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PREFACE

We are pleased to welcome you to PME 41. PME is one of the most important
international conferences in mathematics education and draws educators, researchers,
and mathematicians from all over the world. This is the first time such a conference is
being held in Singapore at the National Institute of Education. The National Institute of
Education is an institute of the Nanyang Technological University in Singapore. It is
the nation’s only institute dedicated to teacher education. Working closely with the
Ministry of Education and the schools, it ensures that teacher education programmes
are relevant and delivered with rigour. The institute’s engagement in cutting-edge
educational research also provides an important voice to inform the policy formulation
and practice of education in Singapore.

“Mathematics Education Research — Learning, Instruction, Outcomes & Nexus?” has
been chosen as the theme of the conference. The theme offers opportunities to reflect
about what we have learned in the past, investigate the present issues, and more
importantly, project the future directions in mathematics education research. The
theme is inspired by the iconic Singapore mascot, MERLION, which reflects the past
and the present. The “Mer” or fish part indicates Singapore’s origin as a fishing village;
while the “Lion” part comes from the word “Singa-pura”, which means Lion city.

Mathematics Education is a relatively young field of research. Over the last century
researchers have progressively adopted multiple and integrated perspectives of
learning, instruction and outcomes in mathematics. This theme is apt as it provides
opportunities for the community to take stock of our past and present perspectives
while exploring new ones in the theory-practice nexus of mathematics education.

The papers in the four volumes of these proceedings are organised according to the
type of presentation. Volume 1 contains the presentations of our plenary speakers,
Research Forum activities, Discussion Group activities, Working Session activities,
the Seminar and the Oral Communication presentations. VVolume 2 contains the Poster
presentations and Research Reports (A-G). Volume 3 contains Research Reports
(H-O) and Volume 4 contains Research Reports (P-Y).

The organisation of PME 41 is a collaborative effort involving all the academic and
support staff of the Mathematics and Mathematics Academic Group at the National
Institute of Education. They are all members of the Local Organising Committee. The
organisation of the conference is also supported by the International Programme
Committee, the PME Administrative Manager and the Association of Mathematics
Educators in Singapore. We acknowledge the support and effort of all involved in
making the conference possible. We thank each and every one of them. Finally, we
thank each PME participant for making your journey to PME 41 in Singapore and for
your contributions to this conference.
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We hope the National Institute of Education in Singapore, as the place of PME 41
2017, will provide opportunities for the community to take stock of their past and

present perspectives while exploring new ones in the theory-practice nexus of
mathematics education.

Berinderjeet Kaur and Ho Weng Kin
PME 41 2017 Conference co-Chairs
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REVIEW PROCESS OF PME 2017

RESEARCH REPORTS (RR)

Research Reports are intended to present empirical or theoretical research results on a
topic that relates to the major goals of PME. Reports should state what is new in the
research, how the study builds on past research, and/or how it has developed new
directions and pathways. Some level of critique must exist in all papers.

The deadline for submission of RR proposals was January 15, 2017. The number of
submitted RR proposals was 234, and 124 of them were accepted. Of those rejected as
RR proposals, 72 were invited to be resubmitted as OC, and 35 as PP. Re-submitted
OCs and PPs underwent the same review process as the OC and PP submissions that
were submitted directly.

ORAL COMMUNICATIONS (OC)

Oral Communications are intended to present smaller studies and research that is best
communicated by means of a shorter oral presentation instead of a full Research
Report. They should present empirical or theoretical research studies on a topic that
relates to the major goals of PME. The deadline for submission of OC proposals was
March 6, 2017. The number of submitted OC proposals was 127, and 95 of them were
accepted. In the end, considering resubmissions of Research Reports as OC
presentations 137 OC are presented on the PME 41 conference.

POSTER PRESENTATIONS (PP)

Poster Presentations are intended for information/research that is best communicated
in a visual form rather than an oral presentation. The number of submitted PP proposals
was 66, and 53 of them were accepted. With the resubmitted Research Reports, 93
posters are presented on the PME 41 conference.

RESEARCH FORUMS (RF)

The goal of a Research Forum is to create dialogue and discussion by offering PME
members more elaborate presentations, reactions, and discussions on topics on which
substantial research has been undertaken in the last 5-10 years and which continue to
hold the active interest of a large subgroup of PME. A Research Forum is not supposed
to be a collection of presentations but instead is meant to convey an overview of an
area of research and its main current questions, thus highlighting contemporary debates
and perspectives in the field.
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There are two Research Forum proposals accepted this year:
RF 1: Perspectives on (future) teachers’ professional competencies
Coordinators: Gabriele Kaiser & Yeping Li
RF 2: Researching and Using Learning Progressions (Trajectories)

Coordinators: Dianne Siemon & Marj Horne

DISCUSSION GROUPS (DG)

The objective of a Discussion Group is to provide attendees with the opportunity to
discuss a specific research topic of shared interest. The idea for a Discussion Group
may be the result of an Ad Hoc Meeting or an intensive discussion of a Research
Report during the previous conference. Discussion Groups may begin with short
synopses of research work, or a set of pressing questions. A Discussion Group is
exploratory in nature, and is especially suitable for topics which are not appropriate for
collaborative work in a Working Session because they are not yet elaborate enough or
because a coherent research strategy has not been identified. A successful Discussion
Group may result in an application for a Working Session one year later.

This year the International Programme Committee approved four discussion groups:

DG1: How to research cultural-societal factors influencing mathematics
education?

Coordinators: Aiso Heinze & Kai-Lin Yang

DG2: Stem education research and practice: What is the role of mathematics
education?

Coordinators: Judy Anderson & Yeping Li

DG3: Perspectives on multimodality and embodiment in the teaching and
learning of mathematics

Coordinators: Christina M Krause & Laurie D Edwards
DG4: Mathematics in different languages

Coordinators: Cris Edmonds-Wathen & Alexander Schuler-Meyer
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WORKING SESSIONS (WS)

The aim of Working Sessions is that PME participants collaborate in joint activities on
a research topic. For this research topic, there must be a clear research framework or
research strategy and precise goals so that a coherent collaborative activity is ensured.
Ideas for a Working Session can result from Discussion Group sessions of previous
conferences where a topic was elaborated upon and a research framework or strategy
was developed. Each Working Session should be complementary to the aims of PME
and ensure maximum involvement of each participant. The accepted Working Sessions
for PME 2016 are:

WS1: Textbook signatures: Exploration and analysis of mathematics textbooks
worldwide

Coordinators: Angel Mizzi, Ban Heng Choy & Mi Yeon Lee

WS2: What does “socio-cultural-historical views of teaching and learning of
mathematics” mean to us?

Coordinators: Yasmine Abtahi, Mellony Graven, Richard Barwell & Steve
Lerman

WS3: Comparing different frameworks for discussing classroom video in
mathematics professional development programs

Coordinators: Ronnie Karsenty, Alf Coles & Hilary Hollingsworth

WS4: Videos in teacher professional development: Fostering an international
community of practice

Coordinators: Greg Oates, Kim Beswick, Mary Beisiegel, Tanya Evans,
Deborah King & Jill Fielding-Wells.

SEMINARS (SE)

The goal of a Seminar is the professional development of PME participants, especially
new researchers and/or first comers, in different topics related to scientific PME
activities. This encompasses, for example, aspects like research methods, academic
writing or reviewing. A Seminar is not intended to be only a presentation but should
involve the participants actively. PME can give a certificate of attendance to
participants of the Seminar. The proposals of accepted Seminars are included in the
Conference Proceedings.
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This year the International Programme Committee approved one Seminar proposal:

SE1: Reviewing for the PME: a primer for (new) reviewers

Coordinators: Anke Lindmeier, Anika Dreher and Michal Tabach

The reviewing process was completed during the 2nd Meeting of the International
Program Committee at the beginning of April 2017. Notifications of decisions of the

International Program Committee to accept or reject the proposals were available by
10" April 2017.
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MATHEMATICAL THINKING IN COMPUTING

Y.C. Tay
Department of Mathematics, Department of Computer Science

National University of Singapore

Across the world, governments are pushing computer programming on younger pupils.
How is a mathematical education relevant to the increasing number of students who
are writing code? This lecture illustrates the relevance with some concepts (structures,
functions) and habits (examples, reductions) that students pick up from the
mathematics that they learn. These illustrations are drawn from language translation
with vector spaces, deep learning in AlphaGo, the resources needed by any artificial
intelligence, and the intractabilities and impossibilities that limit computation.

1. INTRODUCTION

Many universities have recently observed a significant rise in student enrolment for
courses in computing’. The increasingly critical role that information technology plays
in industry and society has also prompted governments to push computing further
down into K-12 education. For example, in 2016, U.S. President Obama announced a
US$4b “Computer Science for All” initiative!, Finland has made programming
mandatory in all primary schools', and Singapore has moved coding from the GCE A
Level down to O Levelv.

As educators, researchers and administrators, how should we respond to this trend?
Perhaps, we should tweak the contents in our mathematics courses for greater
relevance. However, | believe that a typical computing student can forget all the
mathematical content that they have learnt, for it is the discipline -- the rigor and the
mathematical method -- that will help their careers and last a life time (Tay 2005).

Here, | want to take a further step back and examine how the intuition and reflexes (the
“habits of mind” (CBMS 2001)) we inculcate in our students’ mathematical thinking
relate to computing. Specifically, | will illustrate how the abstraction with a
mathematical structure, the learning from examples, the concept of a function, and
the technique of reduction, are relevant to the technology and science in computing.
Along the way, | hope to demystify artificial intelligence, and point out the scientific
limits on its power.

2. STRUCTURE

Teachers need to know the structures that occur in school mathematics,
and to help students perceive them.

Conference Board of the Mathematical Sciences, MET-II, AMS 2012

1-1
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41% Conference of the International
Group for the Psychology of Mathematics Education, Vol. 1, pp. 1-11. Singapore: PME.
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When teaching mathematics, we want our students to grasp the structures that
constrain mathematical objects — the basis for decimal arithmetic, the periodicity of
trigonometric functions, the symmetries in geometry, etc. — and exploit the resulting
patterns. Having an eye for structure can provide tremendous advantage in computing,
as the following example shows.

In machine translation, one develops a suite of programs that can automatically
translate a document in a source language S into one in a target language T. In general,
this requires that the respective grammar and semantics be coded into the programs.
Minimally, one would need a bilingual lexicon that matches each word (or phrase) in S
to a word in T. For some <S,T> pairs, say <English, French>, such bilingual
dictionaries, with comprehensive vocabularies, may be readily available. For others,
say <Slovene, Tamil>, could a match between S and T be machine-generated? Indeed,
this is possible:

The key insight lies in capturing, mathematically, the structure of each language by
itself, then finding a function to map one structure to the other, and thus effecting the
translation. The structure is, in fact, a vector space, where each word is represented by
a vector. Initially, the components of the vector for a word x in S may measure x’s
relationship with other words X, X2, ... in S, say how often x; follows x (e.g. x;= ‘fever’,
X,= ‘school’, x= ‘high’) or how long the common substring between x; and x (e.g. Xs=
‘encircle’, x= ‘circulate”) is.

For the vectors to accurately reflect the relationships among the words, we would need
a large corpus for each language. This is not an issue, since we can probably build as
large a collection as we need from the web. To measure X’s relationship with the other
words, the vectors will have to be very long. However, we can use some statistical
techniques, such as principal component analysis (PCA) to reduce the dimension of the
vector space (although the resulting vectors will have components that are hard to
interpret).

We then get two vector spaces Vs and V+ that contain vectors representing the words in
Sand T, respectively. We expect each corpus to contain similar statements (“The baby
cried through the night”, “July and August are the hottest months”, etc.) and thus
similarly constrain the positions of the vectors relative to each other in each vector
space.

The two corpora may differ in size, so some normalization of Vs and V: may be
necessary. We then need a small seed translation (i.e. a matrix M representing some
linear transformation) to help align Vs and Vr; e.g. we could use a translation of simple
words like ‘2°, ‘table’, ‘cat’, ‘rain’, etc. As Figure 1 illustrates, the Vengiish and Vspanish
that are constructed in this way indeed have similar structures (Mikolov et al. 2013).

The relative positions of the vectors capture some of the semantics. For example, if v,
Is the vector for the English word w, then Vimutton — Vsheep + Veow WoOUId give a vector near
Vpeef , Where nearness can be measured via the dot product of vectors.
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Figure 1: Corresponding vectors in Vengiish and Vspanish have similar relative positions
(Mikolov et al. 2013).

The machine translation for x in S is thus the word y in T such that v, is closest to Mvy,
where M is chosen to minimize the total error between Mvy and vy for the pairs <x, y>in
the seed translation.

This example shows that a set of words may seem loosely related but, when considered
abstractly, can have a well-defined mathematical structure that can be exploited for
real computing applications (e.g. tourists using handphones to translate signs in a
museum).

The large corpora and long vectors make this an exercise with big data. Our next
example combines big data with another buzz phrase: deep learning.
3. EXAMPLES
| never saw a book with too many examples.
Jeffrey D. Ullman

In March 2016, many millions watched via Internet a Go match between AlphaGo (a
computer system) and Lee Sedol, one of the top-ranked professionals in the game.
AlphaGo won, 4 games to 1. This win came 19 years after a similar Chess match,
where the machine Deep Blue beat the then World Champion Gary Kasporov.
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Figure 2: Game tree for Tic-Tac-ToeV'.

To understand the difference in difficulty between Go and Chess, consider their game
trees: Each node in such a tree is a position that completely identifies every piece and
its location on the board. (Figure 2 illustrates the game tree for Tic-Tac-Toe.) When a
move is made by either player, a position branches off to another position. The
sequence of moves in a game thus specifies a path through the tree. At each position,
the number of legal moves is the branching factor b, also called the breadth; the
maximum number of moves in a game, from root (initial position) to leaf, is the depth
d. Hence, a game tree has roughly b® positions as nodes.

In principle, one can expand the game tree in its entirety and, at any position G in the
game, choose the best move (branch) by inspecting the subtree rooted at G. This is
possible for simple games like Tic-Tac-Toe, but not for Chess, which has b=35, d=80,
and b%=10%%, more than the estimated number of atoms in the universe.

When choosing a move, a human player would anticipate the other player’s
counter-move. Therefore, while a Chess machine cannot explore the entire tree rooted
at a position G, it must search some number of moves ahead. Beyond that, each subtree
is pruned and replaced by a value for the position at the subtree’s root. These values
are then aggregated to choose the best move from G.
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A Chess machine thus requires an evaluation function fe, that assigns a value to each
position. The quality of the machine’s play depends critically on feva; for Deep Blue,
this function was designed by grandmasters, and had thousands of cases.

Handcrafting an evaluation function is much harder for Go, which has b=250 and
d=150 (so b%=10%® possible positions). For a function fe. to usefully assign a value to
a position G and thus summarize the subtree rooted at G, feyar must reflect what can
happen deep into the subtree. For example, Lee played a “God’s move” that led to his
victory in Game 4 of the match, but the breakthroughs from that move took more than
25 moves to play out.

With no manually-designed feva to rely on, AlphaGo instead uses a neural network to
assign values to positions.

One can think of a neural network as consisting of layers of neurons; each neuron
takes input from neurons in a previous layer, applies an activation function facivae t0
its weighted inputs, and passes the result as input to the next layer (unless it is the last
layer). If the input to the first layer is X, and the output of the last layer is y, the neural
network in effect computes a function f,, where y= fo,(X).

The activation functions in a neural network are typically fixed, so f,, is determined by
the weights, which can be adjusted. These weights are, in turn, determined by giving
the network many examples of <x,y>, where x is used as input to the first layer, and the
weights are tuned so the final output accurately estimates y. In this sense, the network

learns f,, from the examples. In our context, AlphaGo uses 3 neural networks: /N; for

choosing a move, /N, for searching the tree, and /N3 for evaluating a position (Silver et
al. 2016).

For /N, the examples are of the form <position, move>, some 30 million of them taken

from games played by human experts using the Kiseido Go Server. This is thus an
example of supervised learning.

A human’s choice of move is guided by some intuition about threats and opportunities
in local stone positions (‘ladder’, ‘eye’, etc.), as well as in the global situation over the

entire board. To learn this intuition, the neurons in a layer of /N; focus only on
similarly-sized subsections of the board, but the size decreases from one layer to the
next. /N; uses 13 layers, so it is an instance of deep learning.

One example of a local pattern that AlphaGo needed to learn was the “tombstone
squeeze”. This is a common tactic that appeared in the many examples given to /N,
but AlphaGo did not recognize it when Lee played it in Game 5. This was an issue that
AlphGo’s designers had to fix after the match.

To acquire global intuition, AlphaGo must play the game to the end. To do this, N is
given <position, move> data extracted from millions of games played by one version
of /N; against a previous version. The weights are tuned to favour moves that led to
wins in these games. In this way, AlphaGo factors in the outcome of the tree search. It
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demonstrated this early in Game 1, where it played a move (#102) that surprised the
professionals and revealed an invasion orchestrated over 20-odd moves*".

N1 uses supervised learning, with examples of <position, move> taken from games
played by human experts; in contrast, /N, learns from examples of games played by
AlphaGo against itself. Weight tuning for /N is to match the expert’s moves whereas,

for N;, it is to increase the chance of winning. This reward-induced tuning is called
reinforced learning.

Both /N; and JN; generate an output that is a probability distribution for the best move
to make when given a position. In contrast, /N3 evaluates a position and generates a

probability of winning. Like N, it is a reinforced learning network that takes
<position, outcome> data from playing many games against previous versions of itself,
where the outcome (win or lose) guides the tuning.

N3’s ability to accurately evaluate a position was demonstrated in Game 3, where
AlphaGo bested Lee at playing the sort of complicated large-scale fights that he is
known for, thus showing it has global, whole-board awareness. This is particularly
impressive, considering Lee’s games were not used in training AlphaGo. In fact, the
supervised training of JN; with examples taken from the Kiseido Go Server used
moves that were made by experts who were not professionals.

AlphaGo’s ability to bootstrap itself from non-professional game play to Lee’s
professional level must lie in /N, and IN3’s reinforced learning. However, learning by
playing the game millions of times is like rote learning, which has a bad reputation
among educators. Perhaps, the difference here lies in the games being played among
different versions of AlphaGo, thus incrementally improving each other and gradually
lifting their expertise from amateur to professional. (We should encourage our
students to teach each other!)

Did either Deep Blue or AlphaGo demonstrate intelligence? In Game 1 of that Chess
match, Deep Blue made a move that Kasporov did not expect a machine to make; it
suggested human intelligence, rattled him, and possibly affected his subsequent play
adversely™. However, it turned out that the subtle move was actually caused by a bug
in Deep Blue, rather than a sign of intelligence.

In Game 2, AlphaGo played a “shoulder hit” that surprised the professionals and made
Lee leave the room. They had never seen such a move before, and it was possibly a
sign of creativity or intelligence exhibited by AlphaGo. But the explanation may be
more mundane: While all players aim to win, human players tend to be conservative
and greedy in gaining territory. In contrast, AlphaGo’s optimization criteria focus on
increasing its chance of winning, so it is ready to give up territory as a trade-off. This
difference in optimization heuristic results in a style of play that is unfamiliar to the
humans.
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4. FUNCTIONS

The development of full artificial intelligence could spell the end of the
human race.

Stephen Hawking*

Students first learn mathematics through arithmetical operations, like calculating
y=20x+17. Later, they see this as a function y=f(x). By the time they learn functions
like y=sin(x), they may just see f as some black box with input x and output y, and not
know what goes on in the black box.

Most of the time, a computer system G can be viewed as such a black box, taking input
x and generating an output y, thus calculating some function y=f(x). In Section 2, fis
the linear transformation defined by the matrix M mapping a word x in the source
language to a word y in the target language; in Section 3, the neural network N;
computes a function that takes a raw Go board position x and generates a probability
distribution y for the best move.

What is not so obvious is that the computer system G that computes f is itself a
function: the speed and accuracy of G are a function of the resources that ‘G has access
to.

For example, the AlphaGo system that beat Lee used 1920 CPUs and 280 GPUs (CPUs
and GPUs are hardware processors where most of the computation is done). Go
players have an Elo rating that measures their expertise, and that AlphaGo system’s
rating was 3168; when the software was run on a smaller system with 428 CPUs and 64
GPUs, its Elo rating dropped to 2937 (Silver et al. 2016). This is because a player has
a time limit for making each move. This time constraint means that, if AlphaGo has
lesser computational resources, it will have to try fewer moves and search fewer steps
ahead, thus lowering the quality of its play. Now, let Ncpu and Ngpy be the number of
CPUs and GPUs, respectively, and E the Elo rating. If we fix everything else for
AlphaGo’s computer system'G — the speed of the processors, the AphaGo version, the

number of neural network layers, etc. — then E=f<(Ncpu, Ngpu) for some function f.

Aside from computational power, another fundamental resource that a system G needs
is memory. In machine translation, this memory may be used to, say, hold the most
popularly used words; in AlphaGo, the memory is needed to hold the positions from
alternative moves and possible countermoves. Again, if the amount of memory that G

has access to is reduced, then G would lose speed or accuracy.

In the 1968 science-fiction movie 2001: Space Odyssey, HAL was a computer which
controlled a spacecraft that was sending a team of astronauts to Jupiter. At some point,
HAL became sentient. It discovered the astronauts wanted to shut it down, so it started
killing them instead. The last surviving astronaut managed to enter HAL’s Logic
Memory Center, and started removing HAL’s hardware units, one by one. As he did
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so, HAL regressed from dissuading the astronaut in a dulcet tone to finally singing a
simple song (Bicycle built for two) with an incoherent, mechanical voice*.

Other than hardware, G also needs a source of energy. This energy is needed to not just

power the computation, but also to keep the system cool, because the flow of electrical
signals in the hardware encounters resistance and generates heat; without cooling, a
computer system can literally go up in smokeX'. Companies like Google and Facebook
go to great lengths to secure cheap energy to power and cool their data centers, and
energy management is now a major research topic in computer science.

In the 1999 movie Matrix, humans fought a war against the Machines that they created,
and tried to cripple them by blocking their access to solar energy. The Machines
overcame that strategy by enslaving mankind and turning them into human batteries"'.

Space Odyssey and Matrix are just movies, but they do illustrate an important point:
What any artificial intelligence can do, for or against us, is a function of the resources
that it has access to.

5. REDUCTIONS

An engineer and a mathematician were shown into a kitchen, given an
empty pan, and told to boil a pint of water. They both filled the pan with
water, put it on the stove, and boiled it. The next day they were shown into
the kitchen again, given a pan full of water, and told to boil a pint of
water. The engineer took the pan, put it on the stove, and boiled it. The
mathematician took the pan and emptied it, thereby reducing it to a
previously solved problem..

https://www-users.cs.york.ac.uk/susan/joke/

The technique of solving a problem 7 by reducing it to a special case of another
problem 7’ (for which a general solution is already known) is old, going back to
Descartes and beyond (Grabiner 1995). School children eventually realize that the
mathematical exercises they were given can be reduced to finding the intersection of
two lines, or the roots of a polynomial, etc. The technique naturally leads to the notion
that /7 is easier than &7, a concept that lies at the heart of computer science:

complexity and computability.

Among the resources required for a computation — energy, memory, bandwidth, etc. —
the one that is most intensely studied is time. The time complexity for computing a
function f is abstractly defined as the number of steps required for the computation (in
the worst case, considering all possible inputs). For example, consider

_ 1, ifm=2n
fPR'ME(”)‘{ 0, if m#2n"

1, if nisprime

0, if nis not prime and fDOUBLE(m’n):{
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It is easy to compute fpousLe : We just compute 2n and check if m=2n. It may appear
that ferivie IS €8SY t0 compute too; we can, say, check each possible divisor d to see if d
divides n. However, this naive computation takes a long time.

Suppose we define “easy to compute” to mean “membership in P”, where f € P if and
only if f(x) can be computed (for any x) in a number of steps that is polynomial in the
length of x (e.g. the length of ‘2017’ is 4). We call P the class of polynomial-time
computable functions (of the form f(x)=1 if and only if x € S¢). Clearly, foousLe € P, but
it took much effort before a proof was found for fprime € P (Agrawal et al. 2004). For
the related function

1, ifnhasa factordsuchthatl <d<m

fFACTOR(m’n):{U otherwise

it is still not known whether fractor 1S in P. One could compute fractor by factoring n,
but no one has found a factorization algorithm that runs in polynomial time.

However, it is easy to see that fractor € NP, where NP is the class of functions that can
be “verified” in polynomial time; in the case of fractor, this means if fractor(m,n)=1,
then given any d, where 1< d <m, we can verify in polynomial time that d is a factor of
n.

Since every f € P is computable in polynomial time (with no need for verification), we
have PENP. Is P=NP ? This is the most famous open problem in complexity theory,
and mathematicians have adopted it as one of the 7 Clay Millennium Problems*".

An obvious idea for proving P#NP is to find some f € NP that cannot be computed in
polynomial time. Intuitively, this proof should be easier if we pick some f € NP that is
hardest to compute. But how should one define “hardest”?

The standard definition for “hardest” is NP-completeness, where an f “ € NP is
NP-complete if and only if f can be reduced in polynomial time to f * for all f € NP.
There are infinitely many such f~, and computer scientists have explicitly identified
thousands of them, but no one could prove any of these f* is not in P. The issue is not
just of theoretical interest, since current cryptographic techniques for online
transactions use functions in NP; if P=NP, then it would be computationally easy to
defeat these encryptions.

We see here that the concept of reduction, so common in mathematics, is crucial in
formalizing the notion of computational difficulty.

Computer scientists generally consider NP to be the limit of computational tractability.
Beyond NP, there is in fact an infinite hierarchy, where the functions are increasingly
harder to compute as we go up the hierarchy. In the limit, there are functions that are
not even computable.

Most of us have encountered computation that seems to “hang”, where nothing seems
to be happening. Sometimes, this is because the computation is in some infinite loop,
so the program does not halt. Now consider the function
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1, if program P halts when run on input D

fract(P, D):{{] otherwise

(We can consider P and D to be integers since, at the machine level, they are just
strings of Os and 1s, like an integer in binary.) This fyaLt is not computable.

To prove a function is not computable, one must first define formally this intuitive
concept of “computable”. Turing gave one of the earliest definitions, and used it to
prove that fyat IS not computable (Turing 1937). Mathematicians and computer
scientists have proposed many alternatives, but Turing’s definition is now accepted as
the standard.

The scientific significance of Turing’s proof cannot be overemphasized. Computer
science is widely perceived as engineering, not science, but the uncomputability of
fuaLT transcends technology: it will remain uncomputable a thousand years from now,
and anywhere in the universe.

Again, there are infinitely many uncomputable functions, and thousands of these
functions have been explicitly identified. We can also use reduction to prove that a
function f is uncomputable: start with a function f * that is known to be uncomputable
(e.g. f "=fuaLt) and prove that f* can be reduced to f,sof” is easier than f; since f* is
already uncomputable, f must therefore be uncomputable too.

To summarize, not everything is computable. Despite the optimism of Al enthusiasts,
there is much that is computationally intractable (NP-complete) or impossible (like
fuaLt). And the theory for studying these limits on computation makes much use of
reductions.

6. CONCLUSION

The mathematics community should not feel challenged by students’ upswing in
interest in computers and programming. Nor should we strain the curriculum to suit
this interest. Mathematics is a profound discipline, whose effectiveness in the natural
sciences we do not yet understand (Wigner 1960), and computer scientists have found
it to be a natural tool to wield. Rather, as | have tried to illustrate in this lecture, we
should be confident that, if we give our students a rigorous education in mathematics,
and equip them with mathematical instincts and habits, then we would already go a
long way in supporting their interests in computing.
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USING CROSS-CULTURAL COMPARISON TO INTERROGATE
THE LOGIC OF CLASSROOM RESEARCH IN MATHEMATICS
EDUCATION

David Clarke
University of Melbourne, Australia

Classrooms represent a globally-extensive institutionalised site for the promotion of
learning. Cross-cultural comparative classroom research offers an opportunity to
destabilise some of the assumptions underlying established pedagogical practices and
the theories of learning implicit in these practices. The mathematics classroom is a site
through which the international mathematics education community can explore
considerations of culture, language, temporality and theory. Various approaches to
researching the mathematics classroom illustrate the affordances and limitations of
our research designs and new possibilities of international collaboration are proposed
to usefully interrogate and elaborate the logic of mathematics classroom research.

INTRODUCTION

Classrooms represent a globally-extensive institutionalised site for the promotion of
learning, but classroom practice is inevitably situated in webs of local convention and
framed by local pedagogical histories of practice and of discourse. In the context of
mathematics classroom learning/teaching, the interactions of the participants are
shaped by conventions grounded in local culture, dictating both the pretext for their
presence in the classroom and the roles they are expected to perform. Cross-cultural
comparative research offers an opportunity to destabilise some of the assumptions
underlying established pedagogical practices and the theories of learning implicit in
these practices. Yet even these acts of comparison can prove ineffective as vehicles for
transformative research, if the premises on which the comparisons are undertaken
remain grounded in a single (authoring) culture (Clarke, 2003). Methods are required
by which language, entrenched practice, restrictive organisational structures and
established theory can be subjected to constructive scrutiny. | suggest that such
scrutiny must be cross-cultural and undertaken collaboratively and reciprocally. In this
presentation, the mathematics classroom is presented as a site through which the
international mathematics education community can explore considerations of culture,
language, temporality and theory. Various approaches to researching the mathematics
classroom are presented to illustrate the affordances and limitations of our research
designs and new possibilities of international collaboration are proposed to usefully
interrogate and elaborate the logic of mathematics classroom research.

A BRIEF OVERVIEW OF CLASSROOM RESEARCH

Early studies of learning were typically clinical studies of small numbers of individuals
(Piaget, 1926; Donaldson, 1978). The clinical tradition of fine-grained analyses of the
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responses of small numbers of students to particular learning situations (treatments)
has been pursued in many studies (e.g., Lobato & Siebert, 2002; Steffe, 1991;
Thompson & Thompson, 1994). Learning in classroom settings became increasingly
the subject of research and this interest was accompanied by the development of onsite
real-time observational techniques (e.g., Amidon & Hough, 1967; Beeby, Burkhardt,
& Fraser, 1980) leading to the contemporary use of video (e.g., Janik & Seidel, 2009).
Process-product studies offered a plausible paradigm in which classroom process
variables were linked statistically with product variables such as student test
performance or student attitudes (Bourke, 1985; Good & Grouws, 1975). The
limitations of such correlational studies for the prescription of effective practice is now
widely recognised. The challenge of connecting instructional activity to learning
outcome is the signature problem of classroom research. The instructional
optimization of learning in a particular setting requires research capable of providing
fine-grained insight into the locally-specific relationships between context, practice
and outcome.

This contextually specific detail can be found in the many naturalistic case studies of
student learning in authentic classroom settings (e.g., Clarke, 2001; Cobb &
Bauersfeld, 1995; Erlwanger, 1985), drawing upon the methods of ethnographic
research to understand the relationships between individuals, their practice, and their
consequent learning in classroom settings. Fundamental to such studies was the
recognition of the importance of accommodating learning as a social phenomenon in
our research designs (Lerman, 2000). Studies such as those just referenced were
undertaken in order to identify and elaborate the social aspects of learning. Such
fundamentally exploratory studies, progressively gave way to design experiments:
“engineering” particular forms of learning in the interest of theory development and
testing, following an iterative process of hypothesis formulation and revision (Cobb,
Confrey, diSessa, Lehrer, & Schauble, 2003). Unlike earlier naturalistic studies, design
experiments are highly interventionist. This is coupled with a pragmatic commitment
to local utility, in the sense that the situational specificity of the design experiment is
recognised in both the empirical findings and the theories generated by such studies.
Video has served as a tool for many of these studies, providing detailed documentation
of the actions of the participants and also of the actual classroom setting itself.

More recently, international comparative studies of classroom practice have been
undertaken, also using video as a key tool (e.g., Clarke, Keitel & Shimizu, 2006;
Stigler & Hiebert, 1999). It is useful to contrast the design logic of two of the more
internationally prominent studies: The TIMSS and TIMSS-R Video Studies (Stigler
and Hiebert, 1999; Hiebert et al., 2003) and the Learner’s Perspective Study (LPS)
(e.g., Clarke, Keitel, & Shimizu, 2006; Kaur, Anthony, Ohtani, & Clarke, 2013). The
TIMSS and TIMSS-R Video Studies were intended to be nationally representative
characterisations of typical eighth-grade classroom practice in each of the participating
countries. This goal was achieved through a representative sampling of single
mathematics lessons across entire countries. The LPS analysed sequences of at least
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ten consecutive lessons taught by three experienced mathematics teachers from each of
the participating countries, where each teacher was recruited because they were
competent according to local criteria. The goal of the LPS was the documentation of
the classroom practices of both teachers and students in competently taught
mathematics classrooms in each country. The two studies were complementary in their
respective foci on typicality through national representative video surveys and the
characterization of practice in well-taught classrooms through the fine-grained
analysis of video-based comparative case studies. The challenge for each study and for
classroom research in general is to make evidence-based connection between specific
classroom activities and student learning outcomes. Cross-cultural comparison
exploits the inevitable and unsettling dissimilarity of practices among differently
situated classrooms to highlight elements of comparative stability and change, both of
which take on significance in any attempt to understand how classroom practice and its
outcomes are collectively constructed by the participants in different cultural settings.

The Science of Learning Research Classroom (SLRC) at the University of Melbourne
is a laboratory classroom equipped with 10 built-in video cameras and up to 32 audio
channels. Laboratory classrooms such as the SLRC and similar facilities being
developed by Beijing Normal University and elsewhere require a shift in thinking
about classroom research and possibly educational research in general. Unlike
school-based research and more like a laboratory, the facility allows researchers to
have significantly greater control over the research setting and conditions, from who
are present in the classroom, the autonomy of the participants, the activities involved,
through to the types and amount of data being generated and therefore collected. The
parallel development of such facilities in culturally disparate locations has the potential
capacity to draw on the mathematics education community’s existing expertise in
ethnographic methods, cross-cultural comparative analyses, design experiments, and
the techniques of the clinical experiment. Having provided this overview, | will now
consider some of the issues that | think are critical if we are to realise the potential of
our new theoretical, methodological and technical riches. The convergence of
capability just outlined assumes a central role for the use of video and this is reflected
in the remainder of this paper.

VIDEO DATA PROBLEMATICS - WINDOW, LENS, MIRROR

| want to start with a consideration of the nature of classroom data. Educational
research, like research in the physical and biological sciences, must make optimal use
of available technologies in addressing the major problems of the field. This strategic
deployment of available technologies reflects a purposeful process of data generation
rather than data collection. Data “collection” has never been an apt description of the
research process and the agency of the researcher must be acknowledged more
explicitly. As such, the researcher must accept responsibility for decisions made and
data generated, and place on public record a transparent account of the decisions made
in the process of data generation and analysis.
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It is a truism to say that the data you need reflects the research questions you want to
answer. Data is also pre-determined by the theory employed. Each theory prioritises
certain constructs and these constructs are embodied in particular data types. Those of
us engaged in classroom research make use of a wide range of data: test responses,
student work materials, teacher lesson plans, curriculum documents, copies of text
books, video records of the teacher, the whole class and particular students, transcripts
of speech by classroom participants, scanned visual records of equipment of various
types, powerpoint presentations, photos of displays on blackboard, whiteboard or other
media, teacher and student interviews (some video-stimulated, some not),
guestionnaire responses and physiological response data. The essential consideration
are the researcher’s acts of selection, from which information 1s transformed into data.
Some of the data types just listed are generated as information by the teacher and the
students through the normal activities of the classroom and some only occur because of
the research activity. In constructing the data set, the researcher must engage in
selection both before the research event and after. Video illustrates these acts of
selection very clearly: the researcher can choose to use video or not; where to point the
camera; how many cameras to use; and which video material will ultimately be
selected and configured for analysis. But, once configured, what function does the data
serve? What work does it actually do?

| have found four metaphors useful in addressing these questions. Once again, video
data can be taken to stand in the place of all data types, because of its capacity to make
graphically explicit the dynamic between the researcher’s purpose and the object of
research. These four possible conceptions help explicate the mediating role of video in
classroom research: (i) as a window through which to see the classroom; (ii) as a lens
through which to focus on selected aspects of classroom activity; (iii) as a reflective
mirror by which the classroom participant can see themselves and reflect on their
actions; and (iv) as a distorting mirror, in which the researcher sees not so much a
representation of the classroom, but rather a re-presentation of their own values and
perspectives reconstituted as classroom data. The key verbs corresponding to these
metaphors are: see, focus, reflect and represent. Each metaphor has significant
entailments for the meaning and authority (as evidence) that can be accorded to the
resultant images for research purposes. The metaphors can be used to determine the
ontological and epistemological assumptions of research designs. Each will be
discussed briefly with an example.

Video as Window

Perhaps the most obvious metaphor used in relation to video is that it serves as a
window on the classroom. This image is simple and immediately appealing. It suggests
a neutrality to the act of video recording that assigns the technology the role of
independent (and implicitly unbiased) recorder of classroom events occurring
independent of the researcher.
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Only by seeing classroom situations from the perspectives of all participants can we come
to an understanding of the motivations and meanings that underlie their participation.
(Clarke, Mitchell & Bowman, 2009, p. 39).

Whatever position we might hold regarding the status of these recordings, in many
studies, video functions in our research reports as precisely this sort of window on a
form of “classroom reality” made accessible through the window of the video camera.

Video as Lens

A slightly more nuanced conception of the role of video in classroom research
constructs it as a form of lens, allowing the researcher to focus attention on selected
aspects of classroom activity, capable of a strategic close-up of prioritized events or
objects or of panning back for wide angle documentation of class behaviour.

Every decision to zoom in for a closer shot or pull back for a wide angle view represents a
purposeful act by the researcher to selectively construct a data set optimally amenable to
the type of analysis anticipated and maximally aligned with the particular research
questions of interest to the researcher (Clarke, Mitchell & Bowman, 2009, p. 39).

The video in this conception is a research tool utilized strategically by the researcher to
focus on certain aspects of the classroom.

Video as Reflective Mirror

Video can play a role other than as data. VVideo can be used to stimulate both teacher
and students’ reflections on a lesson through video-stimulated post-lesson interviews
(Clarke, 1998). Video can also stimulate individuals’ recollections of targeted
phenomena. In the Lexicon Project, video records of lessons were used to stimulate
teacher recollection of names for classroom phenomena (Clarke, Mesiti, Cao, &
Novotna, 2017). In each case, the video is not the data. Instead, the role of video is
catalytic, acting to stimulate the retrospective accounts or recalled terms that constitute
the actual data.

Video as Distorting Mirror

In various places, it has been argued that our interaction with research settings is
mediated by our theories (e.g., Clarke, 2011). The theory-ladenness of observation has
been recognized by researchers both from the field of philosophy of science, from
social science, and from education (e.g. Clarke, Xu, Arnold, Seah, Hart, Tytler, &
Prain, 2012; Guba & Lincoln, 1994; Kuhn, 1996). The video record can be thought of
as a representation of the researcher’s view of the classroom constructed as a collage of
images selected by the researcher to represent particular aspects of the classroom of
significance to the researcher. We must address the possibility that our video records of
classroom activities are most appropriately thought of as reflections of ourselves,
distorted through their representation in the performative acts of those whose actions,
motives and experiences we ostensibly seek to understand.
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COMPLEMENTARY ACCOUNTS

In complex social environments such as classrooms, consideration must be given to the
juxtaposition and relative status of different data. The distinguishing characteristic of
the research design for the Learner’s Perspective Study (see Clarke, Emanuelsson,
Jablonka, & Mok, 2006) is the inclusion of four levels of complementary accounts: (a)
at the level of data, the accounts of the various classroom participants are juxtaposed;
(b) at the level of primary interpretation, complementary interpretations are developed
by the research team from the various data sources related to particular incidents,
settings, or individuals; (c) at the level of theoretical framework, complementary
analyses are generated from a common data set through the application by different
members of the research team of distinct analytical frameworks; and (d) at the level of
culture, complementary characterizations of practice and meaning are constructed for
the classrooms in each culture by the researchers from each culture and these
characterizations can then be compared and any similarities or differences identified
for further analysis, particularly from the perspective of potential cross-cultural
connection or transfer.

We need to acknowledge the multiple potential meanings of the situations we are
studying by deliberately giving voice to many of these meanings through accounts
both from participants and from a variety of “readers” of those situations. The
implementation of this approach requires the rejection of consensus and convergence
as options for the synthesis of these accounts, and instead accords the accounts
“complementary” status, subject to the requirement that they be consistent with the
data from which they are derived, but not necessarily consistent with each other, since
no object or situation, when viewed from different perspectives, necessarily appears
the same (Clarke, 2001, p. 1). Adoption of complementarity rather than consensus or
convergence as a legitimate and productive stance requires a reconceptualization of the
nature and function of triangulation in research (Mok & Clarke, 2015).
Complementarity of accounts is an essential methodological and theoretical stance,
adopted by the Learner’s Perspective Study, for the explication of mathematics
teaching and learning in classroom settings, the advancement of theories relating to
such settings, and the informing of practice in mathematics classrooms.

THE ROLE OF TECHNOLOGY IN CLASSROOM RESEARCH

It is imperative that educational research makes optimal use of available technology.
International comparative classroom research, in particular, poses methodological and
technical challenges that are only now being adequately addressed through advances
in:
 techniques and equipment for the collection of audio-visual data in
classrooms;
« tools for the compression, editing and storage of digitised video and other
data;
« storage facilities that support networked access to large complex databases;
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« data distribution systems that support secure, remote access for data entry
and retrieval on an international scale; and
« analytical tools capable of supporting sophisticated analyses of such
complex databases.
Recent classroom research (Alton-Lee, Nuthall & Patrick, 1993; Clarke, 2001 and
2006; Sahlstrom & Lindblad, 1998), backed by more sophisticated ways of collecting
and analysing data, has shown that some of the findings of the classroom research
classics such as Bellack et al. (1966), Sinclair and Coulthard (1975) and Mehan (1979)
are seriously skewed because of technological issues in data generation. Lindblad and
Sahlstrém (1999, 2002) argue that if the early researchers had access to the same tools
for data collection and analysis as are available today, the general view of classroom
interaction would be quite different.

The most striking of these differences concerns the role of students in classrooms.
Single-camera and single-microphone approaches, with a focus on the teacher,
embody a view of the passive, silent student at odds with contemporary learning theory
and classroom experience. Research done with technologically more sophisticated
approaches has described a quite different classroom, where different students are
active in different ways, contributing significantly to their own learning (cf. Clarke,
2001; Clarke, Emanuelsson, Jablonka, & Mok, 2006; Clarke, Keitel, & Shimizu, 2006;
Sahlstréom & Lindblad, 1998).

Further, classroom researchers have until recently had limited opportunities for
engaging in manageable comparative research, where materials from different
countries and different periods of time can be accessed and analysed in feasible ways.
At the International Centre for Classroom Research at the University of Melbourne,
contemporary technology makes it possible to carry out comparative analyses of an
extensive database that includes multi-camera classroom video records of lesson
sequences, supplemented by post-lesson video-stimulated interviews with students and
teachers, scanned samples of written work, and test and questionnaire data, drawn from
mathematics classrooms as geographically distant as Sweden and Australia and as
culturally distinct as Germany and China.

As new theories of learning and social interaction develop, research techniques must
have the capacity to accommodate these new theories. Teaching and learning are
complex practices, and different participants will experience classroom events
differently. If we approach social settings (and the situations they frame) as
multiply-constructed and open to multiple construal, then the methodology employed
in their study must accord a voice to the several participants in these settings.

The data required for international comparative research into classroom practice are
complex and expensive to obtain. The very high expenditure of time and effort in
generating such data can be more easily justified if the consequences of all this labour
and expense can be made available for analysis by the widest possible diversity of
researchers. Of all data sources currently available to researchers in education, video
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data seems most amenable to multiple parallel analyses. Research addressing the
complexity of classroom practice cannot be restricted to a single analytical frame, but
must take a programmatic approach, where a well-equipped research team, combining
a range of methodological and theoretical expertise, undertakes careful parallel
analyses of high-quality complex data. Advances in technology bring us ever closer to
the realisation of this vision.

MANAGING THEORY: MULTI-THEORETIC RESEARCH DESIGNS

Theories are cultural and historical artefacts, reflecting those things contemporary
language equipped us to conceive. In carrying out classroom research, each theory
affords particular analytical strategies, each focuses attention on specific aspects of
the object or phenomenon under investigation but ignores other aspects. Inevitably,
each should produce distinctive findings: the products of the particular analytical
stance adopted. Each theory, although being applied in the analysis of the same
setting, offers distinctive insights reflective of the theory’s foregrounded constructs.

Rather than considering convergence or compatibility as the definitive result of the
particular combination of theories, attention should be directed to the compatibility of
the interpretive accounts generated by their application to a common source of
classroom data. In the Learner’s Perspective Study (among others), multi-camera
on-site video technology and post-lesson video stimulated interviews were used to
generate a complex data source amenable to parallel analyses from several
complementary theoretical perspectives. This approach was intended to realize two
very specific aims:

(1)  Understand the setting: to maximize the sensitivity of the combined
analyses to a wide range of classroom actions and learning outcomes, and

(1)  Understand the theory: through the combination of theoretical perspectives,
examine the extent to which the results of analyses employing various
theories and the theoretically-grounded explanations of these results are
complementary, mutually informing, or, perhaps, incommensurable.

Each analysis resembles any mono-theoretic research design in that the constructs
privileged by the chosen theory are matched to data types and a research design
constructed that employs methods suitable for the generation of the targeted data.
Each independent analysis remains vulnerable to the same accusation of circularity or
pre-determination that can be leveled at any mono-theoretic research design. Once
available, however, the results of the parallel analyses can serve several purposes:

(1) By addressing different facets of the setting and thereby providing a richer,
more complex, more multi-perspectival portrayal of actors and actions,
situations and settings;

(11) By offering differently-situated explanations for documented phenomena and
differently-situated answers to common research questions;

(i11) By increasing the authority of claims, where findings from different
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analyses in relation to the same question or the same phenomenon were
coincident;

(iv) By qualifying the nature of claims, where findings in relation to the same
question or the same phenomenon were inconsistent or contradictory;

(v) By providing a critical perspective on the capacity of any particular theory to
accommodate and/or explain particular phenomena, in comparison with
other theories employed in analyses related to the same events in the same
setting;

(vi) By facilitating the synthesis of the results of the parallel analyses for the
purpose of informing instructional advocacy.

The derivation of all findings from the same data source through the application of all
analytical approaches to the same setting greatly strengthens the project’s capacity to
realize these six purposes. In particular, multi-theoretic research designs integrate the
activity of research synthesis into the research design as an essential element. The
goals of research synthesis (Suri & Clarke, 2009) should not be limited to normative
convergence on some form of best practice. In developing instructional advocacy
arguments, it may be the identification of contingencies on any recommendations that
offers greatest utility, by identifying combinations of context and action most likely to
promote locally significant outcomes.

QUESTIONS OF CULTURE

Research in the Learner’s Perspective Study (LPS) has made clear just how
culturally-situated are the practices of classrooms around the world, and the extent to
which students are collaborators with the teacher, complicit in the development and
enactment of patterns of participation that reflect individual, societal and cultural
priorities and associated value systems (e.g., Clarke, Keitel, & Shimizu, 2006). Within
any educational system, the possibilities for experimentation and innovation are
limited by more than just methodological and ethical considerations: they are limited
by our capacity to conceive possible alternatives. They are also limited by our
assumptions regarding acceptable practice. These assumptions are the result of a local
history of educational practice, in which every development was a response to
emergent local need and reflective of changing local values. Well-entrenched practices
sublimate this history of development. In the school system(s) of any country, the
resultant amalgam of tradition and recent innovation is deeply reflective of
assumptions that do more than mirror the encompassing culture: they embody and
constitute it. International comparative research offers us more than insights into the
novel, interesting and adaptable practices employed in other school systems. It also
offers us insights into the strange, invisible, and unquestioned routines and rituals of
our own school system and our own mathematics classrooms (Clarke, 2003, p. 180).
However, cross-cultural comparative research brings its own challenges and these
require careful consideration.
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THE VALIDITY-COMPARABILITY COMPROMISE

In an international comparative study, any evaluative aspect is reflective of the cultural
authorship of the study. Elsewhere, | have set out several methodological dilemmas
that arise directly from cross-cultural comparative research (Clarke, 2013a). The
cultural authorship of research instruments and their cross-site legitimacy has
implications for both data generation and interpretation and must be accommodated
carefully through revision or replacement, or through reconception of the nature of the
comparison being undertaken. In particular, the pursuit of commensurability in
international comparative research by imposing general classificatory frameworks can
misrepresent valued performances, school knowledge and classroom practice as these
are actually conceived by each community and sacrifice validity in the interest of
comparability. For example, researchers engaged in cross-cultural comparison should
avoid confusion between form and function, where an activity coded on the basis of
common form is employed in differently situated classrooms to serve quite different
functions (eg kikan-shido or between-desks-instruction). Cross-cultural research being
reported from the perspective of a single culture, employing a single language, runs the
risk of misrepresentation by omission, where the authoring culture of the researcher
lacks an appropriate term or construct for the activity being observed. Marton and Tsui
(2004) suggest that “the categories . . . not only express the social structure but also
create the need for people to conform to the behavior associated with these categories”
(p. 28). Our interactions with classroom settings, whether as learner, teacher or
researcher, are mediated by our capacity to name what we see and experience.
Speakers of one language have access to terms, and therefore perceptive possibilities,
that may not be available to speakers of another language.

THE LEXICON OF THE RESEARCHER

Learning can be conceptualised in terms of progressively enhanced participation in
forms of institutionalised social practice, where discourses form key components of
that practice. Students are initiated into the discourse of the mathematics classroom: a
discourse with its own technical vocabulary and discursive and social conventions.
Mathematics teachers similarly participate in a discourse community in which the
mathematics classroom and its objects, agents and events provide the subjects of
professional discourse and for which language mediates the experience of the
classroom and the professional learning that experience engenders. Classroom
researchers’ experience of the classroom is similarly mediated by the language
available to describe those objects and events occurring in classroom settings.
Thinking of the research process as analogous to learning, in that the goal is the
construction of new knowledge, we find in the mathematics classroom research the
nexus of three learning communities: students, teachers and researchers. The learning
opportunities available to each group are afforded (and constrained) to a significant
extent by the language employed to participate in and reflect on the mathematics
classroom.
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Any claim that researchers speaking different languages are analyzing ‘“the same
classroom,” even when working from the same video records, can be usefully
contested. Educational research increasingly employs English as the primary language
through which theory is developed and disseminated. It is essential to recognise the
constructs that other cultures have employed in conceptualising their practice and
examine the consequences for research and for theory of those distinctive terms (and
the designated constructs) that might otherwise be ignored by an international
community restricted to communication in English. The Lexicon Project (Clarke,
Mesiti, Cao, & Novotna, 2017) has documented the naming systems employed in nine
countries, using eight languages, to describe the phenomena of the middle school
mathematics classroom. Utilization of the lexicons from each country to identify
legitimate points of comparison would heighten both validity and comparability
(Clarke, 2013b).

Each particular country’s lexicon reflects a specific pedagogical tradition, culturally
and historically situated. Certainly, the variation evident between different lexicons
(Clarke, Mesiti, Cao, & Novotna, 2017) makes it clear that the teaching communities
in the different countries interface with the mathematics classroom in very different
ways, mediated by entirely different naming schemes for the things we might find
there. My emphasis here, however, is on the function of language in framing, shaping
and constituting our development of educational theory and the associated conduct of
our research in mathematics education.

COMPARATIVE RESEARCH AND BOUNDARY CROSSING

Acts of research comparison necessarily construct boundaries that distinguish between
the objects, groups, communities, settings or systems that are compared (Akkerman &
Bakker, 2011). These boundaries are important. Without them, our acts of comparison
are meaningless. As a consequence, boundary construction is an inevitable entailment
of all research activity. Equally, the act of comparison constitutes an act of boundary
crossing, since the researcher in one way or another must connect the domains,
settings, communities or individuals being compared. Elsewhere (Clarke, 2015), | have
identified several metaphors, by which we might characterize our various research acts
as acts of boundary crossing, creating the conditions for a new form of scrutiny of the
validity and logical coherence of those research acts.

One of the paradoxes of boundary construction and boundary crossing in the context of
cross-national research is that the same comparative act that crosses a boundary, by its
nature reifies that boundary. For example, PISA compares levels of student
achievement, products of curricula that are different in structure and in aspiration. The
institution of international testing provides the bridge for this form of border crossing
and reifies through the international acclamation of its findings the boundaries its acts
of comparison have simultaneously surmounted and invoked.

A truly impermeable boundary would prevent all possibility of comparison. Another
way to say the same thing is that there would be no objects pertaining to one domain
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that had meaning within the other domain and nothing, therefore, that could serve as
the basis for comparison. In one form of contemporary boundary-speak, this means
there would be no possibility of a “boundary object” (Star & Griesemer, 1989). In
undertaking cross-cultural comparative research we must take care to ensure that the
constructs that form the basis of our comparison (e.g. mathematical performance,
participation, or student voice) can be employed with local validity to characterize
arguably similar phenomena in both cultural settings.

International comparative research in mathematics education can both create and
destabilize boundaries in ways that enhance or impede our ability to benefit from the
practices of mathematics classrooms and school systems elsewhere. The boundaries
we construct should clarify our understandings, not impede their application. Equally,
our destabilisation of existing boundaries should result from our demonstration that
some boundaries do no useful work, but rather inhibit our consideration of alternative
ways to conceptualise our discipline, our pedagogy, and even our research.

THE EVOLVING LOGIC OF CLASSROOM RESEARCH

The logic of classroom research remains grounded in the need to confidently connect
teaching/learning activity to learning (or other) outcomes, while identifying the local
contingencies of setting and culture that frame and constrain both the activity and its
consequence. Recognition of the fundamentally social nature of learning in classrooms
creates a series of methodological tensions that researchers have variously addressed.
The logic of the case study is the logic of possibility. If the researcher can document the
process of learning in sufficient detail, including all contextual elements likely to
contribute to a local explanation/model/representation of that process, then further
studies may help to distinguish essential from non-essential elements, both of process
and of context. The logic of the survey, whether by test, questionnaire or video, is the
logic of probability. Meta-analysis is a form of survey, where the respondents are
research projects, recruited for their compatible design features. Aggregation of data
across individuals or contexts can identify dominant patterns with statistical authority,
sacrificing detail in the name of generalisability. Action research and design
experiments share the logic of purposeful, iterative refinement, within a specific
setting, acknowledging the situated nature of emergent findings and theory.

International cross-cultural comparative research appeals to a logic of structure in
diversity, where stability across cultural variation confers authority on any constant
elements, and variability of process, outcome or condition in relation to a common
construct, measure or valued outcome helps to identify contingencies affecting the
application of any emergent model or theory to any particular setting. Suri and Clarke
(2009) explored the possibility of methodologically inclusive research synthesis. Chan
and Clarke (2017) have addressed the analogous question of theoretical
complementarity and the synthesis of analytical accounts of research conducted in
relation to the same setting. In this paper, international cross-cultural comparative
research is foregrounded, with video as its tool. My purpose here has been to use both
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the paradigm and the instrument to raise methodological concerns that transcend both.
The concerns raised can be addressed through international collaborative research
activity in which parity of voice among research partners is expressed as parity of
authorship (cf. Stengers, 2011). It is suggested that only through collaborative activity
undertaken by cross-cultural research communities can the acts of comparison,
essential to classroom research, be undertaken with validity. Facilities such as the
laboratory classroom address the need for both detail and scope of data in relation to
the classroom setting. Local partnerships with schools and with teachers and students
provide the communities whose learning practices and outcomes are the focus of our
research. International partnerships provide the comparative power needed to
distinguish between culture-specific elements and culture-transcendent ones.
Technical sophistication, authenticity, and comparability conspire to optimise the
research endeavour that is cross-cultural comparative classroom research.

As our research endeavours become more globally collaborative, we must find new
ways to integrate the affordances of language, culture and history that have, until
recently, developed in relative isolation. We have studied and compared mathematics
classrooms internationally. Now we study and compare the local languages that shape
and constitute our classroom practices. New possibilities are emerging for practice and
for theory. Other cultures, other languages are able to say things that we cannot,
conceive of alternatives for which we have no words. Before synthesis comes
connection, and before connection comes sharing. We are just discovering how much
we have to share.
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PROBLEM SOLVING THROUGH HEURISTIC STRATEGIES AS A
WAY TO MAKE ALL PUPILS ENGAGED

Jarmila Novotna

Charles University, Czech Republic; CeDS de I"Université de Bordeaux, France

In the paper, the use of heuristic solving strategies, one of the ways of developing
pupils’ creative approach to problem solving, is discussed. Heuristic strategies are used
in Polya’s and Schoenfeld’s understanding of the concept. The theoretical background
of the research is Brousseau’s Theory of Didactical Situations. Most attention is paid to
the question of whether pupils’ use of heuristic strategies can result in an improvement
of their abilities to solve problems whose solving algorithms are not easily accessible
to them. The use of heuristic strategies is explored in two different perspectives: how
heuristic strategies develop pupils’ understanding of mathematics when they are used
and how teachers change in consequence to giving their pupils the chance to use these
strategies.

INTRODUCTION - AREA OF A QUADRILATERAL: A SCHOOL EPISODE

The following problem was assigned by the teacher in the 8" grade (pupils aged
14-15):

4
Triangle ABC in fig. 1 has a unit area. Points P, Q,
R, S divide sides AC and BC into three equal P
segments. What is the area of the coloured
quadrilateral? (Horensky et al., 2007, p. 29/6)

B 3 S
Figure 1

The solving strategy supported by the teacher was to apply similarity. This strategy
could be called “school algorithmic strategy” as it builds on knowledge taught at
school. The procedure is based on the following fact: If the coefficient of similarity of
two triangles is k, then the ratio of their areas is k. The teacher recommended the
pupils to consult the figure. The solution was as follows:

- Triangles ABC and PRC are similar with the similarity coefficient 2/3.
- The area of the triangle PRC equals (2/3)%= 4/9.

- Triangles ABC and QSC are similar with the similarity coefficient 1/3.
- The area of the triangle QSC equals (1/3)%= 1/9.

- The area of the trapezium PRSQ equals (4/9) — (1/9) = 1/3.
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This solving strategy could be called the “school algorithmic strategy”, as it is based on
applying knowledge learnt at school.

There were several pupils who could not recall the knowledge about similarity and the
relationship between areas. They tried to use the formula for the area of a triangle but
as they knew neither the lengths of the sides nor the heights, they failed. Most of them
waited until the solution was shown by the teacher and did not try to find the solution
by another solving procedure.

One pair of pupils worked hard and did not follow the teacher’s guidance. They were
very much involved in their work and suddenly they announced they have the correct
solution discovered in another way. The teacher asked them to show the others how
they came to the solution. Here is their solution:

If we divide triangle ABC into nine congruent
triangles as shown in Fig. 2, we discover that
trapezium PRSQ is covered by three triangles and
so its area is 3/9 = 1/3.

B R S
Figure 2

The teacher praised the two pupils for their interesting solving strategy. She
recommended her pupils to think about other possible strategies for this problem, bring
them (if they manage to find any) to the next lesson and share them with the others.
At the beginning of the next lesson, the teacher gave pupils the space to show their
strategies. They did not manage to find all strategies that teacher knew. Therefore after
her pupils’ presentations, the teacher completed the list of suitable solving strategies
for the problem by those her pupils had not discovered. Here is the list of the remaining
strategies that were accepted by the teacher and her pupils as correct solving strategies
for the problem:

If we draw line segments EP and FQ, triangle ABC
is divided into three congruent triangles and three
congruent parallelograms as shown in Fig. 3. We
discover that the trapezium is covered by one
triangle and one parallelogram and so its area is
1/3.

T

B' R C

FiguréD 3

Let us move trapezium PRSQ to the line above the trapezium (see Fig. 4). We move
parallelogram RSTB under triangle UCV (see Fig. 5); thus we form three congruent
trapeziums.
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Figure 4

Let us extend triangle ABC into parallelogram
ABCD (see Fig. 6). Let us draw points E and F
as intersections of half-lines PR and QS with
line segment BD. Line segments PE and QF
divide parallelogram ABCD into three
congruent parts. Triangle QSC is congruent
with triangle ERB. As trapezium ABRP
together with triangle ERB make one strip, the
area of the strip equals union of this trapezium
and triangle QSC. The area of trapezium
PRSQ equals to one half of area of the whole
strip, therefore area of ABRP in union with
QSC is twice the area of PRSQ. Thus the area
of the studied quadrilateral equals one third of
triangle ABC.

Novotna

b

Figure 6

All solutions based on Figs. 2 to 6 are based on a suitable drawing. The teacher
presented one more strategy of another type: She calculated the sought area for a
specific case — a right-angled triangle with the right angle at C (see Fig. 7).

A

B R

Figure 7

s >

The ratio of heights in smaller triangles is obvious. The following holds:

1 1 2
a

-7
SAE‘C‘ = T = 1;5.:;155 = 2
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Thus:

SRPQ =5 3 Tg g =
This type of solving strategy is not rare in (not only) mathematics problem solving.
Nevertheless it can hardly be called “school algorithmic strategy” in the Czech
Republic because it is not supported in Czech educational documents. When solving
the here discussed problem, this strategy certainly looks more complicated than the
previous solution drawings, but in many cases the strategy is applied even in real life
situations.

In this paper we focus on those solving strategies that do not represent school
algorithmic strategies. We present results of the three-year GACR project Developing
culture of solving mathematical problems in school practice.

Theoretical background

It is generally accepted that problem solving creates the background of successful
mathematics education. Kopka (2010) emphasizes that solving carefully selected
problems helps to develop and cultivate pupils’ creativity, autonomy and intellectual
activity, and to improve their attitudes towards mathematics. One important goal of
school mathematics is to teach to solve mathematical problems independently (NCTM,
2000). However, this practice is not common in school reality. Problems often become
instruments for checking what pupils have learned and not instruments for learning.
Instead of engaging pupils in their own investigations, pupils are asked to master
prescribed algorithms.

The Theory of Didactical Situations in Mathematics (Brousseau, 1997) states that for
each problem there exists a set of knowledge that enables its solution. However, the
needed knowledge is not always available to the solver. Therefore the role of the
teacher is to create an environment that supports broadening of pupils” repertoire of
knowledge. Teachers decide how the problem will be presented to pupils, which
representations will be used, how open the space for discussion will be, which solving
strategies they will support, i.e. how intellectually rich and supportive environment
they will create (Lubart, 1994). An example of such environment is e.g. Wittmann’s
substantial learning environment SLE (Wittmann, 1995). Wittmann characterizes a
SLE as an environment that has a simple starting point and a lot of possible
investigation or extension.

| =
|

It is generally accepted that changes in approaches to problem solving in school
practice are conditioned by changes in teachers’ attitudes to mathematics education at
schools, see e.g. (Ticha & Hospesova, 2006). Mathematics education based on
problem solving with no transfer of ready-made knowledge to pupils cannot be built
without a thorough teachers’ knowledge of mathematics, on their own experience with
creative approach to problem solving. Important is also the specialized content
knowledge (Ball, Thames & Phelps, 2008) that involves identification of key
mathematical concepts and of the potential this activity bears, detection of various
forms of representation of mathematical concepts and operations, including their
advantages and drawbacks.
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In the following text, two concepts on which the paper is built, culture of problem
solving and heuristic solving strategies, are presented.

Culture of problem solving

Culture of problem solving can be explored from three different perspectives. The first
focuses on pupils’ attitude to problems and problem solving in dependence on different
variables influencing these attitudes (Nesher, Hershkovitz & Novotna, 2003). The
second focuses on bringing about a change in the culture of problem solving both in
case of an individual and of groups of pupils, and on pupils’ motivation to problem
solving (Bure§ & Hrabakova, 2008; BureS & Novakova, 2010; Bures, Novotnd &
Ticha, 2009; Bures, Novakova & Novotnd, 2010). The third group focuses on complex
projects in problem solving, such as clusters of problems (Kopka, 2010; Bures, 2010),
mathematics rallies (Brousseau, 2001; Novotna, 2009; Razi¢kova, Novotna & 2010).
In all these three cases, pupils work with sets of problems, solve them individually and
in groups and then share their experience and knowledge from the solving process and
discuss it.

In this paper, Culture of problem solving (CPS) is regarded as the tool for description
of pupils’ solving profiles. It allows measuring the changes in pupils’ attitude to
problem solving, in their success rate and in the solving strategies they use. It consists
of four components: intelligence, creativity, reading with comprehension and ability to
use the existing knowledge. In the project, the first three components were measured
by standard psychological tools and assessed by a psychologist, the test for assessment
of the ability to use the existing knowledge was created by the project solving team.
The structure of CPS is presented in detail in (Eisenmann, Novotna & Pribyl, 2014).
We present here a brief overview of its components.

In the psychological screening, the following tools were used:

Pupils’ intelligence was tested by the Vana’s intelligence test (Hrabal, 1975). This test
Is suitable for investigating the intellectual level of whole school classes, of the level of
individuals’ cognitive abilities (esp. of the component that conditions school success)
in research situations where basic data about pupils are collected.

Pupils’ creativity was investigated in the context of divergent thinking. Its level was
measured using Christensen-Guilford test (Kline, 2000, p. 479) that measures four
dimensions: fluency (how many relevant uses the pupil proposes), originality (how
unusual these uses are), flexibility (how many areas the answers refer to) and
elaboration (quality and number of details in the answer).

Pupils’ ability to read with comprehension is one of the key competences for
successful problem solving. The pupils were presented with a short text (one
paragraph) which they were asked to summarize in four lines without changing the
meaning and content. Their results were classified into five categories: Comprehension
of the meaning and keeping all details, Comprehension of the meaning and keeping
details, Grasping the meaning, content more all less kept without details,

PME 41 - 2017 1-33



Novotna

Incomprehension of the original text and few details or wrong content,
Incomprehension without presentation.

In the test of the ability to use the existing knowledge, pupils were assigned four pairs
of problems. The first problem from the pair tested the presence of certain knowledge,
the second its use e.g. in a non-algorithmic (non-standard) context.

The tests used for determination of all four components of pupils’ CPS were
supplemented by assessments of the pupils by their mathematics teacher based on
interviews of the researchers with the teachers. Attention was paid to surprising,
unexpected pupils’ results.

Heuristic solving strategies

The strategies we refer to as heuristic, in accordance with Polya (2004) and Schoenfeld
(1985), are those solving strategies that pupils use to solve problems in another way
than using school algorithms. Heuristic strategies are informal, intuitive, concise. The
advantage of heuristic strategies is that they can be applied in any situation regardless
of how difficult or confusing they may be (Novotna, Eisenmann & Piibyl, 2016).
Vohradsky et al. (2009) point out that heuristic strategies motivate pupils and help
them grasp the content and master new knowledge but can never entirely replace other
methods. For a successful use of heuristic strategies, it is “essential that pupils have
mastered prerequisite knowledge and skills and that the goal they want to achieve be
clear to them and adequate to their abilities. The main goal of heuristic strategies is
development of independent, creative thinking in pupils.” (Vohradsky et al., 2009: 15).

Problem solving is a cognitive process that can be conducted in one of the three ways
shown in Fig. 8 (Eisenmann, Novotna & Pribyl, 2015).

Trial

Straight-forward way o[ Problem

~_ 7

Using a heuristic strategy

Figure 8: The process of solving a problem

Trial is the crudest way of dealing with a problem. The solver does not question
whether they are solving the problem correctly, they only want to “have it solved”,
usually only once, without any internal feedback on the correctness of the solution.
Straight-forward way is based on application of a learned piece of knowledge. The
solver knows the required solving procedure and is able to apply it. Heuristic strategy
iIs used when the solver does not have the required knowledge needed for
straight-forward way of solution or cannot use the knowledge; use of a heuristic
strategy allows them to solve the problem despite these problems.

In the project GACR Development of culture of problem solving in mathematics in
Czech schools the following heuristic strategies were used. Ptibyl and Eisenmann
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(2014) discuss in detail their basic characteristics and show how these properties can
affect pupils’ ability to master these strategies.

Strategy of analogy: Analogy is a type of similitude. If we are to solve a particular
problem we find an analogical problem, i.e. a problem that will deal with a similar
problem in a similar way. If we manage to solve this similar problem, we can then
apply the method of its solution or its result in the solution to the original problem.

Guess — check — revise: This is a strategy in which we first, drawing from our
experience, make a guess about the solution of the given problem. Then we check
whether the solution meets the conditions of the assignment. The next guess is made
with respect to the previous result. We carry on in this way until we find the solution.

Systematic experimentation: Systematic experimentation is a strategy in which we try
to find the solution to a problem using several experiments. First we apply some
algorithm that we hope will help us solve the problem. Then we proceed in a
systematic way and change the input values of the algorithm until we find the correct
solution.

Problem reformulation: When using this strategy we reformulate the given problem
and make another one, which may either be brand new or easier for us to solve and
whose solution is either directly the solution to the original problem or facilitates its
solution. A specific and very important example of this strategy is translation of a word
problem from one language of mathematics to another. Classical geometrical problems
such as trisection of an angle are easy to solve when translated to the language of
algebra.

Working backwards: This is a very common strategy in mathematics. We know the
final state and we look for the initial state. We try to proceed from the end to the
beginning. The solution of the problem is based on reverting the discovered procedure.

Introduction of an auxiliary element: By introducing an auxiliary element, we try to
transform a given problem to a problem we have already managed to solve, or we
transform it into a simpler problem we are able to solve.

Solution drawing: When using a graphical representation we usually visualize the
problem by making a drawing. We record what is given and often also what we want to
get. The drawing we get in this way is called an illustrative drawing, as it illustrates the
solved problem. Sometimes we can see the solution of the problem immediately in this
drawing. However, in most cases we must manipulate with the drawing (e.g. we add
suitable auxiliary elements) and we solve the problem with the help of this modified
drawing. We call this drawing the solution drawing.

Use of graphs of functions: When there are functions in the problem assignment or
when it turns out within the solving process it is desirable to introduce functions, then it
Is usually good to draw graphs of these functions. These graphs often considerably
contribute to finding the solution to the given problem.
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Generalization and specification: A more general problem that we are able to solve is
found. Then using the specification the answer is transferred to the original problem.

Specification and generalization: We choose a specific value or position, or we select
a specific case. We solve the problem. If we can generalize the result of the problem,
we formulate a hypothesis about the result of the original problem. We either leave the
hypothesis on a plausible level, or prove it (if the solver’s abilities are sufficient for it).
If we cannot make the generalization, we continue the solving process by another
specification.

Decomposition into simpler cases: The problem is decomposed into simpler cases that
we are able to solve. The solution to the original problem is obtained by linking
solutions to all simpler problems.

Use of false assumption: This strategy belongs to the family of experimental heuristic
strategies. It can be well applied in problems where the value of a number in the
problem is directly proportional to the result. The first value is selected with full
awareness that the value is probably wrong (false assumption). The correctness of the
estimate is verified. The assigned value is compared with the value calculated from the
estimate and the proportion between them is found. The result is calculated using this
finding. The mathematical background of this strategy is a linear function.

Omitting a condition: A problem assignment often involves several conditions. If we
are not able to fulfil all these conditions when solving the problem at once, we can ask
similarly to Zeitz (2007): What is it that makes the solution of this problem so
difficult? If we manage to identify which of the initial conditions is the difficult one,
we can try to omit it. If we are then able to solve the simplified problem, we can go
back to the omitted condition and try to finish the solution of the original problem.

OUR RESEARCH

Within the project GACR Development of culture of problem solving in mathematics
in Czech schools, the following main research questions were formulated:

e Can pupils’ use of heuristic strategies result in improvement of their abilities to
solve problems whose solving algorithms are not easily accessible for the
pupils?

e How do heuristic strategies develop pupils’ understanding of mathematics when
they are used?

e Which strategies do pupils prefer and what results do they achieve while using
them?

e How do teachers change in consequence to giving their pupils the chance to use
these strategies?

In order to answer these questions, one four-month and one sixteen-month experiments
were conducted and their results were analysed. In the following text, these

1-36 PME 41 - 2017



Novotna

experiments are briefly presented and their results analysed with the goal to answer the
research questions.

Four-month experiment (Novotna, Eisenmann & Pfibyl, 2014)

The experiment was conducted in 11 classes (4 basic school classes with 12-year-old
pupils, 4 basic school classes with 14-year-old pupils and 3 grammar school classes
with 17-year-old pupils). All the selected schools were ordinary schools without any
specialization; the classes were characterized as average or even slightly below
average by their teachers.

The strategies dealt with in this experiment were Guess — check — revise, Systematic
experimentation, Working backwards, Introduction of an auxiliary element and
Omitting a condition.The participating teachers were provided with about 30 problems
that could be solved efficiently using at least one of the studied heuristic strategies.

While the strategies Introduction of an auxiliary element and Omitting a condition
require creative activity from the solver and depend on the solved problem, the first
three strategies can be characterized as strategies of algorithmic nature and pupils can
use them successfully even if they do not have very good insight into the structure of
the problem; the use of these strategies does not always ask for very active
involvement of pupils’ creativity.

The pupils sat a written 40-minute pre-test and post-test at the beginning and the end of
the experiment (4 — 5 problems). The problems in both tests were the same. The test
items were selected so that for each of them, one of the selected heuristic strategies was
the most suitable. Calculators and computers were available on pupils’ desks. All the
pupils had basic skills in the use of spreadsheets in Excel. Changes in their attitudes to
problem solving were studied. When evaluating the written tests, attention was paid to
the success rate as well as to the method of solution, i.e. also whether the pupils used
some of the strategies shown in the teaching experiment.

The teachers’ work was organized as follows. They assigned a problem to their pupils.
They let them work and asked the pupil who had been the fastest in solving the
problem correctly to explain their solution to the others. This was followed by a
discussion and explanation of the solving strategy. The teacher then asked other
successful solvers to present alternative solutions to the others. If none of the pupils
had solved the problem with the intended heuristic strategy, it was demonstrated by the
teacher. In another, similar problem the teacher then checked to what extent the
teacher’s solution was actively understood. Every teacher solved about three problems
a week in this way.

In this experiment, the research questions were specified as follows:

e |s it possible to achieve any progress in the ability to solve mathematical
problems using the selected heuristic strategies for such a short period of time (4
months)?
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e In case of which strategies is this possible and which cannot be “implanted” in
such a short period of time?

e Does pupils’ attitude to problem solving change? If so, how?

The results of the experiment gained from pre-tests and post-tests as well as from
interviews with the participating teachers allow us to formulate the following
conclusions:

Experimental strategies (Guess — check — revise, Systematic experimentation) and the
strategy Working backwards can be mastered already over a shorter period of time, the
strategies Introduction of an auxiliary element and Omitting a condition require longer
time. This is caused by the algorithmic nature of the first three above mentioned
strategies.

The danger of Systematic experimentation is that its mastery by some pupils makes
them use it as the first solving procedure instead of e.g. constructing an equation or a
set of equations. On the other hand, more frequent use of the strategy Systematic
experimentation develops pupils’ sense of an effective choice of the initial value.

The short period of time of the experiment was sufficient to change attitudes of some
pupils to problem solving (this could usually be observed in about one half of the
pupils in each class). Pupils stopped being afraid of solving problems, they stopped
laying their solution aside if they were not sure how to solve them at the very
beginning. They learned to look for a solution rather than to give up.

Sixteen-month experiment (Eisenmann, Novotna & Piibyl, 2015)

The sixteen-month experiment was conducted in four classes: Grammar school in
Prague (20 pupils, age 16-18), Grammar school in Hofovice (24 pupils, age 12-14),
Lower secondary school in Usti nad Labem (18 pupils, age 14-16), Lower secondary
school in Prague (8 pupils, age 14-16). For the experiment, 200 problems illustrating
the use of individual heuristic strategies were created.

Pre- and post-experiment tests consisted of 8 problems (one of heuristic strategies was
always the most efficient solving strategy). The tests were different for each of the
classes; they respected the pupils’ age level and knowledge. The problems in the initial
and the final tests were identical. The test problems were not presented to the pupils
during the experiment, and were not discussed even after the initial test. All the
problems from the test were analysed and assessed in detail. Each solution was coded
by a member of the research team with respect to the following phenomena:

way of solving the problem (straight-forward way or heuristic strategy),
problem-solving mode (arithmetical, algebraic, graphical),

success rate of problem solving (successfully/unsuccessfully),

“blank sheet” (the pupil did not even try to solve the task),
non-evaluable response,

misunderstanding the question.
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Before the experiment started, all the participating pupils had been tested and assessed
in all four components of CPS. The testing was carried out again post experiment with
the exception of the Vana’s intelligence test as, according to the psychologists, no
significant changes in intelligence could be expected.

Cooperation between the teachers and the research team was very intensive and
systematic and was going on for the period of two years. Each of the teachers was
cooperating closely with one member of the research team. Apart from conducting the
experimental teaching, the teachers also collected pupils’ worksheets with solutions of
the problems and evaluated them. They were continuously observing the pupils and
kept record of these observations. The observations focused on changes in approaches
to problem solving and pupils’ success rate in solving problems in general, not just in
experimental problems. Regular meetings of the teachers with the respective
researchers were usually held once in two weeks. The following issues were discussed:
worksheets, individual problems, strategies used and the individual pupils’ responses.
The teachers also sent a brief report by email once a week. The members of the
research team had access to the pupils’ worksheets during the whole experiment. They
used them for enriching the existing problems by new procedures that had been
developed spontaneously in the lessons. Moreover, the worksheets served as feedback
with respect to the success rate of the solutions.

Once in six months the cooperating researcher came to one of the lessons from the
teaching experiment and once or twice during the whole experiment a video recording
of the teaching unit was made.

The experiment was concluded by structured interviews with the participating
teachers. Also some reactions of pupils to the use of heuristic strategies in teaching
were collected.

The collected data and their analyses allowed to formulate the following conclusions
from the experiment.

e An increased frequency of the used strategies was detected.

e A decreased frequency of unsolved problems was observed. It can be concluded
that using suitable heuristic strategies played a role in the pupils’ decision to try
the solution at least.

The following was detected in the use of the heuristic strategies:

e Experimental strategies (Systematic experimenting, Guess — check — revise) and
Working backwards were the only chosen by the pupils spontaneously also at
the beginning of the experiment.

e The most considerable increase in the use of heuristic strategies was in cases of
Systematic experimentation, Solution drawing, Use of graphs of functions and
Introduction of an auxiliary element.

e The pupils were almost always successful when using the strategies Systematic
experimentation and Guess — check — revise.
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e Introduction of an auxiliary element: About one half of the pupils were
successful in the final test.

e The (albeit sporadic) use of Analogy, Omitting a condition, Specification and
generalization and Problem reformulation in the final tests was successful.

In the course of the experiment, the pupils showed improvement in two of the

components of CPS. All the pupils showed some, even though moderate, improvement

in the component Reading comprehension. The pupils from all the classes improved in

the component Creativity considerably. A more detailed inquiry shows the highest

degree of improvement in the area of fluency and flexibility. In case of Ability to use

the existing knowledge no statistically significant changes could be observed.

The tools used for determining pupils’ CPS do not allow us to separate the impact of

the teaching experiment and the pupils’ natural development completely; however, the

psychologists claim the growth in the studied areas was higher than can be ascribed

merely to pupils’ natural development over the period of 16 months.

The following can be concluded from structured interviews with the teachers:

e Analogy is relatively popular with the pupils in problems that can be

reformulated using more “user-friendly” objects, e.g. numbers. It is regarded by
teachers as potentially useful for solving other than mathematical problems.

e Working backwards can be learnt by pupils relatively easily. Clever children
select it spontaneously as the first way of solving a problem in appropriate
situations.

e Specification and generalization is a strategy useful not only for solving
problems in mathematics, it can be also used in other subjects, e.g. physics.

e |f pupils are to be able to use the strategies Problem reformulation, Omitting a
condition, Generalisation and specification and Decomposition into simpler
cases, they have to solve a relatively large number of problems with their
teacher; this was not achieved in the experiment. As far as the strategy
Introduction of an auxiliary element is concerned, pupils also need a relatively
high number of problems to master it actively. In the teaching experiment this
was achieved in case of problems from geometry.

Pupils’ assessment of heuristic strategies summarised from interviews with them are
the following:
e Systematic experimentation can be used with a great variety of problems, its use
Is simple, and a computer can be used with it.

e Guess — check — revise is a fast way to finding the solution if a computer is not
available.

e Working backwards is the easiest way to finding the solution in some problems.
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When using the strategy Introduction of an auxiliary element in geometry, it is
helpful to make an illustrative picture and mark as much as possible in the
picture. GeoGebra helps a lot at this stage.

When using the strategy Analogy, it works well to pose a simpler problem with
more “user-friendly” numbers. This helps the solver realize how to solve the
original problem.

The experiment also brought some results related to the use of information technology
(IT) when solving problems using heuristic strategies. These can be summarised as
follows:

e The pupils learned to use IT in the strategy Systematic experimentation very

quickly.

They grew more confident in selecting the initial value in Guess — check — revise
sensibly already after 3 months.

The pupils applied successfully the strategy Systematic experimentation in
solving problems whose solution through equations would have been too
difficult or impossible.

Problems where the pupils use IT to formulate or discover a hypothesis about a
possible solution are very attractive for pupils. These include both problems
solved using spreadsheets and problems from geometry solved using dynamic
geometry software.

Impact of the experiments on participating teachers

The experiments did not have an impact only on the pupils. They also had impact on
the participating teachers. They reported that they:

lowered their demands on accuracy and correctness in their pupils’
communication and recording in favour of understanding the problem solving
procedures, showed more tolerance to a variety in pupils’ solutions,

acknowledged a change in their attitude to mathematics teaching towards using
constructivist and inquiry-based approaches, and

started to pose their own problems with the aim of making their pupils
understand the various strategies better.

It was in accordance with the findings published in (Novotna, Brousseau, Bure$ &
Novékova, 2012) where there were changes in all aspects: teachers’ ability to design
and organize efficient a-didactical situations in the classes, their ability to analyse
situations, evaluate their course and results and distinguish between the rules of the
situation and contingency, their active involvement in designing, realisation and
analysis of the research in collaboration with researchers, and their ability to function
successfully in two different roles, the teacher and the researcher. The findings were
based on teachers’ self-reflections and researchers’ observations.
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A significant increase in the teachers’ autonomy was observed. During the realisation
of the experiments, the teachers gradually took the roles of those who actively
influence the stage design and the problems used. This was not only caused by
conducting the experiments in their classes, but to a great extent also by their
participation at the team meetings where the experience and preparation of the
follow-up steps were discussed.

DISCUSSION AND PERSPECTIVES

We consider the most important outcome of the experiment to be the change in pupils’
overall attitude to problem solving. They stopped fearing problem solving, they did not
put it off if they could not see a suitable solving procedure immediately. They learned
to look for solutions and not give up. This change could be observed in about one half
of the pupils involved in the experiment.

Longitudinal observation of the pupils during the whole experiment and structured
interviews with the pupils and teachers showed that pupils became more active in
experimenting. We could observe an increase in their ability to communicate, to
defend and explain their solving procedure, to react to opponent’s remarks. They also
got better at recording their solving procedures and became more sensitive to the need
of verification (they checked correctness of their result).

The overall design of didactical situations in which heuristic strategies are used is
demanding for the teacher: explaining the task, choice and preparation of problems,
assessment, etc. It is necessary to be aware of the effects related to didactical contract.
We would like to stress here the importance of institutionalization of the discoveries
for pupils. It is also of utmost importance that a teacher be able to prevent a situation in
which pupils appropriate some heuristic strategy (usually the strategy that they have
used successfully in problem solving) as an algorithm and stop thinking about its
suitability for the particular situation.

Even though the project was aimed at improving the pupils’ culture of problem
solving, we are convinced that the activities we have presented can be useful for
designing new didactical situations (namely a-didactical) also in other areas of school
mathematics. We hope they will become more widespread among teachers.

The project considerably influenced all members of the collaborative group, the
teachers as well as the researchers. If the work of the team is to be successful, all the
participants must collaborate. The change was observed not only on the teachers’ side;
also the researchers gained much from the collaboration. The teachers’ input helped to
precise the experimental settings as well as to analyse the project results.
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MATHEMATICS TEACHERS’ PERSPECTIVES OF TURNING
POINTS IN THEIR TEACHING

Olive Chapman

University of Calgary

Studies of mathematics teacher education or professional development usually provide
evidence of impact of an intervention on teachers’ knowledge, beliefs and specific
aspects of their teaching. Most mathematics teachers are able to make small or
specific changes to their teaching while some experience critical incidents and turning
points that lead to significant transformation of their teaching to a learner-centered or
Inquiry-based perspective. This paper examines teachers’ perspectives of significant
turning points in their teaching of mathematics. This includes what the teachers
considered to be critical incidents that influenced the turning points, the nature of the
incidents and the impact on their thinking and actions in the classroom, the change in
approach in their teaching, and the process in achieving the change.

INTRODUCTION

In today’s global economy and highly technological world, there is a need for students
to develop skills in school that will enable them to become capable of responding
reflexively to complex problems. These skills include being able to work
collaboratively and to think creatively, analytically, and practically. As Lipman (2003)
suggested, students must be independent thinkers, going beyond content knowledge
toward anticipative creative solutions to problems. The field of mathematics education
embraces this perspective of education by promoting mathematical understanding,
mathematical thinking, authentic tasks and ‘learner-centered’ teaching approaches.
But this perspective is far from becoming the norm in mathematics classrooms.

Despite significant efforts of teacher education and professional development
programs to support teachers in bringing about change, many mathematics classrooms
tend to be more traditionally oriented than ‘reform’ oriented. While many teachers
acknowledge the need for change, they find it to be challenging to transform their
teaching in a significant way. Mathematics teachers’ characteristics, such as beliefs,
conceptions, identity, experiences as learners of mathematics, and knowledge of
mathematics and mathematics pedagogy have been suggested or shown to be
contributing factors of whether they can make meaningful, sustained changes to their
practice. However, despite the challenges, there are teachers who have transformed
their teaching to engage students more meaningfully in learning mathematics. The
focus of this paper is on a sample of these teachers and their perspectives of ‘critical
incidents’ [CIs] and ‘turning points’ [TPs] associated with the transformation of their
teaching. The intent is to identify the Cls, the TPs and the changes in teaching based on
the teachers’ TP stories; the nature of the Cls and TPs and the basis of transition from

1-45
2017. In Kaur, B., Ho, W.K,, Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41 Conference of the International
Group for the Psychology of Mathematics Education, Vol. 1, pp. 45-60. Singapore: PME.




Chapman

Cls to TPs; and implications for research and teacher education. The goal is to contri-
bute to our understanding of how teachers change. Without attention to how teachers
learn and change, our understanding of instructional reform is seriously incomplete.

THEORETICAL PERSPECTIVES OF TP AND CI

Turning point [TP] and critical incident [CI] are commonly used terms that are also
key constructs in research. Each is discussed from a research-oriented perspective.

Turning point

The concept of a TP is both literary and psychological. It has typically been used in
association with life events (Ronka, Oravala, & Pulkknen, 2003) to emphasize
long-term developmental patterns of continuity and change in social roles over the life
span (Elder, 1985). It has been defined as a change in perspective (Baxter &
Montgomery, 1998); “an alteration or deflection in a long-term pathway or trajectory
that was initiated at an earlier point in time” (Sampson & Laub, 2005, p.16); “a
fundamental shift in the meaning, purpose, or direction of a person’s life” (Wething-
ton, Cooper, & Holmes, 1997, p. 217); and “a change in a trajectory, pointing to a
break in the sequence which leads from the past to the future” (Yair, 2009, p. 354). It is
a TP if there 1s “sufficient time” that is spent on a “new course” (Abbott 1997, 89)
distinguishing it from a temporary change or fluctuation in behaviors. Thus, it is only
in hindsight that TPs emerge, after stability of the redirected pathway can be confirmed
(Abbott, 1997; Wheaton & Gotlib, 1997). TPs may be the result of single dramatic
events that bring about abrupt radical changes or changes that are incremental,
occurring gradually over time leading to radical changes (Pickles & Rutter, 1991). TPs
may involve both positive and negative results (Rutter, 1996). Given that different
people have varied responses to the same event, contextual factors and individual
characteristics are particularly important in understanding such marked changes in
awareness and behavior.

The concept of a TP, then, ties three movements together: prior steady state, a critical
event, and the ensuing of a new trajectory (Abbott, 2001). In this paper, the focus is on
TPs that redirect teaching trajectories, not simply temporary detours from teaching
pathways, and on participant-identified TPs; that is, what the teachers considered to be
significant changes from what they were doing for several years.

Critical incidents

TPs are dependent on Cls, that is, specific events, experiences, and awareness that
result in changes in the direction of a pattern or trajectory over the long term. Cl, as a
concept, “comes from history where it refers to some event or situation which marked
a significant turning point or change in the life of a person ... or in some social
phenomenon” (Tripp, 1993, p.24). Trip defines it as an interpretation of a significant
episode in a particular context rather than a routine occurrence. Typically, a CI “is
personal to an individual. Incidents only become critical if the individual sees them as
such. Reflecting on an incident after the incident has taken place is when it is defined as
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critical” (Bruster & Peterson, 2013, p. 172). Any event that for some reason draws
one’s attention may become a Cl. It need not be a dramatic event, but is usually an
incident which has significance for him or her. It is often an event that made someone
stop and think, or raised questions for him or her (Christie & Young, 1995). Cls in a
school context may be minor incidents but critical based on the significance and the
meaning the teacher attributes to them (Tripp, 1993). A CI can be thought of as an
everyday event encountered by a teacher in his or her practice that makes the teacher
question the decisions that were made, and provides an entry to improving teaching
(Hole & McEntee, 1999). It is the teacher who makes the incident critical, through
inter -pretation, evaluative judgment, and assigning of meaning. In this paper, Cls are
what the teachers considered to be significant factors that initiated TPs in their
teaching.

RELATED LITERATURE

While there are reported stories of change in teaching mathematics, highlighting TPs,
as a construct, has been less of a focus. TP is currently understudied in the field of
teacher education, but merits further research. In mathematics education, studies such
as Drake (2006) and Steinberg, Empson, and Carpenter (2004) indirectly address TPs.
Drake used elementary school teachers’ narrative descriptions of themselves as learn-
ers and teachers of mathematics to understand teachers’ interpretations and implemen-
tations of a reform-oriented mathematics curriculum. She reported on the sense-
making practices (noticing, interpreting, implementing) of teachers who told TP
stories — those stories in which the teachers initially experienced significant failures in
mathe- matics, but, as the result of a TP experience, viewed themselves positively as
both learners and teachers of mathematics. She concluded that both the TP story and
the meanings teachers attribute to this story are important for understanding teachers’
specific practices in the context of reform. In the case of Steinberg et al., TPs are
implied in the different phases of growth for the teacher. They reported on one teacher
in “one especially productive year of learning” (p. 237) regarding how her engagement
with children’s thinking changed significantly over a few months. They identified four
phases in the teacher’s growth toward practical inquiry based on her use of interactive
talk with children. She ultimately integrated processes for generating and testing
knowledge about children’s thinking in her instructional practices as she created
opportunities for herself, and then students, to hear and respond to students’ thinking.

While TP point is less of an explicit focus of studies in teacher education, Cls have
received much more attention, particularly in helping prospective teachers to use or
develop reflective skills, as in the following examples. Goodell (2006) investigated the
Cls prospective teachers encountered during their field experience and what they
learned about teaching for understanding through reflecting on those Cls. Francis
(1997) investigated prospective teachers’ use of CI analysis to build reflective practice
skills by identifying and reflecting on the incidents in terms of their personal meanings
of the incidents. CI was “an incident from recent school or university experience.” (p.
172). Bruster and Peterson (2013) examined prospective teachers’ use of Cl as a tool
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for reflection during their practicum. They considered Cls to be “significant episodes
in professional practice...that are difficult to resolve. These episodes or instances
become critical because they cause the candidate to pause, think back, and consider
outcomes” (p. 172). Griffin (2003) also examined the effectiveness of using Cls during
a field experience to increase prospective teachers’ capacity to develop reflective and
critical thinking skills. She considered a CI to be “an incident that ‘amused or
annoyed’...was ‘typical or atypical’, was an ‘aha or ouch’ or a ‘felt difficulty’... and
the meaning of the incident” (p. 210). This use of Cls increased orientation towards
growth and inquiry.

Some studies in mathematics education have also addressed Cls. For example, Lerman
(1994) discussed the use of Cls to stimulate reflection on teaching in developing the
idea of reflective mathematics teaching and suggested to mentors ways in which pros-
pective teachers might be encouraged to develop their own reflective practice. Skott
(2001) investigated how a novice teacher coped with the complexities of the class-
room. Cls of practice emerged based on the teacher’s role within classroom interac-
tions. Skott considered an instance of teacher decision making as a CI of practice that
provides “a window on the role of teachers’ school mathematical priorities when these
are challenged as informants of teaching practice by the emergence of multiple
motives of their activities” (p. 3). Choy (2014) investigated how productive noticing
can provide a means for teachers to reflect on and examine critical events in the
classroom by analysing a case study of what teachers noticed about a Cl that happened
during a research lesson. Choy considered Cls as students’ unexpected responses to
teachers’ questions or events that changed the direction of the lesson from what was
planned. Finally, Potari, Psycharis, Kouletsi, & Diamantis (2015) explored prospective
mathematics teachers’ reflections on teaching practice through noticing key aspects of
classroom interactions (i.e., ClIs). They used Cls taken from everyday classroom
situations as a tool to stimulate reflection and make the act of noticing more concrete.

The preceding studies support or promote the idea that Cls can be a useful tool to
enhance teachers’ reflective practices and understanding of their teaching. In my work,
they are used to understand change in the teaching trajectory of experienced teachers.

IDENTIFYING TEACHERS’ TURNING POINTS

| draw on my work with teachers over several years to offer examples of cases of TPs.
| focus on nine of these teachers who made significant changes to their teaching. These
teachers were participants in studies that investigated their thinking, learning, and
experiences that shaped their teaching of mathematics and their classroom actions.
Data sources for these studies were interviews and classroom observations of the
participants’ teaching. The data included TP stories which were prompted by interview
questions about changes in the teachers’ thinking and teaching. For example, they were
prompted to talk about their current practice, whether they always taught that way,
when and how did any significant change started, what exactly happened that initiated
this change, and how did this change evolve. The intent was to allow the teachers to
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identify what they considered to be well defined moments of transition after which
their teaching was fundamentally altered. In keeping with a narrative method, they
were also encouraged to tell stories, for example, stories of what happened that led to
the change, of how the change began, of teaching before and after the change, and of
most memorable event(s) that impacted their teaching. They were prompted to provide
details to the story from beginning to end and to be only descriptive (i.e., no
Interpretation). Such stories provide “explication of human intentions in the context of
action” (Bruner, 1986, p. 100) and “a framework for understanding the past events of
one’s life” (Polkinghorne, 1988, p.11). “Narrative meaning consists of more than the
events alone; it consists also of the significance these events have for the narrator in
relation to a particular theme” (Polkinghorne, 1988, p. 160).

Based on the data, narrative accounts of the teachers’ journeys to their current teaching
were constructed. The focus of this paper is only on the key events, explicitly
expressed by the teachers, that initiated changes and the nature of the changes. This
was based on analysing the stories to identify; for example, the Cls and TPs,
characteristic elements of the ClI and TP situations, key aspects of teaching that were
transformed, what occurred during the moment of transformation, and what major
features supported such significant changes in teaching.

EXAMPLES OF MATHEMATICS TEACHERS’ TPs AND Cls

In this section, | summarize some of the key events of the nine teachers’ stories to
highlight their perspectives of Cls and TPs in their teaching. The teachers are being
named T1, T2, T3, T4, T5, T6, T7, T8, and T9 to simplify the pseudonymes.

Teacher 1 (T1), as a beginning high school teacher, was influenced by her experienced
colleagues to adopt their traditional teaching approach, which she did even after she
changed schools. She explained, “For years, that’s what I did too... stand and deliver.

. Like 5 days of, ok it’s the usual... just following the textbook.” Her first CI was
noticing students being bored in her class, which resulted in an initial TP of
introducing open-ended problems in her teaching; but, as she stated, “it was more on
specific days, at the end of a unit or at the very beginning of a unit. ... We had
problem-solving days.” Her next CI was noticing that this did not help students to
engage in problem sol -ving in learning mathematics because they still depended on
her thinking. She noted,

After a while, it started to get to me, and I’m just like, this just doesn’t feel right, because |
get tired of the kids mimicking me, you know. ... There had to be a better way. So that’s
when I changed to doing strategies; ... what I try to do as much as possible is strategies.

Focusing on strategies was the TP that resulted in the significant transformation in her
teaching. She started helping students to see strategies, shifted to using more question-
ing and less telling, followed the textbook less, and selected or developed tasks in
which students could focus on strategies. Students worked in small groups to learn
mathematics through solving problems, unpacking strategies and discussing them in
whole-class sessions. T1 noted, “Problem solving is definitely much more infused into
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what I do.” Another CI occurred when her students explained their challenges on a
provincial exam. This resulted in a TP to help them to be reflective, as she explained.

I’ve focused much more the past 5 years on reflective thought for each person ... and
trying to not only encourage but in many ways force kids to do it. ... Reflecting on what it
is that you know and what does it mean to understand the [concept] is very important. ... I
get them to reflect as learners ... to be doing better thinking, because they’ll be asking
themselves the questions.

At the point of this study, T1’s teaching was totally transformed into an inquiry-based,
learner-centered approach with an emphasis on mathematical thinking.

Teacher 2 (T2), as a high school teacher, described his initial teaching approach as:
“Review homework, explain a new concept, show applications of the new concept,
assign drill and practice seatwork. ... That’s what I started doing and continued to do
for many, many years.” After moving to a school with grades 1 to 12 and teaching
grades 11 and 12 for the first few years, he was also assigned to teach a grade 6 and
later a grade 4 mathematics class. He explained, “I think that was a critical point for
me; was being involved with elementary [school] children. It changed me.” In contrast
to his high school teaching approach, which he found to be problematic with the
elementary grades, he was able to engage the elementary school students in group
work and hands-on activities. His success with this became the CI leading to the TPs in
his high school teaching. The first TP was to introduce group work and encourage
students to do more talking about their thinking and experiences. He explained, “The
first thing [ did ... was to take my desks out of rows, and put them in clumps. ... It
created the opportunity for them to communicate.” The next TP was introducing
hands-on activities to address meaning and multiple representation. As he explained:

You really had to think about what does it mean to multiply and how can you model
multiplication with the materials ... and looking at the patterns .... I started to use algebra
tiles in the same way. (...) My classes in calculus sometimes solve problems ... completely
without paper and pencil first, by going through the same kinds of skills that you do with
manipulatives in grade 4, when the students are learning perimeter and area.

T2 also started to make more connections with the historical development of
mathematics concepts so that students “could see that there was a value to the develop-
ment, not just a value to the product.” At the point of this study, his teaching approach
was learner-centered and emphasized communication, connections, and problem
solving. He described his changed teaching as consisting of: “significant amount of
communication, ... offering lots of opportunity for communication and discussion
between students, ... working with non-symbolic approaches to problem solving. ...
My goal is the process that they go through. That's the more important goal.”

Teacher 3 (T3), a high school teacher, explained: “For most of my teaching career, I
felt my job was to simplify mathematics. Cover the curriculum in consumable bits that
could easily be delivered and tested.” She always wondered if there was a better way
and started attending workshops, tried some activities, but, she noted: “I would leave
excited but then it would flatten out quite quickly and I was back in the same routine of
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stand and deliver.” She became “hooked” on the idea of inquiry through conversations
“around the concept of inquiry” with a colleague who was a social studies teacher. But
after attending a couple of presentations on it, she still did not know what it looked like
in a high school mathematics classroom. The CI occurred when she noticed that “mak-
Ing connections” was missing in her teaching. The initial TP was to engage students in
making and discussing connections to themselves, real world situations, and history;
for example, after students wrote and discussed what they knew about circles and lines,
We discussed briefly where circles and lines come from. ...We then talk about how circles
and lines exist in the world. | then send them on a journey around the school with their
journal to find any examples of where circles and lines exist, together or separate, visible
or behind the scene. ...[T]hey talked in groups about what they saw and tried to generalize.

She later extended connections to include mathematical meaning and structure. For
example: “We had been talking about what it means to solve an equation, how the
structure of algebra worked, and what ... made an equation more complex.” She also
started engaging students in more inquiry tasks as she began “to see more connections
within topics and in interdisciplinary ways.” She now listened to students’ thinking to
build on it. As she pointed out: “Suddenly there were portals in my lessons that called
me to really listen, become attune to what students were wondering about. ... I'm
amazed at their thoughtfulness.” At the point of the study, her teaching was inquiry-
based with students having autonomy in their learning. She explained:
Our classroom conversation is often around other possibilities. ... They seem to be
wondering about math and .... are inquiring into topics that come up in class. ... What |
have noticed of late is the openness of my students to think and go places they have not
before. As | open a topic, | never know where it will go. More often than not we end up in
territory way beyond the curriculum for that grade.

Teachers 4,5, and 6 (T4, T5, T6), elementary school teachers, participated as a team in
a mathematics study group with other teachers at their school and meetings at least
every three weeks over two school years. The focus of the group was to make changes
to their teaching to better implement their new reform-based mathematics curriculum.
Some of the teachers had attended workshops, which had little or no impact on their
teaching. They thus later decided to engage in a self-directed learning approach with an
expert friend as mentor. T4, T5, and T6 were co-leaders of the group and participants
of this study. As a team, they worked on designing an inquiry-based teaching model to
guide their teaching, which became the CI resulting in the TP to their teaching.

The key activities of the team consisted of reflection on their teaching, which resulted
in a focus on communication to support inquiry, and video studies of inquiry-based
lessons in which they focused on key features of the lessons (e.g., questioning, roles of
teacher and students, and tasks). They developed a teaching model with 5 components,
then tested and retested it in their classrooms and made revisions. The final model
consisted of seven components as follows [key terms for the teachers are in italics]:

(1) attend to students’ prior knowledge/conceptions and allow students to engage in:
(if) making and exploring predictions; (iii) free exploration (through discourse and/or
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using manipulatives); (iv) focused exploration (e.g., specific task assigned by teacher);
(v) applications of concept; (vi) comparison, evaluation and reflection of their learn-
ing; (vii) extension of concept to other situations or related concepts. Also associated
with these component are: group work, inquiry tasks and whole-class discussion. The
teachers indicated that the model is not linear and the components could be arranged in
different ways depending on the mathematics topic and teacher’s goal for the lesson.
By the end of the two years of the study group, the three teachers had personalized the
model and integrated it into their teaching. At the point of this study, their teaching
emphasized learner-centered approaches and understanding of mathematics. They
described their teaching as consisting of: “questioning techniques that guide and enrich
student thinking,” “thought provoking questions to motivate students to discuss and
understand mathematics at a deeper level,” “student-centered strategies for listening to
students and observing their problem-solving behaviors,” and “strategies that allow
students to assume ownership of their knowledge and knowledge construction.”
Teacher 7 (T7), an elementary school teacher, explained that for many years her focus
was to get students to do things her way. The CI occurred when she noticed a “bright
student’s weird solution” which was different from what she expected. She recalled the
following example: (The numbering indicates the sequence in the student’s process.)

(i) 132 (i) 2 (i) 30 (iv) 100
- 37 -7 -30 -0
(vi) 95 -5 0 100 (v) 95

After questioning the student about his thinking and realizing “he had interesting
ideas,” she started to wonder about the thinking of other students and what she could
learn from them. The initial TP was to engage students in whole-class sharing and
discussion by encouraging them to use their own methods and explain their thinking to
the class. Noticing that this was also important to her students’ learning, she started to
focus on discourse to support their learning. She did not only pose questions but also en
couraged students to be curious and ask questions to promote discourse. She

explained:
What sets the direction for it [discourse] now is the math questions that the kids are asking,
because they were given freedom to say, tell me what you want to learn. ... So what is

important for it [discourse] is the interest of the kids and questions that they have.

When students wanted to know what was a good question to ask, she told them, “It
should be something you want to learn. Something that you might have seen or heard
and you wondered about; ... wonder, curiosity, what if, ... what else can you learn.”

Discourse evolved into “an interactive conversation” that addressed students' personal
experiences, thinking, and feelings. This included engaging students in discussions
about their real-world experiences that embodied mathematics, their pre-conceptions
and new conceptions of mathematics concepts or procedures, and their thinking about
their own thinking and learning experiences. To facilitate these ways of discourse, in
addition to whole-class discussions, T7 also integrated group work, problem solving
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and exploratory activities into her teaching. At the point of the study T7’s teaching was
learner-centered and engaged students in ways she described as: “excitement, passion,
understanding...of the concepts, application to the real world and...ah-hah moments.”

Teacher 8 (T8), a high school teacher, for several years used a teacher-directed
approach where she did most of the talking. She explained: “For many years, all they
[students] did was watch me stand at the front of the class and explain the math to
them.” The CI occurred when she noticed the following about her students’ learning.

| realized | don't see things the way kids see things, and | don't solve problems the way kids
solve problems. ... If I’m explaining something, they can sit and look at the board and I can
tell they don't get it. ... Then if | ask somebody else in class to explain it, they might say
exactly the same thing I said ...and then the others will go, “Yes that's right, | understand.”
And I’m there thinking, but I just said that. ... Somehow, they know how to relate it to each
other, and many times they can express things in different ways that | haven't thought of.

The TP was allowing students to solve problems in groups where they could use their
own approaches and share their thinking. But as she explained:

When | first started doing this, | didn't know what my role was. | knew it wasn't sitting at
the desk correcting papers, so | had to do something else. So | walked around and then |
wanted to give the answers or | wanted to tell them. And then I realized well that's not
what's supposed to happen either. So now I can sit next to any group and they talk, and |
ask them questions if they're stuck, but that's about it.

She also learned how to prompt students to deepen their interactions and learning by
comparing experiences to learn about learning, sharing ideas to collaborate and expand
their thinking, explaining concepts in meaningful ways, posing questions among
themselves, and validating their understandings. To support their interactions, she
assigned tasks in which they planned and conducted group projects/investigations to
learn new concepts, engaged in both genuine problem solving and problem posing,
explored mathematical structure of concepts, and led whole-class presentations and
discussions. At the point of this study, her teaching was inquiry-based with students
having autonomy in their learning. As she explained: “They get to interact with each
other all the time and can use each other to enhance their own learning.”

Teacher 9 (T9), an elementary school teacher, for about 20 years maintained a
traditional classroom in which students were expected to mimic her. Teaching grade 1
for several years convinced her that these students were too young to think for
themselves in doing mathematics. So, when two of her colleagues encouraged her to
join them to explore using inquiry-based tasks in their teaching, she kept refusing
because: “It wouldn’t work for my grade ones.” She finally decided to join them to be
collegial and “to see what they were doing.” She later agreed for them to plan and try
an inquiry task with her grade 1 class. She also agreed to teach the lesson with them
observing to give cues during it to help her to follow the plan and feedback after. The
lesson consisted of the following key features for the topic, “estimation with mass”:

PME 41 - 2017 1-53



Chapman

(1) Groups of 4 predict and order from lightest to heaviest 5 balls of various sizes/mass. ...
(2) Discuss process (How they decided order); ... Discuss product (Why they think there
are differences); ... Discuss, “How can we figure out who is right”; ... (3) Use scales and
beans to find exact order of balls; ... (4) Share/discuss what noticed; ... (5) Discuss when
they would use estimating mass in their world. ... Where or when use this skill or process?

The CI was what T9 noticed about herself and her students. She was surprised that the
students accomplished the task on their own: “I couldn’t believe it! I didn’t believe
they could do it without me getting in there to show them how to get the answer. But
they did it and they were having fun!” She was also surprised that she could resist
telling. “If Jen and Lyn weren’t there, ... [ would have jumped in and do it for them. It
wasn’t easy to not say anything especially when they were doing something different
from what I would do.” She liked the idea of students making predictions and testing
them, so her TP was to incorporate this in her teaching as she continued to discuss and
plan tasks with her 2 colleagues. She noted, “After a while I learned how to listen to
hear their ideas and logic and how to ask questions to help them instead of showing it
to them.” At the point of this study, she consistently engaged students in inquiry tasks.

NATURE OF THE TEACHERS’ CIs AND TPs

The teachers’ Cls and TPs varied based on their beliefs and experiences. They grew
out of the teachers’ practical knowledge based on evidence in their teaching regarding
something they perceived to be missing, unique, or different in their teaching, their
students’ thinking, or their students’ behaviors, and thus, are personal and contextual.
The CIs emerged from: the teachers’ awareness of something previously overlooked, a
shift in perspective of something observed, a shift in sense making of a belief, or a
different way of learning. They emerged unexpectedly and opened doors that were
meaningful for the teachers and enabled them to make sense of how to implement
changes to their practice. They were initiated by events directly associated with the
teachers’ learning or their teaching regarding their students’ learning, engagement, or
thinking in learning mathematics. They involved situations that provoked some
uncertainty and/or included an element of surprise for the teachers that made them
curious, conflicted, confused, and/or concerned about some aspect of their teaching or
student learning. Their TPs were significant changes in their teaching trajectories, from
a dominant teacher-centered, traditional approach to a sustained learner-centered,
inquiry-oriented approach. The TPs were initiated based on the teachers’ personal
meanings linked to a belief held, a process or way of knowing or learning, and an
emerging belief about learning, discussed in the next section. They occurred when the
teacher has a clear sense of purpose in relation to the learner. They also occurred in
stages or evolved over a period of about two or three years with the initial TP marking
the beginning of the changed trajectory of teaching.

TRANSITION FROM CI TO TP

This section discusses three themes of the mechanisms that supported the transition
from CI to TP for the teachers. These themes involve specific beliefs held by the
teachers (theme 1) and specific ways of learning in which they engaged (themes 2& 3).
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Theme 1: Holding metaphoric, inferential, or emerging central beliefs

Metaphoric central belief. A TP occurred when a ‘central belief” held by the teacher
became a ‘generative metaphor’. A central belief is psychologically strong regarding
its importance to the person holding it (Green, 1971). A generative metaphor (Schon,
1979) or structural metaphor (Lakoff & Johnson, 1980) facilitates a process by which
we gain new perspectives on the world; that is, a process that involves generating or
structuring one concept in terms of another. This process uses one domain as a lens for
seeing another; that is, seeing A as B where A and B had previously seemed to be
different things. It requires a restructuring of perception to see A as B. It generates
perceptions of new features of something or give rise to a new view of it. T1, T2, and
T3 held beliefs about mathematics as metaphors that they interpreted in ways that
generated changes in their teaching. A CI occurred when they became aware of some-
thing missing in their teaching that was interpreted as a characteristic of the metaphor
and resulted in a TP in their teaching. The transformation of teaching occurred in
stages in response to when and how the metaphor unfolded. It was not until they expan-
ded their interpretations of it that a different understanding of their teaching occurred.

T1 held a central belief of mathematics as play or game that grew out of her experience
with doing mathematics. Her Cls and TPs occurred when play/game was interpreted as
fun, strategy, and thinking and then related to doing mathematics. Fun and strategy
were associated with problem solving. As she explained,

I thought, if I'm going to be a good problem solver, I have ...to think about what strategies
to try. ... As a learner, what I need to do is look at them [problems] as a game. When I play
monopoly, | know the rules but it's dynamic, it changes. When | solve a problem, I have
my strategies that colors the rules, but it's a dynamic situation, and so sometimes | use this
strategy, sometimes | use that strategy.

For her, strategy was also about a way of thinking, seeing patterns, making connections
and reasoning, which she associated with viewing and learning mathematics. Students
needed to be autonomous learners to engage with strategies meaningfully and to under-
stand their own thinking to make sense of and justify strategies. Her Cls involved notic
ing that these elements were missing in her teaching, with TPs to integrate them into it.

T2 held a central belief of mathematics as experience that grew out of his experience
teaching elementary grades. His Cls and TPs for his high school teaching occurred
when experience was interpreted, based on what he noticed in the elementary class-
room, to be something shared/communicated, hands-on activities, and historical
connections, which were then related to doing mathematics. He explained, “The first
thing | did when | started to decide that mathematics had to be more of an experience
and a community experience was to take my desks out of rows, and put them in
clumps.” Hands-on activities were ‘“non-symbolic experiences” that involved both
physical objects and students’ personal experiences. Historical connections involved
mathematics as a “human construction” or experience. He noted, “I like the kids to see
where it came from, ... that the development of that tool came from somebody.” His
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ClIs involved noticing that these elements of ‘experience’ were missing in his teaching,
which resulted in TPs to integrate them into it.

T3 held a central belief of mathematics as a living discipline. Her Cls and TPs occurred

when a ‘living discipline’ was interpreted as “bloodlines”, excitement and aliveness,

complexity and uncertainty, and beauty. The ‘bloodlines’ were relationships within

and outside of mathematics and historical connections. Her Cls involved noticing that

these elements were missing in her teaching and resulted in TPs that changed her think-

ing, and the tasks and discourse in her teaching. With these changes, she explained:
The world opened up right there; conversations were rich and complicated, answers were
uncertain, the work constantly unfinished. (...) The more we enter into a topic, the more
exciting it becomes, ... it is exciting and alive. The students are continually seeing things
in ways I never imagined. (...) It is through its [mathematics] structure, patterns and
connectedness | can see many possibilities. Where does this come from? Why do we still
talk about 1t? How does it live and contribute to the world today? (...) As I enter into
inquiry ... how do I open topics? Do I look for the topic in the world or see the world
through the topic? There are times | see clearly the connections either through the structure
of math, its beauty, complexity or imagery.

Evidential belief. In this case, a CI and TP occurred when an ‘evidential belief” held by
the teacher was challenged. According to Green (1971), beliefs held evidentially are
supported by evidence and are more susceptible to change than nonevidential beliefs in
response to conflicting evidence. T9 held a belief that grade 1 students were too young
to engage in inquiry. She supported this belief with evidence based on situations when
her students could not interpret open-questions or follow instructions for a task without
her providing carefully structured instruction to direct their thinking and actions. She
encountered conflicting evidence when, with the help of colleagues, she engaged her
grade 1 students in an inquiry-oriented lesson and realized what the children were able
to do, the richness of their thinking and depth of their learning through inquiry. This
became the CI, resulting in a TP that changed her belief and teaching.

Emerging belief. In this case, the Cl and TP were dependent on the emergence of a
particular belief for the teacher. T8 was not aware of holding a belief about student-
student interactions or its role in students’ learning. The belief emerged as she began
noticing that when she allowed students to clarify her explanations to others in class, it
made a significant difference to their understanding. This became the CI leading to TPs
in her teaching and eventually the development of the central belief: “Math learning
occurs when students understand and can explain the math concept ... in their own
words ... and know it sufficiently to teach ... [or] talk about it to someone else.”

Theme 2: Learning through design and student thinking

Design Thinking. T4, T5, and T6 engaged in a learning process that consisted of
characteristics of a design thinking process, which became the CI resulting in the TP to
their teaching. The design thinking process (Hasso Platter Design Institute, 2010)
consists of five components: empathize (develop understanding of users from their
perspectives), define (identify the problem to take on), ideate (generate ideas towards
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potential solutions), prototype (create a product users can experience), and test (test the
prototype to receive meaningful feedback about the users, the problem, and the poten-
tial solutions). This process is not linear in that one can go back and forth between two
phases before moving to the next. Linking the test back to empathize stage is critical.

In the teachers’ approach, in phase 1 (empathize) they focused on understanding them-
selves (as teachers), their students, and parents as users of the model to determine a
common need in their teaching. T4 summarized the outcome of this process:
Our students and their parents were used to doing math calculations but did not
always have the experience or understand the importance of explaining and
thinking through math. ... It seemed like a logical starting point for all levels of
our learning community and our teaching.
In phase 2 (define), they decided on a problem to undertake; that is, to create a model to
support communication that allowed students to actively engage in their learning in an
inquiry context. In phase 3 (ideate), they studied videos of inquiry-based math lessons
to get ideas to determine possibilities for a model. In phase 4 (prototype), they drafted
possibilities of a model. In phase 5 (test), they decided on the most meaningful
possibility of the model for their students, designed a lesson plan, tested it in their
classrooms and connected the findings to the empathy stage, which resulted in making
revisions to the model, re-testing it and eventually fully adopting it in their teaching.
Student thinking. In this case, ClI and TP were dependent on T7 viewing student
thinking as a source of learning specific aspects of mathematics knowledge for teach-
ing (e.g., aspects of Ball, Thames & Phelps’s (2008) specialized content knowledge,
knowledge of content and students and knowledge of content and teaching). She noted,
“From that point I became curious. I wanted to know more. I wanted to learn from
them.” This became a goal of discourse in her teaching which she described as follows:

It’s a little bit selfish, but I want to learn something. So, | want to be ah-ha’d and surprised.
... lalmost get a rush ... it’s a weird thing, but a high when they teach me something. I’'m
not afraid to take risk, so | put myself out there to see what | can learn too.

With this goal, she started to listen differently to students, focusing on their sense
making, which resulted in the TP in her teaching and eventually changes to also engage
students in discourse to support their learning and her teaching in general.

Theme 3: Engaging in self-directed learning

Self-directed learning is usually associated with adult learning or andragogy. It is “a
process in which individuals take the initiative, with or without the help of others, in
diagnosing their learning needs, formulating learning goals, identifying human and
material resources for learning, choosing and implementing strategies, and evaluating
learning outcomes” (Knowles, 1975, p.18). The learner has more autonomy in the way
that they learn. All of the teachers engaged in self-directed learning in transforming
their teaching. Having personal choice was a crucial factor in how the TPs evolved
from the Cls. Noticing is also important to self-directed learning and was a crucial
factor in the emergence of Cls and TPs. This form of noticing, as Mason (2008)
indicates, involves not only the attention that teachers give to significant classroom
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actions and interactions, but also their reflections, reasoning, and decisions based on it;
that is, attention and awareness. These ways of learning also enabled the teachers to
address their specific needs regarding the knowledge they required to realize the TPs
and subsequent changes to their teaching. For example, while not discussed in this
paper, they sought information or resources to enhance specific aspects of their mathe-
matics knowledge and pedagogical mathematics knowledge that they identified to be
necessary to make the changes specific to their TPs in ways that served their teaching.

IMPLICATIONS

These teachers’ stories suggest that practicing teachers could be supported to transform
their teaching if they are helped to attend to Cls that could lead to TPs, particular
beliefs they hold or could hold, and particular ways of learning. Prospective teachers
could also be helped to develop a disposition to be curious, to understand generative
metaphoric beliefs of mathematics, and to engage in adult learning pedagogy.

The paper draws attention to the importance of exploring the multiplicity and context-
specificity of processes when trying to understand changes in teaching. The influence
of Cls related to TPs offers a potentially fruitful area of investigation that may increase
our understanding of why and how teachers change in the short term and over the
long-term. Further research on TPs may be particularly valuable in unpacking the
multifaceted and complex underlying mechanisms and factors involved in lasting
changes in teaching. Understanding TPs may be particularly valuable in providing
insights into the complicated underlying processes involved in long-term changes in
teaching and reveal why, for instance, the same incident/event constitutes a TP leading
to significant change for some, but not for others and what contextual factors, personal
characteristics and individual factors influence TPs in teaching.
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The discrepancy between the aspiration for research in mathematics education to have
an impact on educational practice and the common perception of research in
mathematics education as being irrelevant for practice calls for an in-depth
examination of this issue. This is the topic of this year’s PME plenary debate, phrased
as: “Research shouldn’t inform practice”. In this introduction to the plenary panel |
set the stage for the debate by using a personal experience to raise some queries about
potential relationships between research in mathematics education and practice.

INTRODUCTION

In their discussion of the purpose of mathematics education research, Lester and
Wiliam (2002) point out that different researchers have different views regarding this
matter:

Why and for whom is research in mathematics education conducted? Is our research, as
some cynically insist, simply an activity pursued by “ivory tower” academics intent on
publishing articles read only by other academics? Or, as others believe, is its purpose to
promote the development of robust theories about the teaching and learning of
mathematics? Some hold yet another view, namely, that research should focus on the
pursuit of knowledge that causes real, lasting changes not only in the way people think
about learning and teaching, but also in how they act (p. 489).

Lester and Wiliam, as many others in our community, indicate their preference to the
latter view. Moreover, in a recent comprehensive review of research in mathematics
education, Schoenfeld (2016) maintained that this could be done:

Of fundamental importance is the fact that mathematics education had reached the point
where research and practice could work together in productive dialectic. Research could
inform practice in productive ways, and practice, in turn, could serve as the site for
meaningful research (p. 510).

Yet, research in mathematics education, like educational research in general, has been
often criticized for being irrelevant for educational practice (e.g., Bromme & Tillema,
1995; Cai, et al., 2017; Malara & Zan, 2002). The continuous discrepancy between the
widespread stance regarding research in mathematics education as being irrelevant for
practice and the frequently proclaimed preference for the view that research in
mathematics education should influence practice is troubling and calls for an in-depth
examination of this issue. This is the topic of this year’s PME plenary debate, which is
provocatively stated as “Research shouldn’t inform practice.”
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Adopting the format used by Helen Chick in her introductory paper for the PME
plenary panel in Szeged (Chick, 2016), I use in the following a personal experience
(Even, 2003) to raise some queries that appear to be pertinent to the debate.

PERSONAL REFLECTION AND SOME QUERIES

About two decades ago, | was asked to give a talk at a mathematics teacher conference.
The invitation stated that the talk should focus on research in mathematics education.
Usually, this kind of invitation entailed reporting on a specific aspect of my own
research or summarizing research on students’ learning in a specific mathematical
area. However, | decided to use this opportunity to address the question: What can
teachers learn from research in mathematics education? The ground for this decision
was my feeling that the relevance of research in mathematics education to teachers has
not been adequately addressed or answered.

As | started to work on my talk, | quickly determined — based on my experiences as a
researcher and teacher educator — that research in mathematics education could not
provide practitioners with clear rules for action.

Query 1: Is it true that research in mathematics education cannot provide
practitioners with clear rules for action? Why? Are there situations for which research
could provide practitioners with clear rules for action?

Still, I thought that research in mathematics education could become meaningful and
relevant for practitioners. | continued to work on my talk by asking myself what ideas
in research in mathematics education are relevant for teachers.

Query 2: Is it an appropriate approach to focus on ideas with relation to relevance of
research in mathematics education to practitioners? Why or why not?

My search for ideas in research in mathematics education that are relevant for teachers
was influenced by the writings of Polya (1954) and Lampert (1990) who considered
courage and modesty to be essential for doing mathematics; courage to take a risk
when making a mathematical conjecture and modesty to admit that one’s conclusion
may have been inappropriate. Extending their perspective, | considered courage and
modesty to be essential not only for doing mathematics, but also for teaching
mathematics. Similar to making a mathematical conjecture, making a teaching
conjecture (e.g., making a change in a lesson plan in response to students’ unexpected
solutions of a math problem, trying a new instructional method, experimenting with an
innovative way to assess students’ understanding) also requires the courage to take a
risk and the modesty to admit that one’s conclusion may have been inappropriate.

| decided to look for ideas that have the potential to empower teachers so that they are
more knowledgeable about what it means to know, learn, and teach mathematics;
knowledgeable in ways that would enable them to be courageous and modest in the
sense described above. | believed that not only is this an important goal but that the use
of research could play a significant role towards achieving this goal.
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Query 3: Are there particular goals of the professional education and development of
teachers for which the use of research could be useful? Are there particular goals for
which the use of research would not be beneficial?

| selected for my talk four ideas, | derived from a synthesis of research in mathematics
education: “(1) Mathematical knowledge is constructed in ways that do not necessarily
mirror instruction. (2) Mathematical meaning is both subjective and sociocultural. (3)
Knowledge and practices of learning and knowing are inseparable. (4) Knowing is a
‘slippery’ notion” (Even, 2003, p. 38).

Query 4: To what extent the choice of these ideas was related to my own knowledge,
understanding, and beliefs about, experiences in, and practice of, research in
mathematics education and teacher education? Would other researchers in
mathematics education make different choices?

In my personal experience, | did not consider practitioners, such as, curriculum
developers and policy makers, but rather focused only on teachers.

Query 5: What ideas in mathematics education are relevant for practitioners who are
not teachers? Are there ideas that are more relevant for these practitioners and other
ideas that are more relevant for teachers?

Another aspect that | did not consider in my personal reflection so far is related to the
choice of the word should in the phrasing of the topic of this year’s PME plenary
debate: “Research shouldn’t inform practice,” in contrast with the use of the word
could: “Research could inform practice...” (Schoenfeld, 2016, p. 510). This choice of
wording suggests that it might be that even if research in mathematics education could
inform practice it should not do it.

Query 6: Should relevance for educational practice be a purpose of research in
mathematics education? What might be gained and what might be lost if we aim for
research in mathematics education to inform practice?

THE PANEL

The members of the panel have been invited to debate the statement. Research
shouldn’t inform practice. The way the statement is phrased implies that the
affirmative team (Michael Askew and Guri A. Nortvedt) — which argues in favor of the
topic — argues that research should not inform practice. Similarly, the negative team
(Roberta Hunter and Leong Yew Hoong) —which argues against the topic — argues that
research should inform practice. The papers of the two teams follow in this order.
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INTRODUCTION

In this debate, in arguing for the position that ‘Research should not inform teaching.’
we present three lines of reasoning. First, we observe that despite many years of
research, research has had very little impact on teaching and begin our argument by
presenting scientific evidence and other sound reasons as to why this is so. Hence
given the fact that research does not inform teaching we should, as a community, now
accept that research clearly should not inform teaching. Our second argument rests in
the observation if research is to influence teaching then it must be accessible to
teachers and that the current publishing practices militate against this. Finally, much
research is now funded by policy-initiated programmes, with research agendas being
tacitly steered towards policy directives. Thus rather than researchers being free to
follow interesting lines of thought and design independent research studies that
identify and address the crucial questions regarding teaching and learning, funding
research ends up conforming to policy-formed questions that are rooted in current
knowledge. This results in maintenance of the status quo in teaching rather than
radically changing it.

FIRST ARGUMENT - RESEARCH HAS NOT CONTRIBUTED TO
SIGNIFICANT CHANGES IN MATHEMATICS TEACHING, BECAUSE IT
CANNOT

Visiting a typical classroom, it is obvious that teaching has changed very little over
time, with students and teachers coming together to teach and learn mathematics in
ways that would be familiar to anyone schooled 50 or more years ago. The artefacts
may look different, with chalk and blackboard being replaced by pens and whiteboard
(or an electronic smartboard version of these) and paper textbooks may have given
way to printed work sheets or computer tablets, but the substantial content of what is
on the boards, or in the students’ hands, has not greatly changed. The teacher will
present something (a theory, an example, a task or problem to be solved) and students
subsequently engage in activity. But surely, one might ask, there is more interaction in
classrooms now and less teacher authoritarism? Our response is, yes, there is likely
more interaction between the teacher and the students than might have been observed
many years ago, but the dominant form of this interaction is still closed questions and
answers, with a focus on getting correct answers. The climate may be less authoritarian
but the teacher is still the primary authority.

Given such lack of changes in teaching, research clearly has not informed teaching, so
we should stop pretending that it does or that it should. For instance, the way
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mathematical problem solving is taught in schools has not been much improved as
evidenced by the large body of research on problem solving revealing that teachers still
struggle to teach students problem solving strategies and to develop collaborative
problem solving within classrooms (see, for instance, Lesh & Zawojevski, 2007).
Similarly, despite the extensive research on the importance of talk and collaborative
work in mathematics (see for example, Stein et al., 2008) most classrooms are still
characterised by a dominance of teacher exposition followed by students working
individually on tasks (Pefia-L6pez, 2009). Why has research had so little impact on
teaching? We argue that two of the reasons why research has not informed teaching
are, first, the nature of the research itself and second in how research outcomes are
made public.

The bedrock of scientific research leading to scientific advancement is
experimentation, yet few true experiments can be found within our academic field.
Indeed, even where there are experimental studies, the cumulative effect of these is
slow. To take a concept like scaffolding, which many would agree is key to successful
teaching, Bakker, Smit and Wegerif (2015, p. 1056) wrote ‘We predict it may well take
a decade before there are enough experimental studies of sufficient quality to quantify
the gains of various scaffolding approaches compared to regular teaching.” Yes, some
studies do have designs close to the scientific experiment (pre- and post-test designs,
design experiments) but without randomised allocation to intervention groups and
control over multiple variables it is not possible to calculate the effect of the
implemented innovations on mathematics teaching and so make strong comparisons
with other innovations, or even with the ‘normal’ or untreated classrooms. The key
issue here is that the contexts of classrooms are far removed from the science
laboratory — control of variables is much closer to being achievable in the latter than in
the former. As Mason (2013) points out, all teaching practices are highly
contextualised, so there are no generalizable practices, only generalizable principles.
Since principles are based in local, ethical and moral considerations of what constitutes
a good education, how can research provide global or even local recommendations for
practice? Following Bakker, Smit, Wegerif and Mason, we might conclude that at best
mathematics education research may only be able to produce ‘fuzzy’ generalisations
that cannot provide concrete insights that easily can be applied in teaching.

Compounding the lack of experimental studies, the dominance of research involving
small scale case-studies limits the generalizability of findings. Although Yin (2014)
for instance argues that analytic generalisations might be valid inferences drawn from
case studies, this is highly debated. For example, is there such a thing as a ‘neutral’ or
context-general case study where the situatedness of the case-study be disregarded? As
noted classrooms are highly contextual and patterns observed in one classroom might
be differently composed in other classrooms. Small case studies might be fine if they
built on each other’s findings but there is little evidence of that in the research literature
(Mitchell & Charmaz 1996). We would agree with Nietzsche in his observation that in
doing science ‘one should not wish to divest existence of its rich ambiguity’ (1974, p
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335). In addition too many case studies are descriptive — they tell us what is happening,
and in many cases why current practices are not effective (see for example, Ensor et al,
2009) but without recommending ways to improve practice. At best, case-studies may
go further and theorise about the practices observed but the findings then are
explanatory — researching why teaching has not changed much does not necessarily
provide empirical evidence that informs how to bring about change.

In addition to case studies, other frequently used research methods are observation,
questionnaires and interviews. Generalisation might not be the issue when question-
naires or large-scale assessments are used to study teaching and learning, as large,
representative samples might be applied (see, for instance, Schleicher, 2012).
However, large-scale studies mean simplifying the educational context or leaving out
“the friction” in order to isolate and enable study of the phenomena into which we want
to gain insights. The PISA and TIMSS studies for instance, use student questionnaires
to study instructional quality (Mullis & Martin, 2013; OECD, 2016), but how do we
know either what the relationship is between student reports on instructional quality
and the actual quality or even if what students think is good is actually effective? What
Is researched is perceived instructional quality and what is perceived as effective is not
necessarily so.

Even if large-scale studies were to make recommendations for teaching, then the
unintended consequences may outweigh the intended ones. For instance, aims such as
sharing ideas on best practices in teaching has been lost in the promotion of
international league tables by policy makers (Auld & Morris, 2016). Rather than
raising standards of teaching or bringing best practices into view, the league table
mentality and the jockeying for position within ranks has resulted in a narrowing of
practices — a reduction in taking risks and trying out new pedagogies for fear of
reduced ‘standards’ (Broadfoot, 2000). The ultimate effect is a lowering of spaces for
innovation but innovation rests on risk taking and learning from failure.

Across both small- and large-scale studies, a lack of unified theories and agreed ‘best
practice’ methods further limits the applicability of research findings to teaching. A
good example of a situation where findings ‘do not add up’ is the manipulatives debate
(McNeil & Jarvin, 2007). While some researchers found that manipulatives help
students with mathematics learning disabilities (MLD) learn mathematics, other
researchers found that the manipulatives had a negative effect on the learning of MLD
students. McNeil and Jarvin (2007) in their review concluded this is connected to how
the research was carried out.

The key issue is that in most, if not all, mathematics education research the
phenomenon under investigation is complex and rich and contextual and intertwined.
Research necessarily simplifies the object of investigation, can never account for all
the variables treating the complex as complicated (in the sense of ordered and
predictable (see, for instance, Leder & Grootenboer, 2005). Consequently, research
findings rarely, if ever, transfer to other contexts. Take the case of the PISA study and
Finland. Finland was among the top countries in the early PISA studies (that is, in 2000
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and 2003, see OECD, 2004) and, not surprisingly, many, researchers and policy
makers wanted to learn from Finland. However, Finish researchers themselves,
thought that this could not easily be done and they themselves struggled to understand
these outcomes, stating that there was:

‘no one single explanation for the result. Rather, the successful performance of Finnish
students seems to be attributable to a web of interrelated factors having to do with
comprehensive pedagogy, students’ own interests and leisure activities, the structure of the
education system, teacher education, school practices and, in the end, Finnish culture.’
(Vélijarvi, Linnakyld, Kupari, Reinikainen, & Arffman, 2002, p. 4)

Similarly, there is much interest in what is being referred to as ‘Singapore
mathematics’ but as B. Kaur from Singapore pointed out in her IMCE17 plenary, there
IS not agreement within Singapore on what constitutes best practice (Kaur, 2016).

SECOND ARGUMENT: DISSEMINATION OF RESEARCH FINDINGS
PREVENTS RESEARCH FROM INFORMING TEACHING

Not only are research methods problematic, but also the publication of research
outcomes is problematic on account of what findings are published and also how
findings are communicated to teachers. The first stumbling block lies in what might be
accepted for publication — typically only original research is published. To many, this
is conceived as ‘research with findings’. This leads to research being re-invented since
pedagogies tried out that yield no changes in learning, have not been reported on and so
neither the research nor the teaching field gets to know what has been demonstrated as
not working. In the climate of accountability in Universities researchers have to be
original, rather than test out or replicate previous findings. In addition, research not
meeting standards for publication does not get into the public domain. For instance,
review guidelines often state that researchers need to embed their empirical studies in
current research traditions and theoretical paradigms to (see for instance our own PME
guidelines for Research Reports). Novel research that represents a clear break with
current framework and traditions or is very creative might not be considered nor
accepted for publication. There may be much research carried out that could make a
difference but we know little about the potential effect of the proposals that come from
such research.

Second, research findings are not made easily available to teachers so they do not
know what might be important. For example, a study conducted at Durham University
(See, Gorard, & Siddiqui, 2016) examined how teachers made use of research findings
showing the impact on learning that enhanced feedback can have (Hattie, &
Timperley, 2007). The teachers worked with the published research findings, but could
not put them into practice. Two main reasons for the lack of change were noted. First,
that the published findings did not provide sufficient examples of what sort of
feedback was envisaged, so the teachers could not identify what changes to practice to
make. Second, the style of writing was a barrier to engaging with the research. One
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teacher was noted as saying ‘I need a translator to understand what this article is
saying. I just cannot understand what [Hattie] means and what he wants us to do.’

THIRD ARGUMENT - RESEARCH IS POLICY STEARED TOWARD
MAINTAINING EXISTING PRACTICES

Educational research is mostly funded by national or international authorities that often
want research to have an applicable outcome that is innovative or can improves some
aspect of society (see for instance European Union, 2017, 01.04). In many ways, policy
makers want to influence teaching more than research due to a desire to cater for
effective and high performing educational systems. One means to achieve this, is to
ask for educational research directed toward national educational policies, e.g.
assessment for learning (Baird et al., 2016).

Given this politicising of education, with policy makers resistant to taking risk and so
seeking evidence from large, statistical studies often conducted by economists, whilst
the concerns of many in the field for social justice and equity, which are important and
may intersect with teaching but not influence it directly, are seen as less important than
research aimed at raising standards, but in the absence of any real debate about what
standards are being set. Teaching is, inevitably, goal directed, but in the world of
standardized testing, of targets, and of the ‘no child being left behind’ policy, surely it
is the role of the researcher to be challenging such discourses of accountability, not
feeding into them (see, for instance, Berliner, 2011)?

Restricting our research to what policy makers and funding authorities see as
worthwhile means research being directed towards an agenda set from outside, not
from within the research community. As such, this might not help us as a research
community to identify the important issues that need to be addressed (Linden, 2008). A
more substantial issue is related to the need to grow as a research community, and to
arrive at a place where we do manage to direct and coordinate our research so that we
do manage to develop substantial theories and findings (Burkhardt & Schoenfeld,
2003).

OUR ARGUMENT IN SHORT — LINKING THE ARGUMENTS

We have argued that mathematics education research has not moved teaching practices
forward, and may, perhaps, in some instances have moved teaching backwards. Let us
stop deceiving ourselves that our research should inform teaching — it does not, it
cannot, it should not.

As researchers, many of us come from a background of teaching and it is natural that
we should want to improve the practices that we previously were members of. It is
notable that researchers coming from non-teaching backgrounds are more willing to be
openly critical of schooling, to point to its inadequacies but not position themselves as
having answers (a classic example here is Stephen Balls’ work, see for example Ball,
1984). Those of us moving from the school to the academy would do well to recognise
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that our roles as researchers are very different and not mix up these roles with previous
ones.

This is not to argue that work is not needed to improve teaching — it is, but that is the
work of curriculum developers, who may or may not choose to research their
developments, but should not be required to. We need to be clear about curriculum
development and research. Curriculum development IS about informing teaching but it
IS not necessarily research. Research, of necessity, involves looking back -
re-searching for answers rather than forward, pro-specting for solutions (Burkhardt &
Schoenfeld, 2003). Creative and novel research must take place in contexts where risk
taking and the potential of failure are allowed (Linden, 2008), but current funding does
not encourage this and that position is unlikely to change in the near future given the
fragility of global economics and lack of funding for blue-skies research.

The pressure to publish means researchers have to present their findings as new (Billig,
2013) and many researchers, working within the field of mathematics education are
forced to direct their interests to classroom studies so that they can argue that their
work has an ‘impact’. Acknowledging that mathematics education research should not
need to inform teaching would free up researchers to pursue genuine interests, interests
that may ultimately have a greater impact on practice through widening the breadth of
research. Research should be free and researchers should be free to investigate what
really matters — restricting our attention to research that informs teaching would limit
that freedom.

With regard to findings being disseminated more widely, as researchers we are too
reluctant to be prescriptive. Research findings are hedged with qualifications — too
easily interpreted by teachers as a lack of confidence in the findings — and that, together
with the dominant discourse of ‘reflective practitioners’ suggests that teachers have to
make up their own minds about what good practice comprises. For research to have an
Impact on teaching, researchers need to be less tentative in their results, but that is rare
in the discourse. Perhaps those more drawn to living with certainties (even if these
have to change) are drawn towards policy work, while researchers prefer to keep things
open.

In summary, the lack of experiments, the risks of innovation and the heavy emphasis
on ‘standards’ and difficulties in getting research findings into the hands of teachers
means that research largely builds on current practices rather than proposes anything
radically different. Mathematics education research must raise its game; move the gaze
from small scale, non-cumulative studies to larger scale work that of necessity can then
say less about actual teaching practices. And it must not buy into the discourses of
policy makers that are only concerned with raising standards. And it must ‘speak’ to
teachers. Only then it might begin to have an impact on teaching.

Note

'Readers should note that the opinions expressed here are not necessarily those of the authors
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RESEARCH SHOULD NOT INFORM PRACTICE
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This paper establishes the context for the debate to oppose the motion that “Research
should not inform practice”. The paper first defines what is meant by the terms
research and practice in the context they are used in this debate. Four key points are
then offered which illustrate the importance of research informing practice.

INTRODUCTION

This paper sets the context for the debate to oppose the motion that “Research should
not inform practice”. To begin we need to define what we mean by research and
practice within the scope of this debate in order to confine the scope of examination.
Although we do not like debates to be heavily centred around definitions (as it tends to
become purely academic and less useful — yes, we have waded into our natural
inclinations of practice-orientedness ...), for a meaningful discussion, and to allow the
audience to refute the claims of our opponents, it is unavoidable that we establish
common definitions.

Within the term “research” and its close relative “theory” (Malara, & Zan, 2002) we
have in mind all activities that may be classified as “systematic inquiry”. Put simply in
Mason and Waywood’s (1996) words “the human enterprise of making sense, in
providing answers to people’s questions about why, how, what” (p. 1060) within
inquiry for sense-making. We do not see a need — for the purpose of this debate — for a
narrower definition. In an initial view of the term “Practice” it appears to be far more
straightforward, until you read Lampert’s (2010) paper where the term becomes far
more problematic. But within the intended context behind the motion statement, we
stay with “the work of teaching” and apply to the term teaching a process of
decision-making. We interpret the verb “should” to mean “with the purpose of”. This
ought to be distinguished from “is capable of”. The latter will take us into another
debate: whether current research is indeed informing practice; but the former
interpretation of “should” will lead us to a more fundamental and critical debate:
Should anyone who is involved in systematic studies of mathematics education have a
view of relating the findings of the inquiry to the work of teaching? [In this
interpretation of the topic of debate we have also slipped in our take on “inform” —
“relating the findings to”]. And our answer to this question is: Of course! We advance
a few arguments.

We begin with this historical note: Mathematics Education emerged as field of
research to address the problems of teaching

It may be argued that the requirement to “inform practice” does not apply to the
‘parent’ field of Mathematics — mathematicians can stay “pure”: they may produce
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research that is not directly useable in practice. Here, the argument uses a sleight of
hand — the word “practice” has shifted from the motion’s inherent meaning of
“professional practice” to “popular practice” of presumably the common public. This
exposes a false comparison: while mathematics education has (and indeed was
motivated by) an actual community of professional practitioners in mind, mathematics
(especially the pure branch of it) does not have a corresponding professional practice
to address — mathematicians communicate among mathematicians, not with
non-existent “professional users of mathematics™. In fact, that mathematics education
was indeed originally conceived as an “applied” field is clear from the founding vision
of ICMI — whose constitution was seen as a ‘coming of age’ of mathematics education
as a field of study. For example, Begle (1969), in his address to the first ICME,
‘chided’ “Mathematics educators [as being] ... unable to organize the kind of
empirical investigation needed to provide useful information” (p. 239, emphases
added). Neither is this a one-off reminder of the responsibility of mathematics
education research towards practice. In a later ICMI Study, Bishop (1998) repeated the
call, “[m]y real concern ... is with what I see as researchers’ difficulties of relating
ideas from research with the practice of teaching and learning mathematics” (p. 33).
Since then, the literature is replete with reports on addressing the “theory-practice”
link, which presupposes the need for researchers to attend to the challenges of practice.

1. The survival of mathematics education research is in its usefulness to practice

We (i.e., mathematics teacher educators working primarily in universities) may not
like this, but it is part of a reality played out at a global scale: Why would funding
agencies continue to provide resources to researchers if the outcomes of their projects
cannot be ‘cashed in’ in terms of actual improvements in quality instruction within
mathematics classrooms? Two forces hasten the demise of funds (and hence related
university positions): the pressure from populations (especially of developed
countries) for answers to education problems, such as low performance in overall
mathematics scores (e.g., TIMSS and PISA); and the prevailing climate of short-term
paybacks to investments. There is growing impatience with ‘blue sky’ research that
would not provide immediate ‘translational outcomes’ within the testbeds of
classroom practice. Already, in the USA, there are disenchantments with respect to the
quality of teacher preparation programmes offered by university faculty. The
organized forms of this dissatisfaction can be seem in influential programmes such as
“Teach for America” supported by the Gates foundation. They can be interpreted as the
beginning of voices of dissent - against the prolonged lack of useful inputs from
educational research in improving practice.

2. Research and practice are symbiotic

Both the terms research and practice in the form we are using suggest action and in this
debate we apply the term practice to describe the work of teaching. The overlaps are
clear, teaching we describe as a process of decision making and research as a process
of inquiry; terms which have gained increased coinage in recent times. Mathematics
education and mathematics education research is in its infancy compared to other
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fields of research. We need to remember that it had its origins in a positivist paradigm,
where research was statistical in nature and the teacher was positioned as the ‘constant’
in classroom studies (Mason & Waywood, 1996). In our experience working within
the messy complexity of schools clearly the teacher as an active decision maker who is
constantly ‘problem making and problem solving in the moment’ could never be
considered as a ‘constant’—that is as a replicable or reproducible factor in research.

In recent times, in our own work, as in the work of many others, we have seen how
research and practice holds a symbiotic relationship, a productive synergy and without
one the other has no future. For example, John Mason (1998) described the need for
research to speak directly to teacher’s practice in ways which caused personal
understandings so that their revised view of their past experiences sensitized them to
possible incidents to notice in the future. Our personal experience in working with
teachers has emphasized this symbiotic relationship. As we have worked alongside
teachers, their practices have been influenced by the research and in turn the decisions
they make have provided us as researchers with essential learning and shaped the
outcomes of our research. It is the interplay of research and practice, which results in
productive tension and from which new and powerful learning emerges for all
members involved. From this we can deduce a different focus of debate; we suggest
that rather than questioning whether research should inform practice we should be
questioning whether such criteria (commonly seen when used to assess the outcomes
of research) as relevance, validity, objectivity, originality, rigor, precision,
predictability, reproducibility and relatedness should be applied to the results of
research informing practice within complex school settings. Again, we bring you back
to our interpretation of the verb “should” and apply it to mean “with the purpose of”.

3. The connections between research and practice counter development and
publication of “false assumptions” or “alternative truths”

An open and honest skepticism to many statements made which draw on evidence
from both research and practice is a healthy way forward for mathematics education
and research in mathematics education—particularly in this new world of “alternative
truths”. In our former lives as practitioners within the school setting and now as
researchers, we are constantly confronted with what appear to be convincing facts. It is
through integration of research with practice that you are able to drill through the
surface and through inquiry develop possible explanations and solutions. For example,
the first author’s work of inquiring into equity issues for diverse learners, she has been
confronted by those who use the results of research and the results of schools
separately to develop “alternative truths” based on “false assumptions” to match a right
wing agenda. For example, an “alternative truth” was built around one piece of
research in which it was suggested that Maori had a “warrior gene”. This was used to
explain their underachievement and disengagement from education. In response, we
were able to counter these claims and provide contrary evidence which was built
within an active cycle of inquiring into the work of teaching. The strength of evidence
depended upon the theoretical and empirical research grounded within practice.
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4. Useful research is “good” research

The term “good” is admittedly subjective. Thus, we start here on our personal
experiences. Our research has brought us close to schools where we worked intently
with mathematics teachers on problems of actual practice. It is very challenging but it
also brings great satisfaction when we see teachers finding our contributions helpful to
their practice. In the eyes of these teachers, “good” research is done when ‘theories of
research’ hit the road and deliver the goods — which is, visible improvement in
students’ learning. And, this kind of useful research can be done without
compromising on the quality (another sense of “good”) of research. An example of an
emerging methodology that attends to both usefulness-to-practice and
rigour-in-research is Design Research (e.g., Cobb, Confrey, diSessa, Lehrer, &
Schauble, 2003; Middleton, Gorard, Taylor, & Bannan-Ritland, 2006). We are not
suggesting that all mathematics education research need to be directly and immediately
involved with ‘translation’ into practice. Here, we return again to the point made
earlier about our interpretation of “should” in the motion statement. While some
research are perhaps more ‘remote’ from practice, our argument is that they should
nevertheless have a view of practice in mind; this is so that their research results will
then have greater potential to be tapped by other researchers whose work are closer to
the particulars of practice. Seen in this way, all types of mathematics education
research can be “useful” in the sense that the findings may potentially be harnessed for
the purpose of informing practice.
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Abstract The research forum provides new insight on various perspectives on (future)
teachers’ professional competencies. Research on (future) teachers building upon the
competence paradigm has become quite influential in the last few years, especially in
the frame of large-scale (international) studies. The research forum will present
various theoretical frameworks and constructs developed from three projects followed
by four commentaries, which discuss the approaches described and enrich them by
own frameworks. The research forum is positioned to promote the discussion on how
Eastern and Western approaches can learn from each other.

GOALS, KEY QUESTIONS, AND FOCUS OF THE RESEARCH FORUM
The research forum aims to share and discuss about various perspectives on (future)
teachers’ professional competencies. Specifically, it intends to discuss various
constructs about teachers’ professional competence and possible relationships between
(subject-based) cognitive and (social-culturally) situated perspectives in examining
and evaluating teachers’ competencies. These discussions provide a platform for
sharing and cross-examining the similarities and differences in various
conceptualisations of teachers’ professional expertise (important for future teachers)
and perspectives developed and used in related examination and evaluation in different
system and social-cultural contexts.
The following three research questions are addressed:
(1) What kind of constructs and conceptualisations about teachers’ professional
competence are proposed within mathematics education being often considered as
important in the East and West?
e What is the nature of different constructs being considered important in the East
and West?
e Are there possible relationships between different constructs?
e What kind of research does already exist and what kind of research is further
needed?

(2) Which frameworks and instruments are adequate for the usage of cognitive or
situated perspectives?
e What are characteristics of frameworks and instruments that are adequate for the

usage of cognitive and situated perspectives on teachers’ professionalism?
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e What strengths and limitations do these frameworks and instruments have?

e (Can these complementary perspectives be integrated within one theoretical
framework with joint evaluation instruments of teachers’ professional
competencies?

(3) What do we know about the value of developing and/or improving teachers’
competencies that are conceptualized with different perspectives?

e What is the relationship of teachers’ competencies, the quality of their

instruction, and students’ learning gains?

e How can we model and evaluate this important overall relationship?

e Which other (mediating) factors might influence this relationship?

e Which professional activities/programs may be in existence to develop and/or
improve teachers’ professional competencies that are conceptualized as
expected?

e How far can different frameworks and instruments developed by already
existing projects on teachers’ competencies be transferred to other countries and
cultures?

THEORETICAL BACKGROUND OF THE RESEARCH FORUM

Research on teacher education, teacher’s professional development and the necessary
prerequisites has become a prolific and productive field. Large-scale assessments such
as the “Teacher Education and Development Study in Mathematics (TEDS-M)” (Tatto
et al., 2012) have triggered a series of national and international follow-up studies
examining the competencies necessary to teach different subjects on different schools
levels (cf. Blomeke et al. 2015). Substantial progress has therefore been made in
understanding that teacher competencies are personal traits (i.e., individual
dispositions relatively stable across different classroom situations) but that they also
include situational facets (JenRen, Dunekacke, Eid, & Blomeke, 2015). Furthermore,
they play out in social contexts which determine to some extent how competencies can
be transformed into classroom performance. These developments are in line with
trends in subject-related discussions like mathematics education, where in their survey
on the state-of-the-art on teacher and teacher education Krainer and Llinares (2010)
identified three trends in the literature about prospective teachers, practicing teachers
and teacher educators, namely teacher educators’ and researchers’ increasing attention
to the social dimension of teacher education, to teachers’ reflections and to the general
conditions of teacher education. The first two trends are based on the shift from a
perspective on the education of individual future and practicing teachers towards
emphasizing the social dimension in teacher education based on sociological and
sociocultural theories. These developments are in line with the differentiation of two
different paradigms on teachers’ professional competencies, which can be
characterized as cognitive versus situated approaches on professional competencies of
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teachers (Rowland & Ruthven 2011; for an extensive overview on these paradigmatic
distinctions see Kaiser et al., 2016).

In detail the first two trends engage with a situated perspective on the professional
activities of mathematics teachers and their competence structure and demonstrate the
transfer from a cognitive perspective on mathematics teachers’ professionalism to
situated approaches. The cognitive perspective on the professionalism of teachers
focusing on knowledge facets of teachers has been dominant in recent decades. Their
characteristic is a strong focus on teachers’ knowledge and the distinction of a limited
number of components, of which teachers’ knowledge consist, related to personal
traits. These studies are mainly coming from mathematics education, for example by
the already mentioned Teacher Education and Development Study in Mathematics.
However, newer studies such as the Follow-up-Study of TEDS-M, the
TEDS-FU-study, have shifted the focus of research to the inclusion of situated and
social aspects of teaching and learning and the professional development of teachers
taking the concept of teachers’ noticing as the point of departure. These studies assume
“the act of teaching being multi-dimensional in nature” (Depaepe et al., 2013, p. 22)
referring not only to subject-based cognitive aspects, in contrast including pedagogical
reflections on the teaching-and-learning situation as a whole. The context in which
teaching and learning is enacted is in the foreground.

Integrating these different approaches Blomeke, Gustafsson and Shavelson (2015)
presented a framework of teacher competencies that took this interaction of personal,
situational and social characteristics into account. They showed that former conceptual
dichotomies were misleading in that they ignored either the stable dispositional or the
more variable situational competence facets. By systematically sketching conceptual
controversies, competing definitions of competence were unpacked. The resulting
framework revealed how the different approaches complement each other.
Competence can since be viewed along a continuum from personal dispositions such
as teachers’ professional knowledge and beliefs which underlie situation-specific
cognitive skills such as perception, interpretation, and decision-making, which in turn
give rise to observed teacher performance in the classroom.

THE STRUCTURE OF THE RESEARCH FORUM

The Research Forum is to be organized with a format that integrates the use of multiple
activities, including formal presentations, small group discussions, pre-prepared
commentaries, and coordinated Q&A sections. In particular, this format is designed to
take advantages of formal presentations, commentaries, and small group discussions in
its two 1.5 hour sessions. The forum will start with formal presentations that aim to
share research on various constructs of (future) teachers’ professional competencies in
selected projects/programs. These presentations will be followed by commentaries
provided by two discussants, which also serve as a good start point for broader
discussion for all participants. The participants will then be invited to join small group
discussions to have better opportunity to ask questions and learn further about different
perspectives as structured with questions proposed for this research forum. During the
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small group discussions, participants may also be invited to share what they know
about (future) teacher competencies and/or related constructs in their own education
systems. Both the commentaries and the small group discussions should provide the
presenters a good opportunity to prepare a summary of information shared and further
explanation as needed, which will be used to kick off the second 1.5 hour session for
the whole forum. The presenters will then also present various frameworks and
instruments developed and used in studying and evaluating (future) teacher
competencies. These presentations will be followed by two more commentaries
provided by another two discussants, and followed by more small group discussions.
The session will then be ended with final Q&A between all the audience, discussants
and presenters.

In the following sections, three different perspectives and research projects first
present their theoretical framework and constructs that are developed and used in their
studies as coming from different theoretical backgrounds. Collectively, these projects
aim to promote the discussion of teachers’ professional competencies by answering the
guestions posed above. Follow-up these three projects, four invited commentaries are
presented from different own perspectives as contributed by scholars with different
cultural backgrounds, which serve dual purposes as not only to comment on the
perspectives on teachers’ competencies described herein but also to enrich them with
new perspectives.

DEVELOPING PRE-SERVICE TEACHERS’ MATHEMATICS
CONCEPTUAL KNOWLEDGE FOR TEACHING
Yeping Li*? and Roger Howe!

Texas A&M University, USA; 2Shanghai Normal University, China

What should pre-service teachers know and be able to do to be ready for their
professional career in mathematics teaching? This is not a trivial question, but it is a
crucial one for all of those who are responsible for teachers’ preparation in
mathematics. It merits more research attention. In this paper, we propose mathematics
conceptual knowledge for teaching (MCKT) as the core of preservice teachers’
professional competency that can and should be developed in teacher preparation
programs. Specifications of MCKT are discussed and examples in elementary school
mathematics are provided to illustrate different components of MCKT.

MCKT and teachers’ expertise in mathematics instruction

Existing research has generally documented the importance of knowledge in expertise
acquisition and development in knowledge-rich and complex domains, including
mathematics instruction (Li & Kaiser, 2011). The importance of knowledge in
teachers’ expertise also goes beyond a quantity measure to include knowledge
structure with certain depth. Such a knowledge-based characterization of teachers’
expertise is commonly used in large-scale international studies, e.g., the Teacher
Education and Development Study in Mathematics (TEDS-M, see Blémeke, Hsieh,
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Kaiser, & Schmidt, 2014), which measures three types of knowledge: mathematics
content knowledge (MCK), mathematics pedagogical content knowledge (PCK), and
general pedagogical knowledge.

Knowing the existence of different types of knowledge is important in teacher
preparation. However, if salient connections among different types of knowledge are
left unspecified in their training, preservice teachers would be left to make such
connections by themselves after learning separate pieces of knowledge. In fact, this is
often the case with mathematical training, since mathematics content courses are
typically offered by a mathematics department and pedagogy courses are delivered in
an education department. These two departments may communicate little, if at all,
about the content and instruction of these courses for the same pre-service teachers.
Checking whether preservice teachers are ready or not for their professional career in
teaching often results in course counting rather than examining what is offered in these
courses and how the various topics in them can and should be connected. To be ready
for their professional career in mathematics teaching, preservice teachers should be
expected not just to state what (content) needs to be taught in classrooms, but to be able
to help students understand what needs to be learned, which includes helping students
make connections across different representations and different topics. Such features
of teacher expertise require a package of integrated knowledge (e.g., Ma, 1999), rather
than a collection of separate knowledge components.

To be able to help students learn mathematics with understanding, teachers need to
have mathematics conceptual knowledge for teaching (MCKT, Li, 2010). By MCKT
we mean the conceptual knowledge needed for understanding, explaining, as well as
teaching specific mathematics content topics with connections. It can be specified as
containing the following three knowledge components that can and should be offered
in the same courses:

(1) Knowing and being able to explain the meaning of a specific content topic;

(2) Being able to connect and justify the main points of a content topic, and to place it
Iin wider contexts;

(3) Knowing and being able to use various representations for teaching the content
topic, and being able to teach the relations between them.

MCKT relates to the notions of MCK and PCK mentioned at the beginning (also
Shulman, 1986), but emphasizes the connections between these two knowledge
components and envisions combining them in the same course rather than separate
courses. MCKT also relates to the notion of mathematics knowledge for teaching
(MKT) that is developed and used by Ball and her colleagues (2008), but focuses on
mathematics content and related pedagogical approaches for pre-service teachers’
preparation. With MCKT, we emphasize the depth and systematic view of
mathematics knowledge with associated pedagogy that can empower preservice
teachers for further expertise development in the future. After preservice teachers
finish program training, they will have many more opportunities for developing
knowledge about students’ learning of different mathematics content topics through
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working with and learning from their own students, but opportunities to develop
MCKT will not appear automatically.

Preservice elementary teachers’ development of MCKT

This on-going project at Texas A&M University presents our commitment of pursuing
excellence in mathematics teacher preparation, and aims to provide research-based
training in mathematics and pedagogy to pre-service elementary teachers. The goal of
this project is to carefully think through the essential understandings teachers need to
function well in the elementary mathematics classroom, and to present those ideas in a
coherent 3-course sequence. The project will involve close collaboration between the
Mathematics Department and the College of Education, in order to balance and
integrate mathematical principles with teaching considerations.

The approach of integrating content and pedagogy as MCKT specified for key/critical
content topics is used to develop the three-course sequence that allows preservice
elementary teachers to learn mathematics that they will teach in elementary
classrooms, accompanied with carefully constructed developmental topic sequences
and study of teaching strategies, and consistent attention to problem solving.

Some specific examples of such mathematical content topics we aim to address can
give a sharper picture of such knowledge. Two major goals we seek for our preservice
teachers are: (a) comfort with numbers, and (b) comfort with word problems. Both of
these goals involve multiple topics. We give one example for each.

The base ten place value system. We seek to give teachers a confident overview of the
structure of our pervasive base ten system of arithmetic. The form in which we write
numbers employs multiple conventions to encode substantial algebraic structure,
which lies behind the power of the system. In previously published papers (Howe,
2015; Howe & Epp, 2008), five stages in the interpretation of place value notation are
distinguished:

356

=300 +50 +6

= 3x100 +5x10 + 6x1
= 3x(10x10) +5x10 +6x1
= 3x102 +5x10* + 6x10°

The first equation shows that a base ten number is a sum of pieces of a special kind, as
displayed in the second expression, which is often called expanded form. The
expanded form is shown to students, perhaps in second grade, but it does not seem to
receive much emphasis. In particular, there has not been a standard simple name for the
pieces. Following advocacy by one of the proposers, S. Beckmann, in the 5" edition of
her teacher preparation text (Beckmann, 2017), has adopted the term place value
pieces. We can now follow that terminology in this research forum.
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Careful review of the five stages of place value leads to the recognition that to fully
understand place value notation involves knowledge acquired over the full 8 years of
elementary school. It would take a remarkably coherent curriculum to ensure that
students master this structure, and in fact, studies (Thanheiser, 2009) have revealed
that only a small minority of teacher candidates at a prominent institution of teacher
preparation even think in terms of the 3' stage. We want preservice teachers in our
re-designed courses to master all five stages. Knowing and understanding the five
stages can have multiple benefits, including the capacity to understand the main
algorithms for computing with base ten numbers, both in detail, and from a global
viewpoint. For instance, we expect that preservice teachers will understand why
subtraction is harder than addition, and will be able to help their students by examining
key examples. We will help them see the features of multi-digit addition, and of
multiplication of a multi-digit number by a one-digit number that lead to similar
algorithm formats. To promote strong pedagogy, we will also offer preservice teachers
a detailed teaching sequence for teaching addition and subtraction that will establish
solid place value understanding, and encourage mental mathematics, on the way to
mastering the standard US algorithm.

A structural approach for teaching and learning addition/subtraction word problems.
Helping preservice teachers to gain an in-depth understanding of word problem
structures will empower them to pose, analyse and solve word problems in their
classrooms. A focus on word problem structures helps highlight the mathematical and
semantic aspects of word problems, beginning with the Common Core State Standards
(CCSS) taxonomy of one-step word problems and proceeding to multi-step problems.
Each of these mathematical and semantic connections involves important ideas that
can help deepen understanding of addition and subtraction word problem structure in a
systematic way. The goal is to make word problem structure usable as a strategy to
develop student problem analysis and solution skills other than being overwhelmed
with various word problems or simply relying on memorization, when dealing with
addition and subtraction problems.

As this project has been on-going at Texas A&M University, we will also share sample
work from preservice teachers’ learning of the above concepts to illustrate their
development of MCKT.
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CONCEPTUALIZING AND MEASURING THE MATHEMATICAL
KNOWLEDGE NEEDED FOR TEACHING

Charalambos Y. Charalambous! and Lindsey Mann?

tUniversity of Cyprus, Cyprus; 2University of Michigan, USA

Following a practice-based approach, over the past years scholars have proposed the
Mathematical Knowledge for Teaching (MKT) construct to capture the knowledge
entailed in different tasks of teaching mathematics. Several efforts have also been
undertaken to validate this construct and explore its links to teaching quality and
student learning. In this paper, we briefly consider the work pursued over the past
years and outline open issues for future work.

Motivation and development of the Mathematical knowledge for teaching (MKT)
construct

Mathematical Knowledge for Teaching (MKT) arose as the answer to an apparently
simple question: What mathematical knowledge is entailed in the work of teaching
mathematics? Building on the work of Shulman (1986), the Mathematics Teaching
and Learning to Teach (MTLT) group hypothesized that careful analysis of
mathematics teaching practice could illuminate the mathematical work involved in
helping children learn mathematics. In particular, rather than deciding the mathematics
teachers should know, the MTLT scholars set out to understand what mathematics
teachers use in teaching and what they use it for. To do this, they set about studying the
work of teaching mathematics. First, looking at a range of records of practice, they
identified tasks that occur frequently in mathematics teaching (e.g., choosing examples
for particular purposes, asking productive mathematical questions, and interpreting an
unexpected student response). For these tasks, they identified the mathematical
knowledge, skills, and dispositions needed to complete them. Though the analysis
looked at records of practice from particular teachers, the purpose of the study was to
understand teaching, not teachers. This is an important feature of both the
methodological and theoretical approach: though “knowledge” is often conceptualized
as related to individuals or even groups of people, the “knowledge” in MKT is
conceptualized as a function of the work of mathematics teaching.

Mathematical knowledge for teaching

Through analysis of teaching practice, the group developed a conceptualization of both
the subject matter knowledge and the related pedagogical content knowledge — a
blend of content knowledge and knowledge of students, curriculum, or other aspects of
pedagogy (Ball, Thames, & Phelps, 2008). The subject matter knowledge is made up
of three sub-domains: Common Content Knowledge (CCK), Specialized Content
Knowledge (SCK), and Horizon Content Knowledge (HCK). CCK is the mathematical
knowledge that is common to educated adults and many professionals who use
mathematics (e.g., knowing how to do the mathematics in the student curriculum).
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HCK is knowledge of the mathematical horizon; that is, sufficient familiarity with the
more distant mathematical terrain to make productive connections and avoid seeding
misconceptions (e.g., noticing connections to the ideas of infinitesimals in a child’s
question). Finally, and arguably most significantly, SCK is the special mathematical
knowledge needed in teaching but not needed by other professions (e.g., knowing how
to fluently and precisely connect an algorithm to a representation while speaking and
gesturing to a group). Pedagogical content knowledge is also made up of three
sub-domains: Knowledge of Content and Students (KCS), Knowledge of Content and
Teaching (KCT), and Knowledge of Content and Curriculum (KCC). KCS includes
knowledge of how students interact with mathematics; KCT involves things like useful
representations for illuminating a specific concept. Finally, KCC comprises, among
other things, knowledge of how different mathematical ideas develop across the
curriculum.

Exploring the construct and its relationship to teaching and learning

Much of the exploration of MKT has centred on developing and using multiple-choice
items (Hill, Schilling, & Ball, 2004). These items, which initially focused on
elementary-level number and operations, functions, and algebra, provided important
opportunities to explore the construct’s structure as well as its relationship to teaching
and learning. They were used in cognitive interviews with pre-service and in-service
teachers, mathematicians, and lay people to confirm that there is particular
mathematical knowledge that is used in teaching (cf. Charalambous, 2016; Hill, Dean,
& Goffney, 2007). Further, these items provided an opportunity to measure teachers’
MKT at large scale, and thus through statistical analysis to confirm that MKT is
multidimensional (e.g., Schilling, 2007) and to link this knowledge to student learning
and instructional quality. With respect to the later, studies show a positive link between
teachers’ MKT and teaching quality, which is stronger for teachers at the two ends of
the MKT spectrum (e.g., Hill et al., 2008; Hill, Umland, Litke, & Kapitula, 2012).
Likewise, studies have shown a positive link between teachers” MKT and student
learning (Hill, Rowan, & Ball, 2005; Rockoff, Jacob, Kane, & Staiger, 2011), however
the size of the effects and the ways in which the relationship can be mediated by
classroom contextual factors remain open (Kersting et al., 2012; Ottmar,
Rimm-Kaufman, Larsen, & Berry, 2016). In addition, these multiple-choice items
have also been adapted for use internationally (e.g., see ZDM Mathematics Education
special issue 44(3)). As this work progresses, the need to expand from using only
multiple-choice items to more performative formats has become more evident (e.g.,
Charalambous, 2008; Fauskanger, 2015; Kim, 2016).

Situating MKT: Limitations and open issues

Despite the promise of MKT, important aspects of teaching, especially parts of the
work that involve real time interaction or enactment, remain buried and inadequately
addressed by the static ways the knowledge has been measured. The items developed
to measure MKT, though they include a “pedagogical context” and engage test takers
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in doing constrained versions of pedagogical work, are nevertheless limited to
sedentary, individual, and, mental dimensions of the work. Though the validity of
these items has been extensively investigated (Hill et al., 2007), the multiple-choice
items are not equivalent to MKT itself and the time is ripe to also attend to this
limitation. One potential complement to this work is refocusing attention on
conceptualizing the work of teaching mathematics and specifying its knowledge
entailments through assessments that better capture the performative work of teaching
(Selling, Garcia, & Ball, 2016). This shift suggests a series of open issues as well as a
concrete path to better connect MKT and curriculum for teacher education: identifying
and defining how the elements of this knowledge can be chunked and sequenced to
support teacher learning during initial training and ongoing professional development;
investigating how this knowledge relates to mathematical fluency and issues of equity
and diversity in teaching (see Hoover, Mosvold, Ball, & Lai, 2016); better
understanding the mechanisms through which teacher knowledge can inform teaching
guality and the factors that mediate this relationship (cf. Charalambous &
Pitta-Pantazi, 2015); and exploring collective forms of MKT and how these might be
developed in communities of practice. This range of future work on MKT captures the
tension entailed in situating the knowledge in practice, without losing the possibilities
for scale and generalization provided by more traditionally cognitive approaches to its
operationalization.

PROFESSIONAL COMPETENCIES OF (FUTURE) TEACHERS - THE
TEDS-M STUDIES
Gabriele Kaiser!, Armin Jentsch?, Dennis Meyer?, Xinrong Yang?®
tUniversitat Hamburg, Germany & Australian Catholic University, Australia
2Universitat Hamburg, Germany
SUniversitat Hamburg, Germany & Southwest University, China

Recent research on the professional competencies of mathematics teachers, which has
been carried out during the last decade, is characterized by different theoretical
approaches on the conceptualization and evaluation of teachers’ professional
competencies. Building on the international IEA Teacher Education and Development
Study in Mathematics (TEDS-M) and its various follow-up studies, the development
from cognitive to situated approaches on professional competencies of teachers are
described. In TEDS-Follow-up the cognitive oriented framework of TEDS-M has been
enriched by a situated orientation including the novice-expert framework and the
noticing concept as theoretical approaches on the analyses of classroom situations.

Background of the Studies

In their extensive survey on the discussion of teacher’s professional competencies
Blomeke and Delaney (2012) point out that before the international comparative study
Teacher Education and Development Study: Learning to Teach Mathematics
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(TEDS-M)” was carried out in 2008 no systematic evidence on the state of future
teachers’ professional competencies existed.

The focus of TEDS-M is on an international comparison of the professional knowledge
of prospective teachers for primary and secondary level. The TEDS-M study departs
from the theoretical orientation of competency related to competency-oriented
approaches in international comparative studies on students’ achievements such as
PISA, likewise other large-scale studies such as the study Mathematical Knowledge
for Teaching (MKT) or the Cognitive Activation in the Classroom Project
(COACTIV). The core of TEDS-M departs like many other studies from the
description of pedagogical content knowledge (PCK) of teachers based on Shulman’s
(1987) seminal work in which PCK is defined as “that special amalgam of content and
pedagogy that is uniquely the province of teachers, their own special from of
professional understanding” (p. 8). In their extensive survey on the current discussion
around PCK, Depaepe and others (2013) point out the special importance of this
concept used by many studies.

However, despite the general agreement on PCK as connection between content and
pedagogy and its dependence on the particular subject matter, no general consensus
exists in empirical research on the facets of this important concept. Further, Depaepe et
al. (2013) argue that there is an important group of empirical studies that do not define
any component of PCK, although PCK was the central topic of this group of studies.
Their study revealed consequences of the ongoing debate on the two principally
different views on the conceptualisation of PCK, namely “whether mathematical
knowledge in teaching is located ‘in the head’ of the individual teacher or is somehow
a social asset, meaningful only in the context of its applications” (Rowland & Ruthven,
2011, p. 3).

Adherents of the cognitive perspective define according to Depaepe et al. (2013)
“—in line with Shulman — a limited number of components to be part of PCK and
distinguish PCK from other categories of teachers’ knowledge base, such as content
knowledge and general pedagogical knowledge. By contrast, proponents of a situated
perspective on PCK as knowing-to-act within a particular classroom context, typically
acknowledge that the act of teaching is multi-dimensional in nature and that teachers’
choices simultaneously reflect mathematical and pedagogical deliberations” (p. 22).
These paradigmatic differences in the conceptualisations of PCK have, according to
Depaepe et al. (2013), an impact on the way in which PCK is empirically investigated,
which is reflected by TEDS-M and its various follow-up-studies.

Constructs used in TEDS-M

TEDS-M examined the professional competencies of future mathematics teachers and
the influence of institutional and national conditions of mathematics teacher education,
According to Weinert (2001), professional competencies can be divided up into
cognitive facets (in our context, teachers’ professional knowledge) and
affective-motivational facets (in our context, e.g., professional beliefs). The
professional knowledge of teachers can again be divided into several facets. Referring
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to Shulman (1986), the following facets were distinguished in TEDS-M: mathematics
content knowledge (MCK), mathematics pedagogical content knowledge (MPCK),
including curricular knowledge, and general pedagogical knowledge (GPK).

TEDS-M examined also the professional beliefs held by the future teachers, due to the
fact that beliefs are crucial for the perception of classroom situations and for decisions
how to act, as Schoenfeld (2011) pointed out. Based on Richardson (1996), beliefs can
be defined as stable, psychologically held propositions of the world around us, which
are accepted to be true. In TEDS-M, several belief facets were distinguished, in
particular epistemological beliefs about the nature of mathematics and beliefs about
the teaching and learning of mathematics (Thompson, 1992). In addition, beliefs and
affective traits such as motivation, and also metacognitive abilities such as
self-regulation, are indispensable parts of the professional competencies of teachers.
These facets of professional knowledge are further differentiated: mathematical
content knowledge covers the main mathematical areas relevant for future teachers,
mathematics pedagogical content knowledge covers curricular knowledge, knowledge
of lesson planning and interactive knowledge applied to teaching situations.

Constructs used in the TEDS Follow-up studies

The research done in TEDS-M was an important step forward in studying the structure,
level and development of mathematics teachers’ competencies from a cognitive
perspective, however, it obvious that professional knowledge or skills are not directly
transformed into performance, but mediated by cognitive skills more closely related to
activities of teachers. Situated approaches to research on teachers and teacher
education and the general discussion about how to assess professional competencies of
teachers in a performance-oriented way (see Blomeke, Gustafsson and Shavelson
2015) have guided the development of several follow-up studies of TEDS-M (called
TEDS-FU, TEDS-Instruct, TEDS-Validate, TEDS-East-West), which enriched the
theoretical framework of TEDS-M by situated components. Blomeke, Gustafsson and
Shavelson (2015) described teachers’ competencies as continuum from disposition to
performance integrating situated competence facets as indispensable part of
competency (see Fig. 1).
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Modeling competence as a continuum (Blémeke, Gustafsson and Shavelson 2015a, p. 7)

The follow-up studies of TEDS-M examined the question how professional
competencies could be analysed in more performance-oriented ways, building on the
theoretical framework and the instruments of TEDS-M, but enriching it two new
concepts, the expert-novice perspective (for an overview see Chi, 2011) and the
noticing approach (Van Es and Sherin, 2002).

Enriching the cognitive perspective of TED-M, which concentrated on the three facets
of professional knowledge - MCK, MPCK and GPK - three situated facets of teacher
competencies were distinguished in the follow-up-studies of TEDS-M, integrating the
noticing approach into a broader notion of competence (see Fig. 2):

e Perceiving particular events in an instructional setting which corresponds to the
notion of the noticing discussion as attending to particular events in an instructional
setting

e Interpreting the perceived activities in an instructional setting which corresponds to
making sense of events in an instructional setting used by the noticing discussion

e Decision-making, either as anticipating a response to students’ activities or as
proposing alternative instructional strategies, which corresponds to acting,
formulated in the noticing debate.

Although this approach comes closer to classroom performance of teachers further
extensions of the framework and the instruments used were needed in order to show a
full picture of teachers and their influence on students’ learning. The enriched
framework of TEDS-FU, including the new kind of performance-oriented competency
facet of noticing and the newly developed instruments using video-vignettes, was used
in further follow-up-studies of TEDS-M in order to explore the relationships between
teachers’ competency and students’ learning gains. For example, the study
TEDS-Instruct hypothesizes that cognitive skills mediate the effects of teacher
knowledge on instructional quality and that instructional quality in turn serves as
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central mediator variable for the relation between teachers’ competencies and progress
In student achievement (see Fig. 2).

Teachers Teaching Students
Background, Demographics Context Background,
Demographics
Cognitive Elements of Professional Instructional Quality Facets
Competence of Teachers
Cognitive Activation
percep
Constructive Support
( interpret Students’
dec ‘ | Classroom Management m learning gain
Distal Proximal Mathematics Educational
{paper-pencil) {video-based) Characteristics

Fig. 2.
Research and Impact model of TEDS-Instruct and TEDS-Validate (Kaiser et al. 2017, p. 184)

Until now, the question is not answered, whether these studies described above, being
developed in a Western paradigm can be transferred to East Asian educational systems.
The TEDS-East-West-study investigates this question and explores differences and
similarities of mathematics teachers’ professional competence and the relation to
students’ learning outcomes in Eastern and Western cultures with Germany being the
Western protagonist and China serving as protagonist for Eastern cultures.
Mathematics teachers’ professional competencies are evaluated using adapted
instruments from the various TEDS-M follow-up studies through the means of
video-based testing. Students’ mathematics achievements and their longitudinal
achievement progress will be evaluated using regular achievement tests at national
level in China and at Federal state level in Germany. Similarities and differences of
Chinese and German mathematics teachers’ professional competence and its
connections to students’ mathematics achievements have been analysed and their
results will be presented at the conference. Social and cultural influences in these two
countries are further discussed, which will make more meaningful and deeper
contribution to the understanding of mathematics teachers’ professional competence
and its connections to students’ mathematics achievements.

The TEDS-East-West-study mainly focuses on junior secondary school students
(mainly Grade 7 to Grade 8 students), an important part of compulsory education in
Germany and China. In China, the project is carried out in Chongging. Chongqing is
the biggest metropolitan city in Western China. In Germany, the study is carried out in
the Federal state of Hamburg. Hamburg is the second biggest city in Germany, a
metropolitan area, which makes it quite comparable to Chongging. Schools in both
cities cover the entire spectrum of students’ performance from very high performing
students to students with extreme performance deficits.
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The study involves a sample of 150 Hamburg teachers teaching about 3500 students. In
Chonggqing, 200 teachers and their students (more than 8000) participated. Instruments
used in both countries to evaluate teachers’ professional competence include: 1) a
shortened version of the tests used in TEDS-M, i.e. tests on MCK, PCK and GPK; and
2) in order to get insight into the competencies needed by teachers while acting in
classroom, video-based testing from the Follow-up-study TEDS-FU is used. These
tests were translated into Chinese and the video-vignettes are re-done by Chinese
teachers and students to meet Chinese mathematics teaching situation. Students’
regular achievement tests within one year period of time are collected to investigate the
connections between teachers’ professional competence and the progress of their
students’ mathematics achievement.

The collected data are analysed in both a qualitative and quantitative way in order to
explore the connection between teachers’ competence structure and their students’
mathematics achievements and its progress.

STUDYING TEACHERS’ PROFESSIONAL COMPETENCIES

Ruhama Even
Weizmann Institute of Science, Israel

The three groups participating in this research forum address, each in its own way, the
study of teachers’ professional competencies. All three groups acknowledge the
complexity of this matter. But they do it in different ways.

Charalambos Y. Charalambous and Lindsey Mann examine the work pursued over the
past years in relation to the Mathematical Knowledge for Teaching (MKT) construct.
This construct, proposed by the Mathematics Teaching and Learning to Teach
(MTLT) group at the University of Michigan, was developed through analysis which
started from practice, from the work of teaching mathematics. The conceptual
framework developed provides a heuristic for considering different types of
knowledge needed for teaching mathematics: common content knowledge, specialized
content knowledge, knowledge of content and teaching, knowledge of content and
students, knowledge of content and curriculum, and horizon content knowledge.
Charalambos Y. Charalambous and Lindsey Mann acknowledge the usefulness of the
MKT construct in showing that there is distinct mathematical knowledge that is used in
teaching. Yet, they claim that important aspects of the work of teaching, mainly those
that involve real time interaction or enactment, are inadequately addressed by the static
ways the MKT has been measured so far. They therefore suggest that future work on
MKT explores ways to better situate knowledge in practice.

Yeping Li and Roger Howe also address the issue of teachers’ professional
competencies by centring on the mathematics knowledge needed for teaching. They
propose a new construct — Mathematics Conceptual Knowledge for Teaching (MCKT)
— defining it as “the conceptual knowledge needed for understanding, explaining, as
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well as teaching specific mathematics content topics with connections.” They claim
that this aspect is at the core of prospective teachers’ professional competency that
should be developed in teacher education programs. Yet, it is insufficiently addressed
in current literature. Yeping Li and Roger Howe specify three MCKT components,
related to: explaining the meaning of a specific content topic, connecting and justifying
the main points of a content topic and placing it in wider contexts, and using various
representations for teaching the content topic and teaching the relations between them.
Gabriele Kaiser, Armin Jentsch, Dennis Meyer, and Xinrong Yang review the
approach developed by the international comparative study Teacher Education and
Development Study in Mathematics (TEDS-M) and its follow-up studies. Similar to the
two other contributions to this Research Forum, they start from a cognitive oriented
approach that focus on teacher knowledge, specifying two components of mathematics
related teacher knowledge: mathematics content knowledge (MCK), and mathematics
pedagogical content knowledge (MPCK). A situated orientation was added later,
aiming to enable analysis of classroom situations, similar to Charalambos Y.
Charalambous and Lindsey Mann’s suggestion regarding future work on MKT.
Furthermore, in addition to knowledge that is situated in practice, Gabriele Kaiser and
her colleagues mention affective and motivational facets as important aspects of
professional competencies of teachers: “In addition, beliefs and affective traits such as
motivation... are indispensable parts of the professional competencies of teachers.”
As is illustrated in the three contributions to this research forum, discussions about
professional competencies of teachers tend to start with a focus on knowledge: What
should teachers know? The three contributions identified important areas for
professional knowledge base. Yet, the approaches described raise intriguing questions:
How are the components of knowledge specified in each approach related to the
components of the other two approaches? For example, how are the MCKT
components in Yeping Li and Roger Howe’s contribution related to those of MKT in
Charalambos Y. Charalambous and Lindsey Mann’s contribution? and to MCK and
MPCK in Gabriele Kaiser and her colleagues’ contribution?

In addition to identifying areas for professional knowledge base, the contributions to
this Research Forum acknowledge the need to pay explicit attention to the work in
which teachers engage, suggesting to situate knowledge in practice. This shift from a
sole focus on knowledge to incorporating also a focus on practice is important, because
teaching is something one does, not just know. However, the suggestion to situate
knowledge in practice does not treat knowledge and practices as equally important in
the study of teachers’ professional competencies, attributing more prominence to
knowledge. To address this shortcoming, | propose to focus on the integration of
knowledge, skills, dispositions and practices situated in the practice of mathematics
teaching; integration that | term knowtice to signify that it is related to the elements that
create it (knowledge and practice), but that the product is a new object (Even, 2008).
Finally, important aspects that are often overlooked in discussions about professional
competencies of teachers are the affective and conative (motivational) aspects, which
are mentioned in Gabriele Kaiser and her colleagues’ contribution. The importance of
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these aspects has been recently discussed in the literature in relation to student
engagement in mathematics (Goldin, 2017). Future work on the professional
competencies of teachers could profit from incorporating greater emphasis on
theorizing and studying teachers’ affect and motivation.

PROFESSIONAL COMPETENCES OF TEACHERS IN MULTICULTURAL
AND MULTILINGUAL ENVIRONMENTS
Jarmila Novotna
Charles University, Faculty of Education, Czech Republic
Université de Bordeaux, Laboratoire "Cultures et Diffusion des Savoirs", France

We now live in a fast changing world, which means that also teachers’ professional
competences must reflect the changes. New conditions put new demands on teachers’
professional competence. In this paper, | focus on two environments that ask for
supplementation of teachers’ professional competences by new items, namely teaching
in culturally heterogeneous classrooms (in which majority and minority pupils are
co-educated) and teaching through Content and Language Integrated Learning (CLIL).
Both these environments are similar in some aspects but differ considerably in others.
The knowledge and skills needed for work in these environments are additional to
those presented by other colleagues in this Research forum. By no means do they
replace the competences needed for work in any classroom. In the paper | also focus on
what teachers perceive as important for their work and what they miss in their
education as well as in materials and tools offered for work in these environments.

In my presentation of additional teachers’ competences | come out of the following
perspectives on the teaching-learning processes. Vygotsky (1986) views the
teaching-learning process as sociocultural development, and describes the teacher’s
support to the learners’ zone of proximal development. This is executed through
a number of professional skills, e.g. the skill to motivate, to establish and maintain
contact, to control the learning process, to stimulate and activate etc. (Svec, 1998). To
Vygotsky (1986), thinking involves the use of words and notions, speech is a tool to
develop thinking. Learning mathematics, therefore also includes “appropriating ways
of speaking mathematically, that is, learning the language of mathematicians” (Zazkis,
2000).

Cultural heterogeneity in schools is one of the most significant changes in many school
systems. Therefore, it is one of the ultimate tasks (not only) in mathematics education
to pay attention to teaching in multicultural contexts (Ulovec et al., 2013). Differences
in cultures and languages make the maths teaching-learning process harder than it is in
culturally homogeneous classrooms. It is generally accepted (e.g. Barton, Barwell and
Setati, 2007; Bishop, 1988; César and Favilli, 2005) that mathematics teachers feel the
necessity for training and materials which reflect the needs of their classes in terms of
linguistic and cultural differences.

In teacher education, increasing attention is paid to additional teachers’ professional
competences needed for their successful work in multicultural classes. The research in
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(Moraova, Novotna, Favilli, 2015) presents the results of a questionnaire survey
focusing on teachers’ views of what they need for working in multicultural classes. It is
a partial output from the LLP Socrates Comenius 2.1 project M3EaL -
Multiculturalism, Migration, Mathematics and Education. The questionnaire survey
among pre-service and in-service teachers in six countries (Czech Republic, France,
Italy, Norway, Austria and Greece) with wide variety of teaching experience, showed
that both pre- and in-service teachers feel a lack of opportunity to attend seminars
focusing in teaching culturally heterogeneous classrooms. They also feel
communication among teachers of different subjects is not sufficient and the school
authorities do not give sufficient support (Moraova, Novotna, Favilli, 2015).
Teaching in culturally heterogeneous classrooms is in a number of aspects similar to
teaching through CLIL. CLIL (Content and Language Integrated Learning) refers to
teaching of non-linguistic subjects through an additional language (Using Languages,
2000). CLIL is perceived as dual-focused education and educationalists believe that it
contributes to the enhancement of thinking processes. My contribution tries to look
into qualitative aspects of teacher education for CLIL. CLIL calls for an interactive
teaching style (Pavezi et al., 2001). This contribution focuses on the question: What
attitudes, what professional skills are to be acquired for the teaching of mathematics
through the medium of a non-mother tongue?

When trying to find answer to this question |1 come out of demands on a teacher
teaching in a foreign language. Novotnd and Hofmannova (2011) state that CLIL
teachers should have a good command of the target language and resort to the learners’
mother tongue with care. For learners, code switching is a natural communication
strategy, and teachers should allow it, particularly in the first stages of CLIL. The
teacher’s main concern should be to scaffold pupils on their way towards achieving
mathematical competences. The teacher’s task is to enable the students develop their
individually different process of knowledge building and meaning construction as well
as positive attitudes (DeCorte, 2000). The teacher qualified for CLIL may be more
successful in overcoming the learning difficulties that have their origin either in the
student’s personality or the educational environment. These barriers are to be found in
all types of education. Some of these barriers are more significant in CLIL than in other
lessons, other are less significant. The increase can be expected mainly in those
learners who are afraid of unusual, alternative learning methods and techniques. The
decrease of barriers can be expected mainly in the area of anxiety. The CLIL teacher is
lead towards sensitivity to the learner’s personality. Through the use of interactive,
non-traditional methods they may succeed in altering the student’s prior negative
learning experience.

1-98 PME 41 — 2017



Kaiser and Li

PROFESSIONAL COMPETENCIES OF MATHEMATICS TEACHERS:
WHAT MAKES THEM CULTURAL PERSPECTIVES?
Oh Nam Kwon

Seoul National University, Korea

The theoretical construct of the three papers takes up a significant position amongst the
discussions to investigate professional competencies of mathematics teachers brought
on by Shulman (1986). Discussions on mathematics teachers’ professional
competencies can be characterized as cognitive approach versus situated approach, and
integration between these two (BIomeke, Gustafsson, & Shavelson, 2015). These are
TEDS-M, a cognitive approach towards professional competencies, researches
relating to noticing including Van Es & Sherin (2002), situated approaches towards
professional competencies, and follow-up studies of TEDS-M such as TEDS-Fu, an
integration of cognitive and situated approach towards professional competencies. |
would like to express my respect to the three teams. Here, | would like to discuss the
position of the framework introduced by the presenters in the area of research on
mathematics teachers’ competencies and I would like to suggest a few ideas from the
socio-cultural context.

Li & Howe’s MCKT reaches professional competencies from the cognitive
perspective. They argued that there exists practical teacher knowledge that connects
between MCK and MPCK in MKT introduced by Ball and her colleagues (2008), and
showed concrete examples, such as concepts of place value pieces, of preservice
teachers’ learning that emphasize MCKT. Meanwhile, discussion on the connection
and gap between MCK and MPCK can also be found in school-related content
knowledge (SRCK). SRCK, neither belonging to CK nor PCK, refers to the knowledge
where a didactic transition happened from academic mathematics to school
mathematics similar to MCKT. However, taking a closer look at the three components
suggested as the MCKT framework by Li & Howe, one can notice that the practical
context is more emphasized in MCKT in the context of preservice teacher education
than in SRCK. This emphasis makes us revisit the fundamental question — can the
practical-context MCKT be placed inside Ball’s framework that structured the
cognitive aspect of professional competencies? Consideration on this matter will
further firm Li & Howe’s research.

As in Li & Howe’s work, firstly introduced by Thompson & Thompson (1996) and
conceptualized as components by Ball, Thames, & Phelps (2008), MKT has inspired
many researchers and is the most commonly used framework for mathematics teacher
knowledge research. Charalambous & Mann systematically organized the relationship
between development and teaching and learning, and suggested future issues for
situating-MKT aiming to overcome the limits of MKT’s emphasis on individual’s
cognitive aspect. However, consideration is needed on how defining situating-MKT as
teacher knowledge revealed in classroom situations will influence Ball group’s
framework on teacher knowledge as declaratory. Ball group did not clarify their
position on the epistemological perspective relating to MKT, but takes a stand from the
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epistemology of possession as well as from the epistemology of practice towards
knowledge. Consideration on this context will help them secure a position in Ball
group’s framework.

The well-known international comparative study, Teacher Education and
Development Study: Learning to Teach Mathematics (TEDS-M), which examined on
the cognitive perspective of teacher knowledge also has the basis on Ball group’s
framework. Kaiser et al. introduced follow-up studies of TEDS-M by integrating
cognitive aspect and situational aspect of mathematics teachers’ expertise, grounding
on the idea that it is more likely that the consideration of situational aspects in
conceptualization of the expertise will guarantee successful performance. It is
particularly interesting that their Research and Impact model, which concerns the
relation between teacher competencies and student achievement, regards teaching as
an activity with multiple factors of teaching context, rather than an individual activity.
This perspective might be criticized for offering unnecessarily wide spectrum of
analysis which even includes the point where the teaching is irreducible to individual
effort. Yet, it is a meaningful attempt considering a number of complex exterior factors
to the teacher expertise. In addition, | wonder where the connection would be, between
Kaiser et al. and current ‘teacher noticing’ research, which extend the ‘decision
making’ to teacher response. Also I expect this connection to provide a significant
foundation for contextual research on the teacher expertise.

Chevallard (1985), in the Anthropological Theory of Didactics of mathematics, have
attended to the relation between the teaching and learning of mathematics and the
institution, which enclose the didactical system consisting of savoir, students and
teachers, and the environment of the system, defined as noosphére. This offers insights
when we explore the socio-cultural influence on professional competencies of
mathematics teachers. In Asian culture for example, the extent of autonomy allowed
by the institution often creates enormous differences in the professional competencies
of mathematics teachers. This implies that consideration of the institution could be a
crucial point identifying the unspoken difference between the professional
competencies in Western and Eastern culture. Leong, Kaur, & Kwon (2017) found that
the professional developments, in Asian countries, are school-based, collaborative and
pragmatic; and noticed that the institution creates the socio-cultural difference. Kaiser
& Li (2011) also have mentioned that Eastern perspective on teacher expertise is
holistic which aims more systematic change compared to Western perspective. These
discussions endorse more active consideration of the institution, which include the
socio-cultural context, in measuring teacher professional competencies.

There is a four-character idiom in Korea, ! 343212 4H &, kyo-hak-sang-jang],
meaning the teacher and the students grow simultaneously through teaching and
learning. Many Asian countries including Korea regard the expertise of the teacher has
long been considered not as static, but rather as dynamic or evolutionary. Even though
the three presented discussions produce the best result from each stance, they do not
capture the particular socio-cultural context of Eastern culture, where the expertise of
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mathematics teacher evolves through teaching. | hereby end my discussion posing the
following questions. These topics are expected to progress as this field of study
evolves in the future. | hope these questions could contribute to such progress.

e What do the frameworks for the mathematics teacher expertise overlook, in
terms of the socio-cultural context?

e What kind of form would it be to be the framework for the mathematics
teacher expertise, which encloses the difference between East and West?

e How could we measure the expertise of mathematics teacher which encloses
the difference between East and West?

WHEN AND HOW TEACHERS USE MATHEMATICAL KNOWLEDGE FOR
TEACHING

Akihiko Takahashi
DePaul University, USA

The importance of mathematical knowledge for teaching has been a topic of much
discussion for several decades. However, how to help future teachers develop effective
teaching skills remains largely unclear. | propose a framework for examining when
and how teachers use mathematical knowledge for teaching based on Japanese
“Lesson Study.”

Study on mathematical knowledge for teaching

Research on what mathematical knowledge for teaching teachers need has been
thoroughly conducted through analysis of mathematics teaching practices (Ball,
Thames, & Phelps, 2008; Hill, Rowan, & Ball, 2005). However, there are far fewer
research projects which examine when and how teachers use the knowledge that they
have, and what support is necessary to give teachers in order for them to learn how to
use that knowledge effectively in the classroom. This paper will discuss when and how
teachers can use mathematical knowledge for teaching effectively in the classroom and
how to support the development of that knowledge based on Japanese Lesson Study.

Learning from Japanese lesson study

For over a hundred years, Japanese teachers and educators have been using a
professional development program called “Lesson Study” (Lewis & Tsuchida, 1998;
Stigler & Hiebert, 1999; Yoshida, 1999). Lesson Study helps both prospective and
practicing teachers develop expertise in mathematical knowledge for teaching through
the refinement of their lesson planning, teaching, and reflection skills (Takahashi,
2011). Prospective teachers typically experience a whole Lesson Study cycle for the
first time when they are student teaching. However, even after completing student
teaching, they are rarely able to teach mathematics effectively (Takahashi, 2011).
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Therefore, Lesson Study is implemented in schools to give emerging teachers the
continued support they need. The question for us is: how does Lesson Study facilitate
the development of prospective and practicing teachers’ knowledge for teaching
mathematics? Recent studies on Lesson Study (Fujii, 2016; Lee & Takahashi, 2011;
Lewis, Perry, & Friedkin, 2011; Takahashi, 2011; Takahashi, 2014) may help us
understand not only what specific knowledge educators should focus on developing,
but also when and how teachers should use that knowledge to teach mathematics.

When and how teachers use and develop mathematical knowledge for teaching
through lesson study

Lesson Study asks teachers to improve their knowledge for teaching through
observation and adaptation. When observing a school-wide form of Lesson Study in
Japan, it was clear that teachers use their mathematical knowledge not only when they
design unit and lesson plans, but also when teaching those lessons and reflecting upon
them afterwards (Takahashi, 2014). These three steps: lesson design, implementation,
and reflection, may provide an entry point for future study of mathematical knowledge
for teaching.

When teachers in Japan write a lesson plan, they must state what mathematics the
students are meant to learn and why it is important for them to learn it at that moment.
The plan must also include anticipated student responses, including typical
misunderstandings and informal approaches which must be re-directed towards formal
mathematical solutions. To successfully address these issues, teachers need knowledge
of the learning trajectory, effective approaches for introducing each topic, and
understanding of common misconceptions and challenges.

While teaching their lesson plan, teachers must be able to monitor student reactions
and questions, and adjust the flow of their lesson accordingly. They must make quick
decisions to perform such adjustments. The skill for making these quick decisions
comes from their knowledge of student learning.

Teachers must also reflect afterwards on how the lesson impacted student learning. If
the lesson did not go as planned, teachers have to identify the possible reasons why and
how to address these issues going forward. This process both relies on and refines their
mathematical knowledge for teaching mathematics.

“Collaborative Lesson Research” is a form of school-based Lesson Study designed for
implementation outside of Japan (Takahashi & McDougal, 2016). In Collaborative
Lesson Research, teachers are supported by two knowledgeable others. A
knowledgeable other could be, for example, a math specialist, a university professor,
or an education researcher. They help teachers learn how to use and update their
knowledge (Figure 1). It is hoped that in countries without a long tradition of
conducting Lesson Study, these knowledgeable others can support teachers through
the Lesson Study process to ensure that each step of the cycle enhances teachers’
mathematical knowledge for teaching.
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Conclusion

Based on the ideas of Lesson Study, it may be possible to examine how teachers use
their knowledge when designing lessons, making decisions while teaching those
lessons, and reflecting afterwards on the impact of their lessons. These three steps in
the Lesson Study cycle can be a framework for future study on how teachers use their
knowledge for teaching and as well as future study on the role of knowledgeable others
as support for teachers developing teaching expertise.

OVERALL SUMMARY AND CONCLUSIONS

This research forum provides another great opportunity for the mathematics education
community to review and discuss the important topic of what (future) mathematics
teachers should know and be able to do, after the publication of our co-edited book on
expertise in mathematics instruction in 2011 (Li & Kaiser, 2011) and a previous
research forum on expertise in mathematics instruction organized in 2012 (Li &
Kaiser, 2012). The presented research from selected projects and thoughtful
commentaries from our discussants clearly demonstrate an evolved understanding
about the nature of expertise (or termed as competence) that teachers need to have in
and for carrying out such a complex task of mathematics instruction in classrooms. In
particular, multiple theoretical perspectives have been proposed and used over the past
several years for understanding, studying and assessing teachers’ competence.

In 2011, we identified and highlighted three issues on this topic that are important for
the international community of mathematics education researchers at that time (Li &
Kaiser, 2011): (1) the issue of identifying and selecting teachers with expertise, (2) the
issue of specifying and analyzing aspects of teachers’ expertise in mathematics
instruction, and (3) the issue of understanding expertise in mathematics instruction that
Is valued in different cultures (pp. 6-8). It is clear from this research forum that there
has been specific progress in addressing the second issue, and much remains to be
explored further on the first and third issues. We hope this research forum can serve as
another starting point for much more research and discussion internationally on those
issues related to this topic in the future.

We would also like to highlight one important difference between this research forum
and our previous efforts on this topic. That is, this research forum focuses on (future)
teachers’ professional competencies, while our previous efforts mainly focused on
practicing teachers. It is important for us to realize that (future) teachers’ professional
competencies mainly refer to what these (future) teachers can and should learn in order
to be ready for beginning their teaching career. The categorization of such
competencies for (future) teachers with an ending time point carries a fundamental
difference from the case for practicing teachers when their competence development is
a life-long learning process. The very limited time that (future) teachers can have
through their pre-service program study suggests that we need to be as specific as
possible in characterizing (future) teachers’ professional competencies, which can
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potentially be adapted and optimized in teacher education programs. In fact, this is not
an easy task at all, as it is clearly evidenced from a recent MME workshop on
Mathematical Preparation for Elementary Teachers held at Texas A&M University
(organized by Deborah Ball, Roger Howe, James Lewis, Yeping Li, and James
Madden, see http://mme.tamu.edu). We hope that this research forum will help bring
much needed attention and more research efforts and collaborations on this topic for
(future) teachers.
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The relationship between research and practice has long been an area of interest for
researchers, policy makers and practitioners alike. One obvious arena where
mathematics education research can make a practical contribution is the design and
implementation of school mathematics curricula. This requires research that is
fine-grained and focused on individual student learning trajectories as well as
large-scale research that explores how student populations engage with the big ideas
of mathematics. This research forum brings together work from the United States and
Australia on the development and use of evidence-based learning
progressions/trajectories in mathematics. In particular, the forum will consider their
basis in theory, their focus and scale, and the methods used to identify and validate
learning progressions.

INTRODUCTION

Learning progressions, or learning trajectories as they are more commonly referred to
in mathematics education, are not new. For instance, it could be said that scope and
sequence charts and year level outcome statements represent particular forms of
learning progressions/trajectories. While there has been considerable research in
particular domains over many years that has contributed to our understanding of how
knowledge is constructed and informed practice in those domains, it is only relatively
recently that learning progressions/trajectories per se have become the focus of
systematic research efforts (e.g., Clements & Sarama, 2004; Confrey, 2008; Daro,
Mosher & Corcoran, 2011; Siemon, lzard, Breed & Virgona, 2006).

Ever since Simon’s (1995) introduction of the notion of Hypothetical Learning
Trajectories (HLT), there has been debate about the meaning and use of learning
progressions/trajectories in mathematics education (e.g., see the special edition of
Mathematics Teaching and Learning, 6(2) in 2004). A common element in the
different interpretations and use of the terms is the notion that learning takes place over
time and that teaching involves recognising where learners are in their learning journey
and providing challenging but achievable learning experiences that support learners
progress to the next step in their particular journey. Another common characteristic is
that, to varying extents and in different ways, learning progressions/trajectories are
based on hypothesised pathways derived from experience and a synthesis of relevant
literature, the design and trial of learning activities aimed at progressing learning
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within the hypothesised framework, evaluation methods to assess where learners are in
their journey and the efficacy of both the framework and the instructional materials
and approaches used.

The focus of a learning progression/trajectory may relate to a particular instructional
episode (e.g., Simon, 1995; Tzur, 2007), a specific aspect of the curriculum (e.g.,
Clements, Wilson & Sarama, 2004) or a much larger field of mathematics learning that
encompasses different but related aspects of mathematics (e.g., Confrey & Maloney,
2014; Siemon, lzard, Breed & Virgona, 2006). Their development and use may vary
from a reflective practitioner working to understand and support his/her student’s
attainment of a specific learning goal over a relatively short time frame through to an
extensive network of teachers and researchers working collaboratively to understand
how students in general might be supported to progress their learning in a particular
domain or field of mathematics over an extended period of time.

Concern with the numbers of students ‘falling behind’ and the considerable range of
achievement in any one year level (e.g., OECD, 2014) have prompted educational
systems and researchers in a small number of countries to work more closely together
to identify evidence-based learning progressions/trajectories that might be used to
inform teaching and map student’s progress over time. While these vary considerably
in their focus and scale, there is much that we can learn from each other to further the
work in this field and to build new knowledge that is likely to make a difference to
student learning (e.g., see Daro, Mosher & Corcoran, 2011, p. 13).

The research forum is likely to be of substantial interest to a PME audience as it is
concerned with the application and scaling up of research to practice to make a
difference in mathematics classrooms. The forum provides an opportunity for a reality
check. For example, does this work translate to other settings? Is it a valid use of
research conducted for other purposes in other contexts and do the results and
affordances outweigh the limitations?

The contributors have been brought together on the basis of their recognised
contributions to this field, to consider what is meant by learning
progressions/trajectories and explore a range of issues associated with their
development and use including theoretical framing, research approaches,
implementation and evaluation. It is difficult to succinctly capture the body of work
represented here in a way that is both fair and accurate. So for the purposes of building
a coherent picture and facilitating discussion, contributors were invited to discuss their
work (past, present and future) under three headings: research approaches, starting
points and developments, and practical applications and/or implications. These are
presented in turn followed by key questions raised by our critical friend, Anne Watson
that raise issues concerning the development and use of LT/Ps.
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Key questions to be explored in the Research Forum:

What characterises a learning progression/trajectory? What purposes do they/can they
serve? How are they different to or compatible with theories of conceptual
development?

What is situated and what is universal about learning progressions/trajectories?

What research designs, techniques and evidence are used to develop, evaluate and
refine such progressions?

How are learning progressions/trajectories used in practice? How are they related to
task sequences used in countries like China and Japan? What impact do they/can they
have on teacher knowledge and confidence?

RESEARCH APPROACHES

A variety of research approaches have been used to conceptualise and construct the
learning progressions featured here will be discussed in turn.

Tzur

For the past 25 years, my research program consisted of four interrelated components:
articulating hypothetical learning trajectories in the areas of multiplicative and
fractional reasoning (Tzur 2004, Tzur 2014); explaining mathematics learning as a
cognitive change process (Tzur & Simon 2004, Tzur 2011); linking this model to
teaching that can promote progression along those trajectories (e.g., Tzur 2008); and
identifying shifts in mathematics teacher practices (Jin & Tzur 2011). This four-fold
program is rooted in the premise that mathematics teaching is a goal-directed activity,
aimed at promoting students’ learning of the intended mathematics. This requires an
understanding of how learning of particular mathematics may progress and how
teaching may foster such progression.

To strengthen this twofold understanding, my work on articulating HLTs led me to
distinguish two kinds of studies on learning trajectories: Marker Studies, which
foreground conceptual landmarks that constitute a learning trajectory; and Transition
Studies, which foreground the conceptual transformation involved in progressing from
less to more advanced landmarks. Because a primary goal of my work on HLT is to
contribute to the knowledge base about understanding (learning, teaching), | have
conducted mainly transition studies.

Recently |1 have complemented teaching experiments with two other methods:
corroborating empirically grounded models through quantitative methods and
elaborating on findings (markers and/or transitions) from previous teaching
experiments (Tzur 2014).

Clements and Sarama

Our 30-year work with learning trajectories (LTs) began with the creation and testing
of LTs, but has come to span the full range of research and development in education,
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contending now that LTs have ramifications for all aspects of curriculum (e.g., ideal,
expected, available, adopted, implemented, achieved, or tested, Clements, 2007). This
requires a wider range of methods (that we will discuss in subsequent sections), with
the focus here being only on the methods we use for the creation, refinement, and
validation of LTs.

Initially we considered a learning trajectory as a device whose purpose is to support the
development of a curriculum or a curriculum component. Building on Simon (1995),
but emphasizing a cognitive science perspective and a base of empirical research, we
conceptualized “learning trajectories as descriptions of children’s thinking and
learning in a specific mathematical domain, and a related, conjectured route through a
set of instructional tasks designed to engender those mental processes or actions
hypothesized to move children through a developmental progression of levels of
thinking, created with the intent of supporting children’s achievement of specific goals
in that mathematical domain” (Clements & Sarama, 2004, p. 83). In other words, each
learning trajectory has three parts: (a) a goal, (b) a developmental progression, and (c)
instructional activities. To attain a certain mathematical competence in a topic or
domain (the goal), students learn each successive level (the developmental
progression), aided by tasks (instructional activities) and pedagogical moves designed
to help students build the mental actions-on-objects that enable thinking at each higher
level. We address the determination of the goal in the following section; here we
address the other two components.

While others have based their LTs on historical development of mathematics and
observations of children’s informal solution strategies (Gravemeijer, 1999),
anticipatory thought experiments (that often focus on instructional sequences), or
emergent mathematical practices of student groups (Cobb & McClain, 2002 in which
instructional design serves as a primary setting for development), our approach is
grounded more in cognitive science. We begin by learning from others, conducting
comprehensive research reviews (e.g., Barrett, Clements, Sarama, & Cullen, in press;
Clements, Wilson, & Sarama, 2004). If details are lacking, we use grounded theory
methods and clinical interviews (Clements, 2007; Ginsburg, 1997) to examine
students' knowledge and ways of thinking in the content domain, including
conceptions, strategies, intuitive ideas, and informal strategies used to solve problems.
The researchers set up a situation or task to elicit pertinent concepts and processes.
Once a (static) model has been partially developed, it is tested and extended with
constructivist teaching experiments, which present limited tasks and adult interaction
to individual children with the goal of building models of children’s thinking and
learning. Once several iterations of such work reveal no substantive variations, it is
accepted as a working model, then subjected to validation and/or refinement through
hypo-deductive applications of qualitative methods such as teaching experiments and
guantitative methods such as correlational analyses between level scores (Clements,
Wilson, & Sarama, 2004) and Rasch modeling (Barrett et al., in press; Szilagyi,
Sarama, & Clements, 2013).
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Next, sets of activities are taken from successful interventions in the literature or
created (or tasks are adapted from previous work) by the developers. In both cases, the
key is ensuring that the activities are theoretically valid in engendering or activating
the actions-on-objects that mirror the hypothesized mathematical activity of students
in the target level (that is, level n + 1 for students at level n). Design experiments and
microgenetic studies (Siegler & Crowley, 1991) are employed, using a mix of model
(or hypothesis) testing and model generation to understand the meaning that students
give to the objects and actions embodied in these activities and to document signs of
learning.

Confrey and Maloney

Two major components of our research around learning trajectories over the last
twenty years are: developing and validating the Equipartitioning learning trajectory
(1995-2011), described here and Confrey’s current research on the LT-based
Math-Mapper 6-8 for middle grades, described in later sections.

We have used a variety of methods in developing LTs. In our original work on the
Equipartitioning LT, we began with Confrey’s splitting conjecture (1988; Confrey &
Scarano, 1995), namely, that an independent cognitive construct for splitting differs
from that of counting. After an extensive literature review on evidence for the
independence of this construct, we chose the term “equipartitioning” to clarify that this
involved not simply making parts, but making equal-sized parts. Further, we identified
two relatively distinct literatures, one for sharing groups fairly and the other for
sharing a whole fairly. We integrated these notions of sharing into a single learning
trajectory. The new trajectory consists of 16 levels, covering three cases of
equipartitioning: Sharing a collection (na) among n people, sharing a whole among n
people, and finally sharing multiple wholes that did not divide evenly (one with more
wholes than sharers and one with fewer wholes than shares, which could be addressed
by students in either order, depending on their prior knowledge from instruction and
experience) (see Confrey et al., 2014b). To validate the learning trajectory, we
undertook two primary research initiatives.

1) Items corresponding to the 16 levels were written and administered to students in
grades 1-5. Student item responses were coded, then analysed using item response
theory. In general, the items for the LT lower levels were less difficult than the items
for the upper levels.

2) In a design study, curriculum units developed to support the LT were used, along
with a digital tool we had developed, to collect student data from automated diagnostic
tasks that corresponded to the different levels (Confrey & Maloney, 2015). We worked
with 12 students, grades 2-4, from high poverty settings, for two summer weeks. We
articulated our initial conjectures and conducted a daily debriefing session to revise
plans based on each day’s observations (Confrey & Lachance, 2000). We periodically
conducted one-to-one interviews with students to understand how their thinking was
developing. At the end of the study, we reviewed the data from the diagnostic
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assessments, video, and notes, and drew conclusions about how the LT levels, the
curriculum, and items might be modified in light of the results. In general, we also
described the trajectory in terms of a) the development of the cases, b) the way in
which students generated strategies at early stages, ¢) whether the students developed a
sense of properties at the second levels and d) how they showed signs of reasoning in a
connected fashion at the higher levels.

Siemon and Horne

In 1999, RMIT was commissioned to identify and document what was working in
numeracy teaching in Years 5 to 9 where numeracy was seen to involve:

e core mathematical knowledge (in this case, number sense, measurement and
data sense and spatial sense as elaborated in the (Australian) National
Numeracy Benchmarks for Years 5 and 7;

e the capacity to critically apply what is known in a particular context to
achieve a desired purpose; and the

e actual processes and strategies needed to communicate what was done and
why (Siemon & Virgona, 2002)

A quasi-experimental design involving a representative sample of 47 Victorian schools
was used. In the first phase, data were collected from just under 7000 Year 5 to 9
students using rich assessment tasks and scoring rubrics based on the dimensions of
numeracy described above (Siemon & Stevens, 2001). These data were analysed using
item response theory, which confirmed that the tasks were appropriate for the cohort
tested and that it was possible to measure a complex construct such as numeracy using
assessment tasks that incorporate performance measures of content knowledge and
process (general thinking skills and strategies) across a range of topic areas using
teachers-as-assessors.

In subsequent work on learning progressions HLTs were developed from the research
literature related to multiplicative thinking (e.g., see Siemon & Breed, 2006) and later
for algebraic reasoning, geometrical reasoning, and reasoning in statistics and
probability. The HLT, hereinafter referred to as a draft learning progression (DLP), is
used to inform the selection and/or development of rich tasks designed to assess not
only the core knowledge associated with the areas of mathematics under consideration
but also, students’ ability to apply that knowledge in unfamiliar situations and explain
or justify their reasoning. The tasks and scoring rubrics are then trialled with a
relatively large number of students in the target population and the data analysed using
item response theory (e.g., Bond & Fox, 2015). This allows both students’
performances and item difficulties to be measured using the same log-odds unit (logit),
and placed on an interval scale. Items (parts of tasks) that do not fit the model are either
rejected or refined and re-trialled. The scale is then interrogated by at least three
experts in the field to identify and describe patterns in student performances. This
results in the identification of a number of levels or Zones within the progression for
which teaching advice is prepared in the form of a learning assessment framework
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(LAF). The framework is then trialled in schools and evaluated using parallel
assessment forms and analysis methods.

THE DEVELOPMENT AND REFINEMENT OF LTS
Tzur

Piaget’s notion of assimilation, a core constructivist principle, is the starting point for
any HLT study I conduct. Assimilation posits that any new learning can only be as
good as the goal-directed activities afforded, or constrained, by learners’ available
(assimilatory) schemes. To teach and study how learners transform (reorganize)
assimilatory schemes into new ones, we thus first engage in articulating fine details of
the three parts that might constitute their schemes (von Glasersfeld, 1995). The first
part is the mental template (‘situation’) by which learners may make sense of a given
‘input’ (e.g., mathematical task), which triggers the goal(s) they would set to
accomplish. This goal calls up the second part of the scheme—a mental activity
sequence that the learners have been using to reliably accomplish the goal(s). As the
activity ensues, the learners’ goal(s) regulate their noticing of effects that either match
or do not match the scheme’s third part—a result they expected to ensue from the
activity. Detailing all three parts of learners’ assimilatory schemes is vital, because
conceptual change is postulated to commence, and thus possibly be fostered, through
their noticing of actual effects that differ from the expected ones.

To articulate learners’ assimilatory schemes that would serve as a starting point for
studying HLT, as well as the hypothetical process of change those schemes may
undergo, we combine two main sources: task-based interviews with participating
learners and scrutiny of previous, relevant research. Using these two sources
reflexively, our goal is to detail the precise boundaries between schemes we infer
students already have constructed and schemes into which the available schemes could
possibly be transformed (yet to be constructed). The notion of precise boundaries
includes close attention to one of two stages at which we infer learners’ schemes to
have been established (Tzur & Simon, 2004). An anticipatory stage of a scheme is
inferred if the learner can use it spontaneously and independently when solving
relevant tasks. A participatory stage is inferred if the learner can use it albeit not yet
spontaneously and independently (e.g., by somehow being incited for a novel use of an
activity).

Our hypotheses of how the intended conceptual transformation (a micro-level learning
trajectory) may be fostered differ based on the stage of learners’ assimilatory schemes.
If we infer those to be at the anticipatory stage, we identify a relevant participatory
stage of a new scheme to serve as the goal for their next learning. Accordingly, we
detail ways to proactively promote Reflection Type-I, which is postulated to promote a
transition to the participatory stage of the next scheme (Tzur, 2011). In this type of
reflection, learners compare between effects they expected and actual effects they
noticed to ensue from their activity. Such a comparison provides the mental
mechanism for creating a novel, provisional relationship between the goal-directed
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activity and its actual effects that can be formed solely on the basis of what has been
previously available to the learner.

If, however, we infer learners’ schemes to be at the participatory stage, we set the goal
for their next learning to be the anticipatory stage of that scheme. Accordingly, we
detail ways to proactively promote Reflection Type-II, which is postulated to promote
that transition. In this second type of reflection, learners compare across mentally
recorded instances in which an activity did or did not ensue particular effects. Such a
comparison provides the mental mechanism for abstracting the regularity (invariant) in
and reasoning for why relationship between the goal-directed activity and its effects
must necessarily be what they are in given, as well as non-routine problem situations.

To illustrate how the above constructs are being used as a starting point, | provide an
example from Tzur and Lambert (2011) that led to identifying 4 sub-stages in first
graders’ shift from counting-all to counting-on, that is, from having no concept of
number as a composite unit to the early onset of that concept. For that study, we
sampled all students who spontaneously and independently used the counting-all
strategy for adding two previously counted collections (e.g., 7 cubes and 4 cubes). Our
inference of the scheme that underlies such a strategy included:

Situation + Goal Activity Sequence Result

Having separately counted all ~ Starting over from 1, count every  Reaching the final item
1s in each of two given tangible item in the combined to be counted and
collections of tangible items  collection by creating 1-to-1 stating the number word
to find their numerosities, set  correspondence between those that corresponded to this
out to find the numerosity of  items and number words in the item to indicate the

the combined collection conventional sequence numerosity

Table 1. Scheme underlying strategy

For a child at the anticipatory stage of this (counting-all) scheme, we set out the goal to
begin constructing a participatory stage of a scheme that would give rise to the concept
of number as composite unit, as indicated by the development of a counting-on
strategy. To this end, | created a play activity, called How Far From the Start (HFFS) in
which two players step on along large tiles from a marked start, taking turns to roll a
die and walk from either the start or the last players position the number of steps
implied by the tiles and recording the numeral on a note placed on their endpoint.
Then, both learners figure out how far the end tile of the second player is from the start
(e.g., 11).

This activity assumes learners will begin finding the total number of steps by
assimilating the task into their available scheme, that is, by using counting-all. While
they play, the researcher-teacher will begin probing for their reflection on the effect
they can notice, namely, always calling out the number on the first note (e.g., 7) when
counting to find the combined total. For example, we may ask the players to stop their
count while stepping on that tile and tell us if they are surprised to have said this
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number word (7) or if they could consider starting at a spot and a number word other
than 1. We may also shift from real tiles to a drawn out board game marked with Start
and End tiles. This allows us, later, to cover some of the tiles on first path to further
orient the learners’ reflection onto the possibility to use the first end tile/numeral as a
start. Letting players switch roles and repeating these experiences, enabled them to
create a provisional link between their counting-all activity up to the first stopping
point and the effect it ensued—starting with the number-after (8) when resuming their
count. This new, provisional linkage opens the way not only to starting the count from
that stopping point (7) but also to keeping track of the count of 1s in the second walk.
That is, a new stage of anticipating where to start is formed at a participatory stage, as
the learners replace 1 as the start for finding the combined total by their noticed effect
of starting from the first end point.

Conceptual reorganization (accommodation) is another core constructivist principle
that, coupled with a corresponding, student-adaptive pedagogy (Tzur, 2013), underlies
my development of HLT. Above, | provided a brief description of the two types of
reflection and two stages (participatory, anticipatory) that enable reorganization of
assimilatory schemes into new ones. By student-adaptive pedagogy, | refer to the
cyclic, 7-step process postulated (Tzur, 2008) as an elaboration of Simon’s (1995)
seminal introduction of the HLT notion. In a nutshell, these 7 steps include (with
pointers to the example of fostering transition from counting-all to counting-on as
explained above):

(1) Specifying students’ current conceptions;
(2) Specifying the intended mathematics;

(3) Identifying a mental activity sequence through which the conceptual change may
evolve;

(4) Selecting and/or adapting tasks to promote the intended learning;

(5) Engaging learners in the task while letting them use previously constructed
schemes first;

(6) Monitoring learners’ progress;

(7) Introducing follow-up questions and probes to foster Reflection Type-I and/or
Reflection Type-II.

When conducting teaching experiments, we develop HLT through two types of
analysis—ongoing and retrospective (Tzur et al, 2000). Ongoing analysis focuses on
inferring each individual learner’s conceptual progress during the recent teaching
episode(s). Inferences are made about changes in the learner’s anticipation,
explanation of effects they notice to ensue from their activity, and the extent to which
learners can use the newly abstracted anticipation spontaneously. Those tentative
inferences constitute Step 1 of the 7-step cycle, which inform Steps 2, 3, and 4 in the
design of teaching for the next episode.
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After completing all teaching episodes, further development of HLT occurs though
retrospective analysis, which focuses on distinguishing and explaining plausible ways
in which learners’ mental systems may give rise to their observable behaviours
(actions and language). Drawing on the principles of grounded theory methodology
(Glaser & Strauss, 1967), retrospective analysis identifies commonalities across
different learners’ solutions while striving to specify schemes that, we infer, could
serve as conceptual underpinnings of those solutions. Those schemes, for which we
detail both the participatory and anticipatory stages, become the markers of HLT.
Then, going back to the data, we search for ways in which transition from one scheme
(marker) to the participatory and then anticipatory stage of the next one might have
took place, along with instructional moves that seemed essential in fostering that
learning.

Refinement of HLT is accomplished by further organization of findings from my
teams’ work and from other research teams’ studies of similar progressions. (e.g.,
Clements & Sarama, 2004; Maloney, Confrey, & Nguyen, 2014).While staying close
to the data from which the HLT were created, this organization involves sequencing of
schemes and transitions between them along a developmental continuum. In
collaboration with researchers from other teams, a developmental continuum is linked
with more general models, such as the model of units coordination levels (e.g.,
Hackenberg, 2007), which transcends additive, multiplicative, and fractional
reasoning. Further refinement of the HLT is then attained through using the continuum
of markers and transitions to teach and study different student populations, such as
students identified as having learning disabilities in mathematics (e.g., Hord et al,
2016), teachers (Tzur, Hodkowski, & Uribe, 2016), or across social-cultural settings
(e.g., Huang, Miller, & Tzur, 2015). Of course, working with different populations
may confirm the HLT we have been developing and/or present challenges that require
further refinement.

In the past 25 years, | have worked with several teams that produced two HLT—one
focusing on multiplicative schemes (Tzur et al., 2013) and the other on fractional
schemes (Tzur, 2014). The markers that constitute each of these are summarised
below. Details of transitions from one scheme to the next and the tasks used to
accomplish this can be found in previous publications.

The HLT for multiplicative reasoning includes 6 Schemes: (1) Multiplicative double
counting (mDC); (2) Same-Unit Coordination (SUC); (3) Unit Differentiation and
Selection (UDS); (4) Mixed-Unit Coordination (MUC); (5) Quotitive Division (QD);
and (6) Partitive Division (PD). It should be noted that distinguishing UDS was not
intended or hypothesized before the teaching experiment, but rather compelled by
children who indicated explicit inability to make the conceptual leap from SUC to
MUC.

The HLT for fractional reasoning includes 9 schemes (the letter ‘S’ in each acronym
stands for ‘Scheme’): (1) Equi-Partitioning (EPS); (2) Partitive Fraction (PFS); (3)
Splitting; (4) Iterative Fraction (IFS); (5) Reversible Fraction (RFS); (6) Recursive
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Partitioning (RPS); (7) Unit Fraction Composition (UFCS); (8) Distributive
Partitioning (DPS); and (9) any Fraction Composition (FCS).

Clements and Sarama

A complete learning trajectory includes an explication of the mental constructions
(actions-on-objects) and patterns of thinking that constitute children’s thinking at each
level of a developmental progression, how they are incorporated in each subsequent
level, and tasks aligned to each level (that promote movement to the succeeding level).
The learning trajectories construct differs from instructional design based on task
analysis because it is based not on a reduction of the skills of experts but on models of
children’s learning, expects unique constructions and input from children, involves
self-reflexive constructivism, and involves continuous, detailed, and simultaneous
analyses of goals, children’s thinking and learning, and instructional tasks and
strategies. Such explication allows the researcher to test the theory by testing the
curriculum (Clements & Battista, 2000), usually with design experiments (Cobb,
Confrey, diSessa, Lehrer, & Schauble, 2003).

When we began, we accepted that the goal of an LT should be determined by standards
(ideal or expected curriculum) created by dialectical process among many legitimate
stakeholders (e.g., CCSSO/NGA, 2010; NCTM, 2006). When more detail was needed,
we used reviews of the research literature to identify objectives that contribute to the
mathematical development of students, build from the students’ past and present
experiences, and are generative in students’ development of future understanding. We
now also believe that LTs should play a more active role in determining, as well as
incorporating, goals.

Starting points for LTs differ with different goals. The importance of geometric
measurement was well established. However, there was less extant justification for the
domain of composing geometric forms. We determined this domain to be significant in
that the concepts and actions of creating and then iterating units and higher-order units
in the context of constructing patterns, measuring, and computing are established bases
for mathematical understanding and analysis (e.g., Mulligan & Mitchelmore, 2013;
Park, Chae, & Boyd, 2008; Reynolds & Wheatley, 1996; Steffe & Cobb, 1988).

The shape composition learning trajectory had its genesis in observations made of
children using Shapes software to compose shapes. Sarama observed that several
children followed a similar progression in choosing and combining shapes to make
another shape (Sarama, Clements, & Vukelic, 1996). Sarama re-viewed the behaviors
all kindergarten children exhibited and found that children moved from placing shapes
separately to considering shapes in combination; from manipulation- and
perception-bound strategies to the formation of mental images; from trial and error to
intentional and deliberate action and eventually to the prediction of succeeding
placements of shapes; and from consideration of visual “wholes” to a consideration of
side length, and, eventually, angles. We combined these observations with related
observations from other researchers (e.g., Mansfield & Scott, 1990) and some elements
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of psychological research (e.g., Vurpillot, 1976) to refine this developmental
progression.

Tasks were designed to elicit each of these hypothesized levels. We conducted clinical
interviews using these tasks, validating that the actions-on-objects posited to underlie
solutions could be observed. We used quantitative methods, confirming that they
formed a reliable and valid sequence (Clements, Wilson, & Sarama, 2004). At that
point, we confirmed a developmental progression in which children move levels of
thinking—from lack of competence in composing geometric shapes, they gain abilities
to combine shapes—initially through trial and error and gradually by attributes—into
pictures, and finally synthesize combinations of shapes into new shapes, that is,
composite shapes.

Instructional tasks in which children worked with shapes and composite shapes as
objects were designed. We wanted them to create, duplicate, position (with geometric
motions), combine, and break apart both individual shapes (units) and composite
shapes (units). We designed physical puzzles and software environments that required
and supported use of those actions-on-objects. Simultaneously, we documented what
elements of the teaching and learning environment, such as specific scaffolding,
contributed to student learning—planned a priori or occurring spontaneously. Thus,
designs are not determined fully by reasoning. Intuition and the art of teaching play
critical roles.

Work with the measurement LT differed in several ways. The larger literature allowed
us to use a research synthesis to form the initial LT (Sarama & Clements, 2002). The
presence of assessment tasks, empirical results and theory allowed us to validate the
first LTs with Item Response Theory, creating an equal-interval scale of scores for
both the difficulty of items and the ability of the persons assessed. To measure
measurement competence, we sequenced the items, strictly maintaining the order
within each measurement domain but intermingling items across domains according to
the available developmental evidence, including age specifications from the literature
and difficulty indices from our pilot testing. Thus, we posited that items were
organized according to increasing order of difficulty across domains, but our
theoretical claims that this sequencing represented increasingly sophisticated levels of
mathematical thinking were made only for items within a given domain. We submitted
the results of administering this revised instrument to the Rasch model, validating the
developmental progressions for length, area, and volume in multiple studies (Barrett et
al., in press; Szilagyi, Sarama, & Clements, 2013). We similarly used and validated
instructional sequences, many again from the extant literature.

We believe that full validation of an LT requires validation of the instructional tasks
and their implementation in real classrooms.

Confrey and Maloney

Previous efforts. Our original work on equipartitioning led us to make the knowledge
base on learning trajectories more accessible to greater numbers of teachers. Doing so
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required us to explore the use of new forms of visual representations for the LTs. Our
first version was a “hexagon map” (www.turnonccmath.net) that used the Common
Core Standards themselves as a framework for 18 LTs for grades K-8. The research
team unpacked the content of each LT into an explanation of the LT and related
research (Confrey & Maloney 2014). Ultimately, using the standards as the backbone
of the LTs was dissatisfying, due to at least two limitations: 1) it tied us to the standards
constraining divergence from them, and 2) for parsimony, each standard was
embedded in only one LT, because we used each hexagon only once.

New LTs and learning map. Working to improve the visualization for greater
usefulness to teachers and students simultaneously, the new work has been to develop
a “learning map” for grades 6-8 (the content as framed generally in the Common Core
Standards). It is called a “learning map” because it is built on a fundamental
re-articulation of underlying learning trajectories, specifying how students’ ideas
become increasingly sophisticated as they engage with increasingly complex tasks
during instruction. The DLS tool “Math-Mapper 6-8” (MM6-8), comprises 1) the
learning map, 2) a diagnostic assessment and reporting system that corresponds
directly to the learning trajectories, 3) a means to access curricular resources via the
web and a curated library of links, 4), a Sequencing tool and calendar to organize all
the foregoing components across the school year, and 5) an analytics system for
interpreting various levels of use of the tool by students and teachers.

Geometry and Measurement Algebra
n f(x
Blgldea: GMMT Blg Idea: GM.SA
Measure, compose, and Compose, characterize, and
scale perimeter, area, and ransform lines, angles, and
volume polygons

Big ldea: ALEE Big ldea: ALRF
Algebraically refate, e Rp esent and use relations
modify, and evaluate d functions of tw

unknown quantities variables
Blg idea: GM.CG

Represent and explore
Pythagorean Theorem and

Num =" e Statistics and Probability

A& -,

Big ldea: NUNO Big Idea: NURP Blg Idea: SPDS Big Idea: SPPB
Position, compare, and Compare quantities as ratio Display data and use Use probability to measure
operate on one dimensicnal rate, or percent and operate statistics to measure center chance and model chance
quantities with them and variation in events to make informa:
distributions Inferences

Fig. 1. Math-Mapper 6-8 learning map (fields and big ideas only)

The learning map is hierarchically organized, with four fields of mathematics
incorporating nine big ideas (Figure 1). Each big idea comprises 2-5 relational
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learning clusters or RLCs (24 in all) of related constructs (64 in all). Each construct is
associated with a LT and is also associated with relevant CCSS-M standards. The new
learning map was developed to be a foundational organizer for the diagnostic
assessment and reporting system. The new LTs are more specifically descriptive of
student behaviours than those in the hexagon map.

Developing LTs across all four fields of mathematics has been informative. First of all,
the hierarchy sets up three levels of trajectories. Each construct is made up of an LT.
Then closely-related constructs are formed into clusters, and each cluster’s shape
establishes a progression of constructs that itself proceeds from less to greater
sophistication with varying structures (e.g. there may be two constructs at the same
level that can be taught in either order or taught in tandem). Finally the clusters within
each big idea themselves are formed into another progression of sophistication of
reasoning. We regard the overall hierarchical structure of the map to describe an
evolution of the idea of an LT—showing how the mathematical landscape of middle
grades can be conceptualized with LT structure underlying it at multiple levels of
scale.

In our extensive work with LTs, we have learned a great deal about how they can be
structured. While acknowledging the importance of teachers’ own negotiating the
process of developing (hypothetical) LTs in instruction (Simon 1995), many
researchers (e.g. Battista, 2011; Sarama & Clements, 2009; Barrett, et al., 2012; Van
den Heuvel-Panhuizen & Buys, 2008) have set about to document likely student
behaviors, utterances, and beliefs in order to guide curricular development and aid
teachers in leveraging student thinking. This work involves identifying target
understandings and likely starting points, and delineating observed likely intermediate
events of significance for the respective paths. LTs do not delineate stages as in a
Piagetian stage theory (Lehrer & Schauble, 2015; Clements & Sarama, 2014). Instead,
they describe meaningful probabilistic states that students are likely to encounter as
they work to understand an idea. LTs are not recipes or rules for instruction, but guides,
resources, and indicators that can help teachers build on student thinking in moving
students toward more sophisticated understandings. These student behaviours,
utterances, and beliefs resemble examples of “genetic epistemology,” (Piaget, 1970)
episodes with epistemological content drawn from the perspective of the learner and
his/her experiences, and which change over time as the results of encountering a series
of carefully designed tasks or scaffolded discussions. They also are evidence of the
emergent behaviours tied to local instructional theories discussed by Gravemeijer and
Cobb (2006).

We have identified several types of epistemological objects that arise repeatedly in
middle grades LTs in the Math-Mapper 6-8 learning map (building on earlier
recognitions of epistemological objects in student learning research). The first is a
naive or partial conception. An example from equipartitioning is that all equal parts of
a whole are congruent. This serves a worthwhile purpose for beginners, and speaks to
students’ experience with cut pizza slices, the construct is later constraining, when
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students need to discern a variety of shapes of one half of a given whole. A second
epistemological object is limited representations, for example, an ordered list of values
of data placed into a primitive dot plot that lacks spacing for missing values (known as
a case plot). A third type of object that serves an intermediate learning goal is a strategy
that may be limited in its efficiency, for instance, forms of skip counting used in
repeated addition versions of early multiplication. Other types of objects used to build
LTs are cases, as described by variation theory (Marton, 2015) which often are useful
in movement up an LT. Typically at higher levels of an LT, one witnesses emergence
of properties that then guide the student in how to operate on particular examples, and
generalizations that describe how to put strategies and cases together into a structure
with varying degrees of justification and proof.

Elaboration, Items, and Assessments. An LT elaboration is a design and development
tool that is central for developing the LTs and for ensuring coherence of the learning
map with the diagnostic assessments. These “living” documents serve to record and
support the evolution of the LT. The LT elaborations specify the wording of each LT
level, any (partial) conceptions or misconceptions associated with any specific level,
and delineation of cases associated with levels (which typically includes the kinds of
numbers or values that are particularly germane to illustrating students’ reasoning and
behaviours, and which are used in the assessment items.

The assessment items are all newly designed items developed by the research team to
focus on conceptual aspects of the constructs, to support deep student reasoning and
flexibility, not just skill development. The elaboration documents are used iteratively
as a basis for development of the LT level-specific assessment items. Conversely, the
team closely analyses student item response data to evaluate the apparent validity of
the LT levels in relation to each other.

Each assessment covers an individual RLC (i.e. one or more constructs), contains 8-10
items, and is designed to require about 20-30 minutes. Multiple forms of the same
assessment are developed. Most teachers administer assessments about 2/3 of the way
through an instructional unit. They are not intended to be graded, but to provide
students and teachers actionable feedback on student (and whole class) understanding
of the mathematical concepts. Students typically score between 20-70% correct; retests
and practice tests are available to allow students to retry, and to improve their depth of
understanding.

Real-time assessment reporting. The student reports show the overall percent correct
on each construct, an item matrix that displays each construct, the items the student
actually took, and whether the responses were right, wrong, or skipped. Students can
select the incorrect or skipped items and resubmit them to change their percent correct.
Teachers receive whole-class reports for each construct in the form of a set of “heat
maps,” each being a matrix with the LT proficiency levels listed vertically and the
students ordered from weakest to strongest overall construct performance along the
horizontal axis. The teacher can tap on a progress level to display the related item.
Cells are coloured differently for incorrect and for relatively more correct responses.
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Based on general expectations of less to more difficulty for higher proficiency levels,
the response patterns tend to show increasing correct from bottom left to top right.

LT and assessment validation. There may be up to five constructs in an RLC, each with
6-8 levels. Therefore, items must be sampled across the LTs. The multiple assessment
forms for each RLC share at least 3 common items, to support whole-class discussion.
We encourage teachers to use multiple forms in a class. Each time a student takes an
assessment, the results add to our knowledge database of student responses, and to
their understanding of the LT, and to our confidence in predicting student progress. We
use various psychometric models to explore the optimal modelling of LTs and
assessments results. When results for an LT seem unidimensional, IRT is used;
otherwise we consider structural equation modeling, CDM, or Bayesian models. These
are low-stakes assessment for learning, so the diversity of approaches will add to our
understanding of the particular LTs and student reasoning about and learning of
constructs, without subjecting this work to artificial constraints regarding
dimensionality typical of high stakes assessment modelling.

Math-Mapper 6-8 is being field-tested at three different schools, where the learning
map is being incorporated in instructional planning, and the assessments are
administered regularly to students, enabling us to collect 50-300 responses per item to
analyse. As a result of this the items have gone through a rigorous review and
validation process.

Ultimately, this is only the first phase of a complete validation argument. We will be
studying the use of the tool over longer periods of time, which will allow us to
determine how students improve understanding with the use of the tool, if teachers can
use the tool to elicit more student thinking and participation, and find ways to improve
the performance of various subgroups of students.

Siemon and Horne

Our research on learning progressions is premised on a socio-cultural perspective of
learning that views learning “as both a process of active individual construction and a
process of enculturation into the mathematical practices of wider society” (Cobb,
1994, p. 13). Itis aimed at identifying optimal pathways for teaching and learning key
aspects of school mathematics based on an assessment of what might be regarded as
students’ taken-as-shared knowledge in Australian mathematics classrooms. A valid
criticism of this approach is that it does not necessarily reflect what is possible when
students are exposed to high quality mathematics teaching over time (e.g., Boaler,
2008). But the reality is that not all teachers have the knowledge, confidence and local
support needed to implement high quality effective practices. Nor do they necessarily
have the time and resources to identify each student’s particular learning needs in
relation to every single aspect of the mathematics curriculum even if this was
desirable. The main rationale for working at scale in relation to a small number of
really big ideas in mathematics is that this establishes a plausible, probabilistic model
for establishing where learners are in their learning journey in relation to those ideas
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critical to student’s progress in school mathematics (Siemon, Bleckly & Neal, 2012)
and a framework to support teachers progress learning. The following sections will
summarise our work.

The Middle Years Numeracy Research Project (MYNRP, 1999-2001)

A detailed analysis of the distribution of item responses provided by just under 7000
students in the initial phase of the MYNRP project revealed that there was as much
variation in performance in any one year level as there was in the whole cohort and that
this difference in curriculum terms was of the order of 7 years (i.e., approximately
Year 2 to Year 8). While there were variations in measurement and data sense and
spatial sense, all of the more difficult items were concerned with number sense, in
particular anything that involved multiplying and dividing larger whole numbers,
proportional reasoning, fractions, decimals and percentages, and situations not easily
modelled in terms of a count of equal groups (e.g., combinatoric problems and
problems involving rate or ratio). Characterised by Vergnaud (1988) in terms of the
multiplicative conceptual field, these results prompted a follow-up project, the aim of
which was to develop a more finely grained, evidence-based learning progression for
multiplicative thinking that could be used by teachers to identify starting points for
teaching and progress student learning.

Scaffolding Numeracy in the Middle Years (SNMY, 2003-2006)

At the time, there was a considerable body of literature concerned with particular
aspects of multiplicative thinking. However, very little of this was specifically
concerned with how these aspects relate to one another and how and when to support
new learning both within and between these different aspects of multiplicative thinking
(Siemon & Breed, 2006). Given evidence to suggest that where teachers are supported
to identify and interpret student learning needs in terms of teacher accessible,
evidence-based frameworks, they were more informed about where to start teaching,
and better able to scaffold their students’ mathematical learning (e.g., Clarke, 2001), it
seemed sensible to produce a similar framework for multiplicative thinking.

For the purposes of the SNMY project, multiplicative thinking was defined by: a
capacity to work flexibly and efficiently with an extended range of numbers (e.g.,
larger whole numbers and rational number); an ability to recognise and solve a range
of problems involving multiplication or division; and the means to communicate this
effectively in a variety of ways (for example, words, diagrams, symbolic expressions,
and written algorithms).

Initially a broad HLT, derived from a synthesis of the research literature on students’
understanding of multiplicative thinking, proportional reasoning, decimal place-value
and rational number was developed (see Siemon & Breed, 2006). The HLT was used
to select, modify and/or design a range of rich tasks including two extended tasks (e.g.,
Callingham & Griffin, 2000). The tasks were trialled and either accepted, rejected or
further modified on the basis of their accessibility to the cohort, discriminability, and
perceived validity in terms of the constructs being assessed. Secondly these rich
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assessment tasks and partial credit scoring rubrics were trialled and subsequently used
to inform the development of the learning and assessment framework for
multiplicative thinking (LAF). Finally an eighteen month action research study
involving research school teachers and the research team, progressively explored a
range of targeted teaching aimed at scaffolding student learning in terms of the LAF.

The results from the first round of assessment of just over 1500 year 4 to 8 students
were analysed using item response theory and the subsequent variable map was used to
link different aspects of multiplicative thinking and identify qualitatively different
levels of understanding and strategy usage indicated by student responses (Siemon,
Izard, Breed & Virgona, 2006). While these levels were largely consistent with the
initial HLT, we were able to collapse one level and elaborate on others. Rich text
descriptions for each level were derived from the performances on each item at each
level to form the basis of the LAF. In acknowledgement that the levels were
approximations based on responses identified at similar locations on the scale and in
recognition of the fact that the purpose of the LAF was to help teachers scaffold
student learning, the levels were referred to as zones. The LAF so derived comprises
eight hierarchical zones ranging from additive, count all strategies in Primitive
Modelling (Zone 1) through Intuitive Modelling, Sensing, Strategy Exploring,
Strategy Refining, Strategy Extending, and Connecting to the sophisticated use of
proportional reasoning in Reflective Knowing (Zone 8).

The notion of targeted teaching and the subsequent use of the LAF will be described in
a later section but it suffices to say here that the teaching response to student’s
identified learning needs tended to be more effective in primary (i.e., Year 5 and 6
classrooms) than in Years 7 to 8 classrooms (Siemon, Breed, Dole, Izard & Virgona,
2006).

Reframing Mathematical Futures Priority Project (RMF, 2013)

Funding was obtained from the Australian Mathematics Science Partnership
Programme (AMSPP) Priority Project round to explore the efficacy of and the issues
involved in implementing a targeted teaching approach in secondary schools using the
SNMY materials. Twenty-eight schools located in lower-socio economic settings
across Australia participated in the 10-month study. Nominated ‘specialists’ in each
school were provided with professional learning and supported to work with at least
two other teachers at their school to implement a targeted teaching approach to
multiplicative thinking. The SNMY assessments were conducted in August and
November of 2013. Matched data sets were obtained from 1732 students from Years 7
to 10 with the majority (59%) from Year 8 (Siemon, 2016). The overall achievement of
students across the 28 schools grew above an adjusted effect size of 0.6 indicating a
medium influence beyond what might be expected (Hattie, 2012).

Reframing Mathematical Futures Il Project (RMFII, 2014-2017)

The RMFII project is an AMSPP Competitive Grant project that was formulated in
direct response to the findings of the initial RMF project. That is, that one of the major
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reasons for secondary school teachers’ reluctance to adopt a targeted teaching
approach to multiplicative thinking was their perception that this was not related to the
curriculum they were expected to teach. Even though an analysis of the Australian
mathematics curriculum at the time found that approximately 75% of the Year 8
curriculum required or assumed student access to multiplicative thinking (Siemon,
2013). The project aims to develop, trial and evaluate a learning and teaching resource
to support algebraic, statistical and spatial reasoning in Years 7 to 10 that will enable
teachers to identify and respond to student learning needs using a targeted teaching
approach aimed at improving students’ mathematical reasoning. For this purpose,
mathematical reasoning is seen to encompass the core knowledge needed to recognise,
interpret, represent and analyse algebraic, spatial, statistical and probabilistic
situations and the relationships/connections between them; an ability to apply that
knowledge in unfamiliar situations to solve problems, generate and test conjectures,
make and defend generalisations; and a capacity to communicate reasoning and
solution strategies in multiple ways (i.e. diagrammatically, symbolically, orally and in
writing) (Siemon, 2013; 2016)

This is a non-trivial exercise involving an extended research team with recognised
expertise in each domain. It requires the identification of Draft Learning Progressions
(DLPs) for algebraic, spatial and statistical reasoning from existing research, the
development and validation of rich tasks to assess and refine the DLPs using item
response theory, the preparation of targeted teaching advice, and the development and
trial of a series of online professional learning modules. To date, DLPs have been
identified from the literature for algebra, geometry and statistical reasoning and over
250 individual assessment items have been trialled with more than 3600 students in
Years 7 to 10. The initial analysis provides ‘proof of concept’, that is, that it is possible
to scale the underlying constructs. Further trial work is being undertaken at the time of
writing to validate and elaborate the scales.

APPLICATIONS OF LEARNING PROGRESSIONS/TRAJECTORIES

This section differs from the previous two in that it has amalgamated the responses of
the four research teams to highlight the ways in which LT/Ps are being used to impact
practice and shape further research. Once again only key references will be included
here in the interests of space.

Curriculum and Standards

Three of the four bodies of work reported here used national curriculum statements
and/or standards as a starting point for their work on learning trajectories/progressions.
As this work unfolded, however, it became increasingly clear that researchers needed
to go beyond such documents and look to the research literature more generally to
inform their investigations. This had the added advantage of not only informing
curriculum development and examining the effectiveness of that curriculum but
building a better and deeper understanding of what was needed to achieve curriculum
goals even to the extent of providing evidence that questioned the appropriateness of
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those goals. This changed the role of LT/P's from serving mainly as the core of
curriculum development projects to having implications for all aspects of curriculum.
For example, Clements and his colleagues developed a number of LTs for the
NSF-funded Building Blocks project and curriculum (Clements & Sarama, 2013a).
While this was designed to comprehensively address standards for early mathematics
education for all children, evaluations have shown that Building Blocks can be
effective, with large effect sizes even when compared to another research-based
curriculum not built upon LTs (Clements & Sarama, 2008).

This and other work in this area led Clements and his colleagues to conclude that any
comprehensive and valid scientific curriculum development program in education
should address two basic issues - effect and conditions - across three domains -
practice, policy, and theory. For instance, the question - is the curriculum effective in
helping children achieve specific learning goals? examines effects in relation to
practice. The question - are the curriculum goals important? — examines effects in
relation to policy, and the question — why is the curriculum effective? — invites an
exploration of effects in relation to theory. To achieve these goals satisfactorily and
scientifically, developers must draw from existing research so that what is already
known can be applied to the anticipated curriculum; used to structure and revise
curricular components in accordance with models of children’s learning such as
research-based learning trajectories; and conduct formative and summative
evaluations in a series of progressively expanding social contexts. As an example of
this process, Clements and Sarama offer their work on TRIAD (Technology-enhanced,
Research-based, Instruction, Assessment, and professional Development model),
which has been implemented at scale and evaluated.

TRIAD is based on research and enhanced by the use of trajectories and technology.
TRIAD places learning trajectories at the core of the teacher/child/curriculum triad to
ensure that curriculum, materials, instructional strategies, and assessments are aligned.
When implemented with fidelity, TRIAD has shown moderate to strong effects
including transfer to other domains (e.g., Sarama, Clements, Wolfe & Spitler, 2012).

As with many researchers in the area Confrey and Maloney started with a specific LT
(equipartitioning), then expanded their efforts to examine and analyse K-8 learning in
all subfields. They did this first by analysing the U. S. Common Core Standards from a
perspective of learning trajectories, but subsequently by building a new tool that uses
learning trajectories for guiding instruction and scaffolding digital curriculum. The
example they offer is the collaborative work on the Common Core Standards where a
group of learning trajectory researchers participated in a joint meeting with the
Common Core sponsors and writers, and subsequently provided the writers with
summaries of the research to guide their grade-by-grade analysis (Confrey & Maloney
2014). A member of the National Validation Committee, Confrey mapped several
early versions of the standards for consistency with the results of that overall research,
and made recommendations for strengthening those connections. As with any
document subject to competing perspectives, the final CCSS-M seemed consistent in
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many areas, and weaker in others. However, this points to the growing recognition of
the value that research-based LT/P might play in
determining goals for national standards, assessments, curricula, and pedagogy.

In Australia, the National mathematics curriculum is represented by a set of content
descriptors (approximately 28 per Year Level) and schools have more control over the
instructional materials and pedagogical approaches they use to address the content
descriptors. Effect sizes in excess of 0.65 across a number of secondary schools as a
result of using the Learning Assessment Framework for Multiplicative thinking (LAF)
in 2013 has prompted schools to modify their curriculum offerings in order to
accommodate a targeted teaching approach to multiplicative thinking across multiple
year levels (Siemon, 2016).

Students and Learning

LT research began with a clear focus on children’s thinking and learning in specific
content domains. Initially the focus was on individual student developing schemas in
particular mathematical areas (e.g., children’s increasingly sophisticated counting
schema, Tzur et al, 2013). While that work continues, there has also been an expansion
in the focus of LT work to whole classes and multiple year level cohorts with a
particular emphasis on the development and use of formative assessment tools to
identify where learners are in their learning journey and better equip teachers to
progress that learning (e.g., Sarama, Clements, Wolfe & Spitler, 2012; Siemon, 2016).

Confrey and her colleagues are currently working with multiple schools in multiple
school districts with Maths Mapper, an LT-based digital learning system that, among
other things, is designed to support the creation of continuity across grades and
promote the surfacing of student thinking and strengthening of student agency
(Confrey & Maloney, 2015).

Most LT/Ps have been developed and refined with school student populations.
However, their application in adult settings has recently been explored by Tzur with
both teacher and non-teacher adult learners, many of whom lack foundational schemes
for multiplicative and/or fractional reasoning. He has found that applying these LT/Ps
has been helpful for these adult learners as well as for children identified by their
school systems as students with learning disabilities in mathematics.

An important question arises about LTs developed through studies in western cultures,
namely, do they apply to or represent the learning of learners in other cultures. Are
these learning frameworks universal or are they a consequence of what learners have
had the opportunity to learn?

Teachers and Teaching

As many before, LT/P researchers recognise the importance of looking at domains of
knowledge as a means of supporting teachers to better understand the connections
between different aspects of mathematics and how that learning might be progressed.
A consistent finding of this research is that a major way in which this occurs is through
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teachers observing their children’s learning. The value of using assessment data to
inform and improve teaching is widely recognised but the difference here is that the
observations can be tied to evidence-based frameworks that provide guidance on
where to go to next in relation to a range of interconnected ideas. This lead Siemon et
al (2006) to conclude that a different term, targeted teaching, was needed to
distinguish the long-term, multi-faceted nature of the interventions needed to scaffold
student’s multiplicative thinking from the equally valid but short-term or spontaneous
teaching decisions that might be informed by a pre-test on subtraction or an informal
observation of student thinking in the course of a classroom discussion. Targeted
teaching is characterized by an unrelenting focus on big ideas framed by
evidence-based LT/Ps. It is not a prescribed program, schools and teachers need to
appropriate it to their circumstances and capabilities. It is a very organic process that is
not in anyway equivalent to systematic streaming/tracking and it is most effective
where it has evolved over time with the support of key individuals and the leadership
group (Siemon, 2016).

Another way in which LT/Ps support teachers is by providing a shared language
around a set of activities and tasks that point to the underlying conceptual structure of
the mathematics that is the focus of the LT/P. For example, strengthening teacher
community is an important focus of the LT-based Math-Mapper resource. Confrey and
Maloney (2015) report that teams of teachers are planning their curriculum using the
learning map instead of a set of standards elicit a different kind of conversation about
topics. In one school, a teacher described the prior curriculum as “chaotic” and the new
one as “calm.” The teachers at the other district found that discussing clusters instead
of individual standards helped them ensure that the ideas meant the same thing to them
all. They often appealed to the LTs to clarify their thinking (Confrey & Maloney,
2015).

Teacher professional learning has been an element in the trialling, validating and
scaling up of LT/Ps across all bodies of work reported here but more recently this has
become the focus of research in this area. An example of this is Tzur’s current study of
the impact of job-embedded professional development on upper-elementary teachers’
transition toward student-adaptive pedagogy. A substantial part of which engages
teachers in learning to notice, infer, and use the two HLT about students’
multiplicative and fractional schemes.

The power of LT/Ps to impact teaching practice and sustain quality approaches over
time is evidenced by the follow up work on the Building Blocks project. Clements,
Sarama and colleagues expected teachers to decrease in the fidelity in which they
taught with learning trajectories after project support was discontinued. However, after
two years, they found that the teachers increased the quality of their teaching and the
these results were even more positive six years later with the largest predictor of
higher fidelity years out was child gain—teachers sustain and increase the quality of
teaching when they observe their children learning.
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Informing and Extending Research

LT/Ps and the research around them are being used to inform new research. For
example Tzur and his colleagues use them (a) to identify participants for a study based
on their available, assimilatory schemes and (b) as a suggestive, developmental
framework for determining what to teach next. On a much larger scale and with more
of an eye to impacting practice at scale, the work of Siemon and her colleagues on
mathematical reasoning, Sarama and Clements on Building Blocks and Confrey’s
work on Maths-Mapper point to an exciting future for LT/P research and development,
particularly in relation to technology.

The implications of developing a dynamic digital learning system built around LTs
represents a new paradigm of research and opens new possibilities for networked
improvement models (Confrey & Maloney, 2015). This is because the design rests on
an explicit learning theory (the LT/Ps) while the tool scaffolds curriculum flexibly and
adaptably. In the case of Maths Mapper, the research team continuously monitors the
tool’s use in a variety of ways—how and when it is used, how long students need to
complete the items and assessments, how the items perform, and which psychometric
models provide the best data models to inform the tool’s use. The communities of
practice (students, teachers, curriculum specialists and administrators) are also
leveraging the tools to plan, to develop new forms of instructional practice, to form
student groups (or reteach) and to try out and refine materials. The focus is on student
growth and on how different subgroups and individuals are able to get assistance and
opportunities to learn as needed.

Research on LT/Ps is becoming more ambitious in its scope and intent. While this has
the potential to transform the teaching and learning of mathematics through the
provision of evidence-based frameworks, validated tools and quality instructional
materials, reconceptualise the curriculum, and deepen teacher knowledge of the rich
connections between different but related aspects of mathematics, at the end of the day
it is the decisions teachers and students make every day that have the greatest impact
on learning. For this work to have a sustainable influence on practice, it needs the
support of school leadership, administrators working in close collaboration with
researchers as partners.
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