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PRIMARY TEACHERS’ REASONING AND ARGUMENTATION 
ABOUT THE TRIANGLE INEQUALITY 

Silvia Alatorre,  Patricia Flores,  Elsa Mendiola 
Universidad Pedagógica Nacional, Mexico City 

 
This paper is part of an ongoing study with in-service primary teachers, which has a 
dual objective of Professional Development and Research. Here we report on a 
workshop about triangles, focusing on the reasoning and argumentation processes 
registered in an individual questionnaire and in videotaped team discussions. 
 
With the dual objective of Professional Development (PD) and Research, our Study, 
called TAMBA, addresses the topics of the Mathematics curriculum for the primary 
school. The Study was carried out through a series of workshops with in-service 
teachers of the public schools in a Mexico City working class zone. We have 
previously conveyed at PME the general design of the Study, some results on the 
workshop on Fractions, and some previous experiences on the topic of Triangles 
(Alatorre et al, 2009, 2010, and 2011). This paper reports part of the experience in the 
TAMBA workshop on Triangles, focusing on the reasoning and argumentation 
processes rather than on the Geometry aspects, because of space limitations.  

FRAMEWORK  
The community of mathematics educators concurs in stressing the importance of the 
mathematical knowledge of teachers; for instance, Southwell & Penglase (2005) 
sustain that “if teachers are not confident in their mathematical knowledge, they may 
find it difficult to ensure that their students gain confidence and competence.” 
Therefore, in order to design learning scenarios for teachers, it is also vital to 
understand how they comprehend and conceptualize the mathematics they teach.  
According to Ball, Thames & Phelps (2008), the mathematical knowledge of teachers 
can be considered as twofold: Common Content Knowledge, CCK, where “common” 
refers to many other professions or people in general; and Special Content Knowledge, 
SCK, the mathematical knowledge and skill unique to teaching. CCK and SCK interact 
with each other; perhaps one of the areas in which this interaction is more evident is in 
the reasoning and argumentation skills. 
We agree with Flores (2007) in the sense that an argumentation is “the set of actions 
and reasoning that an individual brings into play in order to explain or justify a result or 
to validate a conjecture raised during a problem solving process”. In this construction 
there are many elements influenced by previous experiences and knowledge. Flores 
recognizes the following types of argumentation as explanations or justifications of a 
result: Authority-based  (arguments based on statements made by some authority –a 
teacher, a textbook, a principal, etc.), symbolic (use of mathematical language and 
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symbols in a superfluous or naïve way, without really getting to the conclusions meant), 
factual (an account of the actions taken, a repetition of evident facts or a set of 
algorithmic steps), empirical (based on physical facts or drawings as the essence of the 
argument, not as a visual help for it), and analytical (a deductive chain in which each 
statement follows from the previous one). It is important to add that the latter is not 
necessarily the only one leading to valid argumentations (for instance, a 
counter-example can be a valid empirical argument), nor is it always valid (the 
deductive chain may end in a false or non-pertinent conclusion). 
On the other hand, in mathematics an argumentation expresses a reasoning process 
similar to that of a proof, and although it is not necessarily as rigorous as a proof, it 
shares with it many of the elements described by de Villiers as cited by Hadas et al.:  

verification (concerned with the truth of a statement), explanation (providing insight into 
why it is true), systematization (the organization of various results into a deductive system 
of actions, major concepts and theorems), discovery (the discovery or invention of new 
results), communication (the transmission of mathematical knowledge), and intellectual 
challenge (the self-realization/fulfilment derived from constructing a proof). Hadas, 
Hershkowitz & Shwarz (2000). 

These elements are present when in a problem-solving activity students must 
communicate their ideas and convince others of their points of view. The confrontation 
of different views implies the creation of a judgement about the pertinence or the 
inconsistency of an argument, and therefore is also an intellectual commitment. We 
will use them to analyze teachers’ arguments in a Geometry workshop environment. 

METHODOLOGY  
TAMBA’s dual PD/Research objective permeated the modes in which the study was 
conducted. The workshops were offered to 300-800 teachers (in groups of ca. 20) with 
topics chosen by them; each took place in a 2-hour session. This allowed us to collect 
information from a large amount of teachers, but unfortunately gave us no time to 
further work with them, so, for instance, no interviews were possible. However, similar 
studies (e.g. Southwell & Penglase, 2005) have encouraged us to present our results. 
The PD facet required to have a scenario that would foster cognitive conflict, 
discussion and re-conceptualization within task-based activities, whereas the Research 
facet required a means to detect teachers’ needs in CCK and SCK. Thus, the sessions 
were organized in a short individual task (IT) based on a questionnaire, a videotaped 
team task (TT) as the main activity, and a videotaped group discussion (GD). The PD 
started with tasks of the IT, developed mainly during the TT and was taken to closure in 
the GD, while the research needs were covered by the questionnaire and the videotapes; 
also, in the IT some information about the teachers’ characteristics was registered. 
Within this common structure, in each workshop both the IT and the TT consisted of 
several ad-hoc designed tasks. In the workshop about triangles the tasks dealt with 
several geometrical topics; both the IT and the TT started with tasks aimed at the 
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triangle inequality (TR.IN), which are reported in this paper. In the first item of the IT, 
five sets of lengths in cm were given; the teacher was asked to state whether or not a 
triangle could be constructed with each, and to briefly explain why. For the first TT task, 
teams with 3-4 teachers were given several colour Meccano-like plastic strips of 
different lengths, and clasps (Figure 1). The teachers were asked if it was possible to 
construct triangles with six sets of strips referred to by their colours. Table 1 reports the 
lengths in all 11 sets (in the TT the strips’ lengths were not explicit, but we report here 
the amount of units). This part of the TT ended with the question “What conditions 
must the strips fulfil so that a triangle can be constructed?” In the final GD, both tasks 
were commented, with the aim of stating the TR.IN. 

IT =Individual task 
(cm) 

 TT = Team task 
(arbitrary units) 

 

S1={7, 7, 7} 
S2={4, 4, 10} 
S3={8, 5, 3} 
S4={10, 10, 4} 
S5={12, 7, 8} 

 S6={6, 15, 15} 
S7={15, 6, 6} 
S8={8, 8, 7} 
S9={7, 7, 8} 
S10={31, 24, 10} 
S11={5, 6, 15} 

Table 1. Length sets for the different tasks           Figure 1. Strips for the TT 
Thus, as a PD setting, the workshop provided three distinct moments. In the IT, the 
teachers’ prior knowledge (CCK/SCK) was at stake; our previous experience had 
shown that the TR.IN is unknown to many teachers (Alatorre et al, 2009). A second 
moment was provided by the TT, where the team experimentation with the strips 
fostered the emergence of a cognitive conflict and the analytic reasoning and 
argumentation skills. Finally, the GD was the scenario in which some systematization 
and communication skills could be exercised. As a research setting, these three 
moments can be tracked and analyzed in different ways. In the questionnaire of the IT, 
the reasons given for the possibility or impossibility of the construction asked for were 
categorized, and some quantitative methods were applied, whereas the videotapes of 
the TT and the GD provide information for a qualitative analysis.  

RESULTS AND ANALYSIS 
The triangles workshop was attended by 353 teachers. We will here report some 
findings related to each of the three moments described above. 
1. Prior knowledge. The responses to the first item of the IT were classified according 
to two sets of categories: on the one hand the combination of yes/no answers to the 
questions about the five sets and on the other hand the kind of justification given to 
each of the 1460 “yes” and the 247 “no” answers. In the first case four groups are 
defined: the correct yes/no/no/yes/yes, a partially correct yes/no/yes/yes/yes, the most 
frequent error yes/yes/yes/yes/yes, and other answers. For the second classification the 
reasons given were divided in six groups, regardless of the correctness of the “yes” or 

S6 

S7 

S9 

S8 

S10 

S11 



Alatorre, Flores, Mendiola 

 
2-6 PME36 - 2012 

“no” answer. The relative frequencies for both classifications are shown in Table 2. 
The fact that only 13% of the answers were yes/no/no/yes/yes corroborates our 
previous finding in the sense that the TR.IN is unknown to the majority of the teachers. 

Answers (combinations)  Justifications for the 1707 individual answers 
 S1 / S2 /S3 / S4 / S5    Category “yes”  “no”  
yes/no/no/yes/yes 

yes/no/yes/yes/yes 

yes/yes/yes/yes/yes 

Other combinations 

13% 

18% 

46% 

22% 

 A triangle has three sides 
The triangle’s type 
Approaches to the TR.IN  
Mention of the measures 
Other 
No justification 

12% 
62% 

5% 
2% 
2% 

16% 

0% 
0% 

54% 
17% 
7% 

22% 

Table 2. Frequencies of the categories for answers to the IT and their justifications  
We now comment on the categories for the justifications. In the first category are “yes” 
answers that only state that since three measures are given a triangle can be constructed 
with them; that is, three sides is a sufficient condition for a triangle. In the second 
category are the answers that contain either the name of the alleged triangle’s type 
(equilateral for S1, isosceles for S4, scalene for S5, but also isosceles for S2 and scalene 
for S3) or the definitions for them (e.g. “two equal sides and one different”) or both; in 
some cases the type was incorrect, such as these two for S4: “scalene” and “isosceles, 
they form an angle of 90°”. The third category groups not only correct formal 
expressions of the TR.IN (11%), but also correct informal expressions, such as (in no 
for S2) “4+4 is less than 10” or (in or yes for S4) “the two equal sides are larger than the 
third” (16%), qualitative comparisons such as (S2) “one of the measures isn’t enough” 
or “two sides can’t reach each other” (62%), justifications showing that the author has 
a hint about the TR.IN, such as (in no for S2) “the third side doesn’t fit” (8%), and plain 
misunderstandings of the TR.IN, such as (in yes for S3) “5+3=8” or –misusing the 
Pythagorean theorem)– “5 and 3 form a right angle and the one with 8 joins the 
vertexes” (4%). The fourth category groups reasons than only make a vague mention 
of the measures as a basis for answering yes or no, such as “because of the measures” 
or (in yes for S3) “the sides are proportional”.  
Although much can be said about the different crossings of these two classifications 
and the correct or incorrect answers to each of the five questions, we will only 
highlight “the bad news” and “the good news”: 

• The most striking result is that 41% of all 1707 justifications correspond to the 
combination yes/yes/yes/yes/yes and one of the categories “three sides” or 
“type”; among those with the combination yes/yes/yes/yes/yes, these two 
categories account for 97% of the justifications. 

• On the other hand, although only 40% of the teachers said “no” to S2 and 19% 
to S3, an approach to the TR.IN is the most frequent reason for these answers: 
62% for S2 and 56% for S3. As many as 85 teachers say “no” to S2 and “yes” to 
S3; their two main reasons for accepting S3 are of the category “type” (47%) 
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and incorrect approaches to the TR.IN (19%), mainly recognizing that 5+3=8 
but not considering that as a reason to reject S3. 

2. Experimentation. The videotapes registered the work of several of the teams in 
each group during the TT, but since the teachers organized freely in teams, we have no 
way of identifying how each of the members of a videotaped team responded to the IT.  
For the greatest part of the teachers, the experimentation with the strips produced a 
cognitive conflict. Many were really surprised that some of the sets could not produce a 
triangle, regardless of how they tried to assemble them, and said that they had never 
before realized that some triangles could be impossible. For many this insight created a 
challenge to understand the conditions necessary for a triangle, and generally speaking 
the teams had one of the following reactions to this situation. (We describe the 
reactions and illustrate them with some transcript examples, in which we number 
consecutively the participant teachers, starting with T1 for each team). 
In several such teams one of the teachers started with a tentative formulation (a 
hypothesis), and another one produced a counterexample, frequently using a different 
set of strips than the ones proposed. Then a new hypothesis was formulated until no 
counterexample could be constructed and this hypothesis was accepted as final: 

[E1] T1: But why in this case the triangle cannot be constructed? – T2: Because the 
measures are different – T3: (shows S10) – T1: It could be that two sides must be larger 
than the other – T2: That the sum of two is larger than any of them. 

Other teams had among them one or two teachers who, even with the awareness that 
there are situations in which a triangle cannot be constructed, denied the possibility of a 
general condition: they could accept that there are conditions for each type of triangle, 
but since these conditions are different depending on the type, a general condition was 
made impossible: 

[E2] T1: At least two sides must be equal, is that a rule? – T2: In this one, all are 
different – T3: Well, that is a scalene: The rule, to begin with, is that you need three 
sides – T2: Yes, but we must find the relationship among the sides, because with 
these… – T3: … nothing can be formed – T2: … I can’t form a triangle. So, we need the 
sum of two to be greater than the other – T3: But I insist, the definition that you are 
giving rules out the equilateral and the isosceles, in my definition all are considered – 
T1 (constructs an isosceles) – T2: The sum of these is greater than the other, the 
condition is fulfilled – T3: In an equilateral? – T2: An equilateral also fulfils the 
condition – T3: But with those same strips you can’t construct an equilateral triangle. 

For some teachers the experimentation led to no conflict because they did manage to 
construct triangles with all the sets. Figure 2 shows one example of a “triangle” 
constructed with S7. In other cases the teachers denied the conflict 
and lost all interest in the task, not looking for explanations or 
relationships. Some copied in their sheets the answers given by other 
teachers; some just stopped trying to find a condition, skipped the 
question and started another of the TT’s tasks: Figure 2 
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[E3] T1: They need to have straight lines – T2: Here the lines are straight and it’s not a 
triangle – T3: That the measures are proportional – T3: That they are different – (T1 
raises, goes to another team, and comes back with an answer, which is accepted). 
[E4] T1: They need to have the same size – T2: That could be a condition, but even if 
they have different sizes you can form one, even if they have different sizes that is not a 
reason not to form it – T3: That two sides are the same – T2: No, because if we have two 
equal sides… – (silence) – T2: That the measures of the strips allow for them to join, 
and that’s it. 

Some of the teachers had a fairly good idea about the TR.IN, so for them the task 
became a confirmation of their previous knowledge; their challenge was to convince 
their teammates and to achieve a complete and correct expression of it: 

[E5] T1: (shows {11, 7, 24}) We need that sum of these two [11, 7] to be greater than 
this one – T2: That the sum of two is larger than the other – T3: Prove it – T2: That’s 
what I’m doing – T3: Make these two [11, 7] larger than this [11, 24] – T2: No, it’s the 
sum of these [11, 7] – T1: Oh, the sum of the two together. 

3. Systematization / communication. In the third moment, the GD, a common 
expression for the TR.IN was produced, from the contributions of the teams in the 
group. In this process oftentimes a team that came with an incomplete expression of the 
TR.IN completed the process with the help of the group’s conductor (C): 

[E6] T1: The condition is that one side must be the same as another, or smaller than 
another – (C shows a counterexample: S11) – T1: Than the sum of the other two sides – 
(C shows S3) – T1: That one side must be smaller than the sum of the other two sides. 

Other findings. Although the objective of this paper is not to analyze the use of 
language, we consider it relevant to mention that during the whole process IT-TT-GD we 
retrieved a meaningful amount of mathematical terms incorrectly used. Here are some 
examples:  

[E7] “The sides must be proportional”… “The condition is that the sum of the legs must 
be larger than the hypotenuse”… “(S2) one vertex would be incomplete”… “The edges 
must be larger than 5 cm”… “(S3) the sum of the faces of two barely covers the other”… 
“One of the sides is larger than the perimeter of the other two”… “(S2) yes, the base can 
measure 10 and the height 4”.  

In other cases the question can be raised about possible misconceptions: “their 
measures can be joined”, “(S5) they are relatively equal”, “(S5) scalene, because its 
sides are unequal and its angles are larger than 90º”. 
Finally, a statistical association was searched between the categories for the answers to 
the questions of the IT and two other variables: the amount of years teachers have been 
practicing as such, and the grade they teach (or the highest of both when they attend 
groups in different shifts). We had found such an association in the TAMBA workshop 
about Fractions (Alatorre et al, 2011), where the best CCK/SCK levels were attained 
by the most experienced teachers and also by those who teach in the highest levels of 
the primary school. However, in this case no statistical association was found 
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(respectively F=2.43; df=3,286; p=0.07 and F=0.86; df=3,284; p=0.46). Further 
research should look for a possible association with the teachers’ prior training,   

DISCUSSION 
Teachers can and do build up many of their mathematical concepts and knowledge 
through their professional practice, as mentioned above for Fractions. The fact that no 
association was found in this case with the length of service or the grade they teach 
shows that the TR.IN is not part of the teachers’ professional practice. Although some 
of the teachers may have learnt the TR.IN during their high school, they did not see it 
during their teacher training, and the approach to triangles in the primary school makes 
it superfluous for the teacher. The usual practice is that triangles are drawn from 
scratch and not from predetermined measures, so drawing a triangle is always possible, 
and generally teachers use the prototype of an acute-angled isosceles with a horizontal 
base. In practice, measures only have two uses: the classification of the triangle’s type 
and the application of formulae for the perimeter and the area. There is a divorce 
between drawings and lengths, so many teachers, when they require a triangle with 
measures, assign to a drawing numbers that not necessarily coincide with the actual 
lengths. This could be at the origin of most of the yes/yes/yes/yes/yes answers to the IT: 
the sole question whether the triangles could be constructed seemed absurd.  
However, we consider that in this case there is at stake something more important than 
the particular knowledge of the TR.IN. The qualitative analysis of the justifications to 
the IT and of the team processes of the TT suggest that reasoning and argumentation are 
also not part of many teachers’ professional practice, although they are unquestionably 
part of the CCK and also of the SCK. This lack of habitude of reasoning and 
argumentation can be seen in many of the behaviours observed in the workshop. Most 
teachers did not feel the need to justify a yes besides pointing to the triangle’s type or 
amount of sides. Many teachers clearly confuse a necessary and a sufficient condition 
(e.g. “three sides”). For some, the same justification (e.g. “two equal sides”) can serve 
the purpose of explaining a yes (for S4) and a no (for S2). The difficulty with S3 in the IT 
may be related with an incomplete learning process about the TR.IN, but also with the 
complexity of dealing with extreme cases. In some cases, the experimentation was 
denied; apparently some teachers believe that the knowledge of mathematical facts is 
not obtained through experimentation. Also, many team discussions were aborted 
because the teachers arrived at a cul-de-sac and found no way out of it.  
Many of the teams undertook argumentation processes that are far from satisfactory. 
We found examples of Flores’ (2007) argumentations authority-based (see e.g. [E3]), 
symbolic ([E7]), factual (end of [E4], Fig 2, all the yes/yes/yes/yes/yes), empirical 
(justifications to the IT because of the triangle’s type) or incomplete analytical ([E3] 
and [E4]). However, it is also noteworthy that although many of the teachers had 
previously no idea that a set of three lengths may not lead to a triangle, they tackled the 
new problem following complete and correct logical processes, discarding successive 
hypotheses with counterexamples in the discussions and striving to arrive at a general 
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formulation; that is, many of the processes were valid argumentations, whether 
empirical or analytical ([E1]). 
In these analytical argumentations, the kinds of reasoning processes described by 
Hadas et al. (2000) can be found: verification ([E2], [E6]), explanation ([E4]), 
systematization (search for counterexamples, [E6]), discovery (hypothesis, [E1]), 
communication (throughout the workshop, in the justifications of the IT, the 
discussions in the TT and the final expressions in the GD), and intellectual challenge (in 
the attitude of most teachers towards the task). 
As a final assessment, we can affirm that the workshop met its dual objectives. On the 
one hand, a Professional Development experience was provided to the teachers, which 
allowed for an awareness of their prior knowledge, a discovery moment involving a 
cognitive conflict, a reasoning process with the use of particular cases, examples and 
counterexamples, a peer discussion, and ended with a communication practice. On the 
second hand, the research facet leads to the knowledge about the need to include, in the 
professional training of teachers, certain topics and activities that may foster the 
development of reasoning, argumentation and communication. 
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ON STRATEGIES FOR SOLVING INCONCEIVABLE 
MAGNITUDE ESTIMATION PROBLEMS 

Lluís Albarracín & Núria Gorgorió 
Universitat Autònoma de Barcelona (Spain) 

 
Fermi problems are problems which, due to their difficulty, can be satisfactorily solved 
by being broken down into smaller pieces that are solved separately. In this article, we 
present Inconceivable Magnitude Estimation problems as a subgroup of Fermi 
problems. Based on data collected from a study carried out with 12 to 16-year-old 
students, we describe the different strategies for solving the problems that were 
proposed by the students, and discuss the potential of these strategies to successfully 
solve the problems. 

INTRODUCTION 
The process of solving problems has received considerable attention in the last few 
decades within the area of Mathematics Education, but not all of the advances in the 
research have made it into the classroom. In particular, mathematical modeling is not 
taught in secondary (12-16 years old) mathematics curriculums in Catalonia (Spain). 
For this reason, from the teacher's perspective, how modeling could be taught in the 
classroom emerges as a natural question.  
In this article, we suggest Inconceivable Magnitude Estimation Problems (IMEP) as a 
means for introducing modeling in secondary classrooms. IMEP present the student 
with a situation in which it is necessary to estimate the value of a considerably large 
real magnitude, well outside the range of their normal daily experience. These 
problems can be considered a subgroup of Fermi problems, and allow for different 
approaches to solving them. 
Given that IMEP are problems whose formulation situates them in a specific daily 
context, distinguishing the main elements from the less relevant ones is a difficult task 
for students. In this article, we discuss various strategies that students proposed for 
solving these problems. 

THE CONTEXT OF A PROBLEM AND ITS MODELING 
According to Van Den Heuvel-Panhuizen (2005), presenting a real context to 
problems can make them more accessible and suggest strategies to students. Problems 
that are related to daily life make it possible to begin teaching mathematics within the 
realm of the concrete and then move on to the more abstract. Chapman (2006) observes 
that many teachers present real context problems in a closed way which does not allow 
for discussion of the situations that the problems present.  Doerr (2006) explains this 
by stating that teacher education trains teachers to have this attitude and that ideally, 
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teachers should be trained to engage with the different kinds of responses that students 
can present.  
According to Winter (1994), the solving of problems with a real context includes the 
mathematization of a non-mathematic situation, which involves the construction of a 
mathematical model in accordance with the real situation, calculation of the solution, 
and transferring the result to the real situation. The most difficult step in this process is 
to come up with a model that is appropriate for the real situation, as it requires a good 
understanding of both the situation and the mathematical concepts involved, as well as 
a great deal of creativity. 
In the literature, two principal differences can be found between traditional word 
problems and modeling activities. Firstly, in modeling, one must connect mathematical 
concepts and operations with reality, thereby creating meaning for what is being 
learned, as well as symbolically represent a given situation (Lesh & 
Zawojewski, 2007). The second difference is related to modeling itself, since students 
must produce models that are applicable to a given situation and whose solutions can 
be generalized and interpreted (English, 2006). 

FERMI PROBLEMS 
Fermi problems are problems which, although difficult to solve, can be solved by being 
broken down into smaller parts that are solved separately.  They are named after the 
physicist Enrico Fermi (1901-1954), who often gave his classes with such problems. 
The classic Fermi problem that is most often given as an example is that of estimating 
the number of piano tuners in Chicago. This is approached by, for example, estimating 
the total population of the city, the percentage of families that might have a piano, and 
the time needed to tune a piano. 
Ärlebäck (2009) defines Fermi problems as “open, non-standard problems requiring 
the students to make assumptions about the problem situation and estimate relevant 
quantities before engaging in, often, simple calculations (p. 331).” Carlson (1997) 
describes the process of solving a Fermi problem as “the method of obtaining a quick 
approximation to a seemingly difficult mathematical process by using a series of 
educated guesses and rounded calculations” (p. 308) and asserts that they possess a 
clear potential to motivate students. Along the same lines, Efthimiou & 
Llewellyn (2007) characterize Fermi problems as always appearing to be vaguely 
formulated, giving little information or few relevant facts on how to attack the problem.  
At the same time, after more careful analysis, they can be broken down into simpler 
problems which can be used to solve the original problem. These authors argue that 
this type of problem encourages students to think critically. 
Others have taken interest in the concrete aspects of solving Fermi problems. 
Peter-Koop (2004, 2009), for example, gives primary students simple Fermi problems 
in order to understand the strategies they use to solve them, among other things. In her 
conclusions, she explains that students solve Fermi problems in many different ways 
which increase their own mathematical knowledge and that their solution processes are 
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multicyclic. These conclusions are a starting point that call for more in-depth research. 
After his observations of students solving Fermi problems,  Ärlebäck (2009) concludes 
that the processes which these activities depict “are richly and dynamically represented 
when the students get engaged in solving Realistic Fermi problems” (p. 355). In this 
way, she asserts that this type of problem presents an excellent opportunity to 
introduce students to mathematical modeling. 

INCONCEIVABLE MAGNITUDE ESTIMATION PROBLEMS 
Our work focuses on problems based on magnitudes that we can not perceptually 
estimate without some training, as well as magnitudes which we can imagine, but for 
which it is difficult to interpret their value. If we think of magnitudes with which we 
are familiar and to which we have given meaning (the size of a pen, the time that passes 
during a football match, or the number of people in a classroom), we can 
metaphorically assert that they are familiar and conceivable. Some examples of 
magnitudes which are inconceivable in this sense are the quantity of rubble produced 
by leveling the earth at the construction site of a building, the number of cars that go by 
a determined point on a motorway in one day, or the number of trees in a forest. 
Taking these ideas as a starting point, we define an inconceivable magnitude as a 
physical or abstract magnitude which is beyond our ability to interpret and for which 
we have not created any meaning. It must be emphasized that, according to this 
definition, the determination of magnitudes that we consider inconceivable varies from 
person to person. This determination will be conditioned by their knowledge, abilities 
or experiences. 
Once we attempt to determine the value associated with an inconceivable magnitude, 
we must by definition work with approximate values. The most natural way of 
obtaining values for inconceivable magnitudes is to come to an estimation through 
reasoning. To ask 12 to 16-year-old students to estimate the value of an inconceivable 
magnitude from their environment is problematic, as it is a type of word problem task 
which they have not been taught to solve. 
Our assumption is that this type of problem should require students to deal with 
situations that are real for the students, or with which they are familiar. They can be 
adjusted to different levels, and can help to promote discussion in the mathematics 
classroom. They can also be used to bring topics that are relevant to the students' 
personal development into the classroom, thereby improving their knowledge of their 
environment. At the same time, since exact methods for solving them are not viable, 
these problems allow students to work on estimation of magnitudes and the assessment 
of errors in their measurements. Our aim is that, as they solve these problems, the 
students see the necessity of focusing on the essential components of the situation they 
are given. In this way, our intention is to introduce the students to mathematical models 
for solving these problems. 
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THE STUDY 
Pólya (1945) established a problem-solving model with four phases: 1) understanding 
the problem; 2) making a plan; 3) carrying out the plan; and 4) looking back. The 
objective of our study is to determine what factors have an effect on comprehension of 
the problem and the types of solving strategies that students produce when faced with 
inconceivable magnitude estimation problems (IMEP). In order to focus analysis on 
the first two phases of Pólya's model, the instructions given to the students explicitly 
asked them to restrict themselves to explaining how they would solve the problem. We 
used six estimation of inconceivable magnitude problems which, based on the 
responses of a reduced group of students in a pilot test, were selected from an initial set 
of 36.  
The problems we used were: A) How many tickets could we sell for a (sold-out) 
concert in the school schoolyard?; B) How many people are there in a demonstration?; 
C) How many SMS messages do Catalans send each other in one day?; D) How many 
drops of water are required to fill a bucket?; E) How many glasses of water are needed 
to fill a swimming pool?; F) How many one-euro coins fit in a safe with a volume of 
one cubic meter? 
Each problem had instructions which situated it in a real context. For example, the 
context for problem A was the need to anticipate the number of tickets to sell for the 
school's year-end party; for problem D, students were told that there was a leak near the 
computers in the teachers' room. All of the instructions were refined in a pilot test 
carried out with a small group of university-bound secondary students (students 
between 16 and 18 years of age who had finished the compulsory phase of secondary 
education) in order to verify that the students would have no problem understanding 
the situations presented in the problems. 
The problems were given in one-hour class sessions to students in the compulsory 
phase of secondary education in two schools, one public and one private. They were 
asked to individually explain the steps they would follow to solve the problem. They 
were explicitly instructed not to make any calculations and to limit themselves to 
describing the procedure they considered the best for tackling the problem. The 
students responded to these questionnaires for 15 to 30 minutes. In this way, we were 
able to collect responses to several questions from each student. We thereby collected 
538 proposals from the 216 students who participated in the study. 
We analyzed the students' responses using NVivo 8 software, which permits 
establishing different categories of analysis and data management, as well as 
cross-comparison of different types of queries. As Gibbs (2007) suggests, the 
codification of data into categories establishes a frame of reference for interpreting the 
data collected, which allows for it to be analyzed from different perspectives. 
In particular, our analysis sought to: a) see whether the students' proposals indicated if 
they were or were not on the right track to solving the problems; b) analyze the 
different types of strategies they proposed for solving the problems in order to identify 
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attempts at modeling the situations; and c) determine whether the students' proposals, 
if carried out, would result in solving the problems. 

STRATEGIES AND SOLUTION SUCCESS 
Below we present and illustrate the different types of strategies identified in the 
students' proposals for solving the six problems used in the study, and examine 
whether what they proposed would result in solving them effectively. 
The following is an example of a method proposed by a 15-year-old student to solve 
problem D, in which students were asked to estimate the number of drops of water that 
would be needed to fill a bucket: 

“It depends on the dimensions of each drop, on whether it will fall entirely into the bucket, 
and on the size of the bucket. We'd also need to check that the drops didn't evaporate.” 

As we can see, this response contains a list of elements that could help in solving the 
problem, but does not indicate a specific plan or procedure for obtaining the estimate 
that is asked for. This is an example of a type of proposal that we have classified as 
proposal lacking strategy. 
We also found students whose responses merely proposed an exhaustive count, which 
is a strategy that can not be considered effective for solving an IMEP. The following is 
an example of this type of procedure for estimating the number of glasses of water 
required to fill a swimming pool (problem E): 

“I'd get some glasses and start to fill them with water from the pool. I'd get as many glasses 
as I needed to take all the water out of the pool. After that, I'd simply count how many full 
glasses there were to know how many I'd need.” 

In this case, the student proposes to empty the pool using glasses and then to count 
them afterwards. The next is an example of the same type of strategy, in which a 
student suggests counting the number of drops of water contained in a bucket (problem 
D): 

“In this case, what I'd do is see how long it took for the bucket to fill up (by counting the 
drops), and then I'd remove all the computers to make sure they were not damaged, and 
then I'd put another bucket in its place.” 

We also found other strategies that were more suitable for solving the problems. The 
following is a response to the problem of estimating the number of people who would 
fit in the schoolyard for a concert (problem A): 

“First of all, I'd mark out the stage area, then I'd set out a row of chairs, as many as would 
comfortably fit, to determine the width, and then the next step would be to do the same, but 
lengthwise, since the others were for the width. Finally, I'd multiply the width by the length, 
since it's a square or rectangle, and the resulting number would be the number of tickets.” 

In this approach, the student proposes a rectangular arrangement of the audience as a 
model, a model which makes successful solution of the problem possible. The student 
proposes to estimate the number of chairs that would fit in the schoolyard in two 
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dimensions and then to calculate the product. A different, but equally suitable, 
approach to solving the same problem is the following: 

“The first thing I'd do would be to calculate the maximum number of people who could fit 
in the schoolyard. To start, we'd need to know approximately how many people there were 
per square meter, and then how many square meters the schoolyard was from its length and 
width. Finally, multiply the people by the number of square meters in the schoolyard. With 
the resulting number you know how many tickets could be sold.” 

In this case, the mathematical concept the student proposes to model the situation and 
thereby obtain an estimate is that of population density. This approach is also valid for 
obtaining a satisfactory result. Another approach for solving this same problem was the 
following: 

“I'd get 10 students and calculate the space that each one occupied, and then the average. 
I'd calculate the total area of the schoolyard and then subtract the space the stage would 
take up. The resulting space would be the space available for people, which I would divide 
by the average space occupied by each student. Then, for example, if the result were 108 
students, I'd sell 100, because if not, the space would be too tight.” 

In this case, we can observe that the model used is that of the iteration of a unit. This 
model is based on establishing a unit of reference which is then applied over the set that 
is to be estimated, in this case, the average area that a person occupies. As these 
examples demonstrate, the students' proposals displayed different kinds of strategies 
for the same problem.  
In our analysis, we established different categories to organize the students' proposals 
for those aspects that were of interest to us: type of strategy and solution success. We 
established several categories for the proposed strategies. We found that there were 
students who did not propose any defined strategy (lacking strategy) and others whose 
proposals employed an exhaustive count (count). Yet others relied on seeking 
information from external sources or who proposed asking someone else (external 
source). On the other hand, there were students who attempted to reduce the problem 
to a smaller problem within their reach and to use a factor of suitable proportion 
(reduced proportion). Yet others attempted to break the problem down into smaller 
parts and to solve these separately based on concepts such as population density or 
points of reference, such as the volume of a glass (breakdown). Finally, there was one 
student who proposed solving the problem by comparing it with a real situation he was 
familiar with (real situation and proportion). 
As for the success of the solutions, we established three categories for classifying the 
proposals according to the degree of success that could be obtained were they to be 
carried out. Proposals which did not result in a satisfactory estimate, or which did not 
specify a concrete course of action, or a course of action with erroneous ideas, were 
classified as Not solved. By logic, there should be one other category for proposals 
which solved the problem, but given the nature of IMEP, we found two clearly 
differentiated types of proposals which resulted in a valid result. 
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On the one hand, some proposals relied on exhaustive counts. Taking into account the 
fact that the magnitudes in question are not within ordinary reach and refer to very 
large numbers, these proposals would require a long time or excessive resources to be 
carried out, even if the proposed procedure was valid. For this reason, we classified 
such proposals as solved on paper. 
Finally, we established the category Solved for proposals that displayed a procedure 
that could be carried out in practice and which was effective in obtaining a satisfactory 
solution to the problem. Most of the proposals in this category included some element 
of modeling to represent the situations in which the problems were developed. 
Relational analysis produced a table that correlates strategy type with the degree of 
solution success  proposed by the students. 

 Solved Solved on paper Not solved Total 
Lacking strategy 0 (0%) 0 (0%) 160 160 

Count 0 (0%) 84 (87%) 12 (13%) 96 
External source 0 (0%) 14 (70%) 6 (30%) 20 

Reduced proportion 13 (42%) 4 (13%) 14 (45%) 31 
Breakdown 109 (47%) 52 (23%) 69 (30%) 230 

Real situation 1 (100%) 0 (0%) 0 (0%) 1 
Total 123 154 261 538 

Table 1: Strategy proposed vs solution success 
The Table 1 shows that proposals which lacked any kind of strategy and proposals 
which used an external source or comprehensive count did not result in valid solutions. 
On the other hand, strategies which reduced the problem to smaller ones in order to 
carry out a proportion of scale and strategies which broke problems down into smaller 
parts and solved these parts separately were the strategies that, in at least 40% of cases, 
successfully solved the problems. 

ConclusionS 
In this article, we introduce Inconceivable Magnitude Estimation Problems and 
demonstrate that they can be solved through the use of partial estimates. In this way, 
following the definition proposed by Ärlebäck (2009), IMEP are a subclass of Fermi 
problems. We have seen that students produced many different strategies that would 
result in successful solutions to these problems. We therefore believe that IMEP can be 
useful for showing students that there is more than one way to solve a problem and that 
each can result in the same solution. In this way, focus can be shifted to the process of 
solving a problem, thereby breaking away from the tendency to focus exclusively on 
the result. By using IMEP, teachers have access to open problems which can be  
discussed in an open manner due to the existence of different approaches to their 
solutions (Chapman, 2006). 
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Furthermore, it is important to note that the strategies which allowed students to solve 
the problems displayed elements of modeling, which leads us to believe that IMEP 
could be a useful tool for introducing the processes of modeling into the classroom. 
More specifically, we believe that group work and project work would allow all 
students to use the modeling strategies proposed by some of the students in our study. 
At the same time, exhaustive strategies could be a way to generate discussions that 
would promote the use of more elaborate strategies that would show students the need 
to create models which describe the most relevant aspects of a given situation. 
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REFLECTING UPON AMBIGUOUS SITUATIONS AS A WAY OF 
DEVELOPING STUDENTS’ MATHEMATICAL CREATIVITY 

Miriam Amit, Talya Gilat 
Ben Gurion University of the Negev (Israel) 

 
The aim of this paper is to show how engaging students in challenging, ambiguous 
situations through model-eliciting activities can stimulate their mathematical 
creativity and extend the variety and the quality of their mathematical models. The 
participants were mathematically talented primary school students who were members 
of “Kidumatica” math club. We used the "Bigfoot" modeling task to immerse students 
in an authentic, hands-on mathematical situation. This activity allowed students to use 
and extend their creative thinking, which was exhibited itself in the diversity of their 
significant mathematical ideas. Students invented, discovered and created different 
types of strategies and mathematical conceptual tools. 

INTRODUCTION 
Learning is the development of both knowledge and skills. We make sense of our 
world by integrating and analyzing the wealth of information around us. However, 
rapid growth and development in the 21st century, which touches upon every aspect of 
our daily lives, requires an educational system that will provide students with authentic 
learning experiences that reflect this ever-changing, complex and ambiguous 
environment. Students need to cope with, and assimilate the global changes in 
technology and information.  
The OECD (2008) stated that mathematics "curricula should reflect the reality…[and] 
should stress innovative applications of mathematics" (p. 18). Relaying on the 
assumption that education plays an essential role in encouraging and promoting future 
generations' potential, including cultivating excellence and nurturing diversity (Amit, 
2010; Adams 2005), one might question whether mathematics education and educators 
are relating to the proliferation of technologies and innovations that are globally 
transforming our lives. 
Researchers in mathematics education and developers of model-eliciting activities 
(MEAs) emphasize the productive aspects of the nature of mathematics and encourage 
students to develop an explicit mathematical interpretation of ambiguous, authentic 
and complex situations that might occur in their everyday lives (Chamberlin & Moon, 
2005; Lesh & Sriraman, 2005; Della & Cynthia, 2010). From this perspective, the 
present study explores how engaging students in challenging, ambiguous 
mathematical situations can stimulate their creativity and extend the diversity of their 
mathematical ideas.    
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TOLERANCE TO AMBIGUITY, AND CREATIVITY 
The accelerating changes in technology and science in the 21st century are provoking 
more ambiguity and uncertainty than ever before. Ambiguous situations, which have 
become an inseparable part of our living environment, were investigated early on in 
terms of people's predispositions to viewing ambiguous situations as either threatening 
or desirable (Budner, 1962; Norton, 1975). Budner (1962) defined ambiguous 
situations as complex, new or contradictory situations and claimed that people who are 
intolerant of ambiguity have “the tendency to perceive ambiguous situations as sources 
of threat" (p. 29). Norton (1975) offered eight different causes of ambiguity: 
(1)multiple meanings, (2) vagueness, (3) incompleteness, or fragmentation,(4) 
probability, (5) lack of structure, (6) lack of information, (7) uncertainty, 
inconsistencies and (8) contradictions, and lack of clarity; in each case, individuals’ 
emotional perception of the situation was described as ambiguous tolerance.  
Research has revealed a significant role for ambiguity, and the tolerance for it, in 
creativity, innovation, and problem solving (Guilford, 1973; Kirton, 2004; Adams, 
2005; Sternberg, 2006). Guilford (1973), who associated divergent thinking with 
creativity, argues that “tolerance of ambiguity” is one of the characteristics of a 
creative individual. Sternberg (2006), in his research on the nature of creativity, 
claimed that according to investment theory, students can decide when to be creative, 
and that being "tolerant to ambiguity" is one among 20 decisions which can encourage 
students’ creativity. Kirton’s (2004) adaptive-innovative theory, which deals with how 
people solve problems, differentiates between adaptors, i.e. those who desire to do 
things better, and innovators, who are more tolerant of ambiguity, are risk-takers and 
tend to produce more ideas. Adams (2005), in her report on the sources of innovation, 
offered some recommendations on how the educational system can foster students' 
innovative and creative skills, arguing that “a rigid environment that adheres too 
strictly to procedure does not foster creativity. By contrast an humorous, jovial 
environment where there is comfort with ambiguity and a focus on ideas rather than 
careers is favourable to innovation (p. 33). 

AMBIGUITY IN MATHEMATICAL MODELING ACTIVITIES  
Mathematical-modeling activities based on “real-life” problem situations are 
open-ended, authentic tasks with a high level of complexity, in which students are 
given the opportunity to construct powerful ideas relating to interdisciplinary data 
(Lesh & Sriraman, 2005). These activities differ from traditional “word problems” 
which define static assumptions involving givens and goals (Della & Cynthia, 2010). 
MEAs require students to make sense of ambiguous situations that can involve 
uncertainty, lack of information, contradictions or conflicts (Chamberlin & Moon, 
2005), with no formula or model provided to complete the MEA (Lesh & Caylor, 
2007). The ambiguity of the problem statement and data representation allows diverse 
interpretations that tolerate more than one single or unified viewpoint or perspective. 
This suggests that various responses may be appropriate and that there are likely to be 
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various levels of correctness, depending on students' interpretations, mathematical 
abilities, general knowledge and skills (Chamberlin & Moon, 2005; Lesh and Doerr, 
2003). 

AMBIGUITY AND MATHEMATICAL CREATIVITY 
Non-routine problems and heuristic tasks that require students to reflect upon complex 
and ambiguous situations have been suggested by number of researchers as a way of 
stimulating and promoting students’ mathematical creativity (Polya, 1957; Sriraman, 
2008; Sriraman & Dahl, 2009). Sriraman (2008), who defines mathematical creativity 
as the ability to produce novel or original work, claims that “students should be given 
the opportunity to tackle non-routine problems with complexity and 
structure—problems which require ….also considerable reflection" (p. 32). Polya 
(1957), in his book "How to Solve It", advocates a heuristics approach as a way to 
“study the methods and rules of discovery and invention” (p. 113), but argues that 
“heuristic argument is likely to be harmful if it is presented ambiguously” (p. 113). 
Sriraman and Dahl (2009), in a descriptive article explaining the significant role of 
interdisciplinarity in mathematical education, claimed that “teachers should embrace 
the idea of ‘creative evidence’ as contributing to the body of mathematical knowledge, 
and they should be flexible and open to alternative student approaches to problems" (p. 
1248). The emergence of multiple responses according to Guilford’s (1973) definition 
of divergent thinking increases the possibility of arriving at original thoughts. 

METHODOLOGY 
The following research was aimed at revealing the implications of MEAs on students' 
creative mathematical thinking. The modeling activity was based on the Bigfoot 
modeling task (Lesh & Doerr, 2003), which involves four of Norton’s (1975) causes of 
ambiguity: (1) multiple meanings, (2) vagueness, (3) probability, and (4) lack of 
information. Students were asked to help a scout group discover who fixed their 
fountain. The only clues the scout group had were “huge” footprints left in the mud. 
Students had to develop a conceptual mathematical tool that would enable estimating 
the height of this “giant” man. In addition, they were asked to write a letter 
mathematically justifying their solution and explaining how to use this tool. Each 
group of students received a depiction of an authentic large footprint's stride on a piece 
of cardboard, and measuring tapes and calculators were made available to them.  The 
task was worked on by small groups (3–4 students) for about 50–60 minutes and at the 
end of that time, each group had to present their models; solutions were shared and 
discussed by the whole class for about 30–40 minutes.  
Participants 
Participants in this study included 78 "high-ability" and mathematically gifted students 
in the 5th through 7th grades who are members of the "Kidumatica" math club. The 
"Kidumatica" program provides a framework for the cultivation and promotion of 
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exceptional mathematical abilities in youth from varied socio-economic and ethnic 
backgrounds (2009).  
Data 
The data consisted of students’ documents written during the MEA, classroom 
observations, and video-recordings of their model presentations. The written data 
included students’ modeling drafts, their conceptual tools and written presentations. It 
should be emphasized that the students were asked to write down everything, so that 
drafts, sketches and the final solutions could be collected. The video-recording 
included students' oral presentations of their models, researcher interviews and class 
discussions. Transcripts of these videotapes were used along with students’ written 
data to assist researchers in the analysis.  

FINDINGS AND RESULTS 
The model-eliciting process requires students to pass through several cycles. Each 
group went through different cycles of interpretation, development and testing; the 
students had to construct the data, recognize the important variables and discover the 
relations between those variables through several phases of development. The first 
phases were premature and naïve, with some students exhibiting difficulties coping 
with the complexity and ambiguity of how to use the data to create a meaningful model. 
However, as the process progressed, they improved their interpretations, and 
discovered repetitive behavior in the data which led them to mathematize the situation 
and develop diverse mathematical responses. In their final cycles, the students moved 
from everyday language to the use of symbols and mathematical formulas which 
helped them communicate their new ideas.  
Students made use of different elements, such as age, gender, different shoe 
dimensions (width, length, perimeter of shoe), strides and other parts of their body to 
invent, discover and develop different rules and patterns that would describe and 
explain the relationships between those elements. The diversity of student responses 
was also affected by the cognitive and affective abilities they demonstrated during the 
modeling process. Students’ modeling responses were analyzed with respect to the 
elements selected, and the relationships and operations used to explain and predict or 
estimate these ambiguous situations. In this paper, the diversity of student responses 
was identified by the differences in the strategies they demonstrated. The research 
involved models from 22 groups, which presented at least 12 different models. Some 
strategies appeared in more than one model but they were used in different contexts, 
based on different interpretations or with different elements. In the following we focus 
on six of these models. 
The first model was based on the proportional relationship between an individual's 
height and shoe length: this strategy was generated by most of the students, but their 
development processes and interpretations differed. During the development process, 
students used analogies and metaphors to organize their thinking and to reflect on the 
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situation. The following two examples demonstrate how two different types of 
analogies led to the same model, as explained during their modeling presentation. In 
the first group, students drew analogies between getting longer and getting taller. Dan: 
"We were told that this man is very long [in Hebrew the word for length can be used to 
indicate a person's height] so we decided to use the length of the shoe to find the length 
of the man." In the second group, two 6th graders drew an analogy between 
proportionally growing up and the mathematical notion of proportion. Maor: "We 
thought that as the man grows, his whole body is growing and also his foot, but the man 
is the same, he is proportional, his head or his feet cannot grow too large so we wanted 
to calculate this proportion." Another group used a similar strategy, but instead of shoe 
length they discovered the correspondence between shoe length and shoe size and used 
the ratio between height and shoe size.     
The second model was based on strides. Here students used the length of their stride 
and the ratio between it and height. Two students in this group explained how they 
constructed their model by estimating how many times the average stride is smaller 
relative to the height. Nitai: “We allowed each of us to walk and for each stride we 
measured the gap and averaged it.” Didi: “Then we measured the height and divided by 
it and we found that the average stride is three times smaller than the height.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1: Ratio between height and sum of shoe length and width -                                    
(third and fourth models) 

The third and fourth models both involved the ratio between height and the sum of 
shoe length and width, but the third model involved this rule with an extension: 
students realized that some children had narrow shoes and some wider. They extended 
their model by adding a constraint that depended on the width of the shoe. Avia: "Then 
we noticed that my shoe is relatively wider and Sagi's shoe is narrow compared to its 
length." Sagi: "So we decided that if the shoe in its narrowest part [pointing to the 
narrow part in his drawing, which appears in Figure 1] is less than 10 cm we multiply 
by 5, otherwise we will multiply by 4." During the presentation and class discussion, 
these students explained how they tried to mathematize the dependence between shoe 
width and length and its relation to the constraint that could enhance the prediction of 

  
 For shoe that is wide     comparing to its length multiply by X 4 
 For shoe that is narrow comparing to its length multiply by X 5 
 
              than 10 cm    than 10 cm 
                                                      A/S X (width + height) 
                                                                  According 
                                                                 to the width 
                                                                 of the shoe       
                               
The height of the person that repaired the fountain is 2.04 m 
    Since the width of the shoe        13 
              the length of the shoe        38 
                                                              4X(13+38) = 2.04 

                                                               Width   length 
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height, but they did not have time to complete it. Researcher: "I can see that you wrote 
A/S and erased some words” (A/S is circled in red, and the erased part is circled with 
dashed lines in Figure 1). Sagi: "We didn’t have time to complete our solution to find 
the exact ratio between width and length so we compared the shoe's width to 10 cm.” 
Avia: "But we wanted to use the proportion between length and width…so we just 
wrote A/S."  

 

 

 

 

 

 

 
 

Figure 2: In the Ratios between height and shoe length depending on person's age 
(fifth-model) 

 
 
 
 
 
 
 
 
 
 

Figure 3: Ratio between shoe length and body length up to the hip (sixth-model) 
The fifth model proposed by the students brought together three variables to construct 
a conceptual tool for estimating a person's height. Different ratios were used between 
height and shoe length, depending on the person's age. Figure 2 shows their 
mathematical formulation and an explanation on how to use their conceptual tool.  

Formulation for height  
according to foot length   
           For child:                      For adult:             
                         
          Ratio                         Ratio 
H - height    a - foot length 
For child: I measured myself and checked  
the proportion between the foot and the height 
For adult: I measured Boris [his tutor] and 
checked the proportion between the foot and the 
height 
How to: measure footprint, estimate age, and 
compute according to the appropriate equation. 

An instrument for estimating man’s height 
1. We measured the foot length. 
2. We checked the average of the times that 
 it fit up to the hip 
3. We multiplied the foot by it. 
4. We multiplied it by 2 because we found it 
     only up to the hip and it is half of the  
     overall height.                 Exercise:  

      Foot print size:              37.5 
      In the height up to hip:  3     x                         
                       Up to hip      112.5 
                      Up to head     2       x    
                                              225 

                                The result = 225cm     
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The sixth model was from 5th graders who used measurements of some parts of their 
body to estimate the man’s height. This model was based on two proportions: the ratio 
between shoe length and the length of the body up to the hip and that between the latter 
and total height. Students took measurements of their bodies up to their hips and total 
height to calculate the ratio of each child in the group, then they calculated the second 
ratio, averaged it and found that “it is half of the overall height” (see Figure 3). In the 
second part, they measured their shoe and calculated “the average times that it fit up to 
the hip.” 

DISCUSSION  
The variety of mathematical responses obtained shows how MEAs can be used to 
promote the development of more diverse and sophisticated creative conceptual 
mathematical tools in students. The Bigfoot task was non-routine, complex and 
structured which, according to Sriraman (2008), is required for the emergence of 
students’ mathematical creativity. In addition, this task inspired students to reflect 
upon ambiguous situations: students had to construct an estimation to find the height of 
an unknown person based on uncertainty and lack of information (Lesh and Doerr, 
2003; Chamberlin & Moon, 2005). According to Norton (1975), lack of information, 
probability, vagueness and multiple meanings cause ambiguity, and the students were 
required to deal with different interpretations. Students asked a broad range of 
questions, and raised assumptions based on their experience, mathematical skills and 
general knowledge (Lesh & Sriraman, 2005; Lesh & Caylor, 2007). This led them to 
discover, invent or develop different mathematical patterns and rules using different 
pathways and representations, increasing their tendency to produce original ideas 
(Guilford, 1973; Sriraman, 2008). Finally, the collaborative work, involving model 
development, model presentation and class discussion at the end of the modeling 
activity, encouraged students to mathematically communicate their new ideas. The 
ambiguity and complexity of the task exposed students to different approaches, 
multiple different pathways and innovative mathematical solutions, described by 
Sriraman and Dahl (2009) as ‘creative evidence’. This creative process not only allows 
students to apply their mathematical skills and abilities, it also promotes student 
diversity, comprised of their different perspectives, experiences and backgrounds 
(Amit, 2010). Reflecting upon ambiguous situations increases the potential for 
innovation, discovery and creativity.  
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COHERENCE AND CONSISTENCY IN SOUTH AFRICAN 
PRIMARY MATHEMATICS LESSONS 

Mike Askew Hamsa Venkat Corin Mathews 
Monash University  Wits University Wits University 

   
This paper contributes to the body of research on the pedagogic content knowledge 
required for primary school teachers to teach mathematics effectively. The particular 
focus is on teachers from ten schools in South Africa engaged with a longitudinal 
research and development project: the Wits Maths Connect–Primary project 
(WMC–P). We report on a video of a lesson that on the surface ‘works’ in that the 
teacher provides mediating means (physical, verbal and symbolic) that allow most of 
the learners to successfully complete the tasks set in the whole-class setting, though not 
so successfully within individual work. Our analysis reveals, however, that there are 
mismatches in the coordination of tasks, mediating means and mathematical objects, 
with each co-varying as tasks unfold, resulting in the mathematical objects not 
emerging for many learners. 

INTRODUCTION 
National standardized and international comparative test results continue to paint a 
bleak picture of performance in mathematics in South Africa. For example, 
performance on the 2011 Annual National Assessments indicated that the national 
mean result at Grade 6 (predominantly 11- to 12-year-olds) stood at 30% (Department 
of Education (DoE) 2002) Previous evidence indicates that the majority of South 
African learners achieve well below the levels stipulated in the National Curriculum 
Statement (Department of Education, 2002), and these low levels are entrenched in the 
national landscape by the end of the Foundation Phase (Gr R - 3, 5- to 8- year-old) 
(Fleisch, 2008). In this context, we have begun a longitudinal research and 
development project – the Wits Maths Connect–Primary project (WMC–P) – focused 
on developing and investigating interventions to improve the teaching and learning of 
mathematics in ten government primary schools. Project team discussions about 
lessons observed early in the project noted a lack of clarity both of purpose and 
coherence in lessons. Supporting connection-making is viewed as central to teaching 
for conceptual understanding (Askew, 1997; Scott, Mortimer, & Ametller, 2011), so 
we set out to investigate and understand more rigorously ways in which a lack of 
clarity or coherence was constituted in lessons.  
In the majority of lessons observed (n = 33 of 41 Grade 2 classes), the bulk of time was 
spent on oral whole class work orchestrated by the teacher with some individual 
written work within this time, but limited extended individual seatwork. This whole 
class talk is focused around particular mathematical tasks with the teacher mediating 
for the learner how to engage with the task. To understand lack of clarity and 
coherence we focus on how teacher mediation, through talk and artifacts/tools, 
facilitates (or not) the emergence of mathematical objects for the learners.  
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THEORETICAL UNDERPINNING 
Cole (1996) reminds us that genetic analysis has to operate at different levels: 
historical, ontogenetic and microgenetic. This paper reports on a microgenetic analysis 
of mathematical objects as they are co-constructed by teachers and learners. By 
considering the main activity of lessons, the action learners engage in and the 
mediating means used by the teachers we reveal aspects of the teachers’ understanding 
of mathematics that allow us to speculate on the ontogenetic origins of their practices. 
This paper presents one lesson case study as an exemplar. 
For our microgentic analysis we build on the Vygotskian ideas of mediation (1978) 
examining mathematical tasks as they are enacted in terms of the subject (teacher), 
object (the mathematical object that the lesson is intended to bring into being) and 
mediating means. We theorise lesson ‘objects’ as being multiple, in the sense that a 
teaching episode may have more than one object - an indirect object of learning and a 
direct object of learning (Marton, Tsui et al. 2004). In the case discussed here we 
interpret the indirect mathematical object to be understanding missing addends, while 
the direct object is to complete a number of missing addends calculations. As a 
mathematical object will only emerge over time, we theorise this as being occasioned 
through activities, actions and operations (Leontiev, 1978), extending this trifold 
model to include ‘tasks’ at a level between ‘activity’ and ‘actions’. We interpret 
activity as a large coherent ‘chunk’ of a lesson or lessons activity that appears to be 
directed at a mathematical object. Within an activity there are a number of tasks 
learners engage in which are more at the level of the direct objects. Certain actions 
allow the completion of the tasks, with these being made up of specific operations: we 
focus our attention on the teacher’s mediating means to support these operations, 
‘chaining’ back up through actions and tasks to examine whether the activity is 
coherent and supporting the emergence of the mathematical object. 
A lesson may, as it is enacted, have more than one object in that the object might 
change as the activity unfolds as a consequence of the teacher’s choice and use of 
mediating means. We thus make the distinction between the intended mathematical 
objects - what learning a particular activity appeared to have been chosen to bring 
about - and the enacted mathematical objects - what emerges as the activity unfolds. 
The intended object may or may not be explicitly articulated by the teacher: when not 
articulated and in the absence of guidance from the teacher we speculate, given the 
teachers talk and choice of actions as to what the intended object is. 

DATA SOURCES 
The case study presented here is drawn from a set of classroom observations collected 
as baseline data for the 5-year WMC–P project. This data included observations and 
videos of one mathematics lesson from each of the Grade 2 classes in the ten project 
schools (n = 41). Preliminary analysis of this data revealed that while the majority of 
the lesson appeared to run smoothly, closer observation suggested a disconnected 
sequencing of actions and operations leading to, from the learners perspective, 
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ambiguity in and obscuring of the indirect learning objects. The lesson focused on in 
this paper was selected as a ‘telling case’ exemplar (Mitchell, 1984) of such ambiguity 
and obscuring. The lesson is typical in having extended instances of whole class talk, 
which we had observed across the lessons. The tasks the teacher introduced to the class 
were also quite typical of the range of tasks observed.   
The teacher, Pearl (pseudonym), is an experienced the Foundation Phase teacher. 
Pearl’s primary school is located in a township/informal settlement area, with a roll of 
over 1800 and relatively large classes (37 present in the focal lesson; 3 absent) in 
temporary classroom buildings. The area has significant inward migration from other 
parts of the country, and children in the Foundation Phase are placed in classes 
according to their home language. Pearl’s class is taught in Zulu – one of two Zulu 
classes in the 6 form grade 2. .   
The core mathematical task for Pearl’s lesson was centred on a resource described as a 
‘wheel’: writing ‘addition’ as the title for the activity, the resource, stuck up on the 
board, consisted of three concentric circles – 7 written on the inner circle, and the 
numbers 0-7 placed in random order around the outermost circle in separate sectors. 
The task explained by the teacher was to fill in the intermediate circle with the  
numbers that needed to be added to the outer rim numbers of the ‘wheel’ to make the 
number 7. Introducing and mediating the completion of the missing addends for 7 
wheel tool up the middle 26 minutes of a 50 minute lesson, and was followed by an 
individual worksheet activity based on a missing addends for 11 wheel.  
In terms of operational number range, the whole class missing addends to 7 task and 
the individual missing addends to 11 task tend to relate to the curriculum specification 
given for Grades R and 1: e.g. in the Grade R specification on work within Learning 
Outcome 1 – ‘Numbers, operations and relationships’, which includes ‘Solves 
verbally-stated additions and subtraction problems with single-digit numbers and with 
solutions to at least 10.’ 

DATA ANALYSIS 
Our analysis included five phases: (a) creation of a detailed transcript, (b) identifying 
the substantive intended activity (indirect mathematical object)  (c) identifying the 
direct mathematical objects of the lesson (d) analysis of the actions and operations 
directed at completing the tasks and (e) theorising the coordination of the mediating 
means (operations/actions) and intended objects of learning (activity) and the 
mathematical object as it played out in comparison with what was intended. In essence, 
as the analysis developed, phases (b) and (c) occurred concurrently: we present them 
separately here merely for ease of discussion.  
Initial creation of transcript 
Following a classroom observation, a bilingual English-Zulu transcribed the video 
recording, following our instruction to capture all the teacher’s talk within the lesson 
and the objects/ representations referred to within her talk – learner work/ diagrams on 
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the board/ work with manipulatives. This was then divided into episodes, based on 
shifts to a different segment of the activity, usually marked by the introduction of a 
new task. To improve accuracy and detail, the project team viewed the video 
recordings several times to clarify the interaction between teacher talk and the use of 
mediating means (e.g., fingers, objects, diagrams, gestures). 
Identifying the ‘activity’ 
We focus on activities, rather than lessons, interpreting activity as a sequence of tasks 
that appears to be directed at the same mathematical object. The sections of the lesson 
discussed here comprising an activity were framed by main tasks: whole class 
introduction of ‘wheels’; individual students completing a new ‘wheel’. 
Identifying the mathematical object 
The indirect mathematical object may be made explicit by the teacher, fully or partially, 
or left implicit. In this lesson the teacher began by announcing ‘we are learning about 
addition’. However this only partially announced the mathematical object. The activity 
- wheels - provided openings for the mathematical object to potentially emerge to be 
‘missing addends’, suggested not only by the construction of the wheel, but by the 
teacher’s repeated articulation of the task being to find what to add to the outer number 
to make the middle number.  
Analysis of the mediating means 
The activity in and of itself only provides the broad frame through which the 
mathematical object might emerge. It is the mediating means used in the enactment 
(actions and operations) of the tasks making up the activity that support the emergence 
and establishment of the mathematical object. 

CASE STUDY: WHEELS 
We present our analysis interwoven with the data from the activity (in italics). (T is 
teacher, Ch whole class chorus of answers, L1 learner 1 and so forth).  
The teacher introduced the lesson with a brief discussion on addition: 

1 T:  Today we are going to add. We are adding the numbers. We all know how 
to add, right? 

2 Ch:  Yes. 
3 T:  Who can tell me, adding is to do what? When we say we are adding what 

are we doing to those things? 
4 L1:  It’s adding two things together. 
5 T:  When we add it is to take two things and make it one thing. 

The teacher attached a paper with the word ‘Addition’ (in Zulu) to the board and asked 
the children to read it, three times, and then to inscribe the addition symbol in the air. 
She fixed to the board the paper displaying the ‘wheel’. 

6 T:  We are going to use this wheel today to add.  
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After counting with the class from zero to seven to check that all the corresponding 
digits were in the outer ring, the teacher introduced the tasks. 

7 T:  Here I want you to tell me which numbers we can add to each number on 
the wheel to give us seven. 

Utterance (7) is the first indication of  ‘missing addend’ (although not spoken of in 
those terms) as the indirect object of the activity. This is the articulated object that the 
teacher spoke of most frequently during the activity, although it differs from her first 
statement of adding being to ‘take two things and make it one thing’ (line 5). 

8 T:  I will make an example. Seven. When we add it with zero (pointing to zero 
on the other ring) will the number change? (8) 

Here we see the first shift in the mathematical object. The teacher’s style of questioning 
is consistent with her earlier articulation of the mathematical object in line 5. Rather 
than asking ‘what do we need to add to zero to make seven’ (consistent with the 
mathematical object of missing addend) she asks ‘When we add it with zero will the 
number change?’ ‘It’ is problematic here: does it refer to the seven in the centre of the 
wheel or to the seven that needs to be added to zero to make seven? In the light of 
subsequent actions by the teacher (see below) our interpretation is that the teacher 
uses her knowledge of seven as the answer to the first (implicit) question (‘what needs 
to be added to zero to make seven?’) and bases the articulated question on this answer 
rather than the mathematical object of the activity. (The choice of zero as the first digit 
to work with is also not helpful as it does not make clear the distinction between ‘What 
needs to be added to zero to make seven’ and ‘Add seven and zero’ as both actions 
yield the same answer.) 

9 T:  I want you to look for numbers on the inner wheel (pointing to the blank 
disc) that we will add with the number on the small wheel (pointing to the 
outer disc) so that the answer is seven. We will start with one (pointing to 
‘1’ on the outer wheel, holding up a toothpick) 

10 T:  This is one (showing the toothpick). Right?  
11 Ch:  Yes. 
12 T:  I want you to tell me which number we are going to add one with it to give 

us seven, which number is that? 
13 L2:  Six. 
14 T:  Which number is that? Six. Right? 
15 Ch:  Yes. 
16 T:  Let’s check if she is telling us the truth. 
17 T: (Holds up one toothpick) Let’s add six and see if we get seven.  

Teacher adds toothpicks to the one held up, the class counting along until she is 
holding six in that hand.  Holds up a seventh in the other hand. 

18 T:  On this side I have six, but on this other side I have one and when we add 
them (moving the two hands together) it will give us what?  

19 Ch:  Seven. 
With the task focused on ‘1’ the teacher again articulates the object in the spirit of 
missing addend (line 12), as is the learner’s answer. But the mediation with the 
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toothpicks is incoherent. Starting by holding up one toothpick and saying ‘let’s add six 
and see if we get seven’ again is consistent with checking the missing addend. What 
was actually modelled, however, was six add one, with the original ‘one’ that was 
being added to becoming subsumed within the group of six: the single seventh 
toothpick becoming signified as the one that needed to be added to the six to make 
seven, effectively ‘flipping’ the missing addend from being six to being one. 

20 T:  What do we need to add to two? (pointing to ‘2’ on the wheel) 
Boy (L3) holds up eight fingers. 

21 T:  He has jumped to eight. No. We want a number that will give us seven. You 
must first count two and then tell me which number must I add with that 
two to give me seven. 

  The boy holds out two fingers. 
22 T:  I will hold up two fingers for you (puts out two of her fingers) and you can 

add it with that number. 
23 L3:  (Counts his and the teachers fingers) Four. 
24 T:  Four? 
25 L3: Yes 
26 T:  No. (Ruffles boys hair) Count well. Which numbers can we add with two 

and give us seven? (Several hands up) 
27 L4:  Nine 
28 T:  Make seven with your fingers 
  Everyone holds up seven fingers (following what the teacher does as five 

on one hand and two on the other) 
29 T:  Now hide two and which number are you left with? Make your seven first 

and hide two. Which number can we add with this two to make seven? 
30 L5:  Eight 
31 T:  No, we made seven and hide two and what is left? The number that we will 

add with two to give us seven? 
32 L6:  Five 

This marks the beginning of defining subsequent tasks as ‘taking away’. The answer 
‘nine’ (27) suggests many children are interpreting the task as ‘add two and seven’ so 
the teacher introduces the model of holding up seven fingers and ‘hiding’ two of them - 
her articulation now elides between ‘taking away’ and missing addend (line 29). The 
children can follow the action of taking away and succeed at showing the five fingers 
left: thus an action is hit upon that leads to the correct answers being produced. But in 
doing so a shift in the mathematical object fundamentally is not established as a valid 
action through the mediation that occurs: while a child might eventually solve 5 +  __  
= 7 by subtraction rather than counting on, the teacher’s mediation assumes that this 
is obvious.  As most of the children now articulate the answer that the teacher wants 
this becomes the action for the remaining calculations: for the remaining digits the 
action is to put out seven fingers then ‘hide’ some of them. So for three: 

33 T:  Make three and add the number that will give us seven when added. Let’s 
make seven with our fingers. 

  Children hold out seven fingers (again as five and two) 
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34 T:  Hide three fingers, hide three fingers. How many fingers are left now? 
Having established that there are four fingers left, the teacher checks this by counting 
out three toothpicks, counting out four and then counting them all. The teacher 
continues to articulate the mathematical object as missing addend (utterance 33) and 
models this when checking, but the mediating actions for arriving are the answer are 
not consistent with this articulation. 

35 T:  I want a number that we will add with four and gives us seven. Four apples. 
Let’s first do our seven. (holds up seven fingers, class follows) 

36 T:  Hide four fingers, right? 
37 Ch:  Yes. 
38 T:  After hiding four which number is left? 
  This routine continues for five and six, after five the teachers saying: 
39 T:  Do you see how we add? 
40 Ch:  Yes. 
41 T:  Do you see? 
42 Ch:  Yes. 
43 T:  Does anyone not see if we add what we must do? 
44 Ch:  No. 
  For six, a boy struggles folding six fingers from his seven: teacher helps.  
45 T:  One plus the hidden six. How many do we have now?  
  Teacher and pupil together count the one finger and six hidden ones. 
46 T:  Which means we add six with what? 
47 L7:  Seven. 
48 T:  No, we don’t add it with seven, we add six with what?’ 
49 L8:  Seven . 

After this was completed, the children were given individual versions of the task to 
complete with 11 in the inner circle and cubes to use to help them. Many children 
continued to add the numbers in the outer ring to 11. Of the minority that did appear to 
attempting missing addends, a small number some worked without the cubes, with 
only a few succeeding in modelling the ‘taking away’ method with the cubes. Others 
struggled to set up a model that worked. 

DISCUSSION 
It is easy to simply see this case as an example of poor teaching and of a teacher with 
limited knowledge and skills. We suggest otherwise, and that lack of consistency and 
coherence in the lesson can be examined in terms of the teacher’s own subject 
knowledge and the style of teaching that she is trying to enact. 
The fact that the mathematical object appears not to come into being for many of the 
learners is not a direct consequence of the teacher’s lack of understanding of the object 
of missing addends. Much of what the teacher articulates indicates that this 
mathematical object exists for her. The issue lies in her having chosen tasks and 
mediating means based on her prior knowledge of the mathematical object but the 
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enactment of these has to be based on bringing the mathematical object into being for 
the learners, who do not share these prior understandings.  There is nothing lacking in 
the teacher’s mathematics here - the shifts in meaning/interpretation that she makes are 
ones that experienced calculators can do, almost without awareness. What is missing is 
the ‘unpacking’ of where her fluency first arises from, which could form the basis of 
imagining the task from the position of the novice rather than of the expert. A 
consequence of this lack of bringing the mathematical object into being is learners who 
can imitate their way to correct answers when funnelled and supported by the teacher, 
but evidence of many who cannot transfer this competence to even the structurally 
identical follow up individual task involving missing addends to 11. 
In working with the detail of the microgenetic analysis of enacted objects, we gain 
insights into the poor performance that we highlighted at the start of this paper. If 
neither objects, nor shifts in objects, are established through coherent mediation in the 
classroom, it becomes hard for novices to appropriate the operations and actions 
needed to, at the most basic level, produce correct answers independently – as what 
they have to draw upon are experiences of disconnected actions that have to simply be 
taken on trust. Of interest in this paper is that the problem is not reducible to one of 
poor content knowledge. Instead, a more complex phenomena is seen – where a 
teacher’s prior knowledge of how to solve missing addend problems leads to her 
‘assuming’ the answer in some instances, and assuming the equivalence of the shift to a 
subtraction-based object, rather than working to establish this shift. 
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VALUING MATHEMATICS EDUCATION CONTEXTS 
 Annica Andersson Wee Tiong Seah 
 Stockholm University Monash University 
 
In this paper, the mathematics learning story of a student named Sandra demonstrates 
how student engagement changes with the learning contexts, via the identity narratives 
which are told with reference to different levels of contexts in and outside the 
mathematics classroom. Data were collected from a survey, interviews, spontaneous 
conversations, students’ blogs and project logbooks. Changes in identity narratives 
and engagement appeared to be rooted in the relatively stable valuing of achievement, 
explanation, application and sharing. The extent to which Sandra’s valuing was 
aligned with these facilitates our understanding of the complex interplay amongst 
context, valuing and agency. That is, sociocultural and personal valuing, and the 
extent to which these are aligned, promise to regulate and explain the role of learning 
contexts in student agency, including engagement and hence learning. 

INTRODUCTION 
Student engagement in (mathematics) learning is an important variable, which 
determines the extent to which a learner interacts with the subject content in effective 
ways. However, analysed data in places such as Sweden (see, for examples, Andersson, 
2011a, 2011b) have suggested that engagement is not a trait, but rather, a state of a 
mathematics learner that is regulated by the contexts within which the learner finds 
him/herself in. That is to say, contemporary research which identifies and labels 
particular learners as engaged (or not) so that ‘something can be done about it’ may not 
yet present the spectrum of experiences which (mathematics) learners go through as 
their learning contexts change. 
Through the story of mathematics learning that developed for a student in Sweden 
named Sandra, this paper presents a window into the ways in which learners’ 
engagement shifts with changing identity narratives, that in turn are functions of 
learning contexts. We will explore how these changing variables might be rooted in the 
cultural values, which are internalised within individuals’ experienced contexts. 
Recognising what the various contexts value is important, we will argue, as it serves 
two purposes. Firstly, it anchors change in engagement and identity narratives against 
a relatively stable variable (i.e. values). Secondly, this offers opportunities for teaching 
practices to be planned for in ways which optimise positive mathematical wellbeing 
(see Clarkson, Bishop & Seah, 2010) of students.  

CONTEXT 
In mathematics education research, context tends to be restricted to the immediate 
context of a particular classroom or studied activity episode (Morgan, 2006). Efforts 
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have been made to challenge this statement in Sweden (Andersson, 2011a, 2011b). 
‘Context’, however, is complicated to grasp as a single concept. The word is a 
reference to circumstances, but in our language use it also refers to – and makes 
possible – discursive spaces. Context hence comprises the network of relationships and 
available recourses in the social practises in which we act, but at the same time 
contexts form the ways and spaces where we act.  
Contexts can be considered in a number of ways. First, we recognised task contexts as 
the referents to which a particular task appeal in order to invite students to engage in 
mathematical activity. Task contexts are expressed in textbooks exercises and through 
developed pedagogical projects (Wedege, 1999). Research reported by Stocker and 
Wagner (2007) who introduced tasks influenced by critical education exemplify 
research addressing the contexts in which exercises and tasks are presented and thus 
situated. Second, there are situation contexts, understood as the array of “current 
activities, the other participants, the tools available and other aspects of the immediate 
environment” (Morgan, 2006, p. 221) in the classroom. A situation context thus also 
refers to the communicative understanding of contexts. Third, we recognised a wider 
socio-political context of schooling, referring to contexts outside classrooms that 
influence what occurs within the mathematics classrooms, operationalized through 
governmental policies on schools and the national curriculum, ideologies and school 
policies (Valero, 2004). This school context refers to layers of school organization that 
shape possibilities for engagement. These include, for example, school structures such 
as timetables and school leadership, as elaborated by Martin (2000) when addressing 
the complexity of reasons behind African-American youths’ achievement or failure in 
mathematics education. Fourth, we recognised a societal context as the impact of 
societal discourses in mathematics classrooms. ‘Specialness’ when being ‘good at 
mathematics’ (Mendick et al, 2009) is an example of discourses within the 
socio-political societal context that impact on what occurs within the classrooms.  
These contexts exist within a socio-cultural setting, and as such they cannot be 
perceived as being free of the values which underlie cultures (Bishop, 2008). To the 
extent that contexts influence discourses in the mathematics learning process, it is 
useful for us to understand contexts also from the perspective of the cultural values that 
contribute to its occurrence. This is especially meaningful when we find ourselves 
analysing contexts that might be taking place across different cultures. 

VALUES PORTRAYED THROUGH CONTEXTS 
Values may be considered to be the window through which an individual views the 
world around him/her. They are the convictions which an individual has internalised as 
being important and worthwhile. Values regulate the ways in which the learner utilises 
his/her cognitive skills and emotional dispositions to learning. Often they contribute to 
the traits of the individual, who seek to enact these values through the decisions 
selected, actions taken, and evaluations made. Values in mathematics education are 
“the deep affective qualities which education fosters through the school subject of 
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mathematics” (Bishop, 1999, p. 2). They represent “an individual’s internalisation, 
‘cognitisation’ and decontextualisation of affective constructs (such as beliefs and 
attitudes) in her socio-cultural context. Values related to mathematics education are 
inculcated through the nature of mathematics and through the individual’s experience” 
(Seah, 2005, p. 43), thus becoming the personal convictions which an individual 
regards as being important (Seah & Kalogeropoulos, 2006) in the process of learning 
and teaching mathematics. 
This focus on values has meant a need to differentiate amongst the many values that are 
portrayed in the classroom. Bishop (1996) had emphasised three categories of values in 
the numeracy classroom, namely, mathematical, mathematics educational, and general 
educational. As he explained: 

Mathematical values: values which have developed as the knowledge of Mathematics has 
developed within ‘Westernised’ cultures. 
General educational values: values associated with the norms of the particular society, and 
of the particular educational institution. 
Mathematics educational values: values embedded in the particular curriculum, textbooks, 
classroom practices, etc as a result of the other sets of values. (Bishop, 2008, p. 83) 

In the light of the literature that had been reviewed, we are interested to explore how 
identifying the values that underlie narrated identities might provide a means of 
interpreting these identities in planning effective mathematics lessons. 

THE RESEARCH CONTEXT 
The data for this paper comes from a one-year research study exploring upper 
secondary students’ learning of mathematics within a social science program in 
Sweden. Students commonly complete this program because it provides entry into 
university studies in the social sciences and language faculties. Also, students who do 
not enjoy mathematics and thus do not want to take the alternative natural science or 
technical programs often see this social science program as a good option. 
Annica, in collaboration with Elin (pseudonym), a mathematics teacher introduced 
teaching sequences that, enabled students’ mathematics learning to be connected to 
societal topics inspired by different aspects from critical mathematics education 
(Skovsmose, 2005). How mathematical topics related to societal contexts regarding 
mathematics as a tool for identifying and analysing contemporary features in society 
was one important aspect. These aims matched curriculum objectives, which asserted 
that mathematics education for social science students should “provide general civic 
competence and constitute an integral part of the chosen study orientation” (Ministry 
of Education, 2000). A second aspect concerned the epistemological point that an 
educational practice was considered to involve learning and becoming, rather than a 
simple transmission of knowledge (Skovsmose, 2005). A third aspect involved how 
power relations between the actors supported a classroom environment where students 
could become agentic in a positive way towards their learning and where students had 
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access to and contributed to the discourse between participants (Andersson & Valero, 
in press).  
Collecting information 
In order to understand students’ relationships with mathematics from their perspectives, 
ethnographic methods were used for data collecting (Hammersley & Atkinson, 2007). 
Annica established a trustful environment through engaging with the students in both 
formal and informal settings. In this way, she interacted closely with the students, and 
experienced the contexts and discourses. The research methods deployed included a 
survey, interviews, spontaneous conversations, a blog and students’ project logbooks. 
Through the survey, students were asked about their prior experiences of mathematics 
learning and their personal goals in the current course, and hence these narratives 
referred to different context levels. The interviews also provided reflective data about 
the different context levels. The blog was a course activity and provided data mainly 
about task contexts. Students’ actions, hence their reflections of their agency 
(including resistance), also appeared in the blog. The logbooks provided data about the 
students’ learning in relation to task and situation contexts. Annica’s research-diary 
described different school and societal contexts and allowed the students’ stories to be 
related to what went on in school and society at particular times. 
Data analysis  
The data analysis mainly acknowledged Sfard and Prusak´s (2005) proposal to “equate 
identities with stories about persons” (p. 14) if the story is reified, endorsed and 
significant for the identity builder. The students were the significant narrators of these 
identities and they drew of stories from their parents and their mathematics teacher 
(Andersson, 2011a). These stories were then located in relation to the different 
contexts in which they were told at those particular times they were told. Talk about 
agency in a relational understanding was also connected to the stories. In this way 
chronological storylines emerged where it became visible how contexts, agency, 
values and identity narratives were related. 
In this paper, we share the story told to us by one of the student participants, Sandra 
(pseudonym). In particular, four identity narratives in contexts from Sandra’s course 
trajectory will exemplify changes in the students’ narrations of themselves and how 
contexts impacted on the students’ engagement through changes in their expressed 
narratives at particular times. We then filtered students’ narratives further to reveal the 
cultural values which are internalised within Sandra’s identity narratives. 

SANDRA’S IDENTITY NARRATIVES  
Four identity narratives from Sandra ’s course trajectory have been chosen as a frame 
within which to theoretically consider interplays between values, agency and context. 
They are chosen in that they provide four qualitative different ways of narrating the 
self, hence supporting the theoretical discussion above. 
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 1. Sandra initially shared with Annica that she had always disliked mathematics 
because she had ‘mathematics anxiety’. This label was Sandra’s way of objectifying 
herself, causing her not wanting to spend more time with mathematics than was 
absolutely needed. That is the reason why she earlier had not wanted Annica to 
interview her, which would, as Sandra said, result in more ‘mathematics related time’. 
However, Annica was very welcome to read her blog comments, evaluation sheets and 
logbook and to talk with her during mathematics lessons.  
Sandra told she desperately wanted to pass the mathematics course, as it was required 
for her future university studies. Foregrounding herself as a university student had 
shaped her intentions for attending and passing the mathematics courses that is 
required by society. The socio-political context which appeared to value achievement, 
underlying which might be the societal valuing of masculinity (see Hofstede, 1997), 
had constrained Sandra’s achievement of agency; she could not decide to not 
participate, as her designated identity was to become an university student. Within the 
situation context, objectifying herself with the label ’having math-anxiety’ – and, in so 
doing, reflecting her lack of mathematical wellbeing – seemed to have impact on her 
decisions on how to act within the classroom (e.g. spending a minimum of time with 
mathematics).  
2. During a two-week project where the students were given opportunities to decide on 
task contexts, personal time and work distribution, Sandra talked about herself thus: 

We distributed the time well, I think. […] The group worked well. We were good at different things, and 
helped each other. I am proud of the work I have done as I felt I could contribute a lot in the beginning when 
we talked about borrowing money and interest rates. To self decide on time and content made  me feel it 
was related to me. I think mathematics has been a little more fun than usual. […] I feel the project has been 
meaningful and to look at mathematics from different angles (vända och vrida på matematiken) was 
positive. But I would have liked more time for explanations from the teacher, as mathematics is difficult for 
me. (Sandra  evaluation sheet, 10-2009) 

During this project Sandra achieved agency in relation to task context and situation 
context. Her personal influence on content, time and work distribution reflected an 
alignment between what she and the task valued similarly, that is, application. This 
impacted on her decisions to engage in the classroom activities in a different way than 
she intended at the beginning of the course. In addition she experienced feelings of ‘a 
little fun’ and mathematics as ‘meaningful’. At this time Sandra took a projective 
action for learning differently to the initially intended and got rewarded with feelings 
of ‘being proud’ of her work. However, even if she was proud of her work and actually 
passed this sequence with distinction (teacher, results sheet), the last sentence 
indicated that being objectified with ‘mathematics anxiety’ still implied her wishing 
for extra support from her teacher. Here, there is an indication that her valuing of 
explanation (one which is also reported by many students in Seah, 2011) might have 
accounted for her low mathematical wellbeing. 
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3. In the middle of the semester the students were expected to work with textbook 
algebra exercises over two weeks. In contrast to the identity narrative told during the 
project above, Sandra’s two entries on the blog during these textbook work periods 
emphasised Sandra ’s worries and feelings of stress for not passing a coming test:  

I am currently worried about the test. I have received help with things I need help with. Stress. Stress. 
(Sandra, blog, 07-10-2009).  

In class she repeatedly asked the teacher about what would happen if she did not pass the test, and she asked for 
advice on exercises that was ‘extra smart to calculate’ when preparing for the test (Annica, field notes). The 
assessment context which values assessment had Sandra feeling worried, and her achievement of agency 
seemed to be restricted to doing what was required for just passing the test. Sandra’s positive experience of the 
prior project appeared to have vanished, and her mathematical wellbeing suffered consequently. The interplay 
between her task contexts (restricted to advised exercises on given topic), the situation context within the 
classroom (to pass a test) and her foreground to become a university student – underlined by a societal valuing 
of achievement – was obvious in her actions. Her ‘math anxiety’, imagining herself not passing and thus not 
becoming what she wanted, became problematic and restricted her achievement of agency at this particular 
time.  
4. Later in the semester, there was a larger cross-subject project themed ‘Students’ 
Ecological footprints on earth’. At that time Sandra’s logbook was rich with comments 
regarding her and her work-friend’s collaborative work. This excerpt exemplifies her 
reflections on her mathematics learning during the project:  

During the project I have learnt about different diagrams. E.g. I did not know about histograms before the 
project. I think it has been really interesting with manipulated diagrams and results – now I will be more 
observant when reading newspapers etc!  

What surprised me most though was how important role mathematics plays when talking about 
environmental issues. With support of mathematics we can get people to react and stop. […] I am so 
interested in environmental questions and did actually not believe that maths could be important when 
presenting different standpoints. I have probably learnt more now than if I had only calculated tasks in the 
book. Now I could get use of the knowledge in the project and that made me motivated and happy! I show 
my knowledge best through oral presentations because there you can show all the facts and talk instead of 
just writing a test. To have a purpose with the calculations motivated me a lot. (Sandra, logbook, 
conclusions).  

The project’s valuing of applications appeared to be aligned with Sandra’s values. The 
oral presentations also afforded her the chance of enacting her valuing of sharing. 
Consequently, Sandra was awarded the best possible grade for this project. Orally she 
clearly, correctly and convincingly presented her results and answered questions in 
front of an audience of 50 students, two teachers and one researcher (Annica, 
fieldnotes) in ways which she believed she could not achieved in a written test setting 
(Sandra, classroom conversation). 

DISCUSSION 
Sandra’s mathematics learning experience demonstrated the complex interplays 
amongst learning contexts, the valuing involved, and student agency that resulted. The 
data suggests that the sociocultural valuing of achievement and applications affected 
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Sandra’s state of mathematical wellbeing, and thus engagement, in different ways. The 
former seems to threaten the development of her mathematical wellbeing. It is likely 
that the contexts did not co-value (with Sandra) explanation too. On the other hand, we 
saw in two of the sequences the enabling effects to wellbeing and engagement when 
there was alignment between the contexts’ valuing and personal valuing of 
applications. The context’s valuing of sharing also matched Sandra’s valuing of the 
same, further boosting her level of mathematical wellbeing and sense of agency.   
Thus, while changes in learning contexts lead to variations in student agency with regards to engagement, 
Sandra’s story demonstrates how the interplay may be accounted for when we are able to reveal what these 
contexts value and whether these values are aligned (or not) with what Sandra values as learner. The stability 
of values (Krathwohl, Bloom & Masia, 1964) should thus facilitate an useful means of interpreting the variety 
of contexts and identity narratives, in so doing fostering mathematical wellbeing, and regulating student 
agency (including engagement).  
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CHINESE AND AUSTRALIAN PRIMARY STUDENTS’ 
MATHEMATICAL TASK TYPES PREFERENCES: UNDERLYING 

VALUES 
Anastasios Barkatsas & Wee Tiong Seah 

Monash University, Australia 
 

This paper reports on part of a study which investigated the mathematical task type 
preferences of Grade 5 and 6 students from Victoria, Australia and Chongqing, China. 
Through the administration of a questionnaire to 1109 Chinese and 689 Australian 
students, it was found that across the topics of Number and Geometry, tasks situated 
within a contextualised situation were the most preferred, whilst the other task types 
were preferred differently between the two topics. Based on the reasons provided by 
the students, underlying values for the most preferred task types could be suggested. 
For the topic of Number, each of the three task types appeared to be most preferred for 
reasons which are encapsulated by the following values: ‘challenge’, ‘multiple 
solutions’, ‘real life problems’ and ‘easiness’. 

INTRODUCTION 
The teacher and his/her professional practice are important factors in lesson 
effectiveness (Askew, Hodgen, Hossain, & Bretscher, 2010; Rice, 2003). This 
professional practice is guided by the teacher’s values (Seah, 2005) and beliefs 
(Barkatsas & Malone, 2005), and is reflected in mathematical tasks, each of which is “a 
classroom activity, the purpose of which is to focus students’ attention on a particular 
mathematical idea” (Stein, Grover, & Henningsen, 1996, p. 460). This paper reports on 
an exploratory study into the nature of mainland Chinese and Australian Grade 5 and 6 
students’ interaction with mathematical tasks. The study has been conducted under the 
umbrella support of ‘The Third Wave Project’, an international consortium of research 
teams which is interested in exploring how values might be harnessed to optimise 
students’ learning of mathematics. Specifically, this paper examines the findings to the 
research questions:  
(1) What are the preferences amongst mathematical tasks of Grade 5 and 6 students 
from Victoria, Australia and Chongqing, China?  
(2) What might be the underlying values? 

MATHEMATICAL TASKS  
In this study, it is assumed that mathematical tasks constitute the gateway to student 
learning of mathematics. The Task Types in Mathematics Learning [TTML] project 
(Sullivan, Clarke, Clarke, & O’Shea, 2009) examined teacher use of three types of 
mathematical tasks: Type 1, in which the tasks are designed to exemplify the 
mathematics through the use of models, representations, tools or explanations; Type 2, 
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in which mathematics has been situated within a contextualised practical situation; and 
Type 3, which are open-ended tasks. By the end of the project, participating teachers 
were confident and skilled enough to increase the adoption of contextual tasks (task 
type 2) to a level similar to their use of the other two task types (Clarke & Roche, 
2010).  
Yet, the ways in which tasks relate to student learning have not always been made 
explicit (Simon & Tzur, 2004). What sort(s) of mathematical tasks do students prefer, 
and why? To what extent does preference relate to effective learning? The study within 
which this paper is contextualised aims to contribute to our understanding in this 
regard, by identifying the reasons students consider important – and value – in their 
preference for particular task types. 

RESEARCH DESIGN 
The study within which this paper is contextualised adopts the sequential mixed 
methods design (Creswell, 2009). Reflecting our epistemological stance of 
constructivism, the intention here has been to understand the pedagogical enactment of 
tasks in primary school mathematics lessons, rather than establishing relationships, 
determining effects and identifying causes. 
This paper reports on the quantitative phase, which aims to map the field relating to the 
preference for and use of different mathematical task types in Australian and Chinese 
classrooms. The research method adopted for the phase is the 15-item survey 
questionnaire that had been constructed earlier for the TTML project and that was 
translated into Chinese for this study, containing a mix of Likert-type items, ranking 
exercises, and open-ended questions. In translating the questionnaire to the Chinese 
language, the contextual information of several items in the TTML version was 
changed to accommodate the societal realities in mainland China (see Seah, Barkatsas, 
Sullivan, & Li, 2010). Culturally-different ways of describing phenomena and of 
teaching during the translation process were accounted for through the process of 
back-translation (see Seah, Barkatsas, Sullivan, & Li, 2010, for examples). 
Data were collected from 1109 Grade 5 and 6 students in Chongqing, a major inland 
city of about 31 million residents in Southwestern China, and also from 689 Grade 5 
and 6 students from Victoria, Australia. This paper reports on the findings relevant to 
two of the research questions of the wider study, as stated above. The corresponding 
questions in the questionnaire were items 9 (relating to Number) and 11 (relating to 
Geometry), whose original English version is shown in Tables 1 and 2 respectively. 
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In this table there are four maths questions that are pretty much the same type of 
mathematics content asked in different ways. 

We don’t want you to work out the answers. 

Put a 1 next to the type of question you like to do most, 2 next to the one you like next 
best, and 3 next to the type of question you like least: 

9ai   An adult cinema ticket costs RMB25, and a child ticket costs RMB12. How 
much would the tickets cost for 2 adults and 4 children to watch a movie? 

 

9aii   2 adults and 4 children spent RMB120 on movie tickets. How much might 
an adult ticket and a child ticket cost? 

 

9aiii   25 X 2 + 12 X 4 =  

You like to do this type of question (the one you put a 1 against) the most because: 

____________________________________________________________________ 

Table 1: Questionnaire item 9. 

In this table there are four more maths questions that are pretty much the same type of 
mathematics content asked in different ways. 

We don’t want you to work out the answers. 

Put a 1 next to the type of question you like to do most, 2 next to the one you like next 
best, and 3 next to the type of question you like least: 

11ai   Find the area of the following figure. 

      

      

      

      

      

      
 

 

11aii   If the area of a figure is 10 square units, what might the shape of the figure 
be? 
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11aiii   An athletic track is made up of two straight sections and two semi-circles. 
The straight section is 100m long. What is the area of the athletic track? 

 

 

 

You like to do this type of question (the one you put a 1 against) the most because: 

____________________________________________________________________ 

Table 2: Questionnaire item 11. 

RESULTS 
A Friedman test was used to test for statistically significant differences in the ways 
students rank ordered the three types of mathematical tasks (items 9ai-iii and 11ai-iii). 
The results are shown in Tables 3 and 4.  

Item Mean rank (Chinese 
students) 

Mean Rank 
(Australian 
students) 

9aiii (task type 1) 2.09 1.82 

9ai (task type 2) 1.76 2.44 

9aii (task type 3) 2.14 1.73 

Table 3: Mean ranks for student rank ordering of Items 9ai – iii. 

 

Item Mean rank (Chinese 
students) 

Mean Rank 
(Australian 
students) 

11ai (task type 1) 2.26 1.85 

11aiii (task type 2) 1.75 1.87 

11aii (task type 3) 1.99 2.29 

Table 4: Mean ranks for student rank ordering of Items 11ai – iii. 
The differences in rankings for both topic types were statistically significant for both 
the Chinese students: [χ2 (2, 1001) = 97.45, p < 0.001 (question 9)] and [χ2 (2, 1058) = 
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153.44, p < 0.001(question 11)] and the Australian students [χ2 (2, 688) = 207.75, p < 
0.001 (question 9)] and [χ2 (2, 689) = 25.43, p < 0.001(question 11)], respectively. 
Thus, it may be said that in the area of Number (Item 9), Grade 5 and 6 students in 
Chongqing, China, preferred mathematical tasks in the order of types 2 (contextualised 
tasks), 1 (modelling tasks) and 3 (open-ended tasks), whereas in the area of Geometry 
(Item 11), the order of preference is task types 2, 3, 1. Their peers in Australia, on the 
other hand, preferred Number task types in the order of 3, 1, 2, and Geometry task 
types in the order of 1, 2, 3.  
Respondents were also asked to provide a reason for the nomination of a particular 
question as being the favourite in each of the two sets of questions. The reasons given 
by the respondents were coded into 7 categories, as shown in Table 5. 

1. Challenging (more complex, lots of steps / have to think / I learn something 
new / improve) 

2. Easy to do / understand (instructions clear) / I’m good at this / we do this a lot 

3. Real life scenario 

4. Involves a model / drawing / grid 

5. Multiple solution strategies available, need to devise own strategies 

6. Has more than one possible answer 

7. Fun / I like this type of operation (e.g. division) or topic (e.g. area) 

Table 5: Codes for reasons cited by respondents in ranking each task. 
A polychotomous (or polytomous) logit model was used to investigate the significance 
of these coding categories. This model is a special class of loglinear models and it is 
used to model the relationship between one or more dependent categorical variables 
and a number of independent categorical variables.  
When the dependent variable has more than two values, the researcher can construct 
many odds ratios for the same combination of values of the independent variables. The 
logit procedure (SPSS) considers the last category of each variable as the reference 
category. In our case, the category ‘Fun/I like this type of operation’ (coding category 
7) is set to zero, and 9ai=3, 9aii=3 and 9aiii=3 are all set to zero respectively in the 
corresponding logit models. The last two categories from Table 6 had not been 
considered because there were less than ten responses in each of these categories. 
Given the space constraints, the results of the polychotomous logit statistical analysis 
for the Number item (item 9) only are shown in Table 6.  
The design for this test is governed by the following models: constant + q9ai + q19ai * 
q9b, constant + q9aii + q19aii * q9b, constant + q9aiii + q19aiii * q9b. The first number 
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in each cell is the parameter estimate. The first number within the parenthesis is eλ, 
followed by the p value (in the case of statistically significant results). Two cell entries 
form Table 6 will be discussed in what follows; all other cell entries may be interpreted 
in the same way. 

Reasons cited 
in ranking the 

items 

Item 9ai=1 

(Number Type 2) 

Item 9aii=1  

(Number Type 3) 

Item9aiii=1 

(Number Type 1) 

Chinese  AUS   Chinese  AUS  Chinese 

 

AUS  

1:Challenging -1.85**
* 

(.16) 

-.64 

(.53) 

 

1.20** 

(3.32) 

1.26*** 
(3.52) 

-1.24*** 
(.29) 

-.38 

(.68) 

2:Easy to do -.24*** 

(.79) 

-.02 

(.98) 

-2.83*** 
(.06) 

-1.13** 

(.32) 

1.79*** 

(5.99) 

.86*** 

(2.36) 

3:Real life 
scenario 

.54 

(1.71) 

1.22 

(3.39) 

-.26 

(.77) 

.61 

(1.84) 

-1.27 

(.28) 

-1.90* 

(.15) 

4:Involves a 
model  

-1.32* 

(.27) 

No data 
entries 

-2.25** 
(.11) 

No data 
entries 

1.64* 

(5.14) 

No data 
entries 

5:Multiple 
solution 

strategies 

-1.66 

(.19) 

-.90 

(.41) 

1.11 

(3.02) 

3.30* 

(27.11) 

-1.88 

(.15) 

-2.24* 

(.11) 

6:Has more 
than one 
possible 
answer 

-3.27 

(.04) 

-2.51 

(.08) 

.37 

(1.45) 

4.30** 
(73.70) 

-.42 

(.66) 

-3.0 

(.05) 

7:Fun/I like 
this type of 
operation 

0 (1) 0 (1)  0(1) 0 (1) 0(1)    0 (1)  

Table 6: Parameter estimate (λ, eλ) summary. 
The parameter estimate for multiple solution strategies (shaded cell, row 7, column 4), 
being the favourite for the Chinese students for item 9aii is 1.11. The value of eλ is e1.11 
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= 3.02. This tells us that based on the model, the Chinese students in the study are three 
times more likely to have nominated multiple solution strategies as the reason for item 
9aii being a favourite over nominating the same reason when the same item is the least 
liked, compared to nominating fun/I like this operation as the reason for item 9aii being 
a favourite over it being nominated when item 9aii is the least liked. 
The cell to the right of the shaded cell (row 7, column 5) shows the results for the 
Australian students on the same questionnaire item. As shown in this cell, the 
parameter estimate for multiple solution strategies being the favourite for item 9aii is 
3.30 for the Australian students. The value of eλ is e3.30 = 27.11. We can therefore claim 
that the Australian students in the study are statistically significantly at least 
twenty-seven times more likely to have nominated multiple solution strategies as the 
reason for item 9aii being a favourite over nominating the same reason when the same 
item is the least liked, compared to nominating fun/I like this operation as the reason 
for item 9aii being a favourite over it being nominated when item 9aii is the least liked.  

CONCLUDING REMARKS 
Three types of mathematical tasks were investigated with Grade 5 and 6 students in 
Chongqing and Victoria in this research study. The data suggest that for both Number 
and Geometry items, Chinese students preferred most to engage with tasks involving 
contextualised situations. Their peers in Australia, however, appeared to have different 
preferences. For the Australian students, open-ended tasks were the most preferred for 
Number items, whereas modelling tasks were the most preferred for Geometry items. 
While a variety of reasons were given for preferring particular task types, a majority of 
these fell into one of four reason categories for Number items, which we will loosely 
associate with the valuing of challenge, multiple solutions, real life problems and 
easiness.  The corresponding reason categories for the Geometry items (the parameter 
estimates table is not shown here due to space restrictions) are the following: challenge, 
multiple solutions, multiple answers and easiness. 
The results demonstrate that different mathematical topics appeal to different students 
differently and that pedagogical considerations should be mindful of this. As far as 
Number items are concerned, the students’ task preferences seemed to be guided by 
their experiences in a challenging, real life context, in which they have access to 
multiple solutions in order to answer the relevant mathematical questions. The 
possibility that effective mathematics learning is associated with particular features of 
mathematical thinking and activity, and that the underlying values are manifested 
through particular task types, would be one objective of investigation in the next phase 
of this study, involving targeted inquiry with a sample of participants purposively 
selected from amongst the participants in  the study. 
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Contingency tables are useful for practitioners in psychology and health sciences, 
since providing a diagnostic requires an association judgment in a contingency table. 
In this research we analysed the perception of association in contingency tables and 
the accuracy in the estimation of its strength in a sample of 414 psychology students in 
three different Spanish universities. Results show a good perception and estimation of 
association in both direct and inverse association, misperception of independence and 
the effect of illusory correlation. Performance is similar in the three universities, and 
better that reported in a previous study with high-school students. 

INTRODUCCIÓN  
Contingency tables are common to present statistical information; however little 
attention is paid to this topic in university education, in assuming that its interpretation 
is easy. These tables are often presented in diagnosis and psychological evaluation, 
where psychologists are confronted with different symptoms that may be associated 
with a disorder or not (Diaz, & Gallego, 2006). Moreover, association judgments are 
priority learning issues in university statistics courses (Zieffler, 2006). 
This study was aimed to evaluate the accuracy in the estimation of association in 
contingency tables by students entering the Bachelor of Psychology and how different 
variables affect their association judgments and accuracy. Results will be compared 
with a previous study by Estepa (1993) with high school students. 

PREVIOUS RESEARCH 
Research on association was started by Inhelder and Piaget (1955), who conceived 
association as the last step in the development of probabilistic reasoning, and described 
the strategies used at different ages when judging association in tasks that were 
formally equivalent to a 2x2 contingency table (see Table 1). Later psychological 
studies were developed with adults. Crocker (1981) shown that the accuracy in the 
estimation of association increases when data are presented simultaneously, 
frequencies are small, data are presented in a table, and the events co-vary 
simultaneously along time. Allan and Jenkins (1983) showed the tendency to base the 
association judgments on the difference between confirmatory cases (cell a in Table 1) 
and contradictory cases (cell d). Erlick and Mills (1967) found that negative 
association is estimated as close to zero. Three additional factors that influence the 
judgments of association suggested by Arkes and Harkness work (1983) are: (a) the 
frequency in cell a (which has the greater impact on the estimates), (b) the labelling of 
rows and columns, and (c) the presence of small  frequencies in the cells (which can 
influence an overestimation). 
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 A Not A Total 
B a b a+b 

Not B c d c+d 
Total a+c b+d  

Table 1.  A simple contingency table 
Other authors studied the influence of previous theories about the context of the 
problem on the accuracy of the association estimate (Jennings, Amabile, & Ross, 1982; 
Wright & Murphy, 1984; Alloy & Tabacnick 1984; Meiser & Hewstone, 2006). The 
estimates are more accurate if people have no theories about the type of association in 
the data. If the subject’s previous theories agree with the type of association reflected 
by the empirical data, there is a tendency to overestimate the association coefficient. 
But when the data do not reflect the results expected by these theories, the subjects are 
often guided by their theories, rather than by data. Chapman (1967, pp. 151) described 
"illusory correlation" as “the report by observers of a correlation between two classes 
of events which, in reality, (a) are not correlated, (b) are correlated to a lesser extent 
than reported, or (c) are correlated in the opposite direction from that which is 
reported”. Kao and Wasserman (1993) also found that most subjects were quite 
inaccurate in perceiving independence in 2x2 contingency tables, when all the 
frequencies in the cells are different, while they perform better as frequencies values 
are closer to each other. 
According to Barbancho (1992), an association between variables may be explained by 
the existence of a unilateral cause-effect relationship (one variable causes the other), 
but also to interdependence (each variable affects the other), indirect dependence 
(there is a third variable affecting the other two), concordance (matching in preference 
by two judges in the same data set) and spurious covariation. In addition to the estimate 
accuracy, understanding association involve the discrimination of these types of 
relationships between variables.  
Estepa (1993) studied the pre-university students’ conception of association in a 
sample of 213 and analysed their association judgments. He also analysed the accuracy 
in the estimation of the association coefficient in a subsample of 51 students. The 
author defined the causal conception according to which the subject only considers 
association between variables, when it can be explained by the presence of a cause - 
effect relationship. He also described the unidirectional conception, by which the 
student does not accept an inverse association, considering the strength of the 
association, but not its sign and assuming independence where there is an inverse 
association (see also Batanero, Estepa, Godino, & Green, 1996). In a subsequent study 
(Batanero, Godino, & Estepa, 1998) the authors found that the unidirectional 
conception improved with teaching, but not the causal conception. Our research is 
aimed to assess the students’ accuracy in estimating the association coefficient, which 
was only studied by Estepa in a subsample of students (n=51). We also try to compare 
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the correctness of the association judgment with the results obtained by Estepa and the 
influence of some task variables on this judgment. Finally, we focus on Psychology 
students, while Estepa’s research was carried out with high-school students.  

METHOD 
The sample included 414 students in their first year of Psychology studies from three 
Spanish universities: Almeria (115 students), Granada (237 students) and Huelva (62 
students), all of them taking an introductory statistics course. The questionnaire was 
given to the student as a part of a practical task that scored in the final marks in the 
course, in order to assure their interest in completing the task. The samples included all 
the students enrolled in the course and attending the session; the difference is sample 
sizes was due to the size of the University: Almeria with 2 groups of students, Huelva 
with 1 group of students and Granada with 4 groups of students. Though they had not 
yet studied association in the course they were following, these students had studied 
statistics and probability in Secondary Education.  

Item 1. A researcher is studying the relationship between stress and insomnia. In a sample 
of 250 people he observed the following results: 

 Stress disorders  No stress disorders 

 Insomnia 90 60 

 No insomnia 60 40 
 
a. Looking to these data, do you think there is a relationship between 

stress and insomnia? 

b. Please mark on the scale below a point between 0 (minimum strength) 
and 1 (maximum strength), according the strength of relationship you 
perceive in these data.  

 
Figure 1.  An item example 

The questionnaire was adapted from Batanero, Estepa, Godino and Green (1996).   The 
context was changed to a context of psychological diagnose in two items (1 and 2); the 
frequencies in the table cells were increased in items 2 and 3, since in the original 
questionnaire the small sizes made invalid the application of the Chi-square statistics 
(due to the small sample sizes, the association coefficients computed by the authors 
were, moreover,  not statistically significant); the sign and strength of association was 
the same than in the corresponding item in the above studies. In Figure 1 we present 
Item 1. The format and questions were identical in the remaining items. The following 
task variables (Table 2) were considered in the questionnaire:  
1. Sign of association: We include the three possible cases: direct and inverse 

association and independence. 
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2. Strenght of association, that was measured by the Pearson’s Phi coefficient in 2x2 
and Cramer's V coefficient in 2x3 tables. An item with moderate-low association 
and two items with moderate-high association were included. 

3. Agreement between association in the data and previous theories suggested by the 
context. There were two items were the empirical association matched the prior 
expectations, one where it contradicted the expectations and another with a neutral 
context suggesting no previous theories. 

4. Type of covariation. We used three categories of Barbancho’s (1992) classification: 
unilateral causal dependence, interdependence and indirect dependence. 

  2x2 table 2 x3 table 
 Item 1 Item 2 Item 3 Item 4 
Dependence Independence Inverse Direct Direct 
Association 
coefficient 

0 -0,62 0,67 0,37 

Agreement with 
prior theories 

No Yes There is no 
theory 

Yes 

Type of 
covariation 

Inter- 
dependence 

Causal 
unilateral 

Indirect 
Dependenc

e 

Causal unilateral 

Context Insomnia vs 
stress 

Being  only  vs 
being 

problematic 

Sedentary 
life vs 
allergy 

Time  of study 
(3 values) vs 

passing an exam 

Table 2. Task variables in the items 
A qualitative analysis of students’ responses served to define two different variables. 
In part (a) of each item, students are asked to provide an association judgment. We 
considered 3 different categories in their responses: (a) the student consider that the 
variables in the item are related (judging association); (b) the students considered the 
variables to be not related (judging independence); and (c) the student was unable to 
decide (no judgment). The estimation for the association coefficient estimation is 
deduced measuring the exact position of the point drawn by the student on the 
numerical scale (0-1) in the second part of the item. 

RESULTS AND DISCUSSION 
Association judgment 
To assess the students’ competence to judge the possible association between the 
variables presented in each item, we present in Table 3 the percentage of students who 
considered (or not) the existence of a relationship between the variables. In the last 
columns we add the association coefficient for the data in the item and the relationships 
between prior theories and data. Most students indicated the existence of association in 
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all items, in particular when the association was confirmed by the data, but also in item 
1 (perfect independence). This result can be explained by illusory correlation 
(Chapman, 1967) since in this item data contradicts the students’ previous theories 
(that stress is related to insomnia) and is also consistent with Kao and Wasserman’s 
(1993) suggestion that independence is hard to be perceived if the frequencies in the 
table cells are different. Our students showed a greater effect of previous theories on 
this item, as well as the causal conception of association, linking the concepts of 
association and causality that in  Batanero et al. (1996), where only 55.4% of students 
indicated association (the numerical data in this item are the same in both studies, 
while we changed the context to one more familiar to a Psychology student.  
 

Ítem Judging 
Association 

Judging 
Independence 

No judgment Association 
coefficient 

Prior theories  
vs data 

1 323 (78.0) 90 (21.8) 1 (0.2) 0 Do not agree 

2 398 (96.1) 14 (3.4) 2 (0.5) -0,62 Agree 

3 386 (93.2) 24 (5.8) 4 (1.0) 0,67 No theories 

4 402 (97.1) 4 (1.0) 8 (1.9) 0,37 Agree 

Table 3. Frequency (and percent) of students according judgment of association 
Our students outperformed in item 2 (inverse association) those in Batanero et al. 
(2006), where only 47.1% of students considered association. This result  could be 
explained by the change in context and the increased the sample size in our item. 
Consequently, the unidirectional conceptions of association described by Estepa 
hardly appear in our research. Results in item 3 were very close in both studies (92.5% 
in Batanero et al., 1996), where we only increased the frequencies without changing 
the context or the strength of association. Our results also improved a little in item 4 
(95.5% of students considered association in Batanero et al., 1996), where we slightly 
increased the intensity of the association holding the other variables fixed. Results 
were very close in the different universities and were not statistically significant in a 
Chi-squared test of homogeneity (Chi= 0.99; 6 d.f., p=0.9861), which suggest the 
samples homogeneity in their association judgments. 
Estimating the strength of association 
In the second part of each item, the students provided a score between 0 and 1 
according to the intensity they perceived in the association. This value can be 
considered an estimate of the coefficient of association (disregarding the sign in 2x2 
tables). Table 4 shows the mean score obtained in the whole sample, and each 
university. The most accurate estimate was given in Item 3, where students had no 
prior theories: the estimate mean value is very close to the empirical coefficient in all 
the samples and overall. There is an over-estimation of the coefficient in the other three 
items, showing the effect of students’ prior theories.  
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In item 1, which corresponds to perfect independence, the global mean value was 0.47, 
and about this value in each sample (in his subsample Estepa found 0.56).  Many 
students followed their previous theories in this item, as was show in some answers: 
"You should have some relationship, since in my experience stress due to family or 
other type of problems may be a cause of insomnia". "In my opinion insomnia and 
stress are related, since most people who have insomnia suffer from stress", or "Yes, 
because people with insomnia do not rest well and this causes extra stress that is added 
to stress due to other external factors". On the other hand, in this item cell a, which 
corresponds to the simultaneous presence of both stress and insomnia and that, 
according to Arkes and Harkness (1983) has the greater impact on attention present the 
maximum absolute frequency. 
The estimate for item 2 (inverse dependence), was higher than the empirical value 
association in all  Universities,  in particular in Almería. Thus, in our students we did 
not find a significant presence of the unidirectional conception, while in Estepa’s 
(1993) study the estimation for this item in the subsample was much lower (0.48). 
Moreover, both the whole sample and in each university most students indicated that 
there was association in this item (the sign of association was not requested).  
 

  Mean estimate   

Ítem Almería 
(n=115) 

Granada 
(n=237) 

Huelva 
(n=62) 

Total 
(n=414) 

Association 
coefficient 

Prior theories  
vs data 

1 0.51 0.47 0.44 0.47 0 Do not agree 

2 0.78 0.72 0.73 0.73 -0.62 Agree 
3 0.75 0.68 0.68 0.70 0.67 No theories 
4 0.84 0.81 0.81 0.82 0.37 Agree 

Table 4. Results in estimation of the association coefficient 
In item 4 (2x3 table, positive association), the difference between the estimate and the 
coefficient true value was high, showing again illusory correlation (Chapman, 1967). 
Students overestimated the association, as they were guided by their previous theories 
that matched the type of association in the data. These theories were fostered by a 
context so familiar for students (study time, passing or failing an exam), and possibly 
driven by personal experience. Results were very close all the universities; with a 
smaller difference with the true value in Granada. 
The students from Granada and Huelva estimated an average lower association in all 
the items than the students from Almeria; however, when performing an Anova 
comparison of means (two factors: item and university) no statistically significant 
differences  by university or interaction between university and item was obtained. 
This result suggest that student responses were similar, despite the difference in 
educational context. 
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IMPLICATIONS  
Results suggest that most psychology students in our study judged association, even in 
cases where there was none, due to the illusory correlation phenomenon and their 
previous theories, which affected their accuracy in estimating the association 
coefficient. Regarding the conceptions described by  Batanero, Estepa, Godino and 
Green (1996), we observed the causal conception, but not the unidirectional 
conception, since most students perceived the association when this was negative. The 
estimates of the association improved in our study, as compared with Estepa’s (1993)  
results, in all items except in case of independence were our students gave a higher 
association coefficient. Results were very close in all participating universities. 
According to Schield (2006), an educated person should be able to critically read tables 
in the press, Internet, media, and professional work. This involve not only the literal 
reading, but being able to identify trends and variability in the data, including the  
correct judgment of association. All these reasons and our results suggest the need for 
further research about teaching association, since the causal conception and the effect 
of illusory correlation does not seem to improve with traditional instruction (Batanero, 
Godino, & Estepa, 1998).  Our purpose is to continue this work by designing an 
alternative teaching with activities that confront students with their biases and help 
them overcome them. This proposal will be tested and students will be assessed in 
order to compare their intuitive ideas with those acquired as a result of teaching.  
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ONE COMPUTER-BASED MATHEMATICAL TASK, DIFFERENT 
ACTIVITIES 
Margot Berger  

University of Witwatersrand 
 
I examine how two sets of in-service mathematics teachers (the students) engage with 
one GeoGebra-based mathematical task. I compare an a priori analysis of the 
intended pedagogical purpose of the task with an a posteriori analysis of the actual 
activities by these students. The analysis shows how one student uses GeoGebra as a 
tool with which to make sense of the particular mathematical task; in contrast, the 
other set of students use GeoGebra as a tool with which to explore various aspects of 
the given functions, without addressing the given task in an adequate way. This 
suggests that attention may need to be paid to using GeoGebra as a tool for 
exploration, in the task setup.   

RATIONALE 
A considered use of technology may assist mathematical understanding  (Zbiek & 
Hollebrands, 2008) and may promote deeper understanding of advanced mathematical 
concepts  (National Council of Teachers of Mathematics, 2000). At the same time most 
mathematics educators agree that the sort of tasks that students engage with while 
using these technologies is of fundamental importance (for example, Zbiek & 
Hollebrands, 2008).  
What is meant by a ‘task’?  Mason and Johnston−Wilder (2006, p. 22) contend that 
“the purpose of a [mathematical] task is to initiate mathematically fruitful activity that 
leads to a transformation in what learners are sensitised to notice and competent to 
carry out”. In line with this, I use the term ‘computer-based mathematical task’ to refer 
to a mathematical task that exploits the affordances of a computer or similar 
technology. Computer-based mathematical tasks may provide opportunities for 
learning which may not be available in the paper and pencil world (for example, the 
task presented in this paper). At the same time, these opportunities may be diminished 
if the design or structure of the task is not appropriate.  For example, the use of certain 
computer algebra systems (CAS) often requires knowledge of specialized syntax, and 
learning to use this syntax may shift the students’ attention away from the 
mathematical focus of the task. Also computer output may differ in form from that of 
pencil and paper mathematics; this may contribute to students’ difficulties with 
interpretation of the output. And so on. 
Elsewhere I have developed a framework which can be used to isolate, a priori, the 
possibilities and limitations of computer-based mathematical tasks (Berger, 2011). In 
this report I use this framework to compare the extent to which the pedagogical 
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intentions of a specific given task are realized in the actual implementation of this task 
by students.   
This leads to my research question: In what way(s) may the pedagogic purpose and 
intended focus of a computer-based mathematical task get transformed when executed 
by students?  

THE FRAMEWORK 
I offer a summary of the four components - mathematical focus, cognitive demand, use 
of CAS’ affordances, and technical demand - of the framework. For further details see 
Berger (2011).  
Mathematical focus: A computer-based mathematical task is a task that uses 
technology to help focus the learner’s attention on a specific mathematical concept 
and/or process. Through this focused activity, the learner is expected to make sense of 
the particular mathematical notion. Mathematical focus is thus a key feature of the 
framework. 
Cognitive demand: According to Stein, Smith, Henningsen & Silver (2009), the most 
important characteristic of a mathematical task is its cognitive demand, that is, the 
“kind and level of thinking required of students to successfully engage with and solve 
the task” (p. 1). ‘Memorisation’ tasks involve reproduction of previously learnt 
formulae or definitions. They are not ambiguous (Stein, et al., 2009). In a CAS context, 
many mathematical facts are actually reified in the software. So memorization tasks 
appropriate to the technological environment may involve the verification of a 
particular fact or formula (for example, ). ‘Procedures without 
connections’ tasks are algorithmic; they are focused on the  implementation of 
appropriate algorithms rather than development of conceptual understanding (ibid.). In 
the CAS environment users can use the computer to execute algorithms and so 
‘procedures without connections’ tasks usually have little cognitive value in and of 
themselves. Nonetheless the farming out of computations to the computer may free the 
user to focus on more conceptual aspects of the task. Also the relative ease with which 
the user may use the CAS to execute procedures may support pencil and paper 
algorithmic skills. For example, Kieran and Damboise  (2007) report on a study in 
which poorly performing Grade 10 learners used CAS to generate  factorisations and 
expansions of expressions. Being able to examine the patterns of these factorisations 
and expansions and knowing that they were correct, supported the development of 
these students’ pencil and paper skills. ‘Procedures with connections’ tasks focus on 
the use of procedures for the purpose of developing deeper levels of mathematical 
understandings of specific concepts (Stein et al, 2009). These tasks usually suggest 
general procedures which illuminate the underlying concepts and they often involve 
making connections across multiple perspectives (ibid.). ‘Doing mathematics’ tasks 
require “complex and non-algorithmic thinking” (ibid.) in which the learner has to 
determine her own route through the problem. Such tasks require the learner to analyse 
the task and to consider task constraints; successful execution of the task involves the 
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learner exploring and using various mathematical concepts, processes or relationships. 
As with ‘procedures with connections’ tasks, many opportunities for the design of 
‘doing mathematics’ tasks are opened up when the use of CAS is permitted.   
Use of technological affordances: Different technologies offer different affordances 
for the learning and teaching of mathematics. For example, the use of CAS affords 
movement between different representations (algebraic, graphical, numerical) of one 
mathematical object. Seeing different representations of a single mathematical object 
may illuminate crucial properties of the object. Another affordance is that of dynamic 
representations. In this regard, the user may define a specific function using one or 
more parameters. By changing the value of this parameter dynamically the user may be 
able to see how certain properties of the function change as the parameter changes. As 
with multiple representations of a single object, this may give insight into invariant or 
variant properties of families of functions. These are just two of very many possible 
affordances of CAS. See Berger (2011) for further examples of CAS’ affordances.  
Technical demands: An important aspect of a computer-based mathematical task is 
its technical demand. Such a task may appear to be interesting and worthy in terms of 
its mathematics content but it may require such sophisticated technological skills that it 
has very little, if any, value in the mathematics classroom. This may be particularly 
relevant in a heterogeneous country such as South Africa where certain groups of 
students historically have limited access to, and experience with, computers. The 
technical demand of a task is classified according to the number of different commands 
required (single step, several steps or many steps) and the familiarity of the set of 
commands (standard, non-standard).  The familiarity of the commands is a 
context-dependent category. For example, if users have experience with using the 
slider in GeoGebra the use of a slider is standard; if they do not have this experience, 
the use of a slider is non-standard.  
Implementation of the task: A further consideration in the design or selection of 
appropriate tasks is that the learners may approach the tasks in ways not envisaged by 
the teacher. Stein, Grover & Henningsen (1996) show how the cognitive demands of 
(non computer-based) tasks in reform-orientated classrooms significantly declined as a 
result of certain types of assistance by the teacher. In this paper, I show how the use of 
powerful software may encourage a shifting of mathematical focus away from the 
intended focus of the task to a completely different focus. I also postulate that prior 
mathematical and technological knowledge profoundly effects the implementation of 
the task. 

EXPECTATION VERSUS IMPLEMENTATION  
Context  
The example I present derives from a course on functions given to in-service high 
school teachers in South Africa. The purpose of the course was to revisit an old topic, 
functions, from different perspectives. For reasons born out of South African history, 
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many of the mathematics teachers in South Africa have a degree or diploma in 
education rather than in mathematics. Most of the teachers in our course came from 
this group. These teachers’ content knowledge is fairly weak and so our aim in this 
course was to revisit functions, extending and deepening teachers’ knowledge of this 
basic concept. The course was structured as a part-reading, part-activity course. The 
class met once a week for a three hour session over twelve weeks. Students were 
expected to study a specific chapter from the prescribed mathematics textbook, 
Sullivan (2008), prior to their weekly session. During the class, the students discussed 
the topic they had studied at home for the first hour. They were then presented with 
tasks around the topic which they did on their own or in pairs. Some tasks required the 
use of GeoGebra, others did not. Many of the in-service teachers were newly arrived 
digital immigrants. Data relating to the implementation of specific tasks was collected 
throughout the course in the form of handed-in students’ worksheets as well as audio 
and screen-recordings.  
In this paper, the activities of one single student (Dawn) and one pair of students 
(Sipho and Lebo) with one specific computer-based mathematical task are examined. 
Dawn is a very experienced mathematics teacher with a B.Sc degree in pure 
mathematics. She also has experience with CAS and dynamic geometry software. 
Sipho and Lebo have degrees in Education, rather than mathematics. Neither Sipho nor 
Lebo have used a computer in the learning or teaching of mathematics previous to this 
course.  
Task  
Is it possible to find a value for a such that for all x. Explain why or why not. 
Pedagogic Expectation:  In this task, students were expected to use GeoGebra to plot the 
graphs and  on the same set of axes. See Figure 1.  

Figure 1:  and  

 
Since a is a parameter, students were expected to define a in terms of the GeoGebra 
slider tool and to use this tool to dynamically change the value of a. By dynamically 
altering the value of parameter a, it was hoped that students would notice how the 
graph of   changes in relation to the graph of , for different values of x. 
In particular it was hoped that the students would appreciate that, no matter how large a 
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is,  for large x.  With reference to technical demands, students had 
experience with working with the slider tool in GeoGebra before attempting the task. 
In particular, they had all engaged with a task in which they had examined the change 
in properties of the quadratic function , for changing values of 
parameters a, p, q.  

Table 1: Pedagogic expectation of computer-based mathematical task – an a priori 
analysis 

 Category  Explanation of categorization 
Mathematical 
Focus 

Relationship 
between 
parameter and 
variable  

 

Technical 
demands 

Standard; 
multiple-step  

Requires use of several tools such as slider from 
GeoGebra toolbox. Construction  may also require 
change in window size. 

Cognitive 
demand 

Doing 
mathematics 

Task requires non-algorithmic thinking; requires 
students to distinguish between parameter and a 
variable. There is no prescribed pathway but 
dynamic exploration should suggest how change in 
parameter a effects shape of ax2. 

Use                   
of GeoGebra’s 
affordances 

Dynamic 
representation 

GeoGebra allows for the generation of a dynamic  
graph which changes shape as parameter changes.  
Slider is a useful tool for systematic exploration 
available in GeoGebra but not in pencil and paper 
maths. 

 
Students’ activities: Description and Analysis 
Dawn’s written submission shows that she uses GeoGebra to construct graphs of 

 and on the same set of axes and that she defines a through a slider. She 
uses this slider to see the effect of the changing value of a on the relationship between 
the two functions.  Her written argument is: 

“Using a slider for , I am able to see that   is always going to intersect 
,  and at some point, ”. 

She further argues that: 
 “Power predominates over the coefficient of , ie  means that  gets squared. 
∴Taking  and squaring it will be larger than taking a ‘factor’ of  only provided  

 or ”. 

Later she correctly concludes that  
“We cannot find an ‘a’ for which , ”. 
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In this submission, Dawn implicitly distinguishes between the effect of a change in 
parameter value and the effect of a change in variable on the function. She approaches 
the task systematically and she stays focussed on the required activity. See Table 2  
Like Dawn, Lebo and Sipho start off by using GeoGebra to draw and  
on the same set of axes. They define the slider correctly and then use the slider to 
change the value of a. However they do not change the value of a in any systematic 
way. Nor do they use the graphs to consider how a change in value of a effects the 
relationship between  and . Indeed, shortly after generating the graphs, 
Sipho writes:       

 
 
 

 
He has incorrectly assumed (with no objection from Lebo) that . This is 
followed by a manipulation of symbols without any regard for their status as variable 
or parameter. A little later, as Sipho changes the shape of  on the screen through 
manipulation of the slider, Lebo and Sipho start focusing on the horizontal and/or 
vertical stretching of the graph of . Although this is an interesting issue in itself, it 
does not contribute to their consideration of the relationship between and 

.. Soon after, they digress further from the intended focus of the task when 
they start comparing the two graphs for changing values of a and fixed value of x. 
Finally they stop examining the graphs and engage in unhelpful algebraic 
manipulations. Specifically Lebo writes,  

“ If    
   If     
   So, Yes it is possible to find the value of a such that .” 

These algebraic manipulations are misleading and incorrect: a is a parameter and x is  a 
variable but in these manipulations Lebo uses these symbols without regard to their 
status. Indeed  for specific a, and all x. Thus, the 
concluding statement that “it is possible to find the value of a such that ” may 
be true for specific a and specific x, but it is not true for all x. In fact, for very large x, 

, any a. 
Thus Sipho and Lebo, despite seeing the graphs in GeoGebra and successfully 
managing the value of a through the slider, do not execute the task successfully. They 
use GeoGebra as a tool for drawing and manipulating graphs rather than as a tool for 
interpreting the specific task. Partly this is because they do not distinguish adequately 
between a parameter and a variable (mathematical focus). Also their attention is easily 
diverted by the ease with which they can manipulate the graphs in any which way. 
Furthermore they move into a superficial mode of symbol manipulation. See Table 2.  

Table 2: An analysis of the implementation of the task 
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 Dawn Sipho & Lebo 
Mathematical  
focus 

Focus on distinction between 
parameter and variable. Focus 
on rate of increase of powers of 
variables in comparison to 
multiples of variables. 

Do not distinguish between 
parameters and variables. Do not 
focus on relationship between ax2 
and x4 for specific a, all x. 

Technical 
demands 

Met Met 

Cognitive 
demand  

Doing Maths Interpretation of GeoGebra output 
not adequate. Cognitive demands 
not met. 

Use of 
GeoGebra’s 
affordances  

High: used slider to examine 
relationship between ax2 and x4 
for many values of x, specific 
values of a. 

Low: used slider to manipulate 
graphs in unsystematic way. Did 
not interpret the changing graphs in 
terms of changing values of x and 
specific values of a.    

 

DISCUSSION  
In this particular example we see how the intended cognitive demands of the task were 
not met by Sipho and Lebo. This was despite their technical proficiency with the slider 
and their prior experience with parameters in the GeoGebra context. Indeed they 
oscillated between treating a as a parameter (when they use the slider) and a as a 
variable (in their symbolic manipulations). Furthermore while working with the slider, 
they shifted their attention away from the question of the task and began to explore 
how changes in the value of a affected the horizontal or vertical stretching of . That 
is, they used GeoGebra as a tool for undirected and unsystematic exploration. In 
contrast, Dawn was able to exploit the affordances of GeoGebra to see how the graphs 
of  and  changed in relation to each other for different values of a, and 
for all values of x. That is, Dawn used GeoGebra as a tool for interpretation of the 
assigned mathematical phenomenon.   
Several reasons for Sipho and Lebo’s inappropriate activities suggest themselves. 
Although Sipho and Lebo were able to manipulate the slider (a technical demand), they 
were not able to interpret the graphical information on the computer screen as a varied. 
I suggest that their limited exposure to non-standard mathematical tasks (they both 
have B.Ed degrees in which the level of mathematics is usually quite basic) and to 
technological tools for learning mathematics, contributed to their difficulties. This was 
in stark contrast to Dawn who completed the task systematically and with focus. 
Secondly Lebo and Sipho may have been seduced by the power of the dynamic 
representation. That is, with the slider they could easily vary the value of a and see the 
effect on stretching even though this was not the intended focus of the task. Prior to this 
course, they had had no contact with graphical software and arguably they were still in 
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thrall of the potency of dynamic representations. In contrast, Dawn was already using 
graphical software in her teaching at high school. She was thus not sidetracked by the 
power of the dynamic representations.  
In summary, the analysis shows how one student uses GeoGebra as a tool with which 
to successfully interpret a particular mathematical phenomenon; the other pair of 
students use GeoGebra as a tool with which to draw and explore various aspects of the 
given functions, without addressing the given task in an adequate way. Thus although a 
computer-based mathematical task may be designed with one pedagogic purpose and 
with appropriate mathematical and technical demands, different students may engage 
in the task at different levels and with diverse foci. In particular, the educator may need 
to suggest ways of using GeoGebra for systematic exploration in the task setup 
especially when some students are relatively new to the use of technology for the 
learning of mathematics.  
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COMMUNICATING MATHEMATICS OR 
MATHEMATICAL COMMUNICATION? 

AN ANALYSIS OF COMPETENCE FRAMEWORKS 
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1Umeå University, Sweden; 2Monash University, Australia 
 
In this study we analyse the communication competence included in two different 
frameworks of mathematical knowledge. The main purpose is to find out if mathe-
matical communication is primarily described as communication of or about mathe-
matics or if it is (also) described as a special type of communication. The results show 
that aspects of mathematics are mostly included as the content of communication in the 
frameworks but the use of different forms of representation is highlighted both in the 
frameworks and also in prior research as a potential cause for characterising mathe-
matical communication differently than “ordinary” communication. 

INTRODUCTION 
It is often stated that reading mathematics demands a specific type of reading ability, 
separate from an “ordinary” reading ability, that needs to be taught at all educational 
levels (e.g. Burton & Morgan, 2000; Shanahan & Shanahan, 2008). Research has also 
indicated that it might be the presence of symbols in mathematical texts, and not the 
mathematics in itself, that primarily creates such a demand of a specific type of reading 
ability (Österholm, 2006). This discussion about aspects of reading in mathematics can 
be expanded to aspects of communication, and it is relevant to examine how mathe-
matical communication is described within frameworks that describe (school) mathe-
matics (e.g. NCTM, 2000; Palm, Bergqvist, Eriksson, Hellström, & Häggström, 2004) 
to determine the relation between mathematical communication and communication in 
general, as well as between mathematical communication and other aspects of mathe-
matics. The following overarching question is focused on in this paper: Is mathema-
tical communication described simply as communication of mathematics (i.e. ordinary 
communication but regarding a specific topic) or as a special type of communication? 

BACKGROUND 
At a general level, two “extreme” examples of different theoretical perspectives can be 
given regarding relationships between communication and mathematics. Sfard (2008) 
does not describe communication and cognition as separated, but sees thinking as the 
individualised form of interpersonal communication and mathematics as a form of 
discourse. From this perspective, a mathematical communication competence is the 
same as mathematical knowledge in general, and whether there is something special 
about mathematical communication is the same as asking if there is something special 
about mathematics. Another perspective is to see a separation between mathematics 
and mathematical knowledge on the one hand and the communication of mathematical 
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content and the ability to communicate on the other hand. From this perspective, a 
certain use of language “indicates” whether individuals “in fact” conceive of some-
thing a certain way (Tall, Thomas, Davis, Gray, & Simpson, 2000, p. 230). 
Other researchers focus more specifically on potentially special properties of mathe-
matical communication (or communication in any other content area), when focus tend 
to be on literacy, and primarily reading. For example, McKenna and Robinson (1990) 
define the concept of content literacy as consisting of three components; general 
literacy skills, content-specific literacy skills, and prior knowledge of content. 
Similarly, Behrman and Street (2005, p. 8) suggest that “the ability to read with 
understanding would not be constant across disciplines, since learning depends upon 
domain-based declarative knowledge [prior knowledge of content] and domain- 
related strategies [content-specific literacy skills], in addition to more generalized 
strategies [general literacy skills]”. These three components frame our discussion and 
analysis in this paper, and we focus on content-specific literacy skills. 
A question addressed in some research studies is whether there are such things as 
content-specific literacy skills, examined by comparing reading in different domains. 
Results from such empirical studies tend to highlight similarities between domains. In 
particular, several studies show strong or moderate correlations between different tests 
of reading comprehension; between social studies and general reading comprehension 
(r = 0.79) (Artley, 1943), between reading comprehension in an anatomy course and 
general reading ability (r = 0.72) (Behrman & Street, 2005), and also between reading 
comprehension for a mathematical text and a historical text (r = 0.47) (Österholm, 
2006). These results are seen as evidence of general literacy skills. 
Another type of comparison between domains shows that experts from different 
domains read texts within their domain in different ways (Shanahan & Shanahan, 
2008). However, a limitation in this study is that it is based on the reading of singular 
texts from each domain, but there is a great variety of texts within a domain (Burton & 
Morgan, 2000), making it difficult to draw conclusions about domains in general. 
Another way to address the issue of content literacy is to think about what could be 
seen as content-specific literacy skills. At a general level, to be familiar with a certain 
genre or linguistic register (i.e. that mathematical texts might have a certain style or 
form, and that they might use words and formulations for purposes different than in 
other domains) could be seen as part of content-specific literacy skills. However, it is 
difficult to find a common description of all kinds of mathematical texts, since even 
when limiting the selection to mathematical research articles, Burton and Morgan 
(2000) notice a large variety of writing styles. 
Empirical studies of students reading comprehension of mathematical texts have 
highlighted the use of symbols in mathematical texts as the most important potential 
cause for a need of content-specific literacy skills (Österholm, 2006). The use of 
different forms of representation is often also noted as a critical property of 
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mathematics, for example in Sfard’s (2008) commognitive theory and in the 
cognitively oriented framework by Duval (2006). 
In summary, we have not found any studies focusing more broadly on characterizing 
mathematical communication, except at more general theoretical level. When com-
paring different domains, focus tend to be on aspects of reading, where we have not 
found any clear empirical evidence for separating reading in different domains in 
general, instead the variation within a domain seems equally important. For mathe-
matics, some empirical and theoretical evidence exist that different forms of repre-
sentations can create a potential need for content-specific literacy skills. 

PURPOSE 
As a way of expanding our knowledge of a potential need for content-specific literacy 
skills in mathematics, in this paper we examine if and how content-specific literacy 
skills are described as part of a mathematical communication competence within 
frameworks of mathematical knowledge. Our research questions are: 

1. What aspects of communication are included in frameworks describing mathe-
matical competence? 

2. How is mathematics described as the content of communication in frameworks 
of mathematical competence? 

3. How is communication described as having special character due to aspects of 
mathematics in frameworks of mathematical competence? 

4. Is mathematics described mainly as the content of communication or as part of 
other aspects of communication, in frameworks of mathematical competence? 

METHOD 
We acknowledge that many different types of analyses could be used to fulfil the 
described purpose, but in this paper we focus on one type of linguistic analysis, and do 
not include several different types of analyses, partly due to space limitations. 
However, we aim to expand our analyses in future publications, since different types of 
analyses might give different types of information. 
Our method for analysing competence frameworks consists of two main steps. In step 
1 we read each framework and highlight parts that specify some aspect of communi-
cation. In step 2 we analyse the highlighted parts from step 1 regarding how aspects of 
mathematics are related to the noted aspects of communication, in particular if 
mathematics is described as the content of communication or related to other aspects of 
communication. In both these steps, both authors perform the analysis separately and 
we then compare our results. Before performing the second step, we compare our 
results from the first step and agree on how to interpret the text and code the data, and 
we use our common agreement as a basis for the second step. 
In this study we analyse two different frameworks of mathematical competence; a 
framework from NCTM (2000) and a framework created based on an analysis of the 
Swedish national curriculum (Palm et al., 2004). We shortly refer to these frameworks 
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as the NCTM framework and the Swedish framework respectively. These frameworks 
are chosen since they include a communication competence, and we only analyse the 
parts of the frameworks that explicitly address the communication competence. 
Aspects of communication could be included also in other frameworks of mathe-
matical competence, which do not include a communication competence, and also in 
other parts of the analysed frameworks (e.g. when representations are discussed in a 
separate competence), but we limit our analysis to the communication competence. 
The main reason for this limitation is that another type of method of analysis could be 
needed to handle more implicit descriptions of aspects of communication. 
The main analytical tool used in this study consists of a description of different aspects 
of communication. Based on definitions of communication we create a description of 
these aspects. We use definitions from dictionaries; from Merriam-Webster Online and 
the Swedish National Encyclopaedia (NE) for a standard type of definition and from 
Wikipedia (in English and Swedish) for a more colloquial type of definition, and also 
the definition from Sfard (2008) for a more non-standard perspective. We use different 
types of definitions in order to not exclude potential references to communication in 
the analysed frameworks. Based on these definitions, the following aspects of 
communication are identified; agent, technique, quality, content, and unspecified (first 
column in Table 1, in the results section). Common for all definitions is a focus on 
some type of exchange of “information” between agents. Deliberately, we do not 
define notions used here, but instead focus on words or phrases that in some way signal 
or specify some aspect of this “exchange” (third column in Table 1). The components 
within each aspect (second column in Table 1) are added in order to distinguish 
between words and phrases that specify a certain aspect of communication differently. 
The list of words and phrases is created according to the following procedure: First we 
include words used in the definitions of communication in the dictionaries and also add 
words from a brainstorming activity around the different aspects and components. 
Then we look up the included words in dictionaries and include more words from the 
given definitions, and repeat this procedure for all new words. The purpose with the list 
of words and phrases is not only to search for those specific words included in the list, 
but also to more easily find relevant types of words when analysing the frameworks. 
That is, new words and phrases are also added to the list during the process of analysis. 
In the first step of the process of analysis, each framework is read from start to end and 
all relevant words and phrases are highlighted in the text. The context is taken into 
account in the process of analysis to decide if a certain word should be highlighted. For 
example, “understand” could refer to the process of understanding a written text, an 
aspect of communication, but could also refer to a cognitive state that does not fit our 
(broad) type of characterisation of communication. All highlighted words are then 
included in a table as shown by Table 1, which is used for answering research question 
1, regarding what aspects of communication are included in the frameworks. 
In the next step of analysis, focus is on relationships between aspects of mathematics 
and aspects of communication, and each framework is read from start to end again. For 
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each occasion when some word has been highlighted in a framework, it is decided if 
and how any aspect of mathematics is included in the highlighted aspect of communi-
cation, based on the following six types of how an aspect of mathematics is specified: 

1. Some form of the word “mathematics” or “mathematical” is used. 
2. Some mathematical form of representation is referred to (e.g. through words like 

table, graph, or symbol). 
3. Some mathematical concept or object is referred to (e.g. through words like 

triangle, number, or function). 
4. Some mathematical activity is referred to, by referring to any other type of 

mathematical competence (e.g. problem solving) or to any procedure or 
operation that can be linked to a mathematical concept (e.g. derive or multiply). 

5. Something mathematical is referred to, other than what is included in types 1-4. 
6. Nothing mathematical is referred to. 

For each occasion when one of types 1-5 has been noted, it is also noted what aspect of 
communication the mathematics is related to (i.e. agent, technique, quality, content, or 
unspecified). All occasions when some aspect of mathematics is specified in relation to 
some aspect of communication are then used when answering research questions 2-4, 
regarding how mathematics is included in different aspects of communication. 
The following is an example of the process of analysis. In the excerpt below from the 
NCTM framework, the relevant words and phrases are highlighted: 

Students in the lower grades need help from teachers in order to share mathematical ideas 
with one another in ways that are clear enough for other students to understand. 

Three aspects of communication are here noted; “share” refers to a creative agent, 
“ideas” refers to content, and “clear enough...” refers to quality regarding the exchange. 
One occasion is noted where an aspect of mathematics is specified; type 1 (using 
“mathematical”) and related to the aspect of content in the communication. 
In this paper, focus is not on quantifying occurrences of different aspects in a detailed 
manner, but rather on the existence of different aspects and general tendencies. 
Although the two authors’ separate analyses resulted in several discrepancies, the main 
results and conclusions reported in this study are representative of each of our separate 
analyses and our common agreement regarding interpretation and analysis of data, 
which shows good reliability of the procedure in order to produce answers to the 
specific research questions of the present study. 

RESULTS 
Table 1 shows the words and phrases found in the NCTM framework. Due to space 
restrictions, the table for the Swedish framework is not presented, but the result is 
summarised. In both frameworks of mathematical competence, all aspects of commu-
nication are described through the use of corresponding words or phrases. The NCTM 
framework describes all components (i.e. specifications of aspects) while the Swedish 
framework does not describe bodily as technique or breadth of information as quality. 
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Aspect Component Words and phrases 
Agent Sender/ 

creator 
Write; Draw; Speak; Talk; Describe; Explain; 
Convey; Express (oneself); Articulate; State; Build; 
Use (e.g. certain technique); Present; Reason; 
Claim; Justify; Give account of; Describe; Clarify; 
Formulate; Share; Convince; Act out; Think out 
loud; Pose a question; Question; Complete; Make 
public; Work out (in public); Provide; Critique. 

 Receiver/ 
interpreter 

Read; Listen; Interpret; Analyze; Evaluate; 
Examine; Consider; Probe; Explore. 

 Both of 
the above 

Converse; Discuss; Dialogue; Respond; 
Paraphrase; Participate (in conversation). 

Technique Oral Talk; Speak; Listen; Oral; Discuss; Dialogue; 
Converse; Think out loud. 

 Written Write; Draw; Read; Symbol; Diagram; Picture; 
Mathematical expression; Sketch. 

 Bodily Act out; Use object. 
 Unspecified Tools; Ways (of communicating); Informal means; 

Verbal; Word; Vocabulary; Terminology; Terms; 
Representation; (Some type of) language; Genre. 

Quality Depth of info Precise; Coherent; Clear; Thoughtful; Rigorous. 
 Breadth of info Complete; Rich; Elaborate. 
 The 

exchange 
Understandable; (Sufficiently) convincing; 
Audience; Purpose; Communicative power. 

 Unspecified Mathematically; Sophisticated; Well-constructed; 
Exemplary; Problematic; Informally; Formally; 
Standards (of dialogue/argument); Carefully. 

Content - Understanding; Viewpoint; Argument; Idea; 
Situation; (Result of) thinking; Strategy; Explana-
tion; Solution; Mathematics; Reasoning; Method; 
Task; Problem; Question; Answer; Evidence; 
Example; Procedure; Result; Insight; Claim. 

Unspecified - Communicate; Discourse. 

Table 1: Aspects of communication found in the NCTM framework. 

Regarding how aspects of mathematics are included in aspects of communication, the 
analysis of the NCTM framework shows that most often mathematics is part of content 
(approximately 60 % of all occasions) and otherwise part of technique, except on one 



Bergqvist, Österholm 

 
PME36 - 2012 2-73 

occasion when it is part of quality and one occasion when it is unspecified, using the 
following words and phrases: 

• Specifying content: mathematical thinking, strategy, mathematical idea, 
solution, mathematics, mathematical/procedural task, method, reasoning, 
mathematical argument, proof, procedure, result, mathematical property, 
mathematical understanding. 

• Specifying technique: language of mathematics, (mathematical/algebraic) 
symbol, diagram, communicate in mathematical ways, mathematical termi-
nology/term, mathematical writing, write mathematically, mathematical 
language, mathematical style, mathematical expression. 

• Specifying quality: mathematically rigorous. 
• Unspecified: communicate mathematically. 

The same type of analysis of the Swedish framework shows that most often 
mathematics is part of content (approximately 70 % of all occasions) and otherwise 
part of technique, using the following words and phrases (translated from Swedish): 

• Specifying content: mathematics, information/question with mathematical 
content, mathematical idea, mathematical line of thought, (mathematical) 
concept, the concept of pie chart, law, method, reasoning. 

• Specifying technique: language of mathematics, mathematical language, 
symbols of mathematics, mathematical terminology, pie chart. 

CONCLUSIONS AND DISCUSSION 
Communication in general is well represented in the frameworks of mathematical 
competence through many specifications of different aspects of communication, 
although all specifications focused on in this study are not included in both frameworks. 
Besides the general aspects of communication, for both frameworks, aspects of 
mathematics are mostly included as the content of communication and otherwise as 
technique, except one occasion when an aspect of quality is specified. Mathematics is 
often specified through labelling something as “mathematical” in some way (e.g. by 
referring to the language of mathematics or mathematical ideas/thinking), thereby 
tending to keep descriptions at a general level, since it is not clear in itself what the 
notion of “mathematical” refers to. 
In prior research no clear evidence of the need for content-specific literacy skills have 
been found, and similar can be said about the analysis of competence frameworks since 
aspects of mathematics are mainly included as content of communication and aspects 
of mathematics are often referred to only by labelling something as “mathematical”, 
and it is not clear if or how this could be seen as creating a need for content-specific 
literacy skills. This conclusion is valid at least for communication using natural 
language, but the use of different forms of representation is highlighted both in prior 
research (empirical and theoretical) and in the frameworks (through certain mathe-
matical techniques) as a potential cause for the need for content-specific literacy skills. 
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Is there a need to teach a specific kind of communication ability in mathematics? There 
exist much literature about content literacy that discuss benefits of teaching reading 
also in content areas (Hall, 2005), but perhaps it is not about learning a special kind of 
reading ability but an effect of a good way of teaching the content that focuses on 
processes of interpretation and comprehension (Draper, 2002). This perspective can 
perhaps also be applied on the NCTM framework, since there is much focus in this 
framework on effects and benefits of using communication in teaching and learning, 
and guidance on how to create communication-rich mathematics classrooms. 
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This study analyzes the contribution of a teaching experiment for the development of 
prospective primary teachers regarding knowledge of algebra and of algebra teaching 
as well as their professional identity. The case study of a prospective teachersuggests 
that an exploratory approach combining content and pedagogy supports this 
development, especially in the need to propose challenging tasks, to provide 
opportunity for students’ autonomous work and collective discussions and to be 
attentive to children’s representations and strategies in order to promote algebraic 
thinking. 

INTRODUCTION 
In addition to consistent mathematical knowledge, prospective teachers need to have 
an appropriate knowledge of curriculum and didactics. Such knowledge is essential to 
select tasks and prepare and manage students’ work, providing a classroom dynamics 
that promotes seeking generalizations, sharing strategies, and establishing connections 
among mathematical ideas. A major challenge in the prospective teachers’ future 
teaching practice is supporting the development of students’ algebraic thinking. The 
goal of this paper is to analyse the contribution of a teaching experiment in an algebra 
course, in preservice primary and kindergarten teacher education, for the development 
of prospective teachers’ algebraic thinking and knowledge of key aspects for teaching 
this subject, so that, in the future, they may use them in their teaching practice. In 
addition, we seek to know the influence of this teaching experiment in the development 
of the participants’ professional identity. 

ALGEBRAIC THINKING AND TEACHER EDUCATION 
Recent curriculum guidelines (NCTM, 2000) and researchers (Carraher & Schliemann, 
2007; Kieran, 2004) point the importance of promoting algebraic thinking from an 
early age. This does not mean that the topics usually taught in algebra in later school 
years now arise in primary school (Carraher & Schliemann, 2007), but rather that 
algebraic ideas are tacked in an informal way. Cai and Knuth (2011) indicate that the 
development of algebraic thinking requires analyzing relations between quantities, 
paying attention to structures, studying changes, generalizing, solving problems, 
modeling, justifying, proving and predicting. Generalization is central to algebraic 
thinking as well as expressingit symbolically (Kaput, 2008; Mason, Graham, & 
Johnston-Wilder, 2005). A generalization may be expressed in different ways and, at 
primary school, students may do this in their own words, based on what they observe 
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and learning gradually to express it symbolically (Blanton, 2008). Algebra also 
involves “syntactically guided actions on reasoning and generalizations expressed in 
conventional symbol systems” (Kaput, 2008, p. 11). 
In preservice teacher education, prospective teachers must have learning experiences 
aimed at different aspects of algebraic thinking so that, in their teaching practice, they 
can promote it in their students (Magiera, van den Kieboom, & Moyer, 2011). Ponte 
and Chapman (2008) address three aspects to consider in preservice teacher education: 
(i) knowledge of mathematics for teaching, (ii) knowledge of mathematics teaching or 
didactics, and (iii) professional identity. Both knowledge of mathematics and 
mathematics teaching are included in the development of identity. Knowledge of 
mathematics involves knowing how to use mathematics and also understanding its 
meanings and foundations (Albuquerque et al., 2006). The teacher must know and use 
procedures and why these procedures work. NCTM (2000) states that “teachers must 
know and understand deeply the mathematics they are teaching” (p. 17). Prospective 
teachers need to know also about mathematics teaching, namely about tasks to propose, 
classroom work, students’ learning processes and curriculum guidelines. Ponte and 
Chapman (2008) suggest that preservice teacher education faces the challenge of 
combining content and pedagogy, as well as “teaching preservice teachers the same 
way that they are expected to teach their students” (p. 256). Therefore, they must 
knowledge algebra and what its teaching involves in primary school to be able to 
mobilize it later in their practice, creating learning situations to develop their 
students’algebraic thinking. 
Teacher education must also foster the development of prospective teachers’ 
professional identity. This includes the appropriation of the values and standards of the 
profession, the notion of what is teaching in the envisaged school level, an image of the 
teacher he/she wants to be, as well as an understanding of his/her own learning and of 
the role of reflecting on experience (Ponte & Chapman, 2008). Prospective teachers’ 
past experience as school students influences their identity, bringing up these 
memories in shaping their role as teachers (Brady, 2007). With regard to algebraic 
thinking in primary school, future teachers will face challenges and demands, most of 
which they did not experience as students. 

METODOLOGY 
This research is carried out in the context of a teaching experiment that takes into 
account current guidelines for preservice teacher education and for kindergarten and 
basic education (grades 1-6). It aims at two intertwined aspects, the development of 
participants’ algebraic thinking and their learning how to promote the development of 
students’ algebraic thinking. The teaching experiment follows an exploratory approach 
(most tasks are exploratory and investigative) and the classroom dynamics aims at 
involving participants in discussing algebraic concepts and analyzingissues on algebra 
teaching and learning. The experiment involves 7 tasks on topics such as relationships, 
patterns, sequences, functions, and modeling, their mutual relationship and with other 
themes. Each task aims at deepen aspects of algebraic knowledge and provides 
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opportunities to discuss learning situations seeking to develop participants’ didactical 
knowledge. Some situations refer to primary classroom episodes involving students’ 
work, teaching practice or to students’ solutions of algebraictasks. Therefore the 
teaching experiment addresses mathematics and didactic knowledge, providing 
participants with learning experiences regarding aspects that they will meet in their 
future practice (Albuquerque et al. 2006; Ponte & Chapman, 2008). 
The first author is also the teacher in this experiment. This option establishes a close 
link to the classroom, allowing the results to inform her practice. We present the case 
of Diana, a prospective primary school teacher that was a successful mathematics 
student up to grade 12. Data was collected by two questionnaires with mathematical 
and didactical tasks, administered before (Qi) and after (Qf) the teaching experiment 
and three interviews (E1, E2, E3) madebefore, during, and after the teaching 
experiment. Data is also collected by participant observation, recording field notes (FN) 
and collecting documents produced by the prospective teacher. Data analysis is 
descriptive and interpretive, seeking to highlight the contribution of the teaching 
experiment for the participant’s developmentof knowledge of algebra and algebra 
teaching and professional identity. 

DEVELOPMENT OF DIANA’S ALGEBRAIC THINKING 
Since the beginning of the study, Diana demonstrates significant algebraic thinking, 
making generalizations, using algebraic representations and procedures, and relating 
natural language, algebraic and graphical representations. For example, regarding 
modeling situations, in the initial questionnaire, she represents in algebraic language a 
problem with two unknown quantitiesstated in pictures and natural language. She 
writes a system of two 1st degree equations with two unknowns and solves it by the 
substitution method. She displays ease in using and manipulating algebraic symbols, 
showing to know formal procedures to solve systems of equations (Qi). 
In another problem involving three unknown quantities (Task 2 of the teaching 
experiment), Diana identifies relationships between known and unknown quantities 
and performs basic operations. She writes a system of three 1st degree equations that 
she uses to find the value of one unknown, showing some difficulty in solving it. After 
the collective discussion of the solution of the system, she improves her understanding 
of the procedures (FN). Then, she analyzes solutions of grade 6 students, identifying 
strategies and representations, and a new problem is proposed (figure 1): 

Three friends walk in different routes. We know thatJoão and Tiago together walk 19 km, 
Tiago and Diogo together walk 24 km, and João and Diogo together 29 km.What distance 
does each friend walk? 

Figure 1: Problem from Task 2 of the teaching experiment 
Diana writes the system of three 1st degree equations that she solves correctly by the 
substitution method. Based on the solution of a student to the former problem (FN), she 
learns a new strategy that she also uses to solve this problem (figure 2): 
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Figure 2: Diana’s solution to the problem of the friends walking in different routes 

Diana adds the three totals for each pair getting the double of the combined walking of 
the three friends. She considers this an efficient strategy for this context and uses 
algebraic language to present relationships in a formal way. She continues to do 
generalizations and to use different representations, notably pictorialand algebraic and 
torelate different representations. She improves her comprehension of the algebraic 
language and procedures that she uses, indicating that she now understands “why”. 
In the final questionnaire, Diana represents the problem proposed in figure 3 by a 
system of equations and solves it correctly by the substitution method (Qf). 

Maria and Raquel went shopping. Maria bought glasses and two equal bags by 64 euros. 
Raquel spent 101 euros buying similar objectsbut in different quantity, as she brought two 
glasses and three bags. Find the price of the glasses and the bag. Explain what you did. 

Figure 3: Problem from final questionary 
In the interview, she thinks in another strategy to solve the problem that may be closer 
of the strategiesof primary students, without using a system of equations: “Maybe 
multiply this [picture 2] by 2 would yield 6 more 4 [6 bagsand 4 glasses] and then take 
this2 from here [picture 1]… Or 3, that is. Exactly” (E3). 

 
Figure 4: Drawing made by Diana 

As the interviewer asks her for clarification, she goes on: 
This is what is here [drawspicture 2]. If I multiply this by 2 I get… [draws 4 glasses and 6 
bags]. And here, if I multiply by 3 I would get 3 glasses… [draws 3 glassesand 6 bags]. 
And then, if I go to this one [points towards4 glasses and 6 bags] and took out this [points 
to3 glasses and 6 bags], this is eliminated [3 glasses] this also [6 bags] and I would get 
just the glasses. That is, 64 had to multiply by 3, 364×  [writes in the picture] and here 
202 [writes in the picture]… This less that yields the costof the glasses. (E3) 

The interviewer asks what the final result is and she indicates: 
192202 −  is 10. Exactly, the glasses cost 10 euros. (E3) 

Diana relies on the pictorial representation that she considers to promote students’ 
understanding of the situation. However, this strategy involves the method of 
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subtraction. She multiplies each equation by the values that she chooses, subtracts the 
two equations and obtains an equation with one unknown. She shows, once more, a 
good command of the algebraic language and procedures and her ability to make 
generalizations and to interpret and use different representations. 
The exploratory approach of the teaching experiment promotes Diana’s involvement in 
different learning situations in algebra that contribute towards the development of her 
knowledge regarding generalization, using and understanding different representations 
and learning the justification of procedures. In addition to algebraic and graphical 
representations, she uses also pictorial representations. 

KNOWLEDGE OF ALGEBRA TEACHING 
Before the teaching experiment, Diana shows to know the main topics of school 
algebra, functions and equations. However, she indicates that these topics will not be 
addressed in primary school, at least in the formal way she learned them. She considers 
that the problems involving unknown quantities may be complex for primary students 
and therefore the unknown values must be numbers that students can easily find by 
trial and error. The strategy she suggests does not show the relationships between 
given and unknown values, verifying that it is necessary to satisfy each condition. 
During the teaching experiment, Diana recognizes the possibility of working with 
situations concerning unknown quantities in primary school although these involve 
equations and unknowns that are not formally addressed by students and she suggests 
that this work may takes place supported in pictorial representation and in the 
establishment of relations based on this representation: 

More through images... I think it’s much better, at least for children from grades1-4, 
because if we put this on paper with no pictures I think it would be much harder for them 
to understand the exercise. In this way they have something tangible. With images in the 
exercises it is easier for them to work. (E2) 

As a school student, Diana learned in a very different way: “we got to some point and it 
was just mathematics, mathematics... Everything with computation and we did not 
ever think of simpler ways” (E2). Thus, she recognizes that some tasks may contribute 
to the development of students’ algebraic thinking and knows how to propose them. 
She says that, if students just practice exercises, they memorize the procedures without 
understanding: “if the exercises are similar, just with different numbers, they end up 
memorizing, they just copy from above just changing the numbers, and often do not 
understand the exercise” (E2). The teaching experiment led her to solve problems 
using strategies and representations tailored to the skills and knowledge of her future 
students, establishing relationships and meeting conditions. She adds that this work in 
primary school may improve students’ understanding, particularly, of equations. She 
appreciates the practical work of analysis of students’ solutions because she considers 
important to understand what students do and how they think and the discussions about 
their understanding in different situations. 
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For Diana, it was important to examine different strategies and representations to 
identify the work that may be developed with primary students in identifying 
regularities and establishing generalizations in order to promote their algebraic 
thinking. Furthermore, the analysis of teaching practice and the dynamics created in 
the teaching experiment contributed for her recognition of the importance of classroom 
working modes and the roles of students and teacher, highlighting moments of group 
work and collective discussion and the teacher’s questioning. After the teaching 
experiment, she relates algebra teaching and learning, in general, to algebraic thinking. 
She also refers specific aspects related to sequences and functions. She recognizes now 
that students may solve problems involving unknown quantities based in the 
exploration of relationships and not just by trial and error as she formerly thought. 
Concerning the tasks to propose, she indicates: “in the second task they may get some 
lessons they gained in the first, [tasks may] form a sequence… They may learn in the 
second task something else, using what they learned in the previous example” (E3). 
That is, Diana emphasizes the sequences of tasks that gradually increase the cognitive 
level. 

PROFESSIONAL IDENTITY 
Diana indicates a clear intention of becoming a teacher for grades 5-6. At the beginning 
of the teaching experiment, influenced by her former experience as a secondary school 
student, she views work on algebra as very formal, and does not regard that as 
appropriate for these grade levels. However, the work on the teaching experiment 
allows her to verify that working on algebra may be a rather different activity, 
exploring relationships and patterns aimed at developing students’ algebraic thinking. 
The proposed activities provided her more confidence to work with her future students, 
especially in grades 1-4, a level that she originally did not intended to teach. 
During and after the teaching experiment she identifies important features of the 
professional knowledge of the teacher of this subject, with which she identifies herself. 
She considers that the teacher must be able to solve a task in different ways, 
analyzedifferent answers from students and support them learning from their mistakes: 

[The teacher] has to know how to solve [the task] in a variety of ways, because a child can 
get there with a different solution and the teacher cannot say that is wrong, because 
something may be right. And the teacher must know, must understand what the child did... 
And use what the child knows (…). The child may know something, he/she may be 
wrong, but not totally wrong, one may use something... (E3) 

Diana stresses that teachers must hold a formal knowledge in algebra, knowing the 
algebraic language and procedures. In her view, the teacher must use this knowledge to 
“getting the simplest ways to do and to explain” (E2) and to prepare tasksfor her 
students. The teacher must understand grade 1-6 students’ thinking, the strategies that 
they use and adapt her language to the knowledge and understanding of students. She 
shows capacity to reflect about her experience and about her development and 
recognizes the importance of analyzing the students’ answers and reasoning: 
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I think it is very good that we analyzed how children solved the exercise, because, on one 
hand, we must know to solve the exercises, and, on the other hand, we must understand 
what kids do. Because sometimes they think in a way that we do not thought of, and it 
may be correct. And I think it’s good that we do not practice just how the exercises may 
be done, but also understand how they did them. Because, in our future practice we will 
need, we have to understand. (E2) 

The analysis of teaching situations and their relation to experience contributes for her 
understanding of the work to be done on these gradesand her recognition of some of the 
challenges that the teacher faces and of the specificity of professional knowledge. 

CONCLUSION 
This study aims to contribute for understanding how to integrate mathematics and 
didactical knowledge in prospective teachers’ educational programs, in particular, in 
an algebra course and to identify its contribution for the development of these two 
aspects as well as in the development of professional identity. Diana intends to become 
a primary school teacher (grades 1-6) expressing preference for teaching mathematics 
and science. Being a successful secondary school mathematics student, before the 
teaching experiment she already makes an effectively use of the algebraic language, 
solving most tasks with no difficulty but in a formal way, using algebraic procedures, 
but she does not know what work may be developed in primary school.  
With the teaching experiment, Diana recognizes that many algebraic tasks may be 
addressed in a different way. She strives to find different ways to solve them, and 
values the solution of a problemusing different strategies and representations, feeling 
much more prepared to interpret the diversity of students’solutions. The focus on 
relationships and seeking generalizations provides her a deeper understanding of the 
procedures she already knew and often used in a mechanized way, showing evolution 
of her syntactically guided reasoning. Diana considers that primary school students’ 
algebraic thinking may be developed by the exploration of relationships, contributing 
to a better understanding of formal aspects of algebra later on (Blanton, 2008). In this 
experiment, she develops an understanding of the knowledge that the teacher need to 
promote algebra learning. She recognizes that the teacher must have mathematical 
knowledge to use in his/her teaching practice to prepare suitable tasks for students and 
to solve correctly different kinds of situations, and also have a deep knowledge of 
students, their prior knowledge and the way how they learn. She is also aware of the 
ways she can communicate with students in an effective way. The teaching experiment 
also influenced the way she regards the work with her future students, highlighting 
moments of autonomous work and the moments of collective discussion. 
Besides changing her view regarding the role of teaching and learning of algebra in 
primary school, Diana also developed a much better image of the teacher that she 
wants to be, based on the reflection that she makes about her experience and the 
development provided by the teaching experiment. As Brady (2007) indicates, initially, 
her past experiences influence her identity. The memory of how she learned algebra 
makes she think it will be difficult to address this subject with primary students. This 
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view changes with the teaching experiment. Contrarily to the focus on calculations that 
she experienced as student, she now underlines the role of non-routine tasks aimed at 
the students’ understanding and the activities that promote algebraic thinking in 
primary school. The integration of content and didactic knowledge (Ponte & Chapman, 
2008) and the exploratory approach used in the teaching experiment contributed for 
development ofher knowledge of algebra for teaching, her knowledge of mathematics 
teaching, and her professional identity. In particular, the emphasis on prospective 
teachers working on algebraic tasks and analyzing learning situations, combining 
autonomous work and collective discussions, helped Diana to deepen her 
mathematical knowledge, understanding the rationale for certain procedures, and to 
develop her understanding of learning processes and knowledge of teaching practice.  
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MATHEMATICAL KNOWLEDGE FOR TEACHING USING 
TECHNOLOGY: A CASE STUDY 

Nicola Bretscher 
King’s College London 

 
This paper analyses data from a PhD pilot study to explore the nature of mathematical 
knowledge for teaching using technology, as represented by the central construct of 
the TPACK framework. The case study of teacher Alice is used as an illustrative 
example to suggest that the central TPACK construct may be better understood as a 
transformation and deepening of existing mathematical knowledge rather than as a 
new category of knowledge representing the integration of technology, pedagogical 
and mathematical knowledge. 

INTRODUCTION 
This paper explores the nature of mathematical knowledge for teaching using 
technology. In particular, it explores whether teachers’ mathematical knowledge for 
teaching using technology should be conceptualised as a new domain of knowledge 
integrating knowledge of mathematics, pedagogy and technology or rather as a 
transformation or re-contextualisation of existing mathematical knowledge for 
teaching using technology. In this paper, technology is used to indicate digital 
technologies, commonly referred to as Information Communication Technologies 
(ICT). In recent PME conferences, mathematical knowledge for teaching has been a 
sustained research interest, see for example the RF1 papers on teacher knowledge (Ball 
et al., 2009) in the 33rd conference and last year’s plenary lecture on designing settings 
for teachers’ disciplinary knowledge (Davis, 2010). Although substantial research 
effort has been focused on conceptualising teacher knowledge (Rowland & Ruthven, 
2011; Sullivan & Wood, 2008), it has rarely considered teachers’ mathematical 
knowledge for teaching in the context of technology use. Correspondingly, research on 
mathematics teachers’ knowledge and use of technology is rarely informed by studies 
of teacher knowledge in mathematics education or in the wider field of education (see 
for example Hoyles and Lagrange, 2010), thus such research tends not to build towards 
a systematic analysis of mathematical knowledge for teaching using technology. These 
omissions are surprising given widespread recognition of the complexities of 
technology integration experienced by teachers and the corresponding gap between 
aspirations for technology use in schools and the classroom reality of technology use 
(Lagrange & Erdogan, 2008), with teacher knowledge often cited as an explanatory 
factor. Nevertheless, the nature of teachers’ mathematical knowledge for teaching 
using technology remains unresolved.  
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THEORETICAL BACKGROUND: THE TPACK FRAMEWORK 
This study adopts Mishra and Koehler’s (2006) Technological Pedagogical Content 
Knowledge (TPACK) framework due to the juxtaposition of technology knowledge 
alongside pedagogy and content knowledge, enabling an explicit focus on technology 
and thus an exploration of the nature of teachers’ mathematical knowledge for teaching 
using technology. The TPACK framework represents Shulman’s (1986) pedagogic 
content knowledge diagrammatically as the intersection of two circles representing 
general pedagogic knowledge and content knowledge. Extending this representation 
using a Venn diagram with three overlapping circles, they incorporate technology 
knowledge as a third domain of teacher knowledge, to indicate the skills or knowledge 
needed to successfully operate technology. The inclusion of technology knowledge 
introduces two new dyads, technological pedagogical knowledge (TPK) and 
technological content knowledge (TCK), representing the intersection of technology 
knowledge with pedagogic knowledge and content knowledge respectively, and a triad 
representing the intersection of all three types of knowledge: technological 
pedagogical content knowledge (TPACK, see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The TPACK framework, source http://tpack.org/ 
The TPACK framework was developed in the field of educational technology, hence 
its components require contextualising in the field of mathematics education. Mishra 
and Koehler (2006) define TCK as knowledge about the manner in which technology 
and content influence and constrain one another. TCK can be conceptualised as 
knowledge of how software models mathematical concepts and relations and of how 
the software design may therefore affect both the substantive and syntactic structures 
of mathematics. TPK comprises knowledge of the existence, components and 
capabilities of various technologies for use in teaching and learning settings and 
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pedagogical considerations for their selection (Mishra & Koehler, 2006). For example, 
teachers need to be able to reinterpret the function of generic software and hardware, 
such as word-processing, spreadsheet or presentational software or interactive 
whiteboard hardware, to suit their own pedagogical purposes. This might include how 
to manage changes in the working environment and activity format (Ruthven, 2009), 
requiring the adaptation of strategies for classroom management and organisation. 
Finally, Mishra and Koehler (2006) suggest that TPACK is a special form of 
knowledge, different from that of the technology expert, subject matter specialist or the 
general pedagogic knowledge shared by teachers across disciplines. In teaching 
mathematics, TPACK could be exemplified by the knowledge underlying a teacher’s 
selection of spreadsheet software for the capability to manipulate variables and 
formulae dynamically for the pedagogic purpose of supporting an investigative 
approach to learning algebra, whilst understanding the limitations of the mathematical 
representation, such as the discrepancies between spreadsheet and standard algebraic 
notation, and recognising and developing strategies to deal with the pedagogical 
implications of these limitations. 
The nature of the central TPACK construct remains weakly conceptualised  (Graham, 
2011). For example, Bowers and Stephens (2011) conclude that the central TPACK 
construct may represent the empty set in terms of particular knowledge or skills. 
Instead, they suggest TPACK should be regarded as an orientation or disposition 
towards viewing technology as a critical tool for identifying mathematical 
relationships. In contrast, Niess et al (2009) propose TPACK as integrated knowledge, 
representing the intersection and interconnection of content, pedagogy and technology 
knowledge. As a result, the nature of teachers’ mathematical knowledge for teaching 
using technology, represented by the central TPACK construct, remains unresolved.  

DATA COLLECTION AND CONTEXT 
As part of a pilot study for the author’s PhD project, three case study teachers were 
observed teaching a lesson involving technology and subsequently asked to reflect on 
the lesson in a post-observation interview. Initially presented in Bretscher (2009), the 
data has been re-analysed using the TPACK framework for the purposes of this paper. 
Here the case study of Alice is used as an illustrative example to explore the nature of 
teachers’ mathematical knowledge for teaching using technology, as represented by 
the central TPACK construct. Alice was an experienced mathematics teacher, working 
at a private girls’ school in the UK. She was teaching a group of 14 girls aged 14-15 
years, who had just sat their end of school-year exams. Alice noticed that the majority 
of the group had incorrectly answered a standard question on the nth term of linear 
sequences and this lesson was intended as a revision lesson of the topic. In Alice’s 
selective school, this group were regarded as low-attaining in mathematics, although 
according to their predicted grades for the national school-leaving exam (GCSE) they 
would generally be considered as having average or above-average attainment. The 
lesson took place in a computer room specially booked for the occasion. Alice used a 
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PowerPoint presentation on the interactive whiteboard to introduce the topic, 
demonstrating the differencing method to find the nth term of a linear sequence, 
followed by a pencil-and-paper worksheet. After going through the answers to the 
worksheet on the interactive whiteboard, the students worked on a spreadsheet exercise 
where they had to provide the nth term for a series of sequences.  

ANALYSIS 
Demonstrating TPK: generating questions randomly as classroom management 
In the interview, Alice demonstrated technological pedagogical knowledge (TPK), 
articulating how she uses her knowledge of the existence and capabilities of the 
PowerPoint and spreadsheet software to enhance her pedagogy. She explained how her 
use of technology enhanced her classroom management, helping her to maintain 
students’ engagement in the tasks she set them and contributing to her smooth handling 
of the lesson. In particular, the downloaded spreadsheet had an important pedagogic 
advantage over non-ICT resources such as a textbook or paper worksheet: it 
incorporated a button that when clicked would re-generate all the questions to be 
different. For Alice, this was the “cleverness of the spreadsheet…, the thing that I 
couldn’t have written personally” which meant that, during the lesson, she could 
prevent one student from copying another without a disruptive intervention such as 
moving her to another seat. Alice used her knowledge of this capability of the 
spreadsheet to allow her to maintain a less intrusive style of classroom management. 
Alice also identified the provision of immediate feedback as a significant feature of the 
spreadsheet exercise in enhancing her teaching as compared with traditional tools. 
When the students entered a potential nth term for a sequence, the spreadsheet 
provided immediate feedback: ‘well done’ for a correct answer and ‘try again’ for an 
incorrect one. She explained that the spreadsheet improved pupils’ confidence, thereby 
having a positive impact on their engagement and productivity. 

Once they’ve done three or four, they know they can get the next few right. It tells them 
immediately that they have got them right, and then they feel that here’s something I can 
do. 

Linked to increasing the students’ engagement and productivity, the immediate 
feedback from the spreadsheet enhanced Alice’s capacity for effective classroom 
management. It freed her from constant requests from students asking for validation, 
allowing her to target her own skills more efficiently to ensure the smooth running of 
the lesson. 

…they must all have done more than 18 questions. Now with that group, that’s quite a lot 
of questions for them to have done in a 10 minute time, because of this thing that they tend 
to stop after one question and wait for reassurance before they carry on to the next. 

Significantly, Alice did not indicate how the mathematical knowledge she makes 
available to her pupils in the lesson is altered by the transformation of pedagogical 
techniques she is able to enact through her knowledge and use of technology. Indeed, 
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during the interview, she appears to suggest that the mathematical content of the lesson 
remains unaltered, identical to a lesson conducted without digital technology, using a 
traditional whiteboard and textbook exercise on sequences. 

I used presentation software with a little bit of interaction in it, you know, a few claps when 
they got something right, and I could just as well have done that on the board though it 
might not have [appeared] so neatly and it wouldn’t have looked so neat, but the 
spreadsheet that they used, that was essentially just like doing a series of questions from a 
book except that they got immediate feedback. 

Alice’s focus on enhancing her pedagogy through her use of technology indicates a 
lack of depth in her consideration of the changes to the mathematical content made 
available to the students through her teaching using technology. Her apparent 
demonstration of TPK in fact serves to highlight the shallowness of her TPACK, since 
her belief that the mathematical content of the lesson remains unaltered suggests a 
weakness in the transformation of her mathematical knowledge for teaching using 
technology. Thus it is not that Alice has a thorough grasp of TPK but has yet to 
integrate her knowledge of mathematics with her knowledge of technology and 
pedagogy to achieve TPACK. Rather it is that the depth of her mathematical 
knowledge is insufficient to appreciate and critique the changes in her teaching of 
mathematics brought about by her use of technology. For example, Alice’s use of the 
capability of the spreadsheet to randomly generate a set of questions to enhance her 
classroom management suggests an explicit disregard for the pedagogic advantages 
and disadvantages of choosing specific examples over others. Indeed, she explained 
during the interview that what this class needed was “lots and lots of questions that are 
all identical, so it builds confidence”. Rowland et al (2009) suggest that random 
generation of examples might be reasonable as a means of demonstrating the efficacy 
and general application of an established method. However in this lesson, Alice’s aim 
was to counter a particular misconception she had noticed in the pupils’ recent exam, 
namely that if a linear sequence has a common difference of a between one term and 
the next, then it has an nth term of n + a. Random generation of examples may be 
inappropriate here since it may give rise to examples like 3n + 3 which obscure the role 
of variables and may unintentionally act to reinforce such a misconception. In addition, 
Alice did not explain the benefits of the immediate feedback provided by the 
spreadsheet in terms of the mathematical insight her pupils might gain. Instead, she 
struggled to find a rationale based on mathematics pedagogy, hoping that the pupils’ 
increased productivity might improve retention, whilst acknowledging that it might not. 
Thus for Alice, the significance of the spreadsheet’s provision of immediate feedback 
lay solely in enhancing her capacity for classroom management and not in the 
possibility of altering the mathematical knowledge made available to her pupils 
through her teaching. 
Demonstrating TCK: identifying discrepancies in spreadsheet notation 
Alice also demonstrated TCK in her lesson and interview, recognising discrepancies 
between standard algebraic notation and the algebraic input accepted by the 
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spreadsheet as a valid nth term. Articulating these discrepancies demonstrates Alice’s 
understanding of how the capabilities of the software may alter the presentation of 
mathematical content, hence her TCK. During the lesson, she raised the pupils’ 
attention to the issue that the spreadsheet would, for example, only accept 3n + 0 as a 
valid nth term for the three times table, rejecting the standard 3n as invalid. In this 
instance, she suggested they ignore the spreadsheet, remembering that for the exam 
they would need to write 3n. In another departure from standard notation, the 
spreadsheet accepted both 1n + 5 and n + 5 as equally valid answers. Alice did not raise 
this issue with pupils in the lesson. During the interview, she explained why she had 
raised one issue but chose to ignore the other. 

Coming back to the [GCSE] exam, I think they would get the mark for 1n+5 and one other 
mark for n+5, so the fact that the spreadsheet would take either didn’t seem to me to be a 
problem. I thought it was more of a problem […] it wouldn’t take 3n, it would only take 3n 
+ 0. That is a problem because obviously, you know, because 3n+0 is not nearly as good an 
answer as 3n. 

Thus she intentionally overlooked this discrepancy between standard algebraic 
notation and the spreadsheet notation, whilst drawing attention to the issue of the 
spreadsheet accepting 3n + 0 but rejecting 3n. This suggests an explicit ignorance on 
Alice’s part of the pedagogic advantages or disadvantages of her choice of examples 
(Rowland et al., 2009). In addition, by asking students to ignore the spreadsheet, Alice 
reinforces her position of authority as the source of mathematical knowledge, 
undermining her argument that the immediate feedback provided by the spreadsheet 
can act as an alternative source of mathematical knowledge for the students to rely on. 
There is no point in the students following the spreadsheet’s instruction to ‘try again’ 
when they appear to get a question incorrect, since it may be the spreadsheet in error. 
Instead, from the students’ point of view, they are better off turning once again to Alice 
for ultimate validation. Further, by asking students to ignore the spreadsheet and rely 
instead on her judgement of what is expected in the exam, she misses an opportunity to 
examine why 3n may be conceived as an equally valid, if not better notation for the nth 
term of the three times table. She therefore misses the opportunity to build her 
students’ ability to rely on themselves as a source of mathematical knowledge. Thus it 
seems the depth of Alice’s mathematical knowledge is insufficient for her to recognise 
the pedagogic value in discussing explicitly the discrepancies spreadsheet and standard 
algebraic notation. In particular, Alice’s demonstration of TCK serves to highlight the 
shallowness of her TPACK, again indicating a lack of depth in her consideration of the 
potential changes to the mathematical content made available to the students through 
her teaching using technology. Although she recognises using technology may lead to 
alterations in the presentation of mathematical content, she fails to consider the 
implications for mathematics pedagogy of such alterations. That she does not see the 
changes to mathematical content through technology use as impacting on her teaching 
of mathematics suggests a weakness in the transformation of her mathematical 
knowledge for teaching using ICT. Significantly it is not that Alice has a thorough 
grasp of TCK but has yet to integrate her pedagogical knowledge with her knowledge 
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of technology and mathematics to achieve TPACK. Instead, it is that the depth of her 
mathematical knowledge is insufficient to appreciate and develop the changes in the 
presentation of mathematical content through technology use for pedagogic purposes.  

DISCUSSION 
A major advantage of the TPACK framework is that by emphasising technology as a 
knowledge domain alongside pedagogy and content knowledge, the existence of 
teachers’ mathematical knowledge for teaching using technology is highlighted 
through the central TPACK construct. To an extent Alice exhibited some level of 
TPACK. She demonstrated sufficient mathematical knowledge to select appropriate 
technological resources to teach the given mathematical topic with some degree of 
competence to her students. However, her demonstrations of TPK and TCK both serve 
to highlight the shallowness of her TPACK, by indicating a lack of depth in her 
consideration of the potential changes to the mathematical content made available to 
the students through her teaching using technology. Importantly, in each case it was 
not that she had a thorough grasp of the dyadic components, TPK and TCK, but had yet 
to integrate her knowledge of content and pedagogy respectively. Instead, it is that the 
depth of her mathematical knowledge was insufficient to appreciate and develop the 
changes in the presentation of mathematical content through technology use for 
pedagogic purposes. Explicit recognition of how changes in the presentation of 
mathematical content could be transformed for pedagogic purposes would entail a 
deepening of Alice’s existing mathematical knowledge for teaching using technology. 
The analysis presented above suggests that the central TPACK construct may be better 
understood, not as a new category of knowledge representing the integration of 
technology, pedagogy and mathematical knowledge, nor as an orientation towards 
using technology, but rather as a transformation and deepening of existing 
mathematical knowledge for teaching using technology. A further hypothesis is that 
the dyadic constructs TPK, TCK and also PCK may not exist as distinct categories of 
knowledge in the actuality of classroom practice. However, these constructs do 
provide useful analytical tools for identifying weaknesses in teachers’ mathematical 
knowledge for teaching in the context of a particular technological tool.  
Notes 
1. GCSE stands for General Certificate of Secondary Education. 

References 
Ball, D. L., et al. (2009). RF1 Teacher knowledge and teaching. In Tzekaki, M., Kaldrimidou, 

M. & Sakonidis, H. (Eds.) Proc. 33rd Conf. of the Int. Group for the Psychology of 
Mathematics Education (Vol. 1, pp. 121-150). Thessaloniki, Greece: PME 

Bowers, J., & Stephens, B. (2011). Using technology to explore mathematical relationships: a 
framework for orienting mathematics courses for prospective teachers. Journal of 
Mathematics Teacher Education, 14(4), 285-304.  



Bretscher 

 
2-90 PME36 - 2012 

Bretscher, N. (2009). Networking frameworks for analysing teachers' classroom practices: a 
focus on technology. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.) Proc. 33rd 
Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 5, p. 440). 
Thessaloniki, Greece: PME 

Davis, B. (2010). Concept studies: designing settings for teachers’ disciplinary knowledge. In 
M. M. F. Pinto & T. F. Kawasaki (Eds.) Proc. 34th Conf. of the Int. Group for the 
Psychology of Mathematics Education (Vol. 1, pp. 63-78). Belo Horizonte, Brazil: PME 

Graham, C. R. (2011). Theoretical considerations for understanding technological 
pedagogical content knowledge (TPACK). Computers & Education, 57(3), 1953-1960.  

Hoyles, C., & Lagrange, J.-B. (2010). The 17th ICMI Study: Mathematics Education and 
Technology - Rethinking the Terrain. New York: Springer. 

Lagrange, J.-B., & Erdogan, E. O. (2008). Teachers’ emergent goals in spreadsheet-based 
lessons: analyzing the complexity of technology integration. Educational Studies in 
Mathematics, 71(1), 65-84.  

Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A 
Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017-1054.  

Niess, M. L., Ronau, R. N., Shafer, K. G., Driskell, S. O., Harper, S. R., Johnston, C., et al. 
(2009). Mathematics Teacher TPACK Standards and Development Model. Contemporary 
Issues in Technology and Teacher Education, 9(1), 4-24.  

Rowland, T., & Ruthven, K. (2011). Mathematical Knowledge in Teaching. London: 
Springer. 

Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing Primary 
Mathematics Teaching: reflecting on practice with the Knowledge Quartet. London: Sage. 

Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in 
classroom practice: The example of school mathematics. Education and Didactique, 3(1), 
131-152.  

Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. 
Educational Researcher, 15(2), 4-14.  

Sullivan, P., & Wood, T. (2008). The International Handbook of Mathematics Teacher 
Education: Volume 1 Knowledge and Beliefs in Mathematics Teaching and Teaching 
Development. Rotterdam: Sense Publishers. 



 

2012. In Tso,T. Y. (Ed.). Proceedings of the 36th Conference of the International Group for  
the Psychology of Mathematics Education, Vol. 2, pp. 91-98. Taipei, Taiwan: PME. 2-91 

A MATHEMATICIAN’S DOUBLE SEMIOTIC LINK OF A 
DYNAMIC GEOMETRY SOFTWARE 

Yip-Cheung CHAN 
The Chinese University of Hong Kong, Hong Kong SAR, China 

 
When a person works on a task using dynamic geometry software (DGS), a double 
semiotic link is recognizable between this software and both the task and one’s 
mathematical knowledge. In this paper, a mathematician’s double semiotic link of a 
DGS is discussed. The participant imposed the system of Euclid’s Elements on DGS. 
This influenced how he used the software to accomplish the tasks given to him. At the 
same time, his perception on DGS was also shaped by these tasks. It is the author’s 
hope that this paper could initiate further discussions on the nature of geometry (or 
geometries) embedded in DGS. 

INTRODUCTION 
Theoretical framework and research focus 
Dynamic geometry software (DGS) is an artifact which carries mathematical meanings. 
It is a “tool of semiotic mediation” for experiencing the development of mathematical 
theory (Mariotti, 2000). Bartolini Bussi & Mariotti (2008) points out that a “double 
semiotic link” between this artifact and both the task and mathematical knowledge is 
recognized when it is used to accomplish a specific task. They further point out that: 

The main point is that of exploiting the system of relationships among artifact, task and 
mathematical knowledge. On the one hand, an artifact is related to a specific task … that 
seeks to provide a suitable solution. On the other hand, the same artifact is related to a 
specific mathematical knowledge.                       (Bartolini Bussi & Mariotti, 2008, p.753) 

The ‘interaction’ between these two semiotic links is shaped by and shapes one’s 
perception on the mathematical meanings embedded in DGS. In this paper, a 
mathematician’s double semiotic link of a DGS is discussed. It reveals the complexity 
of the development of one’s utilization and understanding on DGS.  

METHODOLOGY  
The data reported in this paper was collected as part of the author’s Ph.D. study (Chan, 
2009). It aims at investigating the participants’ working processes of DGS explorative 
tasks. An ethnographic investigation approach is adopted. Samuel (pseudonym), as 
one of the participants, is a male university mathematics teacher. He obtained a Ph.D. 
degree in mathematics. He did not know how to use Sketchpad (a DGS) before he 
participated in this research study. He met the researcher (the author of this paper) once 
a month in a year. In each of the meetings, he worked on a geometric explorative task 
by using Sketchpad. After that, a semi-structured interview was conducted in order to 
clarify his mathematical thinking during the working process. After he finished 10 
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sessions of explorative tasks, a ‘round-up’ semi-structured interview about his 
perceptions on using DGS to explore geometrical problems was conducted. All the 
sessions were video-recorded and the interviews were audio-recorded.  

SEMIOTIC LINK BETWEEN SKETCHPAD AND EUCLID’S ELEMENTS  
Samuel regarded Sketchpad as a computational tool which embeds the system of 
Euclid’s Elements. He tried to develop a semiotic link between Sketchpad (the artifact) 
and the system of Euclid’s Elements (mathematical knowledge). This is evidenced 
from the following excerpt of interview transcript1:  

Samuel:         Euclid’s Elements is a kind of background knowledge. A kind of… I do not 
want to use the word ‘culture’; it is a kind of… I would regard it as a 
fundamental understanding. 

Samuel:         It does not necessary to be a specific theorem or a specific construction but 
a kind of analogy. For instance, the book [Euclid’s Elements] mentions 
about A, B, C; then, it may lead to an association with A”, B”, C” -- this 
kind of constructional model. This is a sense or an intuition based on 
Euclid’s Element.  

While trying to impose the system of Euclid’s Elements on Sketchpad, he realized that 
it is not so straightforward. He thought that some Sketchpad commands may violate 
the axioms in Euclid’s Element. Doing actual measurement is one such example.  

Interviewer:  You avoided measurement. Am I correct? 
Samuel:      [I] avoided actual [direct] measurement. If it [Sketchpad] can provide a 

method to measure the ratio [of the lengths] rather than measuring the 
actual lengths, I will consider. 

Interviewer:  But, it is not OK if it gives 1.5 inches, right?  
Samuel:       It is not acceptable because I do not know whether 1.5 inches is actually 

1.500031100009 [inches].  

Samuel’s avoidance of using measurement tools directly is consistent to how Euclid’s 
Elements view ‘measurement’. Hartshorne (2000) points out that numbers and 
magnitudes are regarded as two different things in Euclid’s Elements. The former are 
positive integers whereas the latter are geometrical quantities. ‘Ratio’ in Euclid’s 
Elements is neither a number nor a magnitude but a way to define the concept of 
‘proportion’ by comparison of magnitudes. Apart from his avoidance of using 
measuring tools, Samuel developed his own ‘priority list’ of Sketchpad commands 
according to his semiotic link between Sketchpad and the system of Euclid’s Elements. 
The following excerpt of interview transcript describes the principle of his priority list.  

Samuel:        My principle is: if possible, we should try best to use compass and ruler.  

                                                      
1 All the interviews were conducted in Cantonese (mother tongue of both the researcher and the participant). The 
transcripts reported in this paper were translated by the author. 
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Interviewer:  Why? 
Samuel:          It is because you do not know whether some other things would be produced 

by using these tricky methods [i.e. using tools other than compass and 
rulers to do construction].  

Interviewer:  What do you mean by “other things”? 
Samuel:         That is…during the process of exploration, some circular arguments may be 

used. I am not sure whether it would occur or not, but this is a sufficient 
reason to avoid using them. 

Interviewer:  How does Euclid’s Elements influence your way to construct figures and do 
exploration by using Sketchpad? 

Samuel:      I tend to use some specific Sketchpad commands more frequently… more 
frequent to use…have a higher priority to use them. 

Interviewer:  For instance? 
Samuel:       The main….. Maybe, let me describe the criterion [of selecting Sketchpad 

commands]. If it is explicitly stated in Euclid’s Elements as…. it is 
called….. the postulate or notion, that is what we call axiom [nowadays]… 
it says that it can be used, then I will use it in higher priority.  

Samuel:          For instance, [we] can construct a circle, and… [we] can join [two points by] 
a line. I will use [these commands] repeatedly. Next, those propositions, 
according to the sequence in Book I… this is not an accurate way of 
saying... I should say, mainly according to its logical order. For instance, 
Proposition 1 will be used in higher priority. Proposition 1 says [that we] 
can construct an equilateral triangle. And then, Propositions 2 and 3, which 
says how to use compass and ruler to do addition and subtraction. And next, 
at later [propositions], construct perpendicular lines. Some things like it… 
in a specific order. And the parallel line which is [stated] at later part [in 
Euclid’s Elements], as far as I remember, I seldom construct a parallel line 
by applying the command directly. 

In short, Samuel adapted Sketchpad so that this artifact fitted to his semiotic link 
between this artifact and its embedded mathematical knowledge.  

SEMIOTIC LINK BETWEEN SKETCHPAD AND TASK  
When a task was given to Samuel, a semiotic link between Sketchpad and this task was 
established. For some tasks, this semiotic link was inconsistent to his semiotic link 
between Sketchpad and the system of Euclid’s Elements. The following two excerpts 
of exploration episodes illustrate the inconsistency and describe how he overcame it.  
Excerpt 1 
The following task given to Samuel is based on Haruki's Cevian Theorem for circles 
(Honsberger, 1995, p.144-145) which states that:  
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Three circles intersect each of the others in two points where A, B, C, D, E and F are 
the intersection points. We have 1=××

FA
EF

DE
CD

BC
AB . 

The task 
The figure shows three circles intersect each of the others in two 
points. A, B, C, D, E and F are the intersection points. X, Y, Z are 
points that control the sizes of the circles and P, Q, R are the 
centers of the circles. The aim of this task is to find a relation 
connecting the lengths of the line segments AB, BC, CD, DE, EF 
and FA.                                                                                                    
Samuel’s solution process 
As this task involves the lengths of various line segments, a natural approach of 
starting up the exploration is to use measuring tools in Sketchpad. However, this is 
inconsistent to Samuel’s semiotic link between DGS and mathematical knowledge. He 
needed to find a way to resolve this inconsistency.  

Samuel:          What is [the meaning of] measuring lengths? It is to 
draw circles!  

After thinking for a while, he constructed three pairs of concentric 
circles with different colours and then dragged some points for a 
while. Then, he discovered a property of this configuration: 

Samuel:       If  AB = AF, it seems that the other four circles, which 
are indeed two pairs of circles, i.e. the two pairs of 
circles with center C and center E respectively, have radii in same 
proportion… it seems to be the same. Is there anything symmetric? 

What Samuel meant is indeed a special case of Haruki's Cevian Theorem, i.e. BC: CD 
= FE: DE when AB = AF.  
Analysis 
In this excerpt, ‘measurement’ constitutes a semiotic link between DGS and this task. 
However, as Samuel did not want to use measuring tools in Sketchpad because it did 
not match with his semiotic link between DGS and the mathematical knowledge, he 
re-interpreted the meaning of measurement (according to Euclid’s Elements) as 
‘drawing circles’. (The first few propositions in Book I of Euclid’s Elements discuss 
about ‘operations’ of magnitudes by using circle-constructions.) He also realized that 
this task does not really involve measurements but only the ratios of magnitudes. 
(Ratio, as a concept of proportion, is discussed extensively in Book V of Euclid’s 
Elements.) The consistency of the semiotic links between DGS and both the system of 
Euclid’s Elements and the task is restored. Samuel used circle-constructions and 
dragging, instead of applying the measuring tools directly, to explore the ratios of the 
lengths. 
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Excerpt 2 
The following task given to Samuel is based on the concept of radical axis of two 
intersecting circles which is their common secant (Posamentier, 2002, Theorem 3.11).             
The task  
The figure shows two intersecting circles. Let P be a point. Lines 
PA and PB are tangents to the two circles at points A and B 
respectively. Find the locus of P such that the distance between P 
and A is equal to the distance between P and B, i.e. PA=PB. 
Samuel’s solution process 
This task involves two mathematical concepts: distance and locus. Similar to Excerpt 1, 
Samuel used circle-constructions to handle ‘measurement’ of distances. He 
constructed two concentric circles both centred at A and have radii PA and PB 
respectively. 

Samuel:         AP and PB are equidistant if and only if these two 
circles are overlapped. 

He dragged P so that the two circles coincide exactly. He tried 
to keep these two circles ‘overlap’ while dragging point P. He 
emphasized that the two circles in questions are kept 
unchanged.                                                                               

Samuel:      Now, note that I have not ‘touched’ the two green circles. I only change the 
position of P. While changing the position of P, the positions of A and B will 
also be changed. And then the lengths of PA and PB will also be changed. 
But I also require to keep PA and PB approximately the same lengths. Let me 
try to use… see whether I can use the trace 
function [command]. Try to use. 

He used ‘trace’ command to keep track of the dragging path 
which provided him a visual clue to discover the required 
locus. After dragging for a while, he guessed that the locus is 
a straight line.  
Analysis 
Distance and locus constitute a semiotic link between DGS and this task. Samuel’s 
measuring method is consistent to the concept of ‘measurement’ in Euclid’s Elements. 
In terms of measurement, the semiotic link between DGS and the system of Euclid’s 
Elements is consistent to the semiotic link between DGS and the task.  

In Euclid’s Elements there is an undefined concept of equality (what we call congruence) 
for line segments, which could be tested by placing one segment on the other to see 
whether they coincide exactly. In this way the equality or inequality of line segments is 
perceived directly from the geometry without the assistance of real numbers to measure 
their lengths.                                                                          (Hartshorne, 2000, p.461-462)  
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To find the locus, Samuel dragged the points and used ‘trace’ command. This dragging 
technique is usually called dummy locus dragging (Arzarello, Olivero, Paola, and 
Robutti, 2002). Dragging plays a special role in Samuel’s exploration process. On the 
one hand, Samuel seems rather comfortable to do dragging. On the other hand, 
dragging looks inconsistent to the system of Euclid’s Elements. (See for example, 
Lopez-Real & Leung, 2006.) It is worth to investigate how Samuel interpreted the 
meaning of dragging.  

INTERPRETATION OF DRAGGING  
The following excerpt of interview transcript reveals Samuel’s interpretation of 
dragging in DGS: 

Samuel:     Although [result in] Sketchpad is just an approximation, it is actually a 
simulation of 2R . In most cases, questions in 2R  involve properties of 
continuous [objects]. Of course, each individual diagram is discrete but the 
underlying construction may depend on some variables. For instance, 
although I did not do measurement, I realized that some variations of points 
may control the lengths of some line segments. These are some things that 
change continuously. So, ultimately, this is the concept of function. 

Interviewer:  Does the operations in Sketchpad match your way of thinking - function?   
Samuel:        At the level of ‘theatre’, it is. As a tool, it is useful. Dragging is a way to 

express how a function changes. In Sketchpad environment, [the purpose of] 
dragging is to control variables and to see different outputs. The dragging 
process simulates a function - an abstract function. Dragging is really 
something new to me. 

Interviewer:  How does it [dragging] influence your way of exploration? 
Samuel:       It is a kind of sensational stimulation. [It is] a tricky method that can help 

thinking. 
Interviewer:  It is an interesting idea. Can you say more? 
Samuel:        It   is tricky because it is not conventional. You cannot drag [a geometric 

object] in paper-and-pencil [environment]. In paper-and-pencil 
[environment], you can only draw different discrete cases. However, if you 
have not used any invalid things in your Sketchpad construction, dragging 
is an acceptable tricky method. 

Interviewer:   OK, why can it help you to think? 
Samuel:          It [Dragging] displaces a function. 

The above excerpt of interview transcripts describes Samuel’s ‘mental struggle’ on the 
two semiotic links. On the one hand, dragging is a useful tool for working the tasks. It 
gives a semiotic link between DGS and the tasks. On the other hand, Samuel also 
realized that one cannot drag in paper-and-pencil environment. It seems that he thought 
that dragging makes DGS unable to link up with the system of Euclid’s Elements. He 
re-interpreted the meaning of dragging as “a displacement of a function”. Dragging 
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becomes a “tool of semiotic mediation” (Bartolini Bussi and Mariotti, 2008) of the 
concept of function. His understanding on dragging is consistent to findings in existing 
literatures (see for example, Falcade, Laborde & Mariotti, 2007). Dragging is a new 
experience to Samuel. It re-shaped his understanding on the mathematical meanings 
carried by DGS. Initially, Samuel imposed the system of Euclid’s Elements on DGS 
and established a semiotic link between the artifact DGS and mathematical knowledge. 
The dragging experience (initiated by the semiotic link between DGS and the tasks 
given to him) ‘modified’ his semiotic link between DGS and mathematical knowledge. 
It ‘extended’ his understanding on the geometry (and more generally, mathematical 
meanings) embedded in DGS.  

DISCUSSION AND CONCLUSION 
In this paper, a case study about ‘interaction’ of a mathematician’s double semiotic 
link in a DGS is discussed. On the one hand, Samuel thought that Sketchpad, as a DGS, 
is a computational tool for the system of Euclid’s Elements. He adapted the software 
(by developing his own ‘priority list’ of Sketchpad commands) so that this software 
fitted to his semiotic link between DGS and mathematical knowledge. On the other 
hand, while working on the explorative tasks, he experienced the powerfulness of 
dragging and developed a new understanding towards DGS. A new semiotic link 
between DGS (the artifact) and mathematical knowledge is established. For instance, 
dragging is regarded as a “sign” (Bartolini Bussi & Mariotti, 2008) of the concept of 
‘function’. It is worth to note that ‘function’ as a concept is not included in Euclid’s 
Elements but has been emerged at the end of the 17th century. In other words, Samuel’s 
understanding on the mathematical meanings of DGS has been enriched. This is 
evidenced from the following excerpt of interview transcript conducted after the ten 
explorative sessions: 

Samuel:         It [The geometry in Sketchpad] may cover Euclid, I guess. Sketchpad may 
most likely contain Euclid’s Elements. Will there be something outside 
Euclid Elements? I am not sure.  

Interviewer:  What do you mean by “contain”?  
Samuel:         [Samuel drew a diagram to illustrate his idea.]  
Interviewer:  Is there any reason for one [circle] is larger 

than another? 
Samuel:         Yes, it is true that one is larger and another is smaller.  
Interviewer:  So, why is DGS so large? At least, it is larger [than Euclid’s]. 
Samuel:       You can do anything by using computer programming skills, at least at the 

level of approximation. 

What is geometry (or geometries) of DGS? What is the relationship between Euclid’s 
Elements (or more generally, Euclidean geometry) and DGS? Does DGS provide an 
opportunity to learn new geometry? These questions are topics of interest at least since 
the 1990s (for example, Hölzl, 1996; Lopez-Real and Leung, 2006; Straesser, 2001) 
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but there are no conclusive answers so far. It is the author’s hope that this paper could 
initiate further discussions on these fundamental questions. 
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DO OUR FIFTH GRADERS HAVE ENOUGH MATHEMATICS 
SELF-EFFICACY FOR REACHING BETTER MATHEMATICAL 

ACHIEVEMENT? 
Chang, Yu-Liang (Aldy)                 Wu, Su-Chiao (Angel) 

National Chiayi University, Taiwan 
The main purpose of this study was to examine the effects of fifth-graders’ MSE on 
their mathematical achievement in school, as well as examining the effects of family 
socio-economic status, and parenting styles on MSE.  A students’ background sheet 
and a mathematics self-efficacy instrument were administered to 1244 fifth-graders for 
gathering data, associated with their mathematical achievement scores in school.  
Corresponding statistical analyses were applied to the obtained data.  The findings 
showed that fifth-graders’ family SES and parenting styles were ascertained as critical 
elements in the development of their mathematics self-efficacy.  It also revealed that 
their MSE ratings could effectively predict their mathematics achievement.  
Consequently, suggestions derived from findings and discussions were proposed for 
further improvement of these fifth-graders’ mathematics self-efficacy and the future 
study. 

INTRODUCTION 
Self-efficacy (SE) had a great influence on one’s task choices, effort, persistence, and 
achievement (Bandura, 1997).  Students who are self-efficacious in learning are likely 
to put forth more effort, persist longer if they have learning difficulties, be more 
flexible, and, ultimately, reach a higher level of success.  Several studies also found 
that students’ self-efficacy is positively correlated with their academic achievement in 
various content domains and in different levels of academic settings (Bandura, 1997; 
Lent, Lopez, & Bieschke, 1991; Multon, et al., 1991; Pajares, 1996; Schunk & Miller, 
2002).  Evidence also has showed that students’ self-efficacy can have a direct 
influence on their academic achievement and performance (Pajares & Miller, 1994).  
In fact, students with higher efficacy beliefs performed better and persist longer in the 
face of learning difficulties or occasional setbacks (Chang, 2010).  Similar findings 
revealed that this superior academic performance came from applying more effective 
learning strategies (Pintrich & Degroot, 1990).  It follows, logically, that students with 
a strong sense of SE would approach learning difficulties as challenges to be 
conquered and have a strong commitment to goals they establish, which then results in 
better academic performance. 
Regarded to mathematics, Pajares and Miller (1994) examined the role of mathematics 
self-efficacy (MSE) in mathematical problem solving for college students, yielding 
that students’ MSE was significantly predictive of their problem solving in 
mathematics.  Similar result was found from the study of Pajares and Kranzler (1995) 
for high school students’, their MSE had a direct effect on their mathematics problem 
solving skills.  Besides, MSE could predict adolescent mathematics achievement (Lent, 
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et al., 1991; Pajares & Miller, 1994; Pajares & Kranzler, 1995).  Betz and Hackett 
(1989) also showed that students’ MSE was significantly correlated to their 
mathematical achievement.  Recently, Kitsantas, Cheema, and Ware (2011) conducted 
a series of data from Program for International Student Assessment (PISA) and 
illustrated that 15-year-old students’ MSE was a predictor of mathematics achievement 
in addition to gender, race, relative time spent on mathematics homework, and 
homework support, which accounted for an additional 20% of the total variation in 
mathematics achievement.  In summary, MSE beliefs had a powerful impact on the 
level of accomplishment they might ultimately achieve in learning mathematics.   
Given the robust literature regarding the effects of MSE on mathematics achievement 
for adolescents, little knowledge, however, was shown for children.  It was showed that 
self-efficacy began to decline in grade 7 or earlier (Anderman, Maehr, & Midgley, 
1999; Urdan & Midegley, 2003), particularly evident in mathematics at the transition 
to middle school (Jacobs, et al., 2002).  For fifth and sixth grades, children are 
positioned right at the developmental transition period, in which they encounter with 
significantly psychological, physiological, and social changes.  Since new challenges 
await them in this fast-growing stage (Schunk & Meece, 2006), how to prevent this 
possible decline becomes more beneficial to their mathematical learning.  Especially in 
Taiwan, no evidence was found in assessing these students’ MSE along with their 
mathematics achievement (Chang & Wu, 2010).  Accordingly, the main purpose of 
this study is to assess the effect of MSE on mathematical achievement of fifth-graders, 
who are at the beginning stage of this transitional period. 
In order to obtain better predictive and possibly explanatory results, items for assessing 
SE should be context and task specific (Zimmerman, 2000) and designed by using a 
multidimensional construct (Bandura, 2006; Pajares, 1996).  Based on Bandura’s 
(2006) guidelines and his multidimensional scales, the first set of questions, “General 
Self-Efficacy—Related Mathematics (GSE-M)” subscale, was designed to assess 
children’s general SE that is relative to their mathematical learning, including items of 
enlisting social resources & parental support, academic achievement, self-regulated 
learning, and meet others’ expectations.  Additionally, in Taiwan, children’s 
mathematical learning in the higher-elementary grades begins to be more focused on 
the knowledge memorized and the skills used, which leads to more test-oriented 
learning activities.  Consequently, the second set of questions, named as “Self-Efficacy 
for Mathematical Learning (SEML)”, was designed more contextually to measure 
children’s realistic learning situations both in and after school, including mathematics 
cognitive, strategy, and test preparation items.  Beside the MSE whole scale, it is also 
intended to examine the effects of the two subscales on mathematical achievement. 
Moreover, two variables were generalized from previous research findings as the 
contextual factors of the development of students’ MSE: family’s socio-economic 
status (SES) and parenting style.  In regard to the SES factor, economic hardship and 
low parental education were positively correlated to difficulties in students’ learning 
(Bradley & Corwyn, 2002; Schunk & Miller, 2002).  More importantly, students 
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usually obtained certain amount of the self-efficacy from their families and home 
environment (Schunk & Miller, 2002), and thus family’s economic status and parental 
education might influence the development of their children’s MSE.  Another variable, 
parenting style, would also had a great influence on students’ SE (Schunk & Meece, 
2006). Among the four major types of parenting styles identified by Marccoby and 
Martin (1983), the authoritative-reciprocal parenting style had the best combination of 
warmth, responsiveness, and control that would foster the development of children’s 
SE (Schunk & Meece, 2006).  However, less empirical evidence existed in supporting 
the effect of parenting styles on children’s SE or MSE, especially in Taiwan.  
Consequently, it is essential to investigate the possible effect of different parenting 
styles to students’ MSE.  Consequently, family’s SES and parenting styles were 
included as the background variables for further analyses. 
Based on the background and motivation stated above, the two purposes of this study 
are as follows: (a) to investigate the effects of family factors (SES and parenting style) 
on MSE; and (b) to assess the effects of MSE on mathematical achievement which 
were converted to mathematical achievement T score (MA-T).  Based on foregoing 
purposes, this study has three research hypotheses as follows:  

• H1: SES has a significant effect on MSE. 
• H2: Parenting style has a significant effect on MSE. 
• H3: MSE significantly predicts MA-T. 

 
METHOD 
A total of 1244 fifth-graders were selected by a stratified random sampling method (by 
school size) in elementary schools in Taiwan.  Based on the purposes of this study, data 
were collected through a background sheet, MSEI, and their mathematics achievement 
in school.  Students’ background sheet mainly delineate students’ basic information, 
family’s SES, and parenting styles, which was sent home and filled out by student’s 
parents with a consent form.  The family’s SES was calculated according to the rules of 
Lin’s (1982) framework, with the equation of “SES = Parents’ occupation index × 7＋
Parents’ education index × 4”.  For parenting styles, a dual-dimensional system 
identified by Maccoby and Martin (1983) was applied with four types of statements for 
parenting (authoritarian-autocratic, indulgent-permissive, authoritative-reciprocal, and 
indifferent-uninvolved patterns).  Also, mathematical achievement in school was 
represented in terms of their overall mathematics scores at the fifth-grade level.  
Mathematics scores, named as mathematical achievement T scores (MA-T), were 
collected at the end of the school year and then transformed into T scores for further 
analyses.  To measure MSE, Mathematics Self-Efficacy Instrument (MSEI) was 
developed on the basis of Bandura’s (1977, 2006) theory and his guidelines, which 
consists of 24 items for “General Self-Efficacy—Related Mathematics (GSE-M)” and 
23 items for “Self-Efficacy for Mathematical Learning (SEML)”, rated on a 100-point 
scale.  MSEI has high internal consistency of .96, .93, and .95 for the total scale, 
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GSE-M, and SEML subscales respectively (Chang & Wu, 2010). Also, GSE-M and 
SEML accounted for 27.68% and 20.41% of variance, respectively.  Both subscales 
significantly correlated, r = .74, p＜ .001. 

 
RESULTS 

The effects of fifth-graders’ SES, and parenting styles on MSE 
The mean rating of all 1244 fifth-graders on MSE was 69.84, which meant that on 
average they had nearly 70% confidence in their own mathematics learning abilities.  
Regarding the effect of SES on MSE, the results showed that there were statistically 
significant differences in fifth-graders’ MSE ratings among the three revised levels of 
SES, F (2, 1241) = 6.75, p< .01.  The post hoc comparison based on LSD concluded 
that fifth-graders with the high SES (M = 72.06) scored significantly superior in MSE 
than did those with medium (M = 69.72) and low SES (M= 66.67).  In addition, 
fifth-graders with the medium SES scored higher MSE than did those with low SES. 
Accordingly, H1 was supported in this study. 
In regard to the effect of parenting style on MSE, the results demonstrated statistically 
significant differences in fifth-graders’ MSE ratings among the four types of parenting 
styles, F (3, 1240) = 12.881, p＜ .001.  The post hoc comparison based on LSD yielded 
that fifth-graders under the discipline of the authoritative-reciprocal parenting pattern 
(about 71%) tended to possess greater MSE (M = 71.75) in learning mathematics than 
those with other three parenting patterns.  Besides, fifth-graders under the discipline of 
the authoritative-autocratic parenting pattern (about 17%) were likely to possess 
greater MSE (M = 71.75) that those with indifferent-uninvolved parenting pattern (M = 
62.46).  Accordingly, H2 was also supported in this study. 
The effects of fifth-graders’ MSE on MA-T 
To determine whether students’ MSE (containing both GSE-M and SEML) could 
predict their mathematical achievement, multiple regression analyses of GSE-M and 
SEML regressing on MA-T were conducted.  The findings showed that GSE-M and 
SEML significantly predicted MA-T, F (2, 1241) = 171.23, p< .001, suggesting that 
21.6% of MA-T variance was explained by GSE-M and SEML.  The standardized 
regression coefficients indicated that SEML (B = .30, t = 5.41, p < .001) had greater 
effects on MA-T than GSE-M (B = .18, t = 3.34, p < .01).  In brief, these findings 
indicated that fifth-graders with the higher MSE would get higher scores on MA-T in 
school. Therefore, H3 was supported in this study. 
 
DISCUSSION 
The influence of fifth-graders’ backgrounds on their MSE development 
First of all, the result showed that fifth-graders with low SES tended to have lower 
confidence in their own capability while learning mathematics, which is accordant 
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with the findings of Bradley and Corwyn (2002).  Parents with lower family income and less educated usually 
have inadequate capital in assisting their children’s cognitive development (Schunk & Meece, 2006), which 
might result in less supplementary resources in learning mathematics.  Besides, parents’ income levels were 
positively related to their expectancies of their children’s both current and long-term educational attainments 
(Alexander & Entwisle, 1988).  Consequently, “dropout” might be the predictable condition for low SES 
students (Sherman, 1997).  In short, if low parental expectancy does exist, children at home might not obtain 
sufficient psychological support and behavioral help, which in turn jeopardizes children’s MSE. 
Secondly, it was revealed that fifth-graders under the authoritative-reciprocal 
parenting pattern scored higher in MSE than those with other patterns, which was also 
similar to previous research findings (e.g., Baumrind, 1991; Schunk & Meece, 2006).  
The authoritative-reciprocal parenting style is the best combination of warmth, 
responsiveness, and control to support their children’s learning in school, which is a 
well-balanced parenting style.  This type of parent is both demanding and responsive.  
As Baumrind (1991) stated, “They monitor and impart clear standards for their 
children’s conduct. They are assertive, but not intrusive and restrictive.  Their 
disciplinary methods are supportive, rather than punitive. They want their children to 
be assertive as well as socially responsible, and self-regulated as well as cooperative” 
(p. 62).  Under such parenting style, children are assisted to not only enthusiastically 
confront learning challenges but also persist longer and solve learning problems 
effectively.  In a word, this parenting style was gainful in promoting children’s MSE, 
which would also bring on a positive impact on their mathematical achievement in 
school (Schunk & Meece, 2006). 
As stated previously, there were a certain number (17%) of parents who used the 
authoritarian-autocratic parenting pattern.  Although their children’s MSE ratings were 
relatively higher (i.e. ranked second in this study), this type of parenting style is 
essentially problematic.  Since the discipline under the authoritarian-autocratic pattern 
is more arbitrary (Maccoby & Martin, 1983), it often leads to a unidirectional 
parent-child relationship that prevents parents from understanding real thoughts in 
their children’s minds or needs.  Therefore, if their children struggle with mathematical 
learning problems in school, parents my not be able to provide efficacious support, 
which would be harmful for the development of MSE.  In general, it is recommended 
that, in Taiwanese elementary schools, we must provide better authoritative-reciprocal 
models in our future parenting education, endeavoring to assist more parents in 
adapting their own parenting styles and then enhancing their children’s MSE as well.  
Besides, this exploratory finding reminds us that there needs further investigations on 
the effect of parenting styles on children’s MSE in Taiwan. 
Fifth-graders’ MSE had a great effect on their mathematical achievement 
Averagely, these fifth-graders had nearly 70% confidence in their own mathematics 
learning abilities.  Because “self-efficacy” was considered as one of eight powerful 
factors for students’ learning performance (Bandura, 1977), which was evident in this 
study that the higher MSE the better mathematical achievement, how to increase or 
maintain the status of their MSE became more essential to help them be successful in 
learning mathematics in school both at this transitional period and in the future.  As 
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mentioned above, the higher-elementary school grades in Taiwan begin to be more 
focused on the acquirement of the subject-matter knowledge, which prepare them for 
the intensive tests in school and the subsequent entrance examination three years later.  
Accordingly, two challenges are anticipated in learning mathematic at this transitional 
period:  The content changes from more concrete to more abstract, and more 
test-oriented instruction and assessment replace hands-on activity and authentic 
assessment, which leads to more technical practices in mathematics.  Also, students are 
gradually in the face of more competitive learning environment that is originated from 
the pressure of the entrance examination in the junior high schools.  We should 
advocate enhancing students’ self-efficacy in this fast-growing stage, to assist them 
both to manage and conquer these developmental and academic challenges, and then 
finally to achieve the intended learning content (Pajares, 2006; Schunk & Meece, 
2006).  Besides, based on the viewpoint of Urdan and Midgley (2003), a goal structure 
of elementary classrooms that emphasize one’s effort, meaningful learning, and 
individual mastery would be beneficially enhanced or maintained students’ efficacy 
and competence at this transitional period.  As a result, effectively sustaining this 
positive learning environment would help to prevent possible declines of their MSE 
(Jacobs, et al., 2002; Wigfield, et al., 1997). 
Furthermore, the results of multiple regression revealed that the both subscales 
(GSE-M and SEML) significantly predicted mathematical achievement with 21.6% 
variance.  This finding of significant effects of MSE on mathematical achievement in 
school is corresponding to the previous studies (Lent, et al., 1991; Pajares & Miller, 
1994; Pajares & Kranzler, 1995).  It is also remarkable that SEML (the subscale) had 
greater effects on students’ mathematical achievement in school.  Therefore, this 
finding clearly indicate that the more efficacious on mathematics cognitive, strategy, 
and test preparation aspects the better mathematical achievement in school.  
Additionally, it implies that this context and task specific design is tailored to 
children’s actual learning context in mathematics, which also conforms to Bandura’s 
(2006) guideline and has better predictive and possibly explanatory results.  
Consequently, it is recommended that this instrument and its constructs are effective as 
a major reference in measuring students’ MSE. 
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Mathematical problem solving and contextual problems are central to doing and 
learning mathematics and should also be central to teachers’ mathematical knowledge 
for teaching. This study investigated secondary school mathematics teachers’ 
mathematical problem-solving knowledge for teaching from a practice-based 
perspective. Data obtained from several sources were analyzed thematically in terms 
of knowledge of problems, problem solving, problem solver, and instructional practice. 
Findings highlight a combination of conceptions of these knowledge that determines 
problem-solving proficiency in teaching and supports students’ develop- ment of 
proficiency in problem solving, with implications for teacher education. 

INTRODUCTION 
Mathematical problem solving and contextual problems are central to doing and 
learning mathematics with meaning and deep understanding. Thus, they should be 
critical factors in understanding and addressing mathematical knowledge for teaching 
(MKT). This aspect of MKT is considered here as mathematical problem-solving 
knowledge for teaching (MPSKT). What should this knowledge include? In particular, 
what should teachers know to teach for problem-solving proficiency? What knowledge 
should teachers hold to help students to become proficient in problem solving? These 
questions provide the focus of this paper, which reports on a study aimed at developing 
a practice-based conception of MPSKT. The study investigated secondary school 
mathematics teachers’ MPSKT in teaching in order to understand and conceptualize it 
in terms of the knowledge they held and used, how they used it, and the part it played in 
meaningful teaching with contextual/word problems. 

THEORETICAL PERSPECTIVE AND RELATED LITERATURE 
Significant contributions have been made by Deborah Ball and co-researchers (e.g., 
Ball, Thames, & Phelps, 2008; Hill & Ball, 2009; Hill et al., 2008; Hill, Schilling, & 
Ball, 2004; Thames & Ball, 2010) on the nature of MKT. They propose a view of MKT 
based on how it plays out in practice as a means to develop measures of teacher 
knowledge. This view includes knowledge of content and students, knowledge of 
content and teaching, specialized content knowledge, and common content knowledge. 
In particular, they suggest that general mathematical ability does not fully account for 
the knowledge and skills needed for effective mathematics teaching. A special type of 
knowledge is needed by teachers that is specifically mathematical, separate from 
pedagogy and knowledge of students, and not needed in other professional settings. 
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This specialized content knowledge uniquely enables “teachers … to do a kind of 
mathematical work that others do not” (Ball et al., 2008, p. 400). This work requires 
decompressed or unpacked mathematical reasoning, in addition to pedagogical 
thinking, demanding teachers to know more and different mathematics than what is 
needed by other adults, i.e., common content knowledge which allows a person to 
successfully solve mathematical problems in non-classroom contexts, including 
“being able to do particular calculations, knowing the definition of a concept, or 
making a simple representation” (Thames & Ball, 2010, p. 223).  
While the work of Ball and colleagues offers an important view of MKT, it has not led 
to consensus regarding the nature of this knowledge. For example, in Rowland and 
Ruthven (2011a), which deals with “mathematical knowledge in teaching,” the work 
presented by several authors reflects different perspectives about this knowledge of 
mathematics teachers and different ways of knowing within teaching. As the editors 
noted, the coherence of book “comes less from consensus on the issues and more from 
a collective understanding and appreciation of the different perspectives and 
convictions of the contributions as a whole” (Rowland & Ruthven, 2011b, p. 2). Thus, 
while MKT may have general characteristics as suggested by Ball and colleagues, the 
specifics involved are dependent on the aspect of mathematics education or 
mathematics teacher education one is interested in. In this paper the interest is in the 
specifics regarding MPSKT.  
While problem solving (PS) is not explicitly considered in current studies of MKT as 
discussed above, it is implied as an integral part of mathematics. The intent here is to 
address it explicitly as MPSKT from a perspective of teachers’ PS knowledge in 
teaching and for PS proficiency. PS could mean different things to teachers depending 
on their experiences with it as learners. For example, they could correlate it with 
solving routine word problems or rote exercises, a view that will not support student’s 
development of PS proficiency. The position taken in the study being reported is that 
teachers need to hold knowledge from a perspective of PS proficiency for teaching. 
Mathematical problem-solving proficiency 
PS proficiency is being used to represent what is necessary for one to learn and do PS 
successfully. For example, according to Schoenfeld (1985, 1992), for successful PS, 
one must be equipped with and competently use appropriate resources, heuristic 
strategies, metacognitive control, and appropriate beliefs. PS proficiency is also being 
linked to the components of mathematics proficiency proposed by Kilpatrick, 
Swafford, and Findell (2001): conceptual understanding; procedural fluency; strategic 
competence (i.e., ability to formulate, represent, and solve mathematical problems); 
productive disposition; and adaptive reasoning (i.e., capacity of logical thought, 
reflection, explanation, and justification). Kilpatrick et al emphasize that these 
components are interwoven and interdependent in the development of proficiency in 
mathematics, which, then, should be the same for PS. They also explain,  
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Problem solving should be the site in which all of the strands of mathematics proficiency 
converge. It should provide opportunities for students to weave together the strands of 
proficiency and for teachers to assess students’ performance on all of the strands. (p. 421) 

These notions of PS suggest that in order to help students acquire PS proficiency 
instruction should address all of these characteristics proposed by Schoenfeld and 
Kilpatrick et al. This thus leads to the consideration of the knowledge teachers should 
hold to support such instruction. 
Teacher knowledge of and for Problem-solving proficiency 
Based on the preceding discussion of PS proficiency, teachers should be equipped with 
those characteristics proposed by Schoenfeld (1985, 1992) and Kilpatrick et al. (2001) 
and hold knowledge of how and what it means to help students to become better 
problem solvers. Other research also highlights or implies the importance of holding 
knowledge of problems, problem solvers, PS pedagogy, the PS process, metacogni- 
tion, and technology as a PS tool (e.g., Chapman, 2009). While these are key aspects of 
a teacher’s knowledge, it is not the knowledge of itself, but knowing what to do with 
it – being able to use it, that is important. In particular, how this knowledge is held by 
the teacher is also important in terms of whether or not it is usable in a meaningful and 
effective way in supporting PS proficiency in his or her teaching. Thus, a teacher’s 
knowledge of and for PS proficiency must be broader than competence in PS. In this 
paper, this knowledge is considered in terms of the following four categories: 
1. Knowledge of problems – teachers should have conceptual understanding of 
“worthwhile mathematics tasks” (National Council of Teachers of Mathematics, 1991) 
and problems that will support proficiency in PS.  
2. Knowledge of problem solving – teachers should have conceptual and procedural 
knowledge of mathematical PS. This includes understanding the stages problem 
solvers often pass through in the process of reaching a solution, that is, models of PS 
such as those of Polya (1957), Schoenfeld (1985; 1992), and Mason, Burton and 
Stacey (1982).  
3. Knowledge of students as problem solvers – teachers need to understand students as 
problem solvers, for example, what constitutes productive beliefs and dispositions 
toward PS; what one knows, can do, and is disposed to do; and adequate level of 
difficulty of the problems assigned. They should have knowledge of skills students 
need to be competent technological problem solvers and how to evaluate students’ PS 
process and progress.  
4. Knowledge of instructional practices – teachers need to understand instructional 
practices for PS, including instructional techniques for strategies and metacognition. 
They must have strategic competence to face the challenges of mathematical PS during 
instruction. They must perceive the implications of students' different approaches, 
whether they may be fruitful and, if not, what might make them so. They must decide 
when and how to intervene – when and how to give help that supports students’ success 
while ensuring that students retain ownership of their solution strategies; what to do 
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when students are stuck or are pursuing a non-productive approach or spending a lot of 
time with it; and what to look for. They will sometimes be in the position of not 
knowing the solution, thus needing to know how to work well without knowing all. 

RESEARCH METHOD 
This study is part of a larger, four-year, funded research project, involving 26 
elementary and secondary teachers, with a focus on mathematics teachers’ thinking 
and teaching of PS using contextual/word problems. The focus here is on the 11 
practicing secondary school (grades 9 – 12) teachers. These teachers had 16 to 30 years 
of teaching experience. They were from different local schools and volunteered for the 
study. Six of them were considered in their school systems to be exemplary 
mathematics teachers. They had received teaching awards and/or were involved in 
co-authoring or reviewing mathematics textbooks and in leading professional 
development for other mathematics teachers. This combination of teachers turned out 
to represent a broad range of thinking and teaching approaches in regard to PS. 
Main sources of data for the larger study were open-ended interviews, problem-solving 
tasks, classroom observations, teaching artifacts, and students’ work. The interviews 
explored participants’ thinking, knowledge, and experiences with contextual problems 
(CPs) and PS in three contexts: past experiences as students and teachers, current 
practice and knowledge, and future practice. This included the relevant prior 
knowledge, abilities, and expectations they brought to their experiences with PS in 
their teaching; current knowledge, task features, classroom processes and contextual 
conditions relating to PS; and planning and intentions for PS in their teaching. 
Participants were also given relevant, curriculum-based examples of different types of 
CPs (based on the six types of Charles & Lester, 1982) to solve, critique, and discuss 
use in their teaching and students engagement in them. This included:  

A road up one side of a hill is 12 km long, and it is 12 km down the other side. Suppose you 
can cycle up the hill at 6 km/h. How fast would you have to cycle down the other side to 
average 12 km/h for the entire trip? 

Classroom observations and field notes focused on the teachers’ actual instructional 
behaviors during lessons involving PS. Eight to ten lessons (60 to 85 minutes each) 
were observed and audio taped for each teacher. Post-observation discussions, when 
necessary, focused on clarifying the teachers’ thinking in relation to their actions. 
Data analysis involved the researcher and two research assistants working 
independently to thoroughly review the data and identify attributes of the teachers’ 
thinking and actions that were characteristic of their conceptions of CPs and PS and 
teaching with CPs. Transcripts were read, initially to gain a general impression of the 
participants’ thinking and then significant statements and behaviors were identified 
and coded. For the aspect of the study reported here, the coding was based on the four 
categories of knowledge described earlier in the theoretical perspective, i.e., problems, 
PS, learners, and instruction/teaching. The coded information was grouped by 
emerging themes of the teachers’ knowledge and validated through an iterative process 
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of identification and constant comparison. The themes (e.g., CPs as computation, text, 
and experience) were then analyzed by comparing the significant statements associated 
with them for points of variation and agreement around which they could be grouped to 
form general perspectives of knowledge for each of the four categories. The findings 
reported here consist of these perspectives of knowledge for each category.  

FINDINGS  
A summary of the findings is presented in terms of the perspectives of knowledge held 
by the teachers collectively for each of the categories of teacher knowledge proposed 
in the theoretical perspective; the relationships among these categories of knowledge; 
and the combination of knowledge that is consistent with proficiency in PS and 
supported students’ PS learning effectively and meaningfully. 
Knowledge of problem – collectively, the teachers held six conceptions of CPs: 
computations, objects, text, problems, tools, and experience. These were categorized in 
terms of three philosophical perspectives of knowledge (Table 1). 
Objectivist perspective Utilitarian perspective  Humanistic perspective 
CPs are: 
1. Computations 
2. Objects  
3. Problems, i.e., 
algorithmic  

CPs are: 
1. Text  
2. Tools, i.e., 
- illustrate concept  
- promote thinking 
- frame teaching 

CPs are: 
1. Experience  
2. Problems, i.e.,  
- depend on relationship with 
student    
- depend on teacher intent 
- non-algorithmic    
- meaningful algorithmic 

Table 1: Perspectives of knowledge of problems 
Brief descriptions are provided for the three less obvious items of Table 1 with quotes 
from participants. For objects, CPs can be generalized, e.g., by: “concept taught, for 
example, systems of equations,” a pre-determined algorithm, and “type of problem 
[context], for example, coin, age, distance, number.” They “have clear language, no 
extraneous information, clear about what they want, not ambiguous.” For text, CPs are 
“[a way] to transfer information to somebody else;” “a way to share mathematical 
experience with another;” For experience, CPs become and provide lived realities for 
the students. The nature of the CP thus depends on how they are experienced by the 
student – the particular association, emotions or images they excite. 
Knowledge of problem solving – collectively, the teachers held three conceptions of PS: 
algorithmic, directed non-algorithmic, and open non-algorithmic. The directed 
situation involves applying predetermined specified strategies while the open involves 
determining and applying one’s own strategies.  
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Knowledge of instructional approaches – collectively, the teachers held four 
conceptions of teaching approaches: imposition, abandonment, directed-inquiry, and 
dialogic-inquiry. Briefly, for imposition, the teacher imposes on students an interpreta- 
tion and algorithm for CPs; for abandonment, the teacher abandons students to inter- 
pret and solve CPs based on algorithms of examples of non-CPs; for directed-inquiry, 
the teacher directs students’ inquiry process and interpretation of CPs; and for dialogic 
-inquiry, the teacher facilitates students’ inquiry process and interpretation of  CPs. 
Knowledge of students as problem solvers – collectively, the teachers held four 
conceptions of problem solvers, categorized in terms of: agency, connectedness, 
separatedness, and inquirer.  Briefly, agency deals with students taking more control of 
their mental activity while connectedness and separatedness deal with the relationship 
between students’ personal experience and problem context.  
Table 2 shows relationships among these categories of knowledge. Two teachers were 
oriented to row 1, one to row 2, three to row 3, and the six exemplary teachers to row 4. 
Teaching Contextual Problems Problem Solving Students  
Imposition Objectivist + partial 

utilitarian 
Algorithmic  Separatedness  

Abandonment  Objectivist + partial 
utilitarian 

Algorithmic  Separatedness +  
naïve agency 

Directed-inquiry Partial humanistic + 
partial utilitarian 

Directed 
non-algorithmic 

Directed inquirer 
+ connectedness 

Dialogic-inquiry Humanistic + utilitarian Open 
non-algorithmic 

Agency + inquirer 
+ connectedness 

Table 2: Relationships among categories for knowledge 
For the most part, the exemplary teachers demonstrated knowledge of PS consistent 
with Schoenfeld’s (1985, 1992) criteria of appropriate resources, heuristic strategies, 
metacognitive control, and appropriate beliefs and of PS proficiency based on the 
components proposed by Kilpatrick et al (2001), i.e., conceptual understanding; 
procedural fluency; strategic competence; productive disposition; adaptive reasoning. 
They also demonstrated understanding of “unpacking mathematical reasoning” (Ball 
et al., 2008. While, like the other participating teachers, they started the year with 
students whose PS experience was predominantly with routine/algorithmic problems, 
their students demonstrated a much higher level of motivation and success in PS 
through their actions/work in class than those of the other teachers. Thus their 
knowledge suggests the type of PS knowledge for teaching that could support students’ 
development of proficiency in PS. These teachers, unlike the others, held knowledge 
indicated in the last row of Table 1, i.e., their PS knowledge for teaching and use of it 
included: contextual problems as humanistic and utilitarian situations; PS as open, 
non-algorithmic processes; students in terms of agency, inquirer, and connectedness; 
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and teaching as dialogic inquiry. For example, their utilitarian view of problems 
focused on CPs as a basis of conveying mathematical and social knowledge, of 
meaningful illustration or application of mathematical concepts, of promoting thinking, 
and of framing teaching. The humanistic view emphasized the importance of 
associating CPs with experience and their relationship to students.  
These exemplary teachers held knowledge of the other aspects of Table 1, but did not 
prioritize them in their teaching. For example, they minimized the use of 
computational-algorithmic CPs. One explained, “They're extra, they're not necessary, 
they're trivial and they do little most of the time to enhance a topic.” Another noted, 
“They aren't all that important, so if you have to cut corners some place and you don't 
have a lot of time … they can be dismissed.” So, when necessary for them, they used 
the other aspects of Table 1 strategically, but their focus was always student-centered.  
In general, based on classroom observations of all participants, the exemplary teachers 
were more flexible in their teaching and more successful in motivating students to 
work with CPs and helping them to learn to solve CPs and develop proficiency in PS. 
Their teaching was also different from that of the other teachers in terms of integration 
of CPs throughout their courses as a way of teaching for, about, and through PS and 
engaging students in developing general PS heuristics and their own solution processes. 
For example, the Grade 9 teacher started the school term teaching about PS by 
allowing students to develop a PS model for themselves. Students worked in groups to 
solve the following problem they did not previously encounter. 

Three water pipes are used to fill a swimming pool. The first pipe alone takes 8 hours to fill 
the pool, the second pipe alone takes 12 hours to fill the pool, and the third pipe alone takes 
24 hours to fill the pool. If all three pipes are opened at the same time, how long will it take 
to fill the pool?  

One student in each group observed the PS process. Each student got a turn at being 
observer for a different problem. Discussions followed each round of observations. 
Another example involved teaching linear systems of equation though PS. Towards the 
beginning of this unit, this teacher gave her Grade 10 students the following task.  

If you have a weekly part-time job in sales, is it better to have a fixed hourly rate or a fixed 
weekly salary plus commission? 

Students were to consider what information they needed to solve it, use direct or 
indirect real-life experience to provide realistic information, and determine a way to 
solve it. This task was new for them but done after PS experience with this teacher. 

CONCLUSIONS 
MPSKT is complex and includes much more than how to solve mathematical CPs. The 
study suggests that general PS ability does not fully account for the knowledge and 
skills needed for effective PS teaching. The tasks of teachers require knowledge 
beyond that which is needed to reliably solve CPs. This study identifies a practice- 
based conception of the nature of this knowledge that could support students’ 
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development of proficiency in PS. It provides a framework of key knowledge 
secondary mathematics teachers could hold in relation to MPSKT which can be used to 
help teachers to understand the nature of this knowledge. It can also be used to offer 
opportunities to prospective teachers to help them to be prepared to teach PS 
meaningfully by exploring these conceptions in terms of their nature and possibilities.  

Note: This paper is based on a research project funded by the Social Sciences and 
Humanities Research Council of Canada. 
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THE EXPERIENCE OF SECURITY IN MATHEMATICS 
Eleni Charalampous and Tim Rowland 

University of Cambridge, UK 
 
In this paper, we report some findings from an investigation of a topic related to affect 
and mathematics which is not well-represented in the literature.  For some 
mathematicians, mathematics itself is a source of security in an uncertain world, and 
we investigated this feeling and experience in the case of 19 adult mathematicians 
working in universities and schools in Greece. The focus reported here is on ways that 
a relationship with mathematics offers a sense of permanence and stability on the one 
hand, and an assurance of novelty and progress on the other. Semi-structured 
interviews with these participants revealed that they valued mathematical modes of 
thinking, both within mathematics and in everyday life. 

INTRODUCTION 
In the introduction to the Research Forum on affect at PME28, Hannula (2008) wrote 
that emotions “have an important role in human coping and adaptation” (p. 108). The 
literature concerning emotional responses to mathematics is dominated by 
investigations into negative responses to instruction and testing, and by constructs such 
as mathematics anxiety, fear of failure, and mathematics avoidance (Zan et al, 2006). 
However, there is another side to this coin, with many individuals attesting to a 
positive response to mathematics, and deriving satisfaction, or pleasure, from it, for 
various reasons. Bertrand Russell, for example, speaks for those who find a pure, cold 
beauty in the subject: 

Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty 
cold and austere, like that of sculpture, without appeal to any part of our weaker nature, 
without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a 
stern perfection such as only the greatest art can show (Russell, 1919, p. 60). 

The affective issue under investigation in this particular paper is concerned with an 
important component of “human coping”: for some mathematicians, mathematics 
contributes to their sense of security, and thereby to their well-being. This is an 
under-researched topic in the domain of ‘positive mathematics-affect’. We explored 
the experience, for some individuals, of mathematics itself as a ‘safe place’. The aim of 
the research was to explore the concept of security, as it emerges from the relationship 
of mathematicians to mathematics. To speak of mathematics as offering a haven of 
some kind may seem strange, if one thinks of mathematics as a body of knowledge. In 
the next section we shall draw out conceptions of mathematics that could be appealing 
to certain individuals in terms of security, and describe our conceptualisation of 
security for the purposes of this study. We then proceed with an account of our findings 
from interviews with a sample of mathematics professionals.  
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LITERATURE REVIEW AND THEORETICAL FRAMEWORK 
In this section, we frame our investigation in terms of the nature of mathematics itself, 
and of security as a psychological phenomenon. 
The nature of mathematics 
A wide range of perspectives about the nature of mathematics has evolved since early 
Greek civilisation up to the present time (Davis and Hersh, 1980, Friend, 2007). 
According to Plato, material objects are mere shadows of an ideal counterpart, or 
‘form’. Mathematical objects are paradigmatic exemplars of forms, and they pre-exist, 
awaiting human discovery. In early modern philosophy, Descartes (1596-1650) 
continued the Platonic tradition, privileging reason over the sense-experience 
(Hutchins, 1952, p. 3). The subsequent scientific and industrial revolutions led to the 
quest for secure foundations for mathematics, and notably to the formalist perspective 
that mathematics could be reduced to a few axioms and deductive rules as the source of 
all mathematical knowledge. This vision was undermined by Gödel's proof that any 
such system complex enough to include arithmetic is necessarily incomplete. A 
notable response to the collapse of the formalist project is Lakatos’ (1976) position, 
that mathematical knowledge (in keeping with Popper’s view of science) is a human 
and fallible enterprise. This view of mathematics as a human, social construct, 
negotiable and consensual, is emphasised in social constructivism as a philosophy of 
mathematics (Ernest, 1998). We pause here to comment that these recent ontologies of 
mathematics seem to place the mathematician on shifting sand, but nevertheless give 
them agency in an unfolding mathematical story. On the other hand, Platonism accords 
well with the mathematician's experience of ‘discovery’ (Huckstep & Rowland, 2001), 
is consistent with a stable and dependable mathematical universe, and is frequently 
considered the default metaphysical position regarding mathematics (Friend, 2007). 
Security 
Maslow (1970) has proposed that human needs are organised on five priority levels. In 
this hierarchy, Maslow includes security within a more general ‘safety’ category, along 
with stability, structure, order, and freedom from fear. This category is located in the 
second level of Maslow’s hierarchy, preceded only by physiological needs related to 
survival. In this research, and this paper, we operationalise the concept of security in a 
two-stage process: (i) by reference to dictionary definitions of security as ‘freedom 
from fear or anxiety’ (e.g. www.merriam-webster.com); (ii) a typology of fear due to 
Riemann (1970), who proposed four types of personal need, organised into two 
opposing pairs. Each type of need brings with it an associated fear. The first pair 
opposes the need to be an individual against the need to be part of a group: the 
corresponding fears are fear of assimilation [our translation] and fear of isolation and 
loneliness. The second pair opposes the need for stability with the need for 
development: the corresponding fears are fear of change and fear of confinement and 
stagnation. 
As an indication of the relevance and potential application of Riemann’s framework to 
the topic under investigation here (security in mathematics), consider Mendick’s (2005) 

http://www.merriam-webster.com/
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account of the ‘identity work’ of two young persons, expressed in terms of their 
enjoyment of mathematics. Mendick comments (p. 175) that “Phil finds a security in 
mathematics that enables him to construct himself as intellectually mature and as 
distant from his working-class, minority-ethnic self”. Phil’s security can readily be 
construed in terms of his response to fear of assimilation – through his engagement and 
success in mathematics, he positions himself as distinct and distinctive, in terms of his 
distance from his origins and his intellectual capacity.  

METHODS 
Data Collection. We explored the concept of security with adult mathematicians, since 
these could be expected to have a well-developed relationship with mathematics, and 
to be able to articulate it. The participants’ professional mathematical roles were in 
teaching and/or research in Greece. Nine were in university positions: (pseudonyms) 
Faidra, Paraskevi, Themis, Vasilis, Sofoklis, Periklis, Alvertos, Dimitris, Kleitos. Ten 
were teaching in secondary schools: Stamatia, Eleftheria, Aris, Sokratis, Avgoustis, 
Marios, Nestoras, Fanis, Thodoris, Loukas. This was an opportunity sample, 
determined by existing connections with one university department and several 
schools. Only four of the 19 participants were female (the first two in each of the lists 
above), reflecting the population of mathematicians in Greece (Kotarinou, 2004). Most 
of the participants had substantial professional experience (15 years or more); Themis, 
Vasilis, Sofoklis, Periklis, Faidra and Eleftheria had been in post between 2 and 8 
years. 
One semi-structured interview was conducted by the first author with each participant, 
aiming to probe for unconscious feelings which might be difficult to access directly, 
but could be hinted at during a conversation (Rubin & Rubin, 1995). The interviewer 
approached the topic indirectly, by discussing with the participants their relationship 
with mathematics in a general way. This approach minimised the risk of participant 
discomfort on being asked to disclose personal information (Robson, 2002). The 
interviews, which mostly lasted up to 30 minutes, were audio-recorded and transcribed 
in Greek. The semi-structured interviews were organised around the following four 
themes: the participant’s personal history regarding mathematics; their views about 
mathematics; the relevance of mathematics in everyday life; and their feelings about 
mathematics. The interviewer had a repertoire of questions from which she drew in a 
flexible way. 
Data analysis. The scale of the data analysis task was such that it could be handled 
manually. In a first pass over the interview data, utterances were coded as relevant, or 
probably relevant, to one of Riemann’s four types of fear. Sometimes just one type 
could be applied to a whole paragraph, at others to only part of a sentence. For example, 
Stamatia’s analysis of mathematical modes of thinking included characteristics 
referring: to communication, which was connected with fear of isolation; to structured 
thought, which was connected with fear of change; and to creativity, which was 
connected with fear of stagnation. In a second pass over the data the initial fear-type 
codings were reconsidered, and changed in some cases, and some additional utterances 
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were coded. Several cases of multi-coding arose, even including coding some 
utterances to opposing fears, as two sides of the same coin. Subsequently, as the data 
were revisited again and again, a method of constant comparison was applied in a more 
fine-grained coding, giving rise to broad themes and related sub-themes, associated 
with each type of fear. The themes and sub-themes related to fear of change are listed 
in Table 1, by way of illustration. Note that whereas themes 1-3 emphasise aspects of 
mathematics and mathematical activity that have the potential to offer protection 
against change, themes 4-8 acknowledge interconnections with other fears, and 
limitations in safeguarding against change. 

Themes Sub-themes 
1. Mode of thought precision; connectedness; systematisation; 

orderliness; verifiability; consistency; 
sense-making; realism; real life 

2. Inferences certainty; reliability; one reality; real life 
3. Art harmony; beauty; balance 
4. Assimilation self-awareness and mode of thought; 

self-fulfilment and mode of thought; 
self-confidence and mode of thought 

5. Isolation historical continuity and reliability; 
precision and one reality; omnipresence 
and connectedness 

6. Stagnation change and creativity; change and mental 
activation; change and diversity 

7. Limitations to Assimilation realism 
8. Limitations to Change mode of thought 

Table 1: Fear of Change – themes and sub-themes 

FINDINGS 
In this paper, we restrict our report to those findings from the analysis of the interview 
data that shed light on the participants’ views with regard to the second of Riemann’s 
opposing pairs: fear of change and fear of stagnation. The analysis is restricted here to 
those themes (like Mode of thought, Inferences, and Art; Table 1) that relate 
specifically to the fear-type under examination, rather than those that indicate 
interconnections and limitations. In the case of fear of stagnation, these were 
Creativity; Problem solving; Diversity.  
Fear of change 
First, we will report the participants’ views which we associated with fear of change. 
These views explain how mathematics could make the participants feel that they were 
protected against, or ready to confront, the unexpected changes of life. 
Mode of thought 
The participants perceived the mathematical mode of thought as precise, 
interconnected, systematic, rule-governed, verifiable, non-random, absolute, and 
sense-making. For example:  
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mathematics makes you feel secure because it reveals harmony and orderliness. Every 
system functions with certain rules; if you violate them, then the system collapses. … It 
makes sense how one [statement] is linked to another . . . What seems complicated and 
difficult can be broken down into the links that produce it . . . it is not randomly produced 
(Fanis) 
In order to prove . . . you need absolutely rational thought, absolute logic (Aris) 
you start from a point arbitrarily, but everything you say afterwards is established 
(Dimitris) 
mathematics is precise; its results are verifiable . . . you know if you were right or wrong, 
you have no doubt (Avgoustis). 

The interviewees also believed that these attributes of mathematical thought could be 
transferred to everyday life, and improve it:  

I say to students: maybe you won’t use mathematics after [school], but from your 
mathematical experience you may acquire a mode of thought (Thodoris) 
mathematics reformulates the problem you want to solve, until it becomes comprehensible. 
The same you do with a real problem. You distinguish and organise [the data] in 
hierarchies depending on the values you have in your head (Alvertos) 
If you've been taught by mathematics and if you've conquered your passions . . . you can 
see more clearly, and consequently you are better equipped to confront [a problem] 
successfully (Sokratis). 

Thus mathematics was seen as being ordered itself, and inculcating orderly behaviour.  
Inferences 
The interviewees asserted that the mathematical mode of thought starts from sound 
foundations and leads to certain, reliable and permanent conclusions:  

mathematics is logic; there are axioms and a stable basis […] mathematics doesn’t change; 
what has been found remains as it is (Vasilis) 
you may say that proving makes the knowledge secure (Alvertos) 
mathematical thought engenders and answers ‘whys’ . . . through indubitable arguments 
(Stamatia) 
[in mathematics] for every problem we can obtain one unique correct solution (Loukas) 

The participants transferred this certainty to real life, where mathematical ‘sound 
foundations’ was translated into pragmatic ‘realistic assumptions’:  

mathematics influences our decisions . . .; [it allows us to judge] what our abilities are, so 
that we make correct choices (Aris) 
Mathematics helps you . . . to put the assumptions in order and to reach the best possible 
solutions (Fanis) 
You can distinguish between right and wrong . . . in life, contradiction is allowed to some 
extent; but even though you may not be able to prove something, you’ll be able to exclude 
something [else] (Sofoklis). 
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The logic inherent in mathematics was especially prized for the ‘certainty’ guaranteed, 
from both Platonist or formalist points of view, and the same modes of inference were 
seen as valuable in everyday affairs. 
Art 
The orderliness of mathematics suggests harmony and balance, and these in their turn 
imply beauty. The interviewees judged mathematics as beautiful:  

there are proofs which display harmony . . . I love the logic hidden in mathematics and its 
beauty . . . There are questions which simply emerge and they are beautiful (Sofoklis) 
after solving a problem, I imagine the solution as a work of art (Dimitris) 
mathematics is something like music: once you hear it, it sticks in your mind (Avgoustis).  

This beauty provides equilibrium in the chaos of an uncertain world.  
The world is chaotic; through the symmetry of mathematics I find balance. (Eleftheria) 

Fear of stagnation 
Here we report the participants’ views which we interpreted in relation to the opposing 
fear, of stagnation. These views explain how mathematics could make the participants 
feel that they have powers of self-determination, and ability to change the status quo. 
Creativity 
Some interviewees affirmed that mathematics gives rise to original creations which 
shape the present and will influence the future. For example: 

in mathematics you are expected . . . to explore existing paths, and potentially to create 
[new ones] (Alvertos) 
mathematics contributes to contemporary development, it influences the present 
(Eleftheria)  
differential geometry and vector spaces are a glance into the future (Fanis)  
science fiction is born of the womb of the science of mathematics (Stamatia) 

The interviewees also believed that mathematical creations adhere to logic but are not 
restricted by any physical laws or limitations. Kleitos dissociates himself from a view 
of a pre-determined mathematical universe:  

other sciences discover, while mathematics creates; there isn’t something specific you're 
looking for … mathematics uses the least possible rules (Kleitos) 

Stamatia commented on the transfer of mathematical creativity in real life, in a bold 
assertion of self-determination: 

mathematics is the science that cultivates independence, boldness, and the love to explore 
the unknown. You dream an imaginary world, and mathematics allows you to make it real. 

Problem Solving  
The participants observed that mathematical problems can be tackled using various 
approaches.  

everyone approaches mathematics differently (Alvertos) 
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I like to read about [mathematical issues] which are examined from different perspectives 
(Nestoras) 

Furthermore, the participants observed that problem-solving offers great intellectual 
independence and stimulation.  

I’m pleased when I watch my students reaching a solution using their brain instead of 
parroting others’ opinions (Stamatia) 
mathematics keeps you vigilant; your mind doesn’t get the chance to be idle (Eleftheria) 

The participants also commented on problem-solving being an unexpected experience: 
I like it when students see things that I haven’t (Themis) 
I see mathematics as an ongoing route and not as something which I've learned and I can 
rest upon (Periklis) 

These contributions present mathematics as offering scope for novelty and originality, 
taking pleasure in diversity and in the unexpected.   
Diversity 
As an occupation, mathematics can give rise to a range of emotions.  

mathematics engenders thousands of feelings; from vanity for one’s efforts to surprise, 
hedonism, fury, and stubbornness (Alvertos)  

Mathematics was considered to be a tool, both with respect to other sciences and for 
organising one’s thought, and this tool can be used in many different ways:  

it can be a hobby, a profession, a means to get rich, a means of deceit, a means of 
exploration, and an object of research … [however] applying mathematics is not bloodless; 
the missiles have been made by mathematicians (Sokratis) 

Here, Sokratis disputes G. H. Hardy’s (1940) claim that mathematics is benign, 
harmless and practically useless, and mathematicians detached from practical affairs. 
Like the other informants here, he attests to the endless diversity and variety of 
experience and emotion derived from mathematics, which we interpret as another 
safeguard against stagnation. 

CONCLUSION 
This investigation into feelings of security in mathematics was underpinned by a 
conception of security as relief from fear, and by Riemann’s (1970) focus on four types 
of fear, in two opposing pairs. In this paper we reported findings relating to fear of 
change, and fear of stagnation. Mathematics was perceived to offer a balance between 
these opposing anxieties. As many philosophers have suggested in the past (e.g. 
Hutchins, 1952), the interviewees believed that what distinguished mathematics from 
the other sciences, natural or human, was its mode of thought. This mode was 
considered to lead to an exceptional kind of knowledge, indubitable and unchanging, 
whether discovered or invented. This infallible knowledge was believed to be 
continually increasing, to the benefit of both mathematics and other disciplines. The 
former enjoys results unbound by any physical law, the latter findings which could be 
used to change the world (Guillen, 1995). Mathematics was perceived as a realm of 
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creation, of beauty and balance, in which everything makes sense. Furthermore, 
insofar as the mathematical mode of thought can be transferred from mathematical to 
real-life problems, it was valued as a tool of unique precision, both in handling the 
unavoidable changes of life (fear of change) and in escaping from undesirable 
situations (fear of stagnation).  
Several lines of further research are suggested by these findings: perhaps the first 
fruitful avenue would be to investigate the extent to which these findings might be 
replicated in other cultures, within and beyond Europe. 
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AN EXPLORATION OF MATHEMATICS TEACHERS’ 
DISCOURSE IN A TEACHER PROFESSIONAL LEARNING 

COMMUNITY 
Chang-Hua Chen 

Taipei Municipal Ming-Sheng Junior High School, Taiwan 
Ching-Yuan Chang 

Graduate Institute of Education, Tzu Chi University, Taiwan 
 
This study investigated the evolution of mathematics teachers’ discourse in a teacher 
professional learning community with an aim to contribute to the discussion on 
teacher professional development. Four mathematics teachers teaching in diverse 
socio-economic status (SES) schools participated in the study. Qualitative methods 
were applied to learn the complexity of teacher discourse in depth. Research findings 
suggested that the focus of teacher discourse moved toward student mathematical 
thinking. Teachers teaching in low-SES schools benefited more from the participation 
in the learning community than their high-SES counterparts.  

INTRODUCTION 
The engagement of teachers in a professional learning community is suggested to be 
the most critical and effective way of affecting teacher professional development 
(National Staff Development Council, 2011). Such a community involves teachers 
organizing a team for professional development in order to cooperatively improve their 
instruction. Teachers meet regularly to discuss learning goals, lesson plans, problems 
they might encounter in teaching, and to reflect upon the lessons they have already 
taught. Teachers can play an active role in educational reform and discover the main 
problems relating to school education and teaching. 
Although the idea of a teacher professional learning community has been valued for 
teachers’ professional development, the use of learning communities has not yet 
entered the mainstream of professional development for teachers in Taiwan (Taiwan 
Ministry of Education, 2008). The Ministry’s relevant information and documents are 
limited in the nation. Moreover, scholars have very few resources in terms of the 
interaction of mathematics teachers within professional learning communities, such as 
how a dialogue proceeds. 
This study investigated teacher learning from the perspective of teacher discourse. It 
focused on changes in the content of discourse after mathematics teachers’ 
participation in a professional learning community. The professional learning 
community focused on improving teachers’ discourse-based assessment practice (DAP) 
from convergent formative assessment to divergent formative assessment (Pryor, & 
Crossouard, 2008). DAP is a type of formative assessment practice which consists of 
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questioning and feedback (Tunstall, & Gipps, 1996). In the community, teachers 
watched video clips of their own teaching to reflect upon their DAP and discussed 
what they had seen.   
Teachers are viewed as learners in a professional learning community. However, 
literature about how teacher learning occurs, especially the evolution of teacher 
discourse, is limited. This study is significant because it contributes to the knowledge 
base regarding the professional learning behavior of mathematics teachers. 

LITERATURE REVIEW 
Research evidence has indicated that mathematics teachers can better develop their 
profession if they regularly watch recordings of classroom teaching and discuss what 
they have seen (Borko, Jacobs, Eiteljorg, & Pittman, 2008; Sherin & van Es, 2009). 
For example, van Es and Sherin’s study (2010) indicated the focus of teachers’ 
professional discourse shifts from teachers’ pedagogy to students’ mathematical 
thinking in a video club. Consequently, teachers began to pay more attention to, and 
exhibited greater understanding of, students. In Borko et al.’s study, when mathematics 
teachers gained more experience in analyzing video clips, they were able to have more 
extended discourse, and the four categories, teacher’s thinking, students’ thinking, 
pedagogy, and mathematics, appeared more evenly in teacher discourse. In Chung Jing, 
Shen Shu-Yu, and Huang Mei-Ling’s research about the situation of elementary school 
teachers’ professional discourse (2008), it was shown that the content of discourse in 
the voluntary mathematics teachers’ group was more in-depth when compared to the 
mathematics study group and to the group of classroom teachers. The mathematics 
study group dealt with the tasks assigned by school authorities by holding ad hoc 
meetings. In Chen Yen-Ting, Kang Mu-Suen and Leou Shian’s research (2010), two 
junior high school teachers reported that discourse among peer groups had helped them 
reflect upon and develop mathematical pedagogical knowledge. In short, it is an 
emerging area in the study of the evolution of teacher professional discourse. Research 
evidence has shown the complexity of teacher professional discourse. In order to better 
support teacher professional development, more research is needed to explore the 
professional learning of mathematics teachers in a learning community. 

METHODOLOGY 
Context of the Study 
Four mathematics teachers teaching in Hua-Lien County and New Taipei City agreed 
to participate in the study. They all had more than five years of teaching experience in 
mathematics. Two teachers served in a top-flight urban school in Hua-Lien County. 
Most students who study in this school come from middle- or high-SES families. Two 
teachers came from low-SES schools with many minority students. This teacher 
professional development program for DAP was executed from August 2010 to April 
2011. The teachers gathered once every two or four weeks. Each discussion lasted 
two-and-a-half to three hours. 
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The first author played dual roles as a facilitator of teacher discussion and the 
researcher of its effectiveness. We collectively watched teaching video clips and 
examined the quality of questioning and feedback in teaching episodes. Each teaching 
episode was viewed as a case. Case discussions have the potential for developing 
teachers’ professional knowledge and for contributing to teachers’ movement toward 
student-centered instruction (Clare & Hollingsworth, 2000). When engaging in case 
discussions, the teachers can provide their colleagues with not only support but also 
critiques for the implementation of DAP. 
Transcripts of Teacher Professional Development Meetings. 
Except for the first three informational sessions, every teacher professional 
development meeting was videotaped and transcribed verbatim using Transana™ 
software. The transcripts take up about 33 hours for 12 meetings in all. 
Data Analysis 
When analyzing the transcripts of the professional development meetings, the 
transcripts were first broken down into idea units (Jacobs & Morita, 2002), which are 
fragments of transcripts. In a fragment, there is only one specific idea, which would be 
discussed by teachers—that is, when teachers’ discourse moves into a new topic, it is 
then counted as another idea unit. 
The approach of manipulating idea units was taken from Sherin and van Es (2009).  
The idea units were broken down into three categories for further analysis: 1. Who 
initiates idea units? 2. The objects of teachers’ discussion, and 3. Discussion topics. 
“Who initiates idea units?” means that the researcher or teachers initiate the discussion 
in the idea unit. “The objects of teachers’ discussion” refers to whether students, 
teachers, or other people are the objects of teachers’ discussion. The coding scheme of 
“discussion topics” was developed according to the interaction between the reading of 
professional discourse literature of mathematics teachers (Chen Yen-Ting, Kang 
Mu-Suen, & Leou Shian, 2010; Manouchehri, 2002; Sherin & van Es, 2009) and the 
feedback taken from the data analysis. The discussion topics were categorized as 
“Teaching techniques,” “Mathematical thinking,” “Mathematics,” “Discourse,” 
“Management,” “Atmosphere,” “Assessment,” “Reflection,” and “Others,” all of 
which are in Appendix A. Sherin et al.’s methods (2009) were applied, and only 
“discussion topics” that were triggered by teachers in the idea units were coded. The 
result of this coding is presented in a table, displaying the frequency and percentage of 
each code. Member check was applied to ensure the credibility of data analysis 
(Schwartz-Shea, 2006). Due to the page limit, we present representative findings.  

FINDINGS AND DISCUSSION 
Table 1 shows that participating teachers initiated most “idea units” in teacher 
meetings. This implies that the teachers played an active role in the learning 
community. This trend (almost 60%) began early on and was maintained until the end 
of the research project. What is worth noting is that the number of “idea units” had a 
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tendency toward diminishing over time. For example, teachers opened 84 “idea units” 
in the meeting on September 12th, but only 56 “idea units” on April 10th. This is 
because teachers’ discourse in the early stage involved many short discussions and 
several spoken sentences, before it turned toward other topics for discussion. This is 
why the meeting in the early stage had many “idea units.” However, in the late stage of 
the study, teachers usually focused on one topic and spent time talking about it before 
entering another topic. Discussion of an “idea unit” usually lasted for some time, which 
is why at the same meeting time a smaller number of “idea units” appeared in the late 
stage. This seems to show that teachers’ discussions were more focused and deeper in 
the late stage when compared to the early stage of the study. 
The object of teachers’ discussion also appears as a different percentage in the early 
and late stages. Although the focus had been on teachers, the percentage of students in 
the teachers’ discourse had been gradually increasing (9%, 22%, 13%, 15%, and 31%). 
This suggests that teachers increasingly attended to students as the objects of their 
attention. 

Date 09/12 11/21 01/22 02/27 04/10 
Person Who Initiates Discussion 

Researcher 34% 37% 22% 42% 37% 
Teacher 66% 63% 78% 58% 63% 

Discussion Object 
Teacher 64% 56% 57% 59% 50% 

Student 36% 39% 41% 38% 43% 
Others 0% 5% 2% 3% 7% 

Discussion topic 
Teaching Techniques 39% 28% 19% 15% 23% 

Mathematical Thinking 9% 22% 13% 15% 31% 
Mathematics 1% 0% 0% 0% 0% 

Discourse 2% 1% 6% 3% 3% 
Assessment 12% 15% 13% 24% 17% 
Reflection 1% 11% 22% 15% 14% 

Management 5% 2% 6% 15% 2% 
Atmosphere 12% 3% 13% 3% 0% 

Others 19% 18% 9% 9% 11% 

Table 1:  Percentage of “idea units” of teacher professional development meeting 
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Correspondingly, in the discussion topic, teachers spent less time discussing “teaching 
techniques,” but more time discussing students’ “mathematical thinking.” The two 
low-SES teachers discussed more mathematical thinking about students than did their 
colleagues. Interestingly, the percentage of teachers’ discussion about reflection 
increased until the end of the fall semester and then decreased until the middle of the 
spring semester. Observations suggest that the teachers increasingly discussed the 
topic of reflection as they were trying to handle DAP in the first half term of this study. 
When they were able to handle DAP, the teachers decreased their percentage of time 
spent in discussion of reflection. It is noteworthy that the two low-SES teachers 
initiated the most discussion on the reflection topic (80%) which suggests that they 
benefited more from the participation in the study than their high-SES counterparts. 
Below is an excerpt which illustrates teachers’ reflective behavior among two low-SES 
teachers in the sessions (Teachers’ names are replaced by pseudonyms, and the words 
in the brackets are those added by researchers for understanding): 

Teacher Lily: Teacher Hua played the video of our previous teaching in the classroom. 
Then we started talking (discussing about it). Then I feel that the process 
has allowed us to think about many issues. For example, at the time 
Teacher Fang said that even I couldn’t answer your question (that you 
proposed to students). You then thought that… 

Teacher Jiang: The feedback from colleagues (in the teacher professional meeting).  
Teacher Lily: When colleagues told me this, I would then start to think that I thought I 

had expressed myself clearly enough. I might have some language habits 
which I didn’t think would be problematic. But I was very shocked at the 
time when Teacher Fang and Teacher Wang said even they couldn’t answer 
my question and didn’t understand what I was trying to ask. I was kind of 
agreeing with them. After this I always watched my own teaching videos 
and considered if I have made any sentences out of my own habits. Students 
may not have time to think or they didn’t understand what my question was 
about if I didn’t ask precise questions. I then started reflecting on this. It 
was still the most important part because everyone could discuss it 
together. 

Teacher Jiang: Discuss. 
Teacher Lily: Then giving you some opinions…So I think the discussion of teaching part 

is very useful for me. … throwing out questions in the discussion process 
was very good.  

(Meeting transcript, 1/22/2011) 
Teacher Lily appreciated the way that the researcher led teachers in their discussion by 
playing teachers’ videos. Partners’ feedback has allowed her to examine and reflect 
upon the problems of her questioning. She pointed out that Teacher Fang and Teacher 
Wang did not know how to reply to her question in the meeting held on September 12, 
which shocked and inspired her to watch her own teaching videos and to reflect on her 
own teaching. She came to understand that students did not answer questions because 
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the teacher did not give sufficient time for them to reply, or, they did not understand 
what the teacher was asking. She gave insightful comments about the learning 
experiences she had obtained from the teachers’ discussion process. 
The development of discussion topics is similar to that of Sherin et al. (2009) but 
different from that of Chen Yen-Ting et al. (2010). In the latter study, the concept, 
“knowledge of mathematics course”–which is teachers’ understanding of content 
knowledge of mathematics and of the mathematics curriculum--occupied the highest 
percentage of time in the teachers’ discussion. “The understanding of learners” is the 
teachers’ understanding of students’ mathematics learning characteristics and prior 
knowledge, which is similar to the mathematical thinking topic applied in this study. 
Its percentage had the tendency to rise, then fall, in the discussion of different periods 
of two junior high school mathematics teachers. 
The difference in the development of teacher discourse between Chen et al. (2010) and 
this study may be due to the way that researchers conducted case discussions. In their 
study, the two teaching colleagues observed classroom teaching with each other. After 
classroom observations, they met to discuss what they observed without watching 
video clips. The researchers only presented and played the role of an audience. In this 
study, the researcher played an active role in facilitating teachers’ attention in session 
discussions to students’ thinking about mathematics. The role that a facilitator plays 
has a significant impact on teacher professional learning. 
It is noted that teachers participating in video clubs did not demonstrate reflective 
behaviors in sessions, which is not the case for Borko et al.’s study (2008) and this 
study. The difference may be explained by whether teachers have the chance to view 
their own lessons or not. Only a few teachers participating in the video clubs provided 
their own teaching video for session discussions, while all teachers who participated in 
the latter’s studies shared their teaching videos with their colleagues. Seidel and 
colleague’s experimental study (2005) suggests that teachers’ experience of watching 
their own videos is more stimulating and emotionally arousing than that of watching 
someone else’s videos. This experience of watching one’s own videos can better 
support teacher learning and promote changes in teaching practices. Thus, the 
facilitators of teacher learning should make efforts to create and manage an 
environment that makes teachers feel safe to share their own teachings and carefully 
deal with teachers’ feelings when watching their own teaching videos. 

CONCLUSIONS 
This study explored the development of mathematics teacher discourse in a 
professional learning community. The research findings suggested that the focus of 
teacher discourse gradually shifted from teaching techniques to student mathematical 
thinking. Teachers began to pay attention to student mathematical thinking when they 
were examining the quality of DAP. This suggests that teaching and learning became a 
constitutive activity (Crockett, 2007) for the teachers. Teachers teaching in low-SES 



Chen, Chang 

 
PME36 - 2012 2-129 

schools demonstrated the most reflective behaviors which imply that they benefited 
more from participation in the learning community than their high-SES counterparts.  
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APPENDIX A: CODING SCHEME FOR TEACHER DISCOURSE 

Code Contents 
Teaching 
techniques 

It demonstrates teachers’ presentation of information in the class, 
their choices of class tasks, instructional strategies, and 
instructional decision-making.  

Mathematical 
thinking  

Talking about students’ mathematical understanding in the class: 
this includes the comments given to the entire class about 
mathematical understanding and the discussion of individual 
student’s mathematical thinking. It can be encoded when 
demonstrating the ability to understand another person’s 
mathematical thinking. 

Mathematics It consists of questions and comments about mathematics 
concepts that were taught in a class. It does not include the 
mathematical understanding of students but rather, focuses on the 
mathematical understanding of teachers. 

Discourse Paying attention to the ways of communicating and discussing 
ideas between teachers and students. For example, whether or not 
many students participate in classroom discussions or how 
students know when they should speak. 

Assessment Focusing on the application of formative assessment. For 
example: initiation, feedback, and using a peer group as students’ 
learning resources or discussing students’ learning performance.  

Reflection Teachers spontaneously challenge their own views about teaching 
and learning, or reveal their intent to re-organize teaching actions.  

Management Talking about class organization, such as use of time, dealing with 
any disturbances, and transitions in activities.   

Climate In contrast to classroom management, it refers to the social 
environment of a classroom. For example: the relationship 
between teachers and students, students’ treatment of one another, 
or students’ level of participation. 

Otherwise The idea units cannot be encoded by the previous seven codes--for 
example, the discussion of video image and sound quality. 
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A SIXTH GRADER APPLICATION OF GESTURES AND 
CONCEPTUAL INTEGRATION TO LEARN GRAPHIC PATTERN 

GENERALIZATION 
Chen, Chia-Huang; Kun- Shan University 

Leung, Shuk-Kwan S.; National Sun Yat-sen University 
 
This is a study on the construction and interpretation of mathematical meaning 
associated with gestures, oral speech, and drawings. We describe a learning episode 
on adjacent graphical pattern in a sixth grade class.  The investigators utilizing the 
tools of linguistics and the study of gestures to analyze the conceptualization of 
mathematical concepts related to graphic pattern generalization. Case study method is 
adopted.  The results of this study indicate that, even for elementary topics, the abstract 
nature of mathematics was made evident through gestures demonstrated during the 
episode. Instructional implications of this research are included. 

1. INTRODUCTION 
Researchers in the fields of linguistics, cognitive science, and psychology have 
recently turned their attention to the phenomenon of spontaneous gestures associated 
with speech to deal with communication and the construction of mathematical 
meaning, (McNeill, 2005). In Taiwan, a number of mathematics educators addressed 
gestures and body movement as either potential sources of information on how we 
think about mathematics, or as contributors to mathematical thinking and 
communication itself. Gestures are a crucial tool in the learning of mathematical 
concepts. Alibali, Kita and Young (2000) claimed that gestures are involved in the 
conceptual planning of messages, helping students to “package” spatial information 
into verbalizable units, by exploring alternative ways of encoding and organizing 
spatial and perceptual information. 
The goal of this study was to collect and analysis a corpus of gestures related to the 
learning of one mathematical topic, pattern generalization. The topic of pattern 
generalization was selected because the ability to generalize is critical to algebraic 
thinking and reasoning; however, the point at which the nature of everyday 
generalizing begins to deviate from the more formal activity of mathematical 
generalizing is a fundamental issue that remains unresolved (Carpenter, Franke, & 
Levi, 2003; Radford, 2006). 

2. THEORETICAL FRAMEWORK 
This study employed the tools of cognitive linguistics and the study of gestures 
(Fauconnier & Turner, 2002; McNeill, 2005) to form a fundamental theoretical 
commitment, namely, that human mathematical thinking is integrated at multiple 
levels: through imagery, bodily motion, and gestures. Cognitive linguistics views 
language as a dynamic construction, which reflects a series of unconscious mental 
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mappings created through our experiences based on current understanding. An 
important mechanism within this framework is the conceptual integration of mental 
spaces, defined as input spaces projected selectively onto an integrated space, resulting 
in an emergent structure (Fauconnier & Turner, 2002). Thus, the notion of a pattern is 
an integration of two input spaces: Knowledge of the common difference value 
between terms, and our conception of the geometric entity referred to as a figural 
structure. This integrated entity draws particular elements from each of the input 
spaces and applies gestures to connect these elements in the creation of a pattern.  For 
example, in the problem given later in Fig. 2, the notion of the “pattern” in the 
triangular graphic pattern is a blend that draws from two input spaces: common 
difference (D) and figural structure (FS).  The blend draws certain elements and 
relationships from each of the input spaces, and creates a pattern. The basic elements of 
this integration are illustrated in Fig. 1. 

 

Fig. 1. Conceptual integration associated with figural pattern generalization 
Conceptual integration has been applied in the analysis of mathematical ideas ranging 
from arithmetic to algebra. In this paper, the theory of conceptual integration is used to 
analyze both speech and gestures, to describe student thinking about graphic pattern 
generalization. Parrill and Sweetser (2004) defined the meaning of a gesture as, “the 
relationship between how the hands move in producing a gesture, and whatever mental 
representation underlies it, as inferred both from the gesture and the accompanying 
speech” (p. 197). Clearly, the researchers had no direct access to whatever mental 
representation underlies a gesture, and must therefore use the linguistic device in 
conjunction with the activity in which the speaker is engaged, as a means to construct a 
plausible interpretation of gestures. In the current study, gestures are viewed as 
conceptual integrations. In the analysis of gestures, the inputs of the integration are not 
abstract conceptual spaces, but rather an awareness of one’s immediate physical 
environment provided by the hands, surrounding objects, and physical space.  
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McNeill (2005) classified gestures according to four types that are not necessarily exclusive: Deictic, 
Metaphoric, Iconic, and Beat. All of these four play essential roles in the consideration and communication of 
mathematics. 

3. RELATED RESEARCH 
Previous research relating to gestures and mathematics examined a variety of 
mathematical tasks, including the conservation of volume (Alibali, Kita, & Young, 
2000), learning to count (Alibali & diRusso, 1999), and solving simple equations 
(Goldin-Meadow, 2003). They found that gestures and speech can “package” 
complementary forms of information to support the speaker’s thinking and 
problem-solving (McNeill, 2005; Radford, 2006). Several studies have shown that 
learners are able to express their understanding of a new concept through gestures 
before they are able to express it in speech, and a mismatch or non-redundancy 
between the information expressed through the gesture versus speech can be an 
indicator of a readiness to learn the new concept (Alibali et al., 2000; Goldin-Meadow, 
2003). In the current research, we examine specific gestures to illustrate the process of 
conceptualizing mathematical notions related to graphic pattern generalization. 

4. METHODOLOGY 
4.1 The case 
The method we use is case study (Yin, 1994).  From a class with thirty-one primary 
sixth graders in south of Taiwan, one student was selected to be the case because he 
exhibited a diverse range of mathematics strategies and competency in problem 
solving. Students had prior experience with repeating patterns.  However, none of the 
students had worked with growing patterns nor received formal instruction in graphic 
pattern generalization. 
4.2 Research context 
This study introduced a special unit on concepts related to graphic pattern 
generalization, which was videotaped using two digital cameras. The cameras were 
positioned to ensure that all speakers were recorded and all actions could be seen. All 
artifacts produced by the teachers and children were recorded, including markings on 
the chalkboard and any graphs or classifications that the children produced. 
The students had been introduced to the recognition of figural patterns and various 
algebraic representations (numerical tables, Cartesian graphs, and symbolic formulas). 
Students stood at the blackboard and explained how to recognize the pattern and 
generalize the graphic for the entire class. 
4.3 A learning episode 
Patterning and generalization provide students with an opportunity to engage in 
problem-solving situations to acquire the formal mathematical requirements of 
algebraic generalization. We asked students to establish a general formula for the total 
number of sticks at any stage for the patterns shown in Fig. 2. Students first read the 
problem given in a worksheet and used paper and pencil to explore and analyze.  
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Finally they used geometric sticks to explain their solutions on generalization or the 
refining of existing models. 

 

Fig. 2. Adjacent pattern problem (triangles, squares, or polygon) 
A. How many sticks are there altogether when there are 10 polygon? Draw and 

explain. 
B. How many sticks are there altogether when there are 15 polygon? Explain. 
C. Find a direct formula for the total number of sticks (T) in any pattern number “n”. 

Explain how you obtained your answer. 
D. If you obtained your formula numerically, what might it mean if you think about it 

in terms of the above pattern? 
E. If the pattern above is extended over several more cases, and a certain pattern uses 

76 sticks in all. Which pattern number is this? Explain how you obtain the answer. 
4.4 Data analysis 
Gestures were classified using the model created by McNeill: 
Deictic: Any extensible body part or held object that is used for pointing.    
Metaphoric: Gestures can also be used to present images of abstractions. Some 

gestures involve a metaphoric use of form—the speaker appears to be holding an 
object, as if presenting it, yet the meaning is not to present an object but rather to 
show that she is holding an ‘idea’ or ‘memory’ or some other abstract ‘object’ in her 
hand.  

Iconic: Presenting images of concrete entities and/or actions, in which the form of the 
gesture and/or its manner of execution embodies picturable aspects of semantic 
content.   

Beat: Flicks of the hand(s) that appear to ‘beat’ time along with the rhythm of speech. 
They have meaning and signify the temporal locus in speech of something the 
speaker feels is important. 
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Two independents viewed the video and categorized in terms of which type was most 
salient of four gestures.  Discussions were made after the coding until the two agreed 
on the gesture type. 

5. RESULTS 
Sin attempted the triangle problem first.  Sin first picked up three sticks to make a 
triangle [iconic, Fig.3.1], explaining that the triangle had three sides [1,2,3, iconic]. He 
then added three sticks to the first triangle to make a second triangle, but found that the 
three sticks could not be combined to make a second triangle [iconic, Figure. 3.2]. He 
said: The side [pointing to the right side of the first triangle] could be used to make a 
second triangle [deictic]. In the same manner, he made a third triangle [iconic, Fig. 3.3]. 
Sin said: The first triangle had 3 sticks and adding 2 sticks could make two triangles, 3
＋2＝5, 3 triangles require 3＋2＋2＝7, 4 triangles would require two more [moving 
his finger from the right side of the third triangle to the fourth triangle position]. The 
total number of sticks is 3＋2＋2＋2＝9 [iconic, Fig. 3.3]. He explained that each 
additional triangle required 2 additional sticks, so 3 triangles would require 2 groups of 
2s, 4 triangles 3 group of 2s, etc. [using a finger to draw the triangle on the blackboard] 
[deictic]. How many sticks would pattern 10 have? He replied that the formula 3＋(10
－1)×2＝21 could provide the answer. One pattern used 51 sticks in total. Which 
pattern is this? Sin pointed to the first triangle and explained that the figure had 3 sticks 
[iconic, Fig. 3.4]; therefore, 3 is first subtracted from 51. Then 48÷2＝24, 24＋1＝25, 
resulting in 25 triangles [metaphoric]. 
He said that adding a triangle requires 2 additional sticks, which means that a total of 
48 sticks could be combined to form 24 triangles, and after adding the first triangle, 
there were 25 triangles [pointing to the triangle on the blackboard ] [deictic]. 

       

     3.1         3.2            3.3           3.4             3.5            3.6         3.7 

Fig. 3. Sin’s performance in graphic pattern generalization 
Sin’s second attempt was on the square problem.  Sin looked for a pattern and said：
For every square you add three more [iconic, Fig. 3.5]. He said: That would be 4 plus 3 
for two squares [pointing to the second square] [iconic, Fig. 3.6]. Plus 3 more for three 
squares [pointing to the third square]. So that makes 10 sticks. Two 3s would be for 
three squares. Three 3s would be for four squares, and four 3s for five squares [deictic, 
Fig. 3.7]. For n squares, it would just be n minus one 3s. Which pattern would use 61 
sticks? Sin pointed to the first square and explained that the figure had 4 sticks; 
therefore, first subtract 4 from 61 and then 57÷3＝19, 19＋1＝20, would result in 20 
squares [deictic]. 



Chen, Leung 

 
2-136 PME36 - 2012 

Finally, Sin compared a triangle with the square on the blackboard and said that 
increasing the number of triangles would require 2 sticks but adding squares would 
require 3 sticks [deictic, Fig. 3.6]. Sin felt that adding pentagons would require 4 sticks, 
because the figures would require the number of sides minus 1[iconic, Fig. 3.7]. How 
many sticks are needed to form an octagon? Sin said that the formula 8＋(10－1)×7＝
71 could provide the answer. One pattern used 106 sticks in total [deictic]; Which 
pattern number is this? Sin explained that the octagon graph had 8 sticks, requiring 8 to 
be subtracted from 106 and then 98÷7＝14, 14＋1＝15 [metaphoric]. 

6. DISCUSSION AND RECOMMENDATION 
The goal of the study was to analyze a corpus of gestures related to one mathematical 
topic, the figural pattern problem. 
Several researchers have pointed out that the initial stage of generalization involves 
focusing on or drawing attention to a possible invariant property or relationship 
(Lobato, Ellis, & Mun˜oz, 2003), grasping a commonality (Radford, 2006), and 
becoming aware of one’s own actions in relation to the phenomenon undergoing 
generalization (Mason, Graham, & Johnston-Wilder, 2005). McNeill’s categorization 
of gestures assisted us to understand how children used gestures to generalize a figural 
pattern. 
In this study Sin used three types of gestures by McNeill (2005) to point out that the 
structure of the graph and the common difference value changed, and utilized these 
gestures to present the difference value. By integrating the generalization of each term, 
the common difference value and the entire structural relations, he was able to explain 
the significance and the concept of the algebraic expression.  Two types of cognitive 
behaviors demonstrated by these students are worth noticing. One type, “deictic”, 
referred to pointing to concrete objects often related to tangible materials utilized (e.g 
geometric sticks) in instruction about graphic pattern generalization. In the other type, 
which was given the label “iconic–metaphoric,” participants’ gestures re-enacted the 
physical process of drawing out a mathematical procedure, or referred to visual 
locations and elements of mathematical structure. This latter kind of gesture highlights 
the importance of the abstract form in these students’ thinking about mathematics, and 
the way that structure can form a “chain” of meanings in this domain.  Finally, Sin did 
not used beat to solve this figural pattern problem. 
Our findings indicate that the abstract nature of mathematics was made evident 
through the high proportion of gestures appearing in the episode. Thus, teachers could 
encourage the gestures and expressions used by students to promote the learning of 
concepts related to generalization. 
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Enacting tasks at high levels of cognitive demand helps preservice teachers make 
sense of mathematical ideas and serves as a model for instruction.  We contrast two 
small group discussions within a preservice elementary geometry classroom to 
illustrate characteristics of productive small group discussions. We observed that the 
group whose members felt comfortable periodically shifting their roles was able to 
maintain the task’s high level of cognitive demand during task implementation.  We 
conjecture that instructors of preservice teachers should foster small group 
discussions in which participants have opportunities to contribute via a variety of roles 
and focus on conceptual understanding. 

PREPARATION OF TEACHERS IN MATHEMATICAL KNOWLEDGE  
Improving the mathematics preparation of elementary teachers is a necessary step 
toward improving student learning of mathematics (National Council on Teacher 
Quality, 2008).  Additionally, teachers who possess mathematical knowledge for 
teaching are more likely to implement challenging mathematical tasks in their 
classrooms (Charalambous, 2010).  By ‘challenging mathematical tasks,’ we refer to 
tasks that require thinking at high levels of cognitive demand (Stein, Grover, & 
Henningsen, 1996).  Such tasks prompt students to make mathematical generalizations, 
explain their reasoning, and focus on making sense of important mathematical ideas 
(Stein, Smith, Henningsen, & Silver, 2000).      
These findings suggest that in order for preservice teachers to learn the mathematics 
required for teaching, they should be exposed to working with high cognitive demand 
tasks in their teacher training programs.  The rationale for engaging preservice teachers 
in high cognitive demand tasks is that those who have experience providing 
mathematical explanations and justifications and reflecting on the mathematical 
connections inherent in the tasks might better engage their future students in similar 
types of activities (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003).  
However, solving high cognitive demand tasks is often a new activity for preservice 
teachers.   
How can teacher educators, then, engage preservice teachers in these types of 
mathematical activities?  While there is a broad literature base identifying the benefits 
of engaging elementary students in productive classroom discourse (e.g., Choppin, 
2007), there are few examples in the research of preservice teachers engaging in 
productive classroom discourse and how such discourse can help to maintain high 
levels of cognitive demand of tasks.   



Cheng, Feldman, Chapin 

 
2-140 PME36 - 2012 

The purpose of this article is to present an analysis of preservice elementary teachers’ 
small group discussions involving a mathematical task that was written at a high level 
of cognitive demand.  The context of this analysis is a mathematics content course for 
preservice elementary and special education teachers taught by one of the authors of 
this paper.  In our analysis, we extend the current research to illustrate how small group 
interactions can play a key role in helping preservice teachers make sense of important 
mathematical ideas.  We conclude our analysis by discussing ways in which instructors 
of such courses can help preservice teachers maintain the cognitive demands of 
challenging tasks in small group settings. 
Method 
The study was conducted in the spring semester of 2010, during a semester-long 
preservice elementary geometry course at a large private university in the United 
States.  Two classroom sections of this course were videotaped and audio taped during 
eighty-minute class sessions over a two-week period.   
Transcripts of all videotaped class sessions were analyzed using two sets of rubrics. 
We used the IQA-AR rubrics for the potential of the task and for the implementation of 
the task (Boston & Smith, 2009) in order to assess cognitive demand levels before and 
during implementation, respectively, as well as to identify any possible changes in 
levels.  In order to assess the nature of student-to-student talk within small group 
discussions, we used the Levels of Math Talk framework (Hufferd-Ackles et al., 2004).   
Analysis 
This report examines two small group interactions within a preservice elementary 
teacher mathematics course and their ability to maintain the cognitive demands of a 
task during task enactment.  Group X was able to maintain the cognitive demands of 
the task, while group Y lowered the cognitive demands of the task.  The task came in 
the form of a final question at the end of the two-day lesson on surface area, and 
involved comparing and contrasting two methods for finding the surface area of a 
rectangular prism.  
One method for calculating the surface area of prism is known as the lateral surface 
area method, and follows in its most generic form: 

SA= (Area of lateral surfaces rectangle) + 2 × (Area of a base) 

This formula is based on the fact that the surface of a prism consists of lateral faces that 
can be composed into a rectangle and two congruent bases.  Participants further refined 
the formula above once they discovered that the area of the lateral surfaces rectangle of 
a prism is the product of the prism’s base perimeter and height.  Their revised formula 
for the total surface area of a prism became as follows: 

SA= (Perimeter of base × Height) + 2 × (Area of a base) 

The second method for calculating the total surface area of a rectangular prism requires 
calculating the area of each individual face of a prism and summing the areas. The 
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choice to focus on the lateral surface area method was twofold: most of the preservice 
teachers had not previously encountered the lateral surface area method; and, unlike 
the traditional method described above, this alternative method generalizes extremely 
well to all prisms and cylinders. 
The question presented to the preservice teachers is as follows: 

Another formula for the surface area of a rectangular prism is given below: 
SA=2lw+2wh+2lh.  Explain how this formula determines the surface area of a rectangular 
prism.  Compare and contrast this formula to the lateral surface area method for surface 
area. 

Each group of preservice teachers was given approximately fifteen minutes to 
complete this question. 
Cognitive Demand Analysis for Potential of Task 
Using the IQA-AR rubric for the potential of the task (Boston & Smith, 2009), the 
cognitive demand of the final question as it is written is at a level 4.  The question was 
presented to participants as a way to assess and extend their developing understanding 
of the lateral surface area method.  It requires participants to make connections 
between two different methods for computing the total surface area of a rectangular 
prism.  Participants must be able to see past the symbolic form of each method to 
notice similarities and differences.   This type of analysis requires complex, 
non-algorithmic thinking and prompts preservice teachers to make their reasoning 
explicit to others. 
Introduction to Case Studies 
Recent research also suggests that small-group instruction can provide preservice 
teachers with opportunities to examine and respond to each others’ misconceptions and 
interpretations, which in turn may inform their future teaching (Van Zoest, Stockero, & 
Edson, 2010).  Based upon Stein et al’s (1996) suggestion that further research is 
needed to provide details on factors which lower the cognitive demands of tasks during 
the implementation phase, we not only coded for the cognitive demands used during 
the solution process but also we examined the roles that preservice teachers adopted 
during parts of the conversation.  We call these roles participant-explainer, 
participant-questioner, or non-participant.  A participant-explainer is someone whose 
primary role is to explain a mathematical concept or procedure to the other members of 
the group.  A participant-questioner is someone whose primary role is to ask pertinent, 
mathematically relevant questions of the other members of the group.  A 
non-participant is someone who, for reasons not explored in this study, does not 
contribute to the group discussion in a mathematically relevant way.   
Case Study of Group X: Interchanging Roles in a Small Group Discussion 
The preservice teachers in group X, Sam, Morgan, Alice, and Lisa, were at first unsure 
that the formula given in the final question worked.  They decided to verify whether the 
two methods yielded the same result for a square prism with dimensions 8, 8, and 6, 
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which was provided in a prior task. The excerpt below follows a discussion involving 
the computation of the surface area of the 8×8×6 prism in two ways.  Morgan refocuses 
the group’s conversation to answer the first part of the task regarding why the first 
given formula works.   
[Beginning of Recorded Material] 

171Morgan: So how does this relate to the lateral surface area? Basically [the formula] 
takes the area of every individual face [makes faces with hands] and so… 

172 Sam: They’re parallel. 
173 Morgan: Right, so it takes the parallel faces. 
174 Sam: So can you go, [makes faces with hands – see prisms with opposite bases 

highlighted] you have this one, this one, and this one. 

 [End of Recorded Material] 
 
 
 
 
 

Figure 1: Rectangular prism with 3 pairs of parallel faces highlighted (created using 
Geometer’s Sketchpad software from Key Curriculum Press). 

175 Lisa: Wait so, it ends up taking the surface area of each face? 
176 Morgan: And, with the lateral surface [method], what it does is it takes 
the area of the bases [makes bases with hands] but then all around it [makes 
circular motion], so you don’t have to do [makes dimensions with hands] 
this, and this, and this.  It’s two calculations instead of three. 

177 Lisa: Yeah. 
178 Sam: But then really, we have to figure out what this length is.  So if we only know 

the dimensions… 
179 Lisa: Yeah. Like here we’re given 32, but if we were just given 8,8,8,8… 
180 Sam: Then we’d still have to calculate the… 
181 Lisa: We’d still have to add up the… I mean… adding up the 8s is [easy]… 
182 Alice: It’d still be easier to do the two calculations instead of the three.  Like if you 

had 8,8,8,8, it’d be easier to just add those up, find 32 and do it that way.  
You know? 

[End of Recorded Material] 
Using the IQA-AR rubric for implementation of the task (Boston & Smith, 2009), this 
discussion rates as a level 4 in cognitive demand because preservice teachers solved a 
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genuine problem for which their reasoning is evident in their work on the task.  The 
preservice teachers developed an explanation for the derivation of the new formula for 
lateral surface area and made connections between two strategies to find lateral surface 
area.   
Using the Levels of Math-Talk rubric (Hufferd-Ackles et al., 2009), this conversation 
is rated at a level 3 in questioning because during this discussion, preservice teachers 
initiate conversations among themselves, without any instructor prompting.  This 
conversation is rated at a level 3 in explaining mathematical thinking because 
preservice teachers offer their ideas, and spontaneously compare and contrast the 
number of calculations that need to take place using each of the two strategies of 
finding total surface area.  This conversation is rated at a level 3 in source of 
mathematical ideas since the preservice teachers often finish each others’ sentences 
and freely interject to repeat, explain, or build upon their classmates’ thoughts.  This 
conversation is rated at a level 3 in responsibility for learning since the preservice 
teachers listen to understand each others’ ideas, and clarify others’ work for 
themselves.   
Case Study of Group Y: Stagnant Roles in another Small Group Discussion 
Preservice teachers in group Y (Jean, Sarah, Paige, and Tiffany) begin discussing 
Question 16 together by trying to make sense of the formula provided in the question 
(SA = 2lw + 2wh + 2lh):  
[Beginning of Recorded Material] 

196 Jean: This finds the area of each side [holds hands in front of her]… 
197 Sarah: Yeah 
198 Jean: And then multiply by 2 because there is two of each side. 
199 Sarah: Two of each side. 
200 Paige: Why? 
201 Sarah: Because if you draw a rectangular prism like so per se [draws prisms on 

worksheet]… So this is length and this is width [points to length & width] 
on this side. This is height [labels height of prism] and this is width [labels 
width of prism]. Height and width you have it twice because you have it 
here and here [points to two rectangles]. Length and width, you have it here 
and here [points to two rectangles]. And width (sic… should be “length” 
but the PST repeated width) and height you have it here and here [points to 
two rectangles]. 

202 Paige: I think I got it. 
203 Sarah: It kind of sort of got the point across. 
204 Paige: Well because there are three things… 
205 Jean: Do you get it, Tiffany? 
206 Tiffany: No. 
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207 Jean: Here, I’ll make one, ready? [Makes rectangular prism out of paper] Now I have 
a rectangular prism.  So now you have a length and then a width and a 
height.  So the 2 length times width is you’re finding like the top and the 
bottom.  Right? And you multiply it by 2 because there’s 2 and then you do 
that for each one.  So you find like this [points to bottom and top of prism], 
this [points to parallel sides of prism], and then the ends [points to the two 
bases of the prism].   

 [End of Recorded Material] 
Using the IQA-AR Mathematics Rubric for Implementation of the Task (Boston & 
Smith, 2009),  the cognitive demand of the task was decreased to a level 2 since the 
preservice teachers only explained how the formula determines the total surface area, a 
procedure which was specifically called for by the task (since the formula was given to 
them).  The preservice teachers did not compare this method to the lateral surfaces area 
method for finding the total surface area of a prism.  There was little ambiguity of how 
the given formula worked, since preservice teachers had prior knowledge of adding up 
faces to determine surface area.  However, by not making any connections between the 
formula and the lateral surfaces area method, the preservice teachers missed an 
opportunity to develop a deeper understanding of lateral surface area –comparing and 
contrasting different methods forces students to think about why each method works 
and to make judgments about the reasonableness of each method.  As a result, these 
preservice teachers avoided solving the most cognitively challenging part of the task; it 
is unclear whether the latter part of the question was skipped because the preservice 
teachers inadvertently forgot to read it, needed more time in order to answer that 
portion of the question, or whether they read the full question but thought that their 
answers were sufficient.      
Using the Levels of Math Talk rubric (Hufferd-Ackles et al., 2004), this discussion’s 
math talk is rated between levels 1 and 2.  In the questioning component of math talk, 
the discussion is rated at a level 1 because Tiffany fails to initiate questioning when she 
did not understand Jean’s and Sarah’s ideas.  Tiffany only speaks after Jean asks her if 
she understands, at which point Tiffany admits in line 206 that she did not understand 
the explanation.  In the explaining mathematical thinking component of math talk, this 
discussion is rated between levels 1 and 2.  Tiffany and Paige do not attempt to explain 
the mathematics behind the task at any point during the conversation, while Jean and 
Sarah fully explain and justify their thinking.  In the source of mathematical ideas 
component of math talk, this discussion is rated at a level 1 because group discussion 
focuses exclusively on Jean’s and Sarah’s ideas; Tiffany and Paige do not contribute 
their own ideas to the discussion.  In the responsibility for learning component of math 
talk, this conversation is rated at a level 1 because Tiffany does not take responsibility 
for her own learning, as she could have done by questioning Sarah’s work; instead, she 
remained silent until Jean asked her directly if she understood (line 205).  The 
explanations made by Sarah and Jean are brief, but the other preservice teachers in the 
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group did not ask for additional clarifications or further probing of how the formula 
and lateral surfaces area method are similar.   
Discussion 
In this article, we have provided detailed examples of small group interactions among 
preservice elementary teachers as they solved a cognitively challenging mathematical 
task.  A focus on developing understanding versus finding answers may help to explain 
why group X exhibited a shifting roles dynamic while group Y did not.  It is possible 
that if group X had a shared goal of understanding the mathematics of the task, then 
each member may have felt the need to make sense of the solution for themselves by 
asking questions or explaining their own or others’ reasoning.  On the other hand, if 
group Y focused their efforts on finding a solution without making sense of the 
underlying mathematics, then as long as one member got an answer, the rest of the 
group might not have felt the need to contribute any further.  This can help to explain 
why some group Y members did not contribute to small group discussion.   
Prior research supports our notion that discourse is a complex, messy process (Franke, 
Kazemi, & Battey, 2007).  We observe that shifting roles during small group 
interactions between preservice teachers can help groups maintain high levels of 
cognitive demand and can also help explain productive talk that appears unstructured.  
However, more research is necessary before we can claim that shifting roles are 
necessary traits of productive small group interactions.  Would a small group whose 
members all immediately take on the role of participant-explainer not be as productive 
simply because member roles do not shift?  Are there other variables at play that helped 
group X maintain high cognitive demand levels?  Further research should examine the 
potential interplay between the levels of math talk and tasks’ cognitive demands to see 
if it is possible to generalize that small groups’ success in solving cognitively 
challenging problems are related to small group interactions at high levels of math talk.   
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This article draws upon an ongoing research in Taiwan which explores senior high 
school teachers’ Mathematical Knowledge for Teaching (MKT). We use both 
quantitative and qualitative approaches to investigate two high-school mathematics 
teachers’ specialized content knowledge (SCK) and its relationship to other domains 
of MKT, and revise the coding rubrics, developed by learning mathematics for 
teaching (LMT) project, to adapt to Taiwanese high-school classroom teaching 
practice. Results indicate that the revised coding system of classroom observation 
reveals different elements of mathematics teachers’ SCK related to their knowledge of 
content and curriculum (KCC). 

INTRODUCTION 
Widespread agreement exists that what a teacher knows is one of the most important 
influences on what is done in classrooms and ultimately on what students learn 
(Fennema & Franke, 1992). Recently, the introduction of MKT seems to have progress 
on answering this question (Hill, Ball & Schilling, 2008).  The SCK, as a sub-domain 
of MKT, is the mathematical knowledge and skill unique to teaching, and is the 
greatest predictor which contributes to students’ achievement (Hill, Blunk, 
Charalambous, Lewis, Phelps & Sleep, 2008). On the other hand, high-school teaching 
in Taiwan which is supposed to be in exact accordance with the national curricular 
standard might differ from the United States. Moreover, high-school teachers in 
Taiwan must carry out those duties to help students pass the college entrance 
examination that is held by the official assessment system and the curricular 
organization every year. Hence, high-school classroom teaching is highly oriented by 
the national curricular standard. This study, at first, aimed to explore the Taiwanese 
high-school mathematics teachers’ SCK. Furthermore, we also examined the possible 
relationships of the participant teachers’ SCK and their KCC. 

THEORETICAL FOUNDATION 
Teaching refers to the person who owns the specific knowledge, skills, attitudes and 
content, and who imparts intentionally to those without the specific content. To 
achieve this goal, Shulman (1986) suggested that teacher knowledge consisted of 
subject matter content knowledge (SMK), pedagogical content knowledge (PCK), and 
curricular knowledge. It’s particularly interesting that PCK represents the blending of 
content and pedagogy into an understanding of how particular topics, problems, or 
issues are organized, represented, and adapted to the diverse interests and abilities of 
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learners, and presented for instruction (Shulman, 1987, p. 8). PCK seems only to help 
teachers in the beginning stage of classroom teaching. However, while these teachers 
encounter all difficulties in their teaching, they might transform their mathematical 
knowledge into pedagogically useful forms (Ball & Bass, 2000). When discussing the 
idea of uncertainties in teaching, Ball and Bass thought it important to seek to 
complement the examination of curriculum and of what experienced teachers know 
with a mathematical analysis of core teaching activities, and to seek to identify the 
underlying resources entailed by these teacher activities. 
In 2008, Ball, Thames, and Phelps identified MKT based on analyses of the 
mathematical problems that arise in teaching, and suggested six categories of MKT as 
following: common content knowledge, horizon content knowledge, SCK, knowledge 
of content and students (KCS), knowledge of content and teaching (KCT), and KCC. 
Particularly, they thought SCK is specialized to the work of teaching and only teachers 
need to know it; it is the mathematics knowledge and skill unique to teaching and 
requires knowledge beyond what teachers taught to students; and, it might help 
teachers overcome difficulties in their teaching practices. However, the problem of 
boundaries of these six categories confused Ball and her colleagues. 
Davis and Simmt (2006) suggested four intertwining and fluent aspects of 
mathematics-for-teaching, including mathematical objects, curriculum structures, 
classroom collectivity, and subjective understanding. And the distinction between 
some purely mathematical knowledge and mathematical knowledge used in teaching is 
not appropriate (Huillet, 2009). Furthermore, Petrou and Goulding (2011) thought that 
PCK, SMK, the curriculum and its associated materials and the assessment system 
should be interplayed in the context. Figure 1 (Petrou & Goulding, p. 21) shows the 
relationships among different categories of teacher mathematical knowledge. 

 
Figure1. Synthesis of models on teacher mathematical knowledge 

This article attempted to explore the Taiwanese experienced high-school mathematics 
teachers’ SCK, for Cannon (2008) found that based on researching their teaching 
practices under the framework of MKT, the training teachers lacked SCK. We also 
wanted to explore the relationship between teachers’ SCK and KCC for two reasons. 
One is that there are limited studies focusing on exploring the relationship of teachers’ 
SMK and KCC; the other is that SCK, as one form of knowing mathematics, is 
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excluded from those who do not teach mathematics (Ball, Thames, Bass, Sleep, Lewis 
& Phelps, 2009). 

METHODOLOGY 
The study, funded by the National Science Council in Taiwan, was framed in a 
qualitative research perspective that focused on interpreting people’s thinking and 
actions based on actual settings, and provided the quantitative data in terms of building 
the system of classroom observation. The case study was chosen to be a way of 
investigating an empirical topic by following a set of pre-specified procedures (Yin, 
1994). Three participant high-school mathematics teachers, each of whom have been 
teaching for more than 10 years in a public high-school in Taiwan, were purposefully 
selected for studying their MKT. The research period was lasted for two semesters, 
during which the researchers entered the participants’ classrooms to observe and 
videotape their teaching. Our research group consisted of an experienced teacher 
educator, a retired consultant high-school mathematics teacher, and four graduate 
students. The observed and videotaped units were chosen by the consultant teacher, 
who had taught for more than 35 years in both public and private high-schools. In the 
first semester, we observed two teaching units (planes in space and lines in space); in 
the second semester, we observed another two teaching units (repetition combination 
and mathematical expectation). Due to limited space, only two participants’ (Yan and 
Li) SCK will be reported here. 
Data sources include the participant’s own lecture notes, textbooks and handouts used 
by his mathematics department, as well as videotapes and interviews. All members of 
the research group worked collaboratively to discuss teaching contents, the way of the 
presentation, and the participant’s possible teaching consideration. In this study, we 
conducted face-to-face, semi-structure, in-depth interviews with each participant 
before or after his classes, focusing on eliciting the teacher’s mathematical knowledge 
and understanding that were presented in and related to his teaching practice. 
Systematic classroom observation is used to provide evidence about what happens in 
classroom through a process of non-participant observation (McIntyre, 1980). This 
study attempts to revise the coding rubrics that were developed by LMT. The coding 
rubrics provide an instrument to measure the mathematics quality of instruction (MQI), 
and explore and name new elements of MKT (LMT, 2010). Given the purpose of this 
study, we focused on three sections: instructional formats and content, knowledge of 
mathematical terrain of enacted lesson, and use of mathematics with students. And we 
revised some terms of the original MQI instrument in terms of the participants’ 
teaching features. The revised observational system is given in Table 1. 

Categories Subcategories 

Instructional 
Formats and 

Content 

Format for 
segment 1. Whole group   2. Individual work 

Content 
1. Geometry   2. Algebra   3. Probability and Statistics   

4. Analysis     5. Discrete mathematics 
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Lesson type 

1. Review, warm up or homework        2. Introducing major task or concept   

3. Teacher’s illustration                        4. Student work time 

5. Synthesis, or closure  

Knowledge of 
Mathematical 

Terrain 

1. Conventional notation   2. Technical language 

3. General language for expressing mathematical ideas 

4. Selection of numbers, case and contexts for mathematical ideas 

5. Selection of correct manipulations, and other visual and concrete models to represent 
mathematical ideas 

6. Multiple models 

7. Makes links among any combination of symbols, concrete pictures, diagrams 

8. Mathematical descriptions   9. Mathematical explanations   10. Mathematical justifications 

11. Computational error or mathematical oversights   12. Multiple perspectives 

13. Comparison                       14. Conceptual connection 

Use of 
Mathematics 
with Students 

1. Uses student’s errors          2. Elicits student’s description or explanation 

3. Interprets unusual/tentative/promising student productions 

4. Answers student’s problem     5. Launch of tasks/problems 

Table1: The revised system of classroom observation in Taiwan 
In order to achieve the credibility of coding system and to reduce coders’ biases, we 
examine the reliability of the system. LMT (2010) suggested that the coders must 
possess high levels of mathematical knowledge, and knowledge of mathematics for 
teaching, to code accurately. This study used Cohen’s proposed k-coefficient for 
checking inter-observer agreement on the three selected videotaped lessons. 
K-coefficient should probably exceed 0.75 for acceptable observer consistency (Frick 
& Semmel, 1978). We called on another graduate student, who had been in charge of 
studying another teacher case, to examine the reliability. About the codes of Lesson 
type, we arranged them chronologically to get teachers’ teaching modes. 

RESULTS AND DISCUSSION 
Table 2 shows the coding results of lesson type and use of mathematics with students.  
Yan and Li’s teaching was basically following lecture-illustration-exercise mode, but 
their teaching was still different in some aspects. Li spent more time reviewing 
previous learned concepts and student homework, and helping students synthesize and 
unite all features of a concept. Yan, then, often immediately introduced major 
mathematical ideas and the related mathematics problems, but he provided students 
more time to think about what they had just learned and to solve the problems given in 
the class. On the other hand, although there were very few interactions with students, 
Yan and Li still attempted to encourage students to describe and explain the related 
mathematics ideas that they learned in the class. Li provided few problems for his 
students, and the solutions were always given immediately. Therefore, Li neither had 
chances to use student’s errors to distinguish students’ understanding, nor had 
opportunities to interpret students’ unusual, tentative or promising productions to 
reinforce the learning of concept. 
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 Lesson type Use of mathematics with students 

RWH IMT TI SWT SC USE EDE ISP ASP LTP 

Yan 3% 19% 49% 29% 1% 6% 20% 5% 10% 39% 

Li 15% 13% 57% 8% 7% 0% 16% 0% 7% 2% 

1. RWH: Review, warm up or homework, IMT: Introducing major task or concept, TI: Teacher’s illustration, SWT: 
Student work time, SC: Synthesis, or closure. 

2. USE: Uses student’s errors, EDE: Elicits student’s description or explanation, ISP: Interprets 
unusual/tentative/promising student productions, ASP: Answers student’s problem, LTP: Launch of tasks/problems. 

Table 2: The proportion of lesson type and use of mathematics with students 
Table 3 exhibits the proportion of presentation of knowledge of mathematical terrain. 
Their teaching would vary according to the characteristics of different teaching units. 
For equation of plane and line in space, Li used visual and concrete manipulative, 
multiple models and examples to present mathematical ideas and meanings more often. 
Moreover, he used the previous learned concepts to compare and connect to each other. 
However, Yan often illustrated and explained the links among symbols, concrete 
pictures and diagrams. In repetition combination, Li chose suitable manipulation, as 
well as other visual and concrete models to represent the formula of repetition 
combination. Yan, then, provided the comparison between the repetition permutation 
and repetition combination, and elicited the relevant characteristics of repetition 
combination. Finally, Yan provided students examples to think of the relationship 
between mathematical expectation and the weighted average. But Li led his students to 
learn mathematical expectation at the angle of the random variable, and suggested that 
the operational method of mathematical expectation should be the weighted average 
method. 

 CN TE GL SN SC MM ML MD ME MJ MO MP CP CE 

EPL 
Yan 2% 6% 1% 16% 18% 11% 37% 64% 19% 5% 3% 13% 7% 7% 

Li 2% 7% 11% 48% 62% 27% 21% 62% 51% 6% 19% 31% 33% 12% 

RC 
Yan 4% 11% 0% 14% 0% 7% 18% 82% 43% 0% 11% 18% 25% 11% 

Li 3% 3% 0% 38% 21% 13% 5% 41% 62% 0% 13% 28% 21% 8% 

EX 
Yan 6% 6% 0% 6% 0% 0% 18% 76% 41% 0% 6% 18% 29% 12% 

Li 0% 14% 0% 33% 5% 0% 0% 62% 52% 0% 29% 33% 24% 5% 

1. EPL: Equation of plane and line in space, RC: Repetition combination, EX: Expectation. 

2. CN: Conventional notation, TE: Technical language, GL: General language for expressing mathematical ideas, SN: 
Selection of numbers, case and contexts for mathematical ideas, SC: Selection of correct manipulations, and other 
visual and concrete models to represent mathematical ideas, MM: Multiple models,  ML: Makes links among any 
combination of symbols, concrete pictures, diagrams, MD: Mathematical descriptions, ME: Mathematical explanations, 
MJ: Mathematical justifications, MO: Computational error or mathematical oversights, MP: Multiple perspectives, CP: 
Comparison, CE: Conceptual connection. 

Table 3: The proportion of presentation of knowledge of mathematical terrain 
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We discussed two selected teaching tasks in more details as follows. Firstly, after 
introducing the major concept of the mathematical expectation, Yan brought forth a 
question in the textbook as follows: “There are six same-sized coins, including four 
5-dollar and two 10-dollar coins in the bag. After taking a coin out and putting it back, 
you can take a coin again. Please find the mathematical expectation of amount of the 
two coins.” During the process of solving this problem, Yan asked student whether 
4 4
6 6
×
×

 could be presented by 4 4
6 6
× . This question aroused our interest because the two 

sides of equal sign revealed different mathematical meanings. Figure 2 snapshots a 
critical part of the video clip. 

 
Figure 2: The problem of mathematical expectation (video, Yan, 20100603) 

However, the explanation of equal sign must be based on conditional probability and 
independent events, and Yan said in the interview: 

Some teachers would agree, but some teachers would disagree…Although the conditional 
probability does not belong to the second-grade curriculum of high school, students may 
be confronted with some problems that could be solved by the classical or conditional 
probability, and I thought that some problems solved by the conditional probability were 
natural…So I taught this unit before the mathematical expectation (interview, Yan, 
20100810). 

Secondly, Li directly used the multiplication law shown above, when he taught a 
similar problem as follows: “There are five red balls and two black balls in the box. 
After taking a ball out, you are not required to put it back. Please find the mathematical 
expectation of the times of taking balls out before you take the red one.” Figure 3 
shows a critical part of the video clip. 

 
Figure 3: The problem of taking a ball (video, Li, 20100602) 

In the interview, Li said: 
I did not think too much, and in fact, every student can accept this multiplication law.But, 
the idea of conditional probability is the concept of reducing or changing the original 
sample space. According to the perspectives of textbooks, I thought the order of these 
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teaching units were inappropriate. I did not follow the concept of changing the original 
sample space to teach the idea of the multiplication law…for I considered teaching the 
idea of reducing the sample space was enough. Surely, the multiplication law must be 
based on the conditional probability and be extended to the independent events and to the 
Bayes’ theorem. Actually, I had taught this idea in the previous permutation lessons, and I 
thought that the objective of this problem could be introduced to the independent 

events…Certainly, the standard writing was
2 5

1 1
7

2

P P
P
× , but, for my students, 2 5

7 6
× was 

clearer and more efficient (interview, 20100623). 

Although both Yan and Li realized the distinction between the classical and 
conditional probability, the ways they taught were very different. Yan took the 
accuracy of the mathematical explanation and the practicality of problem-solving into 
consideration so that he modified the sequence of the curricular structure. Ball et al. 
(2008) pointed out that KCT includes the arrangement of the sequence of the 
curriculum, and teachers with SCK can choose and develop workable definition 
(Charalambous, 2008). Therefore, there exists the multi-dimensional fluidity among 
SCK, KCT, and KCC. However, Li chose workable definition that did not make 
students confused. Particularly, his workable definition hid his understanding of his 
students under his teaching practice and was connected with the previous, present and 
even future concepts included in the curriculum. So Li’s SCK reveals the 
multi-dimensional fluidity between KCS and KCC. 

IMPLICATION 
Although the system of classroom observation reveals two high-school teachers’ 
different teaching modes, their SCK also reflects the latent parts between the 
interactions of KCC and teachers’ understanding of the content. It seems possible that 
some degree of overlapping exists between sub-domains of MKT in different countries 
(Delaney et al. 2008), and this exploratory study indicates the fluidity of Taiwanese 
high-school mathematics teachers’ knowledge. And, in particular, SCK, the form of 
knowing mathematics, is excluded from those who do not teach mathematics (Ball et 
al., 2009). Thus, the findings of this study also point out new directions for further 
research such as estimating to what aspects can SCK be extended, investigating how 
SCK might improve teacher’s teaching and student’s learning in mathematics 
classroom, as well as how to develop high-school mathematics teachers’ SCK. 
References 
Ball, D. L., & Bass H. (2000). Interweaving content and pedagogy in teaching and learning to 

teaching: Knowing and using mathematics. Multiple perspectives on mathematics 
teaching and learning (pp. 83-104). London: Ablex Publishing. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What 
makes it special? Journal of Teacher Education, 59(5), 389-407. 

 



Cho, Chin, Chen 

 
2-154 PME36 - 2012 

Ball, D. L., Thames, M. H., Bass, H., Sleep, L., Lewis, J., & Phelps, G. (2009). A  
practice-based theory of mathematical knowledge for teaching. In M. Tzekaki, M. 
Kaldrimidou, & H. Sakonidis (Eds), Proceeding of the 33rd  Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 1, pp. 95-98). 
Thessaloniki, Greece. 

Cannon, T. (2008). Student teacher knowledge and its impact on task design. Unpublished 
master’s thesis, Brigham Young University, Provo, Utah. 

Charalambous, Y. C. (2008). Pre-service teachers' mathematical knowledge for teaching and 
their performance in selected teaching practices: Exploring a complex relationship. 
Unpublished doctoral dissertation, State University of Michigan, East Lansing, MI. 

Davis, B., & Simmt, E. (2006) ‘Mathematics-for-teaching: An ongoing investigation of the 
mathematics that teachers (need to) know. Educational Studies in Mathematics, 61(3), 
293–319. 

Delaney, S., Ball, D. L., Hill, H. C., Schilling, S. G., & Zopf, D. (2008). “Mathematical 
knowledge for teaching”: Adapting U.S. measures for use in Ireland. Journal of 
Mathematics Teacher Education, 11(3), 171-197. 

Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. Handbook of 
research on mathematics teaching and learning (pp. 147-164). New York: Macmillan. 

Frick, T., & Semmel, M. I. (1978). Observer agreement and reliabilities of classroom 
observational measures. Review of Educational Research, 48(1), 157-184. 

Hill, H., Ball, D. L., & Schilling, S. (2008). Unpacking “pedagogical content knowledge”: 
Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for 
Research in Mathematics Education, 39(4), 372-400. 

Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., & Sleep, L., et al.  
(2008). Mathematical knowledge for teaching and the mathematical quality of instruction: 
An exploratory study. Cognition and Instruction, 26(4), 430–511. 

Huillet, D. (2009). Mathematics for teaching: An anthropological approach and its use in 
teacher training. For the Learning of Mathematics, 29(3), 4-10. 

Learning Mathematics for Teaching Project. (2010). Measuring the mathematical quality of 
instruction. Journal of Mathematics Teacher Education, Advance online publication. 

Petrou, M., & Goulding, M. (2011). Conceptualising teachers’ mathematical knowledge in 
teaching. Mathematical knowledge in teaching (pp. 9-25). New York: Springer. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4-14. 

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard 
Educational Review, 57(1), 1-22. 

Yin, R. K. (1994). Case study research: Design and methods. London: Sage. 
 



 

2012. In Tso,T. Y. (Ed.). Proceedings of the 36th Conference of the International Group for  
the Psychology of Mathematics Education, Vol. 2, pp. 155-162. Taipei, Taiwan: PME. 2-155 

THE EFFECT OF DIFFERENT PATTERN FORMATS ON 
SECONDARY TWO STUDENTS’ ABILITY TO GENERALISE 

Boon Liang Chua         Celia Hoyles 
     National Institute of Education  London Knowledge Lab 

Nanyang Technological University   University of London 
 
This paper reports on the test performance of 105 Singapore secondary school 
students in pattern generalising tasks to determine whether the format of pattern 
display hinders students’ pattern recognition and ability to generalise. Data were 
collected through administering a written test comprising four figural generalising 
tasks involving both linear and quadratic patterns, presented in two different formats. 
The students, assigned to work on tasks in only one of the formats, had to establish the 
functional rule underpinning each pattern. The findings revealed that the students 
could generate the functional rule regardless of the given pattern format. Further, 
there was no gender difference in student performance for each task. 

BACKGROUND AND THEORETICAL FRAMEWORK 
Pattern generalising tasks typically involve getting students to examine specific cases 
to search for a pattern, extend the pattern to predict other cases, and articulate the 
functional relationship underpinning the pattern using mathematical symbols. These 
tasks can be classified as (1) numerical, which lists the pattern as a sequence of 
numbers, or (2) figural, which presents the pattern as a sequence of figures. The 
functional relationship follows either a linear or non-linear rule. 
Several past studies have drawn attention to students’ difficulties in dealing with such 
generalising tasks. These difficulties are often traced to student-related factors such as 
inexperience in working with generalising tasks (Stacey, 1989; Warren, 2005), 
ignorance of appropriate generalising strategies (Moss & Beatty, 2006), lack of spatial 
visualisation techniques (Becker & Rivera, 2006; Warren, 2005), lack of an 
understanding of the variable concept (Becker & Rivera, 2006), and inexperience in 
using the highly specific mathematical language of algebra to express generality 
(Hoyles, Noss, Geraniou, & Mavrikis, 2009). But a few recent studies seemed to throw 
up suggestions that certain features of the generalising tasks could have added to 
students’ difficulties. We shall first describe what we mean by task features and then 
follow with a discussion of some of these studies. 
We take task features to mean defining characteristics that make up the problem 
situation in a mathematical task. For pattern generalising tasks, the features can include 
whether (1) the given pattern is presented as a sequence of numbers or diagrams, or 
simply as a single diagram; (2) the functional rule describes a linear or non-linear 
relationship; and (3) the diagrams are depicted two-dimensionally or 
three-dimensionally (Chua, 2009). Task features such as these three can co-exist in a 
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generalising task. The first feature, which we called as the format of pattern display, is 
the main focus of this paper. 
In a study by Hoyles and Küchemann (2001) where one of the tasks was to find the 
number of grey tiles needed to surround a row of 60 white tiles when given just a single 
diagram and a description of how it was constructed, the success rate for high attaining 
students was rather low. Taking into account the students’ abilities, this familiar 
tile-pattern task should not be so difficult. Thus could the students’ difficulty have 
been a result of being given just a single diagram in the task? In another study by 
Becker and Rivera (2006), students were found to benefit from the given 
two-dimensional and sequential diagrams which helped to direct their attention to the 
basic core of the figural pattern that remains invariant and the part that is growing, 
enabling them to establish the functional rule for predicting any term. On the contrary, 
students in Warren’s (2000) study were unable to even spatially visualise a sequence of 
two-dimensional diagrams in a classic matchstick problem involving a row of squares. 
Could adding more diagrams to the sequence have helped Warren’s students to better 
visualise the pattern? If the diagrams are not presented sequentially, will Becker’s and 
Rivera’s students still be able to generalise the pattern? 
So far, no study seems to have attempted to examine the effect of different formats of 
pattern display on students’ pattern recognition and ability to generalise. Thus our 
present study sought to fill in what appears to be a gap in this worthy research theme. 
This paper aims to add to the body of work on pattern generalisation by exploring these 
questions: Is there any effect of the format of pattern display on students’ rule 
construction? Is there any difference in students’ rule construction between the format 
of pattern display and gender? 

METHODS 
Our present study used a between-subjects experimental design to examine whether 
different formats of pattern display had any effect on students’ rule construction. Four 
linear and four quadratic figural generalising tasks were developed for this 
investigation. All the eight tasks were deliberately made less structured without any 
part questions that gradually led students to detect and construct the general rule. This 
was to allow the students a greater scope for exploring the pattern structure so that we 
could then see how they recognised and perceived the pattern without any scaffolding. 
Each task existed in two different formats, with its pattern depicted as (1) a sequence of 
three successive diagrams, and (2) a single diagram or a sequence of two or three 
non-successive diagrams. For each format, the eight tasks were divided into two sets of 
four tasks, administered on two separate days. The task distribution was done in such a 
way that produced parallel sets of tasks, differing only in pattern format. We report 
here on the two linear and two quadratic generalising tasks in the first set. Figure 1 
below shows the two different formats of a linear task from this set. 
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(a) Successive format 

 
(b) Non-successive format 

Figure 1. Bricks 
The Bricks pattern was represented by three consecutive diagrams in the successive 
format (Figure 1a) and by a single diagram in the non-successive format (Figure 1b). 
The latter format included a description of how the pattern grew, which was deemed as 
essential information for students when given only a single diagram. For the other 
three generalising tasks, the successive format of the pattern was similar but the 
non-successive format now included one with two diagrams and two with three 
diagrams. All the tasks required students to work out a general rule for the pattern in 
terms of the size number individually, as well as to justify how they obtained the rule. 
Figure 2 below offers an overview of the three patterns in their respective formats. 
The four generalising tasks, to be completed in 45 minutes, were administered to 105 
Secondary Two students (aged 14 years) from a secondary school in Singapore. The 
students, 55 girls and 50 boys from three intact classes in the Express course selected 
by the school, belong to the top 60% of the entire Secondary Two cohort of students in 
Singapore. The students were separated into two groups, Group 1 (n = 55, 30 girls, 25 
boys) and Group 2 (n = 50, 25 girls, 25 boys), using their results in a 50-mark baseline 
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mathematics test administered a few weeks earlier. The mean baseline test scores for 
Group 1 (G1), Group 2 (G2) and the total sample were 43.11, 42.60 and 42.87 
respectively, which were roughly similar. G1 worked on generalising tasks with 
successive diagrams whereas G2 was given tasks with non-successive diagrams. 

 Successive format Non-successive format 

Linear 

 

Birthday 
Party 

Decorations 

  

Quadratic 

 

 

Oh Deer 

 

 

Quadratic 

 

Tulips 

  

Figure 2. Three other generalising tasks 
Having learnt the topic of number patterns in the Singapore mathematics curriculum 
before participating in this study, these students should be able to continue for a few 
more terms any pattern presented as a sequence of numbers or figures, make a near and 
far generalisation and establish the general rule in the form of an algebraic expression 
for predicting any term. Further, they should also be far more familiar in dealing with 
linear patterns than with non-linear ones, which are less commonly featured in their 
mathematics textbook. 
Student responses for individual generalising tasks were scored using an analytic 
rubric with a six-point (0, 1, 2, 3, 4 or 5) marking scheme for rule construction and for 
generalising strategy used. Using responses to the Bricks task, a score of 5 points for 
rule construction was given to a correct general rule (e.g., ( )135 −+ n ), 4 points to an 
incorrect rule due to minor slips in algebraic manipulation (e.g., ( )135 −+ n  = 

43135 +=−+ nn ), 3 points to using a functional relationship to show the structure of 
terms without deriving the general rule (e.g., ( )11035 −+  for Size 10), 2 points to a 
correct recursive rule (e.g., add 3 to get the next term), 1 point to an incorrect recursive 
rule (e.g., 3+n ), and 0 point to an incorrect or blank response. For generalising 
strategy used, 5 points were given to showing clear evidence of using numerical or 
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visual cues from the pattern to derive the correct general rule, 4 and 3 points to working 
out the structure of non-immediate and immediate terms respectively, 2 points to 
looking at the differences between terms, 1 point to looking at the nature of the terms 
(e.g., some terms are even, some are odd), and 0 point to a blank response or incorrect 
strategy. Figure 3 shows a G2 student’s response to the Oh Deer task that was awarded 
3 points for rule construction and 4 points for generalising strategy used, totalling up to 
7 points. 

 

Figure 3. A 7-point student response to Oh Deer 
For each pattern format, the mean score and standard deviation by gender for each task 
were worked out and then used to measure students’ performance in that task. 
Independent t-tests were conducted for each task to test for any significant differences 
in students’ performance between G1 and G2. 

RESULTS 
This section presents the findings to the following two questions that guided this study. 

1. Is there any effect of the format of pattern display on students’ rule 
construction? 

Table 1 shows the mean scores and standard deviations of the four generalising tasks, 
as well as the t-statistics for the differences in mean scores between G1 and G2 
students. The mean scores of G1 students spanned a wider range, from 5.89 in Tulips to 
7.93 in Birthday (BD) Party Decorations, than those of G2 students, from 6.18 in 
Tulips to 7.20 in both Bricks and BD Party Decorations. Students in G1 and in G2 
produced fairly similar mean scores for the two linear tasks. As for the two quadratic 
tasks, the mean scores of G2 students were also consistent, but those of G1 students 
differed by more than 1 point. 
G1 students obtained higher mean scores than G2 students in Bricks, BD Party 
Decorations and Oh Deer, but vice versa in Tulips. The greatest difference in mean 
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scores existed in BD Party Decorations (0.73), favouring the G1 students, while Tulips 
had the least difference (0.29), favouring the G2 students instead. However, t-test 
showed that the differences between G1 and G2 students in all four tasks were not 
statistically significant at the 5% level.  

  Bricks BD Party Decor Oh Deer Tulips 

  mean sd mean sd mean sd mean sd 

Girls G1 (n = 30) 7.20 2.987 7.63 3.327 6.53 3.646 5.67 3.661 

 G2 (n = 25) 6.84 3.636 6.52 3.842 5.24 4.186 5.96 3.422 

Boys G1 (n = 25) 8.28 2.638 8.28 2.638 7.36 3.695 6.16 3.508 

 G2 (n = 25) 7.56 3.959 7.88 3.308 7.32 3.727 6.40 3.253 

Total G1 (n = 55) 7.69 2.860 7.93 3.024 6.91 3.658 5.89 3.568 

 G2 (n = 50) 7.20 3.780 7.20 3.614 6.28 4.061 6.18 3.312 

Difference between 
G1 and G2 students 

t p-value t p-value t p-value t p-value 

.755 .452 1.122 .265 .835 .406 – .429   .669 

Table 1. Results of students’ performance in each generalising task 
 

2. Is there any difference in students’ rule construction between the format of 
pattern display and gender? 

  Bricks    BD Party Decor Oh Deer Tulips 

 t p-value t p-value t p-value t p- value 

Diff between girls and boys in G1 – 1.407 .165 – .787 .435 – .832 .409 – .507   .614 

Diff between girls and boys in G2 – .670 .506 – 1.341 .186 – 1.855 .070 – .466   .643 

Diff between girls in G1 and G2 .403 .688 1.152 .255 1.225 .226 – .305   .762 

Diff between boys in G1 and G2 .757 .453 .473 .639 .038 .970 – .251   .803 

Table 2. Student’s Performance Between Pattern Format and Gender 
Table 2 above shows the t-statistics for the differences in mean scores between gender 
in each group and between groups for each gender. 
From Table 1 above, G1 boys and G2 boys outperformed G1 girls and G2 girls 
respectively in that the boys obtained higher mean scores than the girls in every task. 
However, Table 2 shows that the differences in mean scores between girls and boys in 
G1 and in G2 were not statistically significant for every task. 
When the mean scores of each task were compared between the two groups of girls, it 
was found that the mean scores of G1 girls were higher than the mean scores of G2 
girls in Bricks, BD Party Decorations and Oh Deer, but lower in Tulips. As can be seen 
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from Table 2, t-tests showed that the differences in mean scores for each of the four 
tasks were not statistically significant. Similar findings were also observed amongst 
the boys. 

DISCUSSIONS AND CONCLUSION 
This paper explored whether the different formats of pattern display in pattern 
generalising tasks played a role in students’ pattern recognition and ability to make 
generalisations. The results suggest two main preliminary conclusions. First, students 
could generate the functional rule underpinning a pattern even if the pattern deviated 
from the typical and familiar format of three successive diagrams to involve 
non-successive diagrams. For instance, a sizeable number of G2 students (nearly 70%) 
did not seem to flounder when asked to construct the linear rule for Bricks, when given 
only a single diagram, and for BD Party Decorations, when shown two diagrams. It 
was also encouraging to note that the other two non-successive quadratic generalising 
tasks did not seem to disconcert more than half the G2 students who derived the 
functional rule successfully. 
Students’ ability to establish the rule seemed to be assisted very much by their 
awareness of the structure inherent in the pattern. To become aware of the structure, 
some students needed to draw additional diagrams themselves before they could see 
the structural relationship from the geometrical arrangement of tiles or cards. For some 
other students, drawing such diagrams was not necessary at all. By treating the given 
diagrams generically, they were able to abstract the structural relationship from them. 
For instance, some G2 students construed Size 1 of BD Party Decorations as a row of 
three cards plus two more, Size 4 as four rows of three cards plus two more, and hence, 
Size n as n rows of three cards plus two more, or 23 +n  when expressed in symbols. 
This finding lends support to the view of Mason, Stephens and Watson (2009) that 
teaching students to identify structure in the learning of mathematics is crucial. This is 
because being able to recognise structure is an extremely useful skill for students to 
have in that their attention will no longer be drawn to focus on the usual counting of 
tiles or cards but on abstracting relationships between sets of objects, then followed by 
articulating a rule that captures this relationship. 
Second, although the mean scores of boys for all four generalising tasks in both groups 
were higher than that of girls, there were no significant gender differences within each 
group. This suggests that both girls and boys in this sample performed equally well on 
pattern generalisation, a topic that had gained some notoriety for its difficulty.   
Finally, our present study had just recently completed at the time of preparing this 
paper. We will need to analyse all the data collected from other schools to see if the 
findings presented in this paper still remain consistent. Thereafter, we might then have 
more conclusive evidence to decide whether or not the format of pattern display is 
really a hindrance to students’ pattern recognition and ability to generalise. 
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STUDYING, SELF-REPORTING, AND RESTUDYING BASIC 
CONCEPTS OF ELEMENTARY NUMBER THEORY 

O. Arda Cimen & Stephen R. Campbell 
Faculty of Education, Simon Fraser University 

The objective of this case study is to look in depth into personal factors affecting 
metacognitive monitoring and control in self-regulated study and restudy of basic 
concepts of elementary number theory. We incorporate a theoretical framework of 
embodied cognition and learning with a wide spectrum of observational methods 
ranging from audiovisual, keyboard and screen capture, eye-tracking, and self-report 
data, to psychophysiological data including electrocardiography (EKG) and 
respiration rate data. Our aim is to generate “learner profiles” that provide deeper 
insights into personal factors implicated in motivation, metacognition, and beliefs, 
pertaining to self-regulated learning and mathematics anxiety, which can be used to 
better inform assessment and tailor instructional design in mathematics education.  

OBJECTIVE AND PROPOSE 
The broader objective of this program of research is to look in depth into personal 
factors affecting metacognitive monitoring and control in self-regulated study and 
restudy of basic concepts of elementary number theory that include the division 
theorem, divisibility, divisibility rules, factors, divisors, multiples, and prime 
decomposition (Campbell, 2002; Campbell, Cimen, & Handscomb, 2009). We begin 
doing so in this research report with tight observational control (Campbell, 2010) of a 
single case study into personal factors affecting study and restudy of this material, 
interjected with self-reports of judgments of learning (JOLs) (Nelson, Dunlosky, Graf, 
& Narens, 1994). Our ultimate objective and purpose is to generate “learner profiles” 
which can be used to better inform assessment and tailor instructional design in 
prospective and preservice mathematics teacher education.  

THEORETICAL FRAMEWORK 
We take the position that all subjective experience is manifest in some way in brain and 
body behavior, which justifies taking a more rigorous approach to behavioral control 
stems from a theoretical framework that views cognition and learning as embodied 
(Campbell, 2003a; Varela, Thompson, & Rosch, 1991). Accordingly, recording and 
integrating embodied, i.e., psychophysiological, behavioral responses should shed 
light on cognition and learning that could otherwise remain hidden using more limited 
traditional techniques such as field notes, self-reports via interviews, talk-aloud 
protocols, psychometrics, and audiovisual recordings of overt behavior (Campbell, 
2003b; Campbell with the ENL Group, 2007).  
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METHODOLOGY 
Our instrument for investigating metacognitive monitoring and control of 
study-restudy content is presented to our participant, a prospective mathematics 
teacher, in six pages delivered using gStudy (Perry & Winne, 2006). This subject 
matter content for study-restudy was specifically designed to involve three levels of 
learning: computation (C); understanding (U); and reasoning (R). Our participant was 
allowed to study this material at her leisure. The study material was then presented to 
our participant once again in a manner that highlighted different parts thereof, enabling 
her to provide judgments of learning (JOLs), i.e., to indicate whether she had learned 
that content very well, well, or not well (Figure 1). Once she completed the JOLs, she 
was given an opportunity to restudy the material in preparation for a test on that study 
material. 

 

Figure 1: Screen capture of Page 2 of study material with participant indicating JOL 

All methods of observation and measurement have intrinsic limitations. Thus, it is not 
possible that every subjective nuance of learning and lived experience can be 
objectively observable, measurable, and identifiable in brain and body behavior. 
Hence, we will likely meet with greater success using psychophysiological means of 
observational control to matters involving lived experiences that are more intensely 
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embodied, such as anxiety. Indeed, the fact that anxiety is such a deeply embodied 
phenomenon, to the extent of being physically disabling, in itself warrants inclusion of 
psychophysiological methods into our repertoire of observational methods. 
We expect to detect evidence of anxiety with increases in heart rate and respiration 
(e.g., Kelly, 1980; Dew, Galassi, & Galassi, 1984). Accordingly, we incorporate a 
wide spectrum of observational methods enabling us not only to record overt behavior, 
using audiovisual techniques, and self-report data, using psychometric questionnaires 
and JOLs, but also covert behavior related to psychophysiological responses of various 
organs, including brain, heart, lung, and skin, along with muscle response and eye 
movement. We further augment our observational control by presenting our stimuli via 
computer and using screen and keyboard capture (Campbell, 2010). 
Our model for interpreting our data on metacognitive monitoring and control is an 
adaptation of Elliot (1999) and Elliot and McGregor’s (2001) motivational distinctions 
between mastery-performance and approach-avoidance, fused with Nelson, et al’s 
(1994) notion of self-reported judgments of learning (JOLs) resulting from 
metacognitive monitoring (Table 1).  
 Mastery / intrinsic 

motivation 
Performance / extrinsic 
motivation 

Approach / taking time JOL: not well understood JOL: very well understood 

Avoidance / not taking time JOL: very well understood JOL: not well understood 

Table 1: Metacognitive monitoring and control model for interpreting motivation in restudy 

Mastery is learning something for its own sake. Performance is focused on outcome. 
Here, we interpret mastery-approach to represent taking time in restudy to learn 
something self-judged to be not well understood, whereas mastery-avoidance 
represents not taking time for restudy of content self-judged to be well understood. We 
interpret, performance-approach to involve taking time to better consolidate content 
self-judged as well understood, whereas performance-avoidance represents not 
bothering to take additional time restudying content already self-judged as poorly 
understood. In sum, mastery and performance represent intrinsic and extrinsic 
motivation, respectively, whereas approach and avoidance represent taking or not 
taking time in restudy.  

DATA SOURCES AND EVIDENCE 
Behavioral data 
Our participant was “wired up” to monitor fluctuations in heart and respiration rates. 
We presented the gStudy stimulus to our participant using a Tobii 1750 eye-tracking 
monitor, which detects reflections of infrared light pulses on a participants’ retina to 
trace what is being looked at from moment to moment. An ultra sensitive microphone 
allowed for high-quality recordings of think-aloud narratives. Infrared video cameras 
record important aspects of the participant behavior, such as facial expressions and 
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body movements, from three vantage points. Steps were taken to maximize the 
accuracy of eye tracking data of the study-restudy material such as increasing font size 
and spacing of the study material (Figure 1). Data streams were integrated, time 
synchronized and analyzed using Noldus’s Observer XT (Figure 2). We relied on 
cross-calibrating audiovisual, eye-tracking, and other data to ensure we were selecting 
behavioral data for analysis at the appropriate times (Campbell & the ENL Group, 
2007). 

 

Figure 2: The integrated and synchronized data set using Noldus’s Observer XT 

Self-report data 
The participant was given informed consent. She filled out a demographic 
questionnaire. Pre- and post-questionnaires were used prior to and after engaging our 
participant in the study-restudy activity. Pre-questionnaires, we do not go into detail 
here, included the Motivated Strategies for Learning Questionnaire (MSLQ) (Duncan 
& McKeachie, 2005), the Epistemic Belief Inventory (EBI) (Schraw, Bendixen & 
Dunkle, 2002), the Metacognitive Awareness Inventory (MAI) (Schraw & Dennison, 
1994), the Math Anxiety Rating Scales (MARS) (Hopko, 2003). 
A Number Theory Pre-Questionnaire (NTPreQ) designed to gain insight into how 
comfortable the participant was with their abilities regarding calculation, reading, 
recall, comprehension, and reasoning. After completing the pre-questionnaires, the 
participant engaged upon the study component of the experiment. Following 
completion of this initial study period, the participant labeled their judgments of 
learning (JOLs) pertaining to how well she learned computational, conceptual, and 
inferential aspects of the study material. The specific aspects of the study material to be 
self-judged were highlighted (see Figure 1). After labeling the JOLs, the participant 
was given a 10-question true/false test on the study material and was asked to rate her 
confidence in her answers on a scale of 0-10 for each question. After a short rest, the 
participant engaged in restudy of the material, and then rewrote the same test. Finally, 
the participant filled out a metacognitive Number Theory Post-Questionnaire 
(NTPostQ) pertaining to her experiences in the experiment. 
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Participant 
Our participant was a 22 year-old female undergraduate student and prospective 
teacher, of Vietnamese descent and a major in molecular biology, with no previous 
exposure to the basic concepts of elementary number theory presented in the 
study/restudy material. Her health was self-reported as good (no anxiety disorders or 
symptoms, no physical problems). After the observation she reported being “a little 
worried that it was going to be hardcore math theory that was being tested on the exam 
part” before the observation.  

RESULTS 
The participant’s average heart rate for the study period was 75.1 beats per minute 
(bpm), and reduced to 69.0 bpm for the self-report period, and reduced further to 67.0 
bpm for the restudy period of the same subject content material. Her respiration rates 
were 20.3, 18.0 and 17.8 breaths per minute for the study, self-report and restudy 
periods, respectively, while her respective eye blink rate over those three time periods 
were 37.5, 16.0, and 34.3 blinks per minute. These values are summarized in Table 2. 

 
Time Spent 

(seconds) 

Heart Rate 

(beats per minute) 

Respiration rate 

(breaths per minute) 

Eye Blink Rate 

(blinks per minute) 

Study 608 75.1 20.3 37.5 

Self-Report 278 69.0 18.0 16.0 

Restudy 98 67.0 17.8 34.3 

Table 2: Time and physiological data summary for study, self-report, and restudy periods 

As heart rate is a strong indicator for the level of stress and anxiety (Kelly, 1980; Dew, 
Galassi & Galassi, 1984), the results clearly indicate that the participant was less 
anxious, i.e., more relaxed, for the restudy period, in comparison with the study period.  
During the self-report period, the participant was re-shown the six pages of study 
material with items highlighted and she was asked to report her judgment of learning 
(JOL) regarding them (35 in total). She was asked to choose among three options per 
case for her self-reporting: not well, well and very well (Figure 1). We substituted 
scores of -1 for not well, 0 for well, and +1 for very well. We then tallied this scoring to 
give us a total JOL confidence indicator of +11. 
All the JOLs labeled by the participant as “not well” learned involved calculations, and 
our data indicate she did not spend much time on these tasks. Hence, in accord with 
Table 2, the participant can be classified as having a performance-avoidance 
orientation in this regard. The participant reported she learned most of the 
understanding tasks very well, while reporting most reasoning tasks she had learned, 
well or very well. 
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Question Question Type 
Test 1 
Results 

Test 1 
Confidence 

Test 2 
Results 

Test 2 
Confidence 

NTPreQ 

1 Calculation Incorrect 7 Correct 8 3 

2 Calculation Correct 10 Correct 10 3 

3 Understanding Correct 10 Incorrect 10 4 

4 Understanding Correct 10 Correct 10 4 

5 Reasoning Incorrect 9 Correct 10 3 

6 Reasoning Incorrect 10 Incorrect 10 4 

Table 3: Number theory test and NTPreQ results 

Table 3 summarizes our results from the test that was administered after the study 
period and the results from the same test, which was administered once again after the 
restudy period. These results align well with results of her self-assessment from the 
NTPreQ, in which she reported her level of comfort on a scale of 1 (not comfortable at 
all) to 5 (completely comfortable), with calculation tasks as 3, while reporting her level 
of comfort with understanding involving recall and comprehension as 4, and with 
aspects of reasoning as 3.5. Test results substantiate these reports, reinforcing that she 
is less confident with her answers with calculation tasks compared to understanding 
and reasoning tasks. Although she reports a somewhat higher confidence for reasoning 
tasks, she is less successful on this type of task compared to understanding, which she 
self-reported in the NTPreQ prior to the study/restudy periods as being most 
comfortable with. Again, her JOLs indicate she spent less time on the pages that 
involved calculation.  
Another interesting result concern answers provided for NTPostQ, which was 
presented to her after restudying the material and having taken the test for the second 
time. She stated that the learning task was not interesting for her (ranked 0 out of 7) and 
it was not challenging for her (ranked 2 out of 7). She also indicated that she restudied 
the items she found most difficult to understand. These answers indicate she is a 
mastery-oriented learner when it comes to subject content involving understanding and 
reasoning. 

DISCUSSION AND CONCLUSIONS 
Based on our theoretical framework of embodied cognition and learning, we have felt 
compelled to augment traditional audiovisual, psychometric, and other self-report data 
sets with psychophysiological observations (Campbell, 2010). Doing so provides an 
additional dimension for empirical grounding and cross validation of our results. Our 
most salient results to this point, for the purpose of this report, focus on the internal and 
external consistency of the self-report data (i.e., the NTPreQ, JOLs, and NTPostQ) and 
the psychophysiological data (i.e., the average heart and respiration rates).  
With regard to the self-report data, interpreted with our metacognitive monitoring and 
control model (Table 1), we see that our participant has a performance-avoidance 
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orientation to calculation, whereas she has more of a mastery-approach orientation to 
understanding and reasoning. Subsequent analysis of our psychometric data will likely 
help us to further refine and expand upon this incipient “learner profile.”  
With regard to our psychophysiological data, it is evident that our participant became 
more relaxed through the metacognitive process of providing JOLs, and further to 
some extent through restudy. Changes in heart rate are mirrored in changes in 
respiration rate, in that both are component parts of a deeply connected cardiovascular 
system. There is, however, a substantive difference in eye-blink rate with regard to 
metacognitive and cognitive activities. This may be accounted in part by greater 
attentiveness to mouse pointing and clicking in providing JOLs. However, further 
analysis of that difference is warranted. Moreover, we also acquired 
electroencephalographic (EEG) data we are currently analyzing that may shed further 
insight into our participant’s cognitive states. 
The conjunction of our self-report and psychophysiological results analysed thus far 
suggests that reporting JOLs, as a means of metacognitive reflection, could also serve a 
pedagogical purpose (as formative self-assessment) beyond just being a research tool, 
in helping reduce anxiety and helping improve learner motivational awareness 
regarding restudy. Our analysis of this case study is on-going. We have acquired 
similar data sets from other individuals, and are in the process of expanding this study 
accordingly. 
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The pursuit of commensurability in international comparative research by imposing 
general classificatory frameworks can misrepresent valued performances, school 
knowledge and classroom practice as these are actually conceived by each community 
and sacrifice validity in the interest of comparability. The “validity-comparability 
compromise” is proposed as a theoretical concern with significant implications for 
international cross-cultural research. We draw on current international research to 
illustrate a variety of aspects of the issue and its consequences for the manner in which 
international research is conducted and its results interpreted. The effects extend to 
data generation and analysis and constitute essential contingencies on the 
interpretation and application of international comparative research. 

INTRODUCTION 
This paper identifies key considerations affecting the conduct and utility of 
international comparative research. Central to the design of such research studies are 
the dual imperatives of validity and comparability. Unfortunately, as will be illustrated, 
these imperatives are inevitably in tension. This paper identifies, illustrates and 
discusses these tensions, utilising very specific examples from current international 
comparative research. We argue that any value that might be derived from 
international comparisons of curricula or classroom practice is critically contingent on 
how the research design addresses the dual priorities of validity and comparability. We 
further argue that since these priorities act against each other, researchers undertaking 
international comparative research must find a satisfactory balance between these 
competing obligations. 
Perhaps only the drive to categorise is more fundamental than our inclination to 
compare (cf. Lakoff, 1987). Indeed, the two activities are intrinsically entwined. In 
this paper, commensurability is interpreted as the right to compare (cf. Stengers, 2011). 
And it is our central assertion that this right to compare cannot be assumed, but is 
contingent on our capacity to legitimise both the act of comparison and the categories 
through which this act is performed. The need for such legitimisation has been raised 
for international comparisons of student achievement, but less frequently and less 
carefully for the cross-cultural comparison of curricula and classrooms. 
Critical in the legitimisation of these acts of comparison are the validity of the 
categories we employ and of the act of comparison itself. Much of our focus in this 
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paper is on cultural validity, which we interpret (with Säljö, 1991) as a key 
determinant of practice in the international settings we aspire to compare. Research 
designs, especially data generation and categorisation processes, can misrepresent or 
conceal cultural idiosyncrasies in the interest of facilitating comparison. 
This paper considers this validity-comparability compromise in relation to both 
curriculum and classroom practice research. Curricular comparisons raise issues 
related to the structure of school knowledge and the aspirational character of valued 
performances. Comparisons of classroom practice foreground the performative 
realisation of school knowledge and introduce the teacher as curricular agent (among 
other roles), modelling, orchestrating, facilitating and promoting performances 
aligned with the educational traditions of the enfolding culture. Any cross-cultural 
comparative analysis faces the challenge of honouring the separate cultural contexts, 
while employing an analytical frame that affords reasonable comparison. 
The paper utilises seven “dilemmas” to reveal some of the contingencies under which 
international comparative research might be undertaken. The issues raised by each 
dilemma are not mutually exclusive sets. Specific empirical examples from current 
international research provide the vehicle by which the entailments of each dilemma 
can be explored to identify areas of cross-cultural research requiring critical 
examination. Relevant theory is invoked as required by each emergent contingency. 

COMPARABILITY AND VALIDITY IN CROSS-CULTURAL STUDIES 
In an international comparative study, any evaluative aspect is reflective of the cultural 
authorship of the study. 

Culture is thus what allows us to perceive the world as meaningful and coherent and at the 
same time it operates as a constraint on our understandings and activities. (Säljö, 1991, p. 
180).  

In seeking to make comparison between the practices of classrooms situated in 
different cultures, the most obvious comparator constructs become problematic.  

Dilemma 1: Cultural-specificity of cross-cultural codes 
Use of culturally-specific categories for cross-cultural coding (eg participation, 
mathematics). 

In the Chinese adaptation of the research design for the Middle School Mathematics 
and Institutional Setting of Teaching (MIST) project, the decision was made not to use 
the Instructional Quality Assessment (IQA) (Silver & Stein, 1996), but instead to 
develop a local instrument for the evaluation of mathematics classroom instruction. 
The reason for the rejection of the IQA instrument for use in Chinese school settings 
reflected the embeddedness, within the instrument, of particular values characteristic 
of the cultural setting and educational philosophy of the authoring culture (USA). For 
example, for the measurement of students’ participation in classroom instruction, new 
criteria are needed that accommodate the larger class size and norms of social 
interaction of the Chinese mathematics classroom. Figure 1 shows the criteria for 
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evaluating the level of student participation in teacher-facilitated discussion in 
mathematics classes. 

A. Participation 
Was there widespread participation in teacher-facilitated discussion? 

4 Over 50% of the students participated consistently throughout the discussion. 

3 25 to 50% of the students participated consistently in the discussion OR over 
50% of the students participated minimally.  

2 25 to 50% of the students participated minimally in the discussion (that is, they 
contributed only once.)  

1 Less than 25% of the students participated in the discussion. 

N/A Reason:  

Figure 1. Participation criteria from the Instructional Quality Assessment (IQA) 
instrument (Silver & Stein, 2003). 

In countries such as China and Korea, teachers in both primary and secondary schools 
make extensive use of elicited student choral response as a key instructional strategy 
(Clarke, 2010). In the lessons analysed from one Shanghai classroom, a large number 
of choral responses (~ 80) were used in each lesson. In the analysis of a classroom in 
Tokyo, there were a similar number of individual student public statements, but no 
evidence of choral response. Applying the IQA participation criteria (Figure 1), the 
regularity and frequency of the use of choral responses would characterise this 
classroom as participatory at a level comparable with the classroom in Tokyo. Yet the 
students in the Tokyo classroom participate primarily through individual contributions 
rather than choral response and the type of teacher-facilitated discussion and the 
nature of student participation in that discussion in the two classrooms are sufficiently 
different to make their comparability with respect to participation highly questionable.  

Dilemma 2: Inclusive vs Distinctive 
Use of inclusive categories to maximise applicability across cultures, thereby 
sacrificing distinctive (and potentially explanatory) detail (eg. mathematical thinking). 

In a recent study undertaken by the authors, we compared the ways in which 
mathematics curricula are framed in Australia, China, Finland and Israel. We sought to 
identify the similarities and differences in the organisation of mathematics curricula in 
the four countries in terms of their aims, content areas and performance expectations. 
In particular, we investigated the ways in which “mathematical thinking” was framed 
through curricular statements. 
The key documents analysed in this study were: the Victorian Essential Learning 
Standards (VELS), the Chinese Mathematics Curriculum Standards (CMCS), the 
Finnish National Core Curriculum (FNCC) and the Mathematics Curriculum (Israel) 
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(MCI). The four curricula are structurally quite different and prioritise different 
performance types. The excerpts below capture some of these qualitative differences. 

See mathematical connections and be able to apply mathematical concepts, skills and 
processes in posing and solving mathematical problems (VELS). 
[Translation] Obtain important mathematics knowledge that is essential for functioning in 
society and further development (including mathematical facts and experience in 
participating in mathematics activities) and basic mathematical thinking skills as well as 
essential skills of application (CMCS). 
The task of instruction in mathematics is to offer opportunities for the development of 
mathematical thinking, and for the learning of mathematical concepts and the most widely 
used problem-solving methods (FNCC). 
[Translation] Mathematics is not only a collection of calculated algorithmic operations 
that serve an applied purpose but also a subject with its own structure that includes unique 
thinking and investigation methods. The goal of the curriculum is to generate a change in 
the way that students view the subject (MCI). 

Any attempt to characterise the relative emphasis given to particular types of valued 
performance at different grade levels can only be undertaken if a common 
classificatory framework can be imposed on all curricula. But such a general 
framework must not be allowed to mask the significant emphasis given to Geometry in 
grades 7 to 9 in China, or to “Communicating” in grades 3 to 5 in Finland, or the 
idiosyncratic prioritizing in grades 7 to 9 in Israel of “the evolution of phenomena 
from the perspective of mathematics.” The danger is that the commensurability 
demands of such comparisons conceal major conceptual differences in the curricular 
expression of categories of school knowledge. The act of reconstructing 
culturally-specific categories to enable cross cultural comparisons runs the risk of 
distorting the knowledge categories we seek to compare. In cross-cultural research the 
imposition of an “external” classification scheme for the purposes of achieving 
comparability can sacrifice validity by concealing cultural characteristics and by 
creating artificial distinctions. Comparability is achieved through processes of 
typification and omission, and each has the potential to misrepresent the setting. 

Dilemma 3: Evaluative Criteria 
Use of culturally-specific criteria for cross-cultural evaluation of instructional quality 
(eg. Student spoken mathematics).  

Where research is specifically constructed to be evaluative, the question arises as to 
the legitimate application of criteria developed in one culture to the practices of 
another culture. The use of evaluative criteria posits an ideal of effective practice that 
should be substantiated by reference to research. Problems arise when the research on 
which a criterion is based is itself culturally-specific.  
For example, despite the emphatic advocacy in Western educational literature, 
classrooms in China and Korea have historically not made use of student-student 
spoken mathematics as a pedagogical tool. In research undertaken by Clarke, Xu and 
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Wan (2010), classrooms were identified in which student spoken mathematics was 
purposefully promoted in public but not in private interactions (eg Shanghai classroom 
1), in both public and private interactions (eg Melbourne 1) and in neither public nor 
private interactions (eg Seoul 1). Each of these classrooms models a distinctive 
pedagogy with respect to student spoken mathematics. 
If the occurrence of student-spoken mathematics is identified with quality instruction, 
then the instructional practice of the classroom in Seoul would be judged to be 
deficient. The classrooms in Shanghai and Melbourne differed significantly in the 
extent to which private student-student interactions were encouraged, but the teachers 
in both classrooms prioritized student facility with spoken mathematics. In the 
Shanghai classroom, promotion of this capability was developed solely through public 
discourse, whereas in the Melbourne classroom, private student-student mathematical 
speech was an essential pedagogical tool. Interestingly, in post-lesson interviews, the 
students from Melbourne and Shanghai showed comparable fluency in their use of the 
language of mathematics, while students from the classrooms in Seoul showed little 
evidence of such a capacity. Evaluative judgments of instructional quality made in the 
context of international comparative research must justify the model of accomplished 
practice implicit in the criteria employed and provide evidence of the cross-cultural 
legitimacy of these criteria. 

Dilemma 4: Form vs Function 
Confusion between form and function, where an activity coded on the basis of 
common form is employed in differently situated classrooms to serve quite different 
functions (eg kikan-shido or between-desks-instruction). 

Kikan-shido (a Japanese term meaning “between-desks-instruction”) has a form that is 
immediately recognisable in most countries around the world. In kikan-shido the 
teacher walks around the classroom, while the students work independently, in pairs or 
in small groups. Although kikan-shido is immediately recognisable to most educators 
by its form, it is employed in classrooms around the world to realise very different 
functions. A teacher undertaking kikan-shido in Australia, will do so with very 
different purposes in mind from those pursued by a teacher in Hong Kong, or, for 
example, a teacher in Japan. In reporting the frequency of occurrence of an activity 
such as kikan-shido for the purposes of comparative analysis, the researcher conflates 
activities that are similar in form but which may be employed in differently-situated 
classrooms for quite distinct functions. Such conflation can create an impression of 
similarity although differences in practice are actually quite profound (for more detail, 
see Clarke, Emanuelsson, Jablonka & Mok, 2006). 

Dilemma 5: Linguistic Preclusion 
Misrepresentation resulting from cultural or linguistic preclusion (eg Japanese 
classrooms as underplaying intellectual ownership). 

The analysis of social interaction in one culture using expectations encrypted in 
classificatory schemes that reflect the linguistic norms of another culture can 
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misrepresent the practices being studied. This can occur because characteristics of 
social interaction privileged in the researcher’s analytical frame may not be 
expressible within the linguistic conventions of the observed setting. For example, the 
Japanese value implicit communication that requires speaker and listener to supply the 
context without explicit utterances and cues. This tendency is typically found in 
leaving sentences unfinished. As a consequence, in Japanese discourse, agency or 
action are often hidden and left ambiguous. In English, when introducing a definition, 
the teacher might employ a do-verb: “We define”. In a Japanese mathematics 
classroom, the teacher often introduces a definition in the intransitive sense (Sou Natte 
Iru = “as it is” or “something manifests itself”) as if it is beyond one’s concern. Such 
differences in the location of agency, embedded in language use, pose challenges for 
interpretive analysis and categorisation of classroom dialogue. 

Dilemma 6: Omission 
Misrepresentation by omission, where the authoring culture of the researcher lacks an 
appropriate term or construct for the activity being observed (eg. Pudian). 

The Sapir-Whorf hypothesis suggests that our lived experience is mediated 
significantly by our capacity to name and categorise our world. 

We see and hear . . . very largely as we do because the language habits of our community 
predispose certain choices of interpretation (Sapir, 1949). 

Marton and Tsui (2004) suggest that “the categories . . . not only express the social 
structure but also create the need for people to conform to the behavior associated with 
these categories” (p. 28). Our interactions with classroom settings, whether as learner, 
teacher or researcher, are mediated by our capacity to name what we see and 
experience. Speakers of one language have access to terms, and therefore perceptive 
possibilities, that may not be available to speakers of another language. For example, 
in the Chinese pedagogy “Qifa Shi” (Cao, Clarke, & Xu, 2010), the activity “Pudian” 
is a key element. Pudian can take various forms: Connection, Transition, 
Contextualising, but its function is to help students develop a conceptual, associative 
bridge between their existing knowledge and the new content. There is no simple 
equivalent to Pudian in English, although teacher education programs delivered in 
most English-speaking countries would certainly encourage the sort of connections 
that Pudian is intended to facilitate. Many such pedagogical terms have been collected 
in a variety of languages (Clarke, 2010), describing classroom activities central to the 
pedagogy of one community but unnamed and frequently absent from the pedagogies 
of other communities. It follows that an unnamed activity will be absent from any 
catalogue of desirable teacher actions and consequently denied specific promotion in 
any program of mathematics teacher education. It is also likely that such activities will 
go unrecognised in reports of cross-cultural international research, where the 
authoring culture of the research report lacks the particular term. 
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Dilemma 7: Disconnection 
Misrepresentation through disconnection, where activities that derive their local 
meaning from their connectedness are separated for independent study (eg. teaching 
and learning (cf obuchenie), public and private speech). 

 Whether we look to the Japanese “gakushu-shido", the Dutch “leren” or the Russian 
“obuchenie”, we find that some communities have acknowledged the interdependence 
of instruction and learning by encompassing both activities within the one process and, 
most significantly, within the one word. In English, we dichotomise classroom 
practice into Teaching or Learning. One demonstration of the consequences of the 
inappropriate disconnection of actions that should be seen as fundamentally connected 
is evident in the comparison of two published translations involving Vygotsky’s use of 
the term “obuchenie” (discussed in Clarke, 2001). 

From this point of view, instruction cannot be identified as development, but properly 
organized instruction will result in the child's intellectual development, will bring into 
being an entire series of such developmental processes, which were not at all possible 
without instruction (Vygotsky, as quoted in Hedegaard, 1990, p. 350). 
From this point of view, learning is not development; however, properly organized 
learning results in mental development and sets in motion a variety of developmental 
processes that would be impossible apart from learning (Vygotsky, 1978, p. 90). 

The analogous disconnection of public and private speech in classrooms, and of 
speaking and listening (Clarke, 2006) has the same effect of misrepresenting activities 
that may be fundamentally interrelated (not just conceptually but also functionally 
connected) in their enactment in particular classroom settings. 

CONCLUSIONS 
The pursuit of commensurability in international comparative research by imposing 
general classificatory frameworks can misrepresent valued performances, school 
knowledge and classroom practice as these are actually conceived by each community 
and sacrifice validity in the interest of comparability. In this paper, the 
“validity-comparability compromise” has been proposed as a theoretical concern that 
has significant implications for international comparative research. The identified 
dilemmas offer different perspectives and illustrate some of the consequences of 
ignoring this central concern. Partnerships with those being compared can minimise 
misrepresentation, but the necessity of the compromise is inescapable. The 
interpretation and application of international comparative research will be critically 
contingent on researchers’ capacity to address those “dilemmas” pertinent to their 
particular design. We hope this paper fuels a wider engagement in the critical 
interrogation of international comparison as a socio-material knowledge practice.  
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SUCCESS AND STRATEGIES IN 10 YEAR OLD STUDENTS’ 
MENTAL THREE-DIGIT ADDITION 

Csaba Csíkos 
University of Szeged, Hungary 

 
In this study, 4th grade students’ achievement and strategy use on three-digit addition 
tasks are presented. 78 students (40 boys, 38 girls, mean age 10 year 4 months) 
participated in the study. Students solved 8 tasks of various difficulties aiming to evoke 
the use of typical strategies revealed by previous research: stepwise, split, 
compensation, simplifying strategies, and indirect addition. The results show that 
students used the split strategy for the majority of tasks independently of how 
effectively that strategy could be used. There was no sign of using compensation, 
simplifying and indirect addition strategies. The results points to the potentials 
addition strategy trainings may have in developing students three-digit addition skills. 
 

INTRODUCTION 
The title of this paper paraphrases the title of Selter’s (2001) work on success, methods 
and strategies of German elementary school children solving three-digit addition and 
subtraction. Success refers to students’ achievement in terms of correct solution to 
mathematical, namely, addition problems. Methods of solution can take either written 
or oral computation forms. In the current study, only oral computation procedures are 
investigated. The term strategy remains implicit in the majority of recent articles on 
children’s and adults’ computation. However, a rather general definition given by 
Richard Mayer (2010, p. 164.) may serve well the purposes of the current study: 
“Strategies are general methods for planning and monitoring how to accomplish some 
task.” In the case of mental arithmetical computations, strategies are therefore 
conscious planning and monitoring processes that can be used for solving a variety of 
different tasks. 
The importance of research on elementary school children’s success and strategies on 
mental computation can be supported not only by the widely recognized importance of 
mathematical skills (see e.g., Smith, 1999), but also by the challenges raised by 
research on adaptive strategy use. These two aspects are intertwined, and – from an 
educational point of view – there may be a bidirectional link between them. 
Developing expertise in mental computation may lead to a broad repertoire of 
calculation strategies, and at the same time enrichment of students’ strategies may lead 
to better results both in correctness and the time needed for the solution. There is a 
growing body of evidence pointing to the importance of adaptive strategy use in 
mathematics (De Corte, Mason, Depaepe & Verschaffel, 2011). 
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Strategies in three-digit addition 
Selter (2001) stated that there had been barely any research on addition and subtraction 
with three-digit numbers, except for a study by Fuson et al. (1997). In the past decade, 
some new findings have been reported, and besides investigating the achievement on 
and the strategies used for three-digit addition and subtraction, results of educational 
intervention programs have contributed to extend our knowledge of the topic. As for 
the categorization of strategies used for addition with three-digit numbers, there are 
different category systems using different labels for slightly different (or identical) 
strategies. The most recent one is provided by Heinze, Marschick and Lipowsky (2009) 
and is “denoted as an idealized because [it is] based on a mathematical systemization” 
(p. 592). There are five strategies listed by them:  

• stepwise strategy: when the second addend is added in three steps. For 
example: 123+456=((123+400)+50)+6. This is called the 
“begin-with-one-number” method by Fuson et al. (1997). 

• split strategy: adding first the hundreds, then the tens, and finally the ones. 
For example: 123+456=(100+400)+(20+40)+(3+6). This is called the 
“decompose hundreds-tens-and-ones” method by Fuson et al. (1997), and 
“htu (hundreds, tens, units)” strategy by Selter (2001). 

• compensation strategy: one of the addend is rounded off to the nearest 
hundreds number. For example: 527+398=527+400-2. This is very similar to 
the simplifying strategy when both addends are changed by moving some 
from one of them to the other, e.g., 527+398=525+400. This latter strategy is 
called the “change-both-numbers” method by Fuson et al. (1997), and is 
labelled auxiliary or simplifying by Selter (2001). 

• the strategy called indirect addition refers to a subtraction strategy when 
mental computation is executed like it was an addition task. For example: 
701-698 is the number to be added to 698 in order to get 701. 

All of the examples above were borrowed from Heinze, Marschick and Lipowsky’s 
(2009) study. The tasks administered to students in the current investigation represent 
these four main bullet list categories. It means that although each three-digit addition 
task can be solved by any of the first three methods, and all three-digit subtraction 
tasks can be solved by means of “indirect addition”, there are tasks that are especially 
suitable for effective use of the above-mentioned strategies.  
Aims of the current study 
The current paper presents results of a larger research project aiming at enriching 
students’ mental computation strategy use. The research presented here can be 
considered as the pre-test phase of an intervention program. Due to the sample size and 
sample heterogeneity (in terms of SES-background and type of residence) the 
following research topics can yield generalizable data and results. 
(1) Students’ achievement on three-digit addition problems by means of mental 
computation, and in terms of correctness and the time needed for the solution. 
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(2) Students’ errors during the mental computation process. These errors are often 
‘rational errors’ (Ben Zeev, 1996), and may refer to a misused or inefficient strategy. 
(3) Students’ self-report of their strategy use. 
(4) Inter-relations among achievement, errors and strategy use. 
 

METHODS 
Sample 
The students involved were recruited from two different schools: one school is 
situated in a county seat town and the other in a village of Hungary. Both schools have 
two 4th grade classes, and the students come from rather diverse socio-economic 
background families. The sample comprised 78 students (40 boys and 38 girls). Their 
mean age was 123.92 months (10 years and 3.92 months). 
Test and procedure 
Eight tasks were developed for this investigation. There were six three-digit addition 
tasks and two three-digit subtraction tasks. The first task was considered as a warm-up 
one. Students had to compute the following operations: 
(1) 342 + 235 = 577 (2) 143 + 426 = 569 (3) 702 + 105 = 807 
(4) 284 + 202 = 486 (5) 527 + 398 = 925 (6) 498 + 256 = 754 
(7) 701 – 694 = 7  (8) 646 – 583 = 63 
The first four tasks could be effectively solved either by the stepwise or the split 
strategies. The 5th and 6th ones were planned to evoke the compensation or simplifying 
strategies, while the last ones gave the opportunity for using the indirect addition 
strategy. 
All tasks were printed on a separate A4 sheet of paper, and were handed over to the 
students. At the moment of handover, timing was started. Students saw the operation 
to be computed in a form like e.g., “342 + 235 =”, and they were not allowed to write 
down anything to the paper. 
The interviewers noted all erroneous answers (if any) to their answer sheet, and at the 
moment of hearing the right answer, they stopped the watch, and wrote down the time, 
then proceeded to the next task. The maximum time allowance for a task was 60 
seconds. 
After having completed all the eight task, they turned on the dictaphone, and asked the 
students to tell how each task was solved. The students could saw again the tasks while 
talking about their solution strategy. The key encouragement question in case of 
silence was: “What partial results did you have?” 
Students were tested individually in a quiet, separated room of the school. Data 
collection was managed by three university students who were previously trained and 



Csíkos 

 
2-182 PME36 - 2012 

then paid for their contribution. Data collection took place in the form of an interview, 
the protocol of which had been previously rehearsed during the training session with 
the interviewers. 
 

RESULTS 
Achievement in three-digit addition 
The rate of correct solutions within the 60 second time limit is shown in Table 1, along 
with the average time needed for the correct solution. Please note that the first task can 
be considered a warming-up one. 
 
Task Rate of correct solutions (%) Mean time (SD in parentheses) 

342 + 235 = 577 94.9 13.35 (10.36) 

143 + 426 = 569 97.4 10.95 (9.57) 

702 + 105 = 807 98.7 5.53 (5.65) 

284 + 202 = 486 100.0 8.39 (8.90) 

527 + 398 = 925 70.5 24.14 (17.90) 

498 + 256 = 754 69.2 22.02 (15.02) 

701 – 694 = 7 52.6 24.37 (16.82) 

646 – 583 = 63 50.0 28.28 (14.75) 

Table 1: The rate of correct solutions yielded within 60 seconds, and mean response 
time (SD in parentheses) N = 78 

The results suggest that the first four tasks were solved by almost everyone within a 
rather short time. However, the fifth and sixth tasks that would have been easily solved 
by the so-called compensation or simplifying strategies required much longer solution 
time, and about one third of the students failed to solve them. The two subtraction 
tasks proved to be even more difficult.  
“Rational errors” 
Students’ erroneous answers were noted down. In some cases, there were several 
erroneous answers provided; in Table 2 only each student’s first non-correct solution 
is considered (if there were any). Please note that only the incorrect answers given by 
at least 3 students (3.8%) are shown. Table 2 includes incorrect answers of those who 
later (within 60 seconds) gave the correct answer as well. 
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Task The most frequent incorrect answers 
(relative frequency in parentheses) 

342 + 235 = 577 5707 (5.1%); 5777 (3.8%); 587 (3.8%) 

143 + 426 = 569 579 (3.8%); 590 (3.8%) 

702 + 105 = 807  

284 + 202 = 486  

527 + 398 = 925 915 (6.4%); 625 (5.1%) 

498 + 256 = 754 654 (10.3%) 

701 – 694 = 7 193 (15.4%); 5 (7.7%); 16 (5.1%); 13 (3.8%); 93 (3.8%) 

646 – 583 = 63 43 (9.0%); 143 (9.0%); 163 (6.4%); 57 (3.8%); 67 (3.8%); 137 
(3.8%) 

Table 2: The most frequent incorrect answers. 
Students’ self-report of mental computation strategies 
Having completed all eight tasks, students reported of their strategy use task by task. 
In the simplest cases, the split (or decompose hundreds-tens-and ones) strategy was 
the most commonly used. The majority of them continued to use this strategy for the 
fifth and sixths tasks (albeit the compensation or simplifying strategies would have 
easily worked). For example in the case of Rozália (code number #106), the following 
self-report was received: 

Rozália: 498 plus 256. I added in a way that 400 plus 200 is 600. 9 plus 5 is 14. This 
is 900… 600 and twelve. And 8 plus 2, no plus 6 is…  

Finally she gave 625 as an answer which is not correct. Her self-report clearly 
indicates the insistence on using the split strategy. However, with these addends, the 
split strategy requires rather heavy memory load and fair computational skills. 
Another student (code number #125) tried to use the stepwise strategy in this task: 

Boglárka: 498 plus 200 makes 698, plus 50 [pause], is 748, plus 6 [pause], is 713…  

Neither Rozália nor Boglárka gave the correct answer in the first phase of the 
investigation. Rozália gave the same incorrect answer, Boglárka had 915 as her first 
erroneous answer. A third student (code number #126) had the correct answer before 
without any incorrect solution attempts, and he described his strategy in the following 
way: 

Bendegúz: 498 plus 256. 498 plus 200 is 698; plus 50 is 748, plus 6 is 754.…  

In this case, the stepwise strategy was correctly used. A final example is given for the 
sixth task showing a “pseudo” mental calculation strategy. This student (code number 
#221) solved all the previous tasks; too, in a way as they were written computational 
tasks. 



Csíkos 

 
2-184 PME36 - 2012 

Tamás: This was done in the same way, that is 8 plus 6 is 14. The remainder is 1, 
this is added to 9 to get 15… 

Interviewer: You mean 9 + 1 + 5 = 15. 
Tamás: Yes, and then again the remainder is 1, and then it will be 7. 

This student solved the tasks in a way that he mentally put the addends one under 
another, and followed the algorithm learnt for written computations. 
There was no sign of the compensation or simplifying strategy use in the case of the 
fifth and sixth tasks. Similarly, the last two tasks may have evoked the indirect 
addition method, but students (please note that half of them failed to give the correct 
answer within 60 seconds) used the split or stepwise strategies. 
 

DISCUSSION 
The results can be discussed along three lines. Students’ achievement (success) on 
different types of three-digit addition tasks show that in the case of simpler tasks 
where there are less then ten tens, and less then ten ones in the addends, the solution is 
straightforward. In the tasks where the compensation or simplifying strategies might 
have given an easy solution, about one third of the students failed to give the correct 
answer. In the subtraction tasks, only half of them succeeded. 
An analysis of incorrect answers shows that in some cases computational errors made 
while otherwise using an appropriate strategy led to incorrect answers.  
In several cases, typical rational errors described in the literature can be observed. For 
example, 701 – 694 = 193 indicate that those students who had this solution, 
subtracted always the smaller digit from the bigger one: 7 – 6 = 1 for the hundreds, 9 – 
0 = 9 for the tens, and 4 – 1 = 3 for the ones. This obviously erroneous strategy might 
reflect an early over-automatization of a wrong written subtraction algorithm.  
Students’ self-reports of their strategy use may point to two relevant phenomena. First, 
they are well aware of what they are doing when adding two numbers, at least in terms 
of the mathematical description of the process. They use the terms hundreds, tens, 
ones, remainder etc. Second, there are a rather limited variety of strategies used, at 
least the lack of the compensation and simplifying strategies, and the absence of 
indirect addition have been revealed. The narrow range of strategies used can be in 
part due to the perseverance effect known from the literature (Schillemans, Luwel, 
Bulté, Depaepe & Verschaffel, 2009).  
According to Peters, De Smedt, Torbeyns, Ghesquière and Verschaffel (2010), adults 
tend to use the indirect addition for subtraction problems in rather reasonable cases, 
when the subtrahend was larger than the difference. Consequently, the indirect 
addition method can be labeled as a relatively late developmental stage in 
computational strategy use for subtractions. 
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Nevertheless, a kind of re-orchestration of the written computation algorithm for 
mental computation has been demonstrated. Therefore, this strategy might be 
considered as a real archetypical mental strategy. 
 

IMPLICATIONS 
There is an agreement in the literature on the need for greater flexibility in 
computations (Beishuizen & Anghileri, 1998). How it can be achieved raises several 
questions. One debate is about how teachers can become capable of fostering students’ 
addition strategies. In Carpenter, Franke, Jacobs, Fennema and Empson’s (1998) study, 
teachers themselves took part in a 3-year training program before the experiment. 
There are successful intervention studies with less demanding prerequisite resources, 
like that of Hiebert and Wearne’s (1996) experiment. The second big issue is whether 
(and how) explicit addition strategies are taught. In Hiebert and Wearne’s experiment 
“students were encouraged to develop their own procedures and to explain them to 
their peers” (p. 258). The debate on whether addition strategies should actively be 
taught to students or they can be left for spontaneous development is analyzed by 
Murphy (2004). 
Our suggestion is – and this is in line with the results of the current investigation – that 
students should be actively taught to use a wide repertoire of addition strategies. 
Adaptive strategy use, i.e. when strategy choice is made according to task, individual 
and context variables, requires a range of possibly available strategies. While learning 
this strategy repertoire, students can constructively develop new strategies they have 
been never taught. Keeping in mind the educational goals of developing mathematical 
skills, fostering students’ active and conscious strategy use in mental computation 
may well support the development of adaptive expertise. 
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ADVANCED COLLEGE-LEVEL STUDENTS’ CATEGORIZATION 
AND USE OF MATHEMATICAL DEFINITIONS 
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This qualitative study of five undergraduate mathematics majors found that some 
students, (even students at an advanced level of undergraduate mathematical study) 
have a mathematician’s perspective neither on the concept of mathematical definition 
nor on the structure of mathematics as a whole. Participants in this study were likely 
to reason from incomplete concept images rather than from concept definitions and 
were likely to perceive that definitions (like theorems) need to be verified. The results 
of this study have implications for college-level mathematics instruction. 

INTRODUCTION AND FRAMEWORK 
There is a large body of literature that documents students’ misconceptions and 
difficulties with mathematical proofs. Some of these difficulties have to do with their 
perceptions of the nature and logical structure of proof, some with students’ 
inadequate problem-solving skills, and some having to do with mathematical 
communication and concept understanding (Moore, 1994). He identified seven 
difficulties that students typically have with proofs of which Knapp (2006) points out 
that all but one are related in some way to students’ facility with definitions. 
The Nature of Mathematical Definitions 
Definitions play a central role in mathematics. Mathematicians and students of 
mathematics use definitions routinely but seldom think about the nature of 
mathematical definition (Wilson, 1990). The process of defining in mathematics is the 
process of giving names to mathematical objects. In natural language, most definitions 
are extracted; that is they describe how a word is used and what is meant by it. In 
mathematics, definitions are stipulated; that is created on the advice of experts. 
“Extracted definitions report usage, while stipulative definitions create usage, indeed 
create concepts, by decree” (Edwards & Ward, 2004, p. 412).  
Definitions are arbitrary (Winicki-Landman & Leikin, 2000). There may be many 
ways to define an object and ultimately one must be selected as the definition. A 
square can be defined to be a regular quadrilateral, or it can be defined to be a polygon 
whose diagonals are equal and perpendicular, or it can be defined in some other way. 
Once a definition is selected, then all other equivalent, biconditional statements 
become theorems that need to be proved. A definition is neither true nor false; is 
merely accepted or rejected (Wilson, 1990). 
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Student Understanding of the Concept of Mathematical Definition 
One does not learn mathematics as quickly and easily as it can be presented. Tall and 
Vinner (1981) state that the human brain is neither that efficient nor logical in its 
operations and suggested that how students think about mathematical concepts may be 
quite different than how the concepts are formally defined. Students sometimes argue 
from their concept images rather than the concept definitions and in so doing they are 
not using definitions the way a mathematician would (Edwards and Ward, 2004). But 
further, students’ concept images of mathematical definition might be faulty or 
incomplete. Students who perceive that mathematical definitions are no different than 
other mathematical statements that require justification are not categorizing 
definitions the way a mathematician would (Edwards and Ward, 2004). 
Students do not use definitions the way mathematicians do. 
One way students misuse definitions stems from their perception that mathematical 
ideas are extracted rather than stipulated. In a study of 14 undergraduate mathematics 
majors, Edwards and Ward (2004) report that even when students can correctly state 
definitions, sometimes they abandon the definitions and argue from their personal 
concept images. When for one participant, a concept definition conflicted with her 
concept image she seemed to think that the definition had not been extracted correctly 
and argued (incorrectly) from her concept image instead. 
Another way student misuse definitions stems from a poor intuitive understanding of 
the concept in question. Knapp (2006) provides a framework for understanding how 
students’ use definitions in proofs. Her participants were 10 undergraduate students in 
a first course in real analysis. She parses knowing a definition into ventriloquating 
(reciting without fully understanding) and appropriating (being able to use a 
definition). “Appropriating a definition requires students’ personally meaningful 
understanding to match the culturally meaningful understanding” (Knapp, 2006, p. 18). 
Students who can state a concept definition but who revert to a faulty or incomplete 
concept image when making arguments are not appropriating that definition. 
Students do not categorize mathematical definitions the way mathematicians do. 
In a study of 251 college mathematics majors, Vinner (1977) reported that students 
frequently mis-categorize mathematical definitions as theorems and axioms, or even 
as non-mathematical statements such as facts and laws. This could be because teachers 
try to justify definitions (e.g., x–a = 1/xa) and in so doing, they might give students the 
impression that they are proving these definitions. Further, he states that some familiar 
definitions are introduced to students in middle school before the definitional structure 
of mathematics is made clear to students. These early impressions of certain specific 
definitions, of mathematical definition in general, or of the overall structure of 
mathematics may have lasting effects. 
Edwards and Ward (2004) found that students of advanced undergraduate 
mathematics (abstract algebra) had difficulties “arising from the students’ 
understanding of the very nature of mathematical definitions” (p. 412) not merely the 
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content of the definitions or the loaded nature of certain terms with their 
non-mathematical usage. Similar to Vinner’s (1977) study, Edwards and Ward (2004) 
reported that one of their participants believed that once a theorem “is proven, it 
becomes a definition.” Some participants in their study viewed mathematical 
definitions as extracted rather than stipulated. One participant believed that 
mathematicians are not free to create definitions, but “have to make the definitions 
from what something actually is” (p. 415) and another believed that when a definition 
is created, that it must pass peer review to be sure that it is error free. 
METHODS 
The purpose of our study was to understand how students of advanced 
undergraduate-level mathematics perceived the concept of mathematical definition 
and how they use definitions to verify simple conjectures. We know from Edwards 
and Ward (2004) and from Vinner (1977) that college students do not categorize or use 
definitions the way mathematicians do but we wanted to probe more deeply into how 
this group fit definitions into the structure of mathematics. 
The data from this study comes from semi-structured, task-based interviews (Goldin, 
2000) with five undergraduate mathematics majors. Our participants were juniors or 
seniors currently enrolled in a course in real analysis. Each was interviewed once for 
approximately 45 minutes. The interviews were audio-recorded and transcribed. The 
transcripts were coded separately by each of the two authors. At the end of this coding 
phase, the two authors met with each other and compared and refined their codes, and 
grouped the codes into broader categories. 
There were several factors that informed our choice of tasks in our interview protocol. 
Each task was intended to elicit a discussion regarding some aspect of definition and 
its place in mathematics. Participants were asked to select one of among several 
definitions and to discuss what made it preferable to the others, to use two competing 
definitions for even number to determine the parities of certain integers, and to discuss 
whether definitions needed to be justified or proved. These tasks elicited the 
discussions that became the data for this study. 
RESULTS 
The two findings of this study largely confirm previous studies in the area. Our 
findings are (1) participants did not make clear distinctions between definitions and 
theorems; and (2) participants were also likely to argue from their concept images 
rather than from the concept definitions. While both Vinner (1977) and Edwards and 
Ward (2004) report that students sometimes perceive that definitions need some kind 
of justification to be accepted, our evidence suggests a different possible source for 
students’ failure to categorize definitions the way mathematicians do. 
Students’ Categorization of Definitions 
We found that our participants did not separate definitions (whose meanings are 
stipulated) from other mathematical statements whose validity must be verified with a 
proof. We presented our participants with the definition x–a = 1/xa and so that there 
would be no doubt, they were told that this was the definition for x–a. They were then 
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asked, “Does this definition need to be proved?” All five participants indicated that 
this definition (and others too) needed to be proved.  

Alan: I definitely could prove this because I had to do a proof just this semester 
on why 0 is less than 1. I didn’t think that needed to be proved but apparently… 
I’d have to stare at for a while before [I got it] in my head of how to start to work 
it out but I just like defining it better personally [because] if somebody already 
proved it then there’s a definition from that [and] then you don’t need to… If it’s 
already been proved… somebody else has already done the work… So it’s 
already been proved. I think a definition is fine. 

Alan has two ideas here. First, that in upper division college mathematics, students are 
frequently asked to prove things that are obvious and that a possible way around these 
difficult proofs is to define things. That his ideas are not well formed is apparent when 
he discusses defining as merely relying on a theorem that someone else proved. Other 
participants share his ideas about his experiences in upper division mathematics 
classes. Fredrick for example discussed the necessity of a proof based upon the 
mathematical level of the audience. “It depends on who you’re saying this to. If you’re 
talking to high schoolers, then I would say ‘no.’ But if it was like college or something 
and you’re doing abstract algebra or something… I guess it’s necessary.” Fredrick and 
Alan both perceived that they had been asked to prove intuitively obvious facts that do 
not need justification outside of upper division mathematics classrooms, and at least 
some definitions might fall into this category. 
Other participants discussed the reasoning behind the definitions and why they have 
been defined in a particular way. Colleen, for example discusses the justification of the 
definition of x–a. “There’s a reason why x–a = 1/xa. So I guess because there’s a reason, 
that it probably would be a good idea to be proved. [But] I get lost when you try and 
prove it to me because some brilliant, crazy mathematician proved it… If you just tell 
me x–a = 1/xa, I’m good with that. Somebody already did all the legwork.” Similar to 
Alan, Colleen saw a definition as an end run around a difficult proof and believed that 
some mathematician had to prove it sometime in the past. 
When asked about the definition x–a = 1/xa, Dori said, “I would say you should prove it. 
That’s not obvious to people who are just seeing it [for the first time], so yeah.” She 
went on to discuss the necessity of proving that all squares are regular quadrilaterals. 
“I feel like at some point we [proved] that… So, I say, ‘prove everything.’” At first, 
she said that definitions that are not immediately obvious to someone seeing them for 
the first time should be justified, but then followed by saying that all mathematical 
statements needed justification and that at some point she proved the definition “A 
square is a regular quadrilateral.” 
Wendy believed that definitions have to be justified in order to be incorporated into the 
structure of mathematics. 

Wendy: They are [proved]. It’s not should they [be proved?]. Definitions have 
to come from somewhere. We learned there’s different forms like lemmas and 
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stuff like that… I don’t remember the order; I used to. I know the lemma is the 
least right thing and the theorem is like the top or something… [I don’t] 
remember the order of them but I know there’s different degrees, I think. 

Unlike Alan and Colleen, Wendy did not seem to resent being asked to prove things 
she thought were obvious. To her, proving definitions was just part of the work of a 
mathematician. In her view, once a definition has been proved, it becomes something 
similar to (but possibly not the same thing as) a theorem. 
All of the participants believed definitions needed to be proved. Colleen wanted a 
justification for why a definition was the way it was. Alan, Dori and Fredrick said that 
all mathematical statements required proof. And Wendy described how a proved 
definition might fit into the structure of mathematics. To varying degrees they tended 
to confound definitions with other mathematical statements requiring justification and 
most indicated they had seen proofs for definitions in some of their college-level 
mathematics courses.  
Students’ Use of Definitions 
We found that our participants were more likely to argue from their concept images 
than from the concept definitions. After reading, and comparing and contrasting the 
two definitions for even number given below, four out of five of our participants 
indicated that zero was neither even nor odd. Only two recognized that there was a 
discrepancy between their concept image and the definition, of which only one 
determined (very tentatively) that zero is even. 

1. A number is called even provided it represents a number of objects that can 
be placed into two groups of equal size. 

2. A number is called even provided it is an integer multiple of 2. 

Notice that under both definitions, zero is an even number. Zero objects can be placed 
into two piles of zero items each (perhaps a bit of a stretch for some), and zero is 2•0 
which is an integer multiple of 2. The following excerpts all attempt to answer the 
question, “Is zero even, odd, or neither?” 
Wendy’s concept image of even number was that even numbers represent a collection 
of objects in which all objects can “pair up” simultaneously. She could talk about more 
formal definitions of even and explicitly mentioned both n = 2a and 2|n from her 
mathematics classes but she kept coming back to her concept image of objects pairing 
up. In answering our question, she said, “It’s neither because you’re not starting with 
anything. It’s not paired out or anything. Is that right?” Although Wendy understood 
the definitions on the paper, and even proposed alternative formulations, when it came 
to deciding if zero was even or odd, she reasoned entirely from her concept image 
rather than the concept definition to make that determination. 
Colleen and Dori both recognized that their concept image that zero was not even was 
at odds with at least one of the definitions provided. Colleen said, “I don’t remember. I 
think it’s neither, personally. But wait! It can be divisible by 2. I don’t know, I don’t 
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remember from [class] what we decided. Isn’t there still a big argument about whether 
it is [even or not]? But technically, if you go by the definitions, it would be even. I 
don’t know. I think it’s neither. It’s neither even nor odd.” Although Colleen 
recognized that the definition demanded that zero be even, her concept image was 
strong enough for her to discard the definition. Dori, on the other hand tentatively 
discarded her concept image that zero was not even in favour of the definition. She 
said, “Neither. It definitely cannot be odd, but I’m torn between the neither and even. I 
would say ‘neither’ because you can’t put it into two groups. [Under Definition #2], I 
would say ‘even’ but I’m sure, I’m positive that somebody could dispute me with 
‘neither’ for the same reason I said [about Definition #1]. But I would say ‘even.’” 
Similar to Colleen, Dori said that if she restricted herself only to the definitions 
(specifically Definition #2) then zero would be even but she still wasn’t 100% 
convinced. Eventually, she decided it might be even although she was certain someone 
would have a problem with it. Still, she was uncomfortable with the notion that zero 
could be even so she offered her own addendum “zero doesn’t count” to the definition 
of even to make it fit with her concept image that only positive and negative numbers 
could be even. 
DISCUSSION AND CONCLUSION 
We were interested in junior and senior mathematics majors’ ideas about the concept 
of mathematical definition and found that at least some participants were still unclear 
as to the structure of mathematics as a whole despite the advanced level of their studies. 
They did not separate definitions from other kinds of statements that required 
justification and adhered very strongly to faulty or incomplete concept images. For 
example a concept image common to all of our participants excluded zero from the set 
of even numbers. Our participants were all familiar with the definition of even number 
and some suggested alternate definitions. But most of our participants seemed to be 
merely ventriloquating (Knapp, 2006) rather than appropriating the definition. Similar 
to Edwards and Ward (2004), one of our participants preferred to argue solely from her 
concept image rather than the concept definition, but two found that their concept 
image of even number differed from the concept definition and indicated that if they 
restricted themselves to only the concept definition, then zero would have to be even 
but neither were comfortable stating this claim with certainty. In this last case, it seems 
likely that these two participants perceived that the definitions had not been extracted 
properly. 
Beyond corroborating the findings of previous studies, this study provides some 
evidence that students even at the advanced undergraduate levels are still developing 
an understanding not only of the concept of mathematical definition, but also of the 
mathematical system as a whole and their concept image of this entire system may not 
be fully formed. For example, all of our participants believed that they could prove a 
definition. Two possible reasons for this is given by Vinner (1977); first, students have 
seen their teachers motivate definitions before and so perceive that the definitions 
were proved, and second, certain familiar definitions are introduced to students before 
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the structure of mathematics is made clear to them. We find something quite different; 
some of our participants perceived that in their advanced mathematics courses, they 
had frequently been engaged in proving completely obvious facts (e.g., 0 < 1). In such 
courses, their notions of what did and did not require a proof were challenged to the 
point where they perceived that absolutely nothing, not even definitions could be taken 
for granted. 
It may be only natural for students at this level to perceive that all basic information 
such as intuitively obvious theorems, definitions, and possibly even axioms must be 
verified because up to this point in their mathematical educations, they have been 
learning mathematics, but not really doing mathematics. It may be that they perceive 
that they have been asked to prove things solely for the purpose of demonstrating to 
their professors that they can reproduce some such verifications and do not see 
themselves as active participants within the mathematical system. Perhaps for some, 
the distinction between definition and result becomes clear only when one attempts to 
create one or the other. If so, it seems likely that engaging students in creating 
mathematics might help them better understand the mathematical system, and make 
the distinctions between definitions and theorems more apparent to them. 
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Proportional reasoning is increasingly being recognised as fundamental for 
successful operation in many topics within both the mathematics and science 
curriculum. However, research has consistently highlighted students’ difficulties with 
proportion and proportion-related tasks and applications, suggesting the difficulty for 
many students in these core school subjects. As a first step in a major research project 
to support the design of integrated curriculum across these two disciplines, this paper 
reports on students’ results on a proportional reasoning pretest of mathematics and 
science items. Administered to approximately 700 students across grades 4 to 9, 
results anticipated increased gradual progression in results, but surprising 
similarities in performance on particular items for student groups at each year level. 

PROPORTIONAL REASONING IN MATHEMATICS AND SCIENCE 
Many topics within the school mathematics and science curriculum require knowledge 
and understanding of ratio and proportion and being able to reason proportionally. In 
mathematics, for example, problem solving and calculation activities in domains 
involving scale, probability, percent, rate, trigonometry, equivalence, measurement, 
algebra, the geometry of plane shapes, are assisted through ratio and proportion 
knowledge. In science, calculations for density, molarity, speed and acceleration, 
force, require competence in ratio and proportion. Proportional reasoning, according 
to Lamon (2006) is fundamental to both mathematics and science.  
Proportional reasoning means being able to understand the multiplicative relationship 
inherent in situations of comparison (Behr, et al., 1992). The study of ratio is the 
foundation upon which situations of comparison can be formalised, as a ratio, in its 
barest form describes a situation in comparative terms. For example, if a container of 
juice is made up of 2 cups of concentrated juice and 5 cups of water, then a container 
triple the size of the original container will require triple the amounts of concentrate 
and water (that is, 6 cups of concentrated juice and 15 cups of water) to ensure the 
same taste is attained. Proportional thinking and reasoning is knowing the 
multiplicative relationship between the base ratio and the proportional situation to 
which it is applied. Further, proportional reasoning is also dependent upon sound 
foundations of associated topics, particularly multiplication and division (Vergnaud, 
1983), fractions (English & Halford, 1995) and fractional concepts of order and 
equivalence (Behr, et al. 1992). Although understanding of ratio and proportion is 
intertwined with many mathematical topics, the essence of proportional reasoning is 
the understanding of the multiplicative structure of proportional situations (Behr, et al., 
1992).  
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In the middle years of schooling, ratio and proportion are typically studied in 
mathematics classes. In fact, ratio and proportion have been described as the 
cornerstone of middle years mathematics curriculum (Lesh, Post & Behr, 1988). 
However, research has consistently highlighted students’ difficulties with proportion 
and proportion-related tasks and applications (e.g, Behr, Harel, Post & Lesh, 1992; 
Ben-Chaim, Fey, Fitzgerald, Benedetto & Miller, 1998; Lo & Watanabe, 1997), which 
means that many students will struggle with topics within both the middle years 
mathematics and science curriculum due to their lack of understanding of ratio and 
proportion. Understanding ratio and proportion is more than merely being able to 
perform appropriate calculations and being able to apply rules and formulae, and 
manipulating numbers and symbols in proportion equations. It is well-accepted that 
students’ computational performances are not a true indicator of the degree to which 
they understand the concepts underlying the calculations.  

THE STUDY 
The research reported in this paper is part of a larger study entitled the MC SAM 
project, the acronym for ‘Making Connections in Science and Mathematics’. The 
project aims to take a “conscious, systematic and explicit…. structured and 
goal-oriented” learning by design approach (Kalantzis & Cope, 2004, p. 39) to support 
the careful design of an integrated curriculum to promote students’ connected 
knowledge development across these two disciplines. In this project, researchers and 
teachers are collaboratively developing, implementing and documenting innovative, 
relevant and connected learning in mathematics and science, and hence redefining 
classroom culture as well as redefining curriculum. This paper presents results of a 
proportional reasoning pretest, the results of which highlight great variance of 
proportional reasoning in students across Years 4 to 9, and simultaneously 
underscores the importance of a more systematic and structured approach to 
promoting proportional reasoning across mathematics and science. 
The pretest was to designed to provide a snapshot of a large group of students’ 
proportional reasoning on tasks that relate to mathematics and science curriculum in 
the middle years of schooling. This aspect of the research was concerned with the 
development of an instrument that would provide a ‘broad brush’ measure of students’ 
proportional reasoning and their thinking strategies, and that would have some degree 
of diagnostic power. This challenge was undertaken with full awareness of both the 
pervasiveness and the elusiveness of proportional reasoning throughout the 
curriculum and that its development is dependent upon many other knowledge 
foundations in mathematics and science.  
Instrument design 
A large corpus of existing research has provided analysis of strategies applied by 
students to various proportional reasoning tasks (e.g., Misailidou & Williams, 2003; 
Hart, 1981). Such research has highlighted issues associated with the impact of 
‘awkward’ numbers (that is, common fractions and decimals as opposed to whole 
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numbers), the common application of an incorrect additive strategy, and the blind 
application of rules and formulae to proportion problems.  
To identify more specific links across both mathematics and science, we consulted the 
Atlas of Scientific Literacy (American Association for the Advancement of Science 
(AAAS), 2001). The AAAS has identified two key components of proportional 
reasoning: Ratios and Proportion (parts and wholes, descriptions and comparisons and 
computation) and Describing Change (related changes, kinds of change, and 
invariance). Using this as a frame, we devised the test to incorporate items on direct 
proportion (whole number and fractional ratios), rate, and inverse proportion as well 
as items relating to fractions, probability, speed and density. Guided by the words of 
Lamon (2006) who suggested that students must be provided with many different 
contexts, ‘to analyse quantitative relationships in context, and to represent those 
relationships in symbols, tables, and graphs’ (p. 4), the items included contexts of 
shopping, cooking, mixing cordial, painting fences, graphing stories, saving money, 
school excursions, dual measurement scales. For each item on the test, students were 
required to provide the answer and explain the thinking they applied to solve the 
problem. 
The pretest consisted of 16 items, split into two sections of 8 items each. Bearing in 
mind that the test would be administered to 4th Grade students, we wanted to avoid test 
fatigue and provided students with 30 minutes to complete each section of the test on 
two different days. Most students completed each section of the test within 15 minutes. 
Table 1 provides the title of each test item and a brief description of its focus. 

A1 Butterflies. 5 drops of nectar for 2 butterflies; x drops of nectar for 12 
butterflies? Missing value – simple numbers. 

A2 Chance Encounters. Which of 4 bags of counters (B/W) has best chance 
of selecting black: 4B 4W; 1B 1W; 2B 1W; 4B 3W. Probability 

A3 Shopping Trip. $6 remaining after spending 1/3 of money. How much at 
the start? Part/part/whole – complex ratio.  

A4 Three Cups. Full cup, ½ cup, 1/3 cup water; 3, 2, 1 lumps sugar 
respectively. Which is sweetest? Intuitive proportion, small numbers. 

A5 Sticky Mess. Recipe: 4 cups of sugar, 10 cups of flour; 6 sugar for x 
flour? Missing value – complex ratio. 

A6 Fence Painting. 6 people take 3 days; how many in 2 days? Inverse. 
A7 End of Term. Comparison of preferences for an end of term activity in 

two classes of students (different totals).  Absolute vs relative thinking. 
A8 Number Line. Reading dual-scale representation using two 

measurement scales. Scaling. 
B1 Speedy Geoff. Distance covered when speed halved. Speed. 
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B2 Balancing. Identifying impact of weights on Balance Scale. 
B3 Washing Days. Powder A: 1kg, 20 loads, $4; Powder B: 1.5 kg, 30 

loads, $6.50. Which is better buy? 
B4  Funky Music. Mum pays $5 for every $2 saved to buy item for $210. How much did each 

person paying? Part/part/whole 
B5  Cycling Home. Matching graph to speed of bicycle. 
B6 Sinking and Floating. Density of object in liquid. 
B7  Juicy Drink. Mixing cordial; two-step ratio problem. 
B8  Tree Growth. Non-proportional situation, trees grow at same rate. 

Table 1: Proportional Reasoning Pretest Item Overview. 

RESULTS 
Approximately 700 students across Grades 4-9 completed the test. Students’ results on 
this assessment are presented in Figure 1.  

 

Figure 1: Percentage correct for each test item 
Students’ responses for each test item were coded. Coding occurred at two levels, and 
hence a two-digit code was assigned to each response. The first digit in the code 
identified whether the item was correct (code 1), incorrect (code 2), or not attempted 
(code 0). The second digit in the code identified the thinking strategy utilised by the 
student in solving the problem, as gleaned from the explanation of how he/she solved 
each problem. In particular, a solution strategy that showed application of elegant ratio 
thinking (that is, direct use of multiplication and division strategies) was assigned a 
code of 1, with a solution strategy that showed application of a repeated addition 
strategy (use of tables of values) assigned a code of 2. These two codes were 
considered indicative of appropriate proportional reasoning. A code of 3 was given to 
thinking that suggested (incorrect) additive thinking had been applied, and a code of 4 
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was given to thinking that suggested that the student’s strategy would never lead 
him/her to the correct solution. A code of 0 was given when the student left this section 
blank. Scores of 11 or 12 thus indicated a correct solution and application of 
proportional reasoning. A score of 23 indicated an incorrect solution with 
inappropriate additive thinking. Table 2 shows the percentage of responses for each 
particular code. 

 Response Code         

Item 11 12 13 14 10 21 22 23 24 20 00 

A1  31 19 0 0 2 4 11 2 28 1 2 

A2  16 2 36 2 0 2 1 32 8 1 0 

A3 31 9 4 3 2 2 4 5 32 7 3 

A4 12 0 8 6 3 0 0 27 38 4 2 

A5 9 4 0 1 0 1 0 66 7 8 4 

A6 1 0 4 2 2 1 0 33 42 11 4 

A7 7 0 6 7 2 1 0 57 15 3 2 

A8  2 1 2 2 0 2 0 13 53 13 12 

B1  35 5 0 1 2 0 0 4 40 10 3 

B2  10 10 20 5 2 0 1 6 40 3 3 

B3 22 3 20 10 4 1 0 25 9 3 3 

B4 11 9 0 1 2 1 10 1 32 12 21 

B5 11 16 2 2 2 0 15 27 15 6 4 

B6 1 6 27 1 3 0 8 33 9 3 9 

B7 15 1 0 0 1 7 0 15 34 11 16 

B8 0 0 56 0 3 3 1 14 13 3 7 

Table 2: Percentage of strategy use for correct and incorrect responses. 
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DISCUSSION 
Lamon (2006) described proportional reasoning as a web of interrelated “concepts, 
operations, contexts, representations, and ways of thinking” (p. 9) to highlight the 
complexity of proportional reasoning and hence advocating a rich, recursive 
curriculum across rational number domains for promoting proportional reasoning. 
Central core ideas for proportional reasoning, as identified by Lamon, include rational 
number interpretation, measurement, quantities and covariation, relative thinking, 
unitizing, sharing and comparing, reasoning up and down. And all these are “recurrent, 
recursive and of increasing complexity across mathematical and scientific domains” (p. 
9). Inherent in these words is a call for change of focus to mathematics instruction in 
ratio and proportion topics, and a new look at the traditional separatist demarcation of 
mathematics and science curricular. 
The pretest designed in the MC SAM project is only a tentative first step for 
emphasising the centrality of proportional reasoning across mathematics and science 
topics. In this test, the items were designed to capture students’ proportional reasoning 
in its broadest sense. Some items were very typical ratio tasks (items A1, A5, B7), but 
some were specifically linked more directly to science. Item B1 was a simple speed 
situation: Geoff runs 100 metres in 12 seconds. If he runs the same distance at half the 
speed, how long will it take him? This item was correctly answered by less than 50% 
of the students, but was comparatively well-answered by the fourth graders (just above 
30%), and was one of the best-answered items on the test for these students (see figure 
2). This suggests that intuitively, fourth graders can understand simple speed 
situations. Interestingly, the ninth graders’ mean score for this item was only 
approximately 63%, and was not the best-answered item for this cohort. Item B2 was a 
classic balance beam problem, frequently cited in science research as a science 
reasoning task (see for example, Shayer & Adey, 1981). The mean score for this item 
was 47%, and was also well-answered by the fourth graders (35%). Item B5 required 
students to select (from 6) the appropriate graph for the following situation: Anne was 
cycling home from school. She rode for a short time at a steady speed then stopped for 
a rest. When se started again, she rode twice as fast to get home quickly. This item was 
devised to link to the AAAS’s ‘Describing Change’ component of scientific reasoning, 
but clearly graph interpretation is a key component of rational number understanding 
(Lamon, 2006). The mean score for this item was 31%, with the fourth graders 
responding relatively well at 15%, which is higher than for many other items. This 
suggests that fourth graders can interpret situations graphically, and has implications 
for instruction at much earlier junctions than typically occurs in primary school. 
Compared to the seventh to ninth graders, the fourth and fifth graders’s results were 
impressive. However, not as impressive as for item B6, which was also a specific 
science item relating to density. This item had several parts, providing students with a 
data table that displayed the mass and volume of a collection of cubes and information 
about one cube in the collection that is known to sink. The students had to determine 
which other cubes would sink. The fourth graders scored higher than the ninth graders 
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(38% and 22% respectively), and the fifth graders scored highest of all cohorts (48%). 
The reasons for these curious differences can only be speculated, but the impact of 
instruction upon students’ intuitive knowledge of density warrants scrutiny in relation 
to performance. 
Item B3 and B8 were the best answered of all items on this test (both 59%). B8 was a 
non-proportional situation (two trees of different height grow at the same rate; find the 
height of the second tree after a period of time given the height of the first tree). 
Students’ capacity to distinguish proportional from non-proportional situations is a 
key for proportional reasoning that indicates reasoning capacity as compared to blind 
application of formulae (Lamon, 2006). B3 was a ‘better buy’ situation (briefly 
described in table 1), and results of this task may not be as exciting as they appear, as 
this item was essentially a two-choice item (A or B). This is where the second level of 
coding gives further insight into students’ reasoning. From Table 2, it can be seen that 
students who selected the correct washing powder equally used multiplicative and 
additive reasoning (22% responses coded 11 and 20% coded 13). Ten percent of 
students selected the correct answer (code 10) without stating how they achieved this 
answer. Approximately 25% of students selected the wrong powder (code 23) and 
used additive thinking in their response. Hence, for this particular item, students may 
have selected the correct powder but used inappropriate faulty additive reasoning. 
The coding of responses and the use of additive and multiplicative thinking is most 
starkly revealed in items A1 and A5 (see table 1 for an overview of these items). 
Approximately 50% of students used appropriate multiplicative thinking for item A1, 
but for A5, 66% of students used inappropriate additive thinking on a standard ratio 
task that involved a fractional ratio. Item A1 was one of the better-answered of all 
items by the ninth graders, where the mean score for this cohort was approximately 
73%. But for item A5 involving a fractional ratio, performance overall is merely 15% 
overall, and 20% for ninth graders. Students clearly recognised the multiplicative 
relationship of the butterflies to drops of nectar in item A1, but alarmingly abandoned 
this thinking and used an additive strategy for item A5 in the recipe question. The 
power and stability of additive thinking is clearly an issue for successful operation in 
domains that require proportional reasoning. Although this finding is not new, the 
overwhelming incorrect use of additive thinking for this item further highlights the 
instability of relational thinking of students in the middle years of schooling. 
Conclusion 
The results reported in this paper are the first steps towards taking a more structured 
approach to a connected curriculum across the domains of mathematics and science. 
The proportional reasoning test devised for this project makes no claims of 
comprehensively assessing students’ proportional reasoning for mathematics and 
science. However, its purpose was more fundamentally to raise awareness of the 
pervasiveness of proportional reasoning across the domains of mathematics and 
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science and to assist teachers to target instruction more specifically to promote 
students’ proportional reasoning.  
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JUSTIFICATIONS AND EXPLANATIONS IN ISRAELI 7TH 
GRADE MATH TEXTBOOKS 

Sarit Dolev and Ruhama Even 
Weizmann Institute of Science, Israel 

 
This study compares six 7th grade Israeli mathematics textbooks, examining the 
opportunities provided by the textbooks to justify and explain mathematical work, in 
two central topics: equation solving and triangle properties. Using two different units 
of analysis, initial findings reveal that all six textbooks included considerably larger 
percentages of geometric tasks that required students to justify or explain their 
solutions than such algebraic tasks. Moreover, considerable differences were found 
among the six textbooks in the percentages of tasks that required students to justify 
and explain in both topics, more so in the algebraic topic. Analysis of the nature of the 
student tasks – whether the tasks include a given mathematical claim for the students 
to justify or not – also revealed substantial differences among the textbooks.  

INTRODUCTION 
The Israeli school curriculum is developed and regulated by the Ministry of Education. 
In 2009 the Ministry of Education launched a new national junior-high school 
mathematics curriculum that comprises three strands: numeric, algebraic and 
geometric. The new curriculum stresses problem solving, thinking, and reasoning for 
all students, emphasizing the development of students’ ability to explain, justify and 
prove, in both domains of algebra and geometry (Ministry of Education, 2009). In 
response to the introduction of the new national curriculum, several teams, from the 
academia and from the private sector, began to develop parallel experimental 
curriculum programs that include textbooks, teacher guides, and other teaching and 
learning resources. Our study compares a sample of these new 7th grade textbooks, 
examining the opportunities provided for students to explain, justify and prove. 

BACKGROUND 
Comparative studies of mathematics textbooks conducted in recent years examine a 
variety of aspects and issues. Some centre on the issue of justification and explanation 
(e.g., Hanna & de Bruyn, 1999; Stacey & Vincent, 2009; Stylianides, 2008), which is 
central to work both in the discipline and in school mathematics. These studies reveal 
differences among textbooks intended for the same grade level even in countries with 
a national or a provincial curriculum (e.g., Hanna & de Bruyn, 1999), and show 
quantitative and qualitative differences among the justifications and explanations 
provided or expected from the student, in different topics within the same textbook. 
For example, Hanna and de Bruyn (1999), who examined Canadian grade 12 
textbooks, showed that about one-half of the tasks in geometry were proof-related 
whereas less than 5% of the tasks in algebra. 
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The research methods used in these studies vary. Some researchers focused in their 
analysis only on aspects related to the notion of proof (e.g., Hanna & de Bruyn, 1999) 
whereas others examined the nature of explanations and justifications presented or 
required – not restricting themselves to proof-related aspects only (e.g., Stacey & 
Vincent, 2009). Some researchers analyzed only the explanatory text presented in 
textbooks (e.g., Stacey & Vincent, 2009), whereas others analyzed only the tasks 
intended for student work (e.g., Stylianides, 2008), or both textbook components (e.g., 
Hanna & de Bruyn, 1999). When analyzing textbook tasks, researches used different 
units of analysis. Some used the numbering system of the textbooks and referred to a 
single numbered problem or exercise as one task (e.g., Hanna & de Bryun, 1999), 
whereas others defined a task as “an activity, exercise or a set of exercises in a 
textbook that has been written with the intent of focusing a student's attention on a 
particular idea” (Jones & Tarr, 2007, p. 13). 
Building on these studies our larger comparative research study examines: (1) the 
justifications to mathematical statements offered in 7th grade textbooks (direct 
instruction), and (2) the opportunities provided for students to justify and explain their 
own mathematical work (individual/small-group work). In this paper we report initial 
findings from the second part of our research, which compares the opportunities 
provided for students to justify and explain their own mathematical work in two 
central topics in the 7th grade curriculum: equation solving in algebra and triangle 
properties in geometry. 

METHODOLOGY 
Nine parallel new textbook series were developed in Israel after the introduction of the 
new national curriculum. They can be classified into three groups, according to how 
they are commonly perceived in the public eye: (1) four textbooks are associated with 
commercial publishers, (2) three textbooks are associated with the academia or with a 
non-profit organization dedicated to the advancement of the education system in Israel, 
and (3) two textbooks were written by research mathematicians. From these nine 
textbook series we selected six 7th grade textbooks for analysis (textbooks A, B, C, D, 
E and F). The selected textbooks represent the wide-range of Israeli textbook 
developers and publishers: two textbooks were published by commercial publishers 
(A and B), three by academic publishers/non-profit organization (C, D and E), and one 
textbook was written by a research mathematician (F).  
Two topics were selected for analysis: equation solving from the algebra strand and 
triangle properties (area and angle sum) from the geometry strand. These topics were 
selected because they are central in the 7th grade curriculum, and have a significant 
procedural characteristic. Table 1 shows, for each topic and each textbook, the number 
of pages selected for analysis out of the total number of textbook pages, and the 
number of lessons suggested for teaching the content of these pages (based on the 
authors' recommendations).  
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Textbook (# pages) Solving equations  Triangle properties 
  # pages # lessons  # pages # lessons 

A (643) 44 12  49 16 
B (623) 53 11  31 12 
C (746) 58 12  60 9 
D (591) 31 9  45 13 
E (456) 31 13  27 9 
F (430) 24 -  21 - 

Table 1: Sample selection from each textbook 
The first stage of data analysis was, for each topic and each textbook, to count the 
number of tasks suggested for individual or small-group work, either in class or at 
home (based on the authors’ recommendations). The first count (Count 1) was based 
on the numbering system of the textbooks themselves. However, we found that this 
way of counting caused some distortion when comparing the textbooks, because 
different textbooks used different numbering systems for problems and exercises. For 
example, solving equations exercises were numbered separately for each equation in 
textbook A, whereas several such exercises were often grouped together and were 
numbered only once in the other textbooks. 
In order to overcome such a distortion, we employed a second count of the number of 
tasks (Count 2), based on the definition of tasks proposed by Jones and Tarr (2007). 
According to this definition, a set of exercises that are built on each other are 
considered as a single task, even if they were numbered separately in the textbook. 
Likewise, a sequence of successive exercises dealing with the same mathematical idea, 
or practicing the same skill, is also considered as a single task, regardless of the 
numbering set out in the textbook. For example, the exercises in Figure 1 are counted 
as two tasks when employing Count 1, but as one task using Count 2, because they 
both deal with the same mathematical idea and practice the same skill of solving 
simple equations by considerations. 

 

Figure 1: Exercises counted as two tasks (Count 1) and as one task (Count 2). 
 

1. Find the solutions of the following equations: 
a.  4x = 12  b.  6 + x = 12    c.  x – 4 = 12     d.  6 – x = 12 

2. Find the solutions of the following equations: 
a.  4x = –12  b.  6 + x = –12    c.  x – 4 = –12     d.  6 – x = –12 
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Table 2 presents, for each textbook and each topic, the number of tasks suggested for 
individual or small-group work, according to Count 1 and Count 2. 

 Solving equations   Triangle properties 
Textbook # tasks 

(Count 1) 
# tasks 

(Count 2) 
 # tasks 

(Count 1) 
# tasks 

(Count 2) 
A 335 83  92 85 
B 85 45  61 56 
C 116 81  118 96 
D 55 45  83 80 
E 72 61  64 64 
F 72 54  64 61 

Table 2: Number of tasks according to Count 1 and Count 2 
As shown in Table 2, the discrepancy between the number of Count 1 and Count 2 
tasks is considerably larger for tasks in algebra than in geometry.  
In the second stage of data analysis we coded each task, using both counts, either as 
requiring students to justify or explain their mathematical work (J-tasks) or as not 
(NJ-tasks). J-tasks comprised all tasks in which such a requirement was explicit, 
expressed by phrases such as "Justify", "Explain why", "Describe your 
considerations", "Explain your solution", etc. In addition, we classified tasks as 
requiring a justification or an explanation even if such requirements were not 
explicitly stated, in cases where it was clear that explanation is expected. For example, 
clearly the solution of the task "Is there a triangle whose three altitudes are outside it?" 
could not be a yes/no answer only without any explanation.  
Finally, we analyzed all the J-tasks, examining whether students are asked to justify a 
given claim (GC/J-tasks), or whether no claim is stated and students are asked to solve 
a problem, and then to justify their solution (NC/J-tasks). GC/J-tasks commonly 
contained phrases, such as "Show that…", "Prove that…", "Explain why…". 
NC/J-tasks typically started with questions, such as "Solve and explain", "Is it true or 
false?", "Could it be that…?" Figures 2 and 3 exemplify GC/J-tasks and NC/J-tasks 
(respectively). 

 
Figure 2: Example of GC/J-tasks 

Show that the following equations are equivalent: 
a) 3x + 2 = 17   b)   4x - 6 = 14 
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Figure 3: Example of NC/J-tasks 

RESULTS 
Substantial differences were found among the six textbooks in the percentages of 
algebraic J-tasks (i.e., tasks that required students to justify or explain). The 
differences were found using each of Count 1 and Count 2 (see Table 3).  

 Count 1  Count 2 
Textbook Algebraic 

tasks 
Algebraic 

J-tasks 
 Algebraic 

tasks 
Algebraic 

J-tasks 
 n n %  n n % 

A 335 22 7  83 15 18 
B 85 1 1  45 1 2 
C 116 22 19  81 18 22 
D 55 4 7  45 4 9 
E 72 15 21  61 14 23 
F 72 5 7  54 5 9 

Table 3: Numbers and percentages of J-tasks in the algebraic topic 
As shown in Table 3, the two counts produced similar percentages for each textbook, 
except for textbook A, for which the percentage of algebraic J-tasks out of the total 
number of algebraic tasks was much larger using Count 2 (7% according to Count 1 
and 18% according to Count 2). Analysis shows that less than 10% of the algebraic 
tasks of three textbooks (B, D and F) required students to justify or explain – textbook 
B being the extreme case – whereas about 20% of the algebraic tasks in each of 
textbooks C and E were J-tasks. 

In the geometric topic – triangle’s area and angle sum – the differences among the six 
textbooks were less prominent than in the algebraic topic (see Table 4). As shown in 
Table 4, the two counts produced similar percentages for each textbook. More than 
20% of the geometric tasks of all textbooks required students to justify or explain, 
according to each of the two counts – more than the corresponding percentages of 
algebraic tasks – textbook A stands out with the largest percentage of such tasks 
(almost one-half of the tasks).  
 

A right triangle was obtained by multiplying the side lengths of a given right 
triangle by 2. How much larger is the perimeter of the new triangle? How much 
larger is its area? Explain. 
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 Count 1  Count 2 
Textbook Geometric 

tasks 
Geometric 

J-tasks 
 Geometric 

tasks 
Geometric 

J-tasks 
 n n %  n n % 

A 92 41 45  85 39 45 
B 61 13 21  56 13 23 
C 118 38 32  96 35 36 
D 83 24 29  80 24 30 
E 64 21 33  64 21 33 
F 64 21 33  61 21 34 

Table 4: Numbers and percentages of J-tasks in the geometric topic 
Analysis of the nature of the student tasks – whether the tasks include a given 
mathematical claim for the students to justify (GC/J-tasks), or not (NC/J-tasks) – 
revealed substantial differences among the textbooks. Table 5 presents the frequency 
of NC/J-tasks for each topic in each textbook, according to Count 2 (similar outcomes 
were obtained using Count 1). 
As shown in Table 5, more than 90% of the J-tasks in three textbooks (A, C and D) 
were NC/J-tasks, both in algebra and in geometry, i.e., tasks that do not state a 
mathematical claim that should be justified. Textbook F stands out with the smallest 
percentages of such tasks – for both topics about 20% of the J-tasks of textbook F were 
NC/J-tasks. Apart from textbook B (which is an uninteresting case because it had only 
one algebraic J-task), prominent discrepancies between the percentages of algebraic 
and geometric NC/J-tasks occurred in the case of one textbook only (E). 

 Solving equations   Triangle properties 
 J-tasks NC/J-tasks  J-tasks NC/J-tasks 

Textbook n %  n % 
A 15 100  39 92 
B 1 0  13 85 
C 18 94  35 97 
D 4 100  24 92 
E 14 71  21 86 
F 5 20  21 24 

Table 5: NC/J-tasks frequencies 
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DISCUSSION 
Analysis revealed substantial differences among the six textbooks in the percentages 
of algebraic tasks that required students to justify and explain (J-tasks). There were 
also differences among the textbooks with regards to such geometric tasks, but they 
were less prominent. Analysis of the nature of the student tasks (i.e., whether the tasks 
included a given mathematical claim for the students to justify or not) also showed 
considerable differences among the textbooks – one textbook adopting a completely 
different approach than the other five – but not between the two topics. 
Our findings reveal that all six textbooks included considerably larger percentages of 
geometric J-tasks than such algebraic tasks. This finding, which is consistent with 
findings of other studies (e.g., Hanna & de Bruyn, 1999), might be related to several 
factors. For example, for many years geometry has been viewed as the most 
appropriate domain for teaching students proof, and for developing students’ ability to 
reason logically. To achieve that, traditional geometric tasks required students to use 
proof to justify their work. This has not been the case with algebra, which historically 
has been a domain “concerned with generalized computational processes” (Sfard, 
1995, p. 17). Also, algebra, which is known to be difficult for many students (e.g., 
Sfard, 1995), is formally introduced in the Israeli curriculum in the 7th grade. 
Consequently, textbooks’ authors may have assumed that algebraic tasks that require 
justifications or explanations might be too difficult for 7th grade students, who for the 
first time need to deal with algebraic representations and language. The smaller gap 
found between the percentages of algebraic and geometric J-tasks in some of the 
textbooks may reflect a different approach that is in line with two important goals for 
the new national curriculum (Ministry of Education, 2009): (a) understanding the 
essence of algebra as a mathematical branch that deals with generalization processes, 
raising hypotheses and justifying them, and (b) developing argumentative discourse: 
ways to explain or prove algebraic properties and rules.  
Another interesting finding was the high percentages of geometric J-tasks that did not 
include a given claim for students to justify, in all textbooks but the one written by a 
mathematician. Most geometric J-tasks in the other five textbooks were not in the 
traditional form of “Prove that…”. Instead, students were expected to propose 
hypotheses and justify or refute them. This approach is in line with last decade calls for 
changing the traditional way of teaching geometry, introducing investigation and 
problem posing into geometry classes (e.g., Yerushalmy & Chazan, 1987).  
Another important aspect this research illuminates is the interconnections between 
research methods and findings. We saw that the use of different units of analysis 
sometimes produced different findings. We feel that our use of two units of analysis 
strengthened our findings, and addressed well the methodological problem caused by 
different textbooks’ structures. 
Our study portrays the opportunities provided by six new textbooks for 7th grade 
Israeli students to justify and explain their mathematical work. The findings may 
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reflect also the approaches of the textbooks’ authors to teaching and learning 
mathematics, but not necessarily in a simple way. For example, low percentages of 
J-tasks in specific textbooks may reflect an authors’ view that justifications and 
explanations are not important at this learning stage. But such low percentages may 
also reflect a different view: that justifications and explanations are important, but it is 
the teacher’s and not the textbook’s role to encourage students to justify and explain 
their answers.  
We also need to be cautious when attempting to make simple links between textbooks 
and classroom instruction. Textbooks are, in a way, the potentially enacted curriculum. 
Yet, accumulating research suggests that different teachers enact the same curriculum 
materials differently (e.g., Even & Kvatinsky, 2010), and variations in curriculum 
enactment were found even in cases where the teacher used the same textbook in 
different classrooms (e.g., Eisenmann & Even, 2011).  
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Dealing with representations and changing between them plays a key role for both 
mathematics as a discipline and for building up mathematical knowledge in the 
classroom. Hence, professional knowledge and views of teachers related to using 
multiple representations can be considered as a prerequisite for creating conceptually 
rich learning opportunities. However, specific empirical research is scarce – in 
particular there is a lack of studies taking into account that culture might influence 
such views. Consequently, this study focuses on views about using multiple 
representations held by more than 100 British and more than 200 German pre-service 
teachers. The results indicate that culture might influence the views of the pre-service 
teachers, but also that there are common needs for further professional development. 

INTRODUCTION 
Since mathematical concepts can only be accessed through representations, teachers 
should be aware of their crucial role for the construction processes of the learners’ 
mathematical knowledge. In particular, they should have developed a profile of views 
on reasons for using multiple representations. Perceptions of such reasons can have a 
significant impact on the teachers’ abilities to design rich learning opportunities. For 
instance, acknowledging that only the combination of different representations affords 
rich insights into mathematical concepts may better support teachers in designing 
mathematical activities than seeing the main purpose of multiple representations in 
keeping pupils’ interest. Despite the obvious importance of such views for the 
mathematics classroom, specific empirical research is scarce.    
Hence, this study focuses on such views on using multiple representations. We use a 
trans-national design with British and German pre-service teachers to explore whether 
the views are strongly culture-bound. In line with a multi-layer model of professional 
knowledge, these views are examined on different levels of globality to find out how 
general views on using multiple representations translate into views about the use of 
representations in a content domain and in specific tasks. The results suggest cultural 
differences, but also that there are common needs for professional development, since 
pre-service teachers of both subsamples appear not to fully understand the crucial role 
of multiple representations for mathematical thinking and learning.  
In the following first section, we briefly introduce into the theoretical background of 
this study, the second and third sections present research questions and the research 
design. Results are reported in the fourth section and discussed in the fifth section. 
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THREORTICAL BACKGROUND 
In mathematics and consequently also in mathematics classrooms representations play 
a special role. Since mathematical objects are never directly accessible, experts as well 
as learners have no choice other than using representations when dealing with them 
(Duval, 2006). We take the notion “representation” to mean something which stands 
for something else – in this case for an “invisible” mathematical object (cf. Goldin & 
Shteingold, 2001). Since usually a single representation can only make visible some 
properties of the corresponding object, multiple representations which can 
complement each other are needed for getting hold of it (Gagatsis & Shiakalli, 2004). 
Hence, representations are not only tools for mathematical thinking and 
communication, but also essential accesses to mathematical objects. This 
characteristic of the discipline entails many possible problems for learners. In 
particular conversions from one mode of representation to another often pose a crucial 
obstacle to comprehension and at the same time the ability to recognize a 
mathematical object behind its different representations and to use them flexibly is key 
for successful mathematical thinking and problem solving (i.e. Lesh, Post, & Behr, 
1987; Gagatsis, & Shiakalli, 2004; Panaoura et al., 2009). 
Consequently fostering the pupils’ competencies in dealing with multiple repres-
entations should be a central goal in the mathematics classroom (cf. i.e. KMK, 2003; 
NCTM, 2000). In particular for the content domain of fractions – which is the focus of 
the domain specific parts of this study – there is broad consensus on the significance of 
multiple representations for the pupils’ learning (i.e. Ball, 1993; Padberg, 2002).  
Against this background the question arises as to what professional knowledge and 
views teachers have with respect to this (special) role of multiple representations in 
mathematics and for teaching mathematics. For exploring such views, this study uses a 
multi-layer model of professional knowledge (Kuntze, 2012), that combines the 
spectrum between knowledge and beliefs (e.g. Pajares, 1992), the domains by 
Shulman (1986; cf. also Ball, Thames & Phelps, 2008) with levels of globality, i.e. a 
distinction between general and specific views resp. knowledge (cf. Törner, 2002; 
Kuntze, 2012).  

RESEARCH INTEREST 
According to the need for research pointed out in the previous sections the study 
presented here aims to provide evidence for the following research questions:  
What views do British and German pre-service teachers have on the role of multiple 
representations for learning mathematics? In particular: Which reasons for using 
multiple representations in mathematics classrooms are most important to them? 
Do inter-cultural comparisons reveal any differences regarding such views? 
Are views on different levels of globality interrelated? In particular: Are global views 
on reasons for using multiple representations interconnected with domain-specific 
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views on dealing with representations when teaching fractions and with views on 
specific problems that do or do not support using multiple representations? 

SAMPLE AND METHODS 
For answering these research questions, a questionnaire was designed in German and 
was then translated into English. This translation was examined carefully by two 
native speakers of English, one of whom is also fluent in German and has taught 
mathematics both in the UK and in Germany. 

The questionnaire was administrated to 139 British (99 female, 22 male, 18 without 
data) and 219 German (183 female, 26 male, 10 without data) pre-service teachers 
before the beginning of a course at their university. The British participants had a 
mean age of 27.9 years (SD = 6.9), while the German participants were on the average 
20.7 years old (SD = 2.5), but (with only a few exceptions in both samples) all the 
participants were at the beginning of their first year of teacher education at university.  
Corresponding to the research questions for this study three parts of the questionnaire 
were included in the evaluations, each of them assessing views on using multiple 
representations on a different level of globality. There was one part about reasons for 
using multiple representations in mathematical classrooms in general, then there was a 
part focusing on specific views related to the use of multiple representations while 
teaching fractions and furthermore the participants were asked to evaluate the learning 
potential of a specific fraction problem in which multiple representations were not 
used appropriately. All these questionnaire sections used scales consisting of several 
multiple-choice items each. The pictorial representations in the problem given to the 
participants and shown in figure 1 are not really helpful for solving the problem, since 
they can’t illustrate the operation needed to carry out the calculation. Thus, solving 
this problem is just a matter of carrying out the calculation on a symbolic-numerical 
representational level and ignoring the given pictorial representations. 

 
Figure 1: Specific fraction problem 

At the beginning of the questionnaire there were explanations of the notions 
“representation” and “pictorial representation” in a mathematical context given in 
order to ensure that all participants have a similar understanding of these key terms for 
the study. The data was analysed using quantitative methods. In order to be culture-fair, 
the analyses were done firstly separately for both of the subsamples in order to check 
for culture-specific patterns.  
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RESULTS 
We start with the results concerning the most global views investigated – the rating of 
the importance of reasons for using multiple representations in mathematics 
classrooms. In line with the design of the questionnaire, separate factor analyses for 
both subsamples yielded six 3-items-scales with high reliability values each of which 
reflects a specific reasoning. Three of these scales express reasons for using multiple 
representations which are not really specific to mathematics. Sample items for these 
scales were, respectively (identifiers of the scales in brackets):  

“They make it easier to keep pupils’ attention and interest.” (motivation & interest) 
“Pupils can use pictorial representations as mnemonics.” (supporting remembering)  
“Different learning types and input channels can be addressed.” (learning types and input 
channels) 

The other three scales correspond to reasons for dealing with multiple representations 
in mathematics classrooms taking into account the key role which representations play 
for mathematical thinking. Here are sample items for these scales:  

“Enhancing the ability to change from one representation to another is essential for the 
development of mathematical understanding.” (necessity for understanding) 
“Many mathematical problems can only be solved by changing from one representation to 
another.” (supporting problem solving) 
“Only the combination of different representations can make a mathematical concept 
accessible.” (making mathematical concepts accessible) 

Figure 2 shows the means and standard errors of these scales for both subsamples. The 
value 1 stands for “not important” and the value 5 corresponds to “extremely 
important”. First, it’s noticeable that both subsamples rated the more general reasons 
that do  

 
Figure 2: Views on the importance of reasons for using multiple representations 

not require the awareness of the special role of multiple representations in 
mathematics as more important than the other reasons. Furthermore there are no 
significant differences between the ratings of the British and the German pre-service 
teachers, except for the second scale: The German pre-service teachers attributed a 
higher significance to the contribution of multiple representations to remembering 
mathematical facts than did their British counterparts (T=6.016, df =206.8, p<.001, 
d=0.731). 
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Looking at the results for the questionnaire section about views on the role of multiple 
representations for teaching fractions reveals more differences between the views 
which were expressed in the two subsamples. Here our factor analyses have yielded 
eight different scales, again in line with the theory-based design of the questionnaire. 
Five of them revolve around the question of whether one should use multiple 
representations for teaching fractions or not; however they focus on different aspects. 
Sample items for these scales are (identifiers of the scales in brackets): 

“To understand fractions properly, it is necessary to use many different representations in 
class.” (multiple representations for understanding) 
“In order to give pupils the opportunity to choose their preferred type of representation, 
which they most easily understand, they should be provided with many different 
representations.” (multiple representations for individual preferences) 
“It’s best to use only one kind of pictorial representation for fractions in lessons, so that 
you can always come back to this as a ‘standard’ representation.” (one standard repres.)  
“Several different pictorial representations for fractions could confuse pupils, especially 
the weaker ones.” (fear of confusion by multiple representations) 
“If pupils pay too much attention to pictorial representations, their ability to confidently do 
calculations with fractions is impeded.” (multiple representations impede learning rules) 

The remaining three scales express views concerning the question of whether one 
should use pictorial representations for fractions consistently until the end of the 
teaching unit or rather just for the introduction and then foster abstraction. Samples for 
items of these three scales are:  

“For optimum learning of fraction calculations it is important to use pictorial 
representations consistently until the end of the teaching unit.” (ongoing use of pictorial 
rep.) 
“After the introductory stage of the teaching unit, the teacher should move away from 
pictorial representations in order to strengthen the pupils’ calculation skills.” (pictorial 
representations just for introduction) 
“In order to gradually encourage the pupils to think of fractions in an abstract way, 
teachers should move away from pictorial representations in the course of the teaching 
unit.” (fostering abstraction) 

These eight scales consist of three items each (with one exception where we had to 
exclude one item for reliability reasons) and they are highly reliable for both 
subsamples. Comparing the means of the two subsamples shown in Figure 3, one 
discovers an interesting pattern: The British pre-service teachers compared to the 
German pre-service teachers were more in favour of using multiple representations for 
teaching fractions and they saw fostering abstraction as less important. Cohen’s d 
shows that the difference concerning the scale “multiple representations for 
understanding” can be neglected, whereas the other significant differences correspond 
to weak or medium effects (.34<d<.69). However, despite these differences, similar 
views can be identified: The participants of both subsamples rather opposed the 
consistent use of pictorial representations until the end of the teaching unit on 
fractions. 
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Figure 3: Views on the role of multiple representations for teaching fractions 

The evaluation of the learning potential of the specific fraction problem discussed 
above was based on the four items shown in Figure 1. Factor analyses showed that for 
both sub-samples all these items formed a single highly reliable scale (α=.84/ α=.84). 

 
Figure 4: Evaluation of the learning potential of the given problem 

As can be seen in Figure 4 the learning potential of the problem was rated as medium 
by the German and slightly positive by the British pre-service teachers. 
The third research question focused on relationships between views of the pre-service 
teachers. We would like to recall that these views were located on different levels of 
globality, i.e. ranging from relatively general views to relatively content-specific 
views. For meeting space limitations, we focus on selected findings. 

 
Figure 5: Views on content-specific levels of globality for ‘extreme’ groups 

Seen against the theoretical background of our study, a key idea is that mathematical 
concepts often need the approach through multiple representations for building up 
satisfactory understanding. The corresponding view is reflected in the last scale in 
Figure 2. If we split up the sub-samples into quartiles according to this view, we can 
compare a group of pre-service teachers who acknowledge this aspect (the upper 
quartile) with the 25% of teachers who see this aspect as relatively unimportant. For 
these ‘extreme’ groups, Figure 5 presents their more content-domain-specific views, 
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related to the domain of fractions and to the perceived learning potential of the specific 
problem in Figure 1. The data in Figure 5 indicates significant differences. 
DISCUSSION AND CONCLUSIONS 
The results suggest that pre-service teachers’ views on using multiple representations 
in the mathematics classroom are framed by culture, but also that there is a common 
lack of awareness regarding reasons for emphasizing multiple representations and 
their interrelations, which are intrinsic to mathematics as a discipline and essential for 
the pupils’ understanding of mathematical concepts.  
We start with the discussion of the differences between the two subsamples, which our 
evaluations have yielded. With respect to reasons for using multiple representations in 
mathematical classrooms in general the only significant difference we identified is the 
greater emphasis of the German pre-service teachers on remembering facts. 
Concerning more specific views related to the use of multiple representations 
connected to teaching fractions however, the comparison of the subsamples appears to 
reveal more cultural differences: For example, the British pre-service teachers 
attached significantly greater importance to multiple representations for teaching 
fractions than their German counterparts – at least when reasons not specific to 
mathematics were in the focus. Considering the scales showing the strongest effects 
suggests that this discrepancy could come from the German pre-service teachers rather 
fearing confusing their pupils, whereas for the British participants taking into account 
individual preferences was predominant. This may also explain why the British 
pre-service teachers have evaluated the learning potential of the problem, in which 
multiple representations were used inappropriately, more positively. The task suggests 
that every pupil can choose a pictorial representation according to his/her preferences 
in order to find the solution. The fact that these representations don’t match appears to 
be often undetected by pre-service teachers of both countries. This demonstrates that 
the pure conviction of “Using multiple representations is good” is not enough for 
designing rich learning opportunities, but instead a deeper understanding of the role 
which representations play in mathematics is needed for being able to analyse how 
multiple representations should be used in mathematical classrooms. The impression 
that this is a common need for professional development is reinforced by the results in 
Figures 2 and 3: The pre-service teachers of both countries attached comparatively 
less importance to the reasons for dealing with multiple representations related to 
mathematical thinking or the development of conceptual understanding and they 
rather opposed the ongoing use of pictorial representations when teaching fractions. 
Referring to the third research question, comparing the pre-service teachers’ views on 
using multiple representations in mathematical classrooms on different levels of 
globality yields interrelations, which are consistent with our theoretical assumptions 
and with the findings related to needs for professional development. The results shown 
in Figure 5 indicate that the components of professional knowledge examined in this 
study belong to a bundle of convictions and knowledge that merits further attention 
and deepening research. Such research should also include a focus on specific content 
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knowledge, as knowledge appears to play a role especially for views on the more 
situated levels of globality. For research questions in this domain, ongoing analyses of 
data from other questionnaire sections of this survey could give insight. 
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INFRASTRUCTURES WITHIN THE STUDENT TEACHING 
PRACTICUM THAT NURTURE ELEMENTS OF LESSON STUDY 

Levi Esteban Elipane 
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A single case of student teaching program in a Fuzoku school in Japan was 
highlighted in the hope of elevating certain ruminations on how the essential features 
of Lesson Study are legitimized and nurtured in pre-service mathematics teacher 
education. Findings of this study attempt to elucidate how, via mechanisms or 
infrastructures within student teaching practicum, significant development of habits of 
mind could be possibly forged among prospective mathematics teachers in order to 
maximize their student teaching experience and to facilitate them into participating in 
Lesson Study as they step into the profession. 

INTRODUCTION 
In the Japanese educational system, national universities that offer courses in 
Education have attached institutions that serve as laboratory schools for student 
teachers, among some of their functions. These schools are called Fuzoku schools, 
which exemplify a well-defined function in the pre-service (and in-service) teacher 
education in Japan. Whereas Lesson Study (from now on, LS) is widely performed in 
in-service mathematics teacher education in Japan, the student teaching program (STP) 
in Fuzoku schools integrate vital elements of LS as a part of the practicum. 
This inquiry is a part of a larger phenomenological study that seeks to understand the 
underlying principles behind the accession of LS in pre-service mathematics teacher 
education. It is believed that undertaking an investigation on how LS is being 
integrated and nurtured in STP in Japan will contribute to the ongoing reflections on 
how pre-service mathematics teacher education could be made relevant towards a 
smooth transition of perspective teachers into becoming in-service mathematics 
teachers. In my earlier discussion connected to this study, I suggested several habits of 
mind that need to be cultivated amongst pre-service mathematics teachers in order for 
them to be able to participate in LS endeavours as they commence their practice in the 
profession: (1) making sense of powerful resources for classroom instruction; (2) 
utilizing the school and classroom contexts as venues of inquiry; (3) engaging in 
critical reflections; and (4) forging the spirit of collaboration (Elipane, 2011). 
In the light of necessitating, nurturing, and reinforcing certain skills or habits of mind 
that would facilitate among prospective teachers into being able to optimally make 
sense of their learning experiences in the STP, further reflections on the integration of 
LS in pre-service mathematics teacher education context would lead to reflections on 
whether these were done in an intentional or systematic manner. This paper, therefore, 
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yields implications on the forcible mechanisms, or infrastructures within the STP, that 
nurture such habits of mind.  

THEORETICAL BACKGROUND 
The simple premise behind conducting LS is that in order to improve teaching, the 
most effective place to do so would be in the context of a classroom lesson (Stigler & 
Hiebert, 1999). Furthermore, Lewis, Perry and Hurd (2009) proposed a theoretical 
model of LS, which identifies three pathways wherein LS could improve instruction, 
and these are changes in (1) teachers' knowledge and beliefs, (2) professional 
community, and (3) teaching-learning resources (p. 285). Also, with an emphasis on 
the live Research Lessons (RL) in Lesson Study, Murata (2011) identifies five key 
characteristics of the practice that must be preserved if teachers or stakeholders are 
contemplating this kind of endeavor: (1) centered around teacher’s interests; (2) 
student focused; (3) has a RL; (4) a reflective process; and (5) collaborative (p.10).  
Extending rationalizations on LS to the teacher education context would necessitate 
looking further into several perspectives in framing studies that surround pre-service 
mathematics teacher education. Ponte (2011) succinctly articulates the distinctiveness 
between the practices inherent in the in-service and the pre-service contexts by saying 
that “ the primary practice of practicing teachers is professional practice, and the 
primary practice of the prospective teachers is their learning practice” (p. 415). Here, 
the notion of recontextualizing yields certain relevance. Ensor (2001) suggests that 
this notion highlights the “transformation of discourses as they are disembedded from 
one social context and inserted into others” (Ensor, 2001, p. 297). 
Moreover, the Notion of Emergent Perspectives (NEP), as described by Cobb (2000), 
posits that learning is a cognitive process of individual construction, but concurrently a 
sociological process of participation in a group. Hence, in the context of mathematics 
teacher education, NEP situates the cognitive development of mathematics teachers, 
prospective and practitioners alike, within various educational learning environments, 
(mathematics) classrooms, or communities of practice. Thus, NEP marries the 
cognitive/psychological construct, in which learning to teach mathematics involves 
active individual construction, and the sociological stance of mathematics teacher 
education, a process that involves adaptation and assimilation of levels of social 
dimension embedded in certain communities of practice.  

METHODOLOGY 
Prior to undertaking this particular investigation, I have already been amply 
acquainted to the social context of the practice by observing a number of LS in several 
schools in Japan for about four years. In this report, a pre-service teacher was observed 
daily in his activities as a student teacher (ST) over the span of the STP, which lasted 
for four weeks. As my objective is to make an inquiry regarding pre-service teacher 
education in mathematics as a specialized area, the subject for this investigation was 
purposively selected to be a prospective middle school mathematics teacher. The other 
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criterion for the selection of the subject was the willingness to be a part of this 
investigation. The placement school was a Fuzoku Middle School of a national 
university named Saitama University, which is located in Saitama (prefecture 
bordering the north of the Tokyo Area). It is composed of three year levels, each with 
four sections and an average class size of 40. 
The subject for this inquiry was assigned to the cooperating teacher (CT) who handles 
all the four classes of first year; and he was to handle only one section. On the other 
hand, another ST was also assigned to the same CT; she was supposed to teach another 
class. The CT and the two STs together formed a group, wherein, with the guidance of 
the CT, they observed, commented, discussed, and reflected on each other's lessons. 
This small community of practice simulated a small LS group.  
The STs engaged in a series of classroom observations, lesson preparations, actual 
classroom instructions, and hanseikai (reflection meetings held after every lesson 
done by the STs). A RL was also undertaken towards the end of the practicum. All the 
7 STs in mathematics observed each other’s lessons, together with all the 3 CTs, and 2 
mathematics teacher educators from the university. They all participated in the 
hanseikai after all the lessons were delivered.  
The observations allowed me to become acquainted with the contextual environment 
of the STP, and to be able to generate conjectures regarding the underlying principles 
that are engendered in the program. Moreover, the interviews, informal conversations, 
and the analysis of the activities that the ST underwent and several artifacts (the ST's 
observation notes, daily journal, etc.) were utilized as rich sources of data that 
facilitated the crystallization of findings. The interviews with the ST and the CT were 
audio-taped, along with the reflection meetings and the RL undertaken by the ST. 
Though it was not possible for me to videotape all the activities and the RL, some 
photographs were taken when they were allowed. Van Mannen’s (1990) 
phenomenological method was employed in analysing the data. Significant statements, 
utterances, and actions were highlighted to provide an understanding of how the 
participants experienced LS in the Fuzoku school. From these, clusters of meanings 
were formulated into the emergent themes that pertain to mechanisms or 
infrastructures that forge optimization of the learning experiences during the STP.  

FINDINGS 
The discussions engendered in this particular investigation revolve heavily on the 
daily activities that were made accessible to the STs during the STP. The way that the 
STs were immersed into the structure of the program sheds light on the collaborative 
nature embodied in LS endeavours. Moreover, engaging in preparations, planning, and 
enactment of daily lessons showed consistent associations with the structure and 
educational values being reinforced in LS. The enactment of ordinary lessons, which 
were observed by the other ST and the CT, then passed through lesson debriefs. 
Therefore, the ordinary lessons could be seen as congruent to RLs being done during 
the normal LS activities in in-service context, especially that these lessons were able to 
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facilitate the creation of shared classroom norms and understandings, which provided 
a powerful learning opportunities for the STs. Indeed, as the elements of LS are 
embedded in the STP, it appeared that it’s already in the tacit core of beliefs and 
practices of the ST. He said, “I didn’t treat the RL as something special. But I believe 
that I always have to think of the students’ learning, be it a RL, or just a simple day.” 
Four mechanisms that facilitated towards learning to teach mathematics were 
extracted from the analysis of data: (1) sensitization to images of reform; (2) forged 
reifications of learning experiences; (3) student feedback and communications; and (4) 
immersion in communities of practice. 
Sensitization to Images of Reform 
It was apparent that the ST was able to develop most of the practices that the CT was 
usually doing in the classroom. Hence, the propensity of the apprenticeship model 
(Lortie, 1975) of learning to be a teacher in STPs surfaced. In any case, it must be 
noted that the teachers of Fuzoku schools themselves are actively and continuously 
participating in research activities (e.g., LS) that espouse reform-oriented views on 
subject matter teaching and learning, which, in a way or another, addresses the danger 
of socializing STs in continually adhering to traditional ways of teaching. This is 
because of one of the intrinsic roles of Fuzoku schools in Japan in providing leadership 
in teaching innovations. In this particular case study, the STs also had an opportunity 
to observe their CTs deliver their RLs. In reaction to this experience, the ST wrote in 
his journal (25 May 2010): 

I was able to observe how classes are done by pros. I was enthusiastic about the content of 
the lesson more than ever, but I am anxious about how I could elicit ideas from my own 
students [when I do my own lesson].  

Moreover, amalgamated with his realizations of the complexity of the school and 
classroom environment, the ST’s engagement in critical reflections prevented him 
from the trappings of conceptualizing teaching mathematics as a technicized 
endeavour wherein the STs merely imitate the techniques of the CT. Indeed, 
engagements in critical reflections are a vital habit of mind that allows STs to optimize 
their learning during the STP (Elipane, 2011).  
In his first time to observe a mathematics lesson for first year in the Fuzoku Junior 
High, the ST wrote in his journal (11 May 2010) 

I was surprised with the high level of mathematics instruction the first time I observed the 
mathematics lesson for first year. Not only were [the students] well equipped to respond to 
difficult tasks, but [they] also had good attitude towards the class and they showed 
aptitude in note-taking and recitation… I think that since most of the students also came 
from Fuzoku elementary school, they are being trained well on their knowledge and 
thinking. This kind of rearing emanates from the spirit and environment embodied in 
Fuzoku schools. I think that the lessons are student-centred. So, when I do my own lesson, 
I will carefully think of the students’ independence and initiatives. 
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Apparently, also embedded in these ruminations are widely held beliefs about the 
quality of Fuzoku schools in Japan. This perceived reality in Fuzoku schools presented 
potential leeway for the ST into being able to explore more challenging tasks for his 
actual lessons, and employ a range of strategies in the classroom. Also, his 
observations have ushered him into further inquiry regarding how he could improve 
his class, with implications on continuous and recursive learning.  
Forged reifications of learning experiences  
Reifications of learning experiences have proven to be a very effective way to bring 
about change to the ST. Not only can one clearly map out the progress that has been 
taking place by looking at the reified works, it could also be a potential way to 
facilitate deeper learning. Wenger (1998) describes reification as “the process of 
giving form to our experiences by producing objects that congeal this experience into 
thingness” (p.58). Liljedahl (2007), on the other hand, elaborates this notion through 
the concept of movement of beliefs/knowledge from the tacit to the explicit, and 
perceives it as a way to stimulate teachers’ learning experiences. Various ways or 
modes of reifications were able to elucidate the ST’s transformative learnings. For 
example, the student teaching journal he completed daily during the practicum 
illuminates his emotional engagements, which were also considered crucial towards 
the fruition of the whole learning experience engendered and nurtured during the STP 
(Elipane, 2011). Third week into the STP, the ST has explicitly articulated his desire 
towards change (Journal entry, Week 3): 

I felt that the third week went extremely faster than how I felt during the second week. I 
thought that Monday has just come, but I realized it was already Thursday afternoon. With 
this kind of pacing, I wonder if change could happen based on the points of reflections 
discussed last week. I don’t really think I changed. 

In addition, one of the responses of the CT on the journal entries of the ST read 
(Journal entry, Week 2): “Writing the journal is for nobody else but you. Though 
facts/realities are important, don’t forget the emotions felt [during the practicum].” 
The lesson plans, on the other hand, were able to exemplify the ST’s improvement in 
mathematical content for teaching. Central to lesson planning is the privileging of 
tasks. The tasks can be suitably considered as a reification of how a teacher has 
engaged in kyouzaikenkyuu, a very important component of LS wherein teachers get 
the opportunity to reinforce and rectify their mathematical understandings, 
pedagogical content knowledge, and epistemological assimilations on student 
thinking. In using the metaphor of icebergs, Doig, Groves and Fujii (2011), relate that 
it should not only be on its visible tip – the tasks as they are privileged and utilized in 
the classrooms – that practitioners must be able to focus their attention as they engage 
in LS endeavours. They go on by suggesting that what lies beneath the iceberg – the 
rigorous process of kyouzaikenkyuu – is very important in planning lessons. 
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Student feedback and communications 
For the whole span of the STP, the STs were encouraged to take advantage of all the 
possible opportunities for them to communicate with the students and, ultimately, to 
gather information on their state of learning. Several mechanisms for this purpose 
were embedded in the system. For one, the STs were not only put in-charge for the 
subject matter they were supposed to teach, but also for the homeroom periods of the 
classes assigned to them.  They were also impelled to participate during the non- or 
extra-curricular activities of the students, such as taking their meals with the class 
during lunch time, joining them during the cleaning time, or participating in club 
activities where some of the students of their class were enlisted. It turned out that 
these opportunities to connect with the students outside academic curricular activities 
have been very important sources of information for the ST to know his students 
deeper. In his journal, he wrote (12 May 2011): 

I have been gradually coming to understand the atmosphere/character of the class assigned 
to me. Mainly by having lunch together with the students, and while observing them the 
classroom, I observed the manner/character of each one of them. Since I have already 
remembered most of their names and faces, I want to focus more on those who are good in 
math, and also those who aren’t. 

Of course, mechanisms within the academic curricular activities that facilitate 
assessments of students were also existent, aside from the conventional ones. For 
example, one socio-mathematical norm present in this particular case was the use of 
students’ self-assessment cards. These cards were filled-out by the students after every 
lesson. It was apparent that these cards were helpful for the ST in being able to have 
more informed epistemological understanding on how the students are cognitively and 
affectively responding to his instruction.  They served as a tool for the ST to guide him 
in designing and planning lessons, and they even served as a source of motivation. In 
his journal entry (14 May 2010), he wrote: 

 I replied to the comments written on the self-assessment cards. Receiving lessons from an 
amateur teacher like me, I was happy to see comments like “I understood”, “I got it”, “It 
was interesting”, etc. I want to improve further and do a good lesson. 

In addition, the mathematics lesson diary, which is a compilation of notes on lessons in 
mathematics, has been another important source of feedback for the ST. Every student 
in the class take turns in doing the task of writing the notes, and the ST gave his 
comments after every completed note for a lesson. It must be noted that the content of 
this diary does not only consist of the topic or task for the day, the ideas and opinions 
of the student-in-charge and his/her classmates, solutions, and summary of the lesson, 
but also some reflections of the student in-charge about the lesson.  
Immersion in Communities of Practice 
Enlisting the ST in an environment that nurtured his systematic development afforded 
him certain engagements in collaborative experiences that tackled their shared 
understandings and reflections on their lived experiences during the STP. Working in 
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a community of practice presented certain transformative values in the STs’ 
development towards becoming mathematics teachers, as they learn from the diversity 
of each other’s perspectives. In order to be able to do so, the STs were impelled into 
expositions of their thoughts and making their learning public. 
Moreover, by letting the STs formally articulate their comments and thoughts on 
lessons they have actually seen via the class observation report sheets when they did 
their RLs, it could be ascertained how competencies in being able to consciously and 
explicitly generate and convey their thoughts are being deliberately and systematically 
honed in the STP. In this way, STs were not only encouraged to engage in deep 
reflections about their own lessons, but also on the lessons of their peers. This could 
directly draw implications towards being able to initiate themselves into the notion of 
collegiality as they step in the actual profession of teaching. Below are some 
comments from other STs on RL (which topic was about addition and subtraction of 
positive and negative numbers) of the subject of this study, as written on the class 
observation report sheets: 

The introductory problem seemed interesting. The anticipated reactions [of the students] 
were well thought of. However, the rules for the task did not have clear rule/standards. 
It is not good to acknowledge only those answers/ideas that [you were] expecting. 
The concept of subtracting negative numbers becomes addition was thoroughly conveyed.  
It was clearly understood that adding -1 and subtracting +1 is just same. 

It could be seen from these comments that STs were able to comfortably convey 
positive and negative points regarding the lesson. This could be due to the fact that the 
STs have been situated in an affable and collaborative infrastructure within the 
practicum wherein they work and support each other towards fulfilling unified goals 
from the STP. They have been together every school day for virtually a month seeking 
help and affirmation on tasks related to their student teaching.  
DISCUSSION 
As exemplified by this particular case of student teaching in a Fuzoku School, forcible 
infrastructures within the STP that integrates the elements of LS could be 
substantiated could facilitate pre-service mathematics teacher education. Hence, even 
for just a short (albeit intensive) period of time, prospective teachers were able to 
optimally make sense of the learnings and experiences systematically provided for 
them. Each of the lessons planned, enacted, and jointly reflected upon served as 
informal simulations of RLs, as their executions were consistent with the essential 
features of LS. Having the opportunity to iteratively engage in this activity certainly 
effected transformative learning to the ST.  
Moreover, it can be said that the strong linkage between the mathematics teacher 
educators of the university and the teachers at the Fuzoku Middle School has been 
greatly beneficial in nurturing a shared common teaching culture between the 
institutions. Thus, the process of recontextualization and enculturation were well 
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coordinated, fortifying the socialization of STs from the context of the university into 
the teaching culture of the school. It was made apparent from this investigation that the 
STP held in this particular Fuzoku school was able to provide an authentic context 
wherein STs are afforded facility into developing rich understandings of 
reform-oriented mathematics classroom instruction. The STP was able to situate the 
pre-service mathematics teacher education into the crux of the actual professional 
practice that diverges from the traditional training model of teacher improvement that 
is usually emphatic on a technicized view of learning and may sometimes be external 
from the crucial aspects of the actual practice.  
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‘ROBOTS CAN’T BE AT TWO PLACES AT THE SAME TIME’:  
MATERIAL AGENCY IN MATHEMATICS CLASS 

Elsa Fernandes 
University of Madeira 

 
This article aims to discuss the role and impact of robots on mathematics learning. 
Analysing students’ participation in mathematics classes, when using robots, we 
discuss their agency and its role on fostering participation and consequently on the 
learning of mathematicsi.    

INTRODUCTION 
Learning mathematics has been traditionally seen as a cognitive and individual 
activity and mathematics itself as the subject for the mind. The conception of learning 
we talk about in this article is considerably different. We consider learning 
mathematics as an aspect of participation in social practices (Lave e Wenger, 2001) in 
which people get engaged in solving problems and making sense, using mathematical 
representations, concepts and methods (Boaler e Greeno, 2000).  
This idea of learning goes beyond the idea that social practices make rich contexts for 
learning mathematics - it defends that being part of social practices is what learning 
mathematics is. School mathematics classes which allow students to engage in 
practices of negotiation and interpretation, using physical and discursive tools and 
resources,   provide learning scenarios in which students participate by adapting to the 
constraints and agreements of it (Greeno & MMAP, 1998).  
Through the project DROIDE II – we have created learning scenariosii in which robots 
are physical artefacts with which students think during school mathematics practices, 
aiming to understand how students produce meanings and develop their learning of 
topics and mathematical concepts when robots are mediators’ artefacts.  
In this article we will analyse students participation in mathematics classes, in the 
sphere of the scenarios created, discussing the role of material agency in the learning 
of mathematics. 

LEARNING AS PARTICIPATION IN SOCIAL PRACTICES 
Learning is a process that takes place in a participatory structure (Lave e Wenger, 
1991). This means, amongst other things, that learning is mediated by the different 
perspectives existing between co-participants. 
The focus of Wenger`s (1998) theory in his book Communities of Practice –Learning, 
Meaning and Identity - is in ‘learning as social participant’. Participating does not only 
refer to events of local engagement in a certain kind of activities or with a certain type 
of people, but to a wider process of being an active participant on the practices of 
social communities. That participation makes us not only what we are but also who we 
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are and the way we look and interpreter what we do. It also shapes the communities in 
which we participate; in fact, our ability or lack of it to shape our communities of 
practice is an important aspect of our participating experience.  
Participation in a social practice implies constant negotiation. To negotiate a shared 
enterprise implies responsibility among the parts involved. This relations include what 
matter and what doesn`t, what is important and what isn`t, what to do and not to, what 
parts need attention and what to ignore, what to say and not to, what should be justified 
and what to presume justified, what to show and what to conceal, to understand when 
actions and artefacts are good enough and when they still need improvement or 
refining.  
Learning as participation in mathematics classes 
Analysing students’ participation in mathematics classes becomes important when we 
want to understand and discuss learning as an emergent phenomenon from 
participation in social practices.  
Learning mathematics is a process of people becoming more capable of participating 
and a social practice which encompasses the relations between people and knowing. 
Boaler and Greeno (2000) consider knowing and understanding mathematics as 
aspects resulting from participation on social practices, in particular, in those which 
the individuals engage themselves on making sense and solving problems using 
mathematics representations, concepts and methods as resources. Throughout this 
process many moments of negotiation take place. These moments of negotiation that 
occur in mathematics classes shape the practice of school mathematics, affecting 
participants and their way of participating.  
Recently Greeno (2011) has been elaborating about students’ interactions and stated 
that we can analyse the way students position themselves in the interaction by two 
ways: the systemic positioning considering the other students and the teacher; and the 
semantic positioning considering the concepts and the mathematics methods. The 
systematic positioning implies the levels of expectations of others to who is expected 
to be the first to contribute, to question other`s proposals and to whom to explain about 
the methods and processes involved in the tasks. The semantic positioning implies 
what Pickering (1995) called conceptual agency, in which the individual makes 
choices and emits judgements based on the meanings and adaptation of methods and 
interpretations. 
To think about the systemic position we can analyse two aspects: the negotiated 
structure of participation and the way students understand the proposed task.  
To explain the negotiated structure of participation we will focus on question such as: 
(i) how is one idea appropriated by the collective? (ii) Who is expected to assume or 
criticise the mathematics ideas? (iii) How do students become encouraged to speak 
with each other, meaning, what rules of argumentation are at stack in that practice? To 
explain the way students understand the proposed task we will focus on: on the sense- 
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making requirement, the task`s structure and on the requirements to fulfil the task with 
success (Gresalfi, Martin, Hand, Greeno, 2009). These aspects were the focus of our 
analyses because analysing these aspects of the interaction allows us to explain 
students’ participation in school mathematics practices and to make quite visible the 
positioning students assume concerning agency and accountability.  
On Agency  

“An individual's agency refers to the way in which he or she acts, or refrains from acting, 
and the way in which her or his action contributes to the joint action of the group in which 
he or she is participating”(Gresaldi et al, 2009, p. 53). 

Pickering (1995) made a difference between human agency and material agency.  
Humans are active and intentional beings. Human agency has an intentional and social 
structure. Physical artefacts are essential for the modern world. People manoeuvre in a 
field of material agency "capture, seduce, download, recruit, enrol, or materialize that 
agency, taming and domesticating it, putting it at our service, often in the 
accomplishment of tasks”(p.6). Human agency is itself emergently reconfigured in its 
engagement with material agency.  

“There is no way that human and material agency can be disentangled. Or else, while 
agency and intentionality may not be properties of things, they are not properties of 
humans either: they are the properties of material engagement, that is, of the grey zone 
where brain, body and culture conflate”(Malafouris, 2008, p. 22). 

Pickering (1995, in Gresalfi et al., 2009) made a distinction, when he developed the 
terms conceptual and disciplinary agency, in his sociohistorical analysis of a case of 
research in mathematics. Mathematicians “exercise conceptual agency when they 
engage in decision making, exploration, and strategizing” (p. 53).When they decide to 
use an established method, agency is turned over to the discipline.  
According to Pickering (1995) what happens generally, in physics and mathematics, is 
‘a dance of agency’ that combines the conceptual agency with the disciplinary agency 
or conceptual agency with the material agency. Pickering did not consider material 
agency significant in mathematics (Wagner, 2004). Although Pickering rejects the 
possibility of material agency in mathematics, Wagner (2007) considers that question 
should be pursued. In this article we`ll discuss how is this dance between the material 
agency and conceptual agency or disciplinary agency in mathematics classes.  

METHODOLOGY 
The nature of the research related in this article is qualitative due it aims to develop an 
understanding of human systems, such as a technology-using teacher and his or her 
students and classroom (Savenye and Robinson, 2004). 
To use the Situated Learning Theories as theoretical foundation, when doing research, 
implies some methodological assumptions such as assuming that investigating is to 
participate in a wide range of practices in which the investigation occurs (Matos e 
Santos, 2008). That was the positioning assumed by the researcher involved in the data 
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collection. To be part of the research was also to learn. So, the observant participating 
was a central strategy and acquired the status of data collection methodology. 
The data collection was made in two months, between February and April of the 
school years 2010-2011. We chose to work with two classes of the 7th grade students 
(ages between 13 and 15 years old) studying functions. There was an initial session 
where students, had their first contact with the robots. It took place in the Droide 
Laboratory of University of Madeira. A video cam was used, focused on a group. Four 
90 minute classes were recorded (also with a video cam focusing in a group).  
The analysis was made based on the video transcriptions and on the notes taken by the 
researcher and teachers involved in their project notebook. The units of analysis 
include person, activity and the contexts where activity takes place (Matos, 2010). We 
tried to find patterns of interaction, among students and students and teachers, using 
questions above to think about data. Bellow we present a short part of the analyses that 
we have been doing.  

DISCUSSION –THE CASE OF ‘HE’ 
The initial session, students went to University of Madeira, to the DROIDE 
Laboratory, to assemble and program robots. Students were made accountable to the 
assembly of a robot that could be programmed and that could function as they were 
eager to see the robot (a car) moving. They had to convince themselves and other 
groups and teachers that they were capable of doing it, by simply doing it, even 
because despite the great ambience, cooperation and companionship there was a 
certain competition going on to see who would be the first group to finish the project 
and who would do it better. There wasn`t any type of explicit negotiation as they 
worked thru building the robot or programming it. Each element of the group has taken 
on a task and the others simply assumed another task or function. 
On the following day, back to school, they worked on a worksheet ‘notion of a 
function’ which aim was that students working with robots, oriented by the questions 
of the worksheet, understand, learn and define the concept of function. It was been 
made over two 90 minute classes. The worksheet had a closed and very scholar 
structure. The innovation was the inclusion of the robots to think about the 
mathematical concepts involved. 
Each group of students received a worksheet and, even before robots were distributed, 
the teacher asked them to read attentively the issues on the proposal. 

The task is to think about two robot trips given two graphics. The first question was 
about students analysing both graphics and to make a description of the robot trip 
having the starting point as a reference. The second question was about the robot`s 
programming in order realize the trips, if possible. The graphics presented were the 
following: 
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Figura 1 – Graphics presented on the worksheet  
The school mathematics practice analysed can be characterized by the resolution of 
mathematical questions on group, in which students had to discuss every task, to 
describe the processes that leaded them to results and finally they had to present results 
and conclusions to the rest of the class. The wider group discussion was mediated by 
the teacher.  
‘He’ was one of the 10 boys that had failed the preceding year and these school year 
had had a marginal participation on mathematics classes. Since the moment he began 
to work with the robots, ‘He’`s posture, in mathematics classes, changed. ‘He’ was the 
one handling the robot in the group, programming it and checking the programming 
results. 
‘He’`s group read the graphic (on the left side) concerning António`s trip with few 
hesitations. After analysing António`s graphics and programming the robot to make 
that trip, experimenting it on the floor and verifying it’s well done, they came back to 
the desktop  and asked teacher’s help. ‘He’ asked: 

He: In the second graphic we don`t really have to do anything, right? 
Teacher: Why do you say that? What do you mean "don`t have to do anything"? 
He: We already analyzed Rui`s graphic and we can`t program it. 
Teacher: And why can`t you? 
He: We can`t because there`s no command that allows us to make the robot go back in 

time. 
Teacher: But where in the graphic do you see that the robot has to go back in time? 
He: Right here teacher (Rui pointed the graphic to the 12s moment), at 12 second the 

robot was at a distance 10, but also at a distance of five, because the robot 
went back and time does not go back. It can`t be at two places at the same 
time. We can`t program it because it isn`t possible. 

‘He’ was very much convinced that this programming wasn`t possible. Even so, he 
couldn`t convince his colleagues, that were not, at the time, able to see his point. After 
discussing his point of view with the teacher he left his colleagues to proceed with the 
task of programming the second trip even knowing it wasn`t possible, as he pulled 

Antón
 

Ru
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aside and started writing. After some time, the teacher went back to the group and 
asked if they already had reached to a conclusion. One of students in the group replied: 

Pe: Yes we did. We can`t program it. We only made it until here (pointing on the 
Robotics Invention System programming interface, to the path until the 12 
second). 

The inclusion of the robots motivated ‘He’ and made him to commit to the resolution 
of the working proposal. His point of view has convinced the teacher but not his 
colleagues. Probably due to the way other students saw ‘He’ in terms of mathematical 
knowledge. He was a student with marginal participation and, maybe because of that 
his mathematical explanation wasn`t accepted by the group. It was not supposed  that 
‘He’ was accountable to the solution of mathematical question due his trajectory in 
mathematics classes along all the school year until robots arrive.  
‘He’`s questioning to the teacher was very useful in order to include the teacher 
himself in the responsibility system, there is, if teacher approved his answer, the other 
students of the group will be convinced,  once he wasn`t being able to convince his 
colleagues. But it was probably a way for ‘He’ to show what he was capable of 
(accountable for). After solving every other question of the worksheet, that included 
writing the condition needed to allow for a correspondence to be a function, students 
had to comment on the following sentence "The correspondence presented by António 
is a function. Rui`s correspondence isn`t a function" 
‘He’ again asked the teacher a question, for what he already seemed to have the answer, 
showing once again what they had been able to achieve making himself accountable to 
the idea.  

He.: Teacher, can we say that Rui`s graphic isn`t a function because there is one single 
time corresponding to two distances? 

Teacher: And that’s what can’t happened for a trip to be possible? 
He.: Yes it is. For a trip to be possible, it can`t be at the same time at two different places. 

Rui`s robot at 10s is at the distance of 5 and 10. 

‘He’ was the ‘motor’ of this group for the ‘good’ resolution of mathematical question 
proposed, displaying his conceptual agency,  that was emergently reconfigured in its 
engagement with material agencyiii. Using the robots by which he showed great 
interest since the first session, seemed to be de leverage to operate the change on ‘He’. 
He was able to explain why the correspondence is not a function in terms of the robots 
functioning ‘[the robot] can`t be at two places at the same time’. The robot, associated 
to the notion of function, was part of the shared repertoire of this class seeing that they 
always used those sentence every time they have to justify that a correspondence is a 
function and after they ‘translated it’ to the situation they had to solve. 
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FINAL CONSIDERATIONS 
During these classes there were times where mathematics contents assumed some 
invisibility in order to provide the robots with some more visibility and there were 
times where the robots or even its programming allowed mathematics contents a wider 
visibility. The duality among visibility and invisibility of the artefacts (physical and 
conceptual) shaped the participation and by that, students mathematics learning. 
Introducing robots in the school mathematics learning scenarios displayed a dynamic 
link between the work with these artefacts and the way that students think about the 
notion of function. The agency emerges from the action of using robots to think 
mathematically. We need to recognize that material agency is irreducible to human 
agency. Nevertheless, we need to stress that the trajectory of emergence of material 
agency is bound up with that of human agency (Pickering, 1995). In this case, it 
displayed conceptual agency in a student that usually uses to do almost nothing in 
mathematics class.  
Students thinking about the notion of function with robots displayed a dynamic 
coupling between dealing with the mathematical concepts and dealing with the robot 
that looks like a dance of agency. We have to underline that the dance is between equal 
patterns. This equality does mean that one of the two dancers is not at times leading the 
dance. What is does imply is that we can not separate both thinks. We can not separe 
what has been learned form the action of dealing with robots. Trying to separate it is 
like ‘trying to construct a pot keeping your hands clean from the mud’. Agency is 
relational and emergent product of material engagement (Malafouris, 2008). Robots 
were determining on the kind of participation that students had, on there material 
engagement and material agency is strongly coupled with conceptual agency 
displayed on students. 
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2012. In Tso,T. Y. (Ed.). Proceedings of the 36th Conference of the International Group for  
the Psychology of Mathematics Education, Vol. 2, pp. 235-242. Taipei, Taiwan: PME. 2-235 

THE CONCEPT OF FINITE LIMIT OF A FUNCTION AT ONE 
POINT AS EXPLAINED BY STUDENTS OF NON-COMPULSORY 

SECONDARY EDUCATION 
José Antonio Fernández Plaza, Juan Francisco Ruiz Hidalgo and Luis Rico Romero  

Department of Didactics of Mathematics. University of Granada (Spain) 
 
Abstract 
We review various educational studies of the mathematical concept of limit of a 
function at a point that indicate how colloquial uses of the terms “to approach,” “to 
tend toward,” “to reach,” “to exceed” and “limit” influence students’ conceptions of 
these terms. We then present the results of an exploratory study of this question 
performed with Spanish students in non-compulsory secondary education and analyze 
the responses they provide to justify the truth or falsity of statements related to the 
different characteristics of the concept of finite limit of a function at a point when they 
use these terms. Finally, we organize their answers according to the kinds of 
arguments made. Using the response profiles detected, we discuss the influence of 
everyday usage on the students’ arguments. 

PROBLEM 
The language used to describe the properties of the concept of limit includes terms that 
have diverse colloquial uses in everyday life. Monaghan (1991), Tall (1980), Tall and 
Vinner (1981), and Cornu (1991), among others, analyze students’ use of the terms “to 
approach,” “to converge at,” “to tend toward,” “to reach,” “to exceed,” and “limit” in a 
mathematical context and the conflicts that arise from using these terms due to the 
diversity of their meanings. Their analysis suggests a focus for investigating how 
students’ mathematical use of these terms is conditioned by their everyday meanings. 
We propose to review and update these studies. Our report characterizes the students’ 
conceptions, as demonstrated in their explanations of certain statements on the 
concept of the finite limit of a function at a point, when they use the key terms 
identified in the literature. 

ANTECEDENTS 
Tall (1980) finds that most students conceive of the limit as a dynamic process and not 
as a numerical quantity, due to the no less problematic characteristics of the intuitive 
definition of limit. Tall and Vinner (1981) confirm that the expression “f(x) tends 
toward L, when x tends toward x0” is a source of conflict in the formal definition of 
limit. Among studies that focus on specific terminology, Monaghan (1991) analyzes in 
greater depth the influence of language on students’ ideas about the terms “to tend 
toward,” “to approach,” “to converge at” and “limit” when used to refer to different 
graphs of functions and the examples the students use to explain these terms. 
Monaghan concludes that many students do not distinguish between “tend toward” 
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and “approach” in a mathematical context. Cornu (1991) studies the influence that the 
terms “to reach” and “to exceed” associated with the term “limit” in a colloquial 
context have on students’ conceptions when they classify the value of the limit as not 
exceedable and not reachable in a dynamic or static environment. This influence is 
also reported in subsequent studies published in the Proceedings of the PME. Juter and 
Grevholm (2004) identify subjects who argue that the limit of a function at infinity is 
not reached because x cannot reach infinity. In analyzing the evolution of different 
conceptualizations of the limit of a series, Roh (2007) also finds that the unreachability 
of the limit is an obstacle. 

METHOD 
Instrument 
We worked with a survey of six open-response questions presented in two different 
questionnaires, A and B. The items are adapted from Lauten, Graham and 
Ferrini-Mundy (1994); the statements are given in the Appendix. 
The questions are open answer. They require assigning, and justifying, the values of 
true (T) or false (F) to a statement about a property related to the concept of the limit of 
a function at a point. 
Sample 
The sample was composed of 36 Spanish students in the first year of non-compulsory 
secondary education, 16-17 years of age, who were taking Mathematics for the 
Science and Technology track. The students were chosen deliberately based on their 
availability. 
The survey was administered in the middle of the academic year 2010/2011; the 
subjects had received prior instruction on the concept of limit. Of the total number of 
subjects, 18 answered questionnaire A and the other 18 answered questionnaire B. The 
survey was administered during a regular session of the math class.  

RESULTS 
Arguments on object-process interrelation in the concept of limit 
Item 1.A requires justifying the truth or falsity of the statement: “A limit describes 
how a function moves as x moves towards a certain point.” This item revises a 
question posed by Tall (1980).  
The key idea of the item is that of the movement of the function (dynamic process). 
Table 1 summarized the three profiles provided by the students’ arguments. 

Profiles Profile descriptions 

Profile I (Process) Responds true. The limit object describes the dynamic process 
that gives rise to it. 
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Profile II 
(Object/Process) 

Responds true. Stresses the limit as the result of the dynamic 
process that, implicitly, is also part of the concept; expresses a 
dual conception of object and process. 

Profile III 
(Object) 

Responds false. Differentiates the limit object from the 
dynamic process that gives rise to it.  

Table 1: Profile descriptions related to Item 1.A 
Sample answer for Profile I: “True: Yes, it does, because the limit provides all the 
possible points that a function can take.” 
Sample answer for Profile III: “False. A limit is that toward which the function f(x) 
tends.”  
Arguments on the exceedable character of the value of the limit  
Item 2.A requires justifying the truth or falsity of the statement: “A limit is a number 
or point past which the function cannot go.” This question was analyzed by Monaghan 
(1991) and Cornu (1991). 
The key idea of this item is not to exceed (a limit property). Table 2 summarized the 
two profiles provided by the students arguments. 

Profiles Profile descriptions 
Profile I (Not 
exceedable) 

The value of the limit is recognized as not exceedable in 
any case. Most of the arguments stress the value of the 
limit as unreachable (Subprofile I.1) (Not reachable). 
This property is due to the infinite nature of the numerical 
process and the exclusion of the image of the point.  

Profile II 
(Exceedable) 

The value of the limit is exceedable in certain cases; in fact, 
examples are given in which the limit is exceedable; in 
some cases it is considered reachable (Subprofile II.1) 
(Reachable). 

Table 2: Profile descriptions related to Item 2.A 
Sample answer for Subprofile I.1: “True: Because a limit is a point that a function 
approaches infinitely but never reaches” 
Arguments on the relation between the finite character of the practical process vs. 
the potentially infinite character of the formal iterative process 
Item 3.A proposes justifying the truth or falsity of the statement: “A limit is 
determined by plugging in numbers closer and closer to a given number until the limit 
is reached.” Key ideas for this item are, following Tall (1980): to try values and to 
reach. We find four profiles, or arguments, as shown in Table 3. 
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Profiles Profile descriptions 
Profile I 
(Potential infinity) 

Responds true. The process is potentially infinite, without 
further consideration. There are references to both-sides 
conditions of the process (Subprofile I.1) (bilaterality). 

Profile II 
(Practical 
finiteness) 

Responds false. Stresses the finiteness of the process in 
practice vs. the potentially infinite formal process. 

Profile III 
(Bilateralness) 

Responds false. Does not assume the existence of the limit and 
requires the both-sides condition not included in the wording of 
the item. 

Profile IV (Not 
reachable) 

Responds false. The limit is not reachable, possibly due to the 
potentially infinite character of the process. 

Table 3: Profile descriptions related to Item 3.A 
Arguments on the reachable character of the limit 
Item 1.B asks students to argue the truth or falsity of the statement: “A limit is a 
number or point the function gets close to but never reaches.” The item is related to the 
studies done by Tall (1980), Tall and Vinner (1980), Monaghan (1991), and Cornu 
(1991). Key terms in this item are to get close and to reach. Three profiles of 
arguments emerge, as summarized in Table 4: 

Profiles Profile descriptions 
Profile I (Not 
reachable) 

Responds true. Affirms that the limit is unreachable in any case, due 
to the infinite nature of the process of approaching in some cases. 

Profile II 
(Reachable) 

Responds false. The limit can be reachable in some cases. A 
transition profile. 

Profile III 
(Always 
reachable) 

Responds false. Affirms that the value of the limit is always 
reachable. Only two cases affirm that the value of the limit is 
reachable but never exceedable (Subprofile III.1)(Not 
exceedable). 

Table 4: Profile descriptions related to Item 1.B 
Sample answer for Profile II: “False: It is not necessary to reach the limit exactly but 
only to approach it enough to know what the limit is” 
Sample answer for Subprofile III.1: “False: Function attains the limit but does not go 
past it.” 
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Arguments on the interrelation of precision and the process of approximating 
the limit  
Item 2.B asks for arguments for the truth or falsehood of the statement: “A limit is an 
approximation that can be made as accurate as you wish.” The main idea of this item is 
to consider a limit as a process of approximation that can be as accurate as desired. The 
arguments collected demonstrate the profiles presented in Table 5. 

Profiles Profile descriptions 

Profile I 
(Exactitude) 

Responds false. Considers the limit as an exact value, not a process 
of approximation giving increasingly accurate values. Limit is an 
object, not a process. 

Profile II 
(Arbitrary 
precision) 

Responds true. Shows the infinite nature of the process followed to 
calculate the value of the limit. Contrary what we would logically 
expect, some responses hold that it is not the precision that matters 
but the values that approximate the limit. 

Profile III 
(Restricted 
precision) 

Responds true. Precision is restricted, given the finite nature of the 
method of calculating in practice. Only one subject fits Subprofile 
III.1 (Conditional precision), which establishes that the precision 
depends on the function and the values of  x. 

Table 5: Profile descriptions related to Item 2.B 
Sample answer for Profile II: “False: Because accuracy is not important—finding the 
numbers that get closer to the limit is” 
Arguments on the arbitrariness of the process of approximation 
Item 3.B asks for arguments for the truth or falsity of the statement: “A limit is a 
number that the y-values of a function can be made arbitrarily close to by restricting 
the x-values.” The key terms in this item are to be made arbitrarily close to and x-value 
restrictions. The answers show two profiles of response, presented in Table 6. 

Profiles Profile descriptions 
Profile I 
(Non-arbitrariness) 

Responds false. Differentiates between approximate and 
arbitrary approach. The values of f(x) do not approach the 
limit arbitrarily. Rather, depending on the values of x 
chosen, their respective images approach or recede from the 
limit.  

Profile II 
(Arbitrariness) 

Responds true. Some subjects consider the monotony of 
convergence at the limit.  

Table 6: Profile descriptions related to Item 3.B 



Fernández-Plaza, Ruiz-Hidalgo, Rico 

 
2-240 PME36 - 2012 

Sample answer for Profile I: “The values of the function become close to the limit in 
an approximate but not an arbitrary way.” 

DISCUSSION AND CONCLUSIONS 
The subjects themselves provide the criterion for discriminating between profiles 
based on the arguments used. When we find several different arguments 
simultaneously, we consider the true/false dichotomy as a secondary criterion for 
discriminating between the profiles. 
Conceptions about the concept of limit  
The profiles of response for Item 1.A show subjects who conceive the limit 
exclusively as a process. There are also subjects who establish the interdependence of 
the process of obtaining the limit of a function at a point and the object that they call 
limit. That is, the object determines and describes the process followed to obtain the 
limit, even when using a dynamic interpretation, conclusions that agree with those of 
Tall (1980). Finally, we identify subjects who do conceive the limit not as a process 
but as an object, point or number; the concept of limit establishes not a “how” but a 
“where.”  
Second, we can infer from Items 3.A and 2.B that most of the subjects recognize that 
the practical method for calculating a limit is finite, although some believe that 
assigning values close to it can be done as many times as one wishes, using the 
intuitive notion of potential infinity. However, others stress that precision is restricted, 
or that it is enough to intuit the limit. It is possible that the use of the expression “as 
one wishes” in Item 2.B introduced some subjectivity and hindered students’ 
understanding of the arbitrary precision of the approximation of a limit. 
Third, we do not find indications that the term “restriction” in the wording of Item 3.B 
led subjects to an intuitive use of the continuum (intervals or graphic representation), 
since they persist in discrete reasoning. These questions develop those studied by 
Monaghan (1991). 
Exceedable or reachable character of the value of the limit  
It is significant that these properties are considered primarily in general and not in 
particular. The unexceedable character of the limit is attributed to a great extent to its 
unreachability. However, unreachability is not due to unexceedability; even if the limit 
is reachable, it is not exceedable for some subjects. It is significant that only 2 of the 18 
subjects are aware of the particular character of these and that only one admits 
different possibilities. Misuse of the expression “f(x) tends toward L” and of strictly 
monotonous functions may contribute to these obstacles, detected previously by 
Cornu (1991). Furthermore, we suggest that these properties are considered locally 
and not globally. 
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The notion of arbitrariness 
The students interpreted the term “arbitrariness” in different ways. One case 
differentiates between “approaching approximately” and “approaching arbitrarily.” 
Another case interprets this as: “The approximation to the limit is arbitrary if any value 
of the variable x is verified,” an understanding based on its everyday meaning. 
Balance 
No previous study has analyzed the response profiles presented here. The richness and 
variety of the responses obtained for the items proposed is organized according to the 
profiles, which demonstrate the complexity of the notions implied in the concept of the 
finite limit of a function at a point. It remains to establish connections between the 
profiles described for the different questions.  
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APPENDIX: Items included in the questionnaire 
Questionnaire A. 
(1.A.) A limit describes how a function moves as x moves towards a certain point. 
(2.A.) A limit is a number or point past which the function cannot go. 
(3.A.) A limit is determined by plugging in numbers closer and closer to a given 
number until the limit is reached.  
Questionnaire B. 
(1.B.) A limit is a number or point the function gets close to but never reaches 
(2.B.) A limit is an approximation that can be made as accurate as you wish.  
(3.B.) A limit is a number that the y-values of a function can be made arbitrarily close 
to by restricting x-values. 
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Early mathematical competencies are powerful predictors for further mathematical 
learning. To provide children with sound basic mathematical competencies present 
early childhood educators with considerable challenges. To support them in this im-
portant task, a professional development program was designed. This was part of a 
larger project, aiming at improving the quality in early childhood education and in 
school. The effectiveness of the professional development program was evaluated. 
Statistical analyses indicate that children whose educators were able to support chil-
dren in their individual development due to a sound knowledge of early mathematical 
development, and of ways of engaging young children in mathematics, improved their 
mathematical abilities compared to children belonging to a control group. 

INTRODUCTION 
Children bring heterogeneous prerequisites when they start school and even when they 
enter kindergarten (Anders, Grosse, Roßbach, Ebert, & Weinert, accepted). This is a 
serious issue as several empirical studies indicate that early numerical competencies 
and early structure sense are powerful predictors of later mathematical achievement 
(Dornheim, 2008; Krajewski & Schneider, 2009; Lüken, 2010). The importance to 
provide all children with basic mathematical competencies is recognized and early 
childhood mathematics education has become a widely discussed topic in the last 
years.  
Though many materials and learning programs are offered for early childhood 
mathematics education, it is a difficult task for kindergarten educators to support 
children in their individual mathematical development processes. They have to decide 
how they should create and organize substantial mathematical learning situations, and 
they have to recognize important steps in the development of their children to be able 
to care for their further development. As learned from several empirical studies 
concerning teacher competencies (Ball, Thames, Bass, Sleep, Lewis & Phelbs, 2009; 
Lindmeier & Ufer 2010; Shulman, 1986), teaching requires a wide range of 
competencies, including, for example, content knowledge, pedagogical content 
knowledge and action-related competencies. One can assume that similar 
requirements apply to early childhood educators. Regarding that in Germany – in 
contrast to many other countries - in pre-service education of early childhood 
educators, mathematics education has not played an important role over time, this fact 
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becomes increasingly important. Therefore professional development programs are 
necessary to guarantee a substantial mathematics education for the young children.  
For this empirical study a professional development program was designed and carried 
out to support early childhood educators in their responsible task. This was part of the 
academic support in a larger project aiming at improving the quality in kindergarten 
and in school. A specific intention of the project was to support educators and teachers 
to foster children in their individual learning processes. The fundament for the 
professional development program was a concept for early childhood mathematics 
education, which focuses on natural learning situations and on fundamental 
mathematical ideas. Mathematical learning in this sense is non-formal and refers 
mainly to play- and everyday-activities as detailed below. This concept is supposed to 
provide all children with basic mathematical competencies. Another key aspect of the 
professional development program was to provide knowledge about the development 
of mathematical competencies in early childhood to enable the educators to focus on 
the individual mathematical learning process of each child and to care for an 
appropriate support. The effectiveness of the professional development program was 
evaluated through an empirical study, which assessed and compared the mathematical 
achievement of two groups of children - children, whose educators took part in the 
professional development program and children in a control group. 

THEORETICAL BACKGROUND 
Early Mathematics Education in Natural Learning Situations 
There are several reasons to assume that early mathematics education in natural 
learning situations, e.g. during play and everyday activities, provides a solid base for 
further mathematical learning: Children learn mathematics in meaningful contexts, 
they enhance their communicative competencies in dialogue with other children and 
adults and their conceptual and procedural knowledge in several mathematical content 
areas (Greenes, 1999), and learning in this way corresponds to a constructivist 
perspective on learning (Reusser, 2001). Natural learning situations are not only 
situations, which happen more or less by chance. The crucial point is “the progressive 
development of what is already experienced into a fuller and richer and also more 
organized form, a form that gradually approximates that in which subject-matter is 
presented to the skilled, mature person” (Dewey, 1938, p. 48). The educators have to 
moderate and accompany the learning processes by initiating these learning situations 
or by using the potential for mathematical learning that everyday activities offer. This 
means, they have to recognize and to make use of the opportunities for mathematical 
learning in play and everyday activities. A central demand is that all these planned and 
initiated activities should be mathematically correct and they should be based on 
fundamental mathematical ideas to guarantee coherence and consistency in 
mathematical learning. 
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Competencies Required of Early Childhood Educators  
To implement early mathematics education in the way described above, and to ensure 
that children with different levels of knowledge and skills can profit, requires 
wide-ranging knowledge and competencies of educators. They need content 
knowledge in particular to guarantee coherent mathematical learning, to see the rela-
tions between mathematics in the early years and later on, and to judge solutions or 
statements, children produce (Ball et al., 2009). Their pedagogical content knowledge 
is necessary to identify individual learning difficulties and to ask deeper questions to 
understand children’s thinking better. It helps to assess the individual competencies 
over a broader range and to decide whether additional support is needed or not. The 
knowledge of learning difficulties, misconceptions and prerequisites is also called 
“diagnostic knowledge” (Weinert, Schrader & Helmke, 1990).  
Knowledge as described above is not sufficient for successful action in concrete 
situations, but it is part of another important competence early childhood educators 
need: the theoretical construct “action competence” (Weinert, 2001, p. 51). This 
means not to act in a prescribed manner, but to act adequately to the situation, to the 
individual person and to the subject on the background of a sound knowledge of 
content and pedagogical content. For example, educators plan early mathematics 
education, but in addition spontaneously seize the opportunities for mathematical 
learning in everyday and play situations. They have to detect mathematically relevant 
aspects in interactions between children, in play situations or in everyday routines and 
they have to use these situations by asking relevant questions or by encouraging 
reflection (van Oers, 2009). In case of individual learning difficulties action 
competence is indispensable for the selection of adequate and necessary steps for 
further learning. Successful educators are sensitive to the individual development of 
their children, they have ideas to foster them and they act in an adequate way (Weinert, 
Schrader & Helmke 1990).  

EVALUATION STUDY OF A PROFESSIONAL DEVELOPMENT 
PROGRAM FOR EARLY CHILDHOOD EDUCATORS 
Thinking of early mathematics education means not only to design materials for early 
mathematics education. It means especially to have in mind that with increasing 
demands on educators their professional development is becoming more and more 
important. Therefore, a professional development program was worked out to support 
educators in providing opportunities to learn mathematics in natural learning 
situations and in fostering children appropriate to their individual stage of learning. 
Professional Development Program  
In three of four modules, the educators worked on content and pedagogical content 
knowledge in the domains ‘number, counting, quantity’, ‘space and shape’ and 
‘measurement and data’. The fourth module focused on observation, documentation of 
children’s learning progresses and possibilities of intervening, if the observation of 
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children shows specific problems. The module ‘number, counting, quantity’ took a 
whole day, the three others only a half-day. The three content-based modules were 
structured as follows. The mathematical content was divided into smaller sections, e.g. 
for the domain ‘number, counting, quantity’ in counting sequence, counting process, 
comparing, quantification and structures, pattern and changing. In each section the 
educators got information about associated mathematical competencies and their 
development from early childhood up to the first school years. These information 
sections included thought experiments and self-reflection-tasks like trying to count on, 
or calculating by, the letters of the alphabet. If possible the information part was 
illustrated with short video-sequences to reflect the development of children and to 
train observation. This more theoretic content was enriched by everyday activities and 
play situations in the context of natural learning situations. Many activities were 
carried out directly by the educators. Their own learning experiences were reflected in 
a short discussion afterwards and supplemented by their own ideas. The fourth module 
aimed at a more conscious approach to traces of mathematical competencies in 
children’s actions. It provided information on observation and diagnostics in general, 
especially the reasons why this is indispensable in early mathematics education. The 
main part of this module was a training to observe learning processes, to draw 
conclusions for further mathematical learning and to reflect on which tasks or 
situations could help to foster individual learning. Video-sequences were used for this 
training. To support the educators in these challenging activities, the observation-tool 
“Lerndokumentation” (Steinweg, 2006) was introduced. It is a chart, where central 
mathematical competencies are described in natural learning situations in early 
childhood education. 
Research Question, Sample and Methodology 
The main research question was if this professional development program for educa-
tors has positive effects on the mathematical learning of children. Hence, children’s 
performance in a mathematics test was measured and compared with the performance 
of a control group. There were three points of measurement over a three-year period in 
annual test intervals: a pretest, a test during the intervention time and a posttest. The 
treatment group was a proportionally stratified sample (age, gender, migra-
tion-background; pretest: N=21, age 3-4 years; posttest: N=19, age 5-6 years) out of 
the target population, which was defined by all children in the day-care centers, 
participating in the project. The control group was stratified in the same way as the 
treatment group. The day-care centers in both groups are located in comparable dis-
tricts regarding some social data and the percentage of foreign nationals (Gasteiger, 
2010). The intervention (professional development program) was carried out eight 
months after the pretest and repeated after one year. The posttest was carried out four 
months after the second intervention. To measure the development of mathematical 
learning a test instrument was designed (Gasteiger, 2010) with items in the domains 
‘number and calculation’ (19 items, Cronbach’s α=.89, .86, .76), ‘measurement’ (5 
items, α=.55, .40, .35), and ‘shape and space’ (6 items, α=.62, .55, .44) – 30 items all in 
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all (α=.91, .89, .78). The test includes an interview supported with some material, e.g. 
counting objects, number- and quantity-cards, and a paper-pencil test. For the data 
analysis, the whole test was videotaped. The reliabilities of the subscales 
‘measurement’ and ‘shape and space’ are low. Therefore, for further data analysis, 
only the whole scale and the subscale ‘number and calculation’ will be used. 

RESULTS 
To analyse the results of the evaluation study we used the data of the group of children 
who took part in the mathematics test three times (N=19 in each group), with one 
exception: at the second point of measurement one child in the treatment group was 
not available for the test, but it took part at the pre- and posttest.  
Pretest scores for treatment group (M=28%, SD=17%) and control group (M=40%, 
SD=22%) differ not significantly but considerably (t(36)=1.89, p>0.05), even though 
the samples were stratified in parallel ways. From the first to the second point of 
measurement both groups’ mathematical competencies are developing in parallel. At 
the third point of measurement, the results of both groups approximate to each other 
(treatment group: M=80%, SD=13%; control group: M=84%, SD=13%, t(36)=.89, 
p>0.05).  
ANOVAS with repeated measures are used to examine the development of 
mathematical competencies and differences between the treatment, and the control 
group. The focus is on the interaction effect between group and point of measurement. 
Considering the whole scale of test items, the main effect of mathematical 
development over the period of two years is highly significant as expected (p<.001), 
because children improve their mathematical competencies over time – independent 
from any intervention. The interaction effect is not significant (F(1.730)=1.687, 
p=.20). If only the subscale ‘number and calculation’ is considered, in addition to the 
main effect of mathematical development in general, the interaction effect is signifi-
cant as well (F(1.924)=4.468, p=.02, η2=.11). Children in the treatment group differ 
significantly in their performance in the content domain ‘number and calculation’ 
from children in a control group. The comparison of means shows that they can im-
prove their competencies between the second and the third point of measurement: 

M (SD) treatment group control group 
1st point of measurement 

(pretest) 
21% (16%) 39% (23%) 

t(36)=2.68, p<0.05, d=0.87 
2nd point of measurement 55% (22%) 71% (21%) 

t(35)=2.29, p<0.05, d=0.75 
3rd point of measurement 

(posttest) 
83% (14%) 86% (16%) 

t(36)=0.46, p>0.05, d=0.15 

Table 1: Comparison of means in the subscale ‘number and counting’. 
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Examining the subscales, it could be detected that the differences in the results of the 
two groups at the beginning of the evaluation study and also at the second point of 
measurement are caused by the differences in the subscale ‘number and counting’. At 
first and second point of measurement they are even significant (see table 1), while the 
performance of treatment and control group in the two other subscales nearly do not 
differ (Gasteiger, 2010). 

DISCUSSION 
In this study, the intervention addressed the professional development of the educators 
but the mathematical competencies of children were the decisive factor to appraise 
whether the intervention was successful or not. This fact may explain why, from the 
first to the second point of measurement, both groups’ mathematical competencies are 
developing in parallel (see table 1). For the educators taking part in the professional 
development program it can be assumed that they get ideas for early mathematics 
education in natural learning situations, information about mathematical development 
in early childhood and experiences in the observation of mathematical competencies. 
The professional development program gave no explicit instruction how the educators 
should act when they are back at work. This means changes in the daily work might 
happen when the educators have in mind what they learned about mathematical 
learning and development and, when they know how to act through their – hopefully – 
improved content and pedagogical content knowledge. There is a long way to 
children’s improvement of mathematical competencies: the educators need to reflect 
on their daily work due to their new experiences, they need to try to realize early 
mathematics education in natural learning situations, to detect individual difficulties 
and competencies of the children, and to support their development. Not until then can 
the professional development have an effect on children’s performance. So it is 
remarkable that despite the long way these effects on children’s mathematical 
development can be detected. Obviously, the effects of professional development on 
children’s mathematical achievement do not emerge immediately, but there is reason 
to believe that this process has a sustainable impact on the daily work of the educators 
and may lead to an ongoing enhancement of children’s mathematical development. 
Another interesting point in this evaluation study is that the intervention only had 
effects in the domain ‘number and calculation’. There are some ideas to explain this 
result. One reason may be that the test instrument was not balanced in the content 
domains. There were considerably more items in the domain ‘number and calculation’ 
than in the other two content domains and the subscales to ‘shape and space’ and to 
‘measurement’ were not as reliable as the subscale ‘number and calculation’. Maybe 
with a longer test instrument, effects could be detected in other content domains as 
well. Also it may be assumed that early childhood educators rather think of numbers, 
counting and calculating than of spatial thinking or measuring time, when they engage 
with early mathematics education (Lee & Ginsburg, 2007). Moreover, the domain 
‘number, counting, quantity’ took more time in the professional development program 
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than the other domains. Possibly it was or it is easier for educators to think about 
natural learning situations in this domain than in the others. Discussions with 
educators during the professional development program confirm this statement. 

CONCLUSION 
There are many ways to think about early mathematics education. Today, early 
childhood educators can use frameworks for an orientation, they have a choice 
between several materials or training programs and they have access to diagnostic 
tools. Demanding that early childhood education should meet the requirements on 
sustainable learning and all activities in early mathematics should be based on 
individual prerequisites and learning progress of children, it is indispensable to 
support the early childhood educators (Baroody, 2004). They have to act competent – 
sometimes spontaneously – and to plan and initiate mathematical learning in a 
meaningful way, having in mind why some contents or skills are relevant for further 
mathematical learning, and others are not. Using materials, frameworks, and 
diagnostic tools without having in mind which mathematical ideas are relevant for 
children and how they can learn them adequate and matched to their individual 
learning progress promises not to be successful (Siraj-Blatchford, Sylva, Muttock, 
Gilden & Bell, 2002).  
The results of the study presented here show that professional development can have 
effects on children’s mathematical learning though it is a long way from the 
development of educators’ competencies to children’s mathematical achievement. 
The approach to think about early mathematics education by professionalization of 
educators is demanding. Short-term effects could not be expected, but there are good 
reasons to believe that in the long run this approach can lead to a profound change in 
the thinking of early childhood educators and in their acting concerning early 
mathematics education. 
References 
Anders, Y., Grosse, C., Roßbach, H.-G., Ebert, S. & Weinert, S. (accepted). Preschool and 

primary school influences on the development of children’s early numeracy skills between 
the ages of 3 and 7 years in Germany. Special Edition of School Effectiveness und School 
Improvement. 

Ball, D., Thames, M.H., Bass, H., Sleep, L., Lewis, J. & Phelps, G. (2009). A practice-based 
theory of mathematical knowledge for teaching. In M. Tzekaki, M. Kaldrimidou & H. 
Sakonidis (Eds.), Proc. 33th Conf. of the Int. Group for the Psychology of Mathematics 
Education (Vol. 1, pp. 95-98). Thessaloniki, Greece: PME. 

Baroody, A.J. (2004). The role of psychological research in the development of early 
childhood mathematics standards. In Clement, D.H. & Samara, J. (Eds.). Engaging Young 
Children in Mathematics. Standards for Early Childhood Mathematics Education. 
149-172. Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Dewey, J. (1938). Experience and education. In Boydston, J. A. (Eds.). John Dewey. The 
Later Works, 1925-1953, Vol. 13, 1938-1939, 1-62. Southern Illinois University Press. 



Gasteiger 

 
2-250 PME36 - 2012 

Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche: Der Beitrag von 
Zahlen-Vorwissen und allgemein-kognitiven Fähigkeiten. Berlin: Logos Verlag. 

Gasteiger, H. (2010). Elementare mathematische Bildung im Alltag der Kindertagesstätte. 
Grundlegung und Evaluation eines kompetenzorientierten Förderansatzes. Münster: 
Waxmann. 

Greenes, C. (1999). Ready to learn. Developing young children’s mathematical powers. In 
Copley, J.V. (Eds.). Mathematics in the Early Years. 39-41. Reston, Virginia: NCTM. 

Krajewski, K. & Schneider, W. (2009). Early development of quantity to number-word 
linkage as a precursor of mathematical school achievement and mathematical difficulties: 
Findings from a four-year longitudinal study. Learning and Instruction, 19, 513-526. 

Lee, J.S. & Ginsburg, H.P. (2007). What is appropriate mathematics education for 
four-year-olds? Journal of Early Childhood Research, 5(1), 2-31. 

Lindmeier, A. M. & Ufer, S. (2010). Modelling and measuring components of mathematics 
teacher knowledge and competencies. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proc. 
34th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 3, pp. 
209-216). Belo Horizonte, Brazil: PME. 

Lüken, M. M. (2010). The relation between early structure sense and mathematical 
development in primary school. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proc. 34th 
Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 3, pp. 
241-248). Belo Horizonte, Brazil: PME. 

Oers, B. van (2009). Emergent mathematical thinking in the context of play. In Educational 
Studies in Mathematics, 74, 23-37. 

Reusser, K. (2001). Co-constructivism in educational theory and practice. In Smelser, N.J., 
Baltes, P. & Weinert, F.E. (Eds.). International Encyclopedia of the Social and Behavioral 
Sciences, 2058-2062. Oxford: Pergamon/Elsevier Science. 

Shulman, L.S. (1986). Those who understand: knowledge growth in teaching. Educational 
Researcher, 15(2), 4-14. 

Siraj-Blatchford, I., Sylva, K., Muttock, St., Gilden, R. & Bell, D. (2002). Researching 
Effective Pedagogy in the Early Years. London/Oxford: Institute of 
Education/Department of Educational Studies. 

Steinweg, A.S. (2006). Lerndokumentation Mathematik. Berlin: Senatsverwaltung für 
Bildung, Wissenschaft und Forschung. 

Weinert, F.E., Schrader, F.-W. & Helmke, A. (1990). Educational expertise. Closing the gap 
between educational research and classroom practice. School Psychology International, 
11, 163-180. 

Weinert, F.E. (2001). Concept of competence: A conceptual clarification. In Rychen, D.S., & 
Salganik, L.H. (Eds.). Defining and Selecting Key Competencies. 45-65. Seattle, Toronto, 
Bern, Göttingen: Hogrefe&Huber Publishers. 



 

2012. In Tso,T. Y. (Ed.). Proceedings of the 36th Conference of the International Group for  
the Psychology of Mathematics Education, Vol. 2, pp. 251-258. Taipei, Taiwan: PME. 2-251 

THE RELATIONSHIP BETWEEN SELF-CONCEPT AND 
EPISTEMOLOGICAL BELIEFS IN MATHEMATICS 

AS A FUNCTION OF GENDER AND GRADE 
Marina Gattermann Stefan Halverscheid Jörg Wittwer 

University of Goettingen, Germany 
 
Research has shown that self-concept and epistemological beliefs in mathematics 
have influence on school performance. Also, gender differences and developmental 
changes in self-concept and epistemological beliefs have been documented. However, 
the relationship of self-concept and epistemological beliefs in mathematics as a 
function of gender and grade has not been the object of much research. This study with 
N = 145 students reveals (1) that the self-concept is related with epistemological 
beliefs in mathematics, (2) that differences in self-concept and epistemological beliefs 
in mathematics exist between girls and boys but not between different grades, and (3) 
that gender differences in the mathematical self-concept increase when taking into 
account the influence of epistemological beliefs and performance in mathematics. 

INTRODUCTION 
It is widely acknowledged that school performance is the result of the interplay of 
multiple factors. Hence, not only cognitive skills but also personality characteristics 
have an impact on school performance. In this context, the self-concept, that is, the 
individual’s perception of one’s own abilities in an academic discipline, plays an 
important role for school performance (e.g., Marsh et al., 2005). Similarly, 
epistemological beliefs, that is, one’s own beliefs about the nature of knowledge and 
knowledge acquisition, have been shown to have influence on school performance 
(e.g., Hofer & Pintrich, 2002). In addition, prior research has provided evidence for 
gender differences and developmental changes in both self-concept and 
epistemological beliefs. In this context, however, the question arises as to how the 
self-concept is specifically related to epistemological beliefs. Therefore, we conducted 
a study in which we examined the relationship of self-concept and epistemological 
beliefs in mathematics as a function of gender and grade. 

THEORETICAL BACKGROUND 
Self-concept in mathematics 
The mathematical self-concept refers to ideas of one’s own skills and abilities in 
mathematics (Marsh et al., 2005). It has been shown to be closely related to 
mathematical performance (e.g., Fredricks & Eccles, 2002). At the same time, 
however, prior research suggests that boys have a higher self-concept in mathematics 
than girls (e.g., Skaalvik & Skaalvik, 2004). This seems to be true even though their 
level of performance might actually be the same. 
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In addition, prior research has shown that there are developmental changes in a 
student’s self-concept. For example, Fredricks and Eccles (2004) observed declines in 
a student’s mathematical ability perceptions from grade 1 to grade 12. In addition, they 
found that boys had a higher mathematical self-concept than girls but this 
gender-related difference decreased over time. 
Epistemological beliefs in mathematics 
Epistemological beliefs refer to one’s own subjective theories and beliefs about the 
nature of knowledge and knowledge acquisition in academic disciplines such as 
mathematics. It has been shown that more sophisticated epistemological beliefs are 
more closely related to deep-processing learning strategies. Such learning strategies 
are more beneficial to learning than superficial learning strategies that are more typical 
of naïve epistemological beliefs. The relationship of epistemological beliefs and 
learning strategies is assumed to be responsible for differences in school performance 
(e.g., Köller, Baumert, & Neubrand, 2000). 
According to Schoenfeld (1992), epistemological beliefs in mathematics can be divided in two 
epistemological views: a static system view and a dynamic process view. The static system view emphasizes 
learning and the application of definitions, facts and routines whereas the dynamic process view is related to 
discovering and arguing in mathematics. Grigutsch (1996) found in his study that the dynamic process view 
was related to a higher self-concept and a higher performance in mathematics. In contrast, the static system 
view was linked with a lower self-concept and a lower performance in mathematics. In addition, girls more 
often emphasized the process character of mathematics and aspects of application whereas boys more often 
had a view where a schematic conception of mathematics was predominant. 
In general, epistemological models assume that epistemological beliefs develop over 
time. In other words, there is a developmental transition from more naïve 
epistemological beliefs to more sophisticated epistemological beliefs (e.g., Hofer & 
Pintrich, 2002).  

RESEARCH QUESTIONS 
Prior research provides empirical evidence for gender-related differences in the 
mathematical self-concept of girls and boys. In addition, previous studies suggest that 
the mathematical self-concept declines over time in the majority of students. Likewise, 
it has been shown that gender is related to differences in the level of epistemological 
beliefs in mathematics. In contrast to the self-concept, epistemological beliefs are 
assumed to develop over time in students. In this study, we extended prior research by 
examining the relationship of self-concept and epistemological beliefs in mathematics 
as a function of gender and grade. More specifically, we addressed the following 
research questions: 

• What level of epistemological beliefs do students of grade 9 and students of 
grade 10 possess? 

• Are more sophisticated epistemological beliefs in mathematics positively 
related and are more naïve epistemological beliefs negatively related with the 
self-concept and the performance in mathematics? 
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• Do boys possess – in accordance with gender-related differences in the 
mathematical self-concept – more sophisticated epistemological beliefs in 
mathematics and less naïve epistemological beliefs in mathematics than 
girls? 

• Do students of grade 10 possess – in accordance with stage-related 
differences in the epistemological beliefs – more sophisticated 
epistemological beliefs and less naïve epistemological beliefs in mathematics 
than students of grade 9? 

METHODOLOGY 
The cross-sectional study is based on a total of N = 145 high school students in grades 
9 and 10 of a German gymnasium (i.e., a school with the highest track in the German 
school system) with 79 girls and 66 boys. The questionnaire that was given to the 
students consisted of (1) 23 items assessing the self-concept (e.g., “I get good marks in 
mathematics.”), and (2) 25 items assessing epistemological beliefs. The items were 
taken from large-scale assessments such as PISA and TIMSS, from the Potsdam 
Motivation Inventory PMI-M (Rheinberg & Wendland, 2003), and from the Self 
Description Questionnaire II (Marsh et al., 2005). The epistemological beliefs in 
mathematics addressed the following six aspects: (1) rigid schemes (e.g., “Exercises in 
mathematics always have only one right solution.”), (2) schematic conception of 
mathematics (e.g., “Mathematics is a collection of calculation methods and calculation 
rules that specify exactly how to solve a problem.”), (3) realistic conception of 
mathematics (e.g., “In the meantime, all mathematical problems are solved.”), (4) 
relativistic conception of mathematics (e.g., “Mathematics is a game with numbers, 
symbols and formulas.”), (5) processes (e.g., “In mathematics, you can find a lot of 
things by yourself.”) and (6) relevance/application (e.g., “Mathematics is needed for 
lots of problems in our daily lives.”). The first three scales (i.e., rigid schemes, 
schematic conception, realistic conception) assess more naïve epistemological beliefs 
in mathematics. The last three scales (i.e., relativistic conception, processes, 
relevance/application) assess more sophisticated epistemological beliefs in 
mathematics. For all items, a 4-point rating scale ranging from 1 = disagree to 4 = 
agree was used. The internal consistency of all epistemological beliefs scales as 
indicated by Cronbach’s alpha ranged from .60 to .75 with the exception of the scale 
assessing rigid schemes with an internal consistency of only α = .40. The internal 
consistency of the self-concept scale was excellent, α = .95. In addition to the 
questionnaire, the students were asked to provide their grade in mathematics. In 
Germany, grades range from 1 to 6 with lower numeric values indicating a higher 
performance (e.g., 1 = very good, 6 = unsatisfactory). 

RESULTS 
Table 1 displays the correlations among the scales assessing the different aspects of 
epistemological beliefs in mathematics. They reveal that the more sophisticated 
epistemological beliefs relativistic conception, processes, and relevance/application 
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are nearly always significantly and negatively associated with the more naïve 
epistemological beliefs rigid schemes, schematic conception, and realistic conception. 
Hence, students who had more sophisticated epistemological beliefs with regard to 
relativistic conception, processes and relevance/application had, at the same time, less 
naïve epistemological beliefs with regard to rigid schemes, schematic conception, and 
realistic conception. 

Scales 1 2 3 4 5 6 
Rigid schemes (1) -      

Schematic conception (2) .09 -     

Realistic conception (3) .32* .23* -    

Relativistic conception (4) -.18 -.19* -.12 -   

Processes (5) -.28* -.33* -.10 .32* -  

Relevance/Application (6) -.28* -.34* -.19* .35* .43* - 

Table 1: Correlations among the scales of epistemological beliefs (*p < .05). 
Epistemological beliefs, self-concept, and performance in mathematics 
The results concerning the epistemological beliefs in mathematics showed that, on 
average, students scored relatively high on the scales that addressed more 
sophisticated epistemological beliefs with the exception of the scale that assessed a 
relativistic conception (M = 1.89, SD = 0.62): relevance/application (M = 2.99, SD = 
0.49) and processes (M = 2.76, SD = 0.75). Conversely, students, on average, scored 
relatively low on the scales that addressed more naïve epistemological beliefs with the 
exception of the scale that assessed a schematic conception (M = 2.83, SD = 0.42): 
realistic conception (M = 2.06, SD = 0.69) and rigid schemes (M = 1.56, SD = .60). In 
addition, the students’ self-concept in mathematics was, on average, moderately high 
(M = 2.56, SD = 0.64) and their performance in mathematics was, on average, 
relatively low (M = 3.95, SD = 1.00). 
Table 2 displays the correlations of the epistemological beliefs scales with the 
self-concept and the performance in mathematics as well as the partial correlations 
between the epistemological beliefs scales and the self-concept in mathematics. The 
correlations show that the more sophisticated epistemological beliefs relativistic 
conception, processes and relevance/application were significantly and positively 
associated with the self-concept and the performance in mathematics. Conversely, the 
more naïve epistemological beliefs rigid schemes and schematic conception were 
significantly and negatively associated with the self-concept and the performance in 
mathematics. Realistic conception was the only scale, however, that was not 
significantly correlated with the self-concept or with the performance in mathematics. 
The partial correlations displayed in Table 2 show that nearly all correlations of the 
more sophisticated and more naïve epistemological beliefs with the self-concept in 
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mathematics remained stable even when we controlled for the influence of the 
performance in mathematics. 
  

Self-concept 
 

Performance 
Self-concept 
controlled for 
performance 

Rigid schemes -.20* -.19* -.10 
Schematic conception -.34* -.23* -.25* 
Realistic conception .07 -.10 .18* 

Relativistic conception .44* .26* .37* 
Processes .46* .35* .33* 

Relevance/Application .52* .40* .39* 

Table 2: Correlations of the epistemological beliefs scales with the self-concept and 
the performance in mathematics and partial correlations of the epistemological 

beliefs scales with the self-concept in mathematics (*p < .05). 
Differences in epistemological beliefs, self-concept, and performance in 
mathematics as a function of gender and grade 
In a first step, we examined differences in the epistemological beliefs as a function of 
gender and grade. To do so, we performed a multivariate analysis of variance in which 
we included gender and grade as independent variables and the six aspects of 
epistemological beliefs as dependent variables. The analysis yielded a significant main 
effect for gender, F(6, 136) = 3.88, p < .05, η2 = .15 (large effect). This main effect was 
mainly produced by significant differences in rigid schemes F(1, 141) = 3.91, p = .05, 
η2 = .03 (small effect), relativistic conception F(1, 141) = 5.09, p < .05, η2 = .04 (small 
effect), and relevance/application F(1, 141) = 9.36, p < .05, η2 = .06 (medium effect) 
between girls and boys. As displayed in Table 3, rigid schemes as an aspect of more 
naïve epistemological beliefs were significantly more pronounced in boys than in girls. 
Interestingly, relativistic conception and relevance/application as aspects of more 
sophisticated epistemological beliefs were also significantly more pronounced in boys 
than in girls. The statistical analysis failed to reveal a significant main effect for grade, 
F(6, 136) = 1.01, ns, and a significant interaction effect between gender and grade, F(6, 
136) = 1.97, ns.  
In a second step, we investigated differences in the mathematical self-concept as a 
function of gender and grade. To do so, we performed a univariate analysis of variance 
in which we included gender and grade as independent variables and mathematical 
self-concept as dependent variable. The analysis yielded a significant main effect for 
gender, F(1, 141) = 11.31, p < .05, η2 = .07 (medium effect). More specifically, the 
boys’ self-concept in mathematics was significantly higher than the girls’ self-concept 
in mathematics (see Table 3). However, there was no significant main effect for grade, 
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F(1, 141) = 0.13, ns, and no significant interaction effect between gender and grade, 
F(1, 141) = 0.20, ns (see Table 3 and left-handed diagram in Figure 1). 

 Girls Boys 
Rigid schemes Grade 9: 1.47 (0.58) 

Grade 10: 1.46 (0.54) 
Grade 9: 1.55 (0.55) 
Grade 10: 1.79 (0.68) 

Schematic conception Grade 9: 2.85 (0.35) 
Grade 10: 2.83 (0.48) 

Grade 9: 2.86 (0.46) 
Grade 10: 2.77 (0.43) 

Realistic conception Grade 9: 2.13 (0.66) 
Grade 10: 1.86 (0.76) 

Grade 9: 2.03 (0.74) 
Grade 10: 2.14 (0.61) 

Relativistic conception Grade 9: 1.75 (0.50) 
Grade 10: 1.86 (0.71) 

Grade 9: 2.24 (0.65) 
Grade 10: 1.82 (0.56) 

Processes Grade 9: 2.75 (0.69) 
Grade 10: 2.68 (0.78) 

Grade 9: 2.87 (0.75) 
Grade 10: 2.71 (0.82) 

Relevance/Application Grade 9: 2.82 (0.43) 
Grade 10: 2.96 (0.51) 

Grade 9: 3.20 (0.39) 
Grade 10: 3.07 (0.55) 

Self-concept Grade 9: 2.44 (0.57) 
Grade 10: 2.35 (0.78) 

Grade 9: 2.75 (0.51) 
Grade 10: 2.76 (0.64) 

Performance Grade 9: 3.78 (1.00) 
Grade 10: 4.13 (1.05) 

Grade 9: 4.02 (0.96) 
Grade 10: 3.99 (1.03) 

Table 3: Means and standards deviations for the scales of epistemological beliefs, the self-concept and the 
performance in mathematics as a function of gender and grade. 
In a third step, we studied differences in the mathematical performance as a function of 
gender and grade. To do so, we performed a univariate analysis of variance in which 
we included gender and grade as independent variables and mathematical performance 
as dependent variable. The analysis failed to yield a significant main effect for gender, 
F(1, 141) = 0.07, ns, a significant main effect for grade, F(1, 141) = 0.83, ns, and a 
significant interaction effect between gender and grade, F(1, 141) = 1.17, ns (see Table 
3).  
In a fourth step, we studied differences in the mathematical self-concept as a function 
of gender and grade and controlled for the influence of epistemological beliefs and 
performance in mathematics. To do so, we performed a univariate analysis of variance 
in which we included gender and grade as independent variables, mathematical 
self-concept as dependent variable, and the six aspects of epistemological beliefs 
together with mathematical performance as control variables. The analysis again 
revealed a significant main effect for gender, F(1, 134) = 10.82, p < .05, η2 = .08 
(medium effect), and no significant main effect for grade, F(1, 134) = 0.67, ns. In this 
analysis, however, there was also a significant interaction effect between gender and 
grade, F(1, 134) = 5.84, p < .05, η2 = .04 (small effect). As displayed in the 
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right-handed diagram in Figure 1, the gender differences in the mathematical 
self-concept were lower in grade 9 and larger in grade 10. 

  

Figure 1: Mathematical self-concept as a function of gender and grade (left) and while 
controlling for epistemological beliefs and performance in mathematics (right). 

DISCUSSION 
In this study, we examined epistemological beliefs, self-concept, and performance in 
mathematics of grade 9 and grade 10 students. First, the results demonstrated the 
construct validity of the scales assessing epistemological beliefs in mathematics. This 
was because the more sophisticated epistemological beliefs were negatively correlated 
with the more naïve epistemological beliefs. Second, the students in this study tended 
to have more sophisticated and less naïve epistemological beliefs in mathematics. This 
pattern of results was, however, not obtained for the scales that assessed schematic or 
relativistic conceptions of mathematics. Third, we showed that more sophisticated 
epistemological beliefs were positively linked and more naïve epistemological beliefs 
were negatively linked with self-concept and performance in mathematics. When we 
controlled for the influence of performance in mathematics, the correlations between 
epistemological beliefs and self-concept in mathematics were somewhat lower but 
remained significant. This was, however, not true for the scale that assessed rigid 
schemes as an aspect of more naïve epistemological beliefs. Fourth, we found 
differences in epistemological beliefs and self-concept in mathematics between girls 
and boys. Boys had a more pronounced view where rigid schemes were predominant 
while, at the same time, they also had, in contrast to the study by Grigutsch (1996), 
more sophisticated epistemological beliefs in mathematics than girls. In addition, boys 
reported about a higher self-concept in mathematics than girls. However, there was no 
gender difference in the mathematical performance. Fifth, we failed to observe any 
difference in epistemological beliefs, self-concept and performance in mathematics 
between grade 9 and grade 10 students. Sixth, when we took into account the influence 
of epistemological beliefs and performance in mathematics there was an interaction 
effect between gender and grade on the mathematical self-concept. More specifically, 
the difference in the self-concept was relatively small in grade 9 whereas the 
difference in the self-concept was relatively large in grade 10. This finding is in 
contrast to the study by Fredricks and Eccles (2002). 
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Taken together, the gender differences in self-concept and epistemological beliefs in 
mathematics that were observed in this study are consistent with findings of previous 
research. In contrast to previous research, however, there were no differences in 
self-concept and epistemological beliefs in mathematics between grade 9 students and 
grade 10 students. An explanation for this finding is that the difference in the grades 
(i.e., grade 9 and grade 10) was too small to produce an effect on self-concept and 
epistemological beliefs in mathematics. Alternatively, it might be assumed that, due to 
the cross-sectional design of this study, it was not possible for us to examine, in 
contrast to previous research, individual changes in self-concept and epistemological 
beliefs longitudinally. In this study, we also provided empirical evidence for a 
relationship of self-concept and epistemological beliefs in mathematics. The nature of 
this relationship remained nearly the same even when we controlled for the influence 
of mathematical performance. Finally, we found that gender differences in the 
mathematical self-concept in fact increased from grade 9 to grade 10 when we took 
into account the influence of epistemological beliefs and performance in mathematics. 
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MATHEMATICS STUDENT TEACHERS? 
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The study reports on the extent to which pre service Secondary Mathematics teachers 
integrate the sustainable development and global citizenship dimension of the 
curriculum into their teaching and aims to determine what possible barriers they may 
conceive to embedding these issues into their mathematics lessons. Data was collected 
from 25 pre service secondary mathematics teachers through questionnaires and 
interviews. Predominant in the findings was the teachers’ reluctance to integrate 
ESGC into their lessons, as there was a lack of exposure to these issues in a 
mathematical context.   

INTRODUCTION 
Policies to formalise Education for Sustainability and Global Citizenship (ESGC), in 
the United Kingdom, have grown in emphasis over the years. In 1998 the Government 
Sustainable Development Education Panel (SSDEP) was formed in the UK to consider 
ways in which schools could promote education for sustainable development (ESD) 
and in 2000 the UK National Curriculum established ESD as a statutory requirement 
in geography, science, design and technology and citizenship. Underpinning this was 
the statement ‘the curriculum should reflect values in our society that promote 
personal development, equality of opportunity, economic wellbeing, a healthy and just 
democracy, and a sustainable future’ (National Curriculum, 2000). 
There are two main ways, distinguished by Bonnett (2002), in which sustainable 
development could be integrated in education. The first, Bonnett (2002) terms 
‘environmentalism’ which he defines as a measurable approach where schools 
actively practice sustainable development. Examples of this would include raising 
funds to build outdoor classrooms, installing solar photovoltaic panels and creating the 
role of School Travel Advisors. This approach by schools is commendable, but it is 
also questionable as to the extent to which it raises pupils’ awareness of the issues 
relating to global citizenship and sustainable development. Schools may well involve 
children in these projects but to what extent does it empower pupils to have a critical 
awareness of these issues?                 
Bonnet (2002) also considers the ‘school development approach’. This approach 
encourages pupils to be critical thinkers who are able to reflectively engage in issues 
of sustainable development as part of their education.  According to Bonnet (2002) 
this approach assumes that, 
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schools best further sustainable development by encouraging ongoing exploration and 
engagement with environmental issues in which the promptings of their own rationality 
are followed. Here the essence is to develop pupils’ own critical ability and interpretation 
of issues in the context of first hand practical situations that they confront (P10).  

The approaches identified by Bonnet (2002) manage ESGC in two distinct ways. The 
‘environmentalism’ approach addresses the issue through school initiatives whereas in 
the ‘school development approach’ pupils are encouraged to critically think around the 
issue. However, evidence suggests that, certainly in the area of mathematics education, 
there is scarcely any indication of the ‘school developmental approach’. Apple (2000, 
p. 243) states that, as a product of neoconservatist policies in education: 

It is unfortunate but true that there is not a long tradition within the mainstream of 
mathematics education of both critically and rigorously examining the connections 
between mathematics as an area of study and the larger relations of unequal economic, 
political, and cultural power.  

Findings in a study by M Robbins, LJ Francis, E Elliott (2003) further support this assertion. Their 
study invited 187 student teachers to fill in a short questionnaire in order to elicit their attitude towards 
education for global citizen citizenship (EGC). Of notable importance was the conclusion that 
there were significant differences in attitude toward EGC between student teachers 
pursuing different major fields of study, with Geography as the subject where student 
teachers had the most positive attitude towards EGC and mathematics where they had 
the least positive attitude when compared with eleven other subjects.  
THE STUDY 
The study surveyed pre-service secondary mathematics teachers to determine what 
impact ESGC had on them and how they embedded these issues into their teaching. 
The study aimed to identify the barriers preventing student teachers adopting these 
issues in their teaching. The pre-service teachers in the study  (referred to as student 
teachers in the UK) were on the Postgraduate Certificate in Education (PGCE) Course. 
The course runs over an academic year and consists of 10 weeks of University based 
teaching and placements in two contrasting schools with each placement running for 
eleven weeks. For the most part students are placed in Inner London Comprehensive 
Schools in which the demography of the pupils is very diverse. One of the University 
based components of the course is an ‘Equality, Inclusion and Citizenship’ (EIC) unit 
which is designed to enable students to critically explore some of the key educational 
issues concerning equality, inclusion and citizenship and how these impact on their 
professional role as teachers. ESGC is one of the areas covered in the EIC sessions.  
Following the end of their first school placement the cohort of 25 students were asked 
to complete a questionnaire in order to ascertain their notions of ESGC. The 
questionnaire was divided into three sections. The first section asked a set of closed 
‘Yes’ and ‘No’ questions to elicit whether students had prior expectations of the 
themes covered in the EIC unit to be covered on a PGCE course. In the second section 
students were asked if they agreed that a particular issue covered in an EIC session had 
influenced their teaching. Students’ responses were recorded on a 5 point Likert scale 
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ranging from Strongly Agree to Strongly Disagree. The final section used both closed 
and open ended questions to determine whether the students thought it was important 
to bring the ESGC into teaching mathematics. There were also two open questions at 
the end of the questionnaire in which the students were asked to think of ways in which 
to embed ESGC into their mathematics lesson. As the questionnaires were given to the 
students after a session at the University, there was a 100% return. Students often fill 
in feedback forms after taught sessions so filling in a questionnaire at the end of their 
session was not unusual for them.  
The second part of the study was carried out once students had returned from their 
second school practice. This involved one to one interviews, lasting approximately 15 
minutes each, with a random sample of 10 students. These interviews were undertaken 
in order to establish whether they had observed lessons where issues of global 
citizenship and sustainability had been addressed, how this had impacted on their 
teaching and any reasons which prevented them from embedding issues of global 
citizenship and sustainability in their teaching.  
RESULTS 
Responses to questionnaire following students’ first placement 
Table 1 presents a summary of students’ responses to their expectations of topics 
which were going to be covered on the course through the EIC programme. 

 Yes % No  % 
Inclusive Education 95 5 
Gender 79 21 
Multilingualism 79 21 
Race 79 21 
Sustainable Development 63 36 
Sexual Orientation 52 48 
Social Class 52 48 
Global Citizenship 47 53 

Table 1: Student’s responses to a question asking if they expected these topics to be 
covered in their Secondary mathematics PGCE Course. 

Results show that only 47% of the students had prior expectations of ‘Global 
Citizenship’ being covered in their PGCE course. Results for ‘Social Class’ and 
‘Sexual Orientation’ were similar, with 52% of the students having prior expectations 
of these topics being covered in the course. However, 63% of the students had 
expectations of ‘Sustainable Development’ to be covered. In contrast 79% expected 
Race, Multilingualism or Gender to be covered and 95% expected inclusive education 
to be covered. This is an area of concern, that almost half the cohort did not think that 
issues of social class, sexual orientation and global citizenship would feature in a 
Secondary Mathematics PGCE course.  
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Table 2 shows that very few student teachers disagreed with issues of Education for 
Global Citizenship and Education for Sustainability (EGCSD) being brought into 
mathematics lessons.  

 Strongly 
agree/Agree 

Uncertain Strongly 
disagree/Disagree 

Sustainable 
Development 

47% 32% 21% 

Global Citizenship 42% 32% 26% 

Table 2: Student’s responses to the statement ‘It is important to bring in the teaching of 
sustainable development / global citizenship into the teaching of mathematics?’ 

Table 3 shows an even distribution of responses regarding ‘Sustainable Development’ 
but not ‘Global Citizenship’ where more than half the students felt that it should be 
taught as a stand alone topic in a different subject area. 

 Strongly 
agree/Agree 

Uncertain Strongly 
disagree/Disagree 

Sustainable 
Development 

37% 32% 32% 

Global Citizenship 53% 26% 21% 

Table 3: Student’s responses to the statement ‘ESGC needs to be taught as a stand 
alone topic in a different subject area’. 

In order to get an insight into the reasons for their answers students were also asked to 
explain their responses. There were a number of positive statements from the students 
emphasising the importance of bringing in issues of sustainability into the teaching of 
mathematics but, similarly, there were some comments which were opposed to these 
ideas. These included,  

Student A:  Another political topic that should stay out of the maths classroom. We 
have other priorities.  

Student B:  Some of my students cannot write or read or do 8 x 2 in their head. I have 
other priorities.  

Students C:  I could use them in examples but do not feel it is important, maybe more 
important in PSHE (Personal, Social and Health Education) 

Taken at face value these comments appear to reveal a negative attitude towards 
incorporating issues of ESGC into mathematics lessons. However, closer analysis of 
the language suggests otherwise. Phrases such as ‘We have other priorities’ imply that 
some of the respondents were not averse to issues of sustainable development and 
global citizenship being taught in lessons but reluctant to integrate them into their own 
teaching as it could interfere with the ‘priority’ of teaching mathematics.  
Positive statements included : 
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Student F:  Teaching pupils about life outside of the curriculum will make them 
rounded and more mature individuals, more equipped for the real world. 
Within Maths this should be brought in naturally as much as possible. In 
small doses.  

Student G:  It is interesting, relevant and easy to incorporate into a lesson of math.  
Student H:  Because it gives a practical side of mathematics that can relate to the 

outside world and it is important to know. 

This enthusiasm was reassuring in contrast to the negative or indifferent comments of 
some of the responses. However, later interviews revealed that, even with this positive 
approach students, for the most part, found it difficult to bring these issues into their 
teaching. 
Questions 5 and 6 on the questionnaire were qualitative questions asking students 
ways in which ESGC could be embedded into their mathematics teaching. Only six 
students (32%) filled these sections in. Their answers suggested lessons looking at 
habit cycles, using data from newspapers, interpreting climate change graphs and 
using examples in teaching to reflect the diversity of the pupils. However, the poor 
return on these two questions suggest the problem for the students, even those 
interested in embedding issues of ESGC as part of their mathematics lesson, was that 
many were not sure how to integrate these into a lesson.  
 
Interviews following students’ second school placement. 
On returning from their second school placement students were interviewed and asked 
about any observations they had made in mathematics lessons relating to the 
integration of global citizenship and sustainability and how this had influenced their 
own practice.   
The students were asked: 
1. To give examples of how they had seen ESGC embedded into mathematics lessons 
or had done so themselves. 
2. How they felt about pupils being made aware of these issues in mathematics 
lessons. 
3. How their department encouraged embedding issues of global citizenship / 
sustainability into lessons. 
4. How their school encouraged embedding issues of ESGC into lessons. 
In all but two cases, interviewees said they had not observed issues of ESGC in lessons. 
However, the student teachers noted that the only time these issues were raised in 
mathematics was when a whole school initiative had taken place. These were special 
days, in most cases once a year, which, for the most part, were seen as token gestures 
or tick box exercises by the student teachers. In one case (Student J) a department had 
taken the initiative to have specific mathematics projects for different year groups. An 
example of this was a Year 7 project, Me & My World, in which pupils would be given 
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data, such as Gross Domestic Product and life expectancy, about different countries 
which they would have to analyse. However, according to Student J, this was the only 
time in the year that these issues would be raised in a mathematics lesson.  
In another case (Student S) there had been sporadic reference to issues of global 
citizenship and sustainability and even then only when there had been a whole school 
push on particular issues. Even so, like the other students, Student S felt that these days 
were token gestures. However, Student S had used ideas of ESGC in his mathematics 
lessons. He explained that he had set himself a challenge following the EIC lectures 
and, at the beginning of his lessons, had introduced short activities based on climate 
change. Further, he described himself as a teacher who, at the start of the course, felt 
that mathematics should be taught to get the pupils through exams but, having 
delivered lessons where mathematics was applied to real situations, had now gone full 
circle and decided that the lessons the pupils most enjoyed were where they could 
apply the mathematics to something they care about. In three cases students had 
recognised that ESGC was not necessarily an idea which had to be taught explicitly 
but that teachers could embed the ideas implicitly in their teaching. Examples included, 
taking the ‘cultural diversity’ of pupils into account when promoting group work and 
enabling pupils from different global backgrounds to exchange experiences and work 
with each other. However, in most cases students were still unsure of how to embed 
ESGC into their lesson and believed it to be time consuming.  

Student P:  I think it’s important, we are all citizens of the world, but I am still unclear 
as to how to incorporate it into my maths lesson.  

Student P’s comment reflected the feelings of the other students in the interview, all 
students interviewed acknowledged the importance of including these issues into their 
lessons but felt restricted by the constraints of the curriculum. 
CONCLUSION 
Although it is not possible to draw any firm conclusion, having worked with such a 
small sample of student teachers, the findings of this short study have identified two 
main areas of concern. These centre around an uncertainty of how to embed ESGC 
into mathematics teaching and also dealing with the constraints of the mathematics 
curriculum, including the content of secondary school mathematics text books (Beg & 
Ghosh, 2011). 
The mathematics curriculum certainly has the opportunity to provide a platform in 
which ESGC can be quite effectively integrated. An obvious area would be data 
handling, although other strands of mathematics also have similar potential. Therefore, 
it seems ironic that when teaching a subject which plays a key role as a tool for social 
analysis, maths teachers should come across barriers to embedding social factors into 
the delivery of their lesson. 
It is important that student mathematics teachers develop an awareness of how to 
integrate ESGC into mathematics education and, in doing so, practice a curriculum in 
which pupils become critical thinkers and not number crunchers. However there are 
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challenges ahead, with a political climate in which there is rapid change in education 
and moves towards a narrowing of the curriculum. Indeed, the current UK 
Government’s curriculum review has placed a huge question mark over the future of 
teaching ‘Citizenship’, originally introduced in 2002 as a statutory subject in order to 
develop children’s critical awareness. Therefore the prospect of developing the global 
dimension in the school curriculum looks likely to become an even greater challenge 
for both teachers and student teachers. The responsibility, therefore, lies with Initial 
Teacher Training institutions to drive the integration of ESGC into mathematics 
teaching by providing models of good practice to their students. However, we need to 
be aware of the challenges for pre-service mathematics teachers when planning and 
delivering mathematics lessons centred around social issues. Jacobsen and Mistele’s 
(2010) study provides examples of issues and challenges in this area. They give 
examples where, in their attempts to connect mathematics lessons with social issues, 
pre-service teachers trivialise the social issue or, by focusing on the social issue, they 
use the mathematics without any mathematical instruction.  
This is further supported by Garii and Rule’s (2009) analysis of student teachers 
integration of social issues into mathematics and science. They concluded that student 
teachers needed additional support and guidance from the faculty in order to allow 
them more opportunities to expand their knowledge and confidence to present 
interesting and relevant lessons that meet both academic and societal needs.  
There is clearly scope for pre service mathematics teachers to integrate ESGC into 
their lessons. I have mentioned the challenges faced by teachers in achieving this and it 
is the role of initial teacher training institutions to guide teachers to teach in reformed 
based ways. This has to be approached cautiously as the delivery of the lessons has its 
own challenges. Finally, once this is achieved, a further challenge will be to sustain 
these changes throughout the teachers’ career.  
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The aim of this paper is to show how engaging students in “real-life” mathematical 
situations can stimulate their mathematical creative thinking. We analyzed the 
mathematical modeling of two girls, aged 10 and 13 years, as they worked on an 
authentic task involving the selection of a track team. The girls displayed several 
modeling cycles that revealed their thinking processes, as well as cognitive and 
affective features that may serve as the foundation for a methodology that uses 
model-eliciting activities to promote the mathematical creative process. 

INTRODUCTION 
For the past few years, there has been an increasing demand for new ways of 
structuring mathematics. The OECD (2008) stated that mathematics “curricula should 
reflect the reality…[and] should stress innovative applications of mathematics” (p.18). 
Finding or developing diverse dimensions of mathematical education is not enough; 
one has to consider the rapid progress in science and technology which has 
characterized the 21st century and its effects. This accelerating progress has become a 
part of almost every aspect of our changing world, requiring the development of 
certain abilities and skills among students; among these, adaptability, the ability to 
solve non-routine "real-life” problems, creativity and systems skills have become 
crucial factors (Hilton, 2008; Jerald, 2009). Therefore introducing new methods of 
learning and teaching mathematics should reflect this rapid progress, enabling our 
students to successfully integrate into the 21st century. Mathematical model-eliciting 
activities (MEAs) provide the student with opportunities to deal with non-routine 
"real-life" challenges. These authentic challenges encourage them to ask questions, 
and to be sensitive to the complexity of mathematically structured situations, as part of 
developing, creating and inventing significant mathematical ideas. However, the 
development of students' mathematical creative thinking through MEAs has only been 
addressed in a few studies to date (Chamberlin & Moon, 2005). The study reported 
herein examines the role of affective and cognitive elements (Goldin, Epstein, 
Schorr& Warner, 2011) in facilitating the development of students’ mathematical 
creativity through MEAs. 

 MATHEMATICAL MODELING  
Mathematical models are conceptual systems consisting of elements, relations, 
operations, and rules governing interactions; these are expressed with external 
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notation systems which are used to construct, describe, explain or predict the 
behaviors of other systems. Model-development processes usually involve a series of 
recursive cycles consisting of developing, testing, and revising phases in which a 
variety of different ways of thinking are repeatedly expressed, tested, and revised or 
rejected (Lesh & Doerr, 2003; Lesh & Thomas, 2010). Mathematical-modeling 
activities are based on “real-life” problem situations in which students are given the 
opportunity to construct powerful ideas relating to interdisciplinary data (Lesh & 
Sriraman, 2005). These activities are open-ended in nature. The ambiguity of the 
problem statement and data representation suggests that various responses may be 
appropriate and that there are likely various levels of correctness, depending on 
students' interpretations, mathematical abilities, general knowledge and skills 
(Chamberlin & Moon, 2005). MEAs are designed according to six principles: reality, 
construction, self-evaluation, sharability, model documentation and effective 
prototype. These principles emphasize the importance of stimulating students' 
competence to extend their own personal knowledge and apply their real-life 
sense-making abilities to the creation of original mathematical models (Lesh, Amit, & 
Schorr, 1997; Lesh, R, Hoover, M, Hole, B, Kelly, A, & Post, T, 2000).  

MATHEMATICAL CREATIVITY 
Many researchers see the potential for mathematical creativity as a dynamic ability 
that can be developed in students. They associate students' creative ability with 
cognitive problem-solving abilities and suggest several ways of stimulating and 
assessing it (Haylock, 1997; Sriraman, 2008; Amit, 2010). Haylock (1997) suggests 
that breaking mental set or as he described it “overcoming fixation” is a crucial factor 
in creativity; in his study he demonstrated creative responses which allowed students 
to overcome fixations and solve complex problems. Sriraman (2008) defines 
mathematical creativity as the ability to produce novel or original work. He claims that 
"in order for mathematical creativity to manifest itself in the classroom, students 
should be given the opportunity to tackle non-routine problems with complexity and 
structure problems which require not only motivation and persistence but also 
considerable reflection” (p.32).  According to Kruteskii (1976), mathematical 
creativity appears as flexible mathematical thinking which is “switching from one 
mental operation to another qualitatively different one” (p.282), which depends on 
openness to free thinking and exploration of diverse approaches to a problem.  Polya 
(1957) provides heuristics to tackle mathematical problems in his book “How to Solve 
It” and defines some cognitive characteristics of the ingenious solver that might lead 
him/her to the discovery of an original solution. He claims that analogous objects 
agree in certain relations of their respective parts, and explain that “all sort of analogy 
may play a role in discovery of the solution…” (p.38). Leikin (2009) suggests 
observing and evaluating mathematical creativity through the lens of multiple solution 
tasks (MSTs) and states that “solving mathematical problems in multiple ways is 
closely related to personal mathematical creativity” (p.133). Some researchers have 
examined the connection between mathematical problem posing and creativity (Yuan 
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& Sriraman, 2010, Silver, 1997). Yuan and Sriraman (2010) compared problem 
posing and creative abilities of mathematically gifted Chinese and American students. 
Silver (1997) demonstrate an approach of fostering mathematical creativity through 
problem posing and problem solving in terms of fluency, flexibility and novelty. 

METHODOLOGY 
Research Design 
The study reported herein was based on two tasks: a warm-up activity and the MEA. 
The warm-up activity was aimed at preparing the girls for the modeling task and took 
about an hour and a half. Each girl received a newspaper article about Usain St. Leo 
Bolt, the Jamaican sprinter and Olympic gold medalist. The article contained Bolt's 
records and a qualitative description of his the run in which he set the new world 
record in the 100 meter dash. After reading the article, each girl had to answer 
questions about it, constituting the basis for a discussion held between the researcher 
and the two girls. During that discussion, questions were raised regarding the 
definitions of the article's concepts (speed, rate, etc.) and their implications. The main 
purpose of this activity was to stimulate the girls' interest and motivation, and to 
familiarize them with the context of the modeling task, including factual knowledge, 
and cognitive and technical skills, so that their solution would stem from their own 
experience (Lesh, et al., 2000). The modeling task (Fig.1) was designed according to 
the afore-listed six principles (Chamberlin & Moon, 2005) and based on English and 
Watters' modeling activity “The Olympic Team” (English & Watters, 2005). It was a 
non-routine, real-life challenge, which allowed formulation of several 
(mathematically justified) solutions, depending on each girl's mathematical abilities, 
general knowledge and skills (Sriraman, 2008). The modeling task was based on a 
situation that could exist in the girls' daily lives and required a “real” solution 
(Chamberlin & Moon, 2005). The modeling eliciting activity (MEA) consisted of 
three sessions: (1) model development: each girl worked by herself (75 minutes), (2) 
presentation and discussion: each girl presented her solution (30 minutes) and (3) 
interviews with each girl.  
Participants 
The participants in this case study were two girls, 10-year-old Rotem and 13-year-old 
Shir. The girls had high achievements in mathematics and were participating in a 
special enrichment class for excellent students at their school. In addition, the two girls 
were enthusiastic about sports and took part in running races at school. 
Data sources  
The study was based on recorded interviews with each of the girls, their written 
material collected at the end of both tasks, the researcher's notes taken during the task 
solving and recordings of conversations during the activities and of the final 
discussions at the end of each task. It should be emphasized that the girls were asked to 
write down everything, so that drafts, sketches and final solutions could be collected. 
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Assigning team members for 100 x 4 boys' and girls' relay race 
Tables 1 and 2 contain the records of 4 boys and 4 girls who won silver or gold 
medals in 60 meter or 100 meter runs that took place in autumn, winter, spring and 
summer of 2010. A relay race for 6th graders is going to take place 2 weeks from 
now. For the first time, boys and girls will compete together in a mixed race between 
all of the schools in the city. Due to the short notice, the head of the sports 
committee at your school needs your help: he has to decide which two boys and two 
girls to assign to the relay team based on their accomplishments in the 2010 races. 
Your task is to construct a guide that will help the head of the sports committee 
choose the best team members for the 100 x 4 relay race. 
Sample from Tables 1 and 2: 
Ali 
(name) 

Autumn Winter Spring Summer  

60   m 9.5 
 (gold-medal) 

9.7 9.5 9.3  
(gold-medal) 

Table 
1 

200 m 38 37.5 
 (silver-medal) 

39  
(silver- medal) 

38 Table 
2 

 
  

During the interviews and the conversations, the researcher did not accept simple or 
standard answers. Each answer was discussed with the girls in order to understand 
their way of thinking. Attention was paid to their body language and the vocabulary 
they used, in order to understand their experience, and its meaning and importance 
from each girl's perspective. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Relay Race Modeling Task 

FINDINGS AND RESULTS 
Analysis of the findings revealed two types of characteristics involved in the 
mathematical-modeling process: (1) cognitive and (2) affective. These features 
influenced the progress of the creative process and the creativity of both girls' 
conceptual tools. The girls' mathematical models contained unusual criteria for 
ranking scores to grade all runners.  
The mathematical-modeling process  
During the MEA, the girls went through several “modeling cycles”; in each cycle, the 
girls creatively developed mathematics that were new to them. Shir's model-eliciting 
process consisted of four cycles. In the first cycle, “criterion selection”, Shir chose 
three criteria, based on her notion of fairness. She said “I need criteria to decide, who 
the best is. I need at least three criteria no less. I have to provide an equal opportunity 
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for all runners.” After quantifying the data she found that three criteria were not 
enough, as two runners received identical values. She moved to the second cycle, 
“record improvement”, where she added a fourth criterion to resolve the problematic 
situation: she decided to quantify each runner's improvement over the course of the 
year. In the third cycle, "scoring system", she realized that quantifying the fourth 
criterion and comparing runners’ results was inconvenient; she therefore ranked the 
results for every criterion and set up a scoring system: “I have to weigh all of  the data 
to know who the best is. Scoring is much more convenient than comparing each and 
every one” In the fourth cycle, “generalization”, Shir tried generalizing her solution. 
For each criterion she added a mathematical formulation along with a written 
explanation that clarified scoring calculation and ranking weight and could be adapted 
to, and transformed for other, similar situations (e.g. establishing other sports teams). 
As an example, Fig. 2 presents part of Shir's letter to the head of the committee 
explaining how to use the improvement criterion. 

 

 
 
 
 
 
 
 

 

Figure 2. Recording Improvement 
Cognitive characteristics 
Flexibility - In the first modeling cycle, Rotem chose three criteria to distinguish 
between all runners. In the second cycle, she realized that one of these—tallying 
medals for each runner—was not a sufficient good criterion because two runners got 
the same score. She found a different way to solve the problem: “…to run in summer is 
much more difficult, so winning a medal in the summertime is worth more.” She used 
seasons as weighting variables to formulate a weighted sum for her medal criterion. 
Combination - In the second cycle, Shir added one more criterion by bringing together 
the runners' complete record and the season in which they competed in an original 
mathematical combination. Fig. 2 shows part of Shir's letter to the head of the sports 
committee, generally explaining how to apply this criterion. 
Analogy - During the warm-up activity, Rotem compared Bolt’s records; she drew an 
analogy between getting tired and slowing down: “a 400 meter run is much more tiring 
than a 100 meter run, so you run much slower because you are getting tired and it takes 
more time.” She continued her solution idea and said “400 is four times 100, but 400 

Record improvement: Select a 
competition that all nominees 
participated in twice, at least half a year 
apart, and compare. Check how the result 
improved and set score criterion. For 
example: 1 second of improvement 
equals 1 point. 
Note: At the end of the grading, sum all 
scores for each criterion and select those 
with the highest scores. 
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meters he [Bolt] runs in 45 seconds and 100 meters he runs in 10 seconds 
(approximately) so 400 took him 45 instead of 40.” Rotem discovered a new 
mathematical formulation for the concept ‘Speed’ (the number of seconds taken to 
pass a fixed distance) which suited her intuitive ‘everyday’ thinking. 
Affective characteristics 
Motivation and interest - During the activities, the girls showed intense involvement, 
which was reflected in the level of interest, curiosity and meaning they found in the 
modeling task. Rotem explained: “in all mathematical exercises you only need to 
calculate and solve, but when 'real life' is involved it is much easier and fun to think, 
because you don’t think about the mathematics you think about life.” 
Self-efficacy and persistence - The girls' understanding and recognition of the 
necessity of the task affected their persistence and will to continue, even though it was 
sometimes difficult and complex. Rotem:”It wasn't easy but I hardly thought about it, I 
knew and understood that I can find the solution and help him [the head of the sports 
committee] find the best runner.” 
Metacognition and self-reflection - Throughout the course of the task activities and 
each of its phases, the girls were aware of their own thinking in a way that affected and 
regulated their activities. Rotem, at the end of her first cycle said: “I didn't think well 
enough about my criteria…to know who the best runner is…I have to think about 
some more criteria and how to formulate them.” During the interview, Shir described 
her work: “I didn't know how to apply to the task; I had to think in a different way, to 
think more real thinking, there was no single right solution and it made me think about 
other solutions, which is the best one, and not to think in a rigid way.” 

CONCLUSIONS 
In the presented case study we examined how teaching for creativity through 
mathematical-modeling activities encourages the development of students' creative 
mathematical thinking. The findings clearly show some cognitive and affective 
characteristics that could establish the foundations for creative process development 
methodology using MEAs. The participants were two girls aged 10 and 13 years. The 
modeling task was based on meaningful situations that could occur in their ‘real lives’ 
in order to stimulate their motivation and engagement. The results exhibit the essential 
role of the affective (Goldin, et al., 2011) and cognitive aspects in the development of 
creative performance during the mathematical-modeling process. The practical 
implications of the current case study suggest that engaging students with non-routine 
mathematical problems (Sriraman, 2008) through MEAs can encourage them to 
develop, create or invent significant mathematical artifacts or tools (Lesh & Thomas, 
2010). 
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USELESS BRACKETS IN ARITHMETIC EXPRESSIONS  
WITH MIXED OPERATIONS 

Robert Gunnarsson, Bernt Hernell and Wang Wei Sönnerhed 
School of Education and Communication, Jönköping University, Sweden 

 
There can be different intentions with brackets in mathematical expressions. It has 
previously been suggested that mathematically useless brackets can be educationally 
useful when learning the order of operations in expressions with mixed operations. 
This paper reports how students (12-13 years) deal with the implicit mental conflict 
between brackets as a necessary part of the order of operations and brackets to 
emphasize precedence. The students taking part in this quasi-experimental study were 
instructed on the order of operations, but were also indirectly exposed to different use 
of brackets. It is concluded that emphasizing brackets impede the transfer from a 
left-to-right computation strategy to the use of precedence rules.  

INTRODUCTION 
Brackets and rules of the order of operations are essential parts of algebra and 
distinguish the algebraic language from the spoken everyday language (Freudenthal, 
1973, p 305). A comprehension of brackets used in the precedence rules are therefore 
of fundamental importance, not only for numerical calculations, but also in order to 
create an algebraic structure sense. Precedence errors are one of the most common 
arithmetic errors among secondary school students, particularly in expressions on the 
form cba ⋅±  with mixed operations (Blando, Kelly, Schneider & Sleeman, 1989). 
Students do not primarily focus on the operations in arithmetic expressions, and 
therefore have problems in learning the proper order of operations. Instead they tend to 
focus on the numbers, detaching them from the operations (Lincheski & Livneh, 1999). 
Linchevski & Livneh (1999) therefore suggested inserting brackets around the product 
in cba ⋅±  to support the structure sense.  
These mathematically useless brackets would then emphasize the precedence of 
multiplication over addition/subtraction. Previous studies have shown that pupils’ 
structure sense on algebraic expressions can be enhanced with emphasizing brackets 
(Hoch & Dreyfus, 2004), and more recently Marchini & Papadopoulos (2011) have 
shown that emphasizing brackets can contribute to an enhanced rate of success in 
simple arithmetic expressions too.  
However, brackets are not easy entities to handle (e.g. Kieran, 1979; Hewitt, 2005; 
Okazaki, 2006). Moreover, the role of the bracket signs is different for emphasizing 
brackets compared to the “ordinary” role of brackets (where they typically are vital 
parts in the order of operations). Previous research on this area lacks a description of 
how pupils are handling the implicit but double role of the bracket-signs. The aim of 
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this study is to explore the effect of using emphasizing brackets to assist students’ 
learning the precedence of multiplication.  

DESCRIPTION OF THE STUDY 
By pre-defined instructions we have studied students’ perception and application in connection with 
expressions with brackets. The data was collected in a quasi-experimental form from an experiment group and 
a control group. The students were exposed to a pre-test, to instructions, and to a post-test, see Table 1.  
 

Pre-test 
Item no 

expression  Post-test 
Item no 

Expression 

F1 2)53( ⋅+   E1 3)27( ⋅−  

F2 372 +⋅   E2 452 +⋅  
F3 253 ⋅+   E3 238 ⋅−  
F4 )35(4 −⋅   E4 )35(4 −⋅  

F5 238 ⋅−   E5 372 +⋅  
F6 243 ⋅+   E6 243 ⋅+  
F7 2)17( ⋅−   E7 2)17( ⋅−  

F8 452 +⋅   E8 352 ⋅+  
F9 2)73( ⋅+   E9 2)73( ⋅+  

F10 232 ⋅+   E10 232 ⋅+  
F11 374 ⋅+   E11 374 ⋅+  
F12 )63(2 +⋅   E12 )63(2 +⋅  

F13 )24(4 −⋅   E13 )24(4 −⋅  

F14 253 ⋅+   E14 253 ⋅+  
F15 344 −⋅   E15 344 −⋅  
F16 238 ⋅−   E16 238 ⋅−  

Table 1: The different expressions to be computed in the  
pre-test (left) and the post-test (right) respectively 

Each test included seven tasks (expressions) on the form cba ⋅±  (Items No F3, F5, F6, 
F10, F11, F14, F16, E3, E6, E8, E10, E11, E14, E16) where a preceding or left-to-right 
strategy could be identified by respective answers. Each test also included three 
expressions on the form cba ±⋅  (Items F2, F8, F15, E2, E5, E15) and the other three 
expressions on the form )( cba ±⋅  (Items F4, F12, F13, E4, E12, E13). All numbers 
were single digit and the expected answers kept the values to be positive (> 0) and low 
(≤ 33). 
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In total 169 students aged 12 to 13 in four Swedish secondary schools were included in 
this study. The instructions were made for two types, one experiment type which were 
instructed with emphasizing brackets and one control type which were without 
emphasizing brackets, see Figure 1. Both types of instructions included calculation of 
a set of eight different examples. In the experiment type both emphasizing brackets 
and brackets as part of precedence were used, whereas in the control type only 
brackets as part of precedence were used. In the experiment type of instruction the 
examples with emphasizing brackets were articulated as multiplication has higher 
priority (the direct translation from Swedish to English of the precedence rule would 
be “the priority rule”) and therefore we put brackets around the multiplication to show 
that this should be calculated first. Care was taken not to mention the word 
emphasizing or to point out the different use of brackets. The instructions were 
pre-defined in all eight groups. In two of the groups one of the researchers was 
carrying out the instructions. In two other groups a class teacher carried out the 
instructions. The remaining four groups were given instructions by one of two 
different video-recorded clips.  

 

Figure 1: Excerpt from the instructions of the (a) experiment type and (b) control type. 
The difference is that in the experiment type emphasizing brackets are used. 
Half of the groups were exposed to the experiment type instructions and the other half 
to the control type of instructions. In the experiment groups there were in total 83 
students, and in the control group there were in total 86 students. The entire 
experiment was done in about 30 minutes in each group. The experiment groups and 
the control groups were chosen by convenience, but with the intention that they should 
be as close to equivalent as possible. However, as we discovered during the 
experiment, the control groups performed slightly better in that respect that these 
students’ answers on the pre-test were more based on a precedence rule than in the 
experiment groups. The mathematics tasks in the two tests were designed such that the 
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strategy of computation should be more or less evident from the answers. The analysis 
of the protocols was then performed by inspecting the different variations in answers 
that were given. 

RESULTS AND DISCUSSION 
The instructions were given in three different ways, by the researcher, by the teacher 
and by video-clips, as described above. By inspecting the data it appears as if the 
video-clips gave the most reliable effect. But the difference between the different 
methods is too small to be significant.  
Transfer from left-to-right to precedence rule 
The main aim of the study was to look at students response (answers) to expressions 
on the form cba ⋅± . The collected data showed that in the pre-test a left-to-right 
strategy was dominant in these answers (see Figure 2). The second most common 
strategy was using the precedence rules. We note that unfortunately the groups were 
not completely equivalent in this respect, since significantly more (122 compared to 
64) answers in the control group can be associated to a proper use of the precedence 
rules.  

 

Figure 2: Number of answers on expressions of the kind cba ⋅±  in the pre-test and 
post-test for the experimental group (Exp) and the control group (Ctrl). The answers 
are sorted as calculated by precedence (Preced) and a left-to-right-principle (LTR). 
The last category (Others) includes all types of miscalculations, blanks or other 
possible strategies unaccounted for. 

After the instructions, the amount of answers that can be associated to a left-to-right 
strategy decreased in both groups in favour of the precedence rule. I the experiment 
group the increase of precedence answers was larger (in percentage) than in the control 
group. However, in the experiment group the number of precedence-answers was 
initially low. The effect of the specific instruction on this data is therefore complicated. 
Therefore a more detailed analysis of the transfer between the different strategies 
when computing expressions on this form was conducted. Figure 3 shows the 
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percentage of the students that changed from not applying a precedence rule to 
calculating with precedence on an expression on the form cba ⋅± . From the data in 
Figure 3 we note that the lowest amount of changes was obtained for the expression 

238 ⋅− .  

 

Figure 3: Percentage of students in the experiment group and the control group who 
have changed their computation procedure from non-precedence to the precedence 
rule. 
With a χ2-test of independence we obtained a statistically significant (= 99.96%) 
difference between the two groups of instructions on the total number of changes on 
expressions on the cba ⋅±  form. However, if we look at consistency, meaning that the 
same student should be consistent in all responses to the expressions on this form 
( cba ⋅± ), we find only a few in each group (16 in the experiment group and 25 in the 
control group) that actually miscalculate the expressions in the pre-test and changes to 
a correct precedence-based calculation of these expressions in the post-test. A χ2-test 
of independence on this smaller set therefore yield a lower statistical significance (= 
80%). Anyhow it appears safe to claim that the experiment instruction – with both 
emphasizing brackets and brackets as part of the precedence rules – results in lower 
transfer from a left-to-right to the use of the precedence rules with statistical 
significance.  
Bracket ignoring 
The data also reveal other effects of the instructions. It has already been demonstrated 
by e.g. Blando et al (1989) that students can ignore brackets. Our data shown in Figure 
4 demonstrate that bracket ignoring is decreased from pre-test to post-test. Most of the 
students had not previously been exposed to brackets in mathematical expressions. 
The high amount of precedence strategy must therefore be attributed to an a priori 
structure sense concerning brackets. Though the differences between the groups are 
small, it appears as if the effect of the instructions is larger in the experiment group 
than in the control group (39→4 compared to 34→11 in Fig 4). In this aspect the 
instructions with both emphasizing brackets and brackets as part of the precedence 
rule appear to be more efficient to suppress the bracket ignoring effect. 
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We also find one example of a student in the control group that after the instruction 
consequently ignores brackets in every expression, hence the student finds, e.g., 

13)27( →⋅−  (on Item E1) and 172)73( →⋅+ (on Item E7). However, this student 
changed from consistently using a left-to-right strategy (but with correct handling of 
brackets) to consistently using a precedence rule on cba ⋅±  expressions but with 
equalling cba ⋅±  and cba ⋅± )( . This could then be considered as an incomplete 
learning of the precedence rules. 

 

Figure 4: Number of answers on the three expressions of the kind )( cba ±⋅  in the 
pre-test and post-test for the experimental group and the control group, respectively, 
sorted as calculated by precedence (Preced), a bracket ignoring strategy (BI) or by 
other strategies (Other). 
Reversed strategy 
Figure 5 shows the number of responses to expressions of the form cba ±⋅ . From the 
structure of the expressions it is impossible to separate the preceding strategy from a 
left-to-right strategy. However, we note that the second most common response can be 
associated to a calculation according to )( cbacba ±⋅→±⋅ , i.e. with initially 
performing the rightmost operation and after that the left operation. This strategy is 
reversed in the sense that it is either reversed in spatial order, i.e., the calculation is 
performed from right to left, or it is performed with a reversed precedence rule, 
addition/subtraction before multiplication. One could suspect that answers in this 
category can be deduced to a “calculate easiest part first” strategy.  
The expressions on this form ( cba ±⋅ ) can be compared to the expression 238 ⋅− which 
according to Figure 3 had low success rate.  We found the third most common answer 
to the latter expression to be 2− . The reason for this could be a reversed strategy, 
evaluating the expression from right to left. However, as the reversed strategy appears 
to decrease under the influence of the instruction, in the case of 2238 −→⋅−  the 
frequency is significantly increased in the post-test compared to the pre-test, as shown 
in Figure 6. It is obviously the comparison between the two terms in the expression 
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238 ⋅−  that has been “damaged” by the instructions. At present it is unclear why this 
effect basically does not exist in the pre-test data but only occur after instructions. 

 

Figure 5: Number of answers on the three expressions of the kind cba ±⋅  in the 
pre-test and post-test for the experimental group and the control group, respectively, 
sorted as calculated by precedence or left-to-right (Preced/LTR), by a reversed 
strategy (Rev) or by other strategies (Other). 
Our data suggest that the implicit conflict between brackets as part of the precedence 
rule and brackets to emphasize precedence could be an obstacle when learning the 
order of operations. In our instructions the difference between the different roles of the 
brackets were not articulated. Thus, the outcome could possibly be different if the 
variations of different roles of the brackets would be stressed more clearly. 

 

Figure 6: Number of answers to 238 ⋅− . The answers are sorted as calculated by 
precedence (Preced), by a left-to-right strategy (LTR), by a possibly reversed strategy 
(Rev?) or by other strategies (Other). 

CONCLUSION 
Lincheski & Livneh (1999) suggested inserting mathematically useless brackets to 
emphasize the structure in expressions on the form cba ⋅± . Such emphasizing 
brackets have indeed been shown to help students perceive structure in algebraic 
expressions (Hoch & Dreyfus, 2004) and arithmetic equations (Marchini & 
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Papadopoulos, 2011). However, brackets inserted in arithmetic expressions with 
mixed operations are more often used with the purpose of indicating precedence of an 
addition/subtraction over a multiplication as in )( cba +⋅ . This dual intention with 
bracket symbols could possibly be an obstacle when learning the order of operations. 
We have therefore designed a set of instructions in order to study the effect of 
emphasizing brackets in an environment of brackets as part of the precedence rule. In 
total 169 students at the age of 12-13 years were exposed to the quasi-experimental 
study.  
Can mathematically useless brackets be useful tools for teaching? Marchini and 
Papadopoulos (2011) asked. From our data we conclude that it appears not to support 
the learning of the order of operations. With statistical significance we claim that 
instructions using both emphasizing brackets around multiplications and brackets 
indicating precedence other than the normal order of operations decreased the transfer 
from a left-to-right strategy to the application of a precedence rule. Possibly the 
instructions with emphasizing brackets could give a positive effect on the structure 
sense related to brackets as the bracket ignoring effect decreased. 
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STUDENTS CREATING WAYS TO REPRESENT PROPORTIONAL 
SITUATIONS: IN RELATION TO CONCEPTUALIZATION OF RATE 

Keiko Hino 
Utsunomiya University 

 
This paper examines seventh grade students’ processes of creating mathematical 
expressions for problems involving proportional relationship. Based on the 
framework of the conceptualization of intensive quantity, I analyze the challenges they 
experienced during their problem-solving attempts. Interviews with 14 students 
showed that the students who had a less developed rate conceptualization found it 
difficult to recognize the constancy of ratio in the presented situations. Moreover, the 
students who had a more mature rate conceptualization were also faced with 
challenges, although different, in expressing proportional relationships. The results 
imply a close link between creating mathematical expressions and conceptualization 
of rate but there are still other factors that may serve for the process of creation. 

INTRODUCTION  
Studies on student’s progression from arithmetic to algebra have accumulated 
important findings with respect to algebraic aspects of arithmetic and the methods to 
successfully prepare children for the formal study of algebra (e.g., Carraher & 
Schliemann, 2007). Innovative curriculum and teaching methods have been proposed 
in various countries. In Japan, one of the four content areas in the elementary school 
curriculum is quantitative relationships, which includes functional relationships and 
ideas related to mathematical expressions as two pillars of elementary school algebra 
(Watanabe, 2011). Proportional relationship, a core content topic bridging arithmetic 
and algebra, is taught spirally in grades 5–7 (MEXT, 2008). However, students’ 
achievement is not adequate: especially, the results of assessments by MEXT 
repeatedly show their difficulty in understanding algebraic equations that express 
proportional relationship and other functional relationships. 
The focus of this study is the learning trajectories regarding various representations for 
proportional relationship from elementary to lower secondary schools from the 
perspective of proportional reasoning development. This study considers mathematics 
learning as inextricably linked to semiotic activity in which students endeavor to 
create meanings and signs by reflecting on their interrelationships; a constitutive 
element of this also involves adjusting their creation of signs and meanings (van Oers, 
2000). Therefore, it is essential to understand students’ processes of acquiring 
different symbolic means in the classroom in conjunction with the impact they have on 
their proportional reasoning (Hino, 2011).  
In this paper, I report on the attempts of seventh grade students to create mathematical 
expressions in order to represent proportional situations prior to formal instruction on 
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an algebraic equation (y = ax). In Japan, students are introduced to proportional 
relationship through the use of tables in the fifth grade: If two quantities □ and ○ 
change in such a way that ○ increases by a factor of 2, 3, … as □ increases by a factor 
of 2, 3, …, we say that ○ is proportional to □. In the sixth grade, after a brief 
introduction to letters, the relationship between □ and ○ is formulated, such as in the 
equation y ÷ x ＝ fixed number. In this grade, a graph of a proportional relationship is 
introduced by plotting several points and observing their arrangement as a straight line 
that goes through the point where both quantities are 0. In the seventh grade, with the 
introduction to function, the symbolic representation (y = ax) is introduced and 
proportional relationship is defined in the form of y = ax. The extension of domains 
from positive to negative and the introduction to linear graphs in the Cartesian plane 
are also new topics. On the basis of these circumstances, I examine the grade 7 
students’ semiotic activities in relation to their conceptualization of rate. 
THEORETICAL BACKGROUND 
In the area of proportional reasoning, researchers have proposed various perspectives 
and frameworks to characterize its development (e.g., Harel & Confrey, 1994; Davis, 
2003). In this study, I refer to the framework developed by Kaput and West (1994) and 
other researchers who discuss the conceptualization of intensive quantity. Their 
framework was chosen for this study because the focus is on students’ developing 
meaning in regard to the constancy of ratio, which should ultimately be reified as 
constancy of proportion (a in y = ax). Moreover, studies of Japanese children in grades 
4–6 show a crucial relationship between their conceptualization of intensive quantity 
and learning of multiplication and division (e.g., Nakamura, 2011). 
Kaput and West distinguish two fundamentally different conceptualizations of 
intensive quantity. One is rate-ratio, in which a general description of an entity, 
situation, or event is conceptualized. The other is particular ratio, in which a 
particular instance of the rate-ratio is described. According to Kaput and West, 
rate-ratio conceptualization is built on repeated experiences of particular ratio, and it 
involves complex deployment of three major ideas: “numerical equivalence across 
particular intensive quantities,” “semantic equivalence across situation descriptions,” 
and “homogeneity of the intensive quantity’s referent in the situation being described” 
(p. 241). They emphasize that appreciating equivalence of one given pair of units with 
another and knowing that it applies across all instances of the situation being modeled 
are at the heart of the rate-ratio conception.  
By using the framework, they offer fine-grained analyses of informal proportional 
reasoning strategies, i.e., coordinated build-up/build-down, abbreviated build-up/ 
build-down using multiplication and division, and unit factor strategies. They point 
out that the construction of a correspondence between the two entities in a situation is 
the key step in the construction of rate-ratio between the measures of these entities. 
From this point of view, in the first two strategies, it is important whether the solver 
coordinates pairs of segments or groups by adjusting unit-size either in bottom-up way 
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or by “all-in-one” division and multiplication. Moreover, among the three, the unit 
factor strategy most requires a rate-ratio conception, since “the unit factor is a rate” (p. 
258, emphasis original).  
It should be noted here that these studies have targeted elementary school children. 
Furthermore, the researchers focused on missing value problems or comparison 
problems. In this study, I use the framework with problems based on expressing 
proportional relationship through equations, which constitutes a major activity 
involving proportional relationship in lower secondary schools (MEXT, 2008).  

METHOD OF STUDY 
This paper is a part of larger study that aims to understand seventh grade students’ 
learning of numbers, mathematical expressions, and functions and, based on this 
understanding, to propose teaching interventions. Two public schools in Tochigi 
prefecture, Japan, participated in the study. In the first year of the project, I 
implemented a questionnaire at the beginning of the school year with all seventh grade 
students to assess their proportional reasoning. It contained four tasks involving 
proportional relationship: three missing value and one comparison. Numerical features 
of ratios used in these tasks were “not reduced ratio” and “divisible to get unit factor” 
(e.g., 6 : 390 = 10 : x). Based on the results, I chose 14 students with different 
performance levels to be interviewed for 4 or 5 times during the school year. Each 
interview session lasts about 30 minutes. Along with data from their written 
documents, all interview sessions are audio and video recorded and transcribed. In this 
paper, I use data from the first and second rounds of interviews conducted prior to the 
formal teaching of proportional relationship, in which the algebraic equation (y = ax) 
and the coordinate graph were introduced.  
All interview tasks concern two quantities that vary proportionally with having the 
same numerical features as in the questionnaire. In the first round of interviews, 
students were provided with a situation in which a person walks at a constant speed. 
They were then asked to express the relationship between time and distance by 
different representations (e.g., picture, graph or mathematical expression). In the 
second round, given three situations, they were asked to judge whether each situation 
is proportional or not, together with questions on expressing the relationships between 
quantities. Through the questions, I intended to elicit students’ ideas and methods for 
creating signs and meanings and for using or modifying them. Two samples of the 
tasks and questions are presented below: 
Walking task: 

Situation: A person is walking eastward at a constant speed of 300 meters in 5 minutes. At □ minutes after the 
person passed point O, he is at △ meters to the east from point O. 

A question: “Will you create a mathematical expression that shows the relationship between time and distance 
after the person passed point O?” 

Potato chip task: 



Hino 

 
2-286 PME36 - 2012 

Situation: On the back of the potato chip bag, you can find the indication of calories contained in the bag. In 
one potato chip bag, it says 300 kcal per 50g. 

A question: “Will you write a mathematical expression that shows the relationship between the weight of 
potato chips eaten and the calories being consumed?” (Formula version of the question: “For the people who 
are concerned about nutrition, will you make a formula that finds the calories they ingest once they know the 
weight of their consumption of potato chips?”) 

To obtain information on their semiotic activity, both the product and process of the 
student’s reasoning for each question were summarized and analyzed. Two major 
focuses of the analysis were the (key) words and the visual mediators (icons, algebraic 
ideograms, et al.) that the students verbalized or drew for variables and the constancy 
of ratio (c.f., Capsi & Sfard, 2010). They are thought to contain valuable information 
on the interplay between sign production and proportional reasoning. The students 
produced various symbolic forms. Remarkably, each student demonstrated unique 
aspects on both focal points, but some similar observations were also noted among the 
students. To note these similarities, I compared and contrasted the responses of all 
students to generate (and check) categories. The repeated patterns of reasoning and use 
of signs were also sought for each student across the two interviews to attain further 
information on their reasoning processes.  

SOME RESULTS 
Performance of 14 Students in the Questionnaire 
In order to catch students’ conceptualization of rate, I paid attention to two features in 
their written solutions. One is the number of tasks that were solved by producing and 
using equivalent ratios. Here, based on the analysis of informal proportional reasoning 
strategies described earlier, build-up processes with some unit-size adjustment or unit 
factor strategies were counted. Another is the content of description in their solutions. 
I searched whether the solutions included a description of the meaning of equivalent 
ratios, such as “35 means the weight per 1 meter.”  

Name of the Student 

Performance Feature 

Number of tasks solved by 
producing and using equivalent 
ratios  

Whether the solutions included 
a description of the meaning of 
equivalent ratios  

A1 1 No 

B1, B2, B3 2 No 

C1, C2, C3, C4 3 No 

D1, D2, D3 3 Yes 

E1, E2, E3 4 Yes 

Table 1: Performance of 14 participants 
Table 1 presents an overview of the performance of the 14 participants. They were 
divided into five groups according to the consistency with which they produced and 
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stated numerically or semantically equivalent intensive quantities in solving the tasks. 
The students varied in their conceptualization of rate. A1 failed to produce equivalent 
ratios by adjusting the unit-size given in the task except for one missing-value task. 
She and other seven students did not state the meaning of equivalent ratios in any of 
their solutions. On the other hand, E1, E2 and E3 solved all the four tasks by 
coordinating pairs of segments or groups by adjusting unit-size. They also stated the 
meaning of equivalent ratios they developed. 
Students Ways of Creating Mathematical Expressions 
In the interviews, E1 and E2 were consistent in their creation of mathematical 
expressions. They could produce standard equations such as □ × 60 = △ or A × 4 = B. 
However, the other students created a variety of mathematical expressions. In this 
section, I illustrate some of their ways of creating mathematical expressions by using 
their responses to the sample questions above.  
Stating a Particular Ratio. In the walking task, I first asked A1 to draw a picture of the 
situation. Her picture (Figure 1) showed the information on rate (300 m in 5 min.) as 
the whole line from point O to the final destination. She did not state “5 min.” in her 
picture. During her communication with me about the location of the person at the 5- 
and 10-minute points after passing point O, she changed the information of rate. 
A1: (She pointed at the middle of the segment) I think he is 

about half [in 5 min.]… (Being asked to point to the 
location in 10 min.,) He would be here (She pointed at 
the right end of the segment). Probably in 10 min. From 
here (She pointed at point O), in 5 min. and 10 min. it 
goes like, 5 and 10. 

When asked to represent the situation with a mathematical expression, she produced 
one numerical statement “150 ÷ 5 = 30” but could not explain its meaning. These 
observations indicate that A1 interpreted the information of rate either just as a number 
or as a multiplicative relationship between two numbers. C1 and C2 were also 
observed to state particular ratio relationship of two numbers in their mathematical 
expressions. 
Focus on Co-Variation. Many of the students interpreted the information of rate in 
the task as referring to more than a particular ratio. However, how they attended to the 
information and incorporate it into their mathematical expressions varied. B1, C2, C4 
and D1 attended to co-variation of the two quantities instead of correspondence 
between x-y. The expressions they created were often 
idiosyncratic. B1 created “□ : △” in the walking problem.  
B1: Well, this is, I mean.. this is a little bit different, I don’t mean □ to △ 

(meaning a ratio of □ : △), so I will change it to 1 to 2 
(meaning a ratio of 1:2), and so (He wrote the expression in 
Figure 2) …, this is what I mean.  

Figure 1: A1’s writing 
 

    
 

    
 

    

Figure 2: B1’s writing (1) 
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For the formula version of the potato 
chip task, B1 apologized for only being 
able to write the formula in a tabular 
form (Figure 3). In creating the table, he 
systematically co-varied the two 
quantities, first with larger numbers and 
then with smaller numbers. For both 
tasks, B1 basically used build-up/build-down strategy without forming a unit factor 
from the original information of rate. 
C2 repeatedly had hard time to make mathematical expressions in the interviews. In 
the formula version of the potato chip task, she developed an expression (Figure 4) 
that was made sense to her for the first time. In creating her expression, she first posed 
a question of the weight of potato chip in one bag and then decided herself that the 
weight for one bag was 100 g. Then her thinking proceeded as follows: 
C2: If one bag is 100 g, then probably, A is the weight of the 

potato chip and B is the weight eaten (She is checking the 
task). It (meaning formula) should tell the calorie… Oh, I 
got it!... Well, the quantity eaten? It would be A  
multiply… well, if this is the case, if I know the grams 
eaten, then if I multiply by 2 or by 3… probably I think 
it will derive the calorie. ….  

The protocol shows her idea of creating an 
expression, namely, to form a unit and to build-up multiple instances based on the 
unit. As a result, the expression was two mathematical sentences for the weight and 
calorie. The expression was idiosyncratic in the sense that A and B seem to mean two 
specific quantities, 50 g and 300 kcal, respectively, and the “2”s mean a variation of 
numbers. Like B1, C2 did not form the unit factor (6 kcal per 1 g), but she also 
showed her struggle of spontaneously constructing a unit of the calories per one bag 
during the process of creating the expression.  
Attending to Individual Solutions. E3 was the student who could use the unit factor 
strategy and adjust unit-sizes in performing the build-up strategy to solve missing 
value tasks. However, in creating mathematical expression, he 
was observed paying attention to the individual solutions 
rather than the common feature across solutions. In the 
walking task, he wrote □ → △ and added 何分 (what 
minutes) and 何ｍ (what meters) (Figure 5). He said that 
he could not decide on one expression because it would be different when it was used 
to find the minutes or to find the meters. For the purpose of reducing his difficulty, I 
asked him to choose one of the two. Then he replied: 
E3: All right, then, well let’s see, if I know meters, then, it says 300 meters in 5 minutes, so I divide 

300 by 5 and get 60 meters. And since it is 60 meters, if the answer is 900 (He wrote “900 m”), the 

(A×2=quantity eaten) 
(B×2=calorie for the quantity eaten) 

Figure 4: C2’s writing 

Figure 5: E3’s writing 
 

    
 

    
 

    

Figure 3: B1’s writing (2) 
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time spent to walk [900 meters] should be 15, it should be 15 minutes (He wrote “15分”). Well, 
then it means that I don’t need to change it (He means 300 m in 5 min.) to 60 meters in 1 minute. 
I can do it by using 5 minutes (meaning 300 m in 5 min.). … Well, this is difficult.… (He further 
wrote “12分”.). Let’s see, I know in 10 minutes it is 600 meters, and if I change it to 60 meters in 
1 minute, then, since it is 2 [more] minutes, I will add 120 meters to this one (meaning 600 meters), 
then I get 720 for the time. 

At first, he seemed to be creating an expression for finding the distance when the time 
is given. However, he was still confused which of the two expressions he was creating. 
The protocol shows that E3 was engaged in finding answers for the case of 900 meters 
and 12 minutes by adjusting the unit-sizes. However, it did not contribute greatly to 
the development of his expression. He finally produced △ ÷ □ = ○ but could not 
state the meaning of ○ beyond “the distance from point O.” 

DISCUSSION  
The students in this study created a variety of mathematical expressions in the 
interviews. Although they were not received formal instruction on y = ax, they 
approached the question of expressing proportional relationship by using various 
symbolic means they had acquired in elementary schools. Nevertheless, their ways of 
expressing the information of rate in the situation varied more than expected, which 
revealed the students’ perspectives on what should be attended to, or what needs to be 
symbolized in what manner to represent proportional situations.  
Here, the students’ conceptualization of rate was found to play an important role in 
representing proportional situations through mathematical expression. As illustrated 
in the previous section, the participants with a less developed conceptualization of rate 
easily changed the given rate information, which suggest that they did not attach 
significant meaning to the information, or make an expression that stated the particular 
ratio relationship of two numbers. Even when the participants produced multiple 
instances from the rate information given, some of them tended to focus on the aspect 
of co-variation between the two quantities (e.g., Carraher & Schliemann, 2007; 
Nunokawa, 2010). They were engaged in build-up/build-down processes without 
adjusting the unit-sizes to get the unit factors. Here again, their conceptualization of 
rate was functioning.  
It was also found that those with a more mature rate conceptualization were still faced 
with challenges to express the relationship. They ranged from organizing individual 
solutions based on the common features as shown earlier, to making distinctions 
between general and specific for the objects of symbolization and assigning 
appropriate signs. Thus, the results imply that to be able to represent proportional 
situations by symbolic representations there are also other factors that we need to 
consider, which would include semiotic aspects of the concept of rates and variations. 
Kaput & West (1994) noted the fourth idea that bears on a full conceptualization of 
rate-rate, namely, that of variation and underlying idea of variable. It is likely that not 
only the idea of variable, we also need to pay attention to students’ understanding of 



Hino 

 
2-290 PME36 - 2012 

and skills for the symbolization of variable to represent proportional relationship. Here, 
the interview data suggest that students’ conception of mathematical expression would 
be an important basis because their struggles show their conception of mathematical 
expression only as a recipe for finding answers. 
At present, I am following these students in the development of their reasoning 
process and their early use of algebraic equations and other representations learned in 
mathematics lessons. One of the interests is to get information on the influence of 
learning of these means on their conceptualization of rate. Gaining such information 
will be useful in designing the resulting teaching interventions. 
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PRE-SERVICE TEACHERS’ SPECIALIZED CONTENT 
KNOWLEDGE ON MULTIPLICATION OF FRACTIONS 

Siew Yin Ho and Mun Yee Lai 
Charles Sturt University, Australia 

 
This paper reports pre-service teachers’ Specialized Content Knowledge (SCK) on 
multiplication of fractions. The responses of ninety-two first year Bachelor of 
Education (Primary) pre-service teachers, enrolled in a regional university in New 
South Wales, Australia, in a multiplication of fractions mastery test item were 
analyzed using an analytical tool. This tool, designed by the authors, consisted of four 
components, of which three are elements of SCK suggested by Lin, Chin and Chiu 
(2011): correctness of answer, justification, explanation, and representation. 
Preliminary findings suggest that mathematics pedagogy subjects in pre-service 
teacher education programmes should expose pre-service teachers to the various 
explanations and representations of concepts in mathematics. 

INTRODUCTION 
Pre-service teachers’ mathematics knowledge and pedagogical content knowledge 
have been an international concern since the last two decades, resulting in a growing 
number of research in this area (e.g., Ball, 1990; Isiksal and Cakiroglu, 2011; Fennema 
& Franke; 1992, Goulding, Rowland & Barber, 2002; Hill, Ball & Schilling, 2008, 
Ball et. al., 2009). The introduction of Mathematical Knowledge for Teaching (MKT) 
− the mathematical knowledge that teacher need to carry out their work as teachers of 
mathematics − helped clarify the various types of teacher knowledge involved in a 
teacher’s work repertoire.  Studies on MKT have indicated that teachers’ Specialized 
Content Knowledge (SCK) is a possible predictor of students’ achievement of 
mathematics (Hill, Ball & Schilling, 2008). This paper reports preliminary findings on 
the SCK of pre-service teachers from a regional university in New South Wales, 
Australia. 

MATHEMATICS TEACHERS’ SPECIALIZED CONTENT KNOWWLEDGE 
In Shulman’s seminal work, he (1986) suggested that teacher knowledge consisted of 
subject knowledge, pedagogical content knowledge and curricular knowledge. Ball, 
Thames and Phelps (2008) extended Shulman’s definition of teacher knowledge by 
coming up with a working definition of MKT. Specialized Content Knowledge (SCK), 
a component of MKT, is knowledge that involves both the knowledge and skill unique 
to teaching mathematics, that is, SCK involves conceptual understanding of 
mathematics concepts and knowledge of students’ errors in mathematics (Ball, 
Thames, & Phelps, 2008). It should be noted that SCK is a form of knowing 
mathematics needed by teachers (to explain mathematical concepts and ideas to 
students) and not needed by those who do not teach (Ball, Thames & Phelps, 2008; 
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Ball et. al., 2009). In a recent study, Lin, Chin and Chiu (2011) suggested that there are 
three elements of SCK. They are: Justification (how to explain and justify one’s 
mathematical ideas by rigorous arguments based on mathematical definitions and 
theorems), Explanation (how to provide mathematical explanations for common rule 
and procedures), and Representation (how to choose, make and use mathematical 
representations).  Hill, Ball & Schilling (2008) indicated that teachers’ SCK is a 
possible predictor of students’ achievement. They also noticed that there has been a 
lack of measures to assess how teacher knowledge is related to student achievement.  
Before we could address this concern, we need a measure to assess teacher’s SCK first. 
In this study, an analytical tool was developed to capture pre-service teachers’ SCK. 
Preliminary analysis of data in this study was conducted using this analytical tool. 

DESIGN AND METHODS 
Background of the study 
The study involved ninety-two first year Bachelor of Education (Primary) pre-service 
teachers at a regional university in New South Wales, Australia. One of the objectives 
of the first year Bachelor of Education (Primary) mathematics pedagogy subject was 
designed to enhance pre-service teachers’ SCK. As part of the assessment criteria, all 
the pre-service teachers had to sit for a ten-item paper-and-pencil mathematics 
mastery test. This mastery test required pre-service teachers to demonstrate their 
conceptual knowledge of the mathematics topics stipulated in the New South Wales 
K-6 mathematics syllabus. Each item in the mastery test was four marks. Difficulty 
was found in deciding how many marks (i.e., 1, 2 or 3) should be awarded for 
incomplete or partly correct answers. The scores of this mastery test could also not 
reflect exactly the pre-service teachers’ SCK, that is, which mathematics concepts the 
pre-service teachers understood or did not understand. As a consequence, the lecturers 
and tutors could neither give feedback nor provide much help to the pre-service 
teachers on their performance in the mastery test.   
The test item 
This paper focuses on one test item in the mastery test which involved multiplication 
of fractions, that is, 

3
1 × 

4
3  : 

4
3 of a pizza is left after a party. 

3
1 of the left-overs are given to Sarah to take home. What 

fraction of the pizza does Sarah take home? 

The analytical tool 
To address the above stated issue, an analytical tool was designed. This tool was used 
to analyse the pre-service teachers’ written responses to this test item. This analytical 
tool (See Figure 1) consisted of four components − Correctness of answer, 
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Justification, Explanation, and Representation. Among the four components, three 
were elements of SCK, as suggested in a recent study by Lin, Chin and Chiu (2011).  
In Figure 1, the number in the parentheses represents the marks awarded for displaying 
the corresponding response or understanding. Each pre-service teacher’s solution to 
the item was first checked for whether the answer to the item was correct or incorrect 
[Correctness of answer].  If the answer was incorrect, zero mark was awarded.  If the 
answer was correct, 1 mark was awarded. Next, the solution was checked for 
completeness of the justification given to the correct answer given. Solutions that had 
‘correct and complete justifications’, and ‘correct answer and incomplete justification’, 
were further checked for explanation. That is, whether it was a procedural explanation, 
a conceptual explanation, or both procedural and conceptual explanation were given. 
An explanation that was procedural, in this case, is explanation based on how to 
execute the multiplication of fractions algorithm. A conceptual explanation involves 
knowing why the algorithm works.  A conceptual explanation was then further 
analysed whether it was a mathematically-based explanation or a practically-based 
explanation (see Levenson, Tsamir & Tirosh, 2010).   A mathematically-based 
explanation is “based on mathematically definitions or previously learned 
mathematical properties, and often use mathematical reasoning” (Levenson, Tsamir & 
Tirosh, 2010, p. 346). A practically-based explanation is one which uses “daily 
contexts and/or manipulatives to “give meaning” to mathematical expressions” 
(Levenson, Tsamir & Tirosh, 2010, p. 345).  
Both authors of this paper coded and scored each of the ninety-two pre-service 
teachers’ written responses. The coding and scoring by each author was checked by 
the other author. Any discrepancy in coding was discussed and a final coding and 
score were agreed by both authors. 

 

Figure 1: The analytical tool 
The research questions 
This study addresses the following research questions: 
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1. Were the pre-service teachers successful in solving the test item? 
2. Were the pre-service teachers able to justify their answer to the test 

item? 
3. Which type of explanation did the pre-service teachers use to explain 

their answer? 
4. Did the pre-service teachers make use of representations to justify and 

explain their answer to the test item? If so, which type of 
representations did they use?   

RESULTS  

1. Were the pre-service teachers successful in solving the test item? 
Majority of the pre-service teachers (76 out of 92, or 82.6%) gave the correct answer to 
the test item.  Slightly less than a fifth of the pre-service teachers (16 out of 92 or 
17.4%) were unsuccessful in getting the correct answer to the test item. Analysis of the 
overall score for the test item showed that majority (about 38%) of the pre-service 
teachers scored 3 marks out of a possible maximum of 8 marks. This means that 
majority of the pre-service teachers in the study were able to provide a correct answer 
to the test item, but unable to provide a complete justification of their answer.   
 

2. Were the pre-service teachers able to justify their answer to the test 
item? 

Table 1 shows the frequency and percentage of the pre-service teachers’ (who gave 
correct answer to the test item) level of justification of their answer to the test item. 
Recall that majority of the pre-service teachers was able to provide the correct answer 
to the test item. However, majority of these pre-service teachers were not able to 
justify their answer successfully. Only 46.1% of the 76 pre-service teachers (or 38.0% 
of 92 pre-service teachers) who gave the correct answer to the test item was able to 
provide a complete justification to their answer.  

Justification Frequency Percent 
Incorrect 11 14.5 

Incomplete 30 39.5 
Complete 35 46.1 

Total 76 100.1 

Table 1: Level of justification of the pre-service teachers.  
 

3. Which type of explanation did the pre-service teachers use to explain 
their answer? 
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Table 2 shows the type of explanation given by the 76 pre-service teachers who 
provided the correct answer to the test item. Majority of these 76 pre-service teachers 
provided an explanation by showing the execution of the multiplication of fractions 
algorithm, that is, a procedural explanation. Although the test item had a daily context 
(pizza left over after a party), only about a third of these pre-service teachers (35 
pre-service teachers) made use of this daily context to explain their answer. None of 
the pre-service teachers gave a mathematically-based explanation. None of the 
pre-service teachers provided all three types of explanations – procedural, practically- 
based (conceptual), and mathematically-based (conceptual). 

Type of explanation Frequency Percent 
Procedural                      51 67.1 

Practically-based 11 14.5 
Procedural & 

Practically-based 
14 18.4 

Table 2: Type of explanation given by pre-service teachers. 

 
4. Did the pre-service teachers make use of representations to justify and 

explain their answer to the test item? If so, which type of 
representations did they use?    

As mentioned above, 35 of the 76 pre-service teachers who gave the correct answer to 
the test item provided a practically-based explanation in their solutions. All of the 35 
pre-service teachers provided pictorial representations of their explanations. 

DISCUSSION 
This study, unlike other studies on teachers’ mathematics knowledge, used an 
analytical tool to indicate the level of SCK of an individual based on each three 
components of SCK (Justification, Explanation and Representation). Such 
information will be helpful for lecturers and tutors to provide feedback to the 
pre-service teachers and also to design mathematics pedagogy courses in pre-service 
teacher education programmes.      
Using the analytical tool, the preliminary findings are: (a) majority of the pre-service 
teachers were not able provide a complete justification of their answer, (b) majority of 
the pre-service teachers provided a procedural explanation, (c) only about a third of 
these pre-service teachers used a practically-based explanation, even though the test 
item itself involves a daily context of pizza left over after a party, (d) none of the 
pre-service teachers provided mathematically-based explanation, (e) none of the 
pre-service teachers provided all three types of explanations – procedural, 
practically-based (conceptual) and mathematically-based (conceptual), and (f) only 
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about 38.0% of the pre-service teachers used a pictorial representation in their 
explanation. 
The above findings echoed the findings from Tobias and Itters (2007) study which 
found the SCK of pre-service teachers in regional Australia to be lacking. This study 
found the pre-service teachers’ SCK in the topic of multiplication of fractions to be 
lacking. The findings of this study were also consistent with those of previous studies 
(e.g., Isiksal and Cakiroglu, 2011) − that many pre-service teachers’ understanding of 
mathematics concepts is characterized by rote knowledge of the algorithm rather than 
by the concepts underlying procedures. Although the role of procedural learning 
should not be ignored, if a teacher’s knowledge of mathematics concepts is limited to 
only procedures, we cannot expect his or her classroom to be one of “developing 
knowledge, skills and understanding through inquiry” (Board of Studies NSW, p. 7), 
an objective stipulated in the current New South Wales mathematics K-6 Syllabus. 
Generating representations for a mathematical concept is a common teaching task in 
mathematics classrooms. Using a pictorial representation to explain the multiplication 
of fractions concept was found to be missing in majority of the pre-service teachers in 
the study. Connecting mathematics concepts with representations from daily contexts 
or the “real world” may help students make more sense when learning mathematics 
concepts. Further, it is important to note that “[w]ithout a solid knowledge of what to 
represent, no matter how rich one’s knowledge of students’ lives and no matter how 
much one is motivated to connect mathematics with students’ lives, one cannot still 
produce a conceptually correct representation” (Ma, 1999, p. 82). Many studies have 
indicated that the real mathematical thinking that goes on in the classrooms is 
dependent on how the teachers’ mathematics content knowledge and pedagogical 
knowledge (Fennema & Franke, 1992; Ma, 1999; Ball, Thames, & Phelps, 2008). 
Hence the findings in this study suggest that mathematics pedagogy subjects in 
pre-service teacher education programmes could help improve pre-service teacher’s 
SCK by not only exposing them to the types of  explanations of mathematics concepts 
(procedural and conceptual), it is also pertinent that they be made aware of the various 
representations of mathematics concepts (pictorial and abstract).        
Ma’s (1999) seminal work suggested that mathematics teachers should possess the 
following teaching skills: (a) connectedness (making connections between 
mathematics concepts and procedures), (b) multiple perspectives (providing 
explanations of different facets of a mathematical idea and various approaches to a 
solution), (c) basic ideas (revisiting and reinforcing basic mathematics ideas and 
concepts), and (d) longitudinal coherence (having a fundamental understanding of the 
entire elementary mathematics curriculum). The Chinese teachers in Ma’s study 
regarded the meaning of multiplication of fractions as “a “knot” that ties a cluster of 
concepts (e.g., fraction concept, meaning of multiplication of whole numbers) that 
support the understanding of the meaning of division of fractions (p. 82). Hence, in a 
similar sense, teachers’ SCK is also like a “knot” that ties the various kinds of teaching 
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skills and knowledge that teachers need in order to carry out their work as teachers 
well.  
The findings in this study cannot be generalized to the whole of New South Wales, 
Australia. Also, only the written answers of the pre-service teachers were analyzed. 
Another study could employ an interview method to further understand pre-service 
teachers’ SCK on the topic of multiplication of fractions. Yet another study could 
further analyze the types of pictorial representations for multiplication of fractions that 
the pre-service teachers gave in the mastery test. 
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This paper presents examination of a new mechanism, namely coordination, to 
teacher growth in profession. Here coordination is generally defined as the ability to 
construct novelty for teaching by transforming and coordinating sources of 
information observed and experienced from different learning environment. Two types 
of coordination were identified based on analysis of an experienced mathematics 
teacher when participating in design-based professional development programs. The 
potential of coordination as a mechanism to outline teacher growth is also detailed. 

INTRODUCTION 
Considerable studies have investigated mechanisms that can trigger teacher growth in 
profession. The reflection and enactment are treated as the central mechanisms to the 
growth. Dewey (1933) indicated reflective thinking as the key to overcome challenges 
but not routine thinking. Schön (1983) elaborated reflection from a different 
perspective by distinguished  reflection-in-action from reflection-on-action. The 
former means the feedback and the pragmatic knowledge obtained during the action 
and the latter refers to the process of making sense of an action after it has occurred to 
extends ones’ knowledge base. Jaworski (1993) indicated reflection and action that 
can not be separate because self-reflection is a spiral and cyclic process involving 
planning, action, observation, reflection. But it seems that research in reflection and 
enactment do not carefully articulate what and how sources of information obtained 
from different learning environment facilitate the growth in profession. 
In the paper, we propose a new growth mechanism, coordination, from a socially 
situated learning perspective. Here coordination is defined as the ability to construct 
novelty for teaching by transforming and coordinating sources of information 
observed and experienced from different learning environment (e.g., professional 
development or teaching). The way to define coordination is aligned with conceptual 
coordination in psychology which emphasizes “mechanism as construction of 
novelties” (Piaget, 1970). Coordination mechanism for teacher growth also focuses on 
what and how new knowledge for teaching can be erected through the interaction and 
participation in different learning environment. Thus, this paper aims to investigate the 
nature of coordination and how coordination can trigger teachers’ growth in 
profession. 

THEORETICAL LITERATURE 
From socially situated learning perspective, learning is viewed as a form of 
participation in the social world where the participation refers to “a process of taking 
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part and also to the relations with others that reflect this process” (Wenger, 1998, p. 
55). Learning in line with participation is conceived as a social phenomenon 
embedded in the experienced, lived-in world involving the transaction between person 
and social environment where one’s experiences are situated. The environment with 
participants shapes the communities of practices that have a history, norms, tools, and 
traditions of practices (Vygotsky, 1978). Through legitimate peripheral participation 
in ongoing social practice (Lave & Wenger, 1991), participants gradually become a 
member of a community in which they entail the ability to communicate and to act 
according to its particular norms (Cobb, Yackel, & Wood, 1992). In this sense, 
knowledge is co-produced in social settings as distributed among people and 
environments. 
Considering the interactions between/among different tiers of participants are 
complex, Lesh and Kelly (2000), using mathematical model as an example, suggested 
research design should involve different tiers of participants, which cooperate in an 
interactive nature linking research and practice to solve problems encountered in 
classrooms. Specifically, as the transfer of knowledge from educators, teachers, to 
students in professional development is not a linear and one-way process in which the 
solutions to problems encountered in teaching and learning can be directly obtained. 
Rather, the transferring process is complex, cyclic, and sophisticated, involving 
interplays with multiple tiers of participants (Lesh, Hamilton, & Kaput, 2007). 
Classroom teachers need much effort to back and forth transform and coordinate the 
materials and experiences learned from professional development into practical 
strategies that can be used to communicate the knowledge with students in classrooms. 

METHODOLOGY 
We elaborated coordination mechanism by selecting an experienced mathematics 
teacher, Zhang, who made professional growth through the participation of two 
consecutive professional programs. Each of the programs lasted a semester long. The 
selected teacher Zhang had more than 15 years of teaching experiences and was a 
consultant for district school mathematics teachers. The programs were organized 
with the aims to enhance students’ active thinking by means of using an approach of 
designing tasks rooted in design research paradigm (Cobb, Confrey, diSessa, Lehrer, 
& Schauble, 2003). During the professional development programs, teachers were 
required to initiate tasks, present their designs in professional development for 
feedback from educators and peer teachers, test the designs with students for revisions. 
The process of creating tasks, enacting the tasks in classrooms, and collecting 
students’ responses for revisions offer teachers opportunities to enrich their 
pedagogical power and the growth in profession. The professional development 
programs were led by an experienced educator who mastered in both research in 
mathematics education and teaching practices in classrooms. Because of the expertise 
in both research and teaching, educator was able to elaborate the research and theories 
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associated with student cognition and provide directions to the refinement of task 
sequences accordingly. 
Data collection included survey and interviews to understand Zhang’s perspectives on 
active thinking and his expectation before attending the professional development 
program. In addition, situations to administer interviews occur when it is not clear how 
Zhang initiated the design of task sequences, enacted the design in classroom lessons 
and made refinement accordingly. Other data sources were Zhang’s design products, 
the video corpus of professional development sessions, video recordings of his 
classroom teaching for enacting the designed tasks, and the field notes taken by 
researchers when observing both professional development sessions and the 
classroom teaching. Qualitative methods (Merriam, 1998) were applied to analyze and 
triangulate the data sources in order to clarify the storyline for Zhang’s professional 
growth and to establish the reliability of the analyses. 

FINDINGS 
Based on the analysis, we identify two types of coordination during Zhang’s task 
design and implementation of task in classroom. 
Coordination as making connection between others and personal ideas 
The coordination occurred when Zhang created a task involving a mathematical 
formula. Originally, Zhang thought that mathematical formulae were usually quickly 
reviewed in classroom lessons. He has not considered mathematical formulae as the 
materials to design tasks that can enhance students to think mathematics actively. But 
his observation of the task created by peer teacher Shou involving a mathematical 
formula ((a＋b)2＝a2＋2ab+b2) changed his mind. 

Zhang: I was touched by Shou’s task design…I thought it is easy to teach a 
mathematical formula. However, I saw how Shou made revisions several 
times according to the suggestions from the educator and other peer teachers 
as well as his experiences of implementing the task in classroom lessons. The 
process of refining the task does impress me and I feel touched…I feel that I 
still have much room for the growth. 

In addition to the novelty of creating an 
active-thinking task involving mathematics formula, 
Zhang was also inspired by the process of revising the 
task with educator and peer teachers. The observation 
motivated Zhang to make connection of mathematical 
formula with his personal teaching strategy of paper 
folding activity that creates opportunities for students 
to identify the existence of square root numbers.  
As shown in Figure 1, the activity involves the paper 
folding of a square with area 4 into a small square with area 2. The goal of the activity 

2 2  
2 

2 
Figure 1: Paper folding activity 
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is to present the existence of   which can be denoted as the side length of the small 
square with area 2. Zhang linked the paper folding activity with the observation in 
professional development and thought that the activity can be the materials to 
designing another task involving the formula for multiplication of square roots 

. As the design deals with , a special 
case for the formula, he anticipated that the task design can amend students’ 
misconception , a misconception that has been reported in 
literature (e.g., Hart, 1981). The task created by Zhang generally includes six parts. 
The first part aimed to scaffold students in defining  by paper folding activity 
elaborated previously. Zhang expected students to recognize the existence of  and 
the notation  that can be represented as the side length for the square with area 2. 
The second part of the task further requires students to derive  based on the 
constructed square with area 2. Figure 2 shows four squares with area 2 can be 
constructed into a big square which area is 8. Then, the side length for the square with 
area 8 can be denoted as . Zhang expected that the visual diagram representations of 
the side lengths for the square with area 2 and that with area 8 allow students to 
recognize the relationships . The obtained relation  
further offered students opportunity to reason , a 
supportive example for the formula . 
The third part of the task involved the activity that had 
students to experience  and  by observing big 
squares made by 9 small squares and 16 small squares with 
area 2 respectively. Zhang anticipated that the observation 
based on the side lengths and areas in the big squares can 
lead students to construct the relationship 

 and 
, 

respectively. 
Through the observation of the three examples, the fourth part of the task provided 
students opportunity to conjecture the pattern  where a is a square 
number. The five part of the task had to do with the generalization of the conjectured 
result into  where a and b denote any positive numbers. 
Finally, Zhang used a variety of calculation items that allow students to become 
familiarized with the formula and mathematics concepts relevant to square roots (e.g., 
simplification of additions of square root numbers). 
For coordination, what Zhang learned from the designing experiences was that his 
original instructional strategy can be used to create tasks involving mathematical 
formula that he has not known previously. 

2 2

2 

8  
2 

2 2 

Figure 2: Reasoning for 
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Coordination as integrating sources of information into the creation of novelty 
Zhang enacted the designed task involving the formula in a regular class and the 
after-school class for three low-attaining students who also studied in Zhang’s regular 
class. Zhang’s instruction in regular class was more oriented to a teacher-leading 
instruction as he lectured the lessons and the students were listeners. Thus, his students 
in the regular class did not have many opportunities to express their thinking and 
learning difficulties. Consequently, Zhang anticipated that the designed task can 
scaffold students in successfully conjecturing the formula and doing the calculation 
items correctly. 
But Zhang found that the original design of task could not amend students’ 
misconceptions as he expected in after-school class for the three low-attaining 
students. The reason that he could perceive students’ learning difficulty was due to his 
change of teaching style by frequently asking students to express their thinking in the 
lessons instead of directly telling them the mathematics. In this regard, students had 
more opportunities to actively engage in conjecturing the formula and express their 
mathematics thinking. The change of teaching in turn offered Zhang chances to notice 
the pedagogical problems and opportunity to challenge the problems. 
In the teaching for the three low-attaining students in the after-school class, Zhang 
re-led the paper folding activity and expected the activity that can allow students to 
recognize relation   by observing side length between big square and 
small squares in the diagram representations. At the instructional moment, the students 
showed the agreement by replying that . However, when the students 
were asked to work on calculating item , they changed the answer 
to . Students’ inconsistent responses created the pedagogical problem for Zhang. 
Zhang thought that the task arrangement could help students understand the  
concept and then recognize that  was not correct. However, 
Zhang did not realize the fact that mathematical contradiction does not necessitate 
provoking students’ cognitive conflict. Students did not feel conflict for the 
inconsistent answers between the observation derived from diagram representations 
and calculations with written symbols. In this regard, their misconception related 
to  could not be amended by the observation of the relations  
in diagram representation. Students still thought  when doing the 
calculation tasks and did not see the problems. 
Consequently, Zhang decided to challenge his pedagogical problem. He tried to 
interview the students to understand the reasons for the inconsistent responses 
between diagram representations and the arithmetic calculations. The interview 
revealed that students have not viewed  as an operator or a number yet, and 
thought that “  is a monster with a hat”. In this regard, similar to the error pattern 
(e.g., 2a+5=7a) reported by Hart (1981), when working on the arithmetic calculations, 
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students intended to ignore the notation  and focus on the familiar numbers. For 
example,  can be calculated as adding 2 by 2 first without the consideration of 
the square root notation and then put the square root notation back when obtaining the 
number 4. In other words, students have not developed the concept as  is a number. 
Having recognized the underlying reasons for students’ inconsistent answers, Zhang 
came up with a resolution according to his prior teaching experiences and the 
understanding of curriculum materials. He proposed the strategy by checking the 
square root table as to help students understand  is a number. When 

becomes a number, students can further infer  on the basis of the 
calculations . This time, this proposed strategy did help 
students overcome their difficulty in inferring . Consequently, Zhang 
revised the task again by including an activity of calculating  by calculators before 
heading to the paper folding activity. 
It is worthy of noting that the existence of researchers in the classroom teaching for the 
three low-attaining students may inform Zhang the importance of active thinking so 
that reinforced Zhang to not directly tell students the answers but had to come up with 
a plan to challenge the pedagogical problem. In this regard, Zhang had to generate a 
solution plan by coordinating active thinking, his understanding of curriculum 
materials, prior teaching experiences and students’ learning difficulties. 

DISCUSSION 
The analysis of Zhang’s task creation and the implementation of the task in classroom 
teaching reveals two types of coordination in terms of novelty of knowledge that can 
be constructed. The first type of coordination can be generally described as the 
connection between personal ideas and the ideas from others into the creation of the 
task. The way Zhang created the task was based on coordinating the idea from Shou as 
mathematical formula can be the materials to enhance student active thinking and his 
prior strategy by using operating activity to motivate students to learn mathematics. 
The coordination allowed Zhang to recognize his prior instruction strategy can be 
extended to another mathematics topic that he has not considered previously. For the 
second type of coordination, it occurred when Zhang challenged his pedagogical 
problem. In order to solve the pedagogical problem in classroom, Zhang had to clarify 
the reasons for why students’ misconceptions could not be amended by the original 
plan. Then, Zhang coordinated active thinking, his prior teaching experiences and the 
understanding of curriculum materials to solve the problem. The novelty constructed 
through the coordination is the knowledge as the concept of  as an operator and a 
number that should be established before working on the formula for multiplication of 
square root. Particular attention should be given to the process of identifying students’ 
misconceptions that could not be amended by the original instructional plan and 
conducting the follow-up interviews to probe the underlying reasons. This process 
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allowed Zhang to generate an efficient and effective plan to challenge the pedagogical 
problem. 
As coordination mechanism clarifies what sources of information can be transformed 
and coordinated into the construction of novelty, it possesses the potential to describe 
different types of learning trajectories. Taking Zhang as an example, his growth in 
profession by coordination largely occurred in his teaching practices as he noticed 
students’ learning difficulties in his teaching and coordinated a solution plan to solve 
the pedagogical problem. The learning from professional development functions as a 
guideline reminding him the importance of active thinking. In this regard, the way 
Zhang made growth in profession can be described as a pragmatic-oriented trajectory. 
But alternative coordination trajectory to the professional growth can be the heavy 
scaffold provided by professional development as the educator offers concrete 
suggestions that allow teachers to back and forth transform and coordinate the 
experiences between professional development and teaching environment to enrich 
their pedagogical power. 
While coordination emphasizes the transformation and integration of information 
sources experienced from different learning environment, the mechanism can play a 
central role in helping teachers bridge the gap between research/literature and practice. 
Specifically, recognizing that the knowledge transferring process is complex, cyclic 
and sophisticated, involving the interplays with multiple tiers of participants (Lesh et 
al., 2007), coordination mechanism creates a way to investigate the bridging process 
as how teachers transform and coordinate their learning in professional development 
to solve the pedagogical challenges encountered in their classroom. 
Additionally, coordination also offers the opportunities to understand how teachers 
perceive, evaluate, and then select the sources of information that they want to 
transform and coordinate for self-growth. The process of perceiving, evaluating and 
then selecting the sources of information for coordination are subjective and involves 
personal learning preferences. While a number of participating teachers presented 
their task designs in professional development, the selection of Shou’s designing 
experiences into the task creation is very likely made based on the evaluation in terms 
of what materials that are suitable for his teaching. In this regard, he is not passive 
receiver but an active interpreter and constructor as his intension determines what he 
wants to learn from professional development environment. 
As coordination itself is also a reflective action (Piaget, 1970), using coordination as a 
mechanism to examine teachers’ professional growth is in line with the research 
inquiry in reflection and enactment. However, as coordination focuses on how 
different sources of information can be transformed and coordinated to produce new 
knowledge for teaching, the point that seems not to be well taken in reflection and 
enactment research, it offers potential to outline teachers’ professional growth in an 
alternative and detailed way. 
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INVESTIGATING ENGINEERING STUDENTS’ 
MATHEMATICAL MODELING COMPETENCY FROM A 

MODELING PERSPECTIVE 
Chih-Hsien Huang 

Ming Chi University of Technology 
 
 This study investigates university students’ modeling process in one modeling activity. 
The data is collected by students’ individual and group written responses to the 
mathematical modeling activity, video-taped group discussions and classroom 
observation by the researcher. The data showed that university students have difficulty 
in transition between different modes of mathematical representations and the 
classifications of variables/parameters as known or unknown, implicit or explicit, 
independent or dependent variables. 

INTRODUCTION 
Over the past ten years, it has become increasingly important to apply mathematics to 
other subjects, including engineering, nanotechnology, economics, and biology. Many 
educators and researchers in mathematics education believe that this should be 
reflected in the classroom via mathematical modeling activities. Students should be 
availed with tools in addition to school mathematics, and allowed to glimpse 
real-world mathematics outside the classroom. The use of models and modeling in 
enhancing the instruction and learning of mathematics is an indispensable means of 
cultivating students’ mathematical literacy, which they need in the new era of 
technology (Burkhardt, 2006; English, 1999; Lesh & Doerr, 2003). Several factors, 
such as entrance examinations and existing teaching materials, fail to create a 
favorable environment for mathematical modeling in the current mathematics 
education situation of Taiwan. However, university students have less academic 
pressure, and calculus is a fundamental course in college-level mathematics and 
engineering education. Students need to understand the concepts of calculus and be 
able to apply them. For engineering students, calculus is not only a specialized subject, 
but also knowledge that they will need in their future workplaces. Thus, integrating 
modeling activities into calculus courses is a proper approach to implement 
mathematical modeling instruction. 
This study aims to design mathematical modeling activities, based on models and 
modeling perspectives and embedded into calculus courses, to develop students’ 
mathematical modeling competency. Teaching experiments in this study used the 
island approach proposed by Blum and Niss (1991) to integrate model-based teaching 
activities into formal activities for teaching calculus, and is used to avoid resistance 
from students who are used to traditional teaching. The ultimate purpose of the 
teaching experiments is to foster students’ modeling competency through a modeling 
process. By implementing such teaching experiments, we investigate the 
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mathematical modeling process and competency of first year engineering students, 
which can be used as a reference for designing activities for teaching mathematical 
modeling to college students. 
Theoretical Framework  
Mathematical modeling instruction aims to support students in learning mathematics. 
Through modeling, mathematics can be used to describe, understand, and predict 
real-world situations. Hence, mathematical modeling can help students gain external 
mathematical experience, and create the connections between mathematical concepts 
involved in modeling activities. Mathematical modeling involves multiple processes 
such as mathematization, interpretation, communication, and even application (Lesh 
& Doerr, 2003; Maaß, 2006). Unlike traditional problem solving, which focuses only 
on the representation of mathematical problems and solutions, mathematical modeling 
focuses on converting and interpreting contextual information, identifying potential 
problems, establishing models, and reinterpreting the premise, hypothesis, and 
possible errors of mathematical solutions. These processes are normally described in 
the form of stages. By following these processes, students can constantly refine and 
develop their mathematical models in a circular manner. Moreover, students need to 
be able to engage in mental activities when moving from one stage to another during 
the modeling process. 
Competency indicates that individuals are able to make relevant decisions and 
implement proper actions in a real-world situation. These decisions and actions are 
essential for individuals in successfully handling real situations. As Blum and Leiß 
(2006) indicated, if teaching and learning are emphasized simultaneously, an 
individual-oriented perspective on problem solving is necessary to better understand 
what students do when solving modeling problems, and to provide a better foundation 
for the diagnosis and involvement of educators. This study adopts the modeling cycle 
proposed by Galbraith and Stillman (2006) as a research framework to investigate the 
mathematical modeling process and mathematical competency of first year 
engineering students. 
Description of this Study  
This study adopts an interpretative orientation based on anti-positivism (Cohen , 
Manion, & Morrison, 2000, p. 22), regarding case studies as a research strategy for 
closely examining the modeling process of students. The mathematical modeling 
problem of this study is as follows: 
A company is carrying out a cost-cutting exercise and requires your help with an investigation 
into how it can reduce its transport costs. The company employs a number of drivers who cover 
a substantial amount of mileage every day. There has recently been a large increase in their fuel 
costs and drivers can achieve a higher rate of miles per gallon from their vehicles by driving at a 
lower speed. This, however, increases journey times and the cost of the driver’s time. 
The data reported in this study was gathered from three calculus classes. The entire 
process of each class, which lasted for 70 min, was recorded and videotaped. The 
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subjects in this study consisted of 54 first year engineering students of a university. 
These students were divided into ten groups. Each group included five to six students. 
The researcher observed and videotaped three groups, including Groups A, D, and F. 
After each class, the researcher had a retrospective interview with these three groups 
to understand their real intentions. The researcher showed a certain group of students a 
video regarding their situation in class and asked them to explain their behavior in 
detail by asking questions, such as “How did you propose your ideas at this point?”. 
This artical reported the modeling process of the six students in Group D. The grades 
of these students in calculus were approximately average. Sam, as an instructor in the 
teaching experiments, had 15 years experience teaching calculus in a university. He 
was willing to participate in this study because of his interest in fostering students’ 
mathematical thinking through modeling. 
Major Activities of Each Class 
In the first class, Sam first posed a math problem, and students had class discussions 
and worked on their own. After some students posed their questions, others could 
express their opinions. Sam guided or instructed students to implement reflection by 
asking students several questions such as “Why?”, “Then?”, and “How will you do 
it?”. Then students had group discussions and tried to understand, structure, and 
simplify a real-world situation and convert it into a problem statement. During this 
process, students gradually discovered and verified several keywords in the problem 
statement, and were encouraged to convert a real-world problem into a problem 
statement based on keywords. In the second class, students needed to simply or 
structure a problem situation based on a problem statement, and to further generate 
real models. Students first held group discussions for 30 min. They were encouraged 
to reexamine a problem statement, and asked to create variables, parameters, constants, 
and symbolic representations based on keywords. In the second stage, Groups A, D, H, 
and G were invited to share their reports, and held class discussions. During the 
discussions, Sam occasionally asked students questions such as “Why did you think in 
this way?”, and “Do you think this is the best way?”. These questions provided 
students with material for discussion and enabled students to perceive the importance 
of examining arguments. Sam also took this opportunity to explain the similarities and 
differences between variables, parameters, and constants. In the third class, students 
first used known mathematical knowledge to solve mathematical models on their own, 
and then held group discussions to interpret mathematical solutions as real results. 
RESULTS 
Figure 1 shows the mathematical modeling competencies in each transition (cognitive 
activity) that were identified in this implementation of the task. Each element has two 
parts where key (generic) categories in the transitions between phases of the modeling 
cycle are indicated (in regular type), and illustrated (in capitals) with reference to the 
task. Evidence for selected examples of these activities is presented in the analysis of 
transitions that follows. 



Huang 

 
2-310 PME36 - 2012 

Real-world situations → Real-world models. In the first stage, students verified 
certain keywords in a problem statement, including the driving speed, costs in terms of 
diesel fuel and driver salary, and transportation costs. There was a mathematical 
observation during the inquiry process. Inquiry and mathematical observation allowed 
students to surpass their preconceived opinions of real-world situations, especially 
when students had talks with others in group discussions. For example, “The truck 
travels at a constant speed, ignoring traffic lights and jams” was the important concept 
that was simplified in group discussions. 
1.Real- world situations → Real- world models (understand, simplify, and interpret context) 
1.1 Clarify the context of problems【DRIVE THE OPTIMAL DRIVING SPEED FOR A TRUCK TO 
MINIMIZE TRANSPORTATION COSTS UNDER CONSIDERATIONS OF THE COST OF DIESEL FUEL 
AND THE DIRVER’S SALARY】 
1.2 Simplify hypotheses【A TRUCK TRAVELS AT A CONSTANT SPEED, IGNORING TRAFFIC LIGHTS 
AND JAMS】 
2.Real - world models → Mathematical models (CONSTRUCT HYPOTHESIS AND 
MATHEMATIZATION) 
2.1 Verify variables and parameters【THE DISTANCE DRIVEN BY A TRUCK IS A PARAMETER】 
2.2 Use graphical representation 【THE RELATIONSHIP BETWEEN THE SPEED OF A TRUCK AND 
THE NUMBER OF km/L OF DIESEL FUEL THE TRUCK CAN GET】 
2.3 Use situational elements of graphical representation 【USE THE SYMBOL “g” TO REPRESENT 
NUMBER OF km/L OF DIESEL FUEL THE TRUCK CAN GET 】 
2.4 Construct relevant hypotheses【THE RELATIONSHIP BETWEEN THE SPEED OF A TRUCK AND 
THE NUMBER OF km/L OF DIESEL FUEL THE TRUCK CAN GET】 
2.5 Use mathematical knowledge appropriately 【 WRITE OUT THE FUNCTION OF 
TRANSPORTATION COSTS】 
3. Mathematical models → Mathematical solutions  (OPERATE MATHEMATICALLY) 
3.1 Representational change 【CONVERT THE RELATIONSHIP BETWEEN THE SPEED OF A TRUCK 
AND THE NUMBER OF km/L OF DIESEL FUEL THE TRUCK CAN GET INTO AN ALGEBRAIC 
EXPRESSION】 
3.2 Analyse【VERIFY DIFFERENTIAL VARIABLES】 
3.3 Apply the concept of derivatives【USE FIRST-ORDER DERIVATIVES TO SEEK EXTREMA】 
3.4 Understand the meaning of parameters 【 MATHEMATICAL SOLUTIONS INCLUDE 
PARAMETERS】 
4.Mathematical solutions → Real-world meaning of solutions (INTERPRET MATHEMATICAL 
RESULTS) 
4.1 Verify mathematical results based on real-world situations【 THE RATIONALITY OF 

】 
4.2 Integrate arguments to verify interpretational results【THE RANGE OF  VALUE】 

Figure 1. Framework showing transitions and mathematical modeling competencies in 
the  implementation of transportation costs activity 

Then, students verified the variables and limitations in the situation to investigate the 
key factors influencing transportation costs. For instance, John suggested that the cost 
of diesel is inversely proportional to transportation time. However, Mary had a 
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different opinion, in that speed is not necessarily inversely proportional to the number 
of km/L of diesel a truck can get. After group discussions, relevant factors were listed 
as below: the factors related to driving distance, the factors related to the truck. The 
preceding has demonstrated that all these students could successfully generate a 
problem statement. Under considerations of the cost of diesel and of the driver, the 
students needed to derive the optimal driving speed for the truck to minimize 
transportation costs. 
Real-world models → Mathematical models. In the second stage, students engaged in 
the work of mathematization. Students encountered the most difficulty and spent most 
of their time on this stage. The difficulty lied in creating mathematical properties 
corresponding to situational conditions and hypotheses. It seemed rather important to 
provide these factors; for instance, “What are parameters?” and “What are variables?”. 
This is also a very important process in mathematical modeling activities. 
All the students in Group D had the same hypotheses on the price per L of diesel, the 
hourly rate of a driver, and the number of km a truck travels. However, their 
hypotheses on the speed of the truck and the number of km/L of diesel a truck can get 
were slightly different. Someone hypothesized that a truck can run 40 km at a speed of 
20 km/h, and that for every 20 km/h increase in speed, the number of km/L of diesel a 
truck can get would be reduced by 10 km. Someone hypothesized that a truck can 
drive for 1 h on 1 L of diesel at a speed of 50 km/h, and that an increase in speed of 5 
km/h would reduce the driving time by 0.2 h. Obviously, there was a significant 
difference between student performance and the meaning and purpose of 
mathematical modeling. Other groups of students had similar problems; thus, Sam 
re-explained the meaning of mathematical models, and encouraged students to 
hypothesize more parameters and variables. 
Group D first discussed whether several keywords in the problem were parameters or 
variables. Gray argued that since the number of km/L of diesel a truck can get may 
vary with the speed of the truck, that this was a variable. Tom suggested that because 
the company does not often adjust salaries, the hourly rate for a truck driver can be 
considered as a parameter instead of a variable. Regarding the cost of diesel, in John’s 
opinion, even though the price of diesel may be adjusted every week, the adjustments 
were relatively modest. Sometimes the price rises by two cents and falls by two cents 
afterward, meaning that the price does not change. Therefore, the price of diesel can be 
hypothesized as a parameter. After a 20 min discussion, Group D reached the 
consensus that the heart of the question is the speed; any values directly related to the 
speed are variables, and the rest are parameters. Therefore, all the students finished 
assigning symbols to represent all the parameters and variables. 
The second stage of mathematization was to construct hypotheses. A less 
controversial hypothesis was that a truck travels at a constant speed, ignoring traffic 
lights and jams. A more controversial hypothesis was the relationship between the 
speed of the truck and number of km/L of diesel that the truck can get, which was the 
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most important hypothesis in this modeling activity. When working on their own, 
most students in Group D hypothesized that the speed of a truck is inversely 
proportional to the number km/L of diesel a truck can get. Such a hypothesis differed 
from real-world situations. Only Gray and Roberto put forward different opinions. 
Both of them suggested that the faster the speed, the more fuel that can be saved, based 
on their experiences with riding a scooter. 
Hence, the students in Group D decided to investigate the data on their own regarding 
the speed of a truck and number of km/L of diesel a truck can get, which could serve as 
a basis for the subsequent discussion. These students tried to identify the relationship 
between the speed of a truck and number of km/L of diesel a truck can get by gathering 
relevant data from the Internet and dealer websites, and by calling car dealerships. The 
relationship between the speed of a truck and number of km/L of diesel it can get was 
demonstrated by the students not to be a simple linear relationship. For instance, John 
divided the speed of a truck into two different ranges, from 0 to 50 and from 50 to 80 
km/h, and drew two line segments connecting two specific points, (0,0) and (50,8), 
and (50,8) and (80,10), serving as the hypothesized graphical representations. After 
discussion, Group D hypothesized that the maximum speed was 100 km/h; beginning 
with 0 km/h, the number of km/L of diesel a truck can get steadily increases with 
increases in speed; at a speed of 60 km/h, a truck can travel 12 km on 1 L of diesel. 
They also hypothesized that after a truck goes over 60 km/h, the number of km/L of 
diesel it can get steadily decreases; at a speed of 100 km/h, a truck can travel 8 km on 
1 L of diesel. Moreover, they represented their hypotheses with graphics. 
After finishing its hypothesized graphical representations, Group D began with 
converting key factors into mathematical representations, including the traveling time 
( ), cost of a driver ( ), and cost of diesel ( ), and created the function of 
transportation costs: . At this point, Group D finished its 
mathematical models, including the algebraic expression of the cost function and a 
graphical representation of the number of km/L of diesel a truck can get. 
Mathematical models → Mathematical solutions. In this stage, known mathematical 
knowledge was used to solve mathematical models. Because the form of cost 
functions differed from the functions with which students dealt previously, the first 
problem students encountered was that they did not know which variable should be 
differentiated. The next difficulty was how to use “g” to differentiate “s”. Students 
demonstrated the relationship between s and g using graphical representations; thus, 
they had difficulty implementing differential operations. After a 5 min discussion, 
they were still unable to find a solution. Therefore, Sam suggested that the students 
convert graphics into functional forms by using the combination of an equation of two 
straight lines. After about 5 min, Group D represented the relationship between s and g 
with an algebraic expression: 
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Finally, they used the concept of first-order derivatives to determine a mathematical 
solution. However, students wondered why the solution for the optimal speed 
contained parameters, because they thought that the form of an answer should be a 
number, based on their previous learning experiences. Sam discovered that most 
students had questions about the form of the mathematical solution. Hence, in class 
discussions, he explained the purpose and meaning of mathematical modeling and the 
meaning of a mathematical solution that included parameters. 
Mathematical solutions → Real-world meaning of solutions. In this stage, students 
interpreted mathematical solutions as real results. In the last stage, Group D 
discovered that the optimal speed was correlated with the value of . They also 
understood that they needed to propose possible results based on the value of . 
Tom suggested that when , the optimal speed and lowest transportation 
costs can be obtained. However, he did not consider the hourly rate of the driver to be 
unreasonable, which was only approximately 60 NTD when .There were 
three students suggested that  should be 0.4 when the price per liter of diesel was 
29 or 30 NTD. There were two students listed several solutions such as , 

6.74=s ; when , 9.65=s ; and when ,; when , 6.55=s . 
They did not provide a single solution; instead, provided clients with the suggestion 
that the value of  be between 0.3 and 0.4.  
CONCLUSIONS 
This study emphasizes student reflection on mathematical understanding, 
mathematization and analysis of mathematical systems, and the interpretation of 
results to a given real-world problem, providing students with an opportunity to learn 
mathematics in a different way. This study replaced extrema problems in calculus 
courses with the mathematical modeling activities of reducing transportation costs. 
Through mathematical modeling instruction, students can gradually develop their 
mathematical modeling competency by working on their own and through discussion 
with their peers. The analysis results of research data show that a fundamental and 
important problem encountered by students is their failure to recognize variables and 
parameters; and whether these values are known or unknown, obscure or clear, or 
independent or related. Without this fundamental knowledge, students may have 
difficulty engaging in mathematical modeling activities, especially during the process 
of mathematization. Therefore, the insufficient ability of students to categorize 
variables and parameters should not be ignored. Educators should help students in 
establishing useful relationships required by mathematical problems.Another obvious 
problem is representational change. Representational tools and systems such as tables, 
graphics, and drawings are important parts of the mathematical modeling process. 
This research result accords with the argument emphasized by Lesh and Doerr (2003): 
that representational fluency plays an important role in the model-documentation 
principle of mathematical modeling. 
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The study results verify the cognitive activities in which students engaged and the 
competency required during the mathematical modeling process of solving the 
problem of reducing transportation costs. Researchers and teachers can use the 
transitional framework proposed in this study to verify whether students have the 
specific abilities necessary to successfully finish particular mathematical modeling 
problems. Teachers who want to implement mathematical modeling instruction can 
also use the transitional framework to ensure that students are able to develop their 
mathematical modeling competency, even though not every modeling activity 
includes every element. From the perspective of student learning, the transitional 
framework can be used to predict difficulties that students may encounter. 
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TEACHING CHILDREN VOLUME MEASUREMENT CONCEPTS  
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This study examines the effectiveness of two sets of computer-based curricula for 
teaching volume measurement concepts to fifth-grade children. Findings show that 
curricula that involve a set of core concepts of volume measurement and physical 
manipulations by means of guided question-and-answer instruction facilitate 
children’s acquisition of volume measurement concepts. Moreover, children are likely 
to show gains in test scores in explaining mathematical thinking for volume 
measurement if they have been exposed to an enriched curriculum that integrates 
more geometric concepts with volume measurement. 

INTRODUCTION 
Volume, which involves the spatial organisation of quantities, is the measure of a 
three-dimensional (3-D) space. Understanding the set of core concepts for volume 
measurement is a general goal for fifth- and sixth-grade students, including units of 
measure and their coordination in three dimensions, and the volume formulas for 
volume measure of a rectangular prism (Taiwan Ministry of Education [TME], 2010; 
National Council of Teachers of Mathematics [NCTM], 2000).  
An understanding of 3-D measurements requires plenty of physical-manipulation 
experience with concrete objects for 1-, 2-, and 3-D attributes, and a greater degree of 
mental adeptness in terms of manipulating 2-D and 3-D geometric shapes (Ben-Haim, 
Lappan, & Houang, 1985). Seeing that the properties and feature of volume are more 
complex than those of linear and area measurements, mathematics educators have 
suggested that providing learning activities that encourage students to engage in 
constructing connections between number and geometry should be taken into account 
for developing conceptual understanding of volume concepts (Owens & Outhred, 
2006).  
In more recent studies, Huang and Witz (2011) and Huang (2011) argued that 
connecting geometry with area measurement and numerical calculations may facilitate 
students’ conceptual understanding of area measurement and their ability to solve area 
measurement problems. In those studies, children who were exposed to a context that 
integrated 2-D geometric knowledge with area measurement appeared to show higher 
competency in explaining mathematical thinking about area measurement in tasks for 
which conceptual understanding was required. The current study aims to extend ideas 
about curriculum design that integrate concepts of measurement underlying 
spatially-organized quantities with geometry to develop instructional activities for the 
purpose of teaching children volume measurement.  
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Furthermore, for developing students’ conceptual understanding of mathematical 
knowledge, in addition to physical manipulations, it is suggested that teachers take 
advantage of utilizing appropriate dynamic computer environments (TME, 2010; 
NCTM, 2000). In the current study, the sets of instructional treatments that employ 
computer softwares as tools have been designed to help students comprehend concepts 
of volume measurement and the formula, Volume (V) = Length (L) x Width (W) x 
Height (H) [or Volume (V) = Base (B) x Height (H)]. Moreover, the instructional 
approach, guided question-and-answer instruction, was adopted in accordance with 
Huang and Witz (2011) and Huang (2011).  
In sum, the present study aims at describing ways of improving fifth-grade children 
construct knowledge of volume measurement and how to use that knowledge as they 
solve volume measurement problems. The study therefore addresses two questions as 
listed below.   
1. What is the influence of the two instructional treatments on developing children’s 

ability to solve volume measurement problems? 
2. What is the influence of the two instructional treatments on developing children’s 

ability to solve volume measurement problems that demand mathematical 
explanations? 

THEORETICAL FRAMEWORK 
Generally, middle-and-upper grade students are taught volume measurement by 
means of a series of instructional activities, including direct measurement, which 
involves stacking Cuisenaire cubes and counting the number of the cubes constructed 
in a solid, followed by measuring each length of the three dimensions of rectangular 
prisms (e.g., Nan I Publications, 2008; The University of Chicago School 
Mathematics Project, [UCSMP], 2002). Later, fifth-grade students are expected to 
develop the formula, L x W x H = V, based on their prior knowledge of linear and area 
measurement (TME, 2010).  
When children learn the volume formula of a rectangular prism, they need to see the 
layer of cubes and count the number of cubes constructed in that layer, and then use 
multiplication to find the number of cubes needed to a prism. Seeing the layer of cubes 
requires processes of conceptualizing the structure of units that are obtained from 
adequate experiences of stacking cubes, as well as discussion about the structure of 
rectangular arrays and layers of cubes (UCSMP, 2002; Owens & Outhred, 2006). 
However, children frequently encounter difficulties in conceptual understanding of the 
volume formula and its related concepts of volume measurement. These obstacles 
include a failure to see the hidden portion of the pictorially-presented rectangular 
prisms on a plain text (Ben-Haim et al., 1985), in addition to memorizing the formula 
without understanding its meaning (Shieh, 2011). These difficulties may result from a 
lack of spatial visualization activities (Ben-Haim et al., 1985). In particular, children 
only focus on solving problems that require calculations with representations of 2-D or 
3-D figures, which are provided on plain materials (e.g., paper and worksheets). If a 
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child does not have sufficient experiences in constructing a rectangular prism, s/he is 
less likely to see the relevance of concepts of volume to the idea that volumes of 
cuboids can be determined by using the volume formula of a rectangular prism, L x W 
x H. Therefore, providing instruction in spatial visualization activities should be taken 
into account while teaching volume concepts.      
For instruction of concepts of volume measurement, using physical manipulations 
(e.g., using concrete cubes to stack and construct solids and measuring the lengths of 
three dimensions) and technologies as instructional tools seem promising (Huang & 
Crockett, 2008; Shieh, 2011). The concrete manipulations of stacking cubic units may 
promote children’s construction of a 3-D array of cubes as a series of layers. This 
method of spatial construction facilitates children’s understanding of the formula for 
measuring the volume of a rectangular prism. At the same time, the processes in terms 
of identifying attributes of 1-, 2-, and 3-D figures and measuring the length of each 
dimension of the prism that is constructed help children grasp the idea of dimension, 
which is an essential concept of volume (UCSMP, 2002).  
In addition to physical manipulations, a growing body of research suggests that using 
dynamic geometry technology (or softwares) effectively helps students develop the 
generalisation of spatial structures (Owens & Outhred, 2006)─ for example, a 
dynamic PowerPoint® format which is a prevailing program used for demonstrating 
teaching problems and discussing 3-D figures (Huang & Crockett, 2008). Moreover, 
Cabri 3D is also recommended as a computer software program that helps students 
construct their own concepts of geometry (Kordaki & Balomenou, 2006). In particular, 
one of the strengths of Cabri 3D is the availability of numerical and figural cues, which 
illustrate the transformation between 2- and 3-D objects (Shieh, 2011). Thus, in the 
current study, Cabri-3D was used as a tool to link with the instructional materials, 
which were designed in PowerPoint® format, for the purpose of helping students 
visualize the 2-D representation of solids and the transformation between 2- and 3-D 
figures. 
As to the instructional approach, the guided question-and-answer instructional 
approach was adopted in accordance with the studies of Huang’s, as mentioned above. 
The features of this instruction include providing a learning environment in which 
stress is placed upon measuring objects, representing and communicating the results 
of measurement, reasoning about evidence and explanation, evaluating measurement 
claims, and clarifying mathematical thinking of measurement. 
Considering that volume measurement and the volume formula, V = L x W x H, is a 
conceptual domain of learning that may be taught efficiently if these concepts can be 
developed within this particular context, in which a set of core concepts of volume 
measurement is provided along with physical manipulations and discussions about 
how to see the layer of cubes. Moreover, for solving problems embedded with 
concepts of volume measurement and problems that required mathematical 
explanations, it is assumed that children receive more benefit from receiving an 
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enriched curriculum, one which integrates Geometry with Volume Measurement 
(GVM), than one that employs a regular Volume Measurement curriculum (VM), 
which stresses numerical calculations and application of the formula, V = L x W x H, 
for volume measurement. 
Additionally, the effectiveness of the two instructional treatments (GVM and VM) 
was examined in the study. The considerations that a condition in which children were 
provided geometry without concepts of measurement was not taken into account 
included two aspects. First, according to the studies of Huang and Witz (2011) and 
Huang (2011), knowledge of 2-D geometry is necessary but still inadequate for 
enhancing children’s competency in area measurement. That is, providing a 
curriculum that solely highlights geometry fails to improve children’s performance in 
solving area measurement problems. Second, since volume measurement is more 
complex than area measurement, a curriculum that attempts to help children solve 
problems embedded with concepts of volume measurement should include the 
concepts and skills of numerical computations for measurement. 

METHOD 
This study began by analysing the elements of essential mathematical subject matter 
that underlies volume measurement, and then proceeded to develop two 
computer-based curricula, GVM and VM, for providing children various activities that 
consist of the core concepts of volume measurement, based on a theoretical framework 
and curriculum guidelines (e.g., TME, 2010). Moreover, a quasi-experimental design 
was used to examine the effectiveness of these two instructional treatments on 
children’s ability to solve volume measurement problems. Each curriculum was 
conducted in five class periods using guided question-and-answer instruction. Each 
class period lasted about 40 minutes. The children’s learning was assessed prior to and 
after these instructional treatments. 
Participant 
Fifty-one fifth-grade children, 29 boys and 22 girls, were recruited from two classes in 
a public elementary school that serves middle-class communities in Taipei, Taiwan. 
The children were 10.64 years old (M = 127.67 months, SD = 3.11). A t-test revealed 
no significant differences among the two classes for mathematics achievement scores 
from the semester prior to the experiment, t (49) = -.49, p = .62. All the children had 
been exposed to knowledge about standard volume unit, 1 cubic centimetre and the 
properties of cubes and rectangular prisms before participating in these treatments. 
Material 
The set of teaching problems used in the two instructional treatments and the questions 
used in the pre-learning assessment and post-learning assessment were referenced 
from the materials developed by Huang and Crockett (2008) and Shieh (2011). The 
mathematical concepts underlying the teaching problems included eight mathematical 
subject-matter elements in different combinations for the two sets of teaching 
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problems. The subject matter elements were (A1) Introduction of the standard unit, a 
cubic unit and its volume (1 cubic centimetre, cm3); (A2) Geometric properties of a 
2-D shape and a solid, transformation of 2- and 3-D figures, as well as differences 
between measuring area and volume; (B1) Direct and indirect comparisons of the size 
of various solids; (B2) Use of centimetre cubes to build rectangular prisms and 
measure the dimensions (length, width, and height) of a rectangular prism, and report 
the measures of the volume of the prisms; (B3) Use of centimetre cubes to build 
irregular solids and report the measures of the volume of the solids; (B4) The structure 
of rectangular arrays and layer of cubes in a rectangular prism as illustrated by means 
of animations on a computer; (B5) Discovery of the volume formula of a rectangular 
prism and its meaning by using cubic blocks; (B6) Use of multiplication to express the 
volume of a rectangular prism and numerical calculations. The specific features of 
each computer-based curriculum were presented as follows. 
 (a) The VM curriculum, which stresses using physical manipulations (stacking units), 

the volume formula of a rectangular prism, and numerical calculations for 
volume measurement, was composed of 26 teaching problems. The 
mathematical subject elements embedded in the teaching problems included A1, 
B1, B2, B3, B5, and B6.  

(b) The GVM curriculum, which is a spatial-and-volume-measurement connection 
curriculum, involves examining geometric attributes of 2-D and 3-D figures, 
visualizing structures in two- and three-dimensions by means of the dynamic 
geometric software (Cabric 3D), and considering the concepts of volume 
measurement. This curriculum was composed of 24 teaching problems embedded 
with A1, A2, B1, B2, B4, B5, and B6.  

Compared to the GVM curriculum, the VM curriculum involves more activities of 
physical manipulations of stacking units and measuring the lengths of the three 
dimensions of the solids constructed, in addition to application of the volume formula. 
Also, such physical manipulations as provided in the VM curriculum, exceeded those 
provided in the unit of volume measurement of current mathematics textbooks that 
had been adopted in elementary schools in Taiwan (e.g., Nan I Publications, 2008). 
Conversely, in the GVM curriculum, knowledge of geometry and spatial visualization 
related to the spatial-organization of volume measure was demonstrated primarily by 
the use of dynamic geometric figures.  
There were three types of problems, all of which required different levels of thinking 
and responses, as contained in the blocks of problems presented. (a) Calculation (CAL) 
problems. The CAL problems could be solved by means of either counting the grids 
provided with the figure or by directly applying the formula for volume measurement 
of a rectangular prism and computations.  According to Kenney and Lindquist (2000), 
counting and doing simple computations require lower-level conceptual 
understanding. (b) Mathematical judgement (MJ) problems. These problems were 
short constructed-response items that required judgement for the accuracy of a 
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solution statement regarding volume measurement. (c) Explanation (EXP) problems. 
These problems required a written explanation of the reason for justifying the 
judgement given to the corresponding MJ problem or of explaining their reasons for 
the way they solved the problems. The ability to explain the mathematical reasoning 
while solving problems represents high-order mathematical thinking (Kenney & 
Lindquist, 2000). Thus, EXP problems can be applied to evaluating students’ 
conceptual understanding.  
All three types of problems were included in the pre-learning assessment and 
post-learning assessment. Each assessment contained 10 CAL, 3 MJ, and 7 EXP items. 
The rubric schemes for the CAL, MJ, and EXP problems were refer to in the context of 
previous studies by Huang and Witz (2011) and Huang (2011). The maximum total 
score of each assessment was 46 points. In each assessment, the maximum total score 
of EXP problems was 14 points. The coefficient of equivalence of the pre-learning 
assessment and post-learning assessment was .79, p < .001. 
RESULTS AND DISCUSSION 
To determine whether children benefited from the instructional treatment that they 
received, a 2 (groups: GVM, VM) x 2 (problem-solving phase: pre-learning, 
post-learning) analysis of variance (ANOVA), with problem-solving phase as the 
repeated factor was conducted for analysing the total scores and EXP scores, 
respectively. Table 1 shows descriptive statistics for the analyses in terms of Means of 
the total scores and scores of the EXP problems for the two groups at two 
problem-solving phases (pre-learning and post-learning assessments). 
Table 1. Means and SD of the pre-learning assessment and post-learning assessment 

total scores, and scores of the EXP problems, by instructional treatment 
Group n Pre-learning assessment 

M  (SD) 
Post-learning assessment 

M  (SD) 

Total Scores 
GVM 

 
26 

 
21.20 (11.35) 

 
31.17 (10.41) 

VM 25 20.67 ( 9.49) 29.64 ( 8.09) 

EXP problems  
GVM 

 
26 

 
4.37 (2.96) 

 
7.14 (2.70) 

VM 25 4.08 (2.29) 5.06 (1.78) 

For the total scores, the results shown that there was no main effect for group (GVM, 
VM), F (1, 49) = .17, p = .68, nor an interaction effect between the group and 
problem-solving phase, F (1, 49) = .17, p = .68. There was a significant main effect for 
problem-solving phases, F (1, 49) = 59.85, p < .001, suggesting that both groups 
obtained score gains in the post-learning phase.  
Using repeated measures ANOVA for the EXP scores, the analysis yielded a 
significant interaction effect between the group and problem-solving phase, F (1, 49) 
= 8.22, p < .01, and a significant main effect for the problem-solving phase, F (1, 49) = 
36.07, p < .001, whereas the main effect for the group reached marginal significance, 
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F (1, 49) = 3.62, p = .06.  Results of the follow-up analysis of the interaction are 
presented as follows: a. For the GVM group, the children showed increased scores 
between the pre-learning phase and the post-learning phase, F (1, 49) = 40.15, p < .001. 
Similarly, the children in the VM group obtained increased score gains between the 
two problem-solving phases, F (1, 49) = 4.83, p < .05.  b. The significant difference in 
children’s performance in solving volume measurement problems between the two 
groups was shown at the post-learning phase, F (1, 98) = 8.92, p < .01 rather than in 
the pre-learning phase, F (1, 98) = .17, p = .68. 
In sum, the results revealed that both the GVM and VM instructional treatments 
facilitated the children’s acquisition of the idea of volume measurement and their 
ability to solve different types of problems embedded with volume measurement 
concepts. The findings show that overall in the post-learning assessment, the children 
in the GVM group performed equally well with those in the VM group. Moreover, this 
finding shows that children obtained increased scores in solving EXP problems that 
require a conceptual understanding of volume measurement─ if the instructional 
treatment is one that highlighted spatial geometry integrated with volume 
measurement, though the differences between the two instructional treatments only 
reached marginal significance. These findings are consistent with those findings of 
Huang and Witz’s (2011) and Huang’s (2011) studies in the domain of area 
measurement. It suggests that children can benefit from instructional treatments as 
long as activities involve essential concepts of volume measurement and are 
conducted by the guided question-and-answer approach─ for example, physical 
manipulations and discussion of the concepts of layering, which is the heart of volume 
measurement (UCSMP, 2002). Moreover, it also supports Owens and Outhred’s (2006) 
perspective that more spatial relationships, integrated with measurement, potentially 
enhance children’s conceptual understanding of approaches to measurement that are 
related to spatially-organized quantities.  
Although the current findings did not strongly support the hypotheses that the enriched 
curriculum (GVM) is more effective than the regular curriculum (VM) in promoting 
children’s overall performance in solving volume measurement problems and EXP 
problems, the enriched curriculum nevertheless seems to be a promising approach. 
Further studies are needed to explore how fifth-grade children construct their 
understanding from 3-D figures which represents spatial relationships in the case of 
dynamic geometry figures shown on a computer screen. Moreover, how children 
construct the relationships within and between different representations needs further 
studies─ for example, connecting 2-D and 3-D geometric representations with their 
physical manipulations to develop an understanding of layering in the 3-D structure of 
units. 
Implications of the study 
This study represents one step in investigating the effectiveness of a curriculum that 
incorporates more geometry with volume measurement, from building with cube units 
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to computer-based instruction to develop children’s conceptual understanding of the 
idea of volume. The evidence presented in the current study explicitly suggests that 
instructional activities for volume measurement, which consist of a set of core 
concepts of volume based on physical manipulations and discussions of layering, are 
valuable for constructing spatial relationships and numbers.  
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This study aimed at mathematics instructional language culture of a teacher and 
explored occurrence of instructional language use, narration, and communication. 
Naturalistic observations were used to explore the practice of an elementary school 
teacher in mathematics class, when he faced students in multi-cultural contexts with 
local characteristics.  Data source are video, classroom observations notes and 
interviews; they were analyzed qualitatively.  It was found that the teacher did not 
believe that there was a need to attend to such cultural differences. His observed 
language culture use might result in negative effects on students’ mathematics 
learning. Specific teachers’ utterances that deserved attention were reported, together 
with recommendations for further studies. 

INTRODUCTION 
Mathematics has been considered as the basic science and an international course with 
the learning effects on individuals, societies, and countries (Nath, & Vineesha, 2009). 
Nonetheless, Swetz (2009) indicated that mathematics learning was not the 
culture-neutral and culture-free process; the teaching method and the focus (specific 
posture) as well as the behaviours of gaze, eye contact, or constant presentation as 
expected would reflect certain values. Gay (2010) indicated that people often 
considered education unrelated with culture and tradition, teachers were lack of 
understanding of how mathematics instructions reflected the European and American 
culture and values and considered their instructions being consistent and transcendent 
because of insufficient culture knowledge. However, the knowledge and the formation 
of mathematics were the process to construct a society which appeared strong 
correlations with language culture and cognitive process (Banks & Banks, 2001; Gay, 
2010). 
In Taiwan societies for the past decade, cross-national marriages prevailed. The social 
group and the family appearance have become diverse, multiple, and abundant. The 
group culture among pupils in a class appears great differences. The effects of culture 
on learning have become emphasized (Wang, 2004) and research studies on culture 
and mathematics learning were also reported (e.g. Yao, 2008; Yang & Hung, 2009). 
Nevertheless, most research on mathematics classes with multi-cultural groups 
focused on the children in cross-national marriages; few of them studied the 
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instructional behaviours of mathematics teachers. The instruction and the 
implementation manners of mathematics teachers in multi-cultural classrooms were 
rarely challenged.  
In fact, the effects of language culture on mathematics learning included rest not only 
on students’ learning but also on teachers’ language use in instructions (Nath & 
Vineesha, 2009). Most mathematics teachers tend to use discourse in instructions and 
it is also a main teaching activity during mathematics instruction (Chang, 2000). When 
teaching students the same materials, the same grade, and the same school, researchers 
did find significant differences among teachers (Berry & Kim, 2008). Unfortunately, 
there was little research on the nature of instructional languages of mathematics 
teachers. 
With language use in classes, the delivery, exchange, and learning of mathematics 
knowledge allow to understand the problems and thoughts of students in mathematics 
learning as well as to link with the key success factors in mathematics instructions 
(Ongstad, 2006). Nevertheless, because of distinct culture background of learners, it is 
likely to cause differences and difficulties in language use, interpretation, and 
understanding (Stathopoulou & Kalabasis, 2006). In this case, multi-cultural 
education/view has been promoted, which provides students with equal education 
opportunity and emphasizes better learning and success opportunity for students with 
various culture traits. Besides, it is an educational reform to change the school and the 
educational environment as well as a constant process emphasizing the integration of 
education contents and the process in knowledge construction, reducing prejudice, and 
equally instructing students to enhance the adjustment of school culture and society 
structure (Banks, & Banks, 2004). 
The aim of this study is on mathematics instructional language use of teachers, which 
refers to the narration of mathematics concepts, exercises, and algorithms and the 
contents exchanged with students. The research questions are two. 1. What types of 
instructional language use, narration, and communication were found in this class with 
multi-cultural student groups? 2. What language culture observed might result in 
negative effects on students’ mathematics learning? 

LITERATURE REVIEW 
Culture in mathematics teaching and learning  
As Swetz (2009) mentioned that learning was not the culture-neutral and culture-free 
process. The belief and the implementation of traditional education was full of 
“blaming the victim” and “defects” (such as poor family environment, parental 
problems, and lack of passion), similar to “correction or treatment” (Gay, 2000). 
Mathematics learning appeared the similar situation. Gay (2010) indicated that a 
teacher who did not believe in cultural principles and culture blindness was likely to 
ignore the negative attitudes, anxiety, and fear from different people and would tend to 
change the students. As a teacher might not distinguish the relations among ethnic 
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groups, culture, and personality, he/she was likely to impose personal concepts on 
students and result in the educational process of insulting other culture. Besides, 
he/she would educate students and explain the bad performance of students with the 
idea of “blaming the victim” in “defect syndrome” (e.g. lack of talent, ability, and 
esteem, poor language expression, parents not participating in education, high absence 
rate). In addition, regarding mathematics narration, the distinct cultural background 
and concerned aspects between teachers and students or the understanding and 
expression differences of the teacher might have teachers regard their instructions 
being clear, which, indeed, could not be understood by students (Davis, Hauk, & 
Latiolais, 2009). 
Some domestic research discovered the lack of cultural stimulation and language has 
resulted in immigrant children not understanding mathematics questions and further 
blocked the mathematics learning (Yang & Hung, 2009). Besides, most teachers 
would not utilize examples related to the living experiences to explain the 
mathematics concepts for the children in different groups (Yao, 2008). 
Language in mathematics teaching and learning  
According to the socio-culture theories, Berry and Kim (2008) indicated that learning 
is thought to be both individual and social, for the internalization of learning and 
knowledge, social discourse functions is useful tool for teacher to use in constructing 
effective teaching strategies and developing active learning roles. They also identified 
six categories of teacher utterances containing: questioning/eliciting, responding to 
students’ contributions, organizing/giving instructions, presenting/explaining, 
evaluating and sociating. However, learners seldom understand the mainstream 
language coding in mathematics instructions (such as the transformation of 
mathematics concepts, languages and symbols) that learning inequality is likely to 
appear (Stathopoulou, & Kalabasis, 2006). Teachers therefore play a critical role in 
mathematics classes who use general languages, pay attention to learners’ language 
positions, and interpret mathematics symbols and knowledge in textbooks, and 
generate understanding and learning with the delivery and the exchange of languages 
(Ongstad, 2006). In this case, languages of mathematics teachers in the teaching 
activities, as a moderator, appear as the communication bridge between learners and 
mathematics as well as the demonstration of mathematics language. How a teacher 
express the appearance of culture, narration, and explanation is therefore important for 
mathematics learners. 
To summarize the above review on culture and language, different cultural 
experiences would reveal distinct understanding and interpretation, influence the 
description and the use of languages, and further affect the understanding and the 
application. In terms of culture and languages, Moschkovich and Nelson-Barber (2009) 
considered to understand the understanding of students and utilize student languages 
to express the mathematics cognition in order to effectively enhance students’ 
mathematics learning. Among the differences, teachers should become the bridge or 
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utilize local cultural contexts and mathematics-related materials for the instructions or 
the materials of mathematics. With easy and comfortable methods to support the 
participation of students and to integrate community, family, and student knowledge 
and life experiences into the lesson, local environment, weather, and unsolved 
problems are the favourable teaching strategies for multi-cultural groups. It is 
therefore worth-concerning whether instructors could build the bridge to reduce the 
obstacle in mathematics learning.  

RESEARCH METHOD AND PROCESS 
According to the research purpose and the literature review, the investigator aimed a 
classroom with diverse groups, a school in a community with multi-cultural 
characteristics, and, a teacher with considerable amount of teaching experience willing 
to accept being observed.  In this school, they assigned the same class teacher for grade 
1 and 2 (grade 3 & 4; grade 5 & 6).  We observed class during the second semester of 
a fifth grade class. There were 29 students in the class and seven of them were 
immigrant children of Chinese, Indonesian, and Vietnamese mothers. The school was 
near to the sea that the inhabitants made a living with tourism and fishery.  There are 
language courses afterschool to encourage immigrants to learn Mandarin (the official 
language) and to integrate Taiwan culture. The observed teacher was the fifth-grade 
male teacher with ten years teaching experiences. He was also the master teacher and 
mathematics teacher of the class. The teacher reported that the performance of 
children from immigrant families could be high or low.  He believed that there was no 
need to teach by attending to the diverse cultural background because the children 
could incorporate Taiwan culture. 
Data source are three: 1) video; 2) classroom observations notes; and, 3) interview one 
hour right after the lesson.  According to Strauss and Corbin (1998), observation could 
help acquire educational activities or the relevant data, and observing in natural 
situation was likely to receive the authentic data, rather than structural observations for 
exploratory research. With the camera recording in the class and the professional 
trainings of observers, it would benefit the representative and the objectiveness of data. 
The classroom observation was regarded as the optimal method for this study. Without 
affecting the regular schedule (e.g. monthly examinations and school activities) and 
under teacher’s suggestion, three classroom observations were arranged for this class. 
The contents of the 3 separate and independent mathematics lessons are 【Area】, 
【Time】, and, 【The unit converts】. The observers would remain quiet in each session 
and set up the camera to record the instructions. The teacher was observed between 
10-11 o’clock on March 17th and 31st and May 19th, 2011. The observation video was 
transcribed into text transcripts and used content analytical coding methods by Berry 
and Kim (2008).   
Data coding of teacher utterance was done by referring to Berry and Kim (2008): (a) 
questioning/eliciting, a response on questioning techniques to elicit and manage 
student involvement, (b) responding to students’ contributions, a response other than 
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evaluating, to students’ contributions, (c) organizing/giving instructions, this category 
included starting the lesson, directing its procedural aspects, directing students’ 
attention, and regulating students’ behaviour, (d) presenting/explaining, it 
interchanged that dealt with lesson content, (e) evaluating, including overtly 
evaluative remarks, such as “very good”, and (f) sociating, strategies designed to draw 
students into the lesson dialogue as well as to manage and maintain the social relation 
of the lesson. In the data set, VW in the code of “” stood for transcripts, (2011.03.17) 
for the date of March 17th, 2011, and ‘’ for Taiwanese languages. Data were coded by 
two independent raters and reliability was checked. Disagreements were discussed and 
resolved through e-mails or telephone discussions. 

RESULTS AND DISCUSSIONS 
Based on the 6 categories, the instructions were analysed as follows. 
(a) Questioning/eliciting: The teacher utilized Mandarin and Taiwanese (a common 
dialect in south Taiwan) for asking, questioning, and explaining students. Direct 
enquiry was mostly applied, such as  

“How about 100 hectares? Have you heard of it? Never heard of it? What is meter? 
‘Umm… what about a square meter? You tell me?’ What is a square meter? ‘You got the 
highest score in the test, so you tell me.’ You don’t know about a square meter? Area units? 
Volume units?” (2011.05.19VW) 

The direct enquiries (e.g. “You don’t know…” ) were obviously different from the 
utterances of “Who can tell me…” and “Tell me what that coin is, Tina”, found by 
Berry and Kim (2008, p.367).  It intimidated students and discouraged attempts. 
(b) Responding to students’ contributions: When students explained and rephrased 
problems, the teacher would ask questions and insisted them to reply. When the 
students had correct answers, the teacher would continuously propose questions 
related to the solution to help student complete the questions. For instance, “Why do 
you do it this way? ” “And then?” “Why is it not like this? ” When students stopped, 
the teacher would give hints and continuously ask. Sometimes, the teacher would 
become impatient. “How come? You tell me. You tell me. ” (2011.03.17VW) 
Stathopoulou and Kalabasis (2006) proposed that learners seldom understood the 
mainstream language coding in mathematics instructions; teachers therefore needed to 
play the connection role. 
(c) Organizing/giving instructions: When starting a new unit, the teacher would 
paste the posters on the blackboard and turn to students “OK, let’s take a look…” 
“Open the book…”and start the lesson “The point is…” and then continuously guide 
and explain the lesson. For new concepts, the teacher mainly explained with narration, 
when no other teaching aids or activities would be utilized. For example, 【The unit 
converts】 was continuously explained for about 20 minutes; and about 8 minutes was 
utilized for explaining how the ancestors judge the time in 【Time】. The utterances 
were comparatively imperative (e.g., “You tell me first”; “I ask you…”, “Take your 
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book to…”, “What, louder!”). In other words, the teacher preceded the instruction 
with self-control which was similar to the research of Chapman (2001). The masculine 
languages were established in the instructions. 
(d) Presenting/explaining: The three sessions were textbook-based that no local 
characteristics were presented. When students appeared misunderstanding, the teacher 
would translate the mathematics symbol into a language symbol and repeatedly 
explain it. For example, a female student conversed 6.4 tons into 6400 tons, the teacher 
dropped into a demonstration without explanation. He wrote only〝6.4t=6400kg  
6.4×1000kg〞and said 

“How heavy is a dinosaur? 6.4 tons equal to 6400 kilos, why? 6.4 multiplied by 1000 is 
6.4 tons and multiplied by 1000 is 6400 tons. 6.4 multiplied by 1000. 6.4 multiplied by 
1000, you have to converse the units. 6.4 multiplied by 1000, not 6.4 tons multiplied by 
1000. If 6.4 tons multiplied by 1000, you appear a myth.”(2011.05.19VW)  

Such an outcome corresponded to the teaching field indicated by Davis, Hauk, & 
Latiolais (2009) that teachers tended to understand with personal understanding, and 
ignored the importance of mathematics symbols, mathematics languages, and living 
languages as well as the understanding of listeners/learners (Ongstad, 2006). In other 
words, teachers should interpret personal understanding and language use to ensure 
the understanding of students, rather than to dodge responsibilities by “blaming the 
victim” (Gay, 2010). 
(e) Evaluating: When students’ responses were expected or correct, the teacher 
mostly said “Yes” , “ok” or continued the next question as a reply. When the students 
gave unexpected response or wrong answers, the teacher would directly deny, neglect, 
or criticize. (e.g. “What are unit?” Students: “kilogram.” Teacher: “Kilogram? ‘It is 
ridiculous.’” (2011.05.19VW) another e.g., Teacher: “What? Area units and volume 
units are replaceable? ‘Is there something wrong with your brain?’”(2011.05.19VW) 
The students did not have further chance to explain, as the teacher did not offer the 
students chance to clarify their languages and ideas. It therefore became the teacher 
unilaterally uttering and controlling the class. It was similar to the research of Erchick 
(2001) that students did not easily utter in class. 
(f) Sociating: Though the teacher did not treat immigrant children differently he 
tended to ask high performers to come to the chalkboard to show solutions.  When 
female students’ performance did not bring textbook, he presented gender stereotyped 
responses“You know the regulations, no textbook-stand in front of class” (the female 
student then stood up). “You have the book but you don’t bring it in. Do you do it on 
purpose so that others would pay attention to your beauty, right? Is that it? Class, let us 
look at her…”(2011.05.19VW) From this teacher’s response, “without a textbook” 
was connected to the gaze on a female body, rather than the responsibility on learning. 
In other words, because of the gender cultural blindness, the teacher imposed the 
personal concept on the students or even an insulting education (Gay, 2010). In the 
entire instruction of all observed lessons, students seldom needed to express their 
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opinions about problems; and, there was no teaching skills or strategies geared for 
multi-cultural characteristics in the class. 

CONCLUSION AND RECOMMENDATIONS 
The teacher’s languages appeared “cultural blindness” (or the bias of culture), contain: 
1. The teacher utilized only languages common for local students for asking, 
questioning, and explaining in the mathematics class, and most of them were direct 
enquiries. 2. When students were confused, the teacher tended to understand it with 
personal languages and neglect the importance of mathematics symbols and languages. 
3. When students correctly answered the question, the teacher did not use language to 
praise, but used a simple “ok” and “Yes”. The teacher would unilaterally utter and 
controlled the class atmosphere. 4. In terms of sociating, the teacher exhibited gender 
stereotyped utterances. For negative communications, the teacher kept silent.  
As a whole, the students seldom discussed their opinions on the questions, and there 
was no teaching skills and strategies specially prepared for the multi-cultural group.  
The finding of this study is similar to Berry and Kim (2008) in that the strategies for 
students talk were missing. On the other hand, what was different was that the teacher 
in this study was authoritative and complained about students. 
According to the research outcomes, it is suggested that: 1.The teachers of 
mathematics should reinforce the language use and emphasize mathematics symbols 
and the use, which includes the personal language use and the learners’ language 
understanding. 2. In addition to understanding the problem-solving strategies for 
mathematics, multi-cultural sensitivity should be adopted. 3. to introduce 
multi-cultural viewpoints into mathematics classes (Banks and Banks, 2001) so that 
teachers were no longer the narrator and the copier of mathematics knowledge, but a 
participant and a constructor of mathematics learning who brought the student voice 
into the class.   
Finally, there is limitation as results were from only a single case. For future research, 
it is suggested to discuss and evaluate from the aspect of learners and to reflect the 
feelings and the ideas of instructional language use.  We also need to compare the 
results of this teacher to a teacher who attended to multi-cultural background in 
instructional language use.  Alternatively, if this teacher changes his belief in attention 
to multi-cultural background over time, it is worth study his future actions and 
compare to results in this exploratory study. 
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This paper reports a study informed by the debate between situated learning theorists 
and cognitivists, and by research on the importance of realistic contexts in the teaching 
of mathematics. Twenty-three children aged between 10 and 11 years were asked to 
participate in a series of activities designed to help us understand the kinds of 
mathematical thinking that takes place outside of school. These included a diary study, 
a documenting activity and a set of focus groups. We describe some of the examples of 
mathematical activity that children participate in outside of school, along with 
evidence to suggest that these children found it difficult to make connections between 
the mathematics of the classroom and the mathematics of their lives outside of school.  

INTRODUCTION 
There is increasing interest in understanding the relationship between classroom mathematics and the 
mathematics that children learn and use out of school. Although everyday situations are recognised as potential 
sources of mathematical thinking, there is a debate in regards to both the extent to which learners' usage of 
mathematics in real contexts can be transferred to the classroom, and to which children can make use of 
classroom mathematics learning in their lives outside of school.  
Here we report a study that explores the mathematics involved in the economic activities that a group of 
primary school children engage with, both on their own and whilst socialising with their peers and family out 
of the classroom. We chose to focus of economic activity due to the available literature on its range and 
prevalence amongst our target age group and due its potential as a source of mathematical thinking.  Economic 
activity here is to be thought of in a broad sense, including activities involving money such as spending and 
saving, as well as non-monetary activities such as swapping, collecting and game-playing.  

BACKGROUND 
In this section, we review two areas of relevant research literature, that relating to the 
debate between situated learning and cognitivist perspectives and that relating to 
children's economic activity.  
THE SITUATED LEARNING DEBATE 
The debate of Anderson, Reder & Simon (1996) and Greeno (1997) hinges in part on 
the question of transfer. Since Carraher, Carraher & Schliemann (1985), there has been 
a position amongst educational researchers that learning is situated in the context in 
which it occurs – this position is referred to variously as situated learning, situated 
cognition and so on. The main finding of Carraher et al. (1985) is referred to by both 
Anderson et al. (1996) and Greeno (1997), but both have very different interpretations. 
Carraher et al.  (1985) found that Brazilian street vendors could not resolve schooled 
versions of the arithmetical operations that they mastered on the streets. This and other 
studies seem to be in line with the Situated Learning Theory (e.g., Lave & Wenger, 
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1991), which claims that learning is bounded to the context in which it occurs. This 
claim has been challenged with evidence of the transferability of knowledge across 
contexts. Anderson et al. (1996) claim that findings such as that of Carraher et al. (1985) 
show only that mathematics that is learned in concrete contexts does not always 
transfer easily to other contexts.   
Alongside this debate, there is evidence that incorporating realistic elements can be 
beneficial for learning mathematics in school (e.g., Van Den Heuvel-Panhuizen, 2003), 
although more research is needed to understand the ways in which children’s 
out-of-school experiences could impact their formal learning of mathematics. 
González, Moll, & Amanti (2005) coined the term funds of knowledge in reference to 
the knowledge that children gain in their household. Classroom practices often fail to 
exploit this knowledge, provoking a discontinuity between home numeracy practices 
and classroom mathematics (D. D. Anderson & Gold, 2006; Moll et al., 1992).  

ECONOMIC ACTIVITY 
The literature about children’s economic reasoning suggests a number of 
developments and practices that are likely to involve mathematics. Children as young 
as six years old understand economic concepts such as supply and demand (Leiser & 
Beth Halachmi, 2006), and parents actively teach their children to handle money 
autonomously (Furnham, 1999, 2001; Lewis & Scott, 2000). It is also known that 
children are capable of developing strategies to make effective economic decisions 
when saving (Otto, Schots, Westerman, & Webley, 2006). A small number of studies 
have addressed the link between these forms of economic reasoning and behaviours 
and children’s mathematical thinking. Taylor (2009) analysed the arithmetic 
operations involved in real-life monetary practices, and Guberman (2004) described 
various ways in which children perform multi-digit operations whilst shopping. 
Children’s economic activities are not restricted to handling money and, moreover, 
non-monetary economic activities are also likely to involve mathematical thinking. For 
example, the exchanging of food in the playground (Nukaga, 2008), the negotiating of 
labour whilst playing (Webley, 1996) and the collecting of trading cards (Cook, 2001) 
all involved mathematical thinking. The study presented here adds to this literature by 
describing a number of ways in which mathematics might be involved in children’s 
understanding of the norms that rule their economic activity. It also investigates 
children's perceptions of any connection between this informal, out-of-school 
mathematical thinking and children's experience of classroom mathematics learning.  
This study was designed in order to investigate the economic activity that children are 
engaged in outside of school, and explore the mathematical thinking and dialogues that 
are involved in  this activity. We are interested in finding: 
 What kinds of economic activities children typically participate in 
 What mathematical thinking these activities involve 
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 What correspondences are there between the mathematical thinking that is 
involved in children's out-of-school economic activity and the mathematical 
thinking that is involved in children's classroom activity 

We are working with the motivation that there is evidence that children are engaged in 
sophisticated mathematical activity outside of school that has the potential on which to 
build formal mathematical thinking.  
A previous study consisted of surveying the incidence of economic activity amongst 
children in primary and secondary school. The sample consisted of 484 boys and girls 
aged 10, 12 and 14 (Year 5, Year 7 and Year 9 in the UK education system), students in 
a representative range of primary and secondary schools in a middle-size city located 
in Southwest England. The survey covered a range of topics such as the things that 
children value, their usage of pocket money, as well as the incidence of monetary and 
non-monetary economic activities. The complete set of results has been presented  
elsewhere (Xolocotzin Eligio & Jay, 2011), and was used to inform the development of 
the present study.  

RESEARCH DESIGN AND METHODS 

RESEARCH SITE AND PARTICIPANTS  
The work presented here was conducted in a primary school situated in a central urban 
area, which draws pupils from a wide range of social and economic backgrounds and 
whose standards on mathematics achievement are above the national average. This 
school had participated in the survey of economic activity conducted during the prior 
year. Participants in this study formed part of one Year 6 class, and their average age 
was approximately 10.5 years. There were 26 children in the class, and every one of 
them was invited to participate. In total, 23 children participated with the informed 
consent of their parents.  

ACTIVITIES  
The activities of the main study were conducted over three weeks. In week one the 
participants were introduced to the study, and took home a questionnaire for their 
parents and a diary booklet for recording their economic activities over 1 week. In 
week two we conducted a self-documentation activity. Children were presented with 
two sets of cards. One set included six cards of monetary activities: Working, Selling, 
Borrowing money, Lending money, Spending, and Saving. The other set included five 
cards of non-monetary activities: Borrowing things, Lending things, Giving gifts, 
Swapping things and Collecting. Children selected one card of each set (one monetary 
and one non-monetary) according to what they wanted to, or thought they would be 
able to, document during the following week. Then we lent them a digital photo camera 
and asked them to take pictures to document their chosen activities. Finally, in week 
three we conducted group interviews where we asked children to talk about their 
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pictures. These activities produced a large amount of data. For the sake of space, here 
we focus on the group interviews. 

GROUP INTERVIEWS 
We conducted six group interviews, each with three or four children. The class teacher 
helped us to organise the groups according to the children’s mathematics ability so we 
had two groups of each level: higher, medium and lower. This mirrored the typical 
organisation of children’s mathematics lessons. Prior to the interview we collected the 
cameras so that during the interviews we could use a laptop to display the pictures.  
In the first part of the interviews, each selected one of his or her pictures and was 
prompted to talk about it with questions such as 'What’s in the picture?', 'Why did you 
take it?'. Follow-up questions retrieved details about the practices involved in the 
activity. For example, when the picture showed a monetary activity such as spending, 
questions addressed issues such as the origins of the money or the amounts of money 
involved. Children were asked to comment about each other’s pictures, in order to 
search for common or contrasting experiences. In the second part of the interviews 
children were prompted to talk about mathematics in terms of the concrete situations 
that they described; for example, explaining how they used mathematics to make 
decisions about spending or saving money. We also explored the connections between 
the reported activities and the learning of mathematics in the school. For example, we 
usually asked children whether the examples used in maths lessons resembled the 
experiences they were telling us about.  

RESULTS  
Here we present examples of three activities: Selling, saving, and collecting. The 
extracts below illustrate the contexts of these activities, the way in which children 
understand their usage of mathematics in these contexts, and the links between this 
usage and their learning of classroom mathematics. We selected these activities 
because they seem to involve forms of mathematical thinking that appear to be specific 
to the context, and because they have received less attention than other economic 
activities that have been traditionally linked with formal mathematics learning, such as 
spending money.  

SELLING 
Many children mentioned selling experiences. Their motivations for selling included 
both individualistic reasons such as getting money to buy something, or for altruistic 
causes such as raising money for their school. We asked about children’s ways of 
making decisions about issues such as pricing and profit. The answers of some children 
suggested a link between their usage of mathematics and their understanding of 
people’s buying behaviour. For example Ellie, a girl in one of the higher ability groups:  

Ellie: last year we made a cake stall in the playground and all the money that we got we 
gave it to the Japanese earthquake 
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Researcher: Did you have to do any kind of maths thinking for that? 
Ellie: Yeah, we had to do all the same for that, all the prices the same… but we did it 

slightly more expensive than usual because it's for a charity 

Saving 
Many children documented saving. Children’s saving goals were commonly short-term, such as for toys or 
electronic devices. However, some children mentioned saving for no particular reason, or for unexpectedly 
long-term goals such as buying a house, or paying for their university. For example, Liz and Jenny, from one of 
the middle ability groups said that they were saving for the time when they would leave home: 

Researcher: [about savings] What kind of things you’ll need the money for in the future?  
Liz: A house 
Jenny: Bills 
Researcher: how old you will be when you start needing to pay for these things?  
Liz: 17 
Jenny: 18 

When asked about their usage of mathematics for saving, children typically mentioned 
counting. However, the answers of some children suggested other forms of 
mathematical thinking, such as understanding the relationship between saving and time. 
This relationship seems important to decide whether saving goal is feasible. Children 
with long-term goals such as buying a house seemed to disregard the role of time; 
whereas children with short-term goals are probably more likely to consider time in 
order to discern about he feasibility of their goals. For example, Laura, from one of the 
high ability groups: 

Laura: I don’t know what I am saving for… 
Kelly: I thought you were saving up for an iPad 
Laura: I am trying to, but that’s not really going to work [she gets £ 2.50 per week] 

Collecting 
Many children mentioned collecting something. In many cases, collecting was described as a social activity, 
shared with others in the school, as in the case of collecting trading cards. In some other cases, collecting was 
more an individual activity conducted out-of-school and driven by particular preferences, as in the case of 
children collecting toy cars or earrings. Children did not associate collecting with using mathematics in ways 
other than counting the money for buying the items they collect. However, different kinds of mathematical 
thinking are likely to be intertwined with the norms governing their collecting practices. Some children 
denoted awareness of the strategies used by the card sellers for pushing them to buy more cards. Noticing that 
collecting a complete set of cards is costly requires an understanding of forces such as demand and supply. For 
example, Ellie and Kelly from a high ability group:  

Ellie: [the cards] keep changing; they want to get more money out of you. Like some 
years ago there were these cards that were really good and there were loads 
of them, and then they changed to these new cards and we collected them, 
and then after about six weeks they changes to another one, and we still 
have not finished collecting the other ones. 

Ellie: But we don’t collect them any more, because we realise this is very expensive… 
Kelly: I spent more than £50 
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Ellie: …likes ages ago, when there were these plastic figures called gogos, and in the end 
I just said I won’t collect them any more because they only waste your 
money, but then I started again… I bet we are going to come back into 
something…   

An understanding of the relationships between attributes and value is another kind of mathematical thinking 
involved in children’s collecting. Cards are given values according to their rarity. One rare card may be worth 
3 or 4 more common cards (the cards have an inscription on their backs labelling them as common or rare). 
However, these rules are flexible. For example, some children mentioned valuing  cards they collect on the 
basis of attributes other than their rarity, such as the character depicted on the card, or whether the card belongs 
to a newer or an older set. This appropriation of the valuing rules implies that children have to learn a new 
system for trading the cards. As explained by Ellie: 

Ellie: [talking about the value of a card] it kind of evolves, say that I have a really good 
common, that has Amy Pond, and she has a rare that is rubbish, then we 
may just swap  

The case of Omar, a boy in a lower ability group, illustrates the richness of collecting 
as a source of mathematical thinking. This boy is atypical because he receives £20 of 
pocket money each week. This amount of money gives him the resources to buy the 
things he collects on eBay. Unlike other children, Omar collects to make money in the 
future. He has learned and tries to exploit the relationship between attributes, value and 
time: 

Researcher: How do you know what kinds of things are going to get more expensive in 
the future?  

Omar: well, condition of the box and the car 
Another feature of Omar’s collecting is that he is learning to bargain from his mother, 
who helps him to negotiate the value of an item, both in selling and collecting.   

DISCUSSION 
This study has allowed us to explore a range of different activities in which we find 
children participating in some quite sophisticated mathematical thinking. In this 
section we will discuss an overarching theme that emerged from the data described 
above. This relates to the fact that the children did not associate the out-of-school 
mathematical activity that they engaged in with the mathematics that they engage with 
in the classroom.   
Towards the end of each focus group we asked participants about the mathematics that 
they did outside of school. After the discussion that had preceded this question, we 
expected to hear answers relating to the economic activity that they had been 
describing (spending, saving, calculating profit and loss, debating the worth of trading 
cards and other collectables and so on). Every group talked about only 1 or 2 things – 
these were checking change after making a purchase in a shop, and measuring 
ingredients when baking (only the higher and middle achievement groups mentioned 
baking). We pressed some of the children in the higher achievement groups for more, 
asking whether they thought that there was any mathematics in the activities that they 
had been describing to us. One boy said that, “We don't do anything about our own 



Jay, Xolocotzin 

 
PME36 - 2012 2-337 

lives in maths”, a statement that was backed up by the other members of the group. We 
are interested in what these contributions mean in terms of the relationship between the 
mathematical thinking that children do outside of school and that which they do in the 
classroom. There is evidence that the children that we spoke to have an implicit 
understanding of the 'game', or didactical contract (Brousseau, 1997) of classroom 
mathematics – this is clear from their confident assertion that the mathematics that they 
do outside of school consists of baking and checking change, activities that are 
frequently used by mathematics teachers and in mathematics textbooks to provide 
context for mathematical problems. There is also evidence that children do not 
associate the mathematical thinking they do outside of school with 'mathematics'. 
These issues relate closely, in our view, to discussion of 'realistic' mathematical 
problems – where we often see that real life and mathematics often have different 
versions of 'realistic' (Verschaffel, Greer & de Corte, 2000; Cooper & Harries, 2002) 
These findings bring us to some important questions about what our goals are in 
teaching mathematics. The evidence presented here is in accordance with the 
arguments of Anderson & Gold (2006), who claim that the mathematical practices that 
children bring with them to school are often overlooked by schools and teachers. The 
main conclusion that we draw from this study is that there is content enough, and 
motivation enough, in children's out-of-school mathematical activity that we should  
aim to further explore ways in which we can help and encourage children to build 
mathematics out of their own experience, rather than always from experience gained 
within the classroom.  
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A key question for research in geometry education is how learners’ reasoning is 
influenced by the ways in which geometric objects are represented. When the 
geometric objects are three-dimensional, a particular issue is when the representation 
is two-dimensional (such as in a book or on the classroom board). This paper reports 
on data from lower secondary school pupils (aged 12-15) who tackled a 3-D geometry 
problem that used a particular representation of the cube. The analysis focuses on how 
the students used the representation in order to deduce information and solve the 3-D 
problem. This analysis shows how some students can take the cube as an abstract 
geometrical object and reason about it beyond reference to the representation, while 
others need to be offered alternative representations to help them ‘see’ the proof. 

INTRODUCTION 
The teaching of geometry provides both a means of developing learners’ spatial 
visualisation skills and a vehicle for developing their capacity with deductive 
reasoning and proving (Battista, 2007; Royal Society, 2001). One long-standing issue 
for research is how learners’ reasoning is influenced by the ways in which geometric 
objects are represented (see Hershkowitz, 1990; Mesquita, 1998). While the term 
‘representation’ can refer to internal (mental) and to external (concrete) 
representations, in this paper the focus is on external representations such as the 
various representations of a cube in Figure 1. As this figure captures, a particular case 
of interest is when the geometric object being represented is three-dimensional while 
the medium of representation is two-dimensional, such as is necessary in this paper.  
One phenomenon related to learners’ understanding of geometric representations is the 
well-established ‘prototype effect’ by which a certain representation is judged more 
representative than another (Hershkowitz, 1990, p82). Due to this ‘effect’, it seems that 
learners are much better at recognizing isosceles triangles that are ‘standing on their 
base’ than ones that are presented in a different orientation. When representing 3-D 
geometric objects such as a cube on a two-dimensional medium such as paper (or the 
classroom board), Parzysz (1988; 1991) reports that not only do learners prefer the 
parallel perspective (in which parallels are drawn as parallels), but, in particular, they 
prefer the oblique parallel perspective in which the cube is drawn with one face as a 
square (in French this is the perspective cavalière). Figure 1 shows two orthogonal 
projections (a and b) and an example of an oblique parallel projection (c). It is the latter, 
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according to Parzysz, that learners prefer. In many respects, this oblique parallel 
perspective is the ‘classical’ representation of a cube in two dimensions. A further 
convention is the use of dotted lines to show the ‘hidden’ edges of the cube. 

   
(a) (b) (c) 

Figure 1: orthogonal and oblique parallel projections of the cube 
An important issue that this oblique parallel perspective representation raises for 
research in geometry education is the way in which learners’ reasoning might be 
influenced by the form of the representation, given the difficulties pupils have with 3-D 
representations even when 3-D dynamic geometry software is available (Mithalal, 
2009). This paper reports on data from lower secondary school pupils (aged 12-15) 
who tackled a problem involving a cube that was presented using the oblique parallel 
perspective representation. The research question we focus on is how the students use 
the representation in order to deduce information and solve the problem. 

THEORETICAL VIEWS ON REASONING IN 3-D GEOMETRY  
For our theoretical framework we integrate a number of ideas relating to students’ 
reasoning processes in 3-D geometry. In particular, we utilise the ideas of ‘productive 
reasoning processes’ (Fischbein, 1987), ‘capabilities in 3D geometry thinking’ (Pittalis 
& Christou, 2010) and ‘the characteristics of 2D representations of 3D shapes’ 
(Mesquita, 1998).  
Fischbein (1987, p. 41) argued that a “productive reasoning process” aims at solving a 
“genuine problem”. In a later article he suggested that in productive reasoning “images 
and concepts interact intimately” (Fischbein, 1993, p. 144). By this we surmise that 
Fischbein is referring the notion of ‘figural concept’ as capturing the combined role of 
the figural and the conceptual in geometry. Within the context of 3-D geometry 
reasoning, Pittalis & Christou (2010, pp. 192-4) synthesise various capabilities in 3D 
geometrical thinking. While all the capabilities they identify are likely to be important, 
in this paper we refer to the capabilities ‘to recognise the properties of 3D shapes and 
compare 3D objects’ and ‘to manipulate different representational models of 3D 
objects’. Both these capabilities, we would suggest, are likely to involve the figural and 
conceptual aspects of geometrical thinking. 
As Mesquita (1998, p184) explains, an external representation of a geometrical 
problem does not, by itself, enable one to solve the problem, but it may contribute to 
the definition of the structure of the problem. One way this happens, according to 
Mesquita (ibid), is if the representation gives support to geometrical intuition, which in 
some situations can be very powerful, by helping individuals “to apprehend 
relationships among geometrical objects”. Yet, Mesquita goes on to show, external 
representations can lead to some ambiguities with the result that particular geometrical 
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relationships might appear as ‘evident’ to students in a way that can prevent 
geometrical reasoning from developing. What Mesquita (ibid, p186) calls the double 
status of a geometrical representation is that it can represent “either an abstract 
geometrical object, or a particular concretization”. It is this double status that impacts 
on student reasoning. 
All this means that, with a particular geometry problem that makes use of a particular 
representation, students may, or may not, be able to recognise theorems or properties 
which their teacher might expect them to use to form, and then prove, a conjecture 
because the representations may, or may not, appear to the students as ‘typical’. This is 
what Mesquita is referring to when she shows that an external representation may 
become an “obstacle” to student understanding. In this paper, what we are interested in 
is how a representation which is given intentionally by a teacher might, or might not, 
lead students to engage in conceptual reasoning to make sense of what they ‘see’ and 
what they can deduce from the available information in the problem as presented to 
them; in other words, how the external representation supports, or not, their reasoning 
and how it might, or might not, provide an obstacle to their reasoning. 

METHODOLOGY 
The case of Japan illustrates how geometry teaching plays a role in developing 
students’ ideas about proof and proving, as illustrated by the learning progression 
generally used in primary and lower secondary schools in Japan (emphasis added, as 
explained below):  

• In primary school (Grades 1-6), basic properties of plane and solid figures are 
studied informally, mainly in relation to everyday life objects. Students also start 
developing their drawing skills to represent 3D shapes on a 2D plane; 

• In Grade 7, students (aged 12-13) study geometrical constructions, symmetry, and 
selected properties of solid figures (names of 3D shapes, nets, sections of cube, 
surface areas and volume) informally, but logically, to establish the basis of the 
learning of proof (note that the measure of the angle between two lines in 3D space 
is not formally considered); 

• In Grade 8, students (aged 13-14) are introduced to formal proof through studying 
properties of angles, lines, congruent triangles, and parallelograms, during which 
they learn the structure of proofs, how to construct proofs, and how to explore and 
prove properties of triangles and quadrilaterals;  

• In Grade 9, students (aged 14-15) study similar figures and properties of circles, 
drawing on their consolidated capacity to use proof in geometry and Pythagorean 
theorems with both 2D and 3D shapes. 

As evident in this progression, students in Japanese lower secondary school have 
relatively limited opportunities to study and explore 3-D geometry (shown in italics 
above). As a consequence, students in general have difficulties when they are faced 
with 3-D geometry problems, e.g. when, in Grade 9, they are finding the lengths of a 
diagonal of a cube by utilising the Pythagorean theorem. Furthermore, it is uncertain 
what understanding of 3-D representations the students gain during their lessons, and 
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how they proceed with their reasoning when given such representations when tackling 
geometric problems. To investigate this issue, and address our research questions set 
out in the introduction, in this paper we present an analysis of quantitative and 
qualitative data which were collected through our classroom-based research.  
The quantitative data come from a survey that was conducted in 2002. In the survey a 
total of 570 students in Grades 7-9 in two ordinary lower secondary schools were asked, 
at the end of their school year, to answer the problem in Figure 2. As can be seen, the 
representation in the Figure is the oblique parallel perspective the one typically used in 
the geometry classroom in Japan.  

E

 

F 

A B 

C D 

 
G H 

 

What is the size of the angle BED?  
State your reason why. 

Figure 2: angle in a cube (survey problem version) 
As qualitative data, we analyse an episode taken from a lesson for a class of 46 Grade 8 
students in a selective lower secondary school for girls. As such, it should be noted that 
the students’ standards are relatively high. In designing the geometry lessons from 
which the episode is taken we employed the following process as a ‘productive 
reasoning process’ (informed by ideas in Becker & Shimada, 1997 and with some 
similarities to what Stein et al, 2008, call “reform-oriented lessons”; note that this 
process is more likely to occur within a classroom in which students can freely share 
their ideas in geometry, see Fujita, Jones & Kunimune, 2010): 

• A problem is introduced, and the students generate conjectures and share 
ideas that could be used to prove their conjectures.   

• Students attempt to prove their conjectures; incorrect proofs might be 
generated and, if necessary, the conjecture is modified and then proved.  

• Students share their reasoning and proofs; incorrect proofs are revisited, and 
students undertake further proving activities.  

In the classroom episode that we analyse, the students are tackling the same ‘angle in a 
cube’ problem, but this time the orientation of the triangle inside the cube is different; 
see Figure 3 (and compare to Figure 2).  

 

What is the size of the angle FCH?  
State your reason why. 

Figure 3: angle in a cube (classroom problem version) 
In our analysis of the classroom episode, we focus on the interplay between the figural 
and conceptual aspects of reasoning; in particular on how the students tried to interpret 
the representations and undertake their reasoning to prove their conjectures. 
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FINDINGS AND ANALYSIS 
Survey results 
As mentioned above, in the survey a total of 570 students across Grades 7-9 tackled the 
problem in Figure 2. We categorised the students’ answers as follows: (A) global 
judgment; e.g. 90o, no reason; (B1) incorrect answer influenced by visual information; 
e.g. half of angle AEF = 90/2=45o; (B2) incorrect answer with some manipulations of a 
cube but influenced by visual information; e.g. drawing a net, and then 45 o + 45 o =90 o; 
(C2) incorrect answer by using sections of cube but influenced by visual information; 
e.g. in triangle BDE, angle B = angle D = 45 o, therefore AEF = 90o; (D) correct answer 
with correct reasoning; e.g. in triangle BDE, EB=BD=DE and therefore AEF = 60o; (E) 
no answer. Table 1 gives the percentages of student answers in each category. 
 A B1 B2 C D E 
Grade 7 (N=146) 13 58 8 4 2 15 
Grade 8 (N=204) 26 44 7 4 3 16 
Grade 9 (N=220) 19 29 16 7 14 15 

Table 1: Categorisation of student responses to the survey (in percentages) 
As evident from the results in Table 1, the response of around two-thirds of the students 
are in A or B categories; that is, they made a global response with no reasoning, or their 
response was incorrect but clearly influenced in some way by the visual information in 
the representation of the cube. Even by Grade 9 only 14% of students gave a correct 
answer with correct reasoning. These results suggest that students in general are not 
able to manipulate 3-D representations well and that their reasoning, if apparent in their 
responses, is likely to have been influenced by visual information from the specific 
representation. 
As the students were asked to solve this problem under the restricted conditions of a 
survey, they did not have an opportunity to engage in the form of productive reasoning 
processes that can occur in the classroom. To investigate this point, we designed, in 
conjunction with a teacher, a classroom experiment in which students could exchange 
their conjectures and reasoning about the problem.  
Classroom teaching results 
This section reports on an episode taken from a lesson with 46 Grade 8 students. In the 
first phase of the lesson, the problem in Figure 3 was introduced, and the students 
generated conjectures. At this point, 28 students considered that angle FCH would be 
60o, three said 90 o, and 15 said ‘I am not sure’. During the lesson, when ideas were 
shared amongst the class, three of the unsure students opted for the answer of 60o, 
making a total of 31 students (ie 67%) conjecturing that FCH was 60o.  
In the next phase of the lesson, the students engaged in a productive reasoning process 
by discussing their ideas to deduce the size of the angle FCH. One student (S1) who 
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considered the size would be 90 o explained her reasoning by using a net; see Figure 4 
(in the dialogue, T is the teacher): 

22  S1 I used a net, but it might be wrong? Maybe it is 60o? I don’t know. 
23  T  Don’t worry; please explain your idea to everyone? 
24  S1  Because FCG and GCG are 45o, then add them together and get 90o? 

 
Figure 4: Student use of a net to solve the ‘angle in a cube’ problem 

This type of response was seen in the survey data.  
A student (S13) then challenged this reasoning, and the teacher started asking for 
opinions as to why the angle was 60o.  

26  S13  But…, Mr T, is S1’s answer only on a plane and we need to fold [to make a 
cube], so it is different? 

27  T  What do you mean? CG will be folded? 
28  S13  Yes. 
29  T OK, do you understand what S13 said? [many students nod] 
37  T  OK, I would like to listen to opinions about why the angle is 60o  
47  S22 Well, in a cube all faces are the same square, and DHGC, BCGF and HEFG 

are all the same, and HG, CF and HF are all diagonals of the same size 
squares. So the lengths [of the sides of triangle FCH] are the same, and it is 
an equilateral. 

At this point, the three students who initially said 90o changed their idea.  
While students S13 and S22 were using the properties of the cube to construct a 
reasonable argument, two students showed hesitation in accepting this reasoning. 

58  S9 I do not understand how to join H and F. 
59  S28 I can accept the explanation (by S22) but in the figure (Figure 4), I cannot 

see any equilateral triangle. 
At this, student S31 suggested an alternative idea. 

64  S31 I have another idea. We can see the cube from A to C.  
65  T We can see from A to C? Can you draw a picture? 

Student S32 had a different suggestion, so that teacher asked S31 and S32 to draw their 
ideas, as shown in Figure 5 (S31 on the left and S32 on the right). The teacher asked the 
class what they thought of these representations. 

67 Ss It is very clear. It is like an equilateral triangle. 
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Figure 5: Student’s alternative ideas for representing the ‘angle in a cube’ problem  

Hence, by shifting the view of the oblique parallel projection (right-hand of Figure 5) 
or by shifting to an orthogonal projection (left hand of Figure 5) all the students agreed 
that triangle CFH is equilateral and hence that angle FCH is 60o. The students could 
‘see’ that this is the case from the representations in Figure 5. 

DISCUSSION 
In the survey results, even with Grade 9 students, only 14% could give a fully correct 
response to the ‘angle in a cube’ problem (ie correct answer with correct reasoning). In 
the classroom situation, as many as 67% of Grade 8 students could do this (following 
some sharing of ideas. Such a difference is not altogether surprising and not the point 
of this paper, though what this comparison does point to is the impact of the 
“productive reasoning process” during which “images and concepts interact 
intimately” (Fischbein, 1993, p. 144).  
The successful reasoning of many of the Grade 8 students in the classroom teaching 
experiment shows evidence of the capabilities identified by Pittalis & Christou (2010, 
pp. 192-4), particularly the capabilities ‘to recognise the properties of 3D shapes and 
compare 3D objects’ and ‘to manipulate different representational models of 3D 
objects’. There is also evidence of what Mesquita (1988, p186) calls the double status 
of a geometrical representation in that it can represent “either an abstract geometrical 
object, or a particular concretization”. Students such as S22 were able to take the cube 
as an abstract geometrical object and could reason about triangle CFH beyond 
reference to the representation (shown in Figure 3) provided by the teacher. Yet other 
students in the same class, such as S9 and S28, needed to ‘see’ that triangle CFH was 
equilateral. At this, student S31 provided a way to do this by using the orthogonal 
projection of the cube (left-hand part of Figure 5), while student S32 provided a 
different viewpoint of the oblique parallel projection (right-hand of Figure 5). Using 
these representations, then triangle CFH ‘appears’ to the students to be equilateral. 
This combination of reasoning and representation convinced doubting students and 
may help to make proof seem more meaningful (Kunimune, Fujita & Jones, 2010). 

CONCLUDING COMMENTS 
Some of the student responses to the survey showed them trying to use the net of a cube 
as a representation to help them solve the ‘angle in a cube’ problem. Some of the 
students in the classroom teaching experiment tried the same representation. On the 
whole, students did not find success when using the net representation. Some of the 
students who were successful could take the cube as an abstract geometrical object and 
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reason about it beyond reference to the representation provided by the teacher. Others, 
who could not ‘see’ the more abstract reasoning benefitted from being offered 
alternative representations to help them ‘see’ the solution. This illustrates how 
students’ reasoning with 3-D geometry problems is influenced by the use of various 
representations. Of course the situation would be different if 3-D dynamic geometry 
software (such as Cabri 3D) was being used since students could utilise various 
viewpoints as if the computer representation were a ‘concrete’ model. Nevertheless, as 
Mithalal (2009) shows, even with 3-D dynamic geometry software, students need to go 
beyond visual information in order to solve geometry problems. 
Acknowledgement: we thank the teacher, Yoshihiro Kubo, for his lesson. 
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