in this field (Limon, 2006). A comprehensive review
of the literature regarding epistemological beliefs about mathematics by Muis (2004)
finds, among its main results, that epistemological beliefs about mathematics hinder
rather than help students learning and that these beliefs have a clear impact on the
students’ academic progress. The author also reviews the evidence of the impact of
such beliefs on problem solving activities and mathematics learning more in general
and finds that, amongst the most non-availing beliefs school student hold, are that in
mathematics there always exist one right answer and that every problem has one right
answer only. A subsequent review of the literature by Depaepe et al. (2016) found
similar results but noticed that in the years since Muis’s (2004) review there has been
much variety of methodologies employed to study students’ epistemological beliefs
well beyond the use of large scale quantitative surveys. This finding reflects the
methodological issues raised at the start of this paper. Given that school students’
epistemological beliefs about mathematics have been linked to many aspects of their
engagement with the subject e.g. to problem solving habits (Schoenfeld, 1989), mathe-
matical achievement and conceptual change (Mason, 2003), it seems important to have
solid methodologies to investigate such beliefs. Hence, we ask the following research
question:

RQ: What can the students’ reactions to the introduction of an alternative approach to
a familiar but difficult mathematical concept tell us about their epistemological beliefs
about mathematics?

As familiar concept we selected infinity and we suggested an alternative definition of
the measure of an infinite set as this definition is in stark contrast to what students
would have encountered during their studies. Similar methods could however have
been employed by choosing to use definitions from non-standard analysis, or by using
the superreal number system proposed by Tall (1980). In the following paragraph, we
summarise some research on students’ understanding of infinity as some of these
findings will also be reflected in our data.
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STUDENTS AND INFINITY

Mathematics education has been preoccupied with the way in which students make
sense of infinity because this concept is crucial both for the way in which it underpins
several ideas from analysis and calculus; and for the understanding of set theory and
the concept of cardinality. Many approaches have been used to make sense of students’
understanding of infinity and, while it is beyond the scope of this paper to offer a
comprehensive review of this literature, we will just mention a few ideas which will be
useful for our analysis later on. Monaghan (2001) observes that students often perceive
infinity as a process (the process of counting without ending, or a process that goes on
and on — also defined as potential infinity, see also Kidron and Tall, 2015) while an
object view of infinity would require students to regard infinite sets as completed to-
talities. Monaghan (2001) also points out that a process view of infinity is at odds with
the classical concept of cardinality (actual infinity) and creates conflict when students
encounter Cantorian set theory. In this setting students prove that a proper subset of a
set and the set itself have the same cardinality if the two sets are countable and infinite.
This creates conflict as it is obviously not the case for finite sets. Paradoxes are also
used to elicit students’ understanding of infinity. For example, Mamolo and Zazkis
(2008) report that most difficulties with paradoxes concerning infinity are caused by
the conflict of a potentialist (infinity perceived as a process that may go on forever such
as counting) and an actualist (an object perceived in its entirety which has infinite size,
such as the natural numbers) interpretation of infinity. They also notice that the expe-
rience that the students have of reality often gets in the way of the understanding of
paradoxes.

MATERIALS

To construct materials for our investigation we introduced students to a numerical
treatment of infinity due to Yaroslav Sergeyev (see Sergeyev (2003)). The basics of
this treatment can be developed within a conservative extension of Peano Arithmetic,
as shown in Lolli (2015). The intuitive idea behind Lolli's theory is that, within a model
of arithmetic that contains infinitely large numbers, one may identify a cut-off point for
N, the set of natural numbers. A new arithmetical term @ (read: gross-one) is used to
denote this cut-off point. Suitable axioms then enable the construction of a theory of
numerical measures of infinite parts of N. For instance, in view of these axioms, the
initial segment of a model that is bounded by @ is such that any two subsets in bijec-
tive correspondence are assigned the same measure, which is smaller than @©. In par-
ticular, even and odd numbers are assigned the same measure, smaller than ® and
denoted by ®/2. Thus, the whole part relation typical of finite collections is preserved
for infinitely large ones.

METHODS

The study was carried out at two sites, in Italy and in the UK. At the first site partici-
pants were Year 11 to 13 students (aged between 16 and 18) in a private school in the
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South of England. We first held a 90-minute session where they were asked to work in
groups of 4 or 5 on the worksheet we designed. The worksheet guided them through
five exercises involving grossone including: doing field arithmetic with ©; computing
the sum of geometric progressions with an infinitely large number of terms as a
strategy to study geometric series and investigating the Thomson lamp paradox
(Berresford, 1981) without appealing to ® or by appealing to ®. After the session, we
held 2 focus group interviews with nine participants. At the second site participants
were students in 6 classes of fourth and fifth year of high school (aged between 17 and
19) attending 2 secondary schools in the south of Italy. There were 77 and 12 students
who took part in sessions designed as the previous ones using the same worksheet,
which had been translated by the second author of this paper. After the sessions, we
held 6 focus group interviews (structured this time as class discussions and thus in-
volving all students who had taken part in the activities). Altogether we collected 8
focus group interviews and observed 6 sessions. The focus group interviews were
audio recorded. Thematic analysis (supported by analysis of the field notes taken
during the observations) was carried out on the interviews transcripts with focus on the
evidence of students’ difficulties with the concept of infinity and hints of their epis-
temological beliefs concerning mathematics. The project was approved by the Re-
search Ethics Committee of the institution where the second and third authors work.

THE DATA

The data were analysed both to investigate misconceptions that students hold about
infinity (mainly through discussion of the Thompson Lamp task) and to look for in-
dications of their epistemological beliefs about mathematics. During the analysis of the
interview data we found agreement with many previous studies regarding students’
understanding of infinity. For example, concerning the discussion on the Thompson
lamp paradox, we observed how students’ concrete intuitions interfered with the
formulation and handling of the paradox, just as Mamolo and Zazkis (2008) found in
their study. When a UK student was asked about her thoughts on the solution of the
Thompson Lamp paradox she replied:

Student (UK): The person would die before the end of the process!

We also observed evidence regarding students’ tendency to reason in terms of potential
(infinite counting) rather than actual infinity, in accordance to what Monaghan, (2001)
found.

Student (UK): Since infinity, there is no actual number for infinity, if you think there
will always be 1 more...

Some of the students stated that using the new definition could remove some of what
they perceived to be incongruences in the Cantorian approach, such as for example that
in the case of infinite countable sets, a set and one of its proper subsets can have the
same size.
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Student (IT):  Itis a strange idea [having various sizes of infinity] but very intuitive. It
allows us to understand a new concept of infinity. Before this we thought
that infinity minus a quantity was infinity. Now we can see this better —
that an infinity can be smaller than another infinity.

Therefore, students seem to engage in a meaningful way with this concept. Regarding
students’ epistemologies about mathematics we observed two distinct approaches
amongst the students we interviewed: that of rejection of the new formulation of in-
finity or acceptance of this formulation. We argue here that these two stances are
linked to students’ views of knowledge and knowing in mathematics.

Rejection: I think this is a contradiction...

During the observations of the sessions with the students we noticed how all students
engaged with the material and worked together through the exercises. However, the
follow up interviews revealed that some of the students could not accept that there
would be a different definition of a concept they had already encountered. The extract
below is from one of the focus group interviews with the Italian students:

Student 1: | think this [the definition of @] is a contradiction - it is a concept which |
cannot make mine because it is in contradiction to what [ know...

Interviewer: ... contradictory because it has both characteristics of infinity and charac-
teristics of finite numbers?

Student1:  Yes...

Student 2:  If you consider it as an infinite big number it is not contradictory because in
the end this is not [the] infinity

Student 3: It is one of the characteristics of grossone... continuously increasing...

(IT focus group interview)

From this extract emerges a distinct sense of unease on the part of the students and
especially of Student 1. They seem to be torn between being able to use formally a
definition that they have been given (analysis of the written work produced during the
group work sessions revealed that many students managed to find a solution for the
Thompson Lamp using grossone) but being unable to accommodate this definition in
their beliefs about mathematics. The quote below (collected in a separate focus group)
can also be interpreted as manifestation of this unease.

Student (IT): I can’t think of subtracting an infinitely large number from an infinitely
large number - where do I get to? I don’t get to zero for sure . . .

In this case we may argue that, for these students, mathematics is either right or wrong
and that an alternative definition of a familiar concept cannot be accommodated be-
cause it appears to be in contradiction to what they have studied and taken to be right.

PME 42 — 2018 3-135



lannone, Rizza, & Thoma

Acceptance: It does kind of work as i...

Unlike the previous group, other students not only appear able to accommodate this
new concept in their knowledge about mathematics but could work with it without
perceiving it as incompatible with what they already knew:

Student (UK): It does kind of work as i, that you have your real part and your imaginary
2
part and ...like i would be minus one . . .

Or:

2
Student (IT): Itis like i - you don’t know what is i but you know that i is -1.

Indeed, the parallel that these students draw with the imaginary unit i is revealing. We
know from the history of mathematics and Cauchy’s famous remark that ‘We com-
pletely repudiate the symbol V—1, abandoning it without regret because we do not
know what this alleged symbolism signifies nor what meaning to give to it’ (Nahin,
2010) that the mathematics community took much time to accept this new mathe-
matical object especially because it contradicted (or seemed to contradict) much of the
mathematics known before. We interpret this ability to see the similarities between
these objects, i and grossone, as evidence of an advanced view of what mathematics is.
Moreover, another student remarked:

Student (UK): Because [...] I mean they say infinity isn’t a number but then [...] there is an
argument for and against that.

In this extract, we can infer that this student is considering that perhaps there may be
different ways of defining mathematical concepts and perhaps more than one inter-
pretation is possible. This may be an indication of a more advanced mathematics
epistemology, one where not every statement is true or false and that recognises
mathematics as the product of a social construction.

DISCUSSION

The aim of this study was to test a novel qualitative methodology to investigate stu-
dents’ epistemological beliefs about mathematics. We tested whether asking secondary
school students to work through a worksheet introducing a new conceptualisation of
infinity, unseen and somewhat incompatible with some of their existing knowledge,
could provide a strategy suitable to expose secondary school students’ epistemological
beliefs. We chose an alternative view of infinity and how to measure the size of infinite
sets as this approach is in contrast to the way in which students have been exposed to
the concept of infinity in their studies. How to understand and measure school stu-
dents’ epistemological beliefs about mathematics is an important topic as these beliefs
impact on most aspects of their learning and engagement with the subject (Muis,
2004). Indeed, both Muis (2004) and Depaepe et al. (2016) found in their reviews that
the beliefs held by students regarding mathematics were hindering rather than facili-
tating their learning, making the issue of measuring these beliefs (and eventually in-
fluencing them) all the more important. Through thematic analysis of the focus group
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interviews held after the class activities we found that we could distinguish at least two
separate understandings of how mathematics is structured and operates, i.e. two dif-
ferent mathematics epistemologies held by the students participating in the study.
Some students held a naive view close to an absolutist position, according to which
mathematics is perceived as a fixed body of knowledge that cannot change (Depaepe et
a. 2016). This view manifested itself in the unease felt by the students who were able to
work formally through the definitions and concepts given but could not accommodate
those in their understanding of infinity because they perceived them to be in stark
contrast with what they already knew. Other students held a more advanced view in
line with a fallibilist view of mathematics, which perceives this subject as socially
constructed hence open to revisions and changes. This view manifested itself in the
parallel that some students drew between the introduction of grossone and the intro-
duction of the imaginary unit i. These students were able to accommodate the idea that
some mathematical definitions may change and that different (even contrasting) defi-
nitions of the same concept may exist in mathematics. Therefore the call for caution
voiced by Francisco (2013) that not all school students hold naive epistemologies of
mathematics seems to be justified. This finding partially answers our research question
by showing that such methods can potentially elicit students’ epistemological beliefs
and can help understanding their structure. Moreover, following the idea that episte-
mological beliefs impact on conceptual change and that more sophisticated episte-
mologies such as those related to fallibilist views of mathematics promote conceptual
change (Pintrich, 1999), we would argue that our methodology can not only elicit such
epistemologies but also stimulate re-thinking of previously held beliefs by kindling
cognitive conflict in the students. More extensive data collection and testing the use of
other concepts (such as the superreals, Tall, 1980) could refine this methodology and
contribute to our understanding of students’ epistemologies but also could potentially
help students refine their own epistemologies of mathematics.
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WATCHING MATHEMATICIANS READ MATHEMATICS
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This report contributes to the debate about whether expert mathematicians skim-read
mathematical proofs before engaging in detailed line-by-line reading. It reviews the
conflicting introspective and behavioural evidence, then reports a new study of expert
mathematicians' eye movements as they read both entire research-level mathematics
papers and individual proofs within those papers. Our analysis reveals no evidence of
skimming, and we discuss the implications of this for research and pedagogy.

INTRODUCTION

Proof is central to mathematical practice, so understanding proof and proving is an
important goal of most mathematical curricula (Hanna, 2007). Furthermore, at least in
advanced mathematics courses, students spend considerable time learning mathema-
tics by studying proofs (Selden & Selden, 2003). Consequently, several research
groups have investigated the processes by which students engage with written proofs
(Inglis & Alcock, 2012; Ko & Knuth, 2013; Mejia-Ramos & Weber, 2014).

A complementary approach is to examine expert mathematical practice, with resear-
chers arguing that if we want students to develop expert-like behaviours, we require
accurate understanding of those behaviours (RAND, 2003; Weber, 2008; Wilker-
son-Jerde & Wilensky, 2011). In this report, we address an unresolved issue from
studies on expert reading (Inglis & Alcock, 2012, 2013; Mejia-Ramos & Weber, 2014;
Weber, 2008; Weber & Mejia-Ramos, 2011, 2013): that of whether mathematicians
skim-read mathematical texts before carefully reading line by line.

The skimming hypothesis was generated when Weber (2008) interviewed eight mathe-
maticians about their behaviour while validating research-level proofs. Many ex-
plained that they would often skim-read before reading line by line. For example, one
described “first try[ing] to understand the structure of the proof, to get an overview of
the argument that’s being used” (p.441); another described first reading through the
proof “to get the flow of it” and then going back to “get the details” (p.441).

Inglis and Alcock (2012) investigated this hypothesis by asking mathematicians and
undergraduates to validate purported proofs and recording their eye movements as they
did so. They found no evidence of initial skimming—participants typically did not
fixate on the last lines of purported proofs until approximately half way through their
reading attempts. Citing earlier methodological work (e.g., Nisbett & Wilson, 1977),
Inglis and Alcock therefore suggested that introspective evidence about mathematical
practice should be regarded with caution. Weber and Mejia-Ramos (2013), however,
criticised this argument, in part because the proofs Inglis and Alcock used were too
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short to give meaningful results about expert practice. Inglis and Alcock (2013) con-
curred that their purported proofs were considerably shorter than those encountered in
mathematical research (largely because their expert/novice research design required
proofs that were accessible to first-year undergraduates).

Certainly mathematicians believe that they skim-read: Mejia-Ramos and Weber
(2014) reported that 92% of mathematicians responding to a large-scale survey agreed
with the statement “When | read a proof in a respected journal, it is not uncommon that
| skim the proof first to comprehend the main ideas of the proof, prior to reading the
proof line-by-line”. They also asked participants about their reading behaviour when
refereeing; again, large majorities of participants claimed to skim-read and check for
validity in this context. They therefore suggested that it would be strange if Alcock and
Inglis’s (2012) failure to find such behaviour reflected actual mathematical practice.
But whether mathematicians actually skim-read remains an open question and, in this
report, we investigate whether skimming is evident in mathematicians’ eye movements
when they read research-level mathematics.

METHODS
Participants, apparatus and procedure.

To determine whether mathematicians skim-read before reading line by line, we rec-
orded mathematicians’ eye movements while they read research papers drawn from
their own fields. Participants were ten permanent members of staff (assistant professor
level or above) from a UK University. All had doctorates and numerous published
academic papers. Five were applied mathematicians, four were pure mathematicians,
and one was a statistician. Eight different nationalities were represented.

Each participant was asked to select a research paper that they planned to read but had
not yet begun; these papers were forwarded to the researchers prior to the experimental
session. To protect the anonymity of participants, we do not report which papers were
chosen. However, they included published journal articles, pre-prints from the arXiv,
and a short monograph. Topics included Bessel functions, algebraic geometry, group
theory, and the modelling of physical and biological phenomena. The papers varied in
length: the shortest was 4 pages and the longest 53.

Each participant took part individually in a quiet room. Eye movements were recorded
with a Tobii T120 Eye-Tracker, set to sample at 60Hz. The T120 is a remote
eye-tracker with two binocular infrared cameras under a 17” TFT monitor; it typically
achieves eye-position tracking accuracy of 0.5°. Stimuli were displayed on a screen
that participants viewed (without head restriction) from a distance of approximately
60cm. For each participant, the eye-tracker was calibrated with a 9-point display.

Participants were told that they would be shown their paper and that they should read it
as if intending to write a review for MathSciNet, an online database of short reviews of
published mathematical papers. All participants were familiar with the guidelines for
MathSciNet, which state:
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In most cases the review should state the main results, together with enough notation to
make the statements comprehensible to someone already familiar with the field. The main
ideas of the proof should be sketched when this is feasible.

This instruction was designed to ensure that all participants would read for compre-
hension rather than some other purpose (such as checking validity). We believed that if
skim reading were a common feature of mathematicians' reading behaviour, then these
instructions would be likely to reveal it.

After the instructions were displayed and explained verbally by the experimenter, the
first page of the participant’s research paper was displayed and the experimenter left
the room. Participants could move sequentially through the pages of their papers using
cursor keys, and were provided with pen and paper to make notes if they wished. On
completing the task, they stopped the recording and called the experimenter. There was
no time restriction, and participants’ reading times varied between 17 and 65 minutes.

Data analysis.

Our analysis uses the fact that, when viewing a static image, eye movements consist of
fixations (short stationary periods, usually lasting 150-500ms) and saccades (rapid mo-
vements between fixations). During saccades, no information can be processed (e.g.,
Matin, 1974), so fixation locations suffice to determine the path of a participant's at-
tention (for a substantial review of eye-movement research see Rayner, 2009). Our
strategy was to create, for each participant, a scatter plot with time on the x-axis and
paragraph in the paper on the y-axis. Because eye-movement data are noisy (blinks or
random head movements can cause single fixations away from the location of attention
(Inglis & Alcock, 2013), we then fitted curves to these plots using LOESS regression
(also known as “locally weighted scatterplot smoothing”). This technique fits con-
nected quadratics to local sections of a scatterplot (e.g., Cleveland, 1979), and permits
fitting a curve to data without making a priori assumptions about the shape of the
curve. If participants adopted initial skim strategies, we would expect their fixation
plots to look like that shown in Figure 1.

Location in Text

Time

Figure 1: The type of fixation plot and LOESS curve we would expect if a participant
had adopted an initial skimming strategy.

We operationalised this by evaluating whether each participant's LOESS curve entered
the light grey box in the top left of Figure 1: if the focus of attention entered the last
third of the reading material within the first third of their reading attempt, we coded
this as a skim (cf. Weber & Mejia-Ramos, 2013).
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RESULTS

We first examine global reading behaviour, reporting on each participant’s reading of
their entire paper. We take this approach because, in research-level mathematics,
proofs cannot normally be read in isolation: papers typically introduce novel defini-
tions, ideas and techniques before presenting a proof. We then examine local reading
behaviour, illustrating participants’ reading of their papers’ first self-contained argu-
ments. This allows us to compare more directly with earlier discussions of skim rea-
ding (Inglis & Alcock, 2012; Inglis & Alcock, 2013; Mejia-Ramos & Weber, 2013;
Weber & Mejia-Ramos, 2013), which have typically involved single proofs.

Global reading behaviour.

Figure 2 shows individual paragraph-by-time fixation plots for all ten participants.
There appeared to be three broad categories of attention movement. Some participants
(1, 2, 4,5, and 7) read in an approximately linear order, beginning at the start of the
paper and progressing to the end with few moves to non-adjacent paragraphs. Others
(8, 9, and 10) moved their attention in a piecewise linear fashion: they started with a
linear approach, then re-read certain sections in detail, again linearly. Finally, two
participants (3 and 6) appeared to adopt different approaches. In the post-experiment
debrief, Mathematician 3 reported that he had not understood the introduction to his
paper and had therefore failed to make substantial progress beyond the first few pages.
This is consistent with his eye movements, which include a series of linear attention
moves within the first 30 paragraphs. Mathematician 6 had relatively few fixations (in
any location) in the latter half of his reading attempt. He made a large number of notes,
so we attributed this to his eyes being largely off screen during this time.

Despite this variety in reading behaviour, no mathematician used a skimming strategy:
in no case did the LOESS curve enter the last third of the paper in the first third of the
reading time. Some graphs (1, 4, 6, 7 and 8) did show a small number of single fixa-
tions in the key area, but these were so few that we attributed them to participants
scrolling forward to the reference sections of their papers (they had to view each page
In turn, explaining the “trails” of fixations leading up to the reference sections in plots
4, 6 and 8). Even for participants who read in a piecewise linear fashion, reading be-
haviour can be distinguished from the skimming strategy detailed by Weber (2007),
because the second and third reading attempts did not involve the whole text and/or
took place at a substantially faster rate than the initial reading attempt.

If initial skimming were a common feature of mathematicians’ reading behaviour, it is
extremely unlikely that we would have found no skims in our data. A skimming rate of
zero out of ten is significantly lower than 50%, sign test p = .002, and significantly
lower than the 92% figure found by Mejia-Ramos & Weber (2013), binomial test p =
1.03x10L, Of course, it is possible that our operationalisation of skimming was faulty,
and we consider this possibility in the next section and the discussion.
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Figure 2: Paragraph Number by Time fixation plots for each participant, together with
associated LOESS curves (second order, smoothing parameter 0.3).

Local reading behaviour.

We found no evidence of skimming in participants’ attention while they read entire
papers. But each of their papers included multiple shorter arguments, some of which
formed self-contained paragraphs. Because our global analysis focused on between-
paragraph eye movements, it is therefore possible that we missed the skimming beha-
viour hypothesised by Mejia-Ramos and Weber (2013) because this takes place within
paragraphs. To investigate this possibility, we identified the first self-contained argu-
ment in each paper (typically a proof of a lemma or proposition, or the derivation of a
model of a physical/biological process), and conducted a line-by-line analysis of the
corresponding participant’s attention for this argument.

Two illustrative fixation plots are shown in Figure 3. The wide graph shows every
fixation on the relevant areas of each paper, although it is clear that many of these
fixations did not contribute to genuine reading attempts (single fixations were probably

PME 42 — 2018 3-143



Inglis & Alcock

due to random eye-movements or to flicking through the pages). Because of this we
have magnified the sections of the plots that we judged to be the first attempt to read
through the self-contained arguments, and plotted the associated LOESS curves. In our
judgement, neither these participants nor any others could be said to have used a
skimming approach — the full set of these plots (one for each participant) can be in-
spected at: https://doi.org/10.6084/m9.figshare.5733510.v1.
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Figure 3: Line Number by Time fixation plots for the first argument in the paper for
Mathematicians 1 and 2. The first clear-cut reading attempt is been magnified, together
with its associated LOESS curve (second order, smoothing parameter 0.3).

DISCUSSION

Mejia-Ramos and Weber (2013) found that 92% of mathematicians claimed to un-
derstand the structures of proofs by skimming them before reading in detail. We have
no reason to believe that our sample was unrepresentative of expert mathemati-
cians—our participants worked in various areas of pure and applied mathematics and
statistics, and were from eight different countries—yet we found no evidence of
skimming in our data. The probability of this occurring if the introspective accounts
are correct is vanishingly small, so we think it unlikely that skimming as operational-
ised in our study is fundamental to mathematicians’ behaviour.

We Dbriefly discuss two possible accounts for this finding, drawing out the implications
of each. One account is that mathematicians simply do not skim. This would raise
methodological concerns: where introspective claims are inconsistent with behavioural
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evidence, we must decide how to interpret the results of methodologically distinct
studies. In such a situation, one might argue that introspective evidence should simply
be ignored (e.g., Lyons, 1986; Nisbett & Wilson, 1977). Alternatively, however, it
could be that we incorrectly operationalised what it means to skim when reading
mathematics. When 92% of participants agreed that they would often “skim [a] proof
to comprehend the main ideas...prior to reading [it] line-by-line"™, perhaps they were
referring to a much longer process than either we or Weber and Mejia-Ramos (2013)
believed. Perhaps, for instance, the entire reading attempts we recorded in this ex-
periment (which lasted up to an hour) should be classified as skim-reads. Perhaps it is
only after a relatively long “skim” that mathematicians go back and re-read mathe-
matical arguments line by line, or perhaps in normal circumstances mathematicians
only skim and line-by-line reading is relatively rare. We suggest that disentangling
these possibilities requires ethnographic studies of mathematical practice (cf. Greiff-
enhagen & Sharoock, 2011). Such studies would form a worthwhile contribution to the
literature on mathematicians’ reading behaviour.

In the meantime, we can comment on a broader issue. Our data revealed considerable
variety in mathematicians’ reading behaviours, as is apparent in Figure 2. It thus con-
tributes to a growing body of evidence on diversity in expert mathematical behaviour
(e.g., Inglis, Mejia-Ramos, Weber & Alcock, 2013; Weber, Inglis & Mejia-Ramos,
2014). We do not yet know what causes these differences. Is behaviour driven by in-
dividual differences among mathematicians? Or perhaps by the mathematical content
or structures of papers or proofs? What prompts a decision to re-read a section, or to
skip ahead? However, we can observe that such findings complicate arguments that we
should teach students expert-like behaviours (e.g., RAND, 2003; Wilkerson- Jerde &
Wilensky, 2011). If expert behaviour is heterogeneous, as suggested by this study and
others, then basing instruction upon it is a non-trivial task.
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